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ABSTRACT

Sampled-data Networked Control Systems: A Lyapunov-Krasovskii Approach

Miad Moarref, Ph.D.

Concordia University, 2013

The main goal of this thesis is to develop computationally efficient methods for

stability analysis and controller synthesis of sampled-data networked control systems.

In sampled-data networked control systems, the sensory information and feedback

signals are exchanged among different components of the system (sensors, actuators,

and controllers) through a communication network. Stabilization of sampled-data

networked control systems is a challenging problem since the introduction of multi-

rate sample and holds, time-delays, and packet losses into the system degrades its

performance and can lead to instability. A diverse range of systems with linear,

piecewise affine (PWA), and nonlinear vector fields are studied in this thesis. PWA

systems are a class of state-based switched systems with affine vector field in each

mode. Stabilization of PWA networked control systems are even more challenging

since they simultaneously involve switches due to the hybrid vector fields (state-

based switching) and switches due to the sample and hold devices in the network

(event-based switching).

The objectives of this thesis are: (a) to design controllers that guarantee expo-

nential stability of the system for a desired sampling period; (b) to design observers

that guarantee exponential convergence of the estimation error to the origin for a

desired sampling period; and (c) given a controller, to find the maximum allowable

network-induced delay that guarantees exponential stability of the sampled-data net-

worked control system. Lyapunov-Krasovskii based approaches are used to propose

sufficient stability and stabilization conditions for sampled-data networked control

systems. Convex relaxation techniques are employed to cast the proposed stability
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analysis and controller synthesis criteria in terms of linear matrix inequalities that

can be solved efficiently.
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Chapter 1

Introduction

The methodology of this thesis is important to solve several problems in control

systems where decision making subject to delay is present, including but not limited

to teleoperated robotics (such as robotic surgery), centralized power grids, and control

of the flow in canals. In such applications it is very difficult to determine what is the

maximum allowable delay for receiving the sensing measurements so that the closed

loop will be stable.

In networked control systems, sensory information and feedback signals are ex-

changed among different components of the system (i.e. sensors, actuators, and

controllers) through a communication network. The reader is referred to [1–3] for

applications of networked control systems to document printing, air vehicles and

satellites, and to an inverted pendulum, respectively. As an example, in a modern

long-range aircraft, there exist about 170 (Km) of signal wiring which account for

almost 700 (Kg) of the weight of the aircraft [4]. Other than weight, the main draw-

backs of wired communication links include connector/pin failures, cracked insulation

issues, arc faults, and maintenance/upgrade difficulties [5]. The inherent benefits of

wireless communication systems and the recent advancements in this field have led to

a growing interest in wireless flight control systems (i.e. fly-by-wireless) [6]. However,

the effects of non-ideal communication networks on stability and performance of the

system become more prominent in the case of wireless communication networks [7]

and motivate a thorough study of networked control systems.

Consider the networked control system illustrated in Fig. 1.1. The camera and

the on-board inertial measurement unit (the sensors) send the sensory information

to the computer (the controller) through wired and wireless (XBee modules) commu-

nication networks, respectively. The controller transmits the control signals through

wireless communication to the microcontroller (Arduino) which in turn generates the

1



Inertial measurement unit

Arduino
XBee wireless

module

Camera Controller XBee wireless
module

Robotic Car

Figure 1.1: Networked control system: a robotic car example

actuating PWM1 signals for the motors. The communication network introduces

sample and holds, quantization, time-delays, data packet losses, and congestion into

the system. From a control perspective, the addition of each of these phenomena

can degrade the performance of the system and even lead to instability. The ef-

fects of the network on stability of the system are not always intuitive and neglecting

them can have catastrophic consequences. Therefore, along with the advancements in

wired and wireless communication networks, the study of networked control systems

has attracted numerous researchers in the past decade (see [8–12] and the references

therein).

Figure 1.2 illustrates the schematic diagram of a networked control system with a

sensing block (with multiple samplers), an actuating block (with multiple zero order

holds), and time delays and data packet dropouts in the communication links. In

general, the samplers and the zero order holds work asynchronously. The sampling

rates of the sensors and the update rates of the actuators can be different from each

other, and can be uncertain and time-varying (e.g. sampling jitters [13, 14]). The

sampler-controller delay and the controller-actuator delay are in general different,

uncertain, and time-varying. The packet dropouts are modeled as a switch. When

the switch is closed, data is transmitted through the network. When the switch is

1Pulse width modulation

2
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Figure 1.2: The schematic diagram of a networked control system

open, however, data is assumed to be dropped.

In this thesis, networked control systems are modeled as infinite dimensional time-

delay systems where the vector field is a function of the current value of the state

vector as well as its values in a past time interval. The sample and hold blocks and

the data packet dropouts are modeled as time-varying delays in the control input (see

Chapter 2). This approach is known as the input delay modeling in the literature [15]

(see Subsection 1.2.3 for more details). We address sampled-data networked control

systems with linear (Chapters 2-5, and 9), piecewise affine (PWA) (Chapters 6 and 7),

and nonlinear (Chapter 8) vector fields.

The study of PWA systems is motivated by two factors. First, PWA and other

switched linear systems are an important class of models that arise in many practical

control applications (e.g. systems subject to saturation, hysteresis, and dead zones).

Furthermore, the results will be used to explore nonlinear networked control systems,

since PWA systems can approximate the nonlinearities that arise in the model. One

of the objectives of this thesis is to bridge the gap between the relatively well stud-

ied linear networked control systems and the more complicated nonlinear networked

control systems. The inherent nonlinear structure of PWA systems enables one to

explore more realistic models of engineering applications.

3



1.1 Objectives

The main objective of this thesis is to propose computationally efficient stability and

stabilization criteria for linear, PWA, and nonlinear sampled-data networked control

systems. We address systems with multiple sampling rates, data packet losses, and

time-delays. For stability analysis, the problem of finding a lower bound on the maxi-

mum allowable sampling period (MASP) that guarantees exponential stability will be

cast as an optimization program in terms of linear matrix inequalities (LMIs). The

resulting LMIs can be solved efficiently using available software packages [16, 17]. For

controller synthesis, the problem of finding a state feedback controller that guaran-

tees exponential stability for a desired MASP will be cast as a feasibility problem

in terms of LMIs. Furthermore, as the dual of the sampled-data controller synthesis

problem, algorithms will be provided for sampled-data observer design. Note that

convex optimizations over LMIs are solvable in polynomial time. For example, the

computational complexity of the solver SeDuMi [16] is in O(n2m2.5 +m3.5), where n

is the number of decision variables and m is the number of rows of the LMIs [18].

In the next section, we review the research contributions in sampled-data networked

control systems.

1.2 Literature Review

Networked control systems have attracted numerous research contributions in the past

decade. The special issues published on networked control systems in journals such

as IEEE Control Systems Magazine (Feb. 2001), IEEE Transactions on Automatic

Control (Sept. 2004), and Proceedings of the IEEE (Jan. 2007) are evidence to the

growing interest in these systems. In networked control systems (as well as sampled-

data systems and time-delay systems, as special cases of networked control systems),

the vector field is defined as a function of the current and the past values of the

state vector. Retarded functional differential equations [19, 20] are widely used as a

framework for modeling, stability analysis, and controller synthesis of deterministic

and stochastic networked control systems (see [19–21] and the references therein). The

main objective of this section is to address the previous work on networked control

systems. However, we begin the literature review by introducing PWA systems. Next,

frequency-domain approaches to study of sampled-data networked control systems are

presented. Then, time-domain approaches are presented and their advantages and

weaknesses are discussed. Finally, the section ends with a few concluding remarks.
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1.2.1 Piecewise affine systems

PWA systems are a class of state-based switched systems where the vector field is

affine in each mode or region. PWA systems arise in many engineering problems (e.g.

systems with saturation, deadband, and hysteresis). PWA systems have been used

as a tool for approximating nonlinear systems for a few decades (see [22, 23] and the

references therein). Stability analysis and controller synthesis of PWA systems have

received an increasing number of contributions since the late nineties. The reader

is referred to [24–29] for stability analysis, to [26, 29–32] for controller synthesis and

to [23, 33] for observer based control and output feedback control of PWA systems in

continuous-time. Reference [34] addresses stability and performance analysis for PWA

systems. The Hamilton-Jacobi-Bellman equation and convex optimization methods

are used to obtain lower and upper bounds for the optimal control cost function. A

unified dissipativity approach for stability analysis of piecewise smooth (and PWA)

systems with continuous and discontinuous vector fields is presented in [28]. Stability

of PWA systems is addressed in [26, 29] using quadratic and piecewise quadratic

Lyapunov functions. Furthermore, piecewise linear (PWL) state feedback controllers

are designed for stabilizing PWA systems by solving an optimization problem in

terms of LMIs in [29]. Reference [30] shows that PWA state feedback controller

synthesis for PWA slab systems based on a quadratic Lyapunov function can be

cast as a set of quasi-concave optimization problems analytically parameterized by

a vector. Reference [32] uses this result to provide a set of sufficient conditions for

PWA controller synthesis for PWA slab systems in terms of LMIs.

1.2.2 Frequency-domain approaches to sampled-data

networked control systems

Frequency-domain approaches to sampled-data networked control systems are based

on studying the characteristic quasipolynomial of the system. These approaches

study the zero-crossing frequencies of the characteristic quasipolynomial using classi-

cal control theory techniques such as the Routh-Hurwitz criterion. More systematic

approaches include the frequency-sweeping tests, the constant matrix tests, and the

small gain theorem [20, 35]. For single input single output systems with known delay,

Smith predictor [36] provides a controller synthesis technique. Ignoring the delay, it

first designs a controller for the delay-free system. Next, it defines a new compen-

sator such that the closed-loop transfer function of the system with delay is equivalent
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to the transfer function of the delay-free system. This procedure is sensitive to de-

lay uncertainty and works only when the delay is perfectly known (see [36] and the

references therein).

The advantages of the frequency-domain approaches are their “conceptual sim-

plicity and computational ease [20]”. Nevertheless, the frequency-domain approaches

are not suitable for the case of uncertain networked control systems and systems

with time-varying delays. While these approaches work well for the case of multiple

commensurate delays2, their extension to the case of incommensurate delays leads

to conservative stability criteria. These criteria are usually a paraphrased version of

the stability definition itself and cannot be implemented in an optimization software.

Time-domain approaches to study of sampled-data networked control systems are

presented in the following two subsections.

1.2.3 Time-domain approaches to sampled-data networked

control systems

This subsection begins with the literature that focuses on sampled-data systems.

Next, the research papers that consider more complicated network structures are

presented.

Sampled-data systems

According to [37, 38], there are three main approaches to sampled-data controller

synthesis. In the emulation approach, a continuous-time controller is designed based

on the continuous-time plant, then approximated in discrete-time, and finally im-

plemented via a sample and hold device. In this method, the controller can easily

be designed based on performance specifications. The performance, however, is only

guaranteed for sufficiently high sampling frequencies. In other words, the maximum

allowable sampling period (MASP) should be sufficiently small. This results in a

trade-off between performance and the cost of sensing equipment. In the second ap-

proach, the discrete-time controller is designed based on an approximate discretized

model of the plant. The advantage of this approach is its simplicity at the cost

of ignoring the inter-sample behaviour of the system. A common drawback of the

first two approaches is that the “exact discrete-time models of continuous-time non-

linear processes are typically impossible to compute” [39, 40]. Finally, the direct

sampled-data design approach is more mathematically involved because it addresses

2Where the delays are commensurate, the ratios of all delays are rational numbers
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the continuous-time plant and the discrete-time control signal simultaneously. Its

advantage, however, is that the approximation step in the other two approaches is

obviated.

A general framework for the design of nonlinear controllers using the emula-

tion approach is presented in [40]. First, a dissipation property is used to design

a continuous-time controller. Next, the authors propose conditions that should be

satisfied by the approximate discretized controller in order to preserve the dissipation

property. Following the emulation approach, reference [41] addresses input-to-state

stability of nonlinear systems with dynamic sampled-data controllers. A controller

redesign scheme can later be used to improve the performance of the designed con-

troller [42, 43].

For a discrete-time controller design based on an approximate discrete-time model

of the plant, the reader is referred to [38, 39, 44] and the references therein. First, a

parametrized family of approximate discrete-time models of the plant is developed.

Next, a corresponding family of discrete-time controllers is designed for the approxi-

mate models. Reference [39] provides conditions to guarantee that the exact nonlinear

sampled-data system is stable for sufficiently small modeling parameters and uniform

samplings. As mentioned earlier, ignoring the inter-sample behaviour is a drawback

of this approach. One way to address this issue is the lifting technique [37], where

the closed-loop sampled-data system is modeled as a finite dimensional discrete-time

system. The reader is referred to [45] for a study of sampled-data tracking problems

and to [46] for H∞ sampled-data control using the lifting technique.

The direct sampled-data design approach has recently gained an increasing inter-

est in the literature of linear sampled-data systems (see [15, 47–49] and the references

therein). In this approach, the sampled-data system is usually modelled as either a

continuous-time system with a time-varying input delay [15, 47] or a hybrid (impul-

sive) system with jumps at the sampling instants [48]. Razumikhin or Krasovskii-type

theorems [20] are then used to develop sufficient stability and stabilization conditions

for the sampled-data system. These conditions are usually cast in terms of linear ma-

trix inequalities (LMIs) which can be efficiently solved using software packages such

as SeDuMi [16] and YALMIP [17]. While the Razumikhin-type theorems are based

on classical Lyapunov functions, Krasovskii-type theorems use Lyapunov functionals

and are known to be less conservative [9, 15, 20]. For direct sampled-data design of

linear systems using the lifting technique the reader is referred to [37].

There are scarce references in the literature of nonlinear sampled-data systems

where the input delay model (for static controllers) [41] or the hybrid model [50–52] of
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the system is studied. In all these references, however, a continuous-time controller is

assumed to be available. In other words, the controller synthesis is performed while

ignoring the sample and hold structure of the feedback. Therefore, similar to the

emulation approach, references [41, 50–52] cannot be used to design controllers that

provide a desired MASP.

Stability and stabilization of PWA sampled-data systems are challenging prob-

lems since the resulting hybrid systems simultaneously involve state-based switching

(due to the PWA vector field) and event-based switching (due to the sampling).

Given a PWA plant and a stabilizing continuous-time controller, references [53, 54]

study the stability of the closed-loop PWA system in a sampled-data framework. As-

suming uniform sampling intervals, reference [53] uses a quadratic Lyapunov function

to provide sufficient conditions for convergence of the PWA sampled-data system to

an invariant set containing the origin. Following the input-delay approach and using

Krasovskii functionals, reference [54] addresses the same stability problem for the case

of samplers with unknown nonuniform sampling intervals. References [55, 56] address

optimal control of PWA sampled-data systems. However, the PWA sampled-data

structure discussed in [55, 56] is different from the one in this thesis. In [55, 56], the

switching is only event-based (i.e. occurs at the sampling instants), whereas in this

thesis the switching is both state-based and event-based.

Similar approaches have been used in the literature to address networked control

systems. This topic is studied in the next subsection.

Networked control systems

In a networked control system, a continuous-time plant is in feedback with a discrete-

time emulation of a controller. The control signal is computed using state measure-

ments that are sampled in intervals that are not necessarily uniform [3, 47, 48]. These

signals go through a quantization process [57], and experience uncertain and time

varying delays [58, 59], data packet dropouts, and congestion over the communication

network. The main approaches for studying networked control systems include the

lifting approach [37, 45, 60, 61], the impulsive model approach [1, 11, 48, 62], and the

input delay approach [12, 15, 47, 63, 64]. These approaches were discussed in more

detail in the previous subsection.

Most of the work in the literature focuses on only one aspect of networked control

systems. There are papers, however, that study two or more features of an networked

control system at the same time. Reference [2] studies H∞ control of a class of

uncertain stochastic networked control systems with both delays and packet dropouts.
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Sufficient conditions are proposed to ensure exponential stability in mean square of the

closed-loop system subject to a performance measure. The robust filtering problem

is addressed in [65] for a class of discrete-time uncertain nonlinear networked systems

with both multiple stochastic time-varying communication delays and multiple packet

dropouts. A method for designing a linear full-order filter is proposed such that the

estimation error converges to zero exponentially in the mean square sense while the

disturbance rejection attenuation is constrained to a given level. Reference [66] studies

the distributed finite-horizon filtering problem for a class of time-varying systems

over lossy sensor networks with quantization errors and successive packet dropouts.

Through available output measurements from a sensor and its neighbors (according to

a given topology), a sufficient condition is established for the desired distributed finite-

horizon filter to ensure that the prescribed average filtering performance constraint

is satisfied.

The networked control system considered in [67] comprises a linear sampled-data

controller and an uncertain, time varying delay. Two drawbacks of that model are

that the sampling intervals are assumed to be constant and the delay is assumed to be

upper bounded by the sampling period. A more general model of networked control

systems is studied in [11, 12], where a linear sampled-data controller with uncertain

sampling rates, the possibility of data packet dropouts, and an unknown, time varying

delay are considered. While the stability theorems in [12] are less conservative than

the corresponding theorems in [11], they are more computationally expensive as they

involve solving two times as many LMIs. Moreover, due to the complexity of the LKF

in [12], the number of LMIs increases even more if additional information on the time

varying delay (e.g. a lower bound) is available.

Reference [68–71] address the stability problem of PWA systems with time-delays.

The PWA networked control system in [68] constitutes of a time-varying delay in the

linear term. Reference [69] considers a more general model where the delay also ap-

pears in the affine term of the vector field. Robust stability of PWA systems is also

addressed. The authors provide sufficient Krasovskii-based criteria for asymptotic

stability of PWA systems with time-delays and formulate them as a set of LMIs. The

results are extended in [71] to PWA systems with structured uncertainties. Refer-

ence [70] uses the PWA time-delay framework to design a controller for an automotive

all-wheel drive clutch system. The main drawbacks of these papers, however, is a re-

stricting assumption on the derivative of the delay. In those papers the time derivative

of the delay is assumed to be strictly less than one. While this assumption is fairly

standard in the time-delay systems literature, the obtained results are not applicable
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to a general networked control framework with sample and hold blocks, where the

derivative of the delay is equal to one.

1.2.4 Concluding remarks

Exponential stability and stabilization problems for linear networked control systems

have received numerous research contributions. However, these problems are consid-

ered as open problems in the case of PWA and nonlinear networked control systems.

We believe that PWA systems are powerful tools in order to bridge the gap between

the relatively well studied linear networked control systems and the more compli-

cated nonlinear networked control systems. Furthermore, stability and stabilization

of networked control systems with multiple communication links (that inevitably ex-

perience samplings at different rates and different time-delays) are considered as open

problems even in the case of linear systems. Motivated by these conclusions, the main

contributions of the thesis are summarized in the following section.

1.3 Contributions

The main contributions of the thesis are as follows.

1. To propose sufficient stability criteria for exponential stability of linear, PWA,

and (a class of) nonlinear single rate sampled-data networked control systems.

PWA differential inclusions are used to address the stability analysis problem

for a class of nonlinear systems. For the first time, sufficient conditions for ex-

ponential stability of PWA and nonlinear sampled-data systems are presented

using a piecewise smooth Krasovskii functional. This decreases the conserva-

tiveness of the proposed sufficient conditions when compared with the use of

smooth Krasovskii functionals. The stability criteria are used to formulate the

problem of finding a lower bound on the MASP as an optimization program in

terms of LMIs. These LMIs can be solved efficiently using available software

packages.

Importance: The developed theorems allow one to answer questions such as

what should the sampling frequency of a sensor in a sampled-data networked

control system be such that exponential stability is guaranteed? or what is

the maximum number of consecutive data packet dropouts that does not lead

to instability of the sampled-data networked control system? or what is the
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maximum delay in the communication link that does not result in instability of

the sampled-data networked control system?

2. To propose sufficient stabilization criteria for exponential stability of linear,

PWA, and (a class of) nonlinear single rate sampled-data networked control

systems. The controller synthesis technique is based on the direct sampled-data

design approach. To the best of the author’s knowledge, the direct sampled-

data design approach was not applied to PWA and nonlinear systems before.

Using this approach the controller is designed with the MASP as an optimiza-

tion parameter. The controller design problem usually leads to non-convex

optimization problems. Therefore, convex relaxation techniques are used in the

derivation of the sufficient Krasovskii-based stabilization criteria. The stabiliza-

tion criteria are used to formulate the problem of finding a controller gain that

guarantees exponential stability (for a desired MASP) as a feasibility program

in terms of LMIs. These LMIs can be solved efficiently using available software

packages.

Importance: The consideration of the desired MASP as an optimization param-

eter guarantees that the designed controller satisfies the requirements dictated

by the sensing equipment. The developed theorems allow one to answer ques-

tions such as how should the controller gains be modified in order to increase

the MASP for each sensor and increase the allowable number of consecutive

data packet dropouts in the communication link?

3. To propose sufficient conditions for design of linear multi-rate sampled-data ob-

servers. Given the MASP for each sensor, sufficient Krasovskii-based conditions

are presented for design of linear observers. The designed observers guarantee

exponential convergence of the estimation error to the origin. The sufficient

conditions are cast as a set of LMIs that can be solved efficiently. Furthermore,

given an observer gain, the problem of finding MASPs that guarantee exponen-

tial stability of the estimation error is also formulated as a convex optimization

program in terms of LMIs.

Importance: The continuous-time state estimation problem using asynchronous

multi-rate discrete-time output measurements is a practically relevant problem.

The developed theorems allow one to design observers that can be used in output

feedback control of sampled-data networked control systems.

4. To propose stability and stabilization criteria for linear multi-rate sampled-data
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systems. The proposed sampled-data scheme comprises a sensing block with

several sensors and an actuating block with several actuators which is more

general than previous work in the literature. For each sensor (or actuator), the

problem of finding an upper bound on the lowest sampling frequency (or refresh

rate) that guarantees exponential stability is cast as an optimization problem

in terms of LMIs.

Importance: The proposed sampled-data scheme finds application in asyn-

chronous multi-agent systems and systems with actuators that have relatively

low update rates (e.g. solenoids, electric cylinders, electroactive polymers, and

shape memory alloys).

5. To propose a sensor allocation strategy that guarantees exponential stability

of linear multi-rate sampled-data systems. The state vector is partitioned and

each part of the state vector is sampled by a dedicated sensor. The proposed

Krasovskii-based sufficient stability conditions yield a partition of the state

vector such that exponential stability is guaranteed. The problem of finding

such a partition is cast as a mixed integer program subject to LMIs.

Importance: The developed theorems allow one to answer questions such as

which states should be sampled at a higher rate and which states should be

sampled at a lower rate? or can increasing the sampling rate of a phenomenon

in an already stable sampled-data system lead to instability? The answer to

the latter question is not intuitive as will be shown in Chapter 4.

1.3.1 Publications

The main contributions of the thesis are documented in the following publications.

Journal papers

1. M. Moarref and L. Rodrigues, “Stability and stabilization of linear sampled-

data systems with multi-rate samplers and time driven zero order holds”, sub-

mitted.

2. M. Moarref and L. Rodrigues, “Sampled-data piecewise affine differential in-

clusions”, submitted.

3. M. Moarref and L. Rodrigues, “On exponential stability of linear networked

control systems”, International Journal of Robust and Nonlinear Control, in
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press.

4. M. Moarref and L. Rodrigues, “Asymptotic stability of sampled-data piece-

wise affine slab systems”, Automatica, vol. 48, 2012, pp. 2874–2881.

Conference papers

1. M. Moarref and L. Rodrigues, “Observer design for linear multi-rate sampled-

data systems”, submitted to the American Control Conference, Portland, OR,

2014.

2. M. Moarref and L. Rodrigues, “A convex approach to stabilization of sampled-

data piecewise affine slab systems”, in proceedings of the 52nd IEEE Conference

on Decision and Control, Florence, Italy, 2013, pp. 4748–4753.

3. M. Moarref and L. Rodrigues, “Exponential stability and stabilization of lin-

ear multi-rate sampled-data systems”, in proceedings of the American Control

Conference, Washington, DC, 2013, pp. 158–163.

4. M. Moarref and L. Rodrigues, “Asymptotic stability of piecewise affine sys-

tems with sampled-data piecewise linear controllers”, in proceedings of the 50th

IEEE Conference on Decision and Control and European Control Conference,

Orlando, FL, 2011, pp. 8315–8320.

1.4 Structure of the Thesis

The structure of the thesis is shown in Fig. 1.3. Chapter 2 addresses linear sampled-

data systems and lays the foundation upon which more complex systems are ad-

dressed. These systems experience multi-rate samplings, have switched or nonlinear

dynamics, and have non ideal communication links with delays and packet dropouts.

Preliminary notions on functional spaces and LKFs are also provided in Chapter 2.

In Chapter 3 linear multi-rate sampled-data systems are studied. The results of this

chapter are extended in Chapter 4 where sensor allocation strategies are proposed

which guarantee exponential stability of linear multi-rate sampled-data systems. The

observer design problem for linear multi-rate sampled-data systems is covered in

Chapter 5. Stability analysis and controller synthesis of PWA sampled-data sys-

tems are addressed in Chapters 6 and 7, respectively. The results of the latter two

chapters are used in Chapter 8 to provide sufficient stability and stabilization criteria

13



Chapter 1:
Introduction

Chapter 2:
Linear sampled-data 

systems

Chapter 3:
Linear multi-rate 

sampled-data systems

Chapter 4:
Sensor allocation for linear multi-

rate sampled-data systems

Chapter 9:
Linear networked 
control systems

Chapter 6:
PWA sampled-data 
systems (stability)

Chapter 7:
PWA sampled-data 

systems (stabilization)

Chapter 8:
Nonlinear sampled-data 

systems

Chapter 5:
Observer design for 

linear multi-rate 
sampled-data systems

Figure 1.3: Structure of the thesis

for nonlinear sampled-data systems. Finally, Chapter 9 addresses linear networked

control systems with sample and hold blocks, time-delays, and data packet losses.

Concluding remarks are presented in Chapter 10.
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Chapter 2

Linear Sampled-data Systems

The main objective of this chapter is to present the main ideas and the methodology

that will be used throughout the thesis. To this end, we address stability analysis

and controller synthesis of linear single rate sampled-data networked control systems

which is the simplest network structure studied in this thesis. This chapter lays the

foundation upon which more complex systems are addressed. These complex systems

experience multi-rate samplings (Chapters 3-5), have switched (Chapters 6 and 7)

or nonlinear (Chapter 8) dynamics, and have non ideal communication links with

time-varying delays (Chapter 9). Preliminary definitions and notions about stability

of functional differential equations and Lyapunov-Krasovskii functionals (LKFs) are

also presented in this chapter. In terms of notation, throughout this thesis and where

there is no confusion a vector x(t) is simply written as x.

2.1 Introduction

Stability and stabilization of linear sampled-data systems has been the subject of

numerous research [15, 37, 47–49, 61, 62, 64, 72]. In these systems a continuous-time

linear plant is controlled by a linear controller which is located in the feedback loop

between a sampler and a zero order hold. Furthermore, it is assumed that the commu-

nication link between the sampler and the controller experiences data packet dropouts

(see Fig. 2.1). The main approaches for studying linear sampled-data systems include

the lifting approach [37, 60, 61], the impulsive model approach [48, 62, 72], and the in-

put delay approach [15, 47, 64].

In the lifting approach, the closed-loop sampled-data system is modeled as a finite

dimensional discrete-time system. Lifting is used in studying systems with constant

or uncertain sampling rates [49]. However, the lifting approach is not applicable to
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Figure 2.1: The schematic diagram of a linear single rate sampled-data networked
control system.

systems with uncertain parameters. In the impulsive model approach, the closed-loop

sampled-data system is modeled as an impulsive system which exhibits continuous

state evolutions (described by ordinary differential equations) and instantaneous state

jumps. In the input delay approach, the linear sampled-data system is modeled as a

continuous-time system with a delayed control input. Both the impulsive model and

input delay approaches use Razumikhin or Krasovskii-type [20] theorems to prove

stability of sampled-data systems. While the Razumikhin-type theorems are based

on classical Lyapunov functions, Krasovskii-type theorems use Lyapunov functionals

and are known to be less conservative [9, 15, 20].

The evolution of LKFs over the past decade has yielded less conservative stability

conditions. These conditions are usually cast in terms of LMIs which can efficiently

be solved using software packages such as SeDuMi [16] and YALMIP [17]. In [15],

neglecting the saw-tooth structure of the delay in sampled-data systems, robust sta-

bility and stabilization conditions were presented based on a time-delay model with

bounded delay. Reference [72], addressed this issue by introducing functionals that

took the saw-tooth property into account. The proposed LKF in [72], was further

modified in [47, 64], where less conservative conditions were provided.

The main contribution of this chapter is to propose new sufficient conditions

for exponential stability and stabilization of linear sampled-data systems. The new

sufficient conditions are derived based on a modified LKF. The sufficient conditions

compare favorably with other sufficient conditions available in the literature. The

problem of finding a lower bound on the MASP that preserves exponential stability

is formulated as an optimization program in terms of LMIs. The controller synthesis
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problem is cast as an optimization problem subject to LMIs with the MASP as a

parameter. The results are also extended to the case of linear sampled-data systems

with uncertain parameters.

The chapter is organized as follows. Problem formulation and preliminary notions

on LKFs are provided in Section 2.2. The stability analysis and controller synthesis

theorems are presented in Sections 2.3 and 2.4, respectively. The results are applied to

benchmark examples in Section 2.5. Concluding remarks are presented in Section 2.6.

2.2 Problem Formulation and Preliminaries

Consider the linear system

ẋ(t) = Ax(t) + Bu(t), (2.1)

where x ∈ R
nx denotes the state vector, A ∈ R

nx×nx , B ∈ R
nx×nu , and u ∈ R

nu is the

control input. Let a continuous-time linear controller for (2.1) be defined by

u(t) = Kx(t),

where K ∈ R
nu×nx . Assume that the state vector is measured at sampling instants

tn, n ∈ N. Without loss of generality, by the index n ∈ N, we denote only the instants

tn for which a data packet is not lost. Therefore, the control input can be rewritten

as

u(t) = Kx(tn), for t ∈ [tn, tn+1). (2.2)

The time elapsed since the last sampling instant is represented by a sawtooth function

(see Fig. 2.2) defined as

ρ(t) = t− tn, for t ∈ [tn, tn+1), (2.3)

and the largest sampling interval is denoted by

τ = sup
n∈N

(tn+1 − tn). (2.4)

Therefore,

ρ(t) < τ. (2.5)

Considering (2.3), the control signal (2.2) is rewritten as

u(t) = Kx(t− ρ(t)). (2.6)
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Figure 2.2: The sawtooth function ρ(t).

The following assumption models the fact that two sampling instants cannot occur

simultaneously in practice. It is used in the proof of the main results to rule out the

occurrence of the Zeno phenomenon.

Assumption 2.1. There exists ε > 0 such that tn+1 − tn > ε for any n ∈ N.

In this thesis, we follow the input delay approach to model sampled-data net-

worked control systems as retarded functional differential equations [19, 20]. Prelim-

inary notions about retarded functional differential equations are presented in the

next subsection.

2.2.1 Stability in the Functional Space

Let W([−τ, 0],X ) be the space of absolutely continuous functions1 with square inte-

grable first-order derivatives mapping the interval [−τ, 0] to X ⊆ R
n. Consider the

function xt ∈ W defined as

xt(r) = x(t+ r), − τ ≤ r ≤ 0. (2.7)

Similar to [47], we denote the norm of xt by

||xt||W = max
r∈[−τ,0]

|xt(r)|+
[∫ 0

−τ

|ẋt(r)|2 dr
] 1

2

. (2.8)

We will use the definition (2.8) for the norm of xt throughout this thesis, unless stated

otherwise. The general form of a retarded functional differential equation [19, 20] is

1[73] A function g(x) is absolutely continuous if and only if g has a derivative g′ almost everywhere,
the derivative is Lebesgue integrable (i.e.

∫ |g| dμ is finite, where μ is a measure), and g(x) =
g(a) +

∫ x
a
g′(t) dt for all x on the compact interval [a, b].
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written as

ẋ(t) = f(t, xt),

where x(t) ∈ X and f : R×W → R
n is a real valued vector defined on the product set

of real numbers and absolutely continuous functions. In other words, the evolution

of the state vector x(t) is a function of time t and the state vector x(s) at times

t− τ ≤ s ≤ t. In this thesis, sampled-data networked control systems are modeled as

retarded functional differential equations.

Definition 2.1. The solution x(t) of the system ẋ = f(t, xt) is said to be locally

uniformly exponentially stable with decay rate λ if there exist Ω ⊆ W([−τ, 0],X ),

δ > 0, and λ > 0, such that for any initial condition x0 ∈ Ω, the solution x(t) is

defined in X for all t ≥ 0 and satisfies

|x(t)| ≤ δe−λt||x0||W . (2.9)

Moreover, if (2.9) is verified, the state space X is equal to Rnx, and Ω = W([−τ, 0],Rnx),

then the solution is globally uniformly exponentially stable.

The decay rate λ can be considered as a measure of the performance of the

sampled-data networked control system. Next, a Krasovskii-type theorem is pre-

sented to prove stability of retarded functional differential equations. This theorem

is adapted from similar theorems in [47, 48].

Theorem 2.1. Given λ > 0, the solution x(t) of the system ẋ = f(t, xt) is globally

uniformly exponentially stable with a decay rate greater than λ/2 if there exists a

functional V (t, xt), differentiable for all t �= tn, n ∈ N, and a finite integer q, satisfying

c1|xt(0)|2 ≤ V (t, xt) ≤ c2||xt||2W , (2.10)

V (tn, xtn) ≤ V (t−n , xt−n ), ∀n ∈ N, (2.11)

V̇ (t, xt) + λV (t, xt) < 0, ∀ t �= tn, n ∈ N, (2.12)

0 < ε < tn+q − tn, ∀n ∈ N, (2.13)

where c1, c2, and ε, are positive scalars and V (t−n , xt−n ) = limt↗tn V (t, xt).

Proof. Solving (2.12) for t ∈ (tn, tn+1) and using (2.11) yields

V (t, xt) ≤ e−λ(t−tn)V (tn, xtn) ≤ e−λ(t−tn)V (t−n , xt−n ) ≤ . . . ≤ e−λtV (0, x0).
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The Krasovskii functional V strictly decreases in intervals (tn, tn+1) that have a

nonzero length (note that, according to Assumption 2.1, any interval (tn, tn+1), n ∈ N,

has a length of at least ε > 0). Now, inequality (2.10) yields

|x(t)| = |xt(0)| ≤
(
V (t, xt)

c1

) 1
2

≤
(
e−λtV (0, x0)

c1

) 1
2

≤
(
c2
c1

) 1
2

e−
λ
2
t||x0||W .

Hence, the system is globally uniformly exponentially stable with a decay rate greater

than λ/2 and an overshoot smaller than
√

c2/c1. Note that the Zeno phenomenon

does not occur since, based on (2.13), for any time interval with a length smaller than

ε, there exists a finite number of (at most q) instant tn, n ∈ N.

We finish this section by presenting a definition that will be used in the proof of

the main results of the thesis.

Definition 2.2. [74] Consider a symmetric matrix Z partitioned as

Z =

[
Za Zb

ZT
b Zc

]
.

If Zc is invertible, the matrix S = Za − ZbZ
−1
c ZT

b is called the Schur complement of

Zc in Z and has the following properties

1. Z > 0 if and only if Zc > 0 and S > 0,

2. If Zc > 0, then Z ≥ 0 if and only if S ≥ 0.

The subject of LKFs is addressed in the next section.

2.2.2 Lyapunov-Krasovskii functionals

A candidate LKF V (t, xt) is a functional which penalizes the deviation of xt from

0. The evolution of LKFs over the past decade has decreased the conservatism of

sufficient Krasovskii-based stability conditions. These conditions are usually cast

in terms of LMIs which can be solved efficiently using software packages such as

SeDuMi [16] and YALMIP [17]. Let a candidate LKF be defined as

V (t, xt) = V1 + V2 + V3, t ∈ [tn, tn+1), (2.14)

where V1, V2, and V3 are presented in Table 2.1. In these functionals, P , R, and X are

positive definite matrix variables to be computed by the software packages that solve
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Table 2.1: LKF candidates ∀ t ∈ [tn, tn+1)

V1 = xT (t)Px(t)

V2 = (τ − ρ)

∫ t

t−ρ

eα(s−t)
[
ẋT (s) xT (tn)

]
R
[
ẋT (s) xT (tn)

]T
ds

V3 = (τ − ρ) (x(t)− x(tn))
T X (x(t)− x(tn))

LMI conditions. The function ρ is defined in (2.3) and α is a given positive scalar. The

first component of the LKF, i.e. V1, is the most common form of Lyapunov functions

and penalizes the deviation of the state vector from the origin. Several variants of

the last component, V3, can be found in the literature [47, 48, 64, 72]. The functional

V3 penalizes the deviation of the current state vector from the sampled state vector.

One of the contributions of this chapter is the introduction of the functional V2. This

functional penalizes the derivative of the state vector and the sampled state vector in

the interval [t − ρ, t] for t ∈ [tn, tn+1). Using the new functional V2, the theorems in

this chapter can provide less conservative sufficient stability criteria as will be shown

in Section 2.5.

Bounds on the Lyapunov-Krasovskii functionals

In this subsection, lower and upper bounds on the LKF (2.14) will be computed. The

bounds will be used in the proof of the main results of this chapter to ensure that

inequality (2.10) is satisfied. The LKF candidate V1 is a quadratic function and the

matrix P is positive definite. Therefore,

λmin(P )|x(t)|2 ≤ V1 ≤ λmax(P )|x(t)|2.

However, according to (2.7) and (2.8), we have x(t) = xt(0) and

|x(t)| ≤ ||xt||W . (2.15)

Therefore,

λmin(P )|xt(0)|2 ≤ V1 ≤ λmax(P )||xt||2W .

The LKF candidate V2 is the integral of a quadratic function and the matrix R
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is positive definite. Therefore, V2 is non-negative at all times. For s ∈ [t − ρ, t] and

α > 0, we can write

eα(s−t)
[
ẋT (s) xT (tn)

]
R
[
ẋT (s) xT (tn)

]T
≤ λmax(R)

∣∣∣[ẋT (s) xT (tn)
]∣∣∣2

= λmax(R)
(|ẋ(s)|2 + |x(tn)|2

)
.

Using (2.5), the definition of V2 in Table 2.1 yields

V2 ≤ τλmax(R)

(∫ t

t−ρ

|ẋ(s)|2 ds+
∫ t

t−ρ

|x(tn)|2 ds
)
.

With a change of variables and using the definition of norm in (2.8), we can write∫ t

t−ρ

|ẋ(s)|2 ds =
∫ 0

−ρ

|ẋ(t+ r)|2 dr =
∫ 0

−ρ

|ẋt(r)|2 dr ≤ ||xt||2W .

Furthermore, x(tn) is constant between two sampling instants and considering (2.8),

we have

|x(tn)| ≤ ||xt||W . (2.16)

Therefore, we can use (2.5) to write

V2 ≤ τλmax(R)(1 + τ)||xt||2W . (2.17)

The LKF candidate V3 is a quadratic function and the matrix X is positive

definite. Therefore, V3 is non-negative at all times. Next, inequalities (2.15) and (2.16)

yield

V3 ≤ 4τλmax(X)||xt||2W .

The lower and upper bounds on the LKF candidates are summarized in Table 2.2.

Continuity of the Lyapunov-Krasovskii functionals

Here, we study the continuity properties of the LKF (2.14). The results will be used

in the proof of the main results to ensure that inequality (2.11) is satisfied. The

Lyapunov function V1 is a quadratic function and continuous. The LKF candidate V2

is continuous in the interval between two consecutive instants tn, n ∈ N. Furthermore,

it is non-negative at t−n , where t
−
n = limt↗tn t. However, V2 vanishes at the instants tn

because the lower and upper limits of the integral become equal (according to (2.3);

ρ(tn) = 0). Therefore, the LKF candidate V2 is non-increasing at instants tn, n ∈ N.
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Table 2.2: Lower and upper bounds on the LKF candidates

LKF candidate Lower bound Upper bound

V1 λmin(P )|xt(0)|2 λmax(P )||xt||2W

V2 0 τ(1 + τ)λmax(R)||xt||2W

V3 0 4τλmax(X)||xt||2W

Table 2.3: Continuity properties of the LKF candidates

LKF candidate Continuous Discontinuous at tn, n ∈ N, but non-increasing

V1 � -

V2 - �

V3 - �

The LKF candidate V3 is continuous in the interval between two consecutive instants

tn, n ∈ N. Furthermore, it is non-negative at t−n , n ∈ N. Nonetheless, V3 vanishes at

the instants tn because x(t)|t=tn = x(tn). Therefore, the LKF candidate V3 is non-

increasing at instants tn, n ∈ N. The continuity properties of the LKF candidates are

summarized in Table 2.3.

Time derivative of Lyapunov-Krasovskii functionals

The stability and stabilization conditions are based on the time derivatives of the

LKFs. The time derivative of the LKFs used in this chapter are summarized in

Table 2.4. Computing the time derivatives of V1 and V3 are straightforward. Here,

the time derivative of the LKF candidate V2 is computed. Applying the Leibniz

integral rule to V2 and using (2.3) yields

V̇2 =−
∫ t

t−ρ

eα(s−t)
[
ẋT (s) xT (tn)

]
R
[
ẋT (s) xT (tn)

]T
ds

+ (τ − ρ)
[
ẋT xT (tn)

]
R
[
ẋT xT (tn)

]T
− αV2. (2.18)
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For R > 0, α > 0, s ∈ [t − ρ, t], 0 ≤ ρ < τ , and an arbitrary time varying vector

h(t) ∈ R
2nx we can write

[[
ẋT (s) xT (tn)

]
hT
] [eα(s−t)R −I

−I eατR−1

] [[
ẋT (s) xT (tn)

]
hT
]T

≥ 0.

This inequality can be verified using Schur complement (see Definition 2.2). There-

fore,

−eα(s−t)
[
ẋT (s) xT (tn)

]
R
[
ẋT (s) xT (tn)

]T
≤hT eατR−1h−

[
ẋT (s) xT (tn)

]
h

− hT
[
ẋT (s) xT (tn)

]T
.

Note that x is absolutely continuous and in the interval between t − ρ and t, t ∈
[tn, tn+1), the vector x(tn) is constant. Therefore, integrating both sides from t− ρ to

t, with respect to s, yields

−
∫ t

t−ρ

eα(s−t)
[
ẋT (s) xT (tn)

]
R
[
ẋT (s) xT (tn)

]T
ds

≤ ρhT eατR−1h−
[
xT − xT (tn) ρxT (tn)

]
h− hT

[
xT − xT (tn) ρxT (tn)

]T
. (2.19)

Replacing (2.19) in (2.18), we get

V̇2 ≤ρhT eατR−1h−
[
xT − xT (tn) ρxT (tn)

]
h− hT

[
xT − xT (tn) ρxT (tn)

]T
+ (τ − ρ)

[
ẋT xT (tn)

]
R
[
ẋT xT (tn)

]T
− αV2. (2.20)

The main results of this chapter are presented in the following two sections.

2.3 Stability Analysis

Assume that a linear controller is designed to stabilize the linear system (2.1) in

continuous-time. In practice, however, the controller will be located between a sam-

pler and a zero-order-hold in the feedback loop. In this section, our objective is to find

a lower bound on the MASP that preserves exponential stability of the closed-loop

linear system. We propose sufficient stability conditions in the form of LMIs that can

be solved efficiently using available software.
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Table 2.4: Time derivative of the LKF candidates for t ∈ [tn, tn+1)

V̇1 = ẋTPx+ xTPẋ

V̇2 ≤ ρhT eατR−1h−
[
xT − xT (tn) ρxT (tn)

]
h− hT

[
xT − xT (tn) ρxT (tn)

]T
+(τ − ρ)

[
ẋT xT (tn)

]
R
[
ẋT xT (tn)

]T
− αV2

V̇3 = − (x(t)− x(tn))
T X (x(t)− x(tn))

+(τ − ρ)
(
ẋT (t)X (x(t)− x(tn)) + (x(t)− x(tn))

T Xẋ(t)
)

Theorem 2.2. Consider the closed-loop linear sampled-data system defined in (2.1)

and (2.2) with nonuniform sampling intervals smaller than τ > 0. Given α > 0, the

system is globally uniformly exponentially stable, with a decay rate greater then α/2,

if there exist symmetric positive definite matrices P , R, and X, and a matrix N , with

appropriate dimensions, satisfying

Ψ+ τM1 < 0 (2.21)[
Ψ+ τM2 τN

τNT −τe−ατR

]
< 0 (2.22)

where

Ψ =
[
A BK

]T [
P 0
]
+
[
P 0
]T [

A BK
]
+ α
[
I 0
]T

P
[
I 0
]

−
[
I −I

]T
X
[
I −I

]
−
[
I −I

0 0

]T
NT −N

[
I −I

0 0

]
,

M1 =

[
A BK

0 I

]T
R

[
A BK

0 I

]
+ α
[
I −I

]T
X
[
I −I

]
+
[
A BK

]T
X
[
I −I

]
+
[
I −I

]T
X
[
A BK

]
,

M2 =−
[
0 0

0 I

]T
NT −N

[
0 0

0 I

]
.
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Proof. Here, we prove that the LMIs in Theorem 2.2 are sufficient conditions for

the inequalities in Theorem 2.1 to be satisfied. To this end, note that the linear

sampled-data system defined in (2.1) and (2.2) can be written as a retarded functional

differential equation ẋ = f(t, xt) with f(t, xt) = Ax(t) + BKxt(−ρ). Consider the

LKF candidate (2.14). Based on Table 2.2, it is straightforward to show that the

LKF (2.14) satisfies inequality (2.10). According to Table 2.3, it is easy to see that

the LKF (2.14) satisfies inequality (2.11). Next, we study V̇ in the interval between

two consecutive sampling instants. Recalling (2.1) and (2.2), we have

ẋ(t) =
[
A BK

]
ζ(t),

where ζ(t) =
[
xT (t) xT (tn)

]T
, t ∈ [tn, tn+1). The time derivative of V is composed

of three terms that can be found in Table 2.4. Let h(t) = NT ζ(t), where N is a

matrix in R
2nx×2nx . Therefore,

V̇ + αV = V̇1 + V̇2 + V̇3 + α(V1 + V2 + V3)

≤ζT
([

A BK
]T

P
[
I 0
]
+
[
I 0
]T

P
[
A BK

]
+ α
[
I 0
]T

P
[
I 0
]

+ρNeατR−1NT −
[
I −I

0 ρI

]T
NT −N

[
I −I

0 ρI

]

+(τ − ρ)

[
A BK

0 I

]T
R

[
A BK

0 I

]
+ (α(τ − ρ)− 1)

[
I −I

]T
X
[
I −I

]
+(τ − ρ)

[
A BK

]T
X
[
I −I

]
+ (τ − ρ)

[
I −I

]T
X
[
A BK

])
ζ.

(2.23)

Hence, for ρ = 0, LMI (2.21) implies V̇ + αV < 0. Using Schur complement (see

Definition 2.2), LMI (2.22) implies V̇ + αV < 0 for ρ = τ . Since (2.23) is affine in

ρ, LMIs (2.21) and (2.22) are sufficient conditions for V̇ + αV < 0 to hold for any

ρ ∈ (0, τ), that is for any t ∈ (tn, tn+1). Therefore, inequality (2.12) in Theorem 2.1 is

satisfied. Note that based on Assumption 2.1, inequality (2.13) holds for all sampling

instants tn, n ∈ N, with q = 1. This finishes the proof.

Remark 2.1. In intuitive terms, relaxing Assumption 2.1 by letting the sampling

intervals approach zero, yields ρ(t) → 0 and x(t) = x(tn) for tn ≤ t < tn+1. Therefore,
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V2 and V3 in (2.14) vanish and the LMIs of Theorem 2.2 reduce to

P > 0,

(A+BK)TP + P (A+BK) < 0,

that are the conditions for stability of continuous-time linear systems.

The following proposition, addresses robust stability of linear sampled-data sys-

tems with polytopic uncertainty in system parameters.

Proposition 2.1. Suppose that the pair of system matrices S =
[
A B

]
is unknown

but satisfies the following condition

S ∈
{

p∑
i=1

αiSi, 0 ≤ αi ≤ 1,

p∑
i=1

αi = 1

}
,

where Si =
[
Ai Bi

]
, i ∈ {1, ..., p}, denote the vertices of a convex polytope. If the

LMIs in Theorem 2.2 hold for each Si, i ∈ {1, ..., p}, with the same variables P ,

R, and X, then the closed-loop linear sampled-data system, with variable sampling

intervals smaller than τ , is globally uniformly exponentially stable.

Proof. Assume that the LMIs in Theorem 2.2 hold for each Si, i ∈ {1, ..., p}, with
the same matrix variables P , R, and X. Given the linear structure of the stability

criteria in Theorem 2.2, it is guaranteed that the LMIs (2.21) and (2.22) hold for

any matrix parameter lying in the convex hull of Si, i ∈ {1, ..., p}. Therefore, the

uncertain linear sampled-data system is globally uniformly exponentially stable.

Remark 2.2. Assume that the sampled-data system has a time-varying uncertain

parameter that is lower and upper bounded and appears linearly in the vector field.

Similar to the proof of Proposition 2.1, it can be proved that if the LMIs in Theo-

rem 2.2 are satisfied at the lower and upper bounds of the uncertain parameter then

the closed-loop system is exponentially stable.

Based on Theorem 2.2, the problem of finding a lower bound on the MASP that

preserves exponential stability is formulated as

Problem 2.1.

maximize τ

subject to P > 0, R > 0, X > 0, (2.21) and (2.22).
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In this chapter, the computed lower bound on the MASP that preserves expo-

nential stability is denoted by τmax.

2.4 Controller Synthesis

When the controller gain K is unknown, the LMIs in Theorem 2.2 turn into bilinear

matrix inequalities that cannot be solved efficiently. The following theorem addresses

this issue and provides sufficient conditions for controller synthesis that can be cast

as LMIs.

Theorem 2.3. Consider the closed-loop linear sampled-data system defined in (2.1)

and (2.2) with nonuniform sampling intervals smaller than τ > 0. Given α > 0, there

exists an exponentially stabilizing linear feedback gain K = Y Q−1 if there exist a sym-

metric positive definite matrix Q, matrices Y and Ns, with appropriate dimensions,

and a positive scalar εX , satisfying⎡⎢⎢⎢⎢⎢⎣
Ψs + τM1s τ

[
AQ BY

0 Q

]T

τ

[
AQ BY

0 Q

]
−τQ

⎤⎥⎥⎥⎥⎥⎦ < 0 (2.24)

[
Ψs + τM2s τNs

τNT
s −τe−ατQ

]
< 0 (2.25)

where

Q =diag(Q,Q), (2.26)

Ψs =
[
AQ BY

]T [
I 0
]
+
[
I 0
]T [

AQ BY
]
+ α
[
I 0
]T

Q
[
I 0
]

− εX

[
I −I

]T
Q
[
I −I

]
−
[
I −I

0 0

]T
NT

s −Ns

[
I −I

0 0

]
,

M1s =αεX

[
I −I

]T
Q
[
I −I

]
+ εX

[
AQ BY

]T [
I −I

]
+ εX

[
I −I

]T [
AQ BY

]
,

M2s =−
[
0 0

0 I

]T
NT

s −Ns

[
0 0

0 I

]
.

Proof. Here, we prove that inequalities (2.24) and (2.25) are sufficient conditions for

LMIs (2.21) and (2.22) to be satisfied. Suppose there exist matrices Q > 0, Y , and
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Ns, with appropriate dimensions, and a positive scalar εX , satisfying the stabilization

criteria in (2.24) and (2.25). Let

P = Q−1, X = εXQ
−1, R = Q

−1
, N = Q

−1
NsQ

−1
, K = Y Q−1, (2.27)

where Q is defined in (2.26). Multiplying (2.24) and (2.25) from left and right by

a block diagonal matrix of appropriate size, with Q−1 as the diagonal entries, and

using Schur complement (see Definition 2.2) yields LMIs (2.21) and (2.22), with the

change of variables (2.27). The proof is complete since for any set of matrix variables

satisfying (2.24) and (2.25), there exists a set of matrix variables (2.27) satisfying the

stability criteria in Theorem 2.2.

Based on Theorem 2.3, the problem of designing a state feedback controller which

provides a larger lower bound on the MASP that preserves exponential stability is

formulated as

Problem 2.2.

maximize τ

subject to Q > 0, εX > 0, (2.24) and (2.25).

The controller gain is then computed as K = Y Q−1.

2.5 Numerical Examples

In this section, the conditions of Theorem 2.2 and 2.3 are applied to several benchmark

examples and the results are compared with [47, 48].

Example 2.1. [47, 48, 75] Consider the closed-loop linear sampled-data system de-

fined in (2.1) and (2.2) with the following parameters

A =

[
0 1

0 −0.1

]
, B =

[
0

0.1

]
, K = −

[
3.75 11.5

]
.

The computed lower bound on the MASP that preserves exponential stability τmax is

compared with other research in the literature in Table 2.5. According to Table 2.5,

the results of this chapter compare favorably with previous research.
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Table 2.5: Comparison of the computed lower bound on the MASP that preserves
exponential stability τmax (s)

[48] [47] Theorem 2.2
Example 2.1 1.113 1.698 1.719
Example 2.2 0.447 0.591 0.705

Example 2.2. [15, 48] Consider the closed-loop linear sampled-data system defined

in (2.1) and (2.2) with the following parameters

A =

[
1 0.5

g1 −1

]
, B =

[
1 + g2

−1

]
, |g1| ≤ 0.1, |g2| ≤ 0.3, K = −

[
2.6884 0.6649

]
.

(2.28)

The computed lower bound on the MASP that preserves exponential stability τmax is

compared with other research in the literature in Table 2.5. According to Table 2.5,

the results of this chapter compare favorably with previous research. Note that, based

on Proposition 2.1, we simultaneously check the stability criteria in Theorem 2.2 for

each combination of Ai and Bj, i, j ∈ {1, 2}, defined by

A1 =

[
1 0.5

−0.1 −1

]
, A2 =

[
1 0.5

0.1 −1

]
, B1 =

[
0.7

−1

]
, B2 =

[
1.3

−1

]
.

Solving Problem 2.2 we find a new controller gain K = −
[
2.3765 0.5911

]
. Solving

Problem 2.1 with the new gain, one can see that the lower bound on the MASP that

preserves exponential stability is increased to τmax = 0.763 (s). This shows that the

new controller K is more robust to the sampling frequency than controller K defined

in (2.28).

2.6 Conclusion

A modified LKF was proposed to present new stability and stabilization criteria for

exponential stability of uncertain sampled-data linear systems. The problem of find-

ing a lower bound on the MASP that preserves exponential stability was formulated

as an optimization program in terms of LMIs. The controller synthesis problem was

cast as an optimization problem subject to LMIs with the MASP as a parameter. The

results of this chapter will be extended to linear sampled-data systems with multiple
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samplers and actuators in the following chapter.
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Chapter 3

Linear Multi-rate Sampled-data

Systems

The main objective of this chapter is to propose sufficient Krasovskii-based stability

and stabilization criteria for linear sampled-data systems, with multi-rate samplers

and time driven zero order holds, as a set of linear matrix inequalities (LMIs). In

the sampled-data structure discussed in this chapter, a plant with linear dynamics

is controlled by a linear controller which is located in the feedback loop between a

sensing block and an actuating block. The sensing block comprises several sensors

that sample at different rates and have non-uniform sampling intervals. The actuating

block comprises several actuators that are updated asynchronously and are modeled

as time driven zero order holds. For each sensor (or actuator), the problem of finding

an upper bound on the lowest sampling frequency (or refresh rate) that guarantees

exponential stability is cast as an optimization problem in terms of LMIs. It is shown

through examples that choosing the right sensors with adequate sampling frequencies

and the right actuators with adequate refresh rates has a considerable impact on

controller design and stability of the closed-loop system.

3.1 Introduction

In sampled-data systems, a continuous-time plant is controlled by a discrete-time

controller which is located in the feedback loop between a sensing block and an ac-

tuating block. Furthermore, it is assumed that the non-ideal communication links

experience data packet dropouts (see Fig. 3.1). The sensing block gathers the sensory

information through several sensors that work at potentially different sampling rates.

One reason is that different phenomena (e.g. temperature, pressure, or voltage) are
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Figure 3.1: The schematic diagram of a linear multi-rate sampled-data system.

measured with different sensors that naturally work at different sampling rates. Sec-

ond, different methods of sensing the same phenomenon can lead to different sampling

frequencies (e.g. measuring an angle with a potentiometer, an encoder, or a camera

through image processing). Even if the sensors are synchronized, the inevitable de-

lays and packet losses in non-ideal communication links result in the sensory data

arriving at the controller at different and non-uniform rates. The controller computes

new control signals as soon as new data becomes available from any of the sensors.

The actuating block applies the control signals to the plant through different actua-

tors that potentially have different refresh rates. If the refresh rate of the actuators

are high, the actuators can apply the control signal almost at the same time that

the controller is updated. Therefore, such actuators can be modeled as event driven

zero order holds where the events are the controller update instants. Electrostatic

and piezoelectric actuators that work at frequencies around 1 (MHz) are examples of

these actuators [76]. There are actuators, however, that have relatively low update

rates. Actuators that work based on electroactive polymers and shape memory alloys

as well as actuators such as electric cylinders and solenoids have a refresh rate of

10 (Hz) or less [76]. When using these actuators, the control signal computed by the

controller is not instantly applied to the plant. In these cases, the delay in applying

the control signal is not negligible and affects stability and performance of the closed-

loop system. In this chapter, we focus on actuators with low refresh rates and model

them as time driven zero order holds.

Stability analysis and controller synthesis of multi-rate sampled-data systems
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are practically relevant problems that have attracted researchers for several decades

(see [77, 78] and the references therein). Reference [79] develops a frequency do-

main technique for a dual-rate sampled-data systems (with 2 : 1 and 4 : 1 sampling

ratios) and applies it to the Space Shuttle flight control system. Reference [80] stud-

ies the controller synthesis problem for linear multi-rate sampled-data systems in

discrete-time using pole placement. Necessary and sufficient conditions for reach-

ability, controllability, and stabilizability of linear multi-rate sampled-data systems

are presented in [81]. In [82], nest algebra is used to address H2 and H∞ control

problems of multi-rate sampled-data systems. The H∞ controller synthesis problem

of asynchronous multi-rate sampled-data systems is addressed in [83]. However, the

stabilization criteria are convex only when the sample and hold rates are synchronous.

Following [84] and [83], a synthesis method for robust multi-rate track-following in

hard disk drives is proposed in [85]. In [86], a control strategy is presented to retune

a multi-rate PID controller in accordance with the delays detected in a networked

control system. The construction of LKFs for coupled differential-difference equa-

tions with a constant delay in each sensing channel is addressed in [87]. The main

drawback of these works is that they are restricted to sensors with uniform sampling

intervals or communication links with constant delays. Moreover, the uniform sam-

pling intervals or the constant delays are assumed to be commensurate, i.e. to have

rational ratios. In practice, however, sampling intervals and delays are not always

constant and known. For instance, in the servo control of brushless DC motors via

Hall-effect sensors, the sampling intervals depend on the motor speed and are not

predetermined [88]. According to [88], similar phenomenon occurs in applications

such as hard disk drives and CD-ROM servo systems. Furthermore, all sensors are

prone to uncertain non-uniform samplings due to non-ideal communication links with

delays and packet losses [48].

In contrast, one of the contributions of this chapter is to address the multi-

rate sampled-data problem with non-uniform sampling intervals (for the sensors) and

update intervals (for the actuators). To the best of the authors’ knowledge, the multi-

rate sampled-data problem with non-uniform sampling and update intervals has not

received many research contributions. Dual-rate sampled-data systems with non-

uniform sampling and update intervals are studied in [89]. However, in [89] all the

states are sampled simultaneously by the sensors and the control signals are applied

synchronously to the plant via time driven zero order holds. It is called a dual-rate

sampled-data structure because the actuators are updated at a different rate from

the samplers. In this chapter, we address a more general problem where the states
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are sampled by dedicated sensors at different rates and the inputs are asynchronously

applied to the plant through multiple time driven zero order holds.

The main contribution of this chapter is to present sufficient Krasovskii-based

stability and stabilization criteria for linear sampled-data systems with multi-rate

samplers and time driven zero order holds. Most importantly, the stability and sta-

bilization criteria are cast as LMIs that can be solved efficiently using available op-

timization software such as SeDuMi [16] and YALMIP [17]. For each sensor (or

actuator), the problem of finding an upper bound on the lowest sampling frequency

(or refresh rate) that guarantees exponential stability is cast as an optimization prob-

lem in terms of LMIs. It is shown through examples that choosing the right sensors

with adequate sampling frequencies has a considerable impact on controller design

and stability of the closed-loop system.

The rest of this chapter is organized as follows. Section 3.2 is dedicated to problem

statement and preliminary notions. Stability analysis and controller synthesis results

are presented in Section 3.3 and Section 3.4, respectively. Numerical examples are

provided in Section 3.5, followed by the concluding remarks in Section 3.6.

3.2 Problem Statement

Consider a stabilizable linear system

ẋ(t) = Ax(t) + Bu(t), (3.1)

where x ∈ R
nx denotes the state vector, A ∈ R

nx×nx , B ∈ R
nx×nu , and u ∈ R

nu is the

control input. The case of systems with polytopic uncertainty in system matrices A

and B will also be addressed in Sections 3.3 and 3.4. Let a continuous-time stabilizing

linear controller for (3.1) be defined by

u(t) = Kx(t), (3.2)

where K ∈ R
nu×nx . In practice, the controller is located in the feedback loop between

a sensing block and an actuating block (see Fig. 3.1). The sensing block comprises m

sensors Si, i ∈ {1, . . . ,m}, where m ≤ nx. Each sensor Si is dedicated to sampling

one component of the state vector which we denote by xi. Each of the m components

xi can possibly be a vector (e.g. a camera provides the position of an object in a two

dimensional space). The state vector is then written as xT =
[
xT
1 . . . xT

m

]
. The

actuating block comprises nu actuators. Each actuator is modeled as a zero order
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hold Zj, j ∈ {1, . . . , nu}. The sensors and the zero order holds are time driven and

asynchronous. Furthermore, the sampling frequency for the sensors and the refresh

rate for the actuators are uncertain and non-uniform.

Assumption 3.1. The sensor Si, i ∈ {1, . . . ,m}, samples the ith component of the

state vector xi at sampling instants sik, where 0 < εs < sik+1 − sik < τ is, ∀ k ∈ N.

Assumption 3.2. The zero order hold Zj, j ∈ {1, . . . , nu}, is updated at instants zjk,

where 0 < εz < zjk+1 − zjk < τ jz , ∀ k ∈ N.

Without loss of generality, by the index k ∈ N, we denote only the instants sik
and zjk for which a data packet is not lost. The positive constant εs (respectively εz)

models the fact that a sensor (respectively an actuator) cannot measure a particular

phenomenon (respectively be updated) twice at the same instant. The scalars τ is,

i ∈ {1, . . . ,m}, and τ jz , j ∈ {1, . . . , nu}, denote the longest interval between two con-

secutive samplings by the sensor Si and the longest interval between two consecutive

updates of the actuator Zj, respectively. For each sensor Si, i ∈ {1, . . . ,m}, the time

elapsed since the sensor’s last sampling instant is denoted by a sawtooth function

ρis(t) (see the top two plots in Fig. 3.2) defined as

ρis(t) = t− sik, ∀ t ∈ [sik, s
i
k+1). (3.3)

Similarly, the time elapsed since the last update of each zero order hold Zj, j ∈
{1, . . . , nu}, is denoted by a sawtooth function ρjz(t) (see Fig. 3.2) defined as

ρjz(t) = t− zjk, ∀ t ∈ [zjk, z
j
k+1). (3.4)

Therefore, equation (3.3) and Assumption 3.1 yield

0 ≤ ρis < τ is, i ∈ {1, . . . ,m}, (3.5)

and equation (3.4) and Assumption 3.2 yield

0 ≤ ρjz < τ jz , j ∈ {1, . . . , nu}. (3.6)

The instants at which (at least) one of the nu zero order holds is updated constitute

an increasing sequence in time, represented by {zk}, k ∈ N. Each instant zk, k ∈ N,

is associated with (i.e. is equal to) at least one and at most nu instants zjkj , kj ∈ N,

with different j ∈ {1, . . . , nu} (see Assumption 3.2). The time elapsed since the last
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sampled-data structure with two sensors and two actuators.
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update of any of the nu zero order holds is denoted by ρz(t), i.e.

ρz(t) = t− zk, ∀ t ∈ [zk, zk+1) (3.7)

= min
j

ρjz(t), j ∈ {1, . . . , nu}.

Therefore, based on (3.6)

0 ≤ ρz(t) < τz, (3.8)

where

τz = min
j

τ jz , j ∈ {1, . . . , nu}. (3.9)

The controller is assumed to send new values to the zero order holds as soon as it

receives new data from a sensor. The zero order holds are time driven, however, and

are not updated instantly. The time elapsed since data acquired by sensor Si was

last used to update the zero order hold Zj is denoted by ρijsz(t), i.e.

ρijsz(t) = t− zjk∗ + ρis(z
j
k∗), ∀ t ∈ [zjk∗ , z

j
k∗+1),

= ρjz(t) + ρis(z
j
k∗), ∀ t ∈ [zjk∗ , z

j
k∗+1). (3.10)

Figure 3.3 illustrates the sawtooth function ρijsz(t). For further clarification, Figure 3.2

shows the function ρ21sz(t) in a multi-rate sampled-data structure with two sensors

and two actuators. Note that at each instant zjk, j ∈ {1, . . . , nu}, the function ρjz(t)

vanishes and the sawtooth function ρijsz(t) jumps to ρis(z
j
k∗). Therefore, unlike ρ

i
s(t) and

ρjz(t), the function ρijsz(t) does not necessarily decrease to zero at its discontinuities.

Based on (3.5) and (3.6), equation (3.10) yields

0 ≤ ρijsz < τ jz + τ is = τ ijsz. (3.11)

In our proposed multi-rate sampled-data structure, τ ijsz denotes the maximum allow-

able transfer interval from the sensor Si to the zero order hold Zj. The control signal

38



at each input channel j ∈ {1, . . . , nu} is now computed as

uj(t) = Kjxj(t),

where Kj represents the jth row of K, i.e. KT =
[
KT

1 . . . KT
nu

]
, and

xj(t) =
[
xT
1 (t− ρ1jsz(t)) . . . xT

m(t− ρmj
sz (t))

]T
. (3.12)

Therefore, the control signal (3.2) is rewritten as

u(t) = Kx̃(t), (3.13)

where

K =

⎡⎢⎢⎢⎢⎢⎣
K1 0 . . . 0

0 K2 . . . 0

...
. . .

...

0 . . . 0 Knu

⎤⎥⎥⎥⎥⎥⎦ (3.14)

and

x̃(t) =
[
xT
1 (t) . . . xT

nu
(t)
]T

. (3.15)

Based on Assumption 3.2, there exists a lower bound on the length of the interval

(zjk, z
j
k+1). The length of the interval (zk, zk+1), however, can approach zero because

two zero order holds might possibly be updated at the same time. Nonetheless, the

following statement is valid based on Assumption 3.2.

Lemma 3.1. Let Tz = maxj τ
j
z , j ∈ {1, . . . , nu}. For any interval spanning a time

period longer than (nu + 1)Tz, there exists at least one interval (zk′ , zk′+1), k
′ ∈ N,

with a length larger than εz/nu.

Proof. Based on Assumption 3.2, each zero order hold is updated at least once in

any interval spanning a time period of length Tz. Hence, any such interval contains

at least nu instants zjk, k ∈ N, j ∈ {1, . . . , nu}. Therefore, any interval spanning a

time period longer than (nu + 1)Tz contains at least (nu + 1)nu instants zjk, k ∈ N,

j ∈ {1, . . . , nu}. Since each zk, k ∈ N, is associated with at most nu instants zjk∗ ,

k∗ ∈ N, j ∈ {1, . . . , nu}, there exist at least nu + 1 instants zk, k ∈ N, in any interval

spanning a time period longer than (nu + 1)Tz. Equivalently, any interval spanning

a time period longer than (nu + 1)Tz contains at least one time interval (zk, zk+nu),

k ∈ N. Since each zk, k ∈ N, is associated with at least one zjk∗ , k∗ ∈ N, any
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interval (zk, zk+nu) contains at least two instants zjk∗ and zjk∗+1, corresponding to the

same zero order hold Zj, j ∈ {1, . . . , nu}. Therefore, Assumption 3.2 guarantees that

the interval (zk, zk+nu) has a length greater than εz. Hence, the interval (zk, zk+nu)

contains at least one interval (zk′ , zk′+1) with a length more than εz/nu, for some k′

verifying k ≤ k′ ≤ k + nu − 1.

Lemma 3.1 is used in the proof of the main results to guarantee that an LKF

candidate strictly decreases in intervals spanning a time period longer than (nu+1)Tz

(see Theorem 2.1 for more details). The following lemma presents a useful property

of Kronecker products.

Lemma 3.2. Let H and ξ be a matrix and a vector, respectively, of the appropriate

dimensions. Then 1⊗ (Hξ) = (1⊗H)ξ, where 1 denotes the column vector with all

elements equal to 1.

Proof. It is a well known fact (see e.g. [90] Lemma 4.3.1) that

(BT ⊗A) vec(C) = vec(ACB), (3.16)

where A ∈ R
m×n, B ∈ R

p×q, C ∈ R
n×p, and vec(.) represents the vector of stacked

columns of a matrix. Let BT = 1, A = H, and C = ξ. Hence, equation (3.16) yields

(1⊗H)ξ = (1⊗H) vec(ξ) = vec(Hξ1T ) = vec((Hξ)1T ) = 1⊗ (Hξ),

where we used the fact that Hξ is a vector in the last equality.

The main results of this chapter will be presented in the next two sections.

3.3 Stability Analysis

In this section, we address stability analysis of linear multi-rate sampled-data systems.

It is assumed that a stabilizing controller is already designed in continuous-time. Our

objective is to find lower bounds on the MASPs (τ is, i ∈ {1, . . . ,m}) and maximum

allowable update periods (MAUPs) (τ jz , j ∈ {1, . . . , nu}) that preserve exponential

stability. The controller synthesis problem for linear multi-rate sampled-data systems

is addressed in Section 3.4. Let W([−T, 0],Rnx) be the space of absolutely continuous

functions mapping the interval [−T, 0] to R
nx , where

T = max
i,j

τ ijsz, i ∈ {1, . . . ,m}, j ∈ {1, . . . , nu}.
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Based on (3.7), (3.10), and (3.11), note that

0 < ρz ≤ ρijsz < T. (3.17)

We define the function xt ∈ W as xt(r) = x(t + r), − T ≤ r ≤ 0, and denote its

norm by

||xt||W =
m∑
i=1

max
r∈[−T,0]

|xi(t+ r)|+
[∫ 0

−T

|ẋt(r)|2 dr
] 1

2

. (3.18)

The following theorem provides a set of sufficient conditions for which the closed-loop

trajectories of a linear multi-rate sampled-data system exponentially converge to the

origin.

Theorem 3.1. Consider the closed-loop linear multi-rate sampled-data system defined

in (3.1) and (3.13) under Assumptions 3.1 and 3.2. The system is globally uniformly

exponentially stable with a decay rate greater than α/2 if there exist symmetric positive

definite matrices P , R, Rij, R′
ij, i ∈ {1, . . . ,m}, j ∈ {1, . . . , nu}, and X1, and

matrices N , N , N
′
, and N

′′
, with appropriate dimensions, satisfying⎡⎢⎢⎢⎢⎢⎣

(
Ψ+ τzM1 + (1⊗ F )T

×τ(R +R
′
)(1⊗ F )

)
NτE N

′
τE

EτN
T −EτR 0

EτN
′T

0 −EτR
′

⎤⎥⎥⎥⎥⎥⎦ < 0 (3.19)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
Ψ+ τzM2 + (1⊗ F )T

×τ(R +R
′
)(1⊗ F )

)
NτE N

′
τE τzN τzN

′′

EτN
T −EτR 0 0 0

EτN
′T

0 −EτR
′

0 0

τzN
T 0 0 −τz

R
eατz 0

τzN
′′T

0 0 0 −τz
R
′

eατz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (3.20)

where τz is defined in (3.9) and

X =
[
I −I

]T
X1

[
I −I

]
, (3.21)

τ j =diag(τ 1jsz I, . . . , τ
mj
sz I), (3.22)

τ =diag(τ 1, . . . , τnu), (3.23)

Ej =diag(eατ
1j
sz I, . . . , eατ

mj
sz I), (3.24)
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E =diag(E1, . . . , Enu), (3.25)

Rj =diag(R1j, . . . , Rmj), (3.26)

R =diag(R1, . . . , Rnu), (3.27)

R
′
j =diag(R′

1j, . . . , R
′
mj), (3.28)

R
′
=diag(R

′
1, . . . , R

′
nu
), (3.29)

F =
[
A BK 0

]
,

Ψ =F T
[
P 0 0

]
+
[
P 0 0

]T
F + α

[
I 0 0

]T
P
[
I 0 0

]

−

⎡⎢⎢⎣
I 0 −I

0 0 0

0 0 0

⎤⎥⎥⎦
T

NT −N

⎡⎢⎢⎣
I 0 −I

0 0 0

0 0 0

⎤⎥⎥⎦−
(
1⊗
[
I 0 0

]
−
[
0 I 0

])T
N

T

−N
(
1⊗
[
I 0 0

]
−
[
0 I 0

])
−
(
1⊗
[
0 0 I

]
−
[
0 I 0

])T
N

′T

−N
′ (
1⊗
[
0 0 I

]
−
[
0 I 0

])
−
(
1⊗
[
I 0 −I

])T
N

′′T

−N
′′ (

1⊗
[
I 0 −I

])
−
[
I 0 0

0 0 I

]T
X

[
I 0 0

0 0 I

]
,

M1 =

⎡⎢⎢⎣
A BK 0

0 I 0

0 0 I

⎤⎥⎥⎦
T

R

⎡⎢⎢⎣
A BK 0

0 I 0

0 0 I

⎤⎥⎥⎦+ α

[
I 0 0

0 0 I

]T
X

[
I 0 0

0 0 I

]

+

[
F

0

]T
X

[
I 0 0

0 0 I

]
+

[
I 0 0

0 0 I

]T
X

[
F

0

]
,

M2 =−

⎡⎢⎢⎣
0 0 0

0 I 0

0 0 I

⎤⎥⎥⎦
T

NT −N

⎡⎢⎢⎣
0 0 0

0 I 0

0 0 I

⎤⎥⎥⎦ .
Proof. Consider the LKF candidate

V (t, xt) =
5∑

l=1

Vl, t ∈ [zk, zk+1), (3.30)

where

V1 =xT (t)Px(t),
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V2 =(τz − ρz)

∫ t

t−ρz

eα(s−t)
[
ẋT (s) x̃T (s) xT (zk)

]
R
[
ẋT (s) x̃T (s) xT (zk)

]T
ds,

V3 =
nu∑
j=1

m∑
i=1

∫ t

t−ρijsz

(τ ijsz − t+ s)eα(s−t)ẋT
i (s)Rijẋi(s) ds,

V4 =
nu∑
j=1

m∑
i=1

∫ t

t−ρijsz

(τ ijsz − t+ s)eα(s−t)ẋT
i (s)R

′
ijẋi(s) ds,

V5 =(τz − ρz)
[
xT (t) xT (zk)

]
X
[
xT (t) xT (zk)

]T
,

where x̃(t) and X are defined in (3.15) and (3.21), respectively, P , R, Rij, R′
ij,

i ∈ {1, . . . ,m}, j ∈ {1, . . . , nu}, and X1 are positive definite matrices, and α/2 is the

desired bound on the decay rate. The reason for defining two similar functionals V3

and V4 becomes clear later in the proof where we take different approaches to compute

V̇3 and V̇4 (see (3.36) and (3.37)). This decreases the conservatism of the sufficient

Krasovskii-based conditions.

In the rest of the proof, we show that the LMIs in Theorem 3.1 are sufficient

conditions for the LKF (3.30) to satisfy the conditions of Theorem 2.1. To this end, a

procedure similar to the one in Chapter 2 is followed. Considering (3.17) and (3.18),

observe that

|x(t)| ≤
m∑
i=1

|xi(t+ 0)| ≤ ||xt||W ,

|x(zk)| ≤
m∑
i=1

|xi(t− ρz)| ≤ ||xt||W .

Similarly, equations (3.12) and (3.15)-(3.18) yield

|xj(t)| ≤
m∑
i=1

|xi(t− ρijsz)| ≤ ||xt||W ,

|x̃(t)| =
(

nu∑
j=1

|xj(t)|2
)1/2

≤ √
nu||xt||W .

Using these inequalities it becomes straightforward to compute the lower and upper

bounds on the LKF (3.30) (see Table 3.1). Therefore, the LKF (3.30) satisfies (2.10).

Next, we show that the LKF (3.30) satisfies (2.11). The arguments for the functionals

V1, V2, and V5 are similar to the ones that were used in Chapter 2. The functionals V3

and V4 are the sum of non-negative integrals. Note that ρis(z
j
k+1)− ρis(z

j
k) ≤ zjk+1− zjk
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Table 3.1: Lower and upper bounds on the LKF candidates (3.30)

LKF candidate Lower bound Upper bound

V1 λmin(P )|xt(0)|2 λmax(P )||xt||2W

V2 0 τzλmax(R)(1 + τz(1 + nu))||xt||2W

V3 0
nu∑
j=1

m∑
i=1

τ ijszλmax(Rij)||xt||2W

V4 0
nu∑
j=1

m∑
i=1

τ ijszλmax(R
′
ij)||xt||2W

V5 0 4τλmax(X1)||xt||2W

because according to (3.3) the time derivative of ρis is defined almost everywhere and

is equal to one. Therefore, V3 and V4 are non-increasing at instants t = zk because

the integrands are non-negative and based on (3.10) the lower limits of the integrals

increase from zjk − ρis(z
j
k) to zjk+1 − ρis(z

j
k+1). Therefore, the LKF is non-increasing at

instants zk and satisfies (2.11). Next, we study the time derivative of V in the interval

t ∈ (zk, zk+1). The functional V̇ is composed of five terms computed as follows. The

time derivative of V1 is

V̇1 = ẋTPx+ xTPẋ. (3.31)

From (3.7) we have ρ̇z = 1. Hence, applying the Leibniz integral rule to V2 yields

V̇2 =−
∫ t

t−ρz

eα(s−t)
[
ẋT (s) x̃T (s) xT (zk)

]
R
[
ẋT (s) x̃T (s) xT (zk)

]T
ds

+ (τz − ρz)
[
ẋT x̃T xT (zk)

]
R
[
ẋT x̃T xT (zk)

]T
− αV2. (3.32)

Since R is positive definite, α > 0, and ρz < τz, for any s ∈ [t−ρz, t] and any arbitrary

time varying vector h(t) ∈ R
(2+nu)nx , we can write⎡⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎣
ẋ(s)

x̃(s)

x(zk)

⎤⎥⎥⎦
h

⎤⎥⎥⎥⎥⎥⎦
T [

eα(s−t)R −I

−I eατzR−1

]⎡⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎣
ẋ(s)

x̃(s)

x(zk)

⎤⎥⎥⎦
h

⎤⎥⎥⎥⎥⎥⎦ ≥ 0. (3.33)
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This inequality can be verified using Schur complement. Hence, for all s ∈ [t− ρz, t],

−eα(s−t)
[
ẋT (s) x̃T (s) xT (zk)

]
R
[
ẋT (s) x̃T (s) xT (zk)

]T
≤hT eατzR−1h−

[
ẋT (s) x̃T (s) xT (zk)

]
h− hT

[
ẋT (s) x̃T (s) xT (zk)

]T
.

Note that for s varying between t− ρz and t, the vectors x̃(s) and x(zk) are constant,

and x(s) = xs(0) ∈ W is absolutely continuous. Therefore, integrating both sides

with respect to s yields

−
∫ t

t−ρz

eα(s−t)
[
ẋT (s) x̃T (s) xT (zk)

]
R
[
ẋT (s) x̃T (s) xT (zk)

]T
ds

≤ ρzh
T eατzR−1h−

[
xT − xT (t− ρz) ρzx̃

T ρzx
T (zk)

]
h

− hT
[
xT − xT (t− ρz) ρzx̃

T ρzx
T (zk)

]T
. (3.34)

Based on (3.7), t− ρz = zk. Hence, replacing (3.34) in (3.32) yields

V̇2 ≤ρzh
T eατzR−1h−

[
xT − xT (zk) ρzx̃

T ρzx
T (zk)

]
h

− hT
[
xT − xT (zk) ρzx̃

T ρzx
T (zk)

]T
+ (τz − ρz)

[
ẋT x̃T xT (zk)

]
R
[
ẋT x̃T xT (zk)

]T
− αV2. (3.35)

Similarly, we can write the following

V̇3 =
nu∑
j=1

m∑
i=1

(
τ ijszẋ

T
i Rijẋi −

∫ t

t−ρijsz

eα(s−t)ẋT
i (s)Rijẋi(s) ds

)
− αV3

≤
nu∑
j=1

m∑
i=1

(
τ ijszẋ

T
i Rijẋi + ρijszh

T
ije

ατ ijszR−1
ij hij −

[
xi − xi(t− ρijsz)

]T
hij

− hT
ij

[
xi − xi(t− ρijsz)

] )− αV3, (3.36)

V̇4 =
nu∑
j=1

m∑
i=1

(
τ ijszẋ

T
i R

′
ijẋi −

∫ t−ρz

t−ρijsz

eα(s−t)ẋT
i (s)R

′
ijẋi(s) ds

−
∫ t

t−ρz

eα(s−t)ẋT
i (s)R

′
ijẋi(s) ds

)
− αV4

≤
nu∑
j=1

m∑
i=1

(
τ ijszẋ

T
i R

′
ijẋi + (ρijsz − ρz)h

′T
ij e

ατ ijszR′−1
ij h′

ij −
[
xi(zk)− xi(t− ρijsz)

]T
h′
ij

− h′T
ij

[
xi(zk)− xi(t− ρijsz)

]
+ ρzh

′′T
ij e

ατzR′−1
ij h′′

ij − [xi − xi(zk)]
T h′′

ij
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− h′′T
ij [xi − xi(zk)]

)
− αV4, (3.37)

where hij(t), h
′
ij(t), and h′′

ij(t), i ∈ {1, . . . ,m}, j ∈ {1, . . . , nu}, are arbitrary time-

varying vectors of the appropriate dimension. Based on (3.10) and (3.11), 0 ≤ ρijsz −
ρz ≤ ρijsz < τ ijsz. Hence, inequalities (3.36) and (3.37) can be rewritten in a more

compact form as

V̇3 ≤
nu∑
j=1

(
ẋT τ jRjẋ+ h

T

j τ jEjR
−1

j hj − [x− xj]
T hj − h

T

j [x− xj]
)
− αV3

= (1⊗ ẋ)T τR(1⊗ ẋ) + h
T
τER

−1
h− [1⊗ x− x̃]T h− h

T
[1⊗ x− x̃]− αV3,

(3.38)

V̇4 ≤
nu∑
j=1

(
ẋT τ jR

′
jẋ+ h

′T
j τ jEjR

′−1

j h
′
j − [x(zk)− xj]

T h
′
j − h

′T
j [x(zk)− xj]

+ ρzh
′′T
j eατzR

′−1

j h
′′
j − [x− x(zk)]

T h
′′
j − h

′′T
j [x− x(zk)]

)
− αV4

= (1⊗ ẋ)T τR
′
(1⊗ ẋ) + h

′T
τER

′−1
h
′ − [1⊗ x(zk)− x̃]T h

′ − h
′T
[1⊗ x(zk)− x̃]

+ ρzh
′′T
eατzR

′−1
h
′′ − (1⊗ [x− x(zk)])

Th
′′ − h

′′T
(1⊗ [x− x(zk)])− αV4,

(3.39)

where τ j, τ , Ej, E, Rj, R, R
′
j, R

′
, xj, and x̃ are defined in (3.22)-(3.29), (3.12),

and (3.15), and

hj =
[
hT
1j . . . hT

mj

]T
∈ R

nx , h
′
j =
[
h′T
1j . . . h′T

mj

]T
∈ R

nx ,

h
′′
j =
[
h′′T
1j . . . h′′T

mj

]T
∈ R

nx , h =
[
h
T

1 . . . h
T

nu

]T
∈ R

nunx ,

h
′
=
[
h
′T
1 . . . h

′T
nu

]T
∈ R

nunx , h
′′
=
[
h
′′T
1 . . . h

′′T
nu

]T
∈ R

nunx .

The time derivative of V5 is computed as

V̇5 =−
[
xT xT (zk)

]
X
[
xT xT (zk)

]T
+ (τz − ρz)

[
ẋT 0

]
X
[
xT xT (zk)

]T
+ (τz − ρz)

[
xT xT (zk)

]
X
[
ẋT 0

]T
. (3.40)

We now define an augmented vector ζ(t) ∈ R
(2+nu)nx as

ζ(t) =
[
xT (t) x̃T (t) xT (zk)

]T
, t ∈ [zk, zk+1), (3.41)
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where x̃ is defined in (3.15). Recalling (3.1) and (3.13), the closed-loop vector field

can be written as

ẋ(t) =
[
A BK 0

]
ζ(t). (3.42)

Replacing (3.42) in (3.31), (3.35), and (3.38)-(3.40), setting h(t) = NT ζ(t), h(t) =

N
T
ζ(t), h

′
(t) = N

′T
ζ(t), h

′′
(t) = N

′′T
ζ(t), where N , N , N

′
, and N

′′
are matrices of

the appropriate dimensions, and using Lemma 3.2, yields

V̇ + αV =
∑5

l=1(V̇l + αVl)

≤ ζT

([
A BK 0

]T
P
[
I 0 0

]
+
[
I 0 0

]T
P
[
A BK 0

]

+ α
[
I 0 0

]T
P
[
I 0 0

]
+ ρzNeατzR−1NT −

⎡⎢⎢⎣
I 0 −I

0 ρzI 0

0 0 ρzI

⎤⎥⎥⎦
T

NT

−N

⎡⎢⎢⎣
I 0 −I

0 ρzI 0

0 0 ρzI

⎤⎥⎥⎦+ (τz − ρz)

⎡⎢⎢⎣
A BK 0

0 I 0

0 0 I

⎤⎥⎥⎦
T

R

⎡⎢⎢⎣
A BK 0

0 I 0

0 0 I

⎤⎥⎥⎦
+
(
1⊗
[
A BK 0

])T
τ(R +R

′
)
(
1⊗
[
A BK 0

])
+NτER

−1
N

T −
(
1⊗
[
I 0 0

]
−
[
0 I 0

])T
N

T

−N
(
1⊗
[
I 0 0

]
−
[
0 I 0

])
+N

′
τER

′−1
N

′T

−
(
1⊗
[
0 0 I

]
−
[
0 I 0

])T
N

′T

−N
′ (
1⊗
[
0 0 I

]
−
[
0 I 0

])
+ ρzN

′′
eατzR

′−1
N

′′T

−
(
1⊗
[
I 0 −I

])T
N

′′T −N
′′ (

1⊗
[
I 0 −I

])
+
[
0 I 0

]T
(N

T
+N

′T
) + (N +N

′
)
[
0 I 0

]
+ (α(τz − ρz)− 1)

[
I 0 0

0 0 I

]T
X

[
I 0 0

0 0 I

]

+ (τz − ρz)

[
A BK 0

0 0 0

]T
X

[
I 0 0

0 0 I

]

+ (τz − ρz)

[
I 0 0

0 0 I

]T
X

[
A BK 0

0 0 0

])
ζ. (3.43)
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Using Schur complement, for ρz = 0, LMI (3.19) implies

V̇ + αV < 0. (3.44)

Similarly, LMI (3.20) implies (3.44) is valid for ρz = τz. Since (3.43) is affine in

ρz, LMIs (3.19) and (3.20) are sufficient conditions for (3.44) to hold for any ρz ∈
(0, τz), i.e. for the interval between (zk, zk+1), k ∈ N. Therefore, inequality (2.12) in

Theorem 2.1 is satisfied. According to Assumption 3.2, for any time interval with a

length smaller than εz, there exists a finite number of (at most nu) instants zk, k ∈ N.

Therefore, inequality (2.13) is satisfied with q = nu. This finishes the proof.

The following proposition addresses robust stability of linear multi-rate sampled-

data systems with uncertain parameters.

Proposition 3.1. Suppose that the pair of system matrices Ω =
[
A B

]
is unknown

but satisfies the following condition

Ω ∈
{

p∑
l=1

βlΩl, 0 ≤ βl ≤ 1,

p∑
l=1

βl = 1

}
, (3.45)

where Ωl =
[
Al Bl

]
, l ∈ {1, ..., p}, denote the vertices of a convex polytope. If the

LMIs in Theorem 3.1 hold for each Ωl, l ∈ {1, ..., p}, with the same variables P , R,

Rij, R
′
ij, i ∈ {1, ...,m}, j ∈ {1, ..., nu}, and X1, then the closed-loop linear multi-rate

sampled-data system described in (3.1) and (3.13) under Assumptions 3.1 and 3.2 is

globally uniformly exponentially stable.

Proof. The proof is similar to the proof of Proposition 2.1 and is hence omitted.

Based on Theorem 3.1, the problem of finding a lower bound on the MASP τ is

or the MAUP τ jz such that exponential stability is preserved, can be formulated as a

convex optimization problem in terms of LMIs. These LMIs can be solved efficiently

using available optimization software such as SeDuMi [16] and YALMIP [17].

Problem 3.1.

maximize τ is (or τ jz )

subject to Rij > 0, R′
ij > 0, i ∈ {1, ...,m}, j ∈ {1, ..., nu},

P > 0, R > 0, X1 > 0, (3.19) and (3.20).
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We denote the computed lower bound on the MASP τ is (or the MAUP τ jz ) that

preserves exponential stability by τ is,max (or τ jz,max). The controller synthesis problem

for linear multi-rate sampled-data systems is addressed in the next section.

3.4 Controller Synthesis

In this section, we address controller synthesis of linear multi-rate sampled-data sys-

tems. When the controller gain K is unknown, the LMIs in Theorem 3.1 turn into

bilinear matrix inequalities and cannot be solved efficiently. The following theorem

addresses this issue by providing sufficient conditions for the controller synthesis prob-

lem that can be cast as LMIs.

Theorem 3.2. Consider the closed-loop linear multi-rate sampled-data system defined

in (3.1) and (3.13) under Assumptions 3.1 and 3.2. There exists an exponentially

stabilizing linear state feedback gain K = Y Q
−1
, if there exist symmetric positive

definite matrices Q, Qij, i ∈ {1, . . . ,m}, j ∈ {1, . . . , nu}, matrices Y , N , N , N ′
,

and N ′′
, with appropriate dimensions, and positive scalar εX , satisfying LMIs (3.46)

and (3.47), where τz, τ , and E are defined in (3.9), (3.23), and (3.25), respectively,

and

Qj =diag(Q1j, . . . , Qmj), (3.48)

Q =diag(Q1, . . . , Qnu
), (3.49)

Q̃ =diag(Q,Q,Q), (3.50)

Y T =
[
Y T
1 . . . Y T

nu

]
,

Y =

⎡⎢⎢⎢⎢⎢⎣
Y1 0 . . . 0

0 Y2 . . . 0

...
. . .

...

0 . . . 0 Ynu

⎤⎥⎥⎥⎥⎥⎦ , (3.51)

Φ =
[
AQ BY 0

]T [
I 0 0

]
+
[
I 0 0

]T [
AQ BY 0

]

+ α
[
I 0 0

]T
Q
[
I 0 0

]
−

⎡⎢⎢⎣
I 0 −I

0 0 0

0 0 0

⎤⎥⎥⎦
T

N T −N

⎡⎢⎢⎣
I 0 −I

0 0 0

0 0 0

⎤⎥⎥⎦
+
[
0 I 0

]T
(N T

+N ′T
) + (N +N ′

)
[
0 I 0

]
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⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

Φ
+
τ z
M

1
�

�
�

�
�

�
�

N
T
−

1
⊗
[ Q

0
0]

−Q
�

�
�

�
�

�

N
′T
−

1
⊗
[ 00

Q
]

0
−Q

�
�

�
�

�

N
′′T

−
1
⊗
[ Q

0
−Q
] 0

0
−Q

�
�

�
�

τ
( 1⊗

[ AQ
B
Y

0])
0

0
0

−1 2
τ
Q

�
�

�

τ z

⎡ ⎢ ⎣A
Q

B
Y

0

0
Q

0

0
0

Q

⎤ ⎥ ⎦
0

0
0

0
−τ

z
Q̃

�
�

τ
E
N

T
0

0
0

0
0

−Q
E
τ

�

τ
E
N

′T
0

0
0

0
0

0
−Q

E
τ

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦<
0

(3
.4
6)

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

Φ
+
τ z
M

2
�

�
�

�
�

�
�

�

N
T
−

1
⊗
[ Q

0
0]

−Q
�

�
�

�
�

�
�

N
′T
−

1
⊗
[ 00

Q
]

0
−Q

�
�

�
�

�
�

N
′′T

−
1
⊗
[ Q

0
−Q
] 0

0
−Q

�
�

�
�

�

τ
( 1⊗

[ AQ
B
Y

0])
0

0
0

−1 2
τ
Q

�
�

�
�

τ
E
N

T
0

0
0

0
−Q

E
τ

�
�

�

τ
E
N

′T
0

0
0

0
0

−Q
E
τ

�
�

τ z
N

T
0

0
0

0
0

0
−e

−α
τ z
τ z
Q̃

�

τ z
N

′′T
0

0
0

0
0

0
0

−e
−α

τ z
τ z
Q

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦<
0

(3
.4
7)
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− εX

[
I 0 −I

]T
Q
[
I 0 −I

]
,

M1 =

⎡⎢⎢⎣
εXAQ εXBY 0

0 0 0

−εXAQ −εXBY 0

⎤⎥⎥⎦
T

+

⎡⎢⎢⎣
εXAQ εXBY 0

0 0 0

−εXAQ −εXBY 0

⎤⎥⎥⎦
+ αεX

[
I 0 −I

]T
Q
[
I 0 −I

]
,

M2 =−

⎡⎢⎢⎣
0 0 0

0 I 0

0 0 I

⎤⎥⎥⎦
T

N T −N

⎡⎢⎢⎣
0 0 0

0 I 0

0 0 I

⎤⎥⎥⎦ .
Proof. Here, we prove that inequalities (3.46) and (3.47) are sufficient conditions for

LMIs (3.19) and (3.20). Suppose there exist matrices Q > 0, Qij > 0, i ∈ {1, . . . ,m},
j ∈ {1, . . . , nu}, matrices Y , N , N , N ′

, and N ′′
, with appropriate dimensions, and

positive scalar εX , satisfying the stabilization criteria in (3.46) and (3.47). Let

P = Q−1, X1 = εXQ
−1, R = Q̃−1, N = Q̃−1N Q̃−1, Rij = R′

ij = Q−1
ij ,

Rj = R
′
j = Q

−1

j = diag(Q−1
1j , . . . , Q

−1
mj), R = R

′
= Q

−1
= diag(Q

−1

1 , . . . , Q
−1

nu
),

N = Q̃−1NQ
−1
, N

′
= Q̃−1N ′

Q
−1
, N

′′
= Q̃−1N ′′

Q
−1
, K = Y Q

−1
, (3.52)

where i = {1, . . . ,m}, j = {1, . . . , nu}, and Q, Q̃, and Y are defined in (3.49)-(3.51).

Multiplying (3.46) from left and right by diag(Q̃−1, I) and using Schur complement

yields ⎡⎢⎢⎢⎢⎢⎣

(
Ψ+ τzM1 + (1⊗ F )T

×τ(R +R
′
)(1⊗ F ) + Υ

)
NτE N

′
τE

EτN
T −EτR 0

EτN
′T

0 −EτR
′

⎤⎥⎥⎥⎥⎥⎦ < 0, (3.53)

where Ψ, M1, and F are defined in Theorem 3.1 with the change of variables (3.52)

and

Υ =NQN
T
+N

′
QN

′T
+N

′′
QN

′′T
+
(
1⊗
[
I 0 0

])T
Q

−1
(
1⊗
[
I 0 0

])
+
(
1⊗
[
0 0 I

])T
Q

−1
(
1⊗
[
0 0 I

])
+
(
1⊗
[
I 0 −I

])T
Q

−1
(
1⊗
[
I 0 −I

])
. (3.54)
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Since Q > 0, one can conclude that Υ is positive semi-definite. Therefore, compar-

ing (3.53) and (3.19), it can be seen that inequality (3.53) implies LMI (3.19). Hence,

LMI (3.46) is a sufficient condition for LMI (3.19). Similarly, multiplying LMI (3.47)

from left and right by diag(Q̃−1, I) and using Schur complement yields LMI (3.20)

with the change of variables (3.52). The proof is complete since for any set of ma-

trix variables satisfying inequalities (3.46) and (3.47), there exists a set of matrix

variables (3.52) that satisfy the stability criteria in Theorem 3.1.

Remark 3.1. The stabilization criteria in Theorem 3.2 are sufficient conditions for

the stability criteria in Theorem 3.1 and therefore are more conservative. However,

they can be used to design linear controllers by solving a convex optimization program

that can be solved efficiently using available software packages. Numerical examples

will show the effectiveness of this approach (see Section 3.5).

Proposition 3.2. Let the pair of system matrices Ω =
[
A B

]
be unknown but satisfy

the polytopic uncertainty condition (3.45). Assume that the LMIs in Theorem 3.2

hold for each Ωl, l ∈ {1, ..., p}, with the same variables Q, Qij, i ∈ {1, . . . ,m},
j ∈ {1, . . . , nu}, Y , and εX . Then the closed-loop linear multi-rate sampled-data

system described in (3.1) and (3.13) under Assumptions 3.1 and 3.2 is exponentially

stabilized with the linear state feedback gain K = Y Q
−1
, where Q and Y are defined

in (3.49) and (3.51), respectively.

Proof. The proof is similar to the proof of Proposition 2.1 and is hence omitted.

Based on Theorem 3.2, the problem of designing a state feedback controller that

gives a larger lower bound on the MASP τ is (or the MAUP τ jz ), such that exponential

stability is guaranteed, can be formulated as a convex optimization problem in terms

of LMIs. These LMIs can be solved efficiently using available optimization software

such as SeDuMi [16] and YALMIP [17].

Problem 3.2.

maximize τ is (or τ jz )

subject to Q > 0, Qij > 0, i ∈ {1, . . . ,m}, j ∈ {1, . . . , nu}, εX > 0, (3.46) and (3.47).

The controller gain K is then computed based on equation K = Y Q
−1
.
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3.5 Numerical Examples

In this section, the main results of the chapter are applied to three examples of

linear multi-rate sampled-data systems. The lower bound on the MASP is usually

used in the literature as a criterion for comparing the conservativeness of stability

theorems. The greater is the computed lower bound, the less conservative is the

stability theorem. In the following examples, we use the same criterion to demonstrate

the effectiveness of the proposed sufficient stability and stabilization conditions.

Example 3.1. Consider the closed-loop system defined in (3.1) and (3.13) with the

following matrix parameters

A =

[
0 1

0 −0.1

]
, B =

[
0

0.1

]
, K = −

[
3.75 11.5

]
.

It is known (see e.g. [48]) that the MASP in a single-rate scenario for this example

is 1.7 (s) (in a single-rate scenario such as [48] all the elements of the state vector

are sampled at the same sampling instants and the event-driven actuator is updated

instantly). Now consider a multi-rate scenario where each of the two states of the

system (i.e. x1 and x2) is sampled by a dedicated sensor (S1 and S2, respectively) at

different unknown non-uniform sampling intervals. Furthermore, the control signal

is applied via an actuator Z1 whose update time is not synchronized with any of the

two sensors. Assume that the sampling intervals of the sensor S1 and the refresh

rate of the actuator Z1 have known upper bounds, i.e. τ 1s and τ 1z are fixed. Using

Theorem 3.1, the computed lower bound on the MASP for sensor S2 (τ 2s,max) that

guarantees exponential stability is presented in Table 3.2. It can be seen that, in this

example, the sampling intervals of sensor S1 can be longer than the limit for the single-

rate case if sensor S2 performs samplings at a faster rate. In other words, we can

decrease the controller’s dependency on the data from the first sensor by increasing the

sampling rate of the second sensor. According to Table 3.2, as the MAUP τ 1z increases

the MASP τ 2s,max decreases to compensate for the late updates of the actuator.

As a special case, when the MAUP τ 1z approaches zero, the control signal is applied

to the system as soon as new data arrives from any of the sensors. Equivalently, the

zero order holds can be assumed to be event-driven. This case was studied in [91]. As

expected, the values computed for τ 2s,max when τ 1z = 0.0001 (s) are very close (absolute

error = 0.01) to the values computed in [91].
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Table 3.2: The MASP τ 2s,max that guarantees exponential stability in a multi-rate
scenario for Example 3.1 with α = 0.001.

Known upper bounds τ 2s,max

τ 1s = 2 (s) and τ 1z = 0.0001 (s) 0.56 (s)
τ 1s = 2 (s) and τ 1z = 0.1 (s) 0.43 (s)
τ 1s = 2 (s) and τ 1z = 0.4 (s) 0.06 (s)

τ 1s = 3 (s) and τ 1z = 0.0001 (s) 0.16 (s)
τ 1s = 3 (s) and τ 1z = 0.1 (s) 0.04 (s)

Example 3.2. Consider the closed-loop system defined in (3.1) and (3.13) with con-

troller gain K = −
[
2.6884 0.6649

]
and the following uncertainty in matrix param-

eters taken from [15]

A =

[
1 0.5

g1 −1

]
, B =

[
1 + g2

−1

]
, |g1| ≤ 0.1, |g2| ≤ 0.3.

Based on Proposition 3.1, the stability criteria should be simultaneously checked for

each pair of matrices Ap and Bq, p, q ∈ {1, 2}, defined by

A1 =

[
1 0.5

−0.1 −1

]
, A2 =

[
1 0.5

0.1 −1

]
, B1 =

[
0.7 −1

]T
, B2 =

[
1.3 −1

]T
.

Consider a multi-rate scenario where each of the two states of the system (i.e. x1 and

x2) is sampled by a dedicated sensor (S1 and S2, respectively) at different unknown

non-uniform sampling intervals. Furthermore, the control signal is applied via an ac-

tuator Z1 whose update time is not synchronized with any of the two sensors. Assume

that the sampling intervals of sensors S1 and S2 have known upper bounds, i.e. τ 1s

and τ 2s are fixed. Using Theorem 3.1, the lower bound on the MAUP τ 1z that guaran-

tees exponential stability is presented in Table 3.3. As expected, when the MASPs of

sensors S1 and S2 decrease, the computed lower bound on the MAUP τ 1z,max increases.

From an engineering point of view, choosing the right sensors with adequate sampling

frequencies allows the engineer to select actuators with lower update rates.

Example 3.3. Consider the closed-loop system defined in (3.1) and (3.13) with the
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Table 3.3: The MAUP τ 1z,max that guarantees exponential stability in a multi-rate
scenario for Example 3.2 with α = 0.001

Known upper bounds τ 1z,max

τ 1s = 0.15 (s) and τ 2s = 0.25 (s) 0.07 (s)
τ 1s = 0.10 (s) and τ 2s = 0.25 (s) 0.11 (s)
τ 1s = 0.05 (s) and τ 2s = 0.25 (s) 0.15 (s)
τ 1s = 0.05 (s) and τ 2s = 0.15 (s) 0.17 (s)
τ 1s = 0.05 (s) and τ 2s = 0.10 (s) 0.18 (s)

following matrix parameters taken from [47]

A =

[
0 1

−1 −2

]
, B =

[
0

1

]
, K =

[
−1 1

]
.

In a multi-rate scenario, suppose that the first and the second elements of the state

vector are to be sampled by different sensors at unknown non-uniform sampling in-

tervals smaller than τ 1s = 4 (s) and τ 2s = 0.1 (s), respectively. Furthermore, assume

that the actuator is updated in non-uniform intervals smaller than τ 1z = 1/3 (s). Fig-

ure 3.4(a) shows that the system is unstable for the mentioned values of MASPs and

MAUP. Using Theorem 3.2, with α = 0.001 and εX = 1, we find a new controller

gain K ′ = −
[
0.0101 0.0617

]
that guarantees exponential stability of the closed-loop

multi-rate system. Figure 3.4(b) illustrates the convergence of the states to the origin

when using the controller gain K ′.

3.6 Conclusion

Exponential stability and stabilization of linear sampled-data systems with multi-rate

samplers and time driven zero order holds were addressed. Sufficient Krasovskii-based

stability and stabilization criteria were proposed for linear sampled-data systems as a

set of LMIs. For each sensor (or actuator), the problem of finding an upper bound on

the lowest sampling frequency (or refresh rate) that guarantees exponential stability

was cast as an optimization problem in terms of LMIs. It was shown through examples

that choosing the right sensors with adequate sampling frequencies and the right

actuators with adequate refresh rates has a considerable impact on controller design

and stability of the closed-loop system. In the next chapter, we extend the results
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(a)

(b)

Figure 3.4: The evolution of the states for the linear sampled-data system in Exam-
ple 3.3. The result using controller gain K is shown in Fig. 3.4(a) and the result using
controller gain K ′ is illustrated in Fig. 3.4(b).

of this chapter to propose sensor allocation strategies that guarantee exponential

stability of linear multi-rate sampled-data systems.
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Chapter 4

Sensor Allocation for Linear

Multi-rate Sampled-data Systems

This chapter addresses sensor allocation with guaranteed exponential stability for

linear multi-rate sampled-data systems. It is assumed that a continuous-time linear

plant is exponentially stabilized by a continuous-time linear controller. Given sensors

with incommensurate sampling rates, the objective is to allocate each state to a sensor

such that the resulting multi-rate sampled-data system remains exponentially stable.

To this end, we propose sufficient Krasovskii-based conditions to partition the state

vector among sensors such that exponential stability of the closed-loop system is

guaranteed. The problem of finding a partition that guarantees exponential stability

is cast as a mixed integer program subject to LMIs.

4.1 Introduction

In multi-rate sampled-data systems, data are gathered through several sensors that

work at different sampling rates. One reason is that different phenomena (e.g. temper-

ature, pressure, or voltage) are measured with different sensors that work at different

sampling rates. Second, different methods of sensing the same phenomenon can lead

to different sampling frequencies (e.g. measuring an angle with a potentiometer, an

encoder, or a camera through image processing). Finally, even if the sensors are syn-

chronized, the inevitable delays and packet losses in non-ideal communication links

result in the data arriving at the controller at different rates.

Stability analysis and controller synthesis of multi-rate sampled-data systems are

practically relevant problems and have attracted researchers for several decades [77–

83, 85, 88, 89]. A frequency domain technique for dual-rate sampled-data systems
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(with 2 : 1 and 4 : 1 sampling ratios) is developed in [79] and applied to the Space

Shuttle flight control system. In [80], the controller synthesis problem for linear

multi-rate sampled-data systems is studied in discrete-time using pole placement.

Necessary and sufficient conditions for reachability, controllability, and stabilizability

of linear multi-rate sampled-data systems are presented in [81]. Reference [82] uses

nest algebra to address H2 and H∞ control problems for multi-rate sampled-data

systems. In [85], a synthesis method for robust multi-rate track-following in hard

disk drives is proposed and solved using LMIs. A common drawback of [77–82, 85]

is that the sampling rate ratios of the sensors are assumed to be rational numbers

(commensurate samplings). The commensurate sampling assumption does not hold

in practice because the sampling interval of each sensor is usually not uniform. For

instance, in servo control of brushless DC motors via Hall-effect sensors, the sampling

intervals depend on the motor speed and are not uniform [88]. Delays and data packet

losses also contribute to nonuniform sampling intervals. The H∞ controller synthesis

problem of systems with incommensurate samplings is addressed in [83]. However,

the stabilization conditions are convex only when the sample and hold rates are

commensurate. In [89] and Chapter 3, sufficient Krasovskii-based conditions are

presented in terms of LMIs to address stability and stabilization of linear multi-rate

sampled-data systems with incommensurate sampling rates.

In contrast to [77–83, 85, 88, 89] and Chapter 3, this chapter addresses sensor

allocation with guaranteed exponential stability for linear multi-rate sampled-data

systems. Suppose there exists a continuous-time linear controller that stabilizes a

linear system. Given sensors with incommensurate sampling rates, the objective is

to allocate each state to a sensor such that the resulting multi-rate sampled-data

system is exponentially stable. In other words, the goal is to partition the state

vector among sensors such that exponential stability of the closed-loop system is

guaranteed. Different ways of partitioning the state vector among sensors may result

in stable or unstable systems as shown in Example 4.1.

The main contribution of this chapter is to propose sufficient Krasovskii-based

conditions that partition the state vector among sensors such that the resulting linear

multi-rate sampled-data system is exponentially stable. The problem of finding a

partition that guarantees exponential stability is cast as a mixed integer program

subject to LMIs. Mixed integer programs are NP-hard. However, mixed integer

problems of small size can be solved using free optimization software such as the

BNB solver which is shipped with YALMIP [17].

Example 4.1. Consider a path following problem where the objective is to control a
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y

x

Figure 4.1: Unicycle path following problem

unicycle to follow the line y = 0 in the x − y plane (see Fig. 4.1). The dynamics of

the system are represented by⎡⎢⎢⎣
ẏ

ψ̇

ṙ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 0 0

0 0 1

0 0 −k/I

⎤⎥⎥⎦
⎡⎢⎢⎣
y

ψ

r

⎤⎥⎥⎦+

⎡⎢⎢⎣
v sin(ψ)

0

0

⎤⎥⎥⎦+

⎡⎢⎢⎣
0

0

1/I

⎤⎥⎥⎦ u,
where y represents the distance from the line y = 0, ψ and r are the heading angle and

its time derivative, respectively, v = 0.25 (m/s) is the unicycle’s velocity, u denotes

the torque input about the z axis, I = 1 (kgm2) is the unicycle’s moment of inertia

with respect to its center of mass, and k = 0.15 (Nms) is the damping coefficient.

Linearizing the system about the origin leads to the linear system ẋ(t) = Ax(t)+Bu(t),

where

x =

⎡⎢⎢⎣
y

ψ

r

⎤⎥⎥⎦ , A =

⎡⎢⎢⎣
0 0.25 0

0 0 1

0 0 −0.15

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0

0

1

⎤⎥⎥⎦ .
Assume that a continuous-time linear controller with gain K = −

[
0.8 1.4 1.6

]
is

designed for the linearized system. Consider a single rate scenario where all the states

are sampled at the same sampling instants. In other words, the information about the

states arrives at the controller at the same time. According to Theorem 2.2, the single

rate sampled-data system is guaranteed to remain exponentially stable with a decay

rate smaller than 0.0001/2 for nonuniform sampling periods of up to 1.19 (s).

In reality, however, not all the states are sampled at the same instant. Assuming

a dual rate scenario, let the first state y be acquired via a camera (at sampling inter-

vals of up to 0.3 (s)) and the rate of the heading angle r be acquired by an inertial

measurement unit (at sampling periods of up to 1.1 (s)). The heading angle ψ can be

measured either via the camera or via the inertial measurement unit (by integrating
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Table 4.1: Simulation result for Example 4.1

State vector partition and sampling interval Simulation result[
y︸︷︷︸

0.3 (s)

ψ r︸ ︷︷ ︸
1.1 (s)

]
Stable

[
y ψ︸ ︷︷ ︸

0.3 (s)

r︸︷︷︸
1.1 (s)

]
Unstable

the rate of the heading angle). The question is whether to measure ψ via the camera

or via the inertial measurement unit in order to ensure that the system is exponen-

tially stable. Notice that both sampling intervals 0.3 (s) and 1.1 (s) are smaller than

the guaranteed stability limit for the single rate case which is 1.19 (s). Intuitively,

grouping ψ with y that has the faster sampling rate seems to have more chance of

stabilizing the system than grouping ψ with r. Simulation results, however, show the

opposite (see Table 4.1). The system is stable if ψ is sampled at the slower rate along

with r (i.e. sampling intervals of up to 1.1 (s)). The system becomes unstable if ψ is

sampled along with y at the faster rate (i.e. sampling periods of up to 0.3 (s)). �

The results of this chapter also find application in the field of sensor networks.

In these networks, m sensors are deployed over a region to acquire data from n >

m points of interest. The sensors can possibly have different sampling rates. The

problem of assigning each point of interest to a sensor such that a global objective

(stability) is achieved is an application of the theorems in this chapter.

The rest of the chapter is organized as follows. Section 4.2 is dedicated to problem

formulation and preliminary notions. The main result of the chapter is presented in

Section 4.3. A numerical example is provided in Section 4.4, followed by conclusion

in Section 4.5. In terms of the notation used in this chapter,

Notation. The matrix entry that is located on the ith row and jth column of a

matrix Z is represented by Z(i,j).

4.2 Problem Formulation

Consider a stabilizable linear system

ẋ(t) = Ax(t) + Bu(t), (4.1)
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Figure 4.2: The schematic diagram of a linear multi-rate sampled-data system.

where x ∈ R
nx denotes the state vector, A ∈ R

nx×nx , B ∈ R
nx×nu , and u ∈ R

nu is the

control input. Let a continuous-time stabilizing linear controller for (4.1) be defined

by

u(t) = Kx(t), (4.2)

where K ∈ R
nu×nx . In practice, the controller is located in the feedback loop between

a sensing block and an event driven zero order hold. Furthermore, it is assumed that

the non-ideal communication links experience data packet dropouts (see Fig. 4.2).

Packet dropouts are modeled via a switch. When the switch is closed, data is trans-

mitted through the communication link. When the switch is open, however, data is

assumed to be dropped. The sensing block comprises ns sensors represented by Si,

i ∈ I, where

I = {1, . . . , ns}.
Definition 4.1. The set P = {Ii|i ∈ I} is called a partition of {1, . . . , nx} if it

satisfies the following properties

Ii �= ∅, ∀ i ∈ I, (4.3a)

Ii

⋂
Ii′ = ∅, ∀ i �= i′, (4.3b)⋃

i∈I
Ii = {1, . . . , nx}. (4.3c)

Let P = {Ii|i ∈ I} represent a partition of {1, . . . , nx}. The multi-rate structure

of the problem discussed in this chapter is presented in the following assumption.
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Assumption 4.1. Each sensor Si, i ∈ I, is dedicated to sampling the states xj,

j ∈ Ii.

Next, we parametrize the partition P by a matrix L ∈ {0, 1}nx×ns . Each row

of the matrix L corresponds to one of the states. The columns of L correspond to

the ns sensors and represent the sets Ii, i ∈ I. The entries of L are defined in the

Boolean domain {0, 1}. If L(j,i) = 1 then the state xj is sampled by the sensor Si or

equivalently j ∈ Ii. In a similar way, L(j,i) = 0 implies j /∈ Ii.

Lemma 4.1. Partition P can be parametrized by a matrix L ∈ {0, 1}nx×ns under the

constraints

L1 = 1, (4.4)

1TL 
 1T , (4.5)

where 
 represents an elementwise inequality and 1 denotes the column vector with

all elements equal to 1.

Proof. Equation (4.4) guarantees that each row of L has one and only one element

equal to one, which imply (4.3c) and (4.3b), respectively. In addition, inequality (4.5)

guarantees that each column of L has at least one element equal to one, i.e. (4.3a).

This concludes the proof.

Remark 4.1. Ignoring condition (4.5), we can address the scenario where one or

more sensors do not measure any of the states. While this scenario violates (4.3a) in

Definition 4.1, it is compatible with the main results of the chapter.

The sensors are assumed to have uncertain and non-uniform but bounded sam-

pling intervals as formulated in the next assumption.

Assumption 4.2. The sensor Si, i ∈ I, performs measurement at instants sik, where

0 < ε < sik+1 − sik < τ i, ∀k ∈ N.

The positive constant ε models the fact that a sensor cannot measure a particular

phenomenon twice at the same instant. The number τ i denotes the longest interval

between two consecutive samplings by sensor Si. Without loss of generality, by the

index k ∈ N, we denote only the instants sik for which a data packet is not lost. For

each sensor, the time elapsed since the sensor’s last sampling instant is denoted by a

sawtooth function ρi(t) (see Fig. 4.3) defined as

ρi(t) = t− sik, for t ∈ [sik, s
i
k+1). (4.6)
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Equation (4.6) and Assumption 4.2 yield

0 ≤ ρi < τ i. (4.7)

Next, we formulate the control signal equation in a multi-rate sampled-data structure.

To this end, let diagonal matrices Di ∈ {0, 1}nx×nx , i ∈ I, be defined as

Di(j,j) =

⎧⎨⎩ 1 if j ∈ Ii,

0 otherwise,
(4.8)

where Ii ∈ P . It is assumed that the sensors are time driven and the controller and

the zero order hold are event driven. In other words, the controller and the zero

order hold are updated as soon as new data becomes available. Therefore, the control

signal (4.2) can be rewritten as

u(t) = Kx(t), (4.9)

where

x(t) =
∑
i∈I

Dix(t− ρi(t)). (4.10)

Lemma 4.2. Let vi and wi, i ∈ I, be arbitrary vectors in R
nx, Z be an arbitrary

matrix in R
nx×nx, and Di, i ∈ I, be diagonal matrices defined in (4.8). Then,

(a)
∑

i∈I Di = I,

(b) DiDi′ =

⎧⎨⎩ 0 if i �= i′,

Di if i = i′,

(c)
∑

i∈I
[
(Divi)

T (Diwi)
]
=
(∑

i∈I Divi
)T (∑

i∈I Diwi

)
,
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(d)
∑

i∈I
[
(Divi)

TZ(Diwi)
]
=
(∑

i∈I Divi
)T (∑

i∈I DiZDi

)(∑
i∈I Diwi

)
.

Proof. The proof of parts (a) and (b) are straightforward and follow from the defini-

tion of matrix Di in (4.8). Using part (b), the proof of part (c) is as follows

(∑
i∈I

Divi
)T (∑

i∈I
Diwi

)
=
∑
i∈I

[
vTi Di

(∑
i′∈I

Di′wi′
)]

=
∑
i∈I

vTi Diwi

=
∑
i∈I

[
(Divi)

T (Diwi)
]
.

The proof of part (d) is similar to the proof of part (c) and is therefore omitted.

The instants at which (at least) one of the ns sensors performs a sampling action

constitute an increasing sequence in time, represented by {tn}, n ∈ N (see Fig. 4.4).

Therefore, each time instant tn, n ∈ N, is associated with (i.e. is equal to) at least

one and at most ns instants s
i
k, k ∈ N, i ∈ I. The time elapsed since the last sampling

instant by any of the ns sensors is denoted by ρ(t), i.e.

ρ(t) = t− tn, t ∈ [tn, tn+1) (4.11)

= min
i

ρi(t), i ∈ I.

Therefore, based on (4.7)

0 ≤ ρ(t) < τ, (4.12)

where

τ = min
i

τ i, i ∈ I. (4.13)

Figure 4.4 illustrates ρ(t) for a system with two sensors. Based on Assumption 4.2,

there exists a lower bound on the length of the interval (sik, s
i
k+1), k ∈ N, i ∈ I. The

length of the interval (tn, tn+1), n ∈ N, however, can approach zero because a sensor

might possibly sample right after another sensor. Nonetheless, the following lemma

holds for a scalar T defined as

T = max
i

τ i, i ∈ I. (4.14)

Lemma 4.3. For any interval spanning a time period longer than (ns + 1)T , there

exists at least one interval (tn′ , tn′+1), n
′ ∈ N, with a length greater than ε/ns.

Proof. The proof is similar to the proof of Lemma 3.1 and is therefore omitted.
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Figure 4.4: The sawtooth functions ρ1(t), ρ2(t), and ρ(t) in a multi-rate sampled-data
structure with two sensors.

The following lemma exploits the special structure of matrices L and Di, i ∈ I,

and will be used in the proof of the main result.

Lemma 4.4. Let Di, i ∈ I, be diagonal matrices defined in (4.8) and assume that

the matrix L satisfies the conditions in Lemma 4.1. Consider symmetric matrices

Ri ∈ R
nx×nx, i ∈ I, satisfying

|Ri(j,k)| ≤ βmin{L(j,i),L(k,i)}, ∀ i ∈ I and j, k ∈ {1, . . . , nx}, (4.15)

where β is an arbitrary positive scalar. Then,

(a) DiRi′ = Ri′Di = 0, ∀ i, i′ ∈ I, i �= i′,

(b) DiRi = RiDi = Ri, ∀ i ∈ I,

(c) Di(
∑

i′∈I Ri′) = (
∑

i′∈I Ri′)Di = Ri, ∀ i ∈ I,
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(d) Di(
∑

i′∈I Ri′/τ
i′) = (

∑
i′∈I Ri′/τ

i′)Di = Ri/τ
i, ∀ i ∈ I,

(e)
∑

i∈I
[
γiDi(

∑
i′∈I Ri′/τ

i′)−1Di

]
=
[∑

i∈I Ri/(τ
iγi)
]−1

, where γi �= 0 are real scalars.

Proof. The inequalities in (4.15) yield⎧⎨⎩ −β ≤ Ri(j,k) ≤ β if j ∈ Ii and k ∈ Ii,

Ri(j,k) = 0 otherwise.

Considering the special structure of matrices Di and Ri, i ∈ I, the proofs of parts (a)

and (b) are straightforward and follow the definition of matrix multiplication. Parts (c)

and (d) are easily derived based on (a) and (b). The proof of part (e) is as follows∑
i∈I

[
γiDi(

∑
i′∈I

Ri′/τ
i′)−1Di

]
=
∑
i∈I

[
γiDi(

∑
i′∈I

Ri′/τ
i′)−1Di

][
(
∑
i′∈I

Ri′/τ
i′)(
∑
i′∈I

Ri′/τ
i′)−1
]

=
∑
i∈I

[
γiDi(

∑
i′∈I

Ri′/τ
i′)−1Di(

∑
i′∈I

Ri′/τ
i′)
]
(
∑
i′∈I

Ri′/τ
i′)−1.

Based on the first equality in part (d) we can write∑
i∈I

[
γiDi(

∑
i′∈I

Ri′/τ
i′)−1Di

]
=
∑
i∈I

[
γiDi(

∑
i′∈I

Ri′/τ
i′)−1(

∑
i′∈I

Ri′/τ
i′)Di

]
(
∑
i′∈I

Ri′/τ
i′)−1

=
∑
i∈I

[
γiDi

]
(
∑
i′∈I

Ri′/τ
i′)−1,

where we used Lemma 4.2(b) in the last equality. Lemma 4.2(b) also yields

(
∑
i∈I

γiDi)(
∑
i∈I

Di/γi) = I.

Therefore, ∑
i∈I

[
γiDi(

∑
i′∈I

Ri′/τ
i′)−1Di

]
=
[
(
∑
i′∈I

Ri′/τ
i′)(
∑
i∈I

Di/γi)
]−1

=
[∑

i∈I
Ri/(τ

iγi)
]−1

,

where we used Lemma 4.4(d) in the last equality.

It is easy to verify (see e.g. [92]) that the norm function is convex, the pointwise

minimum of a set of linear functions is concave, and the subtraction of a concave
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function from a convex function is convex. Therefore, the inequalities in (4.15) are

convex. The main result of this chapter is presented in the next section.

4.3 Main Results

This section addresses stability of linear multi-rate sampled-data systems. It is as-

sumed that a stabilizing controller is already designed in continuous-time and ns

sensors with different sampling rates are available. The upper bounds τ i, i ∈ I, on

the nonuniform and uncertain sampling intervals are assumed to be known. Our

objective is to partition the state vector and assign each part to a sensor such that

exponential stability of the closed-loop sampled-data system is guaranteed.

Theorem 4.1. Consider the closed-loop linear multi-rate sampled-data system defined

in (4.1) and (4.9) under Assumptions 4.1 and 4.2. Given positive scalars α and β,

there exists a partition of the state vector among sensors, parametrized by a matrix

L, that guarantees global uniform exponential stability with a decay rate greater than

α/2, if there exist positive definite matrices P , R0, and X, symmetric matrices Ri,

i ∈ I, and matrices N and N , with appropriate dimensions, satisfying conditions

(4.4), (4.5), (4.15), and⎡⎢⎢⎣
Ψ+ τM1 � �

R
[
A BK 0

]
−∑i∈I Ri/τ

i �

N
T

0 −∑i∈I Ri/(τ
ieατ

i
)

⎤⎥⎥⎦ < 0 (4.16)

⎡⎢⎢⎢⎢⎢⎣
Ψ+ τM2 � � �

R
[
A BK 0

]
−∑i∈I Ri/τ

i � �

N
T

0 −∑i∈I Ri/(τ
ieατ

i
) �

τNT 0 0 −τe−ατR0

⎤⎥⎥⎥⎥⎥⎦ < 0 (4.17)

R =
∑
i∈I

Ri > 0 (4.18)

where τ is defined in (4.13) and

Ψ =
[
A BK 0

]T [
P 0 0

]
+
[
P 0 0

]T [
A BK 0

]
+ α
[
I 0 0

]T
P
[
I 0 0

]
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−

⎡⎢⎢⎣
I 0 −I

0 0 0

0 0 0

⎤⎥⎥⎦
T

NT −N

⎡⎢⎢⎣
I 0 −I

0 0 0

0 0 0

⎤⎥⎥⎦−
[
I −I 0

]T
N

T −N
[
I −I 0

]

−
[
I 0 −I

]T
X
[
I 0 −I

]
,

M1 =

⎡⎢⎢⎣
A BK 0

0 I 0

0 0 I

⎤⎥⎥⎦
T

R0

⎡⎢⎢⎣
A BK 0

0 I 0

0 0 I

⎤⎥⎥⎦+
[
A BK 0

]T
X
[
I 0 −I

]

+
[
I 0 −I

]T
X
[
A BK 0

]
+ α
[
I 0 −I

]T
X
[
I 0 −I

]
,

M2 =−

⎡⎢⎢⎣
0 0 0

0 I 0

0 0 I

⎤⎥⎥⎦
T

NT −N

⎡⎢⎢⎣
0 0 0

0 I 0

0 0 I

⎤⎥⎥⎦ .
Proof. Here we show that the LMIs in Theorem 4.1 are sufficient conditions for the

LKF (4.19) to satisfy the conditions of Theorem 2.1. To this end, let W([−T, 0],Rnx)

be the space of absolutely continuous functions with square integrable first-order

derivatives, mapping the interval [−T, 0] to R
nx . We define the function xt ∈ W as

xt(r) = x(t+ r), − T ≤ r ≤ 0, and denote its norm by

||xt||W =
∑
i=I

max
r∈[−T,0]

|Dixt(r)|+
[∫ 0

−T

|ẋt(r)|2 dr
] 1

2

.

Consider the Krasovskii functional candidate

V (t, xt) = V1 + V2 + V3 + V4, t ∈ [tn, tn+1), (4.19)

where

V1 =xT (t)Px(t),

V2 =(τ − ρ)

∫ t

t−ρ

eα(s−t)
[
ẋT (s) xT (s) xT (tn)

]
R0

[
ẋT (s) xT (s) xT (tn)

]T
ds,

V3 =
∑
i=I

(τ i − ρi)

∫ t

t−ρi
eα(s−t)(Diẋ(s))

TR(Diẋ(s)) ds,

V4 =(τ − ρ)(x(t)− x(tn))
TX(x(t)− x(tn)),
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where R is defined in (4.18), P , R0, and X are symmetric matrices, and α is a given

positive scalar which represents the decay rate. Similar to Chapter 3, it can be shown

that P > 0, R0 > 0, R > 0, and X > 0 are sufficient conditions for the Krasovskii

functional (4.19) to satisfy inequalities (2.10) and (2.11) in Theorem 2.1. In what

follows, we prove that LMIs (4.16) and (4.17) are sufficient conditions for V̇ +αV ≤ 0

in the interval between two sampling instants. The time derivative of V1 is

V̇1 = ẋTPx+ xTPẋ. (4.20)

From (4.11) we have ρ̇ = 1. Hence, applying the Leibniz integral rule to V2 yields

V̇2 =−
∫ t

t−ρ

eα(s−t)
[
ẋT (s) xT (s) xT (tn)

]
R0

[
ẋT (s) xT (s) xT (tn)

]T
ds

+ (τ − ρ)
[
ẋT xT xT (tn)

]
R0

[
ẋT xT xT (tn)

]T
− αV2. (4.21)

Since R0 is positive definite, α > 0, and ρ < τ (see (4.12)), for any s ∈ [t− ρ, t] and

any arbitrary time varying vector h(t) ∈ R
3nx we can write⎡⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎣
ẋ(s)

x(s)

x(tn)

⎤⎥⎥⎦
h

⎤⎥⎥⎥⎥⎥⎦
T [

eα(s−t)R0 −I

−I eατR−1
0

]⎡⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎣
ẋ(s)

x(s)

x(tn)

⎤⎥⎥⎦
h

⎤⎥⎥⎥⎥⎥⎦ ≥ 0. (4.22)

This inequality can be verified using Schur complement. Hence, for all s ∈ [t− ρ, t],

−eα(s−t)
[
ẋT (s) xT (s) xT (tn)

]
R0

[
ẋT (s) xT (s) xT (tn)

]T
≤hT eατR−1

0 h−
[
ẋT (s) xT (s) xT (tn)

]
h− hT

[
ẋT (s) xT (s) xT (tn)

]T
.

For s varying between t − ρ and t, the vectors x(s) and x(tn) are constant, and

x(s) = xs(0) ∈ W is absolutely continuous. Therefore, integrating both sides with

respect to s, yields

−
∫ t

t−ρ

eα(s−t)
[
ẋT (s) xT (s) xT (tn)

]
R0

[
ẋT (s) xT (s) xT (tn)

]T
ds

≤ ρhT eατR−1
0 h−

[
xT − xT (t− ρ) ρxT ρxT (tn)

]
h

− hT
[
xT − xT (t− ρ) ρxT ρxT (tn)

]T
. (4.23)
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Based on (4.11), t− ρ = tn. Hence, replacing (4.23) in (4.21), we get

V̇2 ≤ρhT eατR−1
0 h−

[
xT − xT (tn) ρxT ρxT (tn)

]
h

− hT
[
xT − xT (tn) ρxT ρxT (tn)

]T
+ (τ − ρ)

[
ẋT xT xT (tn)

]
R0

[
ẋT xT xT (tn)

]T
− αV2. (4.24)

According to (4.18), R is positive definite. Therefore, a similar inequality can be

written for the time derivative of V3 as follows

V̇3 ≤
∑
i=I

(
ρi(Dihi)

T eατ
i

R
−1
(Dihi)−

(
Di(x− x(t− ρi))

)T
(Dihi)

− (Dihi)
T
(
Di(x− x(t− ρi))

)
+ (τ i − ρi)(Diẋ)

TR(Diẋ)
)
− αV3

≤
∑
i=I

(
τ i(Dihi)

T eατ
i

R
−1
(Dihi)−

(
Di(x− x(t− ρi))

)T
(Dihi)

− (Dihi)
T
(
Di(x− x(t− ρi))

)
+ τ i(Diẋ)

TR(Diẋ)
)
− αV3, (4.25)

where hi(t) ∈ R
nx , i ∈ I, are arbitrary time-varying vectors and we used (4.7) to make

the second inequality independent of the coefficient ρi. Leaving ρi in inequality (4.25)

decreases conservatism of the sufficient conditions in Theorem 4.1 but increases the

number of LMIs to 2ns and causes scalability issues. Let h =
∑

i=I
Dihi. Based on

Lemma 4.2(a) and 4.2(c) inequality (4.25) yields

V̇3 ≤
∑
i=I

(
(Dihi)

T eατ
i

R
−1
τ i(Dihi) + (Diẋ)

TR(R
−1
τ iR)(Diẋ)

)
− (x− x)T h− h

T
(x− x)− αV3, (4.26)

where x is defined in (4.10). Let τ be a diagonal matrix defined as τ =
∑

i∈I τ
iDi.

Based on Lemma 4.2(b), we can write τ iDi = τDi. Therefore, using the definition of

R in (4.18) and the first equality in Lemma 4.4(c), inequality (4.26) yields

V̇3 ≤
∑
i=I

(
(Dihi)

T eατ
i

R
−1
τ(Dihi) + (DiRẋ)TR

−1
τ(DiRẋ)

)
− (x− x)T h− h

T
(x− x)− αV3.
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Note that τ is invertible and τ−1 =
∑

i∈I Di/τ
i. Therefore, Lemma 4.2(d) yields

V̇3 ≤h
T
[
∑
i=I

eατ
i

Di(τ
−1R)−1Di]h+ ẋTR[

∑
i=I

Di(τ
−1R)−1Di]Rẋ

− (x− x)T h− h
T
(x− x)− αV3

=h
T
[
∑
i=I

eατ
i

Di(
∑
i′∈I

Di′

τ i′
∑
i′′∈I

Ri′′)
−1Di]h+ ẋTR[

∑
i=I

Di(
∑
i′∈I

Di′

τ i′
∑
i′′∈I

Ri′′)
−1Di]Rẋ

− (x− x)T h− h
T
(x− x)− αV3.

Using Lemma 4.4(c) we can write

V̇3 ≤h
T
[
∑
i=I

eατ
i

Di(
∑
i′∈I

Ri′

τ i′
)−1Di]h+ ẋTR[

∑
i=I

Di(
∑
i′∈I

Ri′

τ i′
)−1Di]Rẋ

− (x− x)T h− h
T
(x− x)− αV3.

Next, Lemma 4.4(e) and Lemma 4.2(a) yield

V̇3 ≤ h
T (∑

i∈I

Ri

τ ieατ i
)−1

h+ẋTR
(∑

i∈I

Ri

τ i
)−1

Rẋ−(x− x)T h−h
T
(x− x)−αV3. (4.27)

The time derivative of V4 is computed as

V̇4 =− (x− x(tn))
TX(x− x(tn)) + (τ − ρ)

(
ẋTX(x− x(tn)) + (x− x(tn))

TXẋ
)
.

(4.28)

We now define an augmented vector ζ(t) as

ζ(t) =
[
xT (t) xT (t) xT (tn)

]T
, t ∈ [tn, tn+1).

Recalling (4.1) and (4.9), the closed-loop vector field can be written as

ẋ(t) =
[
A BK 0

]
ζ(t). (4.29)

Replacing (4.29) in (4.20), (4.24), (4.27), and (4.28), and setting h(t) = NT ζ(t) and

h(t) = N
T
ζ(t), where N ∈ R

3nx×3nx and N ∈ R
3nx×nx , yields

V̇ + αV =
∑4

l=1(V̇l + αVl)
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≤ ζT

([
A BK 0

]T
P
[
I 0 0

]
+
[
I 0 0

]T
P
[
A BK 0

]

+ α
[
I 0 0

]T
P
[
I 0 0

]
+ ρNeατR−1

0 NT −

⎡⎢⎢⎣
I 0 −I

0 ρI 0

0 0 ρI

⎤⎥⎥⎦
T

NT

−N

⎡⎢⎢⎣
I 0 −I

0 ρI 0

0 0 ρI

⎤⎥⎥⎦+ (τ − ρ)

⎡⎢⎢⎣
A BK 0

0 I 0

0 0 I

⎤⎥⎥⎦
T

R0

⎡⎢⎢⎣
A BK 0

0 I 0

0 0 I

⎤⎥⎥⎦
+N

(∑
i∈I

Ri

τ ieατ i

)−1

N
T −
[
I −I 0

]T
N

T −N
[
I −I 0

]
+
[
A BK 0

]T
R

(∑
i∈I

Ri

τ i

)−1

R
[
A BK 0

]
+ (α(τ − ρ)− 1)

[
I 0 −I

]T
X
[
I 0 −I

]
+ (τ − ρ)

[
A BK 0

]T
X
[
I 0 −I

]
+ (τ − ρ)

[
I 0 −I

]T
X
[
A BK 0

])
ζ. (4.30)

Using Schur complement, for ρ = 0, LMI (4.16) implies V̇ + αV < 0. Similarly,

LMI (4.17) implies V̇ + αV < 0 for ρ = τ . Since (4.30) is affine in ρ, LMIs (4.16)

and (4.17) are sufficient conditions for V̇ + αV < 0 to hold for any ρ ∈ (0, τ), i.e.

inequality (2.12) in Theorem 2.1 is satisfied. According to Assumption 4.2, for any

time interval with a length smaller than ε, there exists a finite number of (at most

ns) sampling instants tn, n ∈ N. Therefore, inequality (2.13) is satisfied with q = ns.

This finishes the proof.

Based on Theorem 4.1, the problem of finding a partition (parametrized by the

matrix L) that guarantees exponential stability is formulated as

Problem 4.1.

find L ∈ {0, 1}nx×ns

subject to P > 0, R0 > 0, X > 0, Ri = RT
i , i ∈ I, α > 0, β > 0,

(4.4), (4.5), (4.15)− (4.18).
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According to (4.15), the entries of matrices Ri, i ∈ I, are bounded by an arbitrary

positive scalar β. When solving Problem 4.1 in an optimization software, we assign

the biggest acceptable number by the software to β. Mixed integer programs are

NP-hard. However, mixed integer problems of small size can be solved using free

optimization software such as the BNB solver which is shipped with YALMIP [17].

4.4 Numerical Example

Example 4.2. Consider the unicycle path following problem with parameters defined

in Example 4.1. Let the first state y be acquired via a camera (at sampling intervals

of up to 0.3 (s)) and the rate of the heading angle r be acquired by an inertial mea-

surement unit (at sampling periods of up to 0.6 (s)). As explained in Example 4.1,

the heading angle ψ can be measured either via the camera or via the inertial mea-

surement unit. With states y and r already assigned to sensors (camera and inertial

measurement unit, respectively), we use the algorithm in Problem 4.1 to find which

sensor should be used to sample ψ such that exponential stability is guaranteed. In

Example 4.1, it was shown via simulations that measuring the heading angle ψ with

the inertial measurement unit stabilizes the system while sampling ψ with the camera

leads to instability. Solving Problem 4.1, the heading angle ψ is assigned to the iner-

tial measurement unit. This sensor allocation strategy is compatible with simulation

results in Example 4.1.

4.5 Conclusion

Sensor allocation with guaranteed exponential stability for linear multi-rate sampled-

data systems was addressed. Sufficient Krasovskii-based conditions that yield a par-

tition of the state vector were proposed such that the resulting closed-loop multi-rate

sampled-data system is exponentially stable. The problem of finding a partition

that guarantees exponential stability was cast as a mixed integer program subject

to LMIs. In the next chapter, we address the observer design problem for linear

multi-rate sampled-data systems.
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Chapter 5

Observer Design for Linear

Multi-rate Sampled-data Systems

This chapter addresses observer design for linear systems with multi-rate sampled

output measurements. The sensors are assumed to be asynchronous and to have un-

certain nonuniform sampling intervals. The contributions of this chapter are twofold.

Given the MASP for each sensor, the main contribution of the chapter is to propose

sufficient Krasovskii-based conditions for design of linear observers. The designed ob-

servers guarantee exponential convergence of the estimation error to the origin. Most

importantly, the sufficient conditions are cast as a set of LMIs that can be solved

efficiently. As a second contribution, given an observer gain, the problem of finding

MASPs that guarantee exponential stability of the estimation error is also formulated

as a convex optimization program in terms of LMIs. The theorems are applied to a

unicycle path following example.

5.1 Introduction

In multi-rate sampled-data systems, data is gathered through several sensors that

work at different sampling rates. One reason is that different phenomena (e.g. tem-

perature, pressure, or voltage) are measured with different sensors that work at dif-

ferent sampling rates. As a second reason, different methods of sensing the same

phenomenon can lead to different sampling frequencies (e.g. measuring an angle with

a potentiometer, an encoder, or a camera through image processing). Finally, even

if the sensors are synchronized, the inevitable delays and packet losses in non-ideal

communication links result in the data arriving at the controller at different rates.

The reader is referred to Chapter 3 and the references therein for stability analysis
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and controller synthesis of multi-rate sampled-data systems.

Design of single-rate sampled-data observers and single-rate sampled-data output

feedback controllers have been the subject of numerous research (see [93–95] and the

references therein). In [96], dual-rate output feedback control of a class of nonlinear

systems is addressed using a high-gain observer. Observer-based robust fault detec-

tion of linear multi-rate sampled-data systems is addressed in [97–100]. A common

drawback of [96–100] is the assumption that the sampling rate of the sensors are

uniform and their ratios are rational numbers (commensurate samplings). However,

the uniform and commensurate sampling assumptions do not hold in practice. For

instance, in the servo control of brushless DC motors via Hall-effect sensors, the sam-

pling intervals depend on the motor speed and are not uniform [88]. Reference [101]

addresses observer design for a class of nonlinear single-rate sampled-data systems

with nonuniform samplings using a Krasovskii-based theorem and LMIs. In contrast

to [93–101], we address observer design for linear systems with multi-rate sampled

output measurements, where the sensors are assumed to be asynchronous and to have

uncertain nonuniform sampling intervals. To the best of the authors’ knowledge, the

continuous-time state estimation problem using asynchronous multi-rate discrete-time

output measurements was not studied before.

The contributions of this chapter are twofold. Given the MASP for each sensor,

the main contribution of the chapter is to propose sufficient Krasovskii-based condi-

tions for design of linear multi-rate sampled-data observers. The designed observers

guarantee exponential convergence of the estimation error to the origin. The suffi-

cient conditions are cast as a set of LMIs that can be solved efficiently using available

optimization software [16, 17]. As a second contribution, given an observer gain, the

problem of finding MASPs that guarantee exponential stability of the estimation error

is formulated as a convex optimization program in terms of LMIs. The importance

of choosing the right sensors with adequate sampling frequencies is shown through a

path following example.

The rest of the chapter is organized as follows. Section 5.2 is dedicated to prelim-

inary notions and problem statement. The main results of the chapter are presented

in Section 5.3. A path following example is provided in Section 5.4, followed by the

concluding remarks in Section 5.5.
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Figure 5.1: The schematic diagram of a linear plant and a continuous-time observer.

5.2 Problem Statement

Let an observable continuous-time linear system be defined as

ẋ(t) = Ax(t) + Bu(t), (5.1a)

y(t) = Cx(t) +Du(t), (5.1b)

where x ∈ R
nx denotes the state vector, y ∈ R

ny represents the output vector, u ∈ R
nu

is the control input, and A, B, C, and D are matrices of the appropriate dimension.

Consider a continuous-time Luenberger observer with gain L (see Fig. 5.1). Let x̂(t)

denote the observer state vector and e(t) = x(t) − x̂(t) be the estimation error.

Therefore, the rate of change of x̂ and e can be written as

˙̂x(t) = Ax̂(t)− L
(
y(t)− [Cx̂(t) +Du(t)]

)
+Bu(t)

= Ax̂(t)− LCe(t) + Bu(t),

ė(t) = (A+ LC)e(t),

In practice, the output vector is measured via different sensors (see Fig. 5.2). In this

chapter, the sensors are modeled as asynchronous sample and hold devices. Assume

that the output vector comprises m components, i.e. yT =
[
yT1 yT2 . . . yTm

]T
. Each

of these components is measured by a dedicated sensor Si, i ∈ {1, . . . ,m}, with an

uncertain nonuniform sampling interval.

Assumption 5.1. The sensor Si, i ∈ {1, . . . ,m}, samples the ith component of the

output vector (i.e. yi) at sampling instants sik, where 0 < ε < sik+1− sik < τ i, ∀k ∈ N.
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Figure 5.2: The schematic diagram of a linear multi-rate sampled-data observer.

The positive constant ε models the fact that a sensor cannot measure an output

twice at the same instant. It is used later in the proof of the main result to rule out

the occurrence of the Zeno phenomenon. The number τ i denotes the longest interval

between two consecutive samplings by sensor Si, i ∈ {1, . . . ,m}. For each sensor,

the time elapsed since the sensor’s last sampling instant is denoted by a sawtooth

function ρi(t) (see Fig. 4.3) defined as

ρi(t) = t− sik, for t ∈ [sik, s
i
k+1). (5.2)

Based on Assumption 5.1, equation (4.6) yields

0 ≤ ρi < τ i. (5.3)

The sensors are assumed to be asynchronous. Hence, in the multi-rate sampled-data

structure, the output of the sample and hold devices (the sensors) is written as

y(t) =
[
yT1 (t− ρ1(t)) . . . yTm(t− ρm(t))

]T
.

Let Ci represent the row of the matrix C corresponding to the output yi, i.e. C =[
CT

1 . . . CT
m

]T
. Similarly, let Di, represent the rows of the matrix D corresponding

to the output yi. Considering (5.1b), the vector y(t) can be rewritten as

y(t) = Cx(t) +Du(t),
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where

C =

⎡⎢⎢⎢⎢⎢⎣
C1 0 . . . 0

0 C2 . . . 0

...
. . .

...

0 . . . 0 Cm

⎤⎥⎥⎥⎥⎥⎦ , D =

⎡⎢⎢⎢⎢⎢⎣
D1 0 . . . 0

0 D2 . . . 0

...
. . .

...

0 . . . 0 Dm

⎤⎥⎥⎥⎥⎥⎦ ,

x(t) =
[
xT (t− ρ1(t)) . . . xT (t− ρm(t))

]T
,

u(t) =
[
uT (t− ρ1(t)) . . . uT (t− ρm(t))

]T
.

In the multi-rate sampled-data structure, the rate of change of x̂ and e can be written

as

˙̂x(t) =Ax̂(t)− L
(
y(t)− [Cx̂(t) +Du(t)]

)
+Bu(t)

=Ax̂(t)− LCe(t) + Bu(t),

ė(t) =Ae(t) + LCe(t), (5.4)

where

x̂(t) =
[
x̂T (t− ρ1(t)) . . . x̂T (t− ρm(t))

]T
,

e(t) =x− x̂ =
[
eT (t− ρ1(t)) . . . eT (t− ρm(t))

]T
. (5.5)

The instants at which (at least) one of the m sensors performs a sampling action

constitute an increasing sequence in time, represented by {tn}, n ∈ N (see Fig. 4.4

for a system with two sensors). Therefore, each time instant tn, n ∈ N, is associated

with (i.e. is equal to) at least one and at most m instants sik, k ∈ N, with different

i ∈ {1, . . . ,m}. Based on Assumption 5.1, there exists a lower bound on the length of

the interval (sik, s
i
k+1), ∀k ∈ N, i ∈ {1, . . . ,m}. The length of the interval (tn, tn+1),

∀n ∈ N, however, can approach zero because two sensors might possibly sample right

after each other. Nonetheless, the following lemma holds for a scalar T defined as

T = max
i

τ i, i ∈ {1, . . . ,m}. (5.6)

Lemma 5.1. For any interval spanning a time period longer than (m + 1)T , there

exists at least one interval (tn′ , tn′+1), n
′ ∈ N, with a length larger than ε/m.

Proof. The proof is similar to the proof of Lemma 3.1 and is therefore omitted.
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The time elapsed since the last sampling instant by any of them sensors is denoted

by ρ(t) defined as

ρ(t) = t− tn, t ∈ [tn, tn+1) (5.7)

= min
i

ρi(t), i ∈ {1, . . . ,m}.

Therefore, based on (5.3),

0 ≤ ρ(t) < τ, (5.8)

where

τ = min
i

τ i, i ∈ {1, . . . ,m}. (5.9)

The function ρ(t) is illustrated in Fig. 4.4 for a system with two sensors. Let

W([−T, 0],Rnx) be the space of absolutely continuous functions, with square inte-

grable first-order derivatives, mapping the interval [−T, 0] to R
nx . We define the

function et ∈ W as

et(r) = e(t+ r), − T ≤ r ≤ 0,

and denote its norm by

||et||W = max
r∈[−T,0]

|et(r)|+
[∫ 0

−T

|ėt(r)|2 dr
] 1

2

. (5.10)

Sufficient Krasovskii-based conditions for exponential stability of the estimation

error are presented in the next section.

5.3 Main results

The following theorem provides a set of sufficient conditions for which the estimation

error of a linear multi-rate sampled-data observer exponentially converge to the origin.

Theorem 5.1. Consider the linear system defined in (5.1) and a multi-rate sampled-

data observer with estimation error (5.4). Under Assumption 5.1, the estimation

error is globally uniformly exponentially stable with a decay rate greater than α/2 if

there exist symmetric positive definite matrices P , R0, Ri, i ∈ {1, . . . ,m}, and X,
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and matrices N and N , with appropriate dimensions, satisfying⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ+ τM1 � � �

τR0

⎡⎢⎢⎣
A LC 0

0 I 0

0 0 I

⎤⎥⎥⎦ −τR0 � �

EτN
T

0 −EτR �

Rτ(1⊗
[
A LC 0

]
) 0 0 −Rτ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (5.11)

⎡⎢⎢⎢⎢⎢⎣
Ψ+ τM2 � � �

EτN
T −EτR � �

Rτ(1⊗
[
A LC 0

]
) 0 −Rτ �

τNT 0 0 −τR0

exp(ατ)

⎤⎥⎥⎥⎥⎥⎦ < 0 (5.12)

where τ is defined in (5.9) and

τ =diag(τ 1I, τ 2I, . . . , τmI), (5.13)

E =diag(exp(ατ 1)I, exp(ατ 2)I, . . . , exp(ατm)I), (5.14)

R =diag(R1, R2, . . . , Rm), (5.15)

Ψ =
[
A LC 0

]T [
P 0 0

]
+
[
P 0 0

]T [
A LC 0

]
+ α
[
I 0 0

]T
P
[
I 0 0

]

−

⎡⎢⎢⎣
I 0 −I

0 0 0

0 0 0

⎤⎥⎥⎦
T

NT −N

⎡⎢⎢⎣
I 0 −I

0 0 0

0 0 0

⎤⎥⎥⎦−
[
1⊗ I −I 0

]T
N

T

−N
[
1⊗ I −I 0

]
−
[
I 0 −I

]T
X
[
I 0 −I

]
,

M1 =
[
A LC 0

]T
X
[
I 0 −I

]
+
[
I 0 −I

]T
X
[
A LC 0

]
+ α
[
I 0 −I

]T
X
[
I 0 −I

]
,

M2 =−

⎡⎢⎢⎣
0 0 0

0 I 0

0 0 I

⎤⎥⎥⎦
T

NT −N

⎡⎢⎢⎣
0 0 0

0 I 0

0 0 I

⎤⎥⎥⎦ .
Proof. Consider the candidate LKF

V (t, et) = V1 + V2 + V3 + V4, t ∈ [tn, tn+1), (5.16)
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where

V1 =eT (t)Pe(t),

V2 =(τ − ρ)

∫ t

t−ρ

exp(α(s− t))
[
ėT (s) eT (s) eT (tn)

]
R0

[
ėT (s) eT (s) eT (tn)

]T
ds,

V3 =
m∑
i=1

(τ i − ρi)

∫ t

t−ρi
exp(α(s− t))ėT (s)Riė(s) ds,

V4 =(τ − ρ)(e(t)− e(tn))
TX(e(t)− e(tn)),

where P , R0, Ri, i ∈ {1, . . . ,m}, and X are symmetric positive definite matrices, α

is a positive scalar representing the decay rate, and functions ρi and ρ are defined

in (5.2) and (5.7), respectively. Here we show that the LMIs in Theorem 5.1 are

sufficient conditions for the LKF (5.16) to satisfy the conditions of Theorem 2.1.

To this end, similar to Chapter 3, it is easy to show that the LKF (5.16) satisfies

inequalities (2.10) and (2.11) in Theorem 2.1, i.e.

c1|et(0)|2 ≤ V (t, et) ≤ c2||et||2W , (5.17)

V (tn, etn) ≤ V (t−n , et−n ), ∀n ∈ N, (5.18)

where c1 and c2 are positive scalars, and V (t−n , et−n ) = limt↗tn V (t, et). In order

to prove exponential stability, we next prove that the LKF (5.16) satisfies inequal-

ity (2.12), i.e.

V̇ (t, et) + αV (t, et) < 0, ∀ t �= tn, n ∈ N. (5.19)

The time derivative of V in the interval between two consecutive sampling instants

t ∈ (tn, tn+1) is composed of four terms computed as follows. The time derivative of

V1 is

V̇1 = ėTPe+ eTP ė. (5.20)

From (5.7) we have ρ̇ = 1. Hence, applying the Leibniz integral rule to V2 yields

V̇2 =−
∫ t

t−ρ

exp(α(s− t))
[
ėT (s) eT (s) eT (tn)

]
R0

[
ėT (s) eT (s) eT (tn)

]T
ds

+ (τ − ρ)
[
ėT eT eT (tn)

]
R0

[
ėT eT eT (tn)

]T
− αV2. (5.21)

Since R0 is positive definite, α > 0, and ρ < τ (see (5.8)), for any s ∈ [t − ρ, t] and
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any arbitrary time varying vector h(t) ∈ R
(2+m)nx we can write[[

ėT (s) eT (s) eT (tn)
]

hT
]
×[

exp(α(s− t))R0 −I

−I exp(ατ)R−1
0

]
×
[[
ėT (s) eT (s) eT (tn)

]
hT
]T

≥ 0. (5.22)

This inequality can be verified using Schur complement. Hence, for all s ∈ [t− ρ, t],

− exp(α(s− t))
[
ėT (s) eT (s) eT (tn)

]
R0

[
ėT (s) eT (s) eT (tn)

]T
≤hT exp(ατ)R−1

0 h−
[
ėT (s) eT (s) eT (tn)

]
h− hT

[
ėT (s) eT (s) eT (tn)

]T
.

For s varying between t − ρ and t, the vectors e(s) and e(tn) are constant, and

e(s) = es(0) ∈ W is absolutely continuous. Therefore, integrating both sides with

respect to s, yields

−
∫ t

t−ρ

exp(α(s− t))
[
ėT (s) eT (s) eT (tn)

]
R0

[
ėT (s) eT (s) eT (tn)

]T
ds

≤ ρhT exp(ατ)R−1
0 h−

[
eT − eT (t− ρ) ρeT ρeT (tn)

]
h

− hT
[
eT − eT (t− ρ) ρeT ρeT (tn)

]T
. (5.23)

Based on (5.7), t− ρ = tn. Hence, replacing (6.27) in (5.21), we get

V̇2 ≤ρhT exp(ατ)R−1
0 h−

[
eT − eT (tn) ρeT ρeT (tn)

]
h

− hT
[
eT − eT (tn) ρeT ρeT (tn)

]T
+ (τ − ρ)

[
ėT eT eT (tn)

]
R0

[
ėT eT eT (tn)

]T
− αV2. (5.24)

Similarly, we can write the following inequality

V̇3 ≤
m∑
i=1

(
ρihT

i exp(ατ i)R−1
i hi −

[
e− e(t− ρi)

]T
hi

− hT
i

[
e− e(t− ρi)

]
+ (τ i − ρi)ėTRiė

)
− αV3, (5.25)

where hi(t) ∈ R
nx , i ∈ {1, . . . ,m}, are arbitrary time-varying vectors. Based on (5.3),

τ ihT
i exp(ατ i)R−1

i hi and τ iėTRiė are upper bounds for ρihT
i exp(ατ i)R−1

i hi and (τ i −
ρi)ėTRiė, respectively. Hence, inequality (5.25) can be rewritten in a more compact
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form as

V̇3 ≤h
T
τER

−1
h− [1⊗ e− e]T h− h

T
[1⊗ e− e] + (1⊗ ė)T τR(1⊗ ė)− αV3,

(5.26)

where e, τ , E, and R are defined in (5.5), (5.13)-(5.15), and h =
[
hT
1 hT

2 . . . hT
m

]T
.

The time derivative of V4 is computed as

V̇4 =− (e− e(tn))
TX(e− e(tn)) + (τ − ρ)ėTX(e− e(tn)) + (τ − ρ)(e− e(tn))

TXė.

(5.27)

We now define an augmented vector ζ(t) as

ζ(t) =
[
eT (t) eT (t) eT (tn)

]T
, t ∈ [tn, tn+1). (5.28)

Therefore, recalling (5.4),

ė(t) =
[
A LC 0

]
ζ(t). (5.29)

Replacing (4.29) in (5.20), (9.42), (9.43), and (9.44), setting h(t) = NT ζ(t) and

h(t) = N
T
ζ(t), where N ∈ R

(2+m)nx×(2+m)nx and N ∈ R
(2+m)nx×mnx , and using

Lemma 3.2, yields

V̇ + αV =
∑4

j=1(V̇j + αVj)

≤ ζT
( [

A LC 0
]T

P
[
I 0 0

]
+
[
I 0 0

]T
P
[
A LC 0

]
+ α
[
I 0 0

]T
P
[
I 0 0

]
+ ρN exp(ατ)R−1

0 NT

−

⎡⎢⎢⎣
I 0 −I

0 ρI 0

0 0 ρI

⎤⎥⎥⎦
T

NT −N

⎡⎢⎢⎣
I 0 −I

0 ρI 0

0 0 ρI

⎤⎥⎥⎦

+ (τ − ρ)

⎡⎢⎢⎣
A LC 0

0 I 0

0 0 I

⎤⎥⎥⎦
T

R0

⎡⎢⎢⎣
A LC 0

0 I 0

0 0 I

⎤⎥⎥⎦
+NτER

−1
N

T −
[
1⊗ I −I 0

]T
N

T −N
[
1⊗ I −I 0

]
+ (1⊗

[
A LC 0

]
)T τR(1⊗

[
A LC 0

]
)

+ (α(τ − ρ)− 1)
[
I 0 −I

]T
X
[
I 0 −I

]
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+ (τ − ρ)
[
A LC 0

]T
X
[
I 0 −I

]
+ (τ − ρ)

[
I 0 −I

]T
X
[
A LC 0

] )
ζ. (5.30)

For ρ = 0, using Schur complement, inequality (5.11) implies V̇ + αV < 0. Simi-

larly, inequality (5.12) implies V̇ + αV < 0 for ρ = τ . Since (9.51) is affine in ρ,

inequalities (5.11) and (5.12) are sufficient conditions for V̇ + αV < 0 to hold for

any ρ ∈ (0, τ). Therefore, based on (5.7), inequalities (5.11) and (5.12) are sufficient

conditions for inequality (5.19) to be satisfied. Note that inequality (5.19) is the same

as inequality (2.12) with the estimation error e replace with x. By Assumption 5.1,

for any time interval with a length smaller than ε, there exists a finite number of (at

most m) sampling instants tn, n ∈ N. Therefore, inequality (2.13) is satisfied with

q = m. Hence, all the conditions of Theorem 2.1 are satisfied and the estimation

error is exponentially stable with a decay rate greater than α/2.

Next, the sufficient conditions in Theorem 5.1 are used to address two problems in

sampled-data observers. In the first problem, it is assumed that an observer gain L is

available which exponentially stabilizes the estimation error in continuous-time. The

objective is to find the MASP for the sensor Sj, j ∈ {1, ...,m}, such that exponential

stability of the estimation error is preserved. Given L, α, and τ i, i ∈ {1, ...,m},
the sufficient conditions in Theorem 5.1 become LMIs. These LMIs can be solved

efficiently using available optimization software [16, 17]. Following the line search

strategy, the problem of finding a lower bound1 on the MASP for the sensor Sj, j ∈
{1, ...,m}, that guarantees exponential stability of the estimation error is formulated

as

Problem 5.1.

maximize τ j

subject to P > 0, R0 > 0, Ri > 0, i ∈ {1, ...,m}, X > 0, (5.11) and (5.12).

We denote the computed lower bound on the MASP that guarantees exponential

stability of the estimation error by τ jmax. In the second problem, it is assumed that

the upper bound on the sampling intervals for each sensor (i.e. τ i, i ∈ {1, ...,m}) is
known and the decay rate α is given. The objective is to design an observer gain L

such that exponential stability of the estimation error is guaranteed. With L as an

1The computed value is a lower bound on the MASP because the LMIs in Theorem 5.1 are
sufficient conditions.
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optimization variable, the conditions in Theorem 5.1 are bilinear matrix inequalities.

Using a change of variables, however, these conditions can be written in the form of

LMIs as shown in the following corollary.

Corollary 5.1. Given τ i, i ∈ {1, ...,m}, and α > 0, suppose there exist positive

definite matrices P and R0, matrices Y , N , and N , with appropriate dimensions,

and a positive scalar εX , satisfying⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψs + τM1s � � �⎡⎣PA
[
Y C 0

]
0 R0

⎤⎦ −τR0s � �

EτN
T

0 −EτR �

τ(1⊗
[
PA Y C 0

]
) 0 0 −Rτ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (5.31)

⎡⎢⎢⎢⎢⎢⎣
Ψs + τM2s � � �

EτN
T −EτR � �

τ(1⊗
[
PA Y C 0

]
) 0 −Rτ �

τNT 0 0 −τR0s

exp(ατ)

⎤⎥⎥⎥⎥⎥⎦ < 0 (5.32)

where τ , τ , E, and R are defined in (5.9), (5.13)-(5.15), and

R0s =diag(P,R0), (5.33)

Ψs =

⎡⎢⎢⎣
PA Y C 0

0 0 0

0 0 0

⎤⎥⎥⎦
T

+

⎡⎢⎢⎣
PA Y C 0

0 0 0

0 0 0

⎤⎥⎥⎦+ α
[
I 0 0

]T
P
[
I 0 0

]

−

⎡⎢⎢⎣
I 0 −I

0 0 0

0 0 0

⎤⎥⎥⎦
T

NT −N

⎡⎢⎢⎣
I 0 −I

0 0 0

0 0 0

⎤⎥⎥⎦−
[
1⊗ I −I 0

]T
N

T

−N
[
1⊗ I −I 0

]
− εX

[
I 0 −I

]T
P
[
I 0 −I

]
,

M1s =εX

⎡⎢⎢⎣
PA Y C 0

0 0 0

−PA −Y C 0

⎤⎥⎥⎦
T

+ εX

⎡⎢⎢⎣
PA Y C 0

0 0 0

−PA −Y C 0

⎤⎥⎥⎦
+ αεX

[
I 0 −I

]T
P
[
I 0 −I

]
,
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M2s =−

⎡⎢⎢⎣
0 0 0

0 I 0

0 0 I

⎤⎥⎥⎦
T

NT −N

⎡⎢⎢⎣
0 0 0

0 I 0

0 0 I

⎤⎥⎥⎦ .
Then there exists an observer gain L = P−1Y and a set of matrix variables R0, Ri,

i ∈ {1, ...,m}, and X that satisfy the conditions in Theorem 5.1, for the same values

of τ i, i ∈ {1, ...,m}, α, P , N , and N .

Proof. The proof is straightforward and consists of verifying that inequalities (5.31)

and (5.32) are equivalent to (5.11) and (5.12) with the change of variables L = P−1Y ,

R0 = R0s (see (5.33)), Ri = P , i = {1, . . . ,m}, and X = εXP .

Therefore, given τ i, i ∈ {1, . . . ,m}, and α > 0 the problem of designing an

observer gain L that guarantees exponential stability of the estimation error is for-

mulated as

Problem 5.2.

find Y

subject to P > 0, R0 > 0, εX > 0, (5.31), and (5.32).

The observer gain is then computed as L = P−1Y . The conditions in Corollary 5.1

are sufficient conditions for the inequalities in Theorem 5.1 and therefore are more

conservative. However, they can be used to design linear observers by solving a convex

optimization program that can be solved efficiently using available software packages.

5.4 Numerical Example

Consider the path following problem in Chapter 4 where the objective is to control a

unicycle to follow the line y = 0 in the x − y plane (see Fig. 4.1). The dynamics of

the system are represented by⎡⎢⎢⎣
ψ̇

ṙ

ẏ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 1 0

0 −k/I 0

0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
ψ

r

y

⎤⎥⎥⎦+

⎡⎢⎢⎣
0

0

v sin(ψ)

⎤⎥⎥⎦+

⎡⎢⎢⎣
0

1/I

0

⎤⎥⎥⎦ u, (5.34)

where y represents the distance from the line y = 0, ψ and r are the heading angle

and its time derivative, respectively, v = 1 (m/s) is the unicycle’s velocity, u denotes
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Table 5.1: The computed MASP (τ 2max) for sensor S2 that guarantees exponential
stability of the estimation error with α = 0.1

τ 2max

For τ 1 = 0.1 (s) 0.24 (s)
For τ 1 = 0.15 (s) 0.18 (s)
For τ 1 = 0.17 (s) 0.05 (s)

the torque input about the z axis, I = 1 (kgm2) is the unicycle’s moment of inertia

with respect to its center of mass, and k = 0.01 (Nms) is the damping coefficient.

Linearizing the system about the origin leads to the linear system (5.1), with

x =

⎡⎢⎢⎣
y

ψ

r

⎤⎥⎥⎦ , A =

⎡⎢⎢⎣
0 1 0

0 −0.01 0

1 0 0

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0

1

0

⎤⎥⎥⎦ .
Assume that the states y and r are measured by asynchronous dedicated sensors

S1 and S2, respectively. Let L be an observer gain that places the poles of the

continuous-time estimation error vector field at −0.25± 1.5j and −3.5. Therefore,

C =

[
1 0 0

0 0 1

]
, D =

[
0

0

]
, L =

⎡⎢⎢⎣
0 −2

−2 0

0 −4

⎤⎥⎥⎦ . (5.35)

Assume that the sampling intervals of sensor S1 have a known upper bound, i.e.

τ 1 is fixed. Solving Problem 5.1 for different values of τ 1, the lower bound on the

MASP (that guarantees exponential stability of the estimation error) for sensor S2 is

presented in Table 5.1. As expected, when the allowable length of sampling intervals

for sensor S1 increases, the computed value for τ 2max decreases. In other words, as the

sampling frequency of the first sensor decreases, the second sensor must sample faster

to guarantee convergence of the estimation error to the origin.

Now suppose that sensors S1 and S2 perform measurements at unknown nonuni-

form sampling intervals smaller than τ 1 = 0.5 (s) and τ 2 = 0.3 (s), respectively.

Simulation results in Fig. 5.3 show that the estimation error does not converge to the

origin in this case with the choice of observer gain (5.35). Solving Problem 5.2 with
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Figure 5.3: State estimation error for τ 1 = 0.5 (s) and τ 2 = 0.3 (s) and observer gain
L defined in (5.35).

α = 0.1 and εX = 1, we find a new observer gain

L′ =

⎡⎢⎢⎣
−0.8079 −0.2555

−0.2071 −0.0550

−0.7609 −0.7714

⎤⎥⎥⎦ . (5.36)

The new observer gain L′ guarantees exponential stability of the estimation error as

shown in Fig. 5.4.

5.5 Conclusion

The observer design problem for linear systems with multi-rate sampled output mea-

surements was addressed. Given the MASP for each sensor, sufficient Krasovskii-

based conditions for design of linear observers were proposed in terms of LMIs. Fur-

thermore, given an observer gain, the problem of finding MASPs that guarantee

exponential stability of the estimation error was formulated as a convex optimization

program subject to LMIs.
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Figure 5.4: State estimation error for τ 1 = 0.5 (s) and τ 2 = 0.3 (s) and observer gain
L′ defined in (5.36).
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Chapter 6

Stability Analysis of Piecewise

Affine Sampled-data Systems

This chapter addresses stability analysis of sampled-data PWA slab systems. In

particular, we study the case in which a PWA plant is in feedback with a discrete-

time emulation of a PWA controller. The contributions of this chapter are threefold.

First, a modified LKF is presented for studying PWA sampled-data systems that

is less conservative when compared to previously suggested alternatives. Second,

based on the new LKF, sufficient conditions are provided for asymptotic stability of

sampled-data PWA slab systems to the origin. These conditions become LMIs in

the case of a PWL controller. Finally, we present an algorithm for finding a lower

bound on the MASP that preserves asymptotic stability. Therefore, the output of

the algorithm provides an upper bound on the minimum sampling frequency that

guarantees asymptotic stability of the sampled data system.

6.1 Introduction

PWA systems form a special class of hybrid systems that is often considered as a

framework for modeling and approximating nonlinearities that arise in physical sys-

tems [23]. Stability analysis of continuous-time PWA systems was addressed using

Lyapunov-based methods in [25–27, 29]. Lyapunov-based synthesis methods for PWA

systems were presented in [26, 29, 30, 32]. However, to be implementable in micropro-

cessors, the resulting continuous-time controllers must be emulated as a discrete-time

controller.

While sampled-data control of linear systems is a well-studied subject (e.g. see [37]),

its extension to PWA systems has not received many research contributions. The
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term “sampled-data PWA system” was probably used for the first time in [102,

103], although the systems described there do not possess the typical structure of

a continuous-time plant being controlled by a discrete-time controller. By contrast,

reference [53] addresses the classical structure of a sampled-data system in which a

continuous-time system is controlled in discrete-time inside a computer. Assuming

constant sampling rate, the author studies the stability of sampled-data PWA systems

using a quadratic Lyapunov function. The paper provides a set of LMIs as sufficient

conditions for exponential convergence of the sampled-data system to an invariant

set containing the origin.

In sampled-data systems, the discrete-time controller can also be modeled as a

continuous-time controller with time varying delay. The time-delay representation has

been implemented in nonlinear and linear sampled-data systems using Razumikhin-

type theorems [41], and LKFs [48]. Following the time-delay approach, reference [54]

studies the stability of sampled-data PWA systems with variable sampling rate. The

paper uses an LKF to prove that if a set of LMIs are satisfied, the trajectories of the

sampled-data system converge to an invariant set containing the origin.

In contrast to previous work, we address asymptotic stability to the origin rather

than stability to an invariant set for sampled-data PWA slab systems. To the best

of our knowledge, asymptotic stability of sampled-data PWA systems to the origin

was not proved before. We study a continuous-time PWA slab plant in feedback

with a PWA slab controller that appears between a sampler, with variable sampling

rate, and a zero-order-hold. The contributions of this chapter are threefold. First,

a modified LKF is presented for studying PWA sampled-data systems that is less

conservative when compared to previously suggested alternatives. Second, based on

the new LKF, sufficient conditions are provided for asymptotic stability of sampled-

data PWA slab systems to the origin. Finally, following the time-delay approach,

we present an algorithm for finding a lower bound on the MASP that preserves

asymptotic stability. This result provides an upper bound on the minimum sampling

frequency that guarantees asymptotic stability of the sampled data system.

The chapter is organized as follows. Section 6.2 presents basic information about

sampled-data PWA slab systems. In Section 6.3, a modified LKF is introduced first.

Next, we present a theorem that provides sufficient conditions for asymptotic stability

of sampled-data PWA slab systems. Furthermore, we present an algorithm for finding

a lower bound on the MASP that preserves asymptotic stability. Finally, the new

results are applied to a unicycle example in Section 6.4, followed by conclusions.
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6.2 Preliminaries

Consider the PWA slab system

ẋ(t) = Aix(t) + ai +Bu(t), for x(t) ∈ Ri and i ∈ I, (6.1)

where x ∈ X ⊂ R
nx denotes the state vector, Ai ∈ R

nx×nx , ai ∈ R
nx , B ∈ R

nx×nu ,

u ∈ R
nu is the control input, and I = {1, ...,M} is the set of indices of the slab

regions Ri that partition the state space X . The slab regions are defined as

Ri = {x ∈ R
nx |σi < cTx < σi+1}, i ∈ I, (6.2)

where c ∈ R
nx , c �= 0, and σ1 < σ2 < ... < σM+1 are finite scalars. We denote the

closure of Ri by Ri. The state space is represented by the union of the closure of all

regions, i.e.

X =
⋃
i∈I

Ri = {x ∈ R
nx |σ1 ≤ cTx ≤ σM+1}. (6.3)

Based on (6.3) and (6.2), the state space X and the regions Ri are only bounded in

the direction of vector c. Each slab region Ri can also be described by a degenerate

ellipsoid as

Ri = {x|||Lix+ li|| < 1}, (6.4)

where Li = 2cT/(σi+1−σi) and li = −(σi+1+σi)/(σi+1−σi) (see [30] for more details).

Lemma 6.1. For the slab regions defined in (6.4), x ∈ Ri if and only if

[
xT 1

] [LT
i Li LT

i li

liLi l2i − 1

][
x

1

]
< 0.

Proof. According to (6.4), x ∈ Ri if and only if ||Lix+ li|| < 1. Therefore,

x ∈ Ri ⇐⇒ (Lix+ li)
2 < 1

⇐⇒
([

xT 1
] [LT

i

li

])([
Li li

] [x
1

])
< 1

⇐⇒
[
xT 1

] [LT
i Li LT

i li

liLi l2i − 1

][
x

1

]
< 0.
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Let a PWA controller for (6.1) be defined by

u(t) = Kix(t) + ki, for x(t) ∈ Ri,

where Ki ∈ R
nu×nx and ki ∈ R

nu . We now present the assumptions used in this work.

Assumption 6.1. The vector field of the open-loop system (6.1) for u(t) = 0 is

continuous across the boundaries of any neighboring regions.

We denote the region containing the origin by R∗.

Assumption 6.2. The open-loop and closed-loop systems are linear in R∗, i.e. ai = 0

and ki = 0 for Ri = R∗.

Assumption 6.3. The state vector is measured at the sampling instants tn, n ∈ N,

where 0 < tε ≤ tn+1 − tn ≤ τ for all n ∈ N.

The positive constant tε is an arbitrary small number that models the fact that

two transmissions cannot occur simultaneously in practice. It is also used later to

rule out the existence of the Zeno phenomenon. The number τ denotes the longest

interval between two consecutive sampling times. According to Assumption 6.3, the

control input is rewritten as

u(t) = Kjx(tn) + kj, for t ∈ [tn, tn+1), x(tn) ∈ Rj, and j ∈ I.

We denote the time elapsed since the last sampling instant by

ρ(t) = t− tn, for t ∈ [tn, tn+1). (6.5)

Assuming x(t) ∈ Ri and x(tn) ∈ Rj, for t ∈ [tn, tn+1), we can rewrite (6.1) as

ẋ(t) =Aix(t) + ai +B(Kjx(tn) + kj) (6.6a)

=Aix(t) + ai +B(Kix(tn) + ki) + Bw(t), (6.6b)

where w ∈ R
nu is a piecewise constant vector defined by

w(t) = (Kj −Ki)x(tn) + (kj − ki). (6.7)

The vector w is associated with the fact that the state and its most recent sample

can possibly be in different regions. To be of later use in the proofs we must define
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bounds on the mismatch between controller gain matrices Ki and affine vectors ki,

i ∈ I. To that end, let Bμ(0) be the ball with radius μ > 0 centered at the origin and

Iμ = {p ∈ I|Rp

⋂
Bμ(0) �= ∅}. We define non-negative scalars ΔKμ and δkμ as

ΔKμ = max
i∈I, j∈Iμ

||Kj −Ki||, δkμ = max
i∈I, j∈Iμ

||kj − ki||. (6.8)

Furthermore, let non-negative scalars ΔK and δk be defined as

ΔK = max
i,j∈I

||Kj −Ki||, δk = max
i,j∈I

||kj − ki||. (6.9)

The following lemma presents a bound on the vector w which is used in the proof of

the main result.

Lemma 6.2. For t ∈ [tn, tn+1), if ||x(tn)|| < μ, then[
−I (ΔKμμ+ δkμ)1

I (ΔKμμ+ δkμ)1

][
w(t)

1

]
� 0, (6.10)

where 1T =
[
1 · · · 1

]
1×nu

and � represents an elementwise inequality.

Proof. If ||x(tn)|| < μ, according to (6.7) and (6.8) we can write

||w(t)|| ≤ ||Kj −Ki||||x(tn)||+ ||kj − ki|| < ΔKμμ+ δkμ. (6.11)

For single input systems, inequality (6.11) can be written as[
−1 ΔKμμ+ δkμ

1 ΔKμμ+ δkμ

][
w(t)

1

]
� 0.

For the case of multi-input systems, a more conservative inequality can be written

as (6.10), i.e. the absolute value of each element of w is less than ΔKμμ+ δkμ.

6.3 Main Results

In this section, we first present a modified LKF for studying PWA sampled-data

systems. Let V (t, xt) be an LKF defined as

V (t, xt) = V1 + V2 + V3, (6.12)
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where

V1 =xT (t)Px(t),

V2 =

∫ 0

−τ

∫ t

t+r

[
ẋ(s)− B(Kjx(tn) + kj)

]T
R
[
ẋ(s)− B(Kjx(tn) + kj)

]
ds dr,

V3 =(τ − ρ)(x(t)− x(tn))
TX(x(t)− x(tn)),

where P , R, and X are symmetric positive definite matrices in R
nx×nx , tn ≤ t is the

most recent sampling instant, and j is the index of the region containing the most

recent sampled state, i.e. x(tn) ∈ Rj.

Note that the second component of the LKF introduced in (6.12) is different from

its corresponding term in previously studied LKFs such as [48, 54]. By subtracting

B(Kjx(tn)+kj) from ẋ in the definition of V2, we omit an unfavorable positive definite

term involving wTw from V̇ . This modification considerably improves the stability

results as shown in Section 6.4. We now define stability in the context of retarded

functional differential equations.

Definition 6.1. [20] The solution of (6.6a) is said to be uniformly stable if for any

ε > 0, there is a δ = δ(ε) such that ||xt0 ||W < δ implies ||x(t)|| < ε for t ≥ t0. The

solution of (6.6a) is uniformly asymptotically stable if it is uniformly stable and there

is δa > 0 such that for any η > 0, there is a T = T (δa, η), such that ||xt0 ||W < δa

implies ||x(t)|| < η for t ≥ t0 + T .

The following theorem provides a set of sufficient conditions for which the trajec-

tories of a sampled-data PWA slab system asymptotically converge to the origin.

Theorem 6.1. Consider the sampled-data PWA slab system defined in (6.6b) and (6.7)

subject to Assumptions 6.1-6.3. The system is uniformly asymptotically stable to the

origin if there exist symmetric positive definite matrices P , R, and X, symmetric ma-

trices Λi with non-negative entries, matrices Ñ and Ni, with appropriate dimensions,

and positive scalars γ, θ < 1, η, λi, σ, and ε, with i ∈ I, satisfying

ΔK2γ < θ (6.13)

• for all i such that Ri �= R∗

Ωi + Ωi + Ω
T

i + τ(M1i +M
T

1i +M2i) + S1i +D < 0 (6.14)[
Ωi + Ωi + Ω

T

i + τ(M2i +M3i +M
T

3i) + S1i +D τNi

τNT
i −τR

]
< 0 (6.15)
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Ωi + Ωi + Ω
T

i + τ(M1i +M
T

1i +M2i) + S1i + S3i + εI < 0 (6.16)[
Ωi + Ωi + Ω

T

i + τ(M2i +M3i +M
T

3i) + S1i + S3i + εI τNi

τNT
i −τR

]
< 0 (6.17)

• for i such that Ri = R∗

Ωi + τ(M1i +MT
1i +M2i) + S1i − S2i +D < 0 (6.18)[

Ωi + τ(M2i +M3i +MT
3i) + S1i − S2i +D τNi

τNT
i −τR

]
< 0 (6.19)

Ωi + τ(M1i +MT
1i +M2i) + S1i − S2i + S3i + εI < 0 (6.20)[

Ωi + τ(M2i +M3i +MT
3i) + S1i − S2i + S3i + εI τNi

τNT
i −τR

]
< 0 (6.21)

Ψi + τM̃1i + M̃3i + εI < 0 (6.22)[
Ψi + τM̃2i + M̃3i + εI τÑi

τÑT
i −τR

]
< 0 (6.23)

where

Ωi =

⎡⎢⎢⎣Ψi

[
PB 0

0 0

]
� 0

⎤⎥⎥⎦−
[
Ni −Ni 0 0

]T
−
[
Ni −Ni 0 0

]
,

Ψi =

[
AT

i P + PAi −X PBKi +X

� −X

]
,

Ωi =
[
P 0 0 0

]T [
0 0 0 ai +Bki

]
,

M1i =
[
X −X 0 0

]T [
Ai BKi B ai +Bki

]
,

M2i =
[
Ai 0 0 ai

]T
R
[
Ai 0 0 ai

]
,

M3i =Ni

[
0 BKi B Bki

]
,

S1i =− λi

([
Li 0 0 li

]T [
Li 0 0 li

]
−
[
0 0 0 1

]T [
0 0 0 1

])
,

S2i =− σ

([
0 Li 0 li

]T [
0 Li 0 li

]
−
[
0 0 0 1

]T [
0 0 0 1

])
,
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S3i =

[
0 0 −I (ΔKμμτ + δkμ)1

0 0 I (ΔKμμτ + δkμ)1

]T
Λi

[
0 0 −I (ΔKμμτ + δkμ)1

0 0 I (ΔKμμτ + δkμ)1

]
,

μτ =
δk√

θ/γ −ΔK
, (6.24)

D =diag(ηI, I, − γI, η),

M1i =
[
X −X 0 0

]T [
Ai BKi B 0

]
,

M2i =
[
Ai 0 0 0

]T
R
[
Ai 0 0 0

]
,

M3i =Ni

[
0 BKi B 0

]
,

M̃1i =

[
AT

i X +XAi + AT
i RAi −AT

i X +XBKi

� −KT
i B

TX −XBKi

]
,

M̃2i =

[
0

KT
i B

T

]
ÑT

i + Ñi

[
0 BKi

]
+

[
AT

i RAi 0

� 0

]
,

M̃3i =−
[
Ñi −Ñi

]T
−
[
Ñi −Ñi

]
.

Proof. Similar to the approach in Chapter 2, it can be shown that the LKF (6.12)

is positive definite, radially unbounded, and decrescent. The first two components,

V1 and V2, are continuous functions. The last component, V3, is equal to zero at the

sampling instants (x(t)|t=tn = x(tn)) and greater than zero at other times. There-

fore, the LKF is non-increasing at the sampling times. To prove uniform asymptotic

stability of the closed-loop trajectories to the origin, it suffices to show that inequal-

ities (6.13)-(6.23) are sufficient conditions for V to be strictly decreasing between

any two consecutive sampling times. The time derivative of V for t ∈ (tn, tn+1) is

computed as follows. First, the time derivative of V1 is

V̇1 = ẋTPx+ xTPẋ. (6.25)

Second, applying the Leibniz integral rule to V2 yields

V̇2 =

∫ 0

−τ

[ẋ− B(Kjx(tn) + kj)]
T R [ẋ− B(Kjx(tn) + kj)] dr

−
∫ 0

−τ

[ẋ(t+ r)− B(Kjx(tn) + kj)]
T R [ẋ(t+ r)− B(Kjx(tn) + kj)] dr.
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According to (6.5), we have ρ < τ . Therefore,

V̇2 ≤τ [ẋ− B(Kjx(tn) + kj)]
T R [ẋ− B(Kjx(tn) + kj)]

−
∫ 0

−ρ

[ẋ(t+ r)− B(Kjx(tn) + kj)]
T R [ẋ(t+ r)− B(Kjx(tn) + kj)] dr

=τ [ẋ− B(Kjx(tn) + kj)]
T R [ẋ− B(Kjx(tn) + kj)]

−
∫ t

t−ρ

[ẋ(v)− B(Kjx(tn) + kj)]
T R [ẋ(v)− B(Kjx(tn) + kj)] dv. (6.26)

Since R is positive definite, for any arbitrary time varying vector hi(t) ∈ R
nx we can

write

[
(ẋ(v)− B(Kjx(tn) + kj))

T hT
i

] [ R −I

−I R−1

][
ẋ(v)− B(Kjx(tn) + kj)

hi

]
≥ 0.

Therefore,

− [ẋ(v)− B(Kjx(tn) + kj)]
T R [ẋ(v)− B(Kjx(tn) + kj)]

≤ hT
i R

−1hi − [ẋ(v)− B(Kjx(tn) + kj)]
T hi − hT

i [ẋ(v)− B(Kjx(tn) + kj)] .

Integrating both sides from t− ρ to t, we have

−
∫ t

t−ρ

[ẋ(v)− B(Kjx(tn) + kj)]
T R [ẋ(v)− B(Kjx(tn) + kj)] dv

≤ ρhT
i R

−1hi − [x− x(tn)− ρB(Kjx(tn) + kj)]
T hi

− hT
i [x− x(tn)− ρB(Kjx(tn) + kj)] . (6.27)

Here, we used the facts that for v ∈ [t − ρ, t], u = Kjx(tn) + kj is constant and

therefore ẋ(v) is continuous by Assumption 6.1, and t − ρ = tn. Replacing (6.27)

in (6.26), we have

V̇2 ≤τ [ẋ− B(Kjx(tn) + kj)]
T R [ẋ− B(Kjx(tn) + kj)] + ρhT

i R
−1hi

− [x− x(tn)− ρB(Kjx(tn) + kj)]
T hi − hT

i [x− x(tn)− ρB(Kjx(tn) + kj)] .

(6.28)

Using (6.7) to replace Kjx(tn) + kj by (Kix(tn) + ki) +w in the last two components
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of (6.28) yields

V̇2 ≤τ [ẋ− B(Kjx(tn) + kj)]
T R [ẋ− B(Kjx(tn) + kj)] + ρhT

i R
−1hi

− [x− x(tn)− ρB((Kix(tn) + ki) + w)]T hi

− hT
i [x− x(tn)− ρB((Kix(tn) + ki) + w)] . (6.29)

From (6.5) we have ρ̇ = 1. Hence, the time derivative of V3 is computed as

V̇3 = (τ − ρ)
[
ẋTX(x− x(tn))

]
+ (τ − ρ)

[
(x− x(tn))

TXẋ
]− (x− x(tn))

TX(x− x(tn)).

(6.30)

Since V̇ = V̇1 + V̇2 + V̇3, adding (6.25), (6.29), and (6.30) yields

V̇ ≤ẋTPx+ xTPẋ+ ρhT
i R

−1hi + τ [ẋ− B(Kjx(tn) + kj)]
T R [ẋ− B(Kjx(tn) + kj)]

− [x− x(tn)− ρB((Kix(tn) + ki) + w)]T hi

− hT
i [x− x(tn)− ρB((Kix(tn) + ki) + w)] + (τ − ρ)

[
ẋTX(x− x(tn))

]
+ (τ − ρ)

[
(x− x(tn))

TXẋ
]− (x− x(tn))

TX(x− x(tn)). (6.31)

For t ∈ (tn, tn+1) and x(t) ∈ X we consider the following three possibilities;

1. x(t) /∈ R∗,

2. x(t) ∈ R∗ and x(tn) /∈ R∗,

3. x(t) ∈ R∗ and x(tn) ∈ R∗.

The rest of the proof is divided into three parts corresponding to the above possibil-

ities.

• Part 1: For x(t) ∈ Ri �= R∗, based on (6.6), we have

ẋ(t) =
[
Ai BKi B ai +Bki

]
ζ(t), (6.32)

and

ẋ(t)− B(Kjx(tn) + kj) =
[
Ai 0 0 ai

]
ζ(t), (6.33)

with ζ(t) =
[
xT (t) xT

tn wT (t) 1
]T

∈ R
2nx+nu+1. Replacing (6.32) and (6.33)

in (6.31) and setting hi(t) = NT
i ζ(t) with Ni ∈ R

(2nx+nu+1)×nx , we can write

V̇ ≤ ζT
([

Ai BKi B ai +Bki

]T
P
[
I 0 0 0

]
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+
[
I 0 0 0

]T
P
[
Ai BKi B ai +Bki

]
+ ρNiR

−1NT
i

+τ
[
Ai 0 0 ai

]T
R
[
Ai 0 0 ai

]
−
[
I −I − ρBKi −ρB −ρBki

]T
NT

i

−Ni

[
I −I − ρBKi −ρB −ρBki

]
+(τ − ρ)

[
Ai BKi B ai +Bki

]T
X
[
I −I 0 0

]
+(τ − ρ)

[
I −I 0 0

]T
X
[
Ai BKi B ai +Bki

]
−
[
I −I 0 0

]T
X
[
I −I 0 0

])
ζ. (6.34)

Hence, for ρ = 0, LMI (6.14) implies

V̇ < −ηxTx− x(tn)
Tx(tn) + γwTw − η − ζTS1iζ. (6.35)

Using Schur complement, LMI (6.15) implies that (6.35) holds for ρ = τ . Since (6.34)

is affine in ρ, LMIs (6.14)-(6.15) are sufficient conditions for (6.35) to hold for any

ρ ∈ (0, τ). Recalling (6.7) and (6.9), we can write

||w|| ≤ ΔK||x(tn)||+ δk. (6.36)

Considering (6.24) and (6.13), for ||x(tn)|| ≥ μτ we have√
θ/γ||x(tn)|| −ΔK||x(tn)|| ≥ δk.

Therefore, based on (6.36), for ||x(tn)|| ≥ μτ we can write√
θ/γ||x(tn)|| ≥ ||w||. (6.37)

Adding and subtracting θx(tn)
Tx(tn), 0 < θ < 1, in inequality (6.35) and using (6.37),

for ||x(tn)|| ≥ μτ , we get

V̇ < −ηxTx− (1− θ)x(tn)
Tx(tn)− η − ζTS1iζ. (6.38)

Furthermore, considering (6.34) for ρ = 0, inequality (6.16) implies

V̇ < ζT (−εI − S1i − S3i)ζ. (6.39)

Using Schur complement, inequality (6.17) implies that (6.39) holds at ρ = τ . Since (6.34)
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is affine in ρ, inequalities (6.16)-(6.17) are sufficient conditions for (6.39) to hold for

any ρ ∈ (0, τ).

According to Lemma 6.1, ζTS1iζ > 0 if x(t) ∈ Ri. Furthermore, using Lemma 6.2,

ζTS3iζ > 0 if ||x(tn)|| < μτ . Hence considering (6.38), LMIs (6.13)-(6.15) are sufficient

conditions for V to be strictly decreasing between two consecutive sampling times for

||x(tn)|| ≥ μτ . Moreover, considering (6.39), inequalities (6.16)-(6.17) are sufficient

conditions for V to be strictly decreasing between two consecutive sampling times for

||x(tn)|| < μτ .

Therefore, inequalities (6.13)-(6.17) are sufficient conditions for V to be strictly

decreasing for any t ∈ (tn, tn+1) and x(t) /∈ R∗, regardless of the magnitude of x(tn).

• Part 2: For x(t) ∈ Ri = R∗ and x(tn) /∈ R∗, based on Assumption 6.2, we have

ai = 0 and ki = 0. Setting ai = 0 and ki = 0 in (6.34), for ρ = 0, LMI (6.18) implies

V̇ < −ηxTx− x(tn)
Tx(tn) + γwTw − η + ζT (−S1i + S2i)ζ. (6.40)

Using Schur complement, LMI (6.19) implies that (6.40) holds for ρ = τ . Since (6.34)

is affine in ρ, LMIs (6.18)-(6.19) are sufficient conditions for (6.40) to hold for any

ρ ∈ (0, τ).

Adding and subtracting θx(tn)
Tx(tn) with 0 < θ < 1 in (6.40) and recalling (6.37)

for ||x(tn)|| ≥ μτ , we get

V̇ < −ηxTx− (1− θ)x(tn)
Tx(tn)− η + ζT (−S1i + S2i)ζ. (6.41)

Furthermore, considering (6.34) with ai = 0, ki = 0, and for ρ = 0, inequality (6.20)

implies

V̇ < ζT (−εI − S1i + S2i − S3i)ζ. (6.42)

Using Schur complement, inequality (6.21) implies that (6.42) holds for ρ = τ .

Since (6.34) is affine in ρ, inequalities (6.20)-(6.21) are sufficient conditions for (6.42)

to hold for any ρ ∈ (0, τ).

Based on Lemma 6.1, ζTS1iζ > 0 if x(t) ∈ Ri. Furthermore, ζTS2iζ < 0 if

x(tn) /∈ Ri. Finally, using Lemma 6.2, ζTS3iζ > 0 if ||x(tn)|| < μτ . Hence consider-

ing (6.41), LMIs (6.13) and (6.18)-(6.19) are sufficient conditions for V to be strictly

decreasing between two consecutive sampling times for ||x(tn)|| ≥ μτ . Moreover, con-

sidering (6.42), inequalities (6.20)-(6.21) are sufficient conditions for V to be strictly

decreasing between two consecutive sampling times for ||x(tn)|| < μτ .

Therefore, inequalities (6.13) and (6.18)-(6.21) are sufficient conditions for V to
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be strictly decreasing for any t ∈ (tn, tn+1), x(t) ∈ R∗, and x(tn) /∈ R∗, regardless of

the magnitude of x(tn).

• Part 3: For x(t) ∈ Ri = R∗ and x(tn) ∈ Ri = R∗, According to (6.7) and As-

sumption 6.2, we have ai = 0, ki = 0, and w = 0. Replacing Ni by
[
ÑT

i 0nx×(nu+1)

]T
,

Ñi ∈ R
2nx×nx , and setting ai = 0 and ki = 0 in (6.34), LMI (6.22) implies

V̇ < −εζ̃T ζ̃ (6.43)

for ρ = 0, where ζ̃ =
[
xT (t) x(tn)

T
]T

. Using Schur complement, LMI (6.23) implies

that (6.43) holds for ρ = τ . Since (6.34) is affine in ρ, LMIs (6.22)-(6.23) are sufficient

conditions for V to be strictly decreasing for any ρ ∈ (0, τ), x(t) ∈ R∗, and x(tn) ∈ R∗.

Therefore, inequalities (6.13)-(6.23) are sufficient conditions for V to be strictly

decreasing between any two consecutive sampling times over the state space. Accord-

ing to Assumption 6.3, any sampling interval (tn, tn+1), n ∈ N, has a length greater

than or equal to tε > 0. Hence V |t−n+1
< V |tn , where V |t−n+1

= limt↗tn+1 V .

Note that we computed V̇ for the three possibilities in which the state vector

x(t) belongs in the state space X . Therefore, we must ensure that x(t) remains in X
during the evolution of the sampled-data system. To this end, consider the following

bounds on V over the boundaries of the state space,

C1 = min
cT x=σ1

V (t, xt), ∀ xt ∈ W , ρ ∈ [0, τ), (6.44a)

CM+1 = min
cT x=σM+1

V (t, xt), ∀ xt ∈ W , ρ ∈ [0, τ), (6.44b)

C = min {C1, CM+1} . (6.44c)

Note that the minima in (6.44) exist since V1 is positive definite and radially un-

bounded, and V2 and V3 are non-negative. Let C̃ ∈ (0, C) and define the set Ω

as

Ω = {(t, xt)|V (t, xt) ≤ C̃}. (6.45)

Since V is strictly decreasing in the sampling intervals and non-increasing at the

sampling instants, the set Ω is forward invariant. Considering (6.44), it can be shown

by contradiction that the projection of the set Ω onto X lies in the interior of X .

Therefore, for any trajectory starting in Ω, the state vector remains in X . Assuming

that the system’s trajectories start in Ω, based on Lyapunov-Krasovskii theorem [20],

the closed-loop sampled data PWA slab system is uniformly asymptotically stable to

the origin. Note that the Zeno phenomenon does not occur since, by Assumption 6.3,
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there exists tε > 0 such that tn+1 − tn ≥ tε for all n ∈ N.

In the proof of Theorem 6.1, we showed that inequality (6.13) and inequali-

ties (6.14)-(6.23) are sufficient conditions for the LKF to be decreasing, between two

consecutive sampling times. Table 6.1 summarizes the correspondence between in-

equalities (6.13)-(6.23) and the portion of the state space that they refer to.

Remark 6.1. In intuitive terms, relaxing Assumption 6.3 by letting the sampling

intervals approach zero, yields τ → 0 and x(t) = x(tn) for tn ≤ t < tn+1. Therefore,

V2 and V3 vanish and the inequalities in Theorem 6.1 reduce to the LMI conditions

for stability of continuous-time PWA slab systems (e.g. see [30]).

We now present the result for a PWA slab system in feedback with a sampled-data

PWL controller as a corollary.

Corollary 6.1. Consider the sampled-data PWA slab system defined in (6.6) and (6.7)

subject to Assumptions 6.1-6.3. Assume that the controller is piecewise linear (PWL),

i.e. ki = 0, ∀i ∈ I. The system is uniformly asymptotically stable to the origin if

there exist symmetric positive definite matrices P , R, and X, matrices Ñ and Ni,

with appropriate dimensions, and positive scalars γ, θ < 1, η, λi, σ, and ε, with i ∈ I,
satisfying (6.13)-(6.15), (6.18)-(6.19), and (6.22)-(6.23).

Proof. Since ki = 0 for all i ∈ I, we get δk = 0. Hence, equation (6.24) yields μτ = 0.

According to the proof of Theorem 6.1, LMIs (6.13)-(6.15), (6.18)-(6.19), and (6.22)-

(6.23) are sufficient conditions for the LKF (6.12) to be strictly decreasing for any

t ∈ (tn, tn+1) and ||x(tn)|| ≥ 0 (i.e. the whole state space). Since the LKF is non-

increasing at the sampling instants, similar to the proof of Theorem 6.1, a forward

invariant set can be found. Assuming that the trajectories start in the invariant set,

the closed-loop sampled data PWA slab system is uniformly asymptotically stable to

the origin.

Remark 6.2. For PWL controllers we have μτ = 0. Therefore according to Ta-

ble 6.1, Corollary 6.1 contains only those inequalities of Theorem 6.1 that correspond

to ||x(tn)|| ≥ μτ . Consequently, the inequalities in Corollary 6.1 can be solved effi-

ciently as a set of LMIs. For PWA controllers, however, the inequalities in Theo-

rem 6.1 do not constitute a set of LMIs.

Note that the matrix S3i is a nonlinear function of the variables γ and θ. Hence,

inequalities (6.13)-(6.23) cannot be solved simultaneously using LMI solvers. How-

ever, inequalities (6.13)-(6.15), (6.18)-(6.19), and (6.22)-(6.23) are linear in γ and θ
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Table 6.1: The correspondence between inequalities of Theorem 6.1 and the state
space.

||x(tn)|| ≥ μτ ||x(tn)|| < μτ

x(t) /∈ R∗ (6.13) and (6.14)-(6.15) (6.16)-(6.17)

x(t) ∈ R∗ and x(tn) /∈ R∗ (6.13) and (6.18)-(6.19) (6.20)-(6.21)

x(t) ∈ R∗ and x(tn) ∈ R∗ (6.22)-(6.23)

and constitute a set of LMIs. Moreover, treating γ and θ as constant parameters,

inequalities (6.16)-(6.17) and (6.20)-(6.21) become a set of LMIs. Based on the above

observations, we propose a two-phase algorithm for solving inequalities (6.13)-(6.23).

To this end, consider the following remark.

Remark 6.3. The variable 0 < θ < 1 appears only in inequality (6.13) and the

matrix S3i. Without loss of generality, we assume θ=1-eps, where eps is the machine

epsilon. To justify this assumption, note that if (6.13) is satisfied for a θ, it is also

satisfied for any larger θ. Moreover, based on (6.24), a larger θ yields a smaller μτ ,

which in turn provides a tighter bound on the mismatch vector w (see Lemma 6.2).

A tighter bound on w makes LMIs (6.16)-(6.17) and (6.20)-(6.21) less conservative

through the S-procedure term S3i. This in turn allows the algorithm to yield a larger

lower bound on the longest sampling interval that preserves asymptotic stability.

Algorithm 1 finds a lower bound on the longest interval between two consecutive

sampling times τmax which preserves asymptotic stability. In the first phase of the

algorithm, given τ , we solve the following optimization problem.

Problem 6.1.

minimize γ

subject to P > 0, R > 0, X > 0, γ > 0, η > 0, σ > 0, λi > 0, i ∈ I,
(6.13)− (6.15), (6.18), (6.19), (6.22), and (6.23).

If Problem 6.1 is feasible, according to Table 6.1, the LKF is decreasing for any

t ∈ (tn, tn+1) and ||x(tn)|| ≥ μτ . Note that minimizing γ leads to a smaller μτ

which relaxes the inequalities that will be solved in the next phase (see Remark 6.3).

Treating γ, P , R, and X as constant parameters computed in Problem 6.1, we solve

the following feasibility problem in the second phase.
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Name Algorithm 1
Goal Find a lower bound on the longest interval between two consecutive

sampling times (τmax) that preserves asymptotic stability
Inputs A PWA slab system and a PWA slab continuous-time controller
Outputs A lower bound on the longest interval between two consecutive sam-

pling times (τmax) and an LKF which proves asymptotic stability

Initialization: set τmax := 0, θ := 1− eps, τl := 0, τu := M, where M is a large
number, and choose a finite threshold > 0
while τu − τl > threshold:
set τ := (τl + τu)/2
if Problem 6.1 is infeasible:
set τu := τ

elseif the controller is PWL:
set τmax := τ and τl := τ

else:
(Using γ, P , R, and X from solution of Problem 6.1)
if Problem 6.2 is infeasible:
set τu := τ

else:
set τmax := τ and τl := τ

Problem 6.2.

find ε > 0, σ > 0, λi > 0, Λi 
 0, i ∈ I
subject to (6.16), (6.17), (6.20), and (6.21).

If Problem 6.2 is feasible, based on Table 6.1, the LKF is decreasing for any

t ∈ (tn, tn+1) and ||x(tn)|| < μτ .

Remark 6.4. In Problem 6.2, matrices P , R, and X are treated as constant param-

eters and replaced with the numerical values computed in Problem 6.1, so that the

same LKF is used both outside and inside the ball of radius μτ .

In the next section, we use Algorithm 1 to compute τmax in a unicycle example.

6.4 Numerical Example

Consider the line following example of Chapter 4, whose objective is to control a

unicycle to follow the line y = 0 in the x − y plane (see Fig. 4.1). The dynamics of
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the system are represented by⎡⎢⎢⎣
ψ̇

ṙ

ẏ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 1 0

0 −k/I 0

0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
ψ

r

y

⎤⎥⎥⎦+

⎡⎢⎢⎣
0

0

v sin(ψ)

⎤⎥⎥⎦+

⎡⎢⎢⎣
0

1/I

0

⎤⎥⎥⎦ u, (6.46)

where ψ and r are the heading angle and its time derivative, respectively, y is the

distance from the line y = 0, v represents the unicycle’s velocity, u is the torque input

about the z axis, I = 1 (kgm2) is the unicycle’s moment of inertia with respect to

its center of mass, and k =0.01 (Nms) is the damping coefficient. The state vector

of the system is represented by z =
[
ψ r y

]T
. We assume that the unicycle has

a constant velocity v =1 (m/s) and the heading angle ψ is restricted to the interval

[−3π/5, 3π/5], i.e. the state space is defined as Z = [−3π/5, 3π/5]× R
2.

The system’s nonlinearity, sin(ψ), is approximated by a PWA function. The PWA

approximation is defined over the following five regions:

R1 =
{
z ∈ R

3|ψ ∈ (−3π/5,−π/5)
}
, R5 =

{
z ∈ R

3|ψ ∈ (π/5, 3π/5)
}
,

R2 =
{
z ∈ R

3|ψ ∈ (−π/5,−π/15)
}
, R4 =

{
z ∈ R

3|ψ ∈ (π/15, π/5)
}
,

R3 =
{
z ∈ R

3|ψ ∈ (−π/15, π/15)
}
.

Consider the PWA controller

u = Kiz + ki, for z ∈ Ri, i ∈ {1, ..., 5}, (6.47)

with
K1 = [−49.907 − 9.468 − 13.925], k1 = −0.617,

K2 = [−48.315 − 9.330 − 13.812], k2 = 0.384,

K3 = [−50.147 − 9.468 − 13.742], k3 = 0,

K4 = [−48.316 − 9.330 − 13.812], k4 = −0.384,

K5 = [−49.907 − 9.468 − 13.925], k5 = 0.617.

The vector gains Ki, i ∈ {1, ..., 5}, are taken from the PWL controller proposed

in [30]. The affine gains ki, i ∈ {1, ..., 5}, are added to the controller such that the

continuous-time PWA controller becomes continuous at the boundaries of the regions.

Our goal is to find a lower bound on the longest interval between two consecutive

sampling times such that asymptotic stability is guaranteed. Using Algorithm 1, with
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Figure 6.1: Unicycle’s states for Ts = τmax.

τu = 0.2 and threshold=0.001, after eight iterations, we get

τmax = 0.104 (sec)

and

P =

⎡⎢⎢⎣
14.75 0.45 4.20

0.45 0.19 0.13

4.20 0.13 5.80

⎤⎥⎥⎦ , X =

⎡⎢⎢⎣
98.74 9.75 30.12

9.75 1.37 6.73

30.12 6.73 790.61

⎤⎥⎥⎦ ,

R =

⎡⎢⎢⎣
8.29 72.57 1.18

72.57 7112.51 −17.32

1.18 −17.32 5.00

⎤⎥⎥⎦ . (6.48)

Similar to (6.45), an invariant set Ω′ can be computed by considering the quadratic

term V1 in the LKF, i.e. Ω′ = {(t, zt)|V (t, zt) ≤ C̃ ′}, where C̃ ′ ∈ (0, C ′) and C ′ =

min|ψ|=3π/5 V1(t, zt) ≤ min|ψ|=3π/5 V (t, zt). Since V1 = zTPz, with P computed in (6.48),

we find C ′ = 39.245. Let C̃ ′ = 39.24 < C ′ and choose the system’s trajectories to

start in Ω′. Theorem 6.1 guarantees that if controller (6.47) is implemented in the

unicycle via sample-and-hold, with variable sampling rates greater than 1/τmax = 9.62

(Hz), the PWA closed-loop system asymptotically converges to the origin.

Figures 6.1- 6.2, illustrate the simulation results for the unicycle system (6.46)

with PWA feedback (6.47). The initial condition is z0(α) = [π/2, 0,−1]T , −0.104 ≤
α ≤ 0, and ρ(0) = 0. The simulation is performed for sampling time Ts = τmax = 0.104

(sec). According to Fig. 6.1 the state vector asymptotically converges to the origin.

The solid line in Fig. 6.2 shows the torque input for the sampled-data PWA controller.

The dashed curve in Fig. 6.2 illustrates the torque input if the PWA controller was
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Figure 6.2: Control input for Ts = τmax and Ts = 0.

Table 6.2: Comparison of two stability theorems applied to the unicycle problem

Method Stability Result τmax (sec)

Theorem 1 in [54] Convergence to the invariant set {V ≤ 4.296× 106} 0.098

Algorithm 1 Asymptotic stability to the origin 0.104

implemented in continuous-time. As expected, more control energy is required to

stabilize the system with the sample-and-hold controller.

Simulating the system with the same initial condition z0 for Ts = 0.213 (sec),

the closed-loop sampled-data trajectories do not converge to the origin. Therefore, in

this example, the error in the computed lower bound on the longest sampling interval

that preserves asymptotic stability is at most 51%. Still, as shown in Table 6.2, the

τmax provided by Algorithm 1 is less conservative than the previous results in the

literature. Moreover, Algorithm 1 provides a stronger stability result (asymptotic

stability to the origin) than Theorem 1 in [54].

6.5 Conclusion

In this chapter, based on a modified LKF, sufficient conditions were provided for

asymptotic stability of sampled-data PWA slab systems to the origin. It was shown

that these conditions become LMIs in the case of a PWL controller. An algorithm

was presented for finding a lower bound on the MASP that preserves asymptotic

stability. The output of the algorithm provides an upper bound on the minimum

sampling frequency that guarantees asymptotic stability of the sampled data system.
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It was shown that our results compare favorably with the results available in the

literature. Controller synthesis for PWA sampled-data systems will be addressed in

the next chapter.
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Chapter 7

Controller Synthesis for Piecewise

Affine Sampled-data Systems

This chapter addresses exponential stability and stabilization of PWA slab systems

with PWL sampled-data feedback. The PWL controller is assumed to be located in

the feedback loop between a sampler with an unknown nonuniform sampling rate and

a zero-order-hold. Convex Krasovskii-based sufficient conditions are proposed for ex-

ponential stability and stabilization of the sampled-data PWA slab system. The main

contributions of this chapter are twofold. First, the direct sampled-data controller

synthesis problem for PWA slab systems is formulated as a convex optimization pro-

gram with the maximum allowable sampling period as a parameter. Second, sufficient

conditions for exponential stability of PWA sampled-data systems are presented. The

stability analysis and controller synthesis conditions are cast as LMIs. The results

are successfully applied to a unicycle path following problem.

7.1 Introduction

PWA systems are a class of state-based switched systems where the vector field is

affine in each mode or region. PWA systems arise in many engineering problems (e.g.

systems with saturation, deadband, and hysteresis). They are also used as a tool

for approximating nonlinear systems (see [23, 104, 105] and the references therein).

Stability analysis and controller synthesis of PWA systems has received an increasing

number of contributions since the late nineties. The reader is referred to [25–29] for

stability analysis and to [26, 29, 30, 32] for controller synthesis in continuous-time. To

be implementable in a microprocessor (or any sample and hold device), however, the

designed continuous-time controllers must be emulated as a discrete-time controller.
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In a PWA sampled-data system, the continuous-time PWA plant is controlled in

discrete-time by a controller which is located in the feedback loop between a sampler

and a zero-order-hold. This chapter is focused on stability and stabilization of PWA

slab systems with PWL sampled-data feedback.

According to [37], there are three main approaches to sampled-data controller

synthesis. In the emulation approach [40, 41], a continuous-time controller is designed

based on the continuous-time plant, then approximated in discrete-time, and finally

implemented via a sample and hold device. In the second approach, the discrete-time

controller is designed based on an approximate discretized model of the plant [39, 44].

A common drawback of the first two approaches is that the “exact discrete-time

models of continuous-time processes are typically impossible to compute” [39, 40].

Finally, the direct sampled-data design approach is more mathematically involved

because it addresses the continuous-time plant and the discrete-time control signal

simultaneously. Its advantage, however, is that the approximation step in the other

two approaches is obviated.

The direct sampled-data design approach has recently gained an increasing inter-

est in the literature of linear sampled-data systems. In this approach, the sampled-

data system is usually modelled as either a continuous-time system with a time-

varying input delay [15, 47] or a hybrid (impulsive) system with jumps at the sampling

instants [48, 62]. Razumikhin or Krasovskii-type theorems [20] are then exploited

to develop sufficient stability and stabilization conditions for the sampled-data sys-

tem. While the Razumikhin-type theorems are based on classical Lyapunov functions,

Krasovskii-type theorems use Lyapunov functionals and are known to be less conser-

vative [15, 20].

Stability and stabilization of PWA sampled-data systems are challenging prob-

lems since the resulting hybrid systems simultaneously involve state-based (due to the

PWA vector field) and event-based switching (due to the sampling). Given a PWA

plant and a stabilizing continuous-time controller, references [53, 54] study the stabil-

ity of the closed-loop PWA system in a sampled-data framework. Assuming uniform

sampling intervals, reference [53] uses a quadratic Lyapunov function to provide suffi-

cient conditions for convergence of the PWA sampled-data system to an invariant set

containing the origin. Following the time-delay approach and using Krasovskii func-

tionals, reference [54] addresses the same stability problem for the case of samplers

with unknown nonuniform sampling intervals. The PWA sampled-data structure dis-

cussed in [55, 56] is different from the one in this chapter. In [55, 56], the switching is

only event-based (i.e. occurs at the sampling instants), whereas in this chapter the
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switching is both state-based and event-based.

The main contributions of this chapter are twofold. First, the direct sampled-data

controller synthesis problem for PWA slab systems is formulated as a convex optimiza-

tion program with the maximum allowable sampling period (MASP) as a parameter.

From an engineering perspective, without this formulation, there is no guarantee that

a designed controller satisfies the MASP dictated by the sensing equipment. To the

best of the authors’ knowledge, the convex formulation for the controller synthe-

sis problem of sampled-data PWA slab systems is presented here for the first time.

Second, sufficient stability conditions for exponential stability of PWA sampled-data

systems (as opposed to asymptotic stability in [53, 54]) are provided.

In this chapter, we follow the direct sampled-data design approach and input

delay modeling to address stability and stabilization of PWA slab systems with PWL

sampled-data feedback. For stability analysis, a PWL controller is assumed to be

available which stabilizes the PWA system in continuous-time. The objective is to

find a lower bound on the MASP that preserves exponential stability of the closed-

loop sampled-data system. For controller synthesis, the desired MASP is assumed to

be known. In this case, the objective is to design a PWL sampled-data controller that

exponentially stabilizes the PWA slab system for the desired MASP. The stabilization

results are successfully applied to a PWA model of a unicycle path following example.

For the same example, it is shown that our sufficient stability conditions are less

conservative when compared to other work in the literature [54].

The chapter is organized as follows. Section 7.2 provides preliminary information

on PWA sampled-data systems. The stability and stabilization results are presented

in Section 7.3 and Section 7.4, respectively. Finally, the new approach is applied to

a unicycle path following example in Section 7.5.

Notation. The n× n identity matrix and the n× n zero matrix are denoted by

In and 0n, respectively. Non-square zero matrices and vectors of the appropriate size

are simply represented by 0.

7.2 Preliminaries

Consider the PWA system

ẋ(t) = Aix(t) + ai +Bu(t), ∀ x(t) ∈ Ri, i ∈ I, (7.1)
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where x denotes the state vector, Ai ∈ R
nx×nx , ai ∈ R

nx , B ∈ R
nx×nu , and u ∈ R

nu

is the control input. The set I = {1, . . . ,M} contains the indices of the regions Ri

that partition the state space X ⊆ R
nx . The state space is represented by the union

of the closure of all regions, i.e. X =
⋃

i∈I Ri, where Ri denotes the closure of Ri.

The regions are defined to be non-overlapping except on their closures. Two regions

with overlapping closures are called neighbors. PWA slab systems constitute a special

class of PWA systems where the state space is partitioned along a linear combination

of the states, i.e.

Ri = {x|σi < cTx < σi+1}, (7.2)

where c ∈ R
nx and σ1 < . . . < σM+1 are scalars. The vector c is usually a vector of

zeros except for one element corresponding to the state that represents the state based

switching (the nonlinearity of the system). Each slab regionRi can be represented [30]

by a degenerate ellipsoid

Ri = εi = {x| |Eix+ ei| ≤ 1}, (7.3)

where

Ei = 2cT/(σi+1 − σi), ei = −(σi+1 + σi)/(σi+1 − σi). (7.4)

Let I(x) = {i|x(t) ∈ Ri}. In the PWA literature, one often imposes a continuity

assumption on the vector field across the boundaries of neighboring regions to avoid

the occurrence of sliding modes (see [28] for more details).

Assumption 7.1. For u(t) = 0, the open-loop vector field of system (7.1) is contin-

uous across the boundaries of any neighboring regions.

Remark 7.1. In the case where the PWA system comes from an approximation of a

continuous nonlinear function, the condition in Assumption 7.1 can be imposed using

the algorithms in [23, 104, 105] and the references therein.

Assumption 7.2. The open-loop system is linear in the regions that contain the

origin in their closure, i.e. ai = 0, ∀i ∈ I(0). In other words, the origin is assumed

to be an equilibrium point of the open-loop system.

Let a continuous-time PWL controller for (7.1) be defined by

u(t) = Kix(t), ∀ x(t) ∈ Ri, i ∈ I, (7.5)

where Ki ∈ R
nu×nx . In a sampled-data system, the state vector is measured at sam-

pling intervals that might be uncertain and nonuniform. The following assumption
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imposes lower and upper bounds on the sampling interval.

Assumption 7.3. The state vector is measured at sampling instants tn, n ∈ N, where

0 < tε ≤ tn+1 − tn ≤ τ for all n ∈ N.

The positive constant tε is an arbitrary small number that models the fact that

two sampling instants cannot occur simultaneously in practice. For sampled-data

systems, the control input (7.5) can be rewritten as

u(t) = Kjx(tn), for t ∈ [tn, tn+1), x(tn) ∈ Rj, and j ∈ I. (7.6)

For x(t) ∈ Ri, x(tn) ∈ Rj, and t ∈ [tn, tn+1), equations (7.1) and (7.6) yield

ẋ(t) =Aix(t) + ai +BKjx(tn)

=Aix(t) + ai +BKix(tn) + Bw(t), (7.7)

where w ∈ R
nu is a piecewise constant vector defined by

w(t) = (Kj −Ki)x(tn). (7.8)

The vector w is associated with the fact that the current state vector and its most

recent sample can possibly be in different regions. In order to address the nonuniform

and unknown nature of the sampling intervals, the sampled-data system is modeled

as a time-delay system with time-varying delays. To this end, the delay induced by

the sampler is defined by

ρ(t) = t− tn, for t ∈ [tn, tn+1), n ∈ N. (7.9)

The function ρ(t) denotes the time elapsed since the last sampling instant. Let

W([−τ, 0],X ) be the space of absolutely continuous functions mapping the interval

[−τ, 0] to X . Consider the function xt ∈ W defined as

xt(r) = x(t+ r), − τ ≤ r ≤ 0.

Similar to [47], we denote the norm of xt by

||xt||W = max
r∈[−τ,0]

|xt(r)|+
[∫ 0

−τ

|ẋt(r)|2 dr
] 1

2

.

For x(t) ∈ Ri and x(tn) = xt(−ρ(t)) ∈ Rj, the PWA sampled-data system (7.7) can
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now be rewritten as

ẋ(t) =Aix(t) + ai +BKixt(−ρ(t)) + Bw(t),

x0(r) =φ(r), r ∈ [−τ, 0],
(7.10)

where φ is a vector-valued function specifying the initial condition in the interval

[−τ, 0].

Definition 7.1. The solution of system (7.10) is said to be locally uniformly expo-

nentially stable with decay rate λ if there exist Ω ⊆ W([−τ, 0],X ), δ > 0, and λ > 0,

such that for any initial condition x0 ∈ Ω, the solution x(t) ∈ X is defined for all

t ≥ 0 and satisfies

|x(t)| ≤ δe−λt||x0||W . (7.11)

Moreover, if (7.11) is verified, the state space X is equal to Rnx, and Ω = W([−τ, 0],Rnx),

then the solution is globally uniformly exponentially stable.

7.3 Stability Analysis

Assume that a PWL controller is designed to stabilize the PWA system (7.1) in

continuous-time. In practice, however, the controller will be located between a sam-

pler and a zero-order-hold in the feedback loop. In this section, our objective is to find

a lower bound on the MASP that preserves exponential stability of the closed-loop

PWA system. To this end, we first present a Krasovskii functional. The functional

is then used to propose sufficient stability and stabilization conditions in the form

of LMIs. The LMIs can be solved efficiently using available software packages such

as SeDuMi [16] and YALMIP [17]. For t ∈ [tn, tn+1), let V (t, xt) be a Krasovskii

functional defined as

V (t, xt) = V (1)(x) + V (2)(t, xt) + V (3)(t, xt), (7.12)

where

V (1) =xT (t)Px(t),

V (2) =(τ − ρ)

∫ t

t−ρ

eα(s−t)
[
ẋT (s) xT (tn)

]
R
[
ẋT (s) xT (tn)

]T
ds,

V (3) =(τ − ρ)
[
xT (t) xT (tn)

]
X
[
xT (t) xT (tn)

]T
,
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with ρ defined in (7.9), and

X =
[
Inx −Inx

]T
X1

[
Inx −Inx

]
, (7.13)

where P > 0, R > 0, and X1 > 0, are matrices of appropriate dimensions and α

is a positive scalar. One of the contributions of this work is the introduction of the

functional V (2) in a new format (compare [47, 48, 54]). The functional V (2) penalizes

the derivative of the state as well as the sampled state error in the interval [t− ρ, t].

The new functional allows us to prove exponential stability of the PWA system and

to provide less conservative sufficient conditions (as will be shown in Section 7.5).

Theorem 7.1 provides a set of sufficient conditions for which the trajectories of a PWA

system in feedback with a PWL sampled-data controller, with sampling intervals

smaller than τ , exponentially converge to the origin.

Theorem 7.1. Consider the sampled-data PWA slab system defined in (7.1) with a

given PWL controller subject to Assumptions 7.1-7.3. The system is locally uniformly

exponentially stable with a decay rate larger than α/2 if there exist symmetric matrices

P > 0, R > 0, and X1 > 0, matrices N i, i ∈ I, with appropriate dimensions, and

positive scalars c1i, i ∈ I, λi, i ∈ I\I(0), η, and γ satisfying

ΔK2γ < 1 (7.14)

• for all i ∈ I\I(0)

Ωi + τM1i + Si < 0 (7.15)[
Ωi + τM2i + Si τN i

τN
T

i −τe−ατR

]
< 0 (7.16)

• for all i ∈ I(0)

Ωi + τM1i < 0 (7.17)[
Ωi + τM2i τNi

τNT
i −τe−ατR

]
< 0 (7.18)

where X is defined in (7.13), ΔK is a positive parameter defined as

ΔK = max
i,j∈I

||Kj −Ki||, (7.19)
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and

Ωi =
[
Ai BKi B ai

]T
P
[
Inx 0nx 0 0

]
+
[
Inx 0nx 0 0

]T
P
[
Ai BKi B ai

]
+ α
[
Inx 0nx 0 0

]T
P
[
Inx 0nx 0 0

]
−
[
Inx −Inx 0 0

0nx 0nx 0 0

]T
N

T

i −N i

[
Inx −Inx 0 0

0nx 0nx 0 0

]

−
[
I2nx 0 0

]T
X
[
I2nx 0 0

]
+ diag(ηInx , Inx ,−γInu , 0),

M1i =

[
Ai BKi B ai

0nx Inx 0 0

]T
R

[
Ai BKi B ai

0nx Inx 0 0

]
+ α
[
I2nx 0 0

]T
X
[
I2nx 0 0

]

+

[
Ai BKi B ai

0nx 0nx 0 0

]T
X
[
I2nx 0 0

]
+
[
I2nx 0 0

]T
X

[
Ai BKi B ai

0nx 0nx 0 0

]

M2i =−
[
0nx 0nx 0 0

0nx Inx 0 0

]T
N

T

i −N i

[
0nx 0nx 0 0

0nx Inx 0 0

]
,

Si =− λi

([
Ei 0 0 ei

]T [
Ei 0 0 ei

]
−
[
0 0 0 1

]T [
0 0 0 1

])
,

Ωi =
[
I2nx+nu 0

]
Ωi

[
I2nx+nu 0

]T
,

M1i =
[
I2nx+nu 0

]
M1i

[
I2nx+nu 0

]T
,

M2i =
[
I2nx+nu 0

]
M2i

[
I2nx+nu 0

]T
,

Ni =
[
I2nx+nu 0

]
N i.

Moreover, if the state space is equal to R
nx then the system is globally uniformly

exponentially stable.

Proof. Consider the Krasovskii functional (7.12). The proof consists of showing that

LMIs (7.14)-(7.18) are sufficient conditions for the Krasovskii functional to satisfy

V̇ (t, xt) + αV (t, xt) < 0, t �= tn, n ∈ N. The main steps of the proof are similar to

the proof of Theorem 6.1. Therefore, the rest of the proof is omitted.

Based on Theorem 7.1, the problem of finding a lower bound on the largest

sampling interval that preserves exponential stability is formulated as
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Problem 7.1.

maximize τ

subject to P > 0, R > 0, X1 > 0, η > 0, γ > 0, λi > 0, i ∈ I\I(0), (7.14)− (7.18).

The controller synthesis problem is addressed in the next section.

7.4 Controller Synthesis

In the controller synthesis problem the controller gains Ki are unknown. Therefore,

the LMIs in Theorem 7.1 turn into non-convex matrix inequalities that cannot be

solved efficiently. Theorem 7.2 addresses this issue and provides sufficient conditions

for controller synthesis that can be cast as a convex optimization program.

Theorem 7.2. Consider the sampled-data PWA slab system defined in (7.1) subject

to Assumptions 7.1-7.3. There exists an exponentially stabilizing PWL controller with

gains Ki = YiQ
−1 if there exist a symmetric matrix Q, matrices Yi, N i, i ∈ I, with

appropriate dimensions, and positive scalars λi, i ∈ I\I(0), γ, μ, and ε1, satisfying

Q > γInx (7.20)[
−γ ||Yi − Yj||

||Yi − Yj|| −1

]
< 0, ∀i, j ∈ I (7.21)

• for all i ∈ I\I(0)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γi + τM1i + Si � � �

τ

[
AiQ BYi B ai

0nx Q 0 0

]
−τQ � �[

Q 0 0
]

02nx − diag(μInx , Inx) �

λi

[
eia

T
i + EiQ 0 0 0

]
0 0 −λi(e

2
i − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (7.22)

⎡⎢⎢⎢⎢⎢⎢⎣
Γi + τM2i + Si � � �

τN T

i −τe−ατQ � �[
Q 0 0

]
02nx − diag(μInx , Inx) �

λi

[
eia

T
i + EiQ 0 0 0

]
0 0 −λi(e

2
i − 1)

⎤⎥⎥⎥⎥⎥⎥⎦ < 0 (7.23)
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• for all i ∈ I(0)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Γi + τM1i τ

⎡⎢⎢⎣
QAT

i 0nx

Y T
i BT Q

BT 0

⎤⎥⎥⎦
[
Q

0

]

� −τQ 02nx

� � − diag(μInx , Inx)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (7.24)

⎡⎢⎢⎢⎢⎢⎣
Γi + τM2i τNi

[
Q

0

]
� −τe−ατQ 02nx

� � − diag(μInx , Inx)

⎤⎥⎥⎥⎥⎥⎦ < 0 (7.25)

where

Q =diag(Q,Q), (7.26)

C =ε1

[
Inx −Inx

]T [
Inx −Inx

]
,

Γi =
[
AiQ BYi B ai

]T [
Inx 0nx 0 0

]
+
[
Inx 0nx 0 0

]T [
AiQ BYi B ai

]
+ α
[
Inx 0nx 0 0

]T
Q
[
Inx 0nx 0 0

]
−
[
Inx −Inx 0 0

0nx 0nx 0 0

]T
N T

i

−N i

[
Inx −Inx 0 0

0nx 0nx 0 0

]
−
[
I2nx 0 0

]T
CQ
[
I2nx 0 0

]
+ diag(0nx , 0nx ,−γInu , 0),

M1i =α
[
I2nx 0 0

]T
CQ
[
I2nx 0 0

]
+

[
AiQ BYi B ai

0nx 0nx 0 0

]T [
C 0 0

]

+
[
C 0 0

]T [AiQ BYi B ai

0nx 0nx 0 0

]
,

M2i =−
[
0nx 0nx 0 0

0nx Inx 0 0

]T
N T

i −N i

[
0nx 0nx 0 0

0nx Inx 0 0

]
,
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Si =− λi

⎡⎢⎢⎢⎢⎢⎣
aia

T
i 0nx 0 QET

i ei

� 0nx 0 0

� � 0nu 0

� � � e2i − 1

⎤⎥⎥⎥⎥⎥⎦ , (7.27)

Γi =
[
I2nx+nu 0

]
Γi

[
I2nx+nu 0

]T
,

M1i =
[
I2nx+nu 0

]
M1i

[
I2nx+nu 0

]T
,

M2i =
[
I2nx+nu 0

]
M2i

[
I2nx+nu 0

]T
,

Ni =
[
I2nx+nu 0

]
N i.

Moreover, if the state space is equal to R
nx then the system is globally uniformly

exponentially stable.

Proof. Here, we prove that inequalities (7.20)-(7.25) are sufficient conditions for the

LMIs in Theorem 7.1 to be verified. Suppose there exist a symmetric matrix Q,

matrices Yi, and N i, i ∈ I, with appropriate dimensions, and positive scalars λi,

i ∈ I\I(0), γ, μ, and ε1, satisfying (7.20)-(7.25). Let

P = Q−1, X1 = ε1Q
−1, R = Q

−1
, η = μ−1,

Ki = YiQ
−1, i ∈ I, N i = Q̃−1N iQ

−1
, i ∈ I, (7.28)

where Q is defined in (7.26) and

Q̃ = diag(Q,Q, Inu , 1). (7.29)

The rest of the proof is divided into four parts where we prove

1. (7.20) and (7.21) ⇒ (7.14),

2. (7.22) and (7.23) ⇒ (7.15) and (7.16),

3. (7.24) and (7.25) ⇒ (7.17) and (7.18).

• Part 1: According to (7.20), the matrix Q is invertible. Therefore, LMI (7.20)

yields

γ < λmin(Q) ⇔ γ < 1/λmax(Q
−1) ⇔ γ < 1/||Q−1|| (7.30)

where the right most inequality holds because Q is symmetric. Using Schur comple-

ment, LMI (7.21) implies ||Yi − Yj||2 < γ, ∀ i, j ∈ I. Multiplying both sides by γ > 0
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and considering inequality (7.30), we can write

||Yi − Yj||2γ < ||Q−1||−2, ∀ i, j ∈ I
⇔ (||Yi − Yj|| ||Q−1||)2γ < 1, ∀ i, j ∈ I. (7.31)

Note that ||ΨΥ|| ≤ ||Ψ|| ||Υ||, where Ψ and Υ are matrices of appropriate dimensions

(see [35], Appendix A). Therefore, inequality (7.31) yields (||(Yi − Yj)Q
−1||)2γ <

1, ∀ i, j ∈ I. Hence, using the change of variables in (7.28), we can write

||Ki −Kj||2γ < 1, ∀ i, j ∈ I ⇒ (max
i,j∈I

||Ki −Kj||)2γ < 1,

which based on (7.19) is equivalent to LMI (7.14). This concludes the first part of

the proof.

• Part 2: For i ∈ I\I(0), we first multiply inequality (7.22) from left and right

by diag(Q̃−1, I2nx , I2nx , 1), where Q̃ is defined in (7.29). Using Schur complement, we

can write

diag(Q̃−1, I2nx , I2nx)×⎡⎢⎢⎢⎢⎢⎣
Γi + τM1i +Si � �

τ

[
AiQ BYi B ai

0nx Q 0 0

]
−τQ �[

Q 0 0
]

0 − diag(μInx , Inx)

⎤⎥⎥⎥⎥⎥⎦
× diag(Q̃−1, I2nx , I2nx) < 0, i ∈ I\I(0), (7.32)

where

Si = Si + λi

[
eia

T
i + EiQ 0 0 0

]T
(e2i − 1)−1

[
eia

T
i + EiQ 0 0 0

]
. (7.33)

Consider the term Q̃−1SiQ̃
−1 which appears in the first diagonal entry of the matrix

inequality (7.32). Equations (7.27) and (7.33) yield

Q̃−1SiQ̃
−1 = −λi

⎡⎢⎢⎢⎢⎢⎣
θi 0nx 0 ET

i ei

� 0nx 0 0

� � 0nu 0

� � � e2i − 1

⎤⎥⎥⎥⎥⎥⎦ , (7.34)
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where

θi = (eia
T
i Q

−1 + Ei)
T (1− e2i )

−1(eia
T
i Q

−1 + Ei) +Q−1aia
T
i Q

−1. (7.35)

Equivalently, adding and subtracting the same terms, equation (7.35) can be written

as

θi =(eia
T
i Q

−1 + Ei)
T (1− e2i )

−1(eia
T
i Q

−1 + Ei) +Q−1aia
T
i Q

−1

+

(
ET

i (1 + e2i )Ei + (eia
T
i Q

−1)TEi + ET
i (eia

T
i Q

−1) + ET
i (1− e2i )Ei

− (eia
T
i Q

−1 + Ei)
TEi − ET

i (eia
T
i Q

−1 + Ei)

)
=(eia

T
i Q

−1 + Ei − (1− e2i )Ei)
T (1− e2i )

−1(eia
T
i Q

−1 + Ei − (1− e2i )Ei)

+Q−1aia
T
i Q

−1 + ET
i (1 + e2i )Ei + (eia

T
i Q

−1)TEi + ET
i (eia

T
i Q

−1)

=(eia
T
i Q

−1 + e2iEi)
T (1− e2i )

−1(eia
T
i Q

−1 + e2iEi) +Q−1aia
T
i Q

−1

+ ET
i Ei + ET

i e
2
iEi + (eia

T
i Q

−1)TEi + ET
i (eia

T
i Q

−1)

=ET
i Ei − (aTi Q

−1 + eiEi)
T (−1− ei(1− e2i )

−1ei)(a
T
i Q

−1 + eiEi)

=ET
i Ei − (aTi Q

−1 + eiEi)
T (e2i − 1)−1(aTi Q

−1 + eiEi). (7.36)

Next, we replace (7.36) and (7.34) in (7.32). Using Schur complement twice it can be

verified that (7.32) is a sufficient condition for

Ωi + τM1i + Si + Li < 0, i ∈ I\I(0), (7.37)

where Ωi, M1i, and Si are defined in Theorem 7.1 with the change of variables (7.28),

and matrices Li, i ∈ I\I(0), are defined as

Li = λi

[
(aTi P + eiEi) 0 0 0

]T
(e2i − 1)−1

[
(aTi P + eiEi) 0 0 0

]
, (7.38)

with change of variables (7.28). So far, we have shown that (7.22) is a sufficient

condition for (7.32) which in turn is a sufficient condition for (7.37). Therefore,

inequality (7.22) implies (7.37). Similarly, it can be shown that (7.23) is a sufficient

condition for [
Ωi + τM2i + Si + Li τN i

τN
T

i −τe−ατR

]
< 0, i ∈ I\I(0), (7.39)
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where Ωi, M2i, and Si are defined in Theorem 7.1 with the change of variables (7.28),

and matrices Li, i ∈ I\I(0), are defined in (7.38). Now, our goal is to show that

inequalities (7.37) and (7.39) are sufficient conditions for LMIs (7.15) and (7.16).

Comparing (7.37) and (7.39) with LMIs (7.15) and (7.16), the goal is achieved if

we prove that the matrices Li are positive semi-definite. Considering (7.2), for i ∈
I\I(0), the bounds σi and σi+1 have the same sign. Therefore, based on (7.4), |ei| > 1,

i ∈ I\I(0). Hence, e2i − 1 > 0 and, according to (7.38), the matrices Li, i ∈ I\I(0),
are positive semi-definite. Therefore, inequalities (7.37) and (7.39) imply LMIs (7.15)

and (7.16). This concludes the proof of Part 2, since we have shown that (7.22)

and (7.23) are sufficient conditions for LMIs (7.15) and (7.16) to be verified.

• Part 3: For i ∈ I(0), multiplying (7.24) and (7.25) from left and right by

diag(diag(Q−1, Q−1, Inu), I2nx , I2nx) and using Schur complement yields LMIs (7.17)

and (7.18) with the change of variables (7.28). Note that in this case, the vector field

of the PWA system is linear (Assumption 7.2) and the need for defining the auxiliary

matrices Li is eliminated.

The proof is complete since for any set of matrix variables satisfying inequali-

ties (7.20)-(7.25), there exists a set of matrix variables (7.28) satisfying the stability

criteria in Theorem 7.1.

Remark 7.2. The stabilization criteria in Theorem 7.2 are sufficient conditions for

the stability criteria in Theorem 7.1 and therefore are more conservative. However,

they can be used to design PWL controllers by solving a convex optimization program

that can be solved efficiently using available software packages [16, 17].

Based on Theorem 7.2 and using the line search strategy, the problem of designing

an exponentially stabilizing PWL controller that maximizes the lower bound on the

longest sampling interval is formulated as

Problem 7.2.

maximize τ

subject to λi > 0, i ∈ I\I(0), γ > 0, μ > 0, ε1 > 0, (7.20)− (7.25).

The controller gain is then computed as Ki = YiQ
−1, i ∈ I.
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7.5 Numerical Examples

In the literature of sampled-data systems, the lower bound on the MASP that pre-

serves exponential stability is usually used as a criteria for comparing the conserva-

tiveness of stability theorems. The greater is the computed lower bound, the less

conservative is the stability theorem. In the following examples, we use the same

approach to demonstrate the effectiveness of the proposed sufficient stability and

stabilization conditions.

Example 7.1. Consider the path following problem in Chapter 4, whose objective is

to control a unicycle to follow the line y = 0 in the x − y plane (see Fig. 4.1). The

dynamics of the system are represented by⎡⎢⎢⎣
ψ̇

ṙ

ẏ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 1 0

0 −k/I 0

0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
ψ

r

y

⎤⎥⎥⎦+

⎡⎢⎢⎣
0

0

v sin(ψ)

⎤⎥⎥⎦+

⎡⎢⎢⎣
0

1/I

0

⎤⎥⎥⎦ u, (7.40)

where ψ and r are the heading angle and its time derivative, respectively, y is the

distance from the line y = 0, v represents the unicycle’s velocity, u is the torque input

about the z axis, I = 1 (kgm2) is the unicycle’s moment of inertia with respect to

its center of mass, and k =0.01 (Nms) is the damping coefficient. The state vector

of the system is represented by zT =
[
ψ r y

]
. We assume that the unicycle has

a constant velocity v =1 (m/s) and the heading angle ψ is restricted to the interval

[−π/2, π/2], i.e. the state space is defined as Z = [−π/2, π/2]× R
2.

The system’s nonlinearity, sin(ψ), is approximated by a PWA function. The PWA

approximation is defined over the following five regions:

R1 =
{
z ∈ R

3|ψ ∈ (−π/2,−π/5)
}
,

R2 =
{
z ∈ R

3|ψ ∈ (−π/5,−π/15)
}
,

R3 =
{
z ∈ R

3|ψ ∈ (−π/15, π/15)
}
,

R4 =
{
z ∈ R

3|ψ ∈ (π/15, π/5)
}
,

R5 =
{
z ∈ R

3|ψ ∈ (π/5, π/2)
}
.

Consider the PWL controller

u = Kiz, for z ∈ Ri, i ∈ {1, ..., 5}, (7.41)
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Figure 7.1: Unicycle’s states for Ts = MASP = 0.166 (s) in Example 7.1.

with

K1 = K5 =
[
−49.907 −9.468 −13.925

]
,

K2 = K4 =
[
−48.315 −9.330 −13.812

]
,

K3 =
[
−50.147 −9.468 −13.742

]
.

The vector gains Ki, i ∈ {1, ..., 5}, are taken from the PWL controller proposed in [30].

Our goal is to find a lower bound on the longest interval between two consecutive

sampling times such that exponential stability is guaranteed. Solving problem 7.1, for

α = 0.0001, yields

MASP = 0.166 (s).

The decay rate (α/2) was chosen to be small to make the results comparable with

the existing methods in the literature that can only prove asymptotic stability. Theo-

rem 7.1 guarantees that if controller (7.41) is implemented in the unicycle via sample-

and-hold, with variable sampling rates greater than 1/MASP = 5.92 (Hz), the closed-

loop PWA system exponentially converges to the origin.

Now, consider a scenario in which the unicycle system (7.40) with PWL feed-

back (7.41) starts from the initial condition zT0 (r) =
[
2π/5 0 −0.5

]
, −0.166 ≤

r ≤ 0, and ρ(0) = 0. The simulation is performed with sampling intervals equal to

Ts = MASP = 0.166 (s). According to Fig. 7.1 the state vector exponentially con-

verges to the origin. The solid line in Fig. 7.2 shows the torque input for the PWL

sampled-data controller. The dashed curve in Fig. 7.2 illustrates the torque input if

the PWL controller was implemented in continuous-time. As expected, more control

energy is required to stabilize the system with the sample-and-hold controller.

Simulating the system with the same initial condition z0 for Ts = 0.213 (s), the
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Figure 7.2: Control input for Ts = MASP = 0.166 (s) and the continuous-time case
in Example 7.1.

Table 7.1: Comparison of different stability theorems applied to Example 7.1

Method Stability result MASP (s)

[54]
Convergence to an invariant set

0.098
containing the origin

Theorem 7.1 Exponential stability to the origin 0.166

closed-loop sampled-data trajectories do not converge to the origin. Therefore, in

this example, the error in the computed lower bound on the MASP that preserves

exponential stability is at most 21%. As shown in Table 7.1, the value of the MASP

provided by Theorem 7.1 is less conservative than the previous results in the literature.

Moreover, Theorem 7.1 provides a stronger stability result (exponential stability to the

origin).

Example 7.2. Consider again the unicycle path following problem in Example 7.1. It

was shown by simulation that the system is unstable for sampling intervals greater than

0.213 (s). In this example, our goal is to design a PWL controller that exponentially

stabilizes the closed-loop sampled-data system for sampling intervals as large as 0.213

(s). Solving Problem 7.2 to design a PWL controller that provides the largest lower

bound on the longest sampling interval that preserves exponential stability yields

MASP = 0.133 (s),

and

K1 = K5 =
[
−21.235 −8.100 −17.980

]
,
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Figure 7.3: Unicycle’s states for Ts = 0.213 (s) in Example 7.2.

Figure 7.4: Control input for Ts = 0.213 (s) and the continuous-time case in Exam-
ple 7.2.

K2 = K4 =
[
−21.071 −8.081 −18.814

]
,

K3 =
[
−21.153 −8.090 −18.928

]
. (7.42)

The value of MASP provided by Problem 7.2 is not as large as we desired (0.133 <

0.213). However, we have already shown that the convex formulation of the controller

synthesis problem in Theorem 7.2 leads to extra conservatism in the sufficient con-

ditions when compared to Theorem 7.1 (see Remark 7.2). Hence, in order to find

a less conservative estimation of the MASP that preserves exponential stability, we

solve Problem 7.1 with the new controller gains defined in (7.42). This yields

MASP = 0.217 (s).

Therefore, the designed PWL controller (7.42) is guaranteed to stabilize the sampled-

data PWA model if the nonuniform sampling intervals are smaller than 0.217 (s).

Since 0.213 < 0.217, the objective of this example is accomplished. Fig. 7.3 and
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Fig. 7.4 demonstrate the state vector and the control input, respectively, in a simula-

tion with the new controller gains (7.42), initial condition z0 (same as Example 7.1),

and sampling interval Ts = 0.213 (s).

7.6 Conclusion

Exponential stability and stabilization of PWA slab systems with PWL sampled-

data feedback was addressed. Convex Krasovskii-based sufficient conditions were

proposed for exponential stability and stabilization of the sampled-data PWA slab

system. The direct sampled-data controller synthesis problem for PWA slab systems

was formulated as a convex optimization program with the MASP as a parameter.
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Chapter 8

Stability and Stabilization of a

Class of Nonlinear Sampled-data

Systems

This chapter addresses exponential stability and stabilization of a class of uncer-

tain nonlinear systems with PWL sampled-data feedback. The PWL controller is

assumed to be located in the feedback loop between a sampler with an unknown

nonuniform sampling rate and a zero-order-hold. First, the open-loop nonlinear sys-

tem is bounded by a PWA differential inclusion. Next, convex Krasovskii-based

sufficient conditions are proposed for exponential stability and stabilization of the

closed-loop PWA sampled-data differential inclusion. The contributions of this chap-

ter are twofold. The main contribution is the formulation of the direct sampled-data

controller synthesis problem for a class of uncertain nonlinear systems as a convex

optimization program with the maximum allowable sampling period as a parameter.

Additionally, as the second contribution, sufficient conditions for exponential stability

of a class of nonlinear sampled-data systems are presented using a piecewise smooth

Krasovskii functional. This decreases the conservativeness of the proposed sufficient

conditions when compared with the use of smooth Krasovskii functionals. The stabil-

ity analysis and controller synthesis conditions are cast as LMIs. It is shown through

an example that the proposed method can perform favorably when compared to other

methods in the literature of nonlinear systems.
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8.1 Introduction

In a nonlinear sampled-data system, the continuous-time nonlinear plant is controlled

in discrete-time by a controller which is located in the feedback loop between a sampler

and a zero-order-hold. This chapter is focused on stability and stabilization of a

class of uncertain nonlinear systems with PWL sampled-data state feedback. First,

the open-loop nonlinear system is bounded by a PWA differential inclusion. Next,

sufficient conditions are proposed for exponential stability and stabilization of the

closed-loop PWA sampled-data differential inclusion.

According to [37, 38], there are three main approaches to sampled-data controller

synthesis. In the emulation approach, a continuous-time controller is designed based

on the continuous-time plant, then approximated in discrete-time, and finally im-

plemented via a sample and hold device. In this method, the controller can easily

be designed based on performance specifications. The performance, however, is only

guaranteed for sufficiently high sampling frequencies. In other words, the MASP

should be sufficiently small. This results in a trade-off between performance and the

cost of sensing equipment. In the second approach, the discrete-time controller is

designed based on an approximate discretized model of the plant. The advantage

of this approach is its simplicity at the cost of ignoring the inter-sample behaviour

of the system. A common drawback of the first two approaches is that the “exact

discrete-time models of continuous-time nonlinear processes are typically impossible

to compute” [39, 40]. Finally, the direct sampled-data design approach is more math-

ematically involved because it addresses the continuous-time plant and the discrete-

time control signal simultaneously. Its advantage, however, is that the approximation

step in the other two approaches is obviated. In this chapter, we focus on the direct

sampled-data design approach.

A general framework for the design of nonlinear controllers using the emula-

tion approach is presented in [40]. First, a dissipation property is used to design

a continuous-time controller. Next, the authors propose conditions that should be

satisfied by the approximate discretized controller in order to preserve the dissipation

property. Following the emulation approach, reference [41] addresses input-to-state

stability of nonlinear systems with dynamic sampled-data controllers. A controller

redesign scheme can later be used to improve the performance of the designed con-

troller [42, 43].

For a discrete-time controller design based on an approximate discrete-time model

of the plant, we refer the reader to [38, 39, 44] and the references therein. First, a
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parametrized family of approximate discrete-time models of the plant is developed.

Next, a corresponding family of discrete-time controllers is designed for the approxi-

mate models. Reference [39] provides conditions to guarantee that the exact nonlinear

sampled-data system is stable for sufficiently small modeling parameters and uniform

samplings. As mentioned earlier, ignoring the inter-sample behaviour is a drawback

of this approach. One way to address this issue is the lifting technique [37], where

the closed-loop sampled-data system is modeled as a finite dimensional discrete-time

system. The reader is referred to [45] for a study of sampled-data tracking problems

and to [46] for H∞ sampled-data control using the lifting technique.

The direct sampled-data design approach has recently gained an increasing inter-

est in the literature of linear sampled-data systems (see [15, 47–49] and the references

therein). In this approach, the sampled-data system is usually modelled as either a

continuous-time system with a time-varying input delay [15, 47] or a hybrid (impul-

sive) system with jumps at the sampling instants [48]. Razumikhin or Krasovskii-type

theorems [20] are then used to develop sufficient stability and stabilization conditions

for the sampled-data system. These conditions are usually cast in terms of linear ma-

trix inequalities (LMIs) which can be efficiently solved using software packages such

as SeDuMi [16] and YALMIP [17]. While the Razumikhin-type theorems are based

on classical Lyapunov functions, Krasovskii-type theorems use Lyapunov functionals

and are known to be less conservative [9, 15, 20]. For direct sampled-data design of

linear systems using the lifting technique the reader is referred to [37].

There are scarce references in the literature of nonlinear sampled-data systems

where the input delay model (for static controllers) [41] or the hybrid model [50–52]

of the system is studied. In all these references, however, a continuous-time controller

is assumed to be available. In other words, the controller synthesis is performed

while ignoring the sample and hold structure of the feedback. Therefore, similar to

the emulation approach, references [41, 50–52] cannot be used to design controllers

that provide a desired MASP. In contrast, one of the main contributions of this

chapter is to propose a controller synthesis technique based on the direct sampled-

data design approach where the MASP is considered as a parameter in the controller

design problem. The proposed technique uses PWA differential inclusions and PWA

systems which are discussed in the next subsection.

The main contributions of this chapter are twofold. First, the direct sampled-data

controller synthesis problem for a class of uncertain nonlinear systems is formulated

as a convex optimization program with the MASP as a parameter. From an engi-

neering perspective, without this formulation, there is no guarantee that a designed
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controller satisfies the MASP dictated by the sensing equipment. To the best of the

authors’ knowledge, there is no other direct sampled-data design based approach in

the literature of nonlinear systems that can be used to design sampled-data con-

trollers for a desired MASP. Second, sufficient conditions for exponential stability of

a class of nonlinear sampled-data systems are presented using a Krasovskii functional

that is piecewise smooth in the state vector. This decreases the conservativeness of

the proposed sufficient conditions when compared with the use of smooth Krasovskii

functionals. Note that the piecewise smooth Krasovskii functional in our work is dif-

ferent from [106] and [107] where the complete Krasovskii functional is approximated

by functionals that are piecewise linear in time and piecewise polynomial in time,

respectively. This chapter also makes contributions in the field of PWA sampled-

data systems. In particular, sufficient conditions for exponential stability of PWA

sampled-data systems (as opposed to asymptotic stability in 6) are provided using

piecewise smooth Krasovskii functionals.

In this chapter, we follow the direct sampled-data design approach and the in-

put delay modeling to address stability and stabilization of a class of nonlinear sys-

tems with PWL sampled-data feedback. For stability analysis (see Section 8.3), a

PWL controller is assumed to be available which stabilizes the nonlinear system in

continuous-time. The objective is to find a lower bound on the MASP that preserves

exponential stability of the closed-loop sampled-data system. For controller synthe-

sis (see Section 8.4), the desired MASP is assumed to be known. In this case, the

objective is to design a PWL sampled-data controller that exponentially stabilizes

the nonlinear system for the desired MASP. Note that, in contrast to previous work

in the literature, no pre-designed continuous-time controller is required in the con-

troller synthesis problem. We show through examples that the proposed methods

can perform favorably when compared to other methods in the literature of nonlinear

systems.

The chapter is organized as follows. Section 8.2 provides preliminary informa-

tion on differential inclusions, PWA sampled-data systems, and nonsmooth analysis.

The stability and stabilization results are presented in Section 8.3 and Section 8.4,

respectively. Finally, the new approach is applied to two examples in Section 8.5.

Notation. The Euclidean norms of a vector and a matrix are represented by |.|
and ||.||, respectively. The n×n identity matrix and the n×n zero matrix are denoted

by In and 0n, respectively. Non-square zero matrices and vectors of the appropriate

size are represented by 0. The symbol 0+ denotes the limε↘0 ε.
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8.2 Preliminaries

In this section, we present preliminary notions on PWA differential inclusions, PWA

sampled-data systems, and nonsmooth analysis.

8.2.1 Nonlinear systems and piecewise affine differential in-

clusions

Consider the class of uncertain nonlinear systems

ẋ = f(x) + Bu, ∀ x ∈ X ⊆ R
nx , (8.1)

where x denotes the absolutely continuous state vector, X represents the state space,

f : X → R
nx is an uncertain continuous nonlinear function, f(0) = 0, B ∈ R

nx×nu ,

and u ∈ R
nu is the control input. The dynamic equations of many mechanical systems

fall into the class of nonlinear systems (8.1) because the input (usually a force or a

torque) appears linearly in Newton’s second law of motion. The continuity condition

on f is to rule out the possibility of sliding modes.

Assumption 8.1. The open-loop vector field is bounded by a PWA differential in-

clusion defined as f(x(t)) ∈ conv{Aiκx(t) + aiκ, κ = 1, 2}, ∀ x(t) ∈ Ri, i ∈ I,
where conv represents the convex hull of a set, Aiκ ∈ R

nx×nx, aiκ ∈ R
nx, and the set

I = {1, . . . ,M} contains the indices of the regions Ri that partition the state space

X .

Remark 8.1. Clearly, studying a family of functions as opposed to one particular

function adds to the conservatism of the results. However, the family of functions

described by a PWA differential inclusion are more tractable (due to the affine dy-

namics in each region) than the original nonlinear function. Furthermore, in general,

the PWA differential inclusion in Assumption 8.1 can be arbitrarily tight at the cost

of increasing the number of regions. In [108] (see Section 4.3.1), a convex optimiza-

tion algorithm is provided to find the tightest possible PWA differential inclusion that

bounds a given nonlinear function.

According to Assumption 8.1, equation (8.1) yields

ẋ(t) ∈ conv{Aiκx(t) + aiκ +Bu(t), κ = 1, 2}, ∀ x(t) ∈ Ri, i ∈ I. (8.2)
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Definition 8.1. Given a Lebesgue integrable input u(t) and an initial condition vector

xIC, an absolutely continuous function x(t) is a solution of (8.2), if x(t) ∈ X , ∀ t ≥ 0,

ẋ(t) is defined for almost all t ≥ 0 and satisfies (8.2), and x(0) = xIC.

The two extreme dynamics corresponding to κ = 1 and κ = 2 in the PWA

differential inclusion (8.2) represent the equations of two PWA systems

ẋ(t) = Aiκx(t) + aiκ +Bu(t), ∀ x(t) ∈ Ri, i ∈ I, κ = 1, 2. (8.3)

The main idea behind using PWA differential inclusions to prove Lyapunov stability is

summarized in the following lemma. Similar arguments can be found in the literature

of linear differential inclusions [74] and PWA differential inclusions [26].

Lemma 8.1. Let there exist a positive definite candidate Lyapunov function that is

decreasing along the solution of each of the two extreme dynamics (8.3) corresponding

to the PWA differential inclusion (8.2). Then the candidate Lyapunov function is also

decreasing along every trajectory of the nonlinear system (8.1).

Proof. Suppose that a positive definite candidate Lyapunov function V is decreasing

along the extreme dynamics (8.3) of the PWA differential inclusion (8.2), i.e.

V̇ =
∂V

∂x
(Ai1x(t) + ai1 +Bu(t)) < 0, ∀ x(t) ∈ Ri, i ∈ I,

and

V̇ =
∂V

∂x
(Ai2x(t) + ai2 +Bu(t)) < 0, ∀ x(t) ∈ Ri, i ∈ I.

Let 0 ≤ β ≤ 1. Therefore, ∀ x(t) ∈ Ri, i ∈ I,

β
∂V

∂x
(Ai1x(t) + ai1 +Bu(t)) + (1− β)

∂V

∂x
(Ai2x(t) + ai2 +Bu(t)) < 0.

According to (8.2), any trajectory of the nonlinear system (8.1) lies in the convex

hull of the two extreme dynamics of the PWA differential inclusion. Therefore, V̇ =
∂V
∂x
ẋ < 0. This concludes the proof.

In the rest of this subsection, we provide more details on PWA differential inclu-

sions and PWA systems. The regions Ri are defined to be non-overlapping except on

their closures. Two regions with overlapping closures are called neighbors. The state

space is represented by the union of the closure of all regions, i.e. X =
⋃

i∈I Ri, where

Ri denotes the closure of Ri. In polytopic partitioning, each region Ri is defined as

the intersection of pi open half spaces in R
nx , i.e. Ri = {x|Gix + gi � 0}, where
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Gi ∈ R
pi×nx , gi ∈ R

pi , and � represents an elementwise inequality (see [23] for an

algorithm to generate polytopic regions). Slab regions constitute a special class of

polytopic regions where the state space is partitioned along a linear combination of

the states. Each slab region is defined as

Ri = {x|σi < csdnl
Tx < σi+1},

where csdnl �= 0 ∈ R
nx and σ1 < . . . < σM+1 are scalars. Every polytopic region Ri

can be outer approximated by a (possibly degenerate) ellipsoid as

Ri ⊆ εi = {x| |Eix+ ei| ≤ 1}, (8.4)

where Ei ∈ R
ne×nx , ei ∈ R

ne , and ne ≤ nx (this inequality is strict for degenerate

ellipsoids). A more detailed discussion on ellipsoidal approximations can be found

in [29] and the references therein. In the case of slab regions [30], we have ne = 1 and

Ei =
2csdnl

T

σi+1 − σi

, ei = −σi+1 + σi

σi+1 − σi

. (8.5)

Moreover, for slab regions, Ri = εi (i.e. the ellipsoidal approximation is exact) if σi

and σi+1 are finite. A parametric description of the boundary between two polytopic

regions Ri and Rj where Ri

⋂Rj �= ∅ can be obtained as (see [29, 109] for more

details)

Ri

⋂
Rj ⊆ {x|x = Fijs+ fij, s ∈ R

nx−1}, (8.6)

where Fij ∈ R
nx×nx−1 and fij ∈ R

nx . Finally, we define the set I(x) as

I(x) = {i|x(t) ∈ Ri}. (8.7)

The sampled-data structure of the system is addressed in the next subsection.

8.2.2 Piecewise affine sampled-data systems

In contrast to previous work [37–41, 44–46], samplers with unknown nonuniform sam-

pling intervals will be considered in this work. The following assumption imposes

lower and upper bounds on the sampling interval.

Assumption 8.2. The state vector is measured at sampling instants tn, n ∈ N, where

0 < tε ≤ tn+1 − tn ≤ τ, ∀n ∈ N.
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The positive constant tε is an arbitrary small number that models the fact that

two sampling instants cannot occur simultaneously in practice. It is used in the

proof of the main results to rule out the occurrence of the Zeno phenomenon. In this

chapter, we are particularly interested in PWL sampled-data feedback, i.e.

u(t) = Kjx(tn), for t ∈ [tn, tn+1), x(tn) ∈ Rj, and j ∈ I. (8.8)

Note that subscript j is used in (8.8) (as opposed to subscript i in (8.2)) to illustrate

the fact that the current state vector x(t) and its most recent sample x(tn) might be

in different regions. For x(t) ∈ Ri, x(tn) ∈ Rj, and t ∈ [tn, tn+1), equations (8.2)

and (8.8) yield

ẋ(t) ∈ conv{Aiκx(t) + aiκ +BKjx(tn), κ = 1, 2}
⇒ ẋ(t) ∈ conv{Aiκx(t) + aiκ +BKix(tn) + Bw(t), κ = 1, 2}, (8.9)

where w ∈ R
nu is a piecewise constant vector defined by

w(t) = (Kj −Ki)x(tn). (8.10)

The vector w is associated with the fact that the state vector and its most recent

sample can possibly be in different regions. Following the input delay modelling

technique [47], the sampled-data system is modeled as a time-delay system with a

time-varying delay. To this end, the delay induced by the sampler is defined by

ρ(t) = t− tn, for t ∈ [tn, tn+1), n ∈ N. (8.11)

The function ρ(t) denotes the time elapsed since the last sampling instant. Based

on (8.11) and Assumption 8.2, the induced delay ρ(t) is a saw-tooth function, bounded

in the interval [0, τ), and with derivative ρ̇(t) = 1. Let W([−τ, 0],X ) be the space

of absolutely continuous functions mapping the interval [−τ, 0] to X . Consider the

function xt ∈ W defined as xt(r) = x(t + r), −τ ≤ r ≤ 0. For x(t) ∈ Ri and

x(tn) = xt(−ρ(t)) ∈ Rj, the PWA sampled-data system (8.9) can now be rewritten

as

ẋ(t) ∈ conv{Aiκx(t) + aiκ +BKixt(−ρ(t)) +Bw(t), κ = 1, 2},
x0(r) = φ(r), r ∈ [−τ, 0],

(8.12)
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where w(t) and ρ(t) are defined in (8.10) and (8.11), respectively, and φ is a vector-

valued function specifying the initial condition in the interval [−τ, 0]. In the PWA

literature, one often imposes a continuity assumption on the vector field across the

boundaries of neighboring regions to avoid the occurrence of sliding modes (see [28]

for more details).

Assumption 8.3. For u(t) = 0, the open-loop vector fields of the PWA systems

in (8.3) are continuous across the boundaries of any neighboring regions.

The next assumption, combined with (8.2), guarantees that the origin is an equi-

librium point of the open-loop nonlinear system.

Assumption 8.4. For u(t) = 0, the open-loop vector fields of the PWA systems

in (8.3) are linear in the regions that contain the origin in their closure, i.e. aiκ =

0, ∀ i ∈ I(0), κ ∈ {1, 2}.

Next, two important properties of the PWA systems defined in (8.3) are proved.

Lemma 8.2. The solution x(t) of each of the PWA systems described in (8.3) is

absolutely continuous.

Proof. Let κ = 1 (or κ = 2). Integrating (8.3), the function x(t) is an indefinite

integral and therefore absolutely continuous (see [73] Chapter 5, Theorem 13).

Lemma 8.3. In the interval between two consecutive sampling instants, i.e. ∀ t ∈
(tn, tn+1), n ∈ N, the closed-loop vector field ẋ(t) of each of the PWA systems in (8.3)

is continuous everywhere (including at the boundaries of neighboring regions).

Proof. Let κ = 1 (or κ = 2). The open-loop vector field is continuous in the interior

of any region because it is affine according to equation (8.3). Moreover, the open-loop

vector field is continuous across the boundaries of neighboring regions (as stated in

Assumption 8.3). For t ∈ (tn, tn+1), n ∈ N, the control signal u defined in (8.8) is

constant. Therefore, according to (8.3), the closed-loop vector field ẋ(t) is continuous

everywhere in the interval between two consecutive sampling instants.

In Section 8.3, we use a piecewise smooth Krasovskii functional to prove stability

of PWA sampled-data differential inclusions. The next subsection presents prelimi-

nary notions for nonsmooth functions.
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8.2.3 Nonsmooth analysis

For functions defined in a finite dimensional space, the concept of gradient is gener-

alized in the nonsmooth analysis literature through the following definition.

Definition 8.2. (Clarke’s generalized gradient)[110] Let the function W : Rn →
R be locally Lipschitz and let ΩW denote the set of measure zero where the function

W fails to be differentiable. The generalized gradient of W at x is defined by

∂W (x) = conv{lim∇W (xp) : xp → x, xp /∈ ΩW}, (8.13)

where conv is the convex hull of a set and xp → x represents any sequence converging

to x.

The following lemma presents the chain rule in nonsmooth analysis.

Lemma 8.4. [111] If W : Rn → R is locally Lipschitz and x : R → R
n is absolutely

continuous, then for almost all t there exists p ∈ ∂W (x(t)) such that d
dt
W (x(t)) =

pẋ(t).

8.3 Stability Analysis

In this section, we address stability analysis of a class of nonlinear sampled-data

systems. It is assumed that a stabilizing PWL controller is already designed in

continuous-time. The objective in this section is to find a lower bound on the MASP

that preserves exponential stability of the closed-loop sampled-data system. The

controller synthesis problem for nonlinear sampled-data systems is addressed in Sec-

tion 8.4. The main results of this section are provided in two theorems. Theorem 8.1

is a Krasovskii-type theorem which uses a piecewise smooth functional to propose

sufficient conditions for exponential stability of a class of nonlinear sampled-data sys-

tems. In Theorem 8.2, a piecewise smooth Krasovskii functional is presented which

enables one to formulate the sufficient stability conditions of Theorem 8.1 as an op-

timization program in terms of LMIs. We start by a preliminary result that will be

used in the proofs of Theorem 8.1 and Theorem 8.2.

Since Clarke’s generalized gradient (Definition 8.2) is only valid in finite dimen-

sional spaces, a special structure is assumed for the piecewise smooth Krasovskii

functional.
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Lemma 8.5. Let W (x) : Rnx → R
+ be a locally Lipschitz piecewise smooth function

defined as

W (x) = W i(x), ∀ x(t) ∈ Ri, i ∈ I, (8.14)

and let W̃ (t, xt) : R+ × W → R
+ be a functional that is continuously differentiable

with respect to time except possibly at instants t = tn, n ∈ N. Then the piecewise

smooth Krasovskii functional defined as

W (t, xt) = W (x) + W̃ (t, xt) (8.15a)

= W i(x) + W̃ (t, xt), ∀x(t) ∈ Ri, i ∈ I (8.15b)

= Wi(t, xt), ∀ x(t) ∈ Ri, i ∈ I. (8.15c)

is continuous for all t ∈ (tn, tn+1).

Proof. For t ∈ (tn, tn+1), the functional W (t, xt) is continuous because it is the sum

of a locally Lipschitz continuous function W (x) and a functional W̃ (t, xt) that is

differentiable and therefore continuous (see (8.15a)).

Let Wi(t
−
n , xt−n ) denote the limt↗tn Wi(t, xt). The following theorem provides suffi-

cient conditions for exponential stability of a class of nonlinear sampled-data systems.

Theorem 8.1. Consider the nonlinear system (8.1) with a sampled-data feedback

subject to Assumptions 8.1-8.4. The closed-loop system is locally uniformly exponen-

tially stable if there exists a piecewise smooth functional W (t, xt), with the structure

defined in (8.15), such that

c1i|xt(0)|2 ≤ Wi(t, xt) ≤ c2i||xt||2W , ∀ x(t) ∈ Ri, i ∈ I (8.16)

Wi(tn, xtn) ≤ Wi(t
−
n , xt−n ), ∀ x(t) ∈ Ri, i ∈ I, ∀n ∈ N (8.17)

and the solution of each of the two extreme dynamics (8.3) satisfies

∇W i(x)ẋ(t) +
˙̃
W (t, xt) + αiWi(t, xt) < 0, ∀ x(t) ∈ Ri, i ∈ I, ∀ t �= tn, n ∈ N,

(8.18)

where c1i, c2i, and αi are positive scalars. If the state space is equal to R
nx then the

system is globally uniformly exponentially stable.

Proof. The main steps of the proof are similar to the proof of Lemma 8.1. First,

it is proved that the conditions stated in the theorem are sufficient conditions for

the Krasovskii functional W to be decreasing along the solution of each of the two
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extreme dynamics (8.3). Next, we use Lemma 8.1 to conclude that the Krasovskii

functional is also decreasing along every trajectory of the nonlinear system (8.1). To

this end, consider the extreme vector field corresponding to κ = 1 (or κ = 2). Note

that according to (8.17), Wi(t, xt) is non-increasing at the sampling instants. Next,

we analyze the interval between two sampling instants. Based on Lemma 8.5, in the

interval (tn, tn+1), n ∈ N, the function W (x) is locally Lipschitz and the functional

W̃ (t, xt) is continuously differentiable. Furthermore, the solution x(t) of the extreme

dynamics with κ = 1 (or κ = 2) is absolutely continuous according to Lemma 8.2.

Therefore, Lemma 8.4 yields

Ẇ (t, xt) = pẋ(t) +
˙̃
W (t, xt), ∀ t ∈ (tn, tn+1), (8.19)

where

p ∈ ∂W (x) = conv{∇W i(x)|i ∈ I(x)}, (8.20)

and I(x) is defined in (8.7). Consider the following two cases

1. the state vector is in the interior of a region,

2. the state vector is at the boundary of two or more regions.

• Case 1. According to (8.20), if x(t) ∈ Ri, i ∈ I, then p = ∇W i(x). Therefore,

replacing (8.19) in (8.18) and considering (8.15c) yields

Ẇ (t, xt) + αiW (t, xt) < 0, ∀ x(t) ∈ Ri, ∀ t ∈ (tn, tn+1).

Let α = mini∈I αi. Since the functional W (t, xt) is non-negative according to (8.16),

we can write

Ẇ (t, xt) + αW (t, xt) < 0, ∀ x(t) ∈ Ri, ∀ t ∈ (tn, tn+1). (8.21)

• Case 2. Assume that the state vector x(t) is at the boundary of two or more

regions Ri, i ∈ I(x). Let βi, i ∈ I(x), be positive scalars satisfying
∑

i∈I(x) βi = 1.

For x(t) ∈ ⋂i∈I(x) Ri and t ∈ (tn, tn+1), inequality (8.18) yields

∑
i∈I(x)

βi

(
∇W i(x)ẋ(t) +

˙̃
W (t, xt) + αiWi(t, xt)

)
< 0.

For t ∈ (tn, tn+1), according to Lemma 8.3 and Lemma 8.5, ẋ(t),
˙̃
W (t, xt), andW (t, xt)

are continuous at the boundaries of neighboring regions. Therefore at the boundary,
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the values of ẋ(t),
˙̃
W (t, xt), and W (t, xt) are independent of the region they are

defined in. Hence, for x(t) ∈ ⋂i∈I(x) Ri and t ∈ (tn, tn+1), we can write( ∑
i∈I(x)

βi∇W i(x)

)
ẋ(t) +

( ∑
i∈I(x)

βi

)
˙̃
W (t, xt) +

( ∑
i∈I(x)

βiαi

)
W (t, xt) < 0,

where we used (8.15c) in the last summand. According to inequality (8.16), the

functionalW (t, xt) is non-negative. Therefore, for x(t) ∈
⋂

i∈I(x) Ri and t ∈ (tn, tn+1),( ∑
i∈I(x)

βi∇W i(x)

)
ẋ(t) +

˙̃
W (t, xt) + αW (t, xt) < 0, (8.22)

where we used the fact that
∑

i∈I(x) βi = 1. Replacing (8.19) and (8.20) in (8.22)

yields

Ẇ (t, xt) + αW (t, xt) < 0, ∀ x(t) ∈
⋂

i∈I(x)
Ri, ∀ t ∈ (tn, tn+1). (8.23)

Considering (8.21) and (8.23) the following inequality holds everywhere on X

Ẇ (t, xt) + αW (t, xt) < 0, ∀ t ∈ (tn, tn+1). (8.24)

Therefore, solving (8.24) and using (8.17) yields

W (t, xt) ≤ e−α(t−tn)W (tn, xtn) ≤ e−α(t−tn)W (t−n , xt−n ) ≤ . . . < e−αtW (0, x0).

The last inequality is strict because it corresponds to the solution of (8.24) in at least

one sampling interval with a nonzero length (note that, according to Assumption 8.2,

any interval (tn, tn+1), n ∈ N, has a length of at least tε > 0). Based on Lemma 8.1,

equation (8.24) is also valid for every trajectory of the nonlinear system (8.1). Let

c1 = mini∈I c1i and c2 = maxi∈I c2i. Inequality (8.16) yields

|x(t)| = |xt(0)| ≤
(
W (t, xt)

c1

) 1
2

≤
(
e−αtW (0, x0)

c1

) 1
2

≤
(
c2
c1

) 1
2

e−
α
2
t||x0||W . (8.25)

Note that the functional W is defined over R×W . Therefore, equation (8.25) is only

valid for (t, xt) ∈ R × W , i.e. x(t + r) ∈ X , for all −τ ≤ r ≤ 0. If the state space

X is equal to R
nx , then (8.25) holds globally. In this case, the closed-loop nonlinear

sampled-data system (8.1) is globally uniformly exponentially stable with a decay

rate larger than α/2 and an overshoot smaller than
√
c2/c1. On the other hand, if
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the state space X is a subset of Rnx we must find a forward invariant set inside R×W
to ensure the validity of (8.25). Note that if the state space X is a subset of Rnx ,

then there exists at least one x(t) ∈ ∂X with a finite norm. Consider the following

bound on W (t, xt) over the boundary of the state space ∂X

c = inf
x(t)∈∂X

W (t, xt), ∀ t ∈ R
+, ∀ xt ∈ W . (8.26)

The existence of c follows from (8.16) and the fact that there exists at least one

x(t) ∈ ∂X that has a finite norm. Consider the set Ωcsdnl ⊂ R×W defined as

Ωcsdnl = {(t, xt)|W (t, xt) < c}. (8.27)

Since W (t, xt) is strictly decreasing in the sampling intervals (equation (8.24)) and

non-increasing at the sampling instants (equation (8.17)), the set Ωcsdnl is forward

invariant. Therefore, for any initial condition (0, x0) ∈ Ωc, the pair (t, xt), t ∈ R
+,

remains in Ωc. Next, we show that the state vector x(t) remains in the interior of the

state space for all t ∈ R
+. To this end, let the projection of a point (t, xt) ∈ Ωcsdnl onto

R
nx be defined as Proj(t, xt) = x(t). We define the projection of the set Ωcsdnl onto R

nx

as the union of the projections of all its members, i.e. Proj(Ωc) = {Proj(t, xt)|(t, xt) ∈
Ωc}. It is now shown by contradiction that Proj(Ωc) lies in the interior of X . Assume

that this is not true. Then, there exists a point x∗(t∗) ∈ Proj(Ωc)
⋂

∂X corresponding

to a point (t∗, x∗
t∗) ∈ Ωc for which W (t∗, x∗

t∗) < c. This contradicts (8.26). Therefore,

based on (8.25), assuming that the system’s trajectories start in Ωcsdnl, the closed-loop

nonlinear sampled-data system (8.1) is locally uniformly exponentially stable with a

decay rate larger than α/2 and an overshoot smaller than
√
c2/c1. The possibility

of sliding modes is avoided since the function ẋ(t) is continuous everywhere in the

state space according to Lemma 8.3. Note that the Zeno phenomenon does not occur

either since, by Assumption 8.2, in any time interval with a length smaller than tε,

there exists at most one sampling instant tn, n ∈ N.

Remark 8.2. The results of Theorem 8.1 are valid for any nonlinear system (8.1) in

feedback with a sampled-data controller that verifies (8.18), regardless of the structure

(i.e. linear, PWL, PWA, etc.) of the feedback signal u.

In the rest of the chapter, we focus on nonlinear systems that are controlled by

PWL sampled-data controllers. The inequality conditions in Theorem 8.1 cannot be

directly coded in optimization software. In fact, condition (8.17) corresponds to an

infinite number of inequality conditions parametrized by tn. In the following, we will
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present a piecewise smooth Krasovskii functional that is formed by quadratic terms.

Using this functional, the conditions in Theorem 8.1 are formulated as LMIs that

can be solved efficiently using available software packages such as SeDuMi [16] and

YALMIP [17]. For t ∈ [tn, tn+1), i ∈ I, let V (t, xt) be a piecewise smooth Krasovskii

functional defined as

V (t, xt) =V (1)(x) + V (2)(t, xt) + V (3)(t, xt)

=V
(1)
i (x) + V (2)(t, xt) + V (3)(t, xt), ∀x(t) ∈ Ri, i ∈ I

=Vi(t, xt), ∀ x(t) ∈ Ri, i ∈ I (8.28)

where

V (1) =V
(1)
i = xT (t)P ix(t), ∀x(t) ∈ Ri, i ∈ I, (8.29)

V (2) =(τ − ρ)

∫ t

t−ρ

eα(s−t)
[
ẋT (s) xT (tn)

]
R
[
ẋT (s) xT (tn)

]T
ds, (8.30)

V (3) =(τ − ρ)
[
xT (t) xT (tn)

]
X
[
xT (t) xT (tn)

]T
, (8.31)

with x(t) =
[
xT (t) 1

]T
, ρ defined in (8.11), and

P i =

[
Pi 0

0 0

]
, ∀ i ∈ I(0), (8.32)

X =
[
Inx −Inx

]T
X1

[
Inx −Inx

]
, (8.33)

where P i, i ∈ I, R, X1 = XT
1 , and X2 are matrices of appropriate dimensions and α

is a positive scalar. It is easy to verify that the Krasovskii functional (8.28) falls into

the structure of the functional (8.15), with W = V (1) and W̃ = V (2) + V (3).

Lemma 8.6. The Krasovskii functional (8.28) satisfies conditions (8.16) and (8.17)

in Theorem 8.1 if there exist symmetric matrices Pi, i ∈ I(0), P i, i ∈ I\I(0), R > 0,

and X1 > 0, with appropriate dimensions, positive scalars c1i, i ∈ I, and non-negative

scalars λ′
i, i ∈ I\I(0), satisfying

F
T

ij(P i − P j)F ij = 0, ∀i, j ∈ I : Ri

⋂
Rj �= ∅ (8.34)

P i − Si ≥ diag(c1iInx , 0), ∀ i ∈ I\I(0) (8.35)

Pi ≥ c1iInx , ∀ i ∈ I(0) (8.36)
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where Fij and fij, i, j ∈ I, are defined in (8.6), and

F ij =

[
Fij fij

0 1

]
, ∀i, j ∈ I : Ri

⋂
Rj �= ∅,

Si =− λ′
i

([
Ei ei

]T [
Ei ei

]
−
[
0 1
]T [

0 1
])

.

Proof. Equation (8.34) guarantees that the piecewise quadratic function V (1)(x) is

continuous at the boundary of neighboring regions (see [109] for more details). The

LKF (8.28) is similar to the LKF used in Chapter 2. Following the techniques pre-

sented in Chapter 2 it is easy to prove that the Krasovskii functional (8.28) is non-

increasing at the sampling instants (i.e. inequality (8.17) is verified).

In order to prove that the Krasovskii functional (8.28) satisfies condition (8.16),

we divide the state space into two parts

1. x(t) ∈ Ri, i ∈ I\I(0),

2. x(t) ∈ Ri, i ∈ I(0).

• Part 1: For x(t) ∈ Ri, i ∈ I\I(0), and non-negative λ′
i, it follows from (8.4)

that xTSix ≥ 0. Therefore, for x(t) ∈ Ri, i ∈ I\I(0), LMI (8.35) is a sufficient

condition for the following inequality to hold

c1i|x(t)|2 = c1i|xt(0)|2 ≤ V
(1)
i . (8.37)

Moreover, R > 0 and X1 > 0 are sufficient conditions for V (2) and V (3) to be non-

negative for t ∈ [tn, tn+1). Therefore, equation (8.28) and inequality (8.37) yield

c1i|xt(0)|2 ≤ V
(1)
i ≤ Vi. This proves that the Krasovskii functional Vi verifies the left

hand side inequality in (8.16) for regions Ri, i ∈ I\I(0). Similarly, one can prove

that the right hand side inequality in (8.16) is satisfied for regions Ri, i ∈ I\I(0).
• Part 2: In a similar way, it is easy to show that LMI (8.36) is a sufficient

condition for inequality (8.16) to hold for all x(t) ∈ Ri, i ∈ I(0).

Assume that a PWL controller is designed to stabilize the nonlinear system (8.1)

in continuous-time. In practice, however, the controller will be located between a

sampler and a zero-order-hold in the feedback loop. The objective is to find a lower

bound on the MASP that preserves exponential stability of the closed-loop sampled-

data system. To this end, Theorem 8.2 provides a set of sufficient conditions for which

144



the trajectories of a class of nonlinear systems in feedback with a PWL sampled-

data controller, with sampling intervals smaller than τ , exponentially converge to the

origin. Later, we use Theorem 8.2 to cast the problem of finding a lower bound on

the MASP as an optimization program in term of LMIs.

Theorem 8.2. Consider the nonlinear system (8.1) and a given PWL sampled-data

controller (8.8) subject to Assumptions 8.1-8.4. The closed-loop system is locally uni-

formly exponentially stable with a decay rate larger than α/2 if there exist symmetric

matrices Pi, i ∈ I(0), P i, i ∈ I\I(0), R > 0, and X1 > 0, matrices N iκ, i ∈ I,
κ ∈ {1, 2}, with appropriate dimensions, non-negative scalars λ′

i, i ∈ I\I(0), and

positive scalars c1i, i ∈ I, λiκ, i ∈ I\I(0), κ ∈ {1, 2}, η, and γ satisfying the LMIs

in Lemma 8.6 and

ΔK2γ < 1 (8.38)

• for all i ∈ I\I(0) and κ ∈ {1, 2}

Ωiκ + τM1iκ + Siκ < 0 (8.39)[
Ωiκ + τM2iκ + Siκ τN iκ

τN
T

iκ −τe−ατR

]
< 0 (8.40)

• for all i ∈ I(0) and κ ∈ {1, 2}

Ωiκ + τM1iκ < 0 (8.41)[
Ωiκ + τM2iκ τNiκ

τNT
iκ −τe−ατR

]
< 0 (8.42)

where P i, i ∈ I(0), and X are defined in (8.32) and (8.33), respectively, ΔK is a

positive parameter defined as

ΔK = max
i,j∈I

||Kj −Ki||, (8.43)

and

Ωiκ =

[
Aiκ BKi B aiκ

0 0 0 0

]T
P i

[
Inx 0nx 0 0

0 0 0 1

]

+

[
Inx 0nx 0 0

0 0 0 1

]T
P i

[
Aiκ BKi B aiκ

0 0 0 0

]
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+ α

[
Inx 0nx 0 0

0 0 0 1

]T
P i

[
Inx 0nx 0 0

0 0 0 1

]
−
[
Inx −Inx 0 0

0nx 0nx 0 0

]T
N

T

iκ

−N iκ

[
Inx −Inx 0 0

0nx 0nx 0 0

]
−
[
I2nx 0 0

]T
X
[
I2nx 0 0

]
+ diag(ηInx , Inx ,−γInu , 0),

M1iκ =

[
Aiκ BKi B aiκ

0nx Inx 0 0

]T
R

[
Aiκ BKi B aiκ

0nx Inx 0 0

]
+ α
[
I2nx 0 0

]T
X
[
I2nx 0 0

]

+

[
Aiκ BKi B aiκ

0nx 0nx 0 0

]T
X
[
I2nx 0 0

]
+
[
I2nx 0 0

]T
X

[
Aiκ BKi B aiκ

0nx 0nx 0 0

]

M2iκ =−
[
0nx 0nx 0 0

0nx Inx 0 0

]T
N

T

iκ −N iκ

[
0nx 0nx 0 0

0nx Inx 0 0

]
,

Siκ =− λiκ

([
Ei 0 0 ei

]T [
Ei 0 0 ei

]
−
[
0 0 0 1

]T [
0 0 0 1

])
,

Ωiκ =
[
I2nx+nu 0

]
Ωiκ

[
I2nx+nu 0

]T
,

M1iκ =
[
I2nx+nu 0

]
M1iκ

[
I2nx+nu 0

]T
,

M2iκ =
[
I2nx+nu 0

]
M2iκ

[
I2nx+nu 0

]T
,

Niκ =
[
I2nx+nu 0

]
N iκ.

Moreover, if the state space is equal to R
nx then the system is globally uniformly

exponentially stable.

Proof. Consider the Krasovskii functional (8.28). Based on Lemma 8.6, LMIs (8.34)-

(8.36), R > 0, X1 > 0, and non-negative λ′
i, i ∈ I\I(0), are sufficient conditions for

the Krasovskii functional (8.28) to satisfy conditions (8.16) and (8.17) in Theorem 8.1.

Hence, it suffices to prove that the remaining LMIs in Theorem 8.2 (LMIs (8.38)-

(8.42)) are sufficient conditions for the solution of each of the two extreme dynam-

ics (8.3) to satisfy inequality (8.18), i.e.

∇V
(1)
i (x)ẋ(t) + V̇ (2)(t, xt) + V̇ (3)(t, xt) + αiVi(t, xt) < 0,

∀ x(t) ∈ Ri, i ∈ I, ∀ t �= tn, n ∈ N, (8.44)
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for arbitrary αi ≥ α > 0. Without loss of generality, we assume

αi = α, ∀i ∈ I. (8.45)

For the first summand in inequality (8.44), equation (8.29) yields

∇V
(1)
i (x)ẋ(t) = ẋ

T
P ix+ xTP iẋ, ∀ x(t) ∈ Ri, i ∈ I. (8.46)

For t ∈ (tn, tn+1), following the technique presented in Chapter 2 yields

V̇ (2) ≤ρhT
i e

ατR−1hi −
[
xT (t)− xT (tn) ρxT (tn)

]
hi − hT

i

[
xT (t)− xT (tn) ρxT (tn)

]T
+ (τ − ρ)

[
ẋT (t) xT (tn)

]
R
[
ẋT (t) xT (tn)

]T
− αV (2). (8.47)

For t ∈ (tn, tn+1), the time derivative of V (3), defined in (8.31), is computed as

V̇ (3) =−
[
xT (t) xT (tn)

]
X
[
xT (t) xT (tn)

]T
+ (τ − ρ)

[
ẋT (t) 0

]
X
[
xT xT (tn)

]T
+ (τ − ρ)

[
xT (t) xT (tn)

]
X
[
ẋT 0

]T
. (8.48)

We now divide the state space into two parts

1. x(t) ∈ Ri, i ∈ I\I(0),

2. x(t) ∈ Ri, i ∈ I(0).

In the rest of the proof, we check the requirements for inequality (8.44) to hold in

each part of the state space.

• Part 1: For x(t) ∈ Ri, i ∈ I\I(0), based on (8.9), the two extreme dynamics

are defined as

ẋ(t) =
[
Aiκ BKi B aiκ

]
ζ(t), κ = 1 or κ = 2, (8.49)

where ζ(t) =
[
xT (t) xT (tn) wT (t) 1

]T
∈ R

2nx+nu+1. In what follows, we rep-

resent the left hand side of inequality (8.44) by LHS. Let κ = 1 (or κ = 2), re-

place (8.49) in (8.46), (8.47), and (8.48) and set hi(t) = N
T

iκζ(t), where N iκ is a

matrix in R
(2nx+nu+1)×2nx . Considering (8.45) we can write

LHS = ∇V
(1)
i (x)ẋ(t) + V̇ (2)(t, xt) + V̇ (3)(t, xt) + αiVi(t, xt)
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≤ζT

([
Aiκ BKi B aiκ

0 0 0 0

]T
P i

[
Inx 0nx 0 0

0 0 0 1

]

+

[
Inx 0nx 0 0

0 0 0 1

]T
P i

[
Aiκ BKi B aiκ

0 0 0 0

]

+ α

[
Inx 0nx 0 0

0 0 0 1

]T
P i

[
Inx 0nx 0 0

0 0 0 1

]
+ ρN iκe

ατR−1N
T

iκ

−
[
Inx −Inx 0 0

0nx ρInx 0 0

]T
N

T

iκ −N iκ

[
Inx −Inx 0 0

0nx ρInx 0 0

]

+ (τ − ρ)

[
Aiκ BKi B aiκ

0nx Inx 0 0

]T
R

[
Aiκ BKi B aiκ

0nx Inx 0 0

]

+ (α(τ − ρ)− 1)
[
I2nx 0 0

]T
X
[
I2nx 0 0

]
+ (τ − ρ)

[
Aiκ BKi B aiκ

0nx 0nx 0 0

]T
X
[
I2nx 0 0

]

+ (τ − ρ)
[
I2nx 0 0

]T
X

[
Aiκ BKi B aiκ

0nx 0nx 0 0

])
ζ. (8.50)

For ρ = 0, LMI (8.39) implies

LHS < −ηxTx− xT (tn)x(tn) + γwTw − ζTSiκζ. (8.51)

Using Schur complement, LMI (8.40) implies that (8.51) holds for ρ = τ . Since (8.50)

is affine in ρ, LMIs (8.39) and (8.40) are sufficient conditions for (8.51) to hold for

any ρ ∈ (0, τ). Recalling (8.10) and (8.43), we can write

||w|| ≤ ΔK||x(tn)||, (8.52)

which considering (8.38), yields ||w||2 < 1
γ
||x(tn)||2, or equivalently

0 < xT (tn)x(tn)− γwTw. (8.53)

Adding inequality (8.53) to inequality (8.51) yields LHS < −ηxTx − ζTSiκζ. For

x(t) ∈ Ri, i ∈ I\I(0), and positive λiκ, it follows from (8.4) that ζTSiκζ ≥ 0.

Hence, LMIs (8.38), (8.39), and (8.40) are sufficient conditions for inequality (8.44)
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and therefore (8.18) to hold for any t ∈ (tn, tn+1), n ∈ N, and x(t) ∈ Ri, i ∈ I\I(0).
• Part 2: For x(t) ∈ Ri, i ∈ I(0), based on Assumption 8.4, we have aiκ = 0,

κ ∈ {1, 2}. Setting aiκ = 0 and Niκ =
[
I2nx+nu 0

]
N iκ in (8.50), LMI (8.41) implies

LHS < −ηxTx− xT (tn)x(tn) + γwTw (8.54)

for ρ = 0. Using Schur complement, LMI (8.42) implies that (8.54) holds for ρ = τ .

Since (8.50) is affine in ρ, LMIs (8.41) and (8.42) are sufficient conditions for (8.54)

to hold for any ρ ∈ (0, τ). Adding inequality (8.53) to inequality (8.54) yields

LHS < −ηxTx. Hence, LMIs (8.38), (8.41), and (8.42) are sufficient conditions

for inequality (8.44) and therefore (8.18) to hold for any t ∈ (tn, tn+1), n ∈ N, and

x(t) ∈ Ri, i ∈ I(0).
Based on the conclusions in the two parts of the state space, inequality (8.18)

holds for all x(t) ∈ Ri, i ∈ I, and t ∈ (tn, tn+1). Hence, all the conditions of Theo-

rem 8.1 are satisfied and the closed-loop nonlinear sampled-data system is uniformly

exponentially stable with decay rate larger than α/2. Based on Theorem 8.1, if the

state space is equal to R
nx then the conditions of Theorem 8.2 are sufficient condi-

tions for the nonlinear sampled-data system to be globally uniformly exponentially

stable. If the state space is a subset of Rnx , however, the conditions of Theorem 8.2

are sufficient conditions for the nonlinear sampled-data system to be locally uniformly

exponentially stable.

Based on Theorem 8.2, the problem of finding a lower bound on the MASP that

preserves exponential stability is formulated as

Problem 8.1.

maximize τ

subject to R > 0, X1 > 0, λ′
i ≥ 0, i ∈ I\I(0), c1i > 0, i ∈ I, η > 0, γ > 0,

λiκ > 0, i ∈ I\I(0), κ ∈ {1, 2}, (8.34)− (8.36), (8.38)− (8.42).

8.4 Controller Synthesis

In this section, we address controller synthesis for a class of nonlinear sampled-data

systems where the MASP is considered as a parameter. In the controller synthesis

problem, the controller gains Ki, i ∈ I, are unknown. Therefore, the LMIs in The-

orem 8.2 turn into non-convex matrix inequalities that cannot be solved efficiently.
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Theorem 8.3 addresses this issue and provides sufficient conditions for controller syn-

thesis that can be cast as a convex optimization program. The price of the convex

formulation of the controller synthesis problem is an extra condition on the structure

of the PWA differential inclusion, which is formulated in Assumption 8.5.

Assumption 8.5. The regions in the PWA differential inclusion (8.2) are slabs.

Considering Assumption 8.5, in this section, ei, i ∈ I, are scalars and Ei, i ∈ I,
are vectors (see (8.5)).

Theorem 8.3. Consider the nonlinear system (8.1) subject to Assumptions 8.1-8.5.

Given τ as the desired MASP, there exists a PWL controller with gains Ki = YiQ
−1

that locally uniformly exponentially stabilizes the closed-loop sampled-data system,

if there exist a symmetric matrix Q, matrices Yi, N iκ, i ∈ I, κ ∈ {1, 2}, with

appropriate dimensions, positive scalars λiκ, i ∈ I\I(0), κ ∈ {1, 2}, γ, μ, and εX ,

satisfying

Q > γInx (8.55)[
−γ ||Yi − Yj||

||Yi − Yj|| −1

]
< 0, ∀ i, j ∈ I (8.56)

• for all i ∈ I\I(0) and κ ∈ {1, 2}⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γiκ + τM1iκ + Siκ � � �

τ

[
AiκQ BYi B aiκ

0nx Q 0 0

]
−τQ � �[

Q 0 0
]

02nx − diag(μInx , Inx) �

λiκ

[
eia

T
iκ + EiQ 0 0 0

]
0 0 −λiκ(e

2
i − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (8.57)

⎡⎢⎢⎢⎢⎢⎢⎣
Γiκ + τM2iκ + Siκ � � �

τN T

iκ −τe−ατQ � �[
Q 0 0

]
02nx − diag(μInx , Inx) �

λiκ

[
eia

T
iκ + EiQ 0 0 0

]
0 0 −λiκ(e

2
i − 1)

⎤⎥⎥⎥⎥⎥⎥⎦ < 0

(8.58)

• for all i ∈ I(0) and κ ∈ {1, 2}
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Γiκ + τM1iκ τ

⎡⎢⎢⎣
QAT

iκ 0nx

Y T
i BT Q

BT 0

⎤⎥⎥⎦
[
Q

0

]

� −τQ 02nx

� � − diag(μInx , Inx)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (8.59)

⎡⎢⎢⎢⎢⎢⎣
Γiκ + τM2iκ τNiκ

[
Q

0

]
� −τe−ατQ 02nx

� � − diag(μInx , Inx)

⎤⎥⎥⎥⎥⎥⎦ < 0 (8.60)

where

Q =diag(Q,Q), (8.61)

C =εX

[
Inx −Inx

]T [
Inx −Inx

]
,

Γiκ =
[
AiκQ BYi B aiκ

]T [
Inx 0nx 0 0

]
+
[
Inx 0nx 0 0

]T [
AiκQ BYi B aiκ

]
+ α
[
Inx 0nx 0 0

]T
Q
[
Inx 0nx 0 0

]
−
[
Inx −Inx 0 0

0nx 0nx 0 0

]T
N T

iκ

−N iκ

[
Inx −Inx 0 0

0nx 0nx 0 0

]
−
[
I2nx 0 0

]T
CQ
[
I2nx 0 0

]
+ diag(0nx , 0nx ,−γInu , 0),

M1iκ =α
[
I2nx 0 0

]T
CQ
[
I2nx 0 0

]
+

[
AiκQ BYi B aiκ

0nx 0nx 0 0

]T [
C 0 0

]

+
[
C 0 0

]T [AiκQ BYi B aiκ

0nx 0nx 0 0

]
,

M2iκ =−
[
0nx 0nx 0 0

0nx Inx 0 0

]T
N T

iκ −N iκ

[
0nx 0nx 0 0

0nx Inx 0 0

]
,
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Siκ =− λiκ

⎡⎢⎢⎢⎢⎢⎣
aiκa

T
iκ 0nx 0 QET

i ei

� 0nx 0 0

� � 0nu 0

� � � e2i − 1

⎤⎥⎥⎥⎥⎥⎦ ,

Γiκ =
[
I2nx+nu 0

]
Γiκ

[
I2nx+nu 0

]T
,

M1iκ =
[
I2nx+nu 0

]
M1iκ

[
I2nx+nu 0

]T
,

M2iκ =
[
I2nx+nu 0

]
M2iκ

[
I2nx+nu 0

]T
,

Niκ =
[
I2nx+nu 0

]
N iκ.

Moreover, if the state space is equal to R
nx then the system is globally uniformly

exponentially stable.

Proof. Here, we prove that inequalities (8.55)-(8.60) are sufficient conditions for the

LMIs in Theorem 8.2 to be verified. Suppose there exist a symmetric matrix Q,

matrices Yi, and N iκ, i ∈ I, κ ∈ {1, 2}, with appropriate dimensions, positive scalars

λiκ, i ∈ I\I(0), κ ∈ {1, 2}, γ, μ, and εX , satisfying (8.55)-(8.60). Let

Pi = Q−1, i ∈ I(0), P i = diag(Q−1, 0), i ∈ I\I(0), X1 = εXQ
−1, R = Q

−1
,

η = μ−1, Ki = YiQ
−1, i ∈ I, N iκ = Q̃−1N iκQ

−1
, i ∈ I, κ ∈ {1, 2},

where Q is defined in (8.61) and Q̃ = diag(Q,Q, Inu , 1). The rest of the proof is

similar to the proof of Theorem 7.2 and therefore omitted.

Remark 8.3. The stabilization criteria in Theorem 8.3 are sufficient conditions for

the stability criteria in Theorem 8.2 and therefore are more conservative. However,

they can be used to design PWL controllers by solving a convex optimization program

that can be solved efficiently using available software packages. Numerical examples

will show the effectiveness of this approach (see Section 8.5).

Based on Theorem 8.3, the problem of designing an exponentially stabilizing PWL

controller that maximizes the lower bound on the MASP is formulated as

Problem 8.2.

maximize τ

subject to λiκ > 0, i ∈ I\I(0), κ ∈ {1, 2}, γ > 0, μ > 0, εX > 0, (8.55)− (8.60).
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8.5 Numerical Examples

In this section, the theorems of Sections 8.3 and 8.4 are applied to two examples of

linear and nonlinear sampled-data systems. In the literature of sampled-data sys-

tems, the lower bound on the MASP is usually used as a criterion for comparing the

conservativeness of stability theorems. The greater is the computed lower bound,

the less conservative is the stability theorem. In the following example, we use the

same criterion to demonstrate the effectiveness of the proposed sufficient stability and

stabilization conditions.

Example 8.1. Consider the nonlinear system ẋ = f(x) + Bu with

f(x) =

[
−x1 + |x2|+ 0.5 cos(x1)

x2

1+x2
2
+ 0.1x2 sin(x2)

0

]
, (8.62)

where BT =
[
0 1
]
, x =

[
x1 x2

]T
∈ R

2 is the state vector, and u is the control

input. The open-loop system is bounded by the PWA differential inclusion f(x(t)) ∈
conv{Aiκx(t) + aiκ, κ = 1, 2}, ∀ x(t) ∈ Ri, i ∈ I, where I = {1, . . . , 6}. The slab

regions are defined as

R1 = {x|x2 ∈ (−∞,−5)} , R2 = {x|x2 ∈ (−5,−1.2)} , R3 = {x|x2 ∈ (−1.2, 0)} ,
R4 = {x|x2 ∈ (0, 1.2)} , R5 = {x|x2 ∈ (1.2, 5)} , R6 = {x|x2 ∈ (5,∞)} ,

and

A11 = −
[
1 0.88

0 0

]
, A21 = −

[
1 1

0 0

]
, A31 = −

[
1 0.5

0 0

]
, A41 =

[
−1 0.5

0 0

]
,

A51 =

[
−1 1

0 0

]
, A61 =

[
−1 0.88

0 0

]
, a11 = a31 = a41 = a61 =

[
0

0

]
, a21 = a51 =

[
−0.6

0

]
,

A12 = −
[
1 1.12

0 0

]
, A22 = −

[
1 1

0 0

]
, A32 = −

[
1 1.5

0 0

]
, A42 =

[
−1 1.5

0 0

]
,

A52 =

[
−1 1

0 0

]
, A62 =

[
−1 1.12

0 0

]
, a12 = a32 = a42 = a62 =

[
0

0

]
, a22 = a52 =

[
0.6

0

]
.

Figure 8.1(a) illustrates the nonlinear function and the corresponding PWA differen-

tial inclusion. Consider the linear feedback controller
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(a) (b)

Figure 8.1: The left figure illustrates the nonlinear function and the corresponding
PWA differential inclusion (as seen from the angle generated by the MATLABR©

command view(90,-33.6)). The vertical dashed lines represent the boundaries of
the slab regions. The right figure shows the response of the system for sampling
intervals equal to 0.2 (s).

u = Kx, K =
[
0 −10

]
. (8.63)

The controller can be considered as a PWL controller where the controller gain is equal

in all regions. It is easy to see that (8.63) is a stabilizing controller for x2. Since

f([x1 0]) = [−x1 0]T , one can conclude that the continuous-time controller (8.63)

asymptotically stabilizes the nonlinear system. Now assume that the controller is

implemented via a sample and hold device. Simulation results (with initial condition

xT
0 (r) =

[
1 2
]
, −0.2 ≤ r ≤ 0, and ρ(0) = 0) show that the system becomes unstable

for sampling intervals greater than 0.2 (s) (see Fig. 8.1(b)). Our first goal is to

find a lower bound on the MASP such that the closed-loop nonlinear system remains

stable. Table 8.1 compares the values provided by Problem 8.1 for the lower bound on

the MASP that guarantees global uniform exponential stability with other methods in

the literature.1 Note that the lower bound on the MASP computed using the approach

in [50] decreases drastically as the decay rate increases. In this example, comparing the

data for the case where α = 0+, the lower bound on the MASP given by the approach

proposed in this chapter is twice as large as the lower bound on the MASP provided

1When solving Example 8.1 based on the approach of [50], the following Lyapunov function can-
didates were used: V (x) = 3 × 10−5x2

1 + 10x2
2 and W (e) = |e| (please see [50] for notation). The

coefficients of the quadratic Lyapunov function were optimized to provide the largest lower bound on
the MASP.
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Table 8.1: Comparison of the computed lower bound on the MASP that guarantees
global uniform exponential stability for different decay rates (α/2)

MASP = 0.100 (s) for α = 0+

[50] MASP = 0.033 (s) for α = 2.4× 10−6

MASP = 0+ (s) for α = 4.8× 10−6

MASP = 0.199 (s) for α = 0+

Problem 8.1 MASP = 0.195 (s) for α = 0.5

MASP = 0.190 (s) for α = 1

by [50]. Moreover, in this example, the calculated lower bound on the MASP is more

than 99% accurate (recall that the system becomes unstable for sampling intervals

greater than 0.2 (s)).

Now consider a scenario in which the sampling intervals of the available sensors

are as large as 0.35 (s). Clearly, controller (8.63) cannot stabilize the sampled-data

system because the sampling intervals might be longer than 0.2 (s). Here, our goal

is to design a new controller that guarantees global uniform exponential stability of

the nonlinear sampled-data system for the MASP = 0.35 (s). To the best of the

authors’ knowledge, there is no other direct sampled-data design based approach in

the literature of nonlinear systems that can be used to design sampled-data controllers

for a desired MASP. Solving Problem 8.2 for the MASP = 0.35 (s) and α = 0.05

yields the following PWL controller

K1 =
[
0.2033 −2.4987

]
, K2 =

[
0.2431 −2.5960

]
, K3 =

[
0.2738 −2.6302

]
,

K4 =
[
−0.2738 −2.6302

]
, K5 =

[
−0.2431 −2.5960

]
, K6 =

[
−0.2033 −2.4987

]
.

(8.64)

As mentioned earlier, the convex formulation of the controller synthesis problem in

Theorem 8.3 leads to extra conservatism in the sufficient conditions when compared to

Theorem 8.2 (see Remark 8.3). Hence, in order to find a less conservative estimation

of the MASP, we solve Problem 8.1 with the new controller gains defined in (8.64).

This yields the MASP = 0.57 (s). Therefore, the designed PWL controller (8.64) is

guaranteed to stabilize the closed-loop nonlinear sampled-data system if the nonuni-

form sampling intervals are smaller than 0.57 (s).
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8.6 Conclusion

Exponential stability and stabilization of a class of uncertain nonlinear systems with

PWL sampled-data feedback was addressed. The direct sampled-data controller syn-

thesis problem for a class of uncertain nonlinear systems was formulated as a convex

optimization program with the MASP as a parameter. Sufficient conditions for ex-

ponential stability of a class of nonlinear sampled-data systems were presented using

a piecewise smooth Krasovskii functional. The stability analysis and controller syn-

thesis conditions were cast as LMIs. It was shown that the proposed methods can

perform favorably when compared to other methods in the literature of nonlinear

systems.
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Chapter 9

Linear Networked Control Systems

9.1 Introduction

In networked control systems, sensory information and feedback signals are exchanged

among different components of the system (i.e. sensors, actuators, and controllers)

through a communication network. In a modern long-range aircraft for instance,

there exist about 170 (Km) of signal wiring which account for almost 700 (Kg) of the

weight of the aircraft [4]. Other than weight, the main drawbacks of wired communi-

cation links include connector/pin failures, cracked insulation issues, arc faults, and

maintenance/upgrade difficulties [5]. The inherent benefits of wireless communication

systems and the recent advancements in this field have led to a growing interest in

wireless flight control systems (i.e. fly-by-wireless) [6]. However, the effects of non-

ideal communication networks on stability and performance of the system become

more prominent in the case of wireless communication networks [7] and motivate a

thorough study of networked control systems. We refer the reader to [1–3] for applica-

tions of networked control systems in document printing control, air vehicle systems

and satellites, and an inverted pendulum, respectively.

In a networked control system (as well as a sampled-data system and a time-delay

system, as special cases of networked control systems), the vector field is defined as

a function of the current and the past values of the state vector. Retarded functional

differential equations [19] are widely used as a framework for modeling, stability

analysis, and controller synthesis of deterministic and stochastic networked control

systems (see [19–21] and the references therein). The main approaches for studying

networked control systems include the lifting approach [37, 45, 60, 61], the impulsive

model approach [1, 11, 48, 62], and the input delay approach [12, 15, 47, 63, 64].

In the lifting approach, the retarded system is modeled as a finite dimensional
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discrete-time system. Lifting is used in studying sampled-data systems with constant

or uncertain sampling rates [49]. However, the lifting approach is not applicable to

systems with uncertain parameters. In the impulsive model approach, the retarded

system is modeled as an impulsive system which exhibits continuous state evolutions

(described by ordinary differential equations) and instantaneous state jumps. In the

input delay approach, the retarded system is modeled as a continuous-time system

with a delayed control input. Both the impulsive model and input delay approaches

use Razumikhin-type [20] or Krasovskii-type [112] theorems to prove stability of the

retarded system. While the Razumikhin-type theorems are based on classical Lya-

punov functions, Krasovskii-type theorems use Lyapunov functionals and are known

to be less conservative [9, 15, 20]. The evolution of LKFs over the past decade has

yielded less conservative stability conditions. These conditions are usually cast in

terms of LMIs which can efficiently be solved using software packages such as Se-

DuMi [16] and YALMIP [17].

In a networked control system, a continuous-time plant is in feedback with a

discrete-time emulation of a controller. The control signal is computed using state

measurements that are sampled in intervals that are not necessarily uniform [3, 47, 48].

These signals go through a quantization process [57], and experience uncertain and

time varying delays [58, 59], data packet dropouts, and congestion over the commu-

nication network. Most of the works in the literature focus on only one aspect of net-

worked control systems. There are papers, however, that study two or more features

of a networked control system at the same time. Reference [2] studies H∞ control of

a class of uncertain stochastic networked control systems with both network-induced

delays and packet dropouts. Sufficient conditions are proposed to ensure exponential

stability in mean square of the closed-loop system subject to a performance measure.

The robust filtering problem is addressed in [65] for a class of discrete-time uncertain

nonlinear networked systems with both multiple stochastic time-varying communica-

tion delays and multiple packet dropouts. A method for designing linear full-order

filter is proposed such that the estimation error converges to zero exponentially in

the mean square while the disturbance rejection attenuation is constrained to a given

level. Reference [66] studies the distributed finite- horizon filtering problem for a

class of time-varying systems over lossy sensor networks with quantization errors and

successive packet dropouts. Through available output measurements from a sensor

and its neighbors (according to a given topology), a sufficient condition is established

for the desired distributed finite-horizon filter to ensure that the prescribed average

filtering performance constraint is satisfied.
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The networked control system considered in [67] comprises a linear sampled-data

controller and an uncertain, time varying delay. Two drawbacks of that model are

that the sampling intervals are assumed to be constant and the delay is assumed to be

upper bounded by the sampling period. A more general model of networked control

systems is studied in [11, 12], where a linear sampled-data controller with uncertain

sampling rates, the possibility of data packet dropouts, and an unknown, time varying

delay are considered. While the stability theorems in [12] are less conservative than

the corresponding theorems in [11], they are more computationally expensive as they

involve solving two times as many LMIs. Moreover, due to the complexity of the LKF

in [12], the number of LMIs increases even more if additional information on the time

varying delay (e.g. a lower bound) is available.

Similar to [11, 12], in this chapter we focus on linear networked control systems. In

particular, we study a continuous-time linear plant in feedback with a linear sampled-

data controller with an unknown, time varying sampling rate, the possibility of data

packet dropout, and an uncertain, time varying delay. In contrast to [12], this chapter

improves the stability conditions of [11] without increasing the computational cost

of the resulting optimization program. We first consider the general case where in-

formation on the lower and upper bounds of the time-delay are available, and then

study the case with limited information on the time-delay. In all those scenarios, our

goal is to find a lower bound on the maximum network-induced delay that preserves

exponential stability of the system.

The main contribution of this chapter is the derivation of new sufficient stability

conditions for linear networked control system taking into account all of the factors

mentioned before. The stability conditions are based on a modified LKF. The stabil-

ity results are also applied to the case where limited information on the delay bounds

is available. Furthermore, this chapter also formulates the problem of finding a lower

bound on the maximum network-induced delay that preserves exponential stability

as a convex optimization program in terms of LMIs. This problem can be solved effi-

ciently from both a practical and theoretical point of view. Finally, as a comparison,

we show that the stability conditions proposed in this chapter compare favorably with

the ones available in the open literature for different benchmark problems.

The chapter is organized as follows. Section 9.2 presents the linear networked

control system model. Section 9.3 starts by introducing a modified LKF. Next, we

present theorems that provide sufficient conditions for exponential stability of linear

networked control systems. Furthermore, the problem of finding a lower bound on the
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Figure 9.1: A linear networked control system

maximum network-induced delay that preserves exponential stability as an optimiza-

tion program is formulated in terms of LMIs. Finally, the new approach is applied to

different examples in Section 9.4.

9.2 Preliminaries

Consider the linear system

ẋ(t) = Ax(t) + Bu(t), (9.1)

where x ∈ R
nx denotes the state vector, A ∈ R

nx×nx , B ∈ R
nx×nu , and u ∈ R

nu is the

control input. Let a continuous-time linear controller for (9.1) be defined by

u(t) = Kx(t), (9.2)

where K ∈ R
nu×nx . In this chapter, we study the stability of system (9.1) where

controller (9.2) is implemented through a network. The network comprises a time

driven sampler and an event driven zero order hold (see Figure 9.1). The possibility

of data packet dropout and communication delays are also considered in the network’s

model. The networked controller is characterized through Assumptions 9.1-9.4.

Assumption 9.1. The state vector is measured at the sampling instants sk, k ∈ N.

Each sampled state vector is sent over the network in one data packet.

Since the controller is static and time-invariant, without loss of generality [1, 8,

113], the delay between the sensor (sampler) and the controller, the delay between the

controller and the actuator, and the computation delay in the controller are modeled

as one single delay.
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Assumption 9.2. The state vector sampled at sk, k ∈ N, experiences an uncer-

tain, time varying delay ηk as it is transmitted through the network. The delay ηk is

bounded, i.e., 0 ≤ ηmin ≤ ηk ≤ ηmax.

Note that our model allows the delay ηk to grow larger than the sampling interval

[sk, sk+1] as opposed to the model in [67]. The possibility of data packet dropout is

modeled via a switch in Figure 9.1. When the switch is closed, the data is transmitted

through the network. When the switch is open, however, the data is assumed to be

dropped. The actuator is updated with new control signals at the instants tk,

tk = sk + ηk, k ∈ N. (9.3)

An event driven zero order hold keeps the control signal constant through the interval

[tk, tk+1), i.e. until the arrival of new data at tk+1.

Assumption 9.3. The control signals arrive at the actuator in the same order that

their corresponding state vectors are sampled, i.e. si < sj =⇒ ti < tj, ∀ i, j ∈ N. If a

sampled state vector arrives after a more recent sampled vector has arrived, the older

sampled vector is dropped (cf. sd and s2 in Figure 9.2).

Without loss of generality, by the index k ∈ N, we denote only the instants sk

and tk for which a data packet is not dropped. In the interval between two actuator

update instants tk and tk+1, the network-induced delay represented by ρs is defined

as the time elapsed since the last available sampling instant sk (see Figure 9.2), i.e.

ρs(t) = t− sk = t− tk + ηk, t ∈ [tk, tk+1), (9.4)

where equation (9.3) is used in the second equality. Based on Assumption 9.2, the

network-induced delay is greater than or equal to ηmin. We denote the largest network-

induced delay by τ , i.e.

τ = sup (ρs(t)) = sup
k∈N

(tk+1 − sk).

Therefore,

ηmin ≤ ρs(t) ≤ τ. (9.5)

Furthermore, the time elapsed since the last actuator update instant tk is denoted by

ρt, i.e.

ρt(t) = t− tk = t− sk − ηk = ρs(t)− ηk, t ∈ [tk, tk+1). (9.6)
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Figure 9.2: Network-induced delay

Equation (9.5), equation (9.6), and Assumption 9.2 yield

0 ≤ ρt(t) ≤ τ − ηmin. (9.7)

The following assumption models the fact that two actuator updates cannot occur

simultaneously in practice. It is used in Section 9.3 to rule out the occurrence of the

Zeno phenomenon and also plays an essential role in proving the convergence of the

closed-loop vector field to the origin.

Assumption 9.4. There exists ε > 0 such that tk+1 − tk > ε for any k ∈ N.

The control signal (9.2) is now redefined in the networked control system frame-

work as the piecewise constant function

u(t) = Kx(sk), t ∈ [tk, tk+1), (9.8)

with jumps at the actuator update instants tk, k ∈ N. Given a controller gain K that

exponentially stabilizes the continuous-time system (9.1)-(9.2), our objective is to find

a lower bound on the maximum network-induced delay that preserves exponential

stability for the networked control system defined by (9.1) and (9.8). To this end, we

use the input delay approach to draw an analogy between networked control systems

and time-delay systems. Considering (9.4), we can rewrite (9.8) as

u(t) = Kx(t− ρs), t ∈ [tk, tk+1). (9.9)

The linear networked control system (9.1) with control input (9.9) can be viewed

as a linear system with a discontinuous time varying input delay d(t) = ρs. In the
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literature of time-delay systems, LKFs are widely used to devise stability conditions

(see [21, 58, 59, 114] and the references therein). Different LKFs are used for networked

control systems in [11, 12, 67] and sampled-data systems in [15, 47, 48, 64]. The subject

of LKFs and stability of linear networked control systems will be addressed in the

next section where we present the main results of the chapter.

9.3 Main Results

First, a modified LKF is presented. Next, the LKF is used to provide new sufficient

conditions for stability of linear networked control systems. The problem of finding

a lower bound on the maximum network-induced delay that preserves exponential

stability is cast as an optimization program in terms of LMIs. Let V (t, xt) be an

LKF defined as

V (t, xt) =
8∑

j=0

Vj, t ∈ [tk, tk+1), (9.10)

where

V0 =xT (t)Px(t), (9.11)

V1 =(τ − ρs)

∫ t

t−ρt

[ẋ(r)− Bu(r)]TR1[ẋ(r)− Bu(r)] dr, (9.12)

V2 =(τ − ρs)

∫ t

t−ρt

ẋT (r)R2ẋ(r) dr, (9.13)

V3 =

∫ t

t−ηmin

(ηmin − t+ r)ẋT (r)R3ẋ(r) dr, (9.14)

V4 =

∫ t−ηmin

t−ρs

(τ − t+ r)ẋT (r)R4ẋ(r) dr + (τ − ηmin)

∫ t

t−ηmin

ẋT (r)R4ẋ(r) dr, (9.15)

V5 =

∫ t

t−ρs

(τ − t+ r)ẋT (r)R5ẋ(r) dr, (9.16)

V6 =

∫ t

t−ρs

(τ − t+ r)ẋT (r)R6ẋ(r) dr, (9.17)

V7 =

∫ t

t−ηmin

xT (r)Zx(r) dr, (9.18)

V8 =(τ − ρs)
[
xT (t) xT (tk)

]
X
[
xT (t) xT (tk)

]T
, (9.19)
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Table 9.1: Comparison of the LKF in (9.10) with the LKFs proposed in the literature

LKF in (9.10) V0 V1 V2 V3 V4 V5 V6 V7 V8

LKF in [11] � � � � � � � � �

LKF in [47] � � � � � � � � �

ρs and ρt are defined in (9.4) and (9.6), respectively, and

X =

[
X1 −X2

−XT
2 X2 +XT

2 −X1

]
, (9.20)

where P > 0, Ri > 0, i ∈ {1, . . . , 6}, Z > 0, X1 = XT
1 , and X2 are matrices in R

nx×nx .

The reason for defining two similar functionals V5 and V6 becomes clear in the next

subsection where we use V5 to provide stability conditions that are independent of

ηmax and use V6 to devise stability conditions for the case when ηmax is known (see

equations (9.45) and (9.46)). Table 9.1 compares the LKF in equation (9.10) with

the LKFs in [11, 47]. The sign � (respectively, �) denotes that a functional exists

(respectively, does not exist) in the corresponding LKF. Using the new functional

V1 and the proper use of the functional V5, enables one to achieve less conservative

stability criteria.

The following theorem provides a set of sufficient conditions for which the tra-

jectories of the linear networked control system are globally uniformly exponentially

stable to the origin.

Theorem 9.1. Consider the linear networked control system defined in (9.1) and (9.8)

with Assumptions 9.1-9.4. Given the controller gain K and the scalars τ , ηmin, and

ηmax, the networked control system is globally uniformly exponentially stable if there

exist symmetric positive definite matrices P , Ri, i ∈ {1, . . . , 6}, and Z, a symmet-

ric matrix X1, and matrices X2, Nj, j ∈ {1, . . . , 5}, N6a, and N6b, with appropriate

dimensions, satisfying[
P 0

0 0

]
+ (τ − ηmin)X > 0 (9.21)
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⎡⎢⎢⎢⎢⎢⎣
Ψ+ τM1 + (τ − ηmin)(M2 +M4) + ηminM3 ηminN3 ηminN5 ηmaxN6a

ηminN
T
3 −ηminR3 0 0

ηminN
T
5 0 −ηminR5 0

ηmaxN
T
6a 0 0 −ηmaxR6

⎤⎥⎥⎥⎥⎥⎦ < 0

(9.22)[
Ψ+ τM1 + (τ − ηmin)(M4 +M5) + ηminM3 N

N
T

D

]
< 0 (9.23)

where X is defined in (9.20) and

Ψ =
[
A 0 BK 0

]T [
P 0 0 0

]
+
[
P 0 0 0

]T [
A 0 BK 0

]
−
[
I −I 0 0

]T
(NT

1 +NT
2 +NT

6b
)− (N1 +N2 +N6b)

[
I −I 0 0

]
−
[
I 0 0 −I

]T
NT

3 −N3

[
I 0 0 −I

]
−
[
0 0 −I I

]T
NT

4

−N4

[
0 0 −I I

]
−
[
I 0 −I 0

]T
NT

5 −N5

[
I 0 −I 0

]
−
[
0 I −I 0

]T
NT

6a −N6a

[
0 I −I 0

]
+
[
I 0 0 0

]T
Z
[
I 0 0 0

]
−
[
0 0 0 I

]T
Z
[
0 0 0 I

]
−
[
X 0

0 0

]
,

M1 =
[
A 0 BK 0

]T
(R5 +R6)

[
A 0 BK 0

]
,

M2 =
[
A 0 0 0

]T
R1

[
A 0 0 0

]
+
[
A 0 BK 0

]T
R2

[
A 0 BK 0

]
+

[
A 0 BK 0

0 0 0 0

]T [
X 0

]
+

[
X

0

][
A 0 BK 0

0 0 0 0

]
,

M3 =
[
A 0 BK 0

]T
R3

[
A 0 BK 0

]
,

M4 =
[
A 0 BK 0

]T
R4

[
A 0 BK 0

]
,

M5 =
[
0 0 BK 0

]T
NT

1 +N1

[
0 0 BK 0

]
,

N =
[
(τ − ηmin)N1 (τ − ηmin)N2 ηminN3 (τ − ηmin)N4 τN5 ηmaxN6a (τ − ηmin)N6b

]
,

D =diag

(
(ηmin − τ)R1, (ηmin − τ)R2, − ηminR3, (ηmin − τ)R4, − τR5, − ηmaxR6,

(ηmin − τ)R6

)
.
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Proof. First we show that P > 0, Ri > 0, i ∈ {1, . . . , 6}, Z > 0, and LMI (9.21) are

sufficient conditions for the LKF (9.10) to satisfy

c1|xt(0)|2 ≤ V (t, xt) ≤ c2||xt||2W , (9.24)

for some c1 > 0 and c2 > 0. Adding V0 and V8 yields

V0 + V8 =

[
x(t)

x(tk)

]T ([
P 0

0 0

]
+ (τ − ρs)X

)[
x(t)

x(tk)

]
, (9.25)

for t ∈ [tk, tk+1). Based on (9.5), ρs varies between ηmin and τ . Since (9.25) is affine

in ρs, LMI (9.21) and P > 0 are sufficient conditions for the existence of a sufficiently

small c1 > 0 such that [
c1I 0

0 0

]
≤
[
P 0

0 0

]
+ (τ − ρs)X,

for any ρs ∈ [ηmin, τ). Therefore, based on (2.7) and (9.25) we can write

c1|x(t)|2 = c1|xt(0)|2 ≤ V0 + V8.

Moreover, note that the constraints Ri > 0, i ∈ {1, . . . , 6}, and Z > 0 are sufficient

conditions for Vj, j ∈ {1, . . . , 7}, to be non-negative at any time. Therefore, the lower

bound on V in inequality (9.24) is computed as

c1|xt(0)|2 ≤ V0 + V8 ≤ V.

Considering (9.5) and (2.8), observe that at any time t and for all α ∈ [−ρs, 0],

|xt(α)| ≤ ||xt||W . Equivalently,

|x(r)| ≤ ||xt||W , ∀ r ∈ [t− ρs, t]. (9.26)

Therefore,

∣∣∣∣[xT (t) xT (tk)
]T ∣∣∣∣ < √

2||xt||W . Based on (9.25),

V0 + V8 ≤ 2 max
ρs∈[ηmin,τ ]

{
λmax

([
P 0

0 0

]
+ (τ − ρs)X

)}
||xt||2W . (9.27)
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Note that

[ẋ(r)− Bu(r)]TR1[ẋ(r)− Bu(r)] ≤ λmax(R1)|ẋ(r)− Bu(r)|2.

Moreover, according to the parallelogram law [115], |v1 − v2|2 + |v1 + v2|2 = 2|v1|2 +
2|v2|2, where v1 and v2 are vectors in R

m. Therefore, |v1−v2|2 ≤ 2|v1|2+2|v2|2. Thus,
using (9.5),

V1 ≤ (τ − ηmin)λmax(R1)

(∫ t

t−ρt

2|ẋ(r)|2 dr +
∫ t

t−ρt

2|Bu(r)|2 dr
)
. (9.28)

With a change of variables, considering (9.7), and using the definition of norm in (2.8),

we can write∫ t

t−ρt

2|ẋ(r)|2 dr = 2

∫ 0

−ρt

|ẋ(t+ α)|2 dα = 2

∫ 0

−ρt

|ẋt(α)|2 dα ≤ 2||xt||2W . (9.29)

Based on (9.8), note that u(r) = Kx(sk) is constant for r ∈ [t − ρt, t] = [tk, t],

t ∈ [tk, tk+1). According to (9.26), |x(sk)| ≤ ||xt||W . Therefore, considering (9.7),∫ t

t−ρt

2|Bu(r)|2 dr = 2

∫ t

t−ρt

|BKx(sk)|2 dr ≤ 2(τ − ηmin)λmax(K
TBTBK)||xt||2W .

(9.30)

From (9.28)-(9.30),

V1 ≤ 2(τ − ηmin)λmax(R1)
(
1 + (τ − ηmin)λmax(K

TBTBK)
) ||xt||2W . (9.31)

Similarly, it can be shown that

V2 ≤ (τ − ηmin)λmax(R2)||xt||2W , (9.32)

V3 ≤ ηminλmax(R3)||xt||2W , (9.33)

V4 ≤ 2(τ − ηmin)λmax(R4)||xt||2W , (9.34)

V5 ≤ τλmax(R5)||xt||2W , (9.35)

V6 ≤ τλmax(R6)||xt||2W . (9.36)

Based on (9.5), [−ηmin, 0] ⊂ [−ρs, 0], i.e. [t − ηmin, t] ⊂ [t − ρs, t]. Therefore, us-

ing (9.26),

V7 ≤ ηminλmax(Z)||xt||2W . (9.37)
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Adding inequalities (9.27) and (9.31)-(9.37) leads to the upper bound on V in (9.24),

i.e.

c2 =2 max
ρs∈[ηmin,τ ]

{
λmax

([
P 0

0 0

]
+ (τ − ρs)X

)}
+ (τ − ηmin)(λmax(R2) + 2λmax(R4))

+ 2(τ − ηmin)λmax(R1)
(
1 + (τ − ηmin)λmax(K

TBTBK)
)

+ τ(λmax(R5) + λmax(R6)) + ηmin(λmax(R3) + λmax(Z)).

So far, it was shown that the LKF is positive definite and decrescent. Following

Lyapunov theorem, to prove stability, it suffices to show that the LKF is decreasing.

Since the LKF is discontinuous at actuator update instants tk, we first show that

the LKF is non-increasing at t = tk, k ∈ N. Next, computing the time derivative

of V for t ∈ (tk, tk+1), k ∈ N, it is proved that LMIs (9.22) and (9.23) are sufficient

conditions for the LKF to be decreasing in the interval between two actuator update

instants. To this end, note that Vj, j ∈ {1, . . . , 7}, and V0 + V8 are always non-

negative. Also observe that V0, V3, and V7 are continuous functions. The functionals

V1 and V2 vanish at the actuator update instants since ρt = 0 at t = tk. The first

integral in the functional V4 is non-increasing at the actuator update instants t = tk

because the integrand is non-negative and based on Assumption 9.3 the lower limit

of the integral changes from sk−1 to sk (see Figure 9.2). Note that the second part

of V4 is a continuous function. Using the same reasoning, the functionals V5 and V6

are non-increasing at the actuator update instants t = tk because the integrands are

non-negative and the lower limit of the integrals change from sk−1 to sk. The last

component of the LKF, i.e. V8, vanishes at the actuator update instants because

x(t) = x(tk) at t = tk and the sum of the entries of X is equal to zero. Therefore,

the LKF is non-increasing at instants tk, k ∈ N. The LKF is differentiable in the

interval between two actuator update instants. For t ∈ (tk, tk+1), V̇ is composed of

nine terms computed as follows. The time derivative of V0 is

V̇0 = ẋTPx+ xTPẋ. (9.38)

From (9.4) and (9.6), we have ρ̇s = ρ̇t = 1. Hence, applying the Leibniz integral rule
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to V1 yields

V̇1 =−
∫ t

t−ρt

[ẋ(r)− Bu(r)]TR1[ẋ(r)− Bu(r)] dr + (τ − ρs) [ẋ− Bu]T R1 [ẋ− Bu] .

(9.39)

Since R1 is positive definite, for any arbitrary time varying vector h1(t) ∈ R
nx we can

write [
ẋ(r)− Bu(r)

h1

]T [
R1 −I

−I R−1
1

][
ẋ(r)− Bu(r)

h1

]
≥ 0.

Therefore,

−[ẋ(r)− Bu(r)]TR1[ẋ(r)− Bu(r)] ≤ hT
1R

−1
1 h1 − [ẋ(r)− Bu(r)]Th1 − hT

1 [ẋ(r)− Bu(r)].

Note that u(r) = Kx(sk) is constant for r ∈ (tk, tk+1), and x(r) = xr(0) ∈ W is

absolutely continuous. Therefore, integrating both sides from t−ρt to t, with respect

to r, we have

−
∫ t

t−ρt

[ẋ(r)− Bu(r)]TR1[ẋ(r)− Bu(r)] dr ≤ρth
T
1R

−1
1 h1 − [x− x(tk)− ρtBu]Th1

− hT
1 [x− x(tk)− ρtBu]. (9.40)

Replacing (9.40) in (9.39), yields

V̇1 ≤ρth
T
1R

−1
1 h1 − [x− x(tk)− ρtBu]T h1 − hT

1 [x− x(tk)− ρtBu]

+ (τ − ρs) [ẋ− Bu]T R1 [ẋ− Bu] . (9.41)

Similarly, we can write the following equations

V̇2 ≤ρth
T
2R

−1
2 h2 − [x− x(tk)]

T h2 − hT
2 [x− x(tk)] + (τ − ρs)ẋ

TR2ẋ, (9.42)

V̇3 =−
∫ t

t−ηmin

ẋT (r)R3ẋ(r) dr + ηminẋ
TR3ẋ

≤ηminh
T
3R

−1
3 h3 − [x− x(t− ηmin)]

T h3 − hT
3 [x− x(t− ηmin)] + ηminẋ

TR3ẋ,

(9.43)

V̇4 =(τ − ηmin)ẋ
T (t− ηmin)R4ẋ(t− ηmin)−

∫ t−ηmin

t−ρs

ẋT (r)R4ẋ(r) dr + (τ − ηmin)ẋ
TR4ẋ
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− (τ − ηmin)ẋ
T (t− ηmin)R4ẋ(t− ηmin)

≤(ρs − ηmin)h
T
4R

−1
4 h4 − [x(t− ηmin)− x(sk)]

T h4 − hT
4 [x(t− ηmin)− x(sk)]

+ (τ − ηmin)ẋ
TR4ẋ, (9.44)

V̇5 =−
∫ t

t−ρs

ẋT (r)R5ẋ(r) dr + τ ẋTR5ẋ

≤ρsh
T
5R

−1
5 h5 − [x− x(sk)]

T h5 − hT
5 [x− x(sk)] + τ ẋTR5ẋ, (9.45)

V̇6 =−
∫ t−ρt

t−ρs

ẋT (r)R6ẋ(r) dr −
∫ t

t−ρt

ẋT (r)R6ẋ(r) dr + τ ẋTR6ẋ

≤ηkh
T
6aR

−1
6 h6a − [x(tk)− x(sk)]

T h6a − hT
6a [x(tk)− x(sk)] + ρth

T
6b
R−1

6 h6b

− [x− x(tk)]
T h6b − hT

6b
[x− x(tk)] + τ ẋTR6ẋ, (9.46)

V̇7 =xTZx− xT (t− ηmin)Zx(t− ηmin), (9.47)

V̇8 =−
[
xT (t) xT (tk)

]
X
[
xT (t) xT (tk)

]T
+ (τ − ρs)

[
ẋT (t) 0

]
X
[
xT (t) xT (tk)

]T
+ (τ − ρs)

[
xT (t) xT (tk)

]
X
[
ẋT (t) 0

]T
, (9.48)

where hj(t), j ∈ {2, . . . , 5}, h6a(t), and h6b(t) are arbitrary time varying vectors in

R
nx . Although the functionals V5 and V6 were defined similarly in equations (9.16)

and (9.17), their time derivatives were approximated differently in equations (9.45)

and (9.46). V̇6 is approximated by a delay dependant functional and is used to devise

stability conditions for the case when ηmax is known. Since V̇ =
∑8

i=0 V̇i, adding (9.38)

and (9.41)-(9.48) yields

V̇ ≤ẋTPx+ xTPẋ+ ρth
T
1R

−1
1 h1 − [x− x(tk)− ρtBu]T h1 − hT

1 [x− x(tk)− ρtBu]

+ (τ − ρs) [ẋ− Bu]T R1 [ẋ− Bu] + ρth
T
2R

−1
2 h2 − [x− x(tk)]

T h2 − hT
2 [x− x(tk)]

+ (τ − ρs)ẋ
TR2ẋ+ ηminh

T
3R

−1
3 h3 − [x− x(t− ηmin)]

T h3 − hT
3 [x− x(t− ηmin)]

+ ηminẋ
TR3ẋ+ (ρs − ηmin)h

T
4R

−1
4 h4 − [x(t− ηmin)− x(sk)]

T h4

− hT
4 [x(t− ηmin)− x(sk)] + (τ − ηmin)ẋ

TR4ẋ+ ρsh
T
5R

−1
5 h5 − [x− x(sk)]

T h5

− hT
5 [x− x(sk)] + τ ẋTR5ẋ+ ηkh

T
6aR

−1
6 h6a − [x(tk)− x(sk)]

T h6a

− hT
6a [x(tk)− x(sk)] + ρth

T
6b
R−1

6 h6b − [x− x(tk)]
T h6b − hT

6b
[x− x(tk)]

+ τ ẋTR6ẋ+ xTZx− xT (t− ηmin)Zx(t− ηmin)

−
[
xT (t) xT (tk)

]
X
[
xT (t) xT (tk)

]T
+ (τ − ρs)

[
ẋT (t) 0

]
X
[
xT (t) xT (tk)

]T
+ (τ − ρs)

[
xT (t) xT (tk)

]
X
[
ẋT (t) 0

]T
. (9.49)
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Recalling (9.1) and (9.8), we can write

ẋ(t) =
[
A 0 BK 0

]
ζ(t), and ẋ(t)− Bu(t) =

[
A 0 0 0

]
ζ(t), (9.50)

where ζ(t) =
[
xT (t) xT (tk) xT (sk) xT (t− ηmin)

]T
, t ∈ (tk, tk+1). Replacing (9.8)

and (9.50) in (9.49), setting hj(t) = NT
j ζ(t), j ∈ {1, . . . , 5}, h6a(t) = NT

6aζ(t), and

h6b(t) = NT
6b
ζ(t), where Nj, j ∈ {1, . . . , 5}, N6a , and N6b are matrices in R

4nx×nx , and

replacing ρt and ηk with ρs − ηmin and ηmax, respectively, yields

V̇ ≤ ζT

([
A 0 BK 0

]T
P
[
I 0 0 0

]
+
[
I 0 0 0

]T
P
[
A 0 BK 0

]
+ (ρs − ηmin)N1R

−1
1 NT

1 −
[
I −I −(ρs − ηmin)BK 0

]T
NT

1

−N1

[
I −I −(ρs − ηmin)BK 0

]
+ (τ − ρs)

[
A 0 0 0

]T
R1

[
A 0 0 0

]
+ (ρs − ηmin)N2R

−1
2 NT

2 −
[
I −I 0 0

]T
NT

2 −N2

[
I −I 0 0

]
+ (τ − ρs)

[
A 0 BK 0

]T
R2

[
A 0 BK 0

]
+ ηminN3R

−1
3 NT

3

−
[
I 0 0 −I

]T
NT

3 −N3

[
I 0 0 −I

]
+ ηmin

[
A 0 BK 0

]T
R3

[
A 0 BK 0

]
+ (ρs − ηmin)N4R

−1
4 NT

4

−
[
0 0 −I I

]T
NT

4 −N4

[
0 0 −I I

]
+ (τ − ηmin)

[
A 0 BK 0

]T
R4

[
A 0 BK 0

]
+ ρsN5R

−1
5 NT

5

−
[
I 0 −I 0

]T
NT

5 −N5

[
I 0 −I 0

]
+ τ
[
A 0 BK 0

]T
R5

[
A 0 BK 0

]
+ ηmaxN6aR

−1
6 NT

6a

−
[
0 I −I 0

]T
NT

6a −N6a

[
0 I −I 0

]
+ (ρs − ηmin)N6bR

−1
6 NT

6b

−
[
I −I 0 0

]T
NT

6b
−N6b

[
I −I 0 0

]
+ τ
[
A 0 BK 0

]T
R6

[
A 0 BK 0

]
+
[
I 0 0 0

]T
Z
[
I 0 0 0

]
−
[
0 0 0 I

]T
Z
[
0 0 0 I

]
−
[
X 0

0 0

]
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+ (τ − ρs)

[
A 0 BK 0

0 0 0 0

]T [
X 0

]
+ (τ − ρs)

[
X

0

][
A 0 BK 0

0 0 0 0

])
ζ.

(9.51)

Based on (9.5), ρs varies between ηmin and τ . Considering (9.51) and using Schur

complement [74], for ρs = ηmin, LMI (9.22) implies V̇ < 0. Similarly, LMI (9.23)

implies V̇ < 0 for ρs = τ . Since (9.51) is affine in ρs, LMIs (9.22) and (9.23) are

sufficient conditions for V̇ < 0 to hold for any ρs ∈ [ηmin, τ ], i.e. ∀(tk, tk+1), k ∈ N.

Note that there exists a sufficiently small scalar c3 > 0 such that V̇ (t, xt) < −c3||xt||2W ,

for all t �= tk, k ∈ N. Hence, inequality (9.24) yields

V̇ (t, xt) < −c3
c2
V (t, xt), ∀t �= tk, k ∈ N. (9.52)

Therefore, for any k ∈ N,

V (t−k , xt−k
) ≤ e

− c3
c2

(tk−tk−1)V (tk−1, xtk−1
) ≤ V (tk−1, xtk−1

),

where V (t−k , xt−k
) = limt↗tk V (t, xt). The second inequality is strict when the length of

the interval (tk−1, tk) is nonzero. Note that according to Assumption 9.4, any interval

(tk−1, tk), k ∈ N, has a length greater than or equal to ε > 0. Furthermore, it was

shown at the beginning of the proof that V is non-increasing at the actuator update

instants, i.e.

V (tk, xtk) ≤ V (t−k , xt−k
), k ∈ N.

Therefore, for any t ∈ [tk, tk+1), k ∈ N,

V (t, xt) ≤ e
− c3

c2
(t−tk)V (tk, xtk) ≤ e

− c3
c2

(t−tk)V (t−k , xt−k
)

≤ e
− c3

c2
(t−tk−1)V (tk−1, xtk−1

) ≤ e
− c3

c2
(t−tk−1)V (t−k−1, xt−k−1

)

...

≤ e
− c3

c2
t
V (0, x0). (9.53)

A similar conclusion could be drawn from Comparison Lemma [35]. Now, inequali-

ties (9.24) and (9.53) yield

|x(t)| ≤
(
V (t, xt)

c1

) 1
2

≤
(
e
− c3

c2
t
V (0, x0)

c1

) 1
2

≤
(
c2
c1

) 1
2

e
− c3

2c2
t||x0||W .
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Hence, the networked control system is globally uniformly exponentially stable. Note

that the Zeno phenomenon does not occur since, by Assumption 9.4, there exists

ε > 0 such that tk+1 − tk > ε. This finishes the proof.

In Theorem 9.1, given the value of the network-induced delay τ and the lower and

upper bounds on the delay, i.e. ηmin and ηmax, we presented sufficient conditions for

exponential stability of linear networked control systems. In some practical problems,

however, such information about the delay might not be available. Here, we present

sufficient conditions for exponential stability of linear networked control systems un-

der limited information about the delay. The following corollary addresses the case

where the upper bound on the delay ηmax is unknown. To the best of our knowledge,

this scenario was not studied in the literature before.

Corollary 9.1. Consider the linear networked control system defined in (9.1) and (9.8)

with Assumptions 9.1-9.4. Given the controller gain K and the scalars τ and ηmin,

the networked control system is globally uniformly exponentially stable if there exist

symmetric positive definite matrices P , Ri, i ∈ {1, . . . , 5}, and Z, a symmetric matrix

X1, and matrices X2, Nj, j ∈ {1, . . . , 5}, with appropriate dimensions, satisfying[
P 0

0 0

]
+ (τ − ηmin)X > 0⎡⎢⎢⎣

Ψ+ τM1 + (τ − ηmin)(M2 +M4) + ηminM3 ηminN3 ηminN5

ηminN
T
3 −ηminR3 0

ηminN
T
5 0 −ηminR5

⎤⎥⎥⎦ < 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝
Ψ+ τM1

+ηminM3+

(τ − ηmin)×
(M4 +M5)

⎞⎟⎟⎟⎟⎟⎠ (τ − ηmin)N1 (τ − ηmin)N2 ηminN3 (τ − ηmin)N4 τN5

(τ − ηmin)N
T
1 (ηmin − τ)R1 0 0 0 0

(τ − ηmin)N
T
2 0 (ηmin − τ)R2 0 0 0

ηminN
T
3 0 0 −ηminR3 0 0

(τ − ηmin)N
T
4 0 0 0 (ηmin − τ)R4 0

τNT
5 0 0 0 0 −τR5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

where Ψ, Mj, j ∈ {1, . . . , 5}, are defined in Theorem 9.1 with R6 = 0 and N6a =

N6b = 0.
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Proof. Let an LKF be defined as
∑

m Vm, m ∈ {0, . . . , 5, 7, 8}. Here, we omit the

functional V6 because its derivative is approximated by a functional that depends on

ηk (see inequality (9.46)). In turn, ηk is replaced in (9.51) by the upper bound ηmax.

In this corollary, however, ηmax is assumed to be unknown. Using the modified LKF,

the rest of the proof is similar to the proof of Theorem 9.1.

If the lower bound on the delay ηmin is unknown, based on Assumption 9.2, we set

ηmin = 0. The next corollary provides sufficient conditions for exponential stability of

linear networked control systems where ηmin is unknown or similarly where ηmin = 0.

Corollary 9.2. Consider the linear networked control system defined in (9.1) and (9.8)

with Assumptions 9.1-9.4. Given the controller gain K and the scalars τ and ηmax,

the networked control system is globally uniformly exponentially stable if there exist

symmetric positive definite matrices P , R1, R2, R5, and R6, a symmetric matrix X1,

and matrices X2, N1, N2, N5, N6a, and N6b, with appropriate dimensions, satisfying[
P 0

0 0

]
+ τX > 0

[
Ψ+ τ(M1 +M2) ηmaxN6a

ηmaxN
T
6a −ηmaxR6

]
< 0⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ+ τ(M1 +M5) τN1 τN2 τN5 ηmaxN6a τN6b

τNT
1 −τR1 0 0 0 0

τNT
2 0 −τR2 0 0 0

τNT
5 0 0 −τR5 0

ηmaxN
T
6a 0 0 0 −ηmaxR6 0

τNT
6b

0 0 0 0 −τR6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

where Ψ, M1, M2, and M5 are defined in Theorem 9.1 with R3 = R4 = Z = 0 and

N3 = N4 = 0, and all the zero rows and columns (corresponding to x(t − ηmin)) are

omitted.

Proof. Let an LKF be defined as
∑

m Vm, m ∈ {0, 1, 2, 5, 6, 8}. Here, the functionals

V3, V7, and the second term in V4 are omitted because they vanish when ηmin = 0.

Also note that when ηmin = 0, the first part of V4 becomes identical to the functionals

V5 and V6. Therefore, the first part of V4 is dispensable in this case. Using the

modified LKF, the rest of the proof is similar to the proof of Theorem 9.1.
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The following proposition presents sufficient conditions for exponential stability

of linear networked control systems with uncertain parameters.

Proposition 9.1. Suppose that the pair of system matrices Ω =
[
A B

]
in (9.1) is

unknown but satisfies the following condition

Ω ∈
{

p∑
j=1

αjΩj, 0 ≤ αj ≤ 1,

p∑
j=1

αj = 1

}
,

where Ωj =
[
Aj Bj

]
, j ∈ {1, ..., p}, denote the vertices of a convex polytope. If the

LMIs in Theorem 9.1 (or Corollaries 9.1 and 9.2) hold for each Ωj, j ∈ {1, ..., p}, with
the same matrix variables P , Ri, i ∈ {1, . . . , 6}, Z, X1, and X2, then the uncertain

linear networked control system is globally uniformly exponentially stable.

Proof. The proof is similar to the proof of Proposition 2.1 and is hence omitted.

The LMIs in Theorem 9.1 are affine in τ , ηmin, and ηmax. Therefore, keeping

two of these variables constant, we can use a line search approach to optimize for

the other variable. For instance, given the lower and upper bounds on the delay,

the problem of finding a lower bound on the maximum network-induced delay that

preserves exponential stability is formulated as

Problem 9.1.

maximize τ

subject to P > 0, Ri > 0, i ∈ {1, . . . , 6}, Z > 0, X1 = XT
1 , (9.21)− (9.23).

We denote the computed lower bound on the maximum network-induced delay

that preserves exponential stability by τmax. Similarly, the LMIs in Corollaries 9.1

and 9.2 can be used to write suitable optimization programs.

9.4 Numerical Examples

In this section, we apply our stability theorems to a benchmark problem in the liter-

ature.

Example 9.1. [11, 12, 47, 48] Consider the linear networked control system defined

in (9.1) and (9.8) with the following parameters

A =

[
0 1

0 −0.1

]
, B =

[
0

0.1

]
, K = −

[
3.75 11.5

]
.
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Table 9.2: Comparison of the computed lower bound on the maximum network-
induced delay τmax (s) for ηmax = 0.8 (s) and different values of ηmin in Example 9.1.

ηmin (s) 0 0.2 0.4 0.6 0.75

[116] 1.04 - - - -
[11] 0.87 0.89 0.92 0.97 1.02
([11] plus V5) ≡ (Theorem 9.1 with V1 = 0) 0.87 0.89 0.93 0.98 1.03
([11] plus V1) ≡ (Theorem 9.1 with V5 = 0) 1.06 1.02 1.00 1.01 1.03
[12] 1.10 - - - -
Theorem 9.1 1.14 1.09 1.06 1.05 1.07

Here, we assume that ηmax = 0.8 (s) and solve Problem 9.1 to find a lower bound on

the maximum network-induced delay that preserves exponential stability for different

values of ηmin. Table 9.2 shows the computed τmax by Theorem 9.1 and the Theorems

in [11, 12, 116]. According to Table 9.2, the stability criteria of Theorem 9.1 are

less conservative (i.e. provide larger lower bounds on the maximum network-induced

delay) for this benchmark problem than the previously existing results.

9.5 Conclusion

In this chapter, we addressed exponential stability of linear networked control sys-

tems. We introduced a modified LKF that contains a functional in terms of the

open-loop vector field of the linear system. Next, based on the modified LKF, new

sufficient stability conditions were derived for linear networked control systems. Fur-

thermore, the problem of finding a lower bound on the maximum network-induced

delay that preserves exponential stability was formulated as a convex optimization

program in terms of LMIs. The stability conditions of this chapter were shown to

be less conservative than previously existing results when applied to a benchmark

problem.
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Chapter 10

Conclusions

In this thesis, we developed computationally efficient methods for stability analysis,

controller synthesis, and observer design for sampled-data networked control systems.

A diverse range of systems were studied in this thesis. These systems can be cate-

gorized by their vector fields as linear systems (Chapters 2-5 and 9), PWA systems

(Chapters 6 and 7), and nonlinear systems (Chapter 8). The network structures ad-

dressed in this can be divided into three main categories; single-rate sampled-data

networked control systems (Chapters 2, 6-8), multi-rate sampled-data networked con-

trol systems (Chapters 3-5), and single-rate sampled-data networked control systems

with time-varying delays (Chapter 9).

We proposed Krasovskii-based sufficient conditions to address stability, stabiliza-

tion, and estimation problems. The controller design problem usually leads to non-

convex optimization problems. Therefore, convex relaxation techniques were used

to formulate the sufficient stabilization criteria as convex optimization programs. In

particular, the sufficient conditions were formulated in terms of LMIs that can be

solved efficiently using available optimization software. For the first time, sufficient

conditions for exponential stability of PWA and nonlinear sampled-data systems were

presented using a piecewise smooth Krasovskii functional. This decreases the con-

servativeness of the proposed sufficient conditions when compared with the use of

smooth Krasovskii functionals. The proposed stability and stabilization conditions

are applicable to systems with polytopic uncertainty in the model parameters. In

practice, the results of this thesis improve performance and reliability of networked

control systems by allowing engineers

1. To estimate the MASP that guarantees exponential stability. Depending on the

vector field of the model selected for the system and the network structure, the
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sufficient conditions that are formulated as LMIs in Chapters 2, 3, and 6-8 may

be used.

2. To estimate the maximum allowable delay in communication links that guar-

antee exponential stability. The theorems in Chapter 9 provide a set sufficient

conditions in terms of LMIs to estimate the maximum allowable delay.

3. To design controllers that guarantee exponential stability for the MASP dictated

by the sensing equipment. Depending on the vector field of the model selected

for the system and the network structure, the sufficient conditions that are

formulated as LMIs in Chapters 2, 3, and 6-8 may be used.

4. To design observers that guarantee exponential convergence of the estimation

error for the MASP dictated by the sensing equipment. The theorems in Chap-

ter 5 provide a set sufficient conditions in terms of LMIs to design sampled-data

observers.

5. To allocate sensors to states such that exponential stability is guaranteed for

a desired set of MASPs. In other words, to determine which states should be

sampled at a higher rate and which states should be sampled at a lower rate.

The theorem in Chapter 4 provides a set sufficient conditions in terms of LMIs

to address the sensor allocation problem.

The methodology developed in this thesis serves as a guideline to address several

new problems such as

1. PWA and nonlinear multi-rate sampled-data networked control systems. This

line of research is an extension of Chapter 3 to PWA and nonlinear systems.

2. Output feedback control of multi-rate sampled-data networked control systems.

This can be achieved by extending the observer design technique in Chapter 5

to systems with control feedback.

3. Fault detection in multi-rate sampled-data networked control systems. This can

be seen as an extension of the observer design technique in Chapter 5.

4. PWA and nonlinear sampled-data networked control systems with time-varying

delays. This line of research is an extension of Chapter 9 to PWA and nonlinear

systems described in Chapters 6-8.
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5. Stability and stabilization of systems that are described by neutral functional

differential equations. In neutral (as opposed to retarded) functional differential

equations, the highest order derivative contains delayed variables. Population

dynamics models are examples of systems that are defined by functional differ-

ential equations of neutral type.

6. As a measure of performance, H∞ control of sampled-data networked control

systems can be addressed using Krasovskii-based approaches similar to the ones

developed in this thesis. Minimum attention control and event-triggered control

are also interesting approaches that can be used to guarantee certain perfor-

mance requirements for networked control systems.

Finally, two open problems in the field of networked control systems are

1. to present necessary and sufficient conditions for stability of linear networked

control systems with multi-rate samplers, time-varying delays, and data packet

losses.

2. to address stability analysis and controller synthesis problems for sampled-data

networked control systems with general nonlinear vector fields.
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