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ABSTRACT

Deployment Strategies for Target Monitoring and Coverage Improvement in Mobile

Sensor Networks

Hamid Mahboubi,

Concordia Unviersity, 2013

Efficient sensor deployment strategies are developed in this work for target

monitoring and coverage improvement in collaborative wireless mobile sensor net-

works. The objective of the target monitoring problem is to compute the desired

sensing and communication radii of sensors as well as their location at every time

instant such that a set of prescribed specifications such as connectivity preservation

and low energy consumption are satisfied. An energy-efficient strategy is also pro-

posed for tracking a moving target in a sensing field, using a grid of sufficiently small

rectangular cells. The grid is converted to a graph with properly weighted edges.

A shortest-path algorithm is subsequently used to route information from target to

destination by a subset of sensors. In the problem of coverage improvement in mo-

bile sensor networks, on the other hand, the objective is to place each sensor in the

field using available local information about its neighbors in such a way that the area

covered by sensors is as large as possible, while some important criteria are taken

into consideration. Both cases of identical and nonidentical sensors (in terms of

sensing radii) are considered, and different iterative algorithms are developed which

are shown to be convergent. The relocation algorithms are based on the relative

position of each sensor w.r.t. the boundaries of its cell or the corresponding corner

point. The algorithms are extended to the case of limited communication range of

sensors (leading to inaccurate Voronoi cells), an environment with prioritized sens-

ing (mathematically characterized by a weighting function for different points), and

an environment with obstacles (leading to some invisible areas). Simulation results

are provided to validate the effectiveness of the proposed algorithms.
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Chapter 1

Introduction

Sensor networks have been envisioned as a means for gathering, monitoring, pro-

cessing and delivering information about the physical environment to the intended

recipient(s) [1], [2]. This area of research has attracted much attention in both

control and communication literature in recent years [3], [4], [5], [6]. A mobile sen-

sor network (MSN) is typically comprised of wireless mobile nodes equipped with

battery-powered sensors. Such networks are known to be very effective in detecting,

monitoring, and tracking dynamic targets, and have important civilian and military

applications [7], [8], [9], [10]. Examples of such applications include robot-assisted

sensor networks for data collection [11], security and surveillance [12], [13], [14],

environmental monitoring [15], [16], [17], target tracking [18], [19], and structural

health monitoring (SHM) [20], [21], to name only a few.

In an MSN, each sensor communicates with a subset of sensors in the network,

and uses a proper movement strategy in order to achieve certain objectives such as

covering a sensing field, monitoring or tracking a moving target with a trajectory

which is not known a priori. The information exchange between the sensors and

a proper algorithm to use the collected information in order to effectively relocate

the mobile sensors are the two important components of any MSN control scheme.
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These components along with the capabilities of the individual sensors (in terms

of battery power, communication range and displacement flexibility) determine the

efficacy of the MSN in achieving any desired objective [22].

Recent developments in MEMS technology have provided a wealth of cheap,

customizable, and embedded ad hoc wireless sensor systems [23], [24], [25]. There has

been a burst of research activities in cross-layer network optimization in recent years,

involving routing, flow and power control, and packet scheduling [26], [27]. The

mathematical framework for such an optimization problem is based on the concept

of elastic users and the corresponding aggregate utility maximization; for instance,

see the framework given in [28] in the context of network management. Price-based

distributed algorithms concerning utility maximization for a wire-line network were

developed in [29]. These algorithms assume that elastic users respond to congestion

pricing signals by modifying their bandwidth requirements. More recent papers such

as [30], [31], extended the price-based algorithms to a wireless environment. Note

that wireless networks have numerous advantages in sensor applications, due mainly

to the distributed nature of this type of system.

Target tracking is one of the most important problems concerning mobile sen-

sor networks [32]. In this type of problems, it is desired to track a moving target

by properly moving some or all of the sensors in the field to create a route from

the target to destination, where the network information is collected. There has

been considerable progress recently in developing efficient deployment algorithms

for mobile sensor networks [33], [34]. On the other hand, communication, sensing

and movement are sources of energy consumption in mobile sensors [7]. Hence, lim-

ited energy resources of the sensors need to be taken into consideration in designing

sensor deployment algorithms in real-world applications. Furthermore, due to the

distributed structure of the network, a decentralized decision-making configuration

is often more desirable. It is important to note that a strategy which takes these
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limitations into account and achieves the design specifications does not necessarily

exist.

The problem of collaborative tracking of mobile nodes in wireless sensor net-

works is studied in [35]. It combines target tracking and node selection procedures

to identify the effective sensors for an energy efficient strategy. In [36], an algorithm

is provided to estimate the position of the target, while optimizing the quantiza-

tion level for the minimum transmission power. A distributed energy optimization

technique is proposed in [18] for target tracking in wireless sensor networks. Sensor

nodes are clustered properly, and the sensing area is partitioned for parallel sensor

deployment optimization.

The other main area of interest in wireless sensor networks is concerned with

the development of efficient sensor deployment strategies to improve both coverage

and resource management in the network [37]. There are a number of practical

constraints which need to be taken into account in designing control algorithms for

sensor networks. For instance, in many real-world applications no a priori knowledge

is available about the initial position of the sensors. Furthermore, it is often desirable

to have some form of decentralization due to the distributed nature of the system.

In other words, each sensor is required to make a decision based on its limited

communication and sensing capabilities, as well as its limited knowledge obtained

from other sensors [38].

The Voronoi diagram is often used for coverage analysis in sensor networks.

In [39], a Voronoi-based technique is proposed to improve coverage in a sensor net-

work with no requirement of global location assurance condition for the sensors.

Distributed gradient-descent algorithms are given in [40] to increase sensing cover-

age using the Delaunay graph. A class of aggregate objective functions is studied

in [38] based on the geometry of the Voronoi cells and proximity graphs. In [41],

an algorithm is developed for efficient sensor deployment and power assignment in
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a sensor network. To this end, a multi-objective optimization problem is introduced

which is reformulated as a group of single-objective scalar problems.

Non-smooth gradient flows are used in [42] to develop distributed control

strategies for the problems of disk covering and sphere packing. In [43], the problem

of positioning a group of sensors in a region for detection purposes is investigated

by minimizing the maximum probability of non-detection. A decentralized adaptive

control law is developed in [44] to properly place a group of sensors in an envi-

ronment for optimal sensing coverage. Distributed control strategies are proposed

in [45] to obtain a convex equi-partition configuration in an MSN. Effective deploy-

ment strategies are subsequently developed to improve the sensing coverage. The

problem of covering an environment using a network of mobile robots with different

sensor footprints is considered in [46]. An efficient deployment algorithm is proposed

in [47] which finds the appropriate locations for the mobile sensors by minimizing

the maximum error variance and extended prediction variance. In [48]-[52], efficient

coverage strategies are developed which do not use simple sensing models or Voronoi

partitions. Distributed gradient-based techniques are presented in [48], [49] for op-

timal coverage in an MSN. To this end, the sensors cooperatively optimize a proba-

bilistic detection metric, as opposed to a simple geometric area metric. Distributed

control strategies are introduced in [50] for optimal coverage in an environment with

obstacles, where the sensors’ field-of-view is limited. In [51], distributed convergence

to a Nash equilibrium in an MSN is investigated. A coverage algorithm is provided

in [52] for maximizing the probability of detection, where the communications cost

is minimized in order to increase the network lifetime.

In [53], a coverage inference protocol is presented which can provide an accu-

rate measurement of the connected coverage for the base station in an energy-efficient

manner. Some of the important characteristics of the protocol include efficient rout-

ing, spatial aggregation, sleeping scheduling and topology control. The concept of
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desired sensing coverage (DSC) is introduced in [54], and an energy-efficient scheme

is developed to meet the desired DSC. To this end, a number of sensors are selected

using the geometric probability theory and a randomized technique to operate as

“on-duty data reporters”. An algorithm is subsequently presented to transmit the

collected data to the sink node by constructing a data gathering tree for each group

of selected sensor. The authors in [55] propose a new type of network called parti-

tioned synchronous network to address the coverage and connectivity problems at

the same time. The work [55] is concerned with the detection of stochastic events

for which the conventional definition of coverage is not applicable. In [56], a ran-

domized scheduling algorithm is studied under quality of service (QoS) constraints

such as network coverage intensity, detection probability, and bounded detection

delay. The problem of network lifetime maximization is then analyzed under these

constraints. The coverage property of clustered wireless sensor networks is studied

in [57] and a foundation is provided to optimize the performance of the network.

It is shown that the connectivity of the network changes by increasing the vacancy

in random placement of sensors in a wireless sensor network. Furthermore, the

probability of coverage in the network is determined by analyzing various levels of

redundancy. The authors in [58] exploit the temporal and spatial correlation among

the data sensed by different sensors and leverage prediction to maximize the net-

work lifetime. The concept of entropy is then adopted to evaluate the information

uncertainty concerning the sensing field. The problem is formulated as a minimum

weight submodular set cover problem, and an efficient centralized truncated greedy

algorithm is presented to solve it. The optimal deployment of sensors for achiev-

ing a full coverage and four-connectivity in a WSN is investigated in [59], and two

new patterns called Diamond pattern and Double-strip pattern are introduced ac-

cordingly. A centralized heuristic technique is proposed in [60] to maximize the

spatial-temporal coverage by scheduling sensors’ activities after their deployment.
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Also, a distributed parallel optimization protocol is given which converges to a local

optimum.

All of the papers cited in the previous paragraph study static wireless sensor

networks. Note that mobility is an inherent property of many real-world WSNs [61],

and also it could enhance the coverage performance [62], [63]. In addition, in many

practical settings sensors cannot be relocated manually (for example in disaster

areas, toxic urban regions and remote harsh fields). In these cases, sensors are

sometimes dropped from an aircraft over the field. Thus, it is important that the

sensors move to appropriate positions in order to achieve the desired objective [64],

[65].

Most of the existing sensor movement strategies in the literature use one of

the following three types of techniques: coverage pattern [66], [67], [68], grid ar-

chitecture [69], [70], and virtual forces [64], [71]. In [66], the so-called “adaptive

triangular deployment (ATRI) algorithm” is proposed for maximizing coverage area

and minimizing coverage gaps in an unattended mobile sensor network by adjusting

the deployment layout of the nodes such that it becomes as close as possible to

equilateral triangulation, which is shown to be the optimal layout for maximizing

the no-gap coverage. Two related deployment problems, namely sensor dispatch and

sensor placement, are investigated in [67], and the proposed solution can be applied

to any arbitrary polygon-shape field in the presence of obstacles. In [68], an efficient

obstacle-resistant deployment algorithm is provided which deploys a near-optimal

number of sensors over the sensing field to achieve full coverage while avoiding obsta-

cles. The algorithm integrates the deployment policy, the obstacle-resistant rules,

the boundary handling rule, and serpentine movement to achieve the objective.

In [69], a framework consisting of a generic system model and a generic objective

function is given. A generic method based on bipartite matching is subsequently

proposed to redeploy the mobile sensors and solve a problem with various design
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objectives in a WSN. To this end, the sensing field is partitioned into a number of

grids, and the difference between the number of sensors in the grid and the desired

number of sensors is defined as the gap of each grid. The problem is then formulated

as an optimization problem to minimize the sum of gaps as well as the movement

cost of all sensors. A centralized algorithm is proposed in [70] to minimize the total

moving distance of sensors for covering a sensing field. Various strategies are then

proposed to achieve a balanced state by using scan and dimension exchange. The

authors in [71] propose a virtual centripetal force-based algorithm for improving

area coverage. The method aligns the direction of every sensor properly to decrease

the coverage overlap according to the virtual centripetal force theory. Moreover, in

order to maximize the network lifetime, the redundant sensors are shut off in certain

time intervals. In [64], three algorithm, namely vector-based (VEC), Voronoi-based

(VOR), and Minimax are proposed to determine the final destination of each sen-

sor in the network, such that the coverage increases. In [64], [65], two different

approaches called basic protocol and virtual movement protocol are introduced to

place the sensors in appropriate positions in order to improve network coverage.

Note that in the papers [62]-[71] cited above, it is assumed that there is no limit on

the sensors’ movement.

The authors in [72] investigate the coverage problem in a mobile sensor network

for the case where each mobile sensor cannot move longer than a certain distance

because of hardware limitations. The problem of determining a movement plan for

sensors with limited mobility in a field clustered into multiple regions is studied

in [73], where it is desired to minimize the variance in the number of sensors in

different regions and also to minimize the movement of sensors. Two algorithms (one

centralized and one distributed) are subsequently proposed to solve the problem. A

network of sensors with limited mobility is investigated in [74], where the mobility of

each sensor is restricted to a flip (hop). A minimum-cost maximum-flow solution is
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proposed in [74] which maximizes the sensing coverage while minimizing the number

of flips.

The papers [53]-[74] addressed above and most of the results reported in the

literature assume that the sensing and communication capabilities of all sensors are

identical. There are several applications, however, where the sensors have different

sensing ranges. For example, when sensors from different manufacturers are utilized

in the network, their sensing ranges are likely to be different. Furthermore, the

variation of the sensing range of a sensor with time is unavoidable [75]. Note that

the energy consumption due to sensing is proportional to the square of the sensing

range of the sensor [75]. Also, the remaining energy of different sensors will not be

the same, in general, after operating for a long period of time. Hence, it is desirable

that sensors adjust their sensing ranges based on their remaining energies such that

the sensing range of a sensor with lower energy is smaller than that of a sensor

with higher energy. This sensing range adjustment can increase the lifetime of the

network, and will obviously result in a heterogeneous sensor network. It is known

that deployment and topology control in heterogeneous wireless sensor networks is

more complex than that in homogeneous wireless sensor networks. However, with

a proper degree of heterogeneity in terms of the number of low-end sensors (which

have limited computation capability and lower communication and sensing ranges)

and high-end sensors, one can address the trade-off between the performance and

cost efficiency of the network (for example, see [75], [76]). In what follows, some

related results on heterogeneous sensor networks are reviewed briefly.

Energy-efficient coverage algorithms are developed in [75] for a network of het-

erogeneous mobile sensors for both uniform and Poisson sensor deployment schemes.

The notion of the equivalent sensing radius (ESR) is defined first, and then the nec-

essary and sufficient conditions on ESR are obtained for achieving full coverage.

Since in the above work the sensors are assumed to move randomly, there is no need
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for communication between them. In [77], the problem of partitioning the sensing

field in heterogeneous sensor networks is investigated. Although the partitioning

introduced in [77] has some drawbacks compared to the MW-Voronoi diagram used

in the present work, it addresses some of the shortcomings of conventional Voronoi

partitioning (which is used for a network of identical sensors). A general integer

linear programming formulation is proposed in [78] to minimize sensor deployment

cost in a heterogeneous network composed of different types of sensors with different

cost and sensing radii. In [78], the sensing field is mapped to a 2D or 3D grid, with

the grid points representing the locations of the sensors. Then, a greedy algorithm

is developed to place at least one sensor at each grid point. A novel algorithm is

developed in [79] to prolong the lifetime of a heterogeneous WSN composed of two

types of sensors: sensors with fixed sensing ranges and sensors with variable sensing

ranges. The algorithm uses Voronoi-Laguerre diagram and reduces sensor coverage

redundancy by joint sensor activation and sensing radius adaptation. The problem

of minimum connected k-coverage is studied in [80] for both homogeneous and het-

erogeneous WSNs, where it is desired to minimize the number of sensors required to

maintain network connectivity in such a way that every point in the field is sensed

by at least k active nodes. The method provided in [80] consists of two steps: sens-

ing range slicing and active node scheduling. In the slicing phase, the sensing range

of each sensor is decomposed into smaller subregions that are guaranteed to be k-

covered. In the scheduling phase, it is specified which sensors should become active,

and at what time instants. Two protocols called self-scheduling driven k-coverage

and triggered-scheduling driven k-coverage are also developed in [80]. The problem

of relay node placement in a heterogeneous WSN composed of sensors, relays and

base stations is investigated in [81]. A two-phase approach is also developed in [81]

for the case where all nodes are energy limited. The problem of energy-efficient
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m-coverage and n-connectivity under border effects in heterogeneous WSNs is in-

vestigated in [37], where a location-independent energy-efficient routing algorithm

is proposed to maintain the network n-connectivity and m-coverage ratio simul-

taneously. The authors in [82] develop an ant colony optimization (ACO) based

approach to maximize the lifetime of heterogeneous WSNs. The approach finds

the minimum number of connected covers for maximizing the network lifetime. A

two-phase distributed algorithm is developed in [83] to find the minimum set of

sensors that form a connected network and also cover the query region. The sensors

are assumed to be heterogeneous in terms of sensing range, communication range

and also energy levels. In the first phase of the algorithm, each sensor establishes

a connection with its neighbors, and in the second phase the coverage strategy of

each sensor is specified according to its minimum-weight coverage cost. In [84], het-

erogeneous two-tier WSNs are studied, where the concepts of optimization theory

and coverage are used to maximize both network lifetime and coverage. In such

networks, it is assumed that one tier of nodes is more robust and computationally

intensive than the other tier. The effect of random sensors’ locations on the cov-

erage and lifetime of heterogeneous sensor networks is investigated in [85]. It is

assumed that there are two types of nodes in the network: ordinary and power-

ful. The powerful nodes can transmit their information to the sink directly, while

the ordinary nodes transmit their information to the sink only through powerful

nodes. It is shown that the network coverage at any time instant is a function of the

initial coverage and the density of cluster heads. The authors in [86] propose two

distributed algorithms to find the minimum number of heterogeneous sensors that

need to be connected in order to cover the perimeter of the queried region. In the

first algorithm, a sensor near the center of region is chosen as the coordinator which

selects the sensors that cover the perimeter of the region. The second algorithm

consists of two phases. In the first phase, each sensor collects the information of
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its neighbors, and in the second phase it selects the minimum number of sensors

that cover the region circumference. In [87], optimal solutions to the sleep-wake-up

problems are proposed for the model of barrier coverage. The proposed solutions

work for both homogeneous lifetime case (when all sensors have identical lifetime)

and heterogeneous lifetime case (when sensors have different lifetime). The strate-

gies are also effective for heterogeneous sensing regions. A large number of sensors

with adjustable sensing ranges are considered in [88], where it is desired to maintain

certain level of coverage by activating a small number of sensors and consuming a

small amount of energy. A coverage control scheme is developed in [88], which is

a non-dominated sorting genetic algorithm. Furthermore, a binary coding scheme

is provided for representing sensor selection and sensing range adjustment. Several

localized sensor area coverage protocols for a network of heterogeneous sensors with

arbitrary sensing and communication ranges are developed in [89]. Since the prior

knowledge of the neighbors is not required in [89], the communication overhead of

the proposed approaches is relatively small. First, each sensor chooses a random

time out and receives the information of other sensors in this time out. If the sens-

ing area of a sensor is not covered completely or it is covered by a disconnected

set of active sensors, then this sensor remains active and sends an activity message.

Any sensor whose area is fully covered, on the other hand, sleeps with or without

informing the neighbors about its status.

In Chapter 2, a routing strategy is presented for the relocation of mobile

sensors in a network and the adjustment of their communication and sensing range,

such that a certain cost function is minimized, while the end-to-end connectivity

from a moving target to a fixed access point (also called the destination point) is

maintained. Various cost functions concerning individual sensors and the entire

network will be considered to evaluate the performance of the network in terms

of power consumption. A technique is also provided to maximize the durability
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of the whole network by monitoring the residual energy of individual sensors and

adjusting their parameters accordingly. Simulation results elucidate the desirable

characteristics of the proposed methods.

In Chapter 3, an energy-efficient routing technique is introduced to track a

target in a mobile sensor network, while optimizing the energy consumption. It is

assumed that the main sources of energy consumption in the network are communi-

cation, sensing, and movement. The field is first divided into a grid, and then each

sensor is directed to a proper node in the grid. A graph is subsequently derived

from this grid, and its edges are weighted properly based on the parameters of the

energy consumption model. This graph is used to find the optimal route to transfer

the information from the target to destination. Then, the graph is redrawn in such

a way that the minimum energy problem is translated to the constrained shortest

path from the target to destination. This is a well-known problem in network and

routing, and several algorithms exist in the literature to handle it. Due to the sim-

plicity and effectiveness of Dijkstra’s algorithm it will be adopted in this chapter to

solve the underlying problem.

In Chapter 4, new techniques are introduced to improve network coverage

more efficiently. The proposed methods are mainly concerned with the distances

of each sensor and the points inside its corresponding Voronoi polygon from the

edges and vertices of the polygon. Four algorithms are developed: Maxmin-vertex,

Maxmin-edge, Minmax-edge, and VEDGE algorithm. The main characteristic of

these algorithms is that the sensor movement is performed iteratively. Once each

destination is computed, the coverage area of the corresponding sensor w.r.t. the

new destination inside the preceding constructed Voronoi polygon is compared with

its previous local coverage area. If this coverage area is larger than the preceding one,

the sensor moves to the new destination; otherwise, it remains in its current location.

If, on the other hand, the coverage area inside its Voronoi polygon does not increase
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by a certain amount, then the iterations stop. This termination condition guarantees

that under the proposed algorithms the sensors arrive at the desired destinations

(with a prescribed accuracy which is set by the threshold level) in finite time. Unlike

existing coverage algorithms (e.g., the ones proposed in [64]), the proposed strategies

are mainly concerned with the distance of each sensor from the edges of its Voronoi

polygon (rather than its distance from the vertices of the polygon) in order to

compute its next destination. The proposed strategies outperform the existing ones

in the case when a sensor is required to move toward a sharp vertex. The VEDGE

algorithm is more preferable as far as network coverage is concerned. The Maxmin-

edge strategy, on the other hand, is more energy-efficient than the other algorithms

when there is a large number of sensors in the network, while Maxmin-vertex strategy

is more desirable when there is a relatively small number of sensors. Finally, the

Minmax-edge strategy outperforms the other algorithms in terms of deployment

time, when there is a relatively large number of sensors in the network.

The objective of Chapter 5 is to develop sensor deployment algorithms in a

network of mobile sensors with different sensing capabilities, for effective network

coverage. The multiplicatively weighted Voronoi (MW-Voronoi) diagram (where the

weight of each sensor is assumed to be equal to its sensing radius) is used to discover

coverage holes [90], [91]. Three algorithms are proposed: Weighted Vector Based

(WVB), Minmax-curve and Maxmin-curve. The main idea behind these algorithms

is to move each sensor iteratively in such a way that its sensing coverage is increased.

Similar to the case of identical sensors considered in Chapter 4, once a new location

for a sensor is computed, the corresponding coverage area w.r.t. the new location of

the sensor inside the previously constructed MW-Voronoi region is compared to the

preceding local coverage area. If this coverage area is larger than the preceding one,

the sensor moves to the new location; otherwise, it remains in its current position.

A pre-specified threshold is used to stop the algorithm when no sensor’s coverage
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area inside its MW-Voronoi region increases by this amount.

In Chapter 6, three distributed deployment algorithms are presented for a net-

work of nonidentical sensors. The multiplicatively weighted Voronoi (MW-Voronoi)

diagram is employed to find the coverage holes, where the weight assigned to each

sensor is proportional to its sensing radius. Three proposed algorithms in this work

are farthest point boundary (FPB), Maxmin-vertex and Minmax-vertex. These sen-

sor placement algorithms are distributed and perform iteratively. Again, the move-

ment of the sensors to the candidate locations and termination of the algorithm

follow the scheme introduced in the previous two chapters (the same movement and

termination schemes are used in the next five chapters, and the description of the

scheme is not repeated for brevity).

In Chapter 7, new deployment strategies are introduced to increase coverage

in a network of mobile sensors. Three algorithms are developed: vertex virtual

forces (VVF) algorithm, edge virtual forces (EVF) algorithm, and vertex-edge vir-

tual forces (VEVF) algorithm. The above-mentioned algorithms are then extended

to the case of a network with nonidentical sensors using multiplicatively-weighted

Voronoi (MW-Voronoi) diagrams. A virtual force is assumed to be applied to each

sensor from the vertices and boundaries of the corresponding Voronoi cell, which

tend to move the sensor. The movement of each sensor follows the scheme described

in the preceding chapters.

In Chapter 8, two different distributed relocation algorithms are presented

for a network of mobile sensors with different sensing capabilities and limited com-

munication ranges. It is desired to improve network coverage by moving them to

proper locations in the field. To this end, the notion of limited communication mul-

tiplicatively weighted Voronoi (LCMW-Voronoi) diagram is introduced and its useful

characteristics are discussed. This diagram is subsequently used to discover the so

called “coverage holes”, and properly relocate the sensors to cover them as much
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as possible. Two iterative algorithms are introduced where in each step the above-

mentioned diagram is used to find a candidate point for each sensor. The sensor

movement follows the scheme described before. It is shown that both algorithms

are monotonically increasing and convergent.

In Chapter 9, two different distributed algorithms are presented for deployment

and relocation of sensors in an MSN. It is assumed that the nodes in the network have

different sensing capabilities; and also, they are operating on a flat field containing

obstacles. The approach in our proposed algorithms is based on using the visibility-

aware multiplicatively weighted Voronoi (VMW-Voronoi) diagram. The effect of

obstacles on sensors’ sensing capabilities (i.e. visibility area of each sensor) is taken

into consideration in the proposed algorithms. The VMW-Voronoi diagram is used

for discovering coverage holes and sensing radii of sensors are used as node weights in

the construction of this diagram. In this work, it is assumed that if the line-of-sight

between a point and a sensor is blocked with an obstacle, then the sensor is not able

to sense any object located at that point. This is an acceptable assumption and has

been used in the literature previously ([92], [93]). Using VMW-Voroni diagram, the

following two algorithms are presented in this chapter: Obstructed Farthest Point

(OFP) and Obstructed Minmax Point (OMP) algorithms. By iterative application

of these algorithms, a gradual improvement in the overall coverage can be obtained.

At each iteration, a new candidate coordinate for sensor relocation is calculated

based on the current position of each sensor and its VMW-Voronoi region.

In Chapter 10, new distributed deployment strategies are introduced to in-

crease coverage in a network of mobile sensors with a prescribed priority function

for the sensing field. To this end, a priority function is assumed to be given which

specifies the coverage priority of different points in the sensing area. The MW-

Voronoi diagram is used to partition the sensing field. This partitioning is then

used to discover coverage holes in the network and relocate the sensors accordingly
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to minimize them, while taking into account the coverage priority of different points

in the field. Three algorithms are developed: maximum weighted vertex (MWV),

maximum weighted point (MWP), and maximum distance weight (MDW). The

main idea behind the proposed algorithms is to move each sensor iteratively in such

a way that its weighted coverage increases. Once each sensor’s destination is com-

puted, the weighted coverage area w.r.t. the new destination of the corresponding

sensor in the previously constructed MW-Voronoi region is compared to its previous

local weighted coverage to decide whether the sensor should move or not.

In Chapter 11, new distributed sensor deployment strategies are introduced

for a network consisting of both static and mobile sensors. The multiplicatively

weighted Voronoi (MW-Voronoi) diagram is utilized to find the coverage holes, where

the weight assigned to each mobile sensor is proportional to its sensing radius. In the

proposed strategies, namely, farthest weighted vertex (FWV) and Max-area, every

static sensor broadcasts its sensing radius and location to all mobile sensors. Each

mobile sensor subsequently assigns a proper virtual weight to every point in the field

based on the received information. The algorithms are then performed iteratively

to compute the candidate location for each mobile sensor.
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Chapter 2

An Efficient Target Monitoring

Scheme with Controlled Node

Mobility for Sensor Networks

This chapter is concerned with target monitoring using a network of collaborative

mobile sensors. The objective is to compute (online) the desired sensing and com-

munication radii of sensors as well as their location at each time instant, such that

a set of prescribed specifications are met. These specifications include end-to-end

connectivity preservation from the target to a fixed destination, while durability of

sensors is maximized and the overall energy consumption is minimized. The problem

is formulated as a constrained optimization, and a procedure is presented to solve

it. Simulation results demonstrate the effectiveness of the proposed techniques.

The plan of the rest of this chapter is as follows. The problem is formulated in

Section 2.1, and some important assumptions and definitions are also provided which

will be used later to develop the main results. An algorithm and some important

theorems and lemmas are presented in Section 2.2, as the main contributions of the

chapter for solving the corresponding constrained and unconstrained optimization
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problems. Finally, simulations are given in Section 2.3.

2.1 Problem Formulation

Consider a group of n mobile sensors, each one representing a node in the sensor

network, and let the coordinates of sensor i, i ∈ n := {1, . . . , n}, be denoted by

xi. Consider also a moving target and a fixed access point (also referred to as

the destination point), where for convenience of notation they are labeled as nodes

0 and n + 1, respectively, and their coordinates are represented by x0 and xn+1,

accordingly. In order to ensure target monitoring at all times, it is required to

maintain connectivity from the target to the access point continuously (in terms of

sensing and communication). Furthermore, in order to accomplish the mission in

the most efficient manner, it is desired that the routing cost defined as the sum of the

costs (associated with the sensing and transmission power needed to communicate

over the link) of any sensor involved in establishing a connected link from the target

to the destination point is minimized.

One of the most desirable control objectives in MSNs is energy efficiency [22],

[64]. In general, energy consumption of mobile sensors is due to communication,

sensing, and movement. The optimal energy-efficient control action depends on

which one of the above-mentioned energy-consuming factors is dominant [64], [118].

In order to formulate the optimization problem, it is assumed that a link

l = (i, j) from node i ∈ n∪{0} to node j ∈ n ∪{n + 1}\{i} exists if and only if

the corresponding signal-to-interference ratio SIR exceeds certain (strictly positive)

threshold χ. This can be mathematically expressed as:

SIRij =
Pijξij

ηj +
∑

(n,k) �=(i,j),n �=i,j Pnkξnj
> χ (2.1)

where Pij is the power required to transmit information from node i to node j, ξij is

the path loss (which is defined to be the reduction in the signal power as it travels
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from transmitter to the receiver) from node i to node j,
∑

(n,k) �=(i,j),n �=i,j Pnkξnj is

the overall interference power, and ηj is the noise power at node j. For simplicity,

assume that the interference power is negligible, and that the noise power ηj is equal

to 1, for all j ∈ n. Then, using (2.1) the following minimum power consumption by

node i is obtained for direct communication with node j:

Pij =
χ

ξij

The path loss is inversely proportional to some power of the distance dij between

nodes i and j, i.e. dλij , for all i, j ∈ n, i �= j. The power λ is typically between

2 and 4, and is closer to 4 for low-lying antenna and near-ground channels, as in

most sensor network applications [7], [119]. The communication radius of sensor i

at the instant t, denoted by Rci(t), is equal to the radius of the largest circle around

xi, such that the corresponding SIR from xi to any point inside the circle is greater

than the threshold χ. Here, it is assumed that the coverage area of each sensor can

be described by a disk of radius Rci(t). The power required for sensing, on the other

hand, is typically greater than the power required for communication from the same

distance. This power is also proportional to dγ, where d is distance and γ ≥ 2; in

particular, in a radar system, γ ≥ 4.

A power consumption model for sensor movement is given by Pm(dm) = kdm,

where Pm is the power consumption due to movement, k is a known constant, and

dm is the traveling distance of the sensor [120]. While this is a realistic model in

many practical settings (e.g., when the sensors are mounted on mini-wheel robots),

for the case when the sensors move on a surface with approximately pure rolling

[121], the energy consumption due to movement is small. As mentioned earlier,

the power consumption due to communication over a distance dc is proportional

to dλc . Consider the case where the target is located far from the destination and

communication range of sensors is relatively large such that dc is much greater

than the typical moving distance dm. In such cases, the power consumption due
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to communication can be significantly higher than the power consumption due to

movement, for large values of λ. A similar argument can be made for the case where

the target motion is relatively slow with long pauses.

Based on the above discussion, the following assumption is made.

Assumption 2.1. It is assumed in this chapter that the power consumption of

sensors due to movement is negligible compared to that due to communication and

sensing.

Assumption 2.2. In this chapter, it is assumed that one sensor is assigned to

sense the target at any given time. This sensor will hereafter be referred to as the

monitoring sensor. The information is transmitted from the monitoring sensor to

the fixed destination point through a subset of the sensors in a collaborative fashion.

The monitoring sensor is not fixed in general, and can be changed from time to time

depending on the position of the sensors and their residual energies.

Let the monitoring sensor be labeled as sensor 1 throughout the chapter. The

sensing radius of this sensor at the time instant t, denoted by Rs1(t), is defined as

the radius of the largest circle around x1, such that this sensor can sense the target

anywhere inside the circle. Note that sensor i can transmit the information to sensor

j at the instant t if and only if Rci(t) ≥ dij(t), for all i, j ∈ n. Note also that sensor 1

can sense the target at the instant t if and only if Rs1(t) ≥ d10(t), where d10 denotes

the distance between sensor 1 and the target.

Assumption 2.3. It is assumed that the target is at a reachable distance from the

destination point through other sensors at all times, i.e. x(t) ≤ nRc,max + Rs,max,

where Rc,max is the maximum communication radius that can be covered by every

sensor, Rs,max is the maximum sensing radius that can be detected by sensor 1, and

x(t) is the distance between the target and destination.
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Recall that the required powers for sensor i (i ∈ n) to communicate infor-

mation and for sensor 1 to detect information are proportional to Rλ
ci and Rγ

s1,

respectively. On the other hand, by assumption the movement power is negligible

compared to the above-mentioned communication and sensing powers. Thus, for

any i, j ∈ {2, . . . , n} :

power consumption of sensor i

power consumption of sensor j
=

Rλ
ci

Rλ
cj

(2.2)

and the following cost function (which reflects the overall instantaneous power con-

sumed by all sensors) is to be minimized at any time t > 0:

JP (t) = αRγ
s1(t) +

∑
i∈k(t)

Rλ
ci(t) (2.3)

subject to the condition Rs1(t) +
∑

i∈k(t)Rci(t) ≥ x(t) for some set k(t) ⊂ n. Fur-

thermore, the constraints given below need to be satisfied for all t > 0:

i) 0 ≤ Rci(t) ≤ Rc,max ∀i ∈ k(t)

ii) 0 ≤ Rs1(t) ≤ Rs,max

where α is a constant coefficient used to normalize the sensing power with respect

to the communication power.

While minimizing power consumption is of great importance in MSNs, in many

applications it is more desirable that the sensor with the smallest residual energy

consume the smallest amount of power at each instant, in order to maximize the

life-span of the sensors, which in turn maximizes the durability of the entire network.

In such cases, the following performance index is used instead of (2.3):

JD(t) = αθs1(t)R
γ
s1(t) +

∑
i∈k(t)

θi(t)R
λ
ci(t) (2.4)

subject to the condition Rs1(t) +
∑

i∈k(t)Rci(t) ≥ x(t), for any time t > 0, where

θi’s are strictly positive weight functions which are to be chosen such that the power

consumption of each sensor is consistent with the corresponding residual energy.
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Moreover, θs1 is the weight function for the sensing power of sensor 1 (which is, by

assumption, assigned to sense the target).

Definition 2.1. Given an MSN satisfying Assumptions 2.1 to 2.3:

• The minimization problem with the performance index JD and no constraints

will hereafter be referred to as the unconstrained durability optimization prob-

lem (UDOP), and the corresponding minimum cost will be denoted by J∗
D.

• The minimization problem with the performance index JD and the constraints

(i) and (ii) will hereafter be referred to as the constrained durability optimiza-

tion problem (CDOP), and the corresponding minimum cost will be denoted

by J̄∗
D.

• The minimization problem with the performance index JP and the constraints

(i) and (ii) will hereafter be referred to as the constrained power optimization

problem (CPOP), and the corresponding minimum cost will be denoted by J̄∗
P .

Definition 2.2. Consider the weight functions θi(t)’s in (2.4), and let m ∈ n be a

given integer. The inverse-weight coefficient is defined as:

σm(t) =
m∑
i=1

(
1

θi(t)

) 1

λ−1

, ∀t ≥ 0

and will prove convenient in the development of the main results.

Remark 2.1. Note that since θi is strictly positive for all i ∈ n, it is straightforward

to conclude that σj+1(t) > σj(t), for all j ∈ {1, . . . , n− 1}.

Before proceeding to the next section, let Holder’s inequality [122] (which will

be used later to prove some of the results) be provided here.

Holder’s Inequality: Given the strictly positive values p and q with the property

1
p
+ 1

q
= 1, then the following inequality:

n∑
i=1

|xiyi| ≤

(
n∑

i=1

|xi|
p

) 1

p
(

n∑
i=1

|yi|
q

) 1

q

(2.5)
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holds for all (x1, x2, . . . , xn) , (y1, y2, . . . , yn) ∈ C
n.

In the next section, effective techniques are proposed to solve the optimization

problems introduced earlier at any given time t. For convenience of notation, the

time argument from the variables x, Rs1, Rci, σi, θi and the set k will be omitted in

the development of the main results.

2.2 Main Results

Consider an MSN satisfying Assumptions 2.1-2.3. The following two lemmas will be

used to solve the UDOP.

Lemma 2.1. Let JD be the minimum cost in the UDOP after setting the sensing

radius of sensor 1 to Rs1. Then:

JD =
(x−Rs1)

λ

σλ−1
n

+ αθs1R
γ
s1

Proof. Choose xi = θ
1

λ

i Rci, yi = θ
− 1

λ

i , p = λ and q = λ
λ−1

. Then, using

Holder’s inequality along with Remark 2.1 (and on noting that ∃k ⊂ n, such that

Rs1 +
∑

i∈k Rci ≥ x), one can write:

∑
i∈k

θiR
λ
ci ≥

(∑
i∈k Rci

)λ
σλ−1
k

≥

(∑
i∈k Rci

)λ
σλ−1
n

≥
(x−Rs1)

λ

σλ−1
n

(2.6)

for some k ⊂ n. It follows immediately from (2.6) that JD ≥ (x−Rs1)
λ

σλ−1
n

+αθs1R
γ
s1, and

that the inequality turns to an equality by choosing Rci =
(x−Rs1)

θ
1

λ−1

i σn

. This completes

the proof. �

Lemma 2.2. The function

f(Rs1) = σλ−1
n αγθs1R

γ−1
s1 − λ (x−Rs1)

λ−1 (2.7)

has exactly one real-positive root over [0, x].
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Proof. Since f(Rs1) is continuous, f(0) = −λxλ−1 < 0 and f(x) > 0, thus

f(Rs1) has at least one real-positive root over [0, x]. On the other hand, since

λ, γ ≥ 2 and also df

dRs1
> 0 over [0, x], hence f(Rs1) is strictly increasing in the above

interval. Therefore, f(Rs1) has exactly one real-positive root over [0, x]. �

Let the sensing radius and communication radii obtained by solving the UDOP

be denoted by R∗
s1 and R∗

ci, i ∈ n, respectively. The following theorem characterizes

the solution of the UDOP.

Theorem 2.1. The solution of the UDOP is unique, and is characterized by:

f(R∗
s1) = 0, R∗

ci =
(x−R∗

s1)

θ
1

λ−1

i σn

, i ∈ n

Proof. The proof follows by taking derivative of JD and using the results of

Lemmas 2.1 and 2.2. �

Remark 2.2. It is implied from Theorem 2.1 and the proof of Lemma 2.1 that in

the solution of the UDOP, k = n. Furthermore, the sum of the sensing radius of

sensor 1 and the communication radii of all sensors at any time instant is equal to

the distance between the target and destination point at that time. This means that

in the optimal strategy all sensors will be functional, and will be located on distinct

points on the straight line connecting the target to the destination. It is also implied

that θjR
λ−1
cj = θiR

λ−1
ci , ∀i, j ∈ n. In other words, the solution of UDOP has the

following property:

θj
θi

=
Rλ−1

ci

Rλ−1
cj

, ∀i, j ∈ n (2.8)

Remark 2.3. It is implied from Theorem 2.1 and Lemma 2.2 that:

σλ−1
n αγθs1 (R

∗
s1)

γ−1 = λ (x−R∗
s1)

λ−1 (2.9)

(σn−1)
λ−1 αγθs1 (R

∗
s1)

γ−1 = λ (x−R∗
cn −R∗

s1)
λ−1 (2.10)
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(x−R∗
s1)

θ
1

λ−1

i σn

=
(x−R∗

cn −R∗
s1)

θ
1

λ−1

i σn−1

, ∀i ∈ {1, . . . , n− 1} (2.11)

Denote by R̄∗
s1 and R̄∗

ci, i ∈ n, respectively, the sensing radius and communi-

cation radii obtained by solving the CDOP.

Lemma 2.3. The optimal parameters associated with the CDOP have the following

properties at all times:

i) if θi = θj, then R̄∗
ci = R̄∗

cj.

ii) if θi < θj, then R̄∗
ci ≥ R̄∗

cj.

iii) if θi < θj, then θjR̄
∗λ−1

cj ≥ θiR̄
∗λ−1

ci .

iv) if θi < θj and θjR̄
∗λ−1

cj > θiR̄
∗λ−1

ci , then R̄∗
ci = Rc,max.

Proof.

i) Assume θi = θj, but R̄
∗
ci < R̄∗

cj. Define J(β) := R̄∗λ

ci + R̄∗λ

cj −
(
R̄∗

ci + β
)λ

−(
R̄∗

cj − β
)λ

for any β ∈
(
0, 1

2

(
R̄∗

cj − R̄∗
ci

))
. Since J(0) = 0 and dJ

dβ
is positive for

any β in
(
0, 1

2

(
R̄∗

cj − R̄∗
ci

))
, there exists β in this interval for which J(β) > 0.

This contradicts the initial assumption of the lemma about the optimality; hence,

R̄∗
ci = R̄∗

cj.

ii) Assume that θi < θj, but R̄
∗
ci < R̄∗

cj. Since (θj − θi)
(
R̄∗λ

cj − R̄∗λ

ci

)
> 0, thus

θiR̄
∗λ

ci +θjR̄
∗λ

cj > θiR̄
∗λ

cj +θjR̄
∗λ

ci . This contradicts the initial assumption of the lemma

about the optimality; hence, R̄∗
ci ≥ R̄∗

cj.

iii) Assume θi < θj, but θjR̄
∗λ−1

cj < θiR̄
∗λ−1

ci . This implies that R̄∗
ci > R̄∗

cj. On

the other hand, since θi < θj, there exist y ∈
(
θjR̄

∗λ−1

cj , θiR̄
∗λ−1

ci

)
and r1, r2 > 0 such

that θi
(
R̄∗

ci − r1
)λ−1

= θj
(
R̄∗

cj + r2
)λ−1

= y. Define T := 1
2
min{r1, r2, R̄

∗
ci, R̄c,max

−R̄∗
cj} (note that T is positive). Define also ΔJ(β) = θiR̄

∗λ

ci +θjR̄
∗λ

cj −θi
(
R̄∗

ci − β
)λ
−

θj
(
R̄∗

cj + β
)λ
. Since dΔJ

dβ
> 0, ∀β ∈ (0, T ], and also ΔJ(0) = 0, one can conclude

that ΔJ(β) > 0, ∀β ∈ (0, T ]. This contradicts the initial assumption of the lemma

about the optimality; hence, θjR̄
∗λ−1

cj ≥ θiR̄
∗λ−1

ci .
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iv) Assume that θi < θj and θjR̄
∗λ−1

cj > θiR̄
∗λ−1

ci , but R̄∗
ci < Rc,max. The first two

inequalities imply that there exist y ∈
(
θiR̄

∗λ−1

ci , θjR̄
∗λ−1

cj

)
and r1, r2 > 0 such that

θi
(
R̄∗

ci + r1
)λ−1

= θj
(
R̄∗

cj − r2
)λ−1

= y. Define T := 1
2
min

{
r1, r2, R̄

∗
cj, Rc,max − R̄∗

ci

}
(note that T is positive). Define also ΔJ(β) = θiR̄

∗λ

ci + θjR̄
∗λ

cj − θi
(
R̄∗

ci + β
)λ

−

θj
(
R̄∗

cj − β
)λ
. Since dΔJ

dβ
> 0, ∀β ∈ (0, T ], and also ΔJ(0) = 0, one can deduce that

ΔJ(β) > 0, ∀β ∈ (0, T ]. This contradicts the initial assumption of the lemma about

the optimality; thus, R̄∗
ci = Rc,max, and this completes the proof. �

Definition 2.3. Define Ŕ∗
ci, i ∈ n, as the new communication radii obtained by

solving the UDOP after setting the sensing radius of sensor 1 to R̄∗
s1 (which corre-

sponds to the solution of the CDOP). Let q and l be the indices of the smallest and

largest θi, i ∈ n, i.e. θq = mini∈n θi and θl = maxi∈n θi. This notation will be used

in the sequel.

Remark 2.4. It can be concluded from Lemma 2.3 that R̄∗
cq ≥ R̄∗

ci for all i ∈ n.

Also, from Remark 2.2, Ŕ∗
cq ≥ Ŕ∗

ci for all i ∈ n.

Lemma 2.4. Consider the UDOP and the parameters introduced in Definition 2.3.

If Ŕ∗
cq > Rc,max, then R̄∗

cq = Rc,max.

Proof. It is known that
∑n

i=1 Ŕ
∗
ci =

∑n

i=1 R̄
∗
ci = x − R̄∗

s1, and that R̄∗
cq ≤

Rc,max < Ŕ∗
cq. This implies that ∃z ∈ n such that R̄∗

cz > Ŕ∗
cz. Now, it follows from

Remark 2.2 that θqR̄
∗λ−1

cq < θqŔ
∗λ−1

cq = θzŔ
∗λ−1

cz < θzR̄
∗λ−1

cz , and hence part (iv) of

Lemma 2.3 yields R̄∗
cq = Rc,max. �

Remark 2.5. It is straightforward to show that if Ŕ∗
cq ≤ Rc,max, then Ŕ∗

ci = R̄∗
ci,

∀i ∈ n. Therefore, for the case when Ŕ∗
cq = Rc,max, one can conclude that R̄∗

cq =

Rc,max.

Lemma 2.5. Consider the UDOP and the parameters introduced in Definition 2.3.

If R̄∗
s1 > R∗

s1, then Ŕ∗
cq ≥ Rc,max.
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Proof. Assume that R̄∗
s1 > R∗

s1, but Ŕ
∗
cq < Rc,max. It follows from Lemma 2.1

that Ŕ∗
ci < R∗

ci, for all i ∈ n. It follows from Remark 2.5 that Ŕ∗
ci = R̄∗

ci, ∀i ∈ n.

Now, it can be concluded from Lemma 2.1 that:

J̄∗ =

(
x− R̄∗

s1

)λ
σλ−1
n

+ αθs1R̄
∗γ

s1 (2.12)

Define T = 1
2
min

{
R̄∗

s1 −R∗
s1 , θ

1

λ−1

q σn

(
Rc,max − R̄∗

cq

)}
(note that T is a positive

value). By replacing R̄∗
s1 with R̄∗

s1 − β for an arbitrary β ∈ (0, T ), one arrives at:

J̄∗
β =

(
x− R̄∗

s1 + β
)λ

σλ−1
n

+ αθs1
(
R̄∗

s1 − β
)γ

(2.13)

Define now ΔJ(β) = J̄∗− J̄∗
β . By taking the derivative of ΔJ(β) and on noting that

f(Rs1) in (2.7) is a strictly increasing function of Rs1 in the closed interval [0, x], and

that R̄∗
s1 − β > R∗

s1, f(R
∗
s1) = 0, one can conclude that dΔJ

dβ
> 0. Since ΔJ(0) = 0

and the above derivative is strictly positive for all β ∈ (0, T ), it results that J̄∗
β < J̄∗

which is a contradiction. This means that Ŕ∗
cq ≥ Rc,max. �

Theorem 2.2. Consider the UDOP and the index q in Definition 2.3. If R∗
cq ≥

Rc,max, then R̄∗
cq = Rc,max.

Proof. If R̄∗
s1 > R∗

s1, then according to Lemma 2.5 Ŕ∗
cq ≥ Rc,max. Thus, it

results from Lemma 2.4 and Remark 2.5 that R̄∗
cq = Rc,max. If, on the other hand,

R̄∗
s1 ≤ R∗

s1, then it follows from the proof of Lemma 2.1 that Ŕ∗
cq ≥ R∗

cq ≥ Rc,max.

One can therefore conclude that R̄∗
cq = Rc,max. �

Lemma 2.6. Consider the UDOP and set the communication radii of all but one

sensor, say sensor n, to R∗
ci, i ∈ {1, . . . , n − 1}. Let the communication radius of

sensor n be chosen as R̂cn < R∗
cn, and solve the new unconstrained optimization

problem for n − 1 remaining sensors with xnew = x − R̂cn. Then the new optimal

radii R̂∗
s1 and R̂∗

ci have the following properties:

i) R̂∗
s1 > R∗

s1

ii) R̂∗
ci > R∗

ci, i = 1, . . . , n− 1
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Proof.

i) From Lemma 2.2:

(σn−1)
λ−1 αγθs1R̂

∗γ−1

s1 = λ
(
x− R̂cn − R̂∗

s1

)λ−1

(2.14)

Assume now that R̂∗
s1 ≤ R∗

s1. Then:

(σn−1)
λ−1 αγθs1R̂

∗γ−1

s1 ≤ (σn−1)
λ−1 αγθs1R

∗γ−1

s1 (2.15)

The above assumption along with the inequality R̂cn < R∗
cn yields:

λ (x−R∗
cn −R∗

s1)
λ−1 < λ

(
x− R̂cn − R̂∗

s1

)λ−1

(2.16)

Now, from (2.10), (2.14) and (2.16) it can be concluded that:

(σn−1)
λ−1 αγθs1R

∗γ−1

s1 < (σn−1)
λ−1 αγθs1R̂

∗γ−1

s1

which contradicts (2.15). This means that R̂∗
s1 > R∗

s1.

ii) From Theorem 2.1 and equation (2.9):

R∗λ−1

ci =
(x−R∗

s1)
λ−1

θiσλ−1
n

=
αγθs1
λθi

R∗γ−1

s1 , i = 1, . . . , n− 1 (2.17)

Furthermore, from Theorem 2.1 and equation (2.14):

R̂∗λ−1

ci =

(
x− R̂cn − R̂∗

s1

)λ−1

θi (σn−1)
λ−1

=
αγθs1
λθi

R̂∗γ−1

s1 , i = 1, . . . , n− 1 (2.18)

Now, from part (i) of the lemma and by using (2.17) and (2.18), one arrives at the

following inequality:

R̂∗
ci > R∗

ci

for all i ∈ {1, . . . , n− 1}, and this completes the proof. �

The following lemma is the key to prove one of the important features of the

UDOP.
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Lemma 2.7. Consider the UDOP and assume that the optimal communication radii

of k sensors (say, sensors n − k + 1, . . . , n) are greater than or equal to Rc,max.

Set Rci = Rc,max for all i ∈ {n − k + 1, . . . , n}, and solve the new unconstrained

optimization problem for n − k sensors and xnew = x − kRc,max. Then Ř∗
s1 ≥

R∗
s1, where Ř∗

s1 is the optimal sensing radius of sensor 1 in the new unconstrained

optimization problem.

Proof. The proof follows directly from Lemma 2.6, by using parts (i) and (ii) k

times. In fact, it can be shown (by using Lemma 2.2 and Theorem 2.1) that Ř∗
s1 is the

unique positive real root of the following equation over the interval [0, x− kRc,max]:

f̌(R) = (σn−k)
λ−1 αγθs1R

γ−1 − λ (x− kRc,max −R)λ−1 (2.19)

where f̌ is the dual of the function f (introduced in Lemma 2.2) for the new uncon-

strained optimization problem. �

Theorem 2.3. Consider the UDOP and assume that R∗
s1 > Rs,max; then R̄∗

s1 =

Rs,max.

Proof. Assume that R̄∗
s1 < Rs,max. Let R̄∗

ci = Rc,max, i = n − k + 1, . . . , n

and R̄∗
ci < Rc,max, i = 1, . . . , n − k. Let also g be the index of the smallest θi,

i ∈ {1, . . . , n − k}. It results from parts (i) and (ii) of Lemma 2.3 that R̄∗
cg =

maxi∈{1,...,n−k}

{
R̄∗

ci

}
. Since R̄∗

ci < Rc,max, ∀i ∈ {1, . . . , n − k}, one can conclude

from Theorem 2.2 (for the new unconstrained optimization problem with xnew =

x−kRc,max, where n−k sensors’ optimal communication radii are to be determined)

that R∗
cg < Rc,max. Therefore, it can be concluded from Remark 2.2 that R∗

ci <

Rc,max, ∀i ∈ {1, . . . , n− k}. Hence, in the new problem setting the constrained and

unconstrained optimizations both lead to the same result for the above-mentioned

n− k sensors. Thus, from Lemma 2.1:

J̄∗ =

(
x− kRc,max − R̄∗

s1

)λ
(σn−k)

λ−1
+ αθs1R̄

∗γ

s1 +Rλ
c,max

n∑
i=n−k+1

θi (2.20)
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Define:

T :=
1

2
min

{
Rs,max − R̄∗

s1, θ
1

λ−1

g σn−k

(
Rc,max − R̄∗

cg

)}

(note that T is a positive value). Consider now the following values for the commu-

nication and sensing radii for an arbitrary β ∈ (0, T ):

R̃∗
s1 = R̄∗

s1 + β

R̃∗
ci = Rc,max, i = n− k + 1, . . . , n

R̃∗
ci =

(
x− kRc,max − R̄∗

s1 − β
)

θ
1

λ−1

i σn−k

, i = 1, . . . , n− k

As a result:

J̃∗ =

(
x− kRc,max − R̄∗

s1 − β
)λ

(σn−k)
λ−1

+ αθs1
(
R̄∗

s1 + β
)γ

+Rλ
c,max

n∑
i=n−k+1

θi (2.21)

Define ΔJ(β) = J̄∗−J̃∗; since β ∈ (0, T ), thus R̄∗
s1+β < Rs,max ≤ R∗

s1. Furthermore,

according to Lemma 2.7, R∗
s1 ≤ Ř∗

s1. As a result, R̄∗
s1+β < Ř∗

s1. On the other hand,

it is known from the proof of Lemma 2.2 that f̌(R) in (2.19) is strictly increasing with

respect to R over [0, xnew], which implies that f̌(R̄∗
s1 + β) < f̌(Ř∗

s1) = 0. By taking

the derivative of ΔJ(β) with respect to β and using the inequality f̌(R̄∗
s1 + β) < 0,

one obtains dΔJ
dβ

> 0. Hence, it can be deduced from ΔJ(0) = 0 that J̄∗ > J̃∗, which

contradicts the minimality of J̄∗ in (2.20). This means that R̄∗
s1 = Rs,max. �

Consider now the problem of minimizing the sum of the power consumed by

all sensors, which is a special case of the underlying optimization problem. In this

case, all θi’s (i ∈ n) are equal to 1. Note that the smaller the total consumed power

at every instant of a given interval is, the smaller the total consumed energy in that

interval is.

Theorem 2.4. Consider the CPOP and denote the corresponding minimum cost by

J̄∗
P . Let Rp be the real positive root of f(Rs1) = nλ−1αγRγ−1

s1 − λ (x−Rs1)
λ−1 over

[0, x] (see Lemma 2.2). Then J̄∗
P is equal to:
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i) J̄∗
P = (x−Rp)

λ

nλ−1 + αRγ
p

if Rp ≤ Rs,max and 1
n
(x−Rp) ≤ Rc,max

ii) J̄∗
P = (x−Rs,max)

λ

nλ−1 + αRγ
s,max

if Rp > Rs,max and 1
n
(x−Rp) ≤ Rc,max

iii) J̄∗
P = nRλ

c,max + α (x− nRc,max)
γ

if Rp ≤ Rs,max and 1
n
(x−Rp) > Rc,max

Proof.

i) The proof of this part follows immediately from Theorem 2.1, on noting that

θi’s are all equal to 1, and that the solutions of the constrained and unconstrained

optimization problems are equal.

ii) According to Theorem 2.3, R̄∗
s1 = Rs,max. On the other hand, since all θi’s

are equal, one can conclude from part (i) of Lemma 2.3 that all communication radii

are equal. This completes the proof of this part.

iii) Again, since all θi’s are equal, one can conclude from part (i) of Lemma 2.3

that all communication radii are also equal. Furthermore, it can be concluded from

Theorem 2.2 that this value is equal to Rc,max, and this completes the proof. �

Remark 2.6. Note in Theorem 2.4 that the inequalities Rp > Rs,max and
1
n
(x−Rp) >

Rc,max cannot both be satisfied at the same time, according to Assumption 2.3.

2.2.1 A procedure to solve the CDOP

The following algorithm can be used to solve the CDOP systematically, in order to

find the optimal communication and sensing radii.

Algorithm 1.

1. Choose ζ = n
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2. Sort θi (i = 1, ..., n) in descending order, and let them be represented as

θi1 ≥ θi2 ≥ . . . ≥ θin

3. Find the real positive root of the following equation (with respect to R) over

[0, x], and denote it by Rp:

[
ζ∑

l=1

(
1

θil

) 1

λ−1

]λ−1

αγθs1R
γ−1 − λ (x−R)λ−1 = 0

4. Set ω = 0

5. Set R̄∗
s1 =min{Rp, Rs,max}

6. Let Ŕ∗
cij

=
x−R̄∗s1

θij

1
λ−1

⎡
⎣∑ζ

l=1

(
1

θil

) 1
λ−1

⎤
⎦
, j = 1, . . . , ζ

if Ŕ∗
cij

> Rc,max, then R̄∗
cij

= Rc,max and ω = ω + 1

else, R̄∗
cij

= Ŕ∗
cij

7. Set x = x− ωRc,max and ζ = ζ − ω

8. If ζ �= 0 and ω �= 0, then go to step 3

9. If ζ = 0, then R̄∗
s1 = x− nRc,max

10. End

Remark 2.7. To run Algorithm 1 in a given time interval, it is required first to

specify the monitoring sensor. The selection criteria can include, for example, the

distance between the sensors and the target, and the residual energy of the sensors.

Note that a sensor that is very close to the target and has a high level of residual

energy would be more desirable, to increase the reliability and durability of target

monitoring.
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In the sequel, the real-time implementation of Algorithm 1 is investigated

thoroughly, and some important practical issues are addressed. Let the algorithm

be executed at the time instants t0, t1 := t0 + ΔT , t2 := t0 + 2ΔT , . . ., where

ΔT is the time interval within which the corresponding computations have to be

completed and the sensors should be relocated accordingly.

For real-time implementation of Algorithm 1, the cooperating sensors need to

share certain information. All sensors will need to know the position of the target

as well as the weight functions θi(t) at t = t0, t1, t2, . . . in order to minimize the

cost function (2.4) in the CDOP. Three execution cycles are considered in [tj, tj+1]

(j = 0, 1, 2, . . .) as discussed below.

i) [tj, tj + δt1]: In this time interval, due to the connectivity preserving property

of Algorithm 1 (from sensor 1 to the destination point), a unidirectional multi-

hop communication link is always available in the network. In addition, it is

assumed that the destination point is equipped with a transmitter capable

of sharing the received data with other sensors (this is a realistic assumption

in most sensor network applications). Then, all the required information at

t = tj is shared between all sensors in this cycle, and the positions of the

sensors along with their sensing and communication radii are computed.

ii) [tj + δt1, tj + δt2]: In this cycle, the sensors are placed in the field according to

the values obtained in the first cycle (note that the sensors move in this cycle

only).

iii) [tj+δt2, tj+1]: In this cycle, it is desired to maintain connectivity and transmit

the information from the target to the destination point. To this end, the

target must be in the sensing range of the monitoring sensor.

In the sequel, a sufficient condition is provided which ensures the connectivity

requirement of the last execution cycle given above. Suppose the monitoring sensor
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detects the target at time instant tj; let the position of the target at the time instants

tj and tj+1 be represented by x0(tj) and x0(tj+1), respectively. Furthermore, denote

the position of the monitoring sensor in the first and third execution cycles by x1(tj)

and x1(tj+1), respectively. Let also Dm(tj) = maxtj≤t≤tj+1
‖x0(t)− x0(tj)‖. Now, to

ensure the target is within the sensing range in the last cycle, the maximum sensing

radius Rs,max in Algorithm 1 should be chosen smaller than the actual maximum

sensing radius R̄s,max. Moreover, the following inequality must be satisfied:

‖x0(t́)− x1(tj+1)‖ ≤ R̄s,max (2.22)

for all t́ ∈ [tj + δt2, tj+1]. It can be observed from Figure 2.1 that:

‖x0(t́)− x1(tj+1) ≤ ‖x0(tj)− x1(tj+1)‖+ ‖x0(t́)− x0(tj)‖ (2.23)

On the other hand:

‖x0(tj)− x1(tj+1)‖ ≤ Rs,max (2.24)

‖x0(t́)− x0(tj)‖ ≤ Dm(tj) (2.25)

Thus, (2.22) holds if:

Dm(tj) ≤ R̄s,max −Rs,max (2.26)

(note that Rs,max is a design parameter). Denote the average speed of the target in

the time interval [tj, tj+1] by v̄(tj). It is straightforward to show that (2.26) holds if:

ΔT v̄(tj) ≤ R̄s,max −Rs,max (2.27)

This implies that in order to preserve connectivity, the target should not move too

fast. It is worth mentioning that by choosing a small Rs,max, the condition given

in (2.27) will be satisfied for faster target. However, this would be achieved at the

expense of inefficient use of the sensing capabilities of the monitoring sensor.
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Figure 2.1: An illustrative figure for the real-time implementation of Algorithm 1.

It is also to be noted that if the target is fixed in the interval [tj, tj+1], the

sensor locations in the third execution cycle are the optimal sensor positions for

transferring information from the target to the destination point. Otherwise, if the

target moves, since the sensor positions are obtained from Algorithm 1 using x0(tj),

the sensor locations are near-optimal.

Remark 2.8. For solving CPOP, one can set θs1 and all θi’s (i ∈ n) to 1 and use

Algorithm 1.

2.3 Simulation Results

Example 1. Consider an MSN consisting of 6 sensors, and let the corresponding

parameters be given by Rc,max = 20m, R̄s,max = 7m, λ = 3.2, γ = 5, and α = 3. Let

ΔT = 2sec, and assume that the average speed of the target in any execution time

interval is less than 0.5m/sec. One can verify that (2.27) is satisfied by choosing

Rs,max = 6m. Let the initial residual energy of each sensor be a uniformly distributed

random number between 480J and 2400J. It is assumed that the sensor with the

highest initial energy is selected as the monitoring sensor, and that only this sensor

will be monitoring the target throughout the mission (the latter assumption is mainly
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for simplicity of analysis, as stated earlier). The simulation results presented here

are obtained by MATLAB for two different scenarios.
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Figure 2.2: Residual energy of the sensors in Example 1, under the total power
consumption minimization strategy (first scenario).

Scenario 1: In the first scenario, it is desired to minimize the sum of the power

consumption of all sensors. In this case, one can use Algorithm 1 and Theorem 2.4

to find the optimal solution for the CPOP. Figure 2.2 depicts the residual energy

of the sensors versus time, using the optimal strategy in this case. At t = 142min,

sensor 6 (which has the smallest residual energy) runs out of energy and network has

to operate using the five remaining sensors. Furthermore, at t = 177min sensor 3

also runs out of energy, and the network has to continue its operation by only

four sensors. As can be perceived from Figure 2.2, the rate of energy consumption

increases in the network after losing each one of these two sensors. In addition, the

energy of sensor 4 is depleted at t = 218min, and since the distance between the

target and destination point is 76m (which is more than 3Rc,max + Rs,max = 66m),

the network cannot operate with the remaining three sensors.

Remark 2.9. To apply Algorithm 1 in this scenario, only the value of x needs to
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be transmitted through the unidirectional link from sensor 1 to the sensor with the

smallest distance to the destination point. The optimization procedure will then be

performed by each sensor separately.

Scenario 2: The objective here is that all sensors work cooperatively for a long

period of time. For this purpose, the residual energy of every sensor needs to be

monitored at all times, and the power consumption of each sensor is to be adjusted

accordingly, so that the life-span of every sensor in the network becomes more or

less the same as shown in Figure 2.3. To this end, the sensing and communication

radii are chosen in such a way that if the residual energy of one sensor, say sensor i,

at one instant is k times greater than that of another sensor, say sensor j, then the

rate of energy consumption of sensor i must be k times greater than that of sensor

j. It is desired now to choose the values of θi’s at every time instant such that the

above objective is achieved by minimizing J̄∗
D. As noted from (2.2) and (2.8), if at

time t the residual energy of sensor i is k times greater than that of sensor j, then

θj should be set k
λ−1

λ times greater than θi at that time instant, for all i, j ∈ n.

This condition is satisfied by choosing θi = (residual energy of sensor i)
1−λ
λ , for any

i ∈ n. Algorithm 1 can now be used to solve CDOP.

Remark 2.10. It is to be noted that the power consumption of sensor 1 is not

due solely to communication, and part of it is due to sensing. Furthermore, the

relation (2.8) is not necessarily valid in constrained optimization. However, since the

coefficients θ1, . . . , θn are tuned online, the strategy described above is still effective

in increasing the life-span of the network in both constrained and unconstrained

optimization problems.

In Figure 2.3, the residual energy of sensors is plotted versus time. This figure

shows that all sensors run out of energy simultaneously at t = 336min. Furthermore,

one can observe that there is a significant drop in the residual energy of sensor 1 from
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Figure 2.3: Residual energy of sensors in Example 1, under the life-span maximiza-
tion strategy (second scenario).

t = 100min to t = 112min in the figure. This is due to the fact that the distance

between the target and destination point becomes close to nRc,max+Rs,max = 126m

in this time interval (see also Figure 2.5(a)). This in turn pushes the communication

radius of each sensor closer to its maximum allowable value, and more importantly,

the sensing radius of sensor 1 closer to its maximum allowable value.

Figures 2.4(a), 2.5(a) and 2.6(a) depict the location of target and sensors under

the second scenario in the x−y plane in three different time instants t = 15, 105 and

200min, respectively. As it can be observed from Figures 2.4(a), 2.5(a) and 2.6(a),

the proposed strategy aligns all sensors on a straight line. Their exact location

on the line as well as their communication and sensing radii are computed online,

based on the residual energy of every sensor in the network. The boundary of the

region where the signal transmitted by each sensor can be received is marked by a

colored solid circle in these figures. Similarly, the boundary of the sensing region

corresponding to sensor 1 is marked by a blue dashed circle. The residual energy of

each sensor in the above time instants is plotted in Figures 2.4(b), 2.5(b) and 2.6(b),
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Figure 2.4: (a) The location of the target, destination point, and sensors at t =
15min. (b) The residual energy of each sensor at t = 15min.
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Figure 2.5: (a) The location of the target, destination point, and sensors at t =
105min. (b) The residual energy of each sensor at t = 105min.
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accordingly. Note that the communication radii of the sensors are proportional to

their residual energy at t = 15min, but they are all equal at t = 105min (although

different sensors have different residual energies at this time instant). This is due to

the fact that the distance between the target and destination point is nearly 126m

at this instant, and this is the farthest distance the sensors can cover. Hence, the

maximum radii for communication and sensing need to be adopted by the sensors,

regardless of their residual energies. Moreover, since the distance between the target

and destination point is about 76m at t = 200min, sensors do not need to use their

maximum communication and sensing radii. Hence, the communication radius of

each sensor is again proportional to its residual energy.

Remark 2.11. To implement scenario 2, two computational schemes can be con-

sidered here: centralized and distributed. In a centralized scheme, the information

about θs1, x and θi’s, ∀i ∈ n, is transmitted to the destination point, and the optimal

values Rs1 and Rci’s are computed accordingly, along with the location of each sen-

sor. The optimal parameters are then transmitted back to all sensors in the MSN.

In a distributed scheme, on the other hand, any required information is shared be-

tween all sensors through the destination point, and each sensor in the MSN uses

Algorithm 1 separately to find the optimal parameters.

By comparing Figures 2.2 and 2.3, it can be observed that the cooperation of

the sensors in the second scenario lasts 54% longer than that of the same sensors in

the first scenario. Another comparison of the two strategies is provided in Figure 2.7.

This figure shows the sum of residual energies of all sensors versus time in the first

scenario (dotted curves) and the second scenario (solid curves). As long as all 6

sensors are operating in the network (before t = 142min), the total residual energy of

the sensors in the first scenario is more than that in the second scenario as expected.

Once a sensor runs out of energy, the rate of total residual energy consumption in

the first scenario becomes greater than that in the second scenario, such that after
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Figure 2.6: (a) The location of the target, destination point, and sensors at t =
200min. (b) The residual energy of each sensor at t = 200min.
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t = 161min the sum of residual energies in scenario 1 becomes less than that in

the second scenario. This is due to the fact that once a sensor stops operating, the

remaining sensors are forced to adopt larger communication and sensing radii to

preserve network connectivity, which leads to an increase in the rate of total energy

consumption in scenario 1 (this would be more significant for larger values of λ and

γ). It can be observed from Figure 6 that right before the first sensor runs out of

energy in scenario 1, the sum of residual energies of the sensors in the first scenario

is at most 3% larger than that in the second scenario. Thus, the relocation strategy

proposed in scenario 2 which increases the durability of the mobile sensor network

will, at the same time, reduce the total energy consumption significantly.
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Figure 2.7: The total residual energy of all sensors in both scenarios.

Remark 2.12. One can use a combination of the two strategies proposed in this

chapter, to address the trade off between the total power consumption and the dura-

bility of the network. This is carried out in two phases. First, the minimum sum of

power consumption strategy is adopted until the total energy of the network reaches a

predefined level, at which time the system switches to the maximum durability strat-

egy. Depending on the network parameters, this new strategy may provide a good

compromise between the energy consumption and life-span of the network.
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Chapter 3

Cost-Efficient Routing with

Controlled Node Mobility in

Sensor Networks

In this chapter, an energy-efficient strategy is proposed for tracking a moving target

in a mobile sensor network. The energy expenditure of the sensors in the network

is assumed to be due to communication, sensing and movement. First, the target

area is divided into a grid of sufficiently small rectangular cells in order to search

for near optimal locations for the sensors in different time instants. The grid is then

converted to a graph with properly weighted edges. A shortest-path algorithm is

subsequently used to route information from target to destination by a subset of

sensors.

The organization of this chapter is as follows. In Section 3.1 the problem is

introduced and important assumptions and definitions are provided. Section 3.2

presents the proposed routing technique as the main contribution of this chapter.

In Section 3.3, the complexity and performance of the algorithm are discussed.

Simulations are presented in Section 3.4 to support the theoretical findings.
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3.1 Problem Statement

Consider a group of n mobile sensors S1, . . . , Sn aimed to track a moving target.

The sensors are distributed in a field where the target moves, and their mission

is to preserve connectivity between target and destination (a fixed location where

the network information is collected). Furthermore, in selecting those sensors which

create a route from the target to destination, cost-effectiveness must be taken into

account. This cost is concerned with the energy consumed to establish connectivity,

and depends mainly on movement, sensing and communication.

Assumption 3.1. It is assumed that one sensor is properly selected to sense the

target, and all other sensors can potentially be used to create an information route to

the destination at any time instant. This sensor is referred to as the tracking sensor,

and is not necessarily fixed. The tracking sensor at any point in time is selected based

on the target position and the energy-efficient deployment strategy discussed later.

Let the tracking sensor be denoted by ST , with the maximum sensing radius

RS (note that ST ∈ {S1, S2, ..., Sn} at any time instant). This means that if the

target is within a circle of radius RS centered at ST , then it can be detected by this

sensor.

Assumption 3.2. The target is assumed to be within a reachable distance from the

destination at all times, i.e. x(t) ≤ nRC+RS, ∀t, where x is the distance between the

target and destination, RC is the maximum communication radius of each sensor,

and n is the number of sensors.

To minimize the energy consumption, the sensors must operate in a collab-

orative fashion in order to determine the best locations for sensors, and the best

routing path to communicate the information. The energy loss due to movement is

assumed to be proportional to the distance. The energy loss due to communication

and sensing between two nodes P and Q, on the other hand, is proportional to
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d(P,Q)λ and d(P,Q)γ , respectively, where d(P,Q) is the distance between P and

Q. Moreover, λ and γ are positive real values which depend on the characteristics

of the environment (typically γ > λ).

To develop the energy-efficient routing technique, the field is first divided into

a grid, and it is assumed that the sensors are located on the nodes of the grid at any

time instant. Three different graphs are then constructed, whose vertices are the

grid nodes, and whose edges are weighted properly, in accordance with the available

models for the three sources of energy consumption.

The three weighted graphs (which are, in fact, directed) are subsequently

combined to obtain the overall energy consumption graph, which will be referred to

as the combined energy digraph. The following notation and definitions will prove

convenient in the development of the main results.

Notation 3.1. Throughout this chapter, the j-th nearest sensor to node P will be

denoted by Sj
P , for any j ∈ n := {1, 2, ..., n}. For example, S1

P represents the nearest

sensor to node P . Furthermore, djP denotes the distance between Sj
P and P .

Definition 3.1. In this chapter, the term path nodes refers to all the nodes on a

given path connecting the target to destination, excluding the target and destination

themselves.

3.2 Main Results

In this section, a strategy is presented to properly place the sensors in the field at any

time instant in such a way that the total energy consumption due to the sensing,

communication and movement of the sensors is sufficiently close to its minimum

value.

Consider n sensors which can move on the surface of a field. Let the field be

divided into a grid of a given size. Partition also the field into a Voronoi diagram
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with n regions (each region associated with one sensor). Let the j-th region of the

Voronoi diagram be denoted by Λj, for any j ∈ n. Three different graphs are con-

structed in the sequel.

1) Communication energy digraph: Construct a directed graph (digraph) in

which the edges are properly weighted to model the communication cost between

the sensors. In this digraph, there is an edge from the node Pi to Pj if Pj is in the

communication range of Pi, i.e., if the distance between them is less than or equal

to RC . It is to be noted that all edges in this digraph are bidirectional.

Definition 3.2. The region containing the target and the node on which the tar-

get resides will hereafter be denoted by ΛT and PT , respectively. In addition, the

destination will be denoted by PD.

2) Sensing energy digraph: From the properties of the Voronoi diagram, it is

known that the closest sensor to any point in a Voronoi region is the sensor associated

with that region. The target is assumed to be tracked by the closest sensor to it.

This implies that the target and the sensor which tracks it at any point in time, are

in the same Voronoi region. Every node of the grid whose distance from the target

is less than RS and is in ΛT is connected to the target by a directed edge (from the

target to the node) with a weight proportional to the corresponding sensing energy.

Moreover, any node on the grid which is in ΛT and is within a distance of RS from

PT will be referred to as a sensing node. Figure 3.1 shows a sample position of the

target and the sensor energy digraph edges. RS is assumed to be 2 in this figure,

and the target is connected to any point in the grid in the region ΛT and enclosed

in the circle with radius of RS centered at the target.

3) Movement energy digraph: Construct a directed graph in which the edges

are appropriately weighted to model the energy required for the sensors to move to
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Figure 3.1: An illustrative figure of the sensing energy digraph.

a proper location in order to transmit information from the target to destination.

This directed graph is called movement energy digraph. The weight of the directed

edge from Pi (Pi �= PT ) to Pj is denoted bymov(i, j), which depends on the locations

of the two nodes. The following procedure is used to find this weight.

- Consider the case where Pi and Pj are in different Voronoi regions, OR Pj is

the destination node.

i) If the target and Pi are in the same region AND Pi is not a sensing node,

then:

mov(i, j) = β.d2Pi

where β is a constant coefficient.

ii) If the target and Pi are in different regions OR Pi is a sensing node, then:

mov(i, j) = β.d1Pi
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- Consider now the case where Pi and Pj are in the same region, AND Pj is not

the destination node.

i) If the target and Pi are in the same region AND Pi is not a sensing node,

then:

mov(i, j) = β.d2Pi

ii) If the target and Pi are in different regions, then:

mov(i, j) = β.[min(d1Pi
+ d2Pj

, d1Pj
+ d2Pi

)− d1Pj
]

iii) If Pi is a sensing node, then:

mov(i, j) = β.d1Pi

It is important to notice that, our algorithm tries to allocate weights to the

movement energy digraph such that in any arbitrary path from target to destination,

the sum of the allocated weights to the path edges by the algorithm is a lower

limit which is as close as possible to the minimum movement energy required for

a subset of sensors to move to path nodes and start routing the information. As

simulation results will show, our proposed method is successful in a high percent

of cases. Figure 3.2 gives an illustration of the above cases for edges which each

are assumed to belong to an arbitrary path. For example, in this figure, nodes

B and C satisfy the conditions of part (i) of the second case and the edge BC

is assigned a weight of β.d1B = β.d(S4, B) where d(S4, B) is the distance between

S4 and B . Edges AD, EF and GH satisfy part (ii) of the first case. In the

edge AD, node Pj = D is the destination. For EF , Pi = E and the target are

in different regions and in GH, Pi = G is a sensing node, therefore they will be

assigned the weights β.d1A = β.d(S3, A), β.d
1
E = β.d(S1, E) and β.d1G = β.d(S2, G)

respectively. The edge KL is an example of part (i) of the second case in which

Pi = K and the target are in different regions and K is not a sensing node. The
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Figure 3.2: An illustrative figure about the edges of the movement energy digraph.

algorithm assigns the weight β.d2K = β.d(S3, K) to it. The edge MN satisfies

part (iii) of the second case. In this case, the nearest sensor to M and N is the

same and the algorithm assigns the weight β.[min(d1M + d2N , d
2
M + d1N) − d1N ] =

β.[min(d(S4,M) + d(S3, N), d(S4, N) + d(S2,M))− d(S4, N)] to this edge. Finally,

the edge IJ is an example of part (iii) of the second case. In this case, since Pi = I

is a sensing node, the weight of this edge is β.d1I = β.d(S2, I).

Once the above three digraphs are constructed, derive a new digraph called

combined energy digraph, in which the node Pi is connected to Pj if there is a directed

edge from Pi to Pj in at least one of the three digraphs. The weight assigned to

this edge is the sum of the weights of the corresponding existing edges in the three

digraphs. Notice that, if the distance between any two grid points Pi and Pj is

greater than RC , the corresponding edge in the communication energy digraph has

been assigned a weight of infinity, therefore making the corresponding edge in the

combined energy digraph of infinite weight. It is desired in this new graph to find the
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shortest weighted path connecting the target to destination, subject to the constraint

that the number of nodes in the path is less than or equal to the number of sensors.

It will be shown that this path provides a cost-effective route, which can, under

some conditions, be optimal.

Remark 3.1. One can use a proper fast and efficient routing algorithm (such as

Dijkstra) to find the shortest path. If in the end the number of nodes in the shortest

path was greater than n, then one can switch to a constrained shortest path algorithm,

which is normally slower than unconstrained algorithms.

Definition 3.3. The sum of the weights of the directed edges of a path Π is re-

ferred to as the path weight, and is denoted by W (Π). Note that the path weight

is, in fact, the sum of the weights of directed edges of the sensing energy digraph,

communication energy digraph and movement energy digraph, which will hereafter

be called the sensing path weight, communication path weight, and movement path

weight, respectively.

Definition 3.4. Given a path Π = (PT , P1, P2, ..., Pm, PD) connecting the target to

destination, the minimum energy required for any group of m sensors to be located

at P1, P2, ..., Pm and transmit the information from the target to destination is called

the path cost, and is denoted by C(Π). Note that the path cost is, in fact, the sum

of the minimum energy required for the selected sensors to move to their designated

locations on the path, sense the target, and communicate with each other on the

path, which will hereafter be referred to as the movement path cost, sensing path

cost, and communication path cost, respectively. However, to find this value, it

suffices to consider the movement energy only, and add it to the fixed sensing and

communication energy required to establish the underlying information link. This is

due to the fact that all sensors are assumed to be identical in terms of sensing and

also communication capabilities.
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Definition 3.5. The optimal path in a combined energy digraph is a path consist-

ing of at most n nodes, such that there exist a group of sensors which the cost of

moving them to these nodes and establishing an information link from the target to

destination is minimum, among all possible choices of paths and sensors. This path

will be denoted by Π∗.

Theorem 3.1. Consider a path Π which connects the target to destination such

that:

i) Π has at most two nodes in each Voronoi region.

ii) If a region Λk contains exactly two nodes of the path, say Pi and Pj, then the

path Π does not pass through any other region containing the second nearest sensor

to Pi or Pj.

Then, the path cost and path weight of Π are equal.

Proof. Since the communication and sensing path costs for any fixed path are

equal to the communication and sensing path weights, respectively, it suffices to

show that the movement path cost and movement path weight are equal. To this

end, consider the following three cases:

Case 1: Region Λk contains only one node. To minimize the movement energy

in this case, one can assign the nearest sensor of this node to it. From the weight

assignment rule in the movement energy digraph, it follows that the movement path

cost and movement path weight are equal.

Case 2: Region Λk contains the two nodes Pi and Pj, but not the node PT

(target). Similar to the previous case, it results from the weight assignment rule in

the movement energy digraph that the sum of the weights of the edge from Pi to Pj

and the edge coming out of Pj is given by:

Xk = β.[min(d1Pi
+ d2Pj

, d1Pj
+ d2Pi

)− d1Pj
] + β.d1Pj

= β.[min(d1Pi
+ d2Pj

, d1Pj
+ d2Pi

)] (3.1)
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Since Π does not pass through the Voronoi regions containing the second nearest

sensors to Pi and Pj , the above value is the minimum energy required to place the

sensors in these two nodes.

Case 3: Region Λk contains the two nodes Pi and Pj, as well as the node PT .

In this case, the sum of the weights of the corresponding edges is:

β.d1Pi
+ β.d2Pj

(3.2)

Since Π does not pass through the region containing the second nearest sensor to

Pj , thus (3.2) gives the minimum energy to place two sensors in Pi and Pj.

Since the discussions given above are valid for all Voronoi regions, one can

conclude that the path cost and path weight of Π are equal. �

Corollary 3.1. Consider a path Π connecting the target to destination in a given

combined energy digraph. If Π has exactly one node in any region it passes through,

then the path cost and path weight of Π are equal.

Proof. The proof follows immediately from Theorem 3.1, as a special case. �

Theorem 3.2. For any path Π connecting the target to destination in a combined

energy digraph, the relation W (Π) ≤ C(Π) holds.

Proof. Since for any fixed path the communication and sensing path costs are

equal to communication and sensing path weights, respectively, it suffices to show

that the movement path cost is greater than or equal to the movement path weight.

To this end, assume that the path Π passes through the regions Λ1,Λ2, ...,Λk, and

that the path has ni nodes in region Λi, i ∈ {1, 2, ..., k}. Partition Π into k sub-

paths as follows:

Π1 = (PT , P
1
1 , P

1
2 , ..., P

1
n1
, P 2

1 )

Π2 = (P 2
1 , P

2
2 , ..., P

2
n2
, P 3

1 )
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...

Πk = (P k
1 , P

k
2 , ..., P

k
nk
, PD)

Now, it suffices to show that the movement path weight of the sub-path Πi is less

than or equal to the corresponding movement path cost, for any i ∈ {1, 2, ..., k}. If

Λi contains exactly one node, then the sub-path Πi contains only the edge (P i
1, P

i+1
1 )

(note that PD is, in fact, P k+1
1 ). The assigned weight to this edge in the movement

energy digraph is β.d1
P i
1

, which is the energy required to move to the node P i
1, the

nearest sensor to it. It is obvious that the minimum required energy for a sensor to

move to P i
1 is equal to β.d1

P i
1

as well (note that sometimes the sensor assigned to a

node is not necessarily its nearest sensor, because that may be the nearest sensor to

multiple nodes in the path). Therefore, in this case, the movement path weight of

sub-path Πi is less than or equal to the movement path cost.

If Λi contains more than one node, there will be two possibilities as follows:

Case 1: i �= 1. In this case, the weight assigned to the sub-path Πi in the

movement energy digraph is:

X = β.[

ni−1∑
k=1

min(d1P i
k
+ d2P i

k+1

, d1P i
k+1

+ d2P i
k
)− d1P i

k+1

] + β.d1P i
ni

From the properties of the Voronoi diagram, the nearest sensor to all nodes of the

sub-path Πi is the same. However, this sensor can move to only one node; therefore,

the cost of moving ni sensors to the ni nodes of the path which lie in the region Λi

is greater than or equal to:

Y = β.[d1P i
j
+

ni∑
k=1,k �=j

d2P i
k
]
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for any j ∈ {1, 2, ..., ni}. Now, consider the following relations:

X1=β.[

j−1∑
k=1

(d1P i
k+1

+ d2P i
k
)− d1P i

k+1

]

≥β.[

j−1∑
k=1

min(d1P i
k
+ d2P i

k+1

, d1P i
k+1

+ d2P i
k
)− d1P i

k+1

] (3.3)

X2=β.[

ni−1∑
k=j

(d1P i
k
+ d2P i

k+1

)− d1P i
k+1

] + β.d1P i
ni

≥β.[

ni−1∑
k=j

min(d1P i
k
+ d2P i

k+1

, d1P i
k+1

+ d2P i
k
)− d1P i

k+1

] + β.d1P i
ni

(3.4)

By expanding and simplifying the last two inequalities, one can conclude that:

Y = X1 +X2

Hence:

Y = X1 +X2

≥ β.[

ni−1∑
k=1

min(d1P i
k
+ d2P i

k+1

, d1P i
k+1

+ d2P i
k
)− d1P i

k+1

] + β.d1P i
ni

= X (3.5)

Since Y is less than or equal to the movement path cost of the sub-path Πi, it results

from the above relation that the movement path weight of this sub-path is less than

or equal to its movement path cost.

Case 2: i = 1 (the region contains the target). In this case, the nearest sensor

to the nodes of this region is clearly assigned to detect the target, and hence cannot

be assigned to another node simultaneously. As a result, the cost of moving n1

sensors to n1 nodes of the sub-path Π1 is greater than or equal to:

Y = β.[d1P 1
1

+

n1∑
k=2

d2P 1
k
]
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On the other hand, the weight assigned to the sub-path Π1 in the movement energy

digraph is:

X = β.[d1P 1
1

+

n1∑
k=2

d2P 1
k
]

This means that the movement path weight of Π1 is less than or equal to its move-

ment path cost.

On the other hand, the movement path weight and movement path cost of

Π are the sum of the movement path weights and movement path costs of its sub-

paths. It can be concluded from this fact and the results of the above two cases that

the movement path weight of the path is less than or equal to its movement path

cost. This completes the proof. �

Theorem 3.3. Assume the shortest path Π̄ connecting the target to destination in

a given combined energy digraph has the following properties:

i) Π̄ has at most two nodes in each Voronoi region it passes through.

ii) If Λk contains the nodes Pi and Pj, then Π̄ does not pass through the regions

containing the second nearest sensor to Pi or Pj.

Then, Π̄ is the optimal path.

Proof. Suppose the shortest path Π̄ and the optimal path Π∗ are not the same.

Then:

C(Π∗) < C(Π̄) (3.6)

From Theorem 3.1:

W (Π̄) = C(Π̄) (3.7)

Also, from Theorem 3.2:

W (Π∗) ≤ C(Π∗) (3.8)
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Combining the three relations given above, one arrives at the following inequality:

W (Π∗) < W (Π̄)

which contradicts the fact that Π̄ is the shortest path. Thus, Π̄ is the same as Π∗. �

Corollary 3.2. If the shortest path Π̄ connecting the target to destination in the

combined energy digraph has exactly one node in each Voronoi region it passes

through, then Π̄ is, in fact, the optimal path.

Proof. The proof is straightforward, on noting that this is a special case of

Theorem 3.3. �

Remark 3.2. To the best of the authors’ knowledge, the problem of target track-

ing using a wireless sensor network with a sufficiently accurate energy-consumption

model is not studied in the general form in a continuous-time setup. However, using

the strategy proposed here, one can divide the field to a grid in order to transfer

the problem to the discrete domain, where efficient techniques are available to solve

it. One can use a larger grid to obtain smaller cells, which in turn leads to a more

accurate solution to the underlying problem at the expense of higher computational

complexity. Furthermore, the proposed strategy can also be quite effective in con-

strained trajectory tracking problems (e.g., obstacle avoidance).

3.3 Discussion on Algorithm Performance and Ef-

ficiency

In this chapter, we proposed a centralized algorithm which is used by the network to

find a cost-efficient route for the information from target to destination. In practice,

sensors have limited power and processing capabilities, and this makes the motiva-

tion to avoid heavy computations by the sensors during network action. However,
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since the present algorithm is centralized, significant parts of the computations can

be done off-line easily. In fact, the communication energy digraphs can be fully

constructed off-line. In addition, Although sensing and movement energy digraphs

depend on target and sensors positions and they have to be updated in each time

interval, parts of this update process still can be done off-line. One of the most

important parts of the algorithm is the shortest path subroutine, which finds the

shortest path connecting the target to the destination in the combined energy di-

graph. There are several algorithms to find this path in graphs. One of the most

efficient algorithms among all, especially when the graph is not sparse, is Dijkstra

algorithm, which we have used in our simulations. Results show that the algorithm

finds the path in a reasonable time for the network to react. Simulation results,

also, show that in more than 95 percent of the steps, the resulting shortest path

satisfies the conditions of Theorem 3.3, thus, it is the optimal path. Furthermore,

the algorithm is flexible in case more precision is needed for sensor locations, and

this is achievable easily by increasing the number of grid points. In fact, one can

make a trade off between the computational load and the precision of the algorithm

by changing the number of the grid points.

3.4 Simulation Results

Consider a rectangular 30m × 20m field, and divide it into a 30× 20 grid. Assume

that there are 6 sensors in the field which are to follow the target and route the

data from it to the destination in an energy-efficient manner. Assume also that all

sensors have communication and sensing ranges of 10m and 1.5m, respectively. Let

the respective movement, communication, and sensing energy consumption be:

Wm = β.di,j , Wc = α.dλi,j , Ws = θ.dγi,j
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where α, β, and θ are given constants, and di,j is the distance between nodes i and

j (whose edge is to be weighted using the proposed procedure). For the simulations,

assume α = 1, β = 50, θ = 10, λ = 2, and γ = 4.

� � �� �� �� �� ��
�

�

�

�

	

��

��

��

��

�	

�� 









�����
�������
��
������











����
�������
��
������

Figure 3.3: Random movement of the target (50 steps).

Let the movement of the target be random integer steps in the interval [−7, 7]

for both horizontal and vertical axes. The network processes the data in discrete

time instants. This means that the proposed technique can be used at any time

instant to determine the route and the new locations of the sensors to move to. The

time interval between the consecutive time instants is chosen based on the target’s

speed.

Let the initial locations of the sensors be chosen randomly, with a uniform

distribution on both horizontal and vertical axes. Let also the destination be at the

origin. Simulations are performed for 50 steps of the target. Figure 3.3 shows the

random movement of the target, and Figure 3.4 illustrates the tracking process in

three snapshots: steps 1, 33 and 50. In each snapshot, the locations of the target

and sensors, along with the shortest path and the Voronoi regions are depicted.

The present locations of the sensors are shown by small circles, while their previous

locations are depicted by asterisks. Moreover, the location of the target is shown by

a solid square in each snapshot, and the shortest path obtained is drawn in dotted
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line. Figure 3.5 depicts the results for three consecutive steps in the tracking process.

It can be observed from this figure that the sensors are relocated properly in order

to track the target continuously.
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Figure 3.4: Snapshots of the network configuration obtained by the proposed tech-
nique for 6 sensors in three different steps: (a) 1st step; (b) 33rd step, and (c) 50th

step.

It is desired now to show the tracking performance for a larger number of

sensors, with the same sensing and communication ranges as in the previous case.

It can be observed from Figure 3.6 that for the case of 24 sensors, the only sensor

that is required to move under the proposed technique is the one assigned to detect

the target. The result is not surprising, as in this case the connection between the
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(c)

Figure 3.5: Snapshots of the network configuration obtained by the proposed tech-
nique for 6 sensors in three consecutive steps: (a) 13th step; (b) 14th step, and (c)
15th step.

target and destination can be established through different routes, and hence there

is no need to move the sensors for this purpose (note that the movement energy is

typically greater than sensing and communication energies).

Remark 3.3. As simulation results show, although conditions of Theorem 3.3 seem

to be strong, our method finds the optimal path in more than 95 percent of the cases.

Remark 3.4. It can be verified that in all of the snapshots provided in the simula-

tions, the shortest path is the same as the optimal path. This is not a coincidence,
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Figure 3.6: Snapshots of the network configuration obtained by the proposed tech-
nique for 24 sensors in three consecutive steps: (a) 17th step; (b) 18th step, and (c)
19th step.

and is true for typical network configurations (where, for example, one Voronoi re-

gions is not significantly larger than another one).
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Chapter 4

Distributed Deployment

Algorithms for Improved Coverage

in a Network of Wireless Mobile

Sensors

In this chapter, efficient sensor deployment strategies are developed to increase cov-

erage in wireless mobile sensor networks. The sensors find coverage holes within

their Voronoi polygons, and then move in an appropriate direction to minimize them.

Novel edge-based and vertex-based strategies are introduced, and their performances

are compared with existing techniques. The proposed movement strategies are based

on the distances of each sensor and the points inside its Voronoi polygon from the

edges or vertices of the polygon. It is shown that the methods introduced in this

work outperform existing strategies. Simulations confirm the effectiveness of the

proposed deployment algorithms and their superiority to the techniques reported in

the literature.

The plan of the chapter is as follows. In Section 4.1, preliminary material
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concerning the Voronoi diagram is provided and its properties are briefly discussed.

Section 4.2 presents the proposed algorithms for efficient coverage, as the main

contribution of the chapter. Finally, in Section 4.3, simulation results are given to

show the effectiveness of the proposed approaches.

4.1 Preliminaries

Consider a flat polygon-shaped surface and a set of networked sensors denoted by

S := {S1, S2, ..., Sn}. Let the network be represented by a graph, where each node

denotes a sensor. Partition the plane into n convex polygons such that each polygon

contains only one node and any point inside each polygon is closer to its generating

node than to any other node in the plane. The resultant diagram is called a Voronoi

diagram, and each individual cell in it is referred to as a Voronoi polygon (or region).

An example of a Voronoi diagram for a network of 15 sensors is depicted in Fig. 4.1.

The Voronoi region Πi generated by Si can be mathematically formulated as

(see [123], [124]):

Πi =
{
X ∈ R

2 | d(X, Yi) ≤ d(X, Yj), j ∈ n := {1, · · · , n}, i �= j
}

(4.1)

where Yi is the coordinate of Si, and d(X, Yi) denotes the Euclidean distance between

the pointsX and Yi in the 2D plane. To construct the Voronoi diagram, the bisectors

of each node and its neighbors need to be drawn first. Among all polygons generated

by these bisectors, the smallest one which contains the node is the Voronoi polygon

of that node. It follows from (4.1) that any point in a Voronoi polygon which is

not detected by the sensor associated with that polygon, cannot be detected by any

other sensor either. Thus, in order to find the so called “coverage holes”, i.e. the

points that are not detected by any sensor in the network, each sensor would only

need to check its own Voronoi polygon. The Voronoi diagram is used for the analysis

and synthesis of sensor deployment algorithms in this chapter.
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Figure 4.1: An example of a Voronoi diagram

Definition 4.1. A pair of nodes whose Voronoi polygons share an edge are referred

to as neighbors.

Definition 4.2. Consider a sensor Si with the sensing radius r and the correspond-

ing Voronoi polygon Πi, i ∈ n, and let Q be an arbitrary point inside Πi. The

intersection of the polygon Πi and a circle of radius r centered at Q is referred to as

the i-th coverage area w.r.t. Q, and is denoted by βQ
Πi
. The i-th coverage area w.r.t.

the location of the sensor Si is called the local coverage area of that sensor.

Definition 4.3. Consider an arbitrary point Q inside the Voronoi polygon Πi, i ∈ n.

The area inside the Voronoi polygon Πi which lies outside the i-th coverage area w.r.t.

Q is referred to as the i-th coverage hole w.r.t. Q, and is denoted by θQΠi
. The i-th

coverage hole w.r.t. the location of the sensor Si is called the local coverage hole of

that sensor. Also, the union of all local coverage holes in the sensing field is referred

to as the total coverage hole, and is denoted by θ, i.e. θ =
∑n

i=1 θ
Pi

Πi
, where Pi

denotes the location of the sensor Si.

Assumption 4.1. In this chapter, it is assumed that there is no obstacle in the

field. This means that every sensor can move to any desired location using existing

techniques, e.g. [64], [65], [125], [97].
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Assumption 4.2. All sensors are assumed to be capable of locating themselves in

the field (using, for instance, the methods proposed in [126], [127]). Moreover, the

localization error of every sensor is assumed to be negligible [64], [97].

Assumption 4.3. It is assumed that the graph representing sensors’ communica-

tion topology is connected [128]. Hence, each sensor can obtain the information

about the locations of the other sensors through proper communication routes, and

consequently calculate its Voronoi polygon accurately (using the position information

of its neighbors). Note that this is a realistic assumption as the number of sensors

in a mobile sensor network is typically large (or more precisely, there is a sufficient

number of sensors per area unit) [129], [130].

Problem Statement: In this work, it is desired that each sensor finds a candi-

date location for itself using the available local information, and moves to this new

position such that the total coverage of the network increases (or, equivalently, the

total coverage hole decreases).

4.2 Main Results

Four efficient sensor relocation algorithms are introduced in this section to increase

sensing coverage in a mobile sensor network. The main characteristic of these algo-

rithms is that the sensor movement is performed iteratively until the termination

condition is satisfied. Each round in the proposed algorithms consists of four phases.

In the first phase, every sensor Si, i ∈ n, broadcasts its location information to other

sensors, and then constructs its Voronoi polygon based on the similar information

it receives from other sensors. Then in the second phase, each sensor checks its

polygon for possible coverage holes. If any coverage hole exists, the sensor finds a

target location Ṕi for itself (but does not move there) using an appropriate scheme,

such that by moving there the coverage hole would be eliminated, or at least its size
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would be reduced by a certain threshold. Once the new target location is calculated,

the coverage area w.r.t. this location, i.e. βṔi

Πi
, is obtained in the third phase. If

this coverage area is greater than the current local coverage area, i.e. βṔi

Πi
> βPi

Πi
, the

sensor moves to the new destination; otherwise, it remains at its current location.

Finally, in the termination phase, if none of the sensors’ local coverage area in its

Voronoi polygon would be increased by a certain amount, the iterations stop. This

termination condition guarantees that the proposed algorithms stop in finite time.

As noted above, one of the important characteristics of the sensor deployment

strategies proposed in this chapter is that each sensor moves to a new location only

if its coverage area w.r.t. the new location in the old Voronoi polygon increases.

The following theorem shows that the total coverage is increased under this type of

deployment scheme.

Theorem 4.1. Consider the set S of n sensors described in the previous section, and

let the position of the i-th sensor be denoted by Pi, with the corresponding Voronoi

polygon Πi. Assume the i-th sensor moves to a new position Ṕi, for any i ∈ n, with

the corresponding Voronoi polygon Π́i such that Ṕi �= Pi if and only if i ∈ k, where

k is a non-empty subset of n. If the i-th coverage area w.r.t. Ṕi in the previously

constructed Voronoi polygon Πi is greater than the i-th local coverage area in Πi

(i.e., βṔi

Πi
> βPi

Πi
) for all i ∈ k, then the total coverage in the network increases.

Proof. Let the total uncovered area of the sensing field when the sensors are

located at the positions P = {P1, P2, . . . , Pn} and Ṕ = {Ṕ1, Ṕ2, . . . , Ṕn} be denoted

by θ and θ́, respectively. From the characterization of the Voronoi diagram, one can

write:

θ =
n∑

i=1

θPi

Πi
(4.2)

It is straightforward to show that for any i ∈ k, if the coverage area in Πi increases,

then the corresponding coverage hole will become smaller. Since it is assumed that
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the i-th coverage area w.r.t. Ṕi is greater than the i-th local coverage area for any

i ∈ k, one can conclude that:

θṔi

Πi
< θPi

Πi
, ∀i ∈ k (4.3)

In addition, note that if Ṕi = Pi, then:

θṔi

Πi
= θPi

Πi
, ∀i ∈ n\k (4.4)

On the other hand, it is possible that part of the area in θṔi

Πi
is also covered by some

other sensors in the set ∈ n\{i}. Hence:

θ́ ≤
n∑

i=1

θṔi

Πi
(4.5)

Furthermore, from (4.3), (4.4) and (4.5), one arrives at the following inequality:

θ́ <

n∑
i=1

θPi

Πi
(4.6)

Now, it is concluded from (4.2) and (4.6) that:

θ́ < θ (4.7)

which means that the total coverage area increases using the proposed deployment

scheme. �

4.2.1 The Maxmin-Vertex Strategy

The rationale behind the Maxmin-vertex strategy is that when the sensors are evenly

distributed, none of them should be too close to any of its Voronoi vertices. In

this strategy, a point inside the Voronoi polygon whose distance from the nearest

Voronoi vertex is maximized is selected as the candidate destination point. This

point will be referred to as the Maxmin-vertex centroid, and will be denoted by Ō.

Let the distance between this point and the nearest vertex to it on the polygon be

represented by r̄. Let also C(O, r) denote a circle of radius r centered at the point

O. The Maxmin-vertex circle is defined next.
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Definition 4.4. The Maxmin-vertex circle of a polygon is defined as the largest

circle centered inside the polygon such that all of the vertices of the polygon are

either outside the circle, or on it. This circle is, in fact, C(Ō, r̄).

Lemma 4.1. The Maxmin-vertex circle passes through at least two Voronoi vertices.

Proof. Let V̄ be the nearest vertex of the i-th polygon to its Maxmin-vertex

centroid Ō, and define:

û := min
V ∈Vi−{V̄ }

{
d(Ō, V )

}
, i ∈ n (4.8)

where Vi is the set of all vertices of polygon i in the Voronoi diagram. Suppose

that the Maxmin-vertex circle does not pass through any vertex other than V̄ , and

hence δ∗ = (û− r̄)/2 is positive. There are two possibilities, as discussed below.

Case 1: Ō is inside the polygon. Let Ô be a point on the line V̄ Ō, but closer to Ō,

such that the distance between Ō and Ô is equal to δ, where δ is an arbitrary value

in (0, δ∗] (see Fig. 4.2(a)).

Case 2: Ō is on the polygon. Suppose Ō is on the edge ε. Let Ô be a point on ε

such that d(Ô, V̄ ) > d(Ō, V̄ ) and the distance between Ō and Ô is equal to δ, where

δ is an arbitrary value in the interval (0, δ∗] (see Fig. 4.2(b)).

In both cases, according to the triangle inequality:

d(Ô, V ) ≥ d(Ō, V )− δ ≥ û− δ, ∀V ∈ Vi − {V̄ }, i ∈ n (4.9)

From the above relation and on nothing that û− δ ≥ r̄+ δ > r̄, it can be concluded

that

min
V ∈Vi

{
d(Ô, V )

}
> r̄ (4.10)

which contradicts the fact that Ō is the Maxmin-vertex centroid. Thus, there is at

least one more vertex on the Maxmin-vertex circle, and this completes the proof. �
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Figure 4.2: An illustrative example of a Voronoi polygon and the corresponding
Maxmin-vertex circle when the Maxmin-vertex centroid is: (a) inside the polygon,
and (b) on the polygon.

Lemma 4.2. If the Maxmin-vertex circle passes through exactly two Voronoi ver-

tices, say V̄1 and V̄2, then Ō is the intersection of the perpendicular bisector of V̄1V̄2

and an edge of the polygon.

Proof. Suppose Ō is not the intersection of the perpendicular bisector of V̄1V̄2

and an edge of the polygon, i.e., Ō is inside the polygon. Define:

ũ := min
V ∈Vi−{V̄1,V̄2}

{
d(Ō, V )

}
, i ∈ n (4.11)

Since C(Ō, r̄) passes through exactly two vertices, thus δ∗ = (ũ − r̄)/2 is positive.

Let Õ be a point on the perpendicular bisector of V̄1V̄2 and outside the triangle

V̄1V̄2Ō, but closer to Ō, such that the distance between the points Ō and Õ is equal

to δ, where δ is an arbitrary value in the interval (0, δ∗] (see Fig. 4.3). Using the

triangle inequality, one can write:

d(Õ, V ) ≥ d(Ō, V )− δ ≥ ũ− δ (4.12)

The above result along with the relations ũ − δ ≥ ũ − δ∗ = r̄ + δ∗ > r̄ and

d(Õ, V̄1) = d(Õ, V̄2) > r̄ yields:

min
V ∈Vi

{
d(Õ, V )

}
> r̄, i ∈ n (4.13)

which contradicts the fact that Ō is the Maxmin-vertex centroid. �
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Figure 4.3: An illustrative figure used in the proof of Lemma 4.2.

Definition 4.5. For convenience of notation, the circle passing through two vertices

Vp and Vq of polygon i, centered at the intersection of the perpendicular bisector of

VpVq and the edge VkVl is denoted by Ωk,l
p,q, k, l, p, q ∈ mi := {1, ...,mi}, where mi is

the number of vertices of the i-th polygon, for any i ∈ n. Also, the circle passing

through three vertices Vp, Vq and Vr of polygon i is denoted by Ωp,q,r, for p, q, r ∈ mi.

Theorem 4.2. For any k, l, p, q ∈ mi, let C̆i be the set of all circles Ωk,l
p,q whose

centers are on polygon i, and do not enclose any of the vertices of the polygon, and C̀i

be the set of all circumcircles of any three vertices, centered inside or on the polygon,

which do not enclose any of the vertices of the polygon. Define Ci := C̆i∪ C̀i. Then

C(Ō, r̄) ∈ Ci, and also for all C(O, r) ∈ Ci, r ≤ r̄.

Proof. According to Lemma 4.1, the Maxmin-vertex circle passes through at

least two Voronoi vertices. If it passes through exactly two Voronoi vertices, say

V1, V2, then according to Lemma 4.2 there exist k, l ∈ mi such that C(Ō, r̄) = Ωk,l
1,2.

Hence, in this case C(Ō, r̄) ∈ Ci, and from Definition 4.4, r̄ = maxC(O,r)∈Ci
{r}. If,

on the other hand, the Maxmin-vertex circle passes through three or more Voronoi

vertices, then it is the circumcircle of those vertices. Therefore, C(Ō, r̄) ∈ Ci, and

again it is deduced from Definition 4.4 that r̄ = maxC(O,r)∈Ci
{r}. �

Using the result of Theorem 4.2, one can develop an algorithm of complexity

O(m4
i ) to calculate the Maxmin-vertex centroid in Voronoi polygon i. Since typically
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a Voronoi polygon does not have too many vertices, the computational complexity of

such an algorithm is not expected to be high, typically. Detailed steps are presented

in Algorithm 1.

Algorithm 1: Finding the Maxmin-vertex centroid of the i-th Voronoi
polygon

begin
1) for p = 1, 2, . . . ,mi − 2

for q = p+ 1, p+ 2, . . . ,mi − 1
for r = q + 1, q + 2, . . . ,mi

calculate Ωp,q,r

if Ωp,q,r is centered inside or on the
polygon and does not enclose any of the
vertices of the polygon, then

record it.
end

end
end

end
2) for p = 1, 2, . . . ,mi − 1

for q = p+ 1, p+ 2, . . . ,mi

calculate Ωk,l
p,q

if Ωk,l
p,q is centered on the polygon and

does not enclose any of the vertices of the
polygon, then

record it.
end

end
end

3) The center of the largest circle is the
Maxmin-vertex centroid of the polygon.

The sensor deployment technique discussed above as well as the two algorithms

given in [64] are all vertex-based, in the sense that they are concerned with the

distances of the nodes from the vertices of the Voronoi diagram. While algorithms

of this type prove effective in many cases, they may not be as effective for certain

node configurations. For instance, consider the polygon in Fig. 7.2, and let the sensor

be placed at point S. It is easy to verify that in order to increase the coverage area,
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the sensor must move to the left. However, both VOR and Minimax algorithms

proposed in [64] consider the candidate points A and B, respectively, which are in

the right side of S. To remedy this shortcoming of the vertex-based algorithms, two

edge-based techniques will be presented in the next subsection.

S  

A  B  

Figure 4.4: An example of a configuration for which the vertex-based strategies are
not as effective.

4.2.2 Minmax-Edge Strategy

The rationale behind the Minmax-edge technique is that when the sensors are evenly

distributed, none of them should be too far from any of its Voronoi edges. The

Minmax-edge strategy chooses the target location of the sensor Si as a point inside

Voronoi polygon i whose distance from the farthest Voronoi edge is minimized.

This point will be referred to as the Minmax-edge centroid, and will be denoted by

Ó. Furthermore, the distance between this point and the farthest edge on Voronoi

polygon i will be represented by ŕ. In the remainder of this subsection, intersecting

or tangent to or touching an edge means intersecting or tangent to or touching that

edge or its extension. The Minmax-edge circle is defined next.

Definition 4.6. The Minmax-edge circle is the smallest circle centered inside or on

a polygon, intersecting or touching all of its edges. This circle is in fact C(Ó, ŕ),

and is not necessarily unique (this issue will be addressed later).

Lemma 4.3. Consider two points A, B and a line Δ. Let the distance between A

and Δ be denoted by σ, and that between B and Δ by ρ. Let also the length of the

segment AB be denoted by ξ. Then:

σ − ξ ≤ ρ ≤ σ + ξ (4.14)
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Figure 4.5: An illustrative figure used in the proof of Lemma 4.3.

Proof. Let E and F be two points on Δ, such that AE⊥Δ and BF⊥Δ. Let

d(A,F ) = d1 and d(B,E) = d2 (see Fig. 4.5). According to the triangle inequality:

σ ≤ d1 ≤ ρ+ ξ (4.15)

ρ ≤ d2 ≤ σ + ξ (4.16)

Relation (4.14) follows directly from (4.15) and (4.16). �

Lemma 4.4. The Minmax-edge circle is tangent to at least two of the edges of its

Voronoi polygon.

Proof. Let έ be the farthest edge from the Minmax-edge centroid of a given

Voronoi polygon. It is obvious that ŕ is equal to the distance between Ó and έ,

denoted by d(Ó, έ). Thus, C(Ó, ŕ) is tangent to έ. Define:

v̂ := max
ε∈Ei−{έ}

{
d(Ó, ε)

}
, i ∈ n (4.17)

where Ei represents the set of all edges of polygon i, and suppose that the Minmax-

edge circle is not tangent to any other edge, implying that δ = (ŕ− v̂)/2 is positive.

Let M be a point on έ or its extension, such that MÓ⊥έ. Let also Ô be a point on

MÓ such that ÓÔ = δ (for example, see Fig. 4.6). According to Lemma 4.3:

d(Ô, ε) ≤ d(Ó, ε) + δ ≤ v̂ + δ, ∀ε ∈ Ei − {έ} (4.18)
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Figure 4.6: An illustrative figure used in the proof of Lemma 4.4.

From (4.18) and the relation v̂ + δ = ŕ − δ < ŕ, one can conclude that:

max
ε∈Ei

{
d(Ô, ε)

}
< ŕ, i ∈ n (4.19)

which contradicts the fact that Ó is the Minmax-edge centroid. This completes the

proof. �

Lemma 4.5. Given a Voronoi diagram, assume that the i-th Voronoi polygon has

at least three edges. Then, the Minmax-edge circle of this polygon is tangent to at

least two edges. Furthermore, if the Minmax-edge circle is tangent to exactly two

edges, say ε1 and ε2, then at least one of the following conditions holds:

i) the two edges ε1 and ε2 are parallel, or

ii) the centroid Ói is the intersection of the bisector of the angle between ε1, ε2, and

one of the edges of the polygon.

Proof. Suppose the Minmax-edge circle is tangent to exactly two non-parallel

Voronoi edges ε1 and ε2, but Ó is not the intersection of the bisector of the angle

between ε1 and ε2 and an edge of the polygon; i.e., Ó is inside the polygon. Define:

ṽ := max
ε∈Ei−{ε1,ε2}

{
d(Ó, ε)

}
, i ∈ n (4.20)

Since C(Ó, ŕ) is tangent to exactly two edges, thus δ∗ = (ŕ − ṽ)/2 is positive. Let

the point F be the intersection of ε1 and ε2 (or their extensions). Let also Õ be a

point on FÓ such that ÓÕ = δ, where δ is an arbitrary value in the interval (0, δ∗]

(as an example, see Fig. 4.7). According to Lemma 4.3:
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Figure 4.7: An illustrative figure used in the proof of Lemma 4.5.

d(Õ, ε) ≤ d(Ó, ε) + δ ≤ ṽ + δ, ∀ε ∈ Ei − {ε1, ε2}, i ∈ n (4.21)

It results from (4.21) and the relations ṽ+ δ ≤ ŕ− δ < ŕ and d(Õ, ε1) = d(Õ, ε2) < ŕ

that:

max
ε∈Ei

{
d(Õ, ε)

}
< ŕ, i ∈ n (4.22)

which contradicts the fact that Ó is the Minmax-edge centroid. On the other hand,

if the Minmax-edge circle is not touching exactly two Voronoi edges, then according

to Lemma 4.4 it is tangent to at least three Voronoi edges. This completes the

proof. �

Lemma 4.6. If a Minmax-edge circle is tangent to two parallel edges, then there

will generically be other Minmax-edge circles, all of which are also tangent to these

parallel edges.

Proof. Suppose one Minmax-edge circle, say C1, is tangent to two parallel

edges, say ε1 and ε2, but there exists another Minmax-edge circle, say C2, that is

not tangent to these two edges. Let the distance between ε1 and ε2 be denoted by

d(ε1, ε2). It is obvious that the radius of the circle C1 is equal to
d(ε1,ε2)

2
. This implies

that the radius of the circle C2 must be grater than d(ε1,ε2)
2

, which contradicts the

initial assumption that C2 is a Minmax-edge circle. �

Remark 4.1. In the case when all Minmax-edge circles are tangent to two parallel

edges, some of these circles are tangent to three or more edges. In this case, one of

such circles is arbitrarily chosen as the Minmax-edge circle.
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Definition 4.7. For convenience of notation, the circle touching two edges εg and εh

of polygon i, centered at the intersection of the edge εk and the bisector of the angle

between εg and εh is denoted by Ωk
g,h, for any k, g, h ∈ ei := {1, . . . , ei}, where ei is

the number of edges of polygon i in the Voronoi diagram. Also, the circle touching

three edges εf , εg and εh of polygon i is denoted by Ωf,g,h, for f, g, h ∈ ei.

Theorem 4.3. Let D̆i be the set of all circles Ωk
g,h, ∀k, g, h ∈ ei, such that: (i) their

centers lie inside or on the i-th polygon, and (ii) they intersect or are tangent to

all edges of the polygon. Let also D̀i be the set of all circles such that: (i) they are

tangent to at least three edges of a Voronoi polygon; (ii) their centers lie inside or on

the i-th polygon, and (iii) they intersect or are tangent to all edges of the polygon.

Define Di := D̆i∪D̀i; then the Minmax-edge circle belongs to Di, and is the smallest

circle in this set.

Proof. The proof follows directly from Lemmas 4.5 and 4.6, and Remark 4.1. �

Using the result of Theorem 4.3, the following algorithm is developed to find

the Minmax-edge centroid in the i-th Voronoi polygon. The computational com-

plexity of this algorithm is O(e4i ), which is typically not too high.

4.2.3 Maxmin-Edge Strategy

Similar to the two methods introduced so far, the idea behind this strategy is that

when the sensors are evenly distributed, none of them should be too close to any of

its Voronoi edges. The target location of a sensor under the Maxmin-edge strategy

is a point inside the corresponding Voronoi polygon whose distance from the nearest

Voronoi edge is maximized. This point will be referred to as the Maxmin-edge

centroid, and will be denoted by Ŏ. Furthermore, the distance between this point

and the nearest edge to it will be represented by r̆. The Maxmin-edge circle is

defined next.
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Algorithm 2: Finding the Minmax-edge centroid of the i-th Voronoi poly-
gon

begin
1) for f = 1, 2, . . . , ei − 2

for g = f + 1, f + 2, . . . , ei − 1
for h = g + 1, g + 2, . . . , ei

calculate Ωf,g,h

if Ωf,g,h is centered inside or on the
polygon and it intersects or is tangent to
all edges of the polygon, then

record it.
end

end
end

end
2) for g = 1, 2, . . . , ei − 1

for h = g + 1, g + 2, . . . , ei
calculate Ωk

g,h

if Ωk,l
p,q is centered inside or on the

polygon and it intersects or is tangent to
all edges of the polygon, then

record it.
end

end
end

3) The center of the smallest circle is the
Minmax-edge centroid of the polygon.
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Definition 4.8. The Maxmin-edge circle of a polygon is the largest circle inside the

polygon. This circle is, in fact, C(Ŏ, r̆).

Lemma 4.7. The Maxmin-edge circle is tangent to at least two of the Voronoi edges.

Proof. Consider a Voronoi polygon, and let ε̆ be the nearest edge to the

Maxmin-edge centroid of the polygon. The radius r̆ is equal to the distance between

Ŏ and ε̆, i.e. d(Ŏ, ε̆). Thus, C(Ŏ, r̆) is tangent to ε̆. Define:

ŵ = min
ε∈Ei−{ε̆}

{
d(Ŏ, ε)

}
, i ∈ n (4.23)

and suppose that the Maxmin-edge circle is not tangent to any other edge, implying

that δ∗ = (w̆ − r̆)/2 is positive. Let M be a point on ε̆, such that MŎ⊥ε̆. Let also

Ô be a point on MŎ such that ŎÔ = δ, where δ is an arbitrary value in the interval

(0, δ∗] (as an example, see Fig. 4.8). According to Lemma 4.3:

d(Ô, ε) ≥ d(Ŏ, ε)− δ ≥ ŵ − δ, ∀ε ∈ Ei − {ε̆} (4.24)

From (4.24) and the relation ŵ − δ ≥ r̆ + δ > r̆, one can conclude that:

O

M

ŵ
Ô

Figure 4.8: An illustrative figure used in the proof of Lemma 4.7.

min
ε∈Ei

{
d(Ô, ε)

}
> r̆ (4.25)

which contradicts the fact that Ŏ is the Maxmin-edge centroid. This completes the

proof. �
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Lemma 4.8. If the Maxmin-edge circle is tangent to exactly two edges, then these

two edges are parallel. Furthermore, in such a case there will generically be other

Maxmin-edge circles, all of which are also tangent to these parallel edges.

Proof. Suppose a Maxmin-edge circle is tangent to exactly two Voronoi edges,

say ε1 and ε2, but these two edges are not parallel. Let the point T be the intersection

of ε1 and ε2 (or their extensions). Define:

w̃ := min
ε∈Ei−{ε1,ε2}

{
d(Ŏ, ε)

}
, i ∈ n (4.26)

Since C(Ŏ, r̆) is tangent to exactly two edges, the term δ∗ = (w̃ − r̆)/2 is positive.

Let also Õ be a point on the extension of TŎ (closer to Ŏ) such that ŎÕ = δ, where

δ is an arbitrary value in the interval (0, δ∗] (as an example, see Fig. 4.9). According

to Lemma 4.3:

w̃ − δ ≤ d(Ŏ, ε)− δ ≤ d(Õ, ε), ∀ε ∈ Ei − {ε1, ε2}, i ∈ n (4.27)

It results from (4.27) and the relations r̆ < r̆+δ ≤ w̃−δ and d(Õ, ε1) = d(Õ, ε2) > r̆

that:

min
ε∈Ei

{
d(Õ, ε)

}
> r̆, i ∈ n (4.28)

which contradicts the fact that Ŏ is the Maxmin-edge centroid.

Now, suppose that one Maxmin-edge circle, say C1, is tangent to two parallel

edges, say ε1 and ε2, but there exists another Maxmin-edge circle, say C2, that it

is not tangent to these two edges. Note that the radius of the circle C1 is equal to

d(ε1,ε2)
2

. This implies that the radius of the circle C2 must be less than d(ε1,ε2)
2

, which

contradicts the initial assumption that C2 is a Maxmin-edge circle. This completes

the proof. �

Remark 4.2. Similar to the Minmax-edge circle, in the case when all Maxmin-edge

circles are tangent to two parallel edges, some of these circles are tangent to three or

more edges. In this case, one of such circles is arbitrarily chosen as the Maxmin-edge

circle.
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Figure 4.9: An illustrative figure used in the proof of Lemma 4.8.

Theorem 4.4. Let Z be the set of all circles which: (i) are tangent to at least three

edges of a Voronoi polygon, and (ii) are inside the polygon. The Maxmin-edge circle

belongs to Z, and is the largest circle in this set.

Proof. According to Lemma 4.8 (and Remark 4.2), the Maxmin-edge circle

is tangent to three or more Voronoi edges, and hence it is the incircle or excircle

of the triangles created by these edges (possibly extended edges). It is known that

C(Ŏ, r̆) ∈ Z; thus, it results from Definition 4.8 that r̆ = maxC(O,r)∈Z {r}. �

According to Theorem 4.4, the Maxmin-edge centroid is the center of the in-

circle or excircle of one of the triangles created by three (extended) edges of the

polygon. Hence, one can develop an algorithm of complexity O(e4i ) (which is typi-

cally not too high, as noted earlier) to find the Maxmin-edge centroid of a Voronoi

polygon.

4.2.4 VEDGE Strategy

As noted earlier, sometimes the vertex-based algorithms are not suitable for coverage

improvement, as illustrated in Fig. 7.2. On the other hand, in certain cases the

vertex-based algorithms can outperform the edge-based ones in terms of coverage.

For example, in Fig. 4.10 the candidate locations for sensor S using the VOR [64],

Minimax [64], and Maxmin-edge strategies are the points A, B and D, respectively.
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Algorithm 3: Finding the Maxmin-edge centroid of the i-th Voronoi poly-
gon

begin
1) for f = 1, 2, . . . , ei − 2

for g = f + 1, f + 2, . . . , ei − 1
for h = g + 1, g + 2, . . . , ei

calculate Ωf,g,h

if Ωf,g,h is inside the polygon, then
record it.

end
end

end
end

2) The center of the largest circle is the
Maxmin-edge centroid of the polygon.

It is clear in this case that the VOR and Minimax algorithms increase the coverage

area, but the Maxmin-edge algorithm does not. This motivates the development of

a new algorithm called VEDGE, as a combination of Minimax (as a vertex-based

algorithm) and Maxmin-edge (as an edge-based algorithm). In each round of this

algorithm, every sensor selects two points as its candidate locations: one point

according to the Minimax strategy and the other one according to the Maxmin-edge

strategy. Any of the two points that provides better coverage is selected as the new

location of the sensor.

It is worth noting that one can also use a numerical approach such as linear

programing or other existing techniques in order to find the centroid point of each

region in the second phase of the proposed algorithms [131].

Remark 4.3. The problem investigated in this chapter is a non-convex optimization

problem and all the proposed algorithms are distributed. Thus, if every sensor moves

to its optimal location in each iteration, it will not necessarily result in the optimal

sensor configuration.

Remark 4.4. An important property of the Voronoi diagram is that it partitions the
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Figure 4.10: An example of a configuration for which the edge-based strategies are
not as effective.
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Figure 4.11: Snapshots of the movement of sensors as well as the Voronoi polygons
and sensing circles under the VEDGE strategy in Example 1. (a) Initial config-
uration of sensors; (b) configuration of sensors after the first round, and (c) final
configuration.

field in such a way that there is exactly one sensor in each Voronoi polygon. Since

under the proposed algorithms the new candidate location of each sensor is inside its

current Voronoi polygon, thus the sensor moves within its own Voronoi polygon only

to reach the new location. This implies that the sensors will not collide. Assume

now that there exists a sensor that cannot communicate with some of its neighbors,

and consequently some of the edges of the resultant polygon may be different from

the exact Voronoi polygon. As a result, the polygons constructed in this case do

not necessarily partition the field in the sense that some of them may overlap with

each other. This can have a negative impact on the detection of coverage holes.

Furthermore, the overlap of the polygons can lead to sensor collisions.
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Remark 4.5. In order to prevent oscillatory movement of the sensors, a control

mechanism similar to the one in [64] is implemented. Under this mechanism, each

sensor compares the newly computed direction with the previous one; it will not move

in the current round if the new direction is backwards w.r.t. that in the preceding

round.

4.3 Simulation Results

Example 1: In this example, 30 sensors with the sensing range of 6m and the

communication range of 20m are randomly deployed in a 50m by 50m flat surface.

Fig. 4.11 depicts an operational example of the VEDGE strategy for the above setup.

The algorithm is set to terminate when no sensor’s coverage in its Voronoi polygon

increases by more than 1% in its next move. Three snapshots are provided, and in

each one both sensing circles of the sensors (filled circles) and the Voronoi diagram

are depicted. After the first round of the algorithm, the coverage increases from the

initial value of 60.7% to 81.7%. The algorithm terminates after 13 rounds, and the

final coverage is 95.1%. It can be observed from this figure that in the final round

the sensors are distributed more evenly than the initial configuration, resulting in

significant increase in network coverage.

Remark 4.6. It is important to note that an analytical solution to the sensor deploy-

ment problem for optimal coverage is mathematically too complex to compute. This

issue has also been pointed out in the literature, and the performance of any sen-

sor deployment technique is typically evaluated by running a number of simulations

with random initial positions for sensors [132], [64], [65], [128], [133], [134]. This

approach will be adopted in the next example in order to evaluate the effectiveness

of the proposed techniques.

Example 2: In this example, the proposed algorithms are applied to the same flat
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surface and the same type of sensor as the previous example. The results are then

compared with the results of the algorithms given in [64]. In these simulations, the

algorithms stop when none of the sensors’ coverage in its Voronoi polygon would

be improved by more than 1% in the next move. It is to be noted that all of the

results presented in this example are the average values obtained by performing

100 simulations with random initial positions for sensors. Furthermore, while the

horizontal axes of Figs. 4.13-4.16 represent a discrete quantity (number of sensors),

the corresponding curves are depicted as continuous graphs for the sake of clarity.

Fig. 4.12 gives the coverage factor (the ratio of the covered area to the total

area) for 30 sensors, calculated after each round of different algorithms. It can

be observed that all algorithms reach a satisfactory coverage level in the first few

rounds. The resultant curves also show that the VEDGE algorithm has the best

coverage performance.
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Figure 4.12: The coverage factor for 30 sensors using different strategies.

The time it takes for the network to reach the desired coverage level is an-

other important criterion for measuring the efficiency of the algorithms. Since the

deployment time of the sensors in each round is almost the same in all algorithms,

the number of rounds required to reach a certain coverage level is used to evaluate
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Figure 4.13: The number of rounds required to reach the termination condition for
different number of sensors using different strategies.

time efficiency. Fig. 4.13 shows the stopping round of the algorithms for different

number of sensors. The simulation is carried out for n = 20, 30, 40, 50. It can be

seen from this figure that for n > 30, the number of rounds decreases as the number

of sensors increases. This is due to the fact that when the number of sensors is

large, the probability that each sensor covers its Voronoi polygon becomes higher.

As a result, the termination condition is satisfied in a shorter period of time in such

cases. It can also be observed from Fig. 4.13 that the stopping round for the case

of 20 sensors in the VOR strategy is less than that in the other strategies, but for

30 or more sensors the Minmax-edge algorithm converges faster.

Energy-efficiency is another important measure of performance in mobile sen-

sor networks. Energy consumption due to movement is known to be directly related

to the moving distance of the sensors, as well as the number of times they stop (note

that each time a sensor stops, it will need to overcome the static friction in the next

movement). Thus, it is important to also compare the algorithms in terms of the

overall moving distance of the sensors, and the number of times they stop. Fig. 4.14

depicts the average moving distance for different number of sensors using different

algorithms. These graphs show that the average moving distance is smaller for a
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Figure 4.14: The average distance each sensor travels for different number of sensors
using different strategies.
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Figure 4.15: The number of movements for different number of sensors using different
strategies.
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larger number of sensors (for the same reason given earlier). Simulations show that

for small number of sensors, the Maxmin-vertex algorithm has the smallest average

moving distance. The number of movements versus the number of sensors is given

in Fig. 4.15. This figure shows that in most algorithms when the number of sen-

sors increases from 20 to 30, the number of sensor movements also increases. The

reason is that when there is a small number of sensors in the network, the Voronoi

polygons are relatively large compared to the sensing circles. Thus, it is likely that

each Voronoi polygon completely contains the sensing circle of the sensor associated

with it. This implies that the sensor’s local coverage is maximum (i.e., it is equal

to the area of the sensing circle), and hence it will likely not increase if the sensor

moves in any direction. However, when the number of sensors increases beyond 30,

then the number of movements decreases considerably. In fact, when the number of

sensors increases beyond a certain value, it is more likely that each sensor covers its

Voronoi polygon. Hence, the termination condition will be satisfied in a shorter pe-

riod of time, resulting in a decrease in the number of movements. Fig. 4.15 confirms

this expectation, and shows that as the number of sensors increases beyond 30, the

number of required movements decreases.
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Figure 4.16: The coverage factor for different number of sensors using different
strategies.
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Table 4.1: The energy consumption in Joule for different number of sensors using
different algorithms.

n = 20 n = 30 n = 40 n = 50
VEC 111.5994 J 93.6881 J 40.7438 J 26.2542 J
VOR 67.4912 J 81.3886 J 44.3346 J 27.59789 J

Minimax 72.1187 J 86.0919 J 42.3478 J 27.9395 J
Maxmin-vertx 58.9354 J 77.4206 J 39.5842 J 26.3091 J
Minmax-edge 70.5660 J 66.4283 J 35.2764 J 24.5355 J
Maxmin-edge 97.7894 J 69.7719 J 34.5885 J 22.1933 J

VEDGE 107.3883 J 128.8364 J 53.4931 J 31.8599 J

Assume that the energy required to move a sensor a 1m distance (without

stopping in between) be 8.268J [130], [135]. Let the energy required to stop a

sensor and then overcome the static friction (in order to move it) be also equal to

the above value [65]. Table 4.1 summarizes the results, where it can be observed

that when the number of sensors in the network is not large, the Maxmin-vertex

strategy outperforms the other techniques in terms of energy consumption. For

a large number of sensors, on the other hand, the Maxmin-edge strategy is more

energy-efficient compared to the other methods.

In Fig. 4.16, the final coverage of each strategy is depicted for different number

of sensors. It can be observed that the VEDGE algorithm has the largest final

coverage in all scenarios. It is also interesting to note that although the VEC

algorithm does not have a good performance for large number of sensors, it performs

relatively well for small number of sensors.

It follows from the above discussion that the choice of an appropriate deploy-

ment algorithm involves a trade-off between three main factors: network coverage,

deployment time, and energy-efficiency. The discussion is summarized below:

1. The VEDGE algorithm outperforms the other algorithms as far as network

coverage is concerned.
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2. The Minmax-edge algorithm is more desirable when the deployment time is

the main concern AND the number of sensors in the field is not small.

3. The Maxmin-vertex algorithm is more preferable when the energy consumption

is the main concern AND the number of sensors in the field is not large.

4. The Maxmin-edge algorithm is more energy-efficient than the other algorithms

when there is a large number of sensors in the network.
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Chapter 5

Distributed Deployment

Algorithms for Efficient Coverage

in a Network of Mobile Sensors

with Nonidentical Sensing

Capabilities

In this chapter, efficient deployment algorithms are proposed for a mobile sensor

network to improve the coverage area. The proposed algorithms find the target po-

sition of each sensor iteratively, based on the existing coverage holes in the network.

The multiplicatively weighted Voronoi (MW-Voronoi) diagram is used to discover

the coverage holes corresponding to different sensors with different sensing ranges.

Three sensor deployment algorithms are provided: Under the proposed procedures,

the sensors move in such a way that the coverage holes in the target field are re-

duced. Simulations confirm the effectiveness of the deployment algorithms proposed

in this chapter.
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The plan of the remainder of the chapter is as follows. Some background mate-

rial along with useful notions and definitions is provided in Section 5.1. Section 5.2

presents the main results of the chapter, where new deployment algorithms are in-

troduced. Finally, in Section 5.3, simulation results are given to demonstrate the

effectiveness of the proposed strategies.

5.1 Background

Let each sensor in the network be represented as a node and find the Voronoi polygon

for every sensor. These polygons cover the whole field, and the generating node of

a polygon is the closest node to any point inside that polygon. Assume that the

sensing radii of sensors are all the same. Then a point inside a polygon which is

not covered by the sensor in that polygon cannot be covered by other sensors in the

network either. This means that in order to identify the coverage holes, it suffices

that each sensor checks its own Voronoi polygon to discover the points it cannot

cover. However, this fundamental statement is not necessarily true for the case

when the sensors have different sensing ranges. When the sensors have different

sensing radii, it can be shown that a point inside a polygon may be covered by a

sensor in a neighboring polygon, even if it is not covered by the sensor which lies

in the same polygon. Hence, in this case the conventional Voronoi diagram is not

as useful for effective sensor deployment in the network. The MW-Voronoi diagram

described in the next subsection is used to address this issue.

5.1.1 MW-Voronoi Diagram

Consider a set S containing n distinct weighted nodes (S1, w1), (S2, w2), . . . , (Sn, wn)

in a 2D field, where wi > 0 is the weighting factor of the node Si, i ∈ n. Define the
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weighted distance of a point q from the node (Si, wi) as:

dw(q, Si) =
d(q, Si)

wi

where d(q, Si) denotes the Euclidean distance between the point q and the node Si.

Divide the field into n regions, where each region contains only one node, which is

the closest node, in terms of weighted distance, to any point within that region. The

diagram obtained by this partitioning is referred to as the multiplicatively weighted

Voronoi (MW-Voronoi) diagram [91]. Each region Πi in this diagram can be char-

acterized as:

Πi =
{
q ∈ R

2 | dw(q, Si) ≤ dw(q, Sj), ∀j ∈ n− {i}
}

(5.1)

for any i ∈ n. It follows from (5.1) that any point Q in Πi has the following property:

d(q, Si)

d(q, Sj)
≤

wi

wj

, ∀i ∈ n, ∀j ∈ n− {i} (5.2)

Definition 5.1. Given two points A, B and a constant k, the Apollonian circle

ΩAB,k is the locus of all points C such that AC
BC

= k [136].

To construct the i-th MW-Voronoi region Πi, the Apollonian circles ΩSiSj ,
wi
wj

are first obtained for all Sj ∈ S\{Si}. Among all regions created by these circles, the

smallest one containing Si is, in fact, Πi. This process is demonstrated in Fig. 5.1,

and an example of an MW-Voronoi diagram with 16 nodes is sketched in Fig. 5.2.

The MW-Voronoi diagram is used to develop sensor deployment strategies

in this chapter. Each sensor has a sensing area which is a circle whose size can

be different for distinct sensors. Let each sensor in the field be represented by a

weighted node in the network whose weight is equal to the sensing radius of that

sensor. Draw the MW-Voronoi diagram for the sensors. It is concluded from the

mathematical characteristics of the MW-Voronoi diagram given in (5.1) that any

point in the i-th MW-Voronoi region which is not covered by sensor Si cannot be
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Figure 5.1: The MW-Voronoi region for a node S1 with four neighboring nodes
S2, . . . , S5.
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Figure 5.2: An example of an MW-Voronoi diagram for a group of 16 weighted
nodes in a 2D plane.
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covered by any other sensor in the network. This means that in order to find coverage

holes, it suffices to find the points in the MW-Voronoi region of each node, which

lie outside its local coverage area.

In the remainder of this chapter, Definitions 4.1, 4.2, 4.3 from Chapter 4 will

be used, and it will be assumed that the conditions of Assumptions 4.1, 4.2, 4.3

hold.

5.2 Deployment Protocols

Three distributed deployment protocols are provided in this section for a mobile

sensor network. In each step of the procedure every sensor transmits its information

(sensing radius and location) to other sensors in the network. The information gath-

ered by each sensor is used to construct its MW-Voronoi region. Each sensor checks

its region subsequently to detect the possible coverage holes. If any coverage hole

exists, the sensor calculates its target location using a proper deployment strategy

to reduce (or eliminate) the holes. Once the new target location Ṕi for sensor i is

calculated, the coverage area w.r.t. this location in the current MW-Voronoi region

before the sensor movement, i.e., βṔi

Πi
is obtained. If this coverage area is greater

than the local coverage area before the sensor movement, i.e. βṔi

Πi
> βPi

Πi
, the sensor

moves to the new location; otherwise, it remains in its current position. In order

to terminate the algorithm in finite time, a proper coverage improvement threshold

ε is defined such that the algorithm will continue only if there is a sensor in the

network whose coverage increases at least by ε in the next iteration. Finally, when

none of the sensors’ coverage area in its corresponding MW-Voronoi region would

be increased by a certain threshold level, there is no need to continue the iterations.

As noted above, one of the important characteristics of the sensor deployment

strategies proposed in this chapter is that each sensor moves to its new destination
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point only if its coverage area w.r.t. the new location in the old MW-Voronoi region

increases. The following result is similar to Theorem 4.1, and shows that the total

coverage increases under the proposed algorithms.

Theorem 5.1. Consider the set S of n sensors in the plane, and let their positions

and sensing radii be denoted by P = {P1, P2, . . . , Pn} and r = {r1, r2, . . . , rn}, re-

spectively, with the corresponding MW-Voronoi regions Π1,Π2, . . . ,Πn. Assume the

sensors move to new positions Ṕ = {Ṕ1, Ṕ2, . . . , Ṕn} with the corresponding MW-

Voronoi regions Π́1, Π́2, . . . , Π́n such that Ṕi �= Pi for all i ∈ K, where K is a non-

empty subset of n. If the i-th coverage area w.r.t. Ṕi in the previously constructed

MW-Voronoi region Πi is greater than the i-th local coverage area in Πi (i.e., β
Ṕi

Πi
>

βPi

Πi
) for all i ∈ K, then the total coverage in the network increases.

Proof. The proof is similar to that of Theorem 4.1, and is omitted here. �

Remark 5.1. It is important to note that in Theorem 5.1 the coverage of each sensor

w.r.t. its position after moving is obtained in the MW-Voronoi region just before the

move, and is then compared to the local coverage of that sensor before the move. In

other words, according to Theorem 5.1 in order to verify whether sensor movements

would increase total network coverage, it suffices to compare the coverage of every

sensor w.r.t. its positions before and after the move, in the old MW-Voronoi region.

It is to be noted that an increase in the coverage of a sensor in the old MW-Voronoi

region does not necessarily imply that the achieved local coverage in the updated MW-

Voronoi region is more than the local coverage of that sensor in the old MW-Voronoi

region. Hence, the statement of the theorem is not trivial. This is a very important

result and it is guaranteed that under any algorithm which follows the above scheme

(including the three algorithms introduced later in this chapter), the total coverage

can never decrease.

Notation 5.1. Given an MW-Voronoi diagram with n regions (each one correspond-

ing to a node), the number of boundary curves and vertices (corners of the boundary,
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associated with the intersections of the boundary curves) of the i-th region (i ∈ n)

are denoted by ei, and mi, respectively. It is easy to verify that mi = ei, for the case

when the corresponding region has at least two vertices.

The procedure described in the beginning of this section will be used in the

next three subsections to develop the weighted vector based, Minmax-curve, and

Maxmin-curve algorithms. It is to be noted that the candidate location for each

sensor is determined using the techniques presented in Subsections 5.2.1, 5.2.2 and

5.2.3.

5.2.1 Weighted Vector Based (WVB) Strategy

This method tends to move the sensors out of densely packed areas. Denote by

dij the distance between the sensors Si and Sj, for any i, j ∈ n. Define a new

(virtual) sensor network with n̄ := 
∑n

i=1 w
2
i � sensors of unit sensing radius, evenly

distributed in the sensing area. Let d̄ be the distance between a sensor and its

nearest neighboring sensor in this new network (this distance can be calculated off-

line). In the WVB strategy, if dij (the distance between the two sensors Si and Sj

in the original network) is less than
wi+wj

2
d̄ and none of the two sensors covers its

MW-Voronoi region completely, then a virtual force between the two sensors will

tend to push them away, as if it wants to move the sensor Si by
wi

wi+wj
Dij and the

sensor Sj by
wj

wi+wj
Dij , where Dij =

wi+wj

2
d̄−dij. If, however, one of the two sensors,

say Si, covers its region completely, then it will not move, but will push the other

sensor Sj by a virtual force as if it wants to move Sj by Dij . In the case when both

sensors cover their regions completely, then they will not apply any virtual force to

one another. In other words, for every pair of sensors, if there is a coverage hole in

any of the corresponding two regions, then a virtual force tends to push the sensors

away from each other by
wi+wj

2
d̄. On the other hand, virtual forces are also applied

in a similar manner from each boundary to any sensor which is closer than a certain
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distance to that boundary. More precisely, if the distance dbi between Si and a

certain boundary is less than wi

2
d̄, then a virtual force tends to push the sensor away

from that boundary by wi

2
d̄ − dbi. Eventually, each sensor is moved by the vector

sum of all virtual forces applied to it from the boundaries and from other sensors.

From the above discussion, one can develop an algorithm to find the new candidate

location of a sensor in the WVB strategy. For example, see the procedure given in

Algorithm 5.4.

Algorithm 4: An algorithm for finding the new candidate location of the
i-th sensor in the WVB strategy

begin
d̄, dij, wi, wj, Dij : defined before
�vi: moving vector of Si

�fij: the virtual force from Sj to push Si by
wi

wi+wj
Dij

�́
fij: the virtual force from Sj to push Si by Dij

B = {b1, . . . , bk}: the set of the boundary curves of the sensing field
dbji: the distance between Si and bj
�fbji: the virtual force from bj to push Sj by

wi

2
d̄− dbji

Ci: whether the i-th MW-Voronoi region is completely covered
�vi = 0
1) for j = 1, 2, . . . , n

if dij <
wi+wj

2
d̄ and Ci �= true and Cj �= true, then

�vi = �vi + �fij
end
if dij <

wi+wj

2
d̄ and Ci �= true and Cj = true, then

�vi = �vi +
�́
fij

end
end

2) for j = 1, 2, . . . , k
if dbji <

wi

2
d̄, then

�vi = �vi + �fbji
end

end
3) Si moves by �vi

Fig. 5.3 shows an operational example of the WVB strategy. In this example,

27 sensors are randomly deployed in a 50m × 50m flat surface: 15 with a sensing
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Figure 5.3: Snapshots of the execution of the movement of the sensors under the
WVB strategy; (a) initial coverage; (b) field coverage after the first round, and (c)
final coverage.

radius of 6m, 6 with a sensing radius of 5m, 3 with a sensing radius of 7m, and

3 with a sensing radius of 9m. Moreover, the communication range of each sensor

is assumed to be 10/3 times its sensing range. In this figure, three snapshots are

provided, and in each one the sensing circles of the sensors (filled circles) as well as

the MW-Voronoi regions is depicted. The initial coverage is 66.7%, but after the

first round it increases to 71.9%, and the final coverage is 85.1%.

Although the vertex-based algorithms prove effective in many cases [101], [64],

[99], they may not be as effective for some sensor configurations. For example,

consider the MW-Voronoi region in Fig. 5.4, and let the sensor be located at S. It

can be easily shown that for increasing the coverage area, the sensor must move up-

left. However, the Minmax-vertex, Maxmin-vertex and FPB algorithms [101], [99]

tend to move the sensor in the opposite direction (more precisely, to the points A,

B and C, respectively). To remedy this shortcoming of the vertex-based algorithms,

the Minmax-curve and Maxmin-curve strategies are presented in the sequel.

5.2.2 Minmax-Curve Strategy

The idea behind the Minmax-curve technique is that normally for optimal coverage,

any sensor in the network should not be too far from any of its Voronoi curves.
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Figure 5.4: An example in which vertex-based algorithms are not as effective.

The Minmax-curve strategy selects the target location for each sensor as a point

inside the corresponding MW-Voronoi region which has the smallest distance from

the farthest curve. This point will be referred to as the Minmax-curve centroid, and

will be denoted by Ói for the i-th region, i ∈ n. Furthermore, the distance between

this point and the farthest curve from it will be represented by ŕi.

Notation 5.2. Throughout this chapter, a circle of radius r, centered at O, will be

represented by Ω(O, r).

Definition 5.2. The Minmax-curve circle of an MW-Voronoi region is the smallest

circle centered inside or on the boundary of that region, intersecting or touching the

region’s all curves (or their extensions). This circle is, in fact, Ω(Ói, ŕi), for the i-th

region, and is generically unique. In some special configurations, however, there can

be infinitely many Minmax-curve circles.

Some preliminary results will be presented in the sequel, which will be used in

the Minmax-curve and Maxmin-curve strategies.

Fact 5.1. Consider two points A and B in a 2D plane, and let the distance between

them be d. It is well-known that:

a) The locus of any point E such that d(E,A)− d(E,B) = k is:

i) The perpendicular bisector of segment AB, for k = 0.
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ii) A branch of a hyperbola, for 0 < k < d.

iii) The extension of the segment AB from B, for k = d.

iv) The empty set, for k > d.

b) The locus of any point E such that d(E,A) + d(E,B) = k is:

i) An empty set, for k < d.

ii) The segment AB, for k = d.

iii) An ellipse, for k > d.

Notation 5.3. The set of all boundary curves εi1, εi2, . . . , εiei of the i-th MW-

Voronoi region will hereafter be denoted by the boldfaced symbol εi. In the present

subsection, intersecting/touching/tangent to a boundary curve εij means intersect-

ing/touching/tangent to εij or its extension (i ∈ n, j ∈ {1, . . . , ei}). Note that the

extension of the boundary curve εij belongs to the same Apollonian circle as εij.

Definition 5.3. The bisector of two curves εi1 and εi2 is defined as the locus of all

points whose distance from εi1 is equal to that from εi2. The bisector of the curves

εi1 and εi2 is denoted by Γεi1,εi2.

Lemma 5.1. Consider two circles Ω1(O1, r1) and Ω2(O2, r2). The bisector of Ω1

and Ω2 is:

i) A branch of a hyperbola or the perpendicular bisector of O1O2, if Ω2 is outside

Ω1.

ii) An ellipse, if Ω2 is inside Ω1.

iii) The union of a branch of a hyperbola or the perpendicular bisector of O1O2 and

an ellipse, if Ω1 intersects Ω2.

Proof.

i) Consider two circles Ω1(O1, r1) and Ω2(O2, r2), where Ω2 is outside Ω1. Let E

be a point on the plane, such that d(E,Ω1) = d(E,Ω2) = δ, where δ is a given
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strictly positive constant (see Fig. 5.5). Since EO1 = δ + r1 and EO2 = δ + r2, it is

concluded that:

EO1 − EO2 = r1 − r2 (5.3)

The proof of this part follows now from Fact 5.1 (note that the right side of (5.3) is

constant).

E

1O
2O

1r
2r

1

2

Figure 5.5: Figure for the proof of Lemma 5.1, part (i).

ii) This part can be proved analogously to part (i), on noting that if Ω2(O2, r2)

is inside Ω1(O1, r1), then for any point E satisfying the relation d(E,Ω1) = d(E,Ω2)

(see Fig. 5.6):

EO1 + EO2 = r1 + r2 (5.4)

(note that the right side of the above equation is constant).

E

1O 2O

Figure 5.6: Figure for the proof of Lemma 5.1, part (ii).

108



2O

2r1r

F

E

2

2

11

1

2

1O

Figure 5.7: Figure for the proof of Lemma 5.1, part (iii).

iii) Consider two intersecting circles Ω1(O1, r1) and Ω2(O2, r2), and let E be

a point either inside, or outside both circles. Let also F be a point inside Ω1 and

outside Ω2 such that d(E,Ω1) = d(E,Ω2) = δ1 and d(F,Ω1) = d(F,Ω2) = δ2,

where δ1 and δ2 are strictly positive constants (see Fig. 5.7). Since EO1 = δ1 + r1,

EO2 = δ1 + r2, FO1 = r1 − δ2 and FO2 = r2 + δ2, hence:

EO1 − EO2 = r1 − r2 (5.5)

FO1 + FO2 = r1 + r2 (5.6)

The proof of this part follows now from Fact 5.1. �

Lemma 5.2. Consider a circle Ω(O, r) and a line Δ. The bisector of Ω and Δ is:

i) A parabola, if Δ does not intersect Ω.

ii) The union of two parabolas, if Δ intersects Ω.

Proof. The proof follows immediately from basic algebraic manipulations and

Fact 5.1 (see Figs. 5.8 and 5.9). �

Lemma 5.3. Consider two points A, B, and a circle Ω(O, r) (which in the particular

case can be a straight line). Let the distance between A and Ω(O, r) be denoted by

σ, and that between B and this circle by ρ. Let also the distance between A and B
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O

Figure 5.8: Figure for the proof of Lemma 5.2, part (i).

O

BA

Figure 5.9: Figure for the proof of Lemma 5.2, part (ii).

be denoted by ξ. Then:

σ − ξ ≤ ρ ≤ σ + ξ (5.7)

Proof. Let E and F be two points on Ω(O, r), such that AE⊥Ω and BF⊥Ω.

Let d(A,F ) = δ1 and d(B,E) = δ2, where δ1, δ2 are strictly positive constants

(see Fig. 5.10). Then, according to the triangle inequality, OA + AB ≥ OB and

OB + AB ≥ OA. Now, since OA = r + σ and OB = r + ρ, one can conclude that:

σ + ξ ≥ ρ (5.8)

ρ+ ξ ≥ σ (5.9)

The relation (5.7) follows directly from (5.8), (5.9), and this completes the

proof. �

Lemma 5.4. If an MW-Voronoi region has more than one boundary curve, then the

corresponding Minmax-curve circle is tangent to at least two of the boundary curves.
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Figure 5.10: Figure for the proof of Lemma 5.3.

Proof. Suppose the i-th region of an MW-Voronoi diagram has more than one

boundary curve. Let έi1 be the farthest boundary curve from the Minmax-curve

centroid of this region. By definition, ŕi is equal to d(Ói, έi1), i.e., the distance

between Ói and έi1. Thus, Ω(Ói, ŕi) is tangent to έi1 (or its extension). Define:

v̂ := max
εij∈εi\{έi1}

{
d(Ói, εij)

}
(5.10)

Suppose that the Minmax-curve circle is not tangent to any other edge, and hence

δ∗ = (ŕi − v̂)/2 is strictly positive. Let M be a point on έi1 or its extension, such

that MÓi⊥έi1. Let also Ô be a point on MÓ, such that the distance between Ói

and Ô is equal to an arbitrary value δ ∈ (0, δ∗] (see, e.g. Fig. 5.11). According to

Lemma 5.3:

d(Ô, εij) ≤ d(Ói, εij) + δ ≤ v̂ + δ, ∀εij ∈ εi\{έi1} (5.11)

From the relation (5.11) as well as the inequalities v̂+δ < ŕi−δ < ŕi and d(Ô, έi1) <

d(Ói, έi1), one arrives at the following inequality:

max
εij∈εi

{
d(Ô, εij)

}
< ŕi (5.12)

which contradicts the initial assumption that Ói is the Minmax-curve centroid. �

Remark 5.2. If an MW-Voronoi region has exactly one boundary curve, then this

curve is a circle and it is, in fact, the Minmax-curve circle. If it has exactly two
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Figure 5.11: Figure for the proof of Lemma 5.4.

boundary curves, then according to Lemma 5.4 the Minmax-curve circle is tangent

to both curves.

Definition 5.4. For any two curves εi1 and εi2, the sets Ψmax
εi1,εi2

and Ψmin
εi1,εi2

are

defined as follows:

Ψmin
εi1,εi2

= {X ∈ Γεi1,εi2 |∃δ > 0 : ∀Y ∈ Γεi1,εi2 , |Y −X| ≤ δ ⇒ d(X, εi1) ≤ d(Y, εi1)}

(5.13)

Ψmax
εi1,εi2

= {X ∈ Γεi1,εi2 |∃δ > 0 : ∀Y ∈ Γεi1,εi2 , |Y −X| ≤ δ ⇒ d(X, εi1) ≥ d(Y, εi1)}

(5.14)

Definition 5.5. Let εi1 and εi2 be two arbitrary circular arcs of circles Ω1 and Ω2

respectively. The curves εi1 and εi2 are called parallel if the circles Ω1 and Ω2 are

concentric.

Lemma 5.5. Consider an MW-Voronoi diagram, and assume that the i-th region

has at least three boundary curves (and hence, according to Lemma 5.4 the Minmax-

curve circle of this region is tangent to two or more boundary curves). If the Minmax-

curve circle is tangent to exactly two boundary curves, say έi1 and έi2, then at least
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one of the following conditions holds:

i) έi1 and έi2 are parallel;

ii) Ói ∈ Ψmin
έi1,έi2

, or

iii) Ói is the intersection of the bisector of έi1, έi2, and one boundary curve of the

region.

Proof. To prove by contradiction, assume that the Minmax-curve circle is

tangent to exactly two non-parallel Voronoi curves έi1 and έi2, but the Minmax-

curve centroid Ói is not the intersection of the bisector of έi1, έi2, and a boundary

curve of the region (i.e., Ói is inside the region). Define:

ṽ := max
εij∈εi\{έi1,έi2}

{
d(Ói, εij)

}
(5.15)

Define also δ∗ = (ŕi−ṽ)/2. Since Ω(Ói, ŕi) is tangent to exactly two boundary curves,

δ∗ is strictly positive. If Ói is not in Ψmin
έi1,έi2

, then one can choose a point inside

the Minmax-circle and on the bisector of έi1 and έi2, say Õ, such that d(Õ, έi1) =

d(Õ, έi2) < ŕi, and the distance between Ói and Õ is equal to an arbitrary value

δ ∈ (0, δ∗] (see Fig. 5.12). According to Lemma 5.3:

v~
O
~

iO

1i

2i

Figure 5.12: Figure for the proof of Lemma 5.5.

d(Õ, εij) ≤ d(Ói, εij) + δ ≤ ṽ + δ, ∀εij ∈ εi\{έi1, έi2} (5.16)
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It results from (5.16) and the relations ṽ+δ ≤ ŕi−δ < ŕi and d(Õ, έi1) = d(Õ, έi2) <

ŕi, that:

max
εij∈εi

{
d(Õ, εij)

}
< ŕi (5.17)

which contradicts the initial assumption that Ói is the Minmax-curve centroid. This

completes the proof. �

As noted earlier, the Minmax-curve circle is generically unique, and only in

some special configurations there can be more than one such circle. The next lemma

addresses the case where there are more than one Minmax-curve circle.

Lemma 5.6. Assume a Minmax-curve circle is tangent to two parallel curves. If

there are any other Minmax-curve circles, then all of them are tangent to these two

parallel curves.

Proof. Suppose one Minmax-curve circle, say Ω1, is tangent to two parallel

curves, say εi1 and εi2, but there exists another Minmax-curve circle, say Ω2, that is

not tangent to εi1 or εi2. Let the distance between εi1 and εi2 be denoted by d(εi1, εi2).

From the definition of the Minmax-curve circle, the radius of Ω1 is equal to
d(εi1,εi2)

2
,

and that of Ω2 is grater than d(εi1,εi2)
2

. This contradicts the initial assumption that

Ω2 is a Minmax-curve circle, and completes the proof. �

Remark 5.3. Consider an MW-Voronoi region with at least three boundary curves,

and assume two of them are parallel. If one of the Minmax-curve circles is tangent

to these parallel curves, then all Minmax-curve circles are also tangent to these two

curves. At least one of these circles is tangent to some other boundary curves too,

and one of such circles is arbitrarily chosen as the Minmax-curve circle in this case.

Definition 5.6. For convenience of notation, the circle touching two curves εig and

εih of the i-th MW-Voronoi region, centered at the intersection of the curve εik and

the bisector of εig and εih, is denoted by Ωk
g,h, for any k, g, h ∈ ei := {1, . . . , ei}.
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Also, the circle touching the two curves εir and εis of the i-th MW-Voronoi region,

centered at the point A ∈ Ψmin
εir,εis

, is denoted by ΩA,min
r,s , for any r, s ∈ ei. In addition,

the circle touching the three boundary curves εip, εiq and εit of region i is denoted by

Ωp,q,t, p, q, t ∈ ei.

Theorem 5.2. Consider an MW-Voronoi diagram, and suppose the i-th region has

at least three boundary curves. Let D̂i and D̀i be, respectively, the sets of all circles

Ωk
g,h, ∀k, g, h ∈ ei, and ΩA,min

r,s , ∀r, s ∈ ei, A ∈ Ψmin
εir,εis

such that: (i) their centers lie

inside the region or on its boundary, and (ii) they intersect or are tangent to all of

the boundary curves of the region (or their extensions, as noted before). Let also

D̃i be the set of all circles such that: (i) they are tangent to at least three boundary

curves of the i-th region; (ii) their centers lie inside the region or on its boundary,

and (iii) they intersect or are tangent to all of the boundary curves of the MW-

Voronoi region. Define Di := D̂i ∪ D̀i ∪ D̃i; then the Minmax-curve circle belongs

to Di, and is the smallest circle in this set.

Proof. The proof follows directly from Lemmas 5.5 and 5.6, Remark 5.3, and

Definitions 5.2 and 5.6. �

The result of Theorem 5.2 is used to develop an algorithm of complexity O(e4i )

for finding the Minmax-curve centroid of an MW-Voronoi region. Detailed steps

are provided in Algorithm 5.5, and since typically an MW-Voronoi region does not

have a ”large” number of boundary curves, the computational complexity of the

algorithm is normally not very high.

As an example, consider a sensor network with the same initial configuration as

in Fig. 5.3(a), and let the Minmax-curve strategy be used. After the first round, the

coverage is improved to 78.5%, and finally it reaches 90.8%, as depicted in Fig. 5.13.
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Algorithm 5: An algorithm for finding the Minmax-curve centroid of the
i-th MW-Voronoi region

begin
1) for p = 1, 2, . . . , ei − 2

for q = p+ 1, p+ 2, . . . , ei − 1
for t = q + 1, q + 2, . . . , ei

calculate Ωp,q,t

if Ωp,q,t is centered inside the i-th MW-Voronoi region or on its
boundary and intersects or is tangent to all of the boundary
curves of the region, then

record it.
end

end
end

end
2) for r = 1, 2, . . . , ei − 1

for s = r + 1, r + 2, . . . , ei
calculate ΩA,min

r,s

if ΩA,min
r,s is centered inside the i-th MW-Voronoi region or on its

boundary and intersects or is tangent to all of the boundary
curves of the region, then

record it.
end

end
end

3) for g = 1, 2, . . . , ei − 1
for h = g + 1, g + 2, . . . , ei

calculate Ωk
g,h

if Ωk
g,h intersects or is tangent to all of the boundary curves of

the i-th region, then
record it.

end
end

end
4) The center of the smallest circle is the Minmax-curve centroid of

the i-th MW-Voronoi region.
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Figure 5.13: Snapshots of the execution of the Minmax-curve strategy. (a) Initial
coverage; (b) coverage after the first round, and (c) final coverage.

5.2.3 Maxmin-Curve Strategy

The main idea behind the Maxmin-curve strategy is that normally for optimal cov-

erage, no sensor should be too close to any of its Voronoi curves. The candidate

location of a sensor under the Maxmin-curve strategy is a point inside the corre-

sponding MW-Voronoi region which has the largest distance from the nearest curve.

This point will be referred to as the Maxmin-curve centroid, and will be denoted by

Ŏi for the i-th region, i ∈ n. Furthermore, the distance between this point and the

nearest curve to it will be represented by r̆i. The Maxmin-curve circle is defined

next.

Definition 5.7. The Maxmin-curve circle of an MW-Voronoi region is the largest

circle that fits inside the region. This circle is, in fact, Ω(Ŏi, r̆i), for the i-th re-

gion. Similar to the Minmax-curve circle, the Maxmin-curve circle is also generi-

cally unique, but in some special cases, as shown later, there can be infinitely many

such circles.

Lemma 5.7. If an MW-Voronoi region has more than one boundary curve, then

the corresponding Maxmin-curve circle is tangent to at least two of the curves.

Proof. Let ε̆i1 be the nearest boundary curve to the Maxmin-curve centroid of

the i-th MW-Voronoi region. This means that r̆i is equal to the distance between
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Ŏi and ε̆i1, which is denoted by d(Ŏi, ε̆i1); thus, Ω(Ŏi, r̆i) is tangent to ε̆i1. Define:

ŵ = min
εij∈εi\{ε̆i1}

{
d(Ŏi, εij)

}
(5.18)

Define also δ∗ = (ŵ− r̆i)/2. Suppose that the Maxmin-curve circle is not tangent to

any other boundary curve, and hence δ∗ is strictly positive. Let M be a point on ε̆i1

such that MŎi⊥ε̆i1. Let also Ô be a point on the extension of MŎi such that the

distance between Ŏi and Ô is equal to an arbitrary value δ ∈ (0, δ∗] (see Fig. 5.14).

According to Lemma 5.3:

d(Ô, εij) ≥ d(Ŏi, εij)− δ ≥ ŵ − δ, ∀εij ∈ εi\{ε̆i1} (5.19)

From (5.19) and the relations ŵ− δ ≥ r̆i+ δ > r̆i and d(Ô, ε̆i1) > d(Ŏi, ε̆i1), one can

w

O Mi
O

1i

Figure 5.14: Figure for the proof of Lemma 5.7.

conclude that:

min
εij∈εi

{
d(Ô, εij)

}
> r̆i (5.20)

which contradicts the fact that Ŏi is a Maxmin-curve centroid. This completes the

proof. �

Lemma 5.8. Consider an MW-Voronoi diagram, and suppose that the i-th region

has at least three boundary curves. If a Maxmin-curve circle is tangent to exactly two
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boundary curves, say ε̆i1, ε̆i2, then these two curves are either parallel or Ŏi ∈ Ψmax
ε̆i1,ε̆i2

.

Proof. Suppose ε̆i1 and ε̆i2 are not parallel. Define:

w̃ := min
εij∈εi\{ε̆i1,ε̆i2}

{
d(Ŏi, εij)

}
(5.21)

Define also δ∗ = (w̃ − r̆)/2. Since Ω(Ŏi, r̆i) is tangent to exactly two boundary

curves, δ∗ is strictly positive. If Ŏi /∈ Ψmax
ε̆i1,ε̆i2

, then one can choose a point Õ inside

the i-th region, on the bisector of ε̆i1 and ε̆i2, such that d(Õ, ε̆i1) = d(Õ, ε̆i2) > r̆i,

and ŎiÕ = δ, for some δ ∈ (0, δ∗] (see Fig. 5.15). According to Lemma 5.3:

d(Õ, εij) ≥ d(Ŏi, εij)− δ ≥ w̃ − δ, ∀εij ∈ εi\{ε̆i1, ε̆i2} (5.22)

It results from (5.22) and the relations w̃−δ ≥ r̆i+δ > r̆i and d(Õ, ε̆i1) = d(Õ, ε̆i2) >

 

w
~

O
~

i
O

1i

2i

Figure 5.15: Figure for the proof of Lemma 5.8.

r̆i, that:

min
εij∈εi

{
d(Õ, εij)

}
> r̆i (5.23)

which contradicts the fact that Ŏi is a Maxmin-curve centroid. This completes the

proof. �

Definition 5.8. For convenience of notation, the circle tangent to two curves εir

and εis of the i-th MW-Voronoi region, centered at the point A ∈ Ψmax
εir,εis

, is denoted

by ΩA,max
r,s , for any r, s ∈ ei.

119



Lemma 5.9. Assume a Maxmin-curve circle is tangent to two parallel curves. If

there are any other Maxmin-curve circles, then all of them are tangent to these two

parallel curves.

Proof. Suppose one Maxmin-curve circle, say Ω1, is tangent to two parallel

edges, say εi1 and εi2, but there exists another Maxmin-curve circle, say Ω2, that is

not tangent to εi1 or εi2. Note that the radius of the circle Ω1 is equal to d(εi1,εi2)
2

,

and that of the circle Ω2 is less than
d(εi1,εi2)

2
. This contradicts the initial assumption

that Ω2 is a Maxmin-curve circle. �

Remark 5.4. Consider an MW-Voronoi region with at least three boundary curves,

two of which are parallel. If one of the Maxmin-curve circles is tangent to these

parallel curves, then all Maxmin-curve circles are also tangent to these two curves.

At least one of these circles is tangent to some other boundary curves too, and one

of such circles is arbitrarily chosen as the Maxmin-curve circle in this case.

Remark 5.5. If an MW-Voronoi region has exactly one boundary curve, then this

curve is a circle as pointed out before, and it is, in fact, the Maxmin-curve circle.

Theorem 5.3. Consider an MW-Voronoi diagram, and suppose that the i-th MW-

Voronoi region has at least three boundary curves. Let Z̀i be the set of all circles

ΩA,max
r,s , ∀r, s ∈ ei, A ∈ Ψmax

εir,εis
, inside the region. Let also Z̃i be the set of all circles

which: (i) are tangent to at least three boundary curves of the i-th region, and (ii)

are inside the region. Define Zi := Z̀i ∪ Z̃i; then the Maxmin-curve circle belongs to

Zi, and is the largest circle in this set.

Proof. The proof follows directly from Lemmas 5.8 and 5.9, Definitions 5.7

and 5.8, and Remark 5.4. �

Using the result of Theorem 5.3, Algorithm 5.6 is developed to calculate the

Maxmin-curve centroid of an MW-Voronoi region. The complexity of the algorithm

is O(e4i ), which is typically not very high.
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Algorithm 6: An algorithm for finding the Maxmin-curve centroid of the
i-th MW-Voronoi region

begin
1) for p = 1, 2, . . . , ei − 2

for q = p+ 1, p+ 2, . . . , ei − 1
for t = q + 1, q + 2, . . . , ei

calculate Ωp,q,t

if Ωp,q,t is inside the i-th MW-Voronoi region, then
record it.

end
end

end
end

2) for r = 1, 2, . . . , ei − 1
for s = r + 1, r + 2, . . . , ei

calculate ΩA,max
r,s

if ΩA,max
r,s is inside the i-th MW-Voronoi region, then
record it.

end
end

end
3) The center of the largest circle is the Maxmin-curve centroid of

the i-th MW-Voronoi region.
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Figure 5.16: Snapshots of the execution of the Maxmin-curve strategy. (a) Initial
coverage; (b) coverage after the first round, and (c) final coverage.

Given a group of sensors with the same initial configuration as in of Fig. 5.3(a),

let the Maxmin-curve strategy be used. It can be verified that after the first round

the coverage increases to 84.9%, and eventually reaches 95.1%. This is depicted in

Fig. 5.16, where it can be observed that after the final round the sensors are dis-

tributed more evenly than the initial configuration, and that the coverage increases

considerably.

Theorem 5.4. The proposed algorithms (WVB, Minmax-curve and Maxmin-curve)

are convergent.

Proof. Let the positions and sensing radii of the sensors in the k-th round be

denoted by P(k) = {P1(k), P2(k), . . . , Pn(k)} and r(k) = {r1(k), r2(k), . . . , rn(k)},

respectively. Denote also the MW-Voronoi regions in the k-th round by Π1(k),

Π2(k), . . ., Πn(k), and the corresponding total covered area of the field by β(k).

If the k-th round is not the final round, then some sensors move and change their

locations in the next round. Assume that the i-th sensor, i ∈ n, moves to the new

location Pi(k+1) �= Pi(k); if the coverage area w.r.t. this location is greater than the

previous local coverage area, i.e. β
Pi(k+1)
Πi(k)

> β
Pi(k)
Πi(k)

, then according to Theorem 5.1

the total coverage in the network increases in this round, i.e. β(k + 1) > β(k). On

the other hand, the total covered area is upper-bounded by the overall area of the
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field, from which the convergence of the algorithms is implied. �

It is worth mentioning that the convergence of the proposed algorithms may

not be achieved in finite time. As mentioned earlier, in order to terminate the

algorithm in finite time, a proper coverage improvement threshold ε is defined such

that the algorithm will continue after the k-th round only if there is a sensor in

the network whose coverage increases at least by ε in the following iteration, i.e.

∃i ∈ n : β
Pi(k+1)
Πi(k)

≥ β
Pi(k)
Πi(k)

+ ε. Note that the choice of ε involves a trade-off between

network coverage and deployment time. The following theorem provides an upper-

bound on the number of rounds required to run the algorithm, as a function of ε.

Theorem 5.5. Consider a set of n mobile sensors S, randomly deployed in a 2D

field. Using any of the proposed algorithms with the coverage improvement threshold

ε, the number of required rounds to run the algorithm is at most Atotal

ε
, where Atotal

is the overall area of the field.

Proof. Let the number of rounds required to run the algorithm in order to meet

the termination condition be denoted by ζf . Let also the total uncovered area of the

field in the k-th round be represented by θ(k), and note that β(k) = Atotal − θ(k).

Denote the position of the sensors and their corresponding MW-Voronoi regions in

the k-th round by P(k) = {P1(k), P2(k), . . . , Pn(k)} and Π1(k),Π2(k), . . . ,Πn(k),

respectively. From the properties of the MW-Voronoi diagram, one can conclude

that:

θ(k) =
n∑

i=1

θ
Pi(k)
Πi(k)

, ∀1 ≤ k ≤ ζf (5.24)

Define the moving set of the k-th round as the largest subset of S that moves in the

k-th round, and denote the indices of the sensors in this set by Indx(k). Note that at

least one sensor moves in the k-th round, i.e. Indx(k) �= ∅, ∀1 ≤ k ≤ ζf . Note also

that the i-th sensor, i ∈ Indx(k), moves in the k-th round if β
Pi(k+1)
Πi(k)

≥ β
Pi(k)
Πi(k)

+ ε.

This means that:

θ
Pi(k+1)
Πi(k)

≤ θ
Pi(k)
Πi(k)

− ε, ∀i ∈ Indx(k) (5.25)
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On the other hand, some of the points in θ
Pi(k+1)
Πi(k)

might also be covered by another

sensor located at Pj(k + 1), for some j ∈ n\{i}. Hence:

θ(k + 1) ≤
n∑

i=1

θ
Pi(k+1)
Πi(k)

(5.26)

From the last two relations and on noting that for any i ∈ n\Indx(k) the i-th sensor

does not move (which implies θ
Pi(k+1)
Πi(k)

= θ
Pi(k)
Πi(k)

), one arrives at:

θ(k + 1) ≤
n∑

i=1

θ
Pi(k)
Πi(k)

− |Indx(k)| ε (5.27)

It is now concluded from (5.24) and (5.27) that:

θ(k + 1) ≤ θ(k)− |Indx(k)| ε ≤ θ(k)− ε (5.28)

or equivalently:

β(k + 1) ≥ β(k) + |Indx(k)| ε ≥ β(k) + ε (5.29)

which implies that using the underlying sensor relocation scheme, in each round the

total covered area increases by at least ε. Therefore, the total amount of increased

coverage from the first round to the termination round is greater than or equal

to ζfε. Since the total covered area is always less than or equal to Atotal, hence

Atotal ≥ ζfε or equivalently
Atotal

ε
≥ ζf . �

Remark 5.6. The importance of using the MW-Voronoi diagram for nonidentical

sensors is that it guarantees the convergence of the proposed deployment algorithms.

Note that the monotonically increasing characteristic of the total covered area is

guaranteed for the MW-Voronoi partitioning, and not necessarily for conventional

Voronoi partitioning. This means that using existing sensor deployment strategies

(which are mainly for identical sensors) may lead to non-convergent sensor move-

ments if the sensors are not identical.

Remark 5.7. Another important feature of the proposed algorithms is that the sen-

sors will never collide, and hence there is no need to implement any collision avoid-

ance strategy. Note that one of the important properties of the MW-Voronoi diagram
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is that first of all it partitions the field, and also there is exactly one sensor in each

region. Since in the proposed algorithms the new location for each sensor is inside

the corresponding MW-Voronoi region and each sensor moves within its region, the

sensors will not collide.

Remark 5.8. Note that when the sensors are identical, the Voronoi regions are

polygons and one can solve an easy convex optimization problem to find the center

of the largest circle inside a polygon, called Maxmin center (the maximum volume

ellipsoid in a polyhedron is addressed in [131]). In a network of nonidentical sensors,

on the other hand, the boundaries of the MW-Voronoi cells are parts of Apollonian

circles (not straight lines). Hence, one cannot find the Minmax-curve and Maxmin-

curve centroids by solving a convex optimization problem. Theorems 5.2 and 5.3 are

important in the sense that they obtain these centroids using a geometric approach.

5.3 Simulation Results

The results presented in this section for sensing coverage are all the average values

obtained by using 20 random initial configurations for the sensors. Also, the coverage

improvement threshold is set to ε = 0.1m2, which means if the increase in the local

coverage area by every sensor is less than 0.1m2, then the termination condition is

satisfied and there is no need to continue the iterations.

Example 1: In this example, 36 sensors are randomly deployed in a 50m by

50m flat space: 20 with a sensing radius of 6m, 8 with a sensing radius of 5m, 4

with a sensing radius of 7m, and 4 with a sensing radius of 9m. Moreover, the

communication range of each sensor is assumed to be 10/3 times its sensing range.

The coverage factor of the sensor network (defined as the ratio of the covered area

to the overall area) in each round is depicted in Fig. 5.17 for the methods proposed

in this chapter. It can be seen from this figure that under all three strategies,
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coverage increases significantly in the first few rounds. It can also be observed that

the Maxmin-curve strategy performs better than the other two strategies in this

example, as far as coverage is concerned.
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Figure 5.17: Network coverage in different rounds of the proposed algorithms for 36
sensors.

In order to compare the performance of the proposed algorithms for different

number of sensors, consider three additional setups: n=18, 27 and 45. Let changes

in the number of identical sensors in the new setups be proportional to the changes

in the total number of sensors (e.g., for the case of n=45 there will be 25 sensors with

a sensing radius of 6m, 10 with a sensing radius of 5m, 5 with a sensing radius of 7m,

and 5 with a sensing radius of 9m). Coverage results for different number of sensors

are given in Fig. 5.18. It can be observed from this figure that the sensing coverage

using the Maxmin-curve algorithm is larger than that using the other two algorithms

for different number of sensors. It can also be seen that although the WVB strategy

provides better coverage compared to the Minmax-curve strategy when there are

a relatively small number of sensors, it is outperformed by other strategies when

the number of sensors increases. Note that the new candidate location for each

sensor in the Maxmin-curve algorithm is the center of the largest circle inside the

corresponding region. Note also that if the sensing radius of a sensor is less than
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or equal to the radius of the Maxmin-curve circle of its region, then by moving the

sensor to the Maxmin-curve centroid, its sensing circle will be completely inside the

MW-Voronoi region, and consequently its local coverage is maximized. Hence, when

there are a small number of sensors in the field and the MW-Voronoi regions are

relatively large compared to the sensing circle of the sensors, it would be preferable

that every sensor moves to the Maxmin-curve centroid of its region such that the

sensing area of the sensor is completely inside the region. Thus, for small number of

sensors the Maxmin-curve strategy outperforms the other two algorithms. On the

other hand, when there are a large number of sensors in the field, the MW-Voronoi

regions are relatively small compared to the sensing circle of the sensors, and hence

the probability that each sensor covers its MW-Voronoi region by moving to either

the Minmax-curve centroid or the Maxmin-curve centroid increases. As a result, for

the case of 45 sensors, the performances of both Maxmin-curve and Minmax-curve

algorithms are good (close to 100% coverage).

18 27 36 45
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of sensors

C
ov

er
ag

e

Initial
WVB
Minmax−curve
Maxmin−curve

Figure 5.18: Network coverage for different number of sensors using the proposed
algorithms.

Another important factor in the performance evaluation of different algorithms

is how fast the desired coverage is achieved. Notice that sensor deployment time in

each round of all algorithms is more or less the same. Hence, to compare the rate of
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convergence of the algorithms, it suffices to check the number of rounds it takes for

the sensors to provide certain coverage. Fig. 5.19 shows that in all three strategies

the number of rounds required to satisfy a given termination condition increases by

adding more sensors up to a certain point, and then starts to decrease. The reason

is that the MW-Voronoi regions are relatively large (compared to the sensing circles)

when there are a small number of sensors. As a result, it is likely that the sensing

area of every sensor is contained within its MW-Voronoi region. Thus, the sensors’

local coverage areas do not increase by moving the sensors. On the other hand, when

the number of sensors is relatively large (such that the summation of sensing areas

is much larger than the overall area of the field), it is likely that every sensor covers

its MW-Voronoi region, which in turn means that the termination condition will be

met relatively fast [100]. Note also that in the WVB strategy the number of rounds

required for the termination of the algorithm is larger than the other strategies. The

number of rounds in the Minmax-curve algorithm is relatively low, making it a good

candidate as far as the deployment time is concerned.
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Figure 5.19: The number of rounds required to reach the termination condition for
different number of sensors using the proposed algorithms.

Energy consumption of sensors is another important measure of performance

in sensor deployment algorithms. The energy consumption of a mobile sensor highly
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depends on its traveling distance, as well as the number of times it stops before ar-

riving at the destination (the latter is due to static friction). Hence, one should

take the traveling distance as well as the number of movements of each sensor into

account in order to compare the energy-efficiency of different sensor deployment al-

gorithms. The average moving distance is provided in Fig. 5.20 for different number

of sensors in this example. It is observed from this figure that by increasing the num-

ber of sensors, the average moving distance of the sensors decreases in all scenarios.

This observation is justified for each algorithm as follows. In the WVB strategy,

when the number of sensors increases, the distance between each sensor and its final

position decreases, resulting in a decrease in the average moving distance. In the

other two algorithms, on the other hand, when the number of sensors increases, the

MW-Voronoi regions become smaller. As a result, the distance between each sensor

and its destination point in the corresponding MW-Voronoi region decreases, which

in turn leads to a decrease in the average moving distance. It can be concluded

from Fig. 5.20 that when there are a large number of sensors in the field, the aver-

age moving distances in all three strategies are approximately equal. The number

of movements versus the number of sensors is given in Fig. 5.21. It can be observed

from this figure that when the number of sensors is higher than a certain value

(which is different for the three algorithms), the number of movements decreases.

This is due to the fact that for a large number of sensors the MW-Voronoi regions

become smaller, which helps the sensors cover their MW-Voronoi regions (as noted

earlier). As a result, the coverage holes will be covered in a shorter period of time,

decreasing the number of movements.

Assume that the energy required for a sensor to travel 1m is equal to 8.268J [130],

[135]. Assume also that the energy required to stop a sensor and then overcome its

static friction after a complete stop is equal to the energy required for continuously

moving the sensor 1m [64], [65]. The energy consumption results for this case are
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Figure 5.20: The average distance each sensor travels using the proposed algorithms
with different number of sensors.
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Figure 5.21: The number of movements required to reach the termination condition
using the proposed algorithms with different number of sensors.
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Table 5.1: The energy consumption of the network in Joule for different number of
sensors using the proposed algorithms.

n = 18 n = 27 n = 36 n = 45
WVB 87.4813 J 67.2180 J 50.4572 J 32.6382 J

Minmax-curve 46.1704 J 43.8725 J 40.2928 J 24.6369 J
Maxmin-curve 112.9560 J 66.5397 J 39.0830 J 23.3077 J

summarized in Table I. The results show that for a small number of sensors the

Minmax-curve strategy is more efficient than the other two strategies in terms of

energy consumption. The Minmax-curve and Maxmin-curve strategies, on the other

hand, perform more or less similarly (and better than the WVB strategy) in terms

of energy efficiency when there are a large number of sensors in the field.

Remark 5.9. It is worth mentioning that the algorithms proposed in this chapter

differ only in the way the new locations of the sensors are determined. Since the

complexity of the algorithm to find the new location of a sensor in the WVB strategy

is less than that in the Maxmin-curve and Minmax-curve strategies, the WVB algo-

rithm outperforms the other two algorithms as far as the computational complexity

is concerned.

Example 2: In this example, the performance of the proposed algorithms is

evaluated in terms of network coverage in a larger sensing field with a higher number

of sensors. Let the sensing field be a 100m×100m flat space. Four different settings

are considered in the sequel. In the first setting, 60 sensors are considered: 3 with a

sensing radius of 5m, 24 with a sensing radius of 6m, 12 with a sensing radius of 7m,

and 21 with a sensing radius of 9m. In the second, third and fourth settings, 80,

100 and 120 sensors are considered, respectively, with an increase in the number of

sensors of identical sensing radius proportional to the increase in the total number

of sensors. In all scenarios, it is assumed that the communication range of each
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sensor is 10/3 times its sensing range (e.g, a sensor with a sensing range of 6m has a

communication range of 20m). Fig. 5.22 depicts the coverage factor of the sensors in

each round for the third scenario (100 sensors). Also, Fig. 5.23 provides the coverage

results for different number of sensors for comparison. It can be observed that the

results in these figures are very similar to the ones given in Example 1 (Figs. 5.17

and 5.18). Hence, the discussion given in the previous example is also valid here.

The simulation results can be summarized as follows:

• The Maxmin-curve strategy is more desirable in terms of network coverage.

• The WVB strategy is more preferable as far as the computational complexity

is concerned.

• The Minmax-curve strategy outperforms the other two algorithms in terms of

deployment time.

• As far as the energy consumption is concerned:

– if there are a large number of sensors in the field, then the Maxmin-curve

strategy is more efficient.

– when the number of sensors in the field is relatively small, the Minmax-

curve algorithm outperforms the other two strategies.
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Figure 5.22: Network coverage per round for 100 sensors in Example 2.
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Figure 5.23: Network coverage for different number of sensors using the proposed
algorithms in Example 2.
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Chapter 6

Self-Deployment Algorithms for

Field Coverage in a Network of

Nonidentical Mobile Sensors:

Vertex-Based Approach

In this chapter, distributed deployment algorithms are proposed for efficient coverage

in a mobile sensor network. The proposed algorithms calculate the position of

the sensors iteratively based on existing coverage holes in the field. To this end,

the multiplicatively weighted Voronoi (MW-Voronoi) diagram is used to partition

the field, as it is assumed that the sensors have different sensing ranges. Under

the proposed procedures, the sensors move in such a way that the coverage holes

in the network are reduced. Simulation results are provided to demonstrate the

effectiveness of the deployment schemes proposed in this chapter.

The rest of the chapter is organized as follows. Section 6.1 provides the new

algorithms for efficient network coverage, as the main contribution of the chapter,

and simulations are given in Section 6.2.
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6.1 Deployment Protocols

In this section, three different protocols are developed for a distributed sensor net-

work. The proposed algorithms are iterative, where in each iteration every sensor

Si, i ∈ n, first broadcasts its sensing radius ri and location Pi to other sensors, and

then constructs its MW-Voronoi region Πi based on the information it receives from

them. It checks the region subsequently to detect the possible coverage holes. If

any coverage hole exists, the sensor calculates its target location (but does not move

there) in such a way that by moving there the coverage hole would be eliminated,

or at least its size would be reduced by a certain threshold. Once the new target

location Ṕi is calculated, the coverage area w.r.t. this location, i.e., βṔi

Πi
is obtained.

If this coverage area is greater than the previous local coverage area, i.e. βṔi

Πi
> βPi

Πi
,

the sensor moves to the new location; otherwise it remains in its current position.

In order to terminate the algorithm in finite time, a proper coverage improvement

threshold ε is defined such that if the increase in the coverage area by each sensor

within its MW-Voronoi region is not sufficiently large (as specified by ε), there is no

need to continue the iterations.

Theorem 6.1. Consider a set of n mobile sensors randomly deployed in a 2D

field. Using the proposed sensor deployment procedure with the coverage improve-

ment threshold ε, the total coverage in the network increases. Furthermore, the

algorithm converges in at most Atotal

ε
rounds, where Atotal is the overall area of the

field.

Proof. The proof is similar to the proof of Theorem 5.5 (using also the results

of Theorems 5.1 and 5.4), and is omitted here. �

Notation 6.1. In the remainder of this chapter, V represents an MW-Voronoi

diagram with n regions (each one corresponding to a sensor). Furthermore, the

number of corners of the i-th region is denoted by mi, for any i ∈ n.
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Notation 6.2. Consider a circle of radius r centered at O, denoted hereafter by

Ω(O, r), and a point V in the plane. The intersection of Ω and the extension of V O

from O is denoted by T V
Ω(O,r). The other intersection point of Ω(O, r) and V O (or

its extension) is denoted by T̄ V
Ω(O,r).

Notation 6.3. As mentioned before, the boundary curves of an MW-Voronoi region

are the segments of some Apollonian circles. The set of all such Apollonian circles

for the i-th MW-Voronoi region is denoted by Ωi. The sets Ω̄i and Ω̃i are defined

as follows:

Ω̄i = {Ω ∈ Ωi|Si ∈ Ω}

Ω̃i = {Ω ∈ Ωi|Si /∈ Ω}

The above-mentioned procedure will be used in the next three subsections

to develop the farthest point boundary, Maxmin-vertex, and Minmax-vertex algo-

rithms. The target point for each sensor in this procedure is defined in the corre-

sponding subsections.

6.1.1 Farthest Point Boundary Strategy (FPB)

In this algorithm, each sensor moves toward the farthest point in its MW-Voronoi

region such that any existing coverage hole in its region can be covered. This point

is denoted by Xi,far for the i-th region. In fact, once a sensor detects a coverage

hole, it calculates the farthest point (using the information about its MW-Voronoi

region as well as the coverage holes in that region, as it will be shown later) and

moves toward it continuously until Xi,far is covered. The following definition is used

to calculate the farthest point in each MW-Voronoi region.

Definition 6.1. The corner points of the i-th MW-Voronoi region (i.e., the inter-

section of its boundary curves) are denoted by Vi1, Vi2, . . . , Vimi
. These points will
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hereafter be referred to as the MW-Voronoi vertices for the i-th MW-Voronoi region

(note that a region may have no vertex). It is to be noted that the farthest point in

each MW-Voronoi region lies on the boundary of the region.

Lemma 6.1. Let E and F be two points on the circle Ω, and V be an arbitrary point

in the plane such that T V
Ω is closer to E than to F (see Fig. 6.1). Then, V E > V F .

V
T

E

F

O

V
T

V

Figure 6.1: An illustrative figure for Lemma 6.1.

Proof. From the law of cosines in triangles V OE and V OF , it results that:

V E2 = V O2 +OE2 − 2V O ×OE × cos∠V OE (6.1)

V F 2 = V O2 +OF 2 − 2V O ×OF × cos∠V OF (6.2)

Since 0 ≤ ∠V OF < ∠V OE ≤ 180, hence cos∠V OE < cos∠V OF . From (6.1), (6.2)

as well as the relations OE = OF and cos∠V OE < cos∠V OF it can be concluded

that V E > V F . This completes the proof. �

Lemma 6.2. Given a positive constant k �= 1, let E and F be two points on ΩAB,k

such that TA
ΩAB,k

is closer to E than to F (see Fig. 6.2). Then, AE > AF and

BE > BF .

Proof. The proof follows immediately from Lemma 6.1, on noting that AE
BE

=

AF
BF

= k. �
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Figure 6.2: An illustrative figure for Lemma 6.2.

Remark 6.1. It is implied from Lemma 6.2 that for any positive constant k �= 1,

TA
ΩAB,k

is the farthest point to A and B, and that T̄A
ΩAB,k

is the nearest point to A

and B, among all points on ΩAB,k. For convenience of notation, TA
ΩAB,k

and T̄A
ΩAB,k

will hereafter be denoted by TAB,k and T̄AB,k, respectively.

Lemma 6.3. Let D be a point and AB be a segment in the plane. Among all points

on AB, the farthest point from D is either A or B.

Proof. The proof is straightforward and is omitted here. �

Theorem 6.2. Let Ai be the set of all vertices for the i-th region (i ∈ n) of the

MW-Voronoi diagram V, and define the set Bi as follows:

Bi =

{
TSiSj ,k | k =

wi

wj

, 1 ≤ j ≤ n, Sj ∈ Ni

}

where Ni is the set of all neighbors of the i-th sensor. Then the farthest point in the

i-th region belongs to the union of the sets Ai and Bi; i.e., Xi,far ∈ Ai ∪Bi.

Proof. As noted earlier, Xi,far lies on the boundary of the i-th region. Consider

the following two cases:

Case 1: Xi,far is on the boundary curve Vi1Vi2 such that Vi1Vi2 ∈ ΩSiSg ,
wi
wg

. If

TSiSg ,
wi
wg

is on the boundary curve Vi1Vi2, then according to Remark 6.1, Xi,far ∈ Bi;

otherwise, since among all points on the boundary curve Vi1Vi2 either Vi1 or Vi2 is
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the nearest point to TSiSg ,
wi
wg

, hence according to Lemma 6.2 Xi,far is equal to either

Vi1 or Vi2. This means that Xi,far ∈ Ai.

Case 2: Xi,far is on the boundary segment Vi3Vi4. In this case, it follows from

Lemma 6.3 that Xi,far ∈ Ai.

Therefore, in both cases considered above Xi,far ∈ Ai ∪Bi. �

From Theorem 6.2 and on noting that the number of vertices (or boundary

curves) of the i-th region is equal to the number of the i-th sensor’s neighbors (i.e.,

mi = dim(Ni)), one can develop the following algorithm of complexity O(mi) to

calculate the farthest point in the i-th MW-Voronoi region.

Algorithm 7: An algorithm for finding the farthest point in the i-th MW-
Voronoi region

begin
1) for all Sj ∈ Ni

calculate TSiSj ,k.
if TSiSj ,k lies on the boundary of the
i-th MW-Voronoi region, then
record it.

end
end

2) for j = 1, 2, . . . ,mi

record Vij .
end

3) The point whose distance from Si is maximum is the farthest point
in the i-th MW-Voronoi region.

Since typically an MW-Voronoi region does not have ”too many” vertices, the

computational complexity of calculating the farthest point is usually not very high.

Fig. 6.3 shows an operational example of FPB Algorithm. In this example, 27

sensors are randomly deployed in a 50m× 50m flat space: 15 with a sensing radius

of 6m, 6 with a sensing radius of 5m, 3 with a sensing radius of 7m, and 3 with a

sensing radius of 9m. Moreover, the communication range of each sensor is assumed

to be 10/3 times its sensing range. In this figure, three snapshots are provided, and

in each one the sensing areas of the sensors (filled circles) as well as the MW-Voronoi
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regions are depicted. The initial coverage is 66.7%, but after the first round it is

improved to 77.2%, and the final coverage is 92.9%. As it can be seen, after the final

round the sensors are distributed more evenly than the initial deployment, and that

the coverage increases considerably.
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Figure 6.3: Snapshots of the execution of the movement of the sensors under the
FPB algorithm. (a) Initial coverage; (b) field coverage after the first round, and (c)
final coverage.

6.1.2 Maxmin-Vertex Strategy

The idea behind the Maxmin-vertex strategy is that normally for a good coverage

result, none of the sensors should be too close to any of its vertices. In this strategy,

the destination for each sensor is selected as a point inside the corresponding MW-

Voronoi region whose distance from the nearest vertex is maximized. This point will

be referred to as the Maxmin-vertex centroid, and will be denoted by Ōi for the i-th

MW-Voronoi region (i ∈ n). Let the distance between this point and the nearest

vertex to it in the i-th region be represented by r̄i. The Maxmin-vertex circle is

defined next.

Definition 6.2. The Maxmin-vertex circle of a region in the MW-Voronoi diagram

V is defined as the largest circle centered inside that region such that all of the

vertices of the region are either outside the circle, or on it. This circle is, in fact,

Ω(Ōi, r̄i) for the i-th region (i ∈ n).
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Remark 6.2. If an MW-Voronoi region has exactly one boundary curve, then this

curve is a circle which is also the Maxmin-vertex circle in the Maxmin-vertex strat-

egy.

Lemma 6.4. Suppose the i-th region (i ∈ n) of the MW-Voronoi diagram V has

more than one boundary curve. If the Maxmin-vertex circle passes through exactly

one vertex, say Vi1, then Ōi is T
Vi1

Ω for some Ω ∈ Ωi; otherwise, the Maxmin-vertex

circle passes through at least two vertices.

Proof. Let V̄i1 be the nearest vertex of the i-th MW-Voronoi region to Ōi, and

define:

û := min
V ∈Vi−{V̄i1}

{
d(Ōi, V )

}
, i ∈ n (6.3)

where Vi is the set of vertices of the i-th MW-Voronoi region in the MW-Voronoi

diagram.

iO

1iV

2iV3iV

Figure 6.4: An example of the Maxmin-vertex circle, when it passes through exactly
one vertex.

Suppose Ōi and T V̄i1

Ω are disjoint for any Ω ∈ Ωi. Suppose also that the

Maxmin-vertex circle does not pass through any vertex other than V̄i1, and hence

the parameter δ∗ = (û − r̄i)/2 is strictly positive. There are two possible cases, as

discussed below.

Case 1: Ōi is inside the i-th MW-Voronoi region. Let Ô be a point inside the i-th

MW-Voronoi region and on the line V̄i1Ōi, but closer to Ōi, such that the distance
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between Ōi and Ô is equal to a given value δ ∈ (0, δ∗] (see Fig. 6.5(a)).

Case 2: Ōi is on the boundary of the i-th MW-Voronoi region. Suppose Ōi is on the

curve ε. Since Ōi and T V̄i1

Ω are distinct for any Ω ∈ Ωi, one can choose a point Ô on

ε such that d(Ô, V̄i1) > d(Ōi, V̄i1) and the distance between Ōi and Ô is equal to a

given value δ ∈ (0, δ∗] (see Fig. 6.5(b)).

In both cases, according to the triangle inequality:

d(Ô, V ) ≥ d(Ōi, V )− δ ≥ û− δ, ∀V ∈ Vi − {V̄i1} (6.4)

From the above relation and on nothing that û − δ ≥ r̄i + δ > r̄i and d(Ô, V̄i1) >

d(Ōi, V̄i1), it can be concluded that

min
V ∈Vi

{
d(Ô, V )

}
> r̄i, i ∈ n (6.5)

which contradicts the initial assumption that Ōi is the Maxmin-vertex centroid.

This means that there is at least one more vertex on the Maxmin-vertex circle. �

û

iO

1iV

Ô

(a)

û

iO

1iV

Ô

(b)

Figure 6.5: The Maxmin-vertex centroid, when it is: (a) inside an MW-Voronoi
region, and (b) on the boundary of an MW-Voronoi region.

Lemma 6.5. Consider an MW-Voronoi diagram V, and assume that the Maxmin-

vertex circle of one of the regions, say region i (i ∈ n), passes through exactly two
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vertices, say V̄i1 and V̄i2. Then Ōi is the intersection point of the perpendicular

bisector of V̄i1V̄i2 and the boundary of the i-th MW-Voronoi region.

Proof. Suppose Ōi is not the intersection point of the perpendicular bisector

of V̄i1V̄i2 and the boundary of the i-th MW-Voronoi region, i.e., Ōi is inside the i-th

region. Define:

ũ := min
V ∈Vi−{V̄i1,V̄i2}

{
d(Ōi, V )

}
, i ∈ n (6.6)

Since Ω(Ōi, r̄i) passes through exactly two vertices, thus δ∗ = (ũ − r̄i)/2 is strictly

positive. Let Õ be a point on the perpendicular bisector of V̄i1V̄i2 and outside the

triangle V̄i1V̄i2Ōi, but closer to Ōi, such that the distance between the points Ōi and

Õ is equal to a given value δ ∈ (0, δ∗] (see Fig. 6.6). Using the triangle inequality,

one can write:

d(Õ, V ) ≥ d(Ōi, V )− δ ≥ ũ− δ, ∀V ∈ Vi − {V̄i1, V̄i2} (6.7)

Using (6.7) along with the relations ũ− δ ≥ ũ− δ∗ = r̄i + δ∗ > r̄i and d(Õ, V̄i1) =

iO

1iV

2iV

O
~

u~

Figure 6.6: An illustrative figure used in the proof of Lemma 6.5.

d(Õ, V̄i2) > r̄i, one arrives at:

min
V ∈Vi

{
d(Õ, V )

}
> r̄i, i ∈ n (6.8)
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which contradicts the initial assumption that Ōi is the Maxmin-vertex centroid.

This completes the proof. �

Definition 6.3. For convenience of notation, the circle passing through two vertices

Vp and Vq of region i in the MW-Voronoi diagram V, centered at the intersection

of the perpendicular bisector of VpVq and the boundary curve VkVl, is denoted by

Ωk,l
p,q, k, l, p, q ∈ mi. Also, the circle passing through three vertices Vp, Vq and Vr of

region i is denoted by Ωp,q,r, for p, q, r ∈ mi. In addition, the circle passing through

one vertex Vr of MW-Voronoi region i, centered at T Vr

Ω , is denoted by ΘVr

Ω , for any

r ∈ mi and Ω ∈ Ωi.

Theorem 6.3. Consider an MW-Voronoi diagram V, and suppose that the i-th

region (i ∈ n) has more than one boundary curve. Let Ĉi and C̀i be the sets of all

circles Ωk,l
p,q, ∀k, l, p, q ∈ mi and ΘVr

Ω , ∀r ∈ mi, Ω ∈ Ωi, respectively, whose centers

are on the boundary of the i-th region, and do not enclose any of the vertices of

this region. Let also C̃i be the set of all circumcircles of any three vertices, centered

inside the i-th MW-Voronoi region or on its boundary, which do not enclose any

of the vertices of this region. Define Ci = Ĉi ∪ C̀i ∪ C̃i. Then the circle Ω(Ōi, r̄i)

belongs to Ci, and it is the largest circle in this set.

Proof. If Ω(Ōi, r̄i) /∈ C̀i, then according to Lemma 6.4 the Maxmin-vertex

circle passes through at least two vertices. If it passes through exactly two ver-

tices, say V1, V2, then according to Lemma 6.5, there exist k, l ∈ mi such that

Ω(Ōi, r̄i) = Ωk,l
1,2. Hence, in this case Ω(Ōi, r̄i) ∈ Ci, and from Definition 6.2,

r̄i = max {r |Ω(O, r) ∈ Ci. If, on the other hand, the Maxmin-vertex circle passes

through three or more Voronoi vertices, then it is the circumcircle of those ver-

tices. Therefore, Ω(Ōi, r̄i) ∈ Ci, and again it is deduced from Definition 6.2 that

r̄i = max {r |Ω(O, r) ∈ Ci} . �
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Using the result of Theorem 6.3, the following algorithm of complexity O(m4
i )

is developed to find the Maxmin-vertex centroid in the i-th MW-Voronoi region.

Algorithm 8: An algorithm for finding the Maxmin-vertex centroid in the
i-th MW-Voronoi region

begin
1) for p = 1, 2, . . . ,mi − 2

for q = p+ 1, p+ 2, . . . ,mi − 1
for r = q + 1, q + 2, . . . ,mi

calculate Ωp,q,r

if Ωp,q,r is centered inside the i-th MW-Voronoi region or on
its boundary and does not enclose any of the vertices
of the region, then

record it.
end

end
end

end
2) for p = 1, 2, . . . ,mi − 1

for q = p+ 1, p+ 2, . . . ,mi

calculate Ωk,l
p,q

if Ωk,l
p,q does not enclose any of the vertices

of the i-th region, then
record it.

end
end

end
3) for r = 1, 2, . . . ,mi

calculate ΘVr

Ω

if ΘVr

Ω does not enclose any of the vertices of the i-th region, then
record it.

end
end

4) The center of the largest circle is the Maxmin-vertex centroid
in the i-th MW-Voronoi region.

As in the case of calculating the farthest point, since typically an MW-Voronoi

region does not have ”too many” vertices, the computational complexity for calcu-

lating the Maxmin-vertex centroid is usually not very high. Consider the initial

deployment of Fig. 6.3(a), and this time let the Maxmin-vertex algorithm be used.
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After the first round, the coverage is improved to 75.5%, and finally it reaches 89.5%

(see Fig. 6.7).
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Figure 6.7: Snapshots of the execution of the movement of the sensors under the
Maxmin-vertex algorithm. (a) Initial coverage; (b) field coverage after the first
round, and (c) final coverage.

6.1.3 Minmax-Vertex Strategy

The idea behind the Minmax-vertex technique is that normally for optimal coverage,

each sensor should not be ”too far” from any of its MW-Voronoi vertices. The

Minmax-vertex strategy selects the target location for each sensor as a point inside

the corresponding MW-Voronoi region whose distance from the farthest vertex is

minimized. This point will be referred to as the Minmax-vertex centroid, and will

be denoted by Ǒi for the i-th region (i ∈ n). Furthermore, the distance between

this point and the farthest vertex from it in the i-th region will be represented by

ři. The Minmax-vertex circle is defined next.

Definition 6.4. The Minmax-vertex circle of an MW-Voronoi region is defined as

the smallest circle centered inside the region such that all of the vertices of the region

are either inside the circle or on it. This circle is, in fact, Ω(Ǒi, ři), for the i-th

region (i ∈ n).

Remark 6.3. If an MW-Voronoi region has exactly one boundary curve, then this
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curve is a circle which is also the Minmax-vertex circle for that region in the Minmax-

vertex strategy.

Lemma 6.6. If an MW-Voronoi region has more than one boundary curve, then

the corresponding Minmax-vertex circle passes through at least two vertices.

Proof. Let V̌i1 be the farthest vertex to Ǒi on the boundary of the i-th MW-

Voronoi region, and define:

ẑ := max
V ∈Vi−{V̌i1}

{
d(Ǒi, V )

}
, i ∈ n (6.9)

Suppose that the Minmax-vertex circle does not pass through any vertex other than

V̌i1, and hence δ∗ = (ři − ẑ)/2 is strictly positive. There are two possible cases, as

discussed below.

Case 1: Ǒi is inside the i-th MW-Voronoi region. Let Ô be a point inside the i-th

MW-Voronoi region and on the line V̌i1Ǒi such that the distance between Ǒi and Ô

is equal to a given value δ ∈ (0, δ∗] (see Fig. 6.8(a)).

Case 2: Ǒi is on the boundary of the MW-Voronoi region. Suppose Ǒi is on the

curve ε. Let Ô be a point on ε or inside the i-th MW-Voronoi region such that

d(Ô, V̌i1) < d(Ǒi, V̌i1), and the distance between Ǒi and Ô is equal to a given value

δ ∈ (0, δ∗] (see Fig. 6.8(b)).

In both cases, according to the triangle inequality:

d(Ô, V ) ≤ d(Ǒi, V ) + δ ≤ ẑ + δ, ∀V ∈ Vi − {V̌i1} (6.10)

From the above relation and on noting that ẑ + δ ≤ ři − δ < ři and d(Ô, V̌i1) <

d(Ǒi, V̌i1), it can be concluded that

max
V ∈Vi

{
d(Ô, V )

}
< ři, i ∈ n (6.11)

which contradicts the initial assumption that Ǒi is the Minmax-vertex centroid.

This means that there is at least one more vertex on the Minmax-vertex circle. �
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Figure 6.8: Minmax-vertex centroid, when it is: (a) inside an MW-Voronoi region,
and (b) on the boundary of an MW-Voronoi region.

Lemma 6.7. Consider an MW-Voronoi diagram V, and assume that the Minmax-

vertex circle of one region, say region i (i ∈ n), passes through exactly two vertices,

say V̌i1 and V̌i2. Then Ǒi is the intersection point of the perpendicular bisector of

V̌i1V̌i2 and the boundary of the i-th MW-Voronoi region.

Proof. Suppose Ǒi is not the intersection point of the perpendicular bisector

of V̌i1V̌i2 and the boundary of the i-th MW-Voronoi region, i.e., Ǒi is inside the i-th

region. Define:

z̃ := max
V ∈Vi−{V̌i1,V̌i2}

{
d(Ǒi, V )

}
, i ∈ n (6.12)

Since Ω(Ǒi, ři) passes through exactly two vertices, thus δ∗ = (ři − z̃)/2 is strictly

positive. Let Õ be a point on the perpendicular bisector of V̌i1V̌i2 and inside the

triangle V̌i1V̌i2Ǒi, but closer to Ǒi, such that the distance between the points Ǒi and

Õ is equal to a given value δ ∈ (0, δ∗] (see Fig. 6.9). Using the triangle inequality,

one can write:

d(Õ, V ) ≤ d(Ǒi, V ) + δ ≤ z̃ + δ, ∀V ∈ Vi − {V̌i1, V̌i2} (6.13)

Using (6.13) along with the relations z̃ + δ ≤ z̃ + δ∗ = ři − δ∗ < ři and d(Õ, V̌i1) =
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Figure 6.9: An illustrative figure used in the proof of Lemma 6.7.

d(Õ, V̌i2) < ři, one can conclude that:

max
V ∈Vi

{
d(Õ, V )

}
< ři, i ∈ n (6.14)

which contradicts the initial assumption that Ǒi is the Minmax-vertex centroid.

This completes the proof. �

Theorem 6.4. Given an MW-Voronoi diagram V, let Ŵi be the set of all circles

Ωk,l
p,q, ∀k, l, p, q ∈ mi, whose centers are on the boundary of the i-th region, and all

vertices of the region are either inside or on them. Let also W̃i be the set of all

circumcircles of any three vertices, centered inside or on the i-th region, with all

vertices of the region either inside or on them. Define Wi := Ŵi ∪ W̃i. Then the

circle Ω(Ǒi, ři) belongs to Wi, and it is the smallest circle in this set.

Proof. According to Lemma 6.6, the Minmax-vertex circle passes through at

least two Voronoi vertices. If it passes through exactly two Voronoi vertices, say

Vi1, Vi2, then according to Lemma 6.7, there exist k, l ∈ mi such that Ω(Ǒi, ři) =

Ωk,l
1,2. Hence, in this case Ω(Ǒi, ři) ∈ Wi, and from Definition 6.4, ři = min{r |Ω(O, r)

∈ Wi}. If, on the other hand, the Minmax-vertex circle passes through three or more
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Voronoi vertices, then it is the circumcircle of those vertices. Therefore, Ω(Ǒi, ři) ∈

Wi, and again it is deduced from Definition 6.4 that ři = min {r |Ω(O, r) ∈ Wi} . �

Using the result of Theorem 6.4, the following algorithm of complexity O(m4
i )

is developed to calculate the Minmax-vertex centroid of the i-th MW-Voronoi region.

Algorithm 9: An algorithm for finding the Minmax-vertex centroid in the
i-th MW-Voronoi region

begin
1) for p = 1, 2, . . . ,mi − 2

for q = p+ 1, p+ 2, . . . ,mi − 1
for r = q + 1, q + 2, . . . ,mi

calculate Ωp,q,r.
if Ωp,q,r is centered inside the i-th MW-Voronoi region or on
its boundary, and all the corresponding vertices are either
inside the region or on its boundary, then

record it.
end

end
end

end
2) for p = 1, 2, . . . ,mi − 1

for q = p+ 1, p+ 2, . . . ,mi

calculate Ωk,l
p,q.

if all vertices of the i-th region are either inside it or
on the boundary of Ωk,l

p,q, then
record it.

end
end

end
3) The center of the smallest circle is the Minmax-vertex centroid

in the i-th MW-Voronoi region.

As in the two methods presented earlier, since typically a MW-Voronoi region

does not have ”too many” vertices, the computational complexity for calculating

the Minmax-vertex centroid is normally not very high. Using this algorithm with

the initial setting of Fig. 6.3(a), the coverage after the first round is improved to

79.9%, and it finally reaches 97.1% (see Fig. 6.10).

Assumption 6.1. It is implicitly assumed that a synchronization protocol (similar
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Figure 6.10: Snapshots of the execution of the movement of the sensors under the
Minmax-vertex algorithm. (a) Initial coverage; (b) field coverage after the first
round, and (c) final coverage.

to the one in [137]) is implemented to guarantee that all sensors start each round

at the same time. Furthermore, the coverage rounds are assumed to be sufficiently

long, so that each sensor can complete the process of calculating the new location

and moving there (if necessary) in one round.

In the next section, it will be shown that all proposed algorithms result in a

satisfactory final coverage. In addition, the performance of these algorithms will be

compared in terms of the energy consumption of the sensors and deployment speed

in reaching the desired coverage level for the sensing field.

6.2 Simulation Results

The three algorithms proposed in Section 6.1 are applied to a flat space of size

50m × 50m in this section. In each simulation, the algorithm is terminated when

none of the sensors’ coverage in its corresponding MW-Voronoi region is improved

by more than 0.1m2 in the next move. The results presented in this section for field

coverage are all the average values obtained by using 20 random initial deployments

for the sensors.

Assume first the same 27 sensors of the example given in Section 6.1. The
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coverage factor (defined as the ratio of the covered area to the overall area) of the

sensors in each round is depicted in Fig. 6.11 for the three algorithms proposed

in this chapter. It can be observed from this figure that all three strategies result

in a satisfactory coverage level of the sensing field in the first few rounds of the

corresponding algorithms. The resultant curves also show that the Minmax-vertex

algorithm performs better than the other algorithms as far as coverage is concerned.
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Figure 6.11: Network coverage per round for 27 sensors.

It is desired now to compare the performance of the proposed algorithms in

terms of the number of deployed sensors n. To this end, consider three more setups:

n=18, 36, and 45 (in addition to n=27 discussed above). Let changes in the number

of identical sensors in the new setups be proportional to the changes in the total

number of sensors (e.g., for the case of n=18 there will be 10 sensors with a sensing

radius of 6m, 4 with a sensing radius of 5m, 2 with a sensing radius of 7m, and 2

with a sensing radius of 9m). Fig. 6.12 provides the coverage results for different

number of sensors. It can be seen from this figure that the network coverage in

Minmax-vertex algorithm is larger than that in the other algorithms for different

number of sensors.

The time it takes for the sensors to provide the desired coverage level is another

important measure of the efficiency of the algorithms. Since the deployment time of
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Figure 6.12: Network coverage for different number of sensors using the proposed
algorithms.

the sensors in each round is almost equal for all algorithms, the number of rounds

required for the sensors to reach a certain coverage level is used to evaluate the

time efficiency. It is shown in Fig. 6.13 that in all three algorithms the number

of rounds required to meet the termination condition specified earlier, increases by

increasing the number of sensors up to a certain value (which varies for different

algorithms), and then starts to decrease by adding more sensors. This is mainly

because when there are a small number of sensors in the field, the MW-Voronoi

regions are large in comparison with the corresponding sensing circles. Hence, there

is a good chance that each sensor’s local coverage area is completely inside its MW-

Voronoi region, which means that the sensor does not need to move in order to

increase its coverage area. On the other hand, when there are a large number of

sensors in the field, there is a good chance that each sensor covers its MW-Voronoi

region (and hence there are no coverage holes), which implies that the termination

condition will be satisfied in a short period of time. It can be seen from Fig. 6.13 that

in the Minmax-vertex algorithm the number of rounds required for the termination

of the algorithm is larger than the other strategies. When the number of sensors in

the field is not large, the number of rounds in the FPB algorithm is smaller than the
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other algorithms. Hence, the FPB algorithm is more efficient in such cases, as far as

the deployment time is concerned. On the other hand, if there are a large number

of sensors in the field, the Maxmin-vertex outperforms the other two algorithms in

terms of deployment time.
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Figure 6.13: The number of rounds required to reach the termination conditions for
different number of sensors using the proposed algorithms.

Another important means of assessing the performance of the sensor deploy-

ment algorithms is the energy consumption of the sensors. The consumed movement

energy of each sensor is known to be directly related to its traveling distance, as well

as the number of times it stops (the latter one is related to the static friction). Thus,

to compare the proposed methods in terms of energy consumption, the traveling dis-

tance and the number of movements should be taken into consideration. Fig. 6.14

depicts the average moving distance for different number of sensors, using the three

algorithms. This figure shows that by increasing the number of sensors, the aver-

age moving distance is decreased in all scenarios. This is due to the fact that the

MW-Voronoi regions become smaller when the number of sensors increases. Note

that a decrease in the size of an MW-Voronoi region translates to a smaller distance

between the corresponding sensor and its destination point in that region. This in

turn leads to a decrease in the average moving distance. It is shown in Fig. 6.14 that
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the traveling distance in the FPB algorithm is shorter than that in the other two

algorithms. It can be seen from Fig. 6.14 that the average moving distances for all

three algorithms are more or less the same when there are a large number of sensors

in the field. The number of movements versus the number of sensors is depicted in

Fig. 6.15, where it is shown that if the number of sensors increases from 18 to 27,

the number of movements increases as well. It can also be observed from this figure

that when the number of sensors increases beyond 36, the number of movements

decreases. This is due to the fact that for large number of sensors the MW-Voronoi

regions become smaller, and hence the sensors will likely cover their MW-Voronoi

regions and will not need to move. As it can be observed from Fig. 6.15, when there

are a relatively large number of sensors in the field, the number of movements in

Maxmin-vertex algorithm is less than that in the other algorithms.
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Figure 6.14: The average distance each sensor travels for different number of sensors,
using the proposed algorithms.

Let the required energy for traveling 1m (without stopping) be 8.268J (or

0.210J/inch) [130], [135]. Consider two scenarios, where the energy required to

stop a sensor and then overcome its static friction after a complete stop is equal

to the energy required to continuously move the sensor 1m (first scenario) and 4m

(second scenario) [64], [65]. Tables 6.1 and 6.2 provide a summary of the energy
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Figure 6.15: The number of movements required for different number of sensors
using the proposed algorithms.

consumption results for these two cases. Define α as the ratio of energy consumption

due to one stop followed by one move from complete stop to energy consumption

due to one meter move. Now, if there are a large number of sensors in the field and

the power required to overcome static friction of a sensor is much larger than that

required to move it (per unit), the Maxmin-vertex algorithm outperforms the other

two algorithms in terms of energy consumption. If, on the other hand, the power

required to overcome static friction of a sensor is much smaller than that required

to move it, then regardless of the number of sensors the FPB algorithm performs

better than the other two algorithms in terms of energy consumption.

Remark 6.4. Note that the algorithms introduced in this chapter differ only in

the way the new locations of the sensors are determined. As mentioned before, the

complexity of the algorithm to find the new location of the i-th sensor in the FPB

strategy is of order O(mi), while it is of order O(m4
i ) in the Minmax-vertex and

Maxmin-vertex algorithms. Hence, the FPB algorithm outperforms the other two

algorithms as far as the computational complexity is concerned.

The above discussion is summarized below (logic and’s in these statements are

capitalized):
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Table 6.1: The energy consumption in Joule for different number of sensors using
the proposed algorithms for the case when the energy required to stop a sensor and
then overcome static friction after a complete stop is equal to the energy required
to move the sensor 1m non-stop.

n = 18 n = 27 n = 36 n = 45
FPB 47.4234 J 44.7480 J 42.9542 J 28.1041 J

Minmax-vertex 77.6335 J 95.0093 J 68.6495 J 37.0676 J
Maxmin-vertex 50.9095 J 56.8741 J 48.2570 J 27.3611 J

1. The Minmax-vertex algorithm is more preferable as far as network coverage is

concerned.

2. The Maxmin-vertex algorithm outperforms the other two algorithms when

there are a large number of sensors in the field, AND:

• the deployment time is the main concern.

• the energy consumption is the main concern, AND the power required to

overcome the static friction of a sensor is much larger than that required

to move it (per unit).

3. The FPB algorithm is more desirable when:

• the deployment time is the main concern AND the number of sensors in

the field is not large.

• the energy consumption is the main concern, AND the power required to

overcome the static friction of a sensor is much smaller than that required

to move it (per unit).

• the computational complexity is concerned.
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Table 6.2: The energy consumption in Joule for different number of sensors using
the proposed algorithms for the case when the energy required to stop a sensor and
then overcome static friction after a complete stop is equal to the energy required
to move the sensor 4m non-stop.

n = 18 n = 27 n = 36 n = 45
FPB 83.8715 J 97.3876 J 105.4810 J 71.0150 J

Minmax-vertex 153.3546 J 232.9012 J 163.1114 J 84.8015 J
Maxmin-vertex 83.8437 J 115.5310 J 105.1340 J 58.4763 J
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Chapter 7

Distributed Deployment

Algorithms for Coverage

Improvement in a Network of

Wireless Mobile Sensors:

Relocation by Virtual Force

Efficient deployment algorithms are developed in this chapter to increase coverage

in a network of wireless mobile sensors. The proposed strategies iteratively com-

pute the position of the sensors based on existing coverage holes. These holes are

obtained using a Voronoi diagram for the case of identical sensors, and a multi-

plicatively weighted Voronoi (MW-Voronoi) diagram for the case of sensors with

different sensing ranges. Each sensor is driven by virtual forces applied to it from

the vertices and boundaries of its Voronoi cell. These forces are obtained in such

a way that when the sensor is relocated, the covered area of the corresponding cell

increases. Simulation results demonstrate the efficacy of the proposed strategies,

159



and their superiority to existing algorithms.

The plan of the rest of the chapter is as follows. Section 7.1 provides the new

algorithms for efficient coverage in a network of identical sensors. These algorithms

are extended to the case of nonidentical sensors in Section 7.2. Simulations are

given in Section 7.3, which demonstrate the efficacy of the proposed deployment

strategies.

7.1 Deployment Protocols for Identical Sensors

Three sensor deployment algorithms are introduced in this section for efficient cov-

erage in a network of identical sensors. The proposed algorithms are iterative, and

each iteration consists of four phases. In the first phase, every sensor Si, i ∈ n,

transmits its position information Pi to other sensors, receives similar information

from other sensors, and then constructs its Voronoi polygon. In the second phase,

every sensor checks its Voronoi polygon to find its local coverage hole. If a coverage

hole exists in a polygon, say the i-th polygon, then a proper scheme is used to find

a point Ṕi in it such that by placing the sensor there, the coverage hole would be

eliminated, or at least its size would be reduced by a certain threshold. Once the

new destination is found, the coverage area w.r.t. this location (i.e. βṔi

Πi
) is ob-

tained in the third phase. If the coverage area w.r.t. the new destination is greater

than the local coverage area, i.e. βṔi

Πi
> βPi

Πi
, the sensor moves there; otherwise, it

stays at its present location. In order to terminate the algorithm in finite time, a

proper threshold ε is considered such that if the increase in the coverage area by

each sensor within its Voronoi polygon is not greater than ε, the iterations stop.

Note that the algorithms developed in this section differ in the second phase only.

In each round, the new destination for each sensor is computed based on a proper

deployment strategy.
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As noted above, under the strategies proposed in this work each sensor moves

to its new destination only if its coverage area w.r.t. the new location in the old

Voronoi polygon increases.

7.1.1 Vertex Virtual Forces (VVF) Strategy

The movement of each sensor under the VVF strategy depends on the vector sum of

all virtual forces applied to it from the vertices of its polygon. Denote the vertices

of the i-th Voronoi polygon by Vi = {Vi1, Vi2, . . . , Vil}. Also, denote by dSi

Vij
the

distance between sensor Si and the j-th vertex of its Voronoi polygon. Let the

sensing radius of every sensor be r. In this strategy, if the distance between sensor

Si and vertex Vij is less than r, then a virtual force form Vij will push Si, tending to

move the sensor away by r− dSi

Vij
. If on the other hand dSi

Vij
> r, then a virtual force

form Vij will pull the sensor, tending to move it toward Vij by dSi

Vij
− r. Eventually,

each sensor moves in the direction of the vector sum of all virtual forces,
−→
V i
v , applied

to it from the vertices of the corresponding Voronoi polygon. The new destination

Ṕi is equal to Pi + α
−→
V i
v , where α is a parameter (not necessarily constant) which

is to be chosen properly. For example, a line search procedure can be used to find

the optimal value for α in order to maximize the coverage area w.r.t. the new

destination Ṕi. However, in this chapter α is chosen as 1
4
based on simulation to

reduce the computational complexity of the strategy [102].

Fig. 7.1 shows an illustrative example of the VVF strategy. In this figure,

the virtual forces applied to the sensor are depicted by dashed vectors, and the

displacement 1
4

−→
V i
v is shown by a red vector.

7.1.2 Edge Virtual Forces (EVF) Strategy

The sensor deployment strategy introduced in the previous subsection is vertex-

based, as it operates according to the distances of the sensors from the vertices
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S

Figure 7.1: An illustrative example of the VVF strategy.

of their Voronoi polygons. While this algorithm proves effective in many practical

scenarios, it may not be as effective for specific sensor configurations. For exam-

ple, consider the polygon in Fig. 7.2, where the sensor is denoted by S. It can be

easily verified that in order to increase the coverage area, the sensor should move

in the up-left direction. However, under the VVF strategy the sensor is forced (by

the corresponding virtual forces) to move in almost the opposite direction (more

precisely, to point A, in this specific configuration), although the movement adjust-

ment scheme described earlier does not allow the sensor to move. To address this

shortcoming of the VVF algorithm, an edge-based method is presented in the sequel.

�

S A

Figure 7.2: A configuration for which the VVF technique is not as effective.

Denote the set of the edges of the i-th Voronoi polygon by Ei = {Ei1, Ei2, . . .,

Eil}, and the distance between sensor Si and the j-th edge of its Voronoi polygon

by dSi

Eij
. In the EVF method, the movement of each sensor results from the vector
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sum of all virtual forces applied to it from the edges of its polygon. If the distance

between sensor Si and edge Eij is greater than the sensing radius r, then a virtual

force form Eij will pull Si, tending to move the sensor toward the edge by dSi

Eij
− r.

If on the other hand dSi

Eij
< r, then a virtual force form Eij will push Si, tending to

move it away by r−dSi

Eij
. Similar to the VVF strategy, the movement of each sensor

is proportional to the vector sum of all virtual forces applied to it from the edges of

the corresponding Voronoi polygon, i.e. Ṕi = Pi + β
−→
V i
e , where β is a given constant.

Fig. 7.3 shows an illustrative example of the EVF strategy, for β = 1
4
. In this figure,

the virtual forces applied from the edges to the sensor are shown by dotted vectors,

and the displacement 1
4

−→
V i
e is depicted by a red vector.

S

Figure 7.3: An illustrative example of the EVF strategy.

7.1.3 Vertex-Edge Virtual Forces (VEVF) Strategy

The effectiveness of each of the two deployment strategies described so far depends

on the relative position of sensors w.r.t. each other. One can take advantage of the

strengths of both techniques, by developing a new algorithm as a combination of

the VVF and EVF strategies. In this algorithm, which is referred to as the VEVF

strategy, every sensor selects two points in each round, as its potential new location:

one point according to the VVF strategy, and the other one according to the EVF

technique. Any of these two points from which the sensor coverage improves the
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most is subsequently selected as the target location of the sensor.

An operational example of the VEVF strategy is given in Fig. 7.4, where 30

sensors with a communication radius of 20m and sensing radius of 6m are randomly

deployed in a 50m by 50m plane. The positions of the sensors are shown for three

snapshots along with their sensing areas (filled circles) and the resultant Voronoi

diagrams. After the first round of the algorithm, the coverage increases from the

initial value of 69.05% to 87.76%, and in the final round (where the termination

condition is satisfied) the coverage is 98.14%. The figure also demonstrates that the

sensors become more evenly distributed as network coverage increases.
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Figure 7.4: Snapshots of the execution of the VEVF strategy. (a) Initial coverage;
(b) coverage after the first round, and (c) final coverage.

7.2 Deployment Protocols for Nonidentical Sen-

sors

When sensors have different sensing radii, a point which is not covered by the gener-

ating sensor of the polygon containing that point, may be covered by a neighboring

sensor. This means that for a network of nonidentical mobile sensors, the con-

ventional Voronoi diagram is not as useful for development and analysis of sensor
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deployment strategies. The multiplicatively weighted Voronoi (MW-Voronoi) dia-

gram is used in such networks, as described in the next subsection.

7.2.1 Deployment Protocols

Deployment algorithms similar to the ones developed in the previous section for

a network of identical mobile sensors can also be developed for the case of a net-

work of nonidentical sensors by using the MW-Voronoi partitions. Note that the

boundaries of the regions in this case are parts of some Apollonian circles, and

are not straight edges in general. Note also that an MW-Voronoi region will not

have any vertices when the region is a circle, in which case the center of this circle

is considered as the new location of the corresponding sensor. The corner points

and boundary curves of an MW-Voronoi region can be regarded as the vertices and

edges of that region, respectively. Then, analogously to the VVF, EVF and VEVF

strategies developed in the previous section, one can introduce the corner point vir-

tual forces (CPVF), boundary curve virtual forces (BCVF), and point-curve virtual

forces (PCVF) strategies, respectively.

Remark 7.1. The complexity of calculating a new sensor destination in all algo-

rithms proposed in this chapter is of order O(mi) or O(ei), where mi and ei are the

number of vertices and edges of the i-th Voronoi polygon (or MW-Voronoi region),

respectively. Since typically a Voronoi polygon (or MW-Voronoi region) does not

have a large number of vertices and edges, the complexity of the proposed techniques

for computing the new sensor destinations is usually not very high.

An operational example of the CPVF Algorithm is shown in Fig. 7.5. In this

example, 27 sensors are randomly placed in a 50m× 50m flat field: 3 with a sensing

radius of 9m, 3 with a sensing radius of 7m, 6 with a sensing radius of 5m, and

15 with a sensing radius of 6m. Furthermore, the communication range of each

sensor is assumed to be 10/3 times its sensing range. Three snapshots are given
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in this figure, where the sensing areas of the sensors (filled circles) as well as the

MW-Voronoi regions are sketched in each snapshot. Using this algorithm with the

initial setting shown in Fig. 7.5(a), the coverage increases from 66.7% to 82.6% after

the first round, and eventually converges to 98.6%.
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Figure 7.5: Snapshots of the execution of the movement of the sensors under the
CPVF algorithm. (a) Initial coverage; (b) field coverage after the first round, and
(c) final coverage.

7.3 Simulation Results

Simulations are often used for the evaluation and comparison of different sensor

deployment algorithms. In this section, the performance of the proposed sensor

deployment algorithms are evaluated and compared using several simulations with

random initial sensor configurations. In the examples given below, the average

results are depicted by performing 100 simulations with random initial configurations

for Examples 1 and 2, and 20 simulations (also with random initial configurations)

for Example 3.

Example 1: In this example, the performance of the strategies introduced in

Section 7.1 will be compared for different number of sensors: n=20, 30, 40, and

50. The sensors are randomly deployed in a 50m× 50m flat field, and their sensing

and communication ranges are 6m and 20m, respectively. The algorithms used in
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this example are terminated when no sensor’s coverage in its corresponding Voronoi

polygon increases by more than 1% in the next move. In Fig. 7.6, the final coverage

factor (defined as the ratio of the covered area to the overall area) is depicted under

the three algorithms introduced in Section 7.1, for different number of sensors. It

can be observed from this figure that the coverage area under the VEVF strategy

is larger than that under the VVF and EVF algorithms, for different number of

sensors.
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Figure 7.6: Coverage factor for different number of sensors in Example 1 using the
proposed algorithms.

Convergence rate is another important issue in the performance evaluation of

sensor deployment algorithms. Since the sensor deployment time in each round of

different algorithms is almost equal, the number of rounds required for the sensors

to meet the termination condition can be used to assess time efficiency. It is shown

in Fig. 7.7 that in all three algorithms, the number of rounds (required to meet a

certain termination condition) decreases as the number of sensors increases between

30 and 50. This is due to the fact that when the number of sensors in the target

field is large, the Voronoi polygons are small compared to the corresponding sensing

circles. As a result, it is likely that each sensor covers a large portion of its Voronoi
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polygon; thus, the algorithm reaches the termination condition faster. The number

of rounds in the EVF algorithm is relatively low, and hence it is more desirable as

far as the convergence rate is concerned.
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Figure 7.7: The number of rounds required to meet the termination condition in
Example 1 for different number of sensors using the proposed strategies.

The energy consumed by sensors in order to provide the desired coverage

level is another important issue which needs to be taken into consideration when

evaluating the efficiency of different algorithms. The energy consumption of the

network highly depends on the traveling distance of the sensors, and also the number

of times they stop before arriving at their next position (note that once a sensor

stops, it has to overcome the static friction in order to move again). Thus, to

compare the energy-efficiency of the proposed methods, one should take the traveling

distance and number of movements into account. Fig. 7.8 provides the average

moving distance vs. the number of sensors for all three algorithms. This figure shows

that the average moving distance decreases by increasing the number of sensors in

all three algorithms. This results from the fact that when there are a large number

of sensors, the Voronoi polygons are relatively small. This, in turn, decreases the

distance between each sensor and its destination point in the corresponding Voronoi
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polygon. Therefore, the average moving distance of the sensors under all three

algorithms decreases. It can also be observed from Fig. 7.8 that the average moving

distance using the VVF method is less than that using the other two techniques.
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Figure 7.8: The average travel distance for different number of sensors in Example 1,
using the proposed algorithms.

The number of sensor movements for different number of sensors is given in

Fig. 7.9, which shows that the number of movements in all scenarios decreases by

increasing the number of sensors. This results from the fact that when there are a

large number of sensors in the field, the Voronoi polygons are small, and hence it

is likely that the sensors cover a large area of their Voronoi polygons. Thus, the

termination condition will be satisfied in a shorter period of time, which, in turn,

decreases the number of sensor movements. It can also be seen form Fig. 7.9 that

the smallest number of movements results from the EVF strategy.

Let the energy that a sensor spends to travel 1m (with no stop) be 8.268J [130],

[135]. Consider two cases, where the energy required to stop a sensor and then

overcome its static friction after a complete stop is equal to the energy that the

sensor spends to travel 1m (first case) and 4m (second case) [64], [65]. Tables 7.1

and 7.2 give a summary of the energy consumption results for these two cases, and
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Figure 7.9: The number of movements required for different number of sensors in
Example 1, using the proposed algorithms.

demonstrate that in both scenarios the EVF algorithm is more energy-efficient than

the other two algorithms.

Table 7.1: The energy consumption in Joule for different number of sensors using
the proposed algorithms in the first case of Example 1.

n = 20 n = 30 n = 40 n = 50
VVF 106.8229 J 80.3771 J 48.5951 J 29.5852 J
EVF 91.4222 J 69.6011 J 43.1367 J 28.1033 J
VEVF 111.2314 J 79.8485 J 48.6748 J 29.3468 J

Example 2: Consider 20 identical sensors with the sensing range of 6m and the

communication range of 20m, which are randomly deployed in a 50m by 50m field.

This example aims to compare the performance of the VEVF algorithm with some

existing techniques, namely VEC, VOR, Minimax [64], Maxmin-vertex, Minmax-

edge, Maxmin-edge, and VEDGE [98]. The coverage factor of the sensors in each

round of different algorithms is depicted in Fig. 7.10, where it can be observed that

the VEVF algorithm outperforms the other strategies as far as sensor coverage is

concerned. In addition, the complexity of finding the new destination of each sensor

170



Table 7.2: The energy consumption in Joule for different number of sensors using
the proposed algorithms in the second case of Example 1.

n = 20 n = 30 n = 40 n = 50
VVF 257.8297 J 216.9892 J 127.5152 J 74.5747 J
EVF 198.1787 J 160.3506 J 94.1152 J 58.3443 J
VEVF 257.4014 J 202.7688 J 120.1662 J 68.8397 J

in the VEVF strategy is of order O(m), while this complexity in the Minimax,

Maxmin-vertex, Maxmin-edge, VEDGE and Minmax-edge techniques is of order

O(m4), where m is the number of vertices of the Voronoi polygon.
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Figure 7.10: Coverage factor per round for 20 sensors in Example 2.

Example 3: In this example, 27 sensors are randomly deployed in a 50m by

50m field: 15 sensors with a sensing radius of 6m, 6 with a sensing radius of 5m,

3 with a sensing radius of 7m, and 3 with a sensing radius of 9m. Let the com-

munication radius of each sensor be 10/3 times its sensing radius. The CPVF

algorithm is now compared with six other techniques reported in the literature,

namely WVB, FPB [99], Minmax-vertex, Maxmin-vertex [101], Minmax-curve and

Maxmin-curve [100]. The coverage factor in each round is depicted in Fig. 7.11 for

different strategies. This figure clearly shows that the coverage factor obtained by
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using the CPVF algorithm is better than that obtained by using any other algorithm

cited above. As in the previous example, the complexity of finding the new destina-

tion of each sensor in the CPVF strategy is of order O(m), while this complexity in

the Maxmin-vertex, Minmax-vertex, Maxmin-curve and Minmax-curve algorithms

is of order O(m4).
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Figure 7.11: Coverage factor in each round of different algorithms in Example 3.
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Chapter 8

Self-deployment Algorithms for

Coverage Improvement in a

Network of Nonidentical Mobile

Sensors with Limited

Communication Ranges

Efficient deployment algorithms are proposed in this chapter to increase coverage in

a network of nonidentical mobile sensors with limited communication radii. The pro-

posed algorithms calculate and update the positions of the sensors iteratively in such

a way that the overall network coverage increases. The notion of multiplicatively-

weighted Voronoi (MW-Voronoi) diagram is extended to the case of sensors with

limited communication capability to introduce the limited communication MW-

Voronoi (LCMW-Voronoi) diagram. This diagram is used to discover coverage holes

in the network. The sensors move in such a way that the coverage holes in the

network are eliminated as much as possible. Simulations demonstrate the efficacy
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of the proposed distributed deployment schemes.

The outline of this chapter is as follows. The problem description is presented

in Section 8.1. Then in Section 8.2 the notion of LCMW-Voronoi diagram is defined

and characterized mathematically, which is used in Section 8.3 to present the de-

ployment algorithms as the main result of the chapter. Simulations are provided in

Section 8.4 to show the efficacy of the proposed algorithms.

8.1 Problem Statement

Consider a group of n mobile sensors, randomly distributed in a sensing field. The

communication capabilities of the sensors is assumed to be limited and not neces-

sarily the same for all sensors. It is also assumed that the sensors are not necessarily

identical in terms of sensing capabilities. Let the sensing range and communication

range of the i-th sensor be circles of radius rsi and rci, respectively, centered at the

position of that sensor. It is desired to move the sensors and place them in proper

locations using a distributed deployment strategy such that the covered area is im-

proved as much as possible. In other words, the objective is to increase the coverage

area using limited information exchange between sensors.

Several algorithms have been provided in the literature for improving coverage

in a network of mobile sensors. These algorithms often use Voronoi diagram (for

the case of identical sensors) or MW-Voronoi diagram (for the case of nonidentical

sensors) for partitioning the target field. In practical applications, the communi-

cation range of sensors is bounded (and not necessarily the same for all sensors).

This is a limiting factor, potentially preventing the sensors from communicating

with their neighbors, and can cause a sensor to generate a Voronoi region whose

boundaries are different from the exact ones. As a result, such Voronoi regions

do not necessarily partition the field, in the sense that some of them overlap with
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each other. Such MW-Voronoi regions (or Voronoi polygons) can have a negative

impact on the ability to detect coverage holes. On the other hand, the overlap

of the Voronoi regions can lead to sensor collisions. As an example, consider two

sensors with the sensing range of 6m and 7m deployed in a 50m × 50m field (see

Fig.8.1). It is assumed that the communication ranges of the sensors are 20m and

25m, respectively, and they move according to the Minmax-vertex algorithm [101]

to increase network coverage. Since these sensors cannot communicate with each

other, they fail to partition the field correctly and each one considers the entire field

as its MW-Voronoi region. Then each sensor moves to the Minmax-vertex centroid

of the field (point M). As a result, not only does the network coverage decrease, but

it also collides with the other sensor. The limited communication multiplicatively

weighted Voronoi (LCMW-Voronoi) diagram described in the next section is used

to remedy this shortcoming.
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Figure 8.1: An example of two sensors with insufficient communication power which
fail to derive the correct MW-Voronoi regions and eventually collide.
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8.2 Limited Communication Multiplicatively

Weighted Voronoi Diagram

Let S be a set of n distinct nodes representing nmobile sensors (p1, rc1, rs1),(p2, rc2, rs2),

. . .,(pn, rcn, rsn) distributed in the 2D field Q, where rsi > 0 is the sensing radius

of the i-th sensor, pi is its position and rci > 0 is its communication range, for

any i ∈ n := {1, 2, . . . , n}. Let also Gi be the set of all sensors whose communi-

cation ranges cover the i-th sensor, and hence can send the required information

about their positions and sensing radii to the i-th sensor, i.e. (pj, rcj, rsj) ∈ Gi if

and only if ‖pj − pi‖ ≤ rcj. Denote by Indx(Gi) the indices of the sensors in Gi,

and let the minimum communication range of the sensors be denoted by rmin (i.e.,

rmin = minj∈n{rcj}). The point q ∈ Q is called a “distant” point if d(q, pi) >
rmin

2

for all i ∈ n, and is called a “close” point otherwise. The set of all distant points is

called “distant” region and will hereafter be denoted by ΨS.

Definition 8.1. The weighted distance of a point q from a node (pi, rci, rsi), i ∈ n,

is defined as:

dw(q, pi) =
d(q, pi)

rsi

where d(q, pi) denotes the Euclidean distance between the point q and the node pi.

The Limited Communication Multiplicatively Weighted Voronoi (LCMW-Voronoi)

diagram of S is the set of the regions Π(S) = {Π1,Π2, . . . ,Πn} , where each region

is characterized as:

Πi =
{
q ∈ Q | d(q, pi) ≤

rmin

2
, dw(q, pi) < dw(q, pj), ∀j ∈ Indx(Gi)

}
(8.1)

where dw(q, pi) is the weighted distance of the point q from node (pi, rci, rsi).

Assumption 8.1. It is assumed that the minimum communication radius, rmin, is

known by each sensor a priori.
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To construct the i-th LCMW-Voronoi region, first the Apollonian circles Ωpipj ,
rsi
rsj

are found for all j ∈ Indx(Gi). The intersection of the smallest region (created by

the above circles) containing the i-th sensor and a circle with radius rmin

2
centered

at pi is, in fact, the i-th LCMW-Voronoi region. An example of the LCMW-Voronoi

region is shown in Fig. 8.2. In this figure, sensor located at p1 receives the informa-

tion of the four sensors located at p2, . . . , p5, and construct its region (shaded area).

An example of the LCMW-Voronoi diagram for a group of 9 sensors is sketched in

Fig. 8.3. In this figure, the distant region is denoted by brown color.

Note that in the case of equal sensing radii (i.e. rsi = rsj, ∀i, j ∈ n), the

Apollonian circles are in fact the perpendicular bisectors of the segments connecting

different pairs of sensors’ positions. In this case, the obtained diagram is referred to

as the Limited Communication Voronoi (LCG-Voronoi) diagram.
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Figure 8.2: The LCMW-Voronoi region for a sensor p1 with four neighboring sensors
p2, . . . , p5.

Theorem 8.1. Let S be a set of n mobile sensors distributed in Q ⊂ R
2, and

Π1,Π2, . . . ,Πn be the regions of the corresponding LCMW-Voronoi diagram. Then,

Πi ∩ Πj = Ø.
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Proof. Suppose there are two regions Πi and Πj such that Πi ∩ Πj �= Ø. This

means that:

∃q ∈ Q : q ∈ Πi, q ∈ Πj (8.2)

It can be concluded from (8.2) and (8.1) that:

d(q, pi) ≤
rmin

2
, d(q, pj) ≤

rmin

2
(8.3)

Using (8.3) and the triangle inequality, one arrives at:

d(pi, pj) ≤ d(q, pi) + d(q, pj) ≤ rmin (8.4)

From (8.4) and on noting that rmin ≤ min{rci, rcj}, one can conclude that:

i ∈ Indx(Gj), j ∈ Indx(Gi) (8.5)

Since q ∈ Πi and j ∈ Indx(Gi), hence (8.1) yields:

dw(q, pi) < dw(q, pj) (8.6)

On the other hand, since q ∈ Πj and i ∈ Indx(Gj), it is deduced from (8.1) that:

dw(q, pj) < dw(q, pi) (8.7)

which contradicts the inequality (8.6), and hence invalidates the initial assumption

Πi ∩ Πj �= Ø. �

Unlike the multiplicatively weighted Voronoi (MW-Voronoi) diagram, the

LCMW-Voronoi diagram does not partition the field. In fact, due to the limited

communication capability of sensors, it is possible that some of the points in Q do

not belong to any region. The LCMW-Voronoi diagram is the main tool used for

developing the sensor deployment strategies in this chapter.

Remark 8.1. From the characterization of the LCMW-Voronoi regions, it can be

shown that if a sensor cannot detect a point in its corresponding region, no other

sensor can detect it either.
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Figure 8.3: An example of the LCMW-Voronoi diagram for a group of 9 sensors
with different sensing and communication ranges.

Assumption 8.2. Since the communication range of a mobile sensor is typically

much larger than its sensing range [130], in this chapter it is assumed that the

sensing range of the sensors is less than or equal to rmin

2
.

8.3 Deployment Protocols

In this section, two different deployment protocols are developed for a network

of nonidentical sensors with limited communication capabilities in an obstacle-free

environment. The proposed techniques are iterative, where in each iteration every

sensor Si, i ∈ n, first broadcasts its sensing radius rsi and position Pi to other sensors

in its communication range, and subsequently constructs its own LCMW-Voronoi

region based on the similar information it receives from other sensors. Then, it

identifies coverage holes in its region, based on which it finds a candidate point as

its new location using one of the proposed algorithms. Once the new location Ṕi is

calculated, the coverage area w.r.t. this point (i.e. βṔi

Πi
) is evaluated and compared

to the current coverage area (i.e. βPi

Πi
). The sensor moves to the new location only

if the resultant coverage area is greater than the present value, i.e. βṔi

Πi
> βPi

Πi
;

otherwise, it remains in its current location in this iteration. A proper threshold is
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considered for coverage increase in each iteration to terminate the algorithm if no

sensor can improve its coverage area by this threshold.

The following theorem shows that using the proposed sensor deployment al-

gorithms network coverage increases.

Theorem 8.2. Let the position of the i-th sensor and its LCMW-Voronoi region be

denoted by Pi and Πi, respectively. Let also the distant region be denoted by ΨP.

Assume the i-th sensor moves to the new location Ṕi with the corresponding LCMW-

Voronoi region Π́i, such that Ṕi �= Pi for all i ∈ k, where k is a non-empty subset of

n. If the i-th coverage area w.r.t. Ṕi in the previously constructed LCMW-Voronoi

region Πi is greater than the previous i-th local coverage area (i.e., βṔi

Πi
> βPi

Πi
) for

all i ∈ k, then the total coverage in the network increases.

Proof. Define P = {P1, P2, . . . , Pn} and Ṕ = {Ṕ1, Ṕ2, . . . , Ṕn}, and denote the

total uncovered area (coverage hole) of the field when the sensors are located at the

points in P and Ṕ by θ and θ́, respectively. Since it is assumed that the sensing

range of every sensor is less than or equal to rmin

2
, no point of ΨP can be covered by

the sensors located in P, and consequently one can deduce from the characterization

of the LCMW-Voronoi diagram that:

θ = ΨP +
n∑

i=1

θPi

Πi
(8.8)

It is straightforward to show that by increasing the coverage area in Πi, i ∈ k, the

corresponding coverage hole will become smaller. Since it is assumed that the i-th

coverage area w.r.t. Ṕi is greater than the i-th local coverage area for any i ∈ k, one

can conclude that:

θṔi

Πi
< θPi

Πi
, ∀i ∈ k (8.9)

On the other hand, it is possible that some of the points in θṔi

Πi
and ΨP are also

covered by other mobile sensors when they move to the points in Ṕ. Hence:

θ́ ≤ ΨP +
n∑

i=1

θṔi

Πi
(8.10)
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From the last two relations and on noting that for any i ∈ n\k by definition θṔi

Πi
=

θPi

Πi
, one arrives at the following inequality:

θ́ < ΨP +
n∑

i=1

θPi

Πi
(8.11)

Now, (8.8) and (8.11) yield:

θ́ < θ (8.12)

This means that the total coverage area increases using the proposed deployment

algorithms. �

The procedure introduced in this section so far will be used in the next two

subsections to develop two sensor deployment algorithms.

8.3.1 Limited Communication Farthest Point (LCFP)

Strategy

In this algorithm, when a sensor Si detects a coverage hole in its LCMW-Voronoi

region, it finds the farthest point Xi,far in that region, and moves toward it until

this point is covered. Note that the farthest point in the i-th LCMW-Voronoi region

is located on the boundary of that region. It is straightforward to verify from the

characterization of the LCMW-Voronoi regions that some boundary curves of the

i-th region might be located on a circle of radius rmin

2
centered at the position of the

sensor, and consequently all points on these boundary curves have the maximum

distance from Si. In such cases, the midpoint of these curves are considered as the

farthest point. Also, when there are more than one farthest point, that one that

leads to a larger increase in the coverage area within the LCMW-Voronoi region

would be selected as the destination point for the corresponding sensor. Fig. 8.4

shows an example of the LCMW-Voronoi region constructed by the sensor Si. The

segments AE and BC are located between Si and two of its neighbors with the same

sensing radius ri. The arcs AB and CD are constructed by the Apollonian circles
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associated with Si and two of its neighboring sensors. The neighbor corresponding to

AB has a smaller sensing radius compared to Si, while the one corresponding to CD

has a larger radius than rsi, and finally arc DE is formed by a circle with radius rmin

2

centered at the position of Si. As the figure illustrates, the LCFP algorithm finds

the farthest point from Si (i.e. Xi,far) as a candidate for the sensor to move in that

direction. Since the coverage area of the sensor within its LCMW-Voronoi region

will increase by moving to P ′
i (which is between the current position of the sensor

and the farthest point, and the sensor can cover the farthest point from there), the

sensor moves there.

Si 

A

B

D

C

E Xi,far 

Pi�

Figure 8.4: An LCMW-Voronoi region and a candidate point obtained by using the
LCFP method.

Fig. 8.5 shows an operational example of the LCFP Algorithm. In this exam-

ple, 27 sensors are randomly deployed in a 50m× 50m flat space: 15 with a sensing

radius of 6m, 9 with a sensing radius of 6.5m, and 3 with a sensing radius of 7m.

Moreover, the communication range of each sensor is assumed to be 10/3 times its

sensing range. In this figure, three snapshots are provided, and in each one the cov-

erage area of the sensors (filled circles) is depicted. The initial coverage is 66.37%,

but after the first round it increases to 79.82%, and the final coverage is 94.53%.
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Figure 8.5: Snapshots of the sensor locations using the LCFP algorithm. (a) Initial
coverage; (b) coverage after the first round, and (c) final coverage.

8.3.2 Limited Communication Minmax Point (LCMP)

Strategy

Although simulations confirm the efficiency of the LCFP algorithm, there are certain

network settings and node configurations for which it is not as effective. Fig. 8.6

shows an example of such a case. One can easily observe that the candidate point

obtained by the LCFP algorithm for the next location in this setting is not a good

position for the sensor because if it moves there the coverage area w.r.t. this can-

didate point decreases. Thus, under the LCFP algorithm the sensor remain in its

current location while its coverage area within the corresponding LCMW-Voronoi

region could increase if it moved in a different direction.

Pi�
�i 

Si 

Xi,far 

Figure 8.6: An example of an LCMW-Voronoi region for which the LCFP method
performs poorly because of a narrow area, while the LCMP technique provides a
better candidate location for the sensor.

The limited communication minmax point (LCMP) strategy is introduced in
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the sequel to address this shortcoming of the LCFP algorithm. The main idea behind

the LCMP strategy is that in an optimal sensor configuration, no sensor should be

too far from any point in its corresponding LCMW-Voronoi region. The LCMP

strategy finds the location whose distance from the farthest point of the region is

minimum and considers it as the candidate location for the sensor in the next step.

This point is called the LCMP centroid, and is denoted by Ōi for the i-th region,

i ∈ n. It is clear that the candidate point Ōi in Fig. 8.6 yields better coverage

compared to the one obtained by using the LCFP technique.

Theorem 8.3. The LCFP and LCMP algorithms are convergent.

Proof. The proof is similar to that of Theorem 5.4, and is omitted here. �

The following theorem provides an upper-bound on the number of rounds

required to run the algorithm, as a function of ε.

Theorem 8.4. Consider a set S of n mobile sensors randomly deployed in a 2D

field. Using any of the proposed algorithms with the coverage improvement threshold

ε, the number of required rounds to run the algorithm is less than or equal to Atotal

ε
,

where Atotal is the overall area of the field.

Proof. Let the number of rounds required to run the algorithm in order to

meet the termination condition be denoted by ζf . Let also the total uncovered

area of the field in the k-th round be represented by θ(k), and note that β(k) =

Atotal − θ(k). Denote the position of the sensors in the k-th round by P(k) =

{P1(k), P2(k), . . . , Pn(k)} , and let the LCMW-Voronoi region of the i-th sensor be

represented by Πi(k), i ∈ n. Denote also the distant region in the k-th round by

ΨP(k). From the properties of the LCMW-Voronoi diagram, one can conclude that:

θ(k) = ΨP(k) +
n∑

i=1

θ
Pi(k)
Πi(k)

, ∀1 ≤ k ≤ ζf (8.13)

Define themoving set of the k-th round as the largest subset of S that moves in the k-

th round, and denote the indices of the sensors in this set by Ix(k). Note that at least
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one sensor moves in the k-th round, and hence Ix(k) �= ∅, ∀k ∈ {1, 2, . . . , ζf}. By

assumption, the i-th sensor, i ∈ Ix(k), moves in the k-th round if β
Pi(k+1)
Πi(k)

≥ β
Pi(k)
Πi(k)

+ε.

This means that:

θ
Pi(k+1)
Πi(k)

≤ θ
Pi(k)
Πi(k)

− ε, ∀i ∈ Ix(k) (8.14)

Note also that some of the points in ΨP(k) might be covered by some sensors located

at P(k + 1). In addition, some of the points in θ
Pi(k+1)
Πi(k)

might also be covered by

another sensor located at Pj(k + 1), for some j ∈ n\{i}. Hence:

θ(k + 1) ≤ ΨP(k) +
n∑

i=1

θ
Pi(k+1)
Πi(k)

(8.15)

From the last two relations and on noting that for any i ∈ n\Ix(k) the i-th sensor

does not move (which implies θ
Pi(k+1)
Πi(k)

= θ
Pi(k)
Πi(k)

), one arrives at:

θ(k + 1) ≤ ΨP +
n∑

i=1

θ
Pi(k)
Πi(k)

− |Ix(k)| ε (8.16)

It is now concluded from (8.13) and (8.16) that:

θ(k + 1) ≤ θ(k)− |Ix(k)| ε ≤ θ(k)− ε (8.17)

or equivalently:

β(k + 1) ≥ β(k) + |Ix(k)| ε ≥ β(k) + ε (8.18)

which implies that using the underlying sensor relocation scheme, in each round the

total covered area increases by at least ε. Therefore, the total amount of increased

coverage from the first round to the termination round is greater than or equal

to ζfε. Since the total covered area is always less than or equal to Atotal, hence

Atotal ≥ ζfε or equivalently
Atotal

ε
≥ ζf . �

Remark 8.2. One of the important properties of the LCMW-Voronoi diagram is

that its regions are mutually disjoint (see Theorem 8.1) and also there is exactly one

sensor in each region. Since in the proposed algorithms the new location for each

sensor is inside the corresponding LCMW-Voronoi region and each sensor moves

within its region, hence the sensors would not collide.
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In the next section, the performance of the proposed algorithms in terms of

coverage area, energy consumption of the sensors, and rate of convergence are in-

vestigated.

8.4 Simulation Results

The results presented in this section are the average values obtained from 20 different

random initial sensor deployments. In each simulation, the algorithm is terminated

when none of the sensors’ coverage in its corresponding LCMW-Voronoi region is

improved by more than 0.1m2 in the next move.

The two algorithms proposed in Section 8.3 are applied to a flat space of size

50m×50m. Assume first that 36 mobile sensors are randomly placed in the field: 20

with a sensing radius of 6m, 12 with a sensing radius of 6.5m, and 4 with a sensing

radius of 7m. The communication range of each sensor is assumed to be 10/3 times

its sensing range; e.g., a sensor with a sensing radius of 6m has a communication

radius of 20m. Define the coverage factor as the ratio of the covered area to the

total area in the field. Fig. 8.7 shows the coverage factor in each round for both

algorithms. As it can be seen in this figure, both algorithms provide good coverage

but the LCMP technique performs better than the LCFP algorithm.

It is desired now to investigate the effect of the number of sensors on the

performance of the algorithms. To this end, consider three more setups: n=18,

27, and 45, in addition to n=36 discussed above. Let the changes in the number

of identical sensors in the new setups be proportional to the changes in the total

number of sensors (e.g., for n=27 there are 15 sensors with sensing radius 6m, 9

with sensing radius 6.5m, and 3 with sensing radius 7m). The final coverage results

are shown in Fig. 8.8. Note that both algorithms yield good results in all settings,

and in particular the LCMP strategy performs better.
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Figure 8.7: Network coverage per round for 36 sensors.

One of the important factors that must be taken into account in the perfor-

mance evaluation of different deployment techniques is the time it takes for the

algorithm to stop. Suppose that the deployment time of the sensors in each round

of both techniques is the same. Then the number of rounds for each algorithm to

reach a predetermined termination criterion is a good measure of the deployment

speed. Fig. 8.9 shows that under both algorithms the number of rounds required to

meet a certain termination condition increases by increasing the number of sensors

from 18 to 27, and then starts to decrease by adding more sensors. This is primarily

due to the fact that when the number of sensors is small, because of the relatively

large size of the LCMW-Voronoi regions, there is a high chance for the sensors’ cov-

erage circles to be enclosed inside their corresponding regions. In this case, further

movement of each sensor in its region would not increase the coverage level. On the

other hand, when the number of sensors is relatively large, then the LCMW-Voronoi

regions are small, and hence there is a high chance that the coverage circle of each

sensor encloses the corresponding LCMW-Voronoi region. This in turn implies that

the termination condition is satisfied in smaller number of rounds. The figure shows

that the convergence rate of the LCFP algorithm is faster than that of the LCMP
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strategy. Thus, the LCFP algorithm is a better candidate for field coverage as far

as the deployment speed is concerned.
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Figure 8.8: The coverage factor achieved for different number of sensors under the
proposed algorithms.
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Figure 8.9: The number of rounds required to reach the termination condition for
different number of sensors using the proposed algorithms.

Energy-efficiency is another important factor which needs to be taken into

consideration for comparing the performance of different deployment algorithms in

mobile senors networks. The energy consumption of a mobile sensor is mainly due

to movement. More precisely, the traveling distance of a sensor and also the number
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of times it stops (the latter is due to static friction) are the dominant sources of

energy consumption. Fig. 8.10 shows the average distance traveled by each sensor

for different number of sensors in the network. It can be observed from this figure

that for a large number of sensors, the average traveled distance is small in general.

In fact, as the number of sensors increases, the distance between each sensor and

its candidate location in the corresponding LCMW-Voronoi region decreases. This

in turn decreases the average traveling distance, which leads to a decrease in energy

consumption. Moreover, it can be seen from Fig. 8.10 that the LCFP algorithm is

more efficient than the LCMP strategy in terms of traveling distance. The number

of movements versus the number of sensors is depicted in Fig. 8.11, which shows

in both algorithms the number of movements increases with the number of sensors

up to a certain value, and decreases after that. Again, this can be justified based

on the size of sensing disk of each sensor and that of the corresponding LCMW-

Voronoi region. According to Figs. 8.10 and 8.11, the LCFP algorithm outperforms

the LCMP strategy as far as energy consumption is concerned.
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Figure 8.10: The average distance each sensor travels for different number of sensors,
using the proposed algorithms.

189



18 27 36 45
1

1.5

2

2.5

3

3.5

4

4.5

Number of sensors

N
um

be
r 

of
 m

ov
em

en
ts

LCFP
LCMP

Figure 8.11: The number of movements required for different number of sensors,
using the proposed algorithms.
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Chapter 9

Self-deployment Algorithms for

Coverage Improvement in Mobile

Sensor Networks in Presence of

Obstacles

In this chapter, efficient algorithms for mobile sensor deployment are proposed to

improve the coverage area in target fields containing obstacles. The proposed algo-

rithms iteratively calculate and update the position of the sensors in order to improve

the overall achievable coverage by the network. The visibility-aware multiplicatively

weighted Voronoi (VMW-Voronoi) diagram is introduced and used to discover cov-

erage holes in networks that have sensors with different sensing capabilities. The

sensors, then, reduce the size of the coverage holes in the target field. The relocation

strategy also considers possible existing obstacles on the field. Simulation results are

provided to demonstrate the effectiveness of the proposed distributed deployment

schemes.
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The rest of this chapter is organized as follows. Section 9.1 introduces visibility-

aware multiplicatively weighted Voronoi diagram as an extension of the conventional

Voronoi diagram. The proposed algorithms for sensor relocation are introduced in

Section 9.2. Finally, simulation results that demonstrate the effectiveness of our

approach are provided in Section 9.3.

9.1 Visibility-aware Multiplicatively Weighted

Voronoi Diagram

Let F ⊂ R
2 represent a 2D target field. Consider S = (S1, w1), (S2, w2), . . . , (Sn, wn)

to be a set of n distinct weighted nodes within the field F. wi > 0 is the weighting

factor associated with the node Si, for any i ∈ n := {1, 2, . . . , n}. The visible set of

an arbitrary point Q ∈ F is defined as the largest subset of S with a non-obstructed

line of sight view from all of its elements to the point Q. Let IndxQ represent

the indices of the nodes in this subset. In presence of obstacles in the field and

depending on the location of point Q, the set IndxQ may have between 0 to n

elements. In particular, Q is called an invisible point if IndxQ is an empty set,

otherwise it is called a visible point. The set of all invisible points in the field F is

called the invisible region and will be denoted by ΘS. The invisible region is highly

dependent on the positions of the nodes Si and the obstacles on the field.

Definition 9.1. The weighted distance of a point Q from a node (Si, wi), i ∈ n is

defined as:

dw(Q,Si) =
d(Q,Si)

wi

where d(Q,Si) denotes the Euclidean distance between the point Q and the node Si

in the 2D field F.

It is desired now to partition the visible area of the field (F\ΘS) into n regions
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such that:

• Each region contains only one node, and

• the nearest node, in the sense of weighted distance, to any point inside a region

is the node assigned to that region.

The mathematical characterization of the invisible region and each visible region is

given by:

ΘS =
{
Q ∈ R

2 | IndxQ = Ø
}

(9.1)

Πi =
{
Q ∈ R

2 | i ∈ IndxQ, dw(Q,Si) ≤ dw(Q,Sj), ∀j ∈ IndxQ − {i}
}

(9.2)

The diagram obtained by partitioning the field F into the invisible region and

the above-mentioned n regions is called the visibility-aware multiplicatively weighted

Voronoi (VMW-Voronoi) diagram. According to (9.2), any point Q in the i-th

VMW-Voronoi region Πi has the following property:

d(Q,Si)

d(Q,Sj)
≤

wi

wj

, ∀i, j ∈ IndxQ, i �= j (9.3)

The VMW-Voronoi diagram is the main tool for developing the sensor deploy-

ment strategy in this chapter. Each sensor is characterized by a sensing area which

is a circle whose size is not necessarily the same for different sensors. Consider the

position of each sensor in the field as a node with a weight equal to the sensor’s

sensing radius, and sketch the VMW-Voronoi region for each sensor; the resultant

diagram, together with the invisible region, covers the entire field F.

From the characterization of the VMW-Voronoi regions provided in (9.2), it is

straightforward to show that if a sensor cannot detect a point in its corresponding

region, no other sensor can detect it either. This means that in order to find the
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”so-called” coverage holes (i.e., the undetectable points in F), it would suffice to

compare the VMW-Voronoi region of every sensor with its local coverage area. A

VMW-Voronoi diagram with 3 sensors S1, S2 and S3 with the sensing radii 10m,

18m, and 18m, respectively, is depicted in Fig. 9.1.
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Figure 9.1: An example of the VMW-Voronoi diagram for a group of 3 non-identical
sensors in a field with obstacles.

Assumption 9.1. The communication range of the sensors is bounded (and not

necessarily the same for all sensors). This is a limiting factor for sensors, poten-

tially preventing them from communicating with their neighbors, and can result in

wrong VMW-Voronoi regions around some sensors. Consequently, such a limitation

can negatively affect the detection of coverage holes. Since the number of sensors in a

mobile sensor network is typically large (or more precisely, there is a sufficient num-

ber of sensors per area unit) [129], [130], it is assumed that the graph representing

sensors’ communication topology is connected [128]. Hence, each sensor can obtain

the information about the locations and sensing radii of the other sensors (and in

particular its neighbors) through proper communication routes. Also it is assumed

that the obstacles’ locations are known by each sensor as a priori information. As

194



a result, each sensor can calculate its VMW-Voronoi region accurately.

9.2 Deployment Protocols

In this section, two different deployment protocols are developed for a network of

non-identical sensors in the presence of obstacles. The proposed techniques are

iterative, where in each iteration every sensor Si, i ∈ n, first broadcasts its sensing

radius ri and position Pi to other sensors. Thus, every sensor is able to construct

its own VMW-Voronoi region based on the information received from other sensors

in the network. Then, every sensor detects coverage holes in its region. When

a coverage hole is discovered, the corresponding sensor calculates its new position

using one of the proposed algorithms such that the coverage hole is eliminated or

at least its total area is reduced by a certain amount if the sensor moves to that

position. Once the new location Ṕi is calculated, the coverage area w.r.t. this new

location, i.e., βṔi

Πi
is evaluated and compared to the current coverage area, i.e., βPi

Πi
.

The sensor moves to the new location only if the resultant coverage area is greater

than the present value, i.e. βṔi

Πi
> βPi

Πi
; otherwise, it does not move in this iteration.

In order to have a termination criterion for the algorithms, a proper threshold ε is

defined; if no sensor can improve its coverage area by this threshold, the algorithm

is terminated.

The following theorem shows that any sensor deployment strategy which fol-

lows the scheme described in the previous paragraph is guaranteed to increase the

total coverage.

Theorem 9.1. Let the positions of the sensors in the set S be represented by P =

{P1, P2, . . . , Pn} with the corresponding VMW-Voronoi regions Π1,Π2, . . . ,Πn. Let

also the invisible region be denoted by ΘP. Assume the sensors move to new positions

Ṕ = {Ṕ1, Ṕ2, . . . , Ṕn} with the corresponding VMW-Voronoi regions Π́1, Π́2, . . . , Π́n

195



such that Ṕi �= Pi for all i ∈ k, where k is a non-empty subset of n. If the i-th

coverage area w.r.t. Ṕi in the previously constructed VMW-Voronoi region Πi is

greater than the previous i-th local coverage area (i.e., βṔi

Πi
> βPi

Πi
) for all i ∈ k, then

the total coverage in the network increases.

Proof. Denote the total uncovered area (coverage hole) of the field when the

sensors are located in P and Ṕ by θ and θ́, respectively. It is deduced from the

characterization of the VMW-Voronoi diagram that:

θ = ΘP +
n∑

i=1

θPi

Πi
(9.4)

It is straightforward to show that by increasing the coverage area in Πi, i ∈ k, the

corresponding coverage hole will be decreased. Since it is assumed that the i-th

coverage area w.r.t. Ṕi is greater than the i-th local coverage area for any i ∈ k, one

can conclude that:

θṔi

Πi
< θPi

Πi
, ∀i ∈ k (9.5)

On the other hand, it is possible that some of the points in θṔi

Πi
and ΘP are also

covered by other mobile sensors at Ṕ. Hence:

θ́ ≤ ΘP +
n∑

i=1

θṔi

Πi
(9.6)

From the last two relations and on noting that for any i ∈ n\k by definition θṔi

Πi
=

θPi

Πi
, one arrives at the following inequality:

θ́ < ΘP +
n∑

i=1

θPi

Πi
(9.7)

Now, it is concluded from (9.4) and (9.7) that:

θ́ < θ (9.8)

which means that the total coverage area increases under this deployment scheme. �

The above-mentioned procedure will be used in the next two subsections to

develop two algorithms, namely, OFP and OMP.
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9.2.1 Obstructed Farthest Point (OFP) Strategy

The main idea behind this algorithm is to move every sensor to the farthest point in

its VMW-Voronoi region such that any existing coverage hole is covered. If a sensor

Si detects a coverage hole in its corresponding VMW-Voronoi region, it calculates

the farthest point Xi,far in that region, and moves toward it until this point is

covered. Fig. 9.2 shows a sample VMW-Voronoi region constructed by the sensor

S1. The segments g and e are generated due to the two neighboring sensors with

sensing radii equal to that of S1. The segments a and h are obstacle edges, and the

segment c is formed because of the field boundary. The edge b, in fact, is constructed

by the sight line of the sensor, and finally arcs d and f are formed by two neighboring

sensors with larger and smaller sensing radii than that of S1, respectively. As the

figure illustrates, the OFP algorithm finds the farthest point to S1, (i.e. X1,far) as a

candidate for the next location of the sensor. Since the coverage area of the sensor

within its region will increase by moving to S ′
1, the sensor moves toward X1,far until

it is covered.

Figure 9.2: A sample VMW-Voronoi region and a candidate point calculated using
the OFP method.

Fig. 9.3 shows an example of coverage improvement as a result of using the

OFP Algorithm. In this example, 27 mobile sensors with varying sensing ranges
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are randomly deployed in a 2D field of size 50m × 50m. 15 sensors have a sensing

radius of 6m, 6 with a sensing radius of 5m, 3 with a sensing radius of 7m, and

the remaining 3 with a sensing radius of 9m. The communication range of each

sensor is assumed to be 10/3 times its sensing range. Three snapshots of the field

coverage are shown in Fig. 9.3. The circles represent the sensing area of each sensor.

As observed, the coverage is 68.44% initially, but it increases to 81.31% after the

first iteration of the presented algorithm (Fig. 9.3(b)). The final coverage is 95.32%

(Fig. 9.3(c)).
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Figure 9.3: Snapshots of the execution of the movement of the sensors under the
OFP algorithm. (a) Initial coverage; (b) field coverage after the first round, and (c)
final coverage.

9.2.2 Obstructed Minmax Point (OMP) Strategy

Although the OFP algorithm performed well in most simulated scenarios, there exist

certain network setups and node configurations, where it might not be as effective.

Fig. 9.4 shows such an example. The next candidate location for the sensor under

the OFP algorithm does not lead to any improvement in the coverage area of the

sensor within its region. Thus, the mobile sensor remains in its previous location.

However, there exit other potential positions for sensor relocation that can increase

its coverage area within the corresponding region. Another configuration for which

the OFP algorithm is not as effective is when the calculated candidate point lies on
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a sight line connecting the sensor to an obstacle (e.g., see Fig. 9.5). These candidate

points are, by definition, on the sight line; therefore, if the sensor moves to such a

position, then there is a good chance that part of the sensor’s sensing capability is

blocked in its corresponding region.

-

-

-��

��� �
����	

-

-

�

Figure 9.4: A sample VMW-Voronoi region for which the OFP method performs
poorly because of a narrow angle, while the OMP strategy finds a proper candidate
location.
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Figure 9.5: A sample VMW-Voronoi region for which the OFP method performs
poorly because of the sensor’s sight line, while the OMP strategy finds a proper
candidate location.

As it can be concluded from the above discussion, although the OFP algorithm

is effective in many cases, one may find a proper location for the sensor in the special

cases described above. The obstructed minmax point (OMP) strategy is introduced

in the sequel to address this shortcoming of the OFP algorithm. The main idea

behind the OMP strategy is that to achieve maximum coverage, no sensor should

be too far from any point in its corresponding VMW-Voronoi region. The OMP

strategy finds the location whose distance from the farthest point of the region is

minimum and considers it as the candidate location for the sensor in the next step.
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Figure 9.6: Snapshots of the execution of the movement of the sensors under the
OMP algorithm. (a) Initial coverage; (b) field coverage after the first round, and
(c) final coverage.

This point is called the OMP centroid, and is denoted by Ôi for the i-th region,

i ∈ n. It is clear that the candidate point Ô1 in Fig. 9.4 yield better coverage

compared to the one obtained by using the OFP technique. Also, in Fig. 9.5, the

OMP strategy performs more efficiently than the OFP algorithm due to the specific

shape of the region which makes the farthest point lie on the sight line of the sensor.

Consider the initial setting of Fig. 9.6(a), and let the OMP strategy be em-

ployed. The results are depicted in Figs. 9.6(b) and 9.6(c), where it is shown that

after the first round the coverage increases from 67.09% to 84.94%, and that the

final coverage is 97.62%.

Theorem 9.2. The OFP and OMP algorithms are convergent.

Proof. The proof is similar to that of Theorem 5.4, and is omitted here. �

The following theorem provides an upper-bound on the number of rounds

required to run the algorithm, as a function of ε.

Theorem 9.3. Consider a set of n mobile sensors S, randomly deployed in a 2D

field. Using any of the proposed algorithms with the coverage improvement threshold

ε, the number of required rounds to run the algorithm is at most Atotal−Aobs

ε
, where

Atotal and Aobs are the overall area of the field and area of the obstacles, respectively.

200



Proof. Let the number of rounds required to run the algorithm in order to

meet the termination condition be denoted by ζf . Let also the total uncovered

area of the field in the k-th round be represented by θ(k), and note that β(k) =

Atotal − Aobs − θ(k). Denote the position of the sensors and their corresponding

VMW-Voronoi regions in the k-th round by P(k) = {P1(k), P2(k), . . . , Pn(k)} and

Π1(k),Π2(k), . . . ,Πn(k), respectively. Also the invisible region in the k-th round

is denoted by ΘP(k). From the properties of the VMW-Voronoi diagram, one can

conclude that:

θ(k) = ΘP(k) +
n∑

i=1

θ
Pi(k)
Πi(k)

, ∀1 ≤ k ≤ ζf (9.9)

Define the moving set of the k-th round as the largest subset of S that moves in the

k-th round, and denote the indices of the sensors in this set by Ix(k). Note that at

least one sensor moves in the k-th round, i.e. Ix(k) �= ∅, ∀1 ≤ k ≤ ζf . Note also

that the i-th sensor, i ∈ Ix(k), moves in the k-th round if β
Pi(k+1)
Πi(k)

≥ β
Pi(k)
Πi(k)

+ ε. This

means that:

θ
Pi(k+1)
Πi(k)

≤ θ
Pi(k)
Πi(k)

− ε, ∀i ∈ Ix(k) (9.10)

Note that some of the points in ΘP(k) might be covered by some sensors located at

P(k+1). In addition some of the points in θ
Pi(k+1)
Πi(k)

might also be covered by another

sensor located at Pj(k + 1), for some j ∈ n\{i}. Hence:

θ(k + 1) ≤ ΘP(k) +
n∑

i=1

θ
Pi(k+1)
Πi(k)

(9.11)

From the last two relations and on noting that for any i ∈ n\Ix(k) the i-th sensor

does not move (which implies θ
Pi(k+1)
Πi(k)

= θ
Pi(k)
Πi(k)

), one arrives at:

θ(k + 1) ≤ ΘP(k) +
n∑

i=1

θ
Pi(k)
Πi(k)

− |Ix(k)| ε (9.12)

It is now concluded from (9.9) and (9.12) that:

θ(k + 1) ≤ θ(k)− |Ix(k)| ε ≤ θ(k)− ε (9.13)
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or equivalently:

β(k + 1) ≥ β(k) + |Ix(k)| ε ≥ β(k) + ε (9.14)

which implies that using the underlying sensor relocation scheme, in each round the

total covered area increases by at least ε. Therefore, the total amount of increased

coverage from the first round to the termination round is greater than or equal to

ζfε. Since the total covered area is always less than or equal to Atotal − Aobs, hence

Atotal − Aobs ≥ ζfε or equivalently
Atotal−Aobs

ε
≥ ζf . �

In the next section, the performance of the proposed algorithms in terms of

the coverage area, energy consumption of the sensors, rate of convergence, and

computational complexity are investigated.

9.3 Simulation Results

Consider a sensing field of size 50m × 50m with two obstacles. Also consider a

network of 36 mobile sensors with varying sensing radii i.e. 20 sensors with a sensing

radius of 6m, 8 with a sensing radius of 5m, 4 with a sensing radius of 7m, and 4

with a sensing radius of 9m. The communication range of each sensor is assumed

to be 10/3 times its sensing range; e.g., a sensor with a sensing radius of 6m has a

communication radius of 20m.

Define the coverage factor as the ratio of the covered area to the total area

in the field. The simulation results presented in this section are the average values

obtained from 20 different random initial sensor deployments. Coverage factor under

both algorithms is shown in Fig. 9.7. While both algorithms provide satisfactory

coverage, the OMP technique exhibits a better performance in this example.

To investigate the effect of the number of sensors on the performance of the

algorithms, we considered four more setups: n=9, 18, 27, and 45, in addition to

n=36 discussed above. It is assumed that the changes in the number of identical
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Figure 9.7: Network coverage per round for 36 sensors.

sensors in the new setups are proportional to the changes in the total number of

sensors. For example, for n=27 there will be 15 sensors with sensing radius of 6m,

6 with sensing radius of 5m, 3 with sensing radius of 7m, and 3 with sensing radius

of 9m. Fig. 9.8 shows the resulting final coverage versus number of sensors. Both

algorithms yield satisfactory results with the OMP strategy still performing better.
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Figure 9.8: The coverage factor achieved for different number of sensors under the
proposed algorithms.

An important factor in the performance evaluation of different deployment
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techniques is the time it takes to reach the desired termination criteria. Assuming

that both relocation strategies require the same deployment time in each round of

algorithm execution, then, the number of rounds to reach a predetermined termina-

tion criteria is a good measure of the deployment speed of each algorithm.
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Figure 9.9: The number of rounds required to reach the termination conditions for
different number of sensors using the proposed algorithms.

Fig. 9.9 shows that under both algorithms the number of rounds required

to meet a certain termination condition increases with the number of sensors up

to a certain point, and then decreases after that. The reason can be explained

as follows. When the number of sensors is small, the sizes of their corresponding

VMW-Voronoi regions are relatively larger than their coverage circles. And, it will

be likely for some sensors that their entire coverage circles are enclosed within their

VMW-Voronoi regions. Therefore, further relocation of each sensor in its region

would not increase the coverage level. On the other hand, when the number of

sensors is relatively large, the size of their corresponding VMW-Voronoi regions will

be small. And, with a high likelihood, the coverage circles of most sensors enclose

their VMW-Voronoi regions. This in turn implies that the termination condition is
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satisfied in smaller number of rounds. Fig. 9.9 shows that the convergence rate of

the OFP algorithm is faster than that of the OMP; therefore, it is a better candidate

for field coverage if higher deployment speed is required.
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Figure 9.10: The average distance each sensor travels for different number of sensors,
under the proposed algorithms.

Another important factor in performance evaluation of deployment algorithms

in mobile sensor networks is energy-efficiency. Movement of a sensor, more precisely,

the distance it travels and also the number of times it stops (impact of static friction)

are the dominant sources of energy consumption. Fig. 9.10 shows the average dis-

tance traveled by a sensor versus number of sensors in the network. As observed, the

average traveled distance for a large number of sensors is small. For large number

of sensors, the distance between each sensor’s position and its candidate location in

its corresponding VMW-Voronoi region decreases. Therefore, the average traveling

distance required by a sensor decreases. This, in turn, leads to a reduction in energy

consumption. Also, it can be seen from Fig. 9.10 that the OFP algorithm is more

efficient than the OMP strategy for a larger number of sensors. Fig. 9.11 shows

the number of relocations versus the number of sensors in the network. In both

algorithms, and up to certain value, the number of relocations increases with the
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number of sensors, and then decreases after that. Again, this can be justified based

on the relative sizes of the sensors coverage circles versus their VMW-Voronoi re-

gions. Figs. 9.10 and 9.11 clearly demonstrate that the OFP algorithm outperforms

the OMP strategy in energy consumption.

9 18 27 36 45
0.5

1

1.5

2

2.5

3

3.5

Number of sensors

N
um

be
r 

of
 m

ov
em

en
ts

 

 
OFP
OMP

Figure 9.11: The number of movements required for different number of sensors,
using the proposed algorithms.

Remark 9.1. Note that the algorithms introduced in this chapter differ only in

the way the new locations of the sensors are determined. Since the complexity of

finding the new location of the i-th sensor in the OFP strategy is more than that

in OMP, hence the OFP algorithm outperforms the OMP algorithm as far as the

computational complexity is concerned.

The above discussion is summarized below:

1. The OMP algorithm is more preferable as far as network coverage is concerned.

2. The OFP algorithm is more desirable when:

• the deployment time is the main concern.

• the energy consumption is the main concern.

206



• the computational complexity is concerned.
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Chapter 10

Distributed Deployment Strategies

for Improved Coverage in a

Network of Mobile Sensors with

Prioritized Sensing Field

In this chapter, efficient deployment strategies are proposed for a mobile sensor

network, where the coverage priority of different points in the field is specified by

a priority function. The multiplicatively weighted Voronoi (MW-Voronoi) diagram

is utilized to find the coverage holes of the network for the case where the sensing

ranges of different sensors are not the same. Under the proposed strategies, each

sensor detects coverage holes within its MW-Voronoi region, and then moves in a

proper direction to reduce their size. Since the coverage priority of the field is not

uniform, the target location of each sensor is determined based on the weights of

the vertices or the points inside the corresponding MW-Voronoi region. Simulations

validate the theoretical results.

The plan of the rest of the chapter is as follows. The problem is formulated
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in Section 10.1, and some important assumptions and definitions are also given

which will be used later to develop the main results. Section 10.2 presents the main

contributions of the chapter, where new deployment algorithms are introduced, and

finally the proposed algorithms are compared in Section 10.3.

10.1 Problem Formulation

Consider a group of n mobile sensors, randomly distributed in the sensing field, and

let the sensing radius of the i-th sensor be denoted by ri (note that the sensing radii

of the sensors can be different). The coverage priority of different points in the field

is assumed to be specified by a priority function ϕ(q). In other words, the coverage

importance of the point q is more than that of point p if ϕ(q) > ϕ(p).

It is desired to move the sensors and place them in proper positions in the

field using a distributed deployment strategy such that the more important points

are covered as much as possible. In other words, the objective is to increase the

weighted coverage area with limited information exchange between sensors.

Definition 10.1. The integral of the priority function over the MW-Voronoi region

Πi is referred to as the i-th region weight, and is denoted by αΠi
, i.e.:

αΠi
=

∫
Πi

ϕ(q)dq

Also, the integral of the priority function over the entire sensing field is referred to

as the total field weight, and is denoted by α. It is straightforward to show that

α =
∑n

i=1 αΠi
.

Definition 10.2. Consider a sensor Si with the sensing radius ri and the corre-

sponding MW-Voronoi region Πi, i ∈ n, and let x be an arbitrary point inside Πi.

The integral of the priority function over the i-th coverage area w.r.t. x is referred
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to as the i-th weighted coverage w.r.t. x, and is mathematically characterized as:

βx
Πi

=

∫
Πi∩C(x,ri)

ϕ(q)dq (10.1)

where C(x, ri) is a circle of radius ri centered at x. Also, the i-th weighted hole

w.r.t. x is denoted by θxΠi
, and is expressed as:

θxΠi
= αΠi

− βx
Πi

(10.2)

Inside an MW-Voronoi region, the weighted covered and uncovered areas w.r.t. the

location pi of the sensor Si (i.e. βpi
Πi

and θpiΠi
) are called the i-th local weighted

coverage and i-th local weighted hole of that sensor, respectively. Furthermore, the

integral of the priority function over the covered area (non-covered area) in the field

is referred to as the total weighted coverage (total weighted hole).

10.2 Deployment Protocols

In this section, three distributed deployment algorithms are introduced for a mobile

sensor network. The proposed deployment algorithms perform iteratively until a

prespecified termination condition is satisfied. Each iteration in the proposed algo-

rithms consists of four phases. In the first phase, every sensor broadcasts its location

and sensing radius to other sensors, and constructs its MW-Voronoi region subse-

quently based on the information it receives from other sensors. Then in the second

phase, each sensor uses the available information to compute its destination point

in its MW-Voronoi region according to the specific deployment strategy. Once the

new target location ṕi is determined, the weighted coverage area w.r.t. this location

(i.e. β ṕi
Πi
) is obtained in the third phase. If this value is greater than the previous

local weighted coverage area (i.e. β ṕi
Πi

> βpi
Πi
), then the sensor moves to the new

destination; otherwise, it remains in its current position. Finally, in the termination

phase, if the weighted covered area by none of the sensors within its corresponding
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MW-Voronoi region is improved by a certain amount, then the iteration stops. Note

that the first, third and fourth phases described above are exactly the same. Thus,

the algorithms introduced later in this section differ only in the second phase where

the new location of each sensor is determined. Using an approach similar to the

proof of Theorem 4.1, it can be shown that the total weighted coverage under this

type of deployment scheme increases, in general.

Assumption 10.1. It is implicitly assumed that a synchronization protocol (similar

to one in [137]) is implemented to guarantee that all sensors start the first phase

at the same time. Furthermore, the coverage rounds are assumed to be sufficiently

long, so that all four phases described above can be completed in one round.

The proposed deployment strategies will be presented in the sequel.

10.2.1 The Maximum Weighted Vertex (MWV) Strategy

In this strategy, each sensor moves toward the vertex with maximum weight in its

MW-Voronoi region. This vertex is referred to as the heaviest vertex, and is denoted

by Vi,max for the i-th region. According to this strategy, all sensors search for any

coverage holes in their MW-Voronoi regions. Once the coverage holes are detected,

each sensor identifies the heaviest vertex in its MW-Voronoi region. Then, for any

i ∈ n, Si moves toward Vi,max and continues moving until it is covered. This occurs

when the distance of the i-th sensor from Vi,max is equal to its sensing radius.

As an operational example of the MWV strategy, consider 27 sensors randomly

deployed in a 50m×50m flat space: 15 with a sensing radius of 1m, 6 with a sensing

radius of 5
6
m, 3 with a sensing radius of 7

6
m, and 3 with a sensing radius of 1.5m.

Moreover, the communication range of each sensor is assumed to be 20m. The

priority function representing the network coverage priority in this example is given

by ϕ(q) = exp(−0.4[(xq − 25)2 + (yq − 25)2]), where xq and yq are the abscissa and
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Figure 10.1: Snapshots of the execution of the MWV strategy for a sensing field,
where the coverage priority of different points in it is depicted by different gray levels
(the white color represents the lowest priority and the black color the highest). (a)
Initial coverage; (b) coverage after the first round, and (c) final coverage.

ordinate of the point q, respectively. Each point in the field is represented by a

gray level proportional to the coverage priority of that point. In Fig. 10.1, three

snapshots are provided, and in each one both the sensing circles of every sensor

(filled circles) and the MW-Voronoi regions are depicted. It can be observed from

this figure that in the final round the sensors concentrate on the area with higher

coverage priority.

While the sensor deployment strategy discussed above proves effective in many

practical cases, it may not be as effective when there are small number of sensors

with small sensing ranges in the field. In such cases, the MW-Voronoi regions are

relatively large, and hence there is a good chance that each area with high coverage

priority is mainly located in only one of the regions (see Fig. 10.2). Thus, by moving

toward the heaviest vertex in a region, the high-priority area in that region might

not be covered. For example, under the MWV strategy the sensor S4 in Fig. 10.2

would move toward the vertex V4,max, missing the high-priority area which is roughly

in the opposite direction. Furthermore, in the case when the priority function varies

significantly over some regions, the corresponding sensors might not move in the

proper direction. In the special case, if an MW-Voronoi region has no vertices (i.e.,
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it is a circle), the corresponding sensor does not move under the MWV strategy,

which is another shortcoming of this strategy. To remedy the above-mentioned

problems, a new deployment technique will be presented in the next subsection.

Figure 10.2: A network of 5 mobile sensors in a weighted field, where the MWV
algorithm is not as effective because the sensing range of every sensor is small.

10.2.2 The Maximum Weighted Point (MWP) strategy

In this strategy, each sensor moves to a point in its MW-Voronoi region which has

the maximum weight. This point will be referred to as the heaviest point, and is

denoted by pi,max for the i-th region. According to this strategy, once a coverage hole

is discovered in an MW-Voronoi region, the corresponding sensor finds the heaviest

point in that region and moves toward it up to the position from which pi,max is

covered.

As an example, consider the initial deployment of Fig. 10.3, and let the priority

function be equal to ϕ(q) = exp(−0.4[(xq − 10)2 + (yq − 40)2]) + exp(−0.4[(xq −

25)2 +(yq − 7.5)2]) + exp(−0.4[(xq − 37.5)2 +(yq − 32.5)2]). Let also 18 sensors with

a communication range of 20m be randomly deployed in the field: 10 with a sensing
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Figure 10.3: Snapshots of the execution of the MWP strategy where different gray
levels are used to indicate the coverage priorities, similar to Fig. 10.1. (a) Initial
coverage; (b) coverage after the first round, and (c) final coverage.

radius of 2m, 4 with a sensing radius of 5
3
m, 2 with a sensing radius of 7

3
m, and 2

with a sensing radius of 3m. As it can be observed from Fig. 10.3, after the final

round the sensors are more concentrated on high-priority areas in the field.

10.2.3 The Maximum Distance Weight (MDW) Strategy

The two weight-based techniques discussed thus far are not suitable when the priority

function is smooth. For instance, when the weight of all points of the field are equal

(i.e., ϕ(q) =constant), sensors do not move under the MWV and MWP strategies.

This motivates the development of a new strategy called MDW, which operates

based on both distance and weight.

For any i ∈ n, the MDW strategy finds a point inside the i-th MW-Voronoi

region whose distance from Si multiplied by its weight is maximum. This point will

be referred to as the i-th MDW centroid, and will be denoted by pi,MDW . Once this

point is obtained, Si moves toward it and continues moving until pi,MDW is covered.

This occurs when the distance of the i-th sensor from the point pi,MDW is equal to

its sensing radius.

Fig. 10.4 shows an operational example of the MDW strategy. In this example,

27 sensors with the communication range of 20m are randomly deployed in a 50m
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Figure 10.4: Snapshots of the execution of the MDW strategy where different gray
levels are used to indicate the coverage priorities, similar to Fig. 10.1. (a) Initial
coverage; (b) coverage after the first round, and (c) final coverage.

by 50m flat space: 15 with a sensing radius of 3m, 6 with a sensing radius of 2.5m,

3 with a sensing radius of 3.5m, and 3 with a sensing radius of 4.5m. The priority

function for this example is ϕ(q) = exp(−0.004[(xq − 25)2 + (yq − 25)2]). It can be

observed from this figure that in the final round the weighted coverage significantly

increases.

Remark 10.1. It is worth mentioning that for the case when all sensors have the

same sensing capability and the weight of every point in the field is the same, the

MDW strategy will be the same as the VOR strategy proposed in [64]. In other words,

the MDW strategy proposed here is the generalized form of the VOR technique.

Remark 10.2. In order to prevent sensors from oscillatory movements, a control

mechanism similar to the one in [64] can be used here. Under this mechanism, each

sensor compares the newly computed direction with the previous one, and will move

only if the new direction is consistent with that in the preceding round.

Remark 10.3. It is important to note that even in the case of a centralized deploy-

ment scheme, no optimal solution is available, in general, for the coverage problem

in a non-uniform sensing field.
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10.3 Comparative Study

In this section, the three algorithms proposed in Section 10.2 are applied to a flat

space of size 50m× 50m with different number of sensors. In these simulations, the

algorithms terminate when none of the sensors’ weighted coverage in its correspond-

ing MW-Voronoi region would increase by more than 1% in the next move. Note

that the results presented in this section for weighted coverage are all the average

values obtained by using 20 random initial deployments for sensors.

Remark 10.4. The sensing field is divided into small grid cells, and some computa-

tions are performed over the centers of the cells, which will be referred to as the grid

centers in the sequel. The choice of the cell size is made based on the distribution of

the priority function in different points of the field, desired precision, and processing

capability of different sensors. The computational task for each algorithm consists

of three phases, which are performed by each sensor individually. In the first phase,

every sensor finds those grid centers which lie inside its MW-Voronoi region for all

grid centers). The second phase depends on the particular strategy adopted: In the

MWV method each sensor finds the heaviest vertex in its MW-Voronoi region (note

that each vertex is the intersection of two Apollonian circles). In the MWP and

MDW techniques, on the other hand, each sensor finds a proper point among all

grid centers in its MW-Voronoi region. In the third phase, the local weighted cover-

age of every sensor is compared with its weighted coverage w.r.t. the newly computed

destination point. To this end, the weights of the corresponding grid centers in each

MW-Voronoi region are summed up and the result is multiplied by the area of each

cell. It is worth mentioning that with the current state-of-the-art technology for in-

dustrial sensors (e.g. Mica2 [138] or Epic [139]), the computations described above

can be efficiently carried out in a short period of time.

Example 10.1. In this example, 27 sensors with a communication range of 20m
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are randomly deployed in the flat space described above: 15 with a sensing radius

of 6m, 6 with a sensing radius of 5m, 3 with a sensing radius of 7m, and 3 with a

sensing radius of 9m. The priority function representing the importance of coverage

of different points in the field is assumed to be ϕ(q) = exp(−0.4[(xq−25)2+(yq−25)2])

for this example. Fig. 10.5 depicts the weighted coverage factor, defined as the

ratio of the total weighted coverage to the total field weight, after each round of the

three algorithms. The figure shows that the performances of the MDW and MWV

strategies in this example are more or less the same. In fact, it can be verified that

when a relatively large number of sensors with large sensing ranges are distributed

in the field, all three algorithms reach a satisfactory weighted coverage. Since the

computational complexity for finding the point Vi,max is less than that for finding

pi,max and pi,MDW , the MWV algorithm is more efficient in such scenarios as far as

the processing capability of the sensors is concerned. �
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Figure 10.5: The weighted coverage per round for Example 1.

Example 10.2. Consider 9 sensors with the communication range of 20m randomly

deployed in the flat space described earlier: 5 with a sensing radius of 1m, 2 with a

sensing radius of 5
6
m, 1 with a sensing radius of 7

6
m, and 1 with a sensing radius

of 1.5m. Let the priority function be equal to ϕ(q) = exp(−k[(xq − 10)2 + (yq −
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40)2])+exp(−k[(xq−25)2+(yq−7.5)2])+exp(−k[(xq−37.5)2+(yq−32.5)2]), where

k = 0.4. Due to the relatively small number of sensors in this example (compared

to the field size), the MW-Voronoi regions are comparatively large. Furthermore,

since the priority function is sharp (concentrated in three different areas), each area

with a large weight will likely lie mainly inside one MW-Voronoi region (not on its

boundaries). On the other hand, because of the relatively small sensing radius of

the sensors, there is a good chance that these important areas would not be covered

by moving toward the vertex with maximum weight in the MWV strategy or toward

the point with the maximum weighted distance from the corresponding sensor in the

MDW strategy. Hence, the MWP algorithm outperforms the other two in this case

(see Fig. 10.6). �

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Round

W
ei

gh
te

d 
C

ov
er

ag
e

MWV
MWP
MDW

Figure 10.6: The weighted coverage per round for Example 2.

Example 10.3. Consider the sensor network described in Example 10.1, and let

the priority function here be of the same form as in the previous example, but with

k = 0.004. This priority function is relatively smooth, and confirmed by Fig. 10.7,

the MWV and MWP strategies are not as effective as the MDW strategy for this

case. In addition, since the sensing ranges of the sensors are relatively large, it is

more likely that the sensors will have overlapped sensing areas, if they move to the
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heaviest points or vertices, without taking the traveling distance into consideration.

In general, when the priority function is not sharp and the sensing ranges of the

sensors are relatively large, the MDW strategy outperforms the other two. �
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Figure 10.7: The weighted coverage per round for Example 3.

Example 10.4. The performance of the proposed algorithms is investigated for two

different setups in this example. The first setup is the same as the one in Ex-

ample 10.2, and the second setup is the same as that in Example 10.1. In both

scenarios, it is assumed that initially the sensors are distributed randomly in the

field. The priority function is of the same form as in Example 10.2 in both setups.

Fig. 10.8 depicts the final weighted coverage for different values of k, in the first

setup. As it can be observed from this figure, when there are a small number of

sensors with small sensing ranges in the field, the MWP strategy results in a bet-

ter weighted coverage compared to the other two algorithms, and this superiority is

considerable when the priority function is sharp. Fig. 10.9 shows the final weighted

coverage for different values of k in the second setup. As it can be seen from this

figure, when a large number of sensors with high sensing capabilities are distributed

in the field, the MDW strategy outperforms the other two. As mentioned before, this

superiority is significant when the priority function is smooth. �
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Figure 10.8: The final weighted coverage for different values of k, in the first scenario
of Example 10.4.
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Figure 10.9: The final weighted coverage for different values of k, in the second
scenario of Example 10.4.
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Figure 10.10: Snapshots of the execution of the MWV strategy for the first scenario
of Example 10.5 (the coverage priority is indicated by different gray levels). (a)
Initial coverage; (b) coverage after the first round, and (c) final coverage.

Example 10.5. Three operational scenarios are considered here for the special case

of identical sensors. The communication range of the sensors in all three scenarios

is 20m, and initially they are assumed to be placed randomly in the field described

earlier. In the first scenario, 30 sensors with a sensing range of 1m are considered,

and the priority function is the same as that in Example 10.1. Three snapshots

in this case are provided in Fig. 10.10, and in each one the sensing circles of every

sensor (filled circles) as well as the Voronoi polygons are depicted. It can be observed

from this figure that in the final round the sensors are more concentrated in the area

with higher coverage priority.

In the second scenario, 15 sensors with a sensing range of 2m are deployed in

the field, with the same priority function as in Example 10.2. Three snapshots are

provided in Fig. 10.11, similar to Fig. 10.10, which show the good performance of

the MWP strategy for this scenario.

In the third scenario, 30 sensors with a sensing range of 3m are considered,

and the priority function is ϕ(q) = exp(−0.004[(xq − 25)2 + (yq − 25)2]) as shown

in Fig. 10.12. It can be observed from this figure that in the final round the total

weighted coverage significantly increases.

It is to be noted that in all three scenarios presented above the resultant Voronoi
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Figure 10.11: Snapshots of the execution of the MWP strategy for the second sce-
nario of Example 10.5 (the coverage priority is indicated by different gray levels).
(a) Initial coverage; (b) coverage after the first round, and (c) final coverage.
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Figure 10.12: Snapshots of the execution of the MDW strategy for the third scenario
of Example 10.5 (the coverage priority is indicated by different gray levels). (a)
Initial coverage; (b) coverage after the first round, and (c) final coverage.

regions are polygons as the sensing radii of all sensors are the same. �

Example 10.6. The performance of the proposed algorithms is now compared with

the Minmax-point algorithm [99] which is an effective coverage strategy for non-

identical sensors with uniform sensing priority. In this example, 27 sensors with

a communication range of 20m are randomly deployed in the flat space described

earlier: 15 with a sensing radius of 3m, 6 with a sensing radius of 2.5m, 3 with a

sensing radius of 3.5m, and 3 with a sensing radius of 4.5m. Let the priority func-

tion be equal to ϕ(q) = exp(−k[(xq − 25)2 + (yq − 25)2]; the smaller k is the closer
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the sensing priority is to being uniform. In the special case, when k = 0 the sensing

priority throughout the field is uniform. Fig. 10.13 shows the final weighted coverage

for four different values of k: k = 0, 0.001, 0.01, 0.1. As it can be seen from this

figure, the proposed algorithms outperform the Minmax-point algorithm when the

target field is non-uniform (i.e., k �= 0) and this superiority is more significant for

a more non-uniform priority function. Note that when the target field is uniform,

the sensors do not move under the MWV and MWP algorithms, and in this case

the Minmax-point algorithm is more effective than these two. However, even in this

case the performance of the MDW algorithm is better than that of the Minmax-point

algorithm. �
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Figure 10.13: The weighted coverage for different values of k in Example 10.6.

Remark 10.5. The overall performance of a coverage strategy highly depends on

the specific application and network configuration in terms of the number of sen-

sors, priority function, sensing range of the sensors and computational power of the

mobile agents. In order to select the proper coverage strategy (which is done by the

operator in the beginning), a number of issues should be taken into account. For

example, as far as computational complexity is concerned, the MWV deployment
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strategy outperforms the other two techniques. On the other hand, when the priority

function is more or less the same over the entire field the MDW strategy is more

effective. If the priority function is highly non-uniform (e.g., it is very much fo-

cused in certain areas), then the proper choice of algorithm depends on the number

of sensors and their sensing radii. Particularly, for a small number of sensors with

small sensing radii and a highly non-uniform priority function, the MWP strategy

outperforms the other two techniques.
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Chapter 11

Distributed Deployment

Algorithms for Efficient Coverage

in a Network of Static and Mobile

Sensors

This chapter proposes efficient schemes to increase sensing coverage in a network

composed of both mobile and static sensors. The proposed deployment techniques

properly assign a virtual weight to every point in the sensing field, based on the

information received from the other sensors regarding their sensing radii, and the

location of the static ones. The multiplicatively weighted Voronoi (MW-Voronoi)

diagram is used to discover the coverage holes corresponding to different mobile

sensors with different sensing ranges. According to the proposed strategies, the

mobile sensors move out of the area covered by static sensors, to a point from where

it can cover the coverage holes of the static sensors. As a result, under the proposed

strategies coverage holes in the network are reduced. Simulation results are provided

to demonstrate the effectiveness of the strategies developed in this chapter.
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The plan of the rest of the chapter is as follows. The problem is defined in Sec-

tion 11.1, where some important notations and assumptions are also presented. The

proposed deployment algorithms are introduced in Section 11.2, as the main contri-

bution of the chapter. Simulations are given in Section 11.3, which demonstrate the

efficacy of the proposed deployment strategies.

11.1 Problem Formulation

Consider a group of n mobile and m static sensors randomly distributed in a field,

and assume that the sensors have different sensing ranges, which are circles centered

at the position of the sensors. It is desired that the mobile sensors change their

location in a proper distributed manner such that the total covered area (by both

mobile and static sensors) increases.

Represent each mobile sensor in the field as a node and sketch the correspond-

ing MW-Voronoi regions for all mobile sensors to cover the entire sensing field.

Recall from the characterization of the MW-Voronoi diagram that the nearest sen-

sor to any point inside a MW-Voronoi region (in the sense of weighted distance) is

the one inside it. Hence, if a mobile sensor cannot detect a certain point inside its

corresponding region, that point cannot be detected by any other mobile sensor in

the field either. Hence, in order to identify the coverage holes (i.e. the uncovered

points in the field), it suffices that each mobile sensor checks its own MW-Voronoi

region to find the points it cannot cover.

Notation 11.1. In the remainder of this chapter, V denotes the MW-Voronoi dia-

gram constructed based on the position and sensing radii of the mobile sensors only.

Definition 11.1. Consider a mobile sensor Si with the sensing radius ri and the

corresponding MW-Voronoi region Πi in V, i ∈ n. Let Q be an arbitrary point

inside Πi. The intersection of the region Πi and a circle of radius ri centered at Q
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is referred to as the i-th coverage area w.r.t. Q. Note that this area can be covered

by any mobile or static sensor. Part of the i-th coverage area w.r.t. Q which is not

covered by any static sensor is referred to as the i-th dynamic coverage area w.r.t.

Q, and is denoted by λQ
Πi
. The i-th dynamic coverage area w.r.t. the location Pi

of the sensor Si is called the dynamic local coverage area of that sensor. Also, the

total covered area is denoted by ψ, and the part of ψ which is not covered by any

static sensor will be referred to as the total dynamic coverage area. Let this area be

denoted by λ.

Definition 11.2. Consider an arbitrary point Q inside the MW-Voronoi region Πi,

i ∈ n. The region inside Πi which is not covered by any static sensor and lies outside

the i-th coverage area w.r.t. Q referred to as the i-th coverage hole w.r.t. Q, and

is denoted by θQΠi
. The i-th coverage hole w.r.t. the location Pi of the sensor Si is

called the local coverage hole of that sensor. Also, the union of all local coverage

holes in the sensing field is referred to as the total coverage hole, and is denoted by

θ. From the properties of the MW-Voronoi diagram it is straightforward to verify

that θ =
∑n

i=1 θ
Pi

Πi
.

11.2 Deployment Protocols

In this section, two efficient deployment strategies are presented for a distributed

sensor network. First, every static sensor broadcasts its sensing radius and location

to mobile sensors, and then each mobile sensor assigns a proper weight ϕ(q) to every

point in the field based on the received information. For a point q, the weight ϕ(q)

is a positive constant if and only if this point cannot be covered by any static sensor

in the field. Otherwise, it is a negative amount whose absolute value depends on:

(i) the number of static sensors that can cover q, and (ii) the distance between q

and such static sensors. More precisely:
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ϕ(q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−

∑
i∈kq

f(q, ŕi, Śi) if q is covered by some static sensors,

C otherwise

where C is a positive constant, Śi and ŕi are the position and radius of the i-th

static sensor, respectively, and kq is the set of all static sensors that cover the point

q. Furthermore, f(q, ŕi, Śi) is an appropriate decreasing function of d(q, Śi) over

[0, ŕi] (e.g., a candidate example, f = ŕi − d(q, Śi)). The following definition will

prove useful in the presentation of the proposed algorithms.

Definition 11.3. Consider a mobile sensor Si with the sensing radius ri and the

corresponding MW-Voronoi region Πi, i ∈ n, and let X be an arbitrary point inside

Πi. The integral of the weight function ϕ(.) over the intersection of the region Πi

and a circle of radius ri centered at X, denoted by C(X, ri), is referred to as the i-th

weighted coverage w.r.t. X. The mathematical characterization of the i-th weighted

coverage w.r.t. X is as follows:

βX
Πi

=

∫
Πi∩C(X,ri)

ϕ(q)dq (11.2)

The weighted coverage w.r.t. the location Pi of the mobile sensor Si is called the

local weighted coverage of that sensor.

Once the weights are assigned to all points in the field, the proposed algo-

rithms are performed iteratively. At each iteration, every mobile sensor first broad-

casts its location and sensing radius to other mobile sensors, and then constructs its

MW-Voronoi region based on the similar information it receives from other mobile

sensors. Then, every mobile sensor finds its destination point in its MW-Voronoi

region according to the deployment strategy of each algorithm (introduced later).

Once the new target location Ṕi is calculated, both the weighted coverage and dy-

namic coverage area w.r.t. this location, i.e. βṔi

Πi
and λṔi

Πi
, are obtained. If this
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weighted coverage is greater than the previous local weighted coverage and also dy-

namic coverage area is increased, i.e. βṔi

Πi
> βPi

Πi
and λṔi

Πi
> λPi

Πi
, then the mobile

sensor moves to the new destination; otherwise, it remains in its current position.

Finally, when none of the sensors’ weighted coverage or dynamic coverage area in

its corresponding MW-Voronoi region would be increased by a certain level, there

is no need to continue the iterations. In order to terminate the algorithm in finite

time, a proper coverage improvement threshold ε is defined such that if the increase

in the dynamic coverage area by none of the mobile sensors within its corresponding

MW-Voronoi region exceeds ε in an iteration, then the algorithm terminates. Note

that the algorithms introduced in this chapter are different only in the techniques

used to find the destination point for each sensor. The following theorem is similar

to Theorem 4.1, and shows that the total coverage increases under the proposed

algorithms.

Theorem 11.1. Let a set of m static sensors and n mobile sensors be randomly

placed in a field in the 2D plane. Let the positions of the n mobile sensors be

denoted by P = {P1, P2, . . . , Pn} with the corresponding MW-Voronoi regions Π =

{Π1,Π2, . . . ,Πn}. Assume the sensors move to new positions Ṕ = {Ṕ1, Ṕ2, . . . , Ṕn}

with the corresponding MW-Voronoi regions Π́ =
{
Π́1, Π́2, . . . , Π́n

}
such that Ṕi �=

Pi for all i ∈ K, where K is a non-empty subset of n. If the i-th dynamic coverage

area w.r.t. Ṕi in the previously constructed MW-Voronoi region Πi is greater than

the i-th dynamic local coverage area in Πi (i.e. λṔi

Πi
> λPi

Πi
) for all i ∈ K, then the

total coverage area in the network increases.

Proof. The proof is similar to that of Theorem 4.1, and is omitted here. �

Remark 11.1. Note that since the increase of the weighted coverage area is a re-

quirement in the above deployment protocol, thus mobile sensors tend to move out

of the areas covered by static sensors (which have negative weights), and cover the
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points that are not covered by static sensors (which have positive weights). Fur-

thermore, according to Theorem 11.1, since the dynamic coverage area of the moved

sensors increases under the above protocol, this guarantees that the total coverage

area increases before all sensors stop moving.

The details of the proposed strategies will be presented in the next two sub-

sections.

11.2.1 Farthest Weighted Vertex (FWV) Strategy

In this strategy, if all vertices of the i-th region have negative weight (i.e., all vertices

can be covered by at least one static sensor), then Si moves toward the vertex with

minimum absolute value, up to the point from which that vertex is covered. If, on

the other hand, there are one or more vertices with positive weights, then Si moves

toward the farthest one, denoted by Vi,fwv. Again, it continues moving up to the

point from which it can cover that vertex. If the i-th region does not have any

vertices, then Si does not move and remains in its current position.

Fig. 11.1 shows an operational example of the FWV Algorithm. In this ex-

ample, 45 mobile sensors are randomly placed in a 50m × 50m flat space: 25 with

a sensing radius of 3m, 10 with a sensing radius of 2.5m, 5 with a sensing radius

of 3.5m, and 5 with a sensing radius of 4.5m. There are also 3 static sensors with

the sensing range of 8m, 9m and 10m. The communication range of the mobile and

static sensors are assumed to be 20m and 40m, respectively. In this figure, three

snapshots are provided, and in each one the sensing areas of both mobile sensors

(yellow filled circles) and static sensors (green filled circles) are depicted. The MW-

Voronoi diagram V is also depicted in the figure. The initial coverage in this setup

is 58.29% (first snapshot), but after the first round it increases to 68.57% (second

snapshot), and finally it reaches 80.22% (third snapshot). It can be observed from

Fig. 11.1(c) that in the final round the mobile sensors are located out of the area
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Figure 11.1: Snapshots of the execution of the FWV strategy for a network of
45 nonidentical sensors with random initial distribution. (a) Initial coverage; (b)
coverage after the first round, and (c) final coverage.

covered by static sensors, and that the points they cover are not fully covered by

static sensors.

11.2.2 Max-area Strategy

The Max-area is a MW-Voronoi-based coverage optimization approach which aims

to locally maximize the weighted coverage of each sensor inside its own region [112].

Given an MW-Voronoi region and a disk-shaped sensing pattern of a sensor, Max-

area strategy finds a point inside the region which if the sensor moves there, then

the intersection of the weighted area of the region and the sensing disk is maximized.

In the special case, if the radius of the sensing disk is sufficiently large, then the

solution to this problem is the center of the smallest enclosing circle of the region.

In addition to the small sensing radius, if the field is uniformly weighted, then the

optimum point is the center of largest inscribed ball inside the region, which is

known as the Chebychev center of the region.

In general, finding the optimum point inside the MW-Voronoi region is not

straightforward, and an iterative nonlinear optimization approach may be used to

find it. Such an algorithm considers the intersection area noted above as an objective

function, and uses the gradient of this objective function to determine the moving
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Figure 11.2: Snapshots of the execution of the Max-area strategy for a network of
45 nonidentical sensors with random initial distribution. (a) Initial coverage; (b)
coverage after the first round, and (c) final coverage.

direction for the sensor (the objective function is guaranteed to increase if the sensor

moves in that direction). In this optimization problem, the set of constraints is char-

acterized by the boundaries of the region, and the gradient is computed iteratively

to assess the proximity of the optimum point.

Consider the initial setting of Fig. 11.2(a), and let the Max-area strategy be

employed. The results in this case are depicted in Figs. 11.2(b) and 11.2(c), where

it is shown that after the first round the coverage increases from 59.47% to 69.51%,

and that the final coverage is 79.33%. It can be observed from this figure that in

the final round the mobile sensors are almost out of the area covered by the static

sensors, and that at least part of the area each one covers is not reachable by any

static sensor.

Theorem 11.2. The proposed algorithms (FWV and Max-area) are convergent.

Proof. The proof is similar to that of Theorem 5.4, and is omitted here. �

Theorem 11.3. Consider a set of m static and n mobile sensors randomly deployed

in a 2D field. Using any of the proposed algorithms with the dynamic coverage

improvement threshold ε, the number of required rounds for the termination of the

algorithm is upper bounded by Atotal−Astatic

ε
, where Astatic is the area covered by static
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sensors.

Proof. The proof is similar to that of Theorem 5.5, and is omitted here. �

11.3 Simulation Results

Example 1: The two algorithms proposed in the previous section are applied to a

flat space of size 50m× 50m. It is assumed that there are 3 static sensors with the

sensing radii of 8m, 9m and 10m in the field. Assume also that a number of mobile

sensors are randomly placed in the field. The communication range of the mobile

and static sensors are assumed to be 20m and 40m, respectively. In each simulation,

the algorithm terminates when none of the mobile sensors’ dynamic coverage area in

its corresponding MW-Voronoi region increases by more than 0.1m2 or none of the

sensors’ weighted coverage increases if it makes another move. The results presented

in this example for field coverage are all the average values obtained by using 20

random initial locations for the sensors.

Assume first there are 27 sensors: 15 with a sensing radius of 3m, 6 with

a sensing radius of 2.5m, 3 with a sensing radius of 3.5m, and 3 with a sensing

radius of 4.5m. The coverage factor (defined as the ratio of the covered area to the

overall area) of the sensor network in each round is depicted in Fig. 11.3 for the two

algorithms proposed in this chapter. As it can be seen from this figure, although

the FWV strategy outperforms the Max-area strategy in the first few rounds, their

final coverage is approximately the same.

It is desired now to compare the performance of the two algorithms in terms

of the number of mobile sensors n. To this end, consider three more setups: n=18,

36 and 45, in addition to the previous setup. Let changes in the number of identical

mobile sensors in the new setups be proportional to the changes in the total number

of mobile sensors (e.g., for the case of n=18 there will be 10 mobile sensors with
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Figure 11.3: Network coverage per round for 27 mobile sensors.

a sensing radius of 3m, 4 with a sensing radius of 2.5m, 2 with a sensing radius

of 3.5m, and 2 with a sensing radius of 4.5m). In Fig. 11.4, the final coverage of

the algorithms is depicted for different number of sensors. It can be observed from

this figure that the final coverage of both algorithms are approximately the same

for various setups.
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Figure 11.4: Network coverage for different number of sensors using the proposed
algorithms.

Another important means of assessing the performance of sensor deployment
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algorithms is the time it takes to reach the desired coverage level. This time depends

on the number of rounds it takes for the sensors to provide a prescribed coverage

level, as well as the sensor deployment time in each round. Thus, to compare the

proposed methods in terms of deployment speed in reaching the desired coverage

level, the stopping round and also the time duration of each round should be taken

into consideration. As it can be seen from Fig 11.5, the number of rounds (required

to meet a certain termination condition) is larger in the Max-area strategy than

that in the FWV strategy. In addition, the sensor deployment time in each round

for the Max-area strategy is larger than that for the FWV strategy. Therefore, the

FWV algorithm is a good candidate for field coverage as far as the deployment time

is concerned.
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Figure 11.5: The number of rounds required to reach the termination conditions for
different number of sensors using the proposed algorithms.

Another important factor in the performance evaluation of different algorithms

is the energy consumption of the sensors, which is directly related to the moving

distance of the sensors. It can be observed from Fig. 11.6 that the average moving

distance of the Max-area strategy is smaller than that in the FWV strategy consid-

erably. Hence, the Max-area algorithm is a better candidate for field coverage as far

as the sensors’ energy consumption is concerned.
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Figure 11.6: The average distance each mobile sensor travels for different number
of sensors, using the proposed algorithms.

Example 2: In this example, 30 mobile sensors with the sensing range of 3m

each are randomly placed in a 50m×50m flat space. There are also 4 static sensors,

each with a sensing range of 9m. The communication range of mobile and static

sensors are assumed to be 20m and 40m, respectively. Fig. 11.7 shows an operational

example of the FWV and Max-area strategies. Three snapshots are provided, and in

each one sensing areas of the sensors (filled circles) as well as the Voronoi polygons

are depicted. Since the sensing radii of all mobile sensors are the same, the regions

are polygons, as in the conventional Voronoi diagram. The initial coverage in this

setup is 54.63%, and the final coverage under the FWV and Max-area strategies is

71.35% and 71.44%, respectively. Note that the maximum possible coverage for this

example is 30(9π)+4(81π)
502

× 100 = 74.64%. It can be observed from Figs. 11.7(b) and

11.7(c) that in the final round of both strategies at least part of the area covered by

each mobile sensor is not covered by any static sensor, as noted before.
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Figure 11.7: Snapshots of the execution of the proposed strategies. (a) Initial cov-
erage; (b) final coverage under the FWV strategy, and (c) final coverage under the
Max-area strategy.
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Chapter 12

Conclusions

12.1 Summary

The results developed in this dissertation can be summarized as follows.

An algorithm is proposed in Chapter 2 to solve a constrained optimization

concerning a mobile sensor network. The cost function takes into account the power

consumption of the entire network, in order to accomplish the target monitoring

objective efficiently. A strategy is also provided to maximize the durability of the

sensors by monitoring the residual energy of every sensor, and then adjusting their

parameters and relocating them accordingly. The proposed relocation scheme in

this case ensures a uniform consumption of the remaining energy of each sensor,

such that all sensors run out of energy at the same time. The algorithm guarantees

end-to-end connectivity from the target to the fixed access point, which is crucial

in order to monitor a moving target. Simulation results illustrate the efficacy of the

proposed techniques.

A novel energy-efficient tracking technique is proposed in Chapter 3 for wireless

mobile sensor networks. The field is first divided into a grid, and is then mapped

into a graph. Proper weights are subsequently assigned to the edges of the graph to
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model the energy consumption due to sensing, communication and movement, as the

main sources of energy expenditure in this type of network. The problem of finding a

proper route and selecting the corresponding sensor locations for an energy-efficient

tracking is translated to the well-known shortest path problem. This is carried out

by partitioning the field into Voronoi polygons and investigating different scenarios

in terms of network configuration. Simulations demonstrate the effectiveness of the

proposed tracking strategy.

Novel sensor deployment strategies are proposed in Chapter 4 for efficient

field coverage in a mobile sensor network. Based on these strategies, each sensor

moves iteratively in a direction that the coverage holes in the corresponding Voronoi

polygon are reduced. The proposed strategies tend to place the sensors in the plane

in such a way that undesirable network configurations are avoided. To this end,

the Maxmin-vertex strategy selects each sensor’s target location as a point inside

the corresponding Voronoi polygon whose distance from the nearest Voronoi vertex

is maximized. The Minmax-edge strategy, on the other hand, selects this target

location as a point inside the corresponding Voronoi polygon whose distance from

the farthest Voronoi edge is minimized. The Maxmin-edge strategy selects the target

location as a point inside the corresponding Voronoi polygon whose distance from the

nearest Voronoi edge is maximized. Finally, the VEDGE strategy is a combination

of the Minimax and Maxmin-edge algorithms. Two target points are calculated

for each sensor based on these two methods, and the one which provides better

coverage is selected as the target location for that sensor. In all of these techniques,

each sensor moves to the new location only if its coverage increases. Simulations

demonstrate the advantages of the proposed techniques compared with other known

methods.

Efficient sensor deployment algorithms are presented in Chapter 5 for increas-

ing sensing coverage in a network of mobile sensors with different sensing radii. The
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multiplicatively weighted Voronoi (MW-Voronoi) diagram is used to partition the

field. Three strategies, namely weighted vector boundary (WVB), Minmax-curve

and Maxmin-curve are subsequently developed to find appropriate locations for the

sensors to increase sensing coverage. These locations are determined such that they

are neither too close to each other and the boundaries of their MW-Voronoi regions

nor too far from them. Using the proposed algorithms, the sensors move iteratively

such that the coverage hole in the field decreases monotonically. Simulations with

different number of sensors are provided for comparison.

Chapter 6 presents efficient sensor deployment algorithms to improve coverage

in mobile sensor networks. It is assumed that the sensing radii of different sensors are

not the same. A multiplicatively weighted Voronoi (MW-Voronoi) diagram is then

employed to develop three distributed deployment algorithms accordingly. Using

these algorithms, the sensors move iteratively to reduce coverage holes in the sensing

field. The algorithms proposed here take the general characteristics of an ideal sensor

configuration into account (e.g., each sensor should not be too far or too close to

any of the vertices of its corresponding MW-Voronoi region). Simulation results

are pretested to compare the performance of the proposed approaches for different

number of sensors.

Three distributed deployment algorithms are proposed in Chapter 7 to increase

coverage in a mobile sensor network. The sensing field is first partitioned using

the Voronoi diagram, and the deployment algorithms are developed based on the

configuration of Voronoi polygons. The algorithms are iterative, where in each

iteration the next candidate position of any sensor is obtained based on the distance

of the sensor from the edges and vertices of its polygon. Different virtual forces

are defined which are applied to the sensor from the vertices and boundaries of the

polygon. Each sensor tends to move to a new location under the vector sum of

these virtual forces, but it only moves to the new location if its coverage increases.
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The results are extended to the case of sensors with nonidentical sensing ranges

using the notion of the multiplicatively-weighted Voronoi (MW-Voronoi) diagram.

Simulations confirm the efficacy of the proposed algorithms in increasing the network

coverage.

In Chapter 8, two efficient distributed sensor relocation techniques are pro-

posed to increase sensing coverage in a mobile sensor network. The general case

of a network of nonidentical sensors is considered, where the sensing radii of nodes

are different. Each sensor has a limited communication range, which prevents them

from collecting the required information for constructing MW-Voronoi regions. The

notion of limited communication MW-Voronoi (LCMW-Voronoi) diagram was in-

troduced and two efficient strategies, namely the LCFP and LCMP algorithms, were

developed to relocate the sensors in such a way that network coverage increases. The

LCFP strategy finds a candidate point based on the farthest point from the sensor in

the corresponding LCMW-Voronoi region, while the candidate point in the LCMP

strategy is obtained such that the distance of the sensor from the farthest point

in the region is minimized. Simulations demonstrate the efficiency of the proposed

techniques.

In Chapter 9, two efficient distributed sensor relocation techniques are pro-

posed to increase field coverage of mobile sensor networks. The algorithms are ap-

plicable to networks having non-identical mobile sensors and target coverage fields

with obstacles. To account for the existence of obstacles, an extension of MW-

Voronoi diagram, namely visibility-aware MW-Voronoi (VMW-Voronoi) diagram

has been introduced as a tool to allow enhancement in sensor’s coverage area. The

iterative implementation of the algorithms provides gradual maximization of the

overall network coverage. Simulation results confirm the effectiveness of the pro-

posed techniques for different number of sensors.

Efficient sensor deployment algorithms are presented in Chapter 10 to increase
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coverage in a mobile sensor network with a prescribed priority assignment for dif-

ferent points in the sensing field. It is assumed that the sensors are not identical in

terms of sensing capabilities. The multiplicatively weighted Voronoi (MW-Voronoi)

diagram is then employed to develop three distributed deployment strategies. Ac-

cording to the proposed algorithms, each sensor moves iteratively in such a way that

the prioritized uncovered area in its MW-Voronoi region is reduced. All proposed

algorithms consider the relative priority of the points inside each region (or on its

vertices). One of these strategies also takes the distances of each sensor and the

points inside its MW-Voronoi region into account. Simulations are presented to

compare the performance of the coverage algorithms developed in this chapter.

Two sensor deployment strategies are introduced in Chapter 11 to increase

the sensing coverage in a network of mobile and static sensors. The problem is

addressed in the most general case, where the sensing radii of different sensors

are not the same. A multiplicatively weighted Voronoi (MW-Voronoi) diagram is

then employed to develop two distributed deployment algorithms. According to the

proposed algorithms, each mobile sensor assigns a proper weight to every point in

the field, based on the information it receives from static sensors. The mobile sensors

then move iteratively to proper locations out of the covered area of static sensors, in

such a way that coverage holes of the network are reduced. Simulations are presented

to compare the performance of the proposed approaches for different number of

sensors in the network. It is shown that the Max-area strategy outperforms the

other method as far as the energy consumption is concerned. On the other hand,

the FWV strategy is more efficient in terms of convergence rate.
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12.2 Suggestions for Future Work

In what follows, some of the possible extensions of the results of this dissertation as

well as some relevant problems for future study are presented.

• The algorithms proposed in Chapters 2 and 3 do not consider the power con-

sumption model of sensor batteries. One can develop a variation of these

algorithms by considering an appropriate sensor battery model for more power-

efficient deployment strategies, which would be of more practical interest.

• In all of the proposed algorithms given in Chapters 4-11, it is assumed that the

sensing area of each sensor is uniform and circular. Developing proper strate-

gies to maximize the coverage of the network for non-circular, non-uniform

and probabilistic sensing patterns is another possible extension.

• The results of Chapters 4-11 are developed for ideal communication links with-

out taking transmission delays and link failures into account. One possible

future work is to consider such practical problems and investigate their im-

pact on the performance of the deployment algorithms. The results can then

be used to develop more reliable sensor deployment techniques for a practical

environment.

• The algorithms developed in this dissertation assume the sensors move in a

2D plane. As a natural extension of this work, it would be interesting to study

the problem when sensors move in 3D space.

• The objective of the strategies developed in Chapters 4-11 is to obtain max-

imum field coverage by properly deploying sensor nodes. Modifying the pro-

posed algorithms to maximize the lifetime of the network while increasing the

sensing coverage would be another important direction for future work.
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