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ABSTRACT

On low dimensional Galilei groups and their applications

Syed Hasibul Hassan Chowdhury, Ph. D.

Concordia University, 2013

This thesis consists of two main parts. The first part focuses on the (1+1) and (2+1) dimen-

sional Galilei groups and their applications to signal analysis and noncommutative quantum

mechanics. Various groups used in the current literature of signal analysis and image pro-

cessing turn out to possess deep connections with the (1+1)-dimensional Galilei group,

which, on the other hand, is the physical kinematical symmetry group of a non-relativistic

system in one spatial and one time dimensions. To study this remarkable representation

theoretic similarity of structures is one of the many goals of this thesis. The (1+1)-affine

Galilei group, a 2-fold noncentral extension of the Galilei group, is precisely responsible

for the above-mentioned bridging. Wigner functions associated with another extension of

(1+1) affine Galilei group are computed and their support properties are subsequently dis-

cussed along with a comparative study of those related to various centrally extended (1+1)-

Galilei groups. The remainder of the first part of the thesis is devoted to the study of the

(2+1)-Galilei group and its relationship to non-commutative quantum mechanics (NCQM).

We show that a certain triple central extension of the abelian group of translations in R4 can
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be considered to be the defining group of NCQM in the same spirit as the Weyl-Heisenberg

group is considered for the case of standard 2-dimensional quantum mechanics. The rep-

resentations associated with various gauges studied in NCQM along with those of standard

QM are all found to be sitting inside the unitary dual of the triply extended group of trans-

lations in R4.

The second part of the thesis, which concerns an entirely separate problem, involves a study

of Poisson brackets between traces of monodromy matrices computed along free homotopy

classes of loops on a compact Riemann surface Σ. We consider a 3-manifold Σ × R with

the connection 1-forms taking their values in the Lie algebra G associated to the structure

Lie groupG of a principalG-bundle defined on the base manifold Σ×R. First we apply the

Hamiltonian formulation of the Chern-Simons theory to compute the Atiyah-Bott brackets

between the relevant G-valued relevant gauge connections. The quotient of this infinite di-

mensional space of flat connections by the action of gauge transformations is what one calls

the moduli space of flat connections. Traces of monodromies computed along the free ho-

motopy classes of loops on Σ are the underlying gauge invariant observables. We compute

Poisson brackets between observables of this sort by applying the Hamiltonian formalism

of soliton theory for various real structure Lie groups, e.g. GL(n,R), SL(n,R), U(n),

SU(n) and Sp(2n,R). The formulae, thus obtained, are found to be in exact agreement

with the ones computed by Goldman in [29].
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Chapter 1

Introduction

Low dimensional Galilei groups exhibit much richer algebraic structures compared to

their relativistic counterparts the Poincaré groups. Bargmann in [10] and Wigner in [49]

pointed out that the Poincaré group, in (d + 1) dimensions with d ≥ 2, does not admit

a nontrivial central extension. On the other hand, the (1+1)-dimensional Poincaré group

admits nontrivial central extensions as explored by Lévy-Leblond in [36] (page 75) and

by Bargmann in [10] (page 37). In the non-relativistic setting, Lévy-Leblond (see [37]),

showed that Galilei group, being a physical kinematical symmetry group for a system

of particles in (3+1) dimensions, admits a nontrivial central extension. The (1+1) and

(2+1)-dimensional cases are even more interesting. Both the Galilei groups G0 in (1+1)-

dimensions and GGal in (2+1)-dimensions admit two inequivalent central extensions. For

the one dimensional case, the relevant extensions are interpreted as mass and force (see

[41] and [36]), while for two dimensional case, they are interpreted as mass and spin (see

[15]). It is also known that the trivial multipliers (see the preliminaries to follow for defini-

tions) of Poincaré group, in (d+1) dimensions with d ≥ 2, can be contracted to nontrivial

local multipliers of Galilei group in the non-relativistic limit, a fact that has been discussed

in [1]. In this thesis, we shall consider a 1-dimensional subspace of second cohomology
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group H2(G0,R) of G0 associated with only the central extension signifying mass of a non-

relativistic particle and denote the centrally extended group by Gm. Various central and

non-central extensions of G0 will also be studied in this thesis in order to study its relation-

ship with different groups of signal analysis and image processing. A certain non-central

extension, of G0 by the abelian group R2, called affine Galilei group and denoted by Gaff is

constructed in the sequel. Using the same line of arguments, presented for (3+1) dimen-

sions in [8], one is led to conclude that the straightforward central extension of Gaff fails

to generate the mass of the underlying non-relativistic system. One, therefore, chooses

a different course to obtain a non-central extension Gmaff , parametrized by m. An elegant

technique has been outlined in [35] to find Wigner functions (see preliminaries for defini-

tion) followed by the computations of relevant coadjoint orbits. Since Gmaff admits similar

semidirect product structure, we apply the above-mentioned technique to find its Wigner

functions. A more general technique is outlined in [5] which we apply to do the same for

Gm. Subsequently, we discuss the support properties of the relevant Wigner functions in

view of [35].

Numerous articles were written on Noncommutative quantum mechanics (NCQM) of

late. In current literature (see [42] for example), one starts with a non-commutative con-

figuration space and assumes that a certain set of commutation relations hold between the

respective positions and momenta coordinates. In a more general setting, one deforms

both the position-position and momentum-momentum commutators by requiring them to
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be non-vanishing along with the standard quantum mechanical position-momentum com-

mutators. One then defines the Hilbert space of Hilbert-Schmidt operators acting on the

underlying non-commutative space as the state space. Using this line of treatment, one

then proves the resolution of identity and obtain the relevant coherent states (see [11] for a

detailed account). In this thesis, we start with centrally extended (2+1) dimensional Galilei

group Gext
Gal and then consider a particle constrained to move on a 2-dimensional plane sub-

ject to the symmetry of Gext
Gal. We then compute the coherent states emanating from Gext

Gal and

subsequently quantize the underlying phase-space variables using these coherent states.

The resulting commutation relations, among these quantized operators on L2(R2) with

respect to the Lebesgue measure, are found to be exactly the ones postulated in many ex-

isting literature of NCQM. In order to capture the more general picture of NCQM where

the relevant momentum operators also fail to commute, we consider a certain triple cen-

tral extension of abelian group of translations GNC in R4. What turns out at the end is that

GNC could be regarded as the defining group of 2-dimensional NCQM in the same sense

as Weyl-Heisenberg group defines standard 2-dimensional QM. Various gauges associated

with NCQM have been studied in [24]. In this thesis, we prove that the representations,

associated with these gauges and the ones for 2-dimensional standard QM, can all be ob-

tained from the unitary dual ofGNC. Also, the group of transformations preserving the set of

2-dimensional non-commutative quantum mechanical commutation relations is obtained to

be isomorphic to Sp(4,R). An interesting family of biorthogonal polynomials giving rise
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to deformed complex Hermite polynomials are explored in [9] and [6]. The representations

associated with these deformed complex Hermite polynomials are also found to be sitting

inside the unitary dual of GNC.

The thesis consists of a separate part which is independent of low dimensional Galilei

group that we have been considering by far. In his seminal paper [29], Goldman discovered

a remarkable Lie algebra structure among the free homotopy classes Zπ̂ of oriented loops

immersed in an oriented closed surface. He then considered the conjugacy classes of repre-

sentations of these free homotopy classes of loops, i.e. Hom(π,G)/G, where G is any Lie

group. In [29], an explicit homomorphism ρ : Zπ̂ → C∞(Hom(π,G)/G) is established.

In this thesis, we model space-time as Σ × R with Σ being a compact Riemann surface

without any boundary and then write down the Chern-Simons action on this 3-manifold.

The relevant connection 1-forms take their values on the Lie algebra G of the structure Lie

group G of the underlying principal G-bundle. The time component of the gauge connec-

tions are gauged out using additional gauge freedoms. Curvature of the gauge connections

are found to be zero. The infinite dimensional space of these flat connections is endowed

with a natural symplectic structure (see [2]). The Poisson brackets between the relevant

gauge connections are then computed. The quotient of the space of flat connections by ac-

tion of gauge transformations is a finite dimensional space. And it is a well-known fact that

this moduli space of flat connections can be identified with Hom(π,G)/G. Its symplectic

structure has been investigated by Goldman in [28]. In [29], he computed the Lie brackets

4



between invariant functions belonging to C∞(Hom(π,G)/G) using the already mentioned

homomorphism ρ. In the setting of this thesis, we compute the Poisson bracket between

Wilson lines, i.e. the traces of monodromy matrices along loops in Zπ̂ using the formalism

of the Hamiltonian method of soliton theory [26]. The Poisson brackets, thus computed,

are seen to coincide with the ones computed by Goldman in [29].

In the following sections, we provide background materials required in the subsequent

chapters.

1.1 Central extension and group cohomology

An elegant account of group multipliers and projective representations with their rela-

tions to quantum mechanics can be found in [48]. In this thesis, we are going to follow very

closely the treatment by Bargmann in his classic paper [10]. Let G be any locally compact

second countable group (lcsc), G′ its connected component and G∗ its universal covering

group. Also, let K be an lcsc abelian group. We shall be interested in K-local exponents of

G′ in any neighbourhood A, say that of the identity e. A K-local exponent of G′ in A is a

continuous function ξ : A× A → K, satisfying the following properties

ξ(g′′, g′) + ξ(g′′g′, g) = ξ(g′′, g′g) + ξ(g′, g)

ξ(g, e) = 0 = ξ(e, g), ξ(g, g−1) = ξ(g−1, g),

(1.1)

with g′g, g′′g′ and g−1 all belonging to the neighbourhood A of identity e.
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Two local exponents ξ and ξ′ defined on A and A′, respectively, will be considered

equivalent if the following holds on A1 = A ∩ A′:

ξ′(g′, g) = ξ(g′, g) + ∆g′,g(ζ), (1.2)

where ∆g′,g(ζ), in terms of the continuous function ζ : A1 → K reads

∆g′,g(ζ) = ζ(g′) + ζ(g)− ζ(g′g). (1.3)

Now, the local exponents of G′ in A can be extended to the whole of G′ if one demands

that G′ be simply connected (see page 3 in [10]). In this case, the local exponents are

called simply K-exponents. In case if G′ is not simply connected, then one works with its

universal covering group G∗ and find all its K-exponents.

In what follows next, G will be assumed to be a connected, simply connected Lie group

and K to be the abelian Lie group R. Now, if we want to translate the additive language of

exponents to a multiplicative one, we define the U(1)-local factors as m(g, g′) = eiξ(g,g
′).

Under the equivalence relation given by (1.2), the U(1)-factors of G form a vector space

known as its second cohomology group H2(G,U(1)). Using the definition of projective

representation (see page 248 in [48]), one obtains for mappings U : g 7→ U(g) of the

underlying Lie group into the unitary operators of a separable Hilbert space H:

U(g)U(g′) = eiξ(g,g
′)U(gg′), (1.4)
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with any g, g′ ∈ G. Now based on (1.4), one can define ordinary representations U, of the

centrally extended group G with a generic element (θ, g) and group multiplication given

by (θ, g)(θ′, g′) = (θ + θ′ + ξ(g, g′), gg′), as

U(θ, g) = eiθU(g). (1.5)

Following (1.4), one obtains

U(θ, g)U(θ′, g′) = ei(θ+θ
′)U(g)U(g′)

= ei[θ+θ
′+ξ(g,g′)]U(gg′)

= U(θ + θ′ + ξ(g, g′), gg′)

= U((θ, g)(θ′, g′)). (1.6)

Thus, we arrive at ordinary representations U of the centrally extended Lie groupG starting

from the projective or ray representations U of the Lie group G.

1.2 Coadjoint orbits and Wigner functions

Let G be a Lie group with semi-direct product structure given by G = Rn ⋊H where

H is a closed subgroup of GL(n,R). Also, let g and g∗ be its Lie algebra and dual Lie

algebra, respectively. Now, G has a natural coadjoint action on g∗. It is well-known that the

underlying coadjoint orbits O∗ are symplectic leaves foliated inside g∗. We are interested

in situations where at least one of O∗-s is open and free in g∗. This amounts to say that the

action ofH on R̂n (dual of Rn), i.e. the dual orbit Ô~kT = {~kTh|h ∈ H}, for some~kT ∈ R̂n,
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is required to be open free in R̂n. And the coadjoint orbits are simply cotangent bundles on

the dual orbits. Let us fix a vector (~0T , ~kT ) ∈ R2n once and for all. Also, denote a generic

element of coadjoint orbit O∗
(~0T ,~kT )

by (~γTq , ~γ
T
p ). Since, O∗

(~0T ,~kT )
= T ∗Ô~kT , the coordinates

denoted by ~γTq are related to the tangent space while the ones denoted by ~γTp are related to

the base manifold (dual orbit) of the cotangent bundle. Now let dν(~kT ) = c(~kT )d~kT be the

invariant measure on Ô~kT where c is the Duflo-Moore operator [35]. And, let dΩ~kT be the

invariant measure defined on the coadjoint orbit O∗
(~0T ,~kT )

. We then define the Wigner map

for G as

W : B2(H) → L2(O∗
(~0T ,~kT )

, dΩ~kT ), (1.7)

where the Hilbert space of Hilbert-Schmidt operators on H = L2(Ô~kT , dν(
~kT )) is denoted

as B2(H). The general formula for W is given in [35]. In the context of extended (1+1)-

affine Galilei group Gmaff , it is explicitly computed in chapter 3, following the computations

of all necessary ingredients.

The technique outlined in [35] can not be applied to groups which do not admit any

open free orbit, e.g. centrally extended (1+1)-Galilei group Gm. The general technique for

computing Wigner map for any Lie group with type-I regular representation is given in [5].

Let us briefly discuss what it means by a Wigner map in this more general context. Let the

dual orbits Ôσ (need not be open free) are parametrized by σ ∈ Ĝ, the space of equivalence

classes of unitary irreducible representations ofG. One can then define Plancherel measure

dνG(σ) in this parameter space. Given the Hilbert spaces Hσ = L2(Ôσ, dµ) with dµ being
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some invariant measure on the dual orbit Ôσ, we can form the direct integral Hilbert space

of Hilbert-Schmidt operators on L2(Ôσ, dµ) given as

B⊕
2 =

∫ ⊕

Ĝ

B2(L
2(Ôσ, dµ))dνG(σ). (1.8)

Let us now turn our attention to the coadjoint orbits Oλ foliated inside the dual Lie

algebra g∗. Note that the foliation is indexed by a continuous parameter λ taking its value

in an index set J . The associated Lebesgue measure dX∗ in g∗ disintegrates in the following

way

dX∗ = σλ(X
∗
λ)dκ(λ)dΩλ(X

∗
λ), X∗

λ ∈ Oλ, (1.9)

where σλ is a positive density defined on the coadjoint orbit Oλ and dΩλ is the (coad)-

invariant measure on Oλ. The measure dκ(λ) is associated with the foliation parameter λ.

All these measures and density functions are explicitly computed in the context of centrally

extended (1+1)-Galilei group in chapter 3. We now define the direct integral Hilbert space

H♯ as

H♯ =

∫ ⊕

J

L2(Oλ, dΩλ)dκ(λ). (1.10)

With the notations introduced above, the Wigner map associated withG is defined as a map

between two direct integral Hilbert spaces given by

W : B⊕
2 → H♯. (1.11)
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The explicit formula for finding W for any such Lie group G, admitting type-I regular

representation, is given in [5] (page 22). In chapter 3, we make direct use of this very

useful formula to compute the Wigner function for centrally extended (1+1)-Galilei group.

In this thesis, the manuscripts associated with Low dimensional Galilei groups and their

relevant applications are added as separate chapters. In particular, chapter 2 and chapter

3 reproduce the contents of manuscripts [20] and [18], respectively. Chapter 4 and 5 are

devoted to the study of (2+1) Galilei group and its application to NCQM. These chapters

reflect the contents of manuscripts [21] and [19], respectively. Finally, in chapter 6 an

independent problem is considered. This chapter reproduces the materials of manuscript

[17].
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Chapter 2

All the Groups of Signal Analysis

from the (1 + 1)-affine Galilei Group

The contents of this chapter are taken from the article titled “All the Groups of Signal

Analysis from the (1 + 1)-affine Galilei Group” [20]. Here, we study the relationship

between the (1 + 1)-affine Galilei group and four groups of interest in signal analysis and

image processing, viz., the wavelet or the affine group of the line, the Weyl-Heisenberg, the

shearlet and the Stockwell groups. We show how all these groups can be obtained either

directly as subgroups of the affine Galilei group, or as subgroups of central extensions of a

subgroup of the affine Galilei group, namely the Galilei-Schrödinger group. We also study

this at the level of unitary representations of the groups on Hilbert spaces.

2.1 Introduction

There are a number of groups that are used in the current literature, on signal analysis

and image processing, to construct signal transforms, as functions representing the sig-

nals over convenient parameter spaces. Of these, the most commonly used are the wavelet

group, i.e., the affine group of the real line R, the Heisenberg and the Weyl-Heisenberg

groups and the more recently introduced Stockwell and shearlet groups. Another set of

groups, which are extensions of the Heisenberg group by one-parameter dilations, were

introduced in [43]. These include the shearlet group as a special case and hence are
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also relevant for constructing signal transforms. As the name suggests, the wavelet group

[4, 23, 47] is used to build the well-known continuous wavelet transform while the shear-

let transform, using the shearlet group [22], is applicable to situations where the signal

to be analyzed has undergone shearing transformations. The Weyl, or equivalently, the

Weyl-Heisenberg group leads to the windowed Fourier transform, useful in time-frequency

analysis [4, 33, 23], while the Stockwell transform [13, 40, 45] combines features of both

the wavelet and time-frequency transforms. The Stockwell group is closely related to the

wavelet group and indeed, as an interesting result we show here that it is just a trivial cen-

tral extension of the wavelet group. (Of course, the wavelet group has no non-trivial central

extensions.) This fact also has the implication that the unitary irreducible representations of

the Stockwell group are square-integrable over a homogeneous space (the space consisting

of the affine group parameters), a fact studied in [40].

The matrix representations of these various groups are as follows. A generic element

of the Heisenberg group is given by a 3× 3 matrix,

g =




1 x y

0 1 z

0 0 1




, x, y, z ∈ R , (2.1)
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while its one-parameter family of extensions obtained in [43] have the form

g =




eσ ve
σ

p+1 a

0 e
σ

p+1 b

0 0 1




, −1 < p ≤ 1 , a, b, v, σ ∈ R . (2.2)

with the shearlet group, which is a special case (p = 1), being of the type,

g =




µ ν
√
µ α

0
√
µ β

0 0 1




, µ > 0, ν, α, β ∈ R . (2.3)

The connected affine or wavelet group is given by 2× 2 matrices of the form

g =



d t

0 1


 , d > 0 , t ∈ R , (2.4)

and finally, the Stockwell group can be represented by a 4× 4 matrix,

g =




1 γδ 0 θ

0 γ 0 1− γ

0 0 1
γ

0

0 0 0 1




, γ > 0, δ, θ ∈ R . (2.5)

The question naturally arises as to whether there exists a matrix group which contains all

the above groups as subgroups. It is also noteworthy that all these groups consist of upper

triangular matrices.
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The purpose of this chapter is firstly, to answer the above question., i.e., we show how

all these groups can be obtained as subgroups of various extensions of the Galilei group

in (1 + 1)-dimensions. This group is a physical kinematical group, which incorporates the

symmetry of non-relativistic motion in a (1 + 1)-dimensional space-time. More precisely,

we shall first extend this group by space and time dilations to obtain the (1 + 1)-affine

Galilei group, which will then be shown to contain all the above groups as subgroups,

except the Stockwell group. This last group which, as we mentioned earlier, is a trivial

central extension of the wavelet group, will be obtained as a subgroup of a trivial central

extension of the Galilei-Schrödinger group, which itself is a subgroup of the affine Galilei

group. As a second and related problem we study how unitary irreducible representations of

the affine Galilei and the various centrally extended Galilei-Schrödinger group decompose

when restricted to the above subgroups. This would shed light on how signal transforms

related to the bigger groups decompose into linear combinations of transforms based on the

smaller subgroups. Physically this could correspond to situations where certain parameters

of a more detailed transform are averaged over or ignored.

Before closing this section we might mention that extensions of the Galilei group and

its Lie algebra have been studied in many other physical contexts, see for example [25] and

references cited therein.
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2.2 Extension to the affine Galilei group

We start with the (1+1)-Galilei group G0 which, as we said, is the kinematical group

of a non-relativistic space-time of (1 + 1)-dimensions. This is a three parameter group, an

element of which we shall denote by (b, a, v). The parameters b, a, and v stand for time

translation, space translation and the Galilean or velocity boost, respectively. Under the

action of this group, a space-time point (x, t) transforms in the following manner

x 7→ x+ vt+ a

t 7→ t+ b

The group element g = (b, a, v) can be faithfully represented by a 3 × 3 upper triangular

matrix,

g =




1 b a

0 1 v

0 0 1




, (2.6)

so that matrix multiplication captures the group composition law. This group, also known

as the Heisenberg group in the mathematical and signal analysis literature, is a central ex-

tension of the group of translations of R2 (translations in time and velocity). The exponent

giving this extension is

ξH(x,x
′) = bv′ , (2.7)
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where, x = (b, v), x′ = (b′, v′). In the physical literature one usually works with another

central extension of R2, the resulting group being referred to as the Weyl-Heisenberg group.

This latter group is constructed using an exponent which is projectively equivalent to (2.7).

We shall come back to this point later.

In discussing and constructing central extensions, we shall follow Bargmann’s treat-

ment in [10]. Given a connected and simply connected Lie group G, the local exponents ξ

giving its central extensions are functions ξ : G×G→ R, obeying the following properties:

ξ(g′′, g′) + ξ(g′′g′, g) = ξ(g′′, g′g) + ξ(g′, g)

ξ(g, e) = 0 = ξ(e, g), ξ(g, g−1) = ξ(g−1, g).

We call the central extension trivial when the corresponding local exponent is simply a

coboundary term, in other words, when there exists a continuous function ζ : G→ R such

that the following holds

ξ(g′, g) = ξcob(g
′, g) := ζ(g′) + ζ(g)− ζ(g′g).

Two local exponents ξ and ξ′ are equivalent if they differ by a coboundary term, i.e.

ξ′(g′, g) = ξ(g′, g) + ξcob(g
′, g). A local exponent which is itself a coboundary is said

to be trivial and the corresponding extension of the group is called a trivial extension. Such

an extension is isomorphic to the direct product group U(1) × G. Exponentiating the in-

equivalent local exponents yields the U(1) local factors or the familiar group multipliers,
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and the set of all such inequivalent multipliers form the well known second cohomology

group H2(G,U(1)) of G.

Next we construct a different kind of an extension of the Galilei group G0 itself, by

forming its semidirect product with D2, the two-dimensional dilation group, i.e., we intro-

duce two dilations (of space and time). The resulting group G0 ⋊D2 will be denoted Gaff. If

the space and time dilations are given by σ and τ , respectively, and a generic group element

of Gaff is written (b, a, v, σ, τ), then the corresponding group composition law reads

(b, a, v, σ, τ)(b′, a′, v′, σ′, τ ′)

= (b+ eτb′, a+ eτb′v + eσa′, v + eσ−τv′, σ + σ′, τ + τ ′) . (2.8)

We shall refer to Gaff as the affine Galilei group. It has the matrix representation

(b, a, v, σ, τ)aff =




eσ veτ a

0 eτ b

0 0 1




(2.9)

2.3 From affine Galilei to extended Heisenberg, shearlet and wavelet groups

In this section, starting from the affine Galilei group Gaff, we first derive the family of

extensions Gp
H of the Heisenberg group, originally obtained in [43]. Following this, we

shall show how the reduced shearlet group, constructed in [22] is in fact one of the above
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groups. Finally, we shall obtain the wavelet group as another subgroup of the affine Galilei

group.

In subsequent sections, using the matrix representations of two central extensions (one

of them being a trivial extension) of the Galilei-Schrödinger group Gs, we shall demon-

strate that the Weyl-Heisenberg group and the connected Stockwell group are subgroups of

these centrally extended groups. In other words, we shall have shown that all the groups

of interest in time-frequency analysis and signal processing are obtainable from a single

group, the affine Galilei Gaff.

2.3.1 Extended Heisenberg group Gp
H as subgroup of affine Galilei group Gaff

Let us construct a family of subgroups of the the affine Galilei group Gaff = G0 ⋊D2 by

restricting the two dilations σ and τ to lie on a line τ = mσ, where m is a constant. The

special case where m = 2 is called the Galilei-Schrödinger group [8]. We shall come back

to this group later.

Consider first the the family of (non-isomorphic) extensions Gp
H of the Heisenberg

group, worked out in [43]. This family of groups is parametrized by a real number p,

where −1 < p ≤ 1. The corresponding group law reads

(b, a, v, σ)(b′, a′, v′, σ′) = (b+ e
σ

p+1 b′, a+ eσa′ + e
σ

p+1vb′, e
pσ
p+1v′ + v, σ + σ′). (2.10)
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The matrix representation of the above family of Lie groups, referred to in ([43]) as the

extended Heisenberg groups, is easily seen to be

(b, a, v, σ)pH =




eσ ve
σ

p+1 a

0 e
σ

p+1 b

0 0 1




, −1 < p ≤ 1. (2.11)

Comparing with (2.9), we immediately see that the groups Gp
H are subgroups of the (1+1)

affine Galilei group Gaff of the type where the two dilations are restricted to the line τ = mσ,

with m = 1
p+1

.

2.3.2 Reduced shearlet group as subgroup of the affine Galilei group Gaff

The reduced shearlet group S, as described in [22], has a generic element,

s = (µ, ν, α, β), µ ∈ R+, ν ∈ R and (α, β) ∈ R2,

with the multiplication law

(µ1, ν1, α1, β1)(µ2, ν2, α2, β2)

= (µ1µ2, ν1 + ν2
√
µ1, α1 + µ1α2 + ν1

√
µ1β2, β1 +

√
µ1β2) . (2.12)

The matrix representation for the group S is as follows

(µ, ν, α, β) =




µ ν
√
µ α

0
√
µ β

0 0 1




(2.13)
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Comparing with (2.11), we see that this group corresponds to the special case p = 1, i.e.,

m =
1

2
,

(b, a, v, σ)S := (b, a, v, σ)p=1
H =




eσ ve
σ
2 a

0 e
σ
2 b

0 0 1




, (2.14)

and the explicit identification

eσ −→ µ

v −→ ν

a −→ α

b −→ β .

Thus, the reduced shearlet group S is a member of the family of extensions Gp
H of Heisen-

berg group (with p = 1) and hence also a subgroup of the (1 + 1)-affine Galilei group.

Gaff.

2.3.3 Wavelet group as subgroup of the affine Galilei group Gaff

The connected affine group or the wavelet group is a two-parameter group Gaff
+ which

consists of transformations on R given by

x 7→ dx+ t, (2.15)
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where x ∈ R, d > 0 and t ∈ R. Here d and t can be regarded as the dilation and translation

parameters, respectively. The group law for this group is given by

(d1, t1)(d2, t2) = (d1d2, d1t2 + t1) (2.16)

The matrix representation of Gaff
+, compatible with the above group law, is given by

(d, t) =



d t

0 1


 (2.17)

In the matrix (2.14) of the reduced shearlet group if we set b = v = 0, we are left with

s |Wavelet=




eσ 0 a

0 e
σ
2 0

0 0 1




, (2.18)

which is a 3× 3 faithful matrix representation of Gaff
+ with the following identification

d −→ eσ

t −→ a ,

i.e., we have obtained the wavelet group as a subgroup of the reduced shearlet group S and

hence of the affine Galilei group Gaff.

Thus, so far we have obtained all the groups mentioned in Section 2.1, except for the

Stockwell group, as subgroups of the affine Galilei group. Although we shall later obtain

the Stockwell group as a subgroup of a trivial central extension of the Galilei-Schrödinger
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group, which is itself a subgroup of the affine Galilei group, we might mention already here

that we could obtain the Stockwell group also as a trivial central extension of the wavelet

group. In this sense, we could have started with a trivial extension of the affine Galilei

group and obtained all the groups mentioned in Section 2.1 essentially as subgroups of it.

2.4 Extensions of the affine Galilei and related groups

The Galilei group G0, has a non-trivial central extension [37], and in fact, there is only

one such extension, up to projective equivalence. This extension, which we describe be-

low, incorporates the quantum kinematics of a physical system in a space-time of (1 + 1)-

dimensions.

Let M be a non-zero, positive real number; the local exponent ξ : G0 ×G0 → R, giving

the extension in question is:

ξ(g, g′) =M [va′ +
1

2
b′v2] , (2.19)

where g ≡ (b, a, v) and g′ ≡ (b′, a′, v′) are elements of G0. We denote this extended group

by GM ; writing a generic element of GM as (θ, b, a, v), the group multiplication law reads,

(θ, b, a, v)(θ′, b′, a′, v′)

= (θ + θ′ +M [va′ +
1

2
b′v2], b+ b′, a+ a′ + vb′, v + v′) (2.20)

We shall refer to GM as the quantum Galilei group.
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2.4.1 Non-central extension of affine Galilei group

The group Gaff does not have non-trivial central extensions. Consequently, it cannot be

used in quantum mechanics, since a trivial extension fails to generate mass [8]. From a

physical point of view, it is therefore more meaningful to take the quantum Galilei group

GM and to form its semidirect product with D2. This way, we arrive at GMaff = GM ⋊ D2,

which is a non-central extension of the affine Galilei group. For simplicity we will call this

group the extended affine Galilei group. Denoting a generic group element of this group by

(θ, b, a, v, σ, τ), the group multiplication law reads

(θ, b, a, v, σ, τ)(θ′, b′, a′, v′, σ′, τ ′)

= (θ + e2σ−τθ′ +M [eσva′ +
1

2
eτv2b′], b+ eτb′, a+ eτb′v + eσa′, v + eσ−τv′,

σ + σ′, τ + τ ′) (2.21)

The matrix representation of an element of GMaff , consistent with the above multiplication

rule is

(θ, b, a, v, σ, τ)Maff =




eσ veτ 0 a

0 eτ 0 b

Mveσ 1
2
Mv2eτ e2σ−τ θ

0 0 0 1




. (2.22)

As mentioned in [37], all the multipliers for the (1+1) dimensional quantum Galilei

group GM are equivalent, i.e., there is only one equivalence class in the multiplier group of
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the (1 + 1)-dimensional Galilei group G0. In other words H2(G0,U(1)) is just one dimen-

sional. It is noteworthy in this context that equation (2.22) is a matrix representation of GMaff

provided that the multiplier we choose, from the one dimensional group H2(G0,U(1)) to

obtain GM during the two step construction of GMaff , has the form eiξ(g1,g2), with ξ given by

equation (2.19). Choosing another, though equivalent, multiplier will alter the form of the

matrix (2.22).

2.4.2 Galilei-Schrödinger group: central extensions

Let us consider the particular case of the subgroup of Gaff when τ = 2σ, i.e., m = 2 (or

p = −1

2
in (2.11)). We denote the resulting one-dimensional dilation group by Ds and the

corresponding subgroup of Gaff by Gs, so that Gs = G0 ⋊ Ds. In the literature, this group

is known as the Galilei-Schrödinger group [8]. It is easy to construct a central extension,

denoted GMs , of Gs by U(1), using a local exponent ξ : Gs × Gs → R, or equivalently,

using the multiplier exp iξ : Gs × Gs → U(1). We mention in this context that since we

prefer working with addition rather than multiplication, we shall henceforth talk in terms

of exponents rather than multipliers.

We proceed to construct two extensions of the Galilei-Schrödinger group, using two

equivalent multipliers, and a third extension using a trivial or exact multiplier. To do that

we first note that the group multiplication law for Gs is given by

(b, a, v, σ)(b′, a′, v′, σ′) = (b+ e2σb′, a+ eσa′ + e2σvb′, v + e−σv′, σ + σ′) (2.23)
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where a generic element of the group is denoted as (b, a, v, σ). Now using the exponent

ξ((b, a, v, σ); (b′, a′, v′, σ′)) =M [veσa′ +
1

2
v2e2σb′] , (2.24)

we obtain a central extension GMs of Gs by U(1). The group law for the centrally extended

group GMs therefore reads

(θ, b, a, v, σ)(θ′, b′, a′, v′, σ′)

= (θ + θ′ +M [veσa′ +
1

2
v2e2σb′], b+ e2σb′, a+ e2σvb′ + eσa′, v + e−σv′,

σ + σ′) , (2.25)

which is consistent with the matrix representation,

(θ, b, a, v, σ)Ms =




eσ ve2σ 0 a

0 e2σ 0 b

Mveσ 1
2
Mv2e2σ 1 θ

0 0 0 1




. (2.26)

Comparing (2.22) and (2.26) we easily see that GMs ⊂ GMaff , which is clear since we have

just set τ = 2σ. It ought to be noted here, that in going from G0 to GMs , two extensions were

involved: first we extended G0 to the Galilei-Schrödinger group Gs, by taking the semidirect

product of the former with the dilation group Ds, and then doing a central extension of this

enlarged group. We could equivalently have reversed the process, i.e., first done a central

extension of G0 to obtain the quantum Galilei group GM and then taken a semi-direct of
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this group with Ds to again arrive at GMs . In other words, in this case the two procedures

commute.

Next consider a second local exponent, ξ1 : Gs × Gs → R given by

ξ1((b, a, v, σ); (b
′, a′, v′, σ′)) =

M

2
[−vv′b′eσ + va′eσ − av′e−σ] . (2.27)

This exponent is easily seen to be equivalent equivalent to ξ, given in (2.24). Indeed, the

difference of the above two exponents,

ξ − ξ1 =
M

2
[v2e2σb′ + vv′b′eσ + va′eσ + v′ae−σ]

=
M

2
(a+ e2σvb′ + eσa′)(v + e−σv′)− M

2
av − M

2
a′v′ (2.28)

is a trivial exponent. In other words (2.28) can be rewritten in terms of the continuous

function ζM : Gs → R,

ξ − ξ1 = ζM((b, a, v, σ)(b′, a′, v′, σ′))− ζM(b, a, v, σ)− ζM(b′, a′, v′, σ′), (2.29)

where ζM(b, a, v, σ) = M
2
av.

Let GM ′
s denote the central extension of Gs by U(1) with respect to the exponent ξ1

given by equation (2.27). The group multiplication law for GM ′
s reads

(θ, b, a, v, σ)(θ′, b′, a′, v′, σ′)

= (θ + θ′ +
M

2
[−vv′b′eσ + va′eσ − av′e−σ], b+ e2σb′, a+ eσa′ + e2σvb′,

v + e−σv′, σ + σ′) (2.30)
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The matrix representation for GM ′
s , compatible with the group law, (2.30) is

(θ, b, a, v, σ)M ′
s =




eσ −e−σb 0 a− vb

0 e−σ 0 −v

1
2
Mveσ 1

2
Mae−σ 1 θ

0 0 0 1




. (2.31)

Finally, we extend the Galilei-Schrodinger group Gs centrally by U(1) with respect to

the trivial exponent ξ2 : Gs × Gs → R given by

ξ2((b, a, v, σ); (b
′, a′, v′, σ′)) = ae−σ(1− e−σ

′

)− eσ−σ
′

vb′ . (2.32)

We call this extension GTs . Again, it is straightforward to verify that the exponent given

in (2.32) is indeed trivial, since it can be rewritten in terms of the continuous function

ζT : Gs → R,

ξ2((b, a, v, σ); (b
′, a′, v′, σ′))

= ζT (b, a, v, σ) + ζT (b
′, a′, v′, σ′)− ζT ((b, a, v, σ)(b

′, a′, v′, σ′)) ,

where ζT (b, a, v, σ) = ae−σ. Thus, the group law for the trivially extended Galilei-Schrodinger

group GTs reads

(θ, b, a, v, σ)(θ′, b′, a′, v′, σ′)

= (θ + θ′ + [ae−σ(1− e−σ
′

)− eσ−σ
′

vb′], b+ e2σb′, a+ eσa′ + e2σvb′,

v + e−σv′, σ + σ′) (2.33)
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The matrix representation of GTs compatible with the above group law is given by

(θ, b, a, v, σ)Ts =




1 ae−σ −eσv θ

0 e−σ 0 1− e−σ

0 −e−σb eσ e−σb

0 0 0 1




(2.34)

2.5 From Galilei-Schrödinger to Weyl-Heisenberg and Stockwell groups

In this section we obtain the Weyl-Heisenberg and Stockwell groups as subgroups of

the centrally extended Galilei-Schrödinger groups. We shall also re-derive the Heisenberg

group, which by construction was a subgroup of the affine Galilei group Gaff, this time as a

subgroup of one of the central extensions of the Galilei-Schrödinger group.

2.5.1 Heisenberg and Weyl-Heisenberg groups as subgroups of centrally extended

Galilei-Schrödinger groups

As mentioned in Section 2.2, the Heisenberg group is identical to the (1 + 1)-Galilei

group G0, which means that it is trivially a subgroup of the affine Galilei group Gaff. More-

over, the Heisenberg group is a central extension of the two-dimensional translation group

of the plane, via the local exponent ξH in (2.7). As also indicated earlier, in the physical

literature one uses a different, but projectively equivalent, exponent ξWH (see (2.41) below)

to do this extension, the resulting group being called the Weyl-Heisenberg group. Thus,

although the Heisenberg and the Weyl-Heisenberg groups are projectively equivalent, we

shall continue to differentiate between them in this chapter. We now proceed to obtain these
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groups as subgroups of central extensions of the Galilei-Schrödinger group. Changing no-

tations a bit let (q, p) denote a point in the plane R2.

In constructing the Heisenberg group GH one uses the local exponent,

ξH((q, p); (q
′, p′)) = pq′ . (2.35)

Writing a general element of this group as

g = (θ, q, p), θ ∈ R, (q, p) ∈ R2,

the group multiplication law reads

(θ, q, p)(θ′, q′, p′) = (θ + θ′ + pq′, q + q′, p+ p′), (2.36)

with the matrix representation being

(θ, q, p)H =




1 p θ

0 1 q

0 0 1




. (2.37)

Now we form the subgroup GMs |H of the centrally extended Galilei-Schrodinger group

GMs by setting b = σ = 0, θ ∈ R and (a, v) ∈ R2. The matrix representation of GMs |H then
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has the form (see (2.26)):

(θ, 0, a, v, 0)Ms := (θ, a, v)Ms |H=




1 v 0 a

0 1 0 0

Mv 1
2
Mv2 1 θ

0 0 0 1




, (2.38)

which under the identification

Mv −→ p

a −→ q

θ −→ θ (2.39)

reduces to

(θ, q, p)Ms |H=




1 p
M

0 q

0 1 0 0

p p2

2M
1 θ

0 0 0 1




. (2.40)

Here we assume that the mass term M is never zero. The above 4 × 4 matrix is a faithful

representation of the Heisenberg group GH, compatible with the group law (2.36).

Thus, the Heisenberg group constructed using the ξH in (2.35), can also be obtained as

a subgroup of the nontrivial central extension GMs of the Galilei-Schrödinger group.
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To obtain the Weyl-Heisenberg group in a similar manner, consider the local exponent

ξWH((q, p); (q
′, p′)) =

1

2
(pq′ − p′q) . (2.41)

It is straightforward to verify that this exponent is equivalent to ξH in (2.35). Indeed,

ξH − ξWH = pq′ − 1

2
(pq′ − p′q)

=
1

2
pq′ +

1

2
p′q

=
1

2
(p+ p′)(q + q′)− 1

2
pq − 1

2
p′q′

= ζ((q, p); (q′, p′))− ζ(q, p)− ζ(q′, p′) ,

where ζ is a real valued continuous function defined on the group of translations of R2,

and hence ξH − ξWH is a trivial exponent. Using the exponent ξWH we extend the group of

translations of R2 to form the Weyl-Heisenberg group GWH, which then obeys the following

group law:

(θ, q, p)(θ′, q′, p′) = (θ + θ′ +
1

2
(pq′ − p′q), q + q′, p+ p′) (2.42)

The matrix representation compatible with the above group law can be written as

(θ, q, p)WH =




1 0 0 q

0 1 0 −p

1
2
p 1

2
q 1 θ

0 0 0 1




. (2.43)
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Forming now the subgroup GM ′
s |WH of the centrally extended Galilei-Schrödinger group

GM ′
s , obtained by setting b = σ = 0, θ ∈ R and (a, v) ∈ R2 (see (2.31)), we get for its

matrix representation

(θ, 0, a, v, 0)M ′
s := (θ, a, v)M ′

s |WH =




1 0 0 a

0 1 0 −v

1
2
Mv 1

2
Ma 1 θ

0 0 0 1




. (2.44)

Making again the identification (2.39), this becomes

(θ, q, p)M ′
s |WH =




1 0 0 q

0 1 0 − p
M

1
2
p 1

2
Mq 1 θ

0 0 0 1




. (2.45)

Here we assume once more that the mass term M is not zero. While the above matrix

is not exactly of the same form as the one given in (2.43), it does reproduce the group

multiplication rule (2.42). Moreover, the two matrix representations are equivalent, via the

intertwining matrix

S =




1 0 0 0

0 1
M

0 0

0 0 1 0

0 0 0 1




,
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i.e., we have

S (θ, q, p)WHS
−1 = (θ, q, p)M ′

s |WH .

In this way we have shown that the Weyl-Heisenberg group GWH is a subgroup of the non-

trivial central extension GM ′
s of Galilei-Schrödinger group.

2.5.2 Connected Stockwell group as subgroup of the trivial central extension GTs of

the Galilei-Schródinger group

The connected Stockwell group GSW (see [13, 40] for definition and properties) can be

seen as a trivial central extension of a group G′
aff, isomorphic to the connected affine group

Gaff
+ (see (2.17)). Given a group element (γ, δ) ∈ R>0 ×R, we define the group law for G′

aff

by

(γ1, δ1)(γ2, δ2) = (γ1γ2, δ1 +
1

γ1
δ2) (2.46)

Comparing with (2.16), we identify the group homomorphism f : Gaff
+ −→ G′

aff

f(γ, δ) = (
1

γ
, δ) . (2.47)

Let us extend the group G′
aff centrally using the exponent

ξs((γ1, δ1); (γ2, δ2)) = γ1δ1(1− γ2)

= γ1δ1 + γ2δ2 − (γ1γ2)(δ1 +
δ2
γ1

) . (2.48)
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This is in fact a trivial exponent since it can be written in terms of the continuous function

ζs : G
′
aff → R:

ξs((γ1, δ1); (γ2, δ2)) = ζs(γ1, δ1) + ζs(γ2, δ2)− ζs((γ1, δ1)(γ2, δ2)) , (2.49)

where ζs(γ, δ) = γδ. The group so extended obeys the multiplication rule

(θ1, γ1, δ1)(θ2, γ2, δ2) = (θ1 + θ2 + [γ1δ1(1− γ2)], γ1γ2, δ1 +
1

γ1
δ2) , (2.50)

which is the product rule for elements of the Stockwell group GSW [13]. This proves that

the Stockwell group is a trivial central extension of the wavelet or affine group. The matrix

representation of a group element of GSW is seen to be

(θ, γ, δ)SW =




1 γδ θ

0 γ 1− γ

0 0 1




. (2.51)

We now show that this group can also be obtained as a subgroup of the trivially extended

Galilei-Schrödinger group GTs (see ((2.32) - (2.34)). Indeed, comparing (2.32) to (2.48) it

is clear that the former exponent reduces to he latter if v is set equal to zero. Next, setting
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v = b = 0 in GTs we see that (2.34) reduces to

(θ, 0, a, 0, σ)Ts := (θ, a, σ)Ts |SW=




1 ae−σ 0 θ

0 e−σ 0 1− e−σ

0 0 eσ 0

0 0 0 1




. (2.52)

The identification

e−σ −→ γ

a −→ δ

θ −→ θ

and subsequent elimination of the redundant third row and column is then seen to yield the

matrix (2.51).

We can conveniently depict all these various extensions and reductions to subgroups by

means of the diagram 2–1.

2.6 Decomposition of UIRs of the affine Galilei group and central extensions of the

Galilei-Schrödinger group restricted to various subgroups

The general procedure for building signal transforms, starting from a group G is first

to define functions over the group using matrix elements of unitary irreducible representa-

tions. Provided these functions possess certain desirable properties which, among others,

enable one to reconstruct the signal, they can be used as transforms describing the signal. In
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Figure 2–1: Flowchart showing the passage from the (1+1)-affine Galilei group to the
various groups of signal analysis.
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other words, the signal transforms are functions which encode the properties of the signal

in terms of the group parameters. It is therefore of interest to construct unitary irreducible

representations of the various groups discussed in the previous sections and to see how rep-

resentations of the smaller subgroups, relevant to signal analysis, sit inside representations

of the bigger groups.

The affine Galilei group Gaff was defined in Section 2.2, following which in Section

2.3 we studied its restriction to various subgroups of interest. In this section we shall first

construct unitary irreducible representations of the affine Galilei group and then study their

restrictions to the reduced shearlet and wavelet subgroups.

In later subsections we will find the UIRs of the two central extensions of the Galilei-

Schrödinger and look at their restrictions to the Heisenberg group GH and the connected

Stockwell group GSW.

2.6.1 UIRs of affine Galilei group restricted to the reduced shearlet group

The group law and matrix representation of the affine Galilei group Gaff was given in

(2.8) and (2.9). From the matrix representation, we easily infer the semidirect product

structure, Gaff = T ⋊ V , where T is an abelian subgroup, with generic element (b, a) and

V is the subgroup generated by the elements (v, σ, τ). Now, the action of (v, σ, τ) on the

element (b, a) as determined by (2.8) is seen to be

(v, σ, τ)(b, a) = (eτb, eτvb+ eσa) (2.53)
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We also have

(v, σ, τ)−1(b, a) = (e−τb, e−σ(a− vb)) . (2.54)

Now let (E, p) denote a generic element of T ∗, the dual of T , and the corresponding

character by

< (E, p) | (b, a) >= ei(Eb+pa)

The action of (v, σ, τ) ∈ V on (E, p) ∈ T ∗ is then defined by

< (v, σ, τ)(E, p) | (b, a) >

=< (E, p) | (v, σ, τ)−1(b, a) >

=< (E, p) | (e−τb, e−σ(a− vb)) >

= ei[(e
−τE−e−σpv)b+e−σpa] , (2.55)

from which we easily find the dual action (E, p) −→ (Ē, p̄),

Ē = e−τE − e−σpv

p̄ = e−σp (2.56)

which we can now use to compute the dual orbits. We see that the sign of p is an invariant

for the same orbit while E takes on all real values independently. In other words, the orbits

are (i) the two open half planes R×R≷ 0, one corresponding to all positive values of p and

the other corresponding to negative values, (ii) the two half lines R≷ 0, with p = 0, E ≷ 0,

and (iii) the degenerate orbit E = p = 0. Note that none of these orbits are open-free (in
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the sense of [12]). Now using (2.54) and (2.56) we obtain

(v, σ, τ)−1(E, p) = (E ′, p′) = (eτ (E + pv), eσp) (2.57)

From this it follows that

dE ′ dp′ = eσ+τ dE dp , on R× R≷0 , (2.58)

and

dE ′ = eτ dE , on R≷0 . (2.59)

Using the Mackey’s theory of induced representations [38, 39], we obtain four unitary

irreducible representations of Gaff, corresponding to the above four orbits. We denote the

representations corresponding to the two half-planar orbits R × R≷ 0 by U±
aff , defined on

L2(R×R±, dE dp), and the representations on the half lines R≷ 0, on L2(R±, dE), by V ±
aff .

The representations are easily computed to be

(U±
aff (b, a, v, σ, τ)ψ̂)(E, p) = e

σ+τ
2 ei(Eb+pa)ψ̂(eτ (E + pv), eσp) , p ≷ 0 , (2.60)

and

(V ±
aff (b, a, v, σ, τ)ψ̂)(E) = e

τ
2 eiEbψ̂(eτE) , E ≷ 0 . (2.61)

Note that the last two representations are non-trivial only on the subgroup of Gaff with

a = v = σ = 0, i.e., the affine or wavelet group defined by the two remaining parameters

b, τ , and in fact, constitute the two unitary irreducible representations of that group. As is
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well known, these two representations of the affine group are square integrable and give

rise to wavelet transforms.

We saw in Section 2.3.2 that the (reduced) shearlet group S is the subgroup of Gaff

corresponding to τ =
1

2
σ. Restricting U±

aff in (2.60) to this subgroup we get

(U±
aff |S (b, a, v, σ)ψ̂)(E, p) = e

3σ
4 ei(Eb+pa)ψ̂(e

σ
2 (E + pv), eσp) , p ≷ 0 . (2.62)

A quick examination of (2.56) shows that R × R≷ 0 are both open free orbits of S. Also,

as representations of the (reduced) shearlet group the two representations (2.60) are irre-

ducible and hence square-integrable. Indeed, these are the representations used to build the

shearlet transforms.

2.6.2 UIRs of affine Galilei group Gaff restricted to the wavelet group

We saw in Section 2.3.3 that the wavelet or affine group Gaff
+ could be obtained from the

shearlet group as the subgroup with b = v = 0, or directly from the affine galilei group Gaff

as the subgroup with b = v = τ = 0.

Setting b = v = τ = 0 in the representations U±
aff in (2.60) we obtain

(U±
aff |Wavelet (0, a, 0, σ, 0)ψ̂)(E, p) = e

σ
2 eipaψ̂(E, eσp) (2.63)

as representations of the wavelet group Gaff
+ on L2(R× R±, dE dp). However, these repre-

sentations are not irreducible. Indeed, noting that

L2(R× R±, dE dp) ≃ L2(R, dE)⊗ L2(R±, dp),
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the representations (2.63) are immediately seen to be of the form

U±
aff |Wavelet= I ⊗ U±

Wavelet , (2.64)

where I is the identity operator on L2(R, dE) and U±
Wavelet are the two unitary irreducible

representations of Gaff
+ on L2(R±, dp), given by

(U±
Wavelet(a, σ)ψ̂)(p) = e

σ
2 eipaψ̂(eσp) . (2.65)

A decomposition of (2.64) into irreducibles is easily done. Indeed, let {φ̂n}∞n=0 be an or-

thonormal basis of L2(R, dE) and Hn the one-dimensional subspaces spanned by φ̂n, n =

0, 1, 2, . . . ,∞, so that L2(R, dE) = ⊕∞
n=0Hn. It is then immediately clear that

U±
aff |Wavelet (0, a, 0, σ, 0) = ⊕∞

n=0 U
±, n
Wavelet(a, σ) , (2.66)

where U±, n
Wavelet is an irreducible representation of Gaff

+ which is simply a direct product of the

trivial representation of the wavelet group on Hn with the irreducible representation U±
Wavelet

onL2(R±, dp) given in (2.65). This decomposition also implies, that the shearlet transform,

when restricted to the parameters of the wavelet group, decomposes into an infinite sum of

wavelet transforms.

2.6.3 UIRs of centrally extended Galilei-Schrödinger group GMs restricted to the

Heisenberg group GH

The group law for the centrally extended Galilei-Schrödinger group GMs , formed using

the exponent ξ in (2.24), is given by (2.25) and the corresponding matrix representation
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by (2.26). From the matrix representation one can deduce the semidirect product structure

GMs = T ⋊ V where T is an abelian subgroup with generic element (θ, b, a) and V a semi-

simple group consisting of the elements (v, σ). Note that that V is just the affine or wavelet

group which also has a semidirect product structure, since

(v1, σ1)(v2, σ2) = (v1 + e−σ1v2, σ1 + σ2).

Now let (q, E, p) denote a generic element of T ∗, the dual of T , and consider the character

< (q, E, p) | (θ, b, a) >= ei(qθ+Eb+pa) .

The action of the subgroup V on the abelian subgroup T follows from (2.25)

(v, σ)(θ, b, a) = (θ +M [veσa+
1

2
e2σv2b], be2σ, eσa+ e2σvb) . (2.67)

Now the action of (v, σ) ∈ V on (q, E, p) ∈ T ∗ is defined by

< (v, σ)(q, E, p) | (θ, b, a) >

=< (q, E, p) | (v, σ)−1(θ, b, a) >

=< (q, E, p) | (θ +M [−va+ 1

2
v2b], e−2σb, e−σ(a− vb)) >

= ei[qθ+(e−2σE−e−σpv+ 1
2
qMv2)b+(e−σp−qMv)a] (2.68)

Thus dual orbit elements (q̄, Ē, p̄) corresponding to a fixed value of (q, E, p) are given by

q̄ = q
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Ē = e−2σE − e−σpv +
1

2
qMv2

p̄ = e−σp− qMv , (2.69)

so that,

Ē − p̄2

2q̄M
= e−2σ(E − p2

2qM
) (2.70)

where we assume that q 6= 0. Since q remains invariant under the transformation (2.69), we

take q̄ = q = κ. We thus get two dual orbits, the interior and exterior of the parabola given

by E − p2

2κM
= 0, lying on the two-dimensional plane determined by q = κ in the q̄-Ē-p̄

space. The parabola E − p2

2κM
= 0 itself determines an orbit and there are additional orbits

when q = 0. Here we shall only consider the first two orbits, i.e., the interior and exterior

of the parabola, for each non-zero κ ∈ R. Let us introduce the new variables

p = k1

E − p2

2κM
= k2 (2.71)

Then, for fixed value of q = κ, the coordinates (k1, k2) are easily seen to transform as

k̄1 = e−σk1 − κMv

k̄2 = e−2σk2 (2.72)

In these new coordinates,

(v, σ)(q, k1, k2) = (q, e−σk1 − qMv, e−2σk2) ,
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and

(v, σ)−1(k1, k2) = (eσ(k1 + κMv), e2σk2) := (k′1, k
′
2) , (2.73)

so that,

k′1 = eσ(k1 + κMv)

k′2 = e2σk2 .

Therefore we obtain

dk′1 dk
′
2 = e3σdk1 dk2 (2.74)

Using again the method of induced representations, we arrive at the two UIRs of GMs de-

fined on the two Hilbert spaces L2(R× R±, dk1 dk2), for each non-zero value of q = κ,

(Uκ
±(θ, b, a, v, σ)ψ̂)(k1, k2) = e

3σ
2 ei(κθ+k1a+{k2+ (k1)

2

2κM
}b)ψ̂(eσ(k1 + κMv), e2σk2) . (2.75)

Let us now go back to the Heisenberg group GH, as discussed in Section 2.5.1 and

construct its unitary irreducible representations, following similar techniques. From the

matrix representation in (2.37) we infer the semidirect product structure,

GH = T ⋊A

where (θ, q) constitute elements of the abelian subgroup T and p is an element of the

subgroup A. Now p ∈ A acts on (θ, q) ∈ T in the following manner

p(θ, q) = (θ + pq, q) (2.76)
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We now denote by (s, t) a geneirc element of T ∗, the dual of the abelian subgroup T .

Let us take the character

< (s, t) | (θ, q) >= ei(sθ+tq);

then

< p(s, t) | (θ, q) > = < (s̄, t̄) | (θ, q) >

= ei(s̄θ+t̄q)

= < (s, t) | p−1(θ, q) >

= < (s, t) | (θ − pq, q) >

= ei[sθ+(t−sp)q] (2.77)

For fixed (s, t) the coordinates of its orbit orbits under the action of A are

s̄ = s

t̄ = t− sp (2.78)

Thus, the dual orbits are a family of parallel straight lines, one for each value of s and

dt is the invariant measure on the orbit. Once again, using Mackey’s theory of induced

representation we obtain the UIR, corresponding to each dual orbit, i.e., for each fixed

value of s:

(U s
H(θ, q, p)ψ̂)(t) = eisθeitqψ̂(t+ sp) , (2.79)

on the Hilbert space L2(R, dt).
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Now the restriction of the UIR (2.75) of the centrally extended Galilei-Schrödinger

group GMs to the Heisenberg group GH is seen to be

(Uκ
± |H (θ, 0, a, v, 0)ψ̂)(k1, k2) = ei(κθ+k1a)ψ̂(k1 + κMv, k2) (2.80)

Thus,

Uκ
± |H= Uκ

H ⊗ I± (2.81)

where Uκ
H is the unitary irreducible representation of the Heisenberg group on L2(R, dk1)

and I± are the identity operators on L2(R±, dk2). Once again we can decompose this

representation as an infinite direct sum of irreducibles,

Uκ
± |H= ⊕∞

n=0U
±, n
κ .

just as in (2.66). Here eachU±, n
κ is a copy of the UIR (2.79) with s = κ on the Hilbert space

L2(R, dk1) times a trivial representation on a one dimensional subspace of L2(R±, dk2).

We also recall that in Section 2.5.1 we obtained the Weyl-Heisenberg group GWH as a

subgroup of the centrally extended Galilei-Schrödinger group GM ′
s . We could just as well

have obtained similar representations ofGWH and their decomposition into irreducibles from

the UIR’s of GM ′
s .

2.6.4 UIRs of cenrally extended (trivial) Galilei-Schrödinger group GTs restricted to

connected Stockwell group

In Section 2.4.2 we had introduced the Galilei-Schrödinger group Gs, by setting τ = 2σ

in the affine Galilei group (see (2.9)). Later we obtained a central extension of it using the
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trivial exponent ξ2 in (2.32). Here we shall obtain UIRs of this centrally extended group by

first finding unitary irreducible representations of Gs itself. The matrix representation of Gs

is found by substituting τ = 2σ in (2.9):

(b, a, v, σ)s =




eσ ve2σ a

0 e2σ b

0 0 1




. (2.82)

From this follows the semi-direct product structure, Gs = T ⋊V where the abelian subgroup

T consists of elements (b, a) and the subgroup V consists of the elements (v, σ).

Now let (E, p) denote a generic element of T ∗, the dual to T , and consider the corre-

sponding character

< (E, p); (b, a) >= ei(Eb+pa) .

The action of the subgroup V on the abelian subgroup T can be immediately read off. We

find,

(v, σ)−1(b, a) = (e−2σb, e−σ(a+ vb)) ,

and the action of (v, σ) ∈ V on (E, p) ∈ T ∗:

< (v, σ)(E, p); (b, a) >= ei[(e
−2σE+e−σpv)b+e−σpa]

Thus, writing

(v, σ)−1(E, p) = (E ′, p′)
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we get the equations for the dual orbit, corresponding to (E, p)

E ′ = e2σ(E + pv)

p′ = peσ (2.83)

We shall only consider orbits for which p 6= 0. Making a change of variables (E, p) 7→

(t = E
p2
, p), the orbit equations become

t′ = t+
v

p

p′ = peσ (2.84)

Thus we get two orbits in the t-p space, namely, the two disjoint open half planes (p ≷ 0).

Also,

dt′ dp′ = eσdtdp (2.85)

Again, following the standard Mackey construction we get the following two unitary ir-

reducible representations of the ordinary Galilei-Schrödinger group, corresponding to these

two orbits R× R± in the t-p space:

(U±(b, a, v, σ)ψ̂)(t, p) = ei(tp
2b+pa)e

σ
2 ψ̂(t+

v

p
, eσp) (2.86)

The representations are carried by the Hilbert spaces L2(R× R±, dt dp), respectively.
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In Section 2.4.2 the trivial exponent ξ2 was shown to arise from the continuous function

ζT : Gs → R given by

ζT (g) = ae−σ . (2.87)

where g ≡ (b, a, v, σ) is a generic element of Gs. In terms of this continuous function it fol-

lows immediately that Ũ±(g) = eiζT (g)U±(g) are projective representations of the Galilei-

Schrodinger group Gs. In other words, UT,±
s (θ, b, a, v, σ) := eiθŨ±(b, a, v, σ) are unitary

irreducible representations of the trivial central extension GTs of the Galilei-Schrödinger

group.

Next the UIRs UT,±
s restricted to the connected Stockwell group have the form

(UT,±
s |SW (θ, 0, a, 0, σ)ψ̂)(t, p) = ei(θ+ae

−σ)eipae
σ
2 ψ̂(t, eσp) (2.88)

Thus,

UT,±
s |SW= I ⊗ U±

SW (2.89)

where I is the identity operator on L2(R, dt) and U±
SW are UIRs of the connected Stockwell

group on L2(R±, dt). The representation (2.89) again decomposes in the usual manner

into an infinite direct sum of irreducibles.

We remark here that the UIRs of the Stockwell group GSW are not square-integrable

(over the whole group). However, since taking θ = 0 in (2.88) yields a projective repre-

sentation of the affine group, the two non-trivial representaions of which are both square-

integrable, this fact can be exploited to arrive at square-integrability over the homogeneous
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space GSW/Θ, where Θ is the phase subgroup. This is exactly the sense in which square-

integrability for representations of the Stockwell group has been defined in [40] and is

in accordance with the theory of square-integrability modulo subgroups (see, for example

[4]).

To summarize, in this chapter, we studied the structures of various groups of interest

in signal analysis and image processing. We also studied structures of various groups

obtained from (1+1) Galilei group using central and non-central extensions. The structural

similarities of these two sets of groups were exhibited in diagram 2–1. The diamond shaped

box, representing (1+1)-affine Galilei group Gaff in this diagram, plays a significant role in

analysing these structural similarities. The next chapter is devoted to the study of a certain

non-central extension of Gaff, its Wigner function and a comparative study of this function

with those associated with centrally extended (1+1) Galilei group Gm.
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Chapter 3

Coadjoint Orbits and Wigner functions of (1+1)-Extended Affine Galilei Group and

Galilei Group

The contents of this chapter are taken from the article titled “Coadjoint Orbits and

Wigner functions of (1+1)-Extended Affine Galilei Group and Galilei Group” [18]. Here,

we study the coadjoint orbits of the noncentrally extended (1+1)-affine Galilei group and

compute the relevant Wigner functions built on them explicitly. We consider the centrally

extended (1+1)-Galilei group and study its coadjoint orbits in the second half of the chap-

ter. We also compute the Wigner functions built on the corresponding coadjoint orbits

subsequently. Finally, a comparative study of the structure of the coadjoint orbits and

corresponding Wigner functions between the extended (1+1)-affine Galilei group and the

centrally extended (1+1)-Galilei group is presented along with possible physical interpre-

tations.

3.1 Introduction

(1+1)- Galilei group G0 is the Kinematical group of non relativistic spacetime of di-

mension (1+1). In [8] an extension of (n+1)-Galilei group by the two dimensional dilation

group D2 (independent space and time dilations) has been considered for n > 3. The re-

sulting extended group is referred to as the (n+1)-affine Galilei group in the literature. We

follow the similar construction to obtain (1+1)-affine Galilei group Gaff.
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This group has profound significance in signal analysis and image processing [20]. But

this group does not seem to have any quantum mechanical feature associated with it. In

order to have a well defined quantum mechanical feature we have to consider the projec-

tive representation of the underlying group. In other words, we have to find a nontrivial

central extension of the given group and consider the true reprsentations of the centrally

(nontrivial) extended group. But as in the higher dimensional case (3 or more) [8], one

could show that the straightforward central extension of Gaff fails to generate the mass of

the nonrelativistic spinless particle under the stated symmetry. This problematic feature

was remedied by the two step construction of a noncentral extension of (1+1)-affine Galilei

group Gaff. First taking the central extension of the (1+1)-Galilei group G0, and then taking

the semidirect product of the resulting extended group Gm with the two dimensional dila-

tion group D2. In this way, we arrive at the group Gmaff = Gm ⋊D2. It is to be noted that the

group so obtained is a noncentral extension of the (1+1)-affine Galilei group Gaff.

3.2 Wigner functions of (1+1)-extended affine Galilei group

The group Gmaff is defined by the following continuous transformation

x 7→ eσx+ eτvt+ a

t 7→ eτ t+ b

where in addition to the parameters (b, a, v) of the (1+1) dimensional Galilei group G0 we

have two more parameters σ, τ ∈ R representing independent space and time dilations
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respectively. So a generic element g of the (1+1) dimensional affine Galilei group is repre-

sented as (b, a, v, σ, τ).

On the other hand, a generic element of (1+1) dimensional extended Galilei group Gmaff

is represented as (θ, b, a, v, σ, τ) obeying the following group composition law

(θ, b, a, v, σ, τ)(θ′, b′, a′, v′, σ′, τ ′)

= θ + e2σ−τθ′ +m[eσva′ +
1

2
eτv2b′], b+ eτb′, a+ eτb′v + eσa′, v + eσ−τv′,

σ + σ′, τ + τ ′)

In this section we will study various coadjoint orbits of Gmaff and develop the required tools

to compute the Wigner functions built on them.

3.2.1 Dual orbits of (1+1)-extended affine Galilei group

An element (θ, b, a, v, σ, τ) of Gmaff can be represented by the following matrix

(θ, b, a, v, σ, τ) =




eσ veτ 0 a

0 eτ 0 b

mveσ 1
2
mv2eτ e2σ−τ θ

0 0 0 1




(3.1)

where the group multiplication now reduces to matrix multiplication for the matrices given

by (3.1). It can easily be seen that T = (θ, b, a, 0, 0, 0) ∼ R3 and V = (0, 0, 0, v, 0, 0) ∼ R

are abelian subgroups of Gmaff . In terms of these two abelian subgroups, Gmaff can be written

as Gmaff = T ⋊(V⋊R2). Now we proceed to find the dual orbits of Gmaff underH = V⋊R2 in
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T ∗ ∼ R̂3. If we denote by (q, E, p) a generic element of T ∗ then the action of (v, σ, τ) ∈ H

on (q, E, p) is found to be

(v, σ, τ)(q, E, p) = (eτ−2σq, e−τE + e−σpv +
1

2
qmeτ−2σv2, e−σp+ eτ−2σqmv). (3.2)

The set of all possible triples (q′, E ′, p′) ∈ R3 such that (v, σ, τ)(q, E, p) = (q′, E ′, p′),

form the dual orbit due to the element (q, E, p) under H in R3. So we have to solve the

following system of equations for (q′, E ′, p′)

q′ = eτ−2σq

E ′ = e−τE + e−σpv +
1

2
qmeτ−2σv2 (3.3)

p′ = e−σp+ eτ−2σqmv

From (3.3), for nonzero values of q, it follows immediately that

e2σ
q′

q
= eτ

E ′ − p′2

2q′m
= e−τ (E − p2

2mq
)

which in turn reflects the fact that the signs of both q and E − p2

2qm
are invariants on the

same orbit. For different values of q, p, E, and E − p2

2qm
we have eleven possible orbits as

outlined in the following table.

The first four orbits Ô1, Ô2, Ô3, and Ô4 of Table 1 listed above are three dimensional

regions depicted in Figure 3–1. Ô5 and Ô6 are the two dimensional surfaces described in

Figure 3–2, while Ô7 and Ô8 are the two half-planes R×R>0 (p > 0) and R×R<0 (p < 0)
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Table 3–1: All possible orbits of Gmaff in R3 under H = V ⋊R2

Orbits q p E E − p2

2qm

Ô1 > 0 − − > 0

Ô2 > 0 − − < 0

Ô3 < 0 − − < 0

Ô4 < 0 − − > 0

Ô5 > 0 − − = 0

Ô6 < 0 − − = 0

Ô7 = 0 > 0 ∈ R −
Ô8 = 0 < 0 ∈ R −
Ô9 = 0 = 0 > 0 −
Ô10 = 0 = 0 < 0 −
Ô11 = 0 = 0 = 0 −

respectively due to q = 0. Now, Ô9 and Ô10 represent the positive E-axis (R>0) and the

negative E-axis (R<0) respectively. Finally, Ô11 stands for the origin (q = p = E = 0). It

is interesting to see that the 3 dimensional non-degenerate orbits are disjoint and separated

from one another lying in the same half regions (determined by q > 0 or q < 0) by the

degenerate orbits Ô5 and Ô6 of Table 3–1. Also, two of them lying in opposite half regions

are separated by the two dimensional plane corresponding to q = 0 (∪11
i=7Ôi). Now, it is

obvious that the first four orbits are open sets in R3. And it is easily verified using equation

(3) that the set of all (v, σ, τ) ∈ R3 such that (v, σ, τ)(q, E, p) = (q, E, p) is trivial, i.e, the

element (0,0,0), which in turn implies that the stabilizer subgroup is trivial. So, the first

four orbits are indeed open free and the two-dimensional surfaces in Figure 3–2 and the

q = 0 plane separate these open free orbits.
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Figure 3–1: The four open free orbits of (1+1) dimensional extended affine Galilei group:
the hollow region in the upper half-region (q > 0) represents Ô1, and the filled region in the
same half-region represents Ô2. Similarly the filled region in the lower half-region (q < 0)
represents Ô3 and the corresponding hollow region there represents Ô4.

Figure 3–2: The degenerate orbits of (1+1) dimensional affine Galilei group: the two di-
mensional surface in the upper half-region (q > 0) represents Ô5 and the one underneath
(q < 0) represents Ô6. Also, the plane q = 0 is the disjoint union of the other degenerate
orbits Ô7, Ô8, Ô9, Ô10, and Ô11.
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3.2.2 Haar measures for the (1+1)-extended affine Galilei group and the correspond-

ing modular function

The group Gmaff is non-unimodular, as shown in the following lemma.

Lemma 3.2.1. Gm
aff

is non-unimodular and e−4σ+τ is the corresponding modular function.

The right invariant Haar measure is simply the Lebesgue measure defined on the underlying

group manifold.

Proof. We take a fixed group element g0 and let it act on another element g from the left to

obtain the following

g0g =




eσ
′

v′eτ
′

0 a′

0 eτ
′

0 b′

mv′eσ
′ 1

2
mv′2eτ

′

e2σ
′−τ ′ θ′

0 0 0 1




,

where

σ′ = σ + σ0, τ
′ = τ + τ0, v

′ = veσ0−τ0 + v0, a
′ = eσ0a+ v0e

τ0b+ a0, (3.4)

b′ = eτ0b+ b0 θ
′ = mv0e

σ0a+
1

2
mv20e

τ0b+ e2σ0−τ0θ + θ0.

Therefore, under the left action of a fixed group element g0 ≡ (θ0, b0, a0, v0, σ0, τ0), a

generic group element g ∈ Gmaff transforms as

(θ, b, a, v, σ, τ) 7→ (θ′, b′, a′, v′, σ′, τ ′).
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obeying the system (3.4). Now it follows that

dσ′ = dσ, dτ ′ = dτ, dv′ = eσ0−τ0dv, da′ = eσ0da+ v0e
τ0db,

db′ = eτ0db, dθ′ = mv0e
σ0da+

1

2
mv20e

τ0db+ e2σ0−τ0dθ.

We can easily see from the above computation that

e−4σ′+τ ′dv′ ∧ da′ ∧ db′ ∧ dθ′ ∧ dσ′ ∧ dτ ′ = e−4σ+τdv ∧ da ∧ db ∧ dθ ∧ dσ ∧ dτ (3.5)

Therefore, (3.5) suggests that e−4σ+τdv ∧ da ∧ db ∧ dθ ∧ dσ ∧ dτ is the left invariant Haar

measure for the (1+1) dimensional extended affine Galilei group.

Now we act with g0 on g from the right:

gg0 =




eσ
′

v′eτ
′

0 a′

0 eτ
′

0 b′

mv′eσ
′ 1

2
mv′2eτ

′

e2σ
′−τ ′ θ′

0 0 0 1




,

with

σ′ = σ + σ0, τ
′ = τ + τ0, v

′ = v + v0e
σ−τ ,

a′ = eσa0 + veτb0 + a, b′ = eτb0 + b, θ′ = mveσa0 +
1

2
mv2eτb0 + e2σ−τθ0 + θ.

So the Lebesgue measures along the group parameters transform in the following manner

dσ′ = dσ, dτ ′ = dτ, dv′ = dv + v0e
σ−τdσ − v0e

σ−τdτ,
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da′ = a0e
σdσ + b0e

τdv + b0ve
τdτ + da, db′ = b0e

τdτ + db,

dθ′ = m(a0e
σ + b0ve

τ )dv + (ma0ve
σ + 2θ0e

2σ−τ )dσ + (
1

2
mb0v

2eτ − θ0e
2σ−τ )dτ + dθ.

It follows immediately that

dv′ ∧ da′ ∧ db′ ∧ dθ′ ∧ dσ′ ∧ dτ ′ = dv ∧ da ∧ db ∧ dθ ∧ dσ ∧ dτ (3.6)

Therefore the right invariant Haar measure turns out to be the usual lebesgue measure on

the underlying group manifold, which is just dv ∧ da ∧ db ∧ dθ ∧ dσ ∧ dτ . Now (3.5)

and (3.6) together imply that the group Gmaff is non-unimodular and e−4σ+τ is the required

modular function for the underlying group.

3.2.3 Lie algebraic aspects and the coadjoint action matrix of (1+1) dimensional ex-

tended affine Galilei group

We first observe that our problem of the (1+1) dimensional extended affine Galilei

group fits exactly into the framework of semidirect product groups discused in [35]. We

are doing so because our ultimate goal is to construct Wigner map for Gmaff . Following the

matrix representation (3.1) of a generic group element g ≡ (θ, b, a, v, σ, τ) of Gmaff we see

that indeed Gmaff = R3 ⋊ H , where H =








eσ veτ 0

0 eτ 0

mveσ 1
2
mv2eτ e2σ−τ




|v, σ, τ ∈ R





is a

closed subgroup of GL(3,R). And (θ, b, a) ∈ R3.
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From the above discussion we see that g can be written as (~x, h) where ~x =




a

b

θ




∈ R3

and h =




eσ veτ 0

0 eτ 0

mveσ 1
2
mv2eτ e2σ−τ




∈ H . And the semidirect product is given by

(~x1, h1)(~x2, h2) = (~x1 + h1~x2, h1h2).

which can be verified by matrix multiplication using (3.1). With the help of the above

notations, g ∈ Gmaff can also be expressed in the following block form

g =



h ~x

~0T 1


 .

Now, let us denote by g and h, the lie algebras of the lie groups Gmaff and H respectively,

where the dimension of g is six while that of h is three.

Now, we assume that dµG and dµr are the left and right invariant Haar measures for Gmaff

respectively with ∆G and ∆H being the corresponding modular functions. Then [35]

dµG(~x, h) = ∆G(~x, h)dµr(~x, h) =
∆H(h)

|deth| dµr(~x, h)
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But in section 3.2.2, we have already found the following measures and the corresponding

modular function

dµG(~x, h) = e−4σ+τdv da db dθ dσ dτ

dµr(~x, h) = dv da db dθ dσ dτ

∆G(~x, h) = e−4σ+τ

Also, |deth| = e3σ. And therefore, we get

∆H(h) = e−σ+τ . (3.7)

Now, we proceed to find the generators for the group Gmaff explcitly and subsequently find

a generic group element of g. Following are the six generators Ds, K,DT , X, T,Θ corre-

sponding to σ, v, τ, a, b and θ respectively,

Ds =




1 0 0 0

0 0 0 0

0 0 2 0

0 0 0 0




, K =




0 1 0 0

0 0 0 0

m 0 0 0

0 0 0 0




, DT =




0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0




X =




0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0




, T =




0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0




, Θ =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0




.
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The commutation relations between the above generators are listed below

[K,DT ] = K, [Ds, DT ] = 0, [K,X] = mΘ, [X,T ] = 0, [K,T ] = X

[Θ, T ] = 0, [Θ, K] = 0, [Θ, X] = 0, [Θ, DT ] = Θ, [Θ, Ds] = −2Θ (3.8)

[K,Ds] = −K, [T,DT ] = −T, [X,Ds] = −X, [X,DT ] = 0, [T,Ds] = 0.

Now a generic algebra element Y can be written as

Y = x1Ds + x2K + x3DT + x4X + x5T + x6Θ. (3.9)

In matrix notation,

Y =




x1 x2 0 x4

0 x3 0 x5

mx2 0 2x1 − x3 x6

0 0 0 0




. (3.10)

Y ∈ g can conveniently be written as

Y =



Xq ~xp

~0T 0


 ,

where we let

Xq =




x1 x2 0

0 x3 0

mx2 0 2x1 − x3




, (3.11)
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and

~xp =




x4

x5

x6




.

We also let

~xq =




x1

x2

x3




,

so that the six dimensional column vector



~xq

~xp


 represents a generic algebra element.

How a generic group element (~x, h) acts on such a six dimensional vector is encoded in

the so-called adjoint action matrix while the action of a group element on a dual algebra

element (in this case six component row vector) is encapsulated in the coadjoint action

matrix. Now we will find the coadjoint action matrix for the group Gmaff explicitly. The

inverse group element is given by

g−1 =




e−σ −ve−σ 0 e−σ(vb− a)

0 e−τ 0 −be−τ

−mveτ−2σ 1
2
mv2eτ−2σ eτ−2σ eτ−2σ(−θ +mva− 1

2
mv2b)

0 0 0 1




(3.12)
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The adjoint action of the underlying group on a generic lie algebra element is defined as

AdgY = gY g−1.

And hence

Adg−1Y = g−1Y g

=




x′1 x′2 0 x′4

0 x′3 0 x′5

mx′2 0 2x′1 − x′3 x′6

0 0 0 0




,

with

x′1 = x1, x
′
2 = veτ−σx1 + eτ−σx2 − veτ−σx3, x

′
3 = x3,

x′4 = e−σax1 + e−σbx2 − e−σvbx3 + e−σx4 − ve−σx5, x
′
5 = be−τx3 + e−τx5,

x′6 = eτ−2σ(2θ −mva)x1 + eτ−2σ(ma−mvb)x2 + eτ−2σ(
1

2
mv2b− θ)x3

−mveτ−2σx4 +
1

2
mv2eτ−2σx5 + eτ−2σx6.

We, therefore, obtain




x
′

1

x
′

2

x
′

3

x
′

4

x
′

5

x
′

6




=




1 0 0 0 0 0

ve
τ−σ

e
τ−σ

−ve
τ−σ 0 0 0

0 0 1 0 0 0

ae
−σ

be
−σ

−vbe
−σ

e
−σ

−ve
−σ 0

0 0 be
−τ 0 e

−τ 0

e
τ−2σ(2θ − mva) e

τ−2σ(ma − mvb) e
τ−2σ( 1

2
mv

2
b − θ) −mve

τ−2σ 1
2
mv

2
e
τ−2σ

e
τ−2σ







x1

x2

x3

x4

x5

x6




.
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So, the coadjoint action matrix for the (1+1) dimensional extended affine Galilei group is

given by the following six by six matrix




1 0 0 0 0 0

ve
τ−σ

e
τ−σ

−ve
τ−σ 0 0 0

0 0 1 0 0 0

ae
−σ

be
−σ

−vbe
−σ

e
−σ

−ve
−σ 0

0 0 be
−τ 0 e

−τ 0

e
τ−2σ(2θ − mva) e

τ−2σ(ma − mvb) e
τ−2σ( 1

2
mv

2
b − θ) −mve

τ−2σ 1
2
mv

2
e
τ−2σ

e
τ−2σ




.

Now, let us have a closer look at the relevant coadjoint orbits. We already know that the

coadjoint orbits are just the cotangent bundles on the dual orbits. So in our case, the non

degenerate coadjoint orbits are given by O∗
1,O∗

2,O∗
3, and O∗

4, where

O∗
1 = T ∗Ô1

O∗
2 = T ∗Ô2

O∗
3 = T ∗Ô3 (3.13)

O∗
4 = T ∗Ô4.

And the details about Ô1, Ô2, Ô3, Ô4 are outlined in Table 3–1.

Now, let us have a look at how the coadjoint orbits in (3.13) follow directly from the

above coadjoint action matrix. Let the group act on a dual algebra element (0, 0, 0, 0, k1, k2)

via the coadjoint action matrix to give another element of the dual algebra which basically

lies in one of the coadjoint orbits. Here it is assumed that (k1, k2) ∈ R2 \ (0, 0). The
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resulting element r of a coadjoint orbit is given by

r = [eτ−2σ(2θ −mva)k2, e
τ−2σ(ma−mvb)k2, k1be

−τ + eτ−2σ(
1

2
mv2b− θ)k2,

−mvk2eτ−2σ, k1e
−τ +

1

2
mv2k2e

τ−2σ, k2e
τ−2σ].

The last three coordinates of the above vector are basically the coordinates of a point lying

in either of the following three dimensional manifolds Ô1, Ô2, Ô3, and Ô4 depending on

the sign of k1 and k2 as we can see from a change of variables

k̂1 = −mvk2eτ−2σ

k̂2 = k2e
τ−2σ

k̂3 = k1e
−τ .

Further to this, we also see that as θ, b, a, v, σ, τ run through R independently, the first

three components of r also run through R independently. Denoting them as k∗1, k
∗
2 , and k∗3 ,

respectively, we can hence write r in the following manner

r =

[

k∗1 k∗2 k∗3 k̂1
(k̂1)2

2mk̂2
+ k̂3 k̂2

]
. (3.14)

Here, k∗1, k
∗
2, k

∗
3 are the vector components relating to the fibre part (cotangent space) of the

cotangent bundle while k̂1, k̂2, k̂3 are those corresponding to the base manifold (the dual

orbit in question). As the sign of k1 and that of k2 determine the fact which coadjoint orbit

we are in, we would like to denote the underlying non degenerate coadjoint orbits by O∗
k1,k2

.

For example, we can take a fixed pair (k1, k2) ∈ R2 \ (0, 0) such that k1, k2 > 0 and act
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the codjoint action matrix on an algebra element (0, 0, 0, 0, k1, k2) to get the coadjoint orbit

O∗
1 as each of the group parameters θ, b, a, v, σ and τ vary in R. We can write the above

fact as O∗
~KT
j

= T ∗Ô ~KT
j

where ~KT
j = (0, k1, k2). We can conveniently choose an ordered

pair (1, 1) for the value of (k1, k2) to generate the coadjoint orbit O∗
1, i.e. O∗

1 = O∗
~KT
1

=

T ∗Ô ~KT
1

, where ~KT
1 = (0, 1, 1). We can go on to find the other coadjoint orbits by suitably

choosing an ordered pair for the value of (k1, k2). Following is the table describing how

we obtain different coadjoint orbits due to different signs of the non-zero components of

the element

[

0 0 0 0 k1 k2

]
lying in the dual algebra along with the corresponding

representative vectors in R̂3. The coadjoint orbits in the following table are also expressed

in terms of the dual orbits described in Table 3–1.

Table 3–2: Classification of the coadjoint orbits O∗
~KT
j

depending on the signs of the com-

ponents of the vector ~KT
j = (0, k1, k2).

O∗
~KT
j

k1 k2 representative vector ~KT
j

O∗
~KT
1

:= O∗
1 = T ∗Ô1 > 0 > 0 ~KT

1 = (0, 1, 1)

O∗
~KT
2

:= O∗
2 = T ∗Ô2 < 0 > 0 ~KT

2 = (0,−1, 1)

O∗
~KT
3

:= O∗
3 = T ∗Ô3 < 0 < 0 ~KT

3 = (0,−1,−1)

O∗
~KT
4

:= O∗
4 = T ∗Ô4 > 0 < 0 ~KT

4 = (0, 1,−1)

3.2.4 Necessary ingredients to cook up the Wigner function for (1+1) dimensional

extended affine Galilei group

We have alreday noted that Ô ~KT
1
, Ô ~KT

2
, Ô ~KT

3
and Ô ~KT

4
are the only four non degenerate

orbits for Gmaff with ∪4
j=1Ô ~KT

j
being dense in R̂3. And also, ∪4

j=1T
∗Ô ~KT

j
is dense in R6.

In addition to these, the orbits are open free. To be precise, each of the above four dual
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orbits is an open free H-orbit. We will find an unitarily inequivalent irreducible and square

integrable representation due to each such open free orbit. These representations exhaust

unitary irreducible representations for the underlying group exactly. And the quasi-regular

representation of Gmaff = R3⋊H turns out to be just a direct sum of these four irreducible rep-

resentations. We speak about quasi-regular representation beacause the underlying Hilbert

space is no longer L2(Gmaff , dµG(~x, h)), rather it is H = L2(Gmaff /H ≃ R3, dθ db da). It

is convenient to work in the Fourier transformed space Ĥ = L2(R̂3, dq dE dp). And the

quasi-regular representations in this Fourier-transformed space Ĥ is unitarily equivalent to

those defined on the Hilbert space H. To be precise, the unitary operators Û(~x, h) acts on

the square integrable functions living in the Hilbert space Ĥ = L2(R̂3, dq dE dp) in the

following manner [35]

(Û(~x, h)f̂)(

[

p E q

]
)

= e
3σ
2 ei(qθ+Eb+pa)f̂




[

p E q

]




eσ veτ 0

0 eτ 0

mveσ 1
2
mv2eτ e2σ−τ







= e
3σ
2 ei(qθ+Eb+pa)f̂(

[

eσ(p+ qmv) eτ (pv + E + 1
2
qmv2)eτ qe2σ−τ

]
).

(3.15)

If we set Ĥj = L2(Ô ~KT
j
, dq dE dp), we see that each of these spaces is an invariant

subspace of Û . And Ûj , the restriction of Û to the Hilbert space Ĥj is irreducible. In other
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words, we have the following direct sum decomposition of Û

Û(~x, h) = ⊕4
j=1Ûj(~x, h). (3.16)

And Ĥ, the representation space of Û(~x, h) decomposes in the following way

Ĥ = ⊕4
1Ĥj. (3.17)

Now, that we are done with the business of representations, we move onto computing the

Duflo-Moore operator in question. The Duflo-Moore operator pertaining to the open free

orbit Ô ~KT
j

is defined to be [35]

(Cj f̂)(~k
T ) = (2π)

n
2 [cj(~k

T )]
1
2 f̂(~kT ) (3.18)

where f̂ ∈ L2(Ô ~KT
j
, d~kT ) and cj : Ô ~KT

j
→ R+ is a positive Lebesgue measurable function.

Let us compute this measurable function explicitly for Ô ~KT
1

. It is to be noted that this orbit

is basically the dual orbit outlined as Ô1 in Table 3–1. We would have had the measurable

functions c to be constant, if Gmaff were unimodular. But we will see now that because

of the non unimodularity of the (1+1) dimensional extended affine Galilei group we have

the function c1 to be unbounded above. We first take an arbitrary element

[

0 1 1

]
∈

Ô ~KT
1
(because 12 − 02

2(m)(1)
> 0) and let the 3 × 3 matrix h introduced in section 3.2.3 act
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on this element

[

0 1 1

]




eσ veτ 0

0 eτ 0

mveσ 1
2
mv2eτ e2σ−τ




=

[

mveσ eτ + 1
2
mv2eτ e2σ−τ

]
(3.19)

Let us further introduce the following change of variables

mveσ = k′1

e2σ−τ = k′2 (3.20)

eτ = k′3.

With the above change of variables the right side of (3.19) takes the form

[

k′1 k′3 +
(k′1)

2

2mk′2
k′2

]
.

As k′2 and k′3 are always positive, the vector represented by the last matrix definitely lives

in Ô ~KT
1

. We, therefore, constructed a homeomorphism from H , the underlying closed sub-

space of GL(3,R) to the dual orbit Ô ~KT
1

. The corresponding lebesgue measures have the

following transformation

dk′1 dk
′
2 dk

′
3 = 2me3σdv dσ dτ. (3.21)

Next, we transfer the left invariant Haar measure dµH from GL(3,R) to Ô ~KT
1

under the

above mentioned homeomorphism.
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Now, the left invariant Haar measure on H can be computed to be [4]

dµH(h) = e−σ+τdv dσ dτ. (3.22)

Therefore, we have the following result

dµH(h) = e−σ+τdv dσ dτ

=
e−4σ+τ

2m
dk′1 dk

′
2 dk

′
3

=
1

2m|k′2|2|k′3|
dk′1 dk

′
2 dk

′
3. (3.23)

From which follows the expression for the function c1

c1(

[

k′1 k′3 +
(k′1)

2

2mk′2
k′2

]
) =

1

2m|k′2|2|k′3|
. (3.24)

Now the Duflo-Moore operator C1 corresponding to the open free orbit Ô ~KT
1

immediately

follows from (3.18)

(C1f̂)(

[

k′1 k′3 +
(k′1)

2

2mk′2
k′2

]
) =

(2π)
3
2

(2m)
1
2 |k′2||k′3|

1
2

f̂(

[

k′1 k′3 +
(k′1)

2

2mk′2
k′2

]
). (3.25)

Now, we want to find the adjoint representation of h, the lie algebra of H . A generic

element Xq ∈ h is given by (3.11). The generators K,Ds, DT as mentioned in Section

3.2.3 form a basis for h. The corresponding commutation relations along with adjoint

representations for the bases are given by

[K,K] = 0, [K,Ds] = −K, [K,DT ] = K, (3.26)
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leading to

adK =




0 0 0

−1 0 0

1 0 0




. (3.27)

Also,

[Ds, K] = K, [Ds, Ds] = 0, [Ds, DT ] = 0, (3.28)

giving

adDs =




1 0 0

0 0 0

0 0 0




. (3.29)

Again,

[DT , K] = −K, [DT , Ds] = 0, [DT , DT ] = 0, (3.30)

which in turn gives

adDT =




−1 0 0

0 0 0

0 0 0




. (3.31)

Using (3.27), (3.29), and (3.31), we can express ad Xq

2
, given a generic algebra element

Xq ∈ h with Xq = x2K + x1Ds + x3DT , as

ad
Xq

2
=

x2
2

adK +
x1
2

adDs +
x3
2

adDT
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=




x1−x3
2

0 0

−x2
2

0 0

x2
2

0 0




. (3.32)

Now, given an n× n matrix A, we define for notational convenience, sinchA as [5]

sinchA = In +
1

3!
A2 +

1

5!
A4 +

1

7!
A6 + . . . (3.33)

Using (3.32) and (3.33), we immediately obtain

sinch (ad
Xq

2
) =




sinch (x1−x3
2

) 0 0

− x2
x1−x3 sinch (x1−x3

2
) + x2

x1−x3 1 0

x2
x1−x3 sinch (x1−x3

2
)− x2

x1−x3 0 1




. (3.34)

Therefore we have,

det (sinch ad
Xq

2
) = sinch (

x1 − x3
2

). (3.35)

We also compute sinch Xq

2
and 1

sinch Xq
2

, which are as follows

sinch

(
Xq

2

)

=




sinch( x1
2
)

x2
x1−x3

[sinch( x1
2
)− sinch( x3

2
)] 0

0 sinch( x3
2
) 0

mx2
x1−x3

[sinch(x1 − x3
2
)− sinch x1

2
]

mx
2
2

2(x1−x3)2
[sinch( x3

2
) + sinch(x1 − x3

2
)− 2sinch( x1

2
)] sinch(x1 − x3

2
)




.
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And

1

sinch
(
Xq

2

)

=




1

sinch( x1
2

)

x2
x1−x3

[ 1

sinch( x1
2

)
− 1

sinch( x3
2

)
] 0

0 1

sinch( x3
2

)
0

mx2
x1−x3

[ 1

sinch(x1−
x3
2

)
− 1

sinch( x1
2

)
]

mx2
2

2(x1−x3)2
[ 1

sinch( x3
2

)
+ 1

sinch(x1−
x3
2

)
− 2

sinch( x1
2

)
] 1

sinch(x1−
x3
2

)




.

(3.36)

A generic lie algebra element Xq of h was given by

Xq =




x1 x2 0

0 x3 0

mx2 0 2x1 − x3




.

The entries of Xq are all expressed in terms of x1, x2 and x3. Now we denote the domain

of integration by D where D = {(x1, x2, x3) ∈ R3|x1 6= x3}. The reason we exclude the

points given by x1 = x3 is that the nonzero offdiagonal entries of the matrix sinch Xq

2
and

those of 1

sinch (
Xq
2

)
all blow up at that point as can easily be verified from (3.36) and (3.36).

Also if we take Xq ∈ h such that (x1, x2, x3) ∈ D, then the exponential map taking the Lie

algebra elements to the underlying group manifold is definitely a bijection onto a dense set

of the Lie group H .
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3.2.5 Wigner function for the (1+1)-extended affine Galilei group and the domain

for the corresponding function

Now, that we have all the essential ingredients, to compute the Wigner function, at our

disposal, we go ahead and do it. We will focus on the open free orbit Ô ~KT
1

. We assume

both k1 and k2 to be equal to 1 in (3.14) as we are considering the cotangent bundle on

the open free orbit Ô ~KT
1

. Finally, suppressing the hats in (3.14), we find that a point on

the corresponding six dimensional coadjoint orbit O∗
1 has coordinates (k∗1, k

∗
2, k

∗
3, k1, k3 +

(k1)2

2mk2
, k2) where k∗1, k

∗
2, k

∗
3 and k1 vary freely in R while k2 and k3 can assume values only

from the positive real axis (R+). The first three coordinates (k∗1, k
∗
2, k

∗
3) correspond to

the cotangent space of the underlying cotangent bundle. On the other hand, the last three

coordinates correspond to the base manifold of the cotangent bundle, i.e. the open free orbit

in question. At this point, we denote the vectors

[

k∗1 k∗2 k∗3

]
and

[

k1 k3 +
k21

2mk2
k2

]

as ~γTq and ~γTp respectively.

Now if we denote the Hilbert space of Hilbert-Schmidt operators on

H = L2(Ô ~KT
1
, 1
2m|k2|2|k3|dk1 dk2 dk3) as B2(H), then the Wigner function due to the corre-

sponding coadjoint orbit is essentially a map

W : B2(H) → L2(O∗
1,
dk∗1 dk

∗
2 dk

∗
3 dk1 dk2 dk3

2m|k2|2|k3|
).

75



Since the orbit under study is an open free one, the Wigner function due to the correspond-

ing coadjoint orbit is given by the following formula [35]

W (φ̂, ψ̂|(~γTq , ~γTp )) =

∫

N0q

d~xqe
−i~γTq ~xq ψ̂

(
~γTp

e
Xq
2

sinchXq

2

)
φ̂

(
~γTp

e−
Xq
2

sinchXq

2

)

× c

(
~γTp

1

sinchXq

2

)− 1
2

c(~γTp )
− 1

2

∣∣∣∣∣
det (sinch adXq

2
)

det (sinch Xq

2
)

∣∣∣∣∣

1
2

(3.37)

Now, we apply (3.24), (3.34), (3.35), (3.36) and (3.36) to compute the following

c

(
~γTp

1

sinchXq

2

)− 1
2

c(~γTp )
− 1

2

∣∣∣∣∣
det (sinch adXq

2
)

det (sinch Xq

2
)

∣∣∣∣∣

1
2

=
2m|k2|2

sinch (x1 − x3
2
)

∣∣∣∣
k3(k3 + r)

sinch (x3
2
)
− k3r sinch (x1 − x3

2
)

sinch2(x1
2
)

∣∣∣∣
1
2

×
[

sinch (x1−x3
2

)

sinch (x1
2
) sinch (x3

2
) sinch (x1 − x3

2
)

] 1
2

(3.38)

where r = 1
2mk2

(
k1 − mk2x2

x1−x3

)2
.

Now, using (3.38) into (3.37), we compute the Wigner function corresponding to one

of the coadjoint orbits O∗
1 for (1+1) dimensional extended affine Galilei group explicitly

W1(φ̂, ψ̂|k∗1, k∗2, k∗3, k1, k3 +
k21

2mk2
, k2)

= 2m|k2|2
∫
D dx1 dx2 dx3 e

−i(x1k∗1+x2k∗2+x3k∗3)ψ̂

(
~γTp

e
Xq
2

sinchXq
2

)
φ̂

(
~γTp

e−
Xq
2

sinchXq
2

)

×
[

sinch(
x1−x3

2
)

sinch(
x1
2
) sinch(

x3
2
) sinch3

(x1−x3
2
)

] 1
2
∣∣∣∣
k3(k3+r)

sinch(
x3
2
)
− k3r sinch (x1−x3

2
)

sinch2
(
x1
2
)

∣∣∣∣
1
2

(3.39)

76



In (3.39) ~γTp =

[

k1 k3 +
k21

2mk2
k2

]
, where k1 ∈ R, k2 > 0 and k3 > 0. Also,

eXq =




ex1 x2(ex1−ex3 )
x1−x3 0

0 ex3 0

mx2[e(2x1−x3)−ex1 ]
x1−x3

mx22[e
x3−2ex1+e(2x1−x3)]

2(x1−x3)2 e2x1−x3




.

As already mentioned, r = 1
2mk2

(k1 − mk2x2
x1−x3 )

2. And 1

sinch (
Xq
2

)
is given by (3.36).

Proceeding in the same manner, we can also find the Wigner functions corresponding to

the other three coadjoint obits for Gmaff . Now we will discuss the domain of all four Wigner

functions corresponding to various coadjoint orbits of the underlying group.

If we have a look at the most general expression of Wigner functionWλ given by (3.37),

we immediately see that whether or not this function is supported on the corresponding

coadjoint orbit O∗
λ is entirely determined by the fact if the argument of φ̂ and that of ψ̂,

i.e. ~γTp
e
Xq
2

sinch Xq
2

and ~γTp
e−

Xq
2

sinch Xq
2

always stay inside the dual orbit Ôλ or not, which in turn

implies that we have to ensure that the vector ~γTp ∈ Ôλ remains stable under the “sinch′′

map to have the Wigner function supported on its coadjoint orbit.
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Now, the polynomial function ∆ as introduced in [35] reduces, for the (1+1) dimen-

sional affine Galilei group case, to

∆(

(

p E q

)
) = det




(

p E q

)
K

(

p E q

)
Ds

(

p E q

)
DT




. (3.40)

Here,

(

p E q

)
∈ R3, where the dual orbits are all embedded. And as we already know,

K =




0 1 0

0 0 0

m 0 0




, Ds =




1 0 0

0 0 0

0 0 2




, DT =




0 0 0

0 1 0

0 0 −1




. (3.41)

(3.40) now reduces to

∆(

(

p E q

)
) = det




qm p 0

p 0 2q

0 E −q




= q(p2 − 2mqE) (3.42)

So, in terms of this new polynomial function ∆, we can construct a table for the non

degenerate dual orbits, using Table 3–1, which is as follows

We can easily see from the above table that the sign of ∆ changes as we move back

and forth between Ô1 and Ô2. The same is true for Ô3 and Ô4. Now, we take an arbitrary
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Table 3–3: Classification of orbits of Gmaff in R3 under H = V ⋊R2

Orbits q ∆(
(
p E q

)
) E − p relation

Ô1 > 0 < 0 E > p2

2mq

Ô2 > 0 > 0 E < p2

2mq

Ô3 < 0 < 0 E < p2

2mq

Ô4 < 0 > 0 E > p2

2mq

element (p0, E0, q0) from one of the nondegenerate dual orbits and then we act 1

sinch Xq
2

on it to obtain the following vector in R3,

v =

(
p0

sinch(x1
2
)
+

mx2q0
x1 − x3

[
1

sinch(x1 − x3
2
)
− 1

sinch(x1
2
)

]
,

p0x2
x1 − x3

[
1

sinch(x1
2
)
− 1

sinch(x3
2
)

]
+

E0

sinch(x3
2
)
+

mx22q0
2(x1 − x3)2

×
[

1

sinch(x1 − x3
2
)
+

1

sinch(x3
2
)
− 2

sinch (x1
2
)

]
,

q0
sinch(x1 − x3

2
)

)

We observe that the sign of q0 is invariant under the above transformation. In other words,

if we start with a point lying in Ô1 it can leak into Ô2 at best. It can never leak down to Ô3

or to Ô4 through the q = 0 plane. Similarly, if we start with a point in Ô3 we can end up

with a point in Ô4 under the action of the “ 1

sinch” map. But the point can never go across

the q = 0 plane to reach either to Ô1 or to Ô2. Next, we compute the polynomial function

∆ given by (3.42) at the point given by the vector v explicitly.

∆(v)
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= det




mq0D p0L+ mx2q0
x1−x3

(D − L) 0

p0L+ mx2q0
x1−x3

(D − L) 0 2q0D

0 p0x2
x1−x3

(L− T ) + E0T +
mx2

2q0
2(x1−x3)2

(D + T − 2L) −q0D




(3.43)

where we have assumed the following

1

sinch (x1
2
)

= L

1

sinch (x3
2
)

= T (3.44)

1

sinch (x1 − x3
2
)

= D,

Computing the determinant given by the right side of (3.43) we have,

∆(v) = m2q30D(L2 −DT )
x22

(x1 − x3)2
− 2mp0q

2
0D(L2 −DT )

x2
x1 − x3

+q0D(p20L
2 − 2mq0E0DT ). (3.45)

Setting ∆(v) to be zero and letting x2
x1−x3 = s we get

m2q30(L
2 −DT )

(
s2 − 2p0

mq0
s

)
+ q0(p

2
0L

2 − 2mq0E0DT ) = 0

⇒ m2q30(L
2 −DT )(s− p0

q0
)2 = q0p

2
0m(L2 −DT )− q0(p

2
0L

2 − 2mq0E0DT )

⇒
(
s− p0

q0

)2

=
DT (2mq0E0 − p20)

m2q20(L
2 −DT )

. (3.46)
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It can be verified that L2 −DT > 0. Also, DT > 0. Therefore, what (3.46) tells us is that

a point (p0, E0, q0) in one of the non degenerate dual orbits can only be unstable under

the action of “ 1

sinch” map iff p20 − 2mq0E0 < 0. But

p20 − 2mq0E0 < 0

⇒ (p0, E0, q0) ∈ Ô1 or (p0, E0, q0) ∈ Ô4, (3.47)

which can easily be seen from Table 3–3. We also find that the points in Ô2 and those in Ô3

are all stable under the “ 1

sinch” map, i.e. they do not leave the corresponding orbits under

the action of that map.

The Wigner function corresponding to the coadjoint orbit O∗
λ, as a function of ~γTq ∈ R̂3

can be thought of as the Fourier transform of a function F (Xq)

W~ωT
0
(φ̂, ψ̂|O∗

λ) =

∫

D
d~xq e

−i~γTq ~xqF (Xq), (3.48)

where

F (Xq) = ψ̂

(
~ωT0

e
Xq
2

sinchXq

2

)
φ̂

(
~ωT0

e−
Xq
2

sinchXq

2

)

× c

(
~ωT0

1

sinchXq

2

)− 1
2

c(~ωT0 )
− 1

2

∣∣∣∣∣
det (sinch adXq

2
)

det (sinch Xq

2
)

∣∣∣∣∣

1
2

. (3.49)

Also, φ̂, ψ̂ ∈ L2(Ôλ) and ~ωT0 is any point from one of the four disjoint nondegenerate dual

orbits.
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Now, for λ = 2, if W~ωT
0
(φ̂, ψ̂|O∗

2) were supported on O∗
2, then F (Xq) would have

been identically zero if we chose ~ωT0 /∈ Ô2. But we have already seen that if we take

~ωT0 ∈ Ô3 or Ô4, ~ωT0
1

sinchXq
2

can never be in Ô2. On the other hand, (3.47) tells us that

if ~ωT0 ∈ Ô1 we can end up with ~ωT0
1

sinchXq
2

∈ Ô2. In other words, F (Xq) can assume

nonzero values when ~ωT0 ∈ Ô1. Therefore the Wigner function corresponding to O∗
2 will

have its support spread on both the coadjoint orbits O∗
1 and O∗

2.

Now, we consider λ = 1 in equation (45). So, φ̂, ψ̂ ∈ L2(Ô1). Now, the question that

we are going to address is whether we can have ~ωT0 /∈ Ô1 such that ~ωT0
1

sinchXq
2

∈ Ô1. It

is obvious from our previous discussion that we can not have such a point in R̂3. Again,

for an element ~ωT0 ∈ Ô1 and ~ωT0
1

sinchXq
2

/∈ Ô1 we have F (Xq) to be identically zero as

φ̂, ψ̂ ∈ L2(Ô1) by assumption. Therefore, we find the support of W~ωT
0
(φ̂, ψ̂|O∗

1) always

lying inside O∗
1.

Using exactly the same arguments we find that the Wigner function W~ωT
0
(φ̂, ψ̂|O∗

4) is

supported inside O∗
4 while the support of W~ωT

0
(φ̂, ψ̂|O∗

3) is spread out on both the coadjoint

orbits O∗
3 and O∗

4.

We, therefore, conclude that the Wigner functions corresponding to the two coadjoint

orbits O∗
1 and O∗

4 will have their supports concentrated inside O∗
1 and O∗

4 respectively. It

is to be noted that the zero level sets of the polynomial function ∆ introduced earlier in

this section, restricted to O∗
1 and O∗

4 are not decomposable into hyperplanes. These two

zero-level sets are the two dimensional surfaces in Figure 3–2 (above and below the plane
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q = 0) correspoding to the degenerate orbits Ô5 and Ô6 respectively in Table 3–1. And

hence we have verified that the converse of the following theorem due to A. E. Krasowska

and S. T. Ali [35] is not true.

Theorem 3.2.1. [35] Let G be a semi-direct product group Rn ⋊ H , such that H acts on

R̂n with open free orbits {Ôm
i }i=1. If an orbit Ôi is a dihedral cone (i.e. if the zero level set

of the polynomial function ∆, restricted to it, can be decomposed into hyperplanes) then

the Wigner function WÔi
has support concentrated on the corresponding coadjoint orbit

O∗
i = Rn × Ôi.

The sufficient condition for the Wigner function to be supported on one of its coadjoint

orbits is that the corresponding dual orbit be a dihedral cone. However, it is not a necessary

condition for the Wigner function to have its support inside one of its coadjoint orbits as

we can see from the example of (1+1) dimensional extended affine Galilei group.

3.3 Wigner function for the (1+1)-centrally extended Galilei

group

We extend the (1+1)-Galilei group G0 centrally using the canonical exponent ξ(g, g′)

given by

ξ1(g1, g2) = m(v1a2 +
1

2
v21b2), (3.50)

where g ≡ (b1, a1, v1) and g2 ≡ (b2, a2, v2) are elements of G0. The centrally extended

Galilei group Gm then obeys the following group law

(θ1, b1, a1, v1)(θ2, b2, a2, v2)
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= (θ1 + θ2 +m[v1a2 +
1

2
v21b2], b1 + b2, a1 + a2 + v1b2, v1 + v2). (3.51)

This group Gm has been called the quantum Galilei group in [20]. Our first goal in this

section would be to study this quantum Galilei group Gm in detail and subsequently to

find its coadjoint orbits. As will turn out later in this section that by using the standard

procedures [5], one fails to compute the correct Wigner function for Gm built on the relevant

coadjoint orbits. In order to remedy this problem we consider a new exponent ξ2 [37] of

the (1+1)-Galilei group G0 which is equivalent to ξ1 and is given by (3.50),

ξ2(g1, g2) =
1

2
m(−v1v2b2 + v1a2 − v2a1). (3.52)

Next, we will extend G0 centrally using the exponent ξ2 given by (3.52) and denote the

resulting group as Gm′. The group composition law for Gm′ is as follows

(θ1, b1, a1, v1)(θ2, b2, a2, v2)

= (θ1 + θ2 +
1

2
m(−v1v2b2 + v1a2 − v2a1), b1 + b2, a1 + a2 + v1b2, v1 + v2)

(3.53)

We will then find the coadjoint action matrix for Gm′ which will turn out to be exactly the

same as to be found for the quantum Galilei group Gm. In other words, the geometry of the
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coadjoint orbits remains unchanged. And we will arrive at the correct form of Wigner func-

tions using this nontrivial central extension of the (1+1)-Galilei group as we will explore

by the end of this section.

3.3.1 Dual orbits and the induced representation for the quantum Galilei group Gm

The group element for the (1+1)-centrally extended Galilei group Gm or the quantum

Galilei group is found to be the following

g =




1 v 0 a

0 1 0 b

mv 1
2
mv2 1 θ

0 0 0 1




, (3.54)

which we here denote as (θ, b, a, v). And the corresponding group multiplication is given

by (3.51).

The inverse group element is given by

(θ, b, a, v)−1 = (−θ − 1

2
mv2b+mva,−b, vb− a,−v).

In matrix notation

(θ, b, a, v)−1 =




1 −v 0 vb− a

0 1 0 −b

−mv 1
2
mv2 1 −θ − 1

2
mv2b+mva

0 0 0 1




.
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The (1+1) dimensional extended Galilei group Gm or the quantum Galilei group can be

viewed as (Θ × T × S) ⋊ V . The action of a pure Galilian boost v ∈ V on the abelian

subgroup (θ, b, a) ∈ (Θ× T × S) is computed in the following way

(θ1, b1, a1, v1)(θ2, b2, a2, v2)

= ((θ1, b1, a1) + v1(θ2, b2, a2), v1 + v2).

But according to the group multiplication law, given at the beginning the last expression

should equal (θ1 + θ2 +
1
2
mv21b2 +mv1a2, b1 + b2, a1 + a2 + v1b2, v1 + v2), from which it

follows that

v(θ, b, a) = (θ +
1

2
mv2b+mva, b, a+ vb)

Let us assume that the dual of the abelian subgroup Θ × T × S is parametrized by γ, E

and p where E, p ∈ R and γ ∈ R \ {0}. The γ = 0 case will be handled separately. Now

the dual pairing reads

χγ,E,p(θ, b, a) = exp[i(γθ + Eb+ pa)]

The dual action of v on the character group can be defined by the following relation

〈(v)χγ,E,p; (θ, b, a)〉 = 〈χγ,E,p; v−1(θ, b, a)〉

But it is seen that v−1 = −v. From which it follows immediately that

v−1(θ, b, a) = (−v)(θ, b, a)
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= (θ +
1

2
mv2b−mva, b, a− vb).

Now,

χγ,E,p(θ +
1

2
mv2b−mva, b, a− vb)

= exp i[γθ +
mγv2

2
b−mγva+ Eb+ p(a− vb)]

And, therefore it follows that

χγ′,E′,p′(θ, b, a) = ei[γ
′θ+E′b+p′a]

= ei[γθ+(mγv2

2
+E−pv)b+(p−mγv)a]

So, under the dual group action the variables parameterizing the character group transforms

according to the following equations

γ′ = γ,

E ′ =
mγv2

2
+ E − pv, (3.55)

p′ = p−mγv.

We also find E and p to be constrained by an equation which follows from the following

computation

p′2 = p2 − 2mγpv +m2γ2v2

p′2

2mγ
=

p2

2mγ
− pv +

1

2
mγv2.
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Using the transformation rule for E, we immidiately have,

p′2

2mγ
=

p2

2mγ
+ E ′ − E,

which we can rewrite as

E − p2

2mγ
= E ′ − p′2

2mγ
= E0

i.e,

E ′ = E0 +
p′2

2mγ

So, the dual action on the character group can conveniently be written as

(v)χγ,E,p = χγ′,E′,p′ = χ
γ, p′2

2mγ
+E0,p′

(3.56)

For a fixed value of γ and that of E0 the orbit is represented by a parabola parallel to the

E ′p′ plane and perpendicular to the γ-axis. As γ varies over R \ {0} the parabola changes

its shape continuously. Now, for γ = 0, the dual orbits are computed separately by putting

γ to be zero in (3.55). The corresponding orbits turn out to be simply one dimensional lines

parallel to E ′-axis lying in the γ = 0-plane. On the other hand, for γ 6= 0, the parabolas

derived earlier tend to shrink down to lines parallel to E ′-axis as γ → 0. At the other

extreme, the parabolas tend to widen with the increase of |γ| and are almost lines parallel

to the p′-axis when |γ| is large enough. We will just consider the parabolic orbits arising

from γ 6= 0 and (E, p) ∈ R2 in this work since the contribution of the γ = 0-plane in the

representation level will be extremely meager.
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Having found the dual orbits for the (1+1)-extended Galilei group or the quantum

Galilei group Gm in (1+1)-dimension, we now proceed to find all the unitary irreducible

representations of this group using the method suggested by Mackey.

We have already found that each dual orbit Oγ,E0 for the underlying Lie group is

parametrized by two numbers γ, E0. Now, we choose a representative χγ,E0,0 from each

orbit Oγ,E0 for distinct ordered pairs of (E0, γ) ∈ R × R∗. Mackey’s inducing construc-

tion suggests that to each dual orbit there corresponds a unitarily inequivalent irreducible

representation. In other words, for each ordered pair (E0, γ), we shall obtain a unitary irre-

ducible representation UE0,γ and for any two different ordered pairs the representations will

be unitarily inequivalent. First, it is evident using (3.55) that the stabilizer subgroup of V

which leaves a particular character group element, say χγ,E,p dual to (θ, b, a) ∈ Θ×T ×S,

stable, is the trivial identity element (0) of V .

((v)χγ,E,p = χγ,E,p) =⇒ v = 0,

we, therefore, find

Oγ,E0 ≃ V/{Identity element} ≃ R̂.

Now, according to the general theory, the irreducible representations of the (1+1) dimen-

sional extended Galilei group Gm, i.e. (Θ × T × S) ⋊ V can now be obtained from the

UIR’s Vγ,E0 of the subgroup (Θ× T × S), where

Vγ,E0(θ, b, a) = χγ,E0,0(θ, b, a)
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= exp i[γθ + E0b]. (3.57)

Because we are looking for UIR’s due to a fixed orbit, we keep both γ and E0 fixed in

(3.57). Now,

V/{Id} ≃ Gm/(Θ× T × S) ≃ R̂.

We define the section λ : Gm/(Θ× T × S) ≃ R̂ → Gm by

λ(k) = (0, 0, 0,
k

m
)

Therefore we have,

g−1λ(k) = (−θ − 1

2
mv2b+mva,−b, vb− a,−v)(0, 0, 0, k

m
)

= (−θ − 1

2
mv2b+mva,−b, vb− a,

k

m
− v)

= (0, 0, 0,
k

m
− v)(−θ − k2b

2m
+ ka,−b, k

m
b− a, 0),

which gives the cocycle h : Gm × R̂ → Θ× T × S with

h(g−1, k) = (−θ − k2b

2m
+ ka,−b, k

m
b− a, 0).

Therefore,

h(g−1, k)−1 = (θ +
k2b

2m
− ka, b, a− k

m
b, 0).

Now,

Vγ,E0(h(g
−1, k)−1) = Vγ,E0(θ +

k2b

2m
− ka, b, a− k

m
b, 0)
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= exp i[γ(θ +
k2b

2m
− ka) + E0b]

Therefore, we obtain the representation Uγ,E0 of Gm induced from the UIR Vγ,E0 of the

subgroup Θ × T × S. This representation acts on the Hilbert space L2(R̂, dk) in the

following way

(Ûγ,E0(θ, b, a, v)φ̂)(k) = exp i[γ(θ +
k2b

2m
− ka) + E0b]φ̂(k −mv), (3.58)

for all φ̂ ∈ L2(R̂, dk). We see that each (E0, γ) ∈ R×R∗ gives rise to a unitary irreducible

representation Ûγ,E0 of Gm. Further to this, if we take two distinct points (E0, γ) and

(E ′
0, γ

′) in the representation space R×R∗ and label the corresponding UIR’s as Ûγ,E0 and

Ûγ′,E′
0 we observe that there does not exist a bounded linear operator V on L2(R̂, dk) such

that for all (θ, b, a, v) ∈ Gm the following holds

V Ûγ,E0(θ, b, a, v)V ∗ = Ûγ′,E′
0(θ, b, a, v)

which implies that the UIR’s pertaining to different orbits given by (3.58) are unitarily

inequivalent.

3.3.2 Coadjoint orbits of Gm and comparison with the dual orbits found from the

Mackey construction

The (1+1) dimensional extended Galilei group Gm or the quantum Galilei group is a

real Lie group. Let us find the corresponding Lie algebra. We denote the group generators

with K,X, T,Θ corresponding to the group parameters v, a, b, θ respectively. Using the

expression for a generic group element in matrix form from (3.54) the group generators are
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found to be the following

K =




0 1 0 0

0 0 0 0

m 0 0 0

0 0 0 0




, X =




0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0




, T =




0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0




, Θ =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0




.

And the corresponding commutation relations are given by

[K,X] = mΘ, [X,T ] = 0, [K,T ] = X, [Θ, T ] = 0, [Θ, K] = 0, [Θ, X] = 0.

A general element of the lie algebra is given by

Y = a1K + a2X + a3T + a4Θ

=




0 a1 0 a2

0 0 0 a3

ma1 0 0 a4

0 0 0 0




.

Now, the adjoint action of the lie group on a generic lie algebra element is as follows

AdgY = gY g−1

=




0 0 0 −ba1 + a2 + va3

0 0 0 a3

ma1 0 0 −ma1 +mva2 +
1
2
mv2a3 + a4

0 0 0 0




.
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Also, the coadjoint action of the group on the dual algebra is defined by the following

relation

〈Ad#g (Y ∗);Y 〉 = 〈Y ∗;Adg−1(Y )〉 (3.59)

Adg−1(Y ) is found to be

Adg−1(Y ) =




0 a1 0 ba1 + a2 − va3

0 0 0 a3

ma1 0 0 m(a− vb)a1 −mva2 +
1
2
mv2a3 + a4

0 0 0 0




Now, we make the following identifications

Y =




0 a1 0 a2

0 0 0 a3

ma1 0 0 a4

0 0 0 0




→




a1

a2

a3

a4




Adg−1(Y ) =




0 a′1 0 a′2

0 0 0 a′3

ma′1 0 0 a′4

0 0 0 0




→




a′1

a′2

a′3

a′4




,

where,

a′1 = a1, a
′
2 = ba1 + a2 − va3,
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a′3 = a3, a
′
4 = m(a− vb)a1 −mva2 +

1

2
mv2a3 + a4.

And

Y ∗ →
[

a1 a2 a3 a4

]
.

With the above identifications, we have,

〈Y ∗;Adg−1(Y )〉 =

[

a1 a2 a3 a4

]




a′1

a′2

a′3

a′4




=

[

a1 a2 a3 a4

]




1 0 0 0

b 1 −v 0

0 0 1 0

m(a− vb) −mv 1
2
mv2 1







a1

a2

a3

a4




= 〈Ad#g (Y ∗);Y 〉.

Therefore, the coadjoint action of the underlying Lie group on the generic dual algebra

element Y ∗ is identified with the following matrix

M(g−1) =




1 0 0 0

b 1 −v 0

0 0 1 0

m(a− vb) −mv 1
2
mv2 1




(3.60)
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Now, we explicitly calculate the coadjoint orbits under the group action on the dual algebra

elements

[

1 0 0 0

]
,

[

0 1 0 0

]
,

[

0 0 1 0

]
and

[

0 0 0 1

]
.

[

1 0 0 0

]




1 0 0 0

b 1 −v 0

0 0 1 0

m(a− vb) −mv 1
2
mv2 1




=

[

1 0 0 0

]
,

[

0 1 0 0

]




1 0 0 0

b 1 −v 0

0 0 1 0

m(a− vb) −mv 1
2
mv2 1




=

[

b 1 −v 0

]
,

[

0 0 1 0

]




1 0 0 0

b 1 −v 0

0 0 1 0

m(a− vb) −mv 1
2
mv2 1




=

[

0 0 1 0

]
,

And

[

0 0 0 1

]




1 0 0 0

b 1 −v 0

0 0 1 0

m(a− vb) −mv 1
2
mv2 1




=

[

m(a− vb) −mv 1
2
mv2 1

]
.
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The first and the third orbit are just points in R4, while the second one traces a two dimen-

sional plane in R4 as b, v keep on varying on the real line. The fourth orbit can be regarded

as the cotangent bundle on a parabola which is again homeomorphic to R2. So we are

basically obtaining two kinds of orbits, namely, one zero dimensional (point) and the other

being two dimensional (plane). Now, if we take the dual algebra-element

[

0 0 k1 k2

]

and compute the corresponding coadjoint orbits for k1, k2, each varying on the real line

subject to the condition that they are not both zero, we get a dense subspace in R4. Let us

have a closer look at how this dense subspace looks like.

[

0 0 k1 k2

]




1 0 0 0

b 1 −v 0

0 0 1 0

m(a− vb) −mv 1
2
mv2 1




=

[

mk2(a− vb) −mvk2 k1 +
1
2
mv2k2 k2

]
(3.61)

where a, v, b varies independently on the real line and k1, k2 also varies independently

subject to the condition that they are not both zero. Let

[

1 0 0 0

]
,

[

0 1 0 0

]
,

[

0 0 1 0

]
, and

[

0 0 0 1

]
be the basis vectors generating R4 and also denote the

corresponding orthogonal axes by X, Y, Z,W . An arbitrary element in R4 is denoted

as

[

x y z w

]
where x, y, z, and w coordinatise the components along X, Y, Z, and W

axes respectively. With this picture in mind, R4 can be considered as a stack of parallel
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R3- hyperplanes othogonal to W -axis. For points in such an R3- hyperplane x, y, and z-

coordinates take their values independently on the respective axes while the value of the

w coordinate is kept fixed. And, there is a unique R3-hyperplane which is orthogonal to

the W -axis and passes through the origin. Any point on this hyperplane is designated by
[

x y z 0

]
. For the sake of definiteness, we denote this particular R3-hyperplane by

R3
0.

Now, if we put k2 to be zero in (3.61), we immediately see that the orbit reduces to

points consisting of

[

0 0 k1 0

]
for k1 ∈ R r {0} which is just the Z-axis r {0}, ab-

breviated as Z∗-axis. Therefore, in view of (3.61), the total orbit space due to dual algebra-

elements in the form of

[

0 0 k1 k2

]
where k1 and k2 are not both zero (punctured k1-k2

plane), denoted as O∗
k1,k2

turns out to be [(R4 rR3
0) ∪ (Z∗-axis)].

Next, we consider dual-algebra elements having the form of

[

0 k3 0 0

]
where k3 ∈

R r {0} and compute the corresponding coadjoint orbit space due to the elements of this

form

[

0 k3 0 0

]




1 0 0 0

b 1 −v 0

0 0 1 0

m(a− vb) −mv 1
2
mv2 1




=

[

bk3 k3 −vk3 0

]
(3.62)
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Equation (3.62) determines the fact that the corresponding coadjoint orbit space (the union

of all the coadjoint orbits for different nonzero values of k3) denoted as O∗
k3

becomes [R3
0r

(X-Z plane)].

Now, we consider dual algebra elements of the form

[

k4 0 k5 0

]
, where k4 and k5

are not both zero. The coadjoint action gives

[

k4 0 k5 0

]




1 0 0 0

b 1 −v 0

0 0 1 0

m(a− vb) −mv 1
2
mv2 1




=

[

k4 0 k5 0

]
(3.63)

From (3.63), we easily see that the total coadjoint orbit space due to elements of the form
[

k4 0 k5 0

]
denoted as O∗

k4,k5
,where k4 and k5 are not both zero is found to be just the

[X-Z plane r {0}] which we denote as (X-Z plane)∗.

Finally, the coadjoint orbit due to the dual-algebra element

[

0 0 0 0

]
denoted as

O∗
0 is just the origin of R4, i.e,

[

0 0 0 0

]
. The union of the above coadjoint orbits

constitutes R4:

O∗
k1,k2

∪ O∗
k3
∪ O∗

k4,k5
∪ O∗

0

= [(R4 rR3
0) ∪ (Z∗-axis)] ∪ [R3

0 r (X-Z plane)] ∪ (X-Z plane)∗ ∪ {0}

= R4. (3.64)
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Now, we consider a subset of O∗
k1,k2

given in (3.64), say O∗′
k1,k2

, where instead of punc-

turing k1-k2 plane we just throw the k1-axis off the k1-k2 plane. In other words, we are

interested in the coadjoint orbits due to dual algebra-elements of the form

[

0 0 k1 k2

]

where k2 is never zero. We can then rewrite (3.61) as

[

0 0 k1 k2

]




1 0 0 0

b 1 −v 0

0 0 1 0

m(a− vb) −mv 1
2
mv2 1




=

[

mk2(a− vb) −mvk2 k1 +
1
2
mv2k2 k2

]

=

[

mk2(a− vb) −mvk2 k1 +
1

2mk2
(−mvk2)2 k2

]
, (3.65)

where (3.65) definitely makes sense because k2 6= 0. Now, we observe that the dual orbits

of the underlying Lie group (Mackey orbits) are given by triples of the form

[

p′ E0 +
p′2

2mγ
γ

]

in p′E ′γ space (R3), γ being unequal to zero. We have already seen in Section 3.3.1 that

each (E0, γ) ∈ R×R∗ gives rise to a parabolic dual orbit in p′E ′γ space, characterized by

Oγ,E0 . The triple

[

p′ E0 +
p′2

2mγ
γ

]
coincides with the last three components of (3.65)

under the following identification

−mvk2 ↔ p′

k1 ↔ E0. (3.66)

k2 ↔ γ
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Equation (3.65) represents the cotangent bundle on the family of parabolas given by

[

−mvk2 k1 +
1

2mk2
(−mvk2)2 k2

]
,

where v1, k1 ∈ R and k2 ∈ R \ {0} and

[

−mvk2 k1 +
1

2mk2
(−mvk2)2 k2

]
represents

exactly the Mackey orbits under the identification given in (3.66).

We, therefore, obtain the correspondence of dual orbits of (1+1) dimensional Extended

Galilei group with its coadjoint orbits which is encapsulated in the following equation

T ∗Oγ,E0 = O∗′
k1,k2

(3.67)

3.3.3 Invariant measure on Gm and the Kirillov 2-forms on its nontrivial coadjoint

orbits

Let a group element g given in (3.54) be acted upon by a fixed group element g0 from

the left to yield the following

g0g =




1 v0 0 a0

0 1 0 b0

mv0
1
2
mv20 1 θ0

0 0 0 1







1 v 0 a

0 1 0 b

mv 1
2
mv2 1 θ

0 0 0 1




=




1 v + v0 0 a+ bv0 + a0

0 1 0 b+ b0

m(v + v0) mvv0 +
1
2
m(v2 + v20) 1 θ + θ0 +mv0a+

1
2
mv20b

0 0 0 1



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Under the left action of the group the measure dv ∧ da ∧ db ∧ dθ transforms as

dv′ ∧ da′ ∧ db′ ∧ dθ′ = dv ∧ (da+ v0db) ∧ db ∧ (dθ +mv0da+
1

2
mv20db)

= (dv ∧ da+ v0dv ∧ db) ∧ db ∧ (dθ +mv0da+
1

2
mv20db)

= (dv ∧ da ∧ db) ∧ (dθ +mv0da+
1

2
mv20db)

= dv ∧ da ∧ db ∧ dθ.

Therefore, it follows immediately that dv ∧ da ∧ db ∧ dθ is a left invariant Haar measure

for the underlying Lie group.

Now, we act g0 on g from the right to obtain the following

gg0 =




1 v0 + v 0 a+ a0 + vb0

0 1 0 b+ b0

m(v + v0) mvv0 +
1
2
m(v2 + v20) 1 θ + θ0 +mva0 +

1
2
mv2b0

0 0 0 1




.

Under this right action of the group, the measure dv∧ da∧ db∧ dθ transforms according to

dv′ ∧ da′ ∧ db′ ∧ dθ′ = dv ∧ (da+ b0dv) ∧ db ∧ (ma0dv +mvb0dv + dθ)

= (dv ∧ da ∧ db) ∧ (ma0dv +mvb0dv + dθ)

= dv ∧ da ∧ db ∧ dθ.

Therefore, dv ∧ da ∧ db ∧ dθ tuns out to be both a left and right invariant, i.e. an invariant

Haar measure for the (1+1)- dimensional Extended Galilei group.
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Now, let us take a fixed dual algebra-element

[

0 k0 0 0

]
and find its coadjoint

orbits.

[

0 k0 0 0

]




1 0 0 0

b 1 −v 0

0 0 1 0

m(a− vb) −mv 1
2
mv2 1




=

[

bk0 k0 −vk0 0

]

=

[

a1 k0 −a2 0

]
,

where k0 6= 0 is fixed, a, v, b ∈ R and a1 = bk0 and a2 = vk0. The coadjoint orbit is

R2, parameterized by two independent variables a1 and a2. Now if we take a fixed group

element and act it on this coadjoint orbit we have,

[

a1 k0 −a2 0

]




1 0 0 0

b0 1 −v0 0

0 0 1 0

m(a0 − vb0) −mv0 1
2
mv20 1




=

[

a1 + b0k0 k0 −k0v0 − a2 0

]

:=

[

a′1 k0 −a′2 0

]
.

We observe that the coadjoint orbit here is stable under the coadjoint action of a fixed group

element. Next thing to see is that if we define a two-form on this coadjoint orbit as da1∧da2
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where a1 and a2 have been defined as above, we immediately find it to be invariant under

the coadjoint action:

da′1 ∧ da′2 = da1 ∧ da2.

This is the well-known Kirillov 2-form for the coadjoint orbit under study.

Now, we study the same for the other non-trivial coadjoint orbit of the (1+1) dimen-

sional extended Galilei group. The dual algebra element under consideration is now

[

0 0 0 k0

]
.

Its coadjoint orbit is given by

[

0 0 0 k0

]




1 0 0 0

b 1 −v 0

0 0 1 0

m(a− vb) −mv 1
2
mv2 1




=

[

mk0(a− vb) −mvk0 1
2
mv2k0 k0

]

=

[

a1 a2
a22

2mk0
k0

]
,

where k0 6= 0 is fixed, a, v, b ∈ R, and a1 = mk0(a − vb) and a2 = −mvk0. Let us

find how this two dimensional coadjoint orbit behaves under the coadjoint action of a fixed
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group element.

[

a1 a2
a22

2mk0
k0

]




1 0 0 0

b0 1 −v0 0

0 0 1 0

m(a0 − v0b0) −mv0 1
2
mv20 1




=

[

a1 + b0a2 +mk0(a0 − v0b0) a2 − k0mv0 −a2v0 + a22
2mk0

+ 1
2
mv20k0 k0

]

=

[

a1 + b0a2 +mk0(a0 − v0b0) a2 − k0mv0
(a2−k0mv0)2

2mk0
k0

]

:=

[

a′1 a′2
(a′2)

2

2mk0
k0

]
.

From the above computation, we observe that this two dimensional coadjoint orbit (cotan-

gent bundle of a parabola) is also stable under the coadjoint action. And, under the afore-

mentioned definition of a1, a2, a′1, and a′2, it turns out that da1∧da2 is the invariant Kirillov

two-form on the coadjoint orbit under study

da′1 ∧ da′2 = (da1 + b0da2) ∧ da2

= da1 ∧ da2.

3.3.4 Duflo-Moore operator and Plancherel measure for Gm

We start with the following orthogonality condition [5]

∫

G

{
∫

Ĝ

tr([Uγ,E0(x)∗A1(γ, E0)C
−1
γ,E0

])dνG(γ, E0)

×
∫
Ĝ

tr([Uγ′,E′
0(x)∗A2(γ′, E ′

0)C
−1
γ′,E′

0
])dνG(γ

′, E ′
0)}dµ(x) = 〈, A1|A2〉B⊕

2
(3.68)
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where B2 is the underlying Hilbert space of Hilbert-Schmidt operators defined on the repre-

sentation space (indexed by a certain set of parameters) of the unitary irreducible represen-

tations of the given group. And these Hilbert spaces generally vary as we keep varying the

corresponding parameters determining the relevant representation spaces. In the present

scenario, we take A1(γ, E0) = A2(γ, E0) = |ψγ,E0〉〈φγ,E0| and the Plancherel measure as

dνG(γ, E0) = ρ(γ, E0)dE0dγ, so that we have

〈A1|A1〉B⊕

2
=

∫

(E0,γ)∈R×R∗

tr[A1(γ, E0)
∗A1(γ, E0)]ρ(γ, E0)dγdE0

=

∫

(E0,γ)∈R×R∗

tr[|φγ,E0〉〈ψγ,E0|ψγ,E0〉〈φγ,E0|]ρ(γ, E0)dγdE0

=

∫

(E0,γ)∈R×R∗

‖ψγ,E0‖2‖φγ,E0‖2ρ(γ, E0)dγdE0. (3.69)

Now, subject to A1(γ, E0) = A2(γ, E0) = |ψγ,E0〉〈φγ,E0| and the fact that the underlying

group is unimodular so that the celebrated Duflo-Moore operator Cγ,E0 is just a multiple

of the identity operator acting on the Hilbert space L2(R̂, dk), the left side of (3.68) in the

Fourier transformed space reads (from now on we will compute things in mommentum-

space representation which is tractable compared to one in configuration space)

1

N2

∫

R4

[

∫

R×R∗

〈ψ̂γ,E0|Ûγ,E0(θ, b, a, v)φ̂γ,E0〉ρ(γ, E0)dE0dγ

×
∫

R×R∗

〈ψ̂γ′,E′
0
|Ûγ′,E′

0(θ, b, a, v)φ̂γ′,E′
0
〉ρ(γ′, E ′

0)dE
′
0dγ

′] dθ db da dv

=
1

N2

∫

(E0,γ)

∫

(E′
0,γ

′)

[

∫

R4

{
∫

k∈R

∫

k′∈R
e−i(γ−γ

′)θei(γk−γ
′k′)ae

−i
2m

(γk2−γ′k′2)b

×e−i(E0−E′
0)bφ̂γ,E0(k −mv)ψ̂γ,E0(k)ψ̂γ′,E′

0
(k′)φ̂γ′,E′

0
(k′ −mv) dk dk′}
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×dθ db da dv]ρ(γ, E0)ρ(γ
′, E ′

0)(dE0 dγ)(dE
′
0 dγ

′)

=
2π

N2

∫

(E0,γ)

∫

(E′
0,γ

′)

δ(γ − γ′)[

∫

R3

{
∫

k

∫

k′
ei(γk−γ

′k′)ae−
i

2m
(γk2−γ′k′2)be−i(E0−E′

0)b

×φ̂γ,E0(k −mv)ψ̂γ,E0(k)ψ̂γ′,E′
0
(k′)φ̂γ′,E′

0
(k′ −mv) dk dk′}db da dv]

×ρ(γ, E0)ρ(γ
′, E ′

0)(dE0 dγ)(dE
′
0 dγ

′)

=
2π

N2

∫

(E0,γ)

∫

E′
0∈R

[

∫

R3

{
∫

k

∫

k′
eiγ(k−k

′)ae−
iγ
2m

(k2−k′2)be−i(E0−E′
0)b

×φ̂γ,E0(k −mv)ψ̂γ,E0(k)ψ̂γ,E′
0
(k′)φ̂γ,E′

0
(k′ −mv) dk dk′}db da dv]

×ρ(γ, E0)ρ(γ, E
′
0)dE0 dγ dE

′
0

=
(2π)2

N2

∫

(E0,γ)

∫

E′
0∈R

[

∫

R2

{
∫

k

∫

k′

δ(k − k′)

|γ| e−
iγ
2m

(k2−k′2)be−i(E0−E′
0)b

×φ̂γ,E0(k −mv)ψ̂γ,E0(k)ψ̂γ,E′
0
(k′)φ̂γ,E′

0
(k′ −mv) dk dk′}db dv]

×ρ(γ, E0)ρ(γ, E
′
0)dE0dγdE

′
0

=
(2π)2

N2

∫

(E0,γ)

∫

E′
0∈R

[

∫

R2

{
∫

k

e−i(E0−E′
0)bφ̂γ,E0(k −mv)ψ̂γ,E0(k)ψ̂γ,E′

0
(k)

×φ̂γ,E′
0
(k −mv) dk}db dv]ρ(γ, E0)

|γ| ρ(γ, E ′
0)dE0 dγ dE

′
0

=
(2π)3

N2

∫

(E0,γ)

∫

E′
0∈R

[

∫

v∈R
{
∫

k

δ(E0 − E ′
0)φ̂γ,E0(k −mv)ψ̂γ,E0(k)ψ̂γ,E′

0
(k)

×φ̂γ,E′
0
(k −mv) dk}dv]ρ(γ, E0)

|γ| ρ(γ, E ′
0)dE0dγdE

′
0

=
(2π)3

N2

∫

(E0,γ)

[

∫

v∈R
{
∫

k

φ̂γ,E0(k −mv)ψ̂γ,E0(k)ψ̂γ,E0(k)φ̂γ,E0(k −mv) dk}

×dv] [ρ(γ, E0)]
2

|γ| dγdE0

=
(2π)3

N2

∫

(E0,γ)

[ρ(γ, E0)]
2

|γ| dγdE0[

∫

v∈R
{
∫

k

φ̂γ,E0(k −mv)ψ̂γ,E0(k)ψ̂γ,E0(k)
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×φ̂γ,E0(k −mv) dk}dv]

=
(2π)3

N2

∫

(E0,γ)

[ρ(γ, E0)]
2

|γ| dγdE0[
1

m

∫

k′∈R
{
∫

t∈R
φ̂γ,E0(t)ψ̂γ,E0(k

′)ψ̂γ,E0(k
′)

×φ̂γ,E0(t) dt}dk′]

=
(2π)3

N2

∫

(E0,γ)

[ρ(γ, E0)]
2

m|γ| ‖φ̂‖2‖ψ̂‖2dγdE0.

Now, in view of (3.68) and (3.69), we finally obtain (in momentum space)

ρ(γ, E0) = m|γ| (3.70)

N = (2π)3/2, (3.71)

which are the Plancherel measure and the Duflo-Moore operator, respectively, for the quan-

tum Galilei group case.

3.3.5 Computation that leads to the fact that the canonical exponent ξ1 used to con-

struct Gm is no good to compute the correct Wigner function

The most general expression for Wigner function is given by the following expression

[5]

W (A|X∗
λ) =

[σλ(X
∗
λ)]

1
2

(2π)
n
2

∫

N0

e−i〈X
∗
λ;X〉

×[

∫

Ĝ

tr(Uσ(e
−X)[A(σ)C−1

σ ])[m(X)]
1
2dνG(σ)]dX. (3.72)

The first exponential term in (3.72) is given by the following expression

exp i(k∗1v − k∗2a+ {k1 +
(k∗2)

2

2mk2
}b+ k2θ).
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And the densities σ and m for the (1+1) dimensional Galilei group turn out to be sim-

ply 1. Here, we are interested in the coadjoint orbits O∗
k1,k2

due to dual algebra elements
[

0 0 k1 k2

]
. The induced representation of Gm was found to be

(Ûγ,E0(θ, b, a, v)φ̂)(k) = ei[γ(θ+
k2b
2m

−ka)+E0b]φ̂(k −mv).

It follows immediately that

(Ûγ,E0(e−Y )φ̂)(k) = (Ûγ,E0(−θ,−b, a,−v)−1φ̂)(k)

= (Ûγ,E0(θ +
1

2
mv2b−mva, b, vb− a, v)φ̂)(k)

= eiγθ+
i
2
γmv2b−iγmva+iγ k2b

2m
−iγkvb+iγka+iE0bφ̂(k −mv). (3.73)

The Duflo-Moore operator was found to be just (2π)3/2. So C−1 in (3.72) is just 1
(2π)3/2

.

Also, in this case n = 4. Now combining (3.73) with the exponential term mentioned at

the start and putting them in (3.72), we find the following

W (|φγ,E0〉〈ψγ,E0|; k∗1, k∗2; k1, k2)

=
m

(2π)3
√
2π

∫

θ

∫

b

∫

a

∫

v

e
i(k∗1v−k∗2a+{k1+

(k∗2)
2

2mk2
}b+k2θ)

×[

∫

γ

∫

E0

∫

k

eiγθ−iγkvb+iγka+
i
2
γmv2b−iγmva+iγ k2b

2m
+iE0bψ̂γ,E0(k)φ̂γ,E0(k −mv)

×|γ|dk dE0 dγ]dv da db dθ

=
m|k2|

(2π)2
√
2π

∫

E0

[

∫

b

∫

a

∫

v

∫

k

eik
∗
1v−ik∗2ae

i{k1+
(k∗2)

2

2mk2
}b

×ψ̂−k2,E0(k)e
ik2kvb−ik2ka− i

2
k2mv2b+ik2mva−ik2 k2b

2m
+iE0bφ̂−k2,E0(k −mv)
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×dk dv da db]dE0

=
m|k2|

(2π)2
√
2π

∫

E0

∫

b

∫

k

∫

v

[

∫

a

e−ik
∗
2a−ik2ka+ik2mvada]eik

∗
1ve

i{k1+
(k∗2)

2

2mk2
}b

×ψ̂−k2,E0(k)e
ik2kvb− i

2
k2mv2b−ik2 k2b

2m
+iE0bφ̂−k2,E0(k −mv) dv dk db dE0

=
m|k2|
2π

√
2π

∫

E0

∫

b

∫

k

∫

v

δ(k2k + k∗2 − k2mv)e
ik∗1ve

i{k1+
(k∗2)

2

2mk2
}b

×ψ̂−k2,E0(k)e
ik2kvb− i

2
k2mv2b−ik2 k2b

2m
+iE0bφ̂−k2,E0(k −mv) dv dk db dE0

=
m

2π
√
2π

∫

E0

∫

b

∫

v

eik
∗
1veik1b+iE0bψ̂−k2,E0(−

k∗2
k2

+mv)φ̂−k2,E0(−
k∗2
k2

)

×db dv dE0

=
m√
2π

∫

v

eik
∗
1vψ̂−k2,−k1(−

k∗2
k2

+mv)φ̂−k2,−k1(−
k∗2
k2

)dv. (3.74)

Thus, we do not arrive at the correct Wigner function using the canonical exponent ξ1.

3.3.6 Coadjoint action matrix and UIRs of the (1+1)-centrally extended Galilei group

Gm′

The geometry of the coadjoint orbits for the quantum Galilei group Gm is encoded in

the coadjoint action matrix given by (3.60). Now, if we extend the (1+1)-Galilei group G0

using the exponent ξ2 (see (3.52)) to yield Gm′, the geometry of the coadjoint orbits of Gm′

remains unaltered, when compared to those of Gm. Now to verify that we will compute the

coadjoint action matrix for Gm′ explicitly.

A generic lie algebra element is denoted as Y = a1K + a2X + a3T + a4Θ where

K,X, T,Θ are the lie algebra generators corresponding to boost, space translation, time
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translation and the central extension respectively. They are given by the following matrices

K =




0 0 0 0

0 0 0 −1

1
2
m 0 0 0

0 0 0 0




, X =




0 0 0 1

0 0 0 0

0 1
2
m 0 0

0 0 0 0




, T =




0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0




, Θ =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0




.

And the corresponding commutation relations are exactly the one that we obtained using

the canonical exponent ξ1

[K,X] = mΘ, [K,T ] = X, [X,T ] = 0

[Θ, T ] = 0, [Θ, K] = 0, [Θ, X] = 0.

So, in terms of the above generators a generic lie algebra element reads

Y =




0 a3 0 a2

0 0 0 −a1

1
2
ma1

1
2
ma2 0 a4

0 0 0 0




(3.75)

But a generic group element (θ, b, a, v) is given by the following matrix

(θ, b, a, v) =




1 b 0 a− vb

0 1 0 −v

1
2
mv 1

2
ma 1 θ

0 0 0 1




, (3.76)
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obeying the group multiplication rule given by (3.53).

Also, (θ, b, a, v)−1 = (−θ,−b, vb − a,−v). The matrix representation of an inverse

group element follows

(θ, b, a, v)−1 =




1 −b 0 −a

0 1 0 v

1
2
mv 1

2
m(vb− a) 1 −θ

0 0 0 1




(3.77)

Now, given the fact that a generic group element is given by equation (3.76) and its inverse

by (3.77) and that the adjoint action of a group element on the lie algebra element is defined

by AdgY = gY g−1, we have

Adg−1(Y )

=




0 a3 0 ba1 + a2 − a3v

0 0 0 −a1

1
2
ma1

1
2
m(ba1 + a2 − va3) 0 ma1(a− vb)−mva2 +

1
2
ma3v

2 + a4

0 0 0 0




.
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From which the coadjoint action matrix for Gm′ follows as

M(g−1) =




1 0 0 0

b 1 −v 0

0 0 1 0

m(a− vb) −mv 1
2
mv2 1




. (3.78)

The above matrix is exactly the same as found in (3.60).

3.3.7 Computation of the Wigner function for Gm′

The unitary irreducible representations of the (1+1)-centrally extended Galilei group

Gm or the quantum Galilei group was computed in (3.58). The central extension proce-

dure was carried out by the canonical exponent introduced in (3.50). The other exponent

ξ2 yielding the centrally extended group Gm′ is mentioned in (3.52). The two exponents

introduced are equivalent in the sense of [10]. In other words, the difference between the

two exponents is a trivial one, which can be written by means of the following continuous

function

ζT (b, a, v) =
mva

2
, (3.79)

in the following way

ξ1(b1, a1, v1)− ξ2(b2, a2, v2)

=
1

2
mv1a2 +

1

2
mv2a1 +

1

2
mv21b2 +

1

2
mv1v2b2

= ζT ((b1, a1, v1)(b2, a2, v2))− ζT (b1, a1, v1)− ζT (b2, a2, v2),
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which entails the fact that Û ′ γ,E0 := e
iγmva

2 Ûγ,E0 would be a projective representation

of the (1+1)-Galilei group G0, where γ is introduced for dimensional consistency and for

keeping track with (3.58). In the language of ordinary representations, we can state that

Û ′ γ,E0 , so obtained, is a unitary irreducible representation of the (1+1)-centrally extended

Galilei group Gm′. The fact that irreducibility is preserved during the whole process of

arriving at a unitary representation (e.g., Û ′ γ,E0) of the central extension of the given group

(e.g., G0) with resepect to a certain multiplier (e.g., using the canonical exponent ξ1) from

the known UIR (e.g., Ûγ,E0) of a central extension of the same group corresponding to

another multiplier (e.g., the one due to ξ2) by means of projecting and lifting it in several

steps is described in [39].

Therefore, the UIRs of the (1+1)-centrally extended Galilei group Gm′ acting onL2(R̂, dk)

is given by

(Û ′ γ,E0(θ, b, a, v)φ̂)(k) = exp i[γ(θ − ka+
mva

2
+
k2b

2m
) + E0b]φ̂(k −mv). (3.80)

Now, following the steps as mentioned in section 3.3.4, we can obtain the Duflo-Moore

operator and the Plancherel measure for Gm′ which are as follows

ρ(γ, E0) = m|γ| (3.81)

N = (2π)3/2. (3.82)
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These are exactly the same as obtained for the other central extension of the (1+1)-Galilei

group.

Now, we are well-equipped to compute the Wigner function for the centrally extended

group Gm′. If Y ia a generic Lie algebra element given by y = a1K− a2X + a3T + a4Θ, it

follows from (3.80) (under the identification a1 ↔ −v, a2 ↔ −a, a3 ↔ −b, a4 ↔ −θ) that

(Ûγ,E0(eY )φ̂)(k) = (Ûγ,E0(−θ,−b, a,−v)φ̂)(k)

= ei[γ{−θ−ka−
mva
2

− k2b
2m

}−E0b]φ̂(k +mv)

Therefore,

(Ûγ,E0(e−Y )φ̂)(k) = (Ûγ,E0(−θ,−b, a,−v)−1φ̂)(k)

= (Ûγ,E0(θ, b, vb− a, v)φ̂)(k)

= eiγθ−iγkvb+iγka+
i
2
γmv2b− i

2
γmva+iγ k2b

2m
+iE0bφ̂(k −mv).

We are going to use the most general expression for the Wigner function given in (3.72)

to compute the Wigner function of Gm′ like we used to compute that of Gm.

Here also, both the densities σ and m are simply 1. So, the Wigner function for the the

(1+1)-centrally extended Galilei group Gm′ reads

W (|φγ,E0〉〈ψγ,E0|; k∗1, k∗2; k1, k2)

=
m

(2π)3
√
2π

∫

θ

∫

b

∫

a

∫

v

e
i(k∗1v−k∗2a+{k1+

(k∗2)
2

2mk2
}b+k2θ)
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× [

∫

γ

∫

E0

∫

k

eiγθ−iγkvb+iγka+
i
2
γmv2b− i

2
γmva+iγ k2b

2m
+iE0bψ̂γ,E0(k)φ̂γ,E0(k −mv)

× |γ|dk dE0 dγ]dvdadbdθ

=
m|k2|

(2π)2
√
2π

∫

E0

[

∫

b

∫

a

∫

v

∫

k

eik
∗
1v−ik∗2ae

i{k1+
(k∗2)

2

2mk2
}b
ψ̂−k2,E0(k)

× eik2kvb−ik2ka−
i
2
k2mv2b+

ik2mva
2

−ik2 k2b
2m

+iE0bφ̂−k2,E0(k −mv) dk dv da db]dE0

=
m|k2|

(2π)2
√
2π

∫

E0

∫

b

∫

k

∫

v

[

∫

a

e−ik
∗
2a−ik2ka+

ik2mva
2 da]eik

∗
1ve

i{k1+
(k∗2)

2

2mk2
}b
ψ̂−k2,E0(k)

× eik2kvb−
i
2
k2mv2b−ik2 k2b

2m
+iE0bφ̂−k2,E0(k −mv) dv dk db dE0

=
m|k2|
2π

√
2π

∫

E0

∫

b

∫

k

∫

v

δ(k2k + k∗2 −
k2mv

2
)eik

∗
1ve

i{k1+
(k∗2)

2

2mk2
}b

× ψ̂−k2,E0(k)e
ik2kvb− i

2
k2mv2b−ik2 k2b

2m
+iE0bφ̂−k2,E0(k −mv) dv dk db dE0

=
m

2π
√
2π

∫

E0

∫

b

∫

v

eik
∗
1ve

i{k1+
(k∗2)

2

2mk2
}b
ψ̂−k2,E0(−

k∗2
k2

+
mv

2
)

× φ̂−k2,E0(−
k∗2
k2

+
mv

2
−mv)e

ik2vb(−
k∗2
k2

+mv
2

)− i
2
k2mv2b− ik2b

2m
(− k∗2

k2
+mv

2
)2+iE0b

× dv db dE0

=
m

2π
√
2π

∫

E0

∫

b

∫

v

eik
∗
1veik1b−

i
2
k∗2vb− i

8
k2mv2b+iE0bψ̂−k2,E0(−

k∗2
k2

+
mv

2
)

× φ̂−k2,E0(−
k∗2
k2

− mv

2
) db dv dE0

=
m

2π
√
2π

∫

E0

∫

v

eik
∗
1v[

∫

b

e−i(−k1+
1
2
k∗2v+

1
8
k2mv2−E0)bdb]ψ̂−k2,E0(−

k∗2
k2

+
mv

2
)

× φ̂−k2,E0(−
k∗2
k2

− mv

2
)dvdE0 (3.83a)

=
m√
2π

∫

E0

∫

v

eik
∗
1vδ(E0 + k1 −

k∗2v

2
− k2mv

2

8
)ψ̂−k2,E0(−

k∗2
k2

+
mv

2
)

× φ̂−k2,E0(−
k∗2
k2

− mv

2
)dv dE0
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=
m√
2π

∫

v

eik
∗
1vψ̂

−k2,−k1+
k∗2v

2
+

k2mv2

8

(−k
∗
2

k2
+
mv

2
)

× φ̂
−k2,−k1+

k∗2v

2
+

k2mv2

8

(−k
∗
2

k2
− mv

2
)dv. (3.83b)

Equation (3.83b) gives the Wigner function for Gm′ due to a two dimensional coadjoint

orbit embedded in R4, the dual algbera space. But the associated Wigner functions are

no longer supported on the corresponding coadjoint orbits. Rather the support is spread

out through a whole family of coadjoint orbits as will be discussed in some detail in the

following section.

3.4 Summary of the main results and physical interpretation

In the first half of the chapter, we studied the (1+1)-extended affine Gaillei group Gmaff ,

the quantum version of the (1+1)-affine Galilei group Gaff. The four nondegenerate coad-

joint orbits of Gmaff were all found to be six dimensional spaces embedded in R6, the under-

lying dual algebra space. These were basically cotangent bundles over the four open free

3-dimensional Mackey orbits described in Figure 3–1. Hence, the coadjoint orbits of Gmaff

are also open free in R6. Open free orbits have nice structural implications in representation

theory. And the Wigner functions associated with each such coadjoint orbit were found em-

ploying the standard techniques developed in [35]. Finally, the domains of the four Wigner

functions were studied. Two of the functions were found to be supported inside the relavant

coadjoint orbits while the other two were found to have their support spread out through

the R6 half hyperplane to which they belong.
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Now, we look for a possible physical interpretation of the results obtained for the (1+1)-

extended affine Galilei group Gmaff . The two representation-space parameters in this context

were q and E0 := E − p2

2mq
. Different signs of q and E0 determine which coadjoint orbit

we are in or which UIR we are talking about, as outlined in Table 3–1. The mass term

m stands for mass scale or mass unit [8], while qm stands for the physical mass which

changes under the action of the dilation parameters (σ and τ ). In other words, each unitary

irreducible representation of Gmaff represents a nonrelativistic spinless particle of variable

mass (qm) and internal energy (E0). And the Wigner function of Gmaff associated with a

nonrelativistic spinless particle of variable positive mass and changing positive internal

energy was found to be supported inside its coadjoint orbit. The Wigner function due to

a nonrelativistic spinless particle of varible negative mass and changing positive internal

energy was also found to be supported inside its coadjoint orbit. It turns out that requiring

symmetry under the affine Galilei group Gmaff leads to no physically interesting phenomenon.

But mathematically the coadjoint orbits were nicely structured and two of the relevant

Wigner functions were found to be supported inside the corresponding coadjoint orbits.

Since the requirement of symmetry under dilation parameters led to no physically in-

teresting object, in the later half of the chapter we demanded only Galilean invariance and

hence worked with the quantum Galilei group Gm and its variant Gm′ (where the extension

was executed using an equivalent multiplier).
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The Wigner function for the (1+1)-extended Galilei group Gm′ that we found in (3.83b),

is basically a map between two direct integral Hilbert spaces given by

W :

∫ ⊕

(γ,E0)∈R∗×R

B2(L
2(Ôγ,E0 , dk))m|γ|dγdE0

→
∫ ⊕

(k1,k2)∈R×R∗

L2(O∗
k2,k1

, dk∗1dk
∗
2)dk1dk2.

For

φk2,k1 , ψk2,k1 ∈ L2(O∗
k2,k1

, dk∗1dk
∗
2)

and |φγ,E0〉〈ψγ,E0| ∈ B⊕
2 (L

2(Ôγ,E0 , dk)),

where B2 denotes the space of Hilbert-Schmidt operators and B⊕
2 represents the direct in-

tegral Hilbert space of measurable Hilbert-Schmidt operator fields. The Wigner function

found in (3.83b) was restricted to the coadjoint orbit O∗
k2,k1

. But the final expression for

the Wigner function reveals the fact that it is no longer supported on that single coadjoint

orbit. Rather it has its support concentrated on the collection of coadjoint orbits exhausting

R3 hyperplanes perpendicular to the fourth axis W. For brevity, we ask the reader to go

back to section 3.3.2, where we explained the geometry of the relevant coadjoint orbits. In

particular, we have a continuous collection of Wigner functions being supported in each

such hyperplane characterized by the constant W = k2. This hyperplane can be called

a “support plane”. In other words, to each hyperplane (corresponding to a fixed value of

k2 ∈ R \ {0} and k1 assuming all real values in R), we attach all such Wigner functions
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each pertaining to a non-relativistic spinless particle due to a fixed value of γ (the analog

of q, i.e. the mass scale in the extended affine case) and a definite real internal energy,

having the states to be square integrable functions on the coadjoint orbits exhausting the

R3 hyperpalne in question. In the language of representations we say that, the Wigner

function restricted to the coadjoint orbit O∗
k2,k1

= T ∗Ôk2,k1 gets its contribution from rep-

resentations associated to all the parabolic orbits corresponding to the R2 plane given by

γ = γ′ = k2 in the γ′E ′p′ space. The corresponding coadjoint orbits exactly exhaust the

R3-hyperplane given by W = k2 embedded in R4. Therefore, each Wigner map is asso-

ciated with representations Uγ,E0 due to a fixed value of γ but all possible real values of

E0.

It was also found in Section 3.3.2 that it is important to choose the appropriate multiplier

to find the correct Wigner function for the relevant group. The appropriateness is defined

by the fact that the multiplier should reduce to one given by the Weyl-Heisenberg group

under proper substitution. In this sense, ξ2 defined by (3.52) was found to be appropriate

in the context of the (1+1)-Galilei group.

Next, we ask the question whether under suitable conditions the Wigner function for

Gm′ given by equation (3.83b) reduces to the standard one due to the Weyl-Heisenberg

group. One thing that marks a distinction between the above two groups is that the Galilei

group has a time translation parameter while the Weyl-Heisenberg group does not, the

second distinguishing characteristic being that the irreducible unitary representations of
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the former are parameterized by two constants namely γ and E0 while those of the latter

are parameterized only by a single constant γ. With the above two considerations, we

insert two Delta like functions δ(b) and δ(E0) following the substitution of k1 to be zero in

equation (3.83a) to derive the following

W (|φk2〉〈ψk2|; k∗1, k∗2; k2)

=
m

2π
√
2π

∫

E0

∫

v

eik
∗
1v[

∫

b

e−i(
k∗2v

2
− 1

8
k2mv2−k1−E0)bδ(b)db]

×ψ̂k2,E0(−
k∗2
k2

+
mv

2
)φ̂k2,E0(−

k∗2
k2

− mv

2
)δ(E0)dvdE0

=
m

2π
√
2π

∫

E0

∫

v

eik
∗
1vδ(E0)ψ̂k2,E0(−

k∗2
k2

+
mv

2
)φ̂k2,E0(−

k∗2
k2

− mv

2
)dv dE0

=
m

2π
√
2π

∫

v

eik
∗
1vψ̂k2,0(−

k∗2
k2

+
mv

2
)φ̂k2,0(−

k∗2
k2

− mv

2
)dv. (3.84)

The corresponding coadjoint orbits are foliated along one of the two othogonal axes of R4,

along which the coadjoint orbits of the (1+1)-centrally extended Galilei group were foliated

(see Section 3.3.2, where the geometry of its coadjoint orbits is discussed at length). The

measurable fields of the Hilbert-Schmidt operators are now indexed only by γ. The total

orbit space (union of the disjoint coadjoint orbits in question) is no longer a dense subspace

of R4. It is just a set of measure zero (lower dimensional space) instead. But it fills out

an R3 hyperplane embedded in R4. Each coadjoint orbit here is a cotangent bundle of a

parabola characterized by the constant k2, which is homeomorphic to R2, the coadjoint

orbit for the Weyl-Heisenberg group. So, we find that the Wigner function for the (1+1)
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dimensional extended Galilei group, computed using an appropriate multiplier, reduces to

the one for the Weyl- Heisenberg group under proper substitution.

The coadjoint action matrix for the (1+1)-centrally extended Galilei group turned out

to be independent of the choice of multipliers (belonging to the same equivalence class)

required to do the extension. In other words, we always end up with the same coadjoint

action matrix no matter what multiplier we choose from the same equivalence class of the

second cohomology group H2(G0,U(1)).

It is interesting to observe that the coadjoint orbits of the (1+1)-extended affine Galilei

group Gmaff (see Figure 3–1) disintegrate into a continuous family of parabolas, each of which

is parameterized by a specific value of the ordered pair (γ, E0). These parabolas are just the

dual orbits of the (1+1)-centrally extended Galilei group Gm or the quantum Galilei group.

This disintegration of the dual orbits resolves the difficulty of a nonrelativistic spinless

particle possessing variable mass, but as a price of the remedy, the beauty of the structure

of the open free orbits gets lost. None of the Wigner functions associated with the massive

nonrelativistic spinless particles under the symmetry of the Galilei group remains supported

inside the corresponding phase space. In this sense, to earn physically meaningful object

we had to sacrifice the associated mathematically elegant structure.

So far, in chapter 2 and 3, we considered various central and non-central extensions of

(1+1) Galilei group. Their intimate relationships with the Lie groups used in signal analysis

and image processing were explored. The Wigner functions associated with several of
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these extensions were subsequently computed along with a comparative study between the

respective functions. In terms of its algebraic structure, the (2+1) Galilei group is even

more interesting. The next chapter is devoted to the study of centrally extended (2+1)

Galilei group and its role in two-dimensional noncommutative quantum mechanics.
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Chapter 4

The Symmetry Groups of Noncommutative Quantum Mechanics and Coherent State

Quantization

The contents of this chapter are taken from the article titled “The Symmetry Groups of

Noncommutative Quantum Mechanics and Coherent State Quantization” [21]. Here, we

explore the group theoretical underpinning of noncommutative quantum mechanics for a

system moving on the two-dimensional plane. We show that the pertinent groups for the

system are the two-fold central extension of the Galilei group in (2 + 1)-space-time di-

mensions and the two-fold extension of the group of translations of R4. This latter group

is just the standard Weyl-Heisenberg group of standard quantum mechanics with an addi-

tional central extension. We also look at a further extension of this group and discuss its

significance to noncommutative quantum mechanics. We build unitary irreducible repre-

sentations of these various groups and construct the associated families of coherent states.

A coherent state quantization of the underlying phase space is then carried out, which is

shown to lead to exactly the same commutation relations as usually postulated for this

model of noncommutative quantum mechanics.
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4.1 Introduction

Noncommutative quantum mechanics is a much frequented topic of research these days.

The expectation here is that a modification, or rather an extension, of standard quantum me-

chanics is needed to model physical space-time at very short distances. In this chapter, we

restrict ourselves to the version of non-commutative quantum mechanics which describes

a quantum system with two degrees of freedom and in which, in addition to having the

usual canonical commutation relations, one also imposes an additional non-commutativity

between the two position coordinates, i.e.,

[Qi, Pj ] = i~δijI, i, j = 1, 2, [Q1, Q2] = iϑI, (4.1)

Here the Qi, Pj are the quantum mechanical position and momentum observables, respec-

tively, and ϑ is a (small, positive) parameter which measures the additionally introduced

noncommutativity between the observables of the two spatial coordinates. The limit ϑ = 0

then corresponds to standard (two-dimensional) quantum mechanics. The literature, even

on this rather focused and simple model, is already extensive. We refer to [24, 42] and

the many references cited therein for a review of the background and motivation behind

the model. One could continue with this game of increasing noncommutativity between

the observables by augmenting the above system by an additional commutator between the

two momentum operators:

[Pi, Pj ] = iγδijI , i, j = 1, 2 , (4.2)
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where γ is yet another positive parameter. Physically, such a commutator would signal, for

example, the presence of a magnetic field in the system [24].

The purpose of this chapter is two-fold. First, we undertake a group theoretical analysis

of the above sets of commutation relations, in order to find the groups behind noncommu-

tative quantum mechanics, in the same way as a centrally extended Galilei group [37] or

the Weyl-Heisenberg group underlies ordinary quantum mechanics. The second objective

of this chapter is to arrive at the commutation relations (4.1) by the method of coherent

state quantization (see, for example, [7] for a discussion of this method). This will involve

constructing appropriate families of coherent states, emanating from the groups underlying

noncommutative quantum mechanics, using standard techniques (see, for example, [4]). It

will turn out however, that the coherent states that we shall be using here are very different

from the ones introduced in [42], in that ours come from the representations of the related

groups and satisfy standard resolutions of the identity condition.

4.2 Noncommutative quantum mechanics in the two-plane and the (2+1)-Galilei

group

The (2+1)-Galilei groupGGal is a six-parameter Lie group. It is the kinematical group of

a classical, non-relativistic space-time having two spatial and one time dimensions. It con-

sists of translations of time and space, rotations in the two dimensional space and velocity

boosts. As is well-known [37], non-relativistic quantum mechanics can be seen as arising

from representations of central extensions of the Galilei group. We will thus be concerned

here with the centrally extended (2+1)-Galilei group. The Lie algebra GGal of the groupGGal
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has a three dimensional vector space of central extensions. This extended algebra has the

following Lie bracket structure (see, for example, [14, 15]),

[M,Ni] = ǫijNj [M,Pi] = ǫijPj

[H,Pi] = 0 [M,H] = h

[Ni, Nj] = ǫijd [Pi, Pj ] = 0

[Ni, Pj ] = δijm [Ni, H] = Pi, (4.3)

(i, j = 1, 2 and ǫij is the totally antisymmetric tensor with ǫ12 = −ǫ21). The three central

extensions are characterized by the three central generators h, d and m (they commute with

each other and all the other generators). The Pi generate space translations, Ni velocity

boosts, H time translations and M is the generator of angular momentum. Passing to

the group level, the universal covering group G̃Gal, of GGal, has three central extensions, as

expected. However, GGal itself has only two central extensions (i.e., h = 0, identically

[14]). We shall denote this 2-fold centrally extended (2 + 1)-Galilei group by Gext
Gal and its

Lie algebra by Gext
Gal.

A generic element of Gext
Gal may be written as g = (θ, φ,R, b,v, a) = (θ, φ, r), where

θ, φ ∈ R, are phase terms corresponding to the two central extensions, b ∈ R a time-

translation, R is a 2×2 rotation matrix, v ∈ R2 a 2-velocity boost, a ∈ R2 a 2-dimensional
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space translation and r = (R, b,v, a). The two central extensions are given by two cocy-

cles, ξ1m and ξ2λ, depending on the two real parameters m and λ. Explicitly, these are,

ξ1m(r; r
′) = e

im
2
(a·Rv′−v·Ra′+b′v·Rv′),

ξ2λ(r; r
′) = e

iλ
2
(v∧Rv′) , where q ∧ p = q1p2 − q2p1 , (4.4)

(q = (q1, q2), p = (p1, p2)).

The group multiplication rule is given by

gg′ = (θ, φ,R, b,v, a)(θ′, φ′, R′, b′,v′, a′)

= (θ + θ′ + ξ1m(r; r
′), φ+ φ′ + ξ2λ(r; r

′),

RR′, b+ b′,v +Rv′, a+Ra′ + vb′) . (4.5)

The projective unitary irreducible representations (PURs) of Gext
Gal, from which we can

obtain its unitary irreducible representations, have all been computed in, e.g., [15]. In this

chapter we shall only consider the case where m 6= 0 and λ 6= 0. These representations,

realized on the Hilbert space L2(R2, dk) (see (4.12) below), are characterized by ordered

pairs (m,ϑ) of reals and by the number s, expressed as an integral multiple of
~

2
. Here, m

is to be interpreted as the mass of the nonrelativistic system under study, while λ will be

seen to be related to the parameter ϑ appearing in (4.1). The quantity s is the eigenvalue

of the intrinsic angular momentum opearator S (representating rotations in the rest-frame).
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The physical significance of these quantities have been studied extensively in [14, 15, 37]

and [46].

Recall that we should take h = 0 in (4.3), to get the Lie algebra Gext
Gal. In the represen-

tation Hilbert space of the PURs of the group Gext
Gal, the basis elements of the algebra are

realized as self-adjoint operators, the two central elements appearing as multiples of the

identity operator. Thus, the operator representation of Gext
Gal looks like

[M̂, N̂i] = iǫijN̂j [M̂, P̂i] = iǫijP̂j

[Ĥ, P̂i] = 0 [M̂, Ĥ] = 0

[N̂i, N̂j] = iǫijλÎ [P̂i, P̂j ] = 0

[N̂i, P̂j ] = iδijmÎ [N̂i, Ĥ] = iP̂i . (4.6)

Here the operators N̂i generate velocity shifts. The other operators P̂i, M̂ , Ĥ , and Î are just

the linear momentum, angular momentum, energy and the identity operators, respectively,

acting on L2(R2, dk), the representation space of the PUIRs of Gext
Gal.

Consider next the so-called two-dimensional noncommutative Weyl-Heisenberg group,

or the group of noncommutative quantum mechanics. The group generators are the op-

erators Qi, Pj and I , obeying the commutation relations (4.1). The resulting algebra of

operators is also referred to as the the noncommutative two-oscillator algebra. Realized

on the Hilbert space L2(R2, dx) (coordinate representation) these operators can be brought
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into the form

Q̃1 = x+
iϑ

2

∂

∂y
Q̃2 = y − iϑ

2

∂

∂x

P̃1 = −i~ ∂
∂x

P̃2 = −i~ ∂
∂y
. (4.7)

If we add to this set the the Hamiltonian (corresponding to a mass m)

H̃ = − ~2

2m
∇2 = − ~2

2m
(
∂2

∂x2
+

∂2

∂y2
), (4.8)

the angular momentum operator,

M̃ = −i~
(
x
∂

∂x
− y

∂

∂x

)
. (4.9)

and furthermore, define Ñi = mQ̃i, i = 1, 2, then the resulting set of seven operators is

easily seen to obey the commutation relations

[M̃, Ñi] = i~ǫijÑj [M̃, P̃i] = i~ǫijP̃j

[H̃, P̃i] = 0 [M̃, H̃] = 0

[Ñi, Ñj] = iǫijm
2ϑĨ [P̃i, P̃j ] = 0

[Ñi, P̃j ] = i~δijmĨ [Ñi, H̃] = i~P̃i, (4.10)

Taking ~ = 1 and writing λ = m2ϑ this becomes exactly the same set of commutation

relations as that in (4.6) of the Lie algebra Gext
Gal. of the extended Galilei group. This tells us

that the kinematical group of non-relativistic, noncommutative quantum mechanics is the
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(2+1)-Galilei Gext
Gal, with two extensions, a fact which has already been noted and exploited

in [30].

At this point we note that in terms of Q1, Q2 and P1, P2, the usual quantum mechanical

position and momentum operators defined on L2(R2, dx dy), the noncommutative position

operators Q̃i can be written as

Q̃1 = Q1 −
ϑ

2~
P2

Q̃2 = Q2 +
ϑ

2~
P1. (4.11)

The above transformation is linear and invertible and may be thought of as giving a non-

canonical transformation on the underlying phase space. Since Q̃i = Qi ⇔ ϑ = 0, the

noncommutativity of the two-plane is lost if the parameter ϑ is turned off. However, from

the group theoretical discussion above we see that the noncommutativity of the two spatial

coordinates should not just be looked upon as a result of this non-canonical transforma-

tion. Rather, it is also the two-fold central extension of the (2+1)-Galilei group, governing

nonrelativistic mechanics, which is responsible for it. The extent to which the two spatial

coordinates fail to be commutative is encoded in the representation parameters of the un-

derlying group, namely, ϑ. It is noteworthy in this context that had we centrally extended

the (2+1)-Galilei group using only the cocycle ξ1m in (4.4) (i.e., set ϑ=0), we would have

just obtained standard quantum mechanics. In this sense we claim that the group underly-

ing noncommutative quantum mechanics, as governed by the commutation relations (4.7),

130



is the doubly centrally extended (2 + 1)-Galilei group. (It is also worth mentioning in

this context that the noncommuting position operators Q̂i, arising from the (2+1)-centrally

extended Galilei group, also describe the position of the center of mass of the underlying

non-relativistic system (see [46]).)

4.3 Quantization using coherent states associated to non-commutative quantum me-

chanics

In this section we first write down the unitary irreducible representations of the ex-

tended Galilei group Gext
Gal. Next we construct coherent states for these representations,

which we identify as being the coherent states of noncommutative quantum mechanics. We

then carry out a quantization of the underlying phase space using these coherent states,

obtaining thereby the operators Qi, Pi (see (4.1)) of non-commutative quantum mechan-

ics. In the literature other coherent states have been defined for noncommutative quantum

mechanics – see, for example, [42]. These latter coherent states are basically the one-

dimensional projection operators, |z〉〈z|, z ∈ C, where |z〉 is the well-known canonical

coherent state, familiar from quantum mechanics (see, for example, [4]). These coherent

states have been shown to satisfy a sort of an “operator resolution of the identity” and have

been used to study localization properties of systems obeying noncommutative quantum

mechanics. By contrast, the coherent states which we obtain (see (4.16) below), using the

representations of the group Gext
Gal, i.e., the kinematical group of noncommutative quantum

mechanics, satisfy a standard resolution of the identity (see (4.17)). We shall also discuss

the relationship of these coherent states to the canonical coherent states (in this case arising
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from the Weyl-Heisenberg group), for two degrees of freedom, and the fact that these latter

can be recovered from the coherent states (4.16) of noncommutative quantum mechanics

in the limit of ϑ = 0.

4.3.1 UIRs of the group Gext

Gal

The unitary irreducible representations of the extended Galilei group Gext
Gal can be ob-

tained from its projective unitary irreducible representations worked out in [15]. We take,

as mentioned earlier, both extension parametersm and λ to be non-zero. The representation

space is L2(R2, dk) (momentum space representation). Denoting the unitary representation

operators by Ûm,λ, we have,

(Ûm,λ(θ, φ,R, b,v, a)f̂)(k)

= ei(θ+φ)ei[a·(k−
1
2
mv)+ b

2m
k·k+ λ

2m
v∧k]s(R)f̂(R−1(k−mv)), (4.12)

for any f̂ ∈ L2(R̂2, dk). Here, s denotes the irreducible representation of the rotation

group in the rest frame (spin). It is useful to Fourier transform the above representation to

get its configuration space version (on L2(R2, dx)). A straightforward computation, using

Fourier transforms, leads to:

Lemma 4.3.1. The unitary irreducible representations of Gext

Gal
in the (two-dimensional)

configuration space are given by

(Um,λ(θ, φ,R, b,v, a)f)(x)

= ei(θ+φ)eim(x+ 1
2
a)·ve−i

b
2m

∇2

s(R)f

(
R−1

(
x+ a− λ

2m
Jv

))
, (4.13)
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where ∇2 =
∂2

∂x2
+

∂2

∂y2
, J is the 2 × 2 skew-symmetric matrix, J =



0 −1

1 0


, and

f ∈ L2(R2, dx).

4.3.2 Coherent states of the centrally extended (2+1)-Galilei group

It is easy to see from (4.13) that the representation Um,λ is not square-integrable. This

means that there is no non-zero vector η in the representation space for which the function

fη(g) = 〈η | Um,λ(g)η〉 has finite L2-norm, i.e., for all non-zero η ∈ L2(R2, dx),

∫

Gext
Gal

|fη(g)|2 dµ(g) = ∞ ,

dµ being the Haar measure.

On the other hand, the group composition law (4.5) reflects the fact that the subgroup

H := Θ×Φ×SO(2)×T , with generic group elements (θ, φ,R, b), is an abelian subgroup

of Gext
Gal. The left coset space X := Gext

Gal/H is easily seen to be homeomorphic to R4,

corresponding to to the left coset decomposition,

(θ, φ,R, b,v, a) = (0, 0, I2, 0,v, a)(θ, φ,R,0,0) , (I2 = 2× 2 unit matrix).

Writing q for a and replacing v by p := mv, we identify X with the phase space of

the quantum system corresponding to the UIR Ûm,λ and write its elements as (q,p). The

homogeneous space carries an invariant measure under the natural action of Gext
Gal, which

in these coordinates is just the Lebesgue measure dq dp on R4. Also we define a section

133



β : X 7−→ Gext
Gal,

β(q,p) = (0, 0, I2, 0,
p

m
,q). (4.14)

We show next that the representation Um,λ is square-integrable mod(β,H) in the sense

of [4] and hence construct coherent states on the homogeneous space (phase space) X . Let

χ ∈ L2(R2, dx) be a fixed vector. At a later stage (see Theorem 4.3.2) we shall need to

impose a symmetry condition on this vector, but at the moment we leave it arbitrary. For

each phase space point (q,p) define the vector,

χq,p = Um,λ(β(q,p))χ . (4.15)

so that from (4.13) and (4.14),

χq,p(x) = ei(x+
1
2
q) ·pχ

(
x+ q− λ

2m2
Jp

)
. (4.16)

Lemma 4.3.2. For all f, g ∈ L2(R2), the vectors χq,p satisfy the square integrability

condition

∫

R2×R2

〈f | χq,p〉〈χq,p | g〉 dq dp = (2π)2‖χ‖2〈f | g〉. (4.17)

The proof is given in Appendix A. Additionally, in the course of the proof we have also

established that the operator integral

T =

∫

R2×R2

|χq,p〉〈χq,p| dq dp ,
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in (A.3) converges weakly to T = 2π ‖χ‖2 I . Let us now define the vectors

η =
1√

2π‖χ‖
χ, and ηq,p = U(β(q,p))η , (q,p) ∈ X . (4.18)

Then, as a consequence of the above lemma, we have proved the following theorem.

Theorem 4.3.1. The representation Um,λ in (4.13), of the extended Galilei group Gext

Gal
, is

square integrable mod (β,H) and the vectors ηq,p in (4.18) form a set of coherent states

defined on the homogeneous space X = Gext

Gal
/H , satisfying the resolution of the identity

∫

R2×R2

|ηq,p〉〈ηq,p| dq dp = I , (4.19)

on L2(R2, dx).

Note that

ηq,p(x) = ei(x+
1
2
q) ·p η

(
x+ q− λ

2m2
Jp

)
. (4.20)

We shall consider these coherent states to be the ones associated with non-commutative

quantum mechanics. Note that writing ϑ =
λ

m2
as before, and letting ϑ → 0, we recover

the standard or canonical coherent states of ordinary quantum mechanics, if η is chosen to

be the gaussian wave function. Since this also corresponds to setting λ = 0, it is consistent

with constructing the coherent states of the (2+1)-Galilei group with one central extension

(using only the first of the two cocycles in (4.4), with mass parameter m).

Let us emphasize again that the coherent states (4.20) are rooted in the underlying

symmetry group of noncommutative quantum mechanics and they are very different from
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the ones introduced, for example, in [42] and often used in the literature. These latter

coherent states are defined as |z) = |z〉〈z|, z ∈ C, where |z〉 is the usual canonical coherent

state of ordinary quantum mechanics. If H denotes the Hilbert space of a one dimensional

quantum system moving on the line, then |z), is an element of the space B2(H) of Hilbert-

Schmidt operators on H and this space is then taken to be the state space of noncommutative

quantum mechanics. The coherent states |z) satisfy a resolution of the identity which is also

of a very different nature from (4.19). On B2(H) the algebra of operators in (4.7) is realized

by the operators Q̂i, P̂i, i = 1, 2. These have the actions

Q̂1X = QX, Q̂2X = ϑPX,

P̂1X = ~[P,X], P̂2X = −~

ϑ
[Q,X], (4.21)

on elements X of B2(H). The Q and P are two operators on H, satisfying the commutation

relation [Q,P ] = iIH. The state space with which we are working here and on which the

operators (4.7) are realized, is L2(R2, dx). It is not hard to see that the unitary Wigner map,

W : B2(H) −→ L2(R2, dx), given by

(WX)(x, y) =
1√
2π

Tr[e−i(xQ+yP )X] , (4.22)

transforms the set {Q̂i, P̂i} to the set {Q̃i, P̃i} in (4.7). In other words, the formulation of

noncommutative quantum mechanics on these two state spaces are completely equivalent.
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4.3.3 Coherent state quantization on phase space leading to the noncommutative

plane

It has been already noted that we are identifying the homogeneous space X = Gext
Gal/H

with the phase space of the system. We shall now carry out a coherent state quantization

of functions on this phase space, using the above coherent states of the extended Galilei

group. It will turn out that such a quantization of the phase space variables of position and

momentum will lead precisely to the operators (4.7).

Recall that given a (sufficiently well behaved) function f(q,p), its quantized version

Ôf , obtained via coherent state quantization, is the operator (on L2(R2, dx)) given by the

prescription (see, for example, [7] ),

Ôf =

∫

R2×R2

f(q,p)|ηq,p〉〈ηq,p| dq dp (4.23)

provided this operator is well-defined (again the integral being weakly defined). The oper-

ators Ôf act on a g ∈ L2(R2, dx) in the following manner

(Ôfg)(x) =

∫

R2×R2

f(q,p)ηq,p(x)

[∫

R2

ηq,p(x′)g(x′)dx′
]
dq dp . (4.24)

If we now take the function f to be one of the coordinate functions, f(q,p) = qi, i = 1, 2,

or one of the momentum functions, f(q,p) = pi, i = 1, 2, then the following theorem

shows that the resulting quantized operators Ôqi and Ôpi are exactly the ones given in

(4.1) for noncommutative quantum mechanics (with ~ = 1) or the ones in (4.7), for the

generators of the UIRs of Gext
Gal or of the noncommutative Weyl-Heisenberg group.
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Theorem 4.3.2. Let η be a smooth function which satisfies the rotational invariance con-

dition, η(x) = η(‖x‖), for all x ∈ R2. Then, the operators Ôqi , Ôpi , i = 1, 2, obtained by

a quantization of the phase space functions qi, pi, i = 1, 2, using the coherent states (4.18)

of the (2+1)-centrally extended Galilei group, Gext

Gal
, are given by

(Ôq1g)(x) =

(
x1 +

iλ

2m2

∂

∂x2

)
g(x) (Ôq2g)(x) =

(
x2 −

iλ

2m2

∂

∂x1

)
g(x)

(Ôp1g)(x) = −i ∂
∂x1

g(x) (Ôp2g)(x) = −i ∂
∂x2

g(x), (4.25)

for g ∈ L2(R2, dx), in the domain of these operators.

In (4.25) if we make the substitution ϑ =
λ

m2
, we get the operators (4.7) and the

commutation relations of non-commutative quantum mechanics (with ~ = 1):

[Ôq1 , Ôq2 ] = iϑI, [Ôqi , Ôpj ] = iδijI, [Ôpi , Ôpj ] = 0. (4.26)

Moreover, it ought to be emphasized here that the rotational invariance of η, in the sense

that η(x) = η(‖x‖) was essential in deriving (4.25).

Two final remarks, before leaving this section, are in order. First, the operators Qi, Pi,

appearing in (4.11), together with the identity operator I , generate a representation of the

Lie algebra of the Wey-Heisenberg group. Thus, it would seem that the operators Q̃i, P̃i

are just a different basis in this same algebra. However, this only appears to be so at

the representation level, in which both central elements of the extended Galilei group are

mapped to the identity operator. The two sets of operators, Qi, Pi and Q̃i, P̃i, in fact refer
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to the Lie algebras of two different groups namely, the (2 + 1)-Galilei groups with one and

two extensions, respectively. Moreover, the set of commutation relations (4.1), governing

noncommutative quantum mechanics, is not unitary equivalent to that of standard quantum

mechanics (where ϑ = 0). In the following section we look at extensions of the Weyl-

Heisenberg group which will throw more light on this issue. As a second point, we note

that the first commutation relation, between Ôq1 and Ôq2 in (4.26) above, also implies that

the two dimensional plane R2 becomes noncommutative as a result of quantization.

4.4 Central extensions of the abelian group of translations in R4 and noncommuta-

tive quantum mechanics

We start out with the abelian group of translationsGT in R4, a generic element of which,

denoted (q,p), obeys the group composition rule

(q,p)(q′,p′) = (q+ q′,p+ p′) . (4.27)

At the level of the Lie algebra, all the generators commute with each other. In order to

arrive at quantum mechanics out of this abelian Lie group, and to go further to obtain non-

commutative quantum mechanics, we need to centrally extend this group of translations by

some other abelian group, say by R. In this section we will first discuss the double central

extension of GT and see that the double central extension by R yields the commutation

relations (4.1) of noncommutative quantum mechanics. We will, next go a step further and
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extend GT triply by R. The Lie algebra basis will be found to satisfy the additional com-

mutation relation (4.2) between the momentum operators. We start by recalling some facts

about central extensions, following closely the treatment of Bargmann in [10].

Given a connected and simply connected Lie group G, the local exponents ξ giving its

central extensions are functions ξ : G×G→ R, obeying the following properties:

ξ(g′′, g′) + ξ(g′′g′, g) = ξ(g′′, g′g) + ξ(g′, g) (4.28)

ξ(g, e) = 0 = ξ(e, g), ξ(g, g−1) = ξ(g−1, g). (4.29)

We call the central extension trivial when the corresponding local exponent is simply a

coboundary term, in other words, when there exists a continuous function ζ : G→ R such

that

ξ(g′, g) = ξcob(g
′, g) := ζ(g′) + ζ(g)− ζ(g′g). (4.30)

Two local exponents ξ and ξ′ are equivalent if they differ by a coboundary term, i.e.

ξ′(g′, g) = ξ(g′, g) + ξcob(g
′, g). A local exponent which is itself a coboundary is said

to be trivial and the corresponding extension of the group is called a trivial extension. Such

an extension is isomorphic to the direct product group U(1) × G. Exponentiating the in-

equivalent local exponents yields the U(1) local factors or the familiar group multipliers,

and the set of all such inequivalent multipliers form the well known second cohomology

group H2(G,U(1)) of G.
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Theorem 4.4.1. The three real valued functions ξ, ξ′ and ξ′′ on GT ×GT given by

ξ((q1, q2, p1, p2), (q
′
1, q

′
2, p

′
1, p

′
2)) =

1

2
[q1p

′
1 + q2p

′
2 − p1q

′
1 − p2q

′
2], (4.31)

ξ′((q1, q2, p1, p2), (q
′
1, q

′
2, p

′
1, p

′
2)) =

1

2
[p1p

′
2 − p2p

′
1], (4.32)

ξ′′((q1, q2, p1, p2), (q
′
1, q

′
2, p

′
1, p

′
2)) =

1

2
[q1q

′
2 − q2q

′
1], (4.33)

are inequivalent local exponents for the group, GT , of translations in R4 in the sense of

(4.30).

The proof is given in the Appendix A.

4.4.1 Double central extension of GT

In this section, we study the doubly (centrally) extended group GT where the extension

is achieved by means of the two multipliers ξ and ξ′ enumerated in Theorem 4.4.1. The

group composition rule for the extended group GT reads

(θ, φ,q,p)(θ′, φ′,q′,p′)

= (θ + θ′ +
α

2
[〈q,p′〉 − 〈p,q′〉], φ+ φ′ +

β

2
[p ∧ p′],q+ q′,p+ p′), (4.34)

where q = (q1, q2) and p = (p1, p2). Also, 〈., .〉 and ∧ are defined as 〈q,p〉 := q1p1 + q2p2

and q ∧ p := q1p2 − q2p1 respectively.
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A matrix representation for the group GT obeying the group multiplication rule (4.34)

is given by the following 7× 7 upper triangular matrix

(θ, φ,q,p)α,β =




1 0 −α
2
p1 −α

2
p2

α
2
q1

α
2
q2 θ

0 1 0 0 −β
2
p2

β
2
p1 φ

0 0 1 0 0 0 q1

0 0 0 1 0 0 q2

0 0 0 0 1 0 p1

0 0 0 0 0 1 p2

0 0 0 0 0 0 1




. (4.35)

Let us denote the generators of the Lie groupGT , or equivalently the basis of the associated

Lie algebra, GT by Θ,Φ, Q1, Q2, P1 and P2. These generate the one-parameter subgroups

corresponding to the group parameters θ, φ, p1, p2, q1 and q2, respectively. The bilinear Lie

brackets between the basis elements of GT are given by

[Pi, Qj ] = αδi,jΘ, [Q1, Q2] = βΦ, [P1, P2] = 0, [Pi,Θ] = 0,

[Qi,Θ] = 0, [Pi,Φ] = 0, [Qi,Φ] = 0, [Θ,Φ] = 0, i, j = 1, 2 .

(4.36)

It is easily seen from (4.36) that Θ and Φ form the center of the algebra GT . It is also

noteworthy that, unlike in standard quantum mechanics, the two generators of space trans-

lation, Q1, Q2, no longer commute, the noncommutativity of these two generators being

controlled by the central extension parameter β. It is in this context that it is reasonable to
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call the Lie group GT the noncommutative Weyl-Heisenberg group and the corresponding

Lie algebra the noncommutative Weyl-Heisenberg algebra.

We now proceed to find a unitary irreducible representation of GT . From the matrix

representation (4.35) we see that GT is a nilpotent Lie group. Hence, it is convenient to

apply the orbit method of Kirillov (see [34]) for finding the unitary dual of the group.

Switching to a slightly different notation, for computational convenience, we replace

the group parameters p1, p2, q1, q2, θ and φ by a1, a2, a3, a4, a5 and a6, respectively. then a

generic group element g(a1, a2, a3, a4, a5, a6) is represented by the following matrix (com-

pare with (4.35)):

g(a1, a2, a3, a4, a5, a6) =




1 0 −α
2
a1 −α

2
a2

α
2
a3

α
2
a4 a5

0 1 0 0 −β
2
a2

β
2
a1 a6

0 0 1 0 0 0 x3

0 0 0 1 0 0 a4

0 0 0 0 1 0 a1

0 0 0 0 0 1 a2

0 0 0 0 0 0 1




. (4.37)

If X1, X2, X3, X4, X5 and X6 stand for the respective group generators, a generic Lie al-

gebra element can be written as X = x1X1 + x2X2 + x3X3 + x4X4 + x5X5 + x6X6. In
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matrix notation, X can be read off as

X =




0 0 −α
2
x1 −α

2
x2 α

2
x3 α

2
x4 x5

0 0 0 0 −β
2
x2 β

2
x1 x6

0 0 0 0 0 0 x3

0 0 0 0 0 0 x4

0 0 0 0 0 0 x1

0 0 0 0 0 0 x2

0 0 0 0 0 0 0




. (4.38)

An element F ∈
(
GT
)∗

with coordinates {X1, X2, X3, X4, X5, X6} is now represented

by the following 7× 7 lower triangular matrix

F =




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

X5 X6 X3 X4 X1 X2 0




, (4.39)
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with the dual pairing being given as 〈F,X〉 = tr(FX) =
6∑

i=1

xiXi. Hence the coadjoint

action K of the underlying group GT on the dual Lie algebra
(
GT
)∗

can be computed as

g(a1, a2, a3, a4, a5, a6) F g(a1, a2, a3, a4, a5, a6)
−1

=




∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

X ′
5 X ′

6 X ′
3 X ′

4 X ′
1 X ′

2 ∗




, (4.40)

with

X ′
1 = X1 −

α

2
a3X5 +

β

2
a2X6, X ′

2 = X2 −
α

2
a4X5 −

β

2
a1X6,

X ′
3 = X3 +

α

2
a1X5, X ′

4 = X4 +
α

2
a2X5, X ′

5 = X5, X ′
6 = X6.

(4.41)

The required coadjoint action K of the group on the dual algebra is therefore given by

Kg(a1, a2, a3, a4, a5, a6)(X1, X2, X3, X4, X5, X6)

= (X1 −
α

2
a3X5 +

β

2
a2X6, X2 −

α

2
a4X5 −

β

2
a1X6, X3 +

α

2
a1X5,

X4 +
α

2
a2X5, X5, X6). (4.42)
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The entries denoted by ∗’s in (4.40) are some nonzero values that we are not interested in.

From (4.42) one observes that the two coordinates X5 and X6 remain unchanged under the

coadjoint action. This is expected since they correspond to the center of the underlying

algebra. The only two polynomial invariants in this case are just P (F ) = X5 and Q(F ) =

X6. The coadjoint orbits are given by the set Sρ,σ, for some fixed real numbers ρ, σ, with

Sρ,σ = {F ∈
(
GT
)∗

| P (F ) = ρ, Q(F ) = σ}. (4.43)

Now, the first four coordinates of the vector on the right hand side of (4.42) can be made

zero by a suitable choice of the group parameters a1, a2, a3, a4, a5 and a6. Therefore, for

nonzero values of ρ and σ in (4.43), the vector (0, 0, 0, 0, ρ, σ) will lie in a coadjoint orbit

Sρ,σ of codimension 2. Since the dual algebra space is six dimensional, i.e., the coadjoint

orbit in question is 4 dimensional and it passes through the point (0, 0, 0, 0, ρ, σ).

We next have to find the subalgebra, of correct dimension, subordinate to F (see (4.39)).

If we work with this appropiate polarizing subalgebra and solve the master equation (see

[34]), the representation we end up with will be irreducible and unitary. The correct di-

mension of the polarizing subalgebra in this context turns out to be 2+6
2

= 4. The maximal

abelian subalgebra h of the underlying algebra GT serves as the appropiate poralizing sub-

algebra in this case, i.e. h is the maximal subalgebra with F |[h,h] = 0. A generic element of

h can be obtained from (4.38) just by putting x1 = x2 = 0 in there. A generic element of
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the corresponding abelian subgroup H can be represented by the following matrix

h(θ, φ,q) =




1 0 0 0 α
2
q1

α
2
q2 θ

0 1 0 0 0 0 φ

0 0 1 0 0 0 q1

0 0 0 1 0 0 q2

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




. (4.44)

We now choose a section δ : S = H\GT → GT with δ(s) = δ(s1, s2) being given by the

following 7× 7 matrix

δ(s1, s2) =




1 0 −α
2
s1 −α

2
s2 0 0 0

0 1 0 0 −β
2
s2

β
2
s1 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 s1

0 0 0 0 0 1 s2

0 0 0 0 0 0 1




. (4.45)
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With all the relevant matrices at our disposal, we move on to solving the master equation,

which in this case involves solving the matrix equation




1 0 −α
2
s1 −α

2
s2 0 0 0

0 1 0 0 −β
2
s2

β
2
s1 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 s1
0 0 0 0 0 1 s2
0 0 0 0 0 0 1







1 0 −α
2
p1 −α

2
p2

α
2
q1

α
2
q2 θ

0 1 0 0 −β
2
p2

β
2
p1 φ

0 0 1 0 0 0 q1
0 0 0 1 0 0 q2
0 0 0 0 1 0 p1
0 0 0 0 0 1 p2
0 0 0 0 0 0 1




=




1 0 −α
2
(p1+s1) −α

2
(p2+s2)

α
2
q1

α
2
q2 θ−α

2
q1s1−α

2
q2s2

0 1 0 0 −β
2
(p2+s2)

β
2
(p1+s1) φ−β

2
p1s2+

β
2
p2s1

0 0 1 0 0 0 q1
0 0 0 1 0 0 q2
0 0 0 0 1 0 p1+s1
0 0 0 0 0 1 p2+s2
0 0 0 0 0 0 1


 (4.46)

=




1 0 0 0 α
2
A α

2
B C

0 1 0 0 0 0 D
0 0 1 0 0 0 A
0 0 0 1 0 0 B
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1







1 0 −α
2
E −α

2
F 0 0 0

0 1 0 0 −β
2
F β

2
E 0

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 E
0 0 0 0 0 1 F
0 0 0 0 0 0 1




=




1 0 −α
2
E −α

2
F α

2
A α

2
B C+α

2
BF+α

2
AE

0 1 0 0 −β
2
F β

2
E D

0 0 1 0 0 0 A
0 0 0 1 0 0 B
0 0 0 0 1 0 E
0 0 0 0 0 1 F
0 0 0 0 0 0 1


 , (4.47)

for the unknowns A,B,C,D,E and F . Comparing (4.46) with (4.47), one gets

A = q1, B = q2, E = p1 + s1, F = p2 + s2,

C = θ − α〈q, s+ 1

2
p〉, D = φ− β

2
p ∧ s.

(4.48)

We recall that the coadjoint orbit vector, associated to which we found the polarizing al-

gebra, was of the form (0, 0, 0, 0, ρ, σ). In view of (4.48), we therefore have the following

theorem

Theorem 4.4.2. The noncommutative Weyl-Heisenberg group GT admits a unitary irre-

ducible representation realized on L2(R2, ds) by the operators U(θ, φ,q,p):

(U(θ, φ,q,p)f)(s) = exp i

(
θ + φ− α〈q, s+ 1

2
p〉 − β

2
p ∧ s

)
f(s+ p), (4.49)
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where f ∈ L2(R2, ds).

From the one-parameter unitary groups U(θ, 0, 0, 0, 0, 0), U(0, 0, q1, 0, 0, 0), etc, we

obtain the their self-adjoint generators (on L2(R2, ds)), Θ̂, Φ̂, P̂1, P̂2, Q̂1 and Q̂2, using the

general formula

X̂φ = i
dU(φ)

dφ

∣∣∣∣
φ=0

.

Thus, we have the following Hilbert space representation of the noncentral group genera-

tors

P̂1 = αs1, Q̂1 =
β

2
s2 + i

∂

∂s1
,

P̂2 = αs2, Q̂2 = −β
2
s1 + i

∂

∂s2
,

(4.50)

while the two central generators Θ̂ and Φ̂ are both mapped to the Identity operator IH

of H = L2(R2, ds). An inverse Fourier transformation leads to the expressions, (on the

coordinate Hilbert space L2(R2, dx))

P̂1 = −iα ∂

∂x
, P̂2 = −iα ∂

∂y
,

Q̂1 = x− iβ

2

∂

∂y
, Q̂2 = y +

iβ

2

∂

∂x
.

(4.51)

which coincide with (4.7) if we identify α with ~ and −β with ϑ.

The commutation relations are now

[Q̂i, P̂j ] = iαδi,jIH, [Q̂1, Q̂2] = −iβIH, [P̂1, P̂2] = 0. (4.52)
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If we now set α = ~ and −β = ϑ, we again retrieve the commutation relations (4.1) of

noncommutative quantum mechanics. This means, that as in the case of the Galilei group,

an additional central extension of the Weyl-Heisenberg group leads to non-commutative

quantum mechanics.

4.4.2 Triple central extension of GT

In this section we study the triple central extension of GT by R and compute a unitary

irreducible representation of the extended group GT . We will make use of all the three

local exponents ξ, ξ′ and ξ′′ enumerated in Theorem 4.4.1 to do this triple extension. The

group composition rule for the resulting triply extended Lie group GT then reads

(θ, φ, ψ,q,p)(θ′, φ′, ψ′,q′,p′)

= (θ + θ′ +
α

2
[〈q,p′〉 − 〈p,q′〉], φ+ φ′ +

β

2
[p ∧ p′], ψ + ψ′ +

γ

2
[q ∧ q′]

,q+ q′,p+ p′). (4.53)
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The matrix representation of GT , consistent with the above group law, is then seen to be

(θ, φ, ψ,q,p)α,β,γ =




1 0 0 −α
2
p1 −α

2
p2

α
2
q1

α
2
q2 θ

0 1 0 0 0 −β
2
p2

β
2
p1 φ

0 0 1 −γ
2
q2

γ
2
q1 0 0 ψ

0 0 0 1 0 0 0 q1

0 0 0 0 1 0 0 q2

0 0 0 0 0 1 0 p1

0 0 0 0 0 0 1 p2

0 0 0 0 0 0 0 1




. (4.54)

Let us denote the Lie algebra ofGT by GT . Denoting the basis elements of GT by Θ,Φ,Ψ, Q1, Q2, P1

and P2, corresponding to the group parameters θ, φ, ψ, p1, p2, q1 and q2, respectively, we

have the following Lie bracket relations between them

[Pi, Qj] = αδi,jΘ, [Q1, Q2] = βΦ, [P1, P2] = γΨ, [Pi,Θ] = 0,

[Qi,Θ] = 0, [Pi,Φ] = 0, [Qi,Φ] = 0, [Pi,Ψ] = 0,

[Qi,Ψ] = 0, [Θ,Φ] = 0, [Φ,Ψ] = 0, [Θ,Ψ] = 0, i, j = 1, 2 .

(4.55)

In addition to the two central elements Θ and Φ appearing in the double extension case (see

(4.36)), we have a third central element Ψ in (4.55), which makes the two generators P1

and P2 noncommutative as well, with the noncommutativity being controlled by the exten-

sion parameter γ. We shall call this centrally extended Lie group GT the triply extended
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group of translations and the corresponding Lie algebra GT the triply extended algebra of

translations.

It remains now to find a unitary irreducible representation of the group GT . In doing

so we will be following exactly the same course as for the UIR of the GT in Section 4.4.1.

Since GT is also a nilpotent Lie group, (see (4.54)), we again apply the orbit method of

Kirillov.

We again change notations and replace the group parameters p1, p2, q1, q2, θ, φ and ψ

by a1, a2, a3, a4, a5, a6 and a7, respectively. Then, a generic group element has the matrix

representation

g(a1, a2, a3, a4, a5, a6, a7) =




1 0 0 −α
2
a1 −α

2
a2

α
2
a3

α
2
a4 a5

0 1 0 0 0 −β
2
a2

β
2
a1 a6

0 0 1 −γ
2
a4

γ
2
a3 0 0 a7

0 0 0 1 0 0 0 a3

0 0 0 0 1 0 0 a4

0 0 0 0 0 1 0 a1

0 0 0 0 0 0 1 a2

0 0 0 0 0 0 0 1




. (4.56)

Denoting byX1, X2, X3, X4, X5, X6 andX7, the respective group generators, and writing a

a generic Lie algebra element asX = x1X1+x
2X2+x

3X3+x
4X4+x

5X5+x
6X6+x

7X7,
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we have the matrix

X =




0 0 0 −α
2
x1 −α

2
x2 α

2
x3 α

2
x4 x5

0 0 0 0 0 −β
2
x2 β

2
x1 x6

0 0 0 −γ
2
x4 γ

2
x3 0 0 x7

0 0 0 0 0 0 0 x3

0 0 0 0 0 0 0 x4

0 0 0 0 0 0 0 x1

0 0 0 0 0 0 0 x2

0 0 0 0 0 0 0 0




. (4.57)

We represent an element F ∈
(
GT
)∗

with the following 8× 8 lower tringular matrix

F =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

− 2
α
X1 0 0 0 0 0 0 0

− 2
α
X2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

X5 X6 X7 X3 X4 0 0 0




, (4.58)
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where the dual pairing is given by 〈F,X〉 = tr(FX) =
7∑

i=1

xiXi. Therefore, the coad-

joint action of the underlying Lie group GT on the corresponding dual Lie algebra

(
GT
)∗

follows from the following computation

g(a1, a2, a3, a4, a5, a6, a7)Fg(a1, a2, a3, a4, a5, a6, a7)
−1

=




∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

− 2
α
X ′

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

− 2
α
X ′

2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

X ′
5 X ′

6 X ′
7 X ′

3 X ′
4 ∗ ∗ ∗




, (4.59)

with

X ′
1 = − 2

α
X1 + a3X5, X ′

2 = − 2

α
X2 + a4X5, X ′

3 =
α

2
a1X5 +

γ

2
a4X7 +X3,

X ′
4 =

α

2
a2X5 −

γ

2
a3X7 +X4, X ′

5 = X5, X ′
6 = X6, X ′

7 = X7.

(4.60)

The required coadjoint action of the group on the dual algebra is therefore given by

Kg(a1, a2, a3, a4, a5, a6, a7)(X1, X2, X3, X4, X5, X6, X7)

= (− 2

α
X1 + a3X5,−

2

α
X2 + a4X5,

α

2
a1X5 +

γ

2
a4X7 +X3

,
α

2
a2X5 −

γ

2
a3X7 +X4, X5, X6, X7). (4.61)
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The nonzero entries denoted by ∗’s in (5.7) are of no interest to us. From (4.61), one

observes that the three dual algebra coordinates X5, X6 and X7 remain unaltered under

the coadjoint action of the underlying group element, coming as they do from the center

of the Lie algebra. We therefore have three polynomial invariants in our theory given by

P (F ) = X5, Q(F ) = X6 and R(F ) = X7. The coadjoint orbits in this case are given by

the sets Sρ,σ,τ with

Sρ,σ,τ = {F ∈
(
GT
)∗

| P (F ) = ρ, Q(F ) = σ, R(F ) = τ}. (4.62)

It is also obvious from (4.61) that by choosing a1, a2, a3 and a4 in a suitable manner,

we can make all of X ′
1, X ′

2, X ′
3 and X ′

4 vanishing at the same time. Therefore, for nonzero

values of ρ, σ and τ , the vector (0, 0, 0, 0, ρ, σ, τ) will always lie in the coadjoint orbit Sρ,σ,τ

of codimension 3. In other words, the underlying coadjoint orbit Sρ,σ,τ turns out to be 4

dimensional which passes through the point (0, 0, 0, 0, ρ, σ, τ) of the dual algebra space.

We now have to find the maximal subalgebra subordinate to F given by (4.58). This

maximal subalgebra or the polarizing subalgebra turns out to be of the correct dimension

3+7
2

= 5 and hence, the representation for GT that we end up with using the orbit method

will be irreducible and unitary. As in the case of GT , the maximal abelian subalgebra

h of the Lie algebra GT serves as the polarizing subalgebra. A generic element of the
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corresponding abelian subgroup H can be represented by the following 8× 8 matrix

h(θ, φ, ψ, p1, q2) =




1 0 0 −α
2
p1 0 0 α

2
q2 θ

0 1 0 0 0 0 β
2
p1 φ

0 0 1 −γ
2
q2 0 0 0 ψ

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 q2

0 0 0 0 0 1 0 p1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




. (4.63)

Then the section δ : H\GT → GT will be represented by the following matrix

δ(r1, s2) =




1 0 0 0 −α
2
s2

α
2
r1 0 0

0 1 0 0 0 −β
2
s2 0 0

0 0 1 0 γ
2
r1 0 0 0

0 0 0 1 0 0 0 r1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 s2

0 0 0 0 0 0 0 1




. (4.64)
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Thus, we again have to solve the master equation,




1 0 0 0 −α
2
s2

α
2
r1 0 0

0 1 0 0 0 −β
2
s2 0 0

0 0 1 0 γ
2
r1 0 0 0

0 0 0 1 0 0 0 r1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 s2
0 0 0 0 0 0 0 1







1 0 0 −α
2
p1 −α

2
p2

α
2
q1

α
2
q2 θ

0 1 0 0 0 −β
2
p2

β
2
p1 φ

0 0 1 − γ
2
q2

γ
2
q1 0 0 ψ

0 0 0 1 0 0 0 q1
0 0 0 0 1 0 0 q2
0 0 0 0 0 1 0 p1
0 0 0 0 0 0 1 p2
0 0 0 0 0 0 0 1




=




1 0 0 −α
2
p1 −α

2
(p2+s2)

α
2
(q1+r1)

α
2
q2 θ−α

2
q2s2+

α
2
p1r1

0 1 0 0 0 −β
2
(p2+s2)

β
2
p1 φ−β

2
p1s2

0 0 1 − γ
2
q2

γ
2
(q1+r1) 0 0 ψ+ γ

2
q2r1

0 0 0 1 0 0 0 q1+r1
0 0 0 0 1 0 0 q2
0 0 0 0 0 1 0 p1
0 0 0 0 0 0 1 p2+s2
0 0 0 0 0 0 0 1




(4.65)

=




1 0 0 −α
2
A 0 0 α

2
B C

0 1 0 0 0 0 β
2
A D

0 0 1 − γ
2
B 0 0 0 E

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 B
0 0 0 0 0 1 0 A
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1







1 0 0 0 −α
2
F α

2
G 0 0

0 1 0 0 0 −β
2
F 0 0

0 0 1 0 γ
2
G 0 0 0

0 0 0 1 0 0 0 G
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 F
0 0 0 0 0 0 0 1




=




1 0 0 −α
2
A −α

2
F α

2
G α

2
B C+α

2
BF−α

2
GA

0 1 0 0 0 −β
2
F β

2
A D+β

2
AF

0 0 1 − γ
2
B γ

2
G 0 0 E− γ

2
BG

0 0 0 1 0 0 0 G
0 0 0 0 1 0 0 B
0 0 0 0 0 1 0 A
0 0 0 0 0 0 1 F
0 0 0 0 0 0 0 1


 . (4.66)

The unknowns A,B,C,D,E, F and G can easily be computed by comparing (4.65) with

(4.66). We get

A = p1, B = q2, G = r1 + q1, F = s2 + p2,

C = θ − αq2s2 + αp1r1 +
α

2
q1p1 −

α

2
q2p2,

D = φ− βp1s2 −
β

2
p1p2, E = ψ + γq2r1 +

γ

2
q1q2.

(4.67)

Now, the dual algebra vector lying in the underlying four dimensional coadjoint orbit was

found to be (0, 0, 0, 0, ρ, σ, τ). In light of (4.67), we therefore have the following theorem

157



Theorem 4.4.3. The triply extended group of translations GT admits a unitary irreducible

representation realized on L2(R2). The explicit form of the representation is given by

(U(θ, φ, ψ, q1, q2, p1, p2)f)(r1, s2)

= ei(θ−αq2s2+αp1r1+
α
2
q1p1−α

2
q2p2)ei(φ−βp1s2−

β
2
p1p2)

×ei(ψ+γq2r1+ γ
2
q2q1)f(r1 + q1, s2 + p2), (4.68)

where f ∈ L2(R2, dr1ds2).

Now, let us take the Fourier transform of (4.68) with respect to the first coordinate r1

and call the transformed coordinate s1. The noncentral generators ofGT can be represented

by self adjoint operators defined on L2(R2, ds) in the following manner

P̂1 = −s1, Q̂1 = βs2 − iα
∂

∂s1
,

P̂2 = αs2 − iγ
∂

∂s1
, Q̂2 = i

∂

∂s2
,

(4.69)

while the three central elements Θ,Φ and Ψ of the corresponding Lie algebra GT are all

mapped to the identity operator IH of the uderlying Hilbert space H = L2(R2, ds). The

corresponding commutation relations now read

[Q̂i, P̂j ] = iαδi,jIH, [Q̂1, Q̂2] = −iβIH, [P̂1, P̂2] = −iγIH. (4.70)

Once again, if we write α = ~, −β = ϑ and replace γ by −γ we recover (4.1)

together with (4.2), the additional central extension making the two momentum operators

noncommuting.
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In this chapter, we presented a rigorous treatment of two-dimensional noncommutative

quantum mechanics (NCQM) from group and repreentation theoretic point of views. In

particular, we showed that noncommutative quantum mechanics, associated with position

noncommutativity only, can be essentially regarded as coherent state quantization of phase

space variables of two-dimensional non-relativistic system constrained by the symmetry of

(2+1) centrally extended Galilei group. Towards the end of the chapter, we encountered

double and triple central extensions of abelian group of translations in R4. In fact, the latter

central extension turns out to play a very crucial role in two-dimensional NCQM as is about

to be explored in the following chapter.
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Chapter 5

Triply Extended Group of Translations of R4 as Defining Group of NCQM: relation

to various gauges

The contents of this chapter are taken from the article titled “Triply Extended Group

of Translations of R4 as Defining Group of NCQM: relation to various gauges” [19]. The

triply extended group of translations of R4 has been encountered in the context of two-

dimensional noncommutative quantum mechanics (NCQM) in [21]. In this chapter, we

revisit the coadjoint orbit structure and various irreducible representations of the group

associated with them. The two irreducible representations corresponding to the Landau

and symmetric gauges are found to arise from the underlying defining group. The group

structure of the transformations, preserving the commutation relations of NCQM, has been

studied along with specific examples. Finally, the relationship of a certain family of UIRs

of the underlying defining group with a family of deformed complex Hermite polynomials

has been explored.

5.1 Introduction

The Weyl-Heisenberg group, whose generators in a unitary irreducible representation

on a Hilbert space give the position and momentum operators of quantum mechanics, can

be thought of as being the defining group of standard non-relativistic quantum mechanics.

The analog of this group, in the setting of a two-dimensional noncommutative quantum
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system (i.e., a system in which the two operators of position are also non-commuting), was

explored in [21]. There the possibility of an additional non-commutativity (that of the two

momentum operators as well) was also considered. In the literature (see, for example, [24]),

two different gauges and their physical interpretations have been pointed out, connected

with this latter non-commutativity (of the momenta). We shall show in this chapter of the

thesis that the irreducible representations of the resulting commutation relations, postulated

there arise indeed from the irreducible unitary representations of the triply extended group

of translations in R4, which we shall denote as GNC from now on. (In [21] the notation

GT had been used for this group). In this sense it is this group which is the defining

group of noncommutative quantum mechanics. Indeed, as will be shown in the sequel,

the different unitary irreducible representations of it describe all the possible types of non-

commutativities presently considered in the literature.

In this chapter, we give a complete description of all the unitary irreducible represen-

tations of the group GNC and its Lie algebra gNC, following the classification of the un-

derlying coadjoint orbits. The unitary irreducible representations of the 2 dimensional

Weyl-Heisenberg group are found to be sitting inside the unitary dual of GNC. We compute

the unitary irreducible representations, associated with the Landau gauge and symmetric

gauges of GNC, explicitly. The transformation group, preserving the commutation relations

of noncommutative quantum mechanics, is studied along with an example related to the

matrix of transformation between the UIRs of gNC in the Landau and symmetric gauges.
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Finally, we obtain a family of coadjoint orbits in g∗NC that gives rise to the representations

associated to the deformed complex Hermite polynomials studied at length in ([9], [6]).

5.2 Coadjoint orbits and UIRs of GNC

The phase space of a free classical system, moving in two spatial dimensions, is the

four dimensional abelian group of translations of R4. Let us denote a general element of

this group by (q,p), in terms of the two-vectors of position and momentum, respectively.

A generic element of the triple central extension GNC of this abelian group will be denoted

by (θ, φ, ψ,q,p). The group composition law for GNC reads (see [21])

(θ, φ, ψ,q,p)(θ′, φ′, ψ′,q′,p′)

= (θ + θ′ +
α

2
[〈q,p′〉 − 〈p,q′〉], φ+ φ′ +

β

2
[p ∧ p′], ψ + ψ′ +

γ

2
[q ∧ q′]

,q+ q′,p+ p′), (5.1)

where α, β and γ stand for the extension parameters corresponding to θ, φ, and ψ, respec-

tively.
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A matrix realization of GNC is as follows

(θ, φ, ψ,q,p)α,β,γ =




1 0 0 −α
2
p1 −α

2
p2

α
2
q1

α
2
q2 θ

0 1 0 0 0 −β
2
p2

β
2
p1 φ

0 0 1 −γ
2
q2

γ
2
q1 0 0 ψ

0 0 0 1 0 0 0 q1

0 0 0 0 1 0 0 q2

0 0 0 0 0 1 0 p1

0 0 0 0 0 0 1 p2

0 0 0 0 0 0 0 1




. (5.2)

Let us denote the Lie algebra of GNC by gNC. If we denote the basis elements of gNC by

Θ,Φ,Ψ, Q1, Q2, P1 and P2, corresponding to the on-parameter subgroups generated by the

group parameters θ, φ, ψ, p1, p2, q1 and q2, respectively, we end up with the following Lie

bracket relations between them

[Pi, Qj ] = αδi,jΘ, [Q1, Q2] = βΦ, [P1, P2] = γΨ, [Pi,Θ] = 0,

[Qi,Θ] = 0, [Pi,Φ] = 0, [Qi,Φ] = 0, [Pi,Ψ] = 0,

[Qi,Ψ] = 0, [Θ,Φ] = 0, [Φ,Ψ] = 0, [Θ,Ψ] = 0, i, j = 1, 2 .

(5.3)

For the sake of later convenience, we switch to a different notation by replacing the

group parameters p1, p2, q1, q2, θ, φ and ψ with a1, a2, a3, a4, a5, a6 and a7, respectively.

The respective group generators are denoted X1, X2, X3, X4, X5, X6 and X7. Writing a
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generic Lie algebra element X as a linear combination of the above basis elements yields

X = x1X1 + x2X2 + x3X3 + x4X4 + x5X5 + x6X6 + x7X7,

while the corresponding matrix realization reads

X =




0 0 0 −α
2
x1 −α

2
x2 α

2
x3 α

2
x4 x5

0 0 0 0 0 −β
2
x2 β

2
x1 x6

0 0 0 −γ
2
x4 γ

2
x3 0 0 x7

0 0 0 0 0 0 0 x3

0 0 0 0 0 0 0 x4

0 0 0 0 0 0 0 x1

0 0 0 0 0 0 0 x2

0 0 0 0 0 0 0 0




. (5.4)
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Under the above mentioned change in notation, a generic group element of GNC is now

represented by the following matrix:

g(a1, a2, a3, a4, a5, a6, a7) =




1 0 0 −α
2
a1 −α

2
a2

α
2
a3

α
2
a4 a5

0 1 0 0 0 −β
2
a2

β
2
a1 a6

0 0 1 −γ
2
a4

γ
2
a3 0 0 a7

0 0 0 1 0 0 0 a3

0 0 0 0 1 0 0 a4

0 0 0 0 0 1 0 a1

0 0 0 0 0 0 1 a2

0 0 0 0 0 0 0 1




. (5.5)

If we denote the dual lie algebra by g∗NC, then an element F of it can conveniently be

represented as the following lower triangular matrix:

F =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

X5 X6 X7 X3 X4 X1 X2 0




, (5.6)
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with the dual pairing being given by 〈F,X〉 = tr(FX) =
7∑

i=1

xiXi. We, therefore, note

that

g(a1, a2, a3, a4, a5, a6, a7)Fg(a1, a2, a3, a4, a5, a6, a7)
−1

=




∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

X ′
5 X ′

6 X ′
7 X ′

3 X ′
4 X ′

1 X ′
2 ∗




, (5.7)

with

X ′
1 = X1 −

α

2
a3X5 +

β

2
a2X6, X ′

2 = X2 −
α

2
a4X5 −

β

2
a1X6,

X ′
3 = X3 +

γ

2
a4X7 +

α

2
a1X5, X ′

4 = X4 −
γ

2
a3X7 +

α

2
a2X5,

X ′
5 = X5, X ′

6 = X6, X ′
7 = X7.

(5.8)

The entries, denoted by ∗’s in (5.7), are of no interest for the present computations. Thus

we arrive at the required coadjoint action of the group on the dual algebra, given by

Kg(a1, a2, a3, a4, a5, a6, a7)(X1, X2, X3, X4, X5, X6, X7)

= (X1 −
α

2
a3X5 +

β

2
a2X6, X2 −

α

2
a4X5 −

β

2
a1X6
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, X3 +
γ

2
a4X7 +

α

2
a1X5, X4 −

γ

2
a3X7 +

α

2
a2X5, X5, X6, X7). (5.9)

From (5.9), we immediately see that X5, X6 and X7 belonging to the center of gNC remain

invariant under the coadjoint action of GNC, as expected. These three invariant coordinates

on the right side of (5.9) refer to the GNC-invariant polynomial functions on g∗NC related

to X5, X6, X7, respectively, all belonging to to the center Z(gNC). We therefore have three

polynomial invariants in the present setting given by P (F ) = X5,Q(F ) = X6 andR(F ) =

X7. Now the coadjoint orbits can be denoted using the sets Sρ,σ,τ with

Sρ,σ,τ = {F ∈ gNC
∗ | P (F ) = ρ, Q(F ) = σ, R(F ) = τ}. (5.10)

Let us pause briefly and study the geometry of the relevant coadjoint orbits before

computing all unitary irreducible representations of GNC.

The triple (ρ, σ, τ) solely determines the geometry of the underlying coadjoint orbit.

For all three parameters ρ, σ and τ assuming non-zero values, the vector (0, 0, 0, 0, ρ, σ, τ)

will always lie in the coadjoint orbit Sρ,σ,τ of codimension 3. In other words, the under-

lying coadjoint orbit Sρ,σ,τ turns out to be 4 dimensional which passes through the point

(0, 0, 0, 0, ρ, σ, τ) of the dual algebra space g∗NC. A generic element of Sρ,σ,τ can be written

as (k1, k2, k3, k4, ρ, σ, τ), where (k1, k2, k3, k4) takes values in R4. These nonintersecting

four dimensional coadjoint orbits (one for each choice of values of the parameters ρ, σ, τ)

are sitting inside the 7-dimensional dual Lie algebra g∗NC in the following way. R7 can

be regarded as a continuum of nonintersecting R4 spaces going through each point of an
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R3 space embedded in R7. Let us denote a generic point of the embedded R3 space by

(0, 0, 0, 0, ρ, σ, τ). Restricting ρ, σ, and τ to nonzero real values, we obtain a disconnected

toplogical space with 8 connected components which we denote as R3
0. An R4 coadjoint

orbit Oρ,σ,τ
4 passes through a point (0, 0, 0, 0, ρ, σ, τ) ∈ g∗NC for nonzero ρ, σ, and τ , as we

have already noted.

Now we consider the rest of the points (0, 0, 0, 0, ρ, σ, τ) of the underlying R3 space

embedded in R7 and denote this set R3 \ R3
0 by R3

1. Let us subdivide the points belonging

to R3
1 into the following classes

• The points Sρ,σ on the ρ− σ plane (τ = 0) with nonzero real values of both ρ and σ,

e.g. (0, 0, 0, 0, ρ, σ, 0).

• The points Sρ,τ on the ρ− τ plane (σ = 0) with nonzero real values of both ρ and τ ,

e.g. (0, 0, 0, 0, 0, ρ, 0, τ).

• The points Sσ,τ on the σ − τ plane (ρ = 0) with nonzero real values of both σ and τ ,

e.g. (0, 0, 0, 0, 0, σ, τ).

• The disconnected set of points Lρ on a line with σ and τ both being zero and ρ being

nonzero, e.g. (0, 0, 0, 0, ρ, 0, 0).

• The disconnected set of points Lσ on a line with ρ and τ both being zero and σ being

nonzero, e.g. (0, 0, 0, 0, 0, σ, 0).

• The disconnected set of points Lτ on a line with ρ and σ both being zero and τ being

nonzero, e.g. (0, 0, 0, 0, 0, 0, τ).
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• The origin O of the underlying dual algebra space R7 with ρ = σ = τ = 0. The

coordinate of O is just (0, 0, 0, 0, 0, 0, 0).

From the coadjoint action given by (5.9), one finds all the coadjoint orbits associated

with the above enumerated points in the embedded R3 space. These coadjoint orbits are

listed below

◦ R4 spaces Oρ,σ,0
4 each of which passes through a point lying in a disconnected top-

logical space Sρ,σ, with ρ 6= 0 and σ 6= 0 rendering to its disconnectedness in the

usual Euclidean topology. A generic point on such an orbit (fixed ρ and σ) is given

by (k1, k2, k3, k4, ρ, σ, 0) with each of k1, k2, k3, and k4 assuming real values.

◦ R4 spaces Oρ,0,τ
4 each of which passes through a point lying in the disconnected set

Sρ,τ , where disconnectedness refers to one in the usual Euclidean topology with each

of ρ and τ being nonzero. A generic point on such an orbit (fixed ρ and τ ) is given

by (k1, k2, k3, k4, ρ, 0, τ) with each of k1, k2, k3, and k4 assuming real values.

◦ R4 spaces O0,σ,τ
4 each of which passes through a point lying in the disconnected

set Sσ,τ , the disconnectedness in the usual Euclidean topology being attributed to

σ 6= 0 and τ 6= 0. A generic point on such an orbit (fixed σ and τ ) is given by

(k1, k2, k3, k4, 0, σ, τ) with each of k1, k2, k3, and k4 assuming real values.

◦ R4 spaces Oρ,0,0
4 each of which passes through a point lying in the disconnected set

Lρ (ρ 6= 0 contributes to its disconnectedness in the usual Euclidean topology). A
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generic point on such an orbit (fixed ρ) is given by (k1, k2, k3, k4, ρ, 0, 0) with each

of k1, k2, k3, and k4 assuming real values.

◦ R2-plane c3,c4O0,σ,0
2 due to a fixed ordered pair (c3, c4). Such a plane lies in the R4

space that passes through each point of Lσ, where Lσ is the punctured line with

σ 6= 0. A generic point on such an orbit (fixed σ) is given by (k1, k2, c3, c4, 0, σ, 0)

with both k1 and k2 assuming real values.

◦ R2 plane c1,c2O0,0,τ
2 due to a fixed ordered pair (c1, c2). The plane lies in the R4

space that passes through each point of the punctured line Lτ with τ 6= 0. A generic

point on such an orbit (fixed τ ) is given by (c1, c2, k3, k4, 0, 0, τ) with both k3 and k4

assuming real values.

◦ 0-dimensional point c1,c2,c3,c4O0,0,0
0 due to a fixed ordered quadruple (c1, c2, c3, c4).

Such a point lies in the R4 space that passes through the origin O. The corresponding

zero dimensional orbit is denoted as (c1, c2, c3, c4, 0, 0, 0).

We are now all set to resume our computations on finding the unitary irreducible rep-

resentations of GNC. From the method of orbits (see [34]), we know that the unitary irre-

ducible representations of the connected simply connected nilpotent Lie group GNC are in

1-1 correspondence with its coadjoint orbits. The UIRs corresponding to the 4 dimensional

orbits have functional dimension 2, i.e. the representation space is L2(R2) with respect

to the usual Lebesgue measure. Let us compute the UIRs Uρ
σ,τ , Uρ

σ,0, Uρ
0,τ , U0

σ,τ , and Uρ
0,0

corresponding to the coadjoint orbits Oρ,σ,τ
4 , Oρ,σ,0

4 , Oρ,0,τ
4 , O0,σ,τ

4 , and Oρ,0,0
4 , respectively.
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The most crucial part for the remaining task is to find the polarizing subalgebra, i.e. a

maximal subalgebra h of gNC which is subordinate to F ∈ g∗NC with representation given

by (5.6). In other words, h must satisfy F |[h,h] = 0. For the 4 dimensional orbits, the

polarizing subalgebra has to have dimension equal to 7+3
2

, i.e. 5. The maximal abelian

subalgebra of gNC serves as the polarizing subalgebra in this case. A generic element h of

the corresponding abelian subgroup H ⊂ GNC has the following matrix representation:

h(θ, φ, ψ, p1, q2) =




1 0 0 −α
2
p1 0 0 α

2
q2 θ

0 1 0 0 0 0 β
2
p1 φ

0 0 1 −γ
2
q2 0 0 0 ψ

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 q2

0 0 0 0 0 1 0 p1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




. (5.11)
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Let us consider the following section δ : H\GNC → GNC. The matrix representation of the

section δ then reads

δ(r1, s2) =




1 0 0 0 −α
2
s2

α
2
r1 0 0

0 1 0 0 0 −β
2
s2 0 0

0 0 1 0 γ
2
r1 0 0 0

0 0 0 1 0 0 0 r1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 s2

0 0 0 0 0 0 0 1




. (5.12)

All we have to do now is to solve the master equation,




1 0 0 0 −α
2
s2

α
2
r1 0 0

0 1 0 0 0 −β
2
s2 0 0

0 0 1 0 γ
2
r1 0 0 0

0 0 0 1 0 0 0 r1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 s2
0 0 0 0 0 0 0 1







1 0 0 −α
2
p1 −α

2
p2

α
2
q1

α
2
q2 θ

0 1 0 0 0 −β
2
p2

β
2
p1 φ

0 0 1 − γ
2
q2

γ
2
q1 0 0 ψ

0 0 0 1 0 0 0 q1
0 0 0 0 1 0 0 q2
0 0 0 0 0 1 0 p1
0 0 0 0 0 0 1 p2
0 0 0 0 0 0 0 1




=




1 0 0 −α
2
p1 −α

2
(p2+s2)

α
2
(q1+r1)

α
2
q2 θ−α

2
q2s2+

α
2
p1r1

0 1 0 0 0 −β
2
(p2+s2)

β
2
p1 φ−β

2
p1s2

0 0 1 − γ
2
q2

γ
2
(q1+r1) 0 0 ψ+ γ

2
q2r1

0 0 0 1 0 0 0 q1+r1
0 0 0 0 1 0 0 q2
0 0 0 0 0 1 0 p1
0 0 0 0 0 0 1 p2+s2
0 0 0 0 0 0 0 1




(5.13)

=




1 0 0 −α
2
A 0 0 α

2
B C

0 1 0 0 0 0 β
2
A D

0 0 1 − γ
2
B 0 0 0 E

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 B
0 0 0 0 0 1 0 A
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1







1 0 0 0 −α
2
F α

2
G 0 0

0 1 0 0 0 −β
2
F 0 0

0 0 1 0 γ
2
G 0 0 0

0 0 0 1 0 0 0 G
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 F
0 0 0 0 0 0 0 1




=




1 0 0 −α
2
A −α

2
F α

2
G α

2
B C+α

2
BF−α

2
GA

0 1 0 0 0 −β
2
F β

2
A D+β

2
AF

0 0 1 − γ
2
B γ

2
G 0 0 E− γ

2
BG

0 0 0 1 0 0 0 G
0 0 0 0 1 0 0 B
0 0 0 0 0 1 0 A
0 0 0 0 0 0 1 F
0 0 0 0 0 0 0 1


 . (5.14)
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The unknowns A,B,C,D,E, F and G can easily be computed by comparing (5.13) with

(5.14). We get

A = p1, B = q2, G = r1 + q1, F = s2 + p2,

C = θ − αq2s2 + αp1r1 +
α

2
q1p1 −

α

2
q2p2,

D = φ− βp1s2 −
β

2
p1p2, E = ψ + γq2r1 +

γ

2
q1q2.

(5.15)

Now, the dual algebra vector lying in the 4 dimensional coadjoint orbit Oρ,σ,τ
4 was found to

be (0, 0, 0, 0, ρ, σ, τ). Using (5.15), a family of representations Uρ
σ,τ associated with these

coadjoint orbits follow immediately

(Uρ
σ,τ (θ, φ, ψ, q1, q2, p1, p2)f)(r1, s2)

= eiρ(θ−αq2s2+αp1r1+
α
2
q1p1−α

2
q2p2)eiσ(φ−βp1s2−

β
2
p1p2)

×eiτ(ψ+γq2r1+ γ
2
q2q1)f(r1 + q1, s2 + p2), (5.16)

where none of ρ, σ and τ are zero and f ∈ L2(R2, dr1ds2).

The required dimension of the polarizing subalgebra h due to the other coadjoint orbits

is also 5. And hence, the polarizing subalgebra that was used to compute the UIRs associ-

ated with the orbits Oρ,σ,τ
4 , also serves for the other 4 dimensional orbits of GNC. Therefore,

the results, obtained in (5.15), apply to all other 4 dimensional coadjoint orbits, as well.
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Knowing that the 4-dimensional orbit Oρ
σ,0 passes through the point (0, 0, 0, 0, ρ, σ, 0),

we can easily obtain the corresponding family of UIRs:

(Uρ
σ,0(θ, φ, ψ, q1, q2, p1, p2)f)(r1, s2)

= eiρ(θ−αq2s2+αp1r1+
α
2
q1p1−α

2
q2p2)eiσ(φ−βp1s2−

β
2
p1p2)f(r1 + q1, s2 + p2),

(5.17)

where f ∈ L2(R2, dr1ds2).

Now, the orbit Oρ
0,τ was found to pass through the point (0, 0, 0, 0, ρ, 0, τ) of the dual

algebra space g∗NC. Therefore, the continuous family of UIRs corresponding to these 4-

dimensional coadjoint orbits follows as

(Uρ
0,τ (θ, φ, ψ, q1, q2, p1, p2)f)(r1, s2)

= eiρ(θ−αq2s2+αp1r1+
α
2
q1p1−α

2
q2p2)eiτ(ψ+γq2r1+

γ
2
q2q1)f(r1 + q1, s2 + p2), (5.18)

where f ∈ L2(R2, dr1ds2).

Also, O0,σ,τ
4 , being a 4 dimensional coadjoint orbit, passes through the point

(0, 0, 0, 0, 0, σ, τ) ∈ g∗NC. Therefore, the corresponding family of UIRs is given by

(U0
σ,τ (θ, φ, ψ, q1, q2, p1, p2)f)(r1, s2)

= eiσ(φ−βp1s2−
β
2
p1p2)eiτ(ψ+γq2r1+

γ
2
q2q1)f(r1 + q1, s2 + p2), (5.19)

where both σ and τ are nonzero and f ∈ L2(R2, dr1ds2).
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The only remaining 4 dimensional coadjoint orbit is Oρ
0,0 which passes through the

point (0, 0, 0, 0, ρ, 0, 0) ∈ g∗NC. The family of unitary irreducible representations associated

with these orbits are found to be

(Uρ
0,0(θ, φ, ψ, q1, q2, p1, p2)f)(r1, s2)

= eiρ(θ−αq2s2+αp1r1+
α
2
q1p1−α

2
q2p2)f(r1 + q1, s2 + p2), (5.20)

where ρ is nonzero and f ∈ L2(R2, dr1ds2).

There are two 2-dimensional coadjoint orbits in the present setting. The orbits c3,c4O0,σ,0
2

and c1,c2O0,0,τ
2 pass through the points (0, 0, c3, c4, 0, σ, 0) and (c1, c2, 0, 0, 0, 0, τ) of g∗NC, re-

spectively. But the required dimension of the polarizing subalgebra is no longer 5. It is now

7+5
2

= 6.
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In case of the coadjoint orbit c1,c2O0,0,τ
2 , a generic element of the polarizing subalgebra

h is given by 


0 0 0 −α
2
x1 −α

2
x2 α

2
x3 0 x5

0 0 0 0 0 −β
2
x2 β

2
x1 x6

0 0 0 0 γ
2
x3 0 0 x7

0 0 0 0 0 0 0 x3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 x1

0 0 0 0 0 0 0 x2

0 0 0 0 0 0 0 0




.

One can easily verify that under the above choice of polarizing subalgebra the following

holds

F |[h,h] = 0, (5.21)

where the matrix representation of a dual algebra element F is given by (5.6). Therefore,

an element of the corresponding subgroup H ⊂ GNC (note that this subgroup is no longer
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abelian) is as follows

h(θ, φ, ψ, p1, p2, q1) =




1 0 0 −α
2
p1 −α

2
p2

α
2
q1 0 θ

0 1 0 0 0 −β
2
p2

β
2
p1 φ

0 0 1 0 γ
2
q1 0 0 ψ

0 0 0 1 0 0 0 q1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 p1

0 0 0 0 0 0 1 p2

0 0 0 0 0 0 0 1




. (5.22)

We now consider the following section δ : H\GNC → GNC given by

δ(r) =




1 0 0 0 0 0 α
2
r 0

0 1 0 0 0 0 0 0

0 0 1 −γ
2
r 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 r

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




. (5.23)
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Then the corresponding master equation leads to




1 0 0 0 0 0 α
2
r 0

0 1 0 0 0 0 0 0
0 0 1 − γ

2
r 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 r
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1







1 0 0 −α
2
p1 −α

2
p2

α
2
q1

α
2
q2 θ

0 1 0 0 0 −β
2
p2

β
2
p1 φ

0 0 1 − γ
2
q2

γ
2
q1 0 0 ψ

0 0 0 1 0 0 0 q1
0 0 0 0 1 0 0 q2
0 0 0 0 0 1 0 p1
0 0 0 0 0 0 1 p2
0 0 0 0 0 0 0 1




=




1 0 0 −α
2
p1 −α

2
p2

α
2
q1

α
2
(q2+r) θ+

α
2
p2r

0 1 0 0 0 −β
2
p2

β
2
p1 φ

0 0 1 − γ
2
(q2+r)

γ
2
q1 0 0 ψ− γ

2
q1r

0 0 0 1 0 0 0 q1
0 0 0 0 1 0 0 q2+r
0 0 0 0 0 1 0 p1
0 0 0 0 0 0 1 p2
0 0 0 0 0 0 0 1




(5.24)

=




1 0 0 −α
2
A −α

2
B α

2
C 0 D

0 1 0 0 0 −β
2
B β

2
A E

0 0 1 0 γ
2
C 0 0 F

0 0 0 1 0 0 0 C
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 A
0 0 0 0 0 0 1 B
0 0 0 0 0 0 0 1







1 0 0 0 0 0 α
2
G 0

0 1 0 0 0 0 0 0
0 0 1 − γ

2
G 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 G
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




=




1 0 0 −α
2
A −α

2
B α

2
C α

2
G D−α

2
BG

0 1 0 0 0 −β
2
B β

2
A E

0 0 1 − γ
2
G γ

2
C 0 0 F+ γ

2
CG

0 0 0 1 0 0 0 C
0 0 0 0 1 0 0 G
0 0 0 0 0 1 0 A
0 0 0 0 0 0 1 B
0 0 0 0 0 0 0 1


 . (5.25)

The unknowns A,B,C,D,E, F and G can easily be computed by comparing (5.24) with

(5.25). We get

A = p1, B = p2, C = q1, G = q2 + r,

D = θ + αp2r +
α

2
p2q2,

E = φ, F = ψ − γq1r −
γ

2
q1q2.

(5.26)

Now, the dual algebra vector lying in the 2 dimensional coadjoint orbit c1,c2O0,0,τ
2 was found

to be (c1, c2, 0, 0, 0, 0, τ). Using (5.26), a family of representations U c1,c2
0,0,τ associated with

these coadjoint orbits, for fixed c1 and c2, follow immediately

(U c1,c2
0,0,τ (θ, φ, ψ, q1, q2, p1, p2)f)(r)
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= eic1p1+ic2p2eiτ(ψ−γq1r−
γ
2
q1q2)f(r + q2), (5.27)

where τ is nonzero and f ∈ L2(R, dr).

Following exactly the same computations of the 2 dimensional coadjoint orbits c1,c2O0,0,τ
2

except for a different choice of 6 dimensional polarizing subalgebra, one can derive the

UIRs associated with the remaining 2 dimensional coadjoint orbits c3,c4O0,σ,0
2 with a fixed

ordered pair (c3, c4),

(U c3,c4
0,σ,0 (θ, φ, ψ, q1, q2, p1, p2)f)(s)

= eic3q1+ic4q2eiσ(φ−βp1s−
β
2
p1p2)f(s+ p2), (5.28)

where σ is nonzero and f ∈ L2(R, ds).

There is only one zero dimensional orbit for gNC. The zero dimensional coadjoint orbit

c1,c2,c3,c4O0,0,0
0 passes through the point (c1, c2, c3, c4, 0, 0, 0) of the dual Lie algebra g∗NC.

And hence, follows the associated family of 1 dimensional representations,

U c1,c2,c3,c4
0,0,0 (θ, φ, ψ, q1, q2, p1, p2)

= eic1p1+ic2p2+ic3q1+ic4q2 . (5.29)

5.3 Representation of the Lie algebra gNC

The basis elements for the Lie algebra gNC are Q1, Q2, P1, P2, Θ, Φ, and Ψ, where

the last three elements form the 3 dimensional center of the underlying Lie algebra. One

has to represent these basis elements as appropriate operators on the corresponding group
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representation space, (see section 5.2). We compute the various unitary irreducible group

representations restricted to one-parameter subgroups and thereby find the Hilbert space

operators associated with the respective group parameters using the following equation:

X̂η = −iC dU(η)
dη

|η=0, (5.30)

where η is one of the group parameters of GNC and C is a constant fixed by the correspond-

ing UIR with appropriate dimension.

We consider the following cases

5.3.1 Case ρ 6= 0, σ 6= 0, τ 6= 0.

A family of unitary irreducible representations Uρ
σ,τ associated with the 4 dimensional

coadjoint orbits Oρ,σ,τ
4 were found (see (5.16)) in section 5.2. These representations are

labeled by nonzero real values of ρ, σ, and τ . Let us now consider a unitary operator T on

L2(R2, dr1ds2) given by

(Tf)(r1, s2) = f(r1,−s2), (5.31)

with f ∈ L2(R2, dr1ds2). The inverse T−1 turns out immediately to be equal to T .

Then a very straightforward computation shows that

T−1Uρ
σ,τT = Ũρ

σ,τ , (5.32)

with f lying in L2(R2, dr1ds2) and Ũρ
σ,τ given as

(Ũρ
σ,τ (θ, φ, ψ, q1, q2, p1, p2)f)(r1, s2)
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= eiρ(θ+αq2s2+αp1r1+
α
2
q1p1−α

2
q2p2)eiσ(φ+βp1s2−

β
2
p1p2)

×eiτ(ψ+γq2r1+ γ
2
q2q1)f(r1 + q1, s2 − p2). (5.33)

Let us now take the inverse Fourier transform of (5.33) with respect to second coordi-

nate s2 and call it r2. Then using (5.30) with C = 1
ρα

the noncentral elements of gNC can be

represented as the following operators on L2(R2, dr1dr2):

Q̂1 = r1 + iϑ
∂

∂r2
, Q̂2 = r2,

P̂1 = −i~ ∂

∂r1
, P̂2 = −B

~
r1 − i~

∂

∂r2
,

(5.34)

with the following identification:

~ =
1

ρα
, ϑ = − σβ

(ρα)2
, and B = − τγ

(ρα)2
. (5.35)

B, here, can be interpreted as the constant magnetic field coupled to the standard quantum

mechanical system. The commutators between the Hilbert space operators (5.34) now read

[Q̂1, P̂1] = [Q̂2, P̂2] = i~I, [Q̂1, Q̂2] = iϑI,

[P̂1, P̂2] = iBI, [Q̂1, P̂2] = [Q̂2, P1] = 0,

(5.36)

I being the identity operator on L2(R2, dr1dr2). Physically, (5.34) – (5.36) correspond to

the so-called Landau gauge for the Q̂’s (see [24] and articles cited therein for a detailed

account).
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5.3.2 Case ρ 6= 0, σ 6= 0, τ = 0.

Let us consider the group representations Uρ
σ,0, pertaining to the 4 dimensional coadjoint

orbits Oρ,σ,0
4 and given by equation (5.17). We can find a unitary operator onL2(R2, dr1ds2)

to obtain a unitary irreducible representation which will be equivalent to the one given by

(5.17). One then has to take the inverse Fourier transform of the equivalent representation

thus obtained with respect to the second coordinate. The pertinent representation of the

algebra then reads off using (5.30) with C = 1
ρα

Q̂1 = r1 + iϑ
∂

∂r2
, Q̂2 = r2,

P̂1 = −i~ ∂

∂r1
, P̂2 = −i~ ∂

∂r2
,

(5.37)

with the same identification given by (5.35). And the commutators between the corre-

sponding Hilbert space operators read

[Q̂1, P̂1] = [Q̂2, P̂2] = i~I, [Q̂1, Q̂2] = iϑI,

[P̂1, P̂2] = 0, [Q̂1, P̂2] = [Q̂2, P1] = 0.

(5.38)

Note that here B = − τγ
(ρα)2

= 0. Physically, it refers to the same system (5.36) with the

magnetic field turned off.

5.3.3 Case ρ 6= 0, σ = 0, τ 6= 0.

A continuous family of unitary irreducible representations was found for the group GNC

in (5.18) arising from the coadjoint orbits Oρ,0,τ
4 . We can now carry out a procedure similar

to the one adopted in Sec (5.3.1) to find a unitary irreducible representation equivalent to

182



(5.18). The corresponding representation of the Lie algebra gNC then reads

Q̂1 = r1, Q̂2 = r2,

P̂1 = −i~ ∂

∂r1
, P̂2 = −B

~
r1 − i~

∂

∂r2
,

(5.39)

where ~ and B follow from (5.35). Here also we have used C = 1
ρα

in (5.30) to compute

the relevant noncentral generators. And the corresponding commutators are given as

[Q̂1, P̂1] = [Q̂2, P̂2] = i~I, [Q̂1, Q̂2] = 0,

[P̂1, P̂2] = iBI, [Q̂1, P̂2] = [Q̂2, P1] = 0.

(5.40)

Physically, (5.40) just represents a Landau system in the presence of a constant magnetic

field B.

5.3.4 Case ρ 6= 0, σ = 0, τ = 0.

In this case as well, we obtain an irreducible representation of GNC, unitarily equivalent

to Uρ
0,0 given by (5.20). The associated 4 dimensional coadjoint orbits were Oρ,0,0

4 . Now

the representation of gNC on L2(R2, dr1dr2) reads off

Q̂1 = r1, Q̂2 = r2,

P̂1 = −i~ ∂

∂r1
, P̂2 = −i~ ∂

∂r2
,

(5.41)

with the canonical commutation relations of standard quantum mechanics given by

[Q̂1, P̂1] = [Q̂2, P̂2] = i~I, [Q̂1, Q̂2] = 0,

[P̂1, P̂2] = 0, [Q̂1, P̂2] = [Q̂2, P1] = 0.

(5.42)
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The unitary irreducible representation of standard quantum mechanics is sitting inside the

unitary dual of the triply extended group GNC of translations in R4!

5.3.5 Case ρ = 0, σ 6= 0, τ 6= 0.

A family of unitary irreducible representations of GNC equivalent to U0
σ,τ (see 5.19),

corresponding to the 4 dimensional coadjoint orbits O0,σ,τ
4 , has the following Lie algebra

representation on L2(R2, dr1dr2):

Q̂1 = iκ1
∂

∂r2
, Q̂2 = r2,

P̂1 = −i ∂
∂r1

, P̂2 = −κ2r1,
(5.43)

with κ1 = −σβ and κ2 = −τγ. The corresponding commutators read

[Q̂1, P̂1] = [Q̂2, P̂2] = 0, [Q̂1, Q̂2] = iκ1I,

[P̂1, P̂2] = iκ2I, [Q̂1, P̂2] = [Q̂2, P1] = 0.

(5.44)

(5.44) could be considered to represent an uncoupled system of two noncommutative planes.

Referring back to (5.19), the Q̂1, Q̂2, P̂1, and P̂2 in (5.43)are just the generators correspond-

ing to abstract group parameters p1, p2, q1, and q2, respectively that represent translations

in R4. They are not to be treated as position or momentum variables as they were in all

four preceding cases and hence they are taken to be all dimensionless. The absence of ~

in the representation (5.43) of the noncentral generators also indicates the uncoupledness

between the two underlying noncommutative planes.
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5.3.6 Case ρ = 0, σ = 0, τ 6= 0.

This situation is very much similar to that of (5.3.5) except that we have a single non-

commutative plane instead of two. The 2 dimensional coadjoint orbits c1,c2O0,0,τ
2 gave rise

to the family of UIRs U c1,c2
0,0,τ as described in (5.27). The corresponding Lie algebra repre-

sentation on L2(R, dr) reads

Q̂1 = c1I, Q̂2 = c2I,

P̂1 = κ2r, P̂2 = −i ∂
∂r
,

(5.45)

while the corresponding commutators are given by

[Q̂1, P̂1] = [Q̂2, P̂2] = 0, [Q̂1, Q̂2] = 0,

[P̂1, P̂2] = iκ2I, [Q̂1, P̂2] = [Q̂2, P1] = 0.

(5.46)

Physically, (5.46) refers to one of the two uncoupled noncommutative planes (see (5.43)),

the noncommutativity of which is measured by the dimensionless quantity κ2 = −τγ.

5.3.7 Case ρ = 0, σ 6= 0, τ = 0.

The UIRs U c3,c4
0,σ,0 , given by (5.28), were found to be associated with the 2 dimensional

coadjoint orbits c3,c4O0,σ,0
2 . We introduce the following operator of involution on L2(R, ds):

Tf(s) = f(−s), (5.47)
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with f ∈ L2(R, ds). We then find a representation Ũ c3,c4
0,σ,0 unitarily equivalent to the one

given by (5.28), i.e. T−1U c3,c4
0,σ,0T = Ũ c3,c4

0,σ,0 , with Ũ c3,c4
0,σ,0 given by

(Ũ c3,c4
0,σ,0 (θ, φ, ψ, q1, q2, p1, p2)f)(s)

= eic3q1+ic4q2eiσ(φ+βp1s−
β
2
p1p2)f(s− p2), (5.48)

where f ∈ L2(R, ds). The corresponding representation of gNC on the same Hilbert space

now reads

Q̂1 = −α1s, Q̂2 = i
∂

∂s
,

P̂1 = c3I, P̂2 = c4I.

(5.49)

The corresponding commutators read off immediately

[Q̂1, P̂1] = [Q̂2, P̂2] = 0, [Q̂1, Q̂2] = iκ1I,

[P̂1, P̂2] = 0, [Q̂1, P̂2] = [Q̂2, P1] = 0.

(5.50)

Physically, (5.50) corresponds to just one of the two uncoupled noncommutative planes (see

(5.43)) whose noncommutativity is controlled by the dimensionless parameter κ1 = −σβ.

5.3.8 Case ρ = 0, σ = 0, τ = 0.

The 0 dimensional coadjoint orbits c1,c2,c3,c4O0,0,0
0 , admitting 1 dimensional group rep-

resentations given by (5.29), have the trivial algebra representation where all the basis

elements of gNC are mapped to the scalar multiples of identity. The corresponding commu-

tators are the same as those of the abelian group of translations in R4.
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This concludes the classification of all the families of unitary irreducible representa-

tions of gNC on appropriate Hilbert spaces. It is noteworthy that all possible representations

of NCQM, as postulated in the multitude of existing physical literatures (see, for example,

[24]), and the unitary irreducible representation of the Weyl-Heisenberg group for a quan-

tum mechanical system of two degrees of freedom are all obtainable from the unitary dual

of the triply extended group of translations in R4.

5.4 Various gauges of noncommutative quantum mechanics and their relation toGNC

Let us go back to the representation Ũρ
σ,τ of GNC, given in (5.32), and the associated

generators (5.34), obeying the commutation relations (5.36). As is well known (as shown

for example in [24]), there are other possible realizations of the operators Q̂i, P̂i, which also

obey the same commutation relations, which can in many cases be related to the choice of a

gauge in the following sense: the commutation relation [P̂1, P̂2] = iBI signals the presence

of a constant magnetic field in the system. This field can be obtained in the usual way

through a vector potential. A change of gauge for this potential does not affect the physics

of the system. At the quantum mechanical level a change of gauge affects the exact real-

ization of the operators Q̂i, P̂i, without altering the commutation relation [P̂1, P̂2] = iBI.

Furthermore, the differently realized generators would then lift up to unitarily equivalent

representations of GNC. As mentioned in Section 5.3.1, the realization given in (5.34) cor-

responds to the Landau gauge. We look now at a second possible gauge, the so-called
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symmetric gauge, which is also often studied in the literature (see [24] for a detailed dis-

cussion on this topic).

We have the following theorem

Theorem 5.4.1. The nilpotent Lie groupGNC, obeying the group law (5.1), admits a unitary

irreducible representation Usym given by

(Usym(θ, φ, ψ, q1, q2, p1, p2)f)(r1, r2)

= ei(θ+φ+ψ)e
i

[

αp1r1+αp2r2−α(α−

√
α2−βγ)
β

(q1r2−q2r1)+
√

α2−βγ
2

(p1q1+p2q2)

]

×f
(
r1 −

β

2α
p2 +

α +
√
α2 − βγ

2α
q1, r2 +

β

2α
p1 +

α +
√
α2 − βγ

2α
q2

)
,

(5.51)

with f ∈ L2(R2, dr1dr2). This representation is unitarily equivalent to Ũρ
σ,τ .

The proof is given in the Appendix B.

We choose α = 1
~

in (5.51). One can verify that this choice is dimensionally consistent

by looking at (5.1) or (5.51). Hence, we take C = 1
α

in (5.30) and obtain the correspond-

ing unitary irreducible representation of the noncentral elements of gNC on L2(R2, dr1dr2)
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which is as follows

Q̂1 = r1 +
iϑ

2

∂

∂r2
,

Q̂2 = r2 −
iϑ

2

∂

∂r1
,

P̂1 =
(~−

√
~2 − Bϑ)
ϑ

r2 −
i(~+

√
~2 − Bϑ)
2

∂

∂r1
,

P̂2 =
(
√
~2 − Bϑ− ~)

ϑ
r1 −

i(~+
√
~2 − Bϑ)
2

∂

∂r2
,

(5.52)

and the central elements of the algebra are all mapped to the scalar multiple of identity of

the underlying Hilbert space. Here, in addition to taking α = 1
~
, we have chosen β = − ϑ

~2

and γ = − B
~2

. The representation (5.52) is easily seen to satisfy the set of commutation

relations given by (5.36). As indicated earlier, this representation is due to the choice of

the symmetric gauge (see [24] for details) for the underlying vector potential.

Similarly, other unitarily equivalent realizations of the commutation relations (5.36)

may be obtained by using other gauge equivalent vector potentials. It is also clear from

(5.34) and (5.52) that the two sets of operators Q̂i, P̂i, i = 1, 2, appearing in those two

sets of equations are related by a linear transformation. It is therefore natural to ask what is

the largest set of such transformations which would leave the commutation relations (5.36)

invariant. This question is answered in the following section.

5.5 Group of transformations preserving the commutation relations of noncommu-

tative quantum mechanics

It is a well-known fact that in classical mechanics the set of transformations which

preserve the canonical Poisson brackets between the phase space variables pi and qj in R2n,
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form the Lie group Sp(2n,R). In standard quantum mechanics the canonical commutation

relations are also invariant under this same group. For the noncommutative system of two

degrees of freedom, the phase space is R4 and the transformations between two different

sets of {Q̂i, P̂i}, i = 1, 2, obeying the same commutation relations (5.36), also form a

group that is isomorphic to Sp(4,R), as will follow from the following considerations.

Consider two sets of phase space variables Q̂1, P̂2, Q̂2, P̂1 and Q̂′
1, P̂

′
2, Q̂

′
2, P̂

′
1 in R4

satisfying the commutation relations (5.36). Let M be a 4× 4 matrix, with real entries, for

which 


Q̂′
1

P̂ ′
2

Q̂′
2

P̂ ′
1




= M




Q̂1

P̂2

Q̂2

P̂1




(5.53)

We then have the following theorem:

Theorem 5.5.1. The 4×4 real matrices M in (5.53), preserving the commutation relations

(5.36) of a general non-commutative quantum system of two degrees of freedom, satisfy the

condition

MQMT = Q, (5.54)

where Q is the 4× block off-diagonal matrix,

Q =




0 Q

−QT 0


 , (5.55)
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with 2× 2 matrix Q given by the 2× 2 matrix

Q =



−ϑ

~
−1

1 B
~


 . (5.56)

The proof is given in the Appendix B.

Remark 5.5.1. A few remarks are in order. The converse of Theorem (5.5.1) is also true. As

a result, (5.54) is a necessary and sufficient condition for the noncommutative commutation

relations to be preserved. Also, the 2 × 2 matrix Q, given by (5.56), is required to be

invertible, i.e. ~2 − Bϑ 6= 0, a fact that has also been exploited in [24]. Finally, all 4 × 4

real matrices M , satisfying (5.54), can easily be verified to form a group under matrix

multiplication. Actually, as shown below, these matrices form a real Lie group, hence forth

denoted by S(4,R).

We have the following isomorphism of groups.

Proposition 5.5.1. The 10 dimensional real Lie group S(4,R) is isomorphic to the simple

Lie group Sp(4,R). The isomorphism f : S(4,R) → Sp(4,R), can be written as f(M) =

U−1MU , where U is the 4× 4 invertible matrix:

U =




−1 ϑ
~

0 0

B
~

−1 0 0

0 0 1 0

0 0 0 1




. (5.57)

The proof is given in the Appendix B.

191



Remark 5.5.2. The isomorphism f in this context is what one expects to follow naturally

because the relevant operators representing the noncentral generators of GNC can be ex-

pressed as linear combinations of those which generate the CCR of standard quantum

mechanics on L2(R2, dr1dr2). Also, Sp(4,R) is the group of transformations that preserve

the CCR for a system with 2 degrees of freedom. The 4×4 matrix U in (5.57) is actually the

matrix of transformation between the standard quantum mechanical and noncommutative

quantum mechanical (in this case, Landau gauge) representations as can be readily seen

from (5.34). We could also have chosen U as the one arising from the symmetric gauge

(5.52). Thus, the choice of U is evidently not unique.

As a concrete example of M, introduced in (5.53), let us consider the phase space

variables associated with the Landau gauge (see 5.34) and symmetric gauge (see 5.52)

with 


Q̂1

P̂2

Q̂2

P̂1




sym

= M




Q̂1

P̂2

Q̂2

P̂1




Landau

(5.58)

.

192



After some straightforward but rather lengthy computations, one arrives at

M =




1 + Bϑ
2(~2−Bϑ)

ϑ~
2(~2−Bϑ) 0 0

B(2~
√
~2−Bϑ−Bϑ)

2(~2−Bϑ)(~+
√
~2−Bϑ)

~(3
√
~2−Bϑ−~)

2(~2−Bϑ) 0 0

0 0 1 ϑ
2~

0 0 ~−
√
~2−Bϑ
ϑ

~+
√
~2−Bϑ
2~




. (5.59)

It can, then, be immediately verified that M, given by (5.59), indeed satisfies (5.54).

5.6 Relationship with complex Hermite polynomials

We explore in this section a connection between a model of non-commutative quantum

mechanics, governed by a certain restricted version of the commutation relations (5.36),

and a family of deformed complex Hermite polynomials. We note first of all, that an irre-

ducible representation of the commutation relations

[ai, aj] = [a†i , a
†
j] = 0, [ai, a

†
j] = δijI, i, j = 1, 2, (5.60)

of a standard quantum mechanical system for two degrees of freedom, can be constructed

on the Hilbert space L2(C, e−|z|2 dx dy
π

) as

a1 = ∂z, a†1 = z − ∂z, a2 = ∂z, a†2 = z − ∂z . (5.61)

We denote by I the constant function in L2(C, e−|z|2 dx dy
π

), which is equal to one ev-

erywhere. Then the vectors,

Hn,k =
(a†1)

n (a†2)
k

√
n! k!

I , n, k = 0, 1, 2, . . . ,∞ (5.62)
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form an orthonormal basis of L2(C, e−|z|2 dx dy
π

). It can be shown that

Hn,k(z, z) =
(−1)n+k√
n! k!

e|z|
2

∂nz ∂
k
z e

−|z|2 , (5.63)

or explicitly,

Hn,k(z, z) =
√
n! k!

ngk∑

j=0

(−1)j

j!

(z)n−j

(n− j)!

zk−j

(k − j)!
, (5.64)

where ng k denotes the smaller one of the two integers n and k. The functions Hn,k(z, z)

are known in the literature (see, for example [27, 31, 32, 44]) as the complex Hermite poly-

nomials. They form a basis in L2(C, e−|z|2 dx dy
π

) and satisfy the orthonormality condition

∫

C

Hn,k(z, z)Hm,l(z, z) e
−|z|2 dx dy

π
= δnm δkl . (5.65)

From the way we have introduced them here, it is clear that these polynomials are the ones

naturally associated to a standard quantum mechanical system of two degrees of freedom

(or with two independent oscillators).

Consider now a non-commutative quantum system obeying the commutation relations

(5.36) and let us assume that we are in the symmetric gauge (5.52). We define the deformed

creation and annihilation operators, using the operators Q̂i, P̂i, i = 1, 2, in (5.52),

a
nc†
i =

√
MΩ

2~

(
Q̂i −

i

MΩ
P̂i

)
,

anc
i =

√
MΩ

2~

(
Q̂i +

i

MΩ
P̂i

)
, i = 1, 2 , (5.66)
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where the M and Ω are a mass and an angular frequency parameter, which can be adjusted

later. These operators are seen obey the commutation relations

[anc
i , a

nc†
j ] = δijI+

iǫij
2~

MΩ

(
ϑ+

B
M2Ω2

)
I

[anc
i , a

nc
j ] =

iǫij
2~

MΩ

(
ϑ− B

M2Ω2

)
I,

(5.67)

where i, j = 1, 2 and ǫij is the totally antisymmetric symbol. Since we want the two

operators anc
i , i = 1, 2, to still represent independent bosons, we impose the condition that

the second commutator above be zero. This implies taking

ϑ =
B

M2Ω2
. (5.68)

and hence the other commutator now reads

[anc
i , a

nc†
j ] = δijI+

iǫijϑMΩ

~
I, (5.69)

which still means that we are in the framework of noncommutative quantum mechanics,

since [anc
1 , a

nc†
2 ] 6= 0.

We next introduce the standard creation and annihilation operators (obeying the com-

mutation relations (5.60)), in terms of the usual position and momentum operators of quan-

tum mechanics,

a†i =

√
mω

2~

(
Qi −

i

mω
Pi

)

ai =

√
mω

2~

(
Qi +

i

mω
Pi

)
, i = 1, 2, (5.70)
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where

mω =
2~MΩ

~+
√
~2 − Bϑ

=
2~

√
B√

ϑ(~+
√
~2 − Bϑ)

. (5.71)

A straightforward computation, using (5.52) then gives

a
nc†
1 =

√
νa†1 − i

√
1− νa†2

a
nc†
2 = i

√
1− νa†1 +

√
νa†2, ν =

~+
√
~2 − Bϑ
2~

. (5.72)

It is now interesting and useful to realize the above operators using the complex repre-

sentation (5.61) and to look at the deformed complex polynomials

Hnc
n,k =

(anc†
1 )n (anc†

2 )k√
n! k!

I , n, k = 0, 1, 2, . . . ,∞ , (5.73)

in analogy with (5.62). These polynomials do not satisfy an orthogonality relation of the

type (5.65). However, it has been shown in [9] that there exists a dual set of polynomials

H̃nc
n,k for which one has the biorthogonality relation

∫

C

H̃nc
n,k(z, z)H

nc
m,l(z, z) e

−|z|2 dx dy

π
= δnm δkl . (5.74)

We can go further and define deformed creation and annihilation operators using an

arbitrary GL(2,C) matrix

g =



g11 g12

g21 g22




in the manner

ag†1 = g11a
†
1 + g21a

†
2, ag†2 = g12a

†
1 + g22a

†
2. (5.75)
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and construct the corresponding deformed polynomials Hg
n,k. In this case the dual poly-

nomials are obtained using the matrix g̃ = (g†)−1. However, to relate these more general

polynomials to noncommutative quantum mechanics one still has to impose the condition

[ag1, a
g
2] = 0. Thus, generally, one gets a matrix of the form

g =




reiκ
√
1− r2ei{κ+ǫ(r)}

√
1− r2eiδ −rei{δ−ǫ(r)}


 . (5.76)

Here, ǫ(r), being a function of r, is given by

ǫ(r) = arcsin

(
ϑMΩ

2~r
√
1− r2

)
. (5.77)

From (5.76), one finds that 0 < r ≤ 1. But the condition −1 ≤ ϑMΩ
2~r

√
1−r2 ≤ 1 puts

further restrictions on r, requiring that

r ∈



√

1

2
−
√

1

4
− ϑ2M2Ω2

4~2
,

√
1

2
+

√
1

4
− ϑ2M2Ω2

4~2


 , (5.78)

along with, 0 < ϑMΩ
~

≤ 1. Also, κ ∈ [−ǫ(r), 2π − ǫ(r)) and δ ∈ [ǫ(r), 2π + ǫ(r)), where,

ǫ(r) ∈
[
arcsin

(
ϑMΩ
~

)
, π
2

]
, as a transcendental function of r, varies according to (5.77).

To summarize, if we consider the operators Q̂1, Q̂2, P̂1 and P̂2, in the symmetric gauge

representation (5.52) of the triply extended algebra of translations gNC, to be the respective

positions and momenta of the two bosons of the underlying coupled system and impose a

constraint given by (5.68), then the resulting creation and annihilation operators are linear
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combinations of the canonical creation and annihilation operators via the invertible matrix

gsym =




√
ν i

√
1− ν

−i
√
1− ν

√
ν


 . (5.79)

It is easy to see that gsym, given by (5.79), is a special case of the matrix g introduced in

(5.76) with r2 = ν, κ = 0, δ = 3π
2

, and ǫ = π
2
.

Before closing this section, we examine the geometric consequences of (5.68) from the

representation theoretic point of view. To this end, (5.68) together with (5.35) imply

τ =
βM2Ω2

γ
σ := Kgσ. (5.80)

Also, together with (5.35), the inequality 0 < ϑMΩ
~

≤ 1, as has already been mentioned

earlier in this section, puts severe restrictions both on σ and ρ:

σ ∈ (−∞, 0) and ρ ≥ −σ
(
βMΩ

α

)
. (5.81)

In other words, a family of 4 dimensional coadjoint orbits Oρ,σ,Kgσ (See section 5.2 for the

notation) and the associated unitary irreducible representations of the triply extended group

of translations GNC (see 5.33) are the ones that describe the coupled bosonic system under

study. Here, Kg =
βM2Ω2

γ
is a dimensionless coefficient. Also, ρ and σ can take values on

the real line in accordance with (5.81).

The study of (1+1) and (2+1)-dimensional Galilei groups and their applications to Sig-

nal analysis and Noncommutative quantum mechanics, respectively, closes in this chapter.
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In the following chapter, as a separate part of the thesis, we study Poisson structures as-

sociated with classical non-abelian gauge field theory using Hamiltonian formalism of the

theory of Soliton.
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Chapter 6

On Derivation of Goldman Bracket

The contents of this chapter are taken from the article titled “On Derivation of Goldman

Bracket” [17]. Non abelian Gauge field theory on space-time, modeled as a noncompact

3-manifold Σ × R, with Σ being a compact Riemann surface and time taking values in

R, has been considered in this chapter. The Atiyah-Bott brackets between the gauge fields

have been computed in this infinite dimensional setting. Traces of monodromies of the

gauge connections around free homotopy classes of closed loops on the underlying Rie-

mann surface and the Poisson brackets between them are computed using the formalism

originated from hamiltonian methods of Soliton theory. Finally, the brackets for real Lie

groups GL(n,R), SL(n,R), U(n), SU(n) and Sp(2n,R) are explicitly worked out.

6.1 Introduction

The purpose of this chapter of the thesis is to find the Poisson brackets between traces

of monodromy matrices computed along free homotopy classes of loops on the Riemann

surface Σ. Given the fundamental group π of a closed oriented surface S and a Lie groupG,

Goldman considered (see [29]) the space Hom(π,G)/G by taking the quotient of the action

of G on the analytic variety Hom(π,G) using conjugation. He studied the geometry of the

symplectic structure of this quotient space using a family of functions, on Hom(π,G)/G,

200



which he called Invariant functions. He also shows that there is a Lie algebra structure of

homotopy classes of oriented closed curves immersed in the surface. And then he estab-

lishes a Lie algebra homomorphism between these homotopy classes of loops and the Lie

algebra of functions on Hom(π,G)/G under Poisson bracket ([29], page 267).

In the present setting, on the other hand, we start out with a 3-manifold Σ×R. We then

consider the principalG-bundle over the base manifold Σ×R withG being a real Lie group.

The gauge fields A-s take their values on the underlying Lie algebra G. We write down the

Chern-Simons action for the gauge fileds on this 3-manifold taking the gauge freedom

into account and then compute the Atiyah-Bott brackets between the relavant connection

1 forms and the momenta conjugate to them. The curvature of the 1-forms is easily seen

to be zero and hence we have an infinite dimensional space of flat connections. And it

is known to us that the space of flat connections up to gauge transformations, i.e. the

moduli space of flat connections is isomorphic to Hom(π(Σ), G)/G. The Wilson loops,

i.e. the traces of monodromy matrices computed along free homotopy classes of loops on

Σ are gauge invariant objects. The purpose of this chapter is to compute Poisson brackets

between these monodromy matrices for various choices of real Lie groups. The cases for

GL(n,R), SL(n,R), SU(n), U(n) and Sp(2n,R) are handled explicitly. Of them, the final

expression for the Poisson bracket between GL(n,R) monodromies, for two transversally

intersecting oriented closed curves γ1 and γ2 on Σ, turn out to be rather simple given by

{TrM1,TrM2} =
4

k
TrMγ1◦γ2 , (6.1)
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while the one for a relatively difficult case of Sp(2n,R) reads

{TrM1,TrM2} =
2

k
(TrMγ1◦γ2 − TrMγ1◦γ−1

2
). (6.2)

The constant, k in 6.1 and 6.2, arises from Chern-Simons action which depends on the

topology of G. Also, γ1 ◦ γ2 and γ1 ◦ γ−1
2 represent deformed loops on Σ with appropriate

orientation. They are conveniently depicted in Figure 6–1 and 6–2. Finally, one finds that

the Poisson bracket between traces of monodromy matrices, thus computed, coincides with

the one computed by Goldman in [29].

6.2 Hamiltonian Chern-Simons theory

In this section, we discuss the preliminaries that lead to the Atiyah-Bott brackets be-

tween connection 1-forms. For the sake of completeness, we work out the well-known

results of Hamiltonian Chern-Simons theory in detail.

We start out with the well-known Chern-Simons action functional on the 3-manifold

Σ× R

SCS =
k

4π

∫

Σ×R

Tr (A ∧ dA+
2

3
A ∧ A ∧ A). (6.3)

Where k is a constant depending only on the topology of the structure Lie group. The Lie

algebra valued connection 1-forms on the principal G-bundle reads

A = Az(z, z̄, t)dz + Az̄(z, z̄, t)dz̄ + A0(z, z̄, t)dt. (6.4)
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If the group generators for the abstract Lie group G are given by ta-s, with a = 1, ....., n

and n being the dimension of G as a smooth manifold, then each of Az, Az̄ and A0 reads

off

Ai =
n∑

a=1

Aai ta, (6.5)

where i in the above expression stands for any of z, z̄ and 0, i.e. the space-time labels.

The Aai -s in (6.5) are just complex valued functions. Also, the structure constants for the

underlying Lie algebra G are given by

[ta, tb] =
n∑

c=1

f cabtc. (6.6)

Now, the action functional SCS in (6.3) reads

SCS = k

∫

Σ×R

[
∑

i,j,k

n∑

a=1

ǫijkAai (∂jA
a
k − ∂kA

a
j ) +

n∑

a,b,c=1

Aa0A
b
zA

c
z̄f

a
bc

]
dt ∧ dz ∧ dz̄, (6.7)

where the superscripts in the connection 1-forms, i.e. a, b, c, are the algebra indices while

the subscripts i, j, k are space-time labels and ǫijk is the totally anti-symmetric symbol.

Quantization of the constant k as an integer multiple of 2π in (6.3) ([50]) leaves us with

just a half integer and the multiplicative factor 1
2

of the half integer gets absorbed into

the integrand of (6.7) by requiring that we choose the group generators ta-s such that the

following holds

1

2
Tr(tatb) = f(a)δab, (6.8)

with f(a) = ±1.
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Now, varying the action functional in (6.7) with respect to the fields Aa0 we obtain,

∂Aaz̄
∂z

− ∂Aaz
∂z̄

+ [Az, Az̄]
a = 0. (6.9)

Here,

[Az, Az̄] =
n∑

a=1

[Az, Az̄]
ata.

Similarly, by varying (6.7) with respect to Abz and Acz̄ we obtain,

∂Ab0
∂z̄

− ∂Abz̄
∂t

+ [Az̄, A0]
b = 0 and (6.10)

∂Acz
∂t

− ∂Ac0
∂z

+ [A0, Az]
c = 0, (6.11)

respectively. Now, (6.9), together with (6.10) and (6.11) imply the flatness condition for

the gauge fields. In other words, the curvature F , in this setting, vanishes,

F = dA+ A ∧ A = 0. (6.12)

By far, we have not taken the gauge freedom into consideration to reduce the degrees

of freedom of the underlying gauge fields. We do so now. First, we extract the component

from the connection 1 form (6.4) that we want to gauge out, i.e. A0(z, z̄, t). We then have

A = A+ A0dt. (6.13)

Under gauge transformation, the gauge field A transforms as

A 7→ A′ = gAg−1 + dgg−1
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= gAg−1 + gA0g
−1dt+ dgg−1. (6.14)

In view of (6.14), the solution of the following differential equation,

dg

dt
= −gA0 (6.15)

will kill the time component A0 in the connection 1-form and hence (6.14) will read

A′ = gAg−1 = g(Azdz + Az̄dz̄)g
−1. (6.16)

Note that Az, Az̄, and g in (6.16) are all matrices with entries being complex-valued func-

tions of z, z̄ and t. We have the following theorem

Theorem 6.2.1. The gauge fixed Chern-Simons action, under the action of an element of

the gauge group given by (6.15), is as follows

S̃CS = k

∫

Σ×R

[
n∑

a=1

f(a)(Aaz̄Ȧ
a
z − AazȦ

a
z̄)

]
dt ∧ dz ∧ dz̄, (6.17)

where f(a) is just ±1, as given in (6.8).

Proof .

If we choose g as a solution of (6.15) and plug it in (6.14), the transformed gauge fields,

then, read

A′ = gAg−1. (6.18)

Exterior derivative of the transformed gauge field then yields,

dA′ = dg ∧ Ag−1 + gdAg−1 − gA ∧ dg−1. (6.19)
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Therefore,

A′ ∧ dA′ = gAg−1 ∧ gdAg−1. (6.20)

Also,

A′ ∧ A′ ∧ A′ = 0. (6.21)

Using (6.20) and (6.21) in (6.3) and recalling k being an integer multiple of 2π, we obtain

the gauge fixed expression for Chern-Simons action

S̃CS =
k

2

∫

Σ×R

Tr(A′ ∧ dA′)

=
k

2

∫

Σ×R

Tr

(
gAzg

−1dz ∧ g∂Az̄
∂t

g−1dt ∧ dz̄ + gAz̄g
−1dz̄ ∧ g∂Az

∂t
g−1dt ∧ dz

)

=
k

2

∫

Σ×R

Tr

(
Azg

−1dz ∧ g∂Az̄
∂t

dt ∧ dz̄ + Az̄g
−1dz̄ ∧ g∂Az

∂t
dt ∧ dz

)

=
k

2

∫

Σ×R

Tr

(
Az
∂Az̄
∂t

dz ∧ dt ∧ dz̄ + Az̄
∂Az
∂t

dz̄ ∧ dt ∧ dz
)

=
k

2

∫

Σ×R

Tr(Az̄Ȧz − AzȦz̄)dt ∧ dz ∧ dz̄

=
k

2

∫

Σ×R

Tr
n∑

a,b=1

(Aaz̄Ȧ
b
ztatb − AbzȦ

a
z̄tbta)dt ∧ dz ∧ dz̄

= k

∫

Σ×R

[
n∑

a=1

f(a)(Aaz̄Ȧ
a
z − AazȦ

a
z̄)

]
dt ∧ dz ∧ dz̄. (6.22)

Theorem(6.2.1) has several consequences. There are 2n independent gauge fields at

each point (z, z̄, t) of the underlying 3-manifold Σ× R. They are given by Aaz(z, z̄, t) and

Abz̄(z, z̄, t), where the superscript indices a, b run from 1 to n and z varies over space-time
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manifold. Hence, we have an infinite dimensional theory of non abelian gauge fields. We

have the following corollary to Theorem (6.2.1),

Corollary 6.2.1. The canonical momenta conjugate to Aaz and Aaz̄ are given by

ΠAa
z
= kf(a)Aaz̄ and ΠAa

z̄
= −kf(a)Aaz . (6.23)

The Hamiltonian of the gauge fixed system (6.17) is zero. And the Poisson structure of

the underlying infinite dimensional space of the non-abelian gauge fields is encoded in

the Atiyah-Bott brackets between the gauge fields and the respective canonically conjugate

momenta as given by (6.23). The Atiyah-Bott brackets are given by

{Aaz , Abz̄′} =
2f(a)

k
δabδ(2)(z − z′). (6.24)

All other brackets are identically zero.

Proof . The Lagrangian density for the gauge fixed system (6.17) follows as

LCS = k
n∑

a=1

f(a)(Aaz̄Ȧ
a
z − AazȦ

a
z̄). (6.25)

From which immediately follow the canonically conjugate momenta

ΠAa
z

=
∂LCS

∂Ȧaz
= kf(a)Aaz̄

ΠAa
z̄

=
∂LCS

∂Ȧaz̄
= −kf(a)Aaz .
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And hence, the Hamiltonian density reads

HCS =
n∑

a=1

ΠAa
z
Ȧaz +

n∑

a=1

ΠAa
z̄
Ȧaz̄ − LCS

= k
n∑

a=1

f(a)(Aaz̄Ȧ
a
z − AazȦ

a
z̄)− LCS

= 0.

One can, now, easily compute the Poisson brackets between Aaz and Abz̄ from the above

data,

{Aaz , Abz̄′}

=
1

k

∫

Σ

[
n∑

c=1

f(c)

(
∂Aaz
∂Acw

∂Abz̄′

∂Acw̄
− ∂Aaz
∂Acw̄

∂Abz̄′

∂Acw

)

+
n∑

d=1

f(d)

(
∂Aaz
∂Adw

∂Abz̄′

∂Adw̄
− ∂Aaz
∂Adw̄

∂Abz̄′

∂Adw

)]
dw ∧ dw̄

=
1

k

∫

Σ

[
n∑

c=1

f(c)δacδcb
(
∂Aaz
∂Aaw

∂Abz̄′

∂Abw̄
− ∂Aaz
∂Aaw̄

∂Abz̄′

∂Abw

)

+
n∑

d=1

f(d)δadδdb
(
∂Aaz
∂Aaw

∂Abz̄′

∂Abw̄
− ∂Aaz
∂Aaw̄

∂Abz̄′

∂Abw

)]
dw ∧ dw̄

=
f(a)

k

∫

Σ

δab
[(

∂Aaz
∂Aaw

∂Aaz̄′

∂Aaw̄
− ∂Aaz
∂Aaw̄

∂Aaz̄′

∂Aaw

)
+

(
∂Aaz
∂Aaw

∂Aaz̄′

∂Aaw̄
− ∂Aaz
∂Aaw̄

∂Aaz̄′

∂Aaw

)]
dw ∧ dw̄

=
2f(a)

k

∫

Σ

δab
(
∂Aaz
∂Aaw

∂Aaz̄′

∂Aaw̄
− ∂Aaz
∂Aaw̄

∂Aaz̄′

∂Aaw

)
dw ∧ dw̄

=
2f(a)

k
δabδ(2)(z − z′). (6.26)
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6.3 Moduli space of flat connections and Goldman brackets between Wilson lines

We introduced the infinite dimensional space of gauge fields and constructed Atiyah-

Bott bracket between components of the gauge fields along the group generators. The

infinite dimensional space, in question, is not easy to handle. In order to reduce the field

theory to one with finitely many degrees of freedom, we consider the homotopy classes

of the free loops, i.e. the conjugacy classes of the fundamental group of the underlying

Riemann surface by the structure group. Traces of the monodromies, i.e. the so-called

Wilson lines, are well defined gauge invariant observables. The Wilson lines computed

along equivalence classes of loops on the Riemann surface, under study, are found to form

a Lie algebra in terms of the intersection points between the loops considered [29]. Gold-

man considered an arbitrary Lie group satisfying fairly general conditions to be the space

where the fundamental group of the given Riemann surface is represented. Then he com-

puted brackets between invariant functions defined over equivalence classes of loops on the

underlying Riemann surface.

We take any real Lie group G to be the structure group of the principle G-bundle. The

connection 1 forms take their values in the associated real Lie algebra G. We compute the

bracket between the trace of monodromies along two homotopically inequivalent loops that

intersect transversally at a single point. The generalization to many intersection points is

pretty straight forward.
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x1
O x2

y1

y2

γ1

γ2

M̃2

M̃1

(a) Two intersecting loops.

x1
x2

y1

y2

γ1 ◦ γ2

M̃2

M̃1

(b) Deformed loop γ1 ◦ γ2

Figure 6–1: Traces of monodromies are computed along two free loops that are homotopi-
cally inequivalent and intersect transversally at a single point. In the following subfigure,
trace of monodromy along a single loop, deformed at the point of intersection, has been
considered.

Also, since we are dealing with Topological field theory, the transversal point of in-

tersection can be taken as an orthogonal one. Let x1x2x1 and y1y2y1 be two loops that

intersect orthogonally at O lying on the compact Riemann surface. We shall be denoting

the loops x1x2x1 and y1y2y1 with γ1 and γ2, respectively. Also, the two parts x1Ox2 and

y1Oy2 are taken to lie along X and Y axes, respectively, as shown in Figure 6–1. For the

sake of notational convenience, monodromy along loop γi will simply be denoted as Mi,

where, i = 1, 2. T (x1, x2) and T (y1, y2) are the relevant transition matrices. M̃1 and M̃2

are the remaining contribution to monodromies M1 andM2, respectively. M̃1 and M̃2 Pois-

son commute with each other and with other transition matrices in question, since they are
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due to part of the loops far away from the intersection point O and hence have nothing to

do with each other. What stands out to be in the second subfigure of Figure 6–1 is the two

loops, combined and deformed at the point of intersection. Note that the orientation of the

loops are preserved under the deformation. Monodromy around this deformed loop γ1 ◦ γ2

is denoted with Mγ1◦γ2 . We, now, have

M1 = T (x1, x2)M̃1,

M2 = T (y1, y2)M̃2.

(6.27)

M1 and M2 take their values in the structure Lie group G of the principal G-bundle. Note

that we can write the connection 1 form (gauge fixed) A as

A = Az(z, z̄)dz + Az̄(z, z̄)dz̄ = A1(x, y)dx+ A2(x, y)dy. (6.28)

Now in the light of (6.28), 1 forms, restricted to the real and imaginary axes, read

A(x, 0) = A1(x, 0)dx, and

A(0, y) = A2(0, y)dy.

(6.29)

respectively. now, in terms of real and imaginary parts of connection 1-forms, i.e. A1 and

A2, the Atiyah-Bott brackets (6.24) computed in section (6.2) read

{Aa1(x, y), Ab2(x′, y′)} =
2

k
f(a)δabδ(x− x′)δ(y − y′). (6.30)

Lemma 6.3.1. The fundamental Poisson brackets between G valued 1-forms are given by

{A1(x, 0)
⊗

, A2(0, y)} =
2

k
δ(x)δ(y)Γ, (6.31)
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where Γ is the Casimir tensor for G given by

Γ =
n∑

a=1

f(a)(ta ⊗ ta). (6.32)

Proof . The above Lemma is just a consequence of (6.30).

{A1(x, 0)⊗,A2(0, y)} = {
n∑

a=1

Aa1(x, 0)ta
⊗

,

n∑

b=1

Ab2(0, y)tb}

=
n∑

a=1

n∑

b=1

{Aa1(x, 0), Ab2(0, y)}(ta ⊗ tb)

=
2

k
δ(x)δ(y)

n∑

a=1

f(a)(ta ⊗ ta).

Remark 6.3.1. We should emphasize in the context of Lemma (6.3.1) that the basis of the

underlying Lie algebra is chosen in such a way that the trace form between the group

generators is diagonalised in order to comply with what was used in the derivation of the

Atiyah-Bott brackets (6.26) in section (6.2). Lemma (6.3.1) is independent of the repre-

sentation of the Lie algebra, though. All it means is that the same representation has to be

chosen during both the derivations of the Atiyah-Bott brackets and the fundamental Poisson

brackets.

Using Lemma (6.3.1), one obtains the Poisson bracket between transition matrices

along two small paths of the given loops around the intersection point O as described in

Figure6–1,
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Lemma 6.3.2. Let T (x1, x2) and T (y1, y2) be the transition matrices pertaining to path

x1Ox2 and y1Oy2 as indicated in Figure 6–1. The Poisson brackets between them is given

by

{T (x1, x2)
⊗

, T (y1, y2)} =
2

k
[T (x1, 0)⊗ T (y1, 0)] Γ [T (0, x2)⊗ T (0, y2)] . (6.33)

Where Γ is the Casimir tensor given by (6.32). Also, T (x1, y2) and T (y1, x2), standing on

the right side of (6.33), are computed along the deformed loop in Figure 6–1.

Proof . The Poisson brackets between transition matrices in the context of Hamiltonian

theory of Solitons are given in ([26], page 192). In our setting, this formula gives

{T (x1, x2)
⊗

, T (y1, y2)}

=

∫ x2

x1

∫ y2

y1

[(T (x1, x))⊗ T (y1, y)] {A1(x, 0)
⊗

, A2(0, y)} [(T (x, x2))⊗ T (y, y2)] dx dy

=
2

k
[T (x1, 0)⊗ T (y1, 0)] Γ [T (0, x2)⊗ T (0, y2)] . (6.34)

Lemma 6.3.3. The Poisson bracket between traces of monodromy matrices is as follows

{TrM1,TrM2} =
2

k
Tr12[(T (0, x2)M̃1T (x1, 0)⊗ T (0, y2)M̃2T (y1, 0))Γ], (6.35)

where M1 and M2 are given by (6.27). In (6.35), Tr is trace in the vector space Rn while

Tr12 is one in the tensor product space Rn ⊗ Rn.
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Proof . Using (6.27), one obtains

{M1

⊗

, M2} = {T (x1, x2)M̃1

⊗

, T (y1, y2)M̃2}

= {T (x1, x2)
⊗

, T (y1, y2)M̃2}(M̃1 ⊗ I2)

+[T (x1, x2)⊗ I2]{M̃1

⊗

, T (y1, y2)M̃2}

= {T (x1, x2)
⊗

, T (y1, y2)}(I2 ⊗ M̃2)(M̃1 ⊗ I2), (6.36)

where we have exploited the fact that M̃1 and M̃2 both Poisson commute with T (x1, x2)

and T (y1, y2), and amongst themselves. Now using Lemma (6.3.2), one obtains

{M1

⊗

, M2}

= {T (x1, x2)
⊗

, T (y1, y2)}(M̃1 ⊗ M̃2)

=
2

k
[T (x1, 0)⊗ T (y1, 0)] Γ [T (0, x2)⊗ T (0, y2)] (M̃1 ⊗ M̃2)

=
2

k
[T (x1, 0)⊗ T (y1, 0)] Γ[T (0, x2)M̃1 ⊗ T (0, y2)M̃2]. (6.37)

Taking trace on both sides of equation (6.37) and subsequently making use of the cyclic

property of trace, one finally obtains

{TrM1,TrM2} =
2

k
Tr12[(T (0, x2)M̃1T (x1, 0)⊗ T (0, y2)M̃2T (y1, 0))Γ]. (6.38)
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6.4 Examples of Goldman brackets between Wilson loops for various real Lie groups

In the previous section, we obtained a general formula (6.35) for Poisson brackets be-

tween traces of monodromy matrices computed along free homotopy classes of loops on Σ.

In this section, we shall derive explicit formulas of those Poisson brackets for GL(n,R),

U(n), SL(n,R), SU(n) and Sp(2n,R) monodromies. The Casimir tensor Γ, associated

with the underlying Lie algebra G, solely determines the underlying Poisson bracket be-

tween the respective Wilson loops in (6.35).

We, first, note that the generalized Gell-Mann matrices in n dimensions read

hn1 =

√
2

n

n∑

i=1

eii,

hnk =

√
2

k(k − 1)

k−1∑

i=1

eii −
√
2− 2

k
ekk, for 1 < k ≤ n,

fnk,j = ekj + ejk, for k < j,

fnk,j = −i(ejk − ekj), for k > j.

(6.39)

Here, ejk is an n× n matrix with 1 in the jk-th entry and 0 elsewhere.

We need a couple of preparatory Lemmas in order to prove the main results concerning

poisson brackets between traces of monodromy matrices.

Lemma 6.4.1. Given the matrices hn1 and hnk as in (6.39), we have

hn1 ⊗ hn1 +
n∑

k=2

hnk ⊗ hnk = 2e11 ⊗ e11 + 2
n∑

k=2

ekk ⊗ ekk. (6.40)
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Proof .

n∑

k=2

hnk ⊗ hnk

=
n∑

k=2

[(√
2

k(k − 1)

k−1∑

i=1

eii −
√
2− 2

k
ekk

)
⊗
(√

2

k(k − 1)

k−1∑

i=1

eii −
√

2− 2

k
ekk

)]

=
n∑

k=2

[
2

k − 1

(
k−1∑

i=1

eii ⊗
k−1∑

i=1

eii

)
− 2

k

(
k−1∑

i=1

eii ⊗
k−1∑

i=1

eii

)
− 2

k

k−1∑

i=1

eii ⊗ ekk

−2

k

k−1∑

i=1

ekk ⊗ eii +

(
2− 2

k

)
ekk ⊗ ekk

]
. (6.41)

Now, on the right side of (6.41), we compute

n∑

k=2

[
2

k − 1

(
k−1∑

i=1

eii ⊗
k−1∑

i=1

eii

)
− 2

k

(
k−1∑

i=1

eii ⊗
k−1∑

i=1

eii

)]

=
n∑

k=2

2

k − 1

(
k−1∑

i=1

eii ⊗
k−1∑

i=1

eii

)
−

n+1∑

k=3

2

k − 1

(
k−2∑

i=1

eii ⊗
k−2∑

i=1

eii

)

=
n∑

k=2

2

k − 1

(
k−1∑

i=1

eii ⊗
k−1∑

i=1

eii

)
−

n+1∑

k=3

2

k − 1

[(
k−1∑

i=1

eii − ek−1,k−1

)

⊗
(
k−1∑

i=1

eii − ek−1,k−1

)]

=
n∑

k=2

2

k − 1

(
k−1∑

i=1

eii ⊗
k−1∑

i=1

eii

)
−

n+1∑

k=3

2

k − 1

(
k−1∑

i=1

eii ⊗
k−1∑

i=1

eii

)

+
n+1∑

k=3

2

k − 1

(
k−1∑

i=1

eii ⊗ ek−1,k−1

)
+

n+1∑

k=3

2

k − 1

(
k−1∑

i=1

ek−1,k−1 ⊗ eii

)

−
n+1∑

k=3

2

k − 1
(ek−1,k−1 ⊗ ek−1,k−1)

= 2e11 ⊗ e11 −
2

n

(
n∑

i=1

eii ⊗
n∑

i=1

eii

)
+

n+1∑

k=3

2

k − 1

(
k−1∑

i=1

eii ⊗ ek−1,k−1

)

+
n+1∑

k=3

2

k − 1

(
k−1∑

i=1

ek−1,k−1 ⊗ eii

)
−

n+1∑

k=3

2

k − 1
(ek−1,k−1 ⊗ ek−1,k−1)

= 2e11 ⊗ e11 −
2

n

(
n∑

i=1

eii ⊗
n∑

i=1

eii

)
+

n∑

k=2

2

k

(
k∑

i=1

eii ⊗ ekk

)
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+
n∑

k=2

2

k

(
k∑

i=1

ekk ⊗ eii

)
−

n∑

k=2

2

k
(ekk ⊗ ekk)

= 2e11 ⊗ e11 −
2

n

(
n∑

i=1

eii ⊗
n∑

i=1

eii

)
+

n∑

k=2

2

k

(
k−1∑

i=1

eii ⊗ ekk

)
+

n∑

k=2

2

k
(ekk ⊗ ekk)

+
n∑

k=2

2

k

(
k−1∑

i=1

ekk ⊗ eii

)
+

n∑

k=2

2

k
(ekk ⊗ ekk)−

n∑

k=2

2

k
(ekk ⊗ ekk)

= 2e11 ⊗ e11 −
2

n

(
n∑

i=1

eii ⊗
n∑

i=1

eii

)
+

n∑

k=2

2

k

(
k−1∑

i=1

eii ⊗ ekk

)
+

n∑

k=2

2

k
(ekk ⊗ ekk)

+
n∑

k=2

2

k

(
k−1∑

i=1

ekk ⊗ eii

)
. (6.42)

Plugging (6.42) into (6.41), one obtains

n∑

k=2

hnk ⊗ hnk = 2e11 ⊗ e11 −
2

n

(
n∑

i=1

eii ⊗
n∑

i=1

eii

)
+ 2

n∑

k=2

ekk ⊗ ekk, (6.43)

which leads to

hn1 ⊗ hn1 +
n∑

k=2

hnk ⊗ hnk = 2e11 ⊗ e11 + 2
n∑

k=2

ekk ⊗ ekk.

Lemma 6.4.2. Given fnk,j for k < j and k > j as in (6.39), the tensor product between

them is given by

∑

k 6=j
fnk,j ⊗ fnk,j = 2

∑

k 6=j
ejk ⊗ ekj. (6.44)

Proof .

∑

k<j

fnkj ⊗ fnkj =
∑

k<j

(ekj + ejk)⊗ (ekj + ejk)

=
∑

k<j

ekj ⊗ ekj +
∑

k<j

ekj ⊗ ejk +
∑

k<j

ejk ⊗ ekj +
∑

k<j

ejk ⊗ ejk.
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(6.45)

Also,

∑

k>j

fnkj ⊗ fnkj =
∑

k>j

(−iejk + iekj)⊗ (−iejk + iekj)

= −
∑

k>j

ejk ⊗ ejk +
∑

k>j

ejk ⊗ ekj +
∑

k>j

ekj ⊗ ejk −
∑

k>j

ekj ⊗ ekj.

(6.46)

Now (6.45) together with (6.46) imply

∑

k 6=j
fnk,j ⊗ fnk,j = 2

∑

k>j

ejk ⊗ ekj + 2
∑

k<j

ejk ⊗ ekj

= 2
∑

k 6=j
ejk ⊗ ekj. (6.47)

We are now all set to cook up the Casimir operator Γ, arising in (6.35) for GL(n,R),

U(n), SL(n,R), and SU(n). In what follows next, the n2 × n2 permutation matrix is

denoted by P . Given two n× n matrices A and B, P enjoys the following properties

P (A⊗B) = (B ⊗ A)P

Tr12[(A⊗ B)P ] = Tr(AB).

(6.48)

Proposition 6.4.1. For GL(n,R) and U(n) to be the structure Lie group of the underlying

principal G bundle, the Casimir tensor in (6.35) reads

Γ = 2P, (6.49)
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where P =
n∑

k,j=1

ejk ⊗ ekj is the Permutation matrix.

Proof .

Case 1: GL(n,R)

The Lie algebra associated with GL(n,R) is gl(n,R), the vector space of all real n × n

matrices. The dimension of this vector space is n2. We choose the matrix hn1 , n−1 matrices

hnk with 1 < k ≤ n, n2−n
2

matrices fnk,j with k < j, and another n2−n
2

matrices ifnk,j with

k > j from (6.39) to form a basis of gl(n,R). Also, in (6.8), associated with the preceding

choice of generators for GL(n,R), f(a) = −1 for n2−n
2

basis elements ifnk,j with k > j.

And for the rest of the n2 basis elements f(a) = 1.

With the above choice of the basis of gl(n,R), the Casimir tensor Γ reads,

Γ = hn1 ⊗ hn1 +
n∑

k=2

hnk ⊗ hnk +
∑

k<j

fnk,j ⊗ fnk,j +
∑

k>j

−(ifnk,j ⊗ ifnk,j)

= hn1 ⊗ hn1 +
n∑

k=2

hnk ⊗ hnk +
∑

k<j

fnk,j ⊗ fnk,j +
∑

k>j

(fnk,j ⊗ fnk,j). (6.50)

Using Lemma (6.4.1) together with Lemma (6.4.2) in (6.50), what one immediately obtains

for GL(n,R) is

Γ = 2
n∑

k,j=1

ejk ⊗ ekj. (6.51)

Case 2: U(n)

An appropriate choice of basis for the Lie algebra u(n), in the context of (6.8), would be

the n2 skew-Hermitian matrices (see 6.39) ihn1 , ihnk for 1 < k ≤ n and ifnk,j for k 6= j. In

accordance with the choice of these generators of unitary group U(n), f(a) = −1 in (6.8)
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for a = 1, 2 . . . , n2. The corresponding Casimir tensor Γ reads off immediately

Γ = −(ihn1 ⊗ ihn1 ) +
n∑

k=2

−(ihnk ⊗ ihnk) +
∑

k<j

−(ifnk,j ⊗ ifnk,j) +
∑

k>j

−(ifnk,j ⊗ ifnk,j)

= hn1 ⊗ hn1 +
n∑

k=2

hnk ⊗ hnk +
∑

k<j

fnk,j ⊗ fnk,j +
∑

k>j

fnk,j ⊗ fnk,j

= 2
n∑

k,j=1

ejk ⊗ ekj. (6.52)

Here, again, we use Lemma (6.4.1) and Lemma (6.4.2) to arrive at (6.52).

Direct application of Proposition (6.4.1) in (6.35) and subsequent use of the proper-

ties of P , enumerated in (6.48), yield the formula of Poisson bracket between traces of

monodromy matrices for GL(n,R) and U(n), as given in the following theorem

Theorem 6.4.1. The poisson bracket (6.35) for M1 and M2 being either in GL(n,R) or in

U(n) reads

{TrM1,TrM2} =
4

k
TrMγ1◦γ2 , (6.53)

whereMγ1◦γ2 is aGL(n,R) or U(n) monodromy computed along the deformed loop γ1◦γ2

in Figure 6–1.

Proposition 6.4.2. The Casimir tensor in (6.35) for the structure Lie group to be either

SL(n,R) or SU(n) reads

Γ = 2P − 2

n
I, (6.54)

with P =
n∑

k,j=1

ejk ⊗ ekj being the Permutation matrix and I being the n2 × n2 identity

matrix.
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Proof .

Case 1: SL(n,R)

The Lie algebra sl(n,R) consists of traceless n × n real matrices. We, therefore, choose

n − 1 matrices hnk with 1 < k ≤ n, n2−n
2

matrices fnkj for k ≤ j and another n2−n
2

real

matrices ifnkj with k > j from the ones enumerated in (6.39). As was in the case of

gl(n,R), f(a) = −1 in (6.8) holds only for the SL(n,R) group generators ifnkj . Therefore,

the associated Casimir tensor reads

Γ =
n∑

k=2

hnk ⊗ hnk +
∑

k<j

fnk,j ⊗ fnk,j +
∑

k>j

−(ifnk,j ⊗ ifnk,j)

=
n∑

k=2

hnk ⊗ hnk +
∑

k<j

fnk,j ⊗ fnk,j +
∑

k>j

fnk,j ⊗ fnk,j

= 2P − hn1 ⊗ hn1

= 2P − 2

n
I. (6.55)

Case 2: SU(n)

The real Lie algebra su(n) consists of n×n tracless skew-Hermitian matrices. We choose,

as a basis of su(n), n − 1 traceless skew-Hermitian matrices ihnk with 1 < k ≤ n and

another n2 − n such matrices ifnkj for k 6= j from the matrices enumerated in (6.39). Here,

we only have f(a) = −1 in (6.8) for all such (n2 − 1) SU(n) group generators. the

corresponding Csimir tensor reads

Γ =
n∑

k=2

−(ihnk ⊗ ihnk) +
∑

k<j

−(ifnk,j ⊗ ifnk,j) +
∑

k>j

−(ifnk,j ⊗ ifnk,j)
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=
n∑

k=2

hnk ⊗ hnk +
∑

k<j

fnk,j ⊗ fnk,j +
∑

k>j

fnk,j ⊗ fnk,j

= 2P − hn1 ⊗ hn1

= 2P − 2

n
I. (6.56)

We have repeatedly used Lemma (6.4.1) and Lemma (6.4.2) in establishing (6.55) and

(6.56).

Following the use of Proposition (6.4.2) in (6.35) and subsequent use of properties of P

as given by (6.48), one obtains the Poisson bracket for SL(n,R) and SU(n) monodromies.

Theorem 6.4.2. The Poisson bracket between traces of two SL(n,R) or two SU(n) mon-

odromy matrices is given by

{TrM1,TrM2} =
4

k

(
TrMγ1◦γ2 −

1

n
TrM1 TrM2

)
. (6.57)

In course of proving Theorem (6.4.2), one also makes use of the identity Tr12(A⊗B) =

TrATrB for any two n× n matrices A and B.

We shall now handle the case of the real Lie group Sp(2n,R). It is being dealt sepa-

rately since an appropriate choice of basis for the associated Lie algebra sp(2n,R), in the

light of (6.8), is unrelated with the generalized Gell-Mann matrices enumerated in (6.39).

The Lie algebra sp(2n,R) is an n(2n+1) dimensional real vector space. An appropriate

choice of basis, along with respective f(a) = ±1 for a = 1, 2, . . . , n(2n + 1) in (6.8), is

outlined in the following table
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i, j,k Basis elements f(a) No. of elements

1 ≤ i < j ≤ n 1√
2
(ei,j+n + ej,i+n + ej+n,i + ei+n,j) 1 n2−n

2

1 ≤ i < j ≤ n 1√
2
(ei,j+n + ej,i+n − ej+n,i − ei+n,j) -1 n2−n

2

1 ≤ k ≤ n ek,n+k + en+k,k 1 n
1 ≤ k ≤ n ek,n+k − en+k,k -1 n
1 ≤ i < j ≤ n 1√

2
(eij + eji − ei+n,j+n − ej+n,i+n) 1 n2−n

2

1 ≤ i < j ≤ n 1√
2
(eij − eji + ei+n,j+n − ej+n,i+n) -1 n2−n

2

1 ≤ k ≤ n ekk − ek+n,k+n 1 n

Table 6–1: Appropriate choice of basis for sp(2n,R)

Now, the Casimir tensor for the structure Lie group Sp(2n,R) is provided by the fol-

lowing proposition

Proposition 6.4.3. The Casimir tensor Γ in (6.35), for Sp(2n,R) to be the structure Lie

group of the underlying principal G-bundle, reads

Γ = P + χ, (6.58)

with χ given as

χ =
∑

1≤i<j≤n
(ei,j+n ⊗ ei+n,j + ej,i+n ⊗ ej+n,i + ej+n,i ⊗ ej,i+n + ei+n,j ⊗ ei,j+n

− eij ⊗ ei+n,j+n − ej+n,i+n ⊗ eji − eji ⊗ ej+n,i+n − ei+n,j+n ⊗ eij)

+
∑

1≤k≤n
(ek,n+k ⊗ en+k,k + en+k,k ⊗ ek,n+k − ekk ⊗ ek+n,k+n − ek+n,k+n ⊗ ekk).

(6.59)

We shall be calling χ as the defect matrix henceforth.
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Proof . In order to prove proposition (6.59), we first note that, for a and b to be two n× n

matrices, the following holds

(a+ b)⊗ (a+ b)− (a− b)⊗ (a− b) = 2(a⊗ b+ b⊗ a). (6.60)

Now, using the above fact, we compute for 1 ≤ i < j ≤ n,

1√
2
(ei,j+n + ej,i+n + ej+n,i + ei+n,j)⊗

1√
2
(ei,j+n + ej,i+n + ej+n,i + ei+n,j)

− 1√
2
(ei,j+n + ej,i+n − ej+n,i − ei+n,j)⊗

1√
2
(ei,j+n + ej,i+n − ej+n,i − ei+n,j)

= ei,j+n ⊗ ej+n,i + ei,j+n ⊗ ei+n,j + ej,i+n ⊗ ej+n,i + ej,i+n ⊗ ei+n,j

+ej+n,i ⊗ ei,j+n + ej+n,i ⊗ ej,i+n + ei+n,j ⊗ ei,j+n + ei+n,j ⊗ ej,i+n. (6.61)

We also compute for 1 ≤ k ≤ n,

(ek,n+k + en+k,k)⊗ (ek,n+k + en+k,k)− (ek,n+k − en+k,k)⊗ (ek,n+k − en+k,k)

= 2(ek,n+k ⊗ en+k,k + en+k,k ⊗ ek,n+k). (6.62)

Again, considering another set of n2 − n generators and applying (6.60), one obtains

for 1 ≤ i < j ≤ n,

1√
2
(eij + eji − ei+n,j+n − ej+n,i+n)⊗

1√
2
(eij + eji − ei+n,j+n − ej+n,i+n)

− 1√
2
(eij − eji + ei+n,j+n − ej+n,i+n)⊗

1√
2
(eij − eji + ei+n,j+n − ej+n,i+n)

= eij ⊗ eji − eij ⊗ ei+n,j+n − ej+n,i+n ⊗ eji + ej+n,i+n ⊗ ei+n,j+n

+eji ⊗ eij − eji ⊗ ej+n,i+n − ei+n,j+n ⊗ eij + ei+n,j+n ⊗ ej+n,i+n. (6.63)
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Finally, for n diagonal generators of Sp(2n,R), we obtain with 1 ≤ k ≤ n,

(ekk − ek+n,k+n)⊗ (ekk − ek+n,k+n)

= ekk ⊗ ekk − ekk ⊗ ek+n,k+n − ek+n,k+n ⊗ ekk + ek+n,k+n ⊗ ek+n,k+n. (6.64)

Adding (6.61) with (6.63) and (6.62) with (6.64) followed by summing over 1 ≤ i <

j ≤ n and 1 ≤ k ≤ n, respectively and finally adding up the two summands, we obtain,

Γ =

[
∑

1≤i<j≤n
(ei,j+n ⊗ ej+n,i + ej,i+n ⊗ ei+n,j + ej+n,i ⊗ ei,j+n + ei+n,j ⊗ ej,i+n

+ eij ⊗ eji + ej+n,i+n ⊗ ei+n,j+n + eji ⊗ eij + ei+n,j+n ⊗ ej+n,i+n)

+
∑

1≤k≤n
(ek,n+k ⊗ en+k,k + en+k,k ⊗ ek,n+k + ekk ⊗ ekk + ek+n,k+n ⊗ ek+n,k+n)

]

+

[
∑

1≤i<j≤n
(ei,j+n ⊗ ei+n,j + ej,i+n ⊗ ej+n,i + ej+n,i ⊗ ej,i+n + ei+n,j ⊗ ei,j+n

− eij ⊗ ei+n,j+n − ej+n,i+n ⊗ eji − eji ⊗ ej+n,i+n − ei+n,j+n ⊗ eij)

+
∑

1≤k≤n
(ek,n+k ⊗ en+k,k + en+k,k ⊗ ek,n+k − ekk ⊗ ek+n,k+n − ek+n,k+n ⊗ ekk)

]

= P + χ. (6.65)

We require the following Lemma to prove the main result regarding the Poisson bracket

for Sp(2n,R) monodromy matrices.
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Lemma 6.4.3. For A,B ∈ Sp(2n,R), χ being the defect matrix as in Proposition (6.4.3)

and P being the permutation matrix, we have the following identity

Tr12[(A⊗B)χ] = −Tr(AB−1). (6.66)

Proof . Given the 2n× 2n symplectic matrix B, its inverse is given by the following sets

of equations:

For matrix entries with 1 ≤ i < j ≤ n,

(B−1)ij = Bj+n,i+n, (B−1)ji = Bi+n,j+n, (B−1)i,j+n = −Bj,i+n

(B−1)j,i+n = −Bi,j+n, (B−1)n+i,j = −Bj+n,i, (B−1)j+n,i = −Bn+i,j

(B−1)i+n,j+n = Bji, (B−1)j+n,i+n = Bij.

(6.67)

And, for matrix entries with 1 ≤ k ≤ n,

(B−1)kk = Bk+n,k+n, (B−1)k,n+k = −Bk,n+k

(B−1)n+k,k = −Bn+k,k, (B−1)k+n,k+n = Bkk.

(6.68)

Now, using the explicit expression of the defect matrix χ given in (6.59) and that of the

symplectic matrix B−1 in (6.67) and (6.68), one obtains

Tr12[(A⊗B)χ]

=
∑

1≤i<j≤n
(Aj+n,iBj,i+n + Ai+n,jBi,j+n + Ai,j+nBi+n,j + Aj,i+nBj+n,i)

+
∑

1≤k≤n
(An+k,kBk,n+k + Ak,n+kBn+k,k)−

∑

1≤i<j≤n
(AjiBj+n,i+n + Ai+n,j+nBij)
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−
∑

1≤i<j≤n
(AijBi+n,j+n + Aj+n,i+nBji)−

∑

1≤k≤n
(AkkBk+n,k+n + Ak+n,k+nBkk)

= −
∑

1≤i<j≤n
[Aj+n,i(B

−1)i,j+n + Ai+n,j(B
−1)j,i+n + Ai,j+n(B

−1)j+n,i

+ Aj,i+n(B
−1)i+n,j]

−
∑

1≤k≤n
[An+k,k(B

−1)k,n+k + Ak,n+k(B
−1)n+k,k]−

∑

1≤i<j≤n
[Aji(B

−1)ij

+ Ai+n,j+n(B
−1)j+n,i+n]

−
∑

1≤i<j≤n
[Aij(B

−1)ji + Aj+n,i+n(B
−1)i+n,j+n]−

∑

1≤k≤n
[Akk(B

−1)kk

+ Ak+n,k+n(B
−1)k+n,k+n]

= −Tr(AB−1). (6.69)

We now prove the main theorem concerning the Poisson bracket between traces of

Sp(2n,R) monodromies.

Theorem 6.4.3. The Poisson bracket between traces of Sp(2n,R) monodromy matrices

M1 and M2 is given by

{TrM1,TrM2} =
2

k
(TrMγ1◦γ2 − TrMγ1◦γ−1

2
), (6.70)

where Mγ1◦γ2 is an Sp(2n,R) monodromy, computed along the deformed loop γ1 ◦ γ2, as

shown in Figure (6–1) while the monodromyMγ1◦γ−1
2

is computed along the other deformed

loop γ1 ◦ γ−1
2 , as described by Figure (6–2).
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x1
O x2

y1
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γ1
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M̃1

(a) Two intersecting loops.

x1
x2

y1

y2

γ1 ◦ γ−1
2

M̃−1
2

M̃1

(b) Deformed loop γ1 ◦ γ−1

2

Figure 6–2: Traces of monodromies are computed along two free loops that are homotopi-
cally inequivalent and intersect transversally at a single point. In the following subfigure,
trace of monodromy along a single loop, deformed at the point of intersection, has been
considered.

Proof . Plugging the Casimir tensor Γ (see 6.58) back in (6.35) and using the identity from

lemma (6.4.3), one obtains

{TrM1,TrM2}

=
2

k
Tr12[(T (0, x2)M̃1T (x1, 0)⊗ T (0, y2)M̃2T (y1, 0))(P + χ)]

=
2

k
TrMγ1◦γ2 +

2

k
Tr12[(T (0, x2)M̃1T (x1, 0)⊗ T (0, y2)M̃2T (y1, 0))χ]

=
2

k
TrMγ1◦γ2 −

2

k
Tr[T (0, x2)M̃1T (x1, 0)T (0, y1)M̃

−1
2 T (y2, 0)]

=
2

k
(TrMγ1◦γ2 − TrMγ1◦γ−1

2
). (6.71)
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We note that (6.4.1), (6.4.2) and (6.70) coincide with Goldman’s formula in ([29], page

266). Also, we computed the Poisson brackets for various real Lie groups for a single point

of transversal intersection. The proof for many intersection points follow similarly.
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Chapter 7

Conclusion and Future Directions

The main results of this thesis are related with Lie algebraic and representation theoretic

methods.

We studied the structural similarities between extensions of the (1+1)-Galilei group

and the groups frequently used in signal analysis and image processing. The fact that the

various groups of signal analysis, enumerated in chapter 2, are all obtainable from the affine

Galilei group shows a remarkable unity in their structures and consequently of their unitary

irreducible representations. In the following chapter, we made a comparative study of the

structures of their co-adjoint orbits and built Wigner functions on them. From the point

of view of signal transforms, all this could lead to a deeper understanding of how signal

transforms, defined over a larger set of parameters, reduce when a smaller set of parameters

is used, with the original signal still being reconstructible from the smaller set.

In chapter 4, we have derived the commutation relations between the position and mo-

mentum operators of noncommuttive quantum mechanics by three different means: using

the appropriate unitary irreducible representations of the centrally extended (2+1)-Galilei

group Gext
Gal, of the doubly extended group GT , of translations of R4, and by a coherent state

quantization of the classical phase space variables of position and momentum, using the
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coherent states of Gext
Gal. It is not hard to see, from the expressions for the unitary represen-

tations (4.12) and (4.49), that the same commutation relations could also be obtained by a

coherent state quantization, using the coherent states of GT (which could be similarly con-

structed). There is, as usual a positive operator valued (POV) measure naturally associated

to the coherent states (4.18). Indeed, for any measurable set ∆ of R2 (phase space), we can

associate the positive operator

a(∆) =

∫

∆

|ηq,p〉〈ηq,p| dq dp .

These define localization operators on phase space, whose marginals in q and p should

then give localization operators in configuration and momentum spaces, respectively. For

the canonical coherent states and standard quantum mechanics, such operators have been

studied extensively, in e.g., [3, 16]. There, one understands these localization operators in

an extended or unsharp sense. It would be interesting to do a similar study for the present

case.

In chapter 5, we have shown that the triply extended group of translations in R4, GNC

(note that GT denotes the same Lie group in chapter 4), contains various representations,

associated with different gauges of noncommutative quantum mechanics (see [24]), viz.,

the Landau and symmetric gauges, in its unitary dual. The unitary irreducible represen-

tations of standard quantum mechanics are also sitting inside its unitary dual. The rep-

resentations associated with a coupled bosonic system, that give rise to certain deformed
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complex Hermite polynomials (see [6] and [9] for detail), are just a family of unitary ir-

reducible representations of GNC. The relevant coadjoint orbits of GNC, sitting inside the

7-dimensional dual Lie algebra, have all been identified. The second cohomology group

of the group of translations in R4 is a 6-dimensional vector space. In chapter 5, we con-

sidered [Q̂1, P̂1], [Q̂2, P̂2], [Q̂1, Q̂2], and [P̂1, P̂2] to be nonvanishing in general, as is done

in NCQM. The strengths of the first two noncommutativity were chosen to be the same in

order to preserve the structure of standard quantum mechanics. Along with this quantum

mechanical noncommutativity, the position and momentum noncommutativity give rise to

three independent central extensions of the abelian group of translations in R4. While the

goal of chapter 5 was to study the role of this triply extended group GNC in NCQM, it

would be interesting to study the other extensions of the group of translations in physically

meaningful contexts, e.g. rotational invariance. Here, we restricted ourselves to 2 degrees

of freedom meaning that we studied 2-dimensional NCQM from a group-theoretic point

of view. But one could study possible extensions of the theory to quantum systems with

additional degrees of freedom as well and look for a more general theory by constructing a

more general version of GNC.

In chapter 6, we considered a separate problem where space-time is modeled as a 3-

manifold Σ × R. We considered the infinite dimensional field theory associated with con-

nection 1-forms , taking their values in the Lie algebra G of the structure Lie groupG of the

underlying principal G-bundle. Well-known Atiyah-Bott brackets, between the connection
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1-forms and the momenta conjugate to them, were also computed starting from the Chern-

Simons action defined on the 3-manifold. Time dependence in the 1-forms was gauged out

using additional gauge freedom. The space of flat connections up to a gauge transforma-

tion is a finite dimensional space. The observables associated with this finite dimensional

moduli space are just the Wilson lines computed along the free homotopy classes of loops

on our Riemann surface. The brackets between these observables, i.e. brackets between the

traces of G-valued monodromy matrices are known as the Goldman bracket. Making use

of the Hamiltonian formalism of soliton theory, we computed Poisson brackets between

traces of these monodromy matrices for the cases of GL(n,R), U(n), SL(n,R), SU(n)

and Sp(2n,R). We plan to apply similar algebraic formalism in order to find the brackets

for the remaining cases of semi-simple Lie groups, say, SU(p, q), G2, F4, E6, E7 and E8,

in future.
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Appendix A

Proofs related to Chapter 4

In this Appendix we collect together the proofs of some of the results quoted in chapter

4.

Proof of Lemma 4.3.2

We start out by taking two compactly supported and infinitely differentiable functions

f, g ∈ L2(R2, dx). Then,

∫

R2×R2

〈f | χq,p〉〈χq,p | g〉 dq dp

=

∫

R2×R2

dq dp

[ ∫

R2×R2

ei(x−x′)·pχ

(
x+ q− λ

2m2
Jp

)
χ

(
x′ + q− λ

2m2
Jp

)

×f(x)g(x′) dx dx′
]

(A.1)

Making the change of variables, q− λ

2m2
Jp = q′,

∫

R2×R2

〈f | χq,p〉〈χq,p | g〉 dq dp

=

∫

R2×R2

dq′ dp

[∫

R2×R2

ei(x−x′)·pχ(x+ q′)χ(x′ + q′)g(x′)f(x) dx dx′
]

= (2π)2
∫

R2

dq′
[∫

R2×R2

δ(x− x′)χ(x+ q′)χ(x′ + q′)g(x′)f(x) dx dx′
]

= (2π)2
∫

R2

dq′
[∫

R2

χ(x+ q′)χ(x+ q′)g(x)f(x) dx

]

= (2π)2‖χ‖2〈f | g〉, (A.2)
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the change in the order of integration and the introduction of the delta measure being easily

justified in view of the compact supports and smoothness property of the functions f and

g. Thus, introducing the formal operator

T =

∫

R2×R2

|χq,p〉〈χq,p| dq dp , (A.3)

we see that for functions f, g of the chosen type,

〈f |Tg〉 = 2π‖χ‖2 〈f |Ig〉 ,

I being the identity operator on L2(R2, dx). But since the compactly supported and in-

finitely differentiable functions are dense in L2(R2, dx), we use the continuity of the scalar

product to extend the above equality to arbitrary pairs of functions f, g in L2(R2, dx), thus

proving the lemma.

Proof of Theorem 4.3.2

We only work out the derivation of the first of the above equations, the others being

obtained in similar ways. By (4.20) and (4.24)

(Ôq1g)(x)

=

∫

R2×R2

q1

[ ∫

R2

ei(x−x′)·p η

(
x+ q− λ

2m2
Jp

)

×η
(
x′ + q− λ

2m2
Jp

)
g(x′) dx′

]
dq dp . (A.4)
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Making the change of variables q − λ

2m2
Jp = q′, and noting the form of the skew-

symmetric matrix J from Lemma (4.3.1), we have

q′1 = q1 +
λ

2m2
p2, q′2 = q2 −

λ

2m2
p1 ,

using which (A.4) becomes

(Ôq1g)(x)

=

∫

R2×R2

(
q′1 −

λ

2m2
p2

)[∫

R2

ei(x−x′)·p η(x+ q′)η(x′ + q′)g(x′) dx′
]
dq′ dp

=

∫

R2×R2

q′1

[∫

R2

ei(x−x′)·pη(x+ q′)η(x′ + q′)g(x′) dx′
]
dq′dp

− λ

2m2

∫

R2×R2

p2

[∫

R2

ei(x−x′)·pη(x+ q′)η(x′ + q′)g(x′)dx′
]
dq′ dp . (A.5)

Let us consider the first integral in (A.5). Assuming η to be sufficiently smooth functions,

we have

∫

R2×R2

q′1

[∫

R2

ei(x−x′)·p η(x+ q′)η(x′ + q′)g(x′)dx′
]
dq′ dp

= (2π)2
∫

R2

q′1

[∫

R2

δ(x− x′)] η(x+ q′)η(x′ + q′)g(x′)dx′
]
dq′

= (2π)2
∫

R2

q′1 |η(x+ q′)|2g(x) dq′ (A.6)

Making a second change of variables, x+ q′ = −u, the last term in (A.6) becomes

(2π)2
∫

R2

q′1|η(x+ q′)|2g(x) dq′

= (2π)2x1g(x)

∫

R2

|η(u)|2 du+ (2π)2g(x)

∫

R2

u1|η(u)|2g(x) du . (A.7)
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The second integral in the last line vanishes since, in view of the imposed symmetry, η is

an even function of u1. Thus, noting the normalization of η in (4.18),

∫

R2×R2

q′1

[∫

R2

ei(x−x′)·p η(x+ q′)η(x′ + q′)g(x′)dx′
]
dq′ dp = x1g(x). (A.8)

Next, we observe that,

−i ∂
∂x2

(
ei(x−x′)·p η(x+ q′)η(x′ + q′)g(x′)

)

= p2e
i(x−x′)·p η(x′ + q′)g(x′)η(x+ q′)

+ei(x−x′)·pη(x′ + q′)g(x′)

(
−i ∂
∂x2

)
(η(x+ q′)),

so that the second integral in (A.5) becomes

λ

2m2

∫

R2×R2

p2

[∫

R2

ei(x−x′)·p η(x+ q′)η(x′ + q′)g(x′) dx′
]
dq′ dp

=
λ

2m2

∫

R2×R2

[∫

R2

(
−i ∂
∂x2

)
(ei(x−x′)·p η(x+ q′)η(x′ + q′)g(x′)) dx′

]
dq′ dp

− λ

2m2

∫

R2×R2

[∫

R2

{ei(x−x′)·p η(x′ + q′)g(x′)

(
−i ∂
∂x2

)
η(x+ q′)} dx′

]
dq′ dp.

(A.9)

Assuming the usual smoothness condition on η and again introducing a delta-distribution

in x,x′, the first integral on the right hand side of (A.9) gives

λ

2m2

∫

R2×R2

(
−i ∂
∂x2

)[{∫

R2

ei(x−x′)·p η(x+ q′)η(x′ + q′)g(x′)dx′
}
dq′ dp

]

=
(2π)2λ

2m2

∫

R2

(
−i ∂
∂x2

)[{∫

R2

δ(x− x′)η(x+ q′)η(x′ + q′)g(x′)dx′
}
dq′
]

= − iλ

2m2

∂

∂x2
g(x) . (A.10)
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Similarly, the second integral (A.9) yields

− λ

2m2

∫

R2×R2

[∫

R2

{ei(x−x′)·p η(x′ + q′)g(x′)

(
−i ∂
∂x2

)
η(x+ q′)} dx′

]
dq′ dp

= − λ

2m2

∫

R2

[∫

R2

{δ(x− x′)η(x′ + q′)g(x′)

(
−i ∂
∂x2

)
η(x+ q′)} dx′}

]
dq′

= − λ

2m2
g(x)

∫

R2

η(x+ q′)

(
−i ∂
∂x2

)
η(x+ q′) dq′.

Introducing another change of variables, x+ q′ = u, this becomes

− λ

2m2
g(x)

∫

R2

η(u)

(
−i ∂
∂u2

)
η(u) du

=
iλ

2m2
g(x)

∫

R2

η(u)
∂

∂u2
η(u) du = 0, (A.11)

the last equality following since, in view of the evenness of η, the derivative term,
∂

∂u2
η(u),

is an odd function.

Thus finally, combining (A.11) with (A.5), (A.8), and (A.10), we obtain

(Ôq1g)(x) =

(
x1 −

iλ

2m2

∂

∂x2

)
g(x).

Proof of Theorem 4.4.1

Using (4.28) and (4.29), it can easily be verified that ξ, ξ′, and ξ′′ given in Proposition

(4.4.1) are local exponents for the group of translations GT in R4.
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It remains to prove the inequivalence of the given multipliers. Let us first prove the fact

that ξ1 := ξ − ξ′ is not trivial. Indeed we have,

ξ1((q1, q2, p1, p2), (q
′
1, q

′
2, p

′
1, p

′
2))

= ξ((q1, q2, p1, p2), (q
′
1, q

′
2, p

′
1, p

′
2))− ξ′((q1, q2, p1, p2), (q

′
1, q

′
2, p

′
1, p

′
2))

=
1

2
q1p

′
1 +

1

2
q2p

′
2 +

1

2
p2p

′
1 −

1

2
p1q

′
1 −

1

2
p2q

′
2 −

1

2
p1p

′
2. (A.12)

Now from (4.30), it follows immediately that triviality of a multiplier η for some abelian

group in terms of a suitable continous function implies the fact that η(g, g′) = η(g′, g) holds

for any two group elements of the given abelian group. By contrapositivity, η(g, g′) 6=

η(g′, g) guarantees the nontriviality of the multiplier in question.

In other words, to prove the nontriviality of ξ1, it suffices to show that

ξ1((q1, q2, p1, p2), (q
′
1, q

′
2, p

′
1, p

′
2)) 6= ξ1((q

′
1, q

′
2, p

′
1, p

′
2), (q1, q2, p1, p2))

always holds. Indeed,

ξ1((q
′
1, q

′
2, p

′
1, p

′
2), (q1, q2, p1, p2))

=
1

2
q′1 +

1

2
q′2p2 +

1

2
p′2p1 −

1

2
p′1q1 −

1

2
p′2q2 −

1

2
p′1p2,

= −ξ1((q1, q2, p1, p2), (q′1, q′2, p′1, p′2)). (A.13)

Let us now prove that ξ2 := ξ′ − ξ′′ is nontrivial. We have,

ξ2((q1, q2, p1, p2), (q
′
1, q

′
2, p

′
1, p

′
2))
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= ξ′((q1, q2, p1, p2), (q
′
1, q

′
2, p

′
1, p

′
2))− ξ′′((q1, q2, p1, p2), (q

′
1, q

′
2, p

′
1, p

′
2))

=
1

2
[p1p

′
2 + q1q

′
2 − p2p

′
1 − q2q

′
1]

= −ξ2((q′1, q′2, p′1, p′2), (q1, q2, p1, p2)). (A.14)

The above equation reflects the fact that ξ2 is indeed nontrivial which in turn implies that

ξ′ and ξ′′ are inequivalent. Hence it follows that ξ, ξ′ and ξ′′ are three inequivalent local

exponents of GT .

240



Appendix B

Proofs related to Chapter 5

In this Appendix we collect together the proofs of some of the results quoted in chapter

5.

Proof of Theorem 5.4.1

We first prove that Usym, given by (5.51), is indeed a representation of GNC.

(Usym(θ, φ, ψ, q1, q2, p1, p2)Usym(θ
′, φ′, ψ′, q′1, q

′
2, p

′
1, p

′
2)f)(r1, r2)

= Usym(θ, φ, ψ, q1, q2, p1, p2)(Usym(θ
′, φ′, ψ′, q′1, q

′
2, p

′
1, p

′
2)f)(r1, r2)

= (Usym(θ, φ, ψ, q1, q2, p1, p2)g)(r1, r2), (B.1)

where we have chosen Usym(θ
′, φ′, ψ′, q′1, q

′
2, p

′
1, p

′
2)f = g. Then (B.1) reads

(Usym(θ, φ, ψ, q1, q2, p1, p2)g)(r1, r2)

= ei(θ+φ+ψ)e
i

[

αp1r1+αp2r2−α(α−

√
α2−βγ)
β

(q1r2−q2r1)+
√

α2−βγ
2

(p1q1+p2q2)

]

×g
(
r1 −

β

2α
p2 +

α +
√
α2 − βγ

2α
q1, r2 +

β

2α
p1 +

α +
√
α2 − βγ

2α
q2

)
.

(B.2)

But

g

(
r1 −

β

2α
p2 +

α +
√
α2 − βγ

2α
q1, r2 +

β

2α
p1 +

α +
√
α2 − βγ

2α
q2

)
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= (Usym(θ
′, φ′, ψ′, q′1, q

′
2, p

′
1, p

′
2)f)(r1 −

β

2α
p2 +

α +
√
α2 − βγ

2α
q1, r2 +

β

2α
p1

+
α +

√
α2 − βγ

2α
q2)

= ei(θ
′+φ′+ψ′)e

i

[

αp′1r1−
β
2
p′1p2+

α+
√

α2−βγ
2

p′1q1+αp
′
2r2+

β
2
p1p′2+

α+
√

α2−βγ
2

p′2q2

]

× e
−i

[

α(α−

√
α2−βγ)
β

(

q′1r2+
β
2α
q′1p1+

α+
√

α2−βγ
2α

q′1q2−q′2r1+
β
2α
q′2p2+

α+
√

α2−βγ
2α

q′2q1

)]

× e
i
√

α2−βγ
2

(p′1q
′
1+p

′
2q

′
2)f(r1 −

β

2α
(p2 + p′2) +

α +
√
α2 − βγ

2α
(q1 + q′1), r2 +

β

2α
(p1 + p′1)

+
α +

√
α2 − βγ

2α
(q2 + q′2)).

(B.3)

On the other hand, in view of the group law (5.1) of GNC, we have

(Usym((θ, φ, ψ, q1, q2, p1, p2)(θ
′, φ′, ψ′, q′1, q

′
2, p

′
1, p

′
2))f)(r1, r2)

= (Usym(θ + θ′ +
α

2
q1p

′
1 +

α

2
q2p

′
2 −

α

2
p1q

′
1 −

α

2
p2q

′
2, φ+ φ′ +

β

2
p1p

′
2

− β

2
p2p

′
1, ψ + ψ′ +

γ

2
q1q

′
2 −

γ

2
q2q

′
1, q1 + q′1, q2 + q′2, p1 + p′1, p2 + p′2)f)(r1, r2)

= ei(θ+θ
′+α

2
q1p′1+

α
2
q2p′2−α

2
p1q′1−α

2
p2q′2)ei(φ+φ

′+β
2
p1p′2−

β
2
p2p′1)ei(ψ+ψ

′+ γ
2
q1q′2−

γ
2
q2q′1)

× e
iα

[

p1r1+p′1r1+p2r2+p
′
2r2−

α−

√
α2−βγ
β

(q1r2+q′1r2−q2r1−q′2r1)
]

× ei
√

α2−βγ
2 [(p1+p′1)(q1+q′1)+(p2+p′2)(q2+q

′
2)]f(r1 −

β

2α
(p2 + p′2)

+
α +

√
α2 − βγ

2α
(q1 + q′1), r2 +

β

2α
(p1 + p′1) +

α +
√
α2 − βγ

2α
(q2 + q′2)). (B.4)

Comparing (B.3) and (B.4), we obtain the following

(Usym((θ, φ, ψ, q1, q2, p1, p2)(θ
′, φ′, ψ′, q′1, q

′
2, p

′
1, p

′
2))f)(r1, r2)
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= (Usym(θ, φ, ψ, q1, q2, p1, p2)Usym(θ
′, φ′, ψ′, q′1, q

′
2, p

′
1, p

′
2)f)(r1, r2), (B.5)

with f ∈ L2(R2, dr1dr2). Hence it follows that Usym is indeed a representation of the

nilpotent Lie group GNC.

The adjoint of Usym now reads

(U∗
sym(θ, φ, ψ, q1, q2, p1, p2)f)(r1, r2)

= e−i(θ+φ+ψ)e
−i

[

αp1r1+αp2r2−α(α−

√
α2−βγ)
β

(q1r2−q2r1)+
√

α2−βγ
2

(p1q1+p2q2)

]

×f
(
r1 +

β

2α
p2 −

α +
√
α2 − βγ

2α
q1, r2 −

β

2α
p1 −

α +
√
α2 − βγ

2α
q2

)
,

(B.6)

from which unitarity of Usym follows immediately

(UsymU∗
symf)(r1, r2) = (U∗

symU symf)(r1, r2) = f(r1, r2), (B.7)

where f ∈ L2(R2, dr1dr2).

It remains to prove the irreducibility of the unitary representation Usym of the Lie group

GNC. Since, the representation of the corresponding Lie algebra gNC given by (5.52) is

clearly irreducible and GNC is a connected, simply connected Lie group, the corresponding

representation of the Lie group is also irreducible. But the equivalence classes of unitary

irreducible representations of GNC are all obtained in Section 5.2. And the group represen-

tation complying with the commutation relations (5.36) is given by (5.16). Therefore, the

unitary irreducible representation of GNC, due to the choice of symmetric gauge of vector
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potential, has to be equivalent to one of the representations (5.16) computed in the Hilbert

space L2(R2, dr1dr2), for some nonzero value of ρ, σ, and τ . Hence, the unitary represen-

tation (5.51) of GNC is also irreducible.

Proof of Theorem 5.5.1

We first write M in the block-form:

M =



A B

C D


 =




A11 A12 B11 B12

A21 A22 B21 B22

C11 C12 D11 D12

C21 C22 D21 D22




(B.8)

(5.53) then yields


A11 A12

A21 A22






Q̂1

P̂2


+



B11 B12

B21 B22






Q̂2

P̂1


 =



Q̂′

1

P̂ ′
2




=⇒



A11Q̂1 + A12P̂2 + B11Q̂2 +B12P̂1

A21Q̂1 + A22P̂2 + B21Q̂2 +B22P̂1


 =



Q̂′

1

P̂ ′
2


 . (B.9)

Similarly


C11 C12

C21 C22






Q̂1

P̂2


+



D11 D12

D21 D22






Q̂2

P̂1


 =



Q̂′

2

P̂ ′
1




=⇒



C11Q̂1 + C12P̂2 +D11Q̂2 +D12P̂1

C21Q̂1 + C22P̂2 +D21Q̂2 +D22P̂1


 =



Q̂′

2

P̂ ′
1


 . (B.10)
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Using (B.9) and (B.10), one gets

[Q̂′
1, P̂

′
1]

= [A11Q̂1 + A12P̂2 + B11Q̂2 + B12P̂1, C21Q̂1 + C22P̂2 +D21Q̂2 +D22P̂1]

= A11D21(iϑI) + A11D22(i~I) + A12D21(−i~I) + A12D22(−iBI)

+B11C21(−iϑI) + B11C22(i~I) +B21C21(−i~I) +B12C22(iBI)

= i~(A11D22 − A12D21 +B11C22 −B12C21)I+ iϑ(A11D21 −B11C21)I

+iB(B12C22 − A12D22)I. (B.11)

But we are given that [Q̂′
1, P̂

′
1] = i~I. Therefore, (B.11) reduces to

ϑ

~
(B11C21−A11D21)+

B
~
(A12D22−B12C22)+(A12D21+B12C21−A11D22−B11C22) = −1.

(B.12)
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In exactly the same way one can go on to compute [Q̂′
2, P̂

′
2], [Q̂

′
1, Q̂

′
2], [P̂

′
1, P̂

′
2], [Q̂

′
1, P̂

′
2], and

[Q̂′
2, P̂

′
1] and thereby obtain the following set of equations:

ϑ

~
(B21C11 − A21D11) +

B
~
(A22D12 − B22C12)

+ (B22C11 + A22D11 −B21C12 − A21D12) = 1,

(A12D11 +B12C11 − A11D12 −B11C12) +
ϑ

~
(B11C11 − A11D11)

+
B
~
(A12D12 −B12C12) = −ϑ

~
,

(B22C21 + A22D21 −B21C22 − A21D22) +
B
~
(A22D22 − B22C22)

+
ϑ

~
(B21C21 − A21D21) =

B
~
,

ϑ

~
(A11B21 − A21B11) +

B
~
(A22B12 − A12B22)

+ (A11B22 + A22B11 − A12B21 − A21B12) = 0,

ϑ

~
(C11D21 − C21D11) +

B
~
(D12C22 − C12D22)

+ (C11D22 − C12D21 +D11C22 −D12C21) = 0.

(B.13)

Now (B.12) and the set of relations enumerated in (B.13) can all be compactified into the

following three matrix equations:

AQBT −BQTAT = 0,

CQDT −DQTCT = 0,

AQDT −BQTCT = Q,

(B.14)

where Q is the 2× 2 matrix given by (5.56).
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The three matrix equations (B.14) can yet be incorporated in one single 4 × 4 matrix

equation given by


A B

C D







0 Q

−QT 0






AT CT

BT DT


 =




0 Q

−QT 0


 ,

which boils down to

MQMT = Q.

Proof of Proposition 5.5.1

An element M of S(4,R) is a 4 × 4 real matrix satisfying (5.54). In other words,

not all the elements of M are independent of each other. There are six distinct constraint

equations (see (B.12) and (B.13)) between various entries of the underlying 4 × 4 matrix.

The dimension of S(4,R) is therefore 10.
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Note that if we had written




Q̂1

Q̂2

P̂1

P̂2




instead of




Q̂1

P̂2

Q2

P1




in (5.53), the real entries of M in

(B.8) would have been reshuffled accordingly:




Q̂′
1

Q′
2

P̂ ′
1

P̂ ′
2




=




A11 B11 B12 A12

C11 D11 D12 C12

C21 D21 D22 C22

A21 B21 B22 A22







Q̂1

Q̂2

P̂1

P̂2




. (B.15)

Therefore, in our notation the canonical skew-symmetric 4 × 4 matrix




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




reads




0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0




. In what follows, we shall be denoting the latter matrix by J. We

obtain

UJUT = Q, (B.16)
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where Q is given in Theorem (5.5.1) and the invertible matrix U is as follows

U =




−1 ϑ
~

0 0

B
~

−1 0 0

0 0 1 0

0 0 0 1




.

But, by definition, M ∈ S(4,R) satisfies (5.54). One then obtains

MQMT = Q

=⇒ MUJUTMT = UJUT

=⇒ (U−1MU)JUTMT (U−1)T = J

=⇒ (U−1MU)J(U−1MU)T = J.

(B.17)

In view of (B.17), one immediately finds that f : S(4,R) → Sp(4,R) with f(M) =

U−1MU is the required isomorphism.

Note that Q in (B.16), for both the choices of U as discussed in (5.5.2), can easily be

verified to be unique up to a scalar multiple. Also, note that the invertibility of Q has been

tacitly exploited in establishing the isomorphism f .
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