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ABSTRACT 

An Efficient Soft Computing Based Method for Calibration of 
Vehicular Microscopic Simulation Models 

 
Hamed Shahrokhi Shahraki 

 

In recent years, due to the advances in computation technology, microscopic 

vehicular traffic simulation has become one of the main tools used by transportation 

professionals to solve various design and analysis problems (e.g. safety performance 

evaluation of highways, impact of different design scenarios in units of safety and 

efficiency, etc.). The effective use of any of the existing simulation models is limited by 

the calibration of specific parameters that are based on observed real-life conditions. 

However, because the calibration of the simulation models is a time consuming and 

resource intensive process, one might resort to using the default parameter values. In this 

study, a soft computing-based methodology which synergistically combines Artificial 

Neural Networks and Genetic Algorithm (GA) applications, is proposed as an alternative 

for calibration methodology that considerably reduces the computation time in 

comparison to other commonly used methods. First, a Latin Hypercube Sampling method 

is used to select representative sets of values for VISSIM’s main calibration parameters.  

Second, the effect of each set of parameter values on the simulated traffic stream speed is 

recorded.  Third, a neural-network is trained to determine the relationship between the 

input parameter values and the output vehicular speed. Finally, a genetic-algorithm uses 

the trained neural-network in its fitness function to determine the appropriate set of 
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values for the calibration parameters. The proposed methodology allows for the 

calibration of microscopic traffic models with fewer computational resources than is 

commonly used. The feasibility of the method and its applicability to real-world traffic 

conditions is proved by employing the model using a real-world High Occupancy Vehicle 

(HOV) lane along a freeway segment. The results of proposed calibration method are 

compared with those from GA-only based calibration method.. It is concluded that the 

proposed method performs faster than the GA based calibration method while 

maintinaing a certain level of accuracy. To highlight the potential benefits of the 

proposed calibration method, a before-and-after calibration conflict analysis is presented. 

It is recommended to apply the proposed method to urban environments and to consider 

other performance measures (travel time, queue length, etc.) to investigate proposed 

method’s generality. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Due to advances in computation technology vehicular microscopic simulation 

models became one of the main tools used by transportation professionals to solve 

various problems in design and analysis. For example, evaluation of safety performance 

of different design scenarios, transportation network’s effectiveness analysis, signal 

design, and many more applications. The level of detail of the outputs of these models 

depend on the need, and it can vary from microscopic (vehicle trajectories, individual 

travel time, speed, etc.) to macroscopic (average travel time, queue length, average speed, 

etc.).  Some examples of these vehicular microscopic simulation models are as: VISSIM, 

CORSIM, AIMSUN, etc.  

These models use some adjustable parameters to replicate the real life traffic 

conditions. This process is called calibration of vehicular microscopic simulation models. 

Henceforth, when the word calibration is used it means calibration of vehicular 

microscopic simulation models unless it is explicitly explained. 

Extensive use of calibration parameters along with the stochastic nature of vehicle 

interactions, add considerable complexity to the modeling process and its 

implementation. Because of the intrinsic complexity of the simulation models, 

practitioners resort to using search-based heuristic algorithms for their calibration. As will 

be seen in the literature review chapter, there exists extensive use of the search-based 

heuristic algorithms for calibration of aforementioned simulation models. 
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1.2 Problem Statement 

Many studies show that the current techniques used for calibration of vehicular 

microscopic simulation models are considered time consuming and computation intensive 

approaches. Because calibration is time consuming and computation intensive process, 

one might resort to using un-calibrated model while it rarely leads to reliable results. 

There have been very few studies that attempted to improve the calibration procedure in 

terms of optimization speed. Also, there have been no studies that attempted to compare 

the achieved accuracy of different calibration methods. Therefore, the shortcomings in the 

current state of practice in calibration based on the reviewed literature can be summarized 

as following: 

 The current commonly search-based methods used for calibration processes are 

time consuming and one might resort to using un-calibrated model which seldom 

leads to accurate and reliable results. 

 There are very few studies trying to improve the calibration procedure in terms of 

processing time specifically to improve the optimization speed. 

 The accuracy of the calibrated parameters using different methods have not been 

investigated, based on the reviewed literature. 

1.3 Research Objectives 

With respect to the aforementioned problems, the major objective of this research is 

to develop a soft computing search based method that is attributed with less computation 

time while maintaining an acceptable level of accuracy. This objective can be reached by 

completing the following tasks: 
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 Identifying the current state of practice in calibration of vehicular microscopic 

simulation models. 

 Developing a soft computing based approach that improves the currently used 

methods in optimization speed while keeping an acceptable accuracy. 

 Verifying the feasibility and applicability of the proposed methodology for real 

case(s) of study. 

 Establishing a comparison of optimization speed and accuracy to highlight the 

advantages of the proposed methodology. 

 Highlighting the importance of calibration by employing a before-and-after 

calibration conflict analysis. 

1.4 Thesis Organization 

The thesis consists of seven chapters. Chapter 1 is the introduction section of the 

thesis and includes problem statement, research objectives, summary of the research 

methodology, and thesis organization. Chapter 2 presents an elaborated literature review 

on previous studies in calibration, surrogate safety measures, and an introduction to High 

Occupancy Vehicle (HOV) lanes and in Chapter 3, a comprehensive description of the 

proposed methodology is provided. Chapter 4 presents the data collection and analysis. 

Chapter 5 presents the application of the proposed methodology to real-world cases of 

study. The developed method is compared to Genetic Algorithm-based calibration, which 

is widely used in the calibration practices, in units of optimization speed and closeness of 

the results to the real filed measures. To highlight the importance of the proposed 

calibration method, a before-and-after calibration conflict analysis is presented in that 
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chapter. Chapter 6 summarizes the conclusion and highlights of the results and lists the 

immediate recommendations and concepts for future research.  

1.5 Limitations of the Study 

The limitations encountered through this study can be stated as followings: 

 Due to availability of the simulation platform, the proposed methodology is 

applied only to VISSIM as simulation platform. Upon the availability of the 

simulation platform, it is recommended to apply the proposed calibration method 

to test its generality. 

 The proposed method is compared only to GA, while it is worth including other 

search-based optimization methods commonly used in the literature (e.g. 

Simulated Annealing (SA)). This will be possible by replacing the optimization 

method as SA rather than GA in minimizing the differences between simulated 

and field measures of network performance(s).  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Microscopic Vehicular Simulation Model 

Most vehicular simulation models are computer implemented numerical models that 

simulate the transportation system by capturing the vehicle interactions at different levels 

of details (microscopic, mesoscopic, or macroscopic) to help with the planning, design, 

and analysis of transportation networks. Traffic simulation models can be useful when 

analytical methods could not be employed because of network complexity. Also, 

simulation models are useful when different scenarios have to be evaluated and analyzed, 

prior to real life deployment. Traffic simulation models can be classified based on the 

level of simulated details into microscopic, mesoscopic, and macroscopic. Within 

microscopic model, the network’s interactions are captured at the vehicle level (e.g. 

CORSIM, VISSIM). Macroscopic models focus on the aggregate characteristics of traffic 

stream such as average speed and density of traffic flow (e.g. TransModeler, 

SYNCHRO). Mesocopic models are a combination of the previous two types, by 

considering the interaction between the platoons of vehicles for network analysis (e.g. 

DynusT).  

A typical traffic simulation model consists of several sub-models developed to 

emulate different components of the simulation process. Examples of frequently-used 

simulation models are VISSIM, PARAMICS, CORSIM, and AIMSUN. VISSIM is used 

as the simulation platform in this thesis, and a brief description is presented here. 

VISSIM is a stochastic, behavior-based microscopic simulation software which is 

developed based on psycho-physical driving behavior theory of Wiedemann (PTV 
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(2011)).  The modeling approach assumes that the deceleration and acceleration are based 

on driver’s perception of speed and spacing between themselves and the vehicles in front. 

Stochastic distributions of vehicles speed and spacing replicates the individual driving 

behavior.  

VISSIM utilizes several models to control the different driving behaviors (e.g. car 

following, lane changing, lateral behaviour, amber behaviour, etc.). Each of these models 

is controlled by some adjustable parameters. For example the car following model 

considers that the driver can be in one of the four following states: 

 Free driving: no influence from the observable preceding vehicles. In this mode, 

the driver will drive at its desired speed not constant but oscillating around that.  

 Approaching: in this state, the driver adapts his own speed to the lower speed of 

the preceding vehicle by decelerating. The speed differentials of the two will be 

zero while the follower keeps its safety distance. 

 Following: the driver tries to keep the safety distance as constant as possible 

regardless of the acceleration/deceleration values. In this state also the speed 

differential of the vehicles oscillates around zero. 

 Braking: in this situation the safety distance of the follower falls below the safety 

distance and the follower vehicle applies braking to avoid collision until it reaches 

the minimum safety distance.  

The simulation model can model and analyze transportation systems under some 

specific constraints such as geometric configuration, type of users, traffic signals, etc.  

The performance measures generated by VISSIM can range from individual vehicle 

assessment to overall network performance; some examples of outputs are: individual and 



 7

aggregated speed, vehicles’ trajectories, travel time, queue length, emissions, node 

assessment and more. 

The links as the basic modeling component in VISSIM represent the physical 

transportation infrastructure. Vehicles can be routed throughout the network, from one 

link to another via the link connectors.  VISSIM network can include additional attributes 

and characteristics such as types of users, desired destinations and route choice, traffic 

signals, and data collection points, etc. 

As previously  mentioned, the microscopic vehicular simulation models use some 

adjustable parameters to replicate the real life traffic conditions. The process of adjusting 

the parameters is called calibration of vehicular microscopic simulation models. In the 

following chapter, a summary of the previous studies in the area are presented.  

2.2 Calibration Methods 

There are many studies that investigated the calibration of vehicular microscopic 

simulation models. This section presents a summary of the reviewed relevant studies in 

the area. 

Kim and Rilett (2007) proposed a sequential simplex-based method to calibrate 

vehicular microscopic simulation models. The proposed methodology was applied to 

TRANSIM and CORSIM models of an interstate highway in Texas to replicate traffic 

volumes at the link level given the origin-destination (O-D) matrix. Different traffic 

behavior parameters (e.g. lane changing, acceleration and deceleration rate, car following 

sensitivity parameters, etc.) were considered for calibrating CORSIM. For TRANSYM 

the following parameters were used in the proposed calibration procedure: the 
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deceleration probability, the lane-change probability, and the plan look-ahead distance. 

The authors concluded that the model calibrated with the proposed method leads to better 

results when compared to the usual manual calibration or to using the default parameters. 

The authors concluded that with the decrease of congestion, the performance of the 

proposed method is decreased when compared to default parameters and manual 

calibration method.  

Yu et al. (2006) proposed a GA-based approach for calibration of driving behavior of 

a VISSIM model developed for a case study of a corridor equipped with Bus Rapid 

Transit (BRT) in China. The authors used GPS collected speed data as a validation 

performance measure. The calibrated parameters were the waiting time before diffusion, 

the minimum headway (front/rear), the maximum deceleration, the accepted deceleration, 

the maximum look ahead distance, the average standstill distance, the additive part of 

desired safety distance, the multiple part of desired safety distance, and the distance of 

standing. The resulted set of parameters was validated by being exposed to VISSIM 

model of an intersection to replicate the traffic volumes. MATLAB GA toolbox was used 

to implement the GA algorithm. Based on the results it was concluded that the proposed 

approach can be used for practical purposes. To verify the versatility of the proposed 

method, the authors suggested the inclusion of more performance measures (e.g. delay, 

queue length, etc.) in the objective function as well as applying the method to other 

networks.  

Zhizhou and Jian ( 2005) also used GA-based optimization to calibrate driving 

behavior parameters of VISSIM for an expressway model in Shanghai. The authors used 

a sensitivity analysis to determine that the following driving behavior parameters 

significantly affect speed and volume of the network: the desired speed in reduced speed 
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area, the desired lane-change distance (DLCD), the average desired distance between 

stopped cars (CC0), the headway time (in second) that a driver wants to maintain at a 

certain speed (CC1), and the safety distance a driver allows before he intentionally moves 

closer to the car in front (CC2). GA optimization is implemented with the objective to 

minimize the root mean square error (RMSE) between the simulated and real values of 

speed and volume. The method was found to lead to more accurate results in comparison 

with the default set of parameters. 

Park (2006) applied the GA-based optimization to calibrate VISSIM model of a work 

zone parameters that impact the network travel time. The authors seek to minimize the 

difference between the simulated and real travel time. The following parameters were 

found to have a significant impact on the travel time: the speed distribution, the 

simulation time step, the waiting time before diffusion, the minimum headway 

(front/rear), the maximum deceleration, the reduction rate (meters per 1m/s2), the 

accepted deceleration (m/s2), and the number of observed preceding vehicles. It was 

concluded that the calibrated parameters resulted by applying the proposed method can 

successfully replicate the real life condition. 

To validate the proposed GA-based calibration method Park et al. (2006) applied it to 

a corridor equipped with 12 coordinated actuated signalized intersections in Virginia. 

CORSIM and VISSIM were used as simulation platforms. The corresponding driving 

behavior parameters were calibrated using the real travel time values.  The authors 

concluded that the method is applicable to complex traffic conditions. The method 

specifies the effective ranges of parameters by employing a Latin Hypercube Sampling 

(LHS) experiment design method.  
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Cheu et al. (1998) used GA to calibrate the FERSIM model of a 5.8 km section of the 

Ayer Ranjar expressway in Singapore. The GA-based optimization adjusted the network 

free flow speed and several driver behavior parameters. The method was validated by 

successfully minimizing the average absolute error between the simulated and field 

measured values of volume and speed. 

Besides GA-based optimization, other studies used Simulated Annealing (SA) as 

another search-based algorithm used for calibration of traffic models. For example Sun et 

al. (2005) employed SA to find an optimal combination of parameters of VISSIM model 

that affect the studied network. The authors investigated four weaving sections in 

Shanghai, China.  It was found that the calibration parameters are: the desired lane 

change distance, the waiting time before diffusion (WTBD), Wiedmann99 car-following 

parameters:  the average desired distance between stopped cars (CC0), the headway time 

that a drivers want to keep at a certain speed (CC1), and the safety distance a driver 

allows before he intentionally moves closer to the car in front (CC2). The SA attempted 

to minimize the difference between the simulated and real speed on the weaving sections 

by searching through the effective parameters. Calibrated model’s output values were 

found to match the speeds collected in the field.  

Liu, Yang and Sun (2006) proposed a hybrid method that combines SA and GA for 

microscopic calibration purposes. The hybrid model combines the two methods to reduce 

the probability of reaching to a premature optima as a solution and to have a faster 

converging to the optimal solution. The authors applied this method to an urban roadway 

segment modeled in VISSIM. The following parameters were found sensitive to 

calibration process: the emergency stop distance, the lane change distance, the waiting 

time before diffusion, the minimum headway, the number of observed vehicle, the 
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average standstill distance, the additive part of safety distance, and the multipliable part 

of safety distance. The calibrated parameters set were validated when the model could 

accurately replicate the observed real time traffic volume. In this study, the authors did 

not investigate how much faster the proposed method is when compared to using GA or 

SA solely.  

Yang and Ozbay (2011) proposed a numerical optimization approach to calibrate 

traffic simulation model for safety analysis purposes. The goal of the study was to 

calibrate a PARAMICS model of a highway to accurately replicate rear-end traffic 

conflict risk. The validation measure was the root mean square percentage error of traffic 

conflict, lane changing, traffic count and speed. The highway of study was located near 

Los Angeles and Next Generation Simulation (NGSIM) data was used. The authors used 

a stochastic gradient approximation algorithm that search for an optimal set of modeling 

parameters. Considering the traffic conflict, lane changing, traffic count and speed as the 

network’s overall performance, some parameters controlling lane changing, gap 

acceptance and car following behavior were found effective. The calibrated set was found 

to be more accurate when the results are compared to best guessed and default set of 

parameters.  

Kang et al. (2009) used the orthogonal experiment method to calibrate the parameters 

of VISSIM models of some intersections. The methodology has been devised in three 

steps: first the calibration target is determined, second the parameters to be modified were 

selected and, third the orthogonal experiment method was employed to adjust the ranges 

of parameters and to search for optimal set of parameters that best replicate the case of 

study. It was found that the following parameters affect the network in relation to through 

vehicles delays: the look ahead distance, the observed vehicle, the minimum headway, the 
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maximum deceleration, the average standstill distance, the additive part of desired safety 

distance, and the multiple part of desired safety distance. The method was found effective 

and practical by successfully calibrating the VISSIM model.  

By use of Latin orthogonal square experiment method, Jinggue et al. (2009) 

calibrated driving behavior parameters of VISSIM. The investigated case study was a 

weaving section in Shanghai, China. The effect of the parameters on network travel time 

were evaluated and the following parameters were found to be effective: the standstill 

distance, the headway time, the following variation, the desired lane change, and the 

maximum deceleration for cooperative braking. The methodology comprises of two steps: 

first the parameters that lead to accurate volumes are selected and next, among those, the 

sets that best replicate the real speed are chosen as the optimal solution. Based on the 

results of this study, it was concluded that the calibrated VISSIM environment is suitable 

for capturing complex interactions between real-world vehicles. 

Wang and Liu (2010) also implicitly utilized the orthogonal experiment for 

calibration purposes. The authors employed linear regression method using MATLAB 

toolbox for calibration of VISSIM driving behavior parameters when the travel time of 

the network was affected by that parameter. The model was set up and calibrated using 

the following collected data: geometry of the case study, signal timing, traffic flow, and 

entrance road delays as well as speed for three peak 15 minutes in morning, noon and 

afternoon. The following parameters were found effective in relation to the travel time of 

the network: the observed distance from the front, the observed number of vehicles from 

the front, the average stopping distance, the safe distance from the additive factor, the 

safe distance from the multiplication factor, the temporarily unconscious, the minimum 

headway (front/read), the maximum deceleration. The author measured the actual value 
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of these three parameters: the observed distance from the front, the temporarily 

unconscious, and the maximum deceleration. To reduce the number of combinations of 

parameters, the authors employed the orthogonal experiment design. The authors 

concluded that the calibrated model using the proposed method can replicate accurately 

the condition on real life. To verify the versatility of the proposed method, the authors 

suggested to apply the method to variety of facilities. 

Zhou et al. (2010) calibrated the parameters of a VISSIM model using a two-stage 

experimental optimization method for safety analysis purposes. The model was developed 

for a network of six intersections in Shanghai, China. For safety analysis, the authors used 

the Surrogate Safety Assessment Model (SSAM) software that takes the vehicles’ 

trajectories as input and returns the conflict indices calculated based on the trajectories. 

The number of conflicts, velocity of conflicting vehicles and network delay were 

considered as measures of effectiveness. The following parameters were found to have 

impact on the network performance measures: the observed vehicle, the average standstill 

distance, the additive part of safety distance, the multiple part of safety distance, the 

waiting time before diffusion, minimum headway, the safety distance reduction factor, 

the maximum deceleration for cooperation braking, the reduction factor close to stop line, 

the end downstream of stop line, the own acceleration of necessary lane change, and the 

trailing vehicle acceleration of necessary lane change. The authors investigated three 

different types of conflicts in their study: rear-end, lane changing, and crossing conflict. It 

was concluded that the proposed approach is feasible and valid to be used in future 

research. The authors also concluded that the proposed method is theoretically suitable 

for mixed traffic, but additional study is required in order to include the conflicts between 

motorcycles and pedestrians/bicyclists. 



 14

Dowling et al. (2004) developed a three step top-down framework for calibration of 

microscopic vehicular simulation model. First, the capacity of the bottlenecks of the 

network is calibrated, next the flows at the non-bottlenecks are calibrated; in this step the 

route choice parameters are calibrated and finally the network’s overall performance (e.g. 

travel time, delay, etc.) is calibrated to replicate the real life condition. At each step, 

global parameters are calibrated prior to link-level parameters. For capacity calibration 

the authors considered headway (mean headway for freeway and mean queue discharge 

headway for freeway) as a calibration effective factor. The calibration parameters used in 

the second level of the procedure are route choice parameters to better replicate the traffic 

volume on link level. For system performance calibration, delay, travel time and speed 

were considered as network’s overall performance. The proposed method was 

successfully applied to a study area of an urban arterials consisting of some intersections 

with known travel time, delay, queue and speed values. 

Fellendorf and Vortisch (2001) illustrated several methods to calibrate microscopic 

traffic simulation models.  The authors calibrated the models by using car-following and 

lane-changing driving behavior, speed distribution, and speed-flow diagrams. The authors 

showed that the calibrated microscopic model can reasonably replicate the observed 

interactions by applying the speed-flow diagram to American and German highway 

facilities. The authors concluded that a smaller time step would lead to more accurate 

simulations by extracting vehicle trajectories using different time resolutions. 

There exist three main criticisms against use of simulation models and the calibration 

in few studies of the reviewed literature: 
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 Simulation models are rarely validated while un-calibrated models would rarely 

leads to reliable results (Hourdakis (2003)). 

 Calibration of microscopic simulation models is a time consuming and 

computation intensive process (Burghout (2004), Ge (2012), Zhang (2008), and 

Wu (2002)). 

 There is no generic standard procedure that has been developed for calibration of 

microscopic vehicular simulation models (Ge (2012), Zhang (2008)). 

Calibration of traffic simulation models was also identified by  Park & Qi (2005) as a 

computation time intensive process and exhaustive search for optimal solution is 

oftentimes impossible and not an option to tackle calibration issue. This argument is also 

present in Zhang (2008), a study in which traffic volumes on link level of a PARAMICS 

model were calibrated given the Origin-Destination (OD) matrix. Burghout (2004) in his 

studies mentioned the current state of practice in calibration as processing time and 

resource intensive approaches. Ge (2012) mentioned that calibration of vehicular 

simulation models is very time consuming especially when large-scale networks are to be 

calibrated. Calibration is considered as the most time and computation intensive part in a 

simulation project in study of Zhang (2008). Wu (2002) believed that evaluating all 

proposed solution is the time consuming part of calibration process. In studies of 

Hourdakis (2003), an automatic calibration technique is introduced that can improve the 

optimization speed when compared to manual calibration.  

Use of un-calibrated models in analysis which rarely leads to reliable results, is 

another criticism against traffic simulation models applications (Hourdakis (2003)). Also 
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lack of standards by which the level of calibration, validation or verification of a model 

can be measured, is another issue mentioned by Hellinga (1998) and Burghout (2004). 

The following issues are the major problems identified from the reviewed literature, 

and based on them the rest of the thesis was developed: 

 One of the criticisms against the use of vehicular simulation models is that they 

are oftentimes used without prior calibration. This rarely leads to reliable results. 

 Because of the complexity that is associated with calibration of vehicular 

microscopic simulation models, search-based techniques are frequently used for 

calibration purposes. GA, a search-based optimization algorithm, is the one that 

has been used most frequently. Conflicting objectives and modifying calibration 

parameters simultaneously are the main causes of complexity in the calibration 

procedure.  

 Calibration of vehicular microscopic simulation models is considered as the most 

time consuming and computation intensive part of simulation projects. This issue 

has been mentioned in several studies as one of the concerns, but there are few 

studies that attempted to quantitatively compare optimization speed between 

different methods and tried to improve it. As was mentioned, evaluating proposed 

set of calibrated parameters is considered as the part that consumes time the most. 

 Based on the reviewed literature, there seems to be no study that attempted to 

assess the level of accuracy of the simulation results when different calibration 

methods are compared. 

 



 17

2.3 Surrogate Safety Measures 

This section presents a review of the existing studies related to one of the emerging 

safety analysis methods - surrogate safety measures analysis. 

The new advances in computation technology along with the drawbacks in traditional 

crash-based method, resulted in shifting to surrogate safety measures analysis known as 

conflict analysis.  The review of the following studies: Gettman & Head (2003), Saunier 

(2012), Gousios, et al. (2009), Ozbay, et al. (2008), Huang, et al. (2011), Chan (2006), 

Hyden (1977), and St-Aubin (2011) identified several limitations associated with crash 

data and the analysis. A complete definition of surrogate safety measures is presented in 

Table 1. 

 Crash-based analysis is a retroactive method to help with identifying possible 

countermeasure while the proactive methods are thought to be more efficient. 

 The crash events are rare and consequently, the collection of crash data is time 

consuming task and good data accuracy is often times difficult to achieve. 

 There exist high costs associated with field data collection. 

 The subjectivity that comes with the interpretation of field data, make them 

somehow unreliable because not all individuals perceive the safety conditions the 

same way. 

 It is oftentimes difficult to attribute a single cause to a collision event and that 

makes the analysis more complex. 

 Police and ambulance reports are oftentimes biased toward the responsibilities 

rather than causes of accident. Also the reports have different levels of details. 
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 Use of traditional crash data oftentimes lacks considering driver behaviors and the 

mechanism that causes the crash to occur. 

The concept of vehicle conflict was first proposed by Hyden (1977) to be used as an 

alternative for safety studies that have some benefits over traditional accident-based 

safety studies. The author proposed the time left to accident occurrence as an indicator of 

seriousness of the interaction if the vehicles continue at the same speed and direction of 

their movements. To validate the proposed surrogate safety measure, the correlation 

between accident data and field detected conflicts was investigated for 115 intersections 

in Sweden (in Malmo and Stockholm); the conflict data were collected by trained 

observers for seven hours for each intersection and accident data (only the injury accident 

data) for those intersections were collected for seven to eight years and a correlation was 

found between the collected conflicts and the crash data.  

The first generation of conflict-based analysis was based on the field observation of 

conflicts by trained observers. Because of subjectivity problems associated with observer-

based conflict detection, the practice in conflict analysis has changed to new generations 

which are conflict detection based on video data analysis and microscopic simulation 

models. The following section provides a brief summary of research and studies 

conducted using this application. 

Saunier and Sayed (2006), St-Aubin (2011), and Saunier (2012) developed and 

employed a new feature-tracking based methodology that analyzes the videos and extracts 

the vehicle trajectories. These trajectories can be used to extract a variety of information 

such as speed, surrogate safety measure, types of vehicles, etc. A software package called 

Traffic Intelligence was developed by the authors to implement the proposed 
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methodology. The following steps are followed in the software: first a coordinate 

transformation must be performed based on the image coordinates of control points and 

the corresponding real world coordinates; this process is called camera calibration. Next, 

the moving features are detected in the video; the detected features are then grouped to 

form an object based on common attributes; the trajectories for all objects are calculated 

and saved to a database for each object; further information can be extracted from the 

objects’ database. On the other hand, Gettman and Head (2003) developed a new 

methodology for calculating the surrogate safety measures from microscopic simulation 

models. This methodology was developed by the Federal Highway Administration 

(FHWA) and was validated by applying it to real scenarios. Based on the reviewed 

literature, the Time To Collision (TTC) has been extensively used for conflict detection. 

Gousios, Garber, and Liu (2009) applied two different definitions of surrogate safety 

measures, one is given as output of PARAMICS and the other is based on FHWA’s 

definition. The authors concluded that the FHWA’s definition of conflicts leads to a 

better correlation with the crash data. Conducting a sensitivity analysis, the authors 

calculated the best value of TTC that makes the highest correlation between the conflicts 

and collision. Also, the authors created a logarithmic relation between the crashes and 

conflicts. Ozbay et al. (2008) proposed two surrogate safety measures: 1) conflict severity 

and 2) conflict consequence severity. These are modified forms of previously defined 

surrogate measures.  PARAMICS is used as the traffic simulation platform in the study. 

The authors concluded that the modified forms of surrogate measures lead to a better 

correlation with observed crash data and moreover, the modified surrogate safety measure 

can capture more conflict situation that would not be possible to capture by use of the 

traditional one. This was explained by the fact that the method considers the 
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acceleration/deceleration of both follower and leader vehicles in the definition. Huang et 

al. (2011) investigated the correlation between observed conflicts and simulated conflicts 

that are extracted by Surrogate Safety Assessment Model (SSAM) providing the vehicles’ 

trajectories of VISSIM. The TTC was used as surrogate safety measure in the study. The 

authors concluded that the correlation between the simulated and observed conflicts is 

strong when traffic volumes are relatively high. Chan (2006) developed a new conflict 

index and validated it by applying it to three intersections in California equipped with 

driver assistance system for left turning vehicles. The author concluded that the proposed 

index provides more information regarding the severity of conflicts compared to gap 

acceptance and TTC measures. The method was validated by use of ranking method that 

ranks the scenarios considering crashes and conflicts and then investigates the similarities 

between the two rankings. El-Basyouny and Sayed (2013) also investigated the 

relationship between collisions and conflicts. A two-step methodology was proposed 

where the conflicts are predicted in terms of geometric and traffic related parameters and 

then a relationship is developed that predicts the collisions based on the conflicts. The 

authors applied the proposed methodology to several intersections in British Columbia 

and concluded that there is a significant relationship between conflicts and collisions, 

which allows for conflicts to be used as a surrogate safety measure. St-Aubin (2011) 

studied the safety impacts of highway ramp with restrictions using surrogate safety 

measures from video data analysis, traditional accident data analysis as well as applying 

cross sectional and before-and-after comparison methods. The strategy is intended to 

mitigate traffic safety concerns associated with poor ramp design in urban areas by using 

pavement-marking techniques. The strategy simply bans lane changings near entrance 

and exit ramps in order to encourage drivers to perform the lane changing maneuver 
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earlier. The author concludes that this strategy must be applied on a case-by-case basis 

because there are inconsistencies in the results across areas of study. 

The definitions of the surrogate safety measures are adopted from the above literature 

and organized in Table 1. 

Table 1: Surrogate safety measures description (adopted from Gettman & Head 

(2003)) 

Surrogate safety measure Description 
Time To Collision (TTC) Expected time for two vehicles to collide if 

they remain at their present speed and on 
the same path. 

Post Encroachment Time (PET) Time lapse between end of encroachment 
of turning vehicle and the time that the 
through vehicle actually arrives at the 
potential point of collision. 

Deceleration Rate (DR) Rate at which crossing vehicle must 
decelerate to avoid collision. 

Speed Differential (SD) The speed differences between the two 
vehicles while they are on course of 
collision. 

  

2.4 High Occupancy Vehicle (HOV) lanes 

The proposed calibration methodology in this thesis is applied to high-occupancy 

vehicle (HOV) lanes. In this section a brief introduction of HOV lanes is presented.  

Any auto vehicle carrying two or more persons at the same time can be classified as 

High Occupancy Vehicle (HOV). Examples of HOVs are private vehicles used by 

commuters for carpooling and other purposes, public transportation vehicles, taxis, etc. 

On the other hand, any vehicle carrying only the driver as the sole occupant is identified 

as a Single Occupancy Vehicle (SOV). If selected lanes along a roadway are specifically 
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designated for the exclusive use of one or more HOV vehicle types, they are referred to as 

HOV lanes. Otherwise, all the other lanes along a roadway will be referred to as General 

Purpose (GP) lanes. 

For safety and regulation purposes it is important to provide road users with adequate 

signage with respect to HOV facilities.  The identification of HOV lanes is commonly 

done with a white diamond sign placed at various locations along the road (Figure 1). 

Although the geometric features of the HOV lanes may be similar to that of the GP lanes, 

the design and traffic control and operations of HOV lanes may be different from one 

type of lane to another.  For example, with respect to bus-lanes, which is one type of 

HOV lane, because the vehicles allowed to use the lane are operated by professional 

drivers, different geometric characteristics (Jang, et al. (2009)) could be used for the 

design of these lanes (e.g. sight distance, speed, curve radius, etc.).  In addition, other 

specific design elements can be included in the access-egress ramps and/or shoulders as 

illustrated in Figure 2 and Figure 3 (Dehghani, (1990)). With respect to regulation and 

operations, the HOV facilities might benefit from additional enforcement technologies 

ranging from different ITS deployments to more active presence of law enforcement 

patrols (MTO (2012)). 

The HOV lanes can be classified based on four criteria: the type of access/egress, the 

operational treatment, the type of separation, and the functional classification based on 

the road type. The first criterion assesses the HOV facilities as either with continuous or 

with limited access. The HOV facilities with continuous access allow the access of 

eligible vehicles at any location the designated lane(s).   
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Figure 1: HOV lane identification and related signs (MTO (2012)). 

 

Figure 2: HOV lane with continuous access, (Jang, et al. (2009)) 

 

 

Figure 3: HOV lane with limited access (Jang et al. (2009)) 
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On the other hand, HOV facilities with limited access are built to provide vehicle 

access at specific locations for ingress and egress (Jang et al. (2009)). To provide this 

type of HOV lanes, one has to consider a certain degree of separation from the GP lanes. 

The second classification criterion focuses on the type of separation between the 

HOV and GP lanes, and places a HOV lane into one of the three groups: separated by a 

special pavement marking line, buffer separated, and physical barrier separated HOV 

lanes. Examples of possible designs are shown in Figure 4 and Figure 5. It can be seen 

that different types of separation have different benefits as well as drawbacks. For 

example, separation with just pavement marking is not recommended when road 

operators expect high speed differentials between the vehicles on the HOV and the GP 

lanes. On the other hand, a physical barrier is more costly and it may raise issues when 

emergency vehicles need to access the facility. 

The third criterion considers the operational treatment and divides HOV lanes into 

four groups: concurrent, contraflow, reversible and two-way flow operations. Concurrent 

HOV lanes allow their users to move in the same direction as the traffic flow on the 

adjacent GP lane (Figure 4), as opposed to the contraflow HOV lanes that are designed to 

allow vehicle movements in the opposite direction of traffic flow along the GP lanes 

(Figure 5 and Figure 6). Usually the contraflow solution used due to constraints related to 

land development. The third type includes the reversible HOV lanes that allow vehicles 

movements in the peak direction of the GP lanes, alternatively in the morning and the 

afternoon peak periods (Figure 7). It can be seen that this design is also warranted when a 

limited right of way is available (e.g. bridges, mixed residential/commercial zones, etc.). 

The last type includes the two-way HOV lanes which are typically designed in the middle 
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of the roadway to allow movements on HOV vehicles on both directions along two or 

more adjacent lanes (MTO (2012) and Ronglong (2010)). 

Figure 4: Buffer-separated 
Concurrent  HOV     lane (Haljackey 

(2010)) 

 

Figure 5: Barrier-separated contraflow 
HOV lane (Turnbull (2003)) 

 

Figure 6: Contraflow HOV lane 
(Turnbull (2003)) 

 
 
 

Figure 7: Reversible HOV lane on the 
Champlain Bridge in Ottawa(Ball 

(2012)) 

 

Lastly, the fourth criterion categorizes the HOV lanes using the functional 

classification of highways. Hence, there are two types of HOV facilities: freeway and 

urban. In most settings the urban HOV lanes are deployed to promote the public 

transportation services and are placed at the right side.  However, specific express lanes 

(often bus-only) may be implemented in the middle of the roadway to avoid safety issues 

related to speed differentials or right-turn movements at driveways or intersections 
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(Technical Committee on Public Transportation Facilities Design (2004), MTBC (2012)). 

Nevertheless most of the HOV lanes along the freeway are placed on the left side. For 

example, the barrier-separated HOV lanes which are usually located in the median 

(Technical Committee on Public Transportation Facilities Design (2004)) as well as most 

concurrent flow HOV lanes along freeway.  However, interactions between HOV and GP 

lanes should be analyzed because of their influence on safety and travel-time reliability 

(Technical Committee on Public Transportation Facilities Design (2004)). In some cases 

where these facilities are used by buses on relatively short distances, the reserved lanes 

can be located on the right side of the traffic flow to allow for a more cost effective 

solution in addressing the access/egress design issues (Figure 8 and Figure 9).  

Figure 8: Bus-lane on the right-side 
of a freeway near Grenoble (France) 

(Google ( (2009)) 

Figure 9: Bus-lane on the right-side of the 
exit of a freeway near Grenoble (France) 

(Pollet, et al. (2005)) 

 
 

Based on the reviewed literature, it can be said that there exist no definitive 

guidelines to identify which safety elements should be considered for HOV design. 

Different HOV deployments should be considered (i.e. adding new lanes, converting GP 

lanes, using shoulders as reserved lanes, or simply re-aligning the existing roadway by 

reducing the width of the GP lanes). For each of these solutions there are various road-



 27

safety related problems, and many of them are investigated in different studies (Rees 

(2002); Farnsworth, et al. (1993) ; Case (1997) ; Golob et al. (1990) ; Jang, et al. (2009) ; 

Lee, et al. (2007)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28

CHAPTER 3: METHODOLOGY 

This thesis proposes a calibration methodology for traffic simulation models that 

employ the learning abilities of Artificial Neural Networks (ANNs) and optimization 

attribute of Genetic Algorithms (GAs). In this chapter the two aforementioned methods 

are explained. The proposed methodology is also presented. In addition, this chapter will 

also explain the GA-based calibration method in anticipation of the analysis comparison 

presented in the subsequent chapter. 

3.1 Artificial Neural Network (ANN) 

In the third step of the proposed methodology, an ANN is applied for prediction 

purposes. Artificial Neural Networks are mathematical structures built to emulate the 

behavior of the brain cells. The network is modeled via different transfer functions which 

are structured into layers and interconnected through weighted links that emulate the 

different degrees of connectivity in the brain cells. There exist a variety of structures 

developed for the artificial neural networks. One of the most commonly used and 

simplest structures proposed for the use of neural networks is the feedforward structure 

that is used in this study as well (Figure 10). The neurons in this structure are categorized 

into three different layers: the input layer, one or more hidden layers, and the output 

layer. The connections in this structure are directed forward from input layer to output 

layer. The structure itself forms a crude neural network which is nothing but sets of 

neurons interconnected through layers with unknown biases and weights. These weights 

and biases must be adjusted such that the errors between the ANN output and the 

observed output values must be minimized. This process is called neural network 
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training. There exist many different algorithms developed for ANNs’ training. The most 

common type is the backpropagation algorithm, which is used in this study and explained 

in the following section. 

 The backpropagation algorithm is a method used extensively for neural network 

training purposes. The algorithm is employed in this study as well. Backpropagation 

assigns some random values to biases and weights initially. The algorithm then adjusts 

the weights and biases in each iteration by exposing the network to the historical inputs 

and corresponding outputs with the purpose of minimizing the difference between 

predicted and real outputs. The new weights (biases) are functions of previous weights 

(biases), errors and the derivation of errors with respect to each unknown parameter 

(either biases or weights). This procedure continues until one of predefined termination 

criteria stops the process. The network then is prepared to be exposed to new input sets of 

parameters for prediction purposes (Bryson and Ho (1975); Werbos (1974); Alpaydin 

(2004); Rumelhart et al. (2002)). 

The ANN functions in two modes: learning and recalling. Learning can be defined as 

the process of adjusting the weight and biases by exposing the untrained network to 

predefined sets of inputs and corresponding outputs with the goal of minimizing the 

difference between predicted and real outputs. Recalling is the process of exposing the 

trained network to a set of “unseen” input. The output predicted from this new input data 

is compared with the corresponding observed output and the quality of the trained 

network is evaluated (Zayed and Halpin (2005) and Hegazy and Moselhi (1994)). 

ANN has been extensively used for data mining, prediction and pattern recognition, 

and other applications. ANNs have been successfully used when the relationship between 
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the inputs and the outputs is not known or is difficult to model using analytical models 

(Elwakil (2011); Demuth, Beale, and Hagan (2009)).   

 

 

Figure 10: Schematic diagram of a multi-layer feed forward (Zhu, et al. (2007)) 

In recent years ANNs have been widely used in area of transportation and traffic 

engineering mainly for two types of applications prediction and data processing. Here are 

few examples presented for illustrative purposes. Alecsandru and Ishak (2004) used the 

neural network for short term prediction of traffic speeds. Rouhieh (2010) used the neural 

network method to make a compromise between safety and performance of an isolated 

intersection by modifying signal timing configuration. Yi et al. (2010) developed a 

clustering neural network for safety evaluation. The motivation of using this model was 

to overcome the complex relationship between the accident data and the considered 

parameters. Shen et al. (2008) used neural networks to combine several road safety 
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indexes into a unique composite road safety indicator. Juan et al. (2010) also employed 

backpropagation neural network for safety assessment of a two-lane roadway.  

In this study an ANN is employed first to learn the relationship between a given set 

of parameters and the corresponding simulation outputs and later be used for prediction 

purposes. 

3.2 Genetic Algorithm (GA) 

The reviewed literature shows that GA is frequently used for vehicular microscopic 

simulation calibration. In this study GA is used to implement the optimization process 

associated with calibration procedure.  

GAs are part of evolutionary computing method, developed by Rechenberg in 1960, 

which has the basis on the Darwinian theory of survival of the fittest. The method was 

further developed by Holland (1975) into an optimization method. The method originated 

from the idea of mimicking the natural evolution. In other words, GA solves the 

optimization problems with step-by-step evolutionary approach in which best solutions 

are selected to help find better solutions for next steps. Thus, the solution at the final step 

is the winner or best survivor (Obitko (1998) and Deb (2001)). The GA-based 

optimization is described next. 

Initially a randomly produced set of population is proposed by generating random 

individuals to start the process with. This population thereafter evolves toward the better 

generation by means of modifying properties of population while the algorithm proceeds. 

At each iteration the individuals are evaluated in terms of performance by being exposed 

to a predefined fitness function; this assigned performance provides the basis for selection 
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and migration to the next step by employing the genetic operators (selection, crossover, 

and mutation). The algorithm comprises in applying recurrently the following stages for 

which the schematic view is presented in Figure 11 (Haupt & Haupt (2004)):  

1. Generate initial population (Initialization) 

2. Evaluate fitness of population  

3. Apply selection, crossover, and mutation operators. 

4. Generate new population and evaluate its fitness. 

The genetic operators and coding are explained in the following sections. 

3.2.1 Coding 

The genetic algorithm comprises of two spaces, in one space the evaluation of the 

individuals is conducted and in the other, the genetic operations are applied to individuals 

to evolve them toward the fittest solution. Coding is the process of assigning the values to 

gens. The outputs of coding process are chromosomes expressed by row of 0 and 1. The 

binary codes are representative of real numbers which are converted through a predefined 

mapping relationship. The area to be explored and searched is converted to binary forms 

and all operations take place in that domain. On the other hand, decoding converts the 

binary chromosome to real values; this process prepares the chromosome for performance 

evaluation process which take place in the real space. 

 



 33

Start

Generate
initial

population

Stopping
criteria ENDYES

NO

Generate new population

Genetic operations

Selection

Crossover

Mutation

Evaluate the
proposed

solution(s)

 

Figure 11: Schematic diagram of GA (adopted from Turban (1990)) 
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3.2.2 Selection  

Selection is the process of selecting the best individuals in the population to be used 

to form new generation. A generic selection algorithm follows the following steps: 

1. All individuals are evaluated by being exposed to fitness function and all the 

assigned fitness values are normalized.  

2. The individuals are ranked with respect to their performances (fitness values).  

3.  The cumulative fitness values of each individual is calculated (fitness value of the 

individual plus all former individuals of the ranking). 

4. A random number between 0 and 1 is generated. 

5. The first cumulative fitness value bigger than the generated random number is the 

selected parent. 

These steps have to be repeated until a predefined number of individuals are selected 

for reproduction of the next generation. This collection of new individuals is called 

mating pool. 

3.2.3 Crossover 

Crossover is the act of taking more than one parent solution and reproducing a child 

solution by mixing the parents’ properties. There exist many different methods developed 

for crossover implementation. The one that is widely used and the most basic is one-point 

crossover which is explained here.  In this method a single point in both parent 

chromosomes is chosen randomly and the genes before and after that point are swapped 
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between the two. Error! Reference source not found. Figure 12 schematically presents 

he explained technique and makes a better understanding of the technique.   

 

 

 

 

 

3.2.4 Mutation 

Mutation is the process of altering the value of a property (gen) which is randomly 

selected in chromosome. Mutation can cause noticeable change in the solution. This 

allows GA to search globally for the optimal solution and not get stuck in local optima. 

Mutation rate in the algorithm is defined by user. High rate of mutation causes some 

deficiency in wisely searching for local optima and make the algorithm a random search 

instead.  

To provide a better understanding about the mutation process, two of the developed 

methods for mutation are presented here. Flip Bit is a mutation method that randomly 

selects a gen in the chromosome and flips the bit value. As an example, 1 0 1 0 1 0 1 is 

transformed into 1 0 1 0 1 1 1. Non-Uniform is another mutation method that adjusts the 

mutation rate while the algorithm proceeds; initially it allows high rate of mutation and 

consequently more freedom to search the domain. The mutation rate is decreased as the 

algorithm proceeds. 

Figure 12: One point crossover illustration 
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3.3 GA-Based Calibration Methodology 

As the proposed methodology is later compared to the GA-based only calibration in 

terms of optimization speed and accuracy, the GA-based calibration method is briefly 

explained in this section. Figure 13 illustrates the flowchart of GA-based calibration 

method. The procedure comprises the steps below: 

1. First the network has to be coded into the simulation platform which is VISSIM in 

our case. This includes the geometric configurations and collected traffic data 

(volumes, speed, types of vehicles, etc.).  

2. Next step is to determine what the parameters of simulation platform are that 

affect the network performances of the model. As was mentioned, there are two 

different ways for effective parameter detection, one is based on experts’ opinions 

who have the knowledge about the area of study. The other approach which is 

employed in this study is to conduct a sensitivity analysis that investigate the 

changes in network performance while keeping constant some parameters and 

changing the value of other(s). 

3. In this step the GA must be integrated with the simulation platform using the 

existing interfaces such as Application Programming Interfaces (API) or 

Component Object Model (COM) interfaces. In this study VISSIM COM 

interface is used to integrate GA with simulation platform. Figure 14 presents a 

schematic diagram of how the simulation platform can be controlled through the 

COM interface and how the GA can be integrated into simulation platform. 

4. In the next step, the GA is employed to find the optimal set of effective 

parameters that best replicate the performance on real life. The algorithm proposes 
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some sets of the calibration parameters and each set is evaluated by the simulation 

platform. 

5. In this step, the termination criteria are tested and the calibration process will stop 

only if one of termination criteria (number of generation, fitness limit, time limit, 

etc.) is met. 

6. Once the optimization process is stopped, the resulted parameters must be 

validated against field observation(s). It means that the parameters must be 

plugged to the model and the outputs of simulation with different seeds be equal 

or have ignorable difference with observed network performance value(s) in the 

field. Otherwise, the parameters of GA must be modified and the procedure be 

followed from step 4. 

These steps will be followed until a desired set of parameters is achieved upon which 

the model can accurately replicate the real-life traffic conditions.  
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Figure 13: Flowchart of GA-based calibration method 
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Figure 14: Schematic diagram of COM interface (adopted and modified from Cheu, 

et al. (1998)). 

3.4 Proposed Methodology 

Through investigating the current state of practice of vehicular microscopic 

calibration model, it was concluded that the most time consuming part is when repetitive 

simulation runs are required to evaluate a proposed set of parameters. To improve the 

optimization speed of calibration, one possible solution is to reduce the number of 

simulations without the negative impact on the results’ accuracy. A faster procedure that 

could provide the network simulated output would be ideal. The intuitive complexity 

associated with the simulation platforms and the developed model, along with the intense 

computations required for large scale networks suggest that ANNs could be a good 

candidate for the required task. ANNs are capable of detecting the complex relationship 

between the inputs and corresponding outputs. Thus an ANN technique is employed to 

capture the relationship between the input parameters of the simulation model and the 

simulation results. The purpose is to use the trained ANN for predicting simulation 

outputs rather than using the time consuming simulation model itself. 
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The proposed methodology synergistically combines the application of ANN and GA 

to get advantages of learning capabilities of ANN and optimization abilities of GA to 

calibrate vehicular microscopic simulation models. The GA application is employed to 

minimize the difference between the simulated network performance which is predicted 

by the trained ANN and the real network performance. The methodology is thoroughly 

explained in the following steps in accordance to the flowchart of the methodology which 

is illustrated in Figure 15. 

1. First the network must be coded into the simulation platform. This includes all the 

collected data with regard to geometry (e.g. number and lanes, radius of curves, 

etc.) and traffic data (volume, speed, type of vehicles, etc.). 

2. Next step is to find out what controlling parameters of simulation model affect the 

model in terms of network performance. In accordance to the reviewed literature, 

there exist two types of approaches to address this issue. First is to refer to 

experts’ opinions that have the knowledge about the area of study (Hellinga 

(1998)) and second is to conduct a sensitivity analysis. Sensitivity analysis 

investigates the changes in network performance while keeping constant the effect 

of some parameters and changing the values of other(s) (Zhizhou and Jian ( 

2005)). In the proposed methodology, the second alternative is chosen to detect 

the effective parameters. 

3. The ANN application is employed to capture the hidden and complex relationship 

between the effective parameters and corresponding simulated network 

performance. The ANN needs to be trained given the effective parameters and the 

corresponding outputs. An experiment needs to be designed to provide the inputs 

and outputs for ANN training process. Since the ANNs do not consider the inter-
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relationship between the input parameters, the inputs must be un-correlated.  Latin 

Hypercube Sampling (LHS) is employed to design the experiment. LHS takes the 

ranges of parameters and the number of sets of parameters to be designed and 

provides the designed sets such that the whole ranges of all parameters are 

covered and there is the least correlation between the parameters (Lophaven, 

Nielsen, and Søndergaard (2002)). Each of these sets has to be evaluated when the 

simulation model is run upon them to get the corresponding output. 

4. The next step is to test whether the distribution of simulation results include the 

real value or not. Based on the studies of Park (2006), if not, some modifications 

have to be applied to the ranges of effective parameters.  

5. After successfully designing the parameters and evaluating the corresponding 

outputs, they must be inputted to neural network for training purposes. The inputs 

to the network are the designed sets of parameters and the outputs are the 

corresponding simulation output to each set. The performance of the network is 

evaluated based on the difference between the real and predicted values. The 

training process will stop when one of termination criteria (e.g. number of epochs, 

number of fails in validation measure improvement, etc.) is met. Changes in the 

training parameters can change the performance; this can be used when higher 

level of accuracies are required. Once the neural network is properly trained, it 

can be used further for prediction purposes.  

6. In this step, GA is employed to search for the optimal set of effective parameters 

upon which the simulation model can replicate the real-life traffic conditions. The 

objective function to be minimized by GA is defined as difference between real 

performance measure of network and predicted network performance which is 
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calculated by the trained neural network. The GA stops searching for optimal 

solution when one of its termination criteria (number of generation, fitness limit, 

time limit, etc.) is met. Then the simulation model is run upon the calibrated set of 

parameters and the network performance(s) is evaluated for different seeds. This 

collection of network performance values is later used for validating the results of 

calibration process. 

7. The proposed set of calibration parameters by GA must be validated with respect 

to replicating the real-life traffic conditions. To this purpose, the output values of 

network performance(s) collected in previous step must be statistically equivalent 

to the field observed network performance(s). The average absolute relative errors 

are calculated to test the equality of the two. If higher level of accuracy is 

required, changes in the GA parameters helps. 

This process will continue until the desired set of parameters that replicate 

accurately the real-life traffic conditions is achieved. The main point is that 

utilizing the trained ANN instead of the simulation runs for prediction purposes 

can drastically expedite the calibration process. 
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Figure 15: Flowchart of the ANN-GA calibration methodology 
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CHAPTER 4: DATA COLLECTION AND PROCESSING 

This chapter includes information about the necessary data for this research, the 

available sources and the techniques used to process the collected data. 

4.1 Scope of Data Collection 

To replicate the observed traffic conditions, it is necessary to use traffic data from the 

study area. This research study used the data collected as part of a Ministère des 

Transports du Québec (MTQ) project that investigates the safety of high-occupancy 

vehicle lanes (HOV) lanes in province of Québec. However, the microscopic simulation 

calibration methodology is independent of type of transportation facility used. In this 

study two study areas were used: Highway A-15 and A-25 in Québec, Canada for which a 

description is presented in Chapter 5. 

There exist two different data sources needed to model the selected study areas using 

VISSIM:  highway geometric alignment information (e.g. number of lanes, radius of the 

curves, width of lanes, etc.) and traffic operations data (e.g. traffic flow volume, types of 

vehicles, distributions of vehicles’ speed, etc.). 

The following resources have been used for compiling the data necessary to build the 

traffic simulation models: Google Maps ® and Google Earth ® publicly available 

versions, and information about HOV lanes in the Montreal metropolitan area available 

from MTQ.  In addition, vehicular traffic flows at the selected HOV lanes were video 

recorded and analyzed. 

Google Maps ® and Google Earth ® were used to extract geometric characteristics 

of the selected study areas. Characteristics such as number of lanes and type of separation 
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of HOV lanes are extracted by use street view feature of Google Maps and they are 

further verified by the dataset provided by MTQ. For traffic data, hours of video data 

were collected from the field. Two different camera were used for data collection. One 

camera was the Vivotek IP8151 camera with 800*600 pixels resolution and mounted on 

top of a 25 ft (7.62 m) pole. The other camera used was the GoPro Hero3 with a 

resolution of 960*720 pixels and that was mounted on the barrier of the road using the 

camera’s handlebar.  

4.2 Video Data Analysis Technique 

Video data analysis was conducted using the feature-based tracking open-source 

software developed by Saunier (2012).  To extract the traffic information from the 

processed video recordings, the following procedure was followed.  

First, the calibration of the video camera was performed. To determine the vehicular 

change in position over time, vehicular headway and other similar information, one needs 

to transform 2-D image space into 3-D real space. Therefore, some control points with 

known real and the corresponding image coordinates were identified. In this camera 

calibration step a transformation matrix, called homography-matrix, was calculated based 

on real and image coordinates of known control points. Thereafter, the homograohy-

matrix was used to transform coordinates of all objects from the image space to the real 

space. This transformation was applied to all the frames of the recorded video. 

After the camera calibration was completed, an image masking was defined.  This 

was necessary to process separately the vehicular traffic on individual lanes as well as to 
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help eliminate the noises in the surrounding environment. This mask was also applied to 

all the recordings. 

Once the coordinates were transformed to the real space and the mask was defined on 

the area of interest, the moving points were detected when the developed algorithm 

proceeded through the video frames. The detected moving points are called features. The 

results were saved into a database and further analysis was implemented on basis of the 

built database.  

The database comprises all the moving points including oftentimes multiple features 

in a single moving object. These points are required to be joined to form a uniform object 

because otherwise later the extracted trajectories would not reflect the realistic 

presentation of moving objects. The developed algorithm which is based on finding the 

similar pattern in the detected object (e.g. having the same speed while being so close) 

joined the points to form the objects. The resulted objects were also saved to the database.  

The database to this step comprised the detected objects and the corresponding real 

coordinates through time. Therefore, the trajectories were extracted from the database by 

simply tracking the coordinates for each objects in time. The trajectories were calculated 

and saved into the database consequently. 

Trajectories are an informative source from which variety of information can be 

extracted about the objects. Information such as speeds, safety indices (e.g. TTC, PET, 

GT, etc.), acceleration, etc. are some examples. In our research group a Python script has 

been developed to extract the speed from the video data.  

The advantage of the video processing software used in this thesis is that it falls 

under the open source category and one can adjust its processing abilities to fit the 

specific needs of the processed video. However, the software is not yet a complete, 
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versatile traffic analysis tool.  For example, it is known to that the results are less accurate 

when the analyzed videos contain stop-and-go traffic conditions. However, to avoid these 

problems the data used for processing was carefully selected and the results were 

manually validated to remove the records that indicate vehicular speeds that are 

unrealistic when compared with observed conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 48

CHAPTER 5: SIMULATION RESULTS AND ANALYSIS 

To demonstrate the feasibility of the proposed calibration method for microscopic 

vehicular traffic models, two real-world study areas were used.  The two study areas are 

selected from the Montreal highway network and each of them includes a reserved lane 

section. The two cases are different in the type of access. 

 In this chapter, first an introduction is provided with detailed information about the 

two study areas. Next, for each of the two case studies the VISSIM model is developed 

and explained in preparation for calibration methodology applications.  First the proposed 

ANN-GA based calibration method is employed and second, the comparison GA only 

calibration method is applied to the same two case studies. Finally, the results of both 

calibration methods are compared based on the results’ accuracy and optimization speed 

criteria.  

5.1 Location and Traffic Operation Characteristics 

This section presents an introduction about the location and traffic operation 

characteristics of each of the cases of study. 

5.1.1 Highway A-25 

Highway A-25 is a three-lane freeway located in Lanaudière region of Québec with a 

total length of about 49 km connecting Longueuil to east Montréal. The posted speed 

limit through the highway is 60-100 km/hr. The A-25 section has a 4-km long reserved 

lane for buses, taxis and passenger vehicles with two or more occupants open specifically 
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during the morning and afternoon rush hours. The access to the HOV lane is limited and 

is separated by pavement markings.  

For geometric data Google Earth® and Google Maps® were used to find the number 

of lanes and approximate lane width; one snapshot of Google Maps® of the area was later 

used for geometric modeling of the case study into VISSIM. MTQ inventory of reserved 

lanes was used to verify this information. Video analysis technique was employed to 

collect the traffic data from the area of study. Figure 16 presents a map of the studied area 

and identifies the data collection point located on pedestrian overpass.  The location was 

selected for two main reasons. First, it gives a very good, wide spread view along the 

direction of traffic. Second, the camera was set up on an overpass pedestrian bridge and 

was not visible to the drivers, therefore, it is expected that it had no effect on drivers’ 

behavior (i.e. when drivers observe that monitoring devices are present, they adjust their 

behavior and the collected traffic data becomes less representative of the prevailing 

conditions). The data was collected from 6AM to 12PM for the south direction and from 

12PM to 6PM for the north direction. Only the peak-hour was used in this study. These 

hours of data collection include HOV-lane operation hours and when they are open to all 

types of vehicles. This allows for a comparison between driving behavior along the HOV-

lane versus the driving behavior along the non-HOV operation. The results of data 

collection are summarized in Table 2. 
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Figure 16: Map and data collection point of Highway A-25 

 

Table 2: Summary of characteristics of the Highway A-25, both directions 

 A-25(North Bound) A-25(South Bound) 
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C
ha

ra
ct

er
is

tic
s 

Peak hour 5-6 PM 7-8 AM 
Number of lanes 2 GP lanes+1 HOV lane 2 GP lanes+1 HOV lane 

Placement of HOV lane Outermost lane (right side) Outermost lane (right side) 

Type of Access Limited access Limited access 
Length of HOV-equipped 
section (Km) 

4  4 
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fic
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ha

ra
ct

er
is

tic
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HOV Vol. (veh/h) 1158 807 
GP Vol.(veh/h) 2715 2294 
Total Vol. (veh/h) 3873 3101 
Speed limit(km/h) 60-100 60-100 
HOV average speed± 
Standard deviation(km/h) 

63.4±7.24 85.3±13.08 

GP average speed± Standard 
deviation(km/h) 

42.9±11.27 61.4±18.78 
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5.1.2 Highway A-15 

Highway A-15 is located in western Québec that connects A-87 at border of Canada 

and US all the way to Sainte-Agathe-des-Monts. The A-15 is equipped with about nine 

kilometers of continuous reserved lane accessible to passenger vehicles with at least two 

occupants, taxis, and buses during the peak hours. The type of separation is by means of 

pavement marking and the maximum permitted speed along the corridor is 100 km/h.  

 Similar to the previous study area, the same data sources were used to build the 

network (i.e. Google Maps® products and MTQ highway inventory). Video recordings of 

traffic at the location identified in Figure 17.  The data was collected from 14-17:30 for 

north bound direction on two different weekdays. These hours of data collection include 

HOV-lane operation hours and when they are open to all types of vehicles. This provides 

the opportunity to make a comparison between driving behavior of HOV-lane operation 

and non-HOV operation in future research. The results of data collection are summarized 

in Table 3. 

Figure 17: Map and data collection point for Highway A-15 
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Table 3: Characteristics of Highway A-15, North 

 

5.2 VISSIM Model Development 

The following steps have been followed to model the areas of study with VISSIM. 

First, a snapshot of Google Maps® was used to geometrically define selected highway 

segment into VISSIM coordinates system (e.g. the number of lanes, the lanes width, lanes 

usage restriction, etc.). Second, the collected and processed vehicular traffic input from 

the study area (i.e. traffic volume, traffic mix and speed distribution) were coded into the 

simulation model. Finally, for the purpose of determining the performance measures of 

the highway segment several data collection sensors (i.e. virtual traffic detectors) were 

defined in the model. To be able to properly calibrate the microscopic simulation model, 

the virtual traffic detectors were placed at the same location where the vehicular traffic 

was video-recorded.  The network performance measure used for this case study was the 
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Peak hour 3-4 PM 
Number of lanes 3 GP lanes+1 HOV 

lane 
Placement of HOV lane Innermost lane (left 

side) 
Type of Access Continuous Access 
Length of HOV-

equipped section (Km) 
9 
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C
ha

ra
ct

er
is

tic
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HOV Vol. (veh/h) 1551 
GP Vol.(veh/h) 4069 

Total Vol. (veh/h) 5620 
Speed limit(km/h) 60-100 

HOV average speed± 
Standard deviation(km/h) 

120.9±12.65 

GP average speed± 
Standard deviation(km/h) 

109.2±16.06 

  



 53

average vehicular speed. The model was calibrated separately for the southbound and 

northbound directions for the corresponding peak hours, morning and afternoon, 

respectively. 

5.3 Calibration of the Model Using the Proposed Methodology 

The steps of the developed calibration methodology were applied to the defined 

VISSIM model of the A-25 and A-15 highways. First, a sensitivity analysis is conducted 

to identify the parameters that have the most significant impact on the model’s 

performance measure (i.e. average vehicular speed). A total number of 150 distinct 

simulations were ran. All the runs were performed automatically via a developed Visual 

Basic program using the VISSIM’s COM interface module. The program changes the 

values of one parameter at a time and accumulates the average speeds from the virtual 

traffic detectors. A visual inspection of the plots similar to the ones shown in Figure 18 

and Figure 19 helps to determine whether a model parameter affects significantly the 

average vehicular speed as it changes its values in the specified range. From Figure 18 

and Figure 19 it can be seen that the network performance (average speed) is not 

changing with variations in the CC8 values, while it is sensitive with the changes in CC1. 

Therefore, it can be concluded that under the tested conditions, CC1 is an effective 

parameter on the network performance measure while CC8 has no effect on network 

performance. Table 3 lists the parameters determined to have a significant effect on the 

model’s performance and their definitions. 
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Figure 18: Sample illustration of sensitivity analysis for A-25 
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Figure 19: Sample illustration of sensitivity analysis for A-15 
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Table 4:Definition of effective parameters (adopted from PTV (2011)) 

Effective Parameters Definition 
CC1 The headway time that the driver wants to keep, the more the 

value is, the more cautious the driver is. 
CC2 Following variation, restricting the longitudinal oscillation* 

or safety distance variation. 
CC4 CC4 and CC5 control the speed differences in the following 

state. Smaller values results in more sensitive reaction of 
drivers.  

CC5 CC4 and CC5 control the speed differences in the following 
state. Smaller values results in more sensitive reaction of 
drivers. 

CC6 Influence of distance on speed oscillation* while in following 
process. Larger values lead speed oscillation with increasing 
distance. 

CC7 Actual acceleration during the oscillation process. 
*Where speed oscillation refers to repetitive of speed variation in either time or space. 

 

In the next step LHS was used to combine different parameter values into sets of 

parameters while the selected parameters remain un-correlated. A MATLAB program 

was developed to generate the parameter sets.  The MATLAB script uses the number of 

sets (which is 150) and the range of values for each parameter as the input arguments and 

generates the sets of parameters. A correlation matrix is calculated to verify that the 

parameters are un-correlated. It can be seen from Table 5 and Table 6 that there exists 

almost no correlation between the designed parameters.  
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Table 5: Correlation matrix of parameters for A-25  

  CC1 CC2 CC4 CC5 CC6 CC7 
CC1 1 -0.006 0.007 0.007 0.004 0.006 
CC2 -0.006 1 0.007 0.004 0 0.007 
CC4 0.007 0.007 1 -0.001 0.006 -0.005 
CC5 0.007 0.004 -0.001 1 0.007 -0.002 
CC6 0.004 0 0.006 0.007 1 0.006 
CC7 0.006 0.007 -0.005 -0.002 0.006 1 

 

Table 6:  Correlation matrix of parameters for A-15 North 

 
 

The generated parameter sets are used into the simulation model through a Visual 

Basic script that stores the corresponding simulation model performance measures (i.e. 

average vehicular speed). 

Table 7 and Table 8 show the frequency distributions functions of simulated average 

speeds and how they include the observed average speed values. It can be seen that the 

observed values are within the frequency distribution of the simulated average speeds. 

 

 

 CC0 CC1 CC2 CC4 CC5 CC6 CC7 
CC0 1.000 -0.006 -0.003 -0.006 0.006 0.003 -0.006 
CC1 -0.006 1.000 0.007 -0.005 0.008 0.006 -0.007 
CC2 -0.003 0.007 1.000 0.006 -0.004 -0.006 0.005 
CC4 -0.006 -0.005 0.006 1.000 0.009 0.005 -0.006 
CC5 0.006 0.008 -0.004 0.009 1.000 -0.005 0.004 
CC6 0.003 0.006 -0.006 0.005 -0.005 1.000 0.006 
CC7 -0.006 -0.007 0.005 -0.006 0.004 0.006 1.000 
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Table 7: Frequency distribution of average simulated speed (in km/h) including the  

observed field speed*  

*the bar including the observed field speed colored in dark red 

 

Table 8: Frequency distribution of average simulated speed (in km/h) including the 

observed field speed* 
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The designed sets and the corresponding outputs of the software must be inputted as 

the inputs and outputs of ANN to be trained. A feed forward backpropagation 

(Levenberg–Marquardt) ANN is employed for predictive purposes and a developed script 

in MATLAB is used for ANN training implementation. The structures of ANNs are 

determined based on best performance of testing data and the results are summarized in 

Table 9 and Table 10. The validation measure is considered to be mean of square error 

(MSE). Considering the mean square errors of testing dataset and the order of speed data 

which varies from 32.5-80 km/h for A-25 and 97.5-125 km/h for A-15, it can be 

concluded that the ANN is able to predict the simulation output values at an acceptable 

level of accuracy (less than 5% of Average Absolute Relative Error (AARE) which is 

defined in the Equation [1]).   

 [1]         Average Absolute Relative Error (AARE) = ×  

Where SS(i) is the simulated speed from the simulation model with the ith seed and 

AS is the actual speed collected from the field.  N in the formula represents the total 

number of seeds. 

Table 9: The neural network structure and the resulted training efficiency for A-25 

 

 

 A-25 North  A-25 South  
GP HOV GP HOV 

Number of neurons in the 
hidden layer 1 

8 5 4 3 

Number of neurons in the 
hidden layer 2 

4 9 7 13 

MSE* of the trained  
network for testing dataset 

0.12 0.37 0.35 0.13 
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Table 10: The neural network structure and the resulted training efficiency for A-15 

 A-15 North 
GP HOV 

Number of 
neurons in the 
hidden layer 1 

9 4 

Number of 
neurons in the 
hidden layer 2 

6 13 

MSE of testing 
dataset 

0.45 0.29 

 

In the next step, the trained ANN was used to predict the simulation output for 

different values of the modeling parameters. The trained ANN was used to generate the 

expected simulated average speed corresponding to the various input sets of parameters in 

the GA optimization process. This allowed for a faster calibration process as 

demonstrated later in the algorithm performance comparison section. 

The GA toolbox in MATLAB was used to minimize the difference between the 

predicted and the real speed by modifying the input simulation parameter set. The multi-

objective optimization shown in Equation [2] is defined to minimize the predicted 

average speeds on both types of lanes, the high-occupancy vehicle and the general 

purpose lanes. In the objective function defined in Equation [2], PS represents the 

predicted speed, generated by the ANN, and AS is the actual average speed observed at 

the data collection site. 

[2]           Objective function= Minimize ( + ) 

 

The objective function defined as a minimization of the absolute relative error of 

average speed, allows for the inclusion of other optimization criteria in a similar fashion, 

regardless the magnitude or the measuring units.   
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For all the scenarios, the GA parameter values were selected to be 20 for the 

population size and 50 for the number of generations. The roulette wheel functions was 

chosen during the selection, intermediate cross over was selected during the crossover 

stage, and adaptive feasible function was used during mutation stage (MathWork (2013)). 

The GA optimization yielded a set of calibrated parameters values.  These values were 

used in VISSIM to evaluate the vehicular average speed, which was validated against the 

observed traffic average speed.  The VISSIM model was ran using 50 different random 

seeds to take into account the probabilistic nature associated with the traffic model. The 

average absolute relative errors are calculated based on Equation [1] and depicted in 

Figure 20 and Figure 21.  It is shown that the calibrated model yields errors in the average 

vehicular speed that are very small, between 3% and 5%, while the un-calibrated model 

has errors between 14% and 18.5%. 

 

Figure 20: Comparison of resulted average absolute relative errors of ANN-GA 

calibrated model with un-calibrated model 
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Figure 21:Comparison of resulted average absolute relative error of ANN-GA 

calibrated model with un-calibrated model 

 

It can be concluded that in comparison to the un-calibrated model, the ANN-GA 

based calibrated model leads to more accurate reflection of driving behavior of the study 

areas.   

5.4 Comparison of ANN-GA and GA Calibration Methods 
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was computed using a MATLAB script that starts and ends with the optimization 

procedure. 

 

Table 11: Optimization speed comparison of different calibration methods (Second) 

 

In the Table 11 it can be seen that the ANN-GA calibration method is incomparably 

faster than the GA calibration. However, the accuracy of the calibrated model applied to 

the same study area is not as good. It can be seen from Figure 22 that the accuracy of the 

results is best when the GA-only calibration method is used. Nevertheless, the accuracy 

of the ANN-GA calibration method is in the range of 3-5%, while the accuracy of the 

GA-only in the range of 1-4% average absolute relative error.  In many traffic simulation 

applications, this difference in the network performance is not affecting significantly the 

simulation results.  The average absolute relative errors are calculated based on the 

Equation [1] and the results are presented in Figure 22. As can be seen, GA only method 

performs better than the ANN-GA for all the cases.  

  
 

 

 GA-based Calibration ANN-GA Calibration 

A-15 North 38023.75 64.75 

A-25 North 34078.95 69.46 

A-25 South 31388.10 62.63 
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Figure 22: Average absolute relative error comparison (percentage) 

 

To highlight the importance of calibration, next chapter demonstrates a traffic safety 

analysis.  

5.5  Before-After Calibration Safety Comparison 

It was mentioned in the literature review chapter that due to the drawbacks associated 

with direct measurements and analysis of accident data, the road safety assessment 

methods are shifting toward conflict analysis instead, that is potential for accident 

occurrence. In this thesis, to highlight the effect of proper calibration of vehicular 

microscopic simulation models used in traffic safety modeling, a before-after calibration 

conflict analysis is presented. The conflicts are extracted via SSAM (a software model 

developed by FHWA for conflict analysis) based on the trajectories of individual vehicles 

information available from VISSIM.  The time to collision (TTC) is considered as the 
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surrogate safety measure in the SSAM model. Based on the exiting literature, the critical 

TTC value is set to 1.5 second (i.e. interactions with TTC less than 1.5 seconds are 

considered as potential conflicts). The SSAM analysis was applied to both calibrated and 

un-calibrated VISSIM models and the results are summarized in Table 12. 

Table 12: Before-and-after calibration safety indicator analysis 

 A-15 North A-25 North A-25 South 
 Before After Before After Before After 
Rear-end 
Conflict 
Frequency 

1 3 No 
Conflict 1 2 6 

Lane Changing 
conflicts 
Frequency 

18 4 No 
Conflict 6 5 10 

Mean of speed 
differential(m/s) 4.72 6.57 N/A 4.5 7 6.76 

Mean of TTC 
(sec) 0.06 0.02 N/A 0.31 0.61 0.12 

Mean of PET 
(sec) 0.02 0.04 N/A 0.37 0.34 0.14 

Deceleration 
Rate(m/sec2) -4.87 -5.09 N/A -5.85 -5.6 -6.68 

 

As it can be seen, the safety indices are significantly different between the un-

calibrated and the calibrated model. This demonstrates how calibration can affect the 

analysis of traffic models. While this case is a very basic one, it clearly shows the 

calibration of traffic models is important and more work is identified in the concluding 

chapter of the thesis. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK  

4.1 Concluding Remarks 

As shown in the reviewed literature, many studies investigated various issues related 

to the calibration of vehicular microscopic simulation models.  However, there are not 

many studies that attempted to improve the calibration speed, one of the concerns in the 

calibration area in some studies. This thesis proposed a new calibration methodology that 

provides transportation professionals with an efficient way to calibrate vehicular 

microscopic simulation models. The methodology is a synergetic combination of an 

ANN, applied in order to replicate the expected output of a microscopic simulator, and a 

GA used to search for optimal sets of parameters that best replicate the observed 

behaviors. The GA uses the objective function defined by the trained ANN.  

The efficiency of the newly developed calibration method was demonstrated with two 

case studies.  It was shown that the proposed calibration method requires less 

computation time when compared to another similar calibration methodology that uses a 

standalone GA-based calibration. With about 5% and less average absolute relative error 

for all case studies, it can be concluded that the calibrated parameter sets can accurately 

replicate the observed network performances. In addition, it was shown that while there is 

no significant impact on the accuracy of the simulation results, the speed benefits are 

tremendous. When applied to the two highway segments the newly developed calibration 

method completed in less than two minutes, while the classical GA calibration took more 

than 10 hours to complete.  The calibration results were compared with those of the 

standalone GA model and it was found that it has relatively lower accuracy.  This 
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difference in accuracy can be associated to the small errors in the ANN prediction. 

However, it was found that the inherent lower accuracy is too small to have a significant 

impact on the application results.  The proposed calibration method was used to evaluate 

the road safety of the tested case studies using Surrogate Safety Assessment Model 

(SSAM) developed by FHWA. It is shown that the safety indices differ from before to 

after calibration, demonstrating the importance of calibration and how this affects 

vehicular traffic analysis.  

All in all, it can be concluded that the proposed calibration method is significantly 

faster than other GA-based methods. The following points are summarize the main 

contributions of this research: 

 The proposed methodology can provide researchers and practitioners with an 

efficient calibration method that is much faster than the existing GA-based 

methods.  

 The method is more proficient than other existing methods (i.e. genetic algorithms 

or simulated annealing) because the ANN preparation can be done in advance 

while for the other methods the whole process of calibration would be conducted 

after the calibration is required. 

6.2 Future Work 

More work is envisioned to improve the proposed calibration method.  While, the 

calibration was validated using the average vehicular speed, it will be important to 

evaluate it against other network performance measures such as average travel time, lane 

changing behavior, etc.  Another improvement is planned in the area of safety analysis 
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that is currently under development.  For example, the safety indices could be extracted 

from vehicles’ trajectories and the effective parameters of simulation model could be 

adjusted to identify the highest correlation between the simulated and real world conflicts. 

The proposed calibration method should be applied to other transportation facilities 

(e.g. urban arterials, intersections, etc.) to test its versatility.  

Another possible avenue to improve the accuracy of the calibrated model while 

maintain a good calibration speed is to develop a hybrid model that combines ANN-GA 

method with a standalone GA or SA calibration.  The calibration process could be started 

with the ANN-GA approach and when the solution reaches a certain level of accuracy, 

the standalone GA or SA optimization could be used to refine the calibration parameters.  
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