
A RESOURCE PUBLICATION AND DISCOVERY

FRAMEWORK AND BROKER-BASED ARCHITECTURE FOR

NETWORK VIRTUALIZATION ENVIRONMENT

Sleiman Rabah

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science (Software Engineering) at

Concordia University

Montréal, Québec, Canada

January 2014

c⃝ Sleiman Rabah, 2014

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Sleiman Rabah

Entitled: A Resource Publication and Discovery Framework

and Broker-Based Architecture for Network Virtu-

alization Environment

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Yuhong Yan

Examiner
Dr. Todd Eavis

Examiner
Dr. Lingyu Wang

Supervisors
Dr. Joey Paquet and Dr. Rachida Dssouli

Approved by
Chair of Department or Graduate Program Director

20
Dr. Christopher Trueman, Interim Dean
Faculty of Engineering and Computer Science

Abstract

A Resource Publication and Discovery Framework and Broker-Based

Architecture for Network Virtualization Environment

Sleiman Rabah

The Internet has received a phenomenal success over the past few decades. However, the

increasing demands on the Internet usage and the rapid evolution of the applications and

services provided over the Internet have demonstrated that the current Internet architecture

is unsuitable for supporting many types of applications. Moreover, its ubiquity and multi-

provider nature make nearly impossible the introduction of radical changes or improvements

without coordination and consensus between many providers. Thus, any technological

changes in the current Internet architecture could result in unintended consequences on the

overall Internet usage. Network virtualization is considered as promising, yet challenging,

solution to overcome these limitations. It commonly refers to the creation of several isolated

logical networks that can coexist on the same shared physical network infrastructures. Its

key concept is to enable several network architectures to run concurrently in a multi-role-

oriented environment in which the role of the traditional Internet Service Provider (ISP) is

decoupled into several roles such as infrastructure provider (InP), virtual network provider

(VNP) and service provider (SP). Despite the promising benefits, this concept is associated

with many challenges. These, among others, include the description and publication as well

as discovery of resources on which virtual networks are deployed.

In this thesis, we define a broker-based architecture that provides functions for publishing,

discovering and negotiating as well as instantiating and managing resources in network

virtualization environment. We proposed an information model that assists various providers

in describing the resources and services they offer and we implemented a proof of concept

iii

prototype to demonstrate the feasibility of the proposed architecture. Moreover, we have

conducted extensive experiments to evaluate the performance and the scalability of the

implemented system.

iv

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisors Dr. Joey

Paquet and Dr. Rachida Dssouli for their patient, guidance, support and valuable advices

without which this thesis would not have been possible. Dr. Dssouli, you were a source of

motivation and inspiration to me, thank you for your encouragement, unique kindness and

for your time whenever I needed help despite your busy schedule. God bless you.

I am also grateful to Dr. May El Barachi and Dr. Nadjia Kara for their involvement,

guidance, and help throughout this work. I also thank my fellow labmates especially Serguei

A. Mokhov for their unique teamwork and the stimulating discussions we have had.

I would like to thank castell, the retired printer, who was always there for me in the sleepless

nights I spent during my studies.

Last but not least, I would like to thank my greatest and dearest parents for their unlimited

love and encouragement.

I would like to acknowledge the financial support of The Natural Sciences and Engineering

Research Council of Canada and the Faculty of Engineering and Computer Science of

Concordia University.

v

Contents

List of Figures xi

List of Tables xiii

List of Algorithms and Listings xiv

List of Abbreviations 1

1 Introduction 1

1.1 Overview . 1

1.2 Motivations . 3

1.3 Thesis Objectives . 5

1.4 Thesis Contributions . 6

1.5 Thesis Organization . 7

2 Background and Related Work 8

2.1 Overview . 8

2.2 Definitions of Terms . 8

2.3 Virtualization . 9

2.3.1 Types of Virtualization . 10

2.4 Cloud Computing . 11

2.4.1 Cloud Computing Business Model . 12

2.5 Network Virtualization . 12

vi

2.5.1 Overlay Networks . 13

2.5.2 The Network Virtualization Environment 13

2.5.2.1 Business Models . 15

2.5.2.2 Service-Oriented Business Model 17

2.5.3 Virtual Network Embedding Process 20

2.5.4 Virtual Network Applications and Services 22

2.6 Web Services . 22

2.6.1 RESTful Web services . 23

2.7 Summary . 24

3 A Framework for Resource Publication and Discovery in Network

Virtualization Environment 25

3.1 Introduction . 25

3.2 Related Work to Resource Discovery and Selection in Network Virtualization

Environment . 26

3.3 Business Scenario . 28

3.4 Requirements for Dynamic Resource Publication and Discovery in Network

Virtualization Environment . 29

3.5 Broker-based Framework for Resource Publication and Discovery 30

3.5.1 Overall Architecture . 31

3.5.1.1 Introduction . 31

3.5.1.2 Components Description . 32

3.6 Case Study . 35

3.7 Summary . 38

4 Information Model 39

4.1 Introduction . 39

4.2 Related Work to Resource Description . 42

4.3 Requirements for an Information Model in Network Virualization Environment 47

vii

4.4 The Proposed Information Model . 48

4.4.1 High-level Overview . 48

4.4.2 Detailed Description . 50

4.5 Summary . 55

5 Design and Implementation 57

5.1 Overview . 57

5.2 Requirements for the Implementation . 58

5.3 Software Architecture . 60

5.4 Implementation . 62

5.4.1 The Technologies and Tools Used . 62

5.4.1.1 Data Sources . 62

5.4.1.2 Platform Virtualization . 63

5.4.2 Resource Publication and Management 64

5.4.3 Resource Discovery . 65

5.4.4 Resource Negotiation . 66

5.4.5 Virtual Topology Instantiation and Resource Management 67

5.4.6 Broker Components Implementation 70

5.4.6.1 Resource Selection Algorithm 70

5.4.6.2 Broker Web Services . 73

5.4.6.3 Broker User Interface . 74

5.5 Use Case–Secure Content Distribution Scenario 74

5.6 Lessons Learned . 78

5.7 Summary . 80

6 Performance and Scalability Evaluation 81

6.1 Performance Evaluation . 82

6.1.1 Prototype Setup . 82

6.1.2 Resource Publication Tests . 84

viii

6.1.3 Resource Discovery Tests . 86

6.1.4 Resource Negotiation Tests . 89

6.1.5 Virtual Topology Instantiation Tests 91

6.2 Scalability Evaluation of the Implemented System 93

6.2.1 Scalability Tests Setup . 93

6.2.2 Resource Publication Scalability Tests 94

6.2.3 Resource Discovery Scalability Test 98

6.3 Summary . 101

7 Conclusions and Future Work 102

7.1 Discussion . 102

7.2 Summary of Contributions . 103

7.3 Future Work . 104

Bibliography 105

I Appendices 116

Appendices 117

A Enumeration Types 118

A.1 Enumerations Types for Network Nodes . 118

A.2 Enumerations Types for Network Links . 120

A.3 Enumerations Types for Network Services 121

A.4 Security-related Enumerations Types . 122

A.5 Enumerations for Wireless-related Entities 123

B Shell Scripts 124

B.1 Script for Managing Ethernet Vyatta Virtual Network Interfaces 124

B.2 Managing Virtual Network Routing . 125

ix

C XML Schema Definition 126

C.1 XSD for Resource Description . 126

C.2 XSD for Resource Discovery Requests . 137

C.3 XSD for Negotiation Requests . 140

C.4 Resource Description Sample . 141

D Message Logs of the PIP Subsystem 145

E Message Logs of the VIP Subsystem 153

F Broker Components Message Logs 158

x

List of Figures

1 The Network Virtualization Environmentadapted from [1] 15

2 Main roles of NVE [2,3] . 16

3 The business model proposed for the 4WARD project [4, 5] 17

4 The service-oriented business model as proposed in [6] 18

5 The virtual network embedding process . 20

6 System architecture of the proposed framework for resource publication and

discovery . 31

7 High-level overview of the proposed architecture 33

8 Roles interactions during virtual network provisioning process within the

proposed framework . 36

9 High-level overview of the proposed information model 50

10 Resource view of the proposed information model 52

11 Service view of the proposed information model 53

12 Overall framework use case . 58

13 The software architecture of the implemented prototype 61

14 The Physical Infrastructure Provider resource management interface 64

15 The Virtual Infrastructure Provider discovery interface 66

16 The negotiation interface of the Physical Infrastructure Provider 67

17 The negotiation interface of the Virtual Infrastructure Provider 68

18 Editing resource negotiation request . 69

19 Virtual topology management interface . 70

xi

20 The Broker user interface . 75

21 The implemented secure content distribution scenario 76

22 The prototype setup . 83

23 Test scenario for resource publication . 85

24 Test scenario for resource discovery . 87

25 Test scenario for resource negotiation . 89

26 Test scenario for virtual topology instantiation and configuration 91

27 Setup for the scalability tests . 93

28 Test scenario for concurrent resource publication 94

29 Resource publication response time . 97

30 Resource publication network load . 97

31 Test scenario for concurrent for resource discovery 98

32 Resource discovery response time . 100

33 Resource discovery network load . 100

34 Enumeration types for physical and virtual nodes 119

35 Enumeration types for network physical and virtual links 120

36 Enumeration types for network-related services 121

37 Enumeration types for formulating security-related attributes 122

38 Wireless-related enumeration types . 123

xii

List of Tables

1 Summary of some existing description languages grouped by networking/com-

puting area . 42

2 Comparison of the existing information model with our requirements 46

3 Broker web services’ API . 73

4 Resource publication average network load and response time measurements 86

5 Resource discovery network load and response time measurements 88

6 Resource negotiation average network load and response time measurements 90

7 Results of resource publication experiments 96

8 Scalability results of resource discovery experiments 99

xiii

List of Algorithms and Listings

5.1 An example of a resource discovery request 72

B.1 Add or delete a specific Vyatta VM Ethernet interface 124

B.2 Script to manage a route between two networks 125

C.1 The used XSD for describing physical and virtual resources 126

C.2 XSD for formulating Resource Discovery requests 137

C.3 Schema for resource negotiation requests . 140

C.4 A sample of resource description document 141

D.1 Message log generated by the implemented modules involved in the resource

publication process . 145

D.2 Message log generated during PIP-to-VIP resource negotiation process . . . 146

D.3 Message log of the virtual topology instantiation and configuration process . 147

D.4 Message log of resource publication scalability tests 151

E.1 Resource discovery message log . 153

E.2 VIP resource negotiation message log . 153

E.3 Message log of resource discovery scalability tests 156

F.1 Broker’s resource publication message logs 158

F.2 Broker’s resource discovery logs . 159

xiv

List of Abbreviations

API Application Programing Interface

HTTP Hypertext Transfer Protocol

InP Infrastructure Provider

ISP Internet Service Provider

JAXB Java Architecture for XML Binding

NIC Network Interface Controller

NVE Network Virtualization Environment

PIP Physical Infrastructure Provider

QoS Quality of Service

REST Representational State Transfer

RPC Remote Procedure Call

SOAP Simple Object Access Protocol

SP Service Provider

SSH Secure Shell

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

VIP Virtual Infrastructure Provider

VMM Virtual Machine Monitor

VM Virtual Machine

VN Virtual Network

1

VoIP Voice over Internet Protocol

VPN Virtual Private Network

WADL Web Application Description Language

WSDL Web Service Description Language

XAPI Xen Management API

XML eXtensible Markup Language

XSD XML Schema Definition

2

Chapter 1

Introduction

In this chapter we give an introduction to the research domain. We present an overview

of the problem being addressed. Then, we discuss our contributions and the solution we

propose.

1.1 Overview

The Internet is serving more than one billion people and has become a critical element of

life that humans rely on to access information and do business. In just three decades, it has

gained a tremendous success as worldwide communication medium. Started as a research

project called the ARPANET in the late 1960’s [7], the Internet, or “network of networks”,

was initially designed as a simple technology that enables two hosts to exchange packets.

Then, it has evolved to support sending files and messages transfer. In the past recent years,

advances in link technologies (such as fiber optics and wireless) as well as the wide variety of

multimedia and sharing applications caused the Internet to explode in the number of users

and the variety of applications and services offered. Thus, advances in mobility computing

and the emergence of social networks increased the demand on the Internet usage. Despite

its success, the increasing demand has demonstrated that the current Internet architecture

created obstacles for introducing changes and innovations in the underlying networking

1

technologies. As the Internet continues to evolve, the innovation in network technologies

and deployment of new services face many challenges such as scalability issues, new routing

protocols, addressing, security and QoS. In contrast to the current Internet that was first

designed for non-mobile hosts (having fixed locations), in just a very short period of time

the mobile computing-related technologies went through an exponential progress.

Given this tremendous success, any technological changes in the Internet architecture could

result in unintended consequences on the economy and overall Internet usage. Several

ongoing research efforts are being conducted to redesign (i.e redefine) a new Internet

architecture that is referred to Future Internet or next-generation networks [3, 5, 8], in

response to the challenges and obstacles the current architecture is facing as well as promoting

flexibility and diversifying services offered. As opposed to the current architecture, the Future

Internet should allow co-existence of heterogeneous network designs and solutions (old and

new), enable innovation, and address the challenges of the future related to the consumption

services over the Internet. Consequently, many new architectures and paradigms such as

Software Defined Networking (SDN) have emerged.

Network virtualization is considered as a promising way to overcome the limitations and fight

the gradual ossification of the current Internet infrastructure. The network virtualization

concept consists in the dynamic creation of several co-existing logical network instances (or

virtual networks) over a shared physical network infrastructure [9].

The key concept of the Future Internet is to enable the coexistence of several

network architectures in a multi-role-based environment. In such environment, several

roles (i.e organizations) collaborate to offer distinct or similar services. Hence, the role

of the traditional Internet Service Provider (ISP) should be decoupled and distribute

its responsibilities and tasks among new entities: infrastructure provider (InP) who is

responsible for managing the physical resources; and Service Provider (SP) who leases and

aggregates resources (from one or more InP) on which he deploys end-to-end services (e.g.,

layer 3 VPNs, VoIP,conferencing services, etc) In order to leave the core network simple and

dedicated to packet forwarding, the end-to-end principle claims that service’s functionality

2

should not be deployed in the core Internet, but if possible, should be deployed on the end

points [10].

To allow multiple networks to coexists, virtualization techniques have been considered

as key enabler. Thus, the CABO project [3] was first to propose the use of virtualization

to enable the creation of virtual networks over a shared physical network infrastructure.

Essentially, virtualization is a mechanism that provides decoupling (separation) of the

resulting services from the underlying physical environment. Network virtualization is

intended to separate the data plane from control plane. This is expected to enhance the

flexibility of the resulting networks, diversity and manageability of the offered services with

quality of service capabilities.

1.2 Motivations

At the time of writing, the applications and services that are delivered over the Internet

are rapidly evolving. Among such services are content distribution and multimedia service

delivery (VoIP, video streaming). Moreover, several factors such as economies of scale, the

need for lowering the IT costs, and the emergence of utility computing (pay only for what you

need) have led to the adoption of a new software delivery model: Software as a Service (SaaS).

In this model, software is consumed as utility and delivered over the Internet [11]. However,

the current Internet architecture suffers from ossification and is ill-suited to support such

types of application for many reasons [8, 12]. First, the underlying networking technologies

did not evolve since the Internet inception. Second, the lack in support of the requirements

needed to run those applications such as efficient routing, security, QoS as well as the support

for mobile network-related features such as context-awareness, multi-homing, and seamless

switching.

Internet ossification can be explained as the resistance of the current Internet architecture

to support fundamental changes needed for deploying new network protocols, technologies

and applications such as differentiated services, secure routing protocols, IP multicast. This

creates significant barriers to innovation. Another issue to overcome the Internet impasse is

3

that by nature, the current Internet architecture relies on a single-role based business model:

the Internet Service Provider (ISP) [1]. Consequently, the Internet infrastructure is shared

among those ISPs where each ISP owns and manages its network infrastructure, and provides

services to customers in a fierce competition environment based on self-interests and not

quality of service. Competition and conflict of interest are issues among major stakeholders

pose a barrier to the introduction of new and innovative network technologies. As a matter of

fact, it is difficult to introduce changes to the current Internet architecture or adopt a new one

without coordination and consensus between many stakeholders. At the time of writing, the

deployment of necessary changes to support IPv6 that is happening at a slow pace consists in

a good example to this problem. Radical changes to the Internet are needed as the demand on

value-added services (e.g context-aware application) is rapidly growing. Remarkably, fierce

competition between the major players in mobile computing has led to phenomenal advances

in terms of innovation and services. Consequently, a large number of organizations that

provide mobile-based services emerged. Enabling competition in networking technologies is

perceived to have the same impact for building a better Internet [2].

To overcome the problem of Internet ossification, network virtualization has been

considered a prominent solution which allows for enabling experimentation with new

network architectures (or the Future Internet), and the deployment and test of new

network services independently without disruptions [2, 8, 13–15]. Network virtualization

is a promising and technically challenging concept, which enables the on-demand creation

and provisioning of logical networks (or virtual networks) deployed over a shared physical

network infrastructure. There are several motivations behind this concept, including cost-

effective sharing of resources; customizable networking solutions; and the convergence of

existing network infrastructures. The main idea behind network virtualization is to allow

multiple heterogeneous and isolated network architectures (instances) to cohabit on a shared

physical substrate. This is intended to provide better flexibility and manageability, as well

as enhanced security allowing the deployment and test of customized services such as value-

added services at low cost [3]. Network virtualization follows a new business model which

4

decouples the role of the traditional ISPs into independent roles: infrastructure provider

(InP) who owns and manages the physical infrastructure (or substrate), and virtual network

provider (VNP), who leases virtual resource from one or multiple InPs on which he creates

virtual network(s) and offers end-to-end services. Offered as a service, a virtual network

is provisioned on demand and the provisioning process consists in describing, discovering,

matching, and allocating virtual resources [16]. In addition, a VNP selects the best virtual

resources that are more suitable to satisfy its requirements. Precision and accuracy are

critical to a successful selection of resources. Therefore, resources are evaluated and selected

based on their static (functional) and dynamic (non-functional) attributes [17].

1.3 Thesis Objectives

Although network virtualization is seen as a promising solution for a more flexible use of

the Internet, it is associated with many challenges related to the provisioning and operating

virtual networks as well as the management of resource information (i.e., description and

discovery).

For an infrastructure provider (InP) to enable other roles to discover and formulate

their requirements in terms of resources, and for end users to discover the SPs’ services

of interest, there should be a standardized public interfaces for enabling role-to-role

communication. These interfaces should also enable the programmatic management of the

virtual resources [1].

Moreover, for SPs to request resources needed their desired virtual networks, there must

be a mechanism that enables the dynamic discovery and selection of virtual resources that can

be composed to form virtual networks. To achieve that task, there is a need for a formal and

expressive information model which enables InPs to describe their resources and services, and

facilitates information representation and sharing between the various roles/entities involved.

In an attempt to address these challenges, we have set several goals.

First, to enable the effective interactions between various roles, suitable interfaces must

be defined and standardized. Such interfaces would enable seamless interactions between the

5

existing various roles operating at different levels of the network virtualization environment

hierarchy.

Second, a suitable framework is needed that enables the dynamic publication and

discovery of available virtual resources. This framework would enable infrastructure

providers to describe and advertise information about resources and the creation of virtual

network(s) spanning across different administrative domains. Resource description should

include static and dynamic attributes. However, the existing resource description languages

focus on a specific aspect of network area and do not support the description of a virtual

network as a whole.

The third goal is the investigation and elaboration of a distributed and scalable

architecture that allows for publication and intelligent discovery of resources and services.

This requires the identification of functional entities involved, the interfaces needed as well

as the identification of interactions between the different entities.

1.4 Thesis Contributions

To solve the issues mentioned in the previous section 1.3, we propose a framework that

enables the description as well as dynamic publication and discovery of resources in network

virtualization environment(NVE) [9].

Our work focuses on modeling the resources and the publication and discovery of resource-

related aspects as well as the interactions between various roles. We summarize the

contribution of this thesis as follows:

• We propose a broker-based architecture for resource publication, discovery and

negotiation in NVE that enables multiple roles to publish, discover and negotiate

information about virtual resources. We then present the state of the art of resource

discovery and selection in NVE.

• We build on the business model introduced in [6] and the broker-based architecture

by proposing a multiservice, multi-role hierarchical information model, for network

6

virtualization environment. We then demonstrate the usage of this information model

using a secure content distribution scenario that is realized using REST interfaces.

Additionally, we present the relevant related work on network resource description and

modeling in general and the ones proposed for NVE in particular.

• We implement a subset of the proposed architecture as a proof of concept prototype

and to validate our proposed approach. We then extend the secure content scenario to

illustrate and detail the interactions of the implemented components.

• We finally assess the performance of the implemented prototype and test the scalability

of the overall system implementation.

1.5 Thesis Organization

The structure of this thesis is organized as follows. In the following chapter, we give a

background information about virtualization, network virtualization environment and its

business models as well as web services in general and RESTful web services in particular.

In Chapter 3, we present the proposed framework for resource publication and discovery in

NVE and a case study. We then present the related work on resource discovery. In Chapter 4,

we present the proposed information model and we discuss the different information model

that have been previously proposed for network resource description in general. In Chapter 5,

we discuss the software architecture and setup of the implemented prototype. Then,

we present the different interfaces used to interact with the implemented components.

In Chapter 6, we evaluate the prototype by conducting performance and scalability tests

and interpret the results. Finally, in the last chapter, we discuss the limitation of this work

as well as suggestions for future work.

7

Chapter 2

Background and Related Work

2.1 Overview

Network virtualization is a quickly emerging paradigm, mainly, as an alternative to the

current Internet architecture. It gained widespread popularity among, and has received the

attention of, many researchers and companies due to the promising benefits and challenges

it offers. New concepts and innovations are being adopted, among others, software defined

networking, virtual network in data centers, etc.

In this chapter, first, we define the terms and concepts that are related to the work

presented in this thesis. We then present the network virtualization concept, its environment

and architecture as well as the related business models. We finally give an overview of review

web services and resource oriented architecture.

2.2 Definitions of Terms

In this section we define the key terminology used throughout this thesis.

Resource – We use the term resource to refer to a manageable unit within a NVE context.

A resource could be physical or virtual and it is associated with a set of characteristics such

as processing power, storage, etc.

8

Physical resource – Or substrate node is a network element (network-capable electronic

device), for instance, a network router, switch, server or computer.

Physical Infrastructure – Is a pool of physical resources that are intended to be virtualized

and used on demand.

Virtual Resource – Virtual resource or virtual device is a logical entity that is created

using some virtualization techniques and hosted on a physical resource (e.g a virtual

machine or a virtual router). Thus, many virtual resources can co-exist on, and share the

computational resources of, the same physical resource . Virtual resources can be aggregated

from two or more providers forming what is called a federation.

Service – We use the term service to refer to network services or application offered by

different providers. Such as firewall application, load balancers, VoIP, conferencing services

and so on.

Virtual Network – Consists of at least two virtual nodes connected together by a virtual

link. A virtual network is deployed on top of, and inherits the same properties as, a physical

one. Thus, a virtual network can span across multiple domains.

Resource Provisioning – The term provisioning refers to the set of processes that are

performed to allocate resources or services to consumers upon request. The provisioning

process often includes steps related to resource description, discovery and negotiation.

Negotiation enables different entities to reach an agreement on the quality and the guarantee

of the service in question.

2.3 Virtualization

In essence, virtualization is the process by which an additional logical layer (software) is

added on top of on existing system so that the resulting system reflects the underlying one

while exposing its services and mimicking its behavior. The services and functionalities of

the underlying system are exposed so the user get the illusion as if it was using the real

system. Virtualization is not a new concept and was first introduced in the early 1960s

by IBM for the third generation computers (i.e mainframes) as a mechanism to divide the

9

computational resources for different applications [18]. However, the use of virtualization

has declined around the early 80s as there was a big shift in terms of processing power and

due to the lack stability of computers’ architecture in general.

In 2000s, several factors and motivations such as advances in computer hardware,

under-used machines, the need for server consolidation, cost saving, etc, have led to

the “renaissance” of virtualization and mainly its mainstream adoption for hardware

virtualization. Moreover, it has been applied to multiple computing areas such as storage,

applications, network, and hardware. Although virtualization offers many benefits such

as flexibility, effective use of resources, programmatic allocation of resources, isolation

and security, on the other hand, there are several drawbacks associated with it such

as performance overhead and complexity, as well as the lack of supporting all type of

applications. Among today’s major virtualization technologies products are Microsoft Hyper-

V [19], VMWare vSphere [20], Citrix (XenServer) [21].

2.3.1 Types of Virtualization

Virtualization can be applied to hardware (hardware virtualization) as well as to software

(applications virtualization). In general, we distinguish several virtualization categories,

such as hardware-level (sever and router virtualization), operating system-level (e.g Jails),

high-level programming language virtual machines (e.g Java VM, .NET CLR), etc.

However, in this thesis, we are concerned about the following most common virtualization

techniques for hardware server virtualization:

• Full virtualization: in this technique, the guest operating system is used as is without

modification. However, this results in poor performance due to the lack of direct access

to the underlying services and poor I/O performance. This allows older and legacy

systems to run on newer and more efficient machines [22].

• Para-virtulization: this technique requires a modified guest OS that achieves

near-native system performance (with total around 5% overhead) [23]. The

10

modifications are made to improve performance by making the guest “aware” that

it is being virtualized [24]. As opposed to full-virtualization (e.g VMWare, KVM),

para-virtualization-based solutions offer scalability and offer notable performance

improvement that is near to native one with 0.5 to 8% performance overhead [23].

Both approaches requires what so-called a virtual machine monitor (Hypervisor). The

hypervisor is a type of OS that allows multiple operating systems, called guest OS, to run

simultaneously on a single physical machine.

2.4 Cloud Computing

At the time of writing, there is no consensus nor a standard definition to define Cloud

Computing (CC). It can be seen as a new paradigm where computational resources (e.g

servers, storage, networks) can be dynamically requested, customized and provisioned on

demand which are provisioned and managed from a single point of management by a service

provider. For a more technical definition, it is a distributed system consisting of a large

pool of virtualized resources consumed on demand on a pay-per-use basis. Several factors

such as advances in computer hardware, under-used machines, economic crisis, reduction

of operational cost and increased demand on computational resources have led to the

adoption of this new paradigm. Moreover, today’s computing environments are changing

and shifting towards a service-based model where everything, from a server to a software, is

offered as a service. More and more new paradigms are being introduced that are based

on concepts such as on utility-based usage, multi-tenancy and cost-effective sharing of

resources [25]. Consequently, CC inherits many pre-existing technical concepts (such as

distributed computing, grid computing, and virtualization) and business-related concepts

(such as utility-based pricing, multi-tenancy, cost-effective and efficient use of hardware

resources) [11].

11

2.4.1 Cloud Computing Business Model

The business model related to CC environment is centered on the following for roles:

Infrastructure providers – Provide their infrastructure (i.e hardware and computational

resources) as a service (IaaS) to service providers. Among the major infrastructure providers

are Amazon [26], Google [27], IBM [28] and recently Microsoft [29].

Platform providers – Provide development platform as a service (PaaS) to develop

customized cloud-based services. Example of these platform are IBM SmartCloud, Amazon

Elastic Beanstalk and Google App Engine.

Service Providers – Are organizations offering services to consumers. A service can be a

software (SaaS) or anything (*aaS) and offers value to the consumer and can be composite:

composed of two or more services aggregated together from one or more service provider.

A service provider relies on the services provided by infrastructure providers in terms of

hardware and computational resources.

Consumer –Or end user is the buyer of a service that is provided directly by a service

provider or a platform provider.

2.5 Network Virtualization

Virtualization has been around for a long time and it consists of the introduction of an

abstraction layer on top of physical resources which gives the impression to the user as if he

is using those physical ones. The concept of network virtualization, which enables multiple

logical networks to co-exist, is not new and has evolved since its first introduction [1, 8].

Past virtual networking techniques/technologies are Virtual Local Area Networks VLANs,

Virtual Private Networks (VPN), active programmable area networks and overlay networks

and the term “virtual network” is used to refer to those technologies. However, the

term network virtualization that is used throughout this thesis refers to a new network

virtualization concept where network virtualization is not limited in scope (e.g, layer 2 for

L2 VPN) as opposed to the aforementioned technologies [30].

12

2.5.1 Overlay Networks

Overlay networks are logical (implemented in the application layer) networks built on top of

one or more physical networks . In its early days, the Internet started as overlay that was

deployed on top of the telecommunication network. The key advantage of overlay networks

is that they do not require any changes to be done on the physical networks, nor do they

affect their functioning [31]. This has led to use overlays extensively as successful solution

to test and deploy new features and fixes in the Internet. Moreover, many overlay-based

testbed projects have been initiated such PlanetLab [32], X-Bone [33] and VINI [34] that are

used as testbeds to design and test new architectures, study computer viruses and propose

applications that address many issues (such as Internet routing, protection from denial of

service attacks, etc). Although overlays introduce flexibility and offer the possibility to build

logical networks independent from physical ones, most overlays are designed and built at the

application layer (on top of IP). Therefore, they cannot solve the limitations of the current

Internet architecture.

2.5.2 The Network Virtualization Environment

As shown in Figure 1 The network virtualization environment(NVE) consists of one or more

heterogeneous virtual networks co-existing on one or more virtualized platforms. A virtual

network (VN) consists of the basic entity in such environment. VNs within NVE use different

network architectures and protocols and provided as a service by various roles (called virtual

network providers). The network virtualization concept enables multiple, isolated, virtual

networks running simultaneously to share, and co-exist on, the same physical resources.

To achieve this concept, the physical resources are divided into slices (partitioned) using

some virtualization technologies. The resulting slices are called virtual resources consist of

the key building blocks of a virtual network. Virtual resources are requested on demand

13

and aggregated to create a VN that is offered as a service. Many network virtualization

research projects have been initiated. Such projects are: CABO (Concurrent Architectures

are Better than One) [3], 4WARD [4], Nouveau [35,36]. The aforementioned projects follow

a “pluralist” philosophy which states that networks should be fully virtualized and network

services should be separated from their underlying infrastructure [13].

The idea behind network virtualization is not new. Several approaches have been

introduced to put in place what is called virtual networks (VPN, VLAN). Network

virtualization requires virtualized platforms and relies on two main components: node

virtualization and link virtualization [1, 8]. However, network virtualization goes one step

further by taking advantage of the benefits of platform virtualization such as the cost-effective

use of resources, network isolation, optimization and programmability as well as the dynamic

provisioning of resources which enhance scalability.

14

Figure 1: The Network Virtualization Environmentadapted from [1]

2.5.2.1 Business Models

From a business perspective, one of the goals of network virtualization is to introduce

flexibility and innovation by decoupling the role of the traditional Internet service provider

(ISP) into multiple independent entities. Figure 2 depicts the initial business model for

NVE as proposed in [2, 3]. This model introduces two main roles:

Infrastructure Provider – Who owns and manages the physical infrastructure. He is also

responsible for creating virtual resources by partitioning his physical resources into isolated

slices using some virtualization technology.

Service Provider – Leases and aggregates virtual resources from multiple InPs to create

15

virtual networks. Furthermore, the service provider is also responsible for offering end-to-end

services to end users .

End Users – in NVE are the consumer of the services offered by SPs. They are similar to

end users in the traditional Internet model; however, they have a large number of services

to choose from. This is due to the multiple virtual networks offered by competing service

providers [1].

Figure 2: Main roles of NVE [2,3]

Another model has been proposed as part of the 4WARD model, which consists of one

of the main research projects on network virtualization [4, 5]. The 4WARD model extends

the model shown in Figure 3, and defines two more roles:

Virtual Network Provider (VNP) – finds and aggregates the optimal virtual resources

from one or more InPs. These aggregated virtual resources are leased from multiple InPs to

fulfill the virtual network operator’s request. The VNP does not provide a network but only

the virtual resources on which the virtual network operator deploys the protocols to create

a virtual network.

Virtual Network Operator (VNO) – creates the virtual network over the virtual

resources that were previously aggregated by the VNP. He deploys the required protocols

16

stack and network architecture over the newly created virtual network. In addition, the

VNO is responsible for controlling, managing and maintaining the virtual network. In this

model, the SP has no direct interaction with the infrastructure provider. However, he deals

with the VNO as if it was the InP to deploy the end-to-end services he offers.

As matter of fact, the success of NVE model depends on the collaboration and

interaction between various business entities. Each business entity not necessarily belongs

to a particular category of roles, provides a distinct service that is intended to be used by

another entity within the NVE. Moreover, several business entities provide services, when

combined together; enable the creation of VN on which an end-users service is deployed. In

this thesis, we use the term role to refer to a business organization doing business in NVE.

Figure 3: The business model proposed for the 4WARD project [4, 5]

2.5.2.2 Service-Oriented Business Model

Inspired by the TINA [37] and the web services composition models, El Barachi et al.

have introduced a new service-oriented hierarchical business model for network virtualization

environment in [6,38]. The proposed business model is shown in [6,38]. It puts the emphasis

on the notion of services, hence, four classes of services are defined, namely: Essential

Services constituting mandatory services needed for the basic operation of the network (i.e.

17

Figure 4: The service-oriented business model as proposed in [6]

18

routing/transport services); Service Enablers consisting of the common functions needed to

support the operation of end-user services (e.g. session/subscription management, charging,

security, and QoS management); Service Building Blocks acting as elementary services that

can be used/combined to form more complex services (e.g. presence and call control); and

End User Services constituting the value-added services offered to users.

In this model, five distinct roles were introduced which we briefly detail as follows:

Physical Infrastructure provider (PIP) – Owns and manages a physical network

infrastructure (or a substrate network); splits the resources into isolated slices; and describes

and advertises the virtual resources being offered.

Virtual Infrastructure Provider (VIP) – Aggregates resources from one or more PIPs,

instantiates and operates a virtual network on which he deploys service enablers.

Service Provider (SP) – offers value-added services to subscribers with whom he has a

business agreement. The SP aggregates multiple service building blocks to form a composite

service.

Broker – Or Services and Resources Registry (SRR): is a repository where information

about the advertised virtual resources is stored. It puts all the parties in contact by providing

relevant information to find other parties and the services/resources they offer.

Consumer – acts as end user and service subscriber and uses the value added services

provided by SPs.

Figure 4, illustrates the relationships that a role could have in NVE. Roles are business

organizations that interoperate and collaborate with each other in order to consume/offer

resources and services and exchange information related to these resource/services.

Therefore, a role can be a resource provider and service provider at the same time. Being the

former, a role offers, manages and accesses virtualized resources. Whereas a service provider

offers, manages, and sometimes subscribe to network services. In fact, network services

are mapped to networked resources. Roles are distributed and loosely coupled entities.

In consequence, to enable interactions between them, programmable interfaces are needed.

Thus, just like web services, network services can be published, dynamically discovered, used

19

and composed.

2.5.3 Virtual Network Embedding Process

Figure 5: The virtual network embedding process

As shown in Figure 5, the virtual network embedding process involves several steps and

requires the collaboration between various roles. We briefly detail the steps as follows:

Resource Description – In NVE, multiple infrastructure providers offer resources to be

20

leased on demand. Describing the offered resources is crucial in NVE, however, it is not new

to the network field. Resource description (or information modeling) involves describing the

fine-grained functionality of network resources (i.e their characteristics and capabilities) [16].

This facilitates information retrieval related so that the resources can be discovered and

selected precisely and efficiently by other roles wishing to lease the resources offered by

the infrastructure providers. In other words, resource description can be defined as the

specification of the functional and non-functional attributes of resources using a description

language.

Resource Publication – The process of resource publication in NVE is similar to the

process of publishing a web service’s description. It involves the steps performed by an

infrastructure provider to advertise (i.e share information) the virtual resource description

he offers. According to the literature, the description of the resources are registered in public

discovery framework [17], or repositories, so that they can be discovered by VN requestors.

Resource Discovery – Resource discovery requires that information about the virtual

resources offered by multiple providers must be available. This process consists of seeking

relevant resources/services of interest according to their characteristics and selecting the

best infrastructure providers [17, 39]. A VN request is used to formulate the characteristics

of the requirements wanted resources should have. Such requirements are later taken into

consideration by the resource selection and matching process.

Resource Selection – This process consists in finding from a set of potential resources

the best resources whose characteristics correspond to the requirements specified in the

discovery request. This involves matching the attributes of the candidate resources with

the one specified in the discovery request. Some selection algorithms can be used such as

hierarchical resource clustering using dendrogram [16,17].

Resource Negotiation – Resource negotiation is considered as important process in NVE

that enables service provider to negotiate with multiple providers in order to select the best

one. This involves the negotiation of the capabilities of the requested resources and the

related quality of service scheme [40].

21

Resource Allocation Mapping – Resource allocation or resource provisioning [8], also

referred to as VN embedding in the literature, is the process of reserving physical resources

to virtual resources (such as nodes and links). Resource allocation is performed by an

infrastructure provider.

Dynamic Resource Management – This involves adaptive management and monitoring

of the allocated resources after their creation [41, 42]. As part of this process, virtual nodes

can be migrated, hence, the virtual topology can be dynamically adapted.

2.5.4 Virtual Network Applications and Services

Much like server virtualization that enables multiple virtual machines to run on the same

physical server, network virtualization enables multiple virtual network sharing the same

physical resources. Hence, different protocol and communication technology can be used

to offer different kind of sophisticated applications which require high. Example of such

applications are conferencing services, content delivery networks (video streaming) [43],

Internet Protocol Television (IPTV) [44], etc.

2.6 Web Services

Web services are software components exposed to the web via public interfaces enabling

them to be invoked remotely. For them to be discovered and consumed, web service

description languages such as WSDL and WADL are used to describe services’ functionality

and capabilities [45, 46]. Such description includes the operations a service offers, the data

being transmitted and communication protocol supported, and so forth. Web services were

first introduced around 1998 to cope with interoperability problem encountered with early-

distributed system technology such as the Common Object Request Broker (CORBA).

The Service-oriented architecture (SOA) was the first architecture proposed for building

web services and automating business processes and enhancing systems’ productivity

and interoperability between them. SOAP-based web services (also known as big web

22

services), which are built upon the SOA architecture, have been widely adopted by several

organizations for integrating enterprise applications as well as implementing and composing

business processes [47].

2.6.1 RESTful Web services

Representational State Transfer (REST) is not an architecture but rather an architectural

style. It was introduced by one of the principal HTTP authors, Roy Fielding in his

dissertation [48,49] in 2000. The main idea of REST revolves around the notion of resources

that need to be used and addressed. A resource can be anything exposed to the web such as

any application’s component, file on disk, a database recode and so on. REST web services

rely on HTTP protocol as communication enabler and take advantage of its reliability to

build a large-scale distributed hypermedia systems. As opposed to SOAP-based web services,

REST web services are lightweight services, which make them easy to discover and consume

by any application that is able to send HTTP requests from any kind of client (mobile,

browser, wireless sensor network). Consequently, in recent years, REST has attracted the

attention of large number of companies, mainly the major Internet player, to expose their

data and resources. In essence, REST architecture style is based on the following principles:

Resource Identification. Similarly to a web page, a REST web service is a collection of

resources. Each resource is uniquely identified by a URI (Uniform Resource Identification)

which enables global resources accessing and service discovery.

Uniform interface. Resources are manipulated and accessed on CRUD (create, read,

update and deleted) basis via HTTP’s standardized operations: PUT, GET, POST and

DELETE.

Self-descriptive messages. REST decouples resources from their representation. Hence,

a single resource can be represented in format (XML, JSON, Text). Each message contains

the metadata that describes the meaning of the message and the information needed on how

to process the message (e.g mime type, HTTP operation used, etc).

Hypermedia as the engine of application state (HATEOAS). This principle enables

23

to build hypermedia-driven applications: the client of REST web services can follow the links

contained in resource’s representation to go to next state (change resource’s current state).

Thus, REST inherits some of HTTP’s properties, hence, interaction with a resource is a

stateless. However, stateful interactions are possible through hyperlinks.

REST web series are often referred to REST API. Much like a web site, an API has a

base URI (root), for example, http://example.com/resources/. Moreover, the API specifies

the format of the data exchanged is determined using Internet media type (previously called

mime type) and the set of operations supported using HTTP methods (e.g GET, PUT, POST

or DELETE). In this work, we use REST web services in implementing public interfaces that

enable interaction and interoperability between various roles. A more detailed discussion

about the use of such services is presented in Chapter 5.

2.7 Summary

The network virtualization is not a new concept. However, the introduction of virtualization

technologies into the networks enabled has enormously contributed to the undergoing

research effort to define a new diversified Internet architecture (i.e., Future Internet).

Virtualization is seen as a promising solution that enables to divide physical resources into

slices (i.e., virtual resources) which results in enabling cost-effective usage and sharing of

resources as well as enabling flexibility and isolation among the resulted virtual machines. In

this chapter, we first defined the terminology and terms used throughout this thesis. We first

discussed virtual networks in general and presented the concept of network virtualization.

In particular, we presented the notion of network virtualization environment (NVE) and

the related business models as well as the virtual network embedding process. Moreover,

we gave a brief introduction to web services technologies that we envisage to use as public

interfaces enabling interactions between roles. The following chapter presents the framework

for dynamic resource publication and discovery we propose.

24

Chapter 3

A Framework for Resource

Publication and Discovery in Network

Virtualization Environment

3.1 Introduction

We have discussed in the previous chapter the NVE and the related concepts and business

models. In this chapter, we present the framework we propose for resource publication and

discovery in NVE. We first survey the existing work on resource publication and discovery

in NVE. We discuss publication and discovery mechanisms of information about network-

related resources and the requirements such framework should have. Then, we present a

high-level overview of the framework architecture and describe a case study as well as detail

a scenario showing how this solution would be used.

25

3.2 Related Work to Resource Discovery and Selection

in Network Virtualization Environment

In a federated network virtualization environment (similar resource being offered by many

providers), resource discovery process consists of finding the available resources that are

capable of providing a service according to a set of requirements describing the characteristics

(i.e capabilities) of each wanted resource. It is a critical process for efficient allocation and

selection of reliable resources. In addition, due to the heterogeneous nature and the dynamic

ability of the resources, when selecting resource candidates, their functional and non-

functional characteristics have to be taken into consideration. Several approaches have been

proposed for discovering resources in distributed computing environments (e.g computational

grids, cloud computing, peer-to-peer networks). Such approaches employ many well-

known techniques [50], namely: distributed indexing (used in peer-to-peer networks), UDDI

registries that are used in soap-based web services, broker-based repositories, resource

classification and clustering [51] and agent-based.

Despite its importance in the VN embedding process, little work has been done on

resource discovery in NVE. In [16], a resource discovery framework has been proposed for

the 4WARD [4] model in which three parties are involved: PIP, VN provider, and customer.

Resources are described using XML documents. This framework uses clustering techniques to

manage arrange and resource information into dendograms (a tree-like data structure) which

facilitates the resource matching and selection process. While only resource’s functional

attributes are advertised and stored in external repositories, non-functional attributes are

constantly updated and kept in local repositories (are not made public) because of the

possible overhead caused by the continuous monitoring of network resources. Moreover, this

work considers only the case where a single VNP having to select the best PIP in order to

embed each VN request. Another point is that in NVE multiple PIPs can offer the same

resources (having similarities in their attributes), which implies that a VNP would deal with

a single PIP at once.

26

Authors in [52] extended [16] to address the problem of virtual network embedding across

multiple PIPs and to enhance the resource discovery process by reducing the search range

and cost. They proposed a hierarchical virtual resource organization framework supporting

multiple InPs that rely on using Local Management nodes to store static (functional)

attributes and arranging them, at first, into conceptual clusters called Micro Clusters

(MiCs) at the PIP level. Furthermore, a Cluster Index Server is used to aggregate and

organize the MiCs belonging to various PIPs having the same root attribute resulting in

a Macro Cluster (MaC). In this approach, dynamic (time variant) attributes such as the

residual capacity of a substrate link is stored in the local management nodes. To benefit

from WSDL’s support for the dynamical update of services, authors in [53] proposed a

WSDL-based resource provisioning framework for NVE. In this work, resource descriptions

are integrated into WSDL documents. Thus, with the help of local agents deployed on

local substrate networks, WSDL documents containing resource description are dynamically

generated and published to UDDI registries. For a VNP (Virtual Network Provider) to

select the candidate resources, a search in all the UDDI registries is required. In this

framework, the selection process relies on parsing the information contained in WSDL, and

uses the greedy and shortest path algorithms to retrieve the necessary information. Aiming

at enhancing the efficiency of the resource selection process by considering the dynamic

attributes, the Aggregation-based Discovery for Virtual Network Environments (ADVNE)

is proposed in [39]. However, to minimize the continuous monitoring overhead of each single

attribute (by reducing the number of monitoring messages circulation over the network), the

authors propose an approach which consists of calculating the aggregate of the monitored

attributes instead. In this approach, each PIP disposes a monitoring agent that monitors and

calculates the aggregation values which will be later retrieved on-demand by the discovery

module during the selection process.

To the best of our knowledge, the work that has addressed resource discovery in NVE

focuses only on functional attributes. However, only authors in [39] take into consideration

27

non-functional attributes in the resource discovery process. We argue that considering only

functional attributes in the selection process may lead to inaccurate selection. Furthermore,

when similar resources are offered by many PIPs, the discovery process become crucial

and the most appropriate resources have to be selected based on both functional and non-

functional attributes. Although advertising non-functional attributes may generate some

overhead due to the extra required processing, many solutions can be used to cope with this

problem such as efficient monitoring techniques.

3.3 Business Scenario

A service provider (SP) wishes to offer a secure and QoS-enabled content distribution service

for customers. Such a service is intended to be consumed on-demand; hence, the resources

on which the service will be deployed should not be limited (i.e elastic) and dedicated only

to the service in question. The SP would need to deploy its service over a scalable virtual

network so that, if needed, additional resources can be easily requested and added to enhance

the overall network’s performance. In addition to having its own isolated virtual network,

the instantiated virtual network would benefit from having additional value added properties

such as enhanced security, and efficient routing-aware services as well as different QoS scheme

support. At first, the SP would contact a VIP offering virtual resources of interest. He would

send a VN request with details related to the required resources. The VIP processes the VN

request, allocates the required resources in collaboration with the PIP, and finally grant

access the SP access to the newly instantiated virtual network.

A more detailed scenario showing the interaction and the message exchanges between

the involved roles are shown in Section 3.6, but first we introduce the architecture of the

proposed framework in the next section.

28

3.4 Requirements for Dynamic Resource Publication

and Discovery in Network Virtualization Environ-

ment

The designed architecture should be consistent and fit with the business model presented

in Section 2.5.2.2, therefore such architecture should meet the following requirements:

• Brokerage role. To foster interoperability among various roles, the framework

should enable seamless interaction between different virtual networking related

roles/parties (i.e., Physical Infrastructure Provider, Virtual Infrastructure Provider,

Service Provider, and Consumer) for the dynamic discovery of other parties and the

services and resources they offer. The designed architecture should be consistent and

fit with our proposed business model.

• Suitable for network virtualization environment. Distributed, self-

managed/self-organized, and scalable in terms of the amount of information handled,

in order to be suitable for the dynamic and elastic nature of virtual networks.

• Information Management. Another key requirement is that the framework

should enable efficient management of information related to various physical/ virtual

resources and services that may be offered in network virtualization environment.

Information about resources should be well organized so that it can be quickly retrieved

on demand.

This requirement is multifold, therefore, is associated with the following sub-

requirements that are also related to information management and organization of

resources, namely:

– Information acquisition. And update as well as the dynamic tracking and

monitoring of resources and services’ status information.

29

– Information modeling. Relies on a formal and expressive information model

to facilitate information representation and sharing. This model should enable

the description of the functional and non-functional aspects of available resources

and services, as well as domain related semantics (cross-domains). Instances of

this model (data models) should be used in the interaction between different

roles/components within the framework.

– Information dissemination. Relies on standard protocols and suitable

interaction models (e.g. publish/subscribe, polling, tuple spaces) for efficient

information exchange across domains. Synchronous and asynchronous modes of

communication should be supported to achieve flexibility.

– Resource clustering and ranking. Supports resource/service ranking and

categorization, and a modular/layered design, to ensure efficiency of operations.

– Support for service composition. The framework should enable service

composition and facilitate the composition of resources/services.

3.5 Broker-based Framework for Resource Publication

and Discovery

Figure 6 illustrates the system architecture of the proposed framework. We selected a

broker-based approach to cope with the complexity of publication and discovery of resources

and services in network virtualization environment. The main objective of our work is

to find an efficient solution that enables seamless interactions and collaborations between

various roles. Within this framework, Physical Infrastructure Providers (PIP) are substrate

resource suppliers who advertise (i.e., publish) the description of the resources offered into

the Broker’s service and resource repository (SRR). Virtual Infrastructure Providers (VIP)

are virtual resource providers that discover the resources needed to instantiate a virtual

network, and negotiate these resources with the selected potential PIPs. Moreover, VIPs

request PIPs to instantiate VNs on which they deploy network services. In turn, Service

30

Figure 6: System architecture of the proposed framework for resource
publication and discovery

Providers (SP) are end-to-end service providers who require and discover virtual networks

on which they deploy the services they offer. Additionally, they negotiate the selected services

with the appropriate VIPs. A more detailed description of the functions of this framework

is presented in the following section.

3.5.1 Overall Architecture

3.5.1.1 Introduction

Figure 7 gives a high-level overview of the proposed framework architecture that is broker-

based, multi-level (layered) and composed of a set of loosely coupled components. The PIP

is represented at the Physical Level, in turn, the VIP is represented at the First Virtual Level

and finally the SP represented at the second Virtual Level. Consequently, roles depend on

31

each other in performing the virtual network provisioning process. We selected a resource-

broker approach to cope with the complexity of managing and organizing information about

resources [54]. We introduce a resource and service broker which serves as mediator while

coordinating the communication between various roles.

The resource broker allows not only roles to publish their resources and discover other

roles’ resources, but also provides the ability to select the most appropriate resource based

on particular characteristics and constraints. Thus, it manages the inventory of federated

resources in the resource and service registry (SRR), which holds well-defined static and

dynamic resource properties. Both functional and non-functional attributes are advertised

and stored in the (SRR). Additionally, many providers (VIP, SP) can discover other roles

and the resources/services they offer through the broker’s services. Upon receiving a resource

discovery request, the broker selects the most appropriate resources that comply with the

requirements as formulated in the request, and returns to the requestor the list of the

candidate resources. Roles, in turn, can perform another selection stage in order to refine

the list based on some local preferences (such as QoS, cost). Prior resource allocation, and

to reach an agreement on the selected resources, roles negotiate resources’ capabilities (such

as price, availabilities, QoS-related parameters). At each level, we find local information

sources (repositories) that the respective role uses to manage information about resources.

However, only the information about resources that are intended to be offered are published

into the resource and service broker. In this architecture, communication between layers is

bidirectional and can be performed through a standardized connectivity provider (e.g public

interfaces web services).

3.5.1.2 Components Description

The broker is composed of two main components. We distinguish two key services involved

in the resource publication and discovery process, namely:

(a) Publication Service enables the publication (registration), updating and deletion of

information about resources; (b) Discovery Selection and Ranking Service receives as input

32

Figure 7: High-level overview of the proposed architecture

33

a request containing the description/requirements of resources of interest along with QoS

constraints. While taking into consideration the resources’ rank and the specified constraints

(i.e QoS, cost, etc.), it selects the most appropriate resources that satisfy the request, and

returns, as a result, the list of matching resources.

The Ranking Engine evaluates the popularity among similar resources and attributes

a rank to each resource each time it is selected. This rank could be based on their

usage, functional and non-functional characteristics (such as availability, uptime, cost and

QoS, etc.). Furthermore, to facilitate resource selection, the Clustering Engine arranges

information about resources contained in the SRR into clusters (grouping resources having

similarities). (c) Following a well-defined naming scheme, the Identification and Naming

service is responsible for dynamically instantiating a name (unique identifier) for each

resource registered in the SRR. Because in a federated virtual resources environment many

providers could offer the same resource; a unique identifier is needed to distinguish one

resource from another. (d) Templates Service provides the different roles with an up-to-

date template for describing resources or network services. The first layer of the hierarchy

(L1) provides components for describing, publishing and instantiating resources as well as

negotiating resources with other roles. The second and the top-level layers components

that are responsible for describing, deploying and publishing network services. L1 contains

components grouped into the following sub-systems: The Resource Manager (RM) As

a whole, it handles the management and publication of resources and encompasses five

components: The Description and Publication Engine consisting of a key enabler of the

resource publication process, it enables a PIP to describe the resources he offers using an

instance (i.e. a document) of the information model; and validates the generated instances

to ensure data consistency and their conformance with the information model. Furthermore,

it interacts with the broker (detailed below) in order to publish, update or delete information

about resources.

The Service deployment and Test Engine enables the PIP to deploy and test essential

services such as routing or transport services. Monitoring Engine monitors the status of the

34

allocated resources, and the links connecting the virtual nodes. Additionally, it continuously

collects information about resources’ dynamic properties for generating statistics purposes.

The Resource Allocation Manager (RAM) coordinates all the steps involved in the resource

allocation process (i.e. negotiation, instantiation, allocation and binding) and consists of

the following components: The Resource Negotiation handles and coordinates the resource

negotiation process with a given virtual layer. The Resource Instantiation and Configuration

is responsible for the “slicing” of physical resources. It handles the instantiation request,

and enables the creation and configuration of virtual resources as well as the optimization of

those resources based on the negotiated QoS scheme. The Binding and Usage maps a virtual

resource to a physical one (i.e maps resources to request), reserves the allocated resources,

and triggers the monitoring process. Since in a NVE multiple virtual layers can be built on

top of physical one, we design same components to be used at each virtual layer. However,

the type of resource/services being offered is different. At a the first and second virtual layer,

the Service Description and Publication is responsible for describing network services and

publishing their information to the broker. In order to get the list of resources of interest, the

Resource Discovery and Selection interacts with the broker on a request-response basis, and

performs another stage of resource selection involving some local criteria/constraints. While

the Service Composition enables to combine two or more services into a composite service.

The Service Deployment and Test coordinates the steps involved in service deployment and

performs some tests to validate the virtual-to-physical mapping. The Service Monitoring

monitors the status of deployed services to ensure QoS. Finally, the Negotiation Engine

conducts the negotiation of resources with one or more PIPs.

3.6 Case Study

The sequence diagram shown in Figure 8 illustrates the virtual network provisioning process

within the proposed architecture. This process consists of a set of interactions between the

involved roes, namely: a PIP who is managing the physical infrastructure that is available on-

demand; a VIP who discovers and leases virtual resources to offer a platform with customized

35

Figure 8: Roles interactions during virtual network provisioning process within
the proposed framework

36

services (such as security and QoS-enabled, enhanced routing services, etc.); a SP who offers

the end-user service (the content distribution service) as value added service to customers.

In this scenario, a PIP initiates the process and publishes resource description and

constraints related to the offered resources into the Broker using a POST request (step 1).

The broker replies back with a confirmation message indicating the result of the operation

(200 OK, step 2). In turn, the VIP asks the broker to provide him with the needed resources.

He sends a discovery request (GET message, step 3) containing the description of resources,

their desired availability, cost, and constraints. Upon receiving a discovery request, the

broker executes a selection/matching algorithm to select the optimal resources that comply

with the VIP’s request. The set of selected resources is sent back to the VIP (step 4). Upon

receiving the PIPs list, the best PIP is selected by the VIP, using a selection/matching

algorithm (step 5). The VIP then sends a resource negotiation request (step 6), specifying

the requested essential services and their constraints, to the selected PIP. The latter replies

with a resource negotiation response (step 7), specifying the offered resources and accepted

constraints to the VIP, which concludes the negotiation process with a resource negotiation

acknowledgment (step 8) confirming the negotiated resources and constraints. At this stage,

the PIP carries a resource allocation and virtual topology instantiation process for VN1

(step 9), and sends an acknowledgment (step 10) of the topology instantiation to the VIP.

Afterward, the VIP asks the PIP to deploy and test the specified service enablers (step

11), and gets a 200 OK message as reply (step 12). Once the service enablers are deployed

and tested, the VIP asks the broker to publish a description of the service enablers and

their constraints (step 13), which in case of success results in a 200 OK message (step 14).

Meanwhile, a SP (wishing to create VN2) sends the broker a VIP discovery request (step 15)

containing a document describing the service enablers to be used, their desired availability,

cost, and constraints. The broker replies with a list of VIPs offering service enablers that

comply with the request (step 16). Later, in step 17, the SP selects the best VIP to which

he submits a service negotiation request (step 18). In steps 19 to 28, interactions related to

service enablers’ usage negotiation, VN2 topology instantiation, and the deployment of the

37

content distribution end user service offered by the SP are carried, similarly to the VIP::VN1

case. The main difference lays in the message parameters that refer to a different type of

service in this case. When the end user service is successfully deployed and tested, the SP

sends its description to the broker. This description is then discovered 4781 by the consumer

that uses it to select the best SP. Afterward, the consumer submits a bind and invoke service

request to the chosen SP, which in response sends an acknowledgment and grants access to

the consumer. The latter then carries the rest of the interactions related to the end user

service invocation and usage (those interactions are not shown in the figure).

3.7 Summary

The overall system availability and resource information consistency as well as security are

critical in a NVE context. Although we considered a centralized approach in our design

process, many techniques can be used to overcome the disadvantages related to centralized

systems. For instance, redundancy and load balancing techniques can be used to cope with

the problem of single point of failure. On the other hand, adopting decentralized approach,

such as structured or unstructured peer-to-peer (P2P) solution is a potential option. Systems

based on P2P architecture based are known for their increased scalability since additional

node can be added without affecting the availability of the overall systems. However, nodes

availability in such type of system is questionable as nodes can join and leave the network with

prior notification. In this chapter, we have presented a framework for dynamic publication

and discovery of resources in NVE and defined a broker-based architecture that uses the

service-oriented business model which was previously presented in Section 2.1. Then, we

discussed a case study illustrating the steps required to provision a virtual networks within

the proposed framework. Finally, we discussed the different approaches that have been

proposed and used for resource discovery and selection in NVE.

38

Chapter 4

Information Model

In the previous chapter, we established the architecture of the framework we are proposing

for resource publication and discovery in NVE, and we gave a detailed description of the

responsibility of each component. Moreover, we discussed a use case to show the interactions

between roles and the information they exchange.

In this chapter, we present an information model for resource and service description as part

of the framework we are proposing. First, we discuss the motivation behind the need of such

model. Then, we discuss the work related to information modeling in general and virtual

network in particular. Finally, we present the proposed information model and detail the

entities supported and their relationships.

4.1 Introduction

Virtualization has been adopted as an effective solution for sharing resources that are used

upon request. Network vitalization is the result of applying virtualization in network context.

Through virtualization, a physical resource is sliced into many virtual resources with the

same or different computational attributes (properties). However, in an environment where

multiple infrastructure providers offer heterogeneous resources, each resource has to be

described and somehow differentiated. This allows the resource consumer to select the

39

resources capable of providing a specific service and choose from a wide variety of resources.

Moreover, resources can be combined from two or more providers forming a virtual network

spanning across multiple administrative domains. In this work, network resources refer

the equipment needed to create a network such as a router and switch. Currently, there

is no standardized language for accurately describing resources in network virtualization

environment where multiple infrastructure providers offer heterogeneous resources and

services.

To facilitate the selection and allocation of such resources, each PIP needs to describe the

resources and their characteristics in terms of processing power and capabilities. The goal of

this information is to identify the resources and their properties. Such an information model

is used to model entities at a conceptual level. In fact, as resource provider, a PIP faces

significant challenges in describing and advertising the resources it offers. While attempting

to maximize the selection likelihood, the offered resources need to be described in fine-

grained manner. When a VIP needs to instantiate a virtual network, it first defines a set of

requirements that the expected network should meet. The requirements mainly consist of

the resource capacity in terms of processing power and network-related capabilities such as

bandwidth, delay, etc.

Since a virtual network and resources are provisioned on demand, a common information

model to manage and organize information about resources is needed in network

virtualization environment. This model would be used by different roles to send request

for creating, destroying, or updating resources. Hence, all roles should agree on a single

and common data representation, which enables them to efficiently, and reliably exchange

information and receive notification (e.g virtual network description, modification request,

network-related notifications).

A good analogy for the need to describe resources and services in NVE is the requirements

for labelling products and goods that are often provided with a summary description (called

labels) that assists the buyers in the purchasing process [55]. A buyer uses the information

provided in product labels to compare the characteristics of a given product with the ones

40

of similar or substitute products. Driven by many constraints and preferences (e.g quality of

the product, reputation, price, ingredients, warranty), such comparison assists the buyer in

evaluating a product and making a decision about selection the product in question or not.

The work presented in [56] attempts to clarify what needs to be included when describing

services’ properties. Because “electronic” services are consumed in a “semi-automated”

manner, the author argues that the description of a service should answer some service

related questions such as: “how you determine how to request a service? What is the

identity of the service provider? Where and when the service is available? What quality of

service can be guaranteed? Does the provider offer any type of discounts?” Moreover, an

accurate description of a service should include the related functionality and the associated

constraints.

In fact, from a resource requestor perspective in NVE, a resource description should

be accurate and provide the requestors with the necessary details (including resource’s

functionality and constraints). Formulating resource requests and modeling such resources is

crucial but yet complex. New and well-defined schema is needed for handling automated and

on-demand provisioning of resources and to cope with the challenge of selecting appropriate

resources based on their advertised description. Therefore, roles have to use the same model

to be able to express their needs; and have a common understanding related to the exchanged

information. Consequently, role-to-role interfaces (or information carriers) are key elements

for successful communication in the network visualization architecture through which roles

communicate their needs, and receive notifications, related to virtual resources they are

concerned about. These interfaces, for instance, enable the VIP to send a virtual network

instantiation request to a PIP along with the characteristics and constraint on the desired

virtual network. Moreover, these interfaces enable two different roles negotiate requests and

QoS related concerns.

In this work, we are only concerned about the two following types of virtual networks:

(1) a virtual network made of virtual routers and virtual switches. (2) A network of

interconnected virtual nodes providing computing or storage resources (e.g interconnected

41

virtual machine in Cloud Computing, Data Centers).

4.2 Related Work to Resource Description

In this section, we survey the previous work on resource description in networking and

computing in general. We then discuss the work related to resource modeling in physical

network in general and virtual network in detail.

The work related to resource description in distributed environments is multifold. Many

resource description languages and specifications have been proposed. Table 1 shows the

existing description languages grouped by network/computing area.

Table 1: Summary of some existing description languages grouped by
networking/computing area

Networking/ Description Language
Computing area

Grid computing
VXDL [57], vgDL [58]
SWORD [59], GLUE [60]

Cloud Computing
CloudML [61],
Data Centers Markup Language DCML [62],
CloudView [63]

Network resources
NDL [64], NRDL [65] , NML [66]
NevML [67], CIM [68],
cNIS [69], DEN-ng [70]

Virtual Networks
Houidi et al. [16],
VXDL [57], VN-SLA [55], NNDL [71]
INDL [72], RSpec [73] (GENI)

WSDL-based schema
WSDL-based schema [53],
IETF VNMIM [74] (work in progress),
FleRD [75], NOVI [76]

Services description USDL [77], WSDL, WADL [78],
and semantic Web OWL-S [79], RDF [80]

After analyzing the aforementioned specifications, we conclude that many network-

centric information models/languages have been proposed to model physical network-related

42

aspects. While the main challenge in modeling virtual networks is to efficiently describe

virtual resources (along with their functional and non-functional attributes), little work

have been initiated in this area. At the time of writing, there are no standardized models for

virtual networks. To give a literature review on virtual networks, we consider only the most

relevant and recent works that address different aspects related to network virtualization

environment.

Based on the Resource Description Framework (RDF) [80] and Semantic Web,

the Network Description Language (NDL) [64] has mainly been introduced to model

hybrid networks. Consequently, RDF vocabulary is used to describe network-related

concepts/objects in NDL, which results in what so-called RDF documents. NDL is an

information model that is designed in a modular manner. It encompasses a group of five

independent schemas, namely, topology, layer, capability, domain, and physical schema.

Thus, it allows describing network physical-related aspects such as network topology, network

devices and their capabilities, interfaces and connections between them as well as describing

administrative domains and generic properties of network technologies. NDL has been

used [76] and extended in many projects such as GENI project [81]. Even though it was

widely accepted and recommended by W3C, NDL does not offer support for describing

virtual network aspects nor specifying constraints and QoS specifications.

Mainly designed for virtual grid applications, Virtual Resource and Interconnection

Networks Description Language (VXDL) [57] is a language for virtual resources

interconnection networks specification and modeling. The authors define a virtual

infrastructure as an aggregated set of interconnected virtual resources. VXDL allows

describing all components of a virtual infrastructure including their network topology. Thus,

VXDL introduced the notion of “timeline” or period of resource utilization and resources

can be described individually or in groups. A typical VXDL document comprises the

following: general resource description, resources description, network topology description,

and timeline description.

On the other hand, Virtual Network-Service Level Agreement (VN-SLA) [55] provides a

43

preliminary schema for defining a service level agreement for virtual networks. Composed

of three sections, it allows defining: (1) various actors (InP, VNP, Client); (2) virtual

resources properties and their relationships as well as the Service Level Specification (SLS);

(3) finally, the obligations which formulates each actor’s responsibilities and the consequences

of inability to meet the specified service levels. Considering virtual recourses as services with

minimum granularity, authors in [53] extend the WSDL and propose a WSDL-based model

for virtual network resource description. The main goal of this model is to support the

dynamic update of resource information. In this model, any resource description defines the

nature of the resources being offered and the endpoint (location) determining where these

resources can be accessed.

The Flexible Resource Description Language (FLeRD) [75] is proposed for multiple-

provider virtual network architectures, more specifically, virtual networks connecting cloud

resources (or CloudNets). It emphasizes flexibility, vagueness, white and black listing of

properties as well as describing resources while allowing the possibility to omit some resource

specifications. Another interesting point of FLeRD is the support for the formulation of the

mapping between virtual and physical resources.

As a result of in integrating NDL and Cinegrid Description Language (CDL) (a service-

oriented modeling language), the Infrastructure and Network Description Language (INDL)

aims at providing technology independent descriptions of computing infrastructures. Based

on ontologies and Semantic Web approaches, INDL’s main goal is to decouple connectivity,

functionality and virtualization of resources so that flexibility is ensured and new types can be

added without affecting existing schema. In INDL, network resources are represented by the

Resource class and its subclasses (such as Node, Network Element, and Node Component).

While network services (i.e Storage Service, Stream Service, etc.) are represented as

subclasses of the Service class.

As work in progress, a virtual network management information model is proposed in [74]

for mainly managing virtual networks in data centers. In this model, virtual nodes that

are instantiated on the same physical node are defined in a group of virtual nodes and

44

the mapping to physical ones is expressed as well. Consisting of the starting point of our

work, Houidi et al. [17] proposed a schema for automated virtual networks provisioning

whose objective is to define the properties of virtual resources and their relationships. In

such a schema, a network element is considered as the basic building component and has

functional and non-functional attributes. Functional attributes represents characteristics,

properties and functions of a network element. Whereas non-functional attributes specify

criteria and constraints (such a location, cost, QoS). Even though it is intended to define

virtual resources, this schema does not take into consideration dynamic resource information

update nor covers all the aspects presented in this thesis such as describing virtual network

as a whole, mapping between virtual and physical resources, describing network services,

and formulating the relationships between roles (actors/parties) and resources/services.

Each of the aforementioned languages address specific domain and do not cover all the

aspects related to virtual networks. In the following, we highlight the most interesting point

of each aforementioned solutions and we conclude how they differ from the proposed model.

Although NDL supports various network aspects and has been extended in many works,

it lacks support for virtual network concepts. The WSDL-based model has an interesting

point in supporting dynamic resource update but does not provide support for detailed

virtual resources nor network services modeling. VN-SLA allows the modeling of virtual

resources; however, it does not support network services. Thus, FLeRD focuses on the

formulation of mapping (virtual-to-physical layers) of network elements while no support

for modeling network topology and roles is provided. VXDL allows describing individual

resources in detail but does not model virtual network aspects such as roles and network

services. INDL does support network services and resources whereas virtual-to-physical

mapping is not considered. None of these solutions provide detailed functional and non-

functional attributes related to resources and network services, nor do they model the

interactions among roles, resources and services. Besides, the proposed model formulates

a virtual network layer including all the involved roles, services and resources as a whole.

45

Table 2: Comparison of the existing information model with our requirements

Fine-grained Virtual to Formality and Virtual network Support Support for
description physical expressiveness topology mapping for formulation aggregation
of virtual mapping network services of network
resources information services

Houidi et al. [16] – X X – – –
VN-SLA [55] – – X – X –
NNDL [71] X – X – – –
VXDL [57] X – X – – –
INDL [72] X – X – X –

WSDL extension [53] – – X – – –
FLeRD [75] X X X X – –
Our model [9] X X X X X X

46

4.3 Requirements for an Information Model in Net-

work Virualization Environment

Among the several requirements that have led to the design of our proposed information

model. Reference [82] introduces a process to develop an information model. The

author argues that a “quality” information model should have the following characteristics:

“sharable, stable, extensible, well-structured, precise and unambiguous”. In addition to

these characteristics, an information model should cope with the complexity that the

virtual network provisioning process raises in terms of resource description, management

and organization. To be suitable for NVE, we believe that an information model should

meet the following requirements:

• Fine-grained description of virtual resources. The proposed model should clearly

enable the description of the functional and non-functional attributes in detail as well

as their related constraints and QoS scheme.

• Mapping information. Thanks to virtualization technology, a physical device (i.e

server, router) can host many virtual devices. The proposed model should enable to

represent the mapping of virtual resources to physical resources i.e on which physical

resource a virtual resource is created.

• Formality and expressiveness. A model could be seen as a template that one has to

follow to represent a given object. Such a model should be formal and should provide

the structure of information used to describe resources/services with an acceptable

degree of expressiveness.

• Enable inter-role communication. The model should seamlessly enable data

exchanges between heterogeneous roles/services.

• Interoperability between roles. The proposed model should effectively enable

information sharing and data exchanges between different NVE roles without

ambiguity.

47

• Virtual network topology mapping. A VNet has a virtual network topology

(VNT) which is a subset of a physical network topology (PNT). The proposed model

should enable the representation of VNT as well as its corresponding mapping to the

PNT.

• Connection information between resources, services and roles. The proposed

model should be able to represent all the connections between resources, roles and

services and the relationships they might have.

• Extensibility and flexibility. The model should provide a solution to flexibly

describe network resources and services. Thus, any potential extension should be

taken into consideration. Hence, it should be easy to extend the model in order to

represent new entities.

• Support for aggregation of network services. A service can be composed by

aggregating two or more services. For instance, a SP can offer composite services by

combining many service building blocks.

• Support for formulation network services. The model should not be limited to

modeling virtual resources and should allow for modeling a variety network services.

• Information representation and portability. The proposed model should not

have any implementation-related constraints. Any platform-independent language that

ensures interoperability could be used to implement such a model.

4.4 The Proposed Information Model

4.4.1 High-level Overview

Figure 9 gives a high-level overview of the proposed model. Our information model

revolves around modeling three main concepts and their relationships: roles; services; and

resources [9]. Roles are business organizations that collaborate to offer/consume resources

48

and services and exchange information related to these resources/services. A role can be

a resource provider offering and managing virtualized resources, and at the same time can

be a resource consumer accessing virtualized resources/services. In addition, a role can

act as service provider offering and managing network services, or as a service consumer

subscribing to network services. In our model, network resources are mapped onto network

services (i.e. network resources are considered as low level network services). Finally, just

like web services, various levels of network services can be published, dynamically discovered,

composed, and used, in our model.

We take into consideration the different roles and their relationships to physical/virtual

topologies and various levels of services . A TargetedNetwork can be physical or virtual

network. To describe a virtual network, we consider a TargetedNetwork to be the base entity

as well as the root element of all instantiated description documents. A TargetedNetwork

can be composed of one or many virtual networks and one or many physical networks.

A PhysicalNetwork has a PhysicalNetworkTopology and is composed of a set of physical

nodes connected by physical links. A VirtualNetwork has a VirtualNetworkTopology, which

is a subset of the underlying physical topology. A virtual network topology can be

composed of one or multiple virtual ones, thus forming a hierarchy. A virtual network

is composed of a set of VirtualNodes, each node having one or many VirtualInterfaces

and being connected to another virtual node by a VirtualLink. Virtual nodes that are

instantiated on the same physical device are grouped in a VirtualNodeGroup that is mapped

to a physical node. Although we are not concerned about modeling physical networks

related entities, we only model a physical network as a set of PhysicalNodes where a given

group of virtual nodes is mapped. The different roles and their interactions with different

entities are modeled as follows: (1) A PhysicalInfrProvider (PIP) owns and operates a

PhysicalNetwork ; offers EssentialServices ; and instantiates one or multiple VirtualNetworks ;

(2) A VirtualInfrProvider (VIP) manages and operates VirtualNetworks and offers

ServiceEnablers ; (3) A ServiceProvider (SP) manages and operates VirtualNetworks and

offers ServiceBuildingBlocks and EndUserServices. An end user service can be created by

49

combining one or more service building block services; and (4) Considered as end-user,

a Consumer subscribes to/uses one or multiple EndUserServices that are accessible via

PhysicalNetworks and VirtualNetworks.

Figure 9: High-level overview of the proposed information model

4.4.2 Detailed Description

Figure 10 and Figure 11 respectively show the resource level view and the service level

view. In the resource level view, we consider a NetworkElement (NE) as the basic building

component of a virtual network that can be a Node, Link, Interface, or Path. A NE has a

name, availability, start time that specifies when the resource is available, and a period that

determines for how long the resource is available. The status attributes represent NE’s state

(available, allocated, etc.). Since a NE can span across multiples domains, a NE belongs to

a NetworkDomain, which in turn has an AdministrativeDomain.

A Node can be either a PhysicalNode or VirtualNode. Represented in the class Node, a

50

node has a RoutingPlatform and GeoLocation, and encompasses common attributes needed

for describing a network node, namely, a network stack, a type (i.e virtual switch, virtual

router, virtual machine, etc) and an IP address. Besides attributes such as the vendor,

model, and substrate node group, a physical node may aggregate virtual nodes and interfaces,

whereas a VirtualNode (VN) is uniquely identified; and has an initial and maximum capacity

in terms of computational capabilities. Each VN aggregates one or multiple virtual interfaces.

An Interface represents a physical/virtual network interface controller (NIC); and has a type

(i.e Ethernet, radio), rate and MAC address. Depending on its capacity, a physical link can

be divided into slices using virtualization techniques (i.e ATM, MPLS) to support one or

multiple virtual links. A Link has characteristics such as minimal delay, type, bandwidth,

throughput, good-put and type of connectivity; and an end point that determines the

source node and destination node. Each VirtualLink has a tag, and initial and maximum

allocated bandwidth. Virtual interfaces are connected by a virtual link. A PhysicalLink has

a limited number of supported virtual links and an additional attribute for defining available

bandwidth. A Path represents a set of links, starts at beginNode and ends at endNode.

To represent nodes’ functional and non-functional characteristics, a node has an

association with the following two entities: (1) Node Functional Parameters: consists of

characteristics/properties related to the functioning of a node such as operating system

type, software version, and the type of the network management system. It is composed

of: (a) Storage parameters which determine the available disk space, storage type, and

number of storage units; (b) memory parameters which represent the size, capacity, and

type of the available memory; and (c) CPU parameters which represent the information

about the available processing unit(s). (2) Node Non-Functional Parameters: this class

defines constraints, QoS scheme, and desired criteria that should be met when selecting a

resource, namely: cost, rank, and percentage of failure. In turn, non-functional attributes

are composed of the following: (a) Performance parameters representing node performance

properties such as response time, uptime, capacity, and reliability level. (b) Security level

parameters defining security properties that a node supports like hashing techniques (i.e

51

Checksums, cryptographic hash functions), encryption methods (i.e symmetric, asymmetric)

and security properties (i.e confidentiality, integrity). (c) QoS parameters representing QoS

related characteristics including the average packet loss, jitter, delay, and bit rate. (d) Input

and output parameters representing properties used to monitor node’s workload status (e.g

CPU and memory state, I/O devices, etc.).

Figure 10: Resource view of the proposed information model

We model network topology as physical/virtual topology. In general, a network topology

has a name, type (i.e bus, ring), path list, and is composed of a set of nodes. Moreover, a

network topology has NetworkProperties that is a set of characteristics applied to wireless and

52

Figure 11: Service view of the proposed information model

53

wireless sensor networks (i.e scalability, mobility and autonomy). Representing the topology

of a virtual network, a virtual topology is a subset of a physical one and can be hierarchical

so that a virtual topology can be instantiated on top of one or multiple virtual topologies.

Thus, this leads to have hierarchical associations among virtual networks. Besides, it contains

attributes related to availability, start time, period, and a reference to its operator. In the

service level view shown in Figure 11, a role represents an organization, identified by a

name or id and has contact information. Different roles are modeled as follows: (1) broker

represents the resource and service repository; (2) Service provider represents a SP; (3)

consumer represents an end user which subscribes to services offered by a SP; (4) Physical

infrastructure provider represents a PIP; (5) Virtual infrastructure provider represents a

VIP. Each role is associated with a service entity which indicates the type of service it offers.

Just like NE, a service represents the base class for describing services. A service has

the following sub-classes: (1) description and discovery service offered by the broker and

representing services needed for publishing and discovering resources/services; (2) Essential

service are transport service and routing service; (3) End-user service representing services

destined to end users and composed of one or many service building blocks namely call

control, presence, conferencing, and messaging; and (4) Service enablers defining the support

functions needed for the operation of end user services. Service enablers comprise the

following: Interworking, security level, session management, subscription management, AAA

service, QoS control, media handler. Each service is associated with functional attributes

as well as non-functional attributes. We divide the latter into three categories: (1) QoS

defining characteristics such as the offered class of service, support level, error rate, average

repair time, and transmission delay; (2) Service performance representing properties that are

related to service performance, namely, scalability and fault tolerance, response time, and

uptime percentage, etc.; and (3) service security defining the security service and the level

supported. Furthermore, common properties like the rank of a service, cost, and maximum

number of supported users can be expressed as well.

A WirelessNode is a PhysicalNode and can contain one or more virtual nodes.

54

The WirelessNode class describes the characteristics of a wireless node (such as power

consumption, radio type, frequency range, communication mode, etc). Additionally, a

wireless node has an antenna, battery and performance parameters.

The class WAntenna defines the set of properties that an antenna can have

(such as antenna type, frequency range, and modulation type). Additionally, the

WPerformanceParameters class represents the different type of properties that are related to

the performance of a wireless node including channel bandwidth, radio coverage and latency

as well as maximum down/up link speed and type of data supported.

Moreover, we defined a set of enumeration types which are listed in Appendix A. Such

enumeration types are used to formulate various entities’ attributes. Figure 34 in Section A.1

shows the enumerations related to a node entity. For instance, such enums specify the type

of a node (virtual router, virtual switch, etc.), the virtual environment used (e.g., XEN or

VMWare, etc.) and so on. The figure in Section A.2 shows enumerations types related

to network links. Whereas Sections A.3, A.4 and A.5 define enumerations types related to

network services, security and wireless node respectively.

4.5 Summary

In network virtualization environment, multiple providers provide heterogeneous resources

and services which results in a large pool of virtual resources that can be discovered and

consumed on demand. Thus, virtual networks are created by aggregating resources that

span across different domains. Prior to instantiate a virtual network, a virtual infrastructure

provider would need to discover and select the resource of interest based on their description

(their characteristics in terms of processing power). Consequently, an information model is

needed to assist physical infrastructure providers in describing the resources they offer and

VIPs in selecting the best resources that match their requirements. This chapter presented

a multi-service and multi-role [9] integrated information model for describing resources and

services in NVE. Such model enables the description of physical and virtual resources as well

as network services. We have first defined a set of requirements we believe an information

55

model should meet. Finally, we surveyed and present the existing information models that

have been proposed to model network resources in general and the ones proposed for NVEin

particular.

56

Chapter 5

Design and Implementation

In this chapter, we present the design and development of proof of concept prototype. We

first introduce the requirements for the implementation in Section 5.2, then we describe

the software architecture of the implementation in Section 5.3 along with the developed

components and graphical user interfaces, and finally we detail the expanded use case scenario

as a case study in Section 5.5. In the next chapter, the hardware used and the prototype

setup will be presented.

5.1 Overview

We presented the architecture of the proposed framework for resource publication and

discovery in NVE and discussed its components in Chapter 3. Then, in Chapter 4 we

introduced an information model for describing various resources and formulating different

kind of requests. We use both the proposed architecture and the information model to

implement a proof of concept prototype to demonstrate the feasibility of the proposed

framework. However, due to time constraint, we mainly focus on the operations enabling the

publication, discovery and negotiation of resources as well as the automated instantiation of

virtual topology as described in virtual network request. Therefore, we implemented only

a subset of the overall architecture. However, for simplicity reasons, we combine the VIP

57

and SP roles. As matter of fact, implementing the activities related to service providers

(e.g., deploying end-to-end services) is out of the scope of this thesis and is not taken into

consideration. As a concrete use case, we selected the secure content distribution scenario

presented in Chapter 3 to demonstrate the interactions taken place between the roles.

5.2 Requirements for the Implementation

Figure 12: Overall framework use case

The purpose of this of the work presented in this chapter is to put in practice the

framework we have established in previous chapters and provide a working solution for

58

publication, discovery, negotiation and instantiation of virtual resources. Such solution

should meet the following requirements:

• Resource management the prototype should enable PIPs and VIPs to manage

the information about resources stored in the local resource repository that each role

disposes.

• Interaction between roles interactions between roles is the key requirement that

should the implemented first. A mechanism that enables various roles to exchange

information about resources should be put in place. This should enable a role to send

requests and receive a reply to each request sent.

• Resource description and publication the implemented prototype should allow

various PIPs to describe physical and virtual resources and publish (register) the

information about resources they offer into a public repository (i.e., resource broker)

through public interfaces.

• Resource discovery the prototype should allow various VIPs to send resource

discovery requests to the resource broker to discover and select virtual resources of

interest. To be processed successfully, resource discovery requests should include

the properties of the resources needed as well as selection constraints (as detailed

in Section 5.4.6.1).

• Resource selection the resource selection algorithm to be used should be efficient

and accurate in processing discovery requests and take into account the constraints

and requirements specified in each request.

• Resource negotiation the solution should enable multiple VIPs to negotiate the

selected resource with the appropriate PIPs through public interfaces. In the

negotiation process, roles should be able to modify (edit) a request as well as track the

received requests. Hence, all the sent and received requests should be stored in a local

repository for later consultation.

59

• Virtual topology instantiation and management the prototype should enable the

instantiation of virtual topology. This should be done by creating the requested virtual

machines and connecting them through virtual links exactly as described in the virtual

topology instantiation request. Moreover, the topology instantiation process should be

entirely automated meaning that any manual intervention should be eliminated.

• Information visualization the prototype should provide a set of graphical user

interfaces that would enable roles to visualize the information related to the resources

they manage or the sent or received requests. For example, a PIP should be able to

visualize the list of the resources he manages along with their status (e.g., published,

instantiated, etc.). Moreover, the virtual topology should be displayed as connected

graph nodes. This should reflect the created virtual resources and their connections.

In addition, the resource publication and discovery process should be automated and requires

minimal human intervention. Figure 12 illustrates the use cases that should be implemented.

5.3 Software Architecture

Figure 13 depicts the software architecture of the implemented prototype and the

technologies used. It consists of three main subsystems, each of which, is intended to realize

the functionality of the respective role (i.e Broker, PIP, VIP), and encompasses a repository

(data store) containing information about resources and services. Moreover, each subsystem

exposes a set of its functionality via public interfaces intended to enable communication with

other subsystems belonging to other roles. The interfaces consist of RESTful web services.

60

Figure 13: The software architecture of the implemented prototype

61

5.4 Implementation

Figure 22 depicts the prototype setup. We installed and configured each subsystem on

a separate machine, namely: the PIP management node; the resource broker management

node; the VIP Management node. As for the substrate resources, we installed XCP on

three machines and prepared a set of Vyatta and Ubunutu virtual machines to be used

when instantiating the virtual topology. In this section, we present the developed interfaces

that enable the interaction with each subsystem presented in Section 5.3 and discuss their

functionality.

5.4.1 The Technologies and Tools Used

We used the Java programming language to implement the prototype. The REST web

services were implemented using Jersey [83] framework that is an open source JAX-RS (JSR

311) reference implementation . We selected Grizzly web server [84] to deploy the web

services. Moreover, we used JAXB 2 [85] for marshaling and un-marshaling the XML data

carried in various REST messages’ body. We opted to use XML to describe the resources

and formulate the various requests exchanged between roles (e.g discovery and negotiation

requests). Thus, the XSD (XML-Schema Definitions) was used to define and validate the

structure of the data models and specify constraints on the data contained in the XML

documents. Consequently, each document exchanged between two subsystems is a data

model (i.e an instance of our proposed information model). The various used XSD are listed

in Appendix C.

5.4.1.1 Data Sources

We selected the open source RDBMS PostgreSQL [86] which provides native XML support,

SQL/XML publishing/querying functions, full-text search as well as full-text indexing and

XPath support. Moreover, PostgreSQL stores an XML document in its text representation,

which results in fast information retrieval and provided us with more flexibility in describing

62

resources by eliminating the need to change tables’ schema upon the alteration of the

structure of the resource’s description.

5.4.1.2 Platform Virtualization

As virtualization platform, we selected Xen Cloud Platform (XCP) [87] because it includes

the Xen Hypervisor as well as XAPI (Xen Management API) and supports large number

of guest operating systems. Other alternatives to virtualize infrastructures include, but not

limited to, VMWare vSphere [20], KVM [88], Citrix XenServer [21], Microsoft Hyper-V [19].

The Xen project uses the term domain to refer to any virtual machine created by Xen. As

per its design, there are two Xen domain types: Domain0 (Dom0) and DomainU (DomU).

Dom0 is the privileged domain and is created at boot time; has direct access to hardware

and can be seen as the hypervisor itself: it is responsible for creating and managing the

guest machines (DomUs). Whereas, a DomU is unprivileged machine within which a guest

operating system is installed and shares the underlying physical resources with other VMs.

XAPI is the default toolstacks that Xen provides to manage a virtualized machine. It

exposes Dom0’s services as XML-RPC services, which enables programmatic access to, and

remote administration of, Xen-enabled VMs. Xen supports both full virtualization and para-

virtualization, and has demonstrated to be the virtualization platform of choice due to its

capabilities in terms of performance, features and isolation level among virtual machines.

Therefore, to communicate programmatically with the virtualized physical nodes, we used

XenServer’s Java SDK to implement the substrate manager module and eliminate the manual

management of Xen-enabled hosts. XenServer’s SDk is a set of programming interfaces

developed by Citrix to provide control over the various virtual machines and physical hosts

(e.g., create or clone, power up or off virtual machine, etc). This enabled us to dispatch the

necessary VM management and control commands to all virtual machines.

In this section, we present the developed interfaces that enable the interaction with each

subsystem presented in Section 5.3 and discuss their functionality.

63

5.4.2 Resource Publication and Management

Figure 14: The Physical Infrastructure Provider resource management interface

64

Figure 14 shows the interface through which a PIP perform CRUD-based operations

(create, read, update, delete) to manage the information about the resources he owns. This

view enables the PIP to visualize the list of available resources that are contained in the

PIP’s local repository along with their key information such as a brief description of the

resource, the virtual environment, and the status of each resource whether it is published

into the broker or not. To add a new resource description to PIP’s local repository, the user

clicks on the browse button to locate a resource description document (i.e an XML file), and

added to the list of resources (by clicking on add to DB button). The resource description

is updated if it already exists; otherwise, it is added and marked not published. An example

of resource description document is listed in Appendix C, Section C.4. Additionally, at any

time, the user can select a resource to visualize its description’s details. This is shown in the

right panel of the interfaces as a tree view. To publish a resource to the broker, the users

selects a resource from the list and clicks on the publish button and the broker’s response

is displayed afterwards indicating whether it has been published successfully or not. For

more details, the message logs of the implemented components’ that are involved in the

publication process are listed in Appendix D.

5.4.3 Resource Discovery

Figure 15 illustrates the interface used to perform the resource discovery process. It allows

the VIP to load a resource discovery request (as shown in Section 5.4.6.1, Listing 5.1) and

send it to the broker and visualize the discovered resources using the Discover button which

sends the previously loaded discovery document as shown in the right panel. When received

from the broker, the list of discovered resources is displayed in the panel located in the center

of the interface. From this list, a VIP can browse the list, and perform another selection

process by visually analyzing the resources’ functional attributes and capabilities. Only the

resources of interest are added to the selected resources list and included in the negotiation

request that is later sent to the PIP using the Create Request button.

65

Figure 15: The Virtual Infrastructure Provider discovery interface

5.4.4 Resource Negotiation

In our implementation, resource negotiation takes place between a PIP and a VIP. The

VIP triggers this process by sending a negotiation request to the PIP. Besides information

about the virtual resources, the request includes, but not limited to, information such

as the price wanted per resource, the quantity wanted and additional details formulated

as comments. The XSD used for formulating a resource negotiation request is shown

in Appendix C, Section C.3. During this process, the web services of both VIP and PIP

must be up and running. The request is embedded in a REST POST message and sent to

the PIP through its negotiation web service URI. For the roles to keep track of their resource

negotiation activities, the negotiation requests are stored in their belonging repository for

later consultation. When received, the request is marked not processed (pending) and

stored in the repository. Then, a background thread retrieves and adds it to the list of

requests that are displayed in the negotiation interfaces. A may reject, or accept a request.

66

Figure 16: The negotiation interface of the Physical Infrastructure Provider

Figure 17 shows the interfaces intended for the VIP. Whereas Figure 16 shows PIP’s resource

negotiation interface. Listing D.2 and E.2(Appendix E and Appendix D) show the message

logs of the actions taken by the both PIP and VIP components during a negotiation process.

5.4.5 Virtual Topology Instantiation and Resource Management

One of our main goals was to automate the process virtual topology instantiation and the

provisioning of resources without human intervention.

The virtual topology instantiation process consists of creating the requested virtual resources

and configuring their network settings. After concluding the negotiation process and reaching

an agreement, the VIP triggers the instantiation process by changing the negotiation status’s

request to ToBeInstantiated. The request is sent back to the PIP along with the description

of the resources and their wanted network settings/configurations such as the number of list

virtual interfaces (VIFs) per VM and the IP addresses associated with each interfaces, and

67

Figure 17: The negotiation interface of the Virtual Infrastructure Provider

so on. The process of creating a VM is similar to the process of creating a physical one that

involves assembling and configuring hardware components such as hard disk drive, memory

and network cards. To facilitate the VM creation process, we prepared a set of virtual

machine templates on which we deployed Shell scripts that enable the remote configuration

of the managed VM (addition or removal of Ethernet interface(s), changing a VM’s IP

address as well as setting/removing a static route between two nodes). These scripts are

listed in Appendix B, Listing B.1 and Listing B.2.

Upon receiving the instantiation request, the SM processes the list of resources to create

for each of which the SM creates a Java Thread to perform the required XML-RPC calls to

create the resource. After successfully creating all the resources, the process of configuring

their network settings starts. The SM opens an SSH connection to the targeted virtual

machine and to execute the appropriate scripts depending on the type of the configuration

required. In addition to creating and configuring virtual resources, the SM monitors

68

Figure 18: Editing resource negotiation request

the status of the running resources and displays their dynamic attributes on the PIP’s

interface. Listing D.3 in Appendix D shows the message logs of the actions taken during

the instantiation and configuration process. As shown in Figure 19, the left panel of the

interface provides a tree view of the managed physical hosts along with their hosted virtual

resources. As shown in the figure, a dynamic context menu whose commands depend on

the node type (physical, virtual), is associated with each node of the tree. Commands to

starts, stop, connect/disconnect a to/from a host as well as view node status for monitoring

purposes are provided. The panel located in the center shows the virtual topology. The

properties panel (located in the left) shows the status of the connected resources (physical

or virtual) Finally, the panel located at the bottom is for logging purposes.

69

Figure 19: Virtual topology management interface

5.4.6 Broker Components Implementation

5.4.6.1 Resource Selection Algorithm

The implemented selection algorithm is inspirited by the work presented in [89] and listed

in 1. The Resource Discovery and Selection Engine (RDS) performs the resource selection

and matching process. First, it validates and processes the incoming resource requests, and

queries the resource repository and to build a set of candidate resources which later is passed

as input to the selection algorithm. Afterwards, it runs the selection algorithm to match each

candidate resource with what is the parameters and constraints described in the request.

Listing 5.1 shows an example of a discovery request. It consists of the following key

parts:

70

Selection Parameters – Are used to match a resource’s properties. For instance, OS type,

node type, virtualization environment, network interface type.

Selection constraint – Has a type and list of parameters. The constraint type specifies

the resource’s components whose attributes need to be evaluated (e.g CPU, memory, hard

drive).

A constraint parameter is a function used to assess a particular resource’ functional attributes

such as CPU’s clock speed, memory’s size and so on. A key-pair value scheme is used to

formulate a particular constraint parameter where the key designates the attribute (e.g

number of cores, clock speed) on which the match should be performed. Whereas the value

can be one of the following:

• Fixed value – Specifies that an exact match should be performed when evaluating

the must be equal to the value contained in the parameter.

• Range – Of two values (minimum and maximum). This is used to check if the value

of the resource’s attribute in question is between the specified range.

• Pattern – Designates a matching pattern where aggregation function such as

Max(expression), Sum(expression) can be provided. An expression is the formula

to be applied on the selected resource’s attribute. For example, a Max function can be

used to match the highest CPU speed while taking into account the number of cores,

the size of its cache memory and its clock speed.

We believe applying selection constraints to the resource selection process as presented in

this section results in more flexible and accurate mechanism to select resources.

71

Algorithm 1 Select best resources that comply with the discovery request

INPUT: A discovery request with the parameters and constraints related to the resources
the required

OUTPUT: A list of resources whose properties matched with the constraints specified in
the discovery request

1: procedure SelectBestResources
2: candidateSet = null
3: bestSet = null
4: candidateSet← load available resources from DB
5: for each resource in candidateSet do
6: evaluate selection parameters on resource
7: extract the selection constraints from the discovery request
8: evaluate selection constraints on resource
9: if resource matches selection parameters and constraints then
10: add matched resource to BestSet
11: end if
12: end for
13: Return BestSet
14: end procedure

Listing 5.1: An example of a resource discovery request

<?xml version="1.0" encoding="UTF-8"?>

<discoveryRequest id="c2d1e220-b56a-4d58-87be-090aafc79333">

<selectionParameters> <vnType>VM</vnType>

<virEnvironement>XEN</virEnvironement>

<osType>Linux</osType>

<interfaceType>Ethernet</interfaceType>

<networkStack>TCP/IP</networkStack>

<cpuType>Intel</cpuType>

<quantity>2</quantity>

<selectionConstraints>

<selectionConstraint>

<constraintOn>Memory</constraintOn>

<params>

<param type="size" value="range:min=512|max=1024" />

<param type="speed" value="value:1333" />

</params>

</selectionConstraint>

<selectionConstraint>

<constraintOn>CPU</constraintOn>

<params>

72

<param type="cores" value="range:min=4|max=6" />

<param type="clockSpeed" value="range:min=1|max=1.7" />

</params>

</selectionConstraint>

</selectionConstraints>

</selectionParameters>

</discoveryRequest>

5.4.6.2 Broker Web Services

Resources Base URL HTTP Methods
being managed http://broker.com/api/v1/ description

/resources POST: creates a new resource
virtual and GET: returns a lsit of all resources
physical resources /resources/resource id GET: retrieves a resource by its ID

PUT: updates a resource’s information
/resources/destroy/resource id POST: removes the specified resource
/services POST: creates a new service

GET: gets a list of all services
Network services /services/service id GET: retrieves a service

PUT: updates the specified service
/services/destroy/service id POST: removes the specified service
/roles POST: creates a new role

GET: gets a lit of all roles information
Role information /roles/role id GET: retrieves a role

PUT: updates a role
/roles/destroy/role id POST: deletes an individual role.
/networks POST: creates a new network

GET: gets list of all networks
virtual network /networks/network id GET: retrieves a network

PUT: updates a service
/networks/destroy/network id POST: removes the specified network

Table 3: Broker web services’ API

As opposed to Big Web services, RESTful services are not published in a service registry

(UDDI) to be later discovered, however, they are available at a uniform paths (under the

root URI) that are handed to the requester beforehand, thus, in most cases, provided with

the API documentation.

A well-defined URI template should be used to identity entities and illustrate their

73

relationships. The service and resource (SRR) is an information store that holds information

about resources that are arranged in a directory-structure like–from a logical point of view.

REST services operate on datasets (nouns), which, in turn, could have sub-dataset(s).

Hence, we use the following root URIs to address the respective services: /resources,

/services, /networks, /roles, /requests. Binding one of these URIs to the base URL (e.g.,

http://hostname/api/apiVersion/) leads to a service’s path, e.g the “service” resource is

available at http://broker.com/api/v1.0/services/service id/. We notice the base URL has

an API version that is used for maintenance proposes. This enables the deployment of new

API version and allows the web service clients to bind to a specific version of the API.

Although putting the API version in the URI is against REST approach, however, putting

it in the resource representation itself is not supported by all the formats (MIME types).

In Table 3, we summarize the uniform interfaces that are used to manage various resources.

The resources being managed are listed in the first column, while the second column lists

their URI (the uniform interface). We find in the last column the HTTP methods applied

on the corresponding URI.

5.4.6.3 Broker User Interface

Figure 20 shows the graphical interface we implemented to interact with the broker

subsystem. This interface allows the starting and stopping broker’s web services as well

as the visualization of information about the published services and resources. The message

logs of the broker’s components are shown in Listing F.1 and Listing F.2 of Appendix F.

5.5 Use Case–Secure Content Distribution Scenario

Figure 21 illustrates the usage of our proposed information model and architecture for

dynamic resource discovery and selection, in a secure content distribution scenario. This

diagram shows an extended version of the use case we presented in Chapter 3.

The figure depicts the sequence of the interactions between the different components that

are involved in the publication, discovery (including selection), and negotiation of resources

74

Figure 20: The Broker user interface

as well as the instantiation of virtual network. In addition, this scenario describes the steps

that lead to the instantiation of two virtual networks, namely: VNet 1 and VNet2. The

components that realize the functions of a given role are grouped together. Although this

scenario could be realized using any kind of communication middleware, we have adopted

a REST approach in our implementation. Consequently, the interactions between the

different entities are REST-based. At first, we assume that the scenario starts when a

PIP publishes the information about resources he offers to the broker. Hence, the Resource

Publication Engine (RPE) sends a POST request to the broker publication service’s URI

with the information about resources along with their constraints to create. The publication

service creates new resources sends back a confirmation message (200 OK) and the newly

created resources’ URIs to RPE (steps 1& 2). To deploy service enablers, a VIP needs to

75

Figure 21: The implemented secure content distribution scenario

76

create/instantiate a virtual network (i.e VNet1) on top of aggregated resources (possibly

from different providers). Therefore, the virtual Resource Discovery and Selection (VRDS)

initiates a discovery request containing the description of the desired resources along with

their availability and constraints. This request is sent to the broker’s Discovery and

Selection Service (step 3) which, first, selects the best resources that comply with the

requirements specified in the discovery request (using a selection algorithm and with the

help of the clustering engine), ranks the selected resources, and replies back with a list

of selected resources (steps 4 & 5). In order to refine the received resources, the VRDS

performs another selection phase and applies some local criteria and constraints (step 6).

Subsequently, the Resource Negotiation Engine (RNE) sends a negotiation request to the

corresponding RNE of the lower layer (step 7). The PIP processes the request and sends

back an offer with the negotiated resources, which will be later accepted or rejected. Steps

8 and 9 are repeatedly executed until reaching an agreement with the resource requester.

The Resource Instantiation and Configuration (RIC) allocates and configures the requested

resources, and instantiate the topology while taking into account the specified constraints

(step 10). Afterwards, the RPE updates the allocated resources information, and describes

as well publishes the newly created virtual network description in the broker. The RIC

sends an acknowledgment message confirming the allocated resources to the RNE (at the

VIP level), which, in turn, issues a topology instantiated notification that is sent to the

Service Deployment and Testing (SDT) (steps 11 to 13). Upon successfully instantiating the

virtual topology (resulting in the creation of creating VNet1), the SDT initiates a request for

service deployment and test along with the required service information and their constraints,

and gets a confirmation message. Finally, SDPE describes the newly created service and

publishes its information in the broker (steps 15 to 17). The steps involved in the process

of instantiating the topology of VNet2, and the deployment of the content distribution end

user service offered by the SP are somehow similar to the steps performed to instantiate

VNet1. However, the negotiation process takes place between the SP and the VIP (steps

19 to 38). Furthermore, the content of the message parameters, which determines the type

77

of the services being offered, and the constraints related to each service are different. Thus,

after successfully deploying and testing the end user service, the SDPE sends its description

to the broker to be published. Finally, consumers (end-users) who wish to consume end-user

services, send a request to the broker for discovering the services of interest. The broker

processes the request, selects, and ranks the services that match the initial discovery request

(steps 39 to 42). Afterwards, the consumer submits a bind and invoke service request to the

chosen SP, which in response sends an acknowledgment and grants access to the consumer.

The latter then carries the rest of the interactions related to the end user service invocation

and usage (those interactions are not shown in the figure).

5.6 Lessons Learned

We have learned several lessons while implementing the prototype. The first lesson is related

to the selection of the database solution for building the resource repositories. Although

native XML databases offer better flexibility for storing XML documents, however, they are

not suitable for building a large storage repository and their performance related to querying

data is questionable in some cases. Therefore, we opted for a hybrid storage solution that

combines relational and native XML.

Another lesson related to the choice of virtualization environment and tools. We

needed an efficient virtualization solution/tool that provides remote connectivity and exposes

programmatic access to the managerial tasks related to the management of virtual resources.

Although there are many well-known open source projects such as OpenStack, OpenNebula

and CloudStack that provide tools for creating virtual networks, however, such projects

require the user interactions to instantiate a virtual topology. Currently, there are two

options to have XAPI-enabled virtualization environment. The first one is to install it from

an ISO image which results, after installation, in an out-of-the-box virtualization solution

with CentOS 5.x based Xen’s Dom0. The second one is to install it using XCP-XAPI

packages that are currently available on Debian-based Linux distributions, which results in

having a Dom0 running Debian-based Kernel. Although installing XCP-XAPI provides more

78

flexibility in building the virtualization environment, the configuration and setup process is

challenging and more complex. Aiming at benefiting from long time support for Ubuntu

12.04, we first installed XCP-XAPI on Ubuntu 12.04.2 LTS, but we discarded this choice

due to the lack of automated environment configuration as many workarounds need to be

performed in order to configure Xen’s environment (such as disabling Xend, downgrading

Ubuntu Kernel from 3.5.x to 3.2.x, etc). Besides, some packages were not compatible with

latest version of Ubuntu 12.0.4.2 LTS.

In relation to the development of the graphical user interfaces, we learned that it is better

to develop a multi-threaded desktop user interfaces that is able to send HTTP requests

rather than developing web-based one. Despite its features, web-based interfaces have some

limitations, and sometimes the development of such interfaces is harder when it comes to

offer an enhanced and better user experience (e.g managing threads and offering a more

responsive UI). We use threads for managing each outgoing and incoming request publication

and negotiation as well as various resources managerial tasks (such as resource instantiation

and monitoring tasks). We learned another lesson related to the selection of a web server for

deploying REST web services. We needed a scalable and robust web server that supports

Jersey and is able to handle a large number of simultaneous requests. We first selected

GlassFish but we discarded this choice after noticing performance issues and moved to Grizzly

application server. It uses Java New I/O API and is designed to offer optimum scalability,

performance and speed. One of the challenges we have confronted is managing the network

connectivity (changing IP address, defining a static route, etc) of Vyatta’s routers since

we chose the community edition, which is not provided with the REST API that allows to

programmatically controlling a router. To prevent this issue from limiting our prototype, we

used Shell scripts invoked remotely to execute the necessary commands needed. Although

one of the typical solutions to automate the execution of such command a VM is to deploy

software agents that are exposed as XML-RPC services, this solution is not flexible in a

dynamic networking environment since a VM’s IP address might change often.

79

5.7 Summary

This chapter presented the design and implementation of a proof of concept prototype

whose objective is to demonstrate the feasibility of the proposed framework. Although

we implemented only a subset the architecture we proposed in Chapter 3, the implemented

prototype enables physical infrastructure providers to describe and publish resources into

a public resource repository, and virtual infrastructure providers to discover resources and

negotiate them with the concerned providers. Additionally, our implementation enables an

automated instantiation and configuration of virtual topology. Although many approaches

could be used to implement the resource discovery mechanisms (e.g hybrid P2P), we adopted

a centralized (client-server) architecture in our implementation. A P2P solution is not

predictable since a node can join and leave the network without prior notification, which

might be not appropriate to realize the proposed scenario. In this implementation, the

resource negotiation process is semi-automated: it requires roles intervention to process a

request, and accept or reject it. However, this process can be entirely automated. One

solution is to include policies and rules in the negotiation request based on which an

automated decision engine can perform the negotiation process. Furthermore, we used SSH

and Shell scripts to automate the virtual resources configuration process. Another efficient

alternative can be used which consists in deploying software agent that exposes configuring

services via public interfaces (XML-RPC or web services).

80

Chapter 6

Performance and Scalability

Evaluation

In the previous chapter, we have presented the design and implementation of a proof of

concept prototype that implements a subset of the architecture introduced in Chapter 3

and uses the information model presented in Chapter 4. The implemented prototype

enables multiple physical infrastructure providers to describe and publish information about

resources into a resource broker as well as virtual infrastructure to discover the published

resources and negotiate the selected ones with the respective provider(s).

In this chapter, we focus on evaluation and studying the performance of the implemented

system related to resource publication, discovery, negotiation and instantiation. We discuss

the performance metrics used, we detail the simulated test scenarios to test the different

subsystem and their components, and finally we contrast and discuss the obtained results.

We first assess the basic performance of the individual operations (i.e., publication, discovery,

negotiation and virtual topology instantiation in Section 6.1. Then, we evaluate the overall

system scalability as presented in Section 6.2.

81

6.1 Performance Evaluation

We have conducted extensive experiments to evaluate the performance of the components

involved in role-to-role interactions in terms of response time, network load and the number

of requests handled. We focus on the operations related to resource publication, discovery

and selection and negotiation and we measure the response time in milliseconds and network

load in bytes. Because of the limited number of physical resources in the testbed we are

using, we do not evaluate the maximum size of virtual topology our implementation can

handle. Rather, we measure the average time taken to instantiate a virtual machine and

elapsed time to configure the virtual network topology. Another fact is due to the limitation

associated with the number of virtual machine that a physical machine can host.

The delay measured refers to the total elapsed time from when a request is sent (from one

node to another) until a response is sent back to the node that initiated the request. The

network load is measured using the Ntopng (NTop Next Generation) [90] and refers to the

total number of bytes sent and received between two nodes while processing a request.

By performing these experiments, we do not attempt to prove that we have the best

implementation. However, since the response time of the overall system depends on several

factors (such as the number of requests to be processed, kind of request, etc), the purpose

of the conducted experiments is to demonstrate that the implemented solution is functional.

6.1.1 Prototype Setup

Figure 22 shows the experiment setup used to conduct the basic performance evaluation.

In this setup we use three machines (nodes), namely: PIP Management node (PMN),

VIP Management node (VMN) and Broker node. Additionally, we configured four nodes

to be used as substrate resources. The PMN and VMN are nodes host the implemented

components that realize the operations related to PIP and VIP roles respectively. Thus, the

Broker node hosts the broker’s components and the web services enabling the publication

and discovery of resources.

The PMN and VMN and the substrate nodes are DELL Precision 390 machines equally

82

Figure 22: The prototype setup

83

equipped with Intel CoreTMDuo E6550, 2.33GHz processor and 4GB of RAM, 10000 RPM

HDD, and 100MBPS link.

Since the Broker node is expected to process all the incoming publication and discovery

requests, we used an HP Z210 Workstation machine. It is equipped with Quad CoreTMi5

processor, 4GB of RAM (1333 MHz DDR3), 7200 RPM HDD, and 100MBPS link. All the

nodes are interconnected with Ethernet links through a Cisco Catalyst 2950 series Switch

forming a LAN.

We installed Linux operating system (Ubuntu 12.04 LTS) and the required tools and

frameworks on the management and the broker nodes. However, on the remaining four

machines, we installed XCP and prepared a set of virtual machines templates configured

with 1CPU, 512MB of RAM, 20GB of disk space, and 5Mbps links. In this setup, we run

two to four VMs on the same node. Prior to run the experiments, we have generated a set

resource description documents containing all the possible resources description to be used

during the evaluation process. Such documents were published into the broker using a PUT

REST message in order to populate its repository with the required data.

6.1.2 Resource Publication Tests

The objective of this scenario is to test all the components involved in the resource publication

process. We test both the PIP and the broker components.

Scenario

In this scenario we use the same setup detailed in Section 6.1.1 to test the case of one single

PIP sending publication requests to the broker. Figure 23 shows the two nodes used and

the components tested. The PIP Node is employed to test the resource publication requests

sending process, and Broker Node represents the broker and used to test resource publication

request handling process.

For us to perform this test, we prepared a script that is used as resource publication simulator

and whose message logs are shown in Appendix D, Listing D.4. It uses the Resource

84

Figure 23: Test scenario for resource publication

Publication Engine to generate any number of publication request and any type of resources.

This script continuously sends publication requests with the number of requests specified

before execution.

We details the steps and actions performed by each node as follows:

The PIP Node: for each request, the Resource Publication Engine loads and validates the

appropriate resource description document, and asks the REST client to prepare a REST

PUT request and send it to the broker.

The Broker Node: when received, it extracts the resource description document from the

request and processes it. If it is valid, this document is later stored in the database and an

HTTP status code (201 created) is sent back to the PIP Node.

Results

We measure the overall elapsed time taken to process a resource publication request. The

elapsed time is expressed in millisecond and is calculated from the moment a resource

document is loaded and sent until a successful response (i.e., HTTP status code 200 OK, or

201 created) is received from the broker. Additionally, the response time includes the time

taken to marshal and unmarshal the XML document that contains the resource description

to be published, as well as the elapsed time for creating and sending REST request, storing

the published resource in the database and sending back the response.

85

Table 4: Resource publication average network load and response time
measurements

Number of Response time Network Load
publication requests (ms) (kilobyte)

1 245 ms 31.3 KB
50 5006 ms 165.9 KB
100 8845 ms 172.3 KB
150 14773 ms 186.4 KB
300 33003 ms 207.2 KB
400 42319 ms 227.6 KB
500 53005 ms 230.5 KB
600 64478 ms 235.3 KB
1000 109883 ms 239.8 KB

The results shown in Table 4 are the average measurements of 20 tries. The first column

shows the number of publication requests per iteration that were repeatedly sent. In this

test, we use the same resource description document which consists of the description of one

physical machine and two virtual machines. On average, it took 245 ms to process a single

publication request which we consider reasonable.

However, as can be concluded, the system performance was affected when the number of

publication requests increased, whereas the network load increases slightly. This is due to

the request processing overhead and the delay caused by concurrent access to the resource

database.

6.1.3 Resource Discovery Tests

The objective of this scenario is to test the resource discovery process and resource selection

algorithm.

Scenario

In this scenario, we consider only one single VIP interacting with the broker. Figure 24

shows the broker node and the VIP node that is used to send resource discovery requests.

To automate this test, we wrote a script that is used as resource discovery simulator and is

86

Figure 24: Test scenario for resource discovery

able to send any kind and number of discovery requests. Moreover, this scenario involves

the testing of the resource selection algorithm that was previously presented in Chapter 5.

The following are the steps and actions performed by each of the aforementioned nodes:

The VIP Node: the Resource Publication Engine loads and validates the XML documents

containing the resource discovery request and sends a message to the REST client module

to prepare and send a GET REST request with the loaded resource discovery document.

The Broker Node: when received, the broker’s Resource Discovery Engine extracts the

resource discovery document from the request and processes it. If the request is valid, the

resource selection algorithm is executed to select the resources that comply with the request.

Finally, the list of matched resources is sent to the VIP Node.

Results

In this test, we focus on evaluating the performance and efficiency of the resource selection

process. We measure the overall elapsed time taken to process a resource discovery request.

That is, from the moment a resource discovery request is loaded and sent until receiving

a positive response (HTTP 200 OK) with the list of selected resources. Consequently, the

response time includes the time taken to marshal and unmarshal the XML document that

contains the resource discovery request and sending the GET REST request. Moreover, it

includes the overall elapsed time to execute the selection algorithm as well as querying the

database to get the list of potential resources and sending back the list of matched resources.

87

Table 5: Resource discovery network load and response time measurements

Number of Number of Response time Network Load
discovered resource (ms) (kilobyte)
resources processed

2 50 183 ms 23.2 KB
50 500 1032 ms 294.9 KB
100 500 1885 ms 439.6 KB
200 1000 3548 ms 584.2 KB
400 1300 6958 ms 778.5 KB
800 4000 13744 ms 998.4 KB
1000 5000 17096 ms 14003.9 KB

The message logs of the resource discovery request generator is shown in Appendix E, List-

ing E.3. To perform the resource discovery experiments, we populated the resource repository

with the descriptions of 5000 different resources. The results shown in table 5 are the average

response time and network load of 20 tries. The first column shows the number of discovered

resources per request. This number is early specified in the discovery request along with the

selection parameters and constraints. The second column indicated the number of resources

processed during the selection process.

We started by experimenting with a discovery request of two resources. With the setup

described earlier in this chapter, it takes 183 ms and generates 23.2 KB network load

on average across 20 tries to process the request. As the number of discovered resources

increases, the results show that the response time and the network load increase as well. By

analyzing the results, we notice that the number of resources processed has an impact on

the response which is due to the increased number of resources that are taking into account

by the selection algorithm. As for the network load, it increases in size because it depends

on the size of the list of matched resources that is sent back to the process who initiated the

discovery request.

88

6.1.4 Resource Negotiation Tests

The purpose of this scenario is to test the operations related to resource negotiation process

that involves the PIP and VIP roles. Our main goal is to test the efficiency of the resource

negotiation engine with various number or negotiation requests.

Scenario

The nodes used and the components tested are shown in Figure 23. The VIP Node is used

Figure 25: Test scenario for resource negotiation

to generate and send resource negotiation requests, and PIP Node is employed to process the

request. However, to eliminate the human intervention in processing the request, we modified

the Resource Negotiation Engine so that any received request is automatically processed and

its status is marked as accepted and returned back to the VIP. The following are the actions

performed by each node:

The VIP Node: with the help of a script we wrote to generate resource negotiation request,

the Resource Negotiation Engine loads from and validates the request XML document and

sends it to the REST client, which in turns, prepares and sends a REST PUT request to the

PIP node.

89

The PIP Node: extracts the negotiation request document that was embedded in the

request and processes it. Then, the status of the requests is changed to processed and the

request is marked as accepted. The request is later embedded in a REST PUT request and

sent back to the VIP Node.

Results

In this scenario, we evaluate the operations involved in the implemented resource negotiation

Table 6: Resource negotiation average network load and response time
measurements

Number of Response time Network Load
negotiation requests (ms) (kilobyte)

1 187 ms 34 .9 KB
50 4711 ms 476.2.9 KB
100 10118 ms 523.6 KB
200 20590 ms 614.9 KB
400 40417 ms 737.4 KB
800 85210 ms 864.2 KB
1000 99466 ms 924.6 KB

process. Consequently, we measure the overall elapsed time taken to send and process a

negotiation request. The response time is expressed in millisecond and is calculated from the

moment that the resource negotiation document is retrieved from the resource and request

repository and sent to the PIP as well as until a successful response (HTTP status code (201

created) or 200 OK) is received from the PIP.

Notably, the response time includes the time taken to marshal and unmarshal the XML

document consisting in the negotiation request, as well as the elapsed time for creating and

sending REST request, storing the published negotiation request as is in the database and

sending back the response.

The results shown in table 6 are the average response time and network load of 20 tries.

The first column shows the number of negotiation requests generated per iteration. In each

request contains information about two virtual resources. On average, it takes 187 ms on to

process one single request.

90

6.1.5 Virtual Topology Instantiation Tests

The objective of this scenario is to test the process of virtual network topology instantiation.

In this scenario, we take into consideration the creation of virtual resources (i.e., virtual

machines) as well as the instantiation of a virtual network.

Scenario

We use the same setup as detailed in detailed in Section 6.1.1 to execute the

Figure 26: Test scenario for virtual topology instantiation and configuration

experiments. Figure 23 shows the nodes used and the components tested in this scenario. We

focus on how the implemented components handle a virtual topology instantiation request.

The PIP Node is used to communicate with the Substrate Resources through the XAPI

Client module. Whereas the Substrate Resources are physical machines we used on which

we create and connect virtual machines.

91

We prepared a script that takes as input a virtual resource instantiation request and uses

the Substrate Manager to process the request. The request is a document containing the

description of resources to instantiation along with their network configuration and setting

such as the IP address of each virtual network interface (VIF), the network address, and so

on.

The following are the actions and steps tested that are performed by each node: The

PIP Node: the Substrate Manger module retrieves a virtual instantiation request that

we previously prepared for testing from the request repository, extracts and validates the

contained resource descriptions. For each resource, the Instantiation and Configuration

module Parses resource description and initiates a resource instantiation request that is sent

to the XAPI Client which in turn communicate with the appropriate physical machine’s

Dom0 to create the intended virtual resource. Once all virtual resources created, the

Instantiation and Configuration triggers the resource configuration process which connects

the created resources as previously described in the instantiation request.

The Substrate Resource: upon receiving virtual machine creation request, the Dom0 of

each physical machine configures and creates a virtual machines with the information stated

in the request.

Results

We measure the overall time taken to process a virtual topology instantiation request. This

time consists of the total time elapsed to create and configure each virtual resource as well

as creating and setting up the network interfaces and the routes between two distinct virtual

networks.

On average, it takes one minute and 10 seconds to create and configure a Vyatta virtual

machine. However, it takes 5 minutes 55 seconds to create and configure a virtual topology

consisting of four Vyatta virtual routers.

92

6.2 Scalability Evaluation of the Implemented System

The goal of the scalability experiments we have conducted is to evaluate how the broker

system behaves when is subjected to heavy load. Since the main subsystem is the broker as

presented in Chapter 5, the scalability tests focus on the broker’s capabilities for handling

large number of resource publication and discovery requests.

6.2.1 Scalability Tests Setup

Figure 27: Setup for the scalability tests

The scalability experiments setup is illustrated in Figure 27. The hardware configuration

of these machines is detailed in Section 6.1.1. The four DELL 390 machines were used to

generate either publication or discovery requests, and the HP Workstation machine was used

93

as broker node to process the requests.

6.2.2 Resource Publication Scalability Tests

The objective is to assess the capabilities of the broker in handling large number of resource

publication requests.

Scenario

In this scenario, we use four PIP nodes and one broker node as depicted in Figure 28 to

perform the resource publication experiments. The hardware configuration of these machines

is detailed in Section 6.1.1. We focus on studying the ability of the resource broker in

handling a large number of concurrent resource publication requests received at the same

time. Therefore, to know if the number of resource publication requests to be processed has

an impact on the broker’s performance, we used the following scenario: we first start the

experiments by using only two nodes to generate resource publication requests at the same

time; then we scale out to use the four PIP nodes as request generators.

Figure 28: Test scenario for concurrent resource publication

Results

Table 7 shows the average measurements of 20 tries generated with both two nodes and

four nodes. The first column illustrates the number of publication requests sent per node,

whereas the second and the fifth columns show the total number of published resources per

94

request. In this scenario, each resource description document used contains a description of

two virtual resources. Hence, each publication request consists of two resource descriptions

to be processed. For example, the first row shows that 100 publication requests have been

sent resulting in 400 as total number or published resources (200 resources per node). We

start the experiments by 100 requests and we gradually increases the number of requests.

The chart shown in Figure 29 reflects the average response time for resource publication

requests. Each line represents test iterations at various loads (number of request). As the

number of publication request increases, the response time to process the requests increases

in an exponential fashion. This is due to several factors such as database overhead caused by

reading/writing records, resource description marshaling and unmarshalling, HTTP requests

processing overhead, etc. Consequently, we conclude that average response time to process

requests when using four nodes is slightly higher when the number of requests to process is

less than 10000. Figure 30 illustrates the average network load for experiments done with

both two and four nodes. We conclude that the network load slightly increases as more the

number of requests increases as well. Moreover, we notice that the network load increases

when more nodes are used to send publication requests. This is because of the additional

overhead generated by the packets used to carry resource information.

95

Table 7: Results of resource publication experiments

Generated with
two nodes four nodes

Number of Number Response Network Number Response Network
publication requests of published time Load of published time Load

per node resources (ms) (kilobyte) resources (ms) (kilobyte)
100 400 18454 ms 197.3 KB 800 32054 ms 250.2 KB
200 800 30402 ms 382.7 KB 1600 41868 ms 426.5 KB
500 2000 77707 ms 412.3 KB 4000 103479 ms 434.3 KB
1000 4000 184442 ms 451.7 KB 8000 188720 ms 537.7 KB
2000 8000 383467 ms 474.3 KB 16000 431953 ms 562.3 KB
3000 12000 576233 ms 520.6 KB 24000 681082 ms 678.2 KB
4000 16000 711442 ms 532 KB 32000 926644 ms 726.8 KB
6000 24000 1192482 ms 565.4KB 48000 1376491 ms 786.3 KB
8000 32000 1508638 ms 626.2 KB 64000 1899391 ms 870.3 KB
10000 40000 1899529 ms 684.6 KB 80000 4702968 ms 948.6 KB
15000 60000 2779286 ms 731.7 KB 120000 7320516 ms 1320.3 KB

96

Figure 29: Resource publication response time

Figure 30: Resource publication network load

97

6.2.3 Resource Discovery Scalability Test

The objective of these experiments is to test the efficiency of the broker in handling a large

number of resource discovery requests. The selection algorithm’s assessment is taken into

account as well.

Scenario

As depicted in Figure 31, we use four machines (as VIPs) to concurrently send discovery

requests to the broker node at the same time. However, we start the experiments by using

two VIP nodes. Then, we increase the number of nodes used to four. Thus, we gradually

increase the number of resources to be discovered after each try. This gives us insight on

the performance of both resource selection algorithm and the implemented logic of resource

discovery.

Figure 31: Test scenario for concurrent for resource discovery

Results

The average measurements of 20 tries generated with both two nodes and four nodes are

illustrated in Table 8. The first column shows the number of discovered resources per

discovery request. As shown in the first row, it takes 329 ms to discover 10 resources

using two nodes. However, it takes 1080 ms to discover the same number of resources when

we use four nodes. As for the network load, it increases slightly from 112.4 KB to 191.1

KB. Figure 32 reflects the response time of the conducted experiments using both nodes.

98

Each line represents test operations at various loads. Similarly to resource publication tests,

the time taken to process discovery requests increases when the number of resources to

discover increases as well. Thus, as shown in Table 8, the implemented broker continued to

handle discovery requests of 12000 resources within around 1424096 milliseconds. On other

hand, the network load generated by the resource discovery experiments is considerably more

important as shown in Figure 33. This is due to the discovered resources’ properties that

are embedded in the response that is sent back to the VIP node.

Table 8: Scalability results of resource discovery experiments

Generated with
two nodes four nodes

Number of Response Network Response Network
discovered resources time Load time Load

per request (ms) (kilobyte) (ms) (kilobyte)
10 329 ms 112.4 KB 1080 ms 190.1 KB
20 692 ms 166.5 KB 2193 ms 294.6 KB
50 2945 ms 358.8 KB 4176 ms 443.2 KB
100 5684 ms 456 KB 7032 ms 667.5 KB
200 11537 ms 766.2 KB 23970 ms 939.8 KB
400 23152 ms 959.9 KB 48371 ms 1234.8 KB
600 34728 ms 1228.8 KB 68630 ms 1433.6 KB
800 46814 ms 1945.6 KB 96665 ms 2340.8 KB
1000 58866 ms 2252.8 KB 114241 ms 2545.4 KB
1500 86944 ms 2560 KB 172194 ms 2983.6 KB
2000 113764 ms 2867.2 KB 236497 ms 3788.8 KB
3000 171210 ms 3584 KB 358506 ms 6656.3 KB
4000 229257 ms 5427.2 KB 477324 ms 9625.6 KB
6000 348910 ms 13619.2 KB 716799 ms 17902.4 KB
8000 449619 ms 14540.8 KB 960802 ms 29081.6 KB
9000 519726 ms 16281.6 KB 1851670 ms 34406.4 KB
12000 694522 ms 20787.2 KB 1424096 ms 45260.8 KB

99

Figure 32: Resource discovery response time

Figure 33: Resource discovery network load

100

6.3 Summary

This chapter has evaluated the performance and the scalability of the implemented system

presented in Chapter 5. We used different test scenarios and test setup to evaluate

the resource publication and discovery as well as the resource negotiation and virtual

topology instantiation processes. However, we focused on evaluating the performance of

the implementation in terms of resource publication and discovery. Therefore, we mainly

focused on studying the broker’s behavior when it is subjected to normal and large number

of requests. By analyzing the result obtained, we conclude that the current implementation

gives acceptable results. Although additional processing overhead and increased network

load are expected when large number of requests are being processed, many techniques

could be used to enhance the overall system performance and reduce the network load.

Examples of such techniques include load balancing, data caching, query optimization and

the use of a better resource selection algorithm/clustering. Despite the fact that we first used

four roles (i.e PIP or VIP) in the experiments, our solution is designed to support multiple

roles interacting with each other at the same time. Additionally, our broker implementation

has demonstrated to be effective in terms of handling many concurrent requests received

simultaneously.

101

Chapter 7

Conclusions and Future Work

Although network virtualization has received a considerable attention lately and is seen

as a promising way to overcome the limitations and fight the gradual ossification of the

current Internet infrastructure, it raises many challenges. One of the challenges relates to

enabling the dynamic publication, discovery and selection of virtual resources that can be

aggregated to form a virtual networks. Another challenge is the definition of an expressive

and formal information model that enables the fine-grained description of virtual resources

and facilitates the information sharing between the various roles involved. In this chapter,

we conclude with a summary of the contributions of this thesis and discuss the planned

future work.

7.1 Discussion

We have encountered many challenges in implementing the prototype. Although many

selection algorithms have been proposed for network virtualization environment [16, 17, 39],

such algorithms have not been implemented and tested in a large-scale environment. One

of the challenges we faced is choosing a resource selection algorithm that suits our design

requirements. We wanted an efficient selection algorithm that accurately processes a large

number of resources. Another challenge we faced is the automation of the virtual topology

102

instantiation process. The main challenge consisted in creating and configuring virtual

resources as described in the instantiation request. Existing solutions require physical

infrastructures providers to use command line interface (CLI) or graphical user interface

(GUI) to create and configure virtual resources. Thus, using such solutions, one virtual

resource is created at a time. However, we wanted a solution that processes the entire set of

required virtual resources with minimal human intervention.

7.2 Summary of Contributions

In this thesis, we have presented a framework for resource description, publication and

discovery for network virtualization environment.

We first commenced by defining a set of requirements that such framework should meet.

Then, we have defined a broker-based architecture that fulfills these requirements. The

components of each layer in this architecture are exposed via public interfaces (e.g., web

services). A data source repository is used to store information about the published resources.

Thus, a selection algorithm has been used to select the best resources that comply with

virtual provider’s request.

We have proposed a multi-service multi-role integrated information model that enables the

fine-grained description of resources and services, and has been published in [9]. First,

we have established a set of requirements that the information model should meet. The

information model has been extensively used in the implementation to formulate requests

such as resource publication, discovery, negotiation and instantiation.

Moreover, we have illustrated the use of the proposed framework in a secure content

distribution scenario, which illustrates the interactions, and the information exchanged

between various roles.

103

As a proof of concept prototype, we have implemented a subset of the framework while

focusing on the description, publication, discovery and negotiation of virtual resources as well

as instantiation of virtual topology. Most importantly, all the broker components have been

implemented which enabled the publication, discovery and selection of resources provided

by various roles.

Finally, we evaluated the performance of the prototype and we have conducted extensive

experiments to assess the scalability of the overall system in terms of publication and

discovery of resources. The prototype have been tested using different scenarios as detailed

in Chapter 6, and the performance measurements taken demonstrated that the use of the

proposed framework is acceptable.

7.3 Future Work

The framework we defined provides a solution for dynamic publication and discovery for

NVE. However, some improvements and additional implementations can be added to the

current prototype implementation.

Although the resource negotiation process requires human intervention, it can be fully

automated to be more request-reply oriented based on some predefined policies.

Although the implemented resource selection algorithm has demonstrated to be effective

during the performance evaluation and scalability assessment, it can be enhanced to support

resource clustering and matching.

The proposed framework was evaluated using a limited set of resources. As future work,

we plan to evaluate the framework in a larger environment involving a considerable amount

of computational resources. One option to perform such evaluation is to use Amazon Elastic

Compute Cloud (Amazon EC2) [26] or use Planetlab cloud services or PlantLab’s resources

104

[32]. The use of such infrastructure allows for simulating the results a in a real-world-like

environment.

As per design, the proposed architecture is broker based, hence centralized. Another

alternative is to decentralize the broker services using a peer-to-peer approach.

105

References

[1] N. Chowdhury and R. Boutaba, “Network virtualization: state of the art and research

challenges,” Communications Magazine, IEEE, vol. 47, no. 7, pp. 20–26, 2009.

[2] J. Turner and D. Taylor, “Diversifying the internet,” in Global Telecommunications

Conference, 2005. GLOBECOM ’05. IEEE, vol. 2, pp. 6 pp.–760, 2005.

[3] N. Feamster, L. Gao, and J. Rexford, “How to lease the internet in your spare time,”

SIGCOMM Comput. Commun. Rev., vol. 37, pp. 61–64, Jan. 2007.

[4] N. Niebert, S. Baucke, I. El-Khayat, M. Johnsson, B. Ohlman, H. Abramowicz,

K. Wuenstel, H. Woesner, J. Quittek, and L. Correia, “The way 4ward to the creation

of a future internet,” in Personal, Indoor and Mobile Radio Communications, 2008.

PIMRC 2008. IEEE 19th International Symposium on, pp. 1–5, 2008.

[5] L. Correia, H. Abramowicz, M. Johnsson, and K. Wünstel, Architecture and Design

for the Future Internet: 4WARD Project. Signals and Communication Technology,

Springer, 2011.

[6] M. El Barachi, N. Kara, and R. Dssouli, “Open virtual playground: Initial architecture

and results,” in Consumer Communications and Networking Conference (CCNC), 2012

IEEE, pp. 576 –581, jan. 2012.

[7] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. Postel,

L. G. Roberts, and S. Wolff, “A brief history of the internet,” SIGCOMM Comput.

Commun. Rev., vol. 39, pp. 22–31, Oct. 2009.

106

[8] N. Niebert, I. Khayat, S. Baucke, R. Keller, R. Rembarz, and J. Sachs, “Network

virtualization: A viable path towards the future internet,” Wireless Personal

Communications, vol. 45, no. 4, pp. 511–520, 2008.

[9] M. El Barachi, S. Rabah, N. Kara, R. Dssouli, and J. Paquet, “A multi-service multi-role

integrated information model for dynamic resource discovery in virtual networks,” in

Wireless Communications and Networking Conference (WCNC), 2013 IEEE, pp. 4777–

4782, 2013.

[10] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in system design,”

ACM Trans. Comput. Syst., vol. 2, pp. 277–288, Nov. 1984.

[11] M. Böhm, S. Leimeister, C. Riedl, and H. Krcmar, “Cloud computing - outsourcing 2.0

or a new business model for it provisioning?,” in Application Management (F. Keuper,

C. Oecking, and A. Degenhardt, eds.), pp. 31–56, Gabler, 2011.

[12] J. Carapinha and J. Jiménez, “Network virtualization: a view from the bottom,”

in Proceedings of the 1st ACM workshop on Virtualized infrastructure systems and

architectures, VISA ’09, (New York, NY, USA), pp. 73–80, ACM, 2009.

[13] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the internet impasse

through virtualization,” Computer, vol. 38, no. 4, pp. 34–41, 2005.

[14] G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless, A. Greenhalgh,

A. Wundsam, M. Kind, O. Maennel, and L. Mathy, “Network virtualization architecture:

proposal and initial prototype,” in Proceedings of the 1st ACM workshop on Virtualized

infrastructure systems and architectures, VISA ’09, (New York, NY, USA), pp. 63–72,

ACM, 2009.

[15] A. Khan, A. Zugenmaier, D. Jurca, and W. Kellerer, “Network virtualization: a

hypervisor for the internet?,” Communications Magazine, IEEE, vol. 50, no. 1, pp. 136–

143, 2012.

107

[16] I. Houidi, W. Louati, D. Zeghlache, and S. Baucke, “Virtual resource description and

clustering for virtual network discovery,” in Communications Workshops, 2009. ICC

Workshops 2009. IEEE International Conference on, pp. 1–6, 2009.

[17] H. Medhioub, I. Houidi, W. Louati, and D. Zeghlache, “Design, implementation and

evaluation of virtual resource description and clustering framework,” in Advanced

Information Networking and Applications (AINA), 2011 IEEE International Conference

on, pp. 83–89, 2011.

[18] P. H. Gum, “System/370 extended architecture: Facilities for virtual machines,” IBM

Journal of Research and Development, vol. 27, no. 6, pp. 530–544, 1983.

[19] Microsoft, “Microsoft hyper-v.” [online] http://www.microsoft.com/en-us/

server-cloud/hyper-v-server/default.aspx. Accessed March, 2013.

[20] VMWare, “Vmware vsphere.” [online] http://www.vmware.com/products/vsphere/.

Accessed March, 2013.

[21] Citrix, “Citrix xenserver.” [online] http://www.citrix.com/products/xenserver/

overview.html/. Accessed March, 2013.

[22] K. A. Scarfone, M. P. Souppaya, and P. Hoffman, “Sp 800-125. guide to security for full

virtualization technologies,” tech. rep., Gaithersburg, MD, United States, 2011.

[23] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,

and A. Warfield, “Xen and the art of virtualization,” SIGOPS Oper. Syst. Rev., vol. 37,

pp. 164–177, Oct. 2003.

[24] C. Edwards and A. Harwood, “Using para-virtualization as the basis for a federated

planetlab architecture,” in Virtualization Technology in Distributed Computing, 2006.

VTDC 2006. First International Workshop on, pp. 13–13, 2006.

[25] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and research

challenges,” Journal of Internet Services and Applications, vol. 1, no. 1, pp. 7–18, 2010.

108

http://www.microsoft.com/en-us/server-cloud/hyper-v-server/default.aspx
http://www.microsoft.com/en-us/server-cloud/hyper-v-server/default.aspx
http://www.vmware.com/products/vsphere/
http://www.citrix.com/products/xenserver/overview.html/
http://www.citrix.com/products/xenserver/overview.html/

[26] Amazon, “Amazon elastic compute cloud.” [online] http://aws.amazon.com/ec2/.

Accessed October, 2012.

[27] Google, “Google compute engine.” [online] https://cloud.google.com/products/

compute-engine. Accessed October, 2012.

[28] IBM, “Ibm infrastructure as a service.” [online] http://www-935.ibm.com/services/

ca/en/cloud-enterprise/. Accessed October, 2012.

[29] Microsoft, “Windows azure.” [online] http://www.windowsazure.com/en-us/. Ac-

cessed October, 2012.

[30] A. Belbekkouche, M. M. Hasan, and A. Karmouch, “Resource discovery and allocation

in network virtualization,” Communications Surveys Tutorials, IEEE, vol. 14, no. 4,

pp. 1114–1128, 2012.

[31] J. Ding, I. Balasingham, and P. Bouvry, “Management of overlay networks: A survey,”

inMobile Ubiquitous Computing, Systems, Services and Technologies, 2009. UBICOMM

’09. Third International Conference on, pp. 249–255, 2009.

[32] PlanetLab, “Planetlab project.” [online] https://www.planet-lab.org/. Accessed

October, 2012.

[33] J. Touch, “Dynamic internet overlay deployment and management using the x-bone,”

in Computer Networks, pp. 117–135, 2001.

[34] VINI Project, “A virtual network infrastructure (vini).” [online] http://www.

vini-veritas.net/. Accessed October, 2012.

[35] N. Chowdhury, F. Zaheer, and R. Boutaba, “imark: An identity management framework

for network virtualization environment,” in Integrated Network Management, 2009. IM

’09. IFIP/IEEE International Symposium on, pp. 335–342, 2009.

[36] Nouveau Project, “Network virtualization project (nouveau).” [online] http://netlab.

cs.uwaterloo.ca/virtual/. Accessed October, 2012.

109

http://aws.amazon.com/ec2/
https://cloud.google.com/products/compute-engine
https://cloud.google.com/products/compute-engine
http://www-935.ibm.com/services/ca/en/cloud-enterprise/
http://www-935.ibm.com/services/ca/en/cloud-enterprise/
http://www.windowsazure.com/en-us/
https://www.planet-lab.org/
http://www.vini-veritas.net/
http://www.vini-veritas.net/
http://netlab.cs.uwaterloo.ca/virtual/
http://netlab.cs.uwaterloo.ca/virtual/

[37] TINA, “Tina business model and reference points, v.4.0.” [online] http://www.tinac.

com/specifications/documents/bm_rp.pdf. Accessed June, 2012.

[38] M. El Barachi, N. Kara, and R. Dssouli, “Towards a service-oriented network

virtualization architecture,” in Kaleidoscope: Beyond the Internet? - Innovations for

Future Networks and Services, 2010 ITU-T, pp. 1–7, 2010.

[39] H. Amarasinghe, A. Belbekkouche, and A. Karmouch, “Aggregation-based discovery

for virtual network environments,” in Communications (ICC), 2012 IEEE International

Conference on, pp. 1276–1280, 2012.

[40] F.-E. Zaheer, J. Xiao, and R. Boutaba, “Multi-provider service negotiation and

contracting in network virtualization.,” in NOMS, pp. 471–478, IEEE, 2010.

[41] P. Rygielski and S. Kounev, “Network virtualization for qos-aware resource

management in cloud data centers: A survey,” Praxis der Informationsverarbeitung

und Kommunikation, vol. 36, no. 1, pp. 55–64, 2013.

[42] M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani, Q. Zhang,

and M. Zhani, “Data center network virtualization: A survey,” Communications Surveys

Tutorials, IEEE, vol. 15, no. 2, pp. 909–928, 2013.

[43] A. Beben, P. Wisniewski, P. Krawiec, M. Nowak, P. Pecka, J. Batalla, P. Bialon,

P. Olender, J. Gutkowski, B. Belter, and L. Lopatowski, “Content aware network based

on virtual infrastructure,” in Software Engineering, Artificial Intelligence, Networking

and Parallel Distributed Computing (SNPD), 2012 13th ACIS International Conference

on, pp. 643–648, 2012.

[44] S. Balasubramaniam, J. Mineraud, P. Perry, B. Jennings, L. Murphy, W. Donnelly, and

D. Botvich, “Coordinating allocation of resources for multiple virtual iptv providers to

maximize revenue,” Broadcasting, IEEE Transactions on, vol. 57, no. 4, pp. 826–839,

2011.

110

http://www.tinac.com/specifications/documents/bm_rp.pdf
http://www.tinac.com/specifications/documents/bm_rp.pdf

[45] F. Belqasmi, R. Glitho, and C. Fu, “Restful web services for service provisioning in

next-generation networks: a survey,” Communications Magazine, IEEE, vol. 49, no. 12,

pp. 66–73, 2011.

[46] A. Alamri, M. Eid, and A. E. Saddik, “Classification of the

state-of-the-art dynamic web services composition techniques,”

Int. J. Web Grid Serv., vol. 2, pp. 148–166, Sept. 2006.

[47] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services vs. ”big”’

web services: making the right architectural decision,” in Proceedings of the 17th

international conference on World Wide Web, WWW ’08, (New York, NY, USA),

pp. 805–814, ACM, 2008.

[48] R. T. Fielding, Architectural Styles and the Design of Network-based Software

Architectures. PhD thesis, University of California, Irvine, CA, USA, 2000.

[49] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture for the web of

things.,” in IOT (F. Michahelles and J. Mitsugi, eds.), IEEE, 2010.

[50] B. Murugan and D. Lopez, “Article: A survey of resource discovery approaches in

distributed computing environment,” International Journal of Computer Applications,

vol. 22, pp. 44–46, May 2011. Published by Foundation of Computer Science.

[51] X. Wang and L. fu Kong, “Resource clustering based decentralized resource discovery

scheme in computing grid,” in Machine Learning and Cybernetics, 2007 International

Conference on, vol. 7, pp. 3859–3863, 2007.

[52] B. Lv, Z. Wang, T. Huang, J. Chen, and Y. Liu, “Virtual resource organization

and virtual network embedding across multiple domains,” in Proceedings of the 2010

International Conference on Multimedia Information Networking and Security, MINES

’10, (Washington, DC, USA), pp. 725–728, IEEE Computer Society, 2010.

[53] Y. Xu, Y. Han, W. Niu, Y. Li, T. Lin, and S. Ci, “A reference model for virtual resource

description and discovery in virtual networks,” in ICCSA (3), pp. 297–310, 2012.

111

[54] M. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui, “A qos broker based architecture for

efficient web services selection,” in Web Services, 2005. ICWS 2005. Proceedings. 2005

IEEE International Conference on, pp. 113–120 vol.1, 2005.

[55] I. Fajjari, M. Ayari, and G. Pujolle, “Vn-sla: A virtual network specification schema for

virtual network provisioning,” in Networks (ICN), 2010 Ninth International Conference

on, pp. 337–342, 2010.

[56] J. Osullivan, Towards a Precise Understanding of Service Properties. PhD thesis,

Queensland University of Technology, 2006.

[57] G. Koslovski, P.-B. Primet, and A. CharÃ£o, “Vxdl: Virtual resources and

interconnection networks description language,” in Networks for Grid Applications

(P. Vicat-Blanc Primet, T. Kudoh, and J. Mambretti, eds.), vol. 2 of Lecture Notes

of the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, pp. 138–154, Springer Berlin Heidelberg, 2009.

[58] The VGrADS Project, “Virtual grid description language (vgdl).” [online] http:

//vgrads.rice.edu/research/execution_system/virtual_grids/vgdl/. Accessed

June, 2012.

[59] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, “Distributed resource

discovery on PlanetLab with SWORD,” 2004.

[60] GLUE Working Group, “Glue working group (glue-wg).” [online] http://www.ogf.

org/documents/GFD.147.pdf. Accessed June, 2012.

[61] D. Zhou, L. Zhong, T. Wo, and J. Kang, “Cloudview: Describe and maintain resource

view in cloud,” in Cloud Computing Technology and Science (CloudCom), 2010 IEEE

Second International Conference on, pp. 151–158, 2010.

[62] OASIS, “Data center markup language (dcml).” [online] http://www.dcml.org/.

Accessed October, 2012.

112

http://vgrads.rice.edu/research/execution_system/virtual_grids/vgdl/
http://vgrads.rice.edu/research/execution_system/virtual_grids/vgdl/
http://www.ogf.org/documents/GFD.147.pdf
http://www.ogf.org/documents/GFD.147.pdf
http://www.dcml.org/

[63] D. Zhou, L. Zhong, T. Wo, and J. Kang, “Cloudview: Describe and maintain resource

view in cloud,” in Cloud Computing Technology and Science (CloudCom), 2010 IEEE

Second International Conference on, pp. 151–158, 2010.

[64] J. Van Der Ham, F. Dijkstra, P. Grosso, R. Van Der Pol, A. Toonk, and C. De Laat,

“A distributed topology information system for optical networks based on the semantic

web,” Opt. Switch. Netw., vol. 5, pp. 85–93, June 2008.

[65] A. Campi and F. Callegati, “Network resource description language,” in GLOBECOM

Workshops, 2009 IEEE, pp. 1–6, 2009.

[66] Open Grid Forum, “Network mark-up language working group (nml-wg).” [online]

http://www.ogf.org/gf/group_info/view.php?group=nml-wg. Accessed Jun, 2012.

[67] H. Wang, “Nevml: A markup language for network topology visualization,” in Future

Networks, 2010. ICFN ’10. Second International Conference on, pp. 119–123, 2010.

[68] DMTF, “Common information model.” [online] http://dmtf.org/standards/cim.

Accessed Jun, 2012.

[69] GÉANT2, “Common network information service schema specification.” [online] http:

//geant2.net. Accessed August, 2012.

[70] J. Strassner, “Den-ng: achieving business-driven network management,” in Network

Operations and Management Symposium, 2002. NOMS 2002. 2002 IEEE/IFIP,

pp. 753–766, 2002.

[71] D. Dobrilovic, Z. Stojanov, B. Odadzic, and B. Markoski, “Using network node

description language for modeling networking scenarios,” Adv. Eng. Softw., vol. 43,

pp. 53–64, Jan. 2012.

[72] M. Ghijsen, J. van der Ham, P. Grosso, and C. de Laat, “Towards an infrastructure

description language for modeling computing infrastructures,” in Proceedings of the

2012 IEEE 10th International Symposium on Parallel and Distributed Processing with

113

http://www.ogf.org/gf/group_info/view.php?group=nml-wg
http://dmtf.org/standards/cim
http://geant2.net
http://geant2.net

Applications, ISPA ’12, (Washington, DC, USA), pp. 207–214, IEEE Computer Society,

2012.

[73] GENI Project, “Rspec (geni).” [online] http://groups.geni.net/geni/wiki/

GeniRspec. Accessed September, 2012.

[74] Network Working Group, “Ietf vnmim.” [online] http://tools.ietf.org/html/

draft-okita-ops-vnetmodel. Accessed October, 2012.

[75] G. Schaffrath, S. Schmid, I. Vaishnavi, A. Khan, and A. Feldmann, “A resource

description language with vagueness support for multi-provider cloud networks,”

in Computer Communications and Networks (ICCCN), 2012 21st International

Conference on, pp. 1–7, 2012.

[76] L. Lymberopoulos, P. Grosso, C. Papagianni, D. Kalogeras, G. Androulidakis, J. Van der

Ham, C. De Laat, and V. Maglaris, “Managing federations of virtualized infrastructures:

A semantic-aware policy based approach,” in Integrated Network Management (IM),

2011 IFIP/IEEE International Symposium on, pp. 1235–1242, 2011.

[77] A. Charfi, B. Schmeling, F. Novelli, H. Witteborg, and U. Kylau, “An overview of

the unified service description language,” in Web Services (ECOWS), 2010 IEEE 8th

European Conference on, pp. 173–180, 2010.

[78] World Wide Web Consortium (W3C), “Web application description language.” [online]

http://www.w3.org/Submission/wadl/. Accessed September, 2012.

[79] Martin D, Burstein M, Hobbs J, et al., “Owl-s: Semanic markup for web services.”

[online] http://www.w3.org/Submission/OWL-S/. Accessed October, 2012.

[80] RDF Working Group, “Resource description framework (rdf).” [online] http://www.

w3.org/RDF/. Accessed October, 2012.

114

http://groups.geni.net/geni/wiki/GeniRspec
http://groups.geni.net/geni/wiki/GeniRspec
http://tools.ietf.org/html/draft-okita-ops-vnetmodel
http://tools.ietf.org/html/draft-okita-ops-vnetmodel
http://www.w3.org/Submission/wadl/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/RDF/
http://www.w3.org/RDF/

[81] I. Baldine, Y. Xin, D. Evans, C. Heerman, J. Chase, V. Marupadi, and A. Yumerefendi,

“The missing link: Putting the network in networked cloud computing,” in in ICVCI09:

International Conference on the Virtual Computing Initiative, 2009.

[82] Y. T. Lee, “Information modeling: From design to implementation,” in Proceedings of

the Second World Manufacturing Congress, pp. 315–321, 1999.

[83] Jersey, Project, “Restful web services in java.” [online] http://jersey.java.net/.

Accessed January, 2013.

[84] Grizzly Project, “Grizzly web server.” [online] https://grizzly.java.net/. Accessed

January, 2013.

[85] JAXB Project, “Jaxb project.” [online] https://jaxb.java.net/. Accessed January,

2013.

[86] PostgreSQL Project, “Postgresql database.” [online] http://www.postgresql.org/.

Accessed February, 2013.

[87] Xen Project, “Xen cloud platform.” [online] http://www.xenproject.org/. Accessed

March, 2013.

[88] KVM Project, “Kernel based virtual machine.” [online] http://www.linux-kvm.org/

page/Main_Page/. Accessed March, 2013.

[89] C. Liu, L. Yang, I. Foster, and D. Angulo, “Design and evaluation of a resource selection

framework for grid applications,” in High Performance Distributed Computing, 2002.

HPDC-11 2002. Proceedings. 11th IEEE International Symposium on, pp. 63–72, 2002.

[90] NTop Project, “Ntopng.” [online] http://www.ntop.org/. Accessed October, 2013.

115

http://jersey.java.net/
https://grizzly.java.net/
https://jaxb.java.net/
http://www.postgresql.org/
http://www.xenproject.org/
http://www.linux-kvm.org/page/Main_Page/
http://www.linux-kvm.org/page/Main_Page/
http://www.ntop.org/

Part I

Appendices

116

Appendices

117

Appendix A

Enumeration Types

A.1 Enumerations Types for Network Nodes

118

Figure 34: Enumeration types for physical and virtual nodes

119

A.2 Enumerations Types for Network Links

Figure 35: Enumeration types for network physical and virtual links

120

A.3 Enumerations Types for Network Services

Figure 36: Enumeration types for network-related services

121

A.4 Security-related Enumerations Types

Figure 37: Enumeration types for formulating security-related attributes

122

A.5 Enumerations for Wireless-related Entities

Figure 38: Wireless-related enumeration types

123

Appendix B

Shell Scripts

B.1 Script for Managing Ethernet Vyatta Virtual

Network Interfaces

Listing B.1: Add or delete a specific Vyatta VM Ethernet interface
#!/bin/sh

function usage(){

echo "usage: modify-eth.sh [-a|-d] eth# ipAddress"

exit 1

}

if ["$#" -ne 3]; then

usage

else

case "$1" in

"-a")

CMD="set";

;;

"-d")

CMD="delete";

;;

*)

usage

;;

esac

#--- execute

source /etc/default/vyatta

/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper begin

/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper "$CMD" interfaces ethernet "$2" address "$3"

echo "Result from set command="$?

/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper commit

echo "Result from commit command="$?

/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper save

fi

124

B.2 Managing Virtual Network Routing

Listing B.2: Script to manage a route between two networks
#!/bin/sh

function usage(){

echo "usage: manage-route.sh [-a|-d] routeAddress destination"

exit 1

}

if ["$#" -lt 2]; then

usage

else

case "$1" in

"-a")

CMD="set protocols static route $2 next-hop $3";

;;

"-d")

CMD="delete protocols static route $2";

;;

*)

usage

;;

esac

#--- execute

source /etc/default/vyatta

/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper begin

/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper $CMD

echo "Result from set command="$?

/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper commit

echo "Result from commit command="$?

/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper save

fi

Link-related Enums

125

Appendix C

XML Schema Definition

C.1 XSD for Resource Description

Listing C.1: The used XSD for describing physical and virtual resources

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://xml.netbeans.org/schema/commonTypes"

xmlns:tns="http://xml.netbeans.org/schema/commonTypes" elementFormDefault="qualified">

<!-- Enumurations Types-->

<xs:simpleType name="networkInterfaceEnum">

<xs:restriction base="xs:string">

<xs:enumeration value="Ethernet"/>

<xs:enumeration value="gigabitEthernet"/>

<xs:enumeration value="opticalFiber"/>

<xs:enumeration value="radio"/>

<xs:enumeration value="ATM"/>

126

<xs:enumeration value="fameRelay"/>

<xs:enumeration value="ISDN"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="securityPropSupportedEnum">

<xs:restriction base="xs:string">

<xs:enumeration value="confidentiality"/>

<xs:enumeration value="integrity"/>

<xs:enumeration value="availability"/>

<xs:enumeration value="confidentialityAndIntegrity"/>

<xs:enumeration value="confidentialityAndIntegrityAndAvailability"/>

<xs:enumeration value="accuracy"/>

<xs:enumeration value="authenticity"/>

<xs:enumeration value="utility"/>

<xs:enumeration value="possession"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="cpuType">

<xs:restriction base="xs:string">

<xs:enumeration value="Intel"/>

<xs:enumeration value="AMD"/>

<xs:enumeration value="Xeon"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="ethNumberType">

<xs:restriction base="xs:string">

<xs:enumeration value="eth0"/>

<xs:enumeration value="eth1"/>

<xs:enumeration value="eth2"/>

<xs:enumeration value="eth3"/>

<xs:enumeration value="eth4"/>

<xs:enumeration value="eth5"/>

</xs:restriction>

127

</xs:simpleType>

<xs:simpleType name="osType">

<xs:restriction base="xs:string">

<xs:enumeration value="Windows"/>

<xs:enumeration value="Linux"/>

<xs:enumeration value="Unix"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="hashingTechniqueType">

<xs:restriction base="xs:string">

<xs:enumeration value="CyclicRedundancyChecks"/>

<xs:enumeration value="Checksums"/>

<xs:enumeration value="Non-cryptographicHhashFunctions"/>

<xs:enumeration value="CryptographicHashFunctions"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="energySourceType">

<xs:restriction base="xs:string">

<xs:enumeration value="renewable"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="memoryType">

<xs:restriction base="xs:string">

<xs:enumeration value="DDR3"/>

<xs:enumeration value="DDR2"/>

<xs:enumeration value="DDR1"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="netElementStatusType">

<xs:restriction base="xs:string">

<xs:enumeration value="nonDeployed" />

<xs:enumeration value="deployed" />

<xs:enumeration value="deployedAndAvailable" />

128

<xs:enumeration value="deployedNonAvailable" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="networkSTackType">

<xs:restriction base="xs:string">

<xs:enumeration value="TCP/IP" />

<xs:enumeration value="UDP" />

<xs:enumeration value="IP/ATM" />

<xs:enumeration value="IP/Ethernet" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="storageType">

<xs:restriction base="xs:string">

<xs:enumeration value="SSD" />

<xs:enumeration value="HDD" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="networkManagementType">

<xs:restriction base="xs:string">

<xs:enumeration value="SNMP" />

<xs:enumeration value="CISCO" />

<xs:enumeration value="IOS XP" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="roleType">

<xs:restriction base="xs:string">

<xs:enumeration value="PIP" />

<xs:enumeration value="VIP" />

<xs:enumeration value="Broker" />

<xs:enumeration value="SP" />

<xs:enumeration value="Customer" />

</xs:restriction>

</xs:simpleType>

129

<xs:simpleType name="nodeType">

<xs:restriction base="xs:string">

<xs:enumeration value="VM" />

<xs:enumeration value="vSwitch" />

<xs:enumeration value="vRouter" />

<xs:enumeration value="PC" />

<xs:enumeration value="Blade" />

<xs:enumeration value="Workstation" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="virEnvironementType">

<xs:restriction base="xs:string">

<xs:enumeration value="VMWare" />

<xs:enumeration value="XEN" />

<xs:enumeration value="KVM" />

<xs:enumeration value="OpenVZ" />

</xs:restriction>

</xs:simpleType>

<xs:complexType name="FunctionalParamType">

<xs:sequence>

<xs:element name="NetworkMngmtSWT" type="tns:networkManagementType"/>

<xs:element name="nbrOfPorts" type="xs:int"/>

<xs:element name="processingPower" type="xs:string"/>

<!--Referenced types-->

<xs:element name="storageParam" type="tns:storageParamType"/>

<xs:element name="memoryParam" type="tns:memoryParamType"/>

<xs:element name="cpuParameters" type="tns:cpuParamType"/>

<xs:element name="osParameters" type="tns:osParamType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="NonFunctionalParamType">

<xs:sequence>

130

<xs:element name="qosLevelSupported" type="xs:string"/>

<xs:element name="energyEfficiencyLevel" type="xs:string"/>

<xs:element name="perOfFailure" type="xs:string"/>

<xs:element name="cost" type="xs:string"/>

<!--Referenced types-->

<xs:element name="energySource" type="tns:energySourceType"/>

<xs:element name="qosParam" type="tns:qosParamType"/>

<xs:element name="securityLevelParam" type="tns:securityLevelParamType"/>

<xs:element name="performanceParam" type="tns:performanceParametersType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="physicalNodeType">

<xs:complexContent>

<xs:extension base="tns:networkElementType">

<xs:sequence>

<xs:element name="maxNbrOfVirtualNode" type="xs:int"/>

<xs:element name="substrateNodeGroupID" type="xs:string"/>

<xs:element name="virEnvironement" type="tns:virEnvironementType"/>

<xs:element name="nodeType" type="tns:nodeType"/>

<xs:element name="vendor" type="xs:string"/>

<xs:element name="model" type="xs:string"/>

<xs:element name="geoLocation" type="tns:geoLocationType"/>

<xs:element name="virtualNodes" type="tns:virtualNodes"></xs:element>

</xs:sequence>

<xs:attribute name="id" type="xs:string"/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="virtualNodes">

<xs:sequence>

<xs:element name="virtualNode" maxOccurs="unbounded" type="tns:virtualNodeType" />

</xs:sequence>

</xs:complexType>

131

<xs:complexType name="geoLocationType">

<xs:sequence>

<xs:element name="country" type="xs:string"/>

<xs:element name="city" type="xs:string"/>

<xs:element name="address" type="xs:string"/>

<xs:element name="room" type="xs:string"/>

<xs:element name="rack" type="xs:string"/>

<xs:element name="panel" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="qosParamType">

<xs:sequence>

<xs:element name="avgPacketLoss" type="xs:string"/>

<xs:element name="avgDelay" type="xs:string"/>

<xs:element name="avgJitter" type="xs:string"/>

<xs:element name="avgBitRate" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="performanceParamType">

<xs:sequence/>

</xs:complexType>

<xs:complexType name="storageParamType">

<xs:sequence>

<!--Convert this to add support for attributes-->

<!-- Define attributes such as measurment units type, etc-->

<xs:element name="diskSpace" type="xs:string"/>

<xs:element name="nbrOfUnits" type="xs:int"/>

<xs:element name="storageType" type="tns:storageType"/>

<xs:element name="componentInfo" type="tns:componentInfoType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="routingPlatformType">

<xs:sequence>

132

<xs:element name="name" type="xs:string" />

<xs:element name="description" type="xs:string"/>

<xs:element name="version" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="virtualNodeType">

<xs:sequence>

<xs:element name="physicalNodeID" type="xs:string"/>

<xs:element name="providerID" type="xs:string"/>

<xs:element name="name" type="xs:string"/>

<xs:element name="description" type="xs:string"/>

<xs:element name="availability" type="xs:string"/>

<xs:element name="startTime" type="xs:string"/>

<xs:element name="networkStack" type="tns:networkSTackType"/>

<xs:element name="nodeType" type="tns:nodeType"/>

<xs:element name="virEnvironement" type="tns:virEnvironementType"/>

<xs:element name="ipAddress" type="xs:string"/>

<xs:element name="virNetworkInterfaces" type="tns:virNetworkInterfaces" minOccurs="1" />

<xs:element name="virRoutes" type="tns:virRoutes" minOccurs="1" />

<xs:element name="routingPlatform" type="tns:routingPlatformType"/>

<xs:element name="functionalParam" type="tns:FunctionalParamType"/>

<xs:element name="nonFunctionalParam" type="tns:NonFunctionalParamType"/>

</xs:sequence>

<xs:attribute name="id" type="xs:string"/>

</xs:complexType>

<xs:complexType name="virRoutes">

<xs:sequence>

<xs:element name="virRoute" type="tns:virRouteType" minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="virRouteType">

<xs:sequence>

<xs:element name="route" type="xs:string"/>

133

<xs:element name="nextHop" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="virNetworkInterfaces">

<xs:sequence>

<xs:element name="virNetworkInterface" type="tns:virtualInterfaceType" minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="virtualInterfaceType">

<xs:sequence>

<xs:element name="interfaceType" type="tns:networkInterfaceEnum"/>

<xs:element name="rate" type="xs:string"/>

<xs:element name="macAddress" type="xs:string"/>

<xs:element name="ethPortNumber" type="tns:ethNumberType"/>

<xs:element name="ipAddress" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="providerInfoType">

<xs:sequence>

<xs:element name="roleInfo" type="tns:roleInfoType"/>

</xs:sequence>

<xs:attribute name="id" type="xs:string"/>

</xs:complexType>

<xs:complexType name="contactInfoType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="phone" type="xs:string"/>

<xs:element name="email" type="xs:string" />

<xs:element name="address" type="tns:addressType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="addressType">

<xs:sequence>

134

<xs:element name="number" type="xs:int"/>

<xs:element name="street" type="xs:string"/>

<xs:element name="city" type="xs:string"/>

<xs:element name="state" type="xs:string"/>

<xs:element name="zip" type="xs:string"/>

<xs:element name="country" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="roleInfoType">

<xs:sequence>

<xs:element name="name" type="xs:string" />

<xs:element name="roleType" type="tns:roleType" />

<xs:element name="contactInfo" type="tns:contactInfoType" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="networkElementType">

<xs:sequence>

<xs:element name="ownerID" type="xs:string"/>

<xs:element name="name" type="xs:string"/>

<xs:element name="description" type="xs:string"/>

<xs:element name="availability" type="xs:string"/>

<xs:element name="startTime" type="xs:dateTime"/>

<xs:element name="period" type="xs:string"/>

<xs:element name="status" type="tns:netElementStatusType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="networkDomainType">

<xs:sequence>

<xs:element name="providerName" type="xs:string"/>

<xs:element name="description" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="administrativeDomainType">

135

<xs:sequence>

<xs:element name="address" type="tns:addressType"/>

<xs:element name="description" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="componentInfoType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="vendor" type="xs:string"/>

<xs:element name="model" type="xs:string"/>

<xs:element name="partNumber" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="memoryParamType">

<xs:sequence>

<xs:element name="size" type="xs:string"/>

<xs:element name="capacity" type="xs:string"/>

<xs:element name="memoryType" type="tns:memoryType"/>

<xs:element name="speed" type="xs:string"/>

<xs:element name="componentsInfo" type="tns:componentInfoType"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="cpuParamType">

<xs:sequence>

<xs:element name="cpuType" type="tns:cpuType"/>

<xs:element name="architecture" type="xs:string"/>

<xs:element name="nbrOfCores" type="xs:int"/>

<xs:element name="nbrOfThreads" type="xs:int"/>

<xs:element name="clockSpeed" type="xs:string" minOccurs="1"/>

<xs:element name="cahce" type="xs:string" minOccurs="1"/>

<xs:element name="instructionSet" type="xs:string"/>

<xs:element name="componentsInfo" type="tns:componentInfoType"/>

</xs:sequence>

136

</xs:complexType>

<xs:complexType name="osParamType">

<xs:sequence>

<xs:element name="osType" type="tns:osType"/>

<xs:element name="description" type="xs:string"/>

<xs:element name="version" type="xs:string"/>

<xs:element name="vendor" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="securityLevelParamType">

<xs:sequence/>

</xs:complexType>

<xs:complexType name="performanceParametersType">

<xs:sequence>

<xs:element name="responseTime" type="xs:string"/>

<xs:element name="uptime" type="xs:string"/>

<xs:element name="relaibilityLevel" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

C.2 XSD for Resource Discovery Requests

Listing C.2: XSD for formulating Resource Discovery requests

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://xml.netbeans.org/schema/discovery"

xmlns:tns="http://xml.netbeans.org/schema/discovery"

elementFormDefault="qualified"

xmlns:cmn="http://xml.netbeans.org/schema/commonTypes">

<!--Dependencies-->

137

<xs:import namespace="http://xml.netbeans.org/schema/commonTypes"

<!--Resource Discovery Request-->

schemaLocation="commonTypes.xsd"/>

<xs:element name="discoveryRequest">

<xs:complexType>

<xs:sequence>

<xs:element name="selectionParameters" maxOccurs="unbounded" type="tns:selectionParameter" minOccurs="1"/>

</xs:sequence>

<xs:attribute name="id" type="xs:string" use="required" />

</xs:complexType>

</xs:element>

<xs:simpleType name="constraintType">

<xs:restriction base="xs:string">

<xs:enumeration value="CPU"/>

<xs:enumeration value="Memory"/>

<xs:enumeration value="Storage"/>

<xs:enumeration value="Link"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="rangeType">

<xs:sequence>

<xs:element name="min" type="xs:integer"/>

<xs:element name="max" type="xs:integer" />

</xs:sequence>

</xs:complexType>

<!--Constraints used in the selection process-->

<xs:complexType name="selectionConstraint">

<xs:sequence>

<xs:element name="constraintOn" type="tns:constraintType" minOccurs="1" />

<xs:element name="params" type="tns:constraintParams" minOccurs="1" />

<!-- <xs:element name="range" type="tns:rangeType"/>

<xs:element name="pattern" type="xs:string"/> -->

</xs:sequence>

138

</xs:complexType>

<!--Resource selection parameters-->

<xs:complexType name="selectionParameter">

<xs:sequence>

<xs:element name="vnType" type="cmn:nodeType" minOccurs="1"/>

<xs:element name="virEnvironement" type="cmn:virEnvironementType" minOccurs="1"/>

<xs:element name="osType" type="cmn:osType" minOccurs="1"/>

<xs:element name="interfaceType" type="cmn:networkInterfaceEnum" minOccurs="1"/>

<xs:element name="networkStack" type="cmn:networkSTackType" minOccurs="1"/>

<xs:element name="cpuType" type="cmn:cpuType" minOccurs="1"/>

<xs:element name="quantity" type="xs:integer" minOccurs="1"/>

<xs:element name="selectionConstraints" type="tns:selectionConstraints" minOccurs="1"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="selectionConstraints">

<xs:sequence>

<xs:element name="selectionConstraint" type="tns:selectionConstraint" minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="constraintParams">

<xs:sequence>

<xs:element name="param" type="tns:param" minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="param">

<xs:attribute name="key" type="xs:string"/>

<xs:attribute name="value" type="xs:string"/>

</xs:complexType>

</xs:schema>

139

C.3 XSD for Negotiation Requests

Listing C.3: Schema for resource negotiation requests

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://xml.netbeans.org/schema/requests"

xmlns:tns="http://xml.netbeans.org/schema/requests"

elementFormDefault="qualified" xmlns:cmn="http://xml.netbeans.org/schema/commonTypes">

<!--Dependencies-->

<xsd:import namespace="http://xml.netbeans.org/schema/commonTypes"

schemaLocation="commonTypes.xsd"/>

<xsd:element name="negotiationRequest">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="description" type="xsd:string"/>

<xsd:element name="price" type="xsd:string"/>

<xsd:element name="quantity" type="xsd:int"/>

<xsd:element name="comment" type="xsd:string"/>

<xsd:element name="pipResponse" type="tns:requestStatusType"/>

<xsd:element name="vipResponse" type="tns:requestStatusType"/>

<xsd:element name="requestStatus" type="tns:requestStatusType"/>

<xsd:element name="virtualNodes" type="cmn:virtualNodes"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:string"/>

</xsd:complexType>

</xsd:element>

<xsd:simpleType name="requestStatusType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Accepted" />

<xsd:enumeration value="Rejected" />

<xsd:enumeration value="NotProcessed" />

<xsd:enumeration value="Instantiated" />

140

<xsd:enumeration value="ToBeInstantiated" />

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

C.4 Resource Description Sample

Listing C.4: A sample of resource description document

<?xml version="1.0" encoding="UTF-8"?>

<resourceDescription>

<virtualNode id="234be927-238f-4abc-bf13-16084f094cc2">

<physicalNodeID>1ea9bd59-af46-4e93-869c-c29b6c48d3d9</physicalNodeID>

<providerID>PIP-1</providerID>

<name>Alpha</name>

<description>VMWare-based Linux virtual machine</description>

<availability>yes</availability>

<startTime>2013/04/14 09:00:24</startTime>

<networkStack>TCP/IP</networkStack>

<nodeType>VM</nodeType>

<virEnvironement>VMWare</virEnvironement>

<ipAddress>192.168.56.90</ipAddress>

<virNetworkInterfaces>

<virNetworkInterface>

<interfaceType>Ethernet</interfaceType>

<rate>100MB/sec</rate>

<macAddress>24-77-03-5E-30-03</macAddress>

<ethPortNumber>eth0</ethPortNumber>

<ipAddress>192.168.56.90</ipAddress>

</virNetworkInterface>

<virNetworkInterface>

<interfaceType>Ethernet</interfaceType>

141

<rate>100MB/sec</rate>

<macAddress>24-77-03-5A-40-03</macAddress>

<ethPortNumber>eth1</ethPortNumber>

<ipAddress>192.168.10.10</ipAddress>

</virNetworkInterface>

</virNetworkInterfaces>

<virRoutes>

<virRoute>

<route>192.168.20.0</route>

<nextHop>192.168.56.91</nextHop>

</virRoute>

</virRoutes>

<routingPlatform>

<name>XORP</name>

<description>XORP open source routing platform</description>

<version>1.8.5</version>

</routingPlatform>

<functionalParam>

<NetworkMngmtSWT>SNMP</NetworkMngmtSWT>

<nbrOfPorts>2</nbrOfPorts>

<processingPower>200</processingPower>

<storageParam>

<diskSpace>40GB</diskSpace>

<nbrOfUnits>2</nbrOfUnits>

<storageType>HDD</storageType>

<componentInfo>

<name>Virt Stodage Disk</name>

<vendor>Samsung</vendor>

<model>6H500F0</model>

<partNumber>HTS722020K9A300</partNumber>

</componentInfo>

</storageParam>

<memoryParam>

142

<size>1024</size>

<capacity>1GB</capacity>

<memoryType>DDR2</memoryType>

<speed>1333</speed>

<componentsInfo>

<name>DDR2 PC2-5300 memory module</name>

<vendor>Kingston</vendor>

<model>KVR1333D3E9SK2/8G</model>

<partNumber>KVR667D2N5</partNumber>

</componentsInfo>

</memoryParam>

<cpuParameters>

<cpuType>Xeon</cpuType>

<architecture>E5-2600 family</architecture>

<nbrOfCores>6</nbrOfCores>

<nbrOfThreads>12</nbrOfThreads>

<clockSpeed>2.3</clockSpeed>

<cahce>15MB</cahce>

<instructionSet>64-bit</instructionSet>

<componentsInfo>

<name>Xeon E5-2630-2.3GHz(2.8GHz Turbo Boost)</name>

<vendor>Intel</vendor>

<model>BX80621E52630</model>

<partNumber>BX80621E52630</partNumber>

</componentsInfo>

</cpuParameters>

<osParameters>

<osType>Linux</osType>

<description>Debian Linux</description>

<version>6</version>

<vendor>Brocade</vendor>

</osParameters>

</functionalParam>

143

<nonFunctionalParam>

<qosLevelSupported></qosLevelSupported>

<energyEfficiencyLevel></energyEfficiencyLevel>

<perOfFailure>0.01 </perOfFailure>

<cost>0.99\$/day</cost>

<energySource>renewable</energySource>

<qosParam>

<avgPacketLoss>1.5</avgPacketLoss>

<avgDelay>2ms</avgDelay>

<avgJitter></avgJitter>

<avgBitRate></avgBitRate>

</qosParam>

<securityLevelParam></securityLevelParam>

<performanceParam>

<responseTime>4ms</responseTime>

<uptime>16hours</uptime>

<relaibilityLevel>II</relaibilityLevel>

</performanceParam>

</nonFunctionalParam>

</virtualNode>

</virtualNodes>

</resourceDescription>

144

Appendix D

Message Logs of the PIP Subsystem

Listing D.1: Message log generated by the implemented modules involved in the resource publication

process

15:11:02.597 [INFO] PIPConsole: Starting PIP Console

15:11:52.603 [INFO] PIPResourceHelper: --

15:11:52.603 [INFO] PIPResourceHelper: Resource publication started...

15:12:03.141 [ERROR] PIPResourceHelper: Proccessing resource file...

15:12:03.142 [ERROR] PIPResourceHelper: file path:/home/sleiman/pip-console/src/descfiles/precision-390_4_routers.xml

15:12:03.243 [INFO] PIPDBResourceManager: Inserting in PIP database...

15:12:03.325 [INFO] PIPDBResourceManager: Resource added successfully to the database...

15:12:05.754 [INFO] PIPResourceHelper: --

15:12:05.755 [INFO] PIPResourceHelper: Resource publication started...

15:12:06.825 [INFO] PIPDBResourceManager: Retrieving resource description from local DB...

15:12:06.857 [INFO] PIPResourcePublisher: Preparing publication request....

145

15:12:07.055 [INFO] PIPResourcePublisher: Sending publication request....

15:12:09.309 [INFO] PIPResourcePublisher: Got broker response!....

15:12:09.309 [INFO] PIPResourcePublisher: Resoruce has been published successfully...

15:12:09.309 [INFO] PIPResourcePublisher: Received HTTP Status code: 201

15:12:09.309 [INFO] PIPDBResourceManager: updating resource’s status...

15:12:09.309 [INFO] PIPDBResourceManager: Changing selected resource’s status to published...

15:12:09.363 [INFO] PIPDBResourceManager: Resource’s status has been changed successfully...

15:12:09.363 [INFO] PIPDBResourceManager: --

Listing D.2: Message log generated during PIP-to-VIP resource negotiation process

16:30:09.800 [INFO] PIPConsole: Starting PIP Console

16:30:13.532 [INFO] PIPWSManager: Starting grizzly web server...

Dec 12, 2013 4:30:13 PM com.sun.jersey.server.impl.application.WebApplicationImpl _initiate

INFO: Initiating Jersey application, version ’Jersey: 1.17 01/17/2013 03:31 PM’

Dec 12, 2013 4:30:14 PM org.glassfish.grizzly.http.server.NetworkListener start

16:30:14.097 [INFO] PIPWSManager: PIP REST web services with WADL available at http://192.168.10.13:9998/v1/

application.wadl

INFO: Started listener bound to [192.168.10.13:9998]

Dec 12, 2013 4:30:14 PM org.glassfish.grizzly.http.server.HttpServer start

INFO: [HttpServer] Started.

16:30:56.312 [INFO] PIPNegotiationService: --

16:30:56.312 [INFO] PIPNegotiationService: Resource negotiation request received...

16:30:56.312 [INFO] PIPNegotiationService: Processing resource negotiation request...

16:30:56.313 [INFO] PIPNegotiationService: Checking if the same request exisits already...

16:30:56.331 [INFO] PIPNegotiationService: Negotiation request exists...

16:30:56.332 [INFO] PIPNegotiationService: Updating existing request...

146

16:30:56.501 [INFO] PIPNegotiationService: Negotiation Request status has been updated successfully...

16:30:56.501 [INFO] PIPNegotiationService: Done processing request...

16:30:56.501 [INFO] PIPNegotiationService: --

16:31:10.984 [INFO] PIPDBResourceManager: Changing negotiation request’s status to rejected

16:31:11.049 [INFO] PIPDBResourceManager: Request status has been marked rejected successfully...

16:31:18.652 [INFO] VIPServiceClient: Sending negotiation request to VIP...

16:31:18.653 [INFO] VIPServiceClient: VIP’s service URL: http://192.168.10.14:9997/v1/

16:31:18.866 [INFO] PIPDBResourceManager: Changing negotiation request’s status to processed...

16:31:18.885 [INFO] PIPDBResourceManager: Request status has been updated successfully...

16:31:51.425 [INFO] PIPNegotiationService: --

16:31:51.425 [INFO] PIPNegotiationService: Resource negotiation request received...

16:31:51.425 [INFO] PIPNegotiationService: Processing resource negotiation request...

16:31:51.425 [INFO] PIPNegotiationService: Checking if the same request exisits already...

16:31:51.443 [INFO] PIPNegotiationService: Negotiation request exists...

16:31:51.443 [INFO] PIPNegotiationService: Updating existing request...

16:31:51.550 [INFO] PIPNegotiationService: Negotiation Request status has been updated successfully...

16:31:51.550 [INFO] PIPNegotiationService: Done processing request...

16:31:51.550 [INFO] PIPNegotiationService: --

16:32:00.934 [INFO] PIPDBResourceManager: Changing negotiation request’s status to accepted

16:32:01.003 [INFO] PIPDBResourceManager: Request status has been marked accepted successfully...

16:32:04.674 [INFO] VIPServiceClient: Sending negotiation request to VIP...

16:32:04.675 [INFO] VIPServiceClient: VIP’s service URL: http://192.168.10.14:9997/v1/

16:32:04.857 [INFO] PIPDBResourceManager: Changing negotiation request’s status to processed...

16:32:04.874 [INFO] PIPDBResourceManager: Request status has been updated successfully...

16:32:24.579 [INFO] PIPNegotiationService: --

147

Listing D.3: Message log of the virtual topology instantiation and configuration process

18:29:06.952 [INFO] PIPSubstrateManager: ==

18:29:06.954 [INFO] PIPSubstrateManager: Creating virtual resources and setting up the virtual topology...

18:29:06.955 [INFO] PIPSubstrateManager: ...

18:29:06.955 [INFO] PIPSubstrateManager: Number of resources to instantiate: 1

18:29:06.957 [INFO] PIPSubstrateManager: Connection to host 192.168.56.10 established...

18:29:06.986 [INFO] PIPSubstrateManager: Loging in to host: 192.168.56.10

18:29:07.261 [INFO] PIPSubstrateManager: XAPI Sesscion created successfully

18:29:07.381 [INFO] PIPSubstrateManager: Host lable alpha.encs.concordia.ca

18:29:07.381 [INFO] PIPSubstrateManager: Host UID 6ed32302-b406-4cd8-be96-271dbfedc2b3

18:29:07.381 [INFO] PIPSubstrateManager: Host IP Address 192.168.56.10

18:29:07.381 [INFO] PIPSubstrateManager: Editionfree

18:29:07.381 [INFO] PIPSubstrateManager: Free memory 1762967552

18:29:07.381 [INFO] PIPSubstrateManager: -----------------------------

18:29:07.382 [INFO] PIPSubstrateManager: Creating virtual machines:

18:29:07.382 [INFO] PIPSubstrateManager: -----------------------------

18:29:07.382 [INFO] PIPSubstrateManager: Creating VM => Alpha ...

18:29:07.831 [INFO] PIPSubstrateManager: We’re creating: Alpha VM from VyattaVMTemplate

18:29:16.201 [INFO] PIPSubstrateManager: VM Alpha created successfully...

18:29:16.201 [INFO] PIPSubstrateManager: Configuring Alpha’s network settings...

18:29:16.230 [INFO] PIPSSHRemoteCmd: Opening SSH connection...

18:29:16.230 [INFO] PIPSSHRemoteCmd: Please wait, this might take some time...

18:29:16.230 [INFO] PIPSSHRemoteCmd: Waiting for SSH server to go online...

18:30:22.498 [INFO] PIPSSHRemoteCmd: The VM is reachable now! ...

148

18:30:22.499 [INFO] PIPSSHRemoteCmd: Executing command: sh /home/vyatta/script/modify-eth.sh -a eth1

192.168.10.10/24 ...

18:30:22.526 [INFO] PIPSSHRemoteCmd: Here is some information about the remote host:

18:30:22.656 [INFO] PIPSSHRemoteCmd: Result from set command=0

18:30:23.387 [INFO] PIPSSHRemoteCmd: Result from commit command=0

18:30:23.442 [INFO] PIPSSHRemoteCmd: Saving configuration to ’/opt/vyatta/etc/config/config.boot’...

18:30:23.475 [INFO] PIPSSHRemoteCmd: Done

18:30:23.477 [INFO] PIPSSHRemoteCmd: ExitCode: 0

18:30:23.477 [INFO] PIPSSHRemoteCmd: Closing SSH session now...

18:30:23.478 [INFO] PIPSSHRemoteCmd: Executing command: sh /home/vyatta/script/modify-eth.sh -a eth0

192.168.56.90/24 ...

18:30:23.517 [INFO] PIPSSHRemoteCmd: Here is some information about the remote host:

18:30:23.570 [INFO] PIPSSHRemoteCmd: Result from set command=0

18:30:24.203 [INFO] PIPSSHRemoteCmd: Result from commit command=0

18:30:24.257 [INFO] PIPSSHRemoteCmd: Saving configuration to ’/opt/vyatta/etc/config/config.boot’...

18:30:24.291 [INFO] PIPSSHRemoteCmd: Done

18:30:24.292 [INFO] PIPSSHRemoteCmd: ExitCode: 0

18:30:24.292 [INFO] PIPSSHRemoteCmd: Closing SSH session now...

18:30:24.293 [INFO] PIPSSHRemoteCmd: Executing command: sh /home/vyatta/script/modify-eth.sh -d eth5

192.168.56.199/24 ...

18:30:24.327 [INFO] PIPSSHRemoteCmd: Ethernet interface deleted...

18:30:25.328 [INFO] PIPSSHRemoteCmd: Closing SSH session now...

18:30:25.329 [INFO] PIPSSHRemoteCmd: Closing SSH connection...

18:30:25.330 [INFO] PIPSubstrateManager: Finished creating virtual machines!

18:30:25.331 [INFO] PIPSubstrateManager: ---

18:30:25.331 [INFO] PIPSubstrateManager: Configuring and setting up virtual topology...

149

18:30:25.332 [INFO] PIPSubstrateManager: ---

18:30:25.332 [INFO] PIPSSHRemoteCmd: Opening SSH connection...

18:30:25.332 [INFO] PIPSSHRemoteCmd: Please wait, this might take some time...

18:30:25.332 [INFO] PIPSSHRemoteCmd: Waiting for SSH server to go online...

18:30:25.459 [INFO] PIPSSHRemoteCmd: The VM is reachable now! ...

18:30:25.460 [INFO] PIPSSHRemoteCmd: Executing command: sh /home/vyatta/script/manage-route.sh -a 192.168.20.0/24

192.168.56.91 ...

18:30:25.469 [INFO] PIPSSHRemoteCmd: Here is some information about the remote host:

18:30:25.568 [INFO] PIPSSHRemoteCmd: Result from set command=0

18:30:26.146 [INFO] PIPSSHRemoteCmd: Result from commit command=0

18:30:26.201 [INFO] PIPSSHRemoteCmd: Saving configuration to ’/opt/vyatta/etc/config/config.boot’...

18:30:26.234 [INFO] PIPSSHRemoteCmd: Done

18:30:26.235 [INFO] PIPSSHRemoteCmd: ExitCode: 0

18:30:26.235 [INFO] PIPSSHRemoteCmd: Closing SSH session now...

18:30:26.236 [INFO] PIPSSHRemoteCmd: Closing SSH connection...

18:30:26.237 [INFO] PIPSubstrateManager: Topology instantiated successfully...

18:30:26.237 [INFO] PIPSubstrateManager: --

150

Listing D.4: Message log of resource publication scalability tests

16:49:26.255 [INFO] PubRequestGenerator: --

16:49:26.258 [INFO] PubRequestGenerator: Generating resource publication has been started...

16:49:29.905 [INFO] PubRequestGenerator:

Run number #1:

Start time: Mon Jun 20 03:26:55 EDT 2231

Total elapsed time in milliseconds: 3643 ms

Total published resources : 20

16:49:32.933 [INFO] PubRequestGenerator:

Run number #2:

Start time: Mon Aug 01 08:32:10 EDT 2231

Total elapsed time in milliseconds: 3028 ms

Total published resources : 20

16:49:35.778 [INFO] PubRequestGenerator:

Run number #3:

Start time: Mon Sep 05 09:48:48 EDT 2231

Total elapsed time in milliseconds: 2844 ms

Total published resources : 20

16:49:38.574 [INFO] PubRequestGenerator:

Run number #4:

Start time: Sat Oct 08 08:05:17 EDT 2231

Total elapsed time in milliseconds: 2794 ms

Total published resources : 20

16:49:41.391 [INFO] PubRequestGenerator:

Run number #5:

151

Start time: Wed Nov 09 15:28:23 EST 2231

Total elapsed time in milliseconds: 2816 ms

Total published resources : 20

Average time: 3025 ms

16:49:41.391 [INFO] PubRequestGenerator: Finished genrating resource publication request...

16:49:41.391 [INFO] PubRequestGenerator: --

152

Appendix E

Message Logs of the VIP Subsystem

Listing E.1: Resource discovery message log

15:29:13.358 [INFO] VIPConsole: Loading VIP console settings...

15:29:13.363 [INFO] VIPConsole: Console settings loaded...

15:29:17.385 [INFO] VIPResourceDiscovery: --

15:29:17.385 [INFO] VIPResourceDiscovery: Resource discovery started...

15:29:17.386 [INFO] VIPResourceDiscovery: Loading discovery request document...

15:29:17.792 [INFO] VIPResourceDiscovery: Sending discovery request...

15:29:18.372 [INFO] VIPResourceDiscovery: Got server response!....

15:29:18.466 [INFO] VIPResourceDiscovery: Discovery request has been processed successfully...

15:29:18.466 [INFO] VIPResourceDiscovery: HTTP Status code: 200

15:29:18.466 [INFO] VIPResourceDiscovery: Number of discovered resources: 3

15:29:18.466 [INFO] VIPResourceDiscovery: --

153

Listing E.2: VIP resource negotiation message log

16:30:30.607 [INFO] VIPConsole: Loading VIP console settings...

16:30:30.612 [INFO] VIPConsole: Console settings loaded...

16:30:34.428 [INFO] VIPWSManager: Starting grizzly web server...

Dec 12, 2013 4:30:34 PM com.sun.jersey.server.impl.application.WebApplicationImpl _initiate

INFO: Initiating Jersey application, version ’Jersey: 1.17 01/17/2013 03:31 PM’

Dec 12, 2013 4:30:35 PM org.glassfish.grizzly.http.server.NetworkListener start

INFO: Started listener bound to [192.168.10.14:9997]

Dec 12, 2013 4:30:35 PM org.glassfish.grizzly.http.server.HttpServer start

16:30:35.044 [INFO] VIPWSManager: VIP REST web services started with WADL available at http://192.168.10.14:9997/v1/

application.wadl

INFO: [HttpServer] Started.

16:30:56.076 [INFO] PIPServiceClient: --

16:30:56.076 [INFO] PIPServiceClient: Sending negotiation request to PIP...

16:30:56.076 [INFO] PIPServiceClient: PIP service’s URL: http://192.168.10.13:9998/v1/

16:30:56.506 [INFO] PIPServiceClient: HTTP status code: 200

16:31:18.731 [INFO] VIPNegotiationService: A negotiation request has been received...

16:31:18.731 [INFO] VIPNegotiationService: Checking if the request exists already...

16:31:18.748 [INFO] VIPNegotiationService: Request exists...

16:31:18.749 [INFO] VIPNegotiationDao: Updating request...

16:31:18.864 [INFO] VIPNegotiationDao: Request has been updated successfully...

16:31:18.865 [INFO] VIPNegotiationService: Negotiation request processed successfully...

16:31:38.399 [INFO] VIPRequestNegoManager: Updating request...

16:31:39.603 [INFO] VIPRequestHelper: Changing request’s status to accepted...

16:31:51.369 [INFO] PIPServiceClient: --

154

16:31:51.369 [INFO] PIPServiceClient: Sending negotiation request to PIP...

16:31:51.370 [INFO] PIPServiceClient: PIP service’s URL: http://192.168.10.13:9998/v1/

16:31:51.551 [INFO] PIPServiceClient: HTTP status code: 200

16:32:04.734 [INFO] VIPNegotiationService: A negotiation request has been received...

16:32:04.734 [INFO] VIPNegotiationService: Checking if the request exists already...

16:32:04.751 [INFO] VIPNegotiationService: Request exists...

16:32:04.751 [INFO] VIPNegotiationDao: Updating request...

16:32:04.856 [INFO] VIPNegotiationDao: Request has been updated successfully...

16:32:04.857 [INFO] VIPNegotiationService: Negotiation request processed successfully...

16:32:23.363 [INFO] VIPRequestNegoManager: Changing request status to be instantiated...

16:32:23.363 [INFO] VIPRequestNegoManager: Sending instantiation request to PIP...

16:32:24.528 [INFO] PIPServiceClient: --

16:32:24.528 [INFO] PIPServiceClient: Sending negotiation request to PIP...

16:32:24.529 [INFO] PIPServiceClient: PIP service’s URL: http://192.168.10.13:9998/v1/

16:32:24.734 [INFO] PIPServiceClient: HTTP status code: 200

155

Listing E.3: Message log of resource discovery scalability tests

16:46:25.054 [INFO] DiscoveryRequstGenerator: --

16:46:25.056 [INFO] DiscoveryRequstGenerator: Generation of resource discovery requests has been started...

16:46:25.969 [INFO] DiscoveryRequstGenerator:

Run number #1:

Discovery statistics:

Start time: Wed Sep 21 22:23:37 EDT 2225

Total elapsed time in milliseconds: 909 ms

Total discoverd resources : 10

16:46:26.494 [INFO] DiscoveryRequstGenerator:

Run number #2:

Discovery statistics:

Start time: Sun Oct 02 12:02:47 EDT 2225

Total elapsed time in milliseconds: 524 ms

Total discoverd resources : 10

16:46:26.987 [INFO] DiscoveryRequstGenerator:

Run number #3:

Discovery statistics:

Start time: Sat Oct 08 13:48:59 EDT 2225

Total elapsed time in milliseconds: 492 ms

Total discoverd resources : 10

16:46:27.498 [INFO] DiscoveryRequstGenerator:

Run number #4:

Discovery statistics:

Start time: Fri Oct 14 06:35:16 EDT 2225

156

Total elapsed time in milliseconds: 510 ms

Total discoverd resources : 10

16:46:27.985 [INFO] DiscoveryRequstGenerator:

Run number #5:

Discovery statistics:

Start time: Thu Oct 20 04:32:07 EDT 2225

Total elapsed time in milliseconds: 486 ms

Total discoverd resources : 10

16:46:27.985 [INFO] DiscoveryRequstGenerator: Average time: 584 ms

16:46:27.985 [INFO] DiscoveryRequstGenerator: Finished request generation...

16:46:27.985 [INFO] DiscoveryRequstGenerator: --

157

Appendix F

Broker Components Message Logs

Listing F.1: Broker’s resource publication message logs

15:27:18.437 [INFO] BrokerConsole: Starting Broker console ...

15:27:18.439 [INFO] BrokerConsole: Setting Nimbus look and fell ...

15:27:20.374 [INFO] BrokerServiceStarter: Starting grizzly web server!...

Dec 12, 2013 3:27:20 PM com.sun.jersey.server.impl.application.WebApplicationImpl _initiate

INFO: Initiating Jersey application, version ’Jersey: 1.17 01/17/2013 03:31 PM’

Dec 12, 2013 3:27:20 PM org.glassfish.grizzly.http.server.NetworkListener start

INFO: Started listener bound to [192.168.10.12:9995]

Dec 12, 2013 3:27:20 PM org.glassfish.grizzly.http.server.HttpServer start

15:27:20.963 [INFO] BrokerServiceStarter: Jersey app started with WADL available at http://192.168.10.12:9995/v1/

application.wadl

INFO: [HttpServer] Started.

15:27:38.743 [INFO] PublicationService: --

158

15:27:38.743 [INFO] PublicationService: Resource publication request received...

15:27:38.938 [INFO] PublicationDao: Adding new resource to the DB...

15:27:38.938 [INFO] PublicationDao: Processing resource with ID: bf853b59-1f5f-485d-bacb-2c6f16ba9b9a

15:27:39.022 [INFO] PublicationDao: Adding new resource to the DB...

15:27:39.022 [INFO] PublicationDao: Processing resource with ID: 8f2fd41a-f692-4b35-8f9a-7db735667d17

15:27:39.090 [INFO] PublicationDao: Adding new resource to the DB...

15:27:39.090 [INFO] PublicationDao: Processing resource with ID: 94a8f32a-ddff-4992-b859-36cab710252f

15:27:39.155 [INFO] DaoController: Checking whether the resource exists in the DB...

15:27:39.156 [INFO] DaoController: Resource does not exist...

15:27:39.245 [INFO] DaoController: Resource created successfully in the DB...

15:27:39.245 [INFO] PublicationService: Resource publication done...

15:27:39.245 [INFO] PublicationService: --

Listing F.2: Broker’s resource discovery logs

15:29:04.651 [INFO] BrokerConsole: Starting Broker console ...

15:29:04.653 [INFO] BrokerConsole: Setting Nimbus look and fell ...

15:29:06.485 [INFO] BrokerServiceStarter: Starting grizzly web server!...

Dec 12, 2013 3:29:06 PM com.sun.jersey.server.impl.application.WebApplicationImpl _initiate

INFO: Initiating Jersey application, version ’Jersey: 1.17 01/17/2013 03:31 PM’

Dec 12, 2013 3:29:07 PM org.glassfish.grizzly.http.server.NetworkListener start

INFO: Started listener bound to [192.168.10.12:9995]

15:29:07.071 [INFO] BrokerServiceStarter: Jersey app started with WADL available at http://192.168.10.12:9995/v1/

application.wadl

Dec 12, 2013 3:29:07 PM org.glassfish.grizzly.http.server.HttpServer start

INFO: [HttpServer] Started.

15:29:18.007 [INFO] DiscoveryService: --

159

15:29:18.007 [INFO] DiscoveryService: Received a discovery request...

15:29:18.007 [INFO] ResourceDiscoveryDao: Processing resource discovery request...

15:29:18.008 [INFO] ResourceDiscoveryDao: Loading available resources’ descirption...

15:29:18.008 [INFO] ResourceDiscoveryDao: Finding resource by type...

15:29:18.297 [INFO] ResourceDiscoveryDao: Resource selection algorithm has been started...

15:29:18.298 [INFO] ResourceSelection: Processing selection parameters on resource [52a6ff62-fd26-4ee3-be65-060

b82140ccb]...

15:29:18.298 [INFO] ResourceSelection: Processing selection constraints on resource [52a6ff62-fd26-4ee3-be65-060

b82140ccb]...

15:29:18.298 [INFO] ResourceSelection: Evaluating memory constraints...

15:29:18.298 [INFO] ResourceSelection: Evaluating CPU constraints...

15:29:18.298 [INFO] ResourceSelection: Processing selection parameters on resource [3a4d2bdc-e2f8-41c1-a565-

f606eb337a56]...

15:29:18.298 [INFO] ResourceSelection: Processing selection constraints on resource [3a4d2bdc-e2f8-41c1-a565-

f606eb337a56]...

15:29:18.298 [INFO] ResourceSelection: Evaluating memory constraints...

15:29:18.298 [INFO] ResourceSelection: Evaluating CPU constraints...

15:29:18.299 [INFO] ResourceSelection: Processing selection parameters on resource [11432e48-186d-44b7-bd7d-

e80e2f801e1d]...

15:29:18.299 [INFO] ResourceSelection: Processing selection constraints on resource [11432e48-186d-44b7-bd7d-

e80e2f801e1d]...

15:29:18.299 [INFO] ResourceSelection: Evaluating memory constraints...

15:29:18.299 [INFO] ResourceSelection: Evaluating CPU constraints...

15:29:18.299 [INFO] DiscoveryService: Resource discovery done...

15:29:18.299 [INFO] DiscoveryService: --

160

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms and Listings
	List of Abbreviations
	Introduction
	Overview
	Motivations
	Thesis Objectives
	Thesis Contributions
	Thesis Organization

	Background and Related Work
	Overview
	Definitions of Terms
	Virtualization
	Types of Virtualization

	Cloud Computing
	Cloud Computing Business Model

	Network Virtualization
	Overlay Networks
	The Network Virtualization Environment
	Business Models
	Service-Oriented Business Model

	Virtual Network Embedding Process
	Virtual Network Applications and Services

	Web Services
	RESTful Web services

	Summary

	A Framework for Resource Publication and Discovery in Network Virtualization Environment
	Introduction
	Related Work to Resource Discovery and Selection in Network Virtualization Environment
	Business Scenario
	Requirements for Dynamic Resource Publication and Discovery in Network Virtualization Environment
	Broker-based Framework for Resource Publication and Discovery
	Overall Architecture
	Introduction
	Components Description

	Case Study
	Summary

	Information Model
	Introduction
	Related Work to Resource Description
	Requirements for an Information Model in Network Virualization Environment
	The Proposed Information Model
	High-level Overview
	Detailed Description

	Summary

	Design and Implementation
	Overview
	Requirements for the Implementation
	Software Architecture
	Implementation
	The Technologies and Tools Used
	Data Sources
	Platform Virtualization

	Resource Publication and Management
	Resource Discovery
	Resource Negotiation
	Virtual Topology Instantiation and Resource Management
	Broker Components Implementation
	Resource Selection Algorithm
	Broker Web Services
	Broker User Interface

	Use Case–Secure Content Distribution Scenario
	Lessons Learned
	Summary

	Performance and Scalability Evaluation
	Performance Evaluation
	Prototype Setup
	Resource Publication Tests
	Resource Discovery Tests
	Resource Negotiation Tests
	Virtual Topology Instantiation Tests

	Scalability Evaluation of the Implemented System
	Scalability Tests Setup
	Resource Publication Scalability Tests
	Resource Discovery Scalability Test

	Summary

	Conclusions and Future Work
	Discussion
	Summary of Contributions
	Future Work

	Bibliography
	I Appendices
	Appendices
	Enumeration Types
	Enumerations Types for Network Nodes
	Enumerations Types for Network Links
	Enumerations Types for Network Services
	Security-related Enumerations Types
	Enumerations for Wireless-related Entities

	Shell Scripts
	Script for Managing Ethernet Vyatta Virtual Network Interfaces
	Managing Virtual Network Routing

	XML Schema Definition
	XSD for Resource Description
	XSD for Resource Discovery Requests
	XSD for Negotiation Requests
	Resource Description Sample

	Message Logs of the PIP Subsystem
	Message Logs of the VIP Subsystem
	Broker Components Message Logs

