A RESOURCE PUBLICATION AND DISCOVERY
FRAMEWORK AND BROKER-BASED ARCHITECTURE FOR
NETWORK VIRTUALIZATION ENVIRONMENT

SLEIMAN RABAH

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF APPLIED SCIENCE (SOFTWARE ENGINEERING) AT

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

JANUARY 2014

(© SLEIMAN RABAH, 2014

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Sleiman Rabah
Entitled: A Resource Publication and Discovery Framework
and Broker-Based Architecture for Network Virtu-

alization Environment

and submitted in partial fulfillment of the requirements for the degree of
Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Yuhong Yan

Examiner
Dr. Todd Eavis

Examiner
Dr. Lingyu Wang

Supervisors

Dr. Joey Paquet and Dr. Rachida Dssouli

Approved by

Chair of Department or Graduate Program Director

20

Dr. Christopher Trueman, Interim Dean
Faculty of Engineering and Computer Science

Abstract

A Resource Publication and Discovery Framework and Broker-Based

Architecture for Network Virtualization Environment

Sleiman Rabah

The Internet has received a phenomenal success over the past few decades. However, the
increasing demands on the Internet usage and the rapid evolution of the applications and
services provided over the Internet have demonstrated that the current Internet architecture
is unsuitable for supporting many types of applications. Moreover, its ubiquity and multi-
provider nature make nearly impossible the introduction of radical changes or improvements
without coordination and consensus between many providers. Thus, any technological
changes in the current Internet architecture could result in unintended consequences on the
overall Internet usage. Network virtualization is considered as promising, yet challenging,
solution to overcome these limitations. It commonly refers to the creation of several isolated
logical networks that can coexist on the same shared physical network infrastructures. Its
key concept is to enable several network architectures to run concurrently in a multi-role-
oriented environment in which the role of the traditional Internet Service Provider (ISP) is
decoupled into several roles such as infrastructure provider (InP), virtual network provider
(VNP) and service provider (SP). Despite the promising benefits, this concept is associated
with many challenges. These, among others, include the description and publication as well
as discovery of resources on which virtual networks are deployed.

In this thesis, we define a broker-based architecture that provides functions for publishing,
discovering and negotiating as well as instantiating and managing resources in network
virtualization environment. We proposed an information model that assists various providers

in describing the resources and services they offer and we implemented a proof of concept

1l

prototype to demonstrate the feasibility of the proposed architecture. Moreover, we have
conducted extensive experiments to evaluate the performance and the scalability of the

implemented system.

v

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisors Dr. Joey
Paquet and Dr. Rachida Dssouli for their patient, guidance, support and valuable advices
without which this thesis would not have been possible. Dr. Dssouli, you were a source of
motivation and inspiration to me, thank you for your encouragement, unique kindness and
for your time whenever I needed help despite your busy schedule. God bless you.

I am also grateful to Dr. May El Barachi and Dr. Nadjia Kara for their involvement,
guidance, and help throughout this work. I also thank my fellow labmates especially Serguei
A. Mokhov for their unique teamwork and the stimulating discussions we have had.

I would like to thank castell, the retired printer, who was always there for me in the sleepless
nights I spent during my studies.

Last but not least, I would like to thank my greatest and dearest parents for their unlimited
love and encouragement.

I would like to acknowledge the financial support of The Natural Sciences and Engineering
Research Council of Canada and the Faculty of Engineering and Computer Science of

Concordia University.

Contents

List of Figures xi
List of Tables xiii
List of Algorithms and Listings Xiv
List of Abbreviations 1
1 Introduction 1
1.1 Overview o e 1
1.2 Motivations 3
1.3 Thesis Objectives 5
1.4 Thesis Contributions L o 6

1.5 Thesis Organization 7

2 Background and Related Work 8
2.1 OVerview e 8
2.2 Definitions of Terms 8
2.3 Virtualization 9
2.3.1 Types of Virtualization 10

2.4 Cloud Computing 11
2.4.1 Cloud Computing Business Model 12

2.5 Network Virtualization, 12

vi

2.5.1 Overlay Networks o 13

2.5.2 The Network Virtualization Environment 13
2.5.2.1 Business Models oL 15

2.5.2.2 Service-Oriented Business Model 17

2.5.3 Virtual Network Embedding Process 20
2.5.4 Virtual Network Applications and Services 22

2.6 Web Services 22
2.6.1 RESTful Web services 23

2.7 SUMMATY . . . o v v et e e 24

A Framework for Resource Publication and Discovery in Network
Virtualization Environment 25
3.1 Imtroduction 25
3.2 Related Work to Resource Discovery and Selection in Network Virtualization
Environmento 26
3.3 Business Scenarioo 28

3.4 Requirements for Dynamic Resource Publication and Discovery in Network

Virtualization Environmento 0oL 29

3.5 Broker-based Framework for Resource Publication and Discovery 30
3.5.1 Overall Architecture 31
3.5.1.1 Introduction 31

3.5.1.2 Components Description 32

3.6 Case Study 35
3.7 Summary ... 38
Information Model 39
4.1 Introduction L 39
4.2 Related Work to Resource Description 42

4.3 Requirements for an Information Model in Network Virualization Environment 47

vil

4.4 The Proposed Information Model 48

4.4.1 High-level Overview 48
4.4.2 Detailed Descriptiono 50

4.5 Summary ... %)
Design and Implementation 57
5.1 OVerview e 57
5.2 Requirements for the Implementation 58
5.3 Software Architecture Lo 60
5.4 Implementationo 62
5.4.1 The Technologies and Tools Used 62
54.1.1 Data Sources 62

5.4.1.2 Platform Virtualization 63

5.4.2 Resource Publication and Management 64
5.4.3 Resource Discovery o 65
5.4.4 Resource Negotiation L oL 66
5.4.5 Virtual Topology Instantiation and Resource Management 67
5.4.6 Broker Components Implementation 70
5.4.6.1 Resource Selection Algorithm 70

5.4.6.2 Broker Web Services oL 73

5.4.6.3 Broker User Interface 74

5.5 Use Case-Secure Content Distribution Scenario 74
5.6 Lessons Learned oo 78
D7 SUMMATY . . . o o e 80
Performance and Scalability Evaluation 81
6.1 Performance Evaluation 0L 82
6.1.1 Prototype Setup 82
6.1.2 Resource Publication Tests 84

viil

6.1.3 Resource Discovery Tests 86

6.1.4 Resource Negotiation Tests. 89

6.1.5 Virtual Topology Instantiation Tests 91

6.2 Scalability Evaluation of the Implemented System 93
6.2.1 Scalability Tests Setup oL 93

6.2.2 Resource Publication Scalability Tests 94

6.2.3 Resource Discovery Scalability Test 98

6.3 Summary 101

7 Conclusions and Future Work 102
7.1 DiScussion e 102

7.2 Summary of Contributions 103
7.3 Future Work 104
Bibliography 105
I Appendices 116
Appendices 117
A Enumeration Types 118
A.1 Enumerations Types for Network Nodes 118
A.2 Enumerations Types for Network Links 120
A.3 Enumerations Types for Network Services 121
A4 Security-related Enumerations Types 122
A.5 Enumerations for Wireless-related Entities 123

B Shell Scripts 124
B.1 Script for Managing Ethernet Vyatta Virtual Network Interfaces 124
B.2 Managing Virtual Network Routing 125

1X

XML Schema Definition 126

C.1 XS8D for Resource Description L. 126
C.2 XSD for Resource Discovery Requests 137
C.3 XSD for Negotiation Requests 140
C.4 Resource Description Sample oo 141
Message Logs of the PIP Subsystem 145
Message Logs of the VIP Subsystem 153
Broker Components Message Logs 158

List of Figures

[I Y I R

\]

10
11
12
13
14
15
16
17
18
19

The Network Virtualization Environmentadapted from [1] 15
Main roles of NVE [2,3] 16
The business model proposed for the 4WARD project [4,5] 17
The service-oriented business model as proposed in [6] 18
The virtual network embedding process 20

System architecture of the proposed framework for resource publication and
discovery 31
High-level overview of the proposed architecture 33

Roles interactions during virtual network provisioning process within the

proposed frameworko 36
High-level overview of the proposed information model 50
Resource view of the proposed information model 52
Service view of the proposed information model 53
Overall framework use case 58
The software architecture of the implemented prototype 61
The Physical Infrastructure Provider resource management interface 64
The Virtual Infrastructure Provider discovery interface 66
The negotiation interface of the Physical Infrastructure Provider 67
The negotiation interface of the Virtual Infrastructure Provider 68
Editing resource negotiation requesto 69
Virtual topology management interface 70

x1

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

The Broker user interface 75

The implemented secure content distribution scenario 76
The prototype setup 83
Test scenario for resource publication 85
Test scenario for resource discovery 87
Test scenario for resource negotiation L. 89
Test scenario for virtual topology instantiation and configuration 91
Setup for the scalability tests 93
Test scenario for concurrent resource publication 94
Resource publication response time 97
Resource publication network load 97
Test scenario for concurrent for resource discovery 98
Resource discovery response time 100
Resource discovery network load o0 100
Enumeration types for physical and virtual nodes 119
Enumeration types for network physical and virtual links 120
Enumeration types for network-related services. 121
Enumeration types for formulating security-related attributes 122
Wireless-related enumeration typeso 123

xii

List of Tables

coO I O Ot = W N

Summary of some existing description languages grouped by networking/com-
puting areao e
Comparison of the existing information model with our requirements

Broker web services” API
Resource publication average network load and response time measurements
Resource discovery network load and response time measurements
Resource negotiation average network load and response time measurements
Results of resource publication experiments

Scalability results of resource discovery experiments

xiil

List of Algorithms and Listings

5.1

B.1
B.2
C.1
C.2
C.3
C4
D.1

D.2
D.3
D4
E.1
E.2
E.3
F.1
F.2

An example of a resource discovery request 72
Add or delete a specific Vyatta VM Ethernet interface 124
Script to manage a route between two networks 125
The used XSD for describing physical and virtual resources 126
XSD for formulating Resource Discovery requests 137
Schema for resource negotiation requestso 140
A sample of resource description document L. 141

Message log generated by the implemented modules involved in the resource

publication process 145
Message log generated during PIP-to-VIP resource negotiation process . . . 146
Message log of the virtual topology instantiation and configuration process . 147
Message log of resource publication scalability tests 151
Resource discovery message log 153
VIP resource negotiation message log 153
Message log of resource discovery scalability tests 156
Broker’s resource publication message logs 158
Broker’s resource discovery logs oL 159

Xiv

List of Abbreviations

API
HTTP
InP
ISP
JAXB
NIC
NVE
PIP

REST
RPC
SOAP
SpP
SSH
UML
URI
URL
VIP
VMM
VM
VN

Application Programing Interface
Hypertext Transfer Protocol
Infrastructure Provider

Internet Service Provider

Java Architecture for XML Binding
Network Interface Controller
Network Virtualization Environment
Physical Infrastructure Provider
Quality of Service
Representational State Transfer
Remote Procedure Call

Simple Object Access Protocol
Service Provider

Secure Shell

Unified Modeling Language
Uniform Resource Identifier
Uniform Resource Locator
Virtual Infrastructure Provider
Virtual Machine Monitor

Virtual Machine

Virtual Network

VoIP
VPN
WADL
WSDL
XAPI
XML
XSD

Voice over Internet Protocol

Virtual Private Network

Web Application Description Language
Web Service Description Language
Xen Management API

eXtensible Markup Language

XML Schema Definition

Chapter 1

Introduction

In this chapter we give an introduction to the research domain. We present an overview
of the problem being addressed. Then, we discuss our contributions and the solution we

propose.

1.1 Overview

The Internet is serving more than one billion people and has become a critical element of
life that humans rely on to access information and do business. In just three decades, it has
gained a tremendous success as worldwide communication medium. Started as a research
project called the ARPANET in the late 1960’s [7], the Internet, or “network of networks”,
was initially designed as a simple technology that enables two hosts to exchange packets.
Then, it has evolved to support sending files and messages transfer. In the past recent years,
advances in link technologies (such as fiber optics and wireless) as well as the wide variety of
multimedia and sharing applications caused the Internet to explode in the number of users
and the variety of applications and services offered. Thus, advances in mobility computing
and the emergence of social networks increased the demand on the Internet usage. Despite
its success, the increasing demand has demonstrated that the current Internet architecture

created obstacles for introducing changes and innovations in the underlying networking

technologies. As the Internet continues to evolve, the innovation in network technologies
and deployment of new services face many challenges such as scalability issues, new routing
protocols, addressing, security and QoS. In contrast to the current Internet that was first
designed for non-mobile hosts (having fixed locations), in just a very short period of time
the mobile computing-related technologies went through an exponential progress.

Given this tremendous success, any technological changes in the Internet architecture could
result in unintended consequences on the economy and overall Internet usage. Several
ongoing research efforts are being conducted to redesign (i.e redefine) a new Internet
architecture that is referred to Future Internet or next-generation networks [3,5, 8], in
response to the challenges and obstacles the current architecture is facing as well as promoting
flexibility and diversifying services offered. As opposed to the current architecture, the Future
Internet should allow co-existence of heterogeneous network designs and solutions (old and
new), enable innovation, and address the challenges of the future related to the consumption
services over the Internet. Consequently, many new architectures and paradigms such as
Software Defined Networking (SDN) have emerged.

Network virtualization is considered as a promising way to overcome the limitations and fight
the gradual ossification of the current Internet infrastructure. The network virtualization
concept consists in the dynamic creation of several co-existing logical network instances (or
virtual networks) over a shared physical network infrastructure [9].

The key concept of the Future Internet is to enable the coexistence of several
network architectures in a multi-role-based environment. In such environment, several
roles (i.e organizations) collaborate to offer distinct or similar services. Hence, the role
of the traditional Internet Service Provider (ISP) should be decoupled and distribute
its responsibilities and tasks among new entities: infrastructure provider (InP) who is
responsible for managing the physical resources; and Service Provider (SP) who leases and
aggregates resources (from one or more InP) on which he deploys end-to-end services (e.g.,
layer 3 VPNs, VoIP,conferencing services, etc) In order to leave the core network simple and

dedicated to packet forwarding, the end-to-end principle claims that service’s functionality

should not be deployed in the core Internet, but if possible, should be deployed on the end
points [10].

To allow multiple networks to coexists, virtualization techniques have been considered
as key enabler. Thus, the CABO project [3] was first to propose the use of virtualization
to enable the creation of virtual networks over a shared physical network infrastructure.
Essentially, virtualization is a mechanism that provides decoupling (separation) of the
resulting services from the underlying physical environment. Network virtualization is
intended to separate the data plane from control plane. This is expected to enhance the
flexibility of the resulting networks, diversity and manageability of the offered services with

quality of service capabilities.

1.2 Motivations

At the time of writing, the applications and services that are delivered over the Internet
are rapidly evolving. Among such services are content distribution and multimedia service
delivery (VoIP, video streaming). Moreover, several factors such as economies of scale, the
need for lowering the IT costs, and the emergence of utility computing (pay only for what you
need) have led to the adoption of a new software delivery model: Software as a Service (SaaS).
In this model, software is consumed as utility and delivered over the Internet [11]. However,
the current Internet architecture suffers from ossification and is ill-suited to support such
types of application for many reasons [8,12]. First, the underlying networking technologies
did not evolve since the Internet inception. Second, the lack in support of the requirements
needed to run those applications such as efficient routing, security, QoS as well as the support
for mobile network-related features such as context-awareness, multi-homing, and seamless
switching.

Internet ossification can be explained as the resistance of the current Internet architecture
to support fundamental changes needed for deploying new network protocols, technologies
and applications such as differentiated services, secure routing protocols, IP multicast. This

creates significant barriers to innovation. Another issue to overcome the Internet impasse is

that by nature, the current Internet architecture relies on a single-role based business model:
the Internet Service Provider (ISP) [1]. Consequently, the Internet infrastructure is shared
among those ISPs where each ISP owns and manages its network infrastructure, and provides
services to customers in a fierce competition environment based on self-interests and not
quality of service. Competition and conflict of interest are issues among major stakeholders
pose a barrier to the introduction of new and innovative network technologies. As a matter of
fact, it is difficult to introduce changes to the current Internet architecture or adopt a new one
without coordination and consensus between many stakeholders. At the time of writing, the
deployment of necessary changes to support IPv6 that is happening at a slow pace consists in
a good example to this problem. Radical changes to the Internet are needed as the demand on
value-added services (e.g context-aware application) is rapidly growing. Remarkably, fierce
competition between the major players in mobile computing has led to phenomenal advances
in terms of innovation and services. Consequently, a large number of organizations that
provide mobile-based services emerged. Enabling competition in networking technologies is
perceived to have the same impact for building a better Internet [2].

To overcome the problem of Internet ossification, network virtualization has been
considered a prominent solution which allows for enabling experimentation with new
network architectures (or the Future Internet), and the deployment and test of new
network services independently without disruptions [2, 8, 13-15]. Network virtualization
is a promising and technically challenging concept, which enables the on-demand creation
and provisioning of logical networks (or virtual networks) deployed over a shared physical
network infrastructure. There are several motivations behind this concept, including cost-
effective sharing of resources; customizable networking solutions; and the convergence of
existing network infrastructures. The main idea behind network virtualization is to allow
multiple heterogeneous and isolated network architectures (instances) to cohabit on a shared
physical substrate. This is intended to provide better flexibility and manageability, as well
as enhanced security allowing the deployment and test of customized services such as value-

added services at low cost [3]. Network virtualization follows a new business model which

decouples the role of the traditional ISPs into independent roles: infrastructure provider
(InP) who owns and manages the physical infrastructure (or substrate), and virtual network
provider (VNP), who leases virtual resource from one or multiple InPs on which he creates
virtual network(s) and offers end-to-end services. Offered as a service, a virtual network
is provisioned on demand and the provisioning process consists in describing, discovering,
matching, and allocating virtual resources [16]. In addition, a VNP selects the best virtual
resources that are more suitable to satisfy its requirements. Precision and accuracy are
critical to a successful selection of resources. Therefore, resources are evaluated and selected

based on their static (functional) and dynamic (non-functional) attributes [17].

1.3 Thesis Objectives

Although network virtualization is seen as a promising solution for a more flexible use of
the Internet, it is associated with many challenges related to the provisioning and operating
virtual networks as well as the management of resource information (i.e., description and
discovery).

For an infrastructure provider (InP) to enable other roles to discover and formulate
their requirements in terms of resources, and for end users to discover the SPs’ services
of interest, there should be a standardized public interfaces for enabling role-to-role
communication. These interfaces should also enable the programmatic management of the
virtual resources [1].

Moreover, for SPs to request resources needed their desired virtual networks, there must
be a mechanism that enables the dynamic discovery and selection of virtual resources that can
be composed to form virtual networks. To achieve that task, there is a need for a formal and
expressive information model which enables InPs to describe their resources and services, and
facilitates information representation and sharing between the various roles/entities involved.
In an attempt to address these challenges, we have set several goals.

First, to enable the effective interactions between various roles, suitable interfaces must

be defined and standardized. Such interfaces would enable seamless interactions between the

existing various roles operating at different levels of the network virtualization environment
hierarchy.

Second, a suitable framework is needed that enables the dynamic publication and
discovery of available virtual resources. This framework would enable infrastructure
providers to describe and advertise information about resources and the creation of virtual
network(s) spanning across different administrative domains. Resource description should
include static and dynamic attributes. However, the existing resource description languages
focus on a specific aspect of network area and do not support the description of a virtual
network as a whole.

The third goal is the investigation and elaboration of a distributed and scalable
architecture that allows for publication and intelligent discovery of resources and services.
This requires the identification of functional entities involved, the interfaces needed as well

as the identification of interactions between the different entities.

1.4 Thesis Contributions

To solve the issues mentioned in the previous section 1.3, we propose a framework that
enables the description as well as dynamic publication and discovery of resources in network
virtualization environment(NVE) [9].

Our work focuses on modeling the resources and the publication and discovery of resource-
related aspects as well as the interactions between various roles. We summarize the

contribution of this thesis as follows:

e We propose a broker-based architecture for resource publication, discovery and
negotiation in NVE that enables multiple roles to publish, discover and negotiate
information about virtual resources. We then present the state of the art of resource

discovery and selection in NVE.

e We build on the business model introduced in [6] and the broker-based architecture

by proposing a multiservice, multi-role hierarchical information model, for network

virtualization environment. We then demonstrate the usage of this information model
using a secure content distribution scenario that is realized using REST interfaces.
Additionally, we present the relevant related work on network resource description and

modeling in general and the ones proposed for NVE in particular.

e We implement a subset of the proposed architecture as a proof of concept prototype
and to validate our proposed approach. We then extend the secure content scenario to

illustrate and detail the interactions of the implemented components.

e We finally assess the performance of the implemented prototype and test the scalability

of the overall system implementation.

1.5 Thesis Organization

The structure of this thesis is organized as follows. In the following chapter, we give a
background information about virtualization, network virtualization environment and its
business models as well as web services in general and RESTful web services in particular.
In Chapter 3, we present the proposed framework for resource publication and discovery in
NVE and a case study. We then present the related work on resource discovery. In Chapter 4,
we present the proposed information model and we discuss the different information model
that have been previously proposed for network resource description in general. In Chapter 5,
we discuss the software architecture and setup of the implemented prototype. Then,
we present the different interfaces used to interact with the implemented components.
In Chapter 6, we evaluate the prototype by conducting performance and scalability tests
and interpret the results. Finally, in the last chapter, we discuss the limitation of this work

as well as suggestions for future work.

Chapter 2

Background and Related Work

2.1 Overview

Network virtualization is a quickly emerging paradigm, mainly, as an alternative to the
current Internet architecture. It gained widespread popularity among, and has received the
attention of, many researchers and companies due to the promising benefits and challenges
it offers. New concepts and innovations are being adopted, among others, software defined
networking, virtual network in data centers, etc.

In this chapter, first, we define the terms and concepts that are related to the work
presented in this thesis. We then present the network virtualization concept, its environment
and architecture as well as the related business models. We finally give an overview of review

web services and resource oriented architecture.

2.2 Definitions of Terms

In this section we define the key terminology used throughout this thesis.
Resource — We use the term resource to refer to a manageable unit within a NVE context.
A resource could be physical or virtual and it is associated with a set of characteristics such

as processing power, storage, etc.

Physical resource — Or substrate node is a network element (network-capable electronic
device), for instance, a network router, switch, server or computer.

Physical Infrastructure — Is a pool of physical resources that are intended to be virtualized
and used on demand.

Virtual Resource — Virtual resource or virtual device is a logical entity that is created
using some virtualization techniques and hosted on a physical resource (e.g a virtual
machine or a virtual router). Thus, many virtual resources can co-exist on, and share the
computational resources of, the same physical resource . Virtual resources can be aggregated
from two or more providers forming what is called a federation.

Service — We use the term service to refer to network services or application offered by
different providers. Such as firewall application, load balancers, VolP, conferencing services
and so on.

Virtual Network — Consists of at least two virtual nodes connected together by a virtual
link. A virtual network is deployed on top of, and inherits the same properties as, a physical
one. Thus, a virtual network can span across multiple domains.

Resource Provisioning — The term provisioning refers to the set of processes that are
performed to allocate resources or services to consumers upon request. The provisioning
process often includes steps related to resource description, discovery and negotiation.
Negotiation enables different entities to reach an agreement on the quality and the guarantee

of the service in question.

2.3 Virtualization

In essence, virtualization is the process by which an additional logical layer (software) is
added on top of on existing system so that the resulting system reflects the underlying one
while exposing its services and mimicking its behavior. The services and functionalities of
the underlying system are exposed so the user get the illusion as if it was using the real
system. Virtualization is not a new concept and was first introduced in the early 1960s

by IBM for the third generation computers (i.e mainframes) as a mechanism to divide the

computational resources for different applications [18]. However, the use of virtualization
has declined around the early 80s as there was a big shift in terms of processing power and
due to the lack stability of computers’ architecture in general.

In 2000s, several factors and motivations such as advances in computer hardware,
under-used machines, the need for server consolidation, cost saving, etc, have led to
the “renaissance” of virtualization and mainly its mainstream adoption for hardware
virtualization. Moreover, it has been applied to multiple computing areas such as storage,
applications, network, and hardware. Although virtualization offers many benefits such
as flexibility, effective use of resources, programmatic allocation of resources, isolation
and security, on the other hand, there are several drawbacks associated with it such
as performance overhead and complexity, as well as the lack of supporting all type of
applications. Among today’s major virtualization technologies products are Microsoft Hyper-

V [19], VMWare vSphere [20], Citrix (XenServer) [21].

2.3.1 Types of Virtualization

Virtualization can be applied to hardware (hardware virtualization) as well as to software
(applications virtualization). In general, we distinguish several virtualization categories,
such as hardware-level (sever and router virtualization), operating system-level (e.g Jails),
high-level programming language virtual machines (e.g Java VM, .NET CLR), etc.
However, in this thesis, we are concerned about the following most common virtualization

techniques for hardware server virtualization:

e Full virtualization: in this technique, the guest operating system is used as is without
modification. However, this results in poor performance due to the lack of direct access
to the underlying services and poor I/O performance. This allows older and legacy

systems to run on newer and more efficient machines [22].

e Para-virtulization: this technique requires a modified guest OS that achieves

near-native system performance (with total around 5% overhead) [23]. The

10

modifications are made to improve performance by making the guest “aware” that
it is being virtualized [24]. As opposed to full-virtualization (e.g VMWare, KVM),
para-virtualization-based solutions offer scalability and offer notable performance

improvement that is near to native one with 0.5 to 8% performance overhead [23].

Both approaches requires what so-called a virtual machine monitor (Hypervisor). The
hypervisor is a type of OS that allows multiple operating systems, called guest OS, to run

simultaneously on a single physical machine.

2.4 Cloud Computing

At the time of writing, there is no consensus nor a standard definition to define Cloud
Computing (CC). It can be seen as a new paradigm where computational resources (e.g
servers, storage, networks) can be dynamically requested, customized and provisioned on
demand which are provisioned and managed from a single point of management by a service
provider. For a more technical definition, it is a distributed system consisting of a large
pool of virtualized resources consumed on demand on a pay-per-use basis. Several factors
such as advances in computer hardware, under-used machines, economic crisis, reduction
of operational cost and increased demand on computational resources have led to the
adoption of this new paradigm. Moreover, today’s computing environments are changing
and shifting towards a service-based model where everything, from a server to a software, is
offered as a service. More and more new paradigms are being introduced that are based
on concepts such as on utility-based usage, multi-tenancy and cost-effective sharing of
resources [25]. Consequently, CC inherits many pre-existing technical concepts (such as
distributed computing, grid computing, and virtualization) and business-related concepts
(such as utility-based pricing, multi-tenancy, cost-effective and efficient use of hardware

resources) [11].

11

2.4.1 Cloud Computing Business Model

The business model related to CC environment is centered on the following for roles:
Infrastructure providers — Provide their infrastructure (i.e hardware and computational
resources) as a service (IaaS) to service providers. Among the major infrastructure providers
are Amazon [26], Google [27], IBM [28] and recently Microsoft [29].

Platform providers — Provide development platform as a service (PaaS) to develop
customized cloud-based services. Example of these platform are IBM SmartCloud, Amazon
Elastic Beanstalk and Google App Engine.

Service Providers — Are organizations offering services to consumers. A service can be a
software (SaaS) or anything (*aaS) and offers value to the consumer and can be composite:
composed of two or more services aggregated together from one or more service provider.
A service provider relies on the services provided by infrastructure providers in terms of
hardware and computational resources.

Consumer —Or end user is the buyer of a service that is provided directly by a service

provider or a platform provider.

2.5 Network Virtualization

Virtualization has been around for a long time and it consists of the introduction of an
abstraction layer on top of physical resources which gives the impression to the user as if he
is using those physical ones. The concept of network virtualization, which enables multiple
logical networks to co-exist, is not new and has evolved since its first introduction [1, 8].

Past virtual networking techniques/technologies are Virtual Local Area Networks VLLANSs,
Virtual Private Networks (VPN), active programmable area networks and overlay networks
and the term “virtual network” is used to refer to those technologies. However, the
term network virtualization that is used throughout this thesis refers to a new network
virtualization concept where network virtualization is not limited in scope (e.g, layer 2 for

L2 VPN) as opposed to the aforementioned technologies [30].

12

2.5.1 Overlay Networks

Overlay networks are logical (implemented in the application layer) networks built on top of
one or more physical networks . In its early days, the Internet started as overlay that was
deployed on top of the telecommunication network. The key advantage of overlay networks
is that they do not require any changes to be done on the physical networks, nor do they
affect their functioning [31]. This has led to use overlays extensively as successful solution
to test and deploy new features and fixes in the Internet. Moreover, many overlay-based
testbed projects have been initiated such PlanetLab [32], X-Bone [33] and VINI [34] that are
used as testbeds to design and test new architectures, study computer viruses and propose
applications that address many issues (such as Internet routing, protection from denial of
service attacks, etc). Although overlays introduce flexibility and offer the possibility to build
logical networks independent from physical ones, most overlays are designed and built at the
application layer (on top of IP). Therefore, they cannot solve the limitations of the current

Internet architecture.

2.5.2 The Network Virtualization Environment

As shown in Figure 1 The network virtualization environment(NVE) consists of one or more
heterogeneous virtual networks co-existing on one or more virtualized platforms. A virtual
network (VN) consists of the basic entity in such environment. VNs within NVE use different
network architectures and protocols and provided as a service by various roles (called virtual
network providers). The network virtualization concept enables multiple, isolated, virtual
networks running simultaneously to share, and co-exist on, the same physical resources.
To achieve this concept, the physical resources are divided into slices (partitioned) using
some virtualization technologies. The resulting slices are called virtual resources consist of

the key building blocks of a virtual network. Virtual resources are requested on demand

13

and aggregated to create a VN that is offered as a service. Many network virtualization
research projects have been initiated. Such projects are: CABO (Concurrent Architectures
are Better than One) [3], 4AWARD [4], Nouveau [35,36]. The aforementioned projects follow
a “pluralist” philosophy which states that networks should be fully virtualized and network
services should be separated from their underlying infrastructure [13].

The idea behind network virtualization is not new. Several approaches have been
introduced to put in place what is called virtual networks (VPN, VLAN). Network
virtualization requires virtualized platforms and relies on two main components: node
virtualization and link virtualization [1,8]. However, network virtualization goes one step
further by taking advantage of the benefits of platform virtualization such as the cost-effective
use of resources, network isolation, optimization and programmability as well as the dynamic

provisioning of resources which enhance scalability.

14

Virtual Network 3

Service
Provider 2
(SP2)

Service
Provider 1
(SP1)

Infrastructure Provider 1 Infrastructure Provider 2 Infrastructure Provider 3
(InPT) (InP2) (InP3)

O Virtualnode -....... Virtual link
o Physical node Physical link

Figure 1: The Network Virtualization Environmentadapted from [1]

2.5.2.1 Business Models

From a business perspective, one of the goals of network virtualization is to introduce
flexibility and innovation by decoupling the role of the traditional Internet service provider
(ISP) into multiple independent entities. Figure 2 depicts the initial business model for
NVE as proposed in [2,3]. This model introduces two main roles:

Infrastructure Provider — Who owns and manages the physical infrastructure. He is also
responsible for creating virtual resources by partitioning his physical resources into isolated
slices using some virtualization technology.

Service Provider — Leases and aggregates virtual resources from multiple InPs to create

15

virtual networks. Furthermore, the service provider is also responsible for offering end-to-end
services to end users .

End Users —in NVE are the consumer of the services offered by SPs. They are similar to
end users in the traditional Internet model; however, they have a large number of services
to choose from. This is due to the multiple virtual networks offered by competing service

providers [1].

Service Provider

(SP)

Infrastructure Provider Infrastructure Provider Infrastructure Provider
(InP) (InP) (InP)

Figure 2: Main roles of NVE [2, 3]

Another model has been proposed as part of the 4WARD model, which consists of one
of the main research projects on network virtualization [4,5]. The 4WARD model extends
the model shown in Figure 3, and defines two more roles:

Virtual Network Provider (VNP) — finds and aggregates the optimal virtual resources
from one or more InPs. These aggregated virtual resources are leased from multiple InPs to
fulfill the virtual network operator’s request. The VNP does not provide a network but only
the virtual resources on which the virtual network operator deploys the protocols to create
a virtual network.

Virtual Network Operator (VNO) — creates the virtual network over the virtual
resources that were previously aggregated by the VNP. He deploys the required protocols

16

stack and network architecture over the newly created virtual network. In addition, the
VNO is responsible for controlling, managing and maintaining the virtual network. In this
model, the SP has no direct interaction with the infrastructure provider. However, he deals
with the VNO as if it was the InP to deploy the end-to-end services he offers.

As matter of fact, the success of NVE model depends on the collaboration and
interaction between various business entities. Each business entity not necessarily belongs
to a particular category of roles, provides a distinct service that is intended to be used by
another entity within the NVE. Moreover, several business entities provide services, when
combined together; enable the creation of VN on which an end-users service is deployed. In
this thesis, we use the term role to refer to a business organization doing business in NVE.

VN Users

Service Provider
(C19)

VN Operator
(VNO)

Virtual Network Provider
(VNP)

Infrastructure Provider Infrastructure Provider Infrastructure Provider
(InP) (InP) (InP)

Figure 3: The business model proposed for the 4WARD project [4, 5]

2.5.2.2 Service-Oriented Business Model

Inspired by the TINA [37] and the web services composition models, El Barachi et al.
have introduced a new service-oriented hierarchical business model for network virtualization
environment in [6,38]. The proposed business model is shown in [6,38]. It puts the emphasis
on the notion of services, hence, four classes of services are defined, namely: Fssential

Services constituting mandatory services needed for the basic operation of the network (i.e.

17

Service Provider
(SP)

Virtual
Consumer Service & Resource Infrastructure

(end-user/ Registry Provider (3" party
subscriber) (Broker) service provider)
(VIP)

Physical
Infrastructure
Provider
(PIP)

Figure 4: The service-oriented business model as proposed in [6]

18

routing/transport services); Service Enablers consisting of the common functions needed to
support the operation of end-user services (e.g. session/subscription management, charging,
security, and QoS management); Service Building Blocks acting as elementary services that
can be used/combined to form more complex services (e.g. presence and call control); and
End User Services constituting the value-added services offered to users.

In this model, five distinct roles were introduced which we briefly detail as follows:
Physical Infrastructure provider (PIP) — Owns and manages a physical network
infrastructure (or a substrate network); splits the resources into isolated slices; and describes
and advertises the virtual resources being offered.

Virtual Infrastructure Provider (VIP) — Aggregates resources from one or more PIPs,
instantiates and operates a virtual network on which he deploys service enablers.

Service Provider (SP) — offers value-added services to subscribers with whom he has a
business agreement. The SP aggregates multiple service building blocks to form a composite
service.

Broker — Or Services and Resources Registry (SRR): is a repository where information
about the advertised virtual resources is stored. It puts all the parties in contact by providing
relevant information to find other parties and the services/resources they offer.
Consumer — acts as end user and service subscriber and uses the value added services
provided by SPs.

Figure 4, illustrates the relationships that a role could have in NVE. Roles are business
organizations that interoperate and collaborate with each other in order to consume/offer
resources and services and exchange information related to these resource/services.
Therefore, a role can be a resource provider and service provider at the same time. Being the
former, a role offers, manages and accesses virtualized resources. Whereas a service provider
offers, manages, and sometimes subscribe to network services. In fact, network services
are mapped to networked resources. Roles are distributed and loosely coupled entities.
In consequence, to enable interactions between them, programmable interfaces are needed.

Thus, just like web services, network services can be published, dynamically discovered, used

19

and composed.

2.5.3 Virtual Network Embedding Process

Actions Roles involved

Describe resources’ functional and

. . Resource Description
non-functional attributes P

Infrastructure
Provider & Broker

Advertising information about

. Resource publication
available resources

Discover resource candidates that .
. , . Resource discovery
comply with requestors’ requirements

Virtual

> Infrastructure

Select the best resources satisfying a Provider & Broker

request using selection and matching
algorithms

Resource matching and

selection

Negotiate resources with multiple
providers

Physical and

Resource negotiation L . .
& Virtual Providers

Resource allocation and
mapping

Allocate virtual resources (nodes and
links) on substrate resources

Physical Infrastructure

. Provider
Dynamic resource

management and
monitoring

Adaptive resource management and
virtual nodes monitoring and migration

AN Sl

7

Figure 5: The virtual network embedding process

As shown in Figure 5, the virtual network embedding process involves several steps and
requires the collaboration between various roles. We briefly detail the steps as follows:

Resource Description — In NVE, multiple infrastructure providers offer resources to be

20

leased on demand. Describing the offered resources is crucial in NVE, however, it is not new
to the network field. Resource description (or information modeling) involves describing the
fine-grained functionality of network resources (i.e their characteristics and capabilities) [16].
This facilitates information retrieval related so that the resources can be discovered and
selected precisely and efficiently by other roles wishing to lease the resources offered by
the infrastructure providers. In other words, resource description can be defined as the
specification of the functional and non-functional attributes of resources using a description
language.

Resource Publication — The process of resource publication in NVE is similar to the
process of publishing a web service’s description. It involves the steps performed by an
infrastructure provider to advertise (i.e share information) the virtual resource description
he offers. According to the literature, the description of the resources are registered in public
discovery framework [17], or repositories, so that they can be discovered by VN requestors.
Resource Discovery — Resource discovery requires that information about the virtual
resources offered by multiple providers must be available. This process consists of seeking
relevant resources/services of interest according to their characteristics and selecting the
best infrastructure providers [17,39]. A VN request is used to formulate the characteristics
of the requirements wanted resources should have. Such requirements are later taken into
consideration by the resource selection and matching process.

Resource Selection — This process consists in finding from a set of potential resources
the best resources whose characteristics correspond to the requirements specified in the
discovery request. This involves matching the attributes of the candidate resources with
the one specified in the discovery request. Some selection algorithms can be used such as
hierarchical resource clustering using dendrogram [16,17].

Resource Negotiation — Resource negotiation is considered as important process in NVE
that enables service provider to negotiate with multiple providers in order to select the best
one. This involves the negotiation of the capabilities of the requested resources and the

related quality of service scheme [40].

21

Resource Allocation Mapping — Resource allocation or resource provisioning [8], also
referred to as VN embedding in the literature, is the process of reserving physical resources
to virtual resources (such as nodes and links). Resource allocation is performed by an
infrastructure provider.

Dynamic Resource Management — This involves adaptive management and monitoring
of the allocated resources after their creation [41,42]. As part of this process, virtual nodes

can be migrated, hence, the virtual topology can be dynamically adapted.

2.5.4 Virtual Network Applications and Services

Much like server virtualization that enables multiple virtual machines to run on the same
physical server, network virtualization enables multiple virtual network sharing the same
physical resources. Hence, different protocol and communication technology can be used
to offer different kind of sophisticated applications which require high. Example of such
applications are conferencing services, content delivery networks (video streaming) [43],

Internet Protocol Television (IPTV) [44], etc.

2.6 Web Services

Web services are software components exposed to the web via public interfaces enabling
them to be invoked remotely. For them to be discovered and consumed, web service
description languages such as WSDL and WADL are used to describe services’ functionality
and capabilities [45,46]. Such description includes the operations a service offers, the data
being transmitted and communication protocol supported, and so forth. Web services were
first introduced around 1998 to cope with interoperability problem encountered with early-
distributed system technology such as the Common Object Request Broker (CORBA).
The Service-oriented architecture (SOA) was the first architecture proposed for building
web services and automating business processes and enhancing systems’ productivity

and interoperability between them. SOAP-based web services (also known as big web

22

services), which are built upon the SOA architecture, have been widely adopted by several
organizations for integrating enterprise applications as well as implementing and composing

business processes [47].

2.6.1 RESTful Web services

Representational State Transfer (REST) is not an architecture but rather an architectural
style. It was introduced by one of the principal HT'TP authors, Roy Fielding in his
dissertation [48,49] in 2000. The main idea of REST revolves around the notion of resources
that need to be used and addressed. A resource can be anything exposed to the web such as
any application’s component, file on disk, a database recode and so on. REST web services
rely on HTTP protocol as communication enabler and take advantage of its reliability to
build a large-scale distributed hypermedia systems. As opposed to SOAP-based web services,
REST web services are lightweight services, which make them easy to discover and consume
by any application that is able to send HTTP requests from any kind of client (mobile,
browser, wireless sensor network). Consequently, in recent years, REST has attracted the
attention of large number of companies, mainly the major Internet player, to expose their
data and resources. In essence, REST architecture style is based on the following principles:
Resource Identification. Similarly to a web page, a REST web service is a collection of
resources. Each resource is uniquely identified by a URI (Uniform Resource Identification)
which enables global resources accessing and service discovery.

Uniform interface. Resources are manipulated and accessed on CRUD (create, read,
update and deleted) basis via HTTP’s standardized operations: PUT, GET, POST and
DELETE.

Self-descriptive messages. REST decouples resources from their representation. Hence,
a single resource can be represented in format (XML, JSON, Text). Fach message contains
the metadata that describes the meaning of the message and the information needed on how
to process the message (e.g mime type, HTTP operation used, etc).

Hypermedia as the engine of application state (HATEOAS). This principle enables

23

to build hypermedia-driven applications: the client of REST web services can follow the links
contained in resource’s representation to go to next state (change resource’s current state).
Thus, REST inherits some of HTTP’s properties, hence, interaction with a resource is a
stateless. However, stateful interactions are possible through hyperlinks.

REST web series are often referred to REST API. Much like a web site, an API has a
base URI (root), for example, http://example.com/resources/. Moreover, the API specifies
the format of the data exchanged is determined using Internet media type (previously called
mime type) and the set of operations supported using HTTP methods (e.g GET, PUT, POST
or DELETE). In this work, we use REST web services in implementing public interfaces that
enable interaction and interoperability between various roles. A more detailed discussion

about the use of such services is presented in Chapter 5.

2.7 Summary

The network virtualization is not a new concept. However, the introduction of virtualization
technologies into the networks enabled has enormously contributed to the undergoing
research effort to define a new diversified Internet architecture (i.e., Future Internet).
Virtualization is seen as a promising solution that enables to divide physical resources into
slices (i.e., virtual resources) which results in enabling cost-effective usage and sharing of
resources as well as enabling flexibility and isolation among the resulted virtual machines. In
this chapter, we first defined the terminology and terms used throughout this thesis. We first
discussed virtual networks in general and presented the concept of network virtualization.
In particular, we presented the notion of network virtualization environment (NVE) and
the related business models as well as the virtual network embedding process. Moreover,
we gave a brief introduction to web services technologies that we envisage to use as public
interfaces enabling interactions between roles. The following chapter presents the framework

for dynamic resource publication and discovery we propose.

24

Chapter 3

A Framework for Resource
Publication and Discovery in Network

Virtualization Environment

3.1 Introduction

We have discussed in the previous chapter the NVE and the related concepts and business
models. In this chapter, we present the framework we propose for resource publication and
discovery in NVE. We first survey the existing work on resource publication and discovery
in NVE. We discuss publication and discovery mechanisms of information about network-
related resources and the requirements such framework should have. Then, we present a
high-level overview of the framework architecture and describe a case study as well as detail

a scenario showing how this solution would be used.

25

3.2 Related Work to Resource Discovery and Selection
in Network Virtualization Environment

In a federated network virtualization environment (similar resource being offered by many
providers), resource discovery process consists of finding the available resources that are
capable of providing a service according to a set of requirements describing the characteristics
(i.e capabilities) of each wanted resource. It is a critical process for efficient allocation and
selection of reliable resources. In addition, due to the heterogeneous nature and the dynamic
ability of the resources, when selecting resource candidates, their functional and non-
functional characteristics have to be taken into consideration. Several approaches have been
proposed for discovering resources in distributed computing environments (e.g computational
grids, cloud computing, peer-to-peer networks). Such approaches employ many well-
known techniques [50], namely: distributed indexing (used in peer-to-peer networks), UDDI
registries that are used in soap-based web services, broker-based repositories, resource
classification and clustering [51] and agent-based.

Despite its importance in the VN embedding process, little work has been done on
resource discovery in NVE. In [16], a resource discovery framework has been proposed for
the 4WARD [4] model in which three parties are involved: PIP, VN provider, and customer.
Resources are described using XML documents. This framework uses clustering techniques to
manage arrange and resource information into dendograms (a tree-like data structure) which
facilitates the resource matching and selection process. While only resource’s functional
attributes are advertised and stored in external repositories, non-functional attributes are
constantly updated and kept in local repositories (are not made public) because of the
possible overhead caused by the continuous monitoring of network resources. Moreover, this
work considers only the case where a single VNP having to select the best PIP in order to
embed each VN request. Another point is that in NVE multiple PIPs can offer the same
resources (having similarities in their attributes), which implies that a VNP would deal with

a single PIP at once.

26

Authors in [52] extended [16] to address the problem of virtual network embedding across
multiple PIPs and to enhance the resource discovery process by reducing the search range
and cost. They proposed a hierarchical virtual resource organization framework supporting
multiple InPs that rely on using Local Management nodes to store static (functional)
attributes and arranging them, at first, into conceptual clusters called Micro Clusters
(MiCs) at the PIP level. Furthermore, a Cluster Index Server is used to aggregate and
organize the MiCs belonging to various PIPs having the same root attribute resulting in
a Macro Cluster (MaC). In this approach, dynamic (time variant) attributes such as the
residual capacity of a substrate link is stored in the local management nodes. To benefit
from WSDL’s support for the dynamical update of services, authors in [53] proposed a
WSDL-based resource provisioning framework for NVE. In this work, resource descriptions
are integrated into WSDL documents. Thus, with the help of local agents deployed on
local substrate networks, WSDL documents containing resource description are dynamically
generated and published to UDDI registries. For a VNP (Virtual Network Provider) to
select the candidate resources, a search in all the UDDI registries is required. In this
framework, the selection process relies on parsing the information contained in WSDL, and
uses the greedy and shortest path algorithms to retrieve the necessary information. Aiming
at enhancing the efficiency of the resource selection process by considering the dynamic
attributes, the Aggregation-based Discovery for Virtual Network Environments (ADVNE)
is proposed in [39]. However, to minimize the continuous monitoring overhead of each single
attribute (by reducing the number of monitoring messages circulation over the network), the
authors propose an approach which consists of calculating the aggregate of the monitored
attributes instead. In this approach, each PIP disposes a monitoring agent that monitors and
calculates the aggregation values which will be later retrieved on-demand by the discovery

module during the selection process.

To the best of our knowledge, the work that has addressed resource discovery in NVE

focuses only on functional attributes. However, only authors in [39] take into consideration

27

non-functional attributes in the resource discovery process. We argue that considering only
functional attributes in the selection process may lead to inaccurate selection. Furthermore,
when similar resources are offered by many PIPs, the discovery process become crucial
and the most appropriate resources have to be selected based on both functional and non-
functional attributes. Although advertising non-functional attributes may generate some
overhead due to the extra required processing, many solutions can be used to cope with this

problem such as efficient monitoring techniques.

3.3 Business Scenario

A service provider (SP) wishes to offer a secure and QoS-enabled content distribution service
for customers. Such a service is intended to be consumed on-demand; hence, the resources
on which the service will be deployed should not be limited (i.e elastic) and dedicated only
to the service in question. The SP would need to deploy its service over a scalable virtual
network so that, if needed, additional resources can be easily requested and added to enhance
the overall network’s performance. In addition to having its own isolated virtual network,
the instantiated virtual network would benefit from having additional value added properties
such as enhanced security, and efficient routing-aware services as well as different QoS scheme
support. At first, the SP would contact a VIP offering virtual resources of interest. He would
send a VN request with details related to the required resources. The VIP processes the VN
request, allocates the required resources in collaboration with the PIP, and finally grant
access the SP access to the newly instantiated virtual network.

A more detailed scenario showing the interaction and the message exchanges between
the involved roles are shown in Section 3.6, but first we introduce the architecture of the

proposed framework in the next section.

28

3.4 Requirements for Dynamic Resource Publication
and Discovery in Network Virtualization Environ-
ment

The designed architecture should be consistent and fit with the business model presented

in Section 2.5.2.2, therefore such architecture should meet the following requirements:

e Brokerage role. To foster interoperability among various roles, the framework
should enable seamless interaction between different virtual networking related
roles/parties (i.e., Physical Infrastructure Provider, Virtual Infrastructure Provider,
Service Provider, and Consumer) for the dynamic discovery of other parties and the
services and resources they offer. The designed architecture should be consistent and

fit with our proposed business model.

e Suitable for network virtualization environment. Distributed, self-
managed /self-organized, and scalable in terms of the amount of information handled,

in order to be suitable for the dynamic and elastic nature of virtual networks.

e Information Management. Another key requirement is that the framework
should enable efficient management of information related to various physical/ virtual
resources and services that may be offered in network virtualization environment.
Information about resources should be well organized so that it can be quickly retrieved

on demand.

This requirement is multifold, therefore, is associated with the following sub-
requirements that are also related to information management and organization of

resources, namely:

— Information acquisition. And update as well as the dynamic tracking and

monitoring of resources and services’ status information.

29

— Information modeling. Relies on a formal and expressive information model
to facilitate information representation and sharing. This model should enable
the description of the functional and non-functional aspects of available resources
and services, as well as domain related semantics (cross-domains). Instances of
this model (data models) should be used in the interaction between different

roles/components within the framework.

— Information dissemination. Relies on standard protocols and suitable
interaction models (e.g. publish/subscribe, polling, tuple spaces) for efficient
information exchange across domains. Synchronous and asynchronous modes of

communication should be supported to achieve flexibility.

— Resource clustering and ranking. Supports resource/service ranking and

categorization, and a modular/layered design, to ensure efficiency of operations.

— Support for service composition. The framework should enable service

composition and facilitate the composition of resources/services.

3.5 Broker-based Framework for Resource Publication
and Discovery

Figure 6 illustrates the system architecture of the proposed framework. We selected a
broker-based approach to cope with the complexity of publication and discovery of resources
and services in network virtualization environment. The main objective of our work is
to find an efficient solution that enables seamless interactions and collaborations between
various roles. Within this framework, Physical Infrastructure Providers (PIP) are substrate
resource suppliers who advertise (i.e., publish) the description of the resources offered into
the Broker’s service and resource repository (SRR). Virtual Infrastructure Providers (VIP)
are virtual resource providers that discover the resources needed to instantiate a virtual
network, and negotiate these resources with the selected potential PIPs. Moreover, VIPs

request PIPs to instantiate VNs on which they deploy network services. In turn, Service

30

Figure 6:

Deploy services

. Negotiate services
Virtual g
Infrastructure . .
Providers Service Providers
(VIP) Discover resources and (SP)
services / Publish service

- description

Consume end-
user services

Negotiate resources
and services

Resource and Service Broker

O/,O % Resource Resource
o0 DISS;(:;:ZI& Publication ®

VN topology

< Functional and
i Resource and ™ non-functional

Deploy services 4 ; ,
Service attributes

End users

Repository

Publish/Update

[{ e [X 2o
Local OAO Local QAO
Tepository OO Tepository OO0

Virtual Resources, Virtual Resources,

[£ 2¢
Local QAO
repository OO0

Virtual Resources,

Physical Infrastructure Physical Infrastructure Physical Infrastructure
Provider Provider Provider
(PIP1) (PIP2) (PIP3)

publication and discovery

Providers (SP) are end-to-end service providers who require and discover virtual networks
on which they deploy the services they offer. Additionally, they negotiate the selected services

with the appropriate VIPs. A more detailed description of the functions of this framework

is presented in the following section.

3.5.1 Overall Architecture

3.5.1.1 Introduction

Figure 7 gives a high-level overview of the proposed framework architecture that is broker-
based, multi-level (layered) and composed of a set of loosely coupled components. The PIP
is represented at the Physical Level, in turn, the VIP is represented at the First Virtual Level
and finally the SP represented at the second Virtual Level. Consequently, roles depend on

31

System architecture of the proposed framework for resource

each other in performing the virtual network provisioning process. We selected a resource-
broker approach to cope with the complexity of managing and organizing information about
resources [b4]. We introduce a resource and service broker which serves as mediator while
coordinating the communication between various roles.

The resource broker allows not only roles to publish their resources and discover other
roles’ resources, but also provides the ability to select the most appropriate resource based
on particular characteristics and constraints. Thus, it manages the inventory of federated
resources in the resource and service registry (SRR), which holds well-defined static and
dynamic resource properties. Both functional and non-functional attributes are advertised
and stored in the (SRR). Additionally, many providers (VIP, SP) can discover other roles
and the resources/services they offer through the broker’s services. Upon receiving a resource
discovery request, the broker selects the most appropriate resources that comply with the
requirements as formulated in the request, and returns to the requestor the list of the
candidate resources. Roles, in turn, can perform another selection stage in order to refine
the list based on some local preferences (such as QoS, cost). Prior resource allocation, and
to reach an agreement on the selected resources, roles negotiate resources’ capabilities (such
as price, availabilities, QoS-related parameters). At each level, we find local information
sources (repositories) that the respective role uses to manage information about resources.
However, only the information about resources that are intended to be offered are published
into the resource and service broker. In this architecture, communication between layers is
bidirectional and can be performed through a standardized connectivity provider (e.g public

interfaces web services).

3.5.1.2 Components Description

The broker is composed of two main components. We distinguish two key services involved
in the resource publication and discovery process, namely:
(a) Publication Service enables the publication (registration), updating and deletion of

information about resources; (b) Discovery Selection and Ranking Service receives as input

32

Second Virtual Level (L2) VN2

Resource Insatation
Manager

Resource Discovery
& Selection

Negotiation Engine

B
8-
8

Service Manager

Service Resource & Service Broker

L Service
Description &

Publication

Service Deployment & Test
Engine

Composition

Resource Discovery
Publish Manager
Services
/

Ranking Engine

. B
Negotiate resources -
a

Selection &

Frist Virtual Level (L1) VN1

Resource Insatation
Manager

Resource Discovery
& Selection

Negotiation Engine

as

Matching

Discover
.,

resources - :
o Clustering Engine

Service Manager

Service .
o Service
Description & Composition —
Publication AU) Resource Publication
Publish Manager

Services
Service Deployment & Test

Engine

Naming &
Identification

*

Negotiate resources |-
.

Physical Level PIP

Resource Allocation Manager

Negotiation @ Binding and

Engine Usage

Resource Instantiation &
Configuration

T

Registrati
Service

. cour
blish resources/ 11}‘3 Ollllfe
services emplates

~J_ Deploy Services

Resource Manager

Service

e Monitoring

& Test Fhugints

Service & Resource

Resource Description &
Publication Engine

|

Registry
(SRR)

Figure 7: High-level overview of the proposed architecture

33

a request containing the description/requirements of resources of interest along with QoS
constraints. While taking into consideration the resources’ rank and the specified constraints
(i.e QoS, cost, etc.), it selects the most appropriate resources that satisfy the request, and
returns, as a result, the list of matching resources.

The Ranking Engine evaluates the popularity among similar resources and attributes
a rank to each resource each time it is selected. This rank could be based on their
usage, functional and non-functional characteristics (such as availability, uptime, cost and
QoS, etc.). Furthermore, to facilitate resource selection, the Clustering Engine arranges
information about resources contained in the SRR into clusters (grouping resources having
similarities). (c) Following a well-defined naming scheme, the Identification and Naming
service is responsible for dynamically instantiating a name (unique identifier) for each
resource registered in the SRR. Because in a federated virtual resources environment many
providers could offer the same resource; a unique identifier is needed to distinguish one
resource from another. (d) Templates Service provides the different roles with an up-to-
date template for describing resources or network services. The first layer of the hierarchy
(L1) provides components for describing, publishing and instantiating resources as well as
negotiating resources with other roles. The second and the top-level layers components
that are responsible for describing, deploying and publishing network services. L1 contains
components grouped into the following sub-systems: The Resource Manager (RM) As
a whole, it handles the management and publication of resources and encompasses five
components: The Description and Publication Engine consisting of a key enabler of the
resource publication process, it enables a PIP to describe the resources he offers using an
instance (i.e. a document) of the information model; and validates the generated instances
to ensure data consistency and their conformance with the information model. Furthermore,
it interacts with the broker (detailed below) in order to publish, update or delete information
about resources.

The Service deployment and Test Engine enables the PIP to deploy and test essential

services such as routing or transport services. Monitoring Engine monitors the status of the

34

allocated resources, and the links connecting the virtual nodes. Additionally, it continuously
collects information about resources’ dynamic properties for generating statistics purposes.
The Resource Allocation Manager (RAM) coordinates all the steps involved in the resource
allocation process (i.e. negotiation, instantiation, allocation and binding) and consists of
the following components: The Resource Negotiation handles and coordinates the resource
negotiation process with a given virtual layer. The Resource Instantiation and Configuration
is responsible for the “slicing” of physical resources. It handles the instantiation request,
and enables the creation and configuration of virtual resources as well as the optimization of
those resources based on the negotiated QoS scheme. The Binding and Usage maps a virtual
resource to a physical one (i.e maps resources to request), reserves the allocated resources,
and triggers the monitoring process. Since in a NVE multiple virtual layers can be built on
top of physical one, we design same components to be used at each virtual layer. However,
the type of resource/services being offered is different. At a the first and second virtual layer,
the Service Description and Publication is responsible for describing network services and
publishing their information to the broker. In order to get the list of resources of interest, the
Resource Discovery and Selection interacts with the broker on a request-response basis, and
performs another stage of resource selection involving some local criteria/constraints. While
the Service Composition enables to combine two or more services into a composite service.
The Service Deployment and Test coordinates the steps involved in service deployment and
performs some tests to validate the virtual-to-physical mapping. The Service Monitoring
monitors the status of deployed services to ensure QoS. Finally, the Negotiation Engine

conducts the negotiation of resources with one or more PIPs.

3.6 Case Study

The sequence diagram shown in Figure 8 illustrates the virtual network provisioning process
within the proposed architecture. This process consists of a set of interactions between the
involved roes, namely: a PIP who is managing the physical infrastructure that is available on-

demand; a VIP who discovers and leases virtual resources to offer a platform with customized

35

Physical
Infrastructure
Prm‘lider

Consumer ‘ ‘ Broker ‘ ‘ SP:VN2 ‘ ’ VIP:VN1
I

T T
. | .
1: pu*:llshResourceInfo (resources, constraints) I

| 2:2000K
|
3: discoverResources (re“sources, constraints)

A

\A

<

- |
1

|

| 4: select best resources

roviders

=S

|
5: response with the list of available resources and their

6: select best resources

7: negotiate (requestInfo, essentialServicesInfo)
» 1
8: response with the offered resource with their constraints
) 1
} 9: confirm (resources, constraints)
e |

| — . 1
I 10: resourceAllocation |
| AndTopology |
} Instantiation }

]
| |
| |
I

11: ACK topology instantiation |

I I
} 12: deployServices (servicesInfo)
r
|
I

I
I
I
I
|
1
I
I
I
I
|
1
I
I
I
I
I
1
I
I
I
I
I
1
|
| »
i 13: 200 OK i

14: publishServicelnfo (servicesInfo, constraints)

)
-

15: 200 OK.

I
I
'
|
I
I
I
|
I
|
I
I
I
I
I
I
|
I
|
I
I
I
I
I
I
I
I
|
I
|
|
I
|
\ !
I |

| |

| } >
|16 discoverServices(serviceType, constraints)

I

]
|
|
|
|
|
18: response with list of ser\‘(ices
=

|
I
|
I
I
i
I
|
|
I
I
I
I
|
|
|
19: select best resources |
I

I
20: negotiate (rcqucstlnfo,}constraints)

|
21: response with negotiale‘d services

I
22:confirm (conﬁrmationlnfo)

L
|
|
|
|
|
|
|
|
!
l
‘ >
} | 23:instantiateResources(resourcelnfo)
I —_ >
I I
| ! 24: resourceAllocation !
I | AndTopology |
| | Instantiation |
I I |
| | 25: ACK topology instantiation
| 26: ACK allocated services | |
[— I
} 27: deployServices (servicesInfo, constraints) }
|
| |
| 28: deployServices (requestInfo, constraints)
S

| 29: ACK services test result |

30: 200 OK |

|
|
L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |

| |

| |

| |

| | | |
| |

| |

| |

|

|

|

i
‘ 30: publishServicelnfo (servicesInfo, constraints)
i

i
32: discoverEndUserServices(servicesInfo)

I
|
|
|
I
I
I
I
|
|
|
I
I
|
I
|
|
I
|
I
|
|
|
I
I
I
I
|
|
|
I
I
I
|
|
I
I
I
I
|
|
|
I
I
|
I
|
|
|
I
I
I
} | E—
} | 17: select best resources
I
I
|
|
|
I
I
I
|
|
|
I
|
I
|
|
|
|
I
I
I
|
|
|
I
I
I
|
|
|
I
I
I
I
|
|
|
I
I
|
|
|
|
I
I
|
|
|
} ! 31:200 OK !
—_—
I
|
|

L
—

| 34: select best service
[}

I
35: response with the list of available services

|
I
I
|
|
|
|
I
I
|
|
|
IR |
| 36: select best service |
|
|
|

37: bind and invoke services

\J

A

1
I
|
|
|
|
i
! 38: ACK and grant access
|
|
|
I
I
I

Figure 8: Roles interactions during virtual network provisioning process within

the proposed framework
36

services (such as security and QoS-enabled, enhanced routing services, etc.); a SP who offers
the end-user service (the content distribution service) as value added service to customers.
In this scenario, a PIP initiates the process and publishes resource description and
constraints related to the offered resources into the Broker using a POST request (step 1).
The broker replies back with a confirmation message indicating the result of the operation
(200 OK, step 2). In turn, the VIP asks the broker to provide him with the needed resources.
He sends a discovery request (GET message, step 3) containing the description of resources,
their desired availability, cost, and constraints. Upon receiving a discovery request, the
broker executes a selection/matching algorithm to select the optimal resources that comply
with the VIP’s request. The set of selected resources is sent back to the VIP (step 4). Upon
receiving the PIPs list, the best PIP is selected by the VIP, using a selection/matching
algorithm (step 5). The VIP then sends a resource negotiation request (step 6), specifying
the requested essential services and their constraints, to the selected PIP. The latter replies
with a resource negotiation response (step 7), specifying the offered resources and accepted
constraints to the VIP, which concludes the negotiation process with a resource negotiation
acknowledgment (step 8) confirming the negotiated resources and constraints. At this stage,
the PIP carries a resource allocation and virtual topology instantiation process for VN1
(step 9), and sends an acknowledgment (step 10) of the topology instantiation to the VIP.
Afterward, the VIP asks the PIP to deploy and test the specified service enablers (step
11), and gets a 200 OK message as reply (step 12). Once the service enablers are deployed
and tested, the VIP asks the broker to publish a description of the service enablers and
their constraints (step 13), which in case of success results in a 200 OK message (step 14).
Meanwhile, a SP (wishing to create VN2) sends the broker a VIP discovery request (step 15)
containing a document describing the service enablers to be used, their desired availability,
cost, and constraints. The broker replies with a list of VIPs offering service enablers that
comply with the request (step 16). Later, in step 17, the SP selects the best VIP to which
he submits a service negotiation request (step 18). In steps 19 to 28, interactions related to

service enablers’ usage negotiation, VN2 topology instantiation, and the deployment of the

37

content distribution end user service offered by the SP are carried, similarly to the VIP::VN1
case. The main difference lays in the message parameters that refer to a different type of
service in this case. When the end user service is successfully deployed and tested, the SP
sends its description to the broker. This description is then discovered 4781 by the consumer
that uses it to select the best SP. Afterward, the consumer submits a bind and invoke service
request to the chosen SP, which in response sends an acknowledgment and grants access to
the consumer. The latter then carries the rest of the interactions related to the end user

service invocation and usage (those interactions are not shown in the figure).

3.7 Summary

The overall system availability and resource information consistency as well as security are
critical in a NVE context. Although we considered a centralized approach in our design
process, many techniques can be used to overcome the disadvantages related to centralized
systems. For instance, redundancy and load balancing techniques can be used to cope with
the problem of single point of failure. On the other hand, adopting decentralized approach,
such as structured or unstructured peer-to-peer (P2P) solution is a potential option. Systems
based on P2P architecture based are known for their increased scalability since additional
node can be added without affecting the availability of the overall systems. However, nodes
availability in such type of system is questionable as nodes can join and leave the network with
prior notification. In this chapter, we have presented a framework for dynamic publication
and discovery of resources in NVE and defined a broker-based architecture that uses the
service-oriented business model which was previously presented in Section 2.1. Then, we
discussed a case study illustrating the steps required to provision a virtual networks within
the proposed framework. Finally, we discussed the different approaches that have been

proposed and used for resource discovery and selection in NVE.

38

Chapter 4

Information Model

In the previous chapter, we established the architecture of the framework we are proposing
for resource publication and discovery in NVE, and we gave a detailed description of the
responsibility of each component. Moreover, we discussed a use case to show the interactions
between roles and the information they exchange.

In this chapter, we present an information model for resource and service description as part
of the framework we are proposing. First, we discuss the motivation behind the need of such
model. Then, we discuss the work related to information modeling in general and virtual
network in particular. Finally, we present the proposed information model and detail the

entities supported and their relationships.

4.1 Introduction

Virtualization has been adopted as an effective solution for sharing resources that are used
upon request. Network vitalization is the result of applying virtualization in network context.
Through virtualization, a physical resource is sliced into many virtual resources with the
same or different computational attributes (properties). However, in an environment where
multiple infrastructure providers offer heterogeneous resources, each resource has to be

described and somehow differentiated. This allows the resource consumer to select the

39

resources capable of providing a specific service and choose from a wide variety of resources.
Moreover, resources can be combined from two or more providers forming a virtual network
spanning across multiple administrative domains. In this work, network resources refer
the equipment needed to create a network such as a router and switch. Currently, there
is no standardized language for accurately describing resources in network virtualization
environment where multiple infrastructure providers offer heterogeneous resources and
services.

To facilitate the selection and allocation of such resources, each PIP needs to describe the
resources and their characteristics in terms of processing power and capabilities. The goal of
this information is to identify the resources and their properties. Such an information model
is used to model entities at a conceptual level. In fact, as resource provider, a PIP faces
significant challenges in describing and advertising the resources it offers. While attempting
to maximize the selection likelihood, the offered resources need to be described in fine-
grained manner. When a VIP needs to instantiate a virtual network, it first defines a set of
requirements that the expected network should meet. The requirements mainly consist of
the resource capacity in terms of processing power and network-related capabilities such as
bandwidth, delay, etc.

Since a virtual network and resources are provisioned on demand, a common information
model to manage and organize information about resources is needed in network
virtualization environment. This model would be used by different roles to send request
for creating, destroying, or updating resources. Hence, all roles should agree on a single
and common data representation, which enables them to efficiently, and reliably exchange
information and receive notification (e.g virtual network description, modification request,
network-related notifications).

A good analogy for the need to describe resources and services in NVE is the requirements
for labelling products and goods that are often provided with a summary description (called
labels) that assists the buyers in the purchasing process [55]. A buyer uses the information

provided in product labels to compare the characteristics of a given product with the ones

40

of similar or substitute products. Driven by many constraints and preferences (e.g quality of
the product, reputation, price, ingredients, warranty), such comparison assists the buyer in
evaluating a product and making a decision about selection the product in question or not.
The work presented in [56] attempts to clarify what needs to be included when describing
services’ properties. Because “electronic” services are consumed in a “semi-automated”
manner, the author argues that the description of a service should answer some service
related questions such as: “how you determine how to request a service? What is the
identity of the service provider? Where and when the service is available? What quality of
service can be guaranteed? Does the provider offer any type of discounts?” Moreover, an
accurate description of a service should include the related functionality and the associated
constraints.

In fact, from a resource requestor perspective in NVE, a resource description should
be accurate and provide the requestors with the necessary details (including resource’s
functionality and constraints). Formulating resource requests and modeling such resources is
crucial but yet complex. New and well-defined schema is needed for handling automated and
on-demand provisioning of resources and to cope with the challenge of selecting appropriate
resources based on their advertised description. Therefore, roles have to use the same model
to be able to express their needs; and have a common understanding related to the exchanged
information. Consequently, role-to-role interfaces (or information carriers) are key elements
for successful communication in the network visualization architecture through which roles
communicate their needs, and receive notifications, related to virtual resources they are
concerned about. These interfaces, for instance, enable the VIP to send a virtual network
instantiation request to a PIP along with the characteristics and constraint on the desired
virtual network. Moreover, these interfaces enable two different roles negotiate requests and
QoS related concerns.

In this work, we are only concerned about the two following types of virtual networks:
(1) a virtual network made of virtual routers and virtual switches. (2) A network of

interconnected virtual nodes providing computing or storage resources (e.g interconnected

41

virtual machine in Cloud Computing, Data Centers).

4.2 Related Work to Resource Description

In this section, we survey the previous work on resource description in networking and

computing in general. We then discuss the work related to resource modeling in physical

network in general and virtual network in detail.

The work related to resource description in distributed environments is multifold. Many

resource description languages and specifications have been proposed. Table 1 shows the

existing description languages grouped by network/computing area.

Table 1: Summary of some existing description languages grouped by

networking/computing area

Networking/
Computing area

Description Language

Grid computing

VXDL [57], vgDL [58]
SWORD [59], GLUE [60]

Cloud Computing

CloudML [61],
Data Centers Markup Language DCML [62],
CloudView [63]

Network resources

NDL [64], NRDL [65] , NML [66]
NevML [67], CIM [68],
¢NIS [69], DEN-ng [70]

Virtual Networks

Houidi et al. [16],
VXDL [57), VN-SLA [55], NNDL [71]

WSDL-based schema

INDL [72], RSpec [73] (GENI)
WSDL-based schema [53],

IETF VNMIM [74] (work in progress),
FleRD [75], NOVI [76]

Services description
and semantic Web

USDL [77], WSDL, WADL [7g],
OWL-S [79], RDF [30]

After analyzing the aforementioned specifications, we conclude that many network-

centric information models/languages have been proposed to model physical network-related

aspects. While the main challenge in modeling virtual networks is to efficiently describe
virtual resources (along with their functional and non-functional attributes), little work
have been initiated in this area. At the time of writing, there are no standardized models for
virtual networks. To give a literature review on virtual networks, we consider only the most
relevant and recent works that address different aspects related to network virtualization
environment.

Based on the Resource Description Framework (RDF) [80] and Semantic Web,
the Network Description Language (NDL) [64] has mainly been introduced to model
hybrid networks. Consequently, RDF vocabulary is used to describe network-related
concepts/objects in NDL, which results in what so-called RDF documents. NDL is an
information model that is designed in a modular manner. It encompasses a group of five
independent schemas, namely, topology, layer, capability, domain, and physical schema.
Thus, it allows describing network physical-related aspects such as network topology, network
devices and their capabilities, interfaces and connections between them as well as describing
administrative domains and generic properties of network technologies. NDL has been
used [76] and extended in many projects such as GENI project [81]. Even though it was
widely accepted and recommended by W3C, NDL does not offer support for describing
virtual network aspects nor specifying constraints and QoS specifications.

Mainly designed for virtual grid applications, Virtual Resource and Interconnection
Networks Description Language (VXDL) [57] is a language for virtual resources
interconnection networks specification and modeling. The authors define a virtual
infrastructure as an aggregated set of interconnected virtual resources. VXDL allows
describing all components of a virtual infrastructure including their network topology. Thus,
VXDL introduced the notion of “timeline” or period of resource utilization and resources
can be described individually or in groups. A typical VXDL document comprises the
following: general resource description, resources description, network topology description,
and timeline description.

On the other hand, Virtual Network-Service Level Agreement (VN-SLA) [55] provides a

43

preliminary schema for defining a service level agreement for virtual networks. Composed
of three sections, it allows defining: (1) various actors (InP, VNP, Client); (2) virtual
resources properties and their relationships as well as the Service Level Specification (SLS);
(3) finally, the obligations which formulates each actor’s responsibilities and the consequences
of inability to meet the specified service levels. Considering virtual recourses as services with
minimum granularity, authors in [53] extend the WSDL and propose a WSDL-based model
for virtual network resource description. The main goal of this model is to support the
dynamic update of resource information. In this model, any resource description defines the
nature of the resources being offered and the endpoint (location) determining where these
resources can be accessed.

The Flexible Resource Description Language (FLeRD) [75] is proposed for multiple-
provider virtual network architectures, more specifically, virtual networks connecting cloud
resources (or CloudNets). It emphasizes flexibility, vagueness, white and black listing of
properties as well as describing resources while allowing the possibility to omit some resource
specifications. Another interesting point of FLeRD is the support for the formulation of the
mapping between virtual and physical resources.

As a result of in integrating NDL and Cinegrid Description Language (CDL) (a service-
oriented modeling language), the Infrastructure and Network Description Language (INDL)
aims at providing technology independent descriptions of computing infrastructures. Based
on ontologies and Semantic Web approaches, INDL’s main goal is to decouple connectivity,
functionality and virtualization of resources so that flexibility is ensured and new types can be
added without affecting existing schema. In INDL, network resources are represented by the
Resource class and its subclasses (such as Node, Network Element, and Node Component).
While network services (i.e Storage Service, Stream Service, etc.) are represented as
subclasses of the Service class.

As work in progress, a virtual network management information model is proposed in [74]
for mainly managing virtual networks in data centers. In this model, virtual nodes that

are instantiated on the same physical node are defined in a group of virtual nodes and

44

the mapping to physical ones is expressed as well. Consisting of the starting point of our
work, Houidi et al. [17] proposed a schema for automated virtual networks provisioning
whose objective is to define the properties of virtual resources and their relationships. In
such a schema, a network element is considered as the basic building component and has
functional and non-functional attributes. Functional attributes represents characteristics,
properties and functions of a network element. Whereas non-functional attributes specify
criteria and constraints (such a location, cost, QoS). Even though it is intended to define
virtual resources, this schema does not take into consideration dynamic resource information
update nor covers all the aspects presented in this thesis such as describing virtual network
as a whole, mapping between virtual and physical resources, describing network services,
and formulating the relationships between roles (actors/parties) and resources/services.
Each of the aforementioned languages address specific domain and do not cover all the
aspects related to virtual networks. In the following, we highlight the most interesting point
of each aforementioned solutions and we conclude how they differ from the proposed model.
Although NDL supports various network aspects and has been extended in many works,
it lacks support for virtual network concepts. The WSDL-based model has an interesting
point in supporting dynamic resource update but does not provide support for detailed
virtual resources nor network services modeling. VN-SLA allows the modeling of virtual
resources; however, it does not support network services. Thus, FLeRD focuses on the
formulation of mapping (virtual-to-physical layers) of network elements while no support
for modeling network topology and roles is provided. VXDL allows describing individual
resources in detail but does not model virtual network aspects such as roles and network
services. INDL does support network services and resources whereas virtual-to-physical
mapping is not considered. None of these solutions provide detailed functional and non-
functional attributes related to resources and network services, nor do they model the
interactions among roles, resources and services. Besides, the proposed model formulates

a virtual network layer including all the involved roles, services and resources as a whole.

45

9¥

Table 2: Comparison of the existing information model with our requirements

Fine-grained | Virtual to | Formality and | Virtual network Support Support for

description physical expressiveness | topology mapping | for formulation | aggregation

of virtual mapping network services | of network

resources information services

Houidi et al. [16] - X X - - -
VN-SLA [55] - - X - X -
NNDL [71] X - X - - -
VXDL [57] X - X - - -
INDL [72] X - X - X -
WSDL extension [53] - - X - - -
FLeRD [75] X X X X — -
Our model [9] X X X X X X

4.3 Requirements for an Information Model in Net-
work Virualization Environment

Among the several requirements that have led to the design of our proposed information
model. Reference [82] introduces a process to develop an information model. The
author argues that a “quality” information model should have the following characteristics:
“sharable, stable, extensible, well-structured, precise and unambiguous”. In addition to
these characteristics, an information model should cope with the complexity that the
virtual network provisioning process raises in terms of resource description, management
and organization. To be suitable for NVE, we believe that an information model should

meet the following requirements:

e Fine-grained description of virtual resources. The proposed model should clearly
enable the description of the functional and non-functional attributes in detail as well

as their related constraints and QoS scheme.

e Mapping information. Thanks to virtualization technology, a physical device (i.e
server, router) can host many virtual devices. The proposed model should enable to
represent the mapping of virtual resources to physical resources i.e on which physical

resource a virtual resource is created.

e Formality and expressiveness. A model could be seen as a template that one has to
follow to represent a given object. Such a model should be formal and should provide
the structure of information used to describe resources/services with an acceptable

degree of expressiveness.

e Enable inter-role communication. The model should seamlessly enable data

exchanges between heterogeneous roles/services.

e Interoperability between roles. The proposed model should effectively enable
information sharing and data exchanges between different NVE roles without

ambiguity:.

47

e Virtual network topology mapping. A VNet has a virtual network topology
(VNT) which is a subset of a physical network topology (PNT'). The proposed model
should enable the representation of VNT as well as its corresponding mapping to the

PNT.

e Connection information between resources, services and roles. The proposed
model should be able to represent all the connections between resources, roles and

services and the relationships they might have.

e Extensibility and flexibility. The model should provide a solution to flexibly
describe network resources and services. Thus, any potential extension should be
taken into consideration. Hence, it should be easy to extend the model in order to

represent new entities.

e Support for aggregation of network services. A service can be composed by
aggregating two or more services. For instance, a SP can offer composite services by

combining many service building blocks.

e Support for formulation network services. The model should not be limited to

modeling virtual resources and should allow for modeling a variety network services.

e Information representation and portability. The proposed model should not
have any implementation-related constraints. Any platform-independent language that

ensures interoperability could be used to implement such a model.

4.4 The Proposed Information Model

4.4.1 High-level Overview

Figure 9 gives a high-level overview of the proposed model. Our information model
revolves around modeling three main concepts and their relationships: roles; services; and

resources [9]. Roles are business organizations that collaborate to offer/consume resources

48

and services and exchange information related to these resources/services. A role can be
a resource provider offering and managing virtualized resources, and at the same time can
be a resource consumer accessing virtualized resources/services. In addition, a role can
act as service provider offering and managing network services, or as a service consumer
subscribing to network services. In our model, network resources are mapped onto network
services (i.e. network resources are considered as low level network services). Finally, just
like web services, various levels of network services can be published, dynamically discovered,
composed, and used, in our model.

We take into consideration the different roles and their relationships to physical/virtual
topologies and various levels of services . A TargetedNetwork can be physical or virtual
network. To describe a virtual network, we consider a TargetedNetwork to be the base entity
as well as the root element of all instantiated description documents. A TargetedNetwork
can be composed of one or many virtual networks and one or many physical networks.
A PhysicalNetwork has a PhysicalNetworkTopology and is composed of a set of physical
nodes connected by physical links. A VirtualNetwork has a VirtualNetworkTopology, which
is a subset of the underlying physical topology. A virtual network topology can be
composed of one or multiple virtual ones, thus forming a hierarchy. A virtual network
is composed of a set of VirtualNodes, each node having one or many Virtuallnterfaces
and being connected to another virtual node by a VirtualLink. Virtual nodes that are
instantiated on the same physical device are grouped in a VirtualNodeGroup that is mapped
to a physical node. Although we are not concerned about modeling physical networks
related entities, we only model a physical network as a set of PhysicalNodes where a given
group of virtual nodes is mapped. The different roles and their interactions with different
entities are modeled as follows: (1) A PhysicallnfrProvider (PIP) owns and operates a
PhysicalNetwork; offers EssentialServices; and instantiates one or multiple VirtualNetworks;
(2) A VirtuallnfrProvider (VIP) manages and operates VirtualNetworks and offers
ServiceEnablers; (3) A ServiceProvider (SP) manages and operates VirtualNetworks and

offers ServiceBuildingBlocks and EndUserServices. An end user service can be created by

49

combining one or more service building block services; and (4) Considered as end-user,
a Consumer subscribes to/uses one or multiple EndUserServices that are accessible via

PhysicalNetworks and VirtualNetworks.

NetworkTopology —— : hasProperty

1 : one to one mapping
1..* : one to one/many mapping

(see resources page)

PhysicalNetworkTopology

{ownedBy

TargetedNetwork Subset
name 1 0.*
description hasa 1%
VirtualNetworkTopology
1 pargnt
0.* ! operatedBy
(see resources page)

PhysicalNetwor! has a 1 EssentialService
hysicalNetwork . ’ whs/operates 1 . e
hysicalNetworkID ee services pags
phy:)

listOfPhysicalNodes - -
listOfPhysicalNodeGroup VirtualNetwork PhysicallnfrProvider offgrs 1..*

listOfPhysicalLinks VirtualNetworkID listOfO d structure

listOfVirtualNodes 1-*instantiates 1
1 s listOfVirtualNodeGroup

compoged of listOfVirtualLinks

ServiceEnablers
0.* manages/operates
L. L . 1 (see services page)

PhysicalNode P N -
VirtualInfrProvider offers L.*
physicalNodelD - -)
type d of accdsses 1 listOfInstantiated VN
offers 1fServiceBuildingBlocks
ServiceProvid -
1 accdsses - ‘ber\l(‘e rovider - (see services page)
subscribers fers
1 --offers
1.* listOfProvidedServices cgmposed of
| [businessAgreementParameters 1. o
! .
VirtualNodeGroup
virtualNodeGroupID 1 Consumer subscribes to EndUserService
I!SION'"“_MN(‘(“CID = listOfSubscribedServices (see services page)
listOfPhysicalNodeID | 1
1.*
! VirtualNode VirtualInterface 2 0.1
E X - VirtualLink
belgngs to virtualNodeID Ql\\'muallmerfﬂcel[)
type o e virtualLinkID
| o LsiOfinterfaces “ |listOfVirtualLinkID

Figure 9: High-level overview of the proposed information model

4.4.2 Detailed Description

Figure 10 and Figure 11 respectively show the resource level view and the service level
view. In the resource level view, we consider a NetworkElement (NE) as the basic building
component of a virtual network that can be a Node, Link, Interface, or Path. A NE has a
name, availability, start time that specifies when the resource is available, and a period that
determines for how long the resource is available. The status attributes represent NE’s state
(available, allocated, etc.). Since a NE can span across multiples domains, a NE belongs to
a NetworkDomain, which in turn has an Administrative Domain.

A Node can be either a PhysicalNode or VirtualNode. Represented in the class Node, a

20

node has a RoutingPlatform and GeoLocation, and encompasses common attributes needed
for describing a network node, namely, a network stack, a type (i.e virtual switch, virtual
router, virtual machine, etc) and an IP address. Besides attributes such as the vendor,
model, and substrate node group, a physical node may aggregate virtual nodes and interfaces,
whereas a VirtualNode (VN) is uniquely identified; and has an initial and maximum capacity
in terms of computational capabilities. Each VN aggregates one or multiple virtual interfaces.
An Interface represents a physical /virtual network interface controller (NIC); and has a type
(i.e Ethernet, radio), rate and MAC address. Depending on its capacity, a physical link can
be divided into slices using virtualization techniques (i.e ATM, MPLS) to support one or
multiple virtual links. A Link has characteristics such as minimal delay, type, bandwidth,
throughput, good-put and type of connectivity; and an end point that determines the
source node and destination node. Each VirtualLink has a tag, and initial and maximum
allocated bandwidth. Virtual interfaces are connected by a virtual link. A PhysicalLink has
a limited number of supported virtual links and an additional attribute for defining available
bandwidth. A Path represents a set of links, starts at beginNode and ends at endNode.

To represent nodes’ functional and non-functional characteristics, a node has an
association with the following two entities: (1) Node Functional Parameters: consists of
characteristics/properties related to the functioning of a node such as operating system
type, software version, and the type of the network management system. It is composed
of: (a) Storage parameters which determine the available disk space, storage type, and
number of storage units; (b) memory parameters which represent the size, capacity, and
type of the available memory; and (¢) CPU parameters which represent the information
about the available processing unit(s). (2) Node Non-Functional Parameters: this class
defines constraints, QoS scheme, and desired criteria that should be met when selecting a
resource, namely: cost, rank, and percentage of failure. In turn, non-functional attributes
are composed of the following: (a) Performance parameters representing node performance
properties such as response time, uptime, capacity, and reliability level. (b) Security level

parameters defining security properties that a node supports like hashing techniques (i.e

o1

Checksums, cryptographic hash functions), encryption methods (i.e symmetric, asymmetric)
and security properties (i.e confidentiality, integrity). (c) QoS parameters representing QoS
related characteristics including the average packet loss, jitter, delay, and bit rate. (d) Input
and output parameters representing properties used to monitor node’s workload status (e.g

CPU and memory state, I/O devices, etc.).

RoutingPlatform GeoLocation NetworkElement . NetworkDomain
L belongsto S hasa [NetworkTopology
name |country 1D f——~ IproviderName S
|description lcity lownerID description ldescription o
[version laddress lname Lx 2k name
room ldescription - |nodeList
\ Irack lavailability compdsed of pathList
panel |startTime EndPoint ltype
) lperiod
has tatusType N [startNodeID hasa - e
1 lconstraints lendNodeID)
haka
1 hafs a + 7
‘ ¥ i KkTopology
. / ’ ownedBy
Node - - I <
Type % | Interface Link basa) Path subset of
y a i g
hodeType interfaceType| . . minimalDelay BeginNode Te
ipAddress rate comnected 10 iy ype startNodeID L+ tehild |
routing Type 1 MACAddress 7. [bandwidh cndNodelD &
7 1 lconnectivityType | /. IntermediateLinks | |VirtualNetworkTopology| <
— - throuput
PhysicalNode Physicallnterface |
1 : lgoodput ISLA
[maxNbrOfVirtualNode [€—— [[physicallnterfacelD availibility 1
substrateNodeGroup PhysicalLink IstartTime —
\rlrli]n\.lronen\elllTypc Virtuallnterface PhysicalinkID beriod
ender - e — ImaxNbrVirLink lparentVirtualNetworks
o A hame lavailableBandwidth childrenVirtualNetworks &
- confun description lsupportedVirTechniques [!
3 confains
VirtualNode NetworkProperties
VirtualNodelD onnects VirtualLink -

s L2 lscalability
parentNodelD * VirtualLinkID Imobility
virtualizationType o *

hab a esourceAllocationlevel WirelessNod: N lautonomy
resourceAllocationl.evel | = irelessNode [max AllocatedBandwidth
initialCapacity ltype linkHandlingType
maximumCapacity owerConsumption initial AllocatedBandwidth w
e D! WPerformanceParameters
dioType resourceAllocationLevel
[frequencyRange C’h(;ll\n(fl?zujd:mdlh
tandard . radioCoverage
1brOf: typeOfData
frequencyBand , hasa PE“';UT‘""‘I:“]’:_“ |
lransportProtocol Type WAntenna 1 peal IDQ“'" inkSpee
S T ma
ecuritySettingsType antennalype maxDownlinkSpecd
lbufferSize length >pe
lantennaType x| latency
o linterface Type a e
P location imodulationType
channel 0 imultiplexing Type adery
S—— lcommunicationMode 4 frequencyBand nbrOfBatteries
hasa hasa battery Type
arameter lapproxLifeTime
INetworkMngmtSW Type [manufacturer
L*
nbrOfPorts L capacity
softwareVersion ~ ~{temperaturcRange
[NetworkMngmtNodeT: = y
ctwordngmModelype NodeNonFunctionalParameters oltage
ank
- “~ 0. QoSLevelSupported
Componentsinfo * [EnergyEfficiencyLevel
fhame OSParameters perOfFailure PerformanceParameter
:ie;:dol OSType zf";lm‘y responseTime
4 luptime
Imodel version lenergySource - lcapacity
[partNumber lvendor 1 relaibilityLevel
= ~ 1
* AY
~ ~ SecurityLevelParameters
MemoryParameters CPUParameters * " Lx ashing Techni
Size i InputOutputParameters 1% [encryptionMethodsSupported
lcapacity InbrOfCores StorageParameters| [I — urityP
specifications nbrOfThreads (diskSpace nbroflODevices k
memoryType lclockSpeed InbrOfUnits lypeoflOL ibrary avgPacketLoss
memoryState nbrOfUnits storageType ypeofloDevices laveDelay
speed [CPUState storageState accessType f“g"‘“e"
voltage cacheSize olockSine veBitRate
CAS instructionSet

Figure 10: Resource view of the proposed information model

We model network topology as physical/virtual topology. In general, a network topology
has a name, type (i.e bus, ring), path list, and is composed of a set of nodes. Moreover, a

network topology has NetworkProperties that is a set of characteristics applied to wireless and

52

QoSParameters e
CoSOffered NonFunctionalAttributes servicePerformanceParameters
serviceSupportLevel [@frank responseTime
serviceOperability C“;_ .] uptimePercentage
e erformanceParameters i ines:
[transimissionDelay gns timeliness
o scalabilit)
errorRate ImaxNbrOfConsumer L+ [faulTolerance
avgRepairTime serviceSecurityParameters -
serviceServability 1%
1. h
ContactInfo serviceSecurityParameters asa 1
address securityServiceSupported
phoneNumber securityLevel — - "
email Service has a FunctionalAttributes
iD |_——Toype
name 1.* |providedBy
1 ype !
start Time
availability
Role duration
1D serviceStatusType
hame serviceConstraint
contactInfo 4 l— -
ldomain EssentialService

A
Offers [DescriptionAndDiscoveryService . 4‘—“
roker -

ffers maxiDelay
ServiceProvider L minDelay
subscribers maxBandwidth
listOfProvidedServices ! minBandwidh
businessAgreementParameters transportOptions
1 transportProtocol

subscribes to

1.* offets

listOfSubscribedServices

PhysicallnfrProvider — 0.*
EndUserService
listOfOwnedInfrastructure
1 userAgentPlatform
1L [sserAgentPlatform | compgsedOf

VirtuallnfrProvider
0.
listOfInstantiated VN

RoutingService

routingEfficiency
maximumDelay
routingAlgorithms

offers

1 1.* A

InterworkingService ServiceBuildingBlocks
| I AAAService I 1% I_g
A

SecurityLevelService [—] CallControl
L] QuSControlService |

] MediaHandlerService
[Subserips
|

Messaging

on model

=L

Figure 11: Service view of the proposed informat

93

wireless sensor networks (i.e scalability, mobility and autonomy). Representing the topology
of a virtual network, a virtual topology is a subset of a physical one and can be hierarchical
so that a virtual topology can be instantiated on top of one or multiple virtual topologies.
Thus, this leads to have hierarchical associations among virtual networks. Besides, it contains
attributes related to availability, start time, period, and a reference to its operator. In the
service level view shown in Figure 11, a role represents an organization, identified by a
name or id and has contact information. Different roles are modeled as follows: (1) broker
represents the resource and service repository; (2) Service provider represents a SP; (3)
consumer represents an end user which subscribes to services offered by a SP; (4) Physical
infrastructure provider represents a PIP; (5) Virtual infrastructure provider represents a
VIP. Each role is associated with a service entity which indicates the type of service it offers.

Just like NE, a service represents the base class for describing services. A service has
the following sub-classes: (1) description and discovery service offered by the broker and
representing services needed for publishing and discovering resources/services; (2) Essential
service are transport service and routing service; (3) End-user service representing services
destined to end users and composed of one or many service building blocks namely call
control, presence, conferencing, and messaging; and (4) Service enablers defining the support
functions needed for the operation of end user services. Service enablers comprise the
following: Interworking, security level, session management, subscription management, AAA
service, QoS control, media handler. Each service is associated with functional attributes
as well as non-functional attributes. We divide the latter into three categories: (1) QoS
defining characteristics such as the offered class of service, support level, error rate, average
repair time, and transmission delay; (2) Service performance representing properties that are
related to service performance, namely, scalability and fault tolerance, response time, and
uptime percentage, etc.; and (3) service security defining the security service and the level
supported. Furthermore, common properties like the rank of a service, cost, and maximum
number of supported users can be expressed as well.

A WirelessNode is a PhysicalNode and can contain one or more virtual nodes.

o4

The WirelessNode class describes the characteristics of a wireless node (such as power
consumption, radio type, frequency range, communication mode, etc). Additionally, a
wireless node has an antenna, battery and performance parameters.

The class WAntenna defines the set of properties that an antenna can have
(such as antenna type, frequency range, and modulation type). Additionally, the
WPerformanceParameters class represents the different type of properties that are related to
the performance of a wireless node including channel bandwidth, radio coverage and latency
as well as maximum down/up link speed and type of data supported.

Moreover, we defined a set of enumeration types which are listed in Appendix A. Such
enumeration types are used to formulate various entities’ attributes. Figure 34 in Section A.1
shows the enumerations related to a node entity. For instance, such enums specify the type
of a node (virtual router, virtual switch, etc.), the virtual environment used (e.g., XEN or
VMWare, etc.) and so on. The figure in Section A.2 shows enumerations types related
to network links. Whereas Sections A.3, A.4 and A.5 define enumerations types related to

network services, security and wireless node respectively.

4.5 Summary

In network virtualization environment, multiple providers provide heterogeneous resources
and services which results in a large pool of virtual resources that can be discovered and
consumed on demand. Thus, virtual networks are created by aggregating resources that
span across different domains. Prior to instantiate a virtual network, a virtual infrastructure
provider would need to discover and select the resource of interest based on their description
(their characteristics in terms of processing power). Consequently, an information model is
needed to assist physical infrastructure providers in describing the resources they offer and
VIPs in selecting the best resources that match their requirements. This chapter presented
a multi-service and multi-role [9] integrated information model for describing resources and
services in NVE. Such model enables the description of physical and virtual resources as well

as network services. We have first defined a set of requirements we believe an information

95

model should meet. Finally, we surveyed and present the existing information models that
have been proposed to model network resources in general and the ones proposed for NVEin

particular.

o6

Chapter 5

Design and Implementation

In this chapter, we present the design and development of proof of concept prototype. We
first introduce the requirements for the implementation in Section 5.2, then we describe
the software architecture of the implementation in Section 5.3 along with the developed
components and graphical user interfaces, and finally we detail the expanded use case scenario
as a case study in Section 5.5. In the next chapter, the hardware used and the prototype

setup will be presented.

5.1 Overview

We presented the architecture of the proposed framework for resource publication and
discovery in NVE and discussed its components in Chapter 3. Then, in Chapter 4 we
introduced an information model for describing various resources and formulating different
kind of requests. We use both the proposed architecture and the information model to
implement a proof of concept prototype to demonstrate the feasibility of the proposed
framework. However, due to time constraint, we mainly focus on the operations enabling the
publication, discovery and negotiation of resources as well as the automated instantiation of
virtual topology as described in virtual network request. Therefore, we implemented only

a subset of the overall architecture. However, for simplicity reasons, we combine the VIP

o7

and SP roles. As matter of fact, implementing the activities related to service providers

(e.g., deploying end-to-end services) is out of the scope of this thesis and is not taken into

consideration. As a concrete use case, we selected the secure content distribution scenario

presented in Chapter 3 to demonstrate the interactions taken place between the roles.

5.2 Requirements for the Implementation

VIP

Publication and Discovery Framework

Resource management

Negotiate resources

Discover and

Local resource and request repository

select resources

Describe and

PIP

publish resources

Instantiate and
configure resources

Monitor resources

Figure 12: Overall framework use case

Broker node

Substrate resources

The purpose of this of the work presented in this chapter is to put in practice the

framework we have established in previous chapters and provide a working solution for

o8

publication, discovery, negotiation and instantiation of virtual resources. Such solution

should meet the following requirements:

e Resource management the prototype should enable PIPs and VIPs to manage
the information about resources stored in the local resource repository that each role

disposes.

e Interaction between roles interactions between roles is the key requirement that
should the implemented first. A mechanism that enables various roles to exchange
information about resources should be put in place. This should enable a role to send

requests and receive a reply to each request sent.

e Resource description and publication the implemented prototype should allow
various PIPs to describe physical and virtual resources and publish (register) the
information about resources they offer into a public repository (i.e., resource broker)

through public interfaces.

e Resource discovery the prototype should allow various VIPs to send resource
discovery requests to the resource broker to discover and select virtual resources of
interest. To be processed successfully, resource discovery requests should include
the properties of the resources needed as well as selection constraints (as detailed

in Section 5.4.6.1).

e Resource selection the resource selection algorithm to be used should be efficient
and accurate in processing discovery requests and take into account the constraints

and requirements specified in each request.

e Resource negotiation the solution should enable multiple VIPs to negotiate the
selected resource with the appropriate PIPs through public interfaces. In the
negotiation process, roles should be able to modify (edit) a request as well as track the
received requests. Hence, all the sent and received requests should be stored in a local

repository for later consultation.

29

e Virtual topology instantiation and management the prototype should enable the
instantiation of virtual topology. This should be done by creating the requested virtual
machines and connecting them through virtual links exactly as described in the virtual
topology instantiation request. Moreover, the topology instantiation process should be

entirely automated meaning that any manual intervention should be eliminated.

e Information visualization the prototype should provide a set of graphical user
interfaces that would enable roles to visualize the information related to the resources
they manage or the sent or received requests. For example, a PIP should be able to
visualize the list of the resources he manages along with their status (e.g., published,
instantiated, etc.). Moreover, the virtual topology should be displayed as connected

graph nodes. This should reflect the created virtual resources and their connections.

In addition, the resource publication and discovery process should be automated and requires

minimal human intervention. Figure 12 illustrates the use cases that should be implemented.

5.3 Software Architecture

Figure 13 depicts the software architecture of the implemented prototype and the
technologies used. It consists of three main subsystems, each of which, is intended to realize
the functionality of the respective role (i.e Broker, PIP, VIP), and encompasses a repository
(data store) containing information about resources and services. Moreover, each subsystem
exposes a set of its functionality via public interfaces intended to enable communication with

other subsystems belonging to other roles. The interfaces consist of RESTful web services.

60

Virtual Resource Discovery and Publication Framework

Resource Broker Node

GlassFish Application Server

Resource
Ranking
Resource
Naming
Publication
Engine

Resource
Discovery &
Selection

Request Request - Resogrce esc‘rip‘tion
Queue H Dispatcher - Service desj.crlptlon
- Roles info
(PostgreSQL)
REST API (Jersey)

SQL/XPath

DA

(a4

Physical Inf. Provider

| Virtual Resources

Publish/update
resource status & info

(XML/HTTP)

- Discover resources
- Publish Virtual
Network description

Virtual Inf. Provider

Substrate Resources

-
[Virtual Resources

XAPI '4—

Xen Control
Domain
(Dom0)

VNetl

VNet 2

Vyatta
router

Xen Cloud Platform + Xen Hypervisor

=]

PIP Management Node (XML/HTTP) VIP Management Node
GlassFish / RQ lient GlassFish
Application Server REST clients cents Application Server
I ey | oL xPat
Local Description & | | Negotiation & E Virtual Resource Local
SRR Publication —— ﬂ ﬁ Net'w(n'rk Discovery SRR
Instantiation & | | 3 /" Negotiatdy > Publication
Test & Configuration | | =[] resources || =
- Resource description Monitoring g = Resource Resource
- VNet request info R — + 4 % Naming Selecti - Resource description
- Description templates Substrate > Resource < < Nezotiati clection - VNet request info
P (PostgreSQL) Manager Request Pool - Description templates
o ngine
K b
Create and Configure X

Figure 13:

61

software architecture of the implemented prototype

5.4 Implementation

Figure 22 depicts the prototype setup. We installed and configured each subsystem on
a separate machine, namely: the PIP management node; the resource broker management
node; the VIP Management node. As for the substrate resources, we installed XCP on
three machines and prepared a set of Vyatta and Ubunutu virtual machines to be used
when instantiating the virtual topology. In this section, we present the developed interfaces
that enable the interaction with each subsystem presented in Section 5.3 and discuss their

functionality:.

5.4.1 The Technologies and Tools Used

We used the Java programming language to implement the prototype. The REST web
services were implemented using Jersey [83] framework that is an open source JAX-RS (JSR
311) reference implementation . We selected Grizzly web server [84] to deploy the web
services. Moreover, we used JAXB 2 [85] for marshaling and un-marshaling the XML data
carried in various REST messages’ body. We opted to use XML to describe the resources
and formulate the various requests exchanged between roles (e.g discovery and negotiation
requests). Thus, the XSD (XML-Schema Definitions) was used to define and validate the
structure of the data models and specify constraints on the data contained in the XML
documents. Consequently, each document exchanged between two subsystems is a data
model (i.e an instance of our proposed information model). The various used XSD are listed

in Appendix C.

5.4.1.1 Data Sources

We selected the open source RDBMS PostgreSQL [86] which provides native XML support,
SQL/XML publishing/querying functions, full-text search as well as full-text indexing and
XPath support. Moreover, PostgreSQL stores an XML document in its text representation,

which results in fast information retrieval and provided us with more flexibility in describing

62

resources by eliminating the need to change tables’ schema upon the alteration of the

structure of the resource’s description.

5.4.1.2 Platform Virtualization

As virtualization platform, we selected Xen Cloud Platform (XCP) [87] because it includes
the Xen Hypervisor as well as XAPI (Xen Management API) and supports large number
of guest operating systems. Other alternatives to virtualize infrastructures include, but not
limited to, VMWare vSphere [20], KVM [88], Citrix XenServer [21], Microsoft Hyper-V [19].

The Xen project uses the term domain to refer to any virtual machine created by Xen. As
per its design, there are two Xen domain types: Domain0 (Dom0) and DomainU (DomU).
Dom0 is the privileged domain and is created at boot time; has direct access to hardware
and can be seen as the hypervisor itself: it is responsible for creating and managing the
guest machines (DomUs). Whereas, a DomU is unprivileged machine within which a guest
operating system is installed and shares the underlying physical resources with other VMs.
XAPI is the default toolstacks that Xen provides to manage a virtualized machine. It
exposes Dom0’s services as XML-RPC services, which enables programmatic access to, and
remote administration of, Xen-enabled VMs. Xen supports both full virtualization and para-
virtualization, and has demonstrated to be the virtualization platform of choice due to its
capabilities in terms of performance, features and isolation level among virtual machines.
Therefore, to communicate programmatically with the virtualized physical nodes, we used
XenServer’s Java SDK to implement the substrate manager module and eliminate the manual
management of Xen-enabled hosts. XenServer’s SDk is a set of programming interfaces
developed by Citrix to provide control over the various virtual machines and physical hosts
(e.g., create or clone, power up or off virtual machine, etc). This enabled us to dispatch the
necessary VM management and control commands to all virtual machines.

In this section, we present the developed interfaces that enable the interaction with each

subsystem presented in Section 5.3 and discuss their functionality.

63

5.4.2 Resource Publication and Management

-
B Physical Infrastructure Provider (PIP) Console
File View Help
= Open % ~ Clear i Show/Hide log
R Resource Management
¢:> Requests Browse a resource file
!? Vet Resource file
| Avalable Resources
D Description Vir. Environ... Vendor Model Nbr. Vir. Nod... Published Resource Details
994641ac-1098-47d5-88.. Dell Precision 360 No.. XEN Dell Precision 3 (-] [P
50b484ce-aci48b2-b7a3.. Dell Precision 390 No Dell Precision 2) o || EREG eniEE
f0047fd3-chde-4d60-bceT... HP ProLiant DL320e HP DL3208 3 (-] v (& physicalNode
T4726765-72e1-493a-8d2.. IBM BladeCenter 1BM Hs21 3 (-] S
f99048€6-6224-4907-94c... Dell Precision 360 No... Dell Precision 3 e [id="dobd43ac74ag-43
Bec7b158-61c2-4dd7-bbff . HP ProLiant DL320e HP DL320e 3 [x] » [ownenD
1826a602-1578-415a-02.. HP ProLiant DL320e HP DL3208 3 (-] » [name
2d749627-761a-4c57-b7... HP ProLiant DL320e HP DL3208 3 [x] » B9 description
hicedfa-47eb-4063-bb8_ HP ProlLiant DL320e HP DL320e 3 @ » (i availability
d5001d1b-8344-4afd-af5.. Dell PowerEdge VRTX Dell T320 3 (-] » (i starTime
d850abe3-cféd-4ccd-91d.. IBM BladeCenter N H821 3) » (5 period
61cb4763-4021-4226-b0.. Dell PowerEdge VRTX Dell T320 3 -] || > [statws
| | 954fAT5-ecEf494c-9214-. HP ProLiant DL320e VWWare HP DL3208 3 » [maxibrofvirtualNode
55a79981-39ad-4ald-h3 IBM BladeCenter KM 1BM Hs21 3 » (5 substrateNodeGrauplD
076f23d8-8c73-4608-bad... Dell Precision 360 No.. KEN Dell Precision 4] .
4123c6b7-470-4390-b07... HP ProLiant DL320e VMWare HP DL320e 3 o . Emnmnemem
8ba34c20-3fed-4f89-ad0.. HP ProLiant DL320¢ VWWare HP DL3208 3 (-] nodeType
191f5597-603c-4518-a17_ HP ProLiant DL320e VMWare HP DL320e 3 (] * (&5 vendor
5009934F-edE8-4d32-b5d... HP ProLiant DL320e VMWare HP DL3208 3 (-] » [model
Tee2550a-3f50-440¢-a26... Dell PowerEdge VRTX KM Dell T320 3 (-] » (& geoLocation
21991 cd-3e60-44b5-b6 HP ProLiant DL320e VMWare HP DL320e 3 (-] ¥ (& virtualNodes
» [virualNode
» (5 virualNode
" L4 ﬁ virtualNode
22 Resources l Publish J l Load Resources J l Delete J l Hide Detail J Up { Down J e |
INFO Available resources have been loaded... &
INFO Loading available requests from the local DB.
INFO Available requests have been loaded...
INFO Loading available requests from the local DB.
INFO Publishing selected resources
INFO Changing resource status.
INFO Resource has been published successfully... v
—l Messages | Error | REST Services l Servers J
|Ready

Figure 14: The Physical Infrastructure Provider resource management interface

64

Figure 14 shows the interface through which a PIP perform CRUD-based operations
(create, read, update, delete) to manage the information about the resources he owns. This
view enables the PIP to visualize the list of available resources that are contained in the
PIP’s local repository along with their key information such as a brief description of the
resource, the virtual environment, and the status of each resource whether it is published
into the broker or not. To add a new resource description to PIP’s local repository, the user
clicks on the browse button to locate a resource description document (i.e an XML file), and
added to the list of resources (by clicking on add to DB button). The resource description
is updated if it already exists; otherwise, it is added and marked not published. An example
of resource description document is listed in Appendix C, Section C.4. Additionally, at any
time, the user can select a resource to visualize its description’s details. This is shown in the
right panel of the interfaces as a tree view. To publish a resource to the broker, the users
selects a resource from the list and clicks on the publish button and the broker’s response
is displayed afterwards indicating whether it has been published successfully or not. For
more details, the message logs of the implemented components’ that are involved in the

publication process are listed in Appendix D.

5.4.3 Resource Discovery

Figure 15 illustrates the interface used to perform the resource discovery process. It allows
the VIP to load a resource discovery request (as shown in Section 5.4.6.1, Listing 5.1) and
send it to the broker and visualize the discovered resources using the Discover button which
sends the previously loaded discovery document as shown in the right panel. When received
from the broker, the list of discovered resources is displayed in the panel located in the center
of the interface. From this list, a VIP can browse the list, and perform another selection
process by visually analyzing the resources’ functional attributes and capabilities. Only the
resources of interest are added to the selected resources list and included in the negotiation

request that is later sent to the PIP using the Create Request button.

65

r N
\9 Virtual Infrastructure Provider (VIP) Console @m

Eile View Help

] Open % Clear & showride Logs

?' Discovery Resource Discovery
¢ o N Requestfile: ts\NetBeans t_pr :_currentiVi i i ~routerxr| | Browss.. | Edit. | Discover. | | ViewDetsil.. |
q
‘ Discovered Resources
D Provider Vir. Environment 0S Type Node Type Resource Details

14/°1CH TT-YDYY-4525-5U/3-1... VYATA ROUTEr (LINUX-DS... Fi--1 AEN Linux vouter [(o= =S
c2cfec3b-edct-438f-a370-0.. Vyatta Router (Linux Bas... XE ¥\ ~» Expand Z< Collapse
7a735172-bd0f-4380-9cd9- . Xen-based Linux virtual PIP-1 XEN Linux vRouter
bbc8babb-02b4-4d489-b494- . Vyatta Router (Linux-bas PIP-1 XEN Linux vRouter l
1fchebad-6oac-47¢1-b605-2. . Vyatta Router (Linux Bas. PIP-1 XEN Linux VRouter [F)id="dssa
256b4008-f021-4230-9cf6-2_ Xen-based Linuxvirtual PIP-1 XEN Linux vRouter v E selectionParameters
c41c79c4-4043-4e19-812fd. . Vyatta Router (Linux-bas PIP-1 XEN Linux vRouter v E wnType
d1cf8ed5-a82f-43b3-b201f .. Vyatta Router (Linux Bas PIP-1 XEN Linux vRouter D VRouter
f045d0a6-8fd3-4dfd-b876-2 . Vyatta Router (Linux Bas. PIP-1 XEN Linux vRouter - E’
545a3a1e-Goed-de9c-82b1-. Xen-based Linuxvirual PIP-1 XEN Linux VRouter vrEmvronement
3662291b-7226-441-8540-9_ Vyatta Router (Linux-bas PIP-1 XEN Linux vRouter ¥ [Fxen

> ([osType
| Create Request | | Hide Selscted | | Discover Al | | Delete | | HideDetail | | up Down » [interfaceType

_ - » ([networkStack
» (& cpuType
‘ ViIP's Selected Resources ‘ . ﬁ quantity

v lectionConstraint:

D Description Vir. Environment %E * ‘md" nncs ra\tn S "
256040b8-1021-4230-0cl6-235612e0dGee Xen-based Linux virtual machine XEN - selectionGanstrain
c41c7004-4043-4e19-8121-06042155384 Vyatia Router (Linux-based) XEN & constrainton
7a735172-bd0f-4380-9¢d9-b76529cfae28 Xen-based Linuxvirtual machine XEN [wemory
945d0a6-8fd3-4dfd-b876-232983afb2b3 Vyatta Router (Linux Based) XEN v (& params

v (& param
[type = "size”
D value = "range:min=512{ y
[+X - J Y
[INFO] Opening request file “
[INFO] Selected file: discovery-router.xml
[INFO] Sending discovery request to the broker.
[INFO] Discovery request sent succassfully.
[INFO] Received broker's response. v
Messages | Eror

Ready.

Figure 15: The Virtual Infrastructure Provider discovery interface

5.4.4 Resource Negotiation

In our implementation, resource negotiation takes place between a PIP and a VIP. The
VIP triggers this process by sending a negotiation request to the PIP. Besides information
about the virtual resources, the request includes, but not limited to, information such
as the price wanted per resource, the quantity wanted and additional details formulated
as comments. The XSD used for formulating a resource negotiation request is shown
in Appendix C, Section C.3. During this process, the web services of both VIP and PIP
must be up and running. The request is embedded in a REST POST message and sent to
the PIP through its negotiation web service URI. For the roles to keep track of their resource
negotiation activities, the negotiation requests are stored in their belonging repository for
later consultation. When received, the request is marked not processed (pending) and
stored in the repository. Then, a background thread retrieves and adds it to the list of

requests that are displayed in the negotiation interfaces. A may reject, or accept a request.

66

B Physical Infrastructure Provider {PIP) Console @Eli—hj

File View Help

‘ ShowiHide log @ Stop Web Services

Received Resource Requests
= 4 -

« Requests D Description Price Quantity VIPRespo.. Accepted Processed Sent o VIP Request Details

!'?, WNet ce534a08-6978-4ec.. Requestfor 2virtual reso 0.99%/per VM 2 Accepted : ¥E dE 25 Call
d26b2554-71e2-43... Requestfor 4virtual reso... 0.85%/per VM 4 Accepted S Expan [ollapse
12c6d2a6-7e54-46.. Requestfor Svirtual reso... 0.99%/per VM 0 Rejected v ﬁ negotiationRequest
c§2af8dc-558f42a... Requestfor Svirtual reso... 0.75%/per VM 5 Accepted D .
a04fec2e-Cane et 0 virtual re50.. 0.995/perVM 0 ToBelnst.. [id="a04tec2e-0che-41e0-b30b

> ﬁ description
» (&3 price
» ﬁ quantity
v ﬁ‘ pipResponse
E} NotProcessed
¥ (& vipResponse
E} ToBelnstantiated
v E‘ requestStatus
[NotProcessed
v ﬁvutuaandes
> ﬁvirtua\Nude
» (B3 virtualNode
» ﬁwrtuawnde

Reject Request
Edit Request
Send Request to VIP

Instantiate Topology

View Detail

{ Send Request J Edit l Load Requests J { Delete J l Hidg Detail J Up l Down J = TS
INFQ Loading available requests from the local DB... [a

INFO Available requests have been loaded..

IMFO Sending negotiation requestta VIP.

INFO I 1 request sent successfully.

IMFR | nading availahle renussts fram the Incal DB |

—l Messages | Error | REST Services 1 Servers J

Ready.

Figure 16: The negotiation interface of the Physical Infrastructure Provider

Figure 17 shows the interfaces intended for the VIP. Whereas Figure 16 shows PIP’s resource
negotiation interface. Listing D.2 and E.2(Appendix E and Appendix D) show the message
logs of the actions taken by the both PIP and VIP components during a negotiation process.

5.4.5 Virtual Topology Instantiation and Resource Management

One of our main goals was to automate the process virtual topology instantiation and the
provisioning of resources without human intervention.

The virtual topology instantiation process consists of creating the requested virtual resources
and configuring their network settings. After concluding the negotiation process and reaching
an agreement, the VIP triggers the instantiation process by changing the negotiation status’s
request to ToBelnstantiated. The request is sent back to the PIP along with the description
of the resources and their wanted network settings/configurations such as the number of list

virtual interfaces (VIFs) per VM and the IP addresses associated with each interfaces, and

67

@ Virtual Infrastructure Provider (VIP) Console @@éj

Eile View Help

@ showide log 0] Stop web Senices

R T TR

;" Requests D Description Price Quantity PIP Response Accepted Sent to PIP Request Derails
c62a68dc-658f-42a4-bae... Requestfor Svirtual resources. 0.75%/per Vi 5 NotProcessed]
d26b2554-71e2-4350-87... Requestfor 4 virtual resources. 0.85%/per VM 4 MotProcessed
£2534a08-5978-4ec6-904___Reauestfor 2virtual resources. 0.99§/per Vi Accepted
Reject Request
Edit Request

Send Requestio PIP
Request Instantiation
View Detail

4 B
v 52 Expand %3 Collapse

¥ (& negotiationRequest
[id = "ce534a08-5978-4e
» (&5 description
¥ (& price
[0.99iper vm
¥ (&5 quantity
Gz
D comment
¥ (& pipResponse
E] Accepted
¥ (& vipResponse
E] Accepted
¥ [requestStatus
E] MNotProcessed
¥ [virtualNodes
» (i virtualNode
» ([virtualNode

| Publish | | Edit | | LoadRequests | | Delete | | Hide Dstail | up | Down |

S 3

[INFO] Available requests have been loaded. “
[INFO] VIP web services deployed successfully...

[INFO] Sending negotiation request to PIP.

[INFO] Megotiation request sent successfully...

—[Messages | Emor

|Re ady.

Figure 17: The negotiation interface of the Virtual Infrastructure Provider

so on. The process of creating a VM is similar to the process of creating a physical one that
involves assembling and configuring hardware components such as hard disk drive, memory
and network cards. To facilitate the VM creation process, we prepared a set of virtual
machine templates on which we deployed Shell scripts that enable the remote configuration
of the managed VM (addition or removal of Ethernet interface(s), changing a VM’s IP
address as well as setting/removing a static route between two nodes). These scripts are
listed in Appendix B, Listing B.1 and Listing B.2.

Upon receiving the instantiation request, the SM processes the list of resources to create
for each of which the SM creates a Java Thread to perform the required XML-RPC calls to
create the resource. After successfully creating all the resources, the process of configuring
their network settings starts. The SM opens an SSH connection to the targeted virtual
machine and to execute the appropriate scripts depending on the type of the configuration

required. In addition to creating and configuring virtual resources, the SM monitors

68

B Physical Infrastructure Provider (PIP) Console | = = X)

File View Help

i Show/Hide log @ ‘Stop Web Senvices

Received Resource Requests

+ Requesls) Description Price Quantity ViPRespo.. Accepied Processed Sent o VIP Request Details ”l

-:E VNet ceb34a08-5978-4ec.. Requestfor 2virtual reso 0.99%/per VM 2 Accepted 1~} X X 4 ~ .

- 42602564 T1e2-43... Requestfor 4virual reso... 0.85/per Vi 4 Accepted % X x ¥\~ Expand I Collapse Hl
12c636—7e& .. Reguestfor Sdua\ reso... 0.99%/per VM 0 Rejected x X x v [E negofiationRequest
c62a68dc-558f-42a.. Requestfor Svirualreso.. 0.758/per VM 5 Accepted * x @ El = "a04fec2e.0cbE-4180-630
al4fec2e-0cb3-41e Request for 3 virtual reso 0.99%/per VM 0 ToBelnst. [~} X x

» (EF description
» ﬁ price
L4 ﬁ quantity
¥ (& pipResponse
| 5% ‘ [NotProcessed

B Edit Negotiation Request S v (& vipRespanse

[ToBelnstantiated
Price per Vi | 0.65%/per Vi v E requestStatus
E} MNotProcessed
¥ (& vitualNodes
L4 ﬁvmua\Nnde
Lowered the price to 0.65%/hour/per VM + (& virtualNode

» [vitualNode

‘Quantity: 5

Comment

Bave Cancel

| SendRequest | | Edit | | LoadRequests | | Delete | | HidgDetall | | Up | | Down |

|Ready

Figure 18: Editing resource negotiation request

the status of the running resources and displays their dynamic attributes on the PIP’s
interface. Listing D.3 in Appendix D shows the message logs of the actions taken during
the instantiation and configuration process. As shown in Figure 19, the left panel of the
interface provides a tree view of the managed physical hosts along with their hosted virtual
resources. As shown in the figure, a dynamic context menu whose commands depend on
the node type (physical, virtual), is associated with each node of the tree. Commands to
starts, stop, connect/disconnect a to/from a host as well as view node status for monitoring
purposes are provided. The panel located in the center shows the virtual topology. The
properties panel (located in the left) shows the status of the connected resources (physical

or virtual) Finally, the panel located at the bottom is for logging purposes.

69

-
@ Physical Infrastructure Provider (PIP) Console

File View Help
@ snowridelog ¥ Clearsewvers (3[] Add Host
Resources Virtual Resource Management
¥ Requests | Physical Servers l{ Properties
22 VNet Status/Valy
— v . Hosts Property €
Host Lable localhost
¥ o/ 192168 5610 Host Description Defaultinstall of Xen3...
@ Gamma SRR] Host UUID Obbd2edd-50e6-4363...
@ Vyatta VM1 Hast IP Address 192 16856.10
Edition free
Alpha
% o Free memory 2761478144
Beta Supported Architecture xen-3.0-x86_64
Supported Architecture xen-3.0-x86_32p
Stop Gamma [192.168.56.92] Supported Architecture
View Status Beta [192.168.56.91]
Last Updated 17 Aug 2013 03:49:59 ..
|| 1s Live frue
Total Memory 5878902784
Free Memory 2787713024
Alpha [192.168.56.90]
v
- Ld
.m—J.ﬁ ATy ViTU dr P urogy... — 1
INFO Created Beta node
INFO Created Bravo node...
INFQ Created Alpha node...
INFO Created Gamma node...
INFO Configuring nodes...
INFO Adding links
INEN Addinn link fram Beta tn nnde lnha 1]
| Messages | Error | REST Senvices | Servers |
|Read3r -

Figure 19: Virtual topology management interface

5.4.6 Broker Components Implementation

5.4.6.1 Resource Selection Algorithm

The implemented selection algorithm is inspirited by the work presented in [89] and listed

in 1. The Resource Discovery and Selection Engine (RDS) performs the resource selection

and matching process. First, it validates and processes the incoming resource requests, and

queries the resource repository and to build a set of candidate resources which later is passed

as input to the selection algorithm. Afterwards, it runs the selection algorithm to match each

candidate resource with what is the parameters and constraints described in the request.

Listing 5.1 shows an example of a discovery request. It consists of the following key

parts:

70

Selection Parameters — Are used to match a resource’s properties. For instance, OS type,
node type, virtualization environment, network interface type.

Selection constraint — Has a type and list of parameters. The constraint type specifies
the resource’s components whose attributes need to be evaluated (e.g CPU, memory, hard
drive).

A constraint parameter is a function used to assess a particular resource’ functional attributes
such as CPU’s clock speed, memory’s size and so on. A key-pair value scheme is used to
formulate a particular constraint parameter where the key designates the attribute (e.g
number of cores, clock speed) on which the match should be performed. Whereas the value

can be one of the following:

e Fixed value — Specifies that an exact match should be performed when evaluating

the must be equal to the value contained in the parameter.

e Range — Of two values (minimum and maximum). This is used to check if the value

of the resource’s attribute in question is between the specified range.

e Pattern — Designates a matching pattern where aggregation function such as
Max(expression), Sum(ezpression) can be provided. An expression is the formula
to be applied on the selected resource’s attribute. For example, a Max function can be
used to match the highest CPU speed while taking into account the number of cores,

the size of its cache memory and its clock speed.

We believe applying selection constraints to the resource selection process as presented in

this section results in more flexible and accurate mechanism to select resources.

71

Algorithm 1 Select best resources that comply with the discovery request

INPUT: A discovery request with the parameters and constraints related to the resources
the required
OUTPUT: A list of resources whose properties matched with the constraints specified in
the discovery request
1: procedure SELECTBESTRESOURCES
2 candidateSet = null
3 bestSet = null
4 candidateSet < load available resources from DB
5: for each resource in candidateSet do
6 evaluate selection parameters on resource
7 extract the selection constraints from the discovery request
8 evaluate selection constraints on resource
9: if resource matches selection parameters and constraints then
10: add matched resource to BestSet

11: end if
12: end for

13: Return BestSet
14: end procedure

Listing 5.1: An example of a resource discovery request

<?xml version="1.0" encoding="UTF-8"7>
<discoveryRequest id="c2d1e220-b56a-4d58-87be-090aafc79333">
<selectionParameters> <vnType>VM</vnType>
<virEnvironement>XEN</virEnvironement>
<osType>Linux</osType>
<interfaceType>Ethernet</interfaceType>
<networkStack>TCP/IP</networkStack>
<cpuType>Intel</cpuType>
<quantity>2</quantity>
<selectionConstraints>
<selectionConstraint>
<constraintOn>Memory</constraintOn>
<params>

=N

<param type="size" value="range:min=512|max=1024" />
<param type="speed" value="value:1333" />
</params>
</selectionConstraint>
<selectionConstraint>

<constraintOn>CPU</constraintOn>

<params>

72

<param type="cores" value="range:min=4|max=6" />

<param type="clockSpeed" value="range:min=1|max=1.7" />

</params>

</selectionConstraint>

</selectionConstraints>

</selectionParameters>

</discoveryRequest>

5.4.6.2 Broker Web Services

Resources
being managed

Base URL
http://broker.com/api/vl/

HTTP Methods
description

virtual and
physical resources

/resources

POST: creates a new resource
GET: returns a lsit of all resources

/resources /resource_id

GET: retrieves a resource by its ID
PUT: updates a resource’s information

/resources/destroy /resource_id

POST: removes the specified resource

Network services

/services

POST: creates a new service
GET: gets a list of all services

/services/service_id

GET: retrieves a service
PUT: updates the specified service

/services/destroy /service_id

POST: removes the specified service

Role information

/roles

POST: creates a new role
GET: gets a lit of all roles information

/roles/role_id

GET: retrieves a role
PUT: updates a role

/roles/destroy /role_id

POST: deletes an individual role.

virtual network

/networks

POST: creates a new network
GET: gets list of all networks

/networks /network_id

GET: retrieves a network
PUT: updates a service

/networks /destroy /network_id

POST: removes the specified network

Table 3: Broker web services’ API

As opposed to Big Web services, RESTful services are not published in a service registry

(UDDI) to be later discovered, however, they are available at a uniform paths (under the

root URI) that are handed to the requester beforehand, thus, in most cases, provided with

the API documentation.

A well-defined URI template should be used to identity entities and illustrate their

73

relationships. The service and resource (SRR) is an information store that holds information
about resources that are arranged in a directory-structure like—from a logical point of view.
REST services operate on datasets (nouns), which, in turn, could have sub-dataset(s).
Hence, we use the following root URIs to address the respective services: /resources,
/services, /networks, /roles, /requests. Binding one of these URIs to the base URL (e.g.,
http://hostname/api/apiVersion/) leads to a service’s path, e.g the “service” resource is
available at http://broker.com/api/v1.0/services/service-id/. We notice the base URL has
an API version that is used for maintenance proposes. This enables the deployment of new
API version and allows the web service clients to bind to a specific version of the API.
Although putting the API version in the URI is against REST approach, however, putting
it in the resource representation itself is not supported by all the formats (MIME types).

In Table 3, we summarize the uniform interfaces that are used to manage various resources.
The resources being managed are listed in the first column, while the second column lists
their URI (the uniform interface). We find in the last column the HTTP methods applied

on the corresponding URI.

5.4.6.3 Broker User Interface

Figure 20 shows the graphical interface we implemented to interact with the broker
subsystem. This interface allows the starting and stopping broker’s web services as well
as the visualization of information about the published services and resources. The message

logs of the broker’s components are shown in Listing F.1 and Listing F.2 of Appendix F.

5.5 Use Case—Secure Content Distribution Scenario

Figure 21 illustrates the usage of our proposed information model and architecture for
dynamic resource discovery and selection, in a secure content distribution scenario. This
diagram shows an extended version of the use case we presented in Chapter 3.

The figure depicts the sequence of the interactions between the different components that

are involved in the publication, discovery (including selection), and negotiation of resources

74

r ~
%% Resource and Service Broker { == ﬂ
File View Help
% Clear & showtice log @ Stop Web Senvices
E‘J Resources ‘ Published Resources
=
D Provider Description Vir. Environment 0SType Node Type Resource Details
82364743-2e5.. FIP-1 Vyalta Router (Linux-based) XEM Linux vRouter A : ~e d 2 Col
916f04f4-28ed- PIP-1 Vyatta Router (Linux Based) XEN Linux vRouter S Expand ; , Collapse
anesreadtn PPA \yata ot Lmcbased | XEN Lmx Router " @ iniaNode o
d29b01b6-d17.. PIP-1 Vyatta Router (Linux Based) XEN Linux vRouter [Cid :'.916f04f4—259d~433d-91|
fcBd776e-387d.. PIP-1 Xen-based Linuxvirtual machine XEN Linux vRouter » (B physicalNogeiD
ca77fcdc-e88a-.. PIP-1 Vyalta Router (Linux-based) XEN Linux vRouter * (& provideriD
d53f372d-4c10... PIP-1 Vyaita Router (Linux Based) XEM Linux vRouter > ﬁ name
5427630c-a05.. PIP-1 Vyalta Router (Linux Based) XEN Linux vRouter > ﬁ description
12059bb2-4931... PIP-1 Xen-based Linux virtual machine XEM Linux vRouter J v (B availability
271efed7-0188... PIP-1 Vyalta Router (Linux-based) XEN Linux vRouter
c190008a-0e2c.. PIP-1 \Vyalta Router (Linux Based) XEN Linux VvRouter | r (& startTime
816dd0ac-2adf... PIP-1 Vyatta Router (Linux Based) XEN Linux vRouter » (&5 networkStack
7c80093d-168.. FIP-1 Xen-based Linux virtual machine XEM Linux vRouter > ﬁ nodeType
155f6d1cebid.. PIP-1 \Vyaita Router (Linux-based) XEN Linux vRouter » [virEnvironement
3c2a3B89dB-edfs... FIP-1 Vyalta Router (Linux Based) XEM Linux vRouter - ﬁ ipAddress
c4c7acT2-3951 PIP-1 Xen-based Linuxvirtual machine XEN Linux vRouter =y
ec51c83b-a60b.. PIP-1 \Vyatta Router (Linux-based) XEN Linux vRouter vielworkinterfaces
221b1b9e-1b8 PIP-1 Vyatta Router (Linux Based) XEN Linux vRouter » [virRoutes
£972db65-d89.. PIP-1 Windows-based virtual machine VIMVWare windows VM » i routingPlatform
ch0Gebdf-Gefa-... PIP-1 W?ndows-basedVM VMWare Windows VM ¥ (& functionalParam
ace0aadf-859d... PIP-1 W!ndows-based\f.M) VMWare Windows VM L » (&5 NetworkMngmtSwT
Af7f3935-3785-.. PIP-1 Windows-based virtual machine VMWare Windows VM
antnnas naa =) par_ s s Coman o v » (& nbrofPorts
—_— > ﬁ processingPower E
78 Resources l Load Resources J l Hide Detail J Up l Down J l Remove all records J L o _I b1
- k J ¥ Ls

INFO Loading available resources from the Broker DB... :

INFO Available resources have been loaded..

INFO Deleteing all resoruces contained in Broker DB.

INFO Loading available resources from the Broker DB.

INFO Available resources have been loaded.

=
v
—[Messages | Error | REST Senvices J
|Ready...
L

Figure 20: The Broker user interface

as well as the instantiation of virtual network. In addition, this scenario describes the steps
that lead to the instantiation of two virtual networks, namely: VNet 1 and VNet2. The
components that realize the functions of a given role are grouped together. Although this
scenario could be realized using any kind of communication middleware, we have adopted
a REST approach in our implementation. Consequently, the interactions between the
different entities are REST-based. At first, we assume that the scenario starts when a
PIP publishes the information about resources he offers to the broker. Hence, the Resource
Publication Engine (RPE) sends a POST request to the broker publication service’s URI
with the information about resources along with their constraints to create. The publication
service creates new resources sends back a confirmation message (200 OK) and the newly

created resources’ URIs to RPE (steps 1& 2). To deploy service enablers, a VIP needs to

5

PIP Functions VIP Network (VNet 1) SP Network (VNet 2) Broker (SRR)

[1T 1 1 [o - 1
[RPE | RNE [RIC | SDT | [RDS '~ RNE | SDT | SDPE RDS | RNE | SDT SDPE | Publication | Discovery & C
| |]]] T ' Service Selection Service | | orsumer
! ' | ! | | !
1: publishResourceDescription(resourcesInfo, QoS, constraints) ! ; »
- i : . ! 2: resourcePublicationResponse------4
Sy — — — | — — — — — S G S e S S gt -
I— VNetl : ——3: findResources(resourcelnfo, Q(!S. constrainfs) } ‘ |
Llnstantiation 4 I | 4: selectAndRankResources(serviceInfo, constraints) :
B et I]
| 1 = ! ; 5: returnListOfSelectedResources- - |
3 1 | L
! ! 6: selectBestResources(criteria, constraints) . F - I
| | - i i POST (http://broker.com/{repoid}/resources) |
| : 7: sendNegotiationRequest(resourcelnfo, constraints) S |
| 3 - <Y‘;rtu.all\ioded> - |
| - - L 4 <il >p|,>,.,no e.1</id> |
| Loop | 8: makeOffer(offerédResInfo; constraints)] <constfains>)) |
until - <securityLevel>symmetric</securityLevel>
| agreement i j | </constrains> |
| reached) 9: acceptOrRejectOffer(offeredResInfa, constraints) <qos>4cost>0.79$</cost> </qos> |
I L— — > | N </virtupINode> |
= = L i
| : ; . |
| 10: allocateResource AndInstantiateTopology s : |
I 3 i — 3 | !
| +——11: updateResourceStatus(resourcelnfo, constraints) } > |
| 12: publishVirmalNetwchkInfo(vi NetworkInfo, QoS) } » :
: 13: ACK topology instantiation ~ i ‘ } |
| | ! 14: notifyTopologyInstantiated() } |
! — i |
! J i |
: 15: deployAndTestServiceEnablers(servicelnfo, constraints) } |
1 I
| . L . | |
| 16: confirmServiceDeployment = ———17: publishServiceDescription(servicelnfo, constraints)—#i |
L 18: servicePublicationRsp(OK)------ :
et St S el splienlinlionlie ol sliestieslielios ot inplislieepties il ng
—— - — - — = — = ——— et e - — = — =L — = B
I— VNet2 | 19: findServices(servicelnfo, QoS, constraints)———— » |
| Instantiation /l } 20: selectAndRankService(servicelnfo, constraints) |
e << ! 21: returnListOfMatchedServices-- :
L e
: 22: selectBestService(criteria, constraints) |
['
: 23: sendNegotiationRequest(rdsourcelnfo, constraints) :
¢ |
| e == |
| |-1-"“P | 24:imakeOffer(offeredResInfo, constraints) } | |
| until > k |
agreement ! B
| reached __ 25: aceeptOrRejectOffer(offeredResInfo, constra‘ums) | |
| == n |
G S e S BEpSSS— pE— —— N
| | |
| > 26: allocateResource/ ,ndInstanyiatcTopology(rcsourcclnfo, constraints) } |
| —) ! ! : | |
| 27: allocateResource AndInstantiateTopology | | } |
< | i ' 1
: 28: updateResourceStatus(resourcelnfo, constraints) } > :
| 129: publishVirtualNetworkInfo(virNetworkInfo, QoS) 1 » |
. P S i I
: 30: ACK topnlo}gy instantiation 1 31: notifyTopologylnstantiatbd() | :
| % 32: deployAndTestEndUserServices(servicelnfo, constraints) |
| - ! !
: _ 33: testResourceAvailability(resourcelnfo) } |
S : | [
: 34: testAllocatedResAndDeployedServices : } :
| ' i |
,,,,,,, . |
: 35: return test resu § 37: publishServices(servicelnfo, QoS, constraints) |
i >
| | | | |
| ! |
: | | ‘ :
S S - e e e e — — e -
! i | 39: findServices(servicelnfo, QoS, constraints)
I
. . . | |
RPE: Resource Publication Engine ! b : .
L. . : selectAndRankService(servicelnfo, constraints
| 40: selectAndRankS (Inf traints)
RNE: Resource Negotiation Engine i ; L
s : i 41: return list of matched i
RIC: Resource Instantiation and configuration relm st ol makched sevies.
g o T
RDS: Resource Discovery and Selection 42: selectBestService
2 g 2 1
RNE: Resource Negotiation Engine >
SDT: Service Deployment and Testing

SDPE: Service Description and Publication Engine

Figure 21: The implemented secure content distribution scenario

76

create/instantiate a virtual network (i.e VNetl) on top of aggregated resources (possibly
from different providers). Therefore, the virtual Resource Discovery and Selection (VRDS)
initiates a discovery request containing the description of the desired resources along with
their availability and constraints. This request is sent to the broker’s Discovery and
Selection Service (step 3) which, first, selects the best resources that comply with the
requirements specified in the discovery request (using a selection algorithm and with the
help of the clustering engine), ranks the selected resources, and replies back with a list
of selected resources (steps 4 & 5). In order to refine the received resources, the VRDS
performs another selection phase and applies some local criteria and constraints (step 6).
Subsequently, the Resource Negotiation Engine (RNE) sends a negotiation request to the
corresponding RNE of the lower layer (step 7). The PIP processes the request and sends
back an offer with the negotiated resources, which will be later accepted or rejected. Steps
8 and 9 are repeatedly executed until reaching an agreement with the resource requester.
The Resource Instantiation and Configuration (RIC) allocates and configures the requested
resources, and instantiate the topology while taking into account the specified constraints
(step 10). Afterwards, the RPE updates the allocated resources information, and describes
as well publishes the newly created virtual network description in the broker. The RIC
sends an acknowledgment message confirming the allocated resources to the RNE (at the
VIP level), which, in turn, issues a topology instantiated notification that is sent to the
Service Deployment and Testing (SDT) (steps 11 to 13). Upon successfully instantiating the
virtual topology (resulting in the creation of creating VNet1), the SDT initiates a request for
service deployment and test along with the required service information and their constraints,
and gets a confirmation message. Finally, SDPE describes the newly created service and
publishes its information in the broker (steps 15 to 17). The steps involved in the process
of instantiating the topology of VNet2, and the deployment of the content distribution end
user service offered by the SP are somehow similar to the steps performed to instantiate
VNetl. However, the negotiation process takes place between the SP and the VIP (steps

19 to 38). Furthermore, the content of the message parameters, which determines the type

7

of the services being offered, and the constraints related to each service are different. Thus,
after successfully deploying and testing the end user service, the SDPE sends its description
to the broker to be published. Finally, consumers (end-users) who wish to consume end-user
services, send a request to the broker for discovering the services of interest. The broker
processes the request, selects, and ranks the services that match the initial discovery request
(steps 39 to 42). Afterwards, the consumer submits a bind and invoke service request to the
chosen SP, which in response sends an acknowledgment and grants access to the consumer.
The latter then carries the rest of the interactions related to the end user service invocation

and usage (those interactions are not shown in the figure).

5.6 Lessons Learned

We have learned several lessons while implementing the prototype. The first lesson is related
to the selection of the database solution for building the resource repositories. Although
native XML databases offer better flexibility for storing XML documents, however, they are
not suitable for building a large storage repository and their performance related to querying
data is questionable in some cases. Therefore, we opted for a hybrid storage solution that
combines relational and native XML.

Another lesson related to the choice of virtualization environment and tools. We
needed an efficient virtualization solution/tool that provides remote connectivity and exposes
programmatic access to the managerial tasks related to the management of virtual resources.
Although there are many well-known open source projects such as OpenStack, OpenNebula
and CloudStack that provide tools for creating virtual networks, however, such projects
require the user interactions to instantiate a virtual topology. Currently, there are two
options to have XAPI-enabled virtualization environment. The first one is to install it from
an ISO image which results, after installation, in an out-of-the-box virtualization solution
with CentOS 5.x based Xen’s Dom(. The second one is to install it using XCP-XAPI
packages that are currently available on Debian-based Linux distributions, which results in

having a Dom0 running Debian-based Kernel. Although installing XCP-XAPI provides more

78

flexibility in building the virtualization environment, the configuration and setup process is
challenging and more complex. Aiming at benefiting from long time support for Ubuntu
12.04, we first installed XCP-XAPI on Ubuntu 12.04.2 LTS, but we discarded this choice
due to the lack of automated environment configuration as many workarounds need to be
performed in order to configure Xen’s environment (such as disabling Xend, downgrading
Ubuntu Kernel from 3.5.x to 3.2.x, etc). Besides, some packages were not compatible with
latest version of Ubuntu 12.0.4.2 LTS.

In relation to the development of the graphical user interfaces, we learned that it is better
to develop a multi-threaded desktop user interfaces that is able to send HTTP requests
rather than developing web-based one. Despite its features, web-based interfaces have some
limitations, and sometimes the development of such interfaces is harder when it comes to
offer an enhanced and better user experience (e.g managing threads and offering a more
responsive UI). We use threads for managing each outgoing and incoming request publication
and negotiation as well as various resources managerial tasks (such as resource instantiation
and monitoring tasks). We learned another lesson related to the selection of a web server for
deploying REST web services. We needed a scalable and robust web server that supports
Jersey and is able to handle a large number of simultaneous requests. We first selected
GlassFish but we discarded this choice after noticing performance issues and moved to Grizzly
application server. It uses Java New I/O API and is designed to offer optimum scalability,
performance and speed. One of the challenges we have confronted is managing the network
connectivity (changing IP address, defining a static route, etc) of Vyatta's routers since
we chose the community edition, which is not provided with the REST API that allows to
programmatically controlling a router. To prevent this issue from limiting our prototype, we
used Shell scripts invoked remotely to execute the necessary commands needed. Although
one of the typical solutions to automate the execution of such command a VM is to deploy
software agents that are exposed as XML-RPC services, this solution is not flexible in a

dynamic networking environment since a VM’s IP address might change often.

79

5.7 Summary

This chapter presented the design and implementation of a proof of concept prototype
whose objective is to demonstrate the feasibility of the proposed framework. Although
we implemented only a subset the architecture we proposed in Chapter 3, the implemented
prototype enables physical infrastructure providers to describe and publish resources into
a public resource repository, and virtual infrastructure providers to discover resources and
negotiate them with the concerned providers. Additionally, our implementation enables an
automated instantiation and configuration of virtual topology. Although many approaches
could be used to implement the resource discovery mechanisms (e.g hybrid P2P), we adopted
a centralized (client-server) architecture in our implementation. A P2P solution is not
predictable since a node can join and leave the network without prior notification, which
might be not appropriate to realize the proposed scenario. In this implementation, the
resource negotiation process is semi-automated: it requires roles intervention to process a
request, and accept or reject it. However, this process can be entirely automated. One
solution is to include policies and rules in the negotiation request based on which an
automated decision engine can perform the negotiation process. Furthermore, we used SSH
and Shell scripts to automate the virtual resources configuration process. Another efficient
alternative can be used which consists in deploying software agent that exposes configuring

services via public interfaces (XML-RPC or web services).

80

Chapter 6

Performance and Scalability

Evaluation

In the previous chapter, we have presented the design and implementation of a proof of
concept prototype that implements a subset of the architecture introduced in Chapter 3
and uses the information model presented in Chapter 4. The implemented prototype
enables multiple physical infrastructure providers to describe and publish information about
resources into a resource broker as well as virtual infrastructure to discover the published
resources and negotiate the selected ones with the respective provider(s).

In this chapter, we focus on evaluation and studying the performance of the implemented
system related to resource publication, discovery, negotiation and instantiation. We discuss
the performance metrics used, we detail the simulated test scenarios to test the different
subsystem and their components, and finally we contrast and discuss the obtained results.
We first assess the basic performance of the individual operations (i.e., publication, discovery,
negotiation and virtual topology instantiation in Section 6.1. Then, we evaluate the overall

system scalability as presented in Section 6.2.

81

6.1 Performance Evaluation

We have conducted extensive experiments to evaluate the performance of the components
involved in role-to-role interactions in terms of response time, network load and the number
of requests handled. We focus on the operations related to resource publication, discovery
and selection and negotiation and we measure the response time in milliseconds and network
load in bytes. Because of the limited number of physical resources in the testbed we are
using, we do not evaluate the maximum size of virtual topology our implementation can
handle. Rather, we measure the average time taken to instantiate a virtual machine and
elapsed time to configure the virtual network topology. Another fact is due to the limitation
associated with the number of virtual machine that a physical machine can host.

The delay measured refers to the total elapsed time from when a request is sent (from one
node to another) until a response is sent back to the node that initiated the request. The
network load is measured using the Ntopng (NTop Next Generation) [90] and refers to the
total number of bytes sent and received between two nodes while processing a request.

By performing these experiments, we do not attempt to prove that we have the best
implementation. However, since the response time of the overall system depends on several
factors (such as the number of requests to be processed, kind of request, etc), the purpose

of the conducted experiments is to demonstrate that the implemented solution is functional.

6.1.1 Prototype Setup

Figure 22 shows the experiment setup used to conduct the basic performance evaluation.
In this setup we use three machines (nodes), namely: PIP Management node (PMN),
VIP Management node (VMN) and Broker node. Additionally, we configured four nodes
to be used as substrate resources. The PMN and VMN are nodes host the implemented
components that realize the operations related to PIP and VIP roles respectively. Thus, the
Broker node hosts the broker’s components and the web services enabling the publication
and discovery of resources.

The PMN and VMN and the substrate nodes are DELL Precision 390 machines equally

82

3. Select
é ; resources
=D
1. PUBLISH/UPDATE S 2. DISCOYER (resource
(resource description)/ description)/200 OK
200 OK Broker Node
5. Notify(negotiation 6. Notify(negotiation
request event) reply event)
6. Accept or reject
negotiation request
=
negotiation request
VIP Management Node

PIP Management))
Instantiate virtual topology

s

ubstrate Resources

Figure 22: The prototype setup

83

equipped with Intel Core™Duo E6550, 2.33GHz processor and 4GB of RAM, 10000 RPM
HDD, and 100MBPS link.

Since the Broker node is expected to process all the incoming publication and discovery
requests, we used an HP Z210 Workstation machine. It is equipped with Quad Core™i5
processor, 4GB of RAM (1333 MHz DDR3), 7200 RPM HDD, and 100MBPS link. All the
nodes are interconnected with Ethernet links through a Cisco Catalyst 2950 series Switch
forming a LAN.

We installed Linux operating system (Ubuntu 12.04 LTS) and the required tools and
frameworks on the management and the broker nodes. However, on the remaining four
machines, we installed XCP and prepared a set of virtual machines templates configured
with 1CPU, 512MB of RAM, 20GB of disk space, and 5Mbps links. In this setup, we run
two to four VMs on the same node. Prior to run the experiments, we have generated a set
resource description documents containing all the possible resources description to be used
during the evaluation process. Such documents were published into the broker using a PUT

REST message in order to populate its repository with the required data.

6.1.2 Resource Publication Tests

The objective of this scenario is to test all the components involved in the resource publication

process. We test both the PIP and the broker components.

Scenario

In this scenario we use the same setup detailed in Section 6.1.1 to test the case of one single
PIP sending publication requests to the broker. Figure 23 shows the two nodes used and
the components tested. The PIP Node is employed to test the resource publication requests
sending process, and Broker Node represents the broker and used to test resource publication
request handling process.

For us to perform this test, we prepared a script that is used as resource publication simulator

and whose message logs are shown in Appendix D, Listing D.4. It uses the Resource

84

PIP Node Send publication

request
Publication Engine g2 \\\ Broker Node
> 2 |
o R Nami
esouTce 8 ! (esource ammg)
Repository g
Resource

Request
Dispatcher

Publication Engine

IdV 1S3y

Publication results
(HTTP)

Resource &
Repository

Figure 23: Test scenario for resource publication

Publication Engine to generate any number of publication request and any type of resources.
This script continuously sends publication requests with the number of requests specified
before execution.

We details the steps and actions performed by each node as follows:

The PIP Node: for each request, the Resource Publication Engine loads and validates the
appropriate resource description document, and asks the REST client to prepare a REST
PUT request and send it to the broker.

The Broker Node: when received, it extracts the resource description document from the
request and processes it. If it is valid, this document is later stored in the database and an

HTTP status code (201 created) is sent back to the PIP Node.

Results

We measure the overall elapsed time taken to process a resource publication request. The
elapsed time is expressed in millisecond and is calculated from the moment a resource
document is loaded and sent until a successful response (i.e., HTTP status code 200 OK, or
201 created) is received from the broker. Additionally, the response time includes the time
taken to marshal and unmarshal the XML document that contains the resource description
to be published, as well as the elapsed time for creating and sending REST request, storing

the published resource in the database and sending back the response.

85

Table 4: Resource publication average network load and response time
measurements

Number of Response time Network Load

publication requests (ms) (kilobyte)
1 245 ms 31.3 KB

50 5006 ms 165.9 KB

100 8845 ms 172.3 KB

150 14773 ms 186.4 KB

300 33003 ms 207.2 KB

400 42319 ms 227.6 KB

500 53005 ms 230.5 KB

600 64478 ms 235.3 KB
1000 109883 ms 239.8 KB

The results shown in Table 4 are the average measurements of 20 tries. The first column
shows the number of publication requests per iteration that were repeatedly sent. In this
test, we use the same resource description document which consists of the description of one
physical machine and two virtual machines. On average, it took 245 ms to process a single
publication request which we consider reasonable.

However, as can be concluded, the system performance was affected when the number of
publication requests increased, whereas the network load increases slightly. This is due to
the request processing overhead and the delay caused by concurrent access to the resource

database.

6.1.3 Resource Discovery Tests

The objective of this scenario is to test the resource discovery process and resource selection

algorithm.

Scenario
In this scenario, we consider only one single VIP interacting with the broker. Figure 24
shows the broker node and the VIP node that is used to send resource discovery requests.

To automate this test, we wrote a script that is used as resource discovery simulator and is

86

VIP Node

Resource F?J Discover resources
i oi n (XML/HTTP)
Discovery Engine Z; Broker Node
> 5
=
Resource = Request Resource
Repository Queue Discovery &
| Selection

IdV LS3d

/
List of selected
resources
(XML/HTTP)

Request
Dispatcher

Resource &
Repository

Figure 24: Test scenario for resource discovery

able to send any kind and number of discovery requests. Moreover, this scenario involves
the testing of the resource selection algorithm that was previously presented in Chapter 5.
The following are the steps and actions performed by each of the aforementioned nodes:

The VIP Node: the Resource Publication Engine loads and validates the XML documents
containing the resource discovery request and sends a message to the REST client module
to prepare and send a GET REST request with the loaded resource discovery document.

The Broker Node: when received, the broker’s Resource Discovery Engine extracts the
resource discovery document from the request and processes it. If the request is valid, the
resource selection algorithm is executed to select the resources that comply with the request.

Finally, the list of matched resources is sent to the VIP Node.

Results

In this test, we focus on evaluating the performance and efficiency of the resource selection
process. We measure the overall elapsed time taken to process a resource discovery request.
That is, from the moment a resource discovery request is loaded and sent until receiving
a positive response (HTTP 200 OK) with the list of selected resources. Consequently, the
response time includes the time taken to marshal and unmarshal the XML document that
contains the resource discovery request and sending the GET REST request. Moreover, it
includes the overall elapsed time to execute the selection algorithm as well as querying the

database to get the list of potential resources and sending back the list of matched resources.

87

Table 5: Resource discovery network load and response time measurements

Number of Number of Response time Network Load

discovered resource (ms) (kilobyte)
resources processed
2 20 183 ms 23.2 KB
20 500 1032 ms 2949 KB
100 500 1885 ms 439.6 KB
200 1000 3548 ms 584.2 KB
400 1300 6958 ms 778.5 KB
800 4000 13744 ms 998.4 KB
1000 5000 17096 ms 14003.9 KB

The message logs of the resource discovery request generator is shown in Appendix E, List-
ing E.3. To perform the resource discovery experiments, we populated the resource repository
with the descriptions of 5000 different resources. The results shown in table 5 are the average
response time and network load of 20 tries. The first column shows the number of discovered
resources per request. This number is early specified in the discovery request along with the
selection parameters and constraints. The second column indicated the number of resources
processed during the selection process.

We started by experimenting with a discovery request of two resources. With the setup
described earlier in this chapter, it takes 183 ms and generates 23.2 KB network load
on average across 20 tries to process the request. As the number of discovered resources
increases, the results show that the response time and the network load increase as well. By
analyzing the results, we notice that the number of resources processed has an impact on
the response which is due to the increased number of resources that are taking into account
by the selection algorithm. As for the network load, it increases in size because it depends
on the size of the list of matched resources that is sent back to the process who initiated the

discovery request.

88

6.1.4 Resource Negotiation Tests

The purpose of this scenario is to test the operations related to resource negotiation process
that involves the PIP and VIP roles. Our main goal is to test the efficiency of the resource

negotiation engine with various number or negotiation requests.

Scenario

The nodes used and the components tested are shown in Figure 23. The VIP Node is used

Send resource
negotiation
requests
(XML/HTTP)

Physical Infrastructure Provider Virtual Infrastructure Provider

Resource

Resource = & Negotiation
Negotiation 4 “z Engine
Engine
g E z

Resource &
Service
Repository

Resource &
Request
Repository

| REST Client REST Client |

Send response
to negotiation
request
(XML/HTTP)

Figure 25: Test scenario for resource negotiation

to generate and send resource negotiation requests, and PIP Node is employed to process the
request. However, to eliminate the human intervention in processing the request, we modified
the Resource Negotiation Engine so that any received request is automatically processed and
its status is marked as accepted and returned back to the VIP. The following are the actions
performed by each node:

The VIP Node: with the help of a script we wrote to generate resource negotiation request,
the Resource Negotiation Engine loads from and validates the request XML document and
sends it to the REST client, which in turns, prepares and sends a REST PUT request to the
PIP node.

89

The PIP Node: extracts the negotiation request document that was embedded in the
request and processes it. Then, the status of the requests is changed to processed and the
request is marked as accepted. The request is later embedded in a REST PUT request and
sent back to the VIP Node.

Results

In this scenario, we evaluate the operations involved in the implemented resource negotiation

Table 6: Resource negotiation average network load and response time
measurements

Number of Response time Network Load

negotiation requests (ms) (kilobyte)
1 187 ms 34 .9 KB
50 4711 ms 476.2.9 KB

100 10118 ms 523.6 KB

200 20590 ms 614.9 KB

400 40417 ms 737.4 KB

800 85210 ms 864.2 KB

1000 99466 ms 924.6 KB

process. Consequently, we measure the overall elapsed time taken to send and process a
negotiation request. The response time is expressed in millisecond and is calculated from the
moment that the resource negotiation document is retrieved from the resource and request
repository and sent to the PIP as well as until a successful response (HTTP status code (201
created) or 200 OK) is received from the PIP.

Notably, the response time includes the time taken to marshal and unmarshal the XML
document consisting in the negotiation request, as well as the elapsed time for creating and
sending REST request, storing the published negotiation request as is in the database and
sending back the response.

The results shown in table 6 are the average response time and network load of 20 tries.
The first column shows the number of negotiation requests generated per iteration. In each
request contains information about two virtual resources. On average, it takes 187 ms on to

process one single request.

90

6.1.5 Virtual Topology Instantiation Tests

The objective of this scenario is to test the process of virtual network topology instantiation.
In this scenario, we take into consideration the creation of virtual resources (i.e., virtual

machines) as well as the instantiation of a virtual network.

Scenario

We use the same setup as detailed in detailed in Section 6.1.1 to execute the

PIP Management Node
SQL/XPath
Substrate . L.
Manager — Instantlatlop&
Configuration
Test & ¢
.. Resource
Monitoring R ¢ Pool
Resource description \ equest Foo
repository
XAPI Client
}\,
X
Substrat Resources ~
Vlrtual Resources
XAPI ——————————————
I' VNetl] ']

Xen Coqtrol <_’—> J@L |
Domain vM Il vm [vm Vyatta v I v) vm
(Dom0) router

B@W@ 188

Figure 26: Test scenario for virtual topology instantiation and configuration

experiments. Figure 23 shows the nodes used and the components tested in this scenario. We
focus on how the implemented components handle a virtual topology instantiation request.
The PIP Node is used to communicate with the Substrate Resources through the XAPI
Client module. Whereas the Substrate Resources are physical machines we used on which

we create and connect virtual machines.

91

We prepared a script that takes as input a virtual resource instantiation request and uses
the Substrate Manager to process the request. The request is a document containing the
description of resources to instantiation along with their network configuration and setting
such as the IP address of each virtual network interface (VIF), the network address, and so
on.

The following are the actions and steps tested that are performed by each node: The
PIP Node: the Substrate Manger module retrieves a virtual instantiation request that
we previously prepared for testing from the request repository, extracts and validates the
contained resource descriptions. For each resource, the Instantiation and Configuration
module Parses resource description and initiates a resource instantiation request that is sent
to the XAPI Client which in turn communicate with the appropriate physical machine’s
Dom0 to create the intended virtual resource. Once all virtual resources created, the
Instantiation and Configuration triggers the resource configuration process which connects
the created resources as previously described in the instantiation request.

The Substrate Resource: upon receiving virtual machine creation request, the Dom0 of
each physical machine configures and creates a virtual machines with the information stated

in the request.

Results

We measure the overall time taken to process a virtual topology instantiation request. This
time consists of the total time elapsed to create and configure each virtual resource as well
as creating and setting up the network interfaces and the routes between two distinct virtual
networks.

On average, it takes one minute and 10 seconds to create and configure a Vyatta virtual
machine. However, it takes 5 minutes 55 seconds to create and configure a virtual topology

consisting of four Vyatta virtual routers.

92

6.2 Scalability Evaluation of the Implemented System

The goal of the scalability experiments we have conducted is to evaluate how the broker
system behaves when is subjected to heavy load. Since the main subsystem is the broker as
presented in Chapter 5, the scalability tests focus on the broker’s capabilities for handling

large number of resource publication and discovery requests.

6.2.1 Scalability Tests Setup

Process resource publication and
discovery requests

Generate resource publication

Broker Node .
or discovery requests

(HP Z210 Workstation)

atalyst 2950 series

Nodel
DELL 390

Node 4
DELL 390

Node 2

DELL 390 Node 3
DELL 390

Figure 27: Setup for the scalability tests

The scalability experiments setup is illustrated in Figure 27. The hardware configuration
of these machines is detailed in Section 6.1.1. The four DELL 390 machines were used to

generate either publication or discovery requests, and the HP Workstation machine was used

93

as broker node to process the requests.

6.2.2 Resource Publication Scalability Tests

The objective is to assess the capabilities of the broker in handling large number of resource

publication requests.

Scenario

In this scenario, we use four PIP nodes and one broker node as depicted in Figure 28 to
perform the resource publication experiments. The hardware configuration of these machines
is detailed in Section 6.1.1. We focus on studying the ability of the resource broker in
handling a large number of concurrent resource publication requests received at the same
time. Therefore, to know if the number of resource publication requests to be processed has
an impact on the broker’s performance, we used the following scenario: we first start the

experiments by using only two nodes to generate resource publication requests at the same

time; then we scale out to use the four PIP nodes as request generators.

Node 1 (PIP) Publish resources Publish Node 3 (PIP)
ublish resources
Resource g (XML/HTTP) (XML/HTTP) Resource g
Publication Engine] Broker Node Publication Engine]
o a—f — 2
s i — =
Resource e Resource =
Repository F?l Queue Repository
4
> 5 S .
> Request Publication Engine
Node 2 (PIP) = | | Dispatcher
_ D Node 4 (PIP)
Resource Publication F?J Resource &
a —— \Publication Engine 43
> 5
Resource = g
Repository Resm}rce =
Repository

Figure 28: Test scenario for concurrent resource publication

Results
Table 7 shows the average measurements of 20 tries generated with both two nodes and
four nodes. The first column illustrates the number of publication requests sent per node,

whereas the second and the fifth columns show the total number of published resources per

94

request. In this scenario, each resource description document used contains a description of
two virtual resources. Hence, each publication request consists of two resource descriptions
to be processed. For example, the first row shows that 100 publication requests have been
sent resulting in 400 as total number or published resources (200 resources per node). We
start the experiments by 100 requests and we gradually increases the number of requests.
The chart shown in Figure 29 reflects the average response time for resource publication
requests. Each line represents test iterations at various loads (number of request). As the
number of publication request increases, the response time to process the requests increases
in an exponential fashion. This is due to several factors such as database overhead caused by
reading/writing records, resource description marshaling and unmarshalling, HTTP requests
processing overhead, etc. Consequently, we conclude that average response time to process
requests when using four nodes is slightly higher when the number of requests to process is
less than 10000. Figure 30 illustrates the average network load for experiments done with
both two and four nodes. We conclude that the network load slightly increases as more the
number of requests increases as well. Moreover, we notice that the network load increases
when more nodes are used to send publication requests. This is because of the additional

overhead generated by the packets used to carry resource information.

95

96

Table 7: Results of resource publication experiments

Generated with

two nodes

four nodes

Number of Number Response | Network Number Response | Network
publication requests | of published time Load of published time Load

per node resources (ms) (kilobyte) resources (ms) (kilobyte)
100 400 18454 ms 197.3 KB 800 32054 ms 250.2 KB

200 800 30402 ms 382.7 KB 1600 41868 ms 426.5 KB

500 2000 77707 ms 412.3 KB 4000 103479 ms | 434.3 KB
1000 4000 184442 ms | 451.7 KB 8000 188720 ms | 537.7 KB
2000 8000 383467 ms | 474.3 KB 16000 431953 ms | 562.3 KB
3000 12000 576233 ms | 520.6 KB 24000 681082 ms | 678.2 KB
4000 16000 711442 ms 532 KB 32000 926644 ms | 726.8 KB
6000 24000 1192482 ms | 565.4KB 48000 1376491 ms | 786.3 KB
8000 32000 1508638 ms | 626.2 KB 64000 1899391 ms | 870.3 KB
10000 40000 1899529 ms | 684.6 KB 80000 4702968 ms | 948.6 KB
15000 60000 2779286 ms | 731.7 KB 120000 7320516 ms | 1320.3 KB

Throughput of resource publication requests

7018000 ;
—. 6018000 /
E 501500
: /
£ 1018000 /
]
= 3018000 e four nodes
g / == two nodes
= 2018000
]
= / .r"/‘
1018000
18000 —g—-‘—*‘é‘%::_r‘(
100 200 3500 1000 2000 3000 4000 6000 S000 1000013000
Number of publication requests
Figure 29: Resource publication response time
Resouce publication network load
_ 1530 =
1330)/ —@—four nodes
= 1150 =—f=two nodes
oo ———
E - -—
E 55 /) AX*—_’
3 Y —— y
Z 330 /
150
100 200 500 1000 2000 3000 4000 6000 3000 10000 15000

Figure 30: Resource publication network load

97

6.2.3 Resource Discovery Scalability Test

The objective of these experiments is to test the efficiency of the broker in handling a large
number of resource discovery requests. The selection algorithm’s assessment is taken into

account as well.

Scenario

As depicted in Figure 31, we use four machines (as VIPs) to concurrently send discovery
requests to the broker node at the same time. However, we start the experiments by using
two VIP nodes. Then, we increase the number of nodes used to four. Thus, we gradually
increase the number of resources to be discovered after each try. This gives us insight on
the performance of both resource selection algorithm and the implemented logic of resource

discovery.

Node 1 (VIP)

Resource
Discovery Engine

Resource
Repository

Discover resources

(XML/HTTP)

R LSHY

N

Node 2 (VIP)

Resource
Discovery Engine

1dV LSTd

Queue
Request
Dispatcher

Broker Node

Resource
Discovery &
Selection

Resource &
Repository

Discover resources

(XML/HTTP)

Node 4 (VIP)

Resource
Discovery Engine

Resource
Repository

1D LSHY

Node 5 (VIP)

Resource
Discovery Engine

R LSHY
Judr) LSHA

Resource
Repository

Resource
Repository

Test scenario for concurrent for resource discovery

Figure 31:

Results

The average measurements of 20 tries generated with both two nodes and four nodes are
illustrated in Table 8. The first column shows the number of discovered resources per
discovery request. As shown in the first row, it takes 329 ms to discover 10 resources
using two nodes. However, it takes 1080 ms to discover the same number of resources when

we use four nodes. As for the network load, it increases slightly from 112.4 KB to 191.1

KB. Figure 32 reflects the response time of the conducted experiments using both nodes.

98

Each line represents test operations at various loads. Similarly to resource publication tests,
the time taken to process discovery requests increases when the number of resources to
discover increases as well. Thus, as shown in Table 8, the implemented broker continued to
handle discovery requests of 12000 resources within around 1424096 milliseconds. On other
hand, the network load generated by the resource discovery experiments is considerably more
important as shown in Figure 33. This is due to the discovered resources’ properties that

are embedded in the response that is sent back to the VIP node.

Table 8: Scalability results of resource discovery experiments

Generated with
two nodes four nodes
Number of Response | Network Response | Network
discovered resources time Load time Load

per request (ms) (kilobyte) (ms) (kilobyte)

10 329 ms 112.4 KB 1080 ms 190.1 KB

20 692 ms 166.5 KB 2193 ms 294.6 KB

50 2945 ms 358.8 KB 4176 ms 443.2 KB

100 5684 ms 456 KB 7032 ms 667.5 KB

200 11537 ms 766.2 KB 23970 ms 939.8 KB

400 23152 ms 959.9 KB 48371 ms 1234.8 KB

600 34728 ms | 1228.8 KB 68630 ms 1433.6 KB

800 46814 ms | 1945.6 KB 96665 ms 2340.8 KB
1000 58866 ms | 2252.8 KB 114241 ms | 2545.4 KB
1500 86944 ms 2560 KB 172194 ms | 2983.6 KB
2000 113764 ms | 2867.2 KB 236497 ms | 3788.8 KB
3000 171210 ms 3584 KB 358506 ms | 6656.3 KB
4000 229257 ms | 5427.2 KB 477324 ms | 9625.6 KB
6000 348910 ms | 13619.2 KB || 716799 ms | 17902.4 KB
8000 449619 ms | 14540.8 KB || 960802 ms | 29081.6 KB
9000 519726 ms | 16281.6 KB || 1851670 ms | 34406.4 KB
12000 694522 ms | 20787.2 KB || 1424096 ms | 45260.8 KB

99

Resource discovery response time

1400300 A
1200300 {/-
1000300

/

MAverage Response time
(milliseconds)
o
=
[¥5]
=

WP SFFE§ %@\@Q\@Qﬁﬁi@qﬁ““ n@'ﬁ%@%@\@

Number of discovered resources

Figure 32: Resource discovery response time

Resource discovery network load

== two nodes
—d—four nodes

(kilobytew)

Network load

Number of discovered resources

Figure 33: Resource discovery network load

100

6.3 Summary

This chapter has evaluated the performance and the scalability of the implemented system
presented in Chapter 5. We used different test scenarios and test setup to evaluate
the resource publication and discovery as well as the resource negotiation and virtual
topology instantiation processes. However, we focused on evaluating the performance of
the implementation in terms of resource publication and discovery. Therefore, we mainly
focused on studying the broker’s behavior when it is subjected to normal and large number
of requests. By analyzing the result obtained, we conclude that the current implementation
gives acceptable results. Although additional processing overhead and increased network
load are expected when large number of requests are being processed, many techniques
could be used to enhance the overall system performance and reduce the network load.
Examples of such techniques include load balancing, data caching, query optimization and
the use of a better resource selection algorithm /clustering. Despite the fact that we first used
four roles (i.e PIP or VIP) in the experiments, our solution is designed to support multiple
roles interacting with each other at the same time. Additionally, our broker implementation
has demonstrated to be effective in terms of handling many concurrent requests received

simultaneously.

101

Chapter 7

Conclusions and Future Work

Although network virtualization has received a considerable attention lately and is seen
as a promising way to overcome the limitations and fight the gradual ossification of the
current Internet infrastructure, it raises many challenges. One of the challenges relates to
enabling the dynamic publication, discovery and selection of virtual resources that can be
aggregated to form a virtual networks. Another challenge is the definition of an expressive
and formal information model that enables the fine-grained description of virtual resources
and facilitates the information sharing between the various roles involved. In this chapter,
we conclude with a summary of the contributions of this thesis and discuss the planned

future work.

7.1 Discussion

We have encountered many challenges in implementing the prototype. Although many
selection algorithms have been proposed for network virtualization environment [16,17,39],
such algorithms have not been implemented and tested in a large-scale environment. One
of the challenges we faced is choosing a resource selection algorithm that suits our design
requirements. We wanted an efficient selection algorithm that accurately processes a large

number of resources. Another challenge we faced is the automation of the virtual topology

102

instantiation process. The main challenge consisted in creating and configuring virtual
resources as described in the instantiation request. Existing solutions require physical
infrastructures providers to use command line interface (CLI) or graphical user interface
(GUI) to create and configure virtual resources. Thus, using such solutions, one virtual
resource is created at a time. However, we wanted a solution that processes the entire set of

required virtual resources with minimal human intervention.

7.2 Summary of Contributions

In this thesis, we have presented a framework for resource description, publication and

discovery for network virtualization environment.

We first commenced by defining a set of requirements that such framework should meet.
Then, we have defined a broker-based architecture that fulfills these requirements. The
components of each layer in this architecture are exposed via public interfaces (e.g., web
services). A data source repository is used to store information about the published resources.
Thus, a selection algorithm has been used to select the best resources that comply with

virtual provider’s request.

We have proposed a multi-service multi-role integrated information model that enables the
fine-grained description of resources and services, and has been published in [9]. First,
we have established a set of requirements that the information model should meet. The
information model has been extensively used in the implementation to formulate requests

such as resource publication, discovery, negotiation and instantiation.
Moreover, we have illustrated the use of the proposed framework in a secure content

distribution scenario, which illustrates the interactions, and the information exchanged

between various roles.

103

As a proof of concept prototype, we have implemented a subset of the framework while
focusing on the description, publication, discovery and negotiation of virtual resources as well
as instantiation of virtual topology. Most importantly, all the broker components have been
implemented which enabled the publication, discovery and selection of resources provided

by various roles.

Finally, we evaluated the performance of the prototype and we have conducted extensive
experiments to assess the scalability of the overall system in terms of publication and
discovery of resources. The prototype have been tested using different scenarios as detailed
in Chapter 6, and the performance measurements taken demonstrated that the use of the

proposed framework is acceptable.

7.3 Future Work

The framework we defined provides a solution for dynamic publication and discovery for
NVE. However, some improvements and additional implementations can be added to the

current prototype implementation.

Although the resource negotiation process requires human intervention, it can be fully

automated to be more request-reply oriented based on some predefined policies.

Although the implemented resource selection algorithm has demonstrated to be effective
during the performance evaluation and scalability assessment, it can be enhanced to support

resource clustering and matching.

The proposed framework was evaluated using a limited set of resources. As future work,
we plan to evaluate the framework in a larger environment involving a considerable amount
of computational resources. One option to perform such evaluation is to use Amazon Elastic

Compute Cloud (Amazon EC2) [26] or use Planetlab cloud services or PlantLab’s resources

104

[32]. The use of such infrastructure allows for simulating the results a in a real-world-like

environment.

As per design, the proposed architecture is broker based, hence centralized. Another

alternative is to decentralize the broker services using a peer-to-peer approach.

105

References

1]

N. Chowdhury and R. Boutaba, “Network virtualization: state of the art and research

challenges,” Communications Magazine, IEEFE, vol. 47, no. 7, pp. 2026, 2009.

J. Turner and D. Taylor, “Diversifying the internet,” in Global Telecommunications

Conference, 2005. GLOBECOM ’05. IEEFE, vol. 2, pp. 6 pp.—760, 2005.

N. Feamster, L. Gao, and J. Rexford, “How to lease the internet in your spare time,”

SIGCOMM Comput. Commun. Rev., vol. 37, pp. 61-64, Jan. 2007.

N. Niebert, S. Baucke, I. El-Khayat, M. Johnsson, B. Ohlman, H. Abramowicz,
K. Wuenstel, H. Woesner, J. Quittek, and L. Correia, “The way 4ward to the creation
of a future internet,” in Personal, Indoor and Mobile Radio Communications, 2008.

PIMRC 2008. IEEFE 19th International Symposium on, pp. 1-5, 2008.

L. Correia, H. Abramowicz, M. Johnsson, and K. Wiinstel, Architecture and Design
for the Future Internet: 4WARD Project. Signals and Communication Technology,
Springer, 2011.

M. El Barachi, N. Kara, and R. Dssouli, “Open virtual playground: Initial architecture

2

and results,” in Consumer Communications and Networking Conference (CCNC), 2012

IEEE, pp. 576 —581, jan. 2012.

B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. Postel,
L. G. Roberts, and S. Wolff, “A brief history of the internet,” SIGCOMM Comput.
Commun. Rev., vol. 39, pp. 22-31, Oct. 2009.

106

8]

[10]

[11]

[12]

[13]

[14]

N. Niebert, I. Khayat, S. Baucke, R. Keller, R. Rembarz, and J. Sachs, “Network
virtualization: A viable path towards the future internet,” Wireless Personal

Communications, vol. 45, no. 4, pp. 511-520, 2008.

M. El Barachi, S. Rabah, N. Kara, R. Dssouli, and J. Paquet, “A multi-service multi-role
integrated information model for dynamic resource discovery in virtual networks,” in
Wireless Communications and Networking Conference (WCNC), 2013 IEEE, pp. 4777—
4782, 2013.

J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in system design,”
ACM Trans. Comput. Syst., vol. 2, pp. 277-288, Nov. 1984.

M. Bohm, S. Leimeister, C. Riedl, and H. Krcmar, “Cloud computing - outsourcing 2.0
or a new business model for it provisioning?,” in Application Management (F. Keuper,

C. Oecking, and A. Degenhardt, eds.), pp. 31-56, Gabler, 2011.

J. Carapinha and J. Jiménez, “Network virtualization: a view from the bottom,”
in Proceedings of the 1st ACM workshop on Virtualized infrastructure systems and

architectures, VISA '09, (New York, NY, USA), pp. 73-80, ACM, 2009.

T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the internet impasse

through virtualization,” Computer, vol. 38, no. 4, pp. 34-41, 2005.

G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless, A. Greenhalgh,
A. Wundsam, M. Kind, O. Maennel, and L. Mathy, “Network virtualization architecture:
proposal and initial prototype,” in Proceedings of the 1st ACM workshop on Virtualized
infrastructure systems and architectures, VISA 09, (New York, NY, USA), pp. 63-72,
ACM, 2009.

A. Khan, A. Zugenmaier, D. Jurca, and W. Kellerer, “Network virtualization: a
hypervisor for the internet?,” Communications Magazine, IEEFE, vol. 50, no. 1, pp. 136—
143, 2012.

107

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

I. Houidi, W. Louati, D. Zeghlache, and S. Baucke, “Virtual resource description and
clustering for virtual network discovery,” in Communications Workshops, 2009. 1CC

Workshops 2009. IEEFE International Conference on, pp. 1-6, 2009.

H. Medhioub, I. Houidi, W. Louati, and D. Zeghlache, “Design, implementation and
evaluation of virtual resource description and clustering framework,” in Advanced
Information Networking and Applications (AINA), 2011 IEEE International Conference
on, pp. 83-89, 2011.

P. H. Gum, “System/370 extended architecture: Facilities for virtual machines,” IBM
Journal of Research and Development, vol. 27, no. 6, pp. 530-544, 1983.

Microsoft, “Microsoft hyper-v.” [online] http://www.microsoft.com/en-us/

server-cloud/hyper-v-server/default.aspx. Accessed March, 2013.

VMWare, “Vmware vsphere.” [online] http://www.vmware.com/products/vsphere/.

Accessed March, 2013.

Citrix, “Citrix xenserver.” [online] http://www.citrix.com/products/xenserver/

overview.html/. Accessed March, 2013.

K. A. Scarfone, M. P. Souppaya, and P. Hoffman, “Sp 800-125. guide to security for full
virtualization technologies,” tech. rep., Gaithersburg, MD, United States, 2011.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield, “Xen and the art of virtualization,” SIGOPS Oper. Syst. Rev., vol. 37,
pp. 164-177, Oct. 2003.

C. Edwards and A. Harwood, “Using para-virtualization as the basis for a federated
planetlab architecture,” in Virtualization Technology in Distributed Computing, 2006.
VTDC 2006. First International Workshop on, pp. 13-13, 2006.

Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and research
challenges,” Journal of Internet Services and Applications, vol. 1, no. 1, pp. 7-18, 2010.

108

http://www.microsoft.com/en-us/server-cloud/hyper-v-server/default.aspx
http://www.microsoft.com/en-us/server-cloud/hyper-v-server/default.aspx
http://www.vmware.com/products/vsphere/
http://www.citrix.com/products/xenserver/overview.html/
http://www.citrix.com/products/xenserver/overview.html/

[26]

[27]

[28]

[29]

[30]

[31]

[36]

Amazon, “Amazon elastic compute cloud.” [online] http://aws.amazon.com/ec2/.

Accessed October, 2012.

Google, “Google compute engine.” [online] https://cloud.google.com/products/

compute-engine. Accessed October, 2012.

IBM, “Ibm infrastructure as a service.” [online] http://www-935.1ibm.com/services/

ca/en/cloud-enterprise/. Accessed October, 2012.

Microsoft, “Windows azure.” [online] http://www.windowsazure.com/en-us/. Ac-

cessed October, 2012.

A. Belbekkouche, M. M. Hasan, and A. Karmouch, “Resource discovery and allocation
in network virtualization,” Communications Surveys Tutorials, IEEFE, vol. 14, no. 4,

pp. 1114-1128, 2012.

J. Ding, I. Balasingham, and P. Bouvry, “Management of overlay networks: A survey,”
in Mobile Ubiquitous Computing, Systems, Services and Technologies, 2009. UBICOMM
'09. Third International Conference on, pp. 249-255, 2009.

PlanetLab, “Planetlab project.” [online] https://www.planet-lab.org/. Accessed
October, 2012.

J. Touch, “Dynamic internet overlay deployment and management using the x-bone,”

in Computer Networks, pp. 117-135, 2001.

VINI Project, “A virtual network infrastructure (vini).” [online] http://www.

vini-veritas.net/. Accessed October, 2012.

N. Chowdhury, F. Zaheer, and R. Boutaba, “imark: An identity management framework
for network virtualization environment,” in Integrated Network Management, 2009. IM

'09. IFIP/IEEE International Symposium on, pp. 335-342, 2009.

Nouveau Project, “Network virtualization project (nouveau).” [online] http://netlab.

cs.uwaterloo.ca/virtual/. Accessed October, 2012.

109

http://aws.amazon.com/ec2/
https://cloud.google.com/products/compute-engine
https://cloud.google.com/products/compute-engine
http://www-935.ibm.com/services/ca/en/cloud-enterprise/
http://www-935.ibm.com/services/ca/en/cloud-enterprise/
http://www.windowsazure.com/en-us/
https://www.planet-lab.org/
http://www.vini-veritas.net/
http://www.vini-veritas.net/
http://netlab.cs.uwaterloo.ca/virtual/
http://netlab.cs.uwaterloo.ca/virtual/

[37]

[42]

[43]

[44]

TINA, “Tina business model and reference points, v.4.0.” [online] http://www.tinac.

com/specifications/documents/bm_rp.pdf. Accessed June, 2012.

M. El Barachi, N. Kara, and R. Dssouli, “Towards a service-oriented network
virtualization architecture,” in Kaleidoscope: Beyond the Internet? - Innovations for

Future Networks and Services, 2010 ITU-T, pp. 1-7, 2010.

H. Amarasinghe, A. Belbekkouche, and A. Karmouch, “Aggregation-based discovery
for virtual network environments,” in Commaunications (ICC), 2012 IEEFE International

Conference on, pp. 1276-1280, 2012.

F.-E. Zaheer, J. Xiao, and R. Boutaba, “Multi-provider service negotiation and

contracting in network virtualization.,” in NOMS, pp. 471-478, IEEE, 2010.

P. Rygielski and S. Kounev, “Network virtualization for qos-aware resource

W

management in cloud data centers: A survey,” Prazis der Informationsverarbeitung

und Kommunikation, vol. 36, no. 1, pp. 55-64, 2013.

M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani, Q. Zhang,
and M. Zhani, “Data center network virtualization: A survey,” Communications Surveys

Tutorials, IEEFE, vol. 15, no. 2, pp. 909-928, 2013.

A. Beben, P. Wisniewski, P. Krawiec, M. Nowak, P. Pecka, J. Batalla, P. Bialon,
P. Olender, J. Gutkowski, B. Belter, and L. Lopatowski, “Content aware network based
on virtual infrastructure,” in Software Engineering, Artificial Intelligence, Networking
and Parallel Distributed Computing (SNPD), 2012 13th ACIS International Conference
on, pp. 643-648, 2012.

S. Balasubramaniam, J. Mineraud, P. Perry, B. Jennings, L. Murphy, W. Donnelly, and
D. Botvich, “Coordinating allocation of resources for multiple virtual iptv providers to
maximize revenue,” Broadcasting, IEEE Transactions on, vol. 57, no. 4, pp. 826-839,

2011.

110

http://www.tinac.com/specifications/documents/bm_rp.pdf
http://www.tinac.com/specifications/documents/bm_rp.pdf

[45]

[46]

[48]

[49]

[50]

[51]

[53]

F. Belgasmi, R. Glitho, and C. Fu, “Restful web services for service provisioning in
next-generation networks: a survey,” Communications Magazine, IEEFE, vol. 49, no. 12,

pp. 66-73, 2011.

A, Alamri, M. Eid, and A. E. Saddik, “Classification of the
state&e#45;0f-:the-art dynamic web services composition techniques,”
Int. J. Web Grid Serv., vol. 2, pp. 148-166, Sept. 2006.

C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services vs. ”big”’
web services: making the right architectural decision,” in Proceedings of the 17th
international conference on World Wide Web, WWW 08, (New York, NY, USA),
pp. 805-814, ACM, 2008.

R. T. Fielding, Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, CA, USA, 2000.

D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture for the web of
things.,” in IOT (F. Michahelles and J. Mitsugi, eds.), IEEE, 2010.

B. Murugan and D. Lopez, “Article: A survey of resource discovery approaches in
distributed computing environment,” International Journal of Computer Applications,

vol. 22, pp. 44-46, May 2011. Published by Foundation of Computer Science.

X. Wang and L. fu Kong, “Resource clustering based decentralized resource discovery
scheme in computing grid,” in Machine Learning and Cybernetics, 2007 International

Conference on, vol. 7, pp. 3859-3863, 2007.

B. Lv, Z. Wang, T. Huang, J. Chen, and Y. Liu, “Virtual resource organization
and virtual network embedding across multiple domains,” in Proceedings of the 2010

International Conference on Multimedia Information Networking and Security, MINES

’10, (Washington, DC, USA), pp. 725-728, IEEE Computer Society, 2010.

Y. Xu, Y. Han, W. Niu, Y. Li, T. Lin, and S. Ci, “A reference model for virtual resource
description and discovery in virtual networks,” in ICCSA (3), pp. 297-310, 2012.

111

[54]

[58]

[59]

[60]

[61]

M. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui, “A qos broker based architecture for
efficient web services selection,” in Web Services, 2005. ICWS 2005. Proceedings. 2005
IEEE International Conference on, pp. 113-120 vol.1, 2005.

I. Fajjari, M. Ayari, and G. Pujolle, “Vn-sla: A virtual network specification schema for
virtual network provisioning,” in Networks (ICN), 2010 Ninth International Conference

on, pp. 337342, 2010.

J. Osullivan, Towards a Precise Understanding of Service Properties. PhD thesis,

Queensland University of Technology, 2006.

G. Koslovski, P.-B. Primet, and A. CharAfo, “Vxdl: Virtual resources and
interconnection networks description language,” in Networks for Grid Applications
(P. Vicat-Blanc Primet, T. Kudoh, and J. Mambretti, eds.), vol. 2 of Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, pp. 138-154, Springer Berlin Heidelberg, 2009.

The VGrADS Project, “Virtual grid description language (vgdl).” [online| http:
//vgrads.rice.edu/research/execution_system/virtual_grids/vgdl/. Accessed

June, 2012.

D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat, “Distributed resource
discovery on PlanetLab with SWORD,” 2004.

GLUE Working Group, “Glue working group (glue-wg).” [online] http://www.ogf.
org/documents/GFD. 147 .pdf. Accessed June, 2012.

D. Zhou, L. Zhong, T. Wo, and J. Kang, “Cloudview: Describe and maintain resource
view in cloud,” in Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on, pp. 151-158, 2010.

OASIS, “Data center markup language (deml).” [online] http://www.dcml.org/.
Accessed October, 2012.

112

http://vgrads.rice.edu/research/execution_system/virtual_grids/vgdl/
http://vgrads.rice.edu/research/execution_system/virtual_grids/vgdl/
http://www.ogf.org/documents/GFD.147.pdf
http://www.ogf.org/documents/GFD.147.pdf
http://www.dcml.org/

[63]

[64]

[71]

[72]

D. Zhou, L. Zhong, T. Wo, and J. Kang, “Cloudview: Describe and maintain resource
view in cloud,” in Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on, pp. 151-158, 2010.

J. Van Der Ham, F. Dijkstra, P. Grosso, R. Van Der Pol, A. Toonk, and C. De Laat,
“A distributed topology information system for optical networks based on the semantic

web,” Opt. Switch. Netw., vol. 5, pp. 85-93, June 2008.

A. Campi and F. Callegati, “Network resource description language,” in GLOBECOM
Workshops, 2009 IEEE, pp. 1-6, 2009.

Open Grid Forum, “Network mark-up language working group (nml-wg).” [online]

http://www.ogf.org/gf/group_info/view.php?group=nml-wg. Accessed Jun, 2012.

H. Wang, “Nevml: A markup language for network topology visualization,” in Future

Networks, 2010. ICFN ’10. Second International Conference on, pp. 119-123, 2010.

DMTF, “Common information model.” [online] http://dmtf.org/standards/cim.
Accessed Jun, 2012.

GEANT?2, “Common network information service schema specification.” [online] http:

//geant2.net. Accessed August, 2012.

J. Strassner, “Den-ng: achieving business-driven network management,” in Network
Operations and Management Symposium, 2002. NOMS 2002. 2002 IEEE/IFIP,
pp. 753-766, 2002.

D. Dobrilovic, Z. Stojanov, B. Odadzic, and B. Markoski, “Using network node
description language for modeling networking scenarios,” Adv. Eng. Softw., vol. 43,

pp- H3-64, Jan. 2012.

M. Ghijsen, J. van der Ham, P. Grosso, and C. de Laat, “Towards an infrastructure
description language for modeling computing infrastructures,” in Proceedings of the

2012 IEEE 10th International Symposium on Parallel and Distributed Processing with

113

http://www.ogf.org/gf/group_info/view.php?group=nml-wg
http://dmtf.org/standards/cim
http://geant2.net
http://geant2.net

[77]

[78]

[79]

[30]

Applications, ISPA "12, (Washington, DC, USA), pp. 207-214, IEEE Computer Society,
2012.

GENI Project, “Rspec (geni).” [online] http://groups.geni.net/geni/wiki/
GeniRspec. Accessed September, 2012.

Network Working Group, “letf vnmim.” [online] http://tools.ietf.org/html/

draft-okita-ops-vnetmodel. Accessed October, 2012.

G. Schaffrath, S. Schmid, I. Vaishnavi, A. Khan, and A. Feldmann, “A resource
description language with vagueness support for multi-provider cloud networks,”
in Computer Communications and Networks (ICCCN), 2012 21st International

Conference on, pp. 1-7, 2012.

L. Lymberopoulos, P. Grosso, C. Papagianni, D. Kalogeras, G. Androulidakis, J. Van der
Ham, C. De Laat, and V. Maglaris, “Managing federations of virtualized infrastructures:
A semantic-aware policy based approach,” in Integrated Network Management (IM),
2011 IFIP/IEEE International Symposium on, pp. 1235-1242, 2011.

A. Charfi, B. Schmeling, F. Novelli, H. Witteborg, and U. Kylau, “An overview of
the unified service description language,” in Web Services (ECOWS), 2010 IEEE 8th
Furopean Conference on, pp. 173-180, 2010.

World Wide Web Consortium (W3C), “Web application description language.” [online]
http://www.w3.org/Submission/wadl/. Accessed September, 2012.

Martin D, Burstein M, Hobbs J, et al., “Owl-s: Semanic markup for web services.”

[online] http://www.w3.org/Submission/0OWL-S/. Accessed October, 2012.

RDF Working Group, “Resource description framework (rdf).” [online] http://www.
w3.org/RDF/. Accessed October, 2012.

114

http://groups.geni.net/geni/wiki/GeniRspec
http://groups.geni.net/geni/wiki/GeniRspec
http://tools.ietf.org/html/draft-okita-ops-vnetmodel
http://tools.ietf.org/html/draft-okita-ops-vnetmodel
http://www.w3.org/Submission/wadl/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/RDF/
http://www.w3.org/RDF/

[31]

[38]

[39]

[90]

I. Baldine, Y. Xin, D. Evans, C. Heerman, J. Chase, V. Marupadi, and A. Yumerefendi,
“The missing link: Putting the network in networked cloud computing,” in in ICVCI09:

International Conference on the Virtual Computing Initiative, 2009.

Y. T. Lee, “Information modeling: From design to implementation,” in Proceedings of

the Second World Manufacturing Congress, pp. 315-321, 1999.

Jersey, Project, “Restful web services in java.” [online] http://jersey.java.net/.

Accessed January, 2013.

Grizzly Project, “Grizzly web server.” [online] https://grizzly.java.net/. Accessed

January, 2013.

JAXB Project, “Jaxb project.” [online] https://jaxb.java.net/. Accessed January,
2013.

PostgreSQL Project, “Postgresql database.” [online] http://www.postgresql.org/.
Accessed February, 2013.

Xen Project, “Xen cloud platform.” [online|] http://www.xenproject.org/. Accessed

March, 2013.

KVM Project, “Kernel based virtual machine.” [online| http://www.linux-kvm.org/
page/Main_Page/. Accessed March, 2013.

C. Liu, L. Yang, I. Foster, and D. Angulo, “Design and evaluation of a resource selection
framework for grid applications,” in High Performance Distributed Computing, 2002.
HPDC-11 2002. Proceedings. 11th IEEE International Symposium on, pp. 63-72, 2002.

NTop Project, “Ntopng.” [online] http://www.ntop.org/. Accessed October, 2013.

115

http://jersey.java.net/
https://grizzly.java.net/
https://jaxb.java.net/
http://www.postgresql.org/
http://www.xenproject.org/
http://www.linux-kvm.org/page/Main_Page/
http://www.linux-kvm.org/page/Main_Page/
http://www.ntop.org/

Part 1

Appendices

116

Appendices

117

Appendix A

Enumeration Types

> A.1 Enumerations Types for Network Nodes

61T

& ode-related Enums

«enumeration» «enumeration» «enumeration» «enumeration» | |«enumeration» «enumeration»
NodeType InterfaceType NetworkStackType OSType StorageTypes| [NodeConstraintType
router ethernet TCP/IP linux SSD cost
switch gigabitEthernet UDP/IP windows HDD location
accessPoint opticalFiber(SDH,SONET) | |[P/ATM solaris capacity
baseStationTransceiverSystem radio(Wifi, Wimax) [P/Ethernet unix energySource
baseStationController ATM
gateway frameRelay - -
server Ls «enumeration» «enumeration»
edgeNode NG VirEnvironementType SubstrateNodeGroup
sensor isdn VMWare EdgeNode
virtualRouter XEN CoreVNCapable
virtualSwitch KVM CoreTransport
virtual AccessPoint «enumeration. OpenVZ BorderNode
virtualGateway NetworkElementStatusType| |-
virtualMachine deployed -
'WRouter «enumeration»
'WSensor 22;113) ;}e’gsgAvailable NetworkManagementModeType
virtualBaseStationTransceiverSystem deployedNonAvailable agent
virtualBaseStationController manager
virtualSensor managerOfManager
«enumeration» RoutingType
NetworkManagementSWType e
SNMP dynamic
CISCO
10S XP

Figure 34: Enumeration types for physical and virtual nodes

0ct

A.2 Enumerations Types for Network Links

éink-related Enums

«enumeration» «enumeration» «enumeration»
LinkVirTechnique| [RoutingOptionType LinkHandlingType
ATM anycast aggregate
MPLS multicast virtualLink
Ethernet 802.1q unicast
VLAN

«enumeration» «enumeration «enumeration»
TopologyType LinkType ConnectivityType
ring VLAN broadcast
bus SONET point-to-point
tree 802.11 point-to-multipoint
mesh peering
star
ad-hoc network
infrastructure network

/

Figure 35: Enumeration types for network physical and virtual links

1¢1

A.3 Enumerations Types for Network Services

@ervice-related Enums

«enumeration» «enumerationy «enumerationy «enumeration» «enumerationy
RoleType ServiceType TransportProtocol Type UserAgentType QoSlIsolationLevel
serviceProvider essentialService RTP MobileDevicePlatform guaranteed
physicallnfProvider serviceBuildingBlocks [|[HTTP DesktopComputerPlatform statistical
virtuallnfProvider endUserService HTTPS TerminalPlatform unidirectional
broker serviceEnablers MTP bidirectional
consumer end-to-end
«enumeration» best'Effort .
«enumeration» «enumeration» «enumeration, StatusCodeType dedicatedBandwidth
ServiceStatusType ServiceSecurityType ChargingType resourceSuccessfullyPublished Sl
deployed policy hourly topologyInstantiationAck contro%leciiLoad
. subscriptionBased
nonDeployed federation monthly 'VNDeployement onDemandBased
deployedAndAvailable trust perBandwidth servicePulication
deployedNonAvailable authorization serviceAllocationConfirmation SOl
privacy testResultsAclkCode et
encryption servicePublicationCode
ackGrantAccessCode

Figure 36: Enumeration types for network-related services

4!

A.4 Security-related Enumerations Types

(Security-related Enums

«enumeration» «enumeration» «enumeration» «enumeration»
CryptographicHashFunctionsType NonCryptographicHhashFunctionsType| |AsymmetricEncryptionTechniqueType ChecksumsType
berypt pearsonHashing diffie-Hellman sum
BLAKE-256 zobristHashing DSS sum8
BLAKE-512 jenkinsHashFunction ElGamal sum16
[ECOH javaHashCode Paillier sum32
FSB bernsteinHash RSA fletcher-4
GOST elfo4 Cramer-Shoup fletcher-8
grostl murmurHash - fletcher-16
HAS-160 spookyHash | CCmmmEEEEm, fletcher-32
HAVAL cityHash HybridEncryptionTechniqueType adler-32
JH [FowlerNollVoHashFunction IES xor8
keccak AES-ECC luhnAlgorithm
MD2 «enumeration» hybridPKE verhoeffAlgotrithm
MD4 SecurityPropertiesType
MD5 confidentiality
MD6 integrity «enumeration» «enumeration»
radioGatun availability CyclicRedundancyChecksType EncryptionTechniqueType
RIPEMD-64 confidentiality AndIntegrity BSDChecksum symmetric
RIPEMD-160 confidentiality AndIntegrityAndAvailability | |checksum asymmetric
RIPEMD-320 accuracy crc16 hybrid
SHA-1 authenticity cre32
SHA-224 utility cre32Mpeg2
SHA-256 possession cre64
SHA-384 SYSVChecksum
SHA-512
skein «enumeration» «enumeration»
snefru SymetricEncryptionTechniqueType HashingTechniqueType
spectralHash RC2 CyclicRedundancyChecks
S,WIFFT DES Checksums
tiger AES INon-cryptographicHhashFunctions
whirlpool 3DES CryptographicHashFunctions

1D

Figure 37: Enumeration types for formulating security-related attributes

€cl

A.5 Enumerations for Wireless-related Entities

K’V ireless-related Enums

Location

GPS-Based
GSM-Based
WiFi-Based
RFDI-Based
GSMWiFi-Based

batteryType

VirtualizationTechniqueType TransmissionMode Standard WirelessSecuritySettingsType
FDMA-Based SISO IEEER02.15 bluetooth | [WEP
TDMA-Based MIMO Zigbee WPA
FDMATDMA_ Based SU-MIMO 6LoWPAM WPA2
CDMA-Based MU-MIMO IEEE802.11 WiFi WPA-PSK
FH-Based SpatialDiversity IEEE802.16 Wimax
SDMA-BasedSlicing Beamforming GSM -
SDMAFDMA -Based CoMP WCDMA WirelessTransportProtocolType
SDMATDMA-Based CoMP_CS CB LTE TCP
SDMAFDMATDMA-Based ATP

RTP

WirelessAccessType

dipoall:tennaType W?;;;!ssNetworkType S(F:];hgﬁ A WirelessModulationType
omniDirectional WLAN FDMA gll\’/lsslf
directional WMAN TDMA QAMI16
panelAntenna WWAN CDMA QAMG64
indoorAntenna
OutdoorAntenna

alkaline
lithium
NiMH

Figure 38: Wireless-related enumeration types

Appendix B

Shell Scripts

B.1 Script for Managing Ethernet Vyatta Virtual

Network Interfaces

Listing B.1: Add or delete a specific Vyatta VM Ethernet interface

#!/bin/sh
function usage(){
echo "usage: modify-eth.sh [-a|-d] eth# ipAddress"
exit 1
}
if ["$#" -ne 3]; then
usage
else
case "$1" in
l|_a||
CMD="gset";
:':d")
CMD="delete";
*)
usage
esac
#--- execute
source /etc/default/vyatta
/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper begin
/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper "$CMD" interfaces ethernet "$2" address "$3"
echo "Result from set command="$?
/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper commit
echo "Result from commit command="$?
/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper save

124

B.2 Managing Virtual Network Routing

Listing B.2: Script to manage a route between two networks

#!/bin/sh
function usage(){
echo "usage: manage-route.sh [-a|-d] routeAddress destination"
exit 1
}
if ["$#" -1t 2]; then
usage
else
case "$1" in
ll_all)
CMD="set protocols static route $2 next-hop $3";
"-d")
CMD="delete protocols static route $2";
*)

usage

esac
#-—— execute

source /etc/default/vyatta
/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper begin
/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper $CMD
echo "Result from set command="$?
/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper commit
echo "Result from commit command="$7
/opt/vyatta/sbin/vyatta-cfg-cmd-wrapper save

fi

Link-related Enums

125

Appendix C

XML Schema Definition

¥ (C.1 XSD for Resource Description

Listing C.1: The used XSD for describing physical and virtual resources

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://xml.netbeans.org/schema/commonTypes"
xmlns:tns="http://xml.netbeans.org/schema/commonTypes" elementFormDefault="qualified">
<!-- Enumurations Types-->
<xs:simpleType name="networkInterfaceEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="Ethernet"/>
<xs:enumeration value="gigabitEthernet"/>
<xs:enumeration value="opticalFiber"/>
<xs:enumeration value="radio"/>

<xs:enumeration value="ATM"/>

Lc1

<xs:enumeration value="fameRelay"/>
<xs:enumeration value="ISDN"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="securityPropSupportedEnum">
<xs:restriction base="xs:string">
<xs:enumeration value="confidentiality"/>
<xs:enumeration value="integrity"/>
<xs:enumeration value="availability"/>
<xs:enumeration value="confidentialityAndIntegrity"/>
<xs:enumeration value="confidentialityAndIntegrityAndAvailability"/>
<xs:enumeration value="accuracy"/>
<xs:enumeration value="authenticity"/>
<xs:enumeration value="utility"/>
<xs:enumeration value="possession"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="cpuType">
<xs:restriction base="xs:string">
<xs:enumeration value="Intel"/>
<xs:enumeration value="AMD"/>
<xs:enumeration value="Xeon"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="ethNumberType">
<xs:restriction base="xs:string">
<xs:enumeration value="ethO0"/>
<xs:enumeration value="ethl"/>
<xs:enumeration value="eth2"/>
<xs:enumeration value="eth3"/>
<xs:enumeration value="eth4"/>
<xs:enumeration value="eth5"/>

</xs:restriction>

8¢T

</xs:simpleType>
<xs:simpleType name="osType">
<xs:restriction base="xs:string">
<xs:enumeration value="Windows"/>
<xs:enumeration value="Linux"/>
<xs:enumeration value="Unix"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="hashingTechniqueType">
<xs:restriction base="xs:string">
<xs:enumeration value="CyclicRedundancyChecks"/>
<xs:enumeration value="Checksums"/>
<xs:enumeration value="Non-cryptographicHhashFunctions"/>
<xs:enumeration value="CryptographicHashFunctions"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="energySourceType">
<xs:restriction base="xs:string">
<xs:enumeration value="renewable"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="memoryType">
<xs:restriction base="xs:string">
<xs:enumeration value="DDR3"/>
<xs:enumeration value="DDR2"/>
<xs:enumeration value="DDR1"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="netElementStatusType">
<xs:restriction base="xs:string">
<xs:enumeration value="nonDeployed" />
<xs:enumeration value="deployed" />

<xs:enumeration value="deployedAndAvailable" />

6¢1

<xs:enumeration value="deployedNonAvailable" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="networkSTackType">
<xs:restriction base="xs:string">
<xs:enumeration value="TCP/IP" />
<xs:enumeration value="UDP" />
<xs:enumeration value="IP/ATM" />
<xs:enumeration value="IP/Ethernet" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="storageType">
<xs:restriction base="xs:string">
<xs:enumeration value="SSD" />
<xs:enumeration value="HDD" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="networkManagementType">
<xs:restriction base="xs:string">
<xs:enumeration value="SNMP" />
<xs:enumeration value="CISCO" />
<xs:enumeration value="I0S XP" />
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="roleType">
<xs:restriction base="xs:string">
<xs:enumeration value="PIP" />
<xs:enumeration value="VIP" />
<xs:enumeration value="Broker" />
<xs:enumeration value="SP" />
<xs:enumeration value="Customer" />
</xs:restriction>

</xs:simpleType>

0€T

<xs:simpleType name="nodeType">

<xs:restriction base="xs:string">
<xs:enumeration value="VM" />
<xs:enumeration value="vSwitch" />
<xs:enumeration value="vRouter" />
<xs:enumeration value="PC" />
<xs:enumeration value="Blade" />
<xs:enumeration value="Workstation" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="virEnvironementType">
<xs:restriction base="xs:string">
<xs:enumeration value="VMWare" />
<xs:enumeration value="XEN" />
<xs:enumeration value="KVM" />
<xs:enumeration value="OpenVZ" />
</xs:restriction>
</xs:simpleType>
<xs:complexType name="FunctionalParamType">
<xs:sequence>
<xs:element name="NetworkMngmtSWT" type="tns:networkManagementType"/>
<xs:element name="nbrOfPorts" type="xs:int"/>
<xs:element name="processingPower" type="xs:string"/>
<!--Referenced types-->
<xs:element name="storageParam" type="tns:storageParamType"/>
<xs:element name="memoryParam" type="tns:memoryParamType"/>
<xs:element name="cpuParameters" type="tns:cpuParamType"/>
<xs:element name="osParameters" type="tns:osParamType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="NonFunctionalParamType">

<xs: sequence>

1€1

<xs:element name="qosLevelSupported" type="xs:string"/>
<xs:element name="energyEfficiencyLevel" type="xs:string"/>

<xs:element name="

perOfFailure" type="xs:string"/>
<xs:element name="cost" type="xs:string"/>
<!--Referenced types—-—>
<xs:element name="energySource" type="tns:energySourceType"/>
<xs:element name="qosParam" type="tns:qosParamType"/>
<xs:element name="securityLevelParam" type="tns:securityLevelParamType"/>
<xs:element name="performanceParam" type="tns:performanceParametersType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="physicalNodeType">
<xs:complexContent>
<xs:extension base="tns:networkElementType">
<xs:sequence>
<xs:element name="maxNbrOfVirtualNode" type="xs:int"/>
<xs:element name="substrateNodeGroupID" type="xs:string"/>
<xs:element name="virEnvironement" type="tns:virEnvironementType"/>
<xs:element name="nodeType" type="tns:nodeType"/>
<xs:element name="vendor" type="xs:string"/>
<xs:element name="model" type="xs:string"/>
<xs:element name="geoLocation" type="tns:geoLocationType"/>
<xs:element name="virtualNodes" type="tns:virtualNodes"></xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:string"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="virtualNodes">
<xs:sequence>
<xs:element name="virtualNode" maxOccurs="unbounded" type="tns:virtualNodeType" />
</xs:sequence>

</xs:complexType>

¢l

<xs:complexType name="geoLocationType">
<xs:sequence>

<xs:element name="

country" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
<xs:element name="address" type="xs:string"/>
<xs:element name="room" type="xs:string"/>
<xs:element name="rack" type="xs:string"/>
<xs:element name="panel" type="xs:string"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="qosParamType">

<xs:sequence>

<xs:element name="avgPacketLoss" type="xs:string"/>

<xs:element name="avgDelay" type="xs:string"/>

<xs:element name="avgJitter" type="xs:string"/>

<xs:element name="avgBitRate" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="performanceParamType">
<xs:sequence/>

</xs:complexType>

<xs:complexType name="storageParamType">

<xs:sequence>

<!--Convert this to add support for attributes-->
<!-- Define attributes such as measurment units type, etc-->

<xs:element name="diskSpace" type="xs:string"/>

<xs:element name="nbr0fUnits" type="xs:int"/>

<xs:element name="storageType" type="tns:storageType"/>

<xs:element name="

</xs:sequence>
</xs:complexType>
<xs:complexType name="routingPlatformType">

<xs:sequence>

componentInfo" type="tns:componentInfoType"/>

eel

<xs:element name="name" type="xs:string" />
<xs:element name="description" type="xs:string"/>
<xs:element name="version" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="virtualNodeType">
<xs:sequence>
<xs:element name="physicalNodeID" type="xs:string"/>

<xs:element name="

providerID" type="xs:string"/>

<xs:element name="name" type="xs:string"/>

<xs:element name="description" type="xs:string"/>

<xs:element name="availability" type="xs:string"/>
<xs:element name="startTime" type="xs:string"/>

<xs:element name="networkStack" type="tns:networkSTackType"/>
<xs:element name="nodeType" type="tns:nodeType"/>

<xs:element name="

virEnvironement" type="tns:virEnvironementType"/>
<xs:element name="ipAddress" type="xs:string"/>
<xs:element name="virNetworkInterfaces" type="tns:virNetworkInterfaces" minOccurs="1" />
<xs:element name="virRoutes" type="tns:virRoutes" minOccurs="1" />
<xs:element name="routingPlatform" type="tns:routingPlatformType"/>
<xs:element name="functionalParam" type="tns:FunctionalParamType"/>
<xs:element name="nonFunctionalParam" type="tns:NonFunctionalParamType"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string"/>
</xs:complexType>
<xs:complexType name="virRoutes">
<xs:sequence>
<xs:element name="virRoute" type="tns:virRouteType" minOccurs="1" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="virRouteType">
<xs:sequence>

<xs:element name="route" type="xs:string"/>

24}

<xs:element name="nextHop" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="virNetworkInterfaces">
<xs:sequence>
<xs:element name="virNetworkInterface" type="tns:virtualInterfaceType" minOccurs="1" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="virtualInterfaceType">
<xs:sequence>
<xs:element name="interfaceType" type="tns:networkInterfaceEnum"/>
<xs:element name="rate" type="xs:string"/>
<xs:element name="macAddress" type="xs:string"/>
<xs:element name="ethPortNumber" type="tns:ethNumberType"/>
<xs:element name="ipAddress" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="providerInfoType">
<xs:sequence>
<xs:element name="roleInfo" type="tns:roleInfoType"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string"/>
</xs:complexType>
<xs:complexType name="contactInfoType">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="phone" type="xs:string"/>
<xs:element name="email" type="xs:string" />
<xs:element name="address" type="tns:addressType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="addressType">

<xs: sequence>

Gel

<xs:element name="number" type="xs:int"/>
<xs:element name="street" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
<xs:element name="state" type="xs:string"/>
<xs:element name="zip" type="xs:string"/>
<xs:element name="country" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="roleInfoType">
<xs:sequence>
<xs:element name="name" type="xs:string" />
<xs:element name="roleType" type="tns:roleType" />
<xs:element name="contactInfo" type="tns:contactInfoType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="networkElementType">
<xs:sequence>
<xs:element name="ownerID" type="xs:string"/>
<xs:element name="name" type="xs:string"/>
<xs:element name="description" type="xs:string"/>
<xs:element name="availability" type="xs:string"/>
<xs:element name="startTime" type="xs:dateTime"/>
<xs:element name="period" type="xs:string"/>
<xs:element name="status" type="tns:netElementStatusType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="networkDomainType">
<xs:sequence>
<xs:element name="providerName" type="xs:string"/>
<xs:element name="description" type="xs:string"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="administrativeDomainType">

9¢T

<xs:sequence>
<xs:element name="address" type="tns:addressType"/>
<xs:element name="description" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="componentInfoType">
<xs:sequence>
<xs:element name="name" type="xs:string"/>

<xs:element name="

vendor" type="xs:string"/>
<xs:element name="model" type="xs:string"/>
<xs:element name="partNumber" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="memoryParamType">
<xs:sequence>

<xs:element name="

size" type="xs:string"/>
<xs:element name="capacity" type="xs:string"/>
<xs:element name="memoryType" type="tns:memoryType"/>
<xs:element name="speed" type="xs:string"/>
<xs:element name="componentsInfo" type="tns:componentInfoType"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="cpuParamType">
<xs:sequence>
<xs:element name="cpuType" type="tns:cpuType"/>
<xs:element name="architecture" type="xs:string"/>
<xs:element name="nbrOfCores" type="xs:int"/>
<xs:element name="nbrOfThreads" type="xs:int"/>

<xs:element name="

clockSpeed" type="xs:string" minOccurs="1"/>
<xs:element name="cahce" type="xs:string" minOccurs="1"/>
<xs:element name="instructionSet" type="xs:string"/>

<xs:element name="componentsInfo" type="tns:componentInfoType"/>

</xs:sequence>

LET

</xs:complexType>
<xs:complexType name="osParamType">
<Xs:sequence>
<xs:element name="osType" type="tns:osType"/>
<xs:element name="description" type="xs:string"/>
<xs:element name="version" type="xs:string"/>
<xs:element name="vendor" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="securityLevelParamType">
<xs:sequence/>
</xs:complexType>
<xs:complexType name="performanceParametersType">
<xs:sequence>
<xs:element name="responseTime" type="xs:string"/>
<xs:element name="uptime" type="xs:string"/>
<xs:element name="relaibilityLevel" type="xs:string"/>
</xs:sequence>
</xs:complexType>

</xs:schema>

C.2 XSD for Resource Discovery Requests

Listing C.2: XSD for formulating Resource Discovery requests

<?xml version="1.0" encoding="UTF-8"7>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://xml.netbeans.org/schema/discovery"
xmlns:tns="http://xml.netbeans.org/schema/discovery"
elementFormDefault="qualified"
xmlns:cmn="http://xml.netbeans.org/schema/commonTypes">

<!--Dependencies——>

€T

<xs:import namespace="http://xml.netbeans.org/schema/commonTypes"
<!--Resource Discovery Request-->
schemalocation="commonTypes.xsd"/>
<xs:element name="discoveryRequest">
<xs:complexType>
<xs:sequence>
<xs:element name="selectionParameters" maxOccurs="unbounded" type="tns:selectionParameter" minOccurs="1"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required" />
</xs:complexType>
</xs:element>
<xs:simpleType name="constraintType">
<xs:restriction base="xs:string">
<xs:enumeration value="CPU"/>
<xs:enumeration value="Memory"/>
<xs:enumeration value="Storage"/>
<xs:enumeration value="Link"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="rangeType">
<xs:sequence>
<xs:element name="min" type="xs:integer"/>
<xs:element name="max" type="xs:integer" />
</xs:sequence>
</xs:complexType>
<!--Constraints used in the selection process-->
<xs:complexType name="selectionConstraint">
<xs:sequence>
<xs:element name="constraintOn" type="tns:constraintType" minOccurs="1" />
<xs:element name="params" type="tns:constraintParams" minOccurs="1" />
<!I-- <xs:element name="range" type="tns:rangeType"/>
<xs:element name="pattern" type="xs:string"/> -->

</xs:sequence>

6€T

</xs:complexType>

<!--Resource selection parameters-->

<xs:complexType name="selectionParameter">

<xs:sequence>

<xs:

<xs:

<xs:

<xs:

<xs:

<xs:

<xs:

<xs:

element
element
element
element
element
element
element

element

</xs:sequence>

</xs:complexType>

name="vnType" type="cmn:nodeType" minOccurs="1"/>
name="virEnvironement" type="cmn:virEnvironementType" minOccurs="1"/>
name="osType" type="cmn:osType" minOccurs="1"/>

name="interfaceType" type="cmn:networkInterfaceEnum" minOccurs="1"/>
name="networkStack" type="cmn:networkSTackType" minOccurs="1"/>
name="cpuType" type="cmn:cpuType" minOccurs="1"/>

name="quantity" type="xs:integer" minOccurs="1"/>

name="selectionConstraints" type="tns:selectionConstraints" minOccurs="1"/>

<xs:complexType name="selectionConstraints">

<Xs:sequence>

<xs:element name="selectionConstraint" type="tns:selectionConstraint" minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="constraintParams">

<xs:sequence>

<xs:element name="param" type="tns:param" minOccurs="1" maxOccurs="unbounded" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="param">

<xs:attribute name="key" type="xs:string"/>

<xs:attribute name="value" type="xs:string"/>

</xs:complexType>

</xs:schema>

0vt

C.3 XSD for Negotiation Requests

Listing C.3: Schema for resource negotiation requests

<?7xml version="1.0" encoding="UTF-8"7>
<xsd:schema xmlns:xsd="http://wuw.w3.org/2001/XMLSchema"
targetNamespace="http://xml.netbeans.org/schema/requests"
xmlns:tns="http://xml.netbeans.org/schema/requests"
elementFormDefault="qualified" xmlns:cmn="http://xml.netbeans.org/schema/commonTypes">
<!--Dependencies——>
<xsd:import namespace="http://xml.netbeans.org/schema/commonTypes"
schemalocation="commonTypes.xsd"/>
<xsd:element name="negotiationRequest">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="description" type="xsd:string"/>
<xsd:element name="price" type="xsd:string"/>
<xsd:element name="quantity" type="xsd:int"/>
<xsd:element name="comment" type="xsd:string"/>
<xsd:element name="pipResponse" type="tns:requestStatusType"/>
<xsd:element name="vipResponse" type="tns:requestStatusType"/>
<xsd:element name="requestStatus" type="tns:requestStatusType"/>
<xsd:element name="virtualNodes" type="cmn:virtualNodes"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:string"/>
</xsd:complexType>
</xsd:element>
<xsd:simpleType name="requestStatusType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Accepted" />
<xsd:enumeration value="Rejected" />
<xsd:enumeration value="NotProcessed" />

<xsd:enumeration value="Instantiated" />

171

<xsd:enumeration value="ToBelnstantiated" />
</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

C.4 Resource Description Sample

Listing C.4: A sample of resource description document

<?xml version="1.0" encoding="UTF-8"7>
<resourceDescription>
<virtualNode id="234be927-238f-4abc-bf13-16084£094cc2">
<physicalNodeID>1ea9bd59-af46-4e93-869c-c29b6c48d3d9</physicalNodeID>
<providerID>PIP-1</providerID>
<name>Alpha</name>
<description>VMWare-based Linux virtual machine</description>
<availability>yes</availability>
<startTime>2013/04/14 09:00:24</startTime>
<networkStack>TCP/IP</networkStack>
<nodeType>VM</nodeType>
<virEnvironement>VMWare</virEnvironement>
<ipAddress>192.168.56.90</ipAddress>
<virNetworkInterfaces>
<virNetworkInterface>
<interfaceType>Ethernet</interfaceType>
<rate>100MB/sec</rate>
<macAddress>24-77-03-5E-30-03</macAddress>
<ethPortNumber>eth0</ethPortNumber>
<ipAddress>192.168.56.90</ipAddress>
</virNetworkInterface>
<virNetworkInterface>

<interfaceType>Ethernet</interfaceType>

44!

<rate>100MB/sec</rate>
<macAddress>24-77-03-5A-40-03</macAddress>
<ethPortNumber>ethi</ethPortNumber>
<ipAddress>192.168.10.10</ipAddress>
</virNetworkInterface>
</virNetworkInterfaces>
<virRoutes>
<virRoute>
<route>192.168.20.0</route>
<nextHop>192.168.56.91</nextHop>
</virRoute>
</virRoutes>
<routingPlatform>

<name>X0RP</name>

<description>XORP open source routing platform</description>

<version>1.8.5</version>
</routingPlatform>
<functionalParam>
<NetworkMngmtSWT>SNMP</NetworkMngmtSWT>
<nbr0fPorts>2</nbr0fPorts>
<processingPower>200</processingPower>
<storageParam>
<diskSpace>40GB</diskSpace>
<nbr0fUnits>2</nbr0fUnits>
<storageType>HDD</storageType>
<componentInfo>
<name>Virt Stodage Disk</name>
<vendor>Samsung</vendor>
<model>6H500F0</model>
<partNumber>HTS722020K9A300</partNumber>
</componentInfo>
</storageParam>

<memoryParam>

vl

<size>1024</size>
<capacity>1GB</capacity>
<memoryType>DDR2</memoryType>
<speed>1333</speed>
<componentsInfo>
<name>DDR2 PC2-5300 memory module</name>
<vendor>Kingston</vendor>
<model>KVR1333D3E9SK2/8G</model>
<partNumber>KVR667D2N5</partNumber>
</componentsInfo>
</memoryParam>
<cpuParameters>
<cpuType>Xeon</cpuType>
<architecture>E5-2600 family</architecture>
<nbr0fCores>6</nbr0fCores>
<nbr0fThreads>12</nbr0fThreads>
<clockSpeed>2.3</clockSpeed>
<cahce>15MB</cahce>
<instructionSet>64-bit</instructionSet>
<componentsInfo>
<name>Xeon E5-2630-2.3GHz(2.8GHz Turbo Boost)</name>
<vendor>Intel</vendor>
<model>BX80621E52630</model>
<partNumber>BX80621E52630</partNumber>
</componentsInfo>
</cpuParameters>
<osParameters>
<osType>Linux</osType>
<description>Debian Linux</description>
<version>6</version>
<vendor>Brocade</vendor>
</osParameters>

</functionalParam>

jad!

<nonFunctionalParam>

<qosLevelSupported></qosLevelSupported>

<energyEfficiencylLevel></energyEfficiencyLevel>

<perOfFailure>0.01 </perOfFailure>

<cost>0.99\$/day</cost>

<energySource>renewable</energySource>

<qgosParam>
<avgPacketLoss>1.5</avgPacketLoss>
<avgDelay>2ms</avgDelay>
<avgJitter></avgJitter>
<avgBitRate></avgBitRate>

</qosParam>

<securityLevelParam></securityLevelParam>

<performanceParam>
<responseTime>4ms</responseTime>
<uptime>16hours</uptime>
<relaibilityLevel>II</relaibilityLevel>

</performanceParam>

</nonFunctionalParam>
</virtualNode>
</virtualNodes>

</resourceDescription>

Sl

Appendix D

Message Logs of the PIP Subsystem

Listing D.1: Message log generated by the implemented modules involved in the resource publication

process

15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:

11
11
11
12
12
12
12
12
12
12
12

:02.
:562.
:52.
:03.
:03.
:03.
:03.
:05.
:05.
:06.
:06.

597
603
603
141
142
243
325
754
755
825
857

[INFO]
[INFO]
[INFO]

PIPConsole: Starting PIP Console
PIPResourceHelper: ------—--------————-————————————————

PIPResourceHelper: Resource publication started...

[ERROR] PIPResourceHelper: Proccessing resource file...

[ERROR] PIPResourceHelper: file path:/home/sleiman/pip-console/src/descfiles/precision-390_4_routers.xml

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

PIPDBResourceManager: Inserting in PIP database...

PIPDBResourceManager: Resource added successfully to the database...
PIPResourceHelper: ------------—-—"——>""-—-—""""""""""""""""""""""""""""—~—————————
PIPResourceHelper: Resource publication started...

PIPDBResourceManager: Retrieving resource description from local DB...

PIPResourcePublisher: Preparing publication request....

idi

15:12:07.055 [INFO] PIPResourcePublisher: Sending publication request....

15:12:09.309 [INFO] PIPResourcePublisher: Got broker response!....

15:12:09.309 [INFO] PIPResourcePublisher: Resoruce has been published successfully...

15:12:09.309 [INFO] PIPResourcePublisher: Received HTTP Status code: 201

15:12:09.309 [INFO] PIPDBResourceManager: updating resource’s status...

15:12:09.309 [INFO] PIPDBResourceManager: Changing selected resource’s status to published...
15:12:09.363 [INFO] PIPDBResourceManager: Resource’s status has been changed successfully...
15:12:09.363 [INFO] PIPDBResourceManager: ——-——————————=————————— -~

Listing D.2: Message log generated during PIP-to-VIP resource negotiation process

16:30:09.800 [INFO] PIPConsole: Starting PIP Console

16:30:13.532 [INFO] PIPWSManager: Starting grizzly web server...

Dec 12, 2013 4:30:13 PM com.sun. jersey.server.impl.application.WebApplicationImpl _initiate

INFO: Initiating Jersey application, version ’Jersey: 1.17 01/17/2013 03:31 PM’

Dec 12, 2013 4:30:14 PM org.glassfish.grizzly.http.server.NetworkListener start

16:30:14.097 [INFO] PIPWSManager: PIP REST web services with WADL available at http://192.168.10.13:9998/v1/
application.wadl

INFO: Started listener bound to [192.168.10.13:9998]

Dec 12, 2013 4:30:14 PM org.glassfish.grizzly.http.server.HttpServer start

INFO: [HttpServer] Started.

16:30:56.312 [INFO] PIPNegotiationService: ————=———————=————————— -

16:30:56.312 [INFO] PIPNegotiationService: Resource negotiation request received...

16:30:56.312 [INFO] PIPNegotiationService: Processing resource negotiation request...

16:30:56.313 [INFO] PIPNegotiationService: Checking if the same request exisits already...

16:30:56.331 [INFO] PIPNegotiationService: Negotiation request exists...

16:30:56.332 [INFO] PIPNegotiationService: Updating existing request...

Lyl

16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:

30
30
30

il g
31:
31:
31:
31:
31:

31
31
31
31
31
31
31
31
31
32
32
32
32
32
32
32

:56.
:56.
:56.
10.
11.
18.
18.
18.
18.
:51
:51
:51
:51
:51
:51
:51.
:51.
:51.
:00.
:01.
:04.
:04.
:04.
:04.
124,

501
501
501
984
049
652
653
866
885

.425
.425
.425
.425
.443
.443

550
550
550
934
003
674
675
857
874
579

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

PIPNegotiationService: Negotiation Request status has been updated successfully...

PIPNegotiationService: Done processing request...

PIPNegotiationService: —————————————————————————— - ——

PIPDBResourceManager: Changing negotiation request’s status to rejected
PIPDBResourceManager: Request status has been marked rejected successfully...
VIPServiceClient: Sending negotiation request to VIP...

VIPServiceClient: VIP’s service URL: http://192.168.10.14:9997/v1/
PIPDBResourceManager: Changing negotiation request’s status to processed...

PIPDBResourceManager: Request status has been updated successfully...

PIPNegotiationService: —————————————————————————— -

PIPNegotiationService: Resource negotiation request received...
PIPNegotiationService: Processing resource negotiation request...
PIPNegotiationService: Checking if the same request exisits already...
PIPNegotiationService: Negotiation request exists...

PIPNegotiationService: Updating existing request...

PIPNegotiationService: Negotiation Request status has been updated successfully...

PIPNegotiationService: Done processing request...

PIPNegotiationService: —————-—---————————————————————————————

PIPDBResourceManager: Changing negotiation request’s status to accepted
PIPDBResourceManager: Request status has been marked accepted successfully...
VIPServiceClient: Sending negotiation request to VIP...

VIPServiceClient: VIP’s service URL: http://192.168.10.14:9997/v1/
PIPDBResourceManager: Changing negotiation request’s status to processed...

PIPDBResourceManager: Request status has been updated successfully...

PIPNegotiationService: —————-——-—--———————————————————————— - ———————

V1T

18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:

29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29

29:
29:
29:
29:
29:

30

:06.
:06.
:06.
:06.
:06.
:06.
:07.
:07.
:07.
:07.
:07.
:07.
:07.
:07.
:07.
:07.
:07.
16.
16.
16.
16.
16.
122,

Listing D.3: Message log of the virtual topology instantiation and configuration process

952
954
955
955
957
986
261
381
381
381
381
381
381
382
382
382
831
201
201
230
230
230
498

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSubstrateManager:
PIPSSHRemoteCmd:
PIPSSHRemoteCmd:
PIPSSHRemoteCmd:

PIPSSHRemoteCmd :

Creating virtual resources and setting up the virtual topology...
Number of resources to instantiate: 1

Connection to host 192.168.56.10 established...

Loging in to host: 192.168.56.10

XAPI Sesscion created successfully

Host lable alpha.encs.concordia.ca

Host UID 6ed32302-b406-4cd8-be96-271dbfedc2b3

Host IP Address 192.168.56.10

Editionfree

Free memory 1762967552

Creating VM => Alpha ...
We’re creating: Alpha VM from VyattaVMTemplate
VM Alpha created successfully...

Configuring Alpha’s network settings...

Opening SSH connection...
Please wait, this might take some time...
Waiting for SSH server to go online...

The VM is reachable now!

671

18:

18:
18:
18:
18:
18:
18:
18:
18:

18:
18:

18

18:
18:
18:
18:
18:

18:
18:
18:
18:
18:
18:

30:22.499 [INFO] PIPSSHRemoteCmd:

192.168.10.10/24 ...

30:22.526 [INFO] PIPSSHRemoteCmd:
30:22.656 [INFO] PIPSSHRemoteCmd:
30:23.387 [INFO] PIPSSHRemoteCmd:
30:23.442 [INFO] PIPSSHRemoteCmd:
30:23.475 [INFO] PIPSSHRemoteCmd:
30:23.477 [INFO] PIPSSHRemoteCmd:
30:23.477 [INFO] PIPSSHRemoteCmd:
30:23.478 [INFO] PIPSSHRemoteCmd:

192.168.56.90/24 ...

30:23.517 [INFO] PIPSSHRemoteCmd:
30:23.570 [INFO] PIPSSHRemoteCmd:
:30:24.203 [INFO] PIPSSHRemoteCmd:
30:24.257 [INFO] PIPSSHRemoteCmd:
30:24.291 [INFO] PIPSSHRemoteCmd:
30:24.292 [INFO] PIPSSHRemoteCmd:
30:24.292 [INFO] PIPSSHRemoteCmd:
30:24.293 [INFO] PIPSSHRemoteCmd:

192.168.56.199/24 ...

30:24.327 [INFO] PIPSSHRemoteCmd:
30:25.328 [INFO] PIPSSHRemoteCmd:
30:25.329 [INFO] PIPSSHRemoteCmd:

Executing command: sh /home/vyatta/script/modify-eth.sh -a ethl

Here is some information about the remote host:

Result from set command=0

Result from commit command=0

Saving configuration to ’/opt/vyatta/etc/config/config.boot’...
Done

ExitCode: O

Closing SSH session now...

Executing command: sh /home/vyatta/script/modify-eth.sh -a ethO

Here is some information about the remote host:

Result from set command=0

Result from commit command=0

Saving configuration to ’/opt/vyatta/etc/config/config.boot’. ..
Done

ExitCode: 0O

Closing SSH session now...

Executing command: sh /home/vyatta/script/modify-eth.sh -d ethb

Ethernet interface deleted...
Closing SSH session now...

Closing SSH connection...

30:25.330 [INFO] PIPSubstrateManager: Finished creating virtual machines!

30:25.331 [INFO] PIPSubstrateManager: ———-—-———-————————————————————————————————————

30:25.331 [INFO] PIPSubstrateManager: Configuring and setting up virtual topology...

0¢ST

18:
18:
18:
18:
18:
18:

18:
18:
18:
18:
18:
18:
18:
18:
18:
18:

30:25.332 [INFO]

30:25.332 [INFO]
30:25.332 [INFO]
30:25.332 [INFO]
30:25.459 [INFO]
30:25.460 [INFO]
192.168.56.91

30:25.469 [INFO]
30:25.568 [INFO]
30:26.146 [INFO]
30:26.201 [INFO]
30:26.234 [INFO]
30:26.235 [INFO]
30:26.235 [INFO]
30:26.236 [INFO]
30:26.237 [INFO]

30:26.237 [INFO]

PIPSubstrateManager: ———

PIPSSHRemoteCmd:
PIPSSHRemoteCmd:
PIPSSHRemoteCmd:
PIPSSHRemoteCmd :
PIPSSHRemoteCmd:

PIPSSHRemoteCmd:
PIPSSHRemoteCmd :
PIPSSHRemoteCmd:
PIPSSHRemoteCmd:
PIPSSHRemoteCmd :
PIPSSHRemoteCmd:
PIPSSHRemoteCmd:
PIPSSHRemoteCmd:

Opening SSH connection...

Please wait, this might take some time...
Waiting for SSH server to go online...
The VM is reachable now!

Executing command: sh /home/vyatta/script/manage-route.sh -a 192.168.20.0/24

Here is some information about the remote host:

Result from set command=0

Result from commit command=0

Saving configuration to ’/opt/vyatta/etc/config/config.boot’...
Done

ExitCode: 0O

Closing SSH session now...

Closing SSH connection...

PIPSubstrateManager: Topology instantiated successfully...

PIPSubstrateManager: -————————————————————————————— - ————————

161

Listing D.4: Message log of resource publication scalability tests

16:49:26.255 [INFO] PubRequestGenerator: —————————=—————————————

16:49:26.258 [INFO] PubRequestGenerator: Generating resource publication has been started...

16:49:29.905 [INFO] PubRequestGenerator:

Run number #1:
Start time: Mon Jun 20 03:26:55 EDT 2231
Total elapsed time in milliseconds: 3643 ms
Total published resources : 20

16:49:32.933 [INFO] PubRequestGenerator:

Run number #2:
Start time: Mon Aug 01 08:32:10 EDT 2231
Total elapsed time in milliseconds: 3028 ms
Total published resources : 20

16:49:35.778 [INFO] PubRequestGenerator:

Run number #3:
Start time: Mon Sep 05 09:48:48 EDT 2231
Total elapsed time in milliseconds: 2844 ms
Total published resources : 20

16:49:38.574 [INFO] PubRequestGenerator:

Run number #4:
Start time: Sat Oct 08 08:05:17 EDT 2231
Total elapsed time in milliseconds: 2794 ms
Total published resources : 20

16:49:41.391 [INFO] PubRequestGenerator:

Run number #5:

45!

Start time: Wed Nov 09 15:28:23 EST 2231
Total elapsed time in milliseconds: 2816 ms
Total published resources : 20

Average time: 3025 ms

16:49:41.391 [INFO] PubRequestGenerator: Finished genrating resource publication request...

16:49:41.391 [INFO] PubRequestGenerator: ————————————=——————————————

€al

Appendix E

Message Logs of the VIP Subsystem

15:
15:
15:
15:
15:
15:
15:
15:
15:
15:
15:

29:
29:
29:
29:
29:
29:
29:
29:
29:
29:
29:

13.
13.
17.
17.
17.
17.
18.
18.
18.
18.
18.

358
363
385
385
386
792
372
466
466
466
466

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

Listing E.1: Resource discovery message log

VIPConsole: Loading VIP console settings...

VIPConsole: Console settings loaded...

VIPResourceDiscovery: ——————————————————————————————— - ——————————
VIPResourceDiscovery: Resource discovery started...

VIPResourceDiscovery: Loading discovery request document...

VIPResourceDiscovery: Sending discovery request...

VIPResourceDiscovery: Got server response!....

VIPResourceDiscovery: Discovery request has been processed successfully...
VIPResourceDiscovery: HTTP Status code: 200

VIPResourceDiscovery: Number of discovered resources: 3

VIPResourceDiscovery: ———————————————————— - - - ——————

Part

Listing E.2: VIP resource negotiation message log

16:30:30.607 [INFO] VIPConsole: Loading VIP console settings...

16:30:30.612 [INFO] VIPConsole: Console settings loaded...

16:30:34.428 [INFO] VIPWSManager: Starting grizzly web server...

Dec 12, 2013 4:30:34 PM com.sun. jersey.server.impl.application.WebApplicationImpl _initiate

INFO: Initiating Jersey application, version ’Jersey: 1.17 01/17/2013 03:31 PM’

Dec 12, 2013 4:30:35 PM org.glassfish.grizzly.http.server.NetworkListener start

INFO: Started listener bound to [192.168.10.14:9997]

Dec 12, 2013 4:30:35 PM org.glassfish.grizzly.http.server.HttpServer start

16:30:35.044 [INFO] VIPWSManager: VIP REST web services started with WADL available at http://192.168.10.14:9997/v1/
application.wadl

INFO: [HttpServer] Started.

16:30:56.076 [INFO] PIPServiceClient: ———————=———————————————— -

16:30:56.076 [INFO] PIPServiceClient: Sending negotiation request to PIP...

16:30:56.076 [INFO] PIPServiceClient: PIP service’s URL: http://192.168.10.13:9998/v1/

16:30:56.506 [INFO] PIPServiceClient: HTTP status code: 200

16:31:18.731 [INFO] VIPNegotiationService: A negotiation request has been received...

16:31:18.731 [INFO] VIPNegotiationService: Checking if the request exists already...

16:31:18.748 [INFO] VIPNegotiationService: Request exists...

16:31:18.749 [INFO] VIPNegotiationDao: Updating request...

16:31:18.864 [INFO] VIPNegotiationDao: Request has been updated successfully...

16:31:18.865 [INFO] VIPNegotiationService: Negotiation request processed successfully...

16:31:38.399 [INFO] VIPRequestNegoManager: Updating request...

16:31:39.603 [INFO] VIPRequestHelper: Changing request’s status to accepted...

16:31:51.369 [INFO] PIPServiceClient: ———————————————————————

Gqr1

16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:
16:

31
31
31
32
32
32
32
32
32
32
32
32
32
32
32

:51
:51
:561.
:04.
:04.
:04.
:04.
:04.
:04.
:23.
:23.
124,
124,
124,
124,

.369
.370

551
734
734
751
751
856
857
363
363
528
528
529
734

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

PIPServiceClient: Sending negotiation request to PIP...
PIPServiceClient: PIP service’s URL: http://192.168.10.13:9998/v1/
PIPServiceClient: HTTP status code: 200

VIPNegotiationService: A negotiation request has been received...
VIPNegotiationService: Checking if the request exists already...
VIPNegotiationService: Request exists...

VIPNegotiationDao: Updating request...

VIPNegotiationDao: Request has been updated successfully...

VIPNegotiationService: Negotiation request processed successfully...

VIPRequestNegoManager: Changing request status to be instantiated...

VIPRequestNegoManager: Sending instantiation request to PIP...

PIPSERTileeClicnE s oo e

PIPServiceClient: Sending negotiation request to PIP...
PIPServiceClient: PIP service’s URL: http://192.168.10.13:9998/v1/
PIPServiceClient: HTTP status code: 200

9¢T

Listing E.3: Message log of resource discovery scalability tests

16:46:25.054 [INFO] DiscoveryRequstGenerator: ————————=——————————————————

16:46:25.056 [INFO] DiscoveryRequstGenerator: Generation of resource discovery requests has been started...

16:46:25.969 [INFO] DiscoveryRequstGenerator:

Run number #1:

Discovery statistics:
Start time: Wed Sep 21 22:23:37 EDT 2225
Total elapsed time in milliseconds: 909 ms
Total discoverd resources : 10

16:46:26.494 [INFO] DiscoveryRequstGenerator:

Run number #2:

Discovery statistics:
Start time: Sun Oct 02 12:02:47 EDT 2225
Total elapsed time in milliseconds: 524 ms
Total discoverd resources : 10

16:46:26.987 [INFO] DiscoveryRequstGenerator:

Run number #3:

Discovery statistics:
Start time: Sat Oct 08 13:48:59 EDT 2225
Total elapsed time in milliseconds: 492 ms
Total discoverd resources : 10

16:46:27.498 [INFO] DiscoveryRequstGenerator:

Run number #4:

Discovery statistics:

Start time: Fri Oct 14 06:35:16 EDT 2225

LGT

Total elapsed time in milliseconds: 510 ms
Total discoverd resources : 10
16:46:27.985 [INFO] DiscoveryRequstGenerator:
Run number #5:
Discovery statistics:
Start time: Thu Oct 20 04:32:07 EDT 2225
Total elapsed time in milliseconds: 486 ms
Total discoverd resources : 10

16:46:27.985 [INFO] DiscoveryRequstGenerator: Average time: 584 ms

16:46:27.985 [INFO] DiscoveryRequstGenerator: Finished request generation...
16:46:27.985 [INFO] DiscoveryRequstGenerator: ——————————————— === ——

8GT

Appendix F

Broker Components Message Logs

Listing F.1: Broker’s resource publication message logs

15:27:18.437 [INFO] BrokerConsole: Starting Broker console ...

15:27:18.439 [INFO] BrokerConsole: Setting Nimbus look and fell ...

15:27:20.374 [INFO] BrokerServiceStarter: Starting grizzly web server!...

Dec 12, 2013 3:27:20 PM com.sun. jersey.server.impl.application.WebApplicationImpl _initiate

INFO: Initiating Jersey application, version ’Jersey: 1.17 01/17/2013 03:31 PM’

Dec 12, 2013 3:27:20 PM org.glassfish.grizzly.http.server.NetworkListener start

INFO: Started listener bound to [192.168.10.12:9995]

Dec 12, 2013 3:27:20 PM org.glassfish.grizzly.http.server.HttpServer start

15:27:20.963 [INFO] BrokerServiceStarter: Jersey app started with WADL available at http://192.168.10.12:9995/v1/
application.wadl

INFO: [HttpServer] Started.

15:27:38.743 [INFO] PublicationService: ———————=—————— === - oo

6ST

15:27:38.743 [INFO] PublicationService: Resource publication request received...

15:27:38.938 [INFO] PublicationDao: Adding new resource to the DB...

15:27:38.938 [INFO] PublicationDao: Processing resource with ID: bf853b59-1f5f-485d-bacb-2c6f16badb9a
15:27:39.022 [INFO] PublicationDao: Adding new resource to the DB...

15:27:39.022 [INFO] PublicationDao: Processing resource with ID: 8f2fd41a-f£692-4b35-8f9a-7db735667d17
15:27:39.090 [INFO] PublicationDao: Adding new resource to the DB...

15:27:39.090 [INFO] PublicationDao: Processing resource with ID: 94a8f32a-ddff-4992-b859-36cab710252f
15:27:39.155 [INFO] DaoController: Checking whether the resource exists in the DB...

15:27:39.156 [INFO] DaoController: Resource does not exist...

15:27:39.245 [INFO] DaoController: Resource created successfully in the DB...

15:27:39.245 [INFO] PublicationService: Resource publication done...

15:27:39.245 [INFO] PublicationService: —————=————————————————

Listing F.2: Broker’s resource discovery logs

15:29:04.651 [INFO] BrokerConsole: Starting Broker console ...
15:29:04.653 [INFO] BrokerConsole: Setting Nimbus look and fell ...
15:29:06.485 [INFO] BrokerServiceStarter: Starting grizzly web server!...
Dec 12, 2013 3:29:06 PM com.sun. jersey.server.impl.application.WebApplicationImpl _initiate
INFO: Initiating Jersey application, version ’Jersey: 1.17 01/17/2013 03:31 PM’
Dec 12, 2013 3:29:07 PM org.glassfish.grizzly.http.server.NetworkListener start
INFO: Started listener bound to [192.168.10.12:9995]
15:29:07.071 [INFO] BrokerServiceStarter: Jersey app started with WADL available at http://192.168.10.12:9995/v1/
application.wadl
Dec 12, 2013 3:29:07 PM org.glassfish.grizzly.http.server.HttpServer start
INFO: [HttpServer] Started.
15:29:18.007 [INFO] DiscoveryService: —————————————————— -

091

15:
15:
15:
15:
15:
15:

15:

15:

15:
15:

15

15:
15:
15:

15:

15:
15:
15:
15:

29:18.007 [INFO]

29:18.007 [INFO]

29:18.008 [INFO]

29:18.008 [INFO]

29:18.297 [INFO]

29:18.298 [INFO]
b82140ccb] . . .
29:18.298 [INFO]
b82140ccb] . ..
29:18.298 [INFO]
29:18.298 [INFO]

29:18.298 [INFO]

£606eb337a56] . . .
:29:18.298 [INFO]
£606eb337a56] . . .

29:18.298 [INFO]
29:18.298 [INFO]
29:18.299 [INFO]

e80e2f801e1d] . ..

29:18.299 [INFO]

e80e2f801e1d] . ..

29:18.299 [INFO]
29:18.299 [INFO]
29:18.299 [INFO]
29:18.299 [INFO]

DiscoveryService: Received a discovery request...

ResourceDiscoveryDao:
ResourceDiscoveryDao:
ResourceDiscoveryDao:

ResourceDiscoveryDao:

Loading
Finding

Processing resource discovery request...

available resources’ descirption...

resource by type...

Resource selection algorithm has been started...

ResourceSelection: Processing selection parameters on resource [52a6ff62-fd26-4ee3-be65-060

ResourceSelection:

ResourceSelection:

ResourceSelection:

ResourceSelection:

ResourceSelection:

ResourceSelection:

ResourceSelection:

ResourceSelection:

ResourceSelection:

ResourceSelection:

ResourceSelection:

Processing

Evaluating

Evaluating

Processing

Processing

Evaluating

Evaluating

Processing

Processing

Evaluating

Evaluating

selection constraints on resource [52a6ff62-fd26-4ee3-be65-060
memory constraints...

CPU constraints...

selection parameters on resource [3a4d2bdc-e2f8-41c1-ab65-
selection constraints on resource [3a4d2bdc-e2f8-41cl-a565-
memory constraints...

CPU constraints...

selection parameters on resource [11432e48-186d-44b7-bd7d-

selection constraints on resource [11432e48-186d-44b7-bd7d-

memory constraints...

CPU constraints...

DiscoveryService: Resource discovery done...

DiscoveryService: ————————————— - - - - - ————

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms and Listings
	List of Abbreviations
	Introduction
	Overview
	Motivations
	Thesis Objectives
	Thesis Contributions
	Thesis Organization

	Background and Related Work
	Overview
	Definitions of Terms
	Virtualization
	Types of Virtualization

	Cloud Computing
	Cloud Computing Business Model

	Network Virtualization
	Overlay Networks
	The Network Virtualization Environment
	Business Models
	Service-Oriented Business Model

	Virtual Network Embedding Process
	Virtual Network Applications and Services

	Web Services
	RESTful Web services

	Summary

	A Framework for Resource Publication and Discovery in Network Virtualization Environment
	Introduction
	Related Work to Resource Discovery and Selection in Network Virtualization Environment
	Business Scenario
	Requirements for Dynamic Resource Publication and Discovery in Network Virtualization Environment
	Broker-based Framework for Resource Publication and Discovery
	Overall Architecture
	Introduction
	Components Description

	Case Study
	Summary

	Information Model
	Introduction
	Related Work to Resource Description
	Requirements for an Information Model in Network Virualization Environment
	The Proposed Information Model
	High-level Overview
	Detailed Description

	Summary

	Design and Implementation
	Overview
	Requirements for the Implementation
	Software Architecture
	Implementation
	The Technologies and Tools Used
	Data Sources
	Platform Virtualization

	Resource Publication and Management
	Resource Discovery
	Resource Negotiation
	Virtual Topology Instantiation and Resource Management
	Broker Components Implementation
	Resource Selection Algorithm
	Broker Web Services
	Broker User Interface

	Use Case–Secure Content Distribution Scenario
	Lessons Learned
	Summary

	Performance and Scalability Evaluation
	Performance Evaluation
	Prototype Setup
	Resource Publication Tests
	Resource Discovery Tests
	Resource Negotiation Tests
	Virtual Topology Instantiation Tests

	Scalability Evaluation of the Implemented System
	Scalability Tests Setup
	Resource Publication Scalability Tests
	Resource Discovery Scalability Test

	Summary

	Conclusions and Future Work
	Discussion
	Summary of Contributions
	Future Work

	Bibliography
	I Appendices
	Appendices
	Enumeration Types
	Enumerations Types for Network Nodes
	Enumerations Types for Network Links
	Enumerations Types for Network Services
	Security-related Enumerations Types
	Enumerations for Wireless-related Entities

	Shell Scripts
	Script for Managing Ethernet Vyatta Virtual Network Interfaces
	Managing Virtual Network Routing

	XML Schema Definition
	XSD for Resource Description
	XSD for Resource Discovery Requests
	XSD for Negotiation Requests
	Resource Description Sample

	Message Logs of the PIP Subsystem
	Message Logs of the VIP Subsystem
	Broker Components Message Logs

