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Abstract 

 

Analysis of Rotor Dynamics Acceptance Criteria in Large Industrial Rotors 

 

Mohammad Razi 

 

Rotating machinery is extensively used in the industry today. The dynamics of 

rotating machines and the critical issues associated with them have been the principal 

focus of a large part of the research and development in industry in recent times. The 

rotating machines are one of the most essential components of machinery in industry as 

they play a vital role in the process of transferring power from one place to another. 

The assemblies of the important industrial machinery such as gas turbines, 

compressors, hydroelectric systems, locomotives, vehicles etc. are made of different 

rotating parts. Therefore it becomes necessary to analyze the dynamic behavior of the 

rotating systems in order to understand the level of stresses to which these components 

are subjected to during their operation. This pre-design phase analysis can greatly 

contribute to the trouble shooting of the critical issues. However, the dynamic behavior of 

rotating machinery is quite complex which necessitates the need for understanding the 

mechanics behind the operation of these devices thoroughly. The complexity of the 

analysis increases further whenever there is an unbalance in the rotating components 

which leads to an undesirable whirling response. The gyroscopic effects present in the 
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rotating disks amplify at higher rotating speeds of shafts thereby inducing some 

undesirable stresses in the components. Due to the complexity of these rotating 

structures, they are subjected to stresses during the industrial processes. So, it becomes 

necessary to perform the vibration analysis for predicting their behavior prior to their 

application phase. This analysis would be of great aid in determining the natural 

frequencies and the associated mode shapes of the system. Initially, a free vibration 

analysis is carried out which is followed by the forced vibration analysis to predict their 

behavior when subjected to the excitations arising from the residual unbalance and any 

other external excitations. 

The primary goal of this dissertation is to analyze the dynamic behavior of the 

industrial rotors and address the critical issues associated with them. Initially, a simple 

Jeffcott rotor is analyzed in detail to determine its natural frequencies, critical speeds 

from the Campbell diagram, the forward and backward whirl modes. This is followed by 

the analysis of an actual industrial rotor in ANSYS in order to understand its dynamic 

behavior which involves the detailed analysis of the Campbell diagrams, critical speeds, 

effect of the gyroscopic moments etc. The phenomenon called „Curve veering‟ was 

observed from the inspection of the obtained natural frequencies of the system and 

discussed. Campbell diagrams are obtained and critical speeds, effect of the gyroscopic 

moments etc. are identified and discussed. 



v 
 

Acknowledgement 

First, I would like to pay my great appreciation to my supervisors Dr. Rama Bhat 

and Dr. Ashok Kaushal for their initiation of the project and their constant valuable 

advice and encouragement along with practical opinions throughout the thesis work. 

I would like to acknowledge the support by Dr. Ashok Kaushal and Mr. Ayman 

Surial in the experimental case study and industrial recommendations. The assistance 

provided by Mr. Ali Fellah Jahromi and Mr. Ajinkya Gharapurkar in preparing this thesis 

is gratefully acknowledged.  

I also would like to acknowledge my parents for their patience and constant moral 

support and encouragement during these years. 

Finally, I would like to dedicate this thesis to the angel whose love, kindness, and 

forgiveness are eternal. Taraneh, I am blessed because you love me… 

 

 

 

  



vi 
 

Table of Contents 

 

Nomenclature ...................................................................................................................... ix 

List of Figures ..................................................................................................................... xi 

List of tables ..................................................................................................................... xiii 

CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW.................................... 1 

1.1. Introduction and Research Motivation ......................................................................... 1 

1.2. Objectives ..................................................................................................................... 2 

1.3. Literature Review ......................................................................................................... 3 

1.4. Thesis Organization ...................................................................................................... 9 

CHAPTER 2: ANALYTICAL SOLUTIONS FOR ROTOR DYNAMICS OF A 

JEFFCOTT ROTOR .......................................................................................................... 11 

2.1. Introduction ................................................................................................................ 11 

2.2. The Model Configurations ......................................................................................... 12 

2.3. Analytical Solution ..................................................................................................... 13 

2.4. Gyroscopic Effect and Centrifugal Stiffening ............................................................ 17 

2.5. Strain Energy .............................................................................................................. 19 

CHAPTER 3: FINITE ELEMENT ANALYSIS OF A JEFFCOTT ROTOR .................. 20 

3.1. Modeling the Jeffcott Rotor in ANSYS Software ...................................................... 20 



vii 
 

3.1.2. Comparison and Validation ..................................................................................... 22 

3.2. Campbell Diagram with Rigid Bearings .................................................................... 23 

3.2.1. Campbell Diagram with Bearing and Casing .......................................................... 26 

3.3. Harmonic Response Analysis ..................................................................................... 29 

3.3.1. Model New Features ................................................................................................ 29 

3.3.2. Harmonic Response without Effect of Casing ........................................................ 30 

3.3.3. Harmonic Response Including Casing .................................................................... 33 

3.4. Strain Energy Calculation by ANSYS Software ........................................................ 35 

3.5. Results and Discussion ............................................................................................... 37 

CHAPTER 4:  FINITE ELEMENT ANALYSIS OF AN INDUSTRIAL ROTOR ......... 38 

4.1. Studies on the Simulated Turbine with a Shaft and Eight Disks................................ 38 

4.2. Curve Veering in Campbell Diagram ......................................................................... 49 

4.3. Studies on the LP Section of the Industrial Rotor ...................................................... 49 

4.3.1. Simplified Modeling of the LP Section of Industrial Rotor .................................... 50 

4.3.2. Modeling Techniques .............................................................................................. 51 

4.3.3. Modal Analysis of LP Rotor .................................................................................... 53 

4.3.4. Campbell Diagram for the LP Rotor ....................................................................... 56 

CHAPTER 5: CONCLUSIONS AND FUTURE RECOMMENDATIONS .................... 59 

5.1. Conclusions: ............................................................................................................... 59 



viii 
 

5.2. Future Recommendations: .......................................................................................... 60 

References ......................................................................................................................... 62 

Appendix A: Schematic View of the Industrial Rotor ...................................................... 69 

Appendix B: Flow Charts in API 616 Standard ................................................................ 70 

Appendix C: ANSYS Codes for a Simple Rotor without Casing ..................................... 74 

Appendix D: ANSYS Codes for a Model and Casing ...................................................... 77 

Appendix E: ANSYS Codes for the Shaft with Eight Disks ............................................. 83 

Appendix F: Results of Finite Element Analysis by ANSYS Software............................ 91 

 



ix 
 

Nomenclature 

a Disk Eccentricity [m] 

b Distance Between Load and Close Endpoint of The Beam [m] 

C Equivalent Viscous Damping [N.s/m] 

d Diameter of Shaft 

D Disk Diameter in The Jeffcott Rotor [m] 

E Young‟s Modulus [Pa] 

I Diametral Moment of Inertia of The Shaft [  ] 

K Lateral Stiffness of The Shaft [N/m] 

l Shaft Length [m] 

M Mass of The Disk [kg] 

r Whirl Radius [m] 

R Whirl Amplitude [m] 

U Strain Energy Density [   ⁄ ] 

    Constant Quantity in Uniform Beam Natural Frequency of the nth Mode 

ν Poisson‟s Ratio 

ρ Density [    ⁄ ] 

    Stress Component in Plane xx [Pa] 

    Stress Component in Plane yy [Pa] 



x 
 

    Stress Component in Plane zz [Pa] 

   Rotational Frequency [rad/s] 

 



xi 
 

List of Figures 

Figure 1 Geometry of the Simple Jeffcott Rotor ............................................................... 13 

Figure 2 Different Configurations for Higher Gyroscopic Effect  [62] ............................. 18 

Figure 3 Jeffcott Rotor Model in ANSYS ......................................................................... 20 

Figure 4 Element SOLID187 ............................................................................................. 21 

Figure 5 Meshed Model of the Jeffcott Rotor ................................................................... 22 

Figure 6 Campbell Diagram of the Shaft and Disk ........................................................... 26 

Figure 7 Casing of the Simple Model ................................................................................ 27 

Figure 8 Campbell Diagram for the Rotor with RBE3 Element including the Casing and 

Bearing ............................................................................................................................... 28 

Figure 9 the Position of Unbalance Mass on the Disk ...................................................... 29 

Figure 10 Third Mode shape of the Jeffcott rotor model with unbalanced mass .............. 31 

Figure 11 Two Natural Frequencies of the Rotor without the Casing in Harmonic 

Response Analysis ............................................................................................................. 32 

Figure 12 First Natural Frequency of the Rotor with Effect of Casing in Harmonic 

Response Analysis ............................................................................................................. 33 

Figure 13 Campbell Diagram for the Jeffcott Rotor with Imbalance and the Effect of the 

Casing ................................................................................................................................ 34 

Figure 14 Strain Energy Distribution of Rotor on Frequency of 10.949 Hz ..................... 35 



xii 
 

Figure 15 Strain Energy of the Casing on Frequency of 37.79 Hz ................................... 36 

Figure 16 Gas Turbine Parts  [65] ...................................................................................... 38 

Figure 17 Oblique View of the Simplified Rotor .............................................................. 39 

Figure 18 Dimensions of the Rotor Model ........................................................................ 40 

Figure 19 Meshed View of the Simplified Rotor .............................................................. 41 

Figure 20 First Axial Mode Shape of the Simplified Rotor .............................................. 42 

Figure 21 First Bending Mode Shape of the Rotor ........................................................... 43 

Figure 22 First Bending Motion of the Rotor in the Opposite Plane ................................ 44 

Figure 23 Second Axial Mode Shape of the Rotor ........................................................... 45 

Figure 24 Second Bending Mode Shape of the Rotor ....................................................... 46 

Figure 25 Second Bending Mode Shape of the Rotor in the Opposite Plane ................... 47 

Figure 26 Campbell Diagram of the Simplified Model .................................................... 48 

Figure 27 LP Section of the Rotor, Before and After Simplification................................ 51 

Figure 28 Simplified Model Imported from AutoCAD .................................................... 52 

Figure 29 A Simplified 3D Meshed Model of Rotor LP Section ...................................... 53 

Figure 30 First Mode Shape of the LP Rotor .................................................................... 54 

Figure 31 Second Mode Shape of the LP Rotor ................................................................ 55 

Figure 32 Third Mode Shape of the LP Rotor ................................................................... 55 

Figure 33 Campbell Diagram for Simplified LP Section of the Rotor ............................. 56 



xiii 
 

List of tables 

Table 1 Analytical Result and ANSYS Result for the 1st and 3rd Natural Frequency ..... 16 

Table 2 Material Properties ............................................................................................... 21 

Table 3 Transverse Natural Frequencies of the Simple Model ......................................... 23 

Table 4 Gyroscopic Effect on Natural Frequencies in (Hz) .............................................. 24 

Table 5 Centrifugal Stiffening and Gyroscopic Effect on Natural Frequencies in (Hz) ... 25 

Table 6 Natural Frequencies of the Model with Unbalance Mass in Hz .......................... 30 

Table 7 Analytical Result and ANSYS Result for 3rd Natural Frequency Considering 

Unbalance Mass ................................................................................................................. 31 

Table 8 Natural Frequency of LP Rotor ............................................................................ 54 

Table 9 Modal Analysis Results for LP Section for Different Rotational Speeds in Hz .. 57 

  



1 
 

CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1. Introduction and Research Motivation 

Steam turbines and industrial gas turbines are used to generate electrical power for 

industrial and domestic needs. Apart from the power generation the gas turbines also find 

their application in aircraft propulsion. Also, the petrochemical industries use “turbine- 

compressor trains” in their utilities  [1]. 

The shaft speeds in the industrial gas turbines and the steam turbines range from 

3000 rpm to 10,000 rpm. The turbojets operate at the speeds that are 10 times higher than 

that of the industrial machines. Due to the high speed involved during their operation, the 

vibrational problems in such rotating machines are prominent which necessitates the need 

for analyzing their dynamic behavior and addressing these problems.    

The dynamic behavior of rotating machines is characterized by their critical 

speeds, whirl responses and gyroscopic effects. Due to the gyroscopic effects and the 

centrifugal forces, the whirl can take place in both forward and the backward directions. 

The simple rotors can be used for analyzing the rotor behavior initially; since such rotors 

offer ease of modeling and simulation. However, the analytical approach for 

understanding the dynamic behavior of the actual rotors is a critical process because of 

the structural complexity involved. A finite element analysis approach using commercial 

finite element method softwares such as ANSYS can be viewed as a powerful solution 

tool that can provide realistic information about the dynamic behavior of the rotors 

during their operation. Due to the limitations of the finite element method software, it 
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becomes necessary to modify the calculation time and avoid large number of equations 

involved by simplifying the model.  

In this dissertation a Jeffcott rotor including imbalance is studied under different 

conditions such as the effect of casing on the rotordynamic behavior of the system, 

gyroscopic effects and centrifugal stiffening. A case study is carried out on a simulated 

model of a large industrial rotor using a finite element method approach. This case study 

is performed after validation of the selected method on a simplified multi-disk rotor. The 

criteria to assess the rotordynamics of such systems are studied and extended studies are 

recommended as future works at the end. 

1.2. Objectives 

The objectives of this study are to develop rotordynamics acceptance criteria 

assessment for industrial rotors following commonly adopted industry standards. Initially 

simple Jeffcott rotors will be studied in order to understand the dynamic behavior of such 

simple rotors before dealing with large industrial rotors. The study will include predicting 

critical speeds and forced response analysis.  After a consummate study on the simple 

rotor model, a finite element model of a simplified industrial rotor, will be meshed and 

formulated in ANSYS software.  Centrifugal stiffening and gyroscopic effects will be 

considered in the analysis. The method used for this assessment includes strain energy 

percentage. The study of separation margin method that is mentioned in standard API 616 

is recommended mostly by industry and it will be introduced in this study ‎[2]. Initially 

free vibration analysis will be performed followed by forced vibration response due to 
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harmonic excitation by residual unbalance mass for a simple model. Critical speeds and 

Campbell diagram to identify the critical issues will be obtained. After establishing the 

method of simulation and analysis in ANSYS software, a model consisting of 8 disks 

adapted from common models of industrial gas turbines will be developed and analyzed 

for its dynamic behavior. Finally a case study will be carried out on a simplified model of 

an industrial rotor for rotordynamics acceptance criteria assessment. The results will be 

presented and discussed. 

1.3. Literature Review 

The development of methods to satisfy the rotordynamics acceptance criteria 

assessment in industrial rotors initially requires full understanding of the rotordynamic 

behavior of Jeffcott rotors, and the history of previous methods applied in this field, their 

pros and cons considering all aspects of physical features such as gyroscopic effect, rotor 

whirl instabilities, curve veering phenomenon in Campbell diagram, etc. Studies related 

to these topics considering the objective of the dissertation are studied and presented 

here. 

The earliest study in the field of rotor dynamics dates back to the 18
th

 century. J. 

W. Rankin can be credited for the initial research in this field  [3]. With the rapid 

development in the field of rotor dynamics, the engineers felt the need for designing more 

flexible and light weight rotors for meeting the ever increasing demands of the modern 

industry. The focus of the research program has been to design rotors which require less 

power to operate and would minimize the energy loss. 
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However, with the development of the flexible light weight rotors, the problem of 

vibrations and the resulting dynamic stresses becomes a critical issue. The vibration 

analysis of the rotors plays a vital role in their design process. In 1919, Jeffcott, a British 

engineer, modeled a rotor as a simple mass-spring system consisting of a disk as a 

lumped mass and a massless shaft assuming an imbalance in the rotor. He analyzed the 

dynamic response of the rotor on two identical rigid bearings at high speeds  [4]. A study 

of the rotor‟s structural dynamics with no consideration of the bearings was done by 

Stodola  [5]. Biezeno and Grammel suggested the earliest methods for finding the critical 

speeds in the flexible rotors  [6]. Also, the rotor dynamics analysis considering the 

hydrodynamic bearings was done by Lund and Sterlicht and Lund  [6]. 

For the first main mode shape of a rotor supported on bearings, Lund found two 

corresponding critical speeds  [7]. Gunter studied the stability issues in rotor dynamics  [8] 

and his work was combined with Lund‟s work on the stability problems considering the 

damped critical speeds within a rotor-bearing system and it initiated “a great deal of 

interest” in this area  [6]. Late in the 18th century, Karl Gustaf Patrik de Laval invented 

the first steam turbine  [9]. Sir Charles Algernon Parsons invented a special kind of steam 

turbine that encountered considerably less vibrations in comparison with the 

reciprocating engines, and were named “Vibration Free Engines”  [10].  

Working on the governing equations of the turbomachinery led to Theory of 

Elasticity equations and this led to further studies done by Navier  [11], Cauchy  [12], 

Fox  [13], Lanczos  [14], Langhaar  [15], Love  [16], Prescott  [17], Washizu  [18] and 
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Weinstock  [19]. Taking into consideration the conservation of energy principle, some 

energy methods were developed in later years to obtain the rotor dynamics solutions for 

these systems. The important energy methods were provided by Lagrange  [10], 

Rayleigh  [20], Ritz  [21], Galerkin  [22] and Hamilton  [23]. Moreover, a few numerical 

methods have also been reported in past years. Stodola-Viannello‟s  [24] method which 

was named as “Rayleigh‟s Maximum Energy” and the Holzer method in torsional 

vibrations  were some of the important contributions [ [25],  [26]]. Dunkerley‟s 

method  [27] and Myklestad‟s method [ [28],  [29]] are also considered amongst the 

important methods for this analysis  [10].  

As mentioned earlier, Jeffcott made the first simple mass-spring rotor with a 

lumped disk and a massless shaft  [4]. The effect of the bearings was studied by many 

researchers. Sommerfeld  [30] formulated a parameter to establish the relation between 

the speed, pressure and the eccentricity ratio. 

The response of the rotors exhibited “whirls” in the forward and the backward 

directions that is studied by Bhat et al.  [31] using Vanderplaats method [ [32],  [10]]. The 

effect of the disk inertia in a rotating state on a shaft was first found by Rayleigh  [20]. 

This phenomenon, namely, the “gyroscopic effect” was studied and its effect on 

increasing the forward whirl natural frequency and decreasing the backward whirl natural 

frequency was analyzed by Stodola  [5]. Den Hartog  [33] and Timoshenko  [34] studied 

the gyroscopic effects on the synchronous and the non-synchronous whirls in rotors. 

Investigation of the gyroscopic effects by the energy methods was performed by 
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Carnegie  [35] for the first time  [10]. Al-khazali and Askari  [36] have studied the 

gyroscopic effect in rotating machinery using techniques of experimental, analytical and 

numerical methods. 

In 1981, Rao investigated the backward synchronous whirl in a flexible rotor with 

hydrodynamic bearings  [37]. Sinou, Villa and Thouverez studied the forward and 

backward critical speeds in a rotor with flexible bearing support  [38]. 

Providing a Campbell diagram for multi degree of freedom rotors using traditional 

computational methods takes a long time. Genta published a fast modal analysis 

technique based on splitting the gyroscopic and damping matrices into two parts and 

comparing these parts with simplified conditions of rotors  [39].  In more recent days, 

using finite element method softwares such as ANSYS made it easy to plot the Campbell 

diagram. Finite element modeling also helped the engineers to study a variety of features 

in Campbell diagram such as effect of fluid film bearing properties on the critical speeds 

of rotors. This work is done by Kalita and Kakoty  [40]. 

“Curve veering” phenomenon and its features are studied for many years. The 

phenomenon of curve veering is sometimes observed in vibrating systems when the 

natural frequencies or eigenvalues are plotted against a system parameter such as the 

aspect ratio, the non-homogeneities, or the material properties. In some cases the curve 

veering phenomenon happens in approximate solutions of discretized models. The 

primary reasons for the occurrence of the curve veering phenomenon are the approximate 

nature of the analysis or the inherent nature of the system itself [ [41] -  [44]].  Leissa  [41] 
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described the curve veering as a phenomenon where the eigenfunctions must undergo 

violent change - figuratively speaking, a dragonfly one instant, a butterfly the next, and 

something indescribable in between which makes the results pattern appear strange from 

an aesthetic view point.” Leissa used the Galerkin‟s method, which is an approximate 

method, to analyze the vibrations of a fixed rectangular membrane, where curve veering 

occurs in view of the numerical approximation involved  [41]. Deriving exact solution of 

eigenvalue problems in a simplified model shows the existence of curve veering. Perkins 

and Mote, Jr. commented on this phenomenon  [43].  

Such seeming occurrences of the curve veering can take place when the vibrating 

systems are analyzed using the approximate methods such as the Gelerkin‟s method or 

the Rayleigh Ritz method [ [43] – [50]]. 

Bhat studied the existence of curve veering phenomenon with a comparison 

between exact solutions and approximate solutions such as Galerkin‟s method and 

Rayleigh Ritz method. Also he studied the existence of curve veering in different 

structures, such as rectangular membranes, simply supported beams on elastic support at 

the midpoint, rotating string without the spring support  [44]. 

Since the discretization of the continuous structures is approximate, the curve 

veering can occur in the finite element analysis of the vibration of structures. A detailed 

examination in the vicinity of the apparent crossing points needs to be carried out in order 

to determine whether they are truly the crossing points or they involve curve veering. 
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 If the phenomenon of “curve veering” is inherent nature of the vibrating system, 

the response quantities such as the deflection or the stresses, will be completely 

misleading in view of the sudden changes in the mode shapes in the vicinity, resulting in 

an erroneous design. In such situations, it is advisable to solve the problem using 

different methods and verify whether the curve veering is because of the approximate 

nature of the analysis or due to the inherent nature of the system itself  [51]. 

Also some experimental studies on the investigation of curve veering are 

performed and published in recent years. Study on stressed structures is one of the cases 

studied by Du Boisa, Adhikarib, and Lievena  [52]. The effects of mathematical 

operations of eigenvalues and eigenvectors on curve veering and mode localization are 

studied by Liu  [53]. 

Using simple rotor systems, the theory of modal testing in rotating machinery by 

analytical solutions was done and clarified by Jei and Kim  [54]. 

Reducing the model of a rotating structure considering damping and gyroscopic 

effect with methods such as Guyan reduction or dynamic reduction does not give 

reasonable answers. There are significant errors in the results. Friswell, Penny and 

Garvey  [55] published a study on this topic to prove these problems. Coupled lateral and 

torsional vibrations in unbalanced rotors validating with a numerical example is studied 

by Al-Bedoor  [56]. 
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1.4. Thesis Organization  

Chapter 2 is dedicated to analytical solution of rotordynamics of a Jeffcott rotor. A 

Jeffcott rotor with an imbalance in the disk which is located away from the midpoint is 

adopted for the study. The model geometry and configurations are mentioned in detail. 

The first and third natural frequencies are obtained. Also, the gyroscopic effect in rotors 

and centrifugal stiffening in high speed rotors are introduced and discussed in this 

chapter. Also, strain energy method as the acceptance criteria is introduced in this 

chapter.  

Chapter 3 deals with finite element analysis of rotordynamics of a Jeffcott rotor. In 

this chapter the modeling method of the Jeffcott rotor in ANSYS software is discussed 

and performed for the case study. The selection of the element and meshing method is the 

last part of the modeling section discussed here. In the next section, the provided 

numerical solution with the finite element analysis method is compared and validated 

with the analytical solution results in chapter 2. Campbell diagram in the Jeffcott rotor is 

plotted for two cases; a) with rigid bearings and b) with bearings and the casing. 

Harmonic response of a Jeffcott rotor with an imbalance is modeled in ANSYS and 

discussed in chapter 3. The harmonic response is investigated in two sections: a) without 

the effect of the casing and b) with the inclusion of the casing. Also, strain energy method 

is applied on this model and finally discussions and recommendations are provided. 

Chapter 4 describes the application of the validated finite element analysis method 

to a simplified model of common gas turbines as a shaft with 8 disks in different 
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geometries distributed along the shaft. The eight disk rotor model is modeled in ANSYS 

and solved numerically to represent the vibrational behavior of the system for different 

operating speeds. The natural frequencies, mode shapes and their differences are 

discussed in detail. The Campbell diagram is plotted for the system and curve veering 

phenomenon is investigated, too. The final section of chapter 4 is dedicated to the 

numerical solution of vibrational behavior of a simulated industrial rotor with minimum 

simplification in the geometry details. After performing a complicated analysis, the 

results are provided for the mode shapes and natural frequencies of the industrial rotor. 

Chapter 5 is dedicated to the recommendations and future work of this thesis. 

Complexities and time-consuming analysis were some of the limitations in the case study 

in the chapter 4. Hence, some recommendations on simplifying the model are presented. 

Considering more important details such as the effect of blades is suggested too. The API 

616 standard is focused on a different method of rotordynamics acceptance criteria that 

depends on availability of more confidential data for industrial rotors. Appendix B shows 

a flow chart on the steps of this standard. Therefore, separation margin and amplification 

factor could be defined by this standard. 
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CHAPTER 2: ANALYTICAL SOLUTIONS FOR ROTOR 

DYNAMICS OF A JEFFCOTT ROTOR  

2.1. Introduction 

Industrial machinery invariably experience vibrations during normal operation. 

The vibrations that are induced in the machines can cause critical damage during their 

operation which might result in the machinery failure. From an engineering point of 

view, the mass, stiffness and the damping in the structures (dissipative energy of 

vibration) are the essential elements that determine the response of the structures when 

subjected to vibrations. 

Rotor dynamics differs from structural vibrations due to gyroscopic effects and 

whirling instability problems. Further, in view of the complex geometry of the rotor, 

finite element methods are used to investigate these issues. The validation of such applied 

numerical methods should be done on simple systems in order to verify the results [1]. 

Considering a lumped mass as a disk and a massless elastic shaft, a simple rotating 

machine could be defined assuming it as a simple mass-spring system. This model is 

named “Laval” rotor or “Jeffcott” rotor ‎[3]. In such a model the shaft is mounted on two 

bearings at both ends with a disk attached between the two ends. The case study here is a 

Jeffcott rotor with an offset in the position of the disk away from the shaft midpoint.  

Assuming the dimensions of the shaft and the disk, a model is formulated to be 

solved analytically. To find out the vibrational features of the system, the whirl radius is 
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expressed in terms of a solution in the equations of motion. Changing the direction of the 

frequency in a system will lead the equations to represent the forward and the backward 

synchronous whirls ‎[57]. Some natural frequencies can be obtained by solving the 

Jeffcott rotor motion simulated as a beam with different boundary conditions. The 

concepts of the gyroscopic effect and the centrifugal stiffening of the system are 

discussed in this chapter. The final section is dedicated to the method of formulating the 

strain energy in the Jeffcott rotor. 

 2.2. The Model Configurations 

The level of vibrations in the rotors during normal operation should be lower than 

their limit specified in the standards. The rotors experience vibrations when they are 

subjected to excitation forces due to the residual unbalance in the system. In the present 

study, the unbalanced mass is introduced at a fixed distance from the shaft centerline. A 

forced harmonic response analysis is carried out on the rotor in order to verify whether 

the rotor satisfies the acceptance criteria in this study. A Jeffcott rotor consisting of a 

shaft and a disk, in which the position of the disk has an offset from the midpoint is 

shown in Fig. 1.  

A simple rotor model with a thin shaft of diameter 0.05 m, length of 1.5 m and a 

disk of diameter 0.85 m and thickness of 0.05 m is considered. The disk is located at a 

distance of 1 meter from one end of the shaft. An imbalance of 0.26 kg.m is added to the 

disk.  
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Figure 1 Geometry of the Simple Jeffcott Rotor 

 

2.3. Analytical Solution 

Considering the Jeffcott rotor model discussed in the previous section, the 

governing equations of simple Jeffcott rotor in two symmetric transverse planes are as 

follows ‎[57]:  

 
  

   
(        )   

  

  
                                                                                   (1) 

 
  

   
(        )   

  

  
                                                                                   (2) 

where M is the mass of the disk, C is the equivalent viscous damping, K is the lateral 

stiffness of the shaft, a is the disk eccentricity, and ω is the speed of the rotation of the 

rotor shaft. 
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Rewriting the previous equations will lead to: 

  ̈    ̇                                                                                                     (3) 

  ̈    ̇                                                                                                      (4) 

 

where “Ma” is the Residual unbalance. 

Expressing the whirl radius “r” as a complex quantity, we have: 

                                                                                                                                          (5) 

 

and the equations (3) and (4) are combined into the following equation: 

  ̈    ̇                                                                                                           (6) 

Assuming the solution in the form: 

                                                                                                                               (7) 

 

and considering no viscous damping in the system, the solution of the differential 

equation (6) is as follows: 

  
    

     
                                                                                                                  (8) 

where R is the whirl amplitude. 
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In this model, the disk is assumed as a lumped mass and the shaft as a simply 

supported beam in calculating the stiffness of the system. Following equations present the 

first natural frequency of the system.  

  ̈       (9) 

where M is the mass of the disk. Equation (10) is obtained from the relation of beam 

deflection due to applied force on the beam. ‎[60] 

  
 √    

 √     
  (10) 

I  
   

  
  (11) 

where d is the diameter of shaft.  

  √
 

 
 (12) 

Numerical calculation of the natural frequency agrees with the first natural frequency 

computed using an ANSYS model of the Jeffcott rotor and presented in table 1. Table 1 

also provides the third natural frequency of the rotor using ANSYS as well as a simple 

formula as described below. The third mode shape obtained in ANSYS shows that there 

is no lateral motion of the disk. The rest of the shaft is bent like a clamped-pinned beam 

as shown in Fig. 10 of chapter 3. A check was made by computing the natural frequency 

of a continuous clamped-pinned beam. 
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The natural frequencies of the nth mode “  ” for such beams have been provided by 

Young and Felgar ‎[58]. Defining    as below, we have: 

  
     

                                                                                                                   (13) 

where    is a constant quantity in uniform beam natural frequency of the nth mode ‎[61]. 

   (   )
 √     ⁄                                                                                                     (14) 

(   )
  values are tabulated for beams with different boundary conditions ‎[58] where “ ” 

is the length of the beam-like part of the shaft which in this case is two third of the whole 

shaft length. It was interesting to note that the first natural frequency of a clamped-pinned 

beam of length (l-b) agreed with the third natural frequency of the Jeffcott rotor obtained 

in ANSYS. The results obtained by the finite element analysis are validated in the next 

chapter. The obtained results are in good agreement with the numerical solution and the 

analytical results. 

Table 1 Analytical Result and ANSYS Result for the 1
st
 and 3

rd
 Natural Frequency 

 Analytical result ANSYS result 

1
st
 Natural Frequency (Hz) 

10.78 

(Eqn. 12) 

10.96 

3
rd

 Natural Frequency (Hz) 

160.65 

(Eqn. 14) 

160.65 
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2.4. Gyroscopic Effect and Centrifugal Stiffening 

As mentioned in the literature, the centrifugal stiffening and the gyroscopic effects 

are responsible for the variations in the natural frequencies and the dynamic response of 

the systems. Therefore, it becomes necessary to understand these effects in detail. In this 

case study, the frequencies of the rotor system vary with the shaft rotational speed due to 

the above effects. The stiffness of the system depends on the centrifugal stiffening and 

the gyroscopic effect which are speed dependent and hence the natural frequencies of the 

system depend on the operational speed of the rotor.  

Whenever there is a disk attached to a shaft, the bending shape may be as shown in 

Fig. 2. The bending causes a precession of the disk resulting in gyroscopic effect which 

must be considered in the analysis. Further, the points on the rotating structure which are 

away from the axis of rotation are subjected to the centrifugal forces, which will enhance 

the strain energy in the system increasing the natural frequencies.  
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Figure 2 Different Configurations for Higher Gyroscopic Effect ‎[62] 

Inclusion of the gyroscopic effects will introduce the velocity dependent terms which will 

split the natural frequencies depending on the direction of rotation. One branch will 

correspond to the forward whirl frequencies and the other branch will correspond to the 

backward whirl frequencies. Increasing the speed will raise the frequency of forward 

whirl and lower the frequency of backward whirl.  
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2.5. Strain Energy 

Application of external forces on an elastic element will deform the element and 

store energy in the system. This energy is called the strain energy. “Maximum Strain 

Energy Theorem” suggests that the failure by yielding occurs when the total strain energy 

per unit volume reaches or exceeds the strain energy in the same volume corresponding 

to the yield strength in tension or compression ‎[59]. The strain energy per volume is 

given by 

  
 

  
(  

    
    

 )    (              )  (15) 

  

where E is the Modulus of Elasticity,   ,    and    are the stress components on planes 

xx, yy and zz, respectively. 
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CHAPTER 3: FINITE ELEMENT ANALYSIS OF A JEFFCOTT 

ROTOR 

3.1. Modeling the Jeffcott Rotor in ANSYS Software 

The model of a simple Jeffcott rotor is developed in ANSYS which is shown in 

Fig. 3. It is defined by eight key points in ANSYS (Appendix C) as one half of the 

axisymmetric cross section of the model. The area of the cross section of the model 

length is created and then the model is revolved about the shaft axis and four volumes are 

created. 

 

Figure 3 Jeffcott Rotor Model in ANSYS 

The available elements for meshing the solid volumes in ANSYS for which the 

Coriolis effects are included are SOLID185, SOLID186 and SOLID187 ‎[63]. The 
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elements SOLID186 and SOLID187 can be used in the applications involving the 

cylindrical models. The element SOLID187 is a 10-node element which consumes less 

time for the computations compared to SOLID186 which is a 20-node element. 

Therefore, SOLID187 is selected for this analysis which is shown in Fig. 4 ‎[63]. 

 

Figure 4 Element SOLID187 

The material selected for the shaft and the disk is steel (linear and isotropic) with 

the properties summarized in Table 2. The disk and the shaft are modeled as separate 

parts with similar material properties for the two parts. 

Table 2 Material Properties 

Modulus of Elasticity 

N/m
2
 

Poisson Ratio 

Density 

Kg/m
3
 

2x10
11

 0.3 7860 

 

The boundary conditions are implemented by fixing all the degrees of freedom at 

both end points of the shaft at the key points on the centerline (UX, UY and UZ equal to 

zero and constant with respect to time).  
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Figure 5 Meshed Model of the Jeffcott Rotor 

3.1.2. Comparison and Validation  

The meshed model is shown in Fig. 5. Initially, the model is solved for the modal 

analysis with no shaft rotational speed. In this process, the numbers of the extracted mode 

shapes in a known range of the frequencies are obtained. Some of these results occur in 

pairs because of the model symmetry, and the results are for the transverse vibrations. 

The torsional natural frequencies are not repeated and can be identified as such. Table 3 

summarizes the first three natural frequencies of a simple rotor. 
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Table 3 Transverse Natural Frequencies of the Simple Model 

Mode Number 

Natural Frequency 

in (Hz) 

1 10.96 

2 38.28 

3 160.65 

 

3.2. Campbell Diagram with Rigid Bearings 

Table 4 identifies the natural frequencies and the changes in the forward and the 

backward whirl frequencies for different rotational speeds when the gyroscopic effect is 

included in the analysis. From the observed mode shapes, it can be seen that the bending 

slope at the disk in the first mode is not significant and hence the gyroscopic effect does 

not influence the natural frequencies significantly. This can be visualized in the Campbell 

diagram for the split natural frequencies for the first mode. From 0 to 300 rad/sec of the 

shaft speed, the split frequencies diverge by about 2 Hz only. However, in the second 

mode the bending slope at the disk is quite significant. As a result, the gyroscopic effect 

influences the split frequencies as shown in the Fig.6. The forward whirl frequency 

changed by about 65 Hz for the speed range of 0 to 300 rad/s. Considering the third mode 

shape, there is a very small lateral motion in the disk due to its large weight and it acts 

like a clamp for the rest of the shaft on the right side. Therefore, the gyroscopic effect is 
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negligible and there is no appreciable change in the forward and backward whirl 

frequencies. 

Table 4 Gyroscopic Effect on Natural Frequencies in (Hz) 

Mode Number 

Shaft speed in rad/sec 

0 100 200 300 

1 FW 10.96 11.65 12.11 12.42 

1 BW 10.96 10.5 8.66 7.32 

2 FW 38.28 55.98 78.70 103.78 

2 BW 38.28 31.89 21.24 18.41 

3 FW 160.65 161.22 162.11 163.84 

3 BW 160.65 160.45 160 159.57 

 

Table 5 shows a comparison between the effect of the centrifugal stiffening and 

the gyroscopic effect for different angular velocities and natural frequencies. It can be 

interpreted that, for the first mode, the centrifugal stiffening changes the natural 

frequency due to the larger motion at the centerline of the shaft compared to the tilting 

motion of the disk at the same speed.  

On the other hand, the gyroscopic effect has more influence on the natural 

frequencies close to the second and the third mode shapes, due to the high rotating 
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motion of the disk in a transverse plane in comparison with the motion of the centerline 

of the shaft. 

Table 5 Centrifugal Stiffening and Gyroscopic Effect on Natural Frequencies in (Hz) 

Mode Number 

Shaft speed in rad/sec 

0 100 200 300 

1. Gyroscopic 10.96 11.65 12.11 12.42 

1. Centrifugal 10.96 11.47 12.30 12.98 

2. Gyroscopic 38.28 55.98 78.70 103.78 

2. Centrifugal 38.28 41.20 49.06 60.05 

3. Gyroscopic 160.65 161.22 162.11 163.84 

3. Centrifugal 160.65 160.68 160.75 160.88 

 

The “Campbell Diagram” is shown in Fig. 6. It can be seen that the forward and 

the backward whirls always branch out from the zero speed point, because of their 

inherent dependence on the shaft rotational speed. The change in the natural frequency 

due to the gyroscopic splitting is significant in the second mode shape as compared to the 

first and third mode shape.  

One of the most important applications of Campbell diagram is to identify the critical 

speeds. When the scales on both the axes are same, - both in Hz or rad/s -, a 45° line 

cutting the natural frequency curves will provide the critical speeds of the rotor. The 
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system operating speed should be far enough from these critical speeds in order to ensure 

safe operation. The inclined aqua blue line starting from the origin is the critical speed 

line that crosses the natural frequencies line in the points equal to shaft speed. 

 

Figure 6 Campbell Diagram of the Shaft and Disk 

3.2.1. Campbell Diagram with Bearing and Casing 

In order to develop a methodology to analyze the rotor systems with casings, a 

cylindrical shell casing is provided for the rotor system, as shown in Fig. 7. The shell has 

an inner radius of 0.445 m, the thickness of 0.02 m and the length of 1.5 m. 

Finite Element modeling of a rotating shaft disk system along with a nonrotating 

casing requires the coupling of these two components. This is accomplished in ANSYS 
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as follows. “The force is distributed to the slave nodes proportional to the weighting 

factors. The moment is distributed as forces to the slaves; these forces are proportional to 

the distance from the center of gravity of the slave nodes times the weighting 

factors” ‎[60]‎[63]. 

The bearing in ANSYS is defined using COMBIN14 and COMBIN214 elements. 

The COMBIN14 is a spring-damper element with no mass for the isotropic bearings 

which is used in the current study. This element has only two nodes and requires the 

stiffness and the damping factor values in order to define the element. The displacements 

of the nodes, stretching of the spring and the spring force or the moment are some of the 

outputs of this element ‎[60]‎[63]. The element COMBIN214 is used when the bearings are 

non-isotropic. 

 

Figure 7 Casing of the Simple Model 
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Figure 8 Campbell Diagram for the Rotor with RBE3 Element including the Casing and 

Bearing 

The Campbell diagram for the Jeffcott rotor with the shell casing is shown in Fig. 

8. The casing frequency is independent of the shaft speed and will remain constant when 

the speed of rotation of the rotor is changed. As the backward whirl frequency goes on 

decreasing, it appears to “veer” away upwards instead of crossing the casing frequency 

and continuing to decrease further. This phenomenon is called “curve veering” and has 

been studied extensively in the literature. The phenomenon of curve veering is seen when 

the natural frequencies are plotted against a system parameter such as the aspect ratio or a 

geometric parameter of the system. In case of the rotor, the natural frequencies are 

dependent on the shaft speed and hence the shaft speed is a system parameter. Therefore, 

under specific conditions the phenomenon of curve veering can occur ‎[44].  
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It is advisable to avoid such situations by making suitable changes to the 

geometries, material properties or modifications to the supports conditions in order to 

separate the rotor natural frequencies away from the constant frequencies of casing. 

 

3.3. Harmonic Response Analysis 

3.3.1. Model New Features 

Harmonic response analysis requires an inherent forced excitation. So, an unbalance 

mass (0.26 kg.m) is added to the disk at the position showed in Fig 1 and Fig 9.  

The computation time is based on the number of extracted mode shapes in the 

rotational speed range. In order to save the computation time, the range of frequencies is 

considered close to the natural frequencies in free vibration for different speeds.   

 

Figure 9 the Position of Unbalance Mass on the Disk 
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3.3.2. Harmonic Response without Effect of Casing 

The analysis of the harmonic response for the simple model was performed in a 

limited range of frequencies close to the natural frequencies. For example, the first 

analysis range for the harmonic response is selected between 8 Hz to 13 Hz. The peak 

response is observed at 10.96 Hz.  The first, second and the third natural frequencies can 

be seen in Table 6.  

Table 6 Natural Frequencies of the Model with Unbalance Mass in Hz 

Mode Number  

Natural Frequency in 

Hz 

1 10.96 

2 38.28 

3 160.63 

 

The third mode shape in the ANSYS model, shown in Fig. 10, shows the disk 

without any transverse deformation and hence can be considered as a rigid fixed end for 

the right side of the shaft. Consequently, the system can be modeled as clamped-simply 

supported beam with 1 m length.   
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Figure 10 Third Mode shape of the Jeffcott rotor model with unbalanced mass 

Solution by Finite Element Method for the third natural frequency in ANSYS is close to 

the assumed clamped-pinned beam approximation, as can be seen from Table 7.   

Table 7 Analytical Result and ANSYS Result for 3
rd

 Natural Frequency Considering Unbalance 

Mass 

Analytical result, 

Hz 

ANSYS result, 

Hz 

154.72 160.65 
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The harmonic response analysis is shown in Fig. 11. The disk is defined with two 

half disks providing finite element nodes mid-plane of the disk. The position on the disk 

which the data of Fig.11 is taken from is located on the perimeter of the mid-plane of the 

disk. The vertical axis dimension based on the code written in Appendix C and Appendix 

D is in meters and the horizontal axis is in Hz. 

 

Figure 11 Two Natural Frequencies of the Rotor without the Casing in Harmonic 

Response Analysis 
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3.3.3. Harmonic Response Including Casing  

The stiffness of the bearings mounted on the casing changes the natural 

frequency of the system by about 10 %.  The accuracy and the computation time of the 

harmonic response analysis in the ANSYS software are strongly dependent on the 

interval of the calculations. Therefore, Fig. 12 is obtained in the frequency range of 7 to 

15 Hz. The harmonic response with no shaft speed shown in Fig. 12 is considered at the 

mid-plane of the disk on the rotor axis. 

 

Figure 12 First Natural Frequency of the Rotor with Effect of Casing in Harmonic 

Response Analysis 
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Figure 13 Campbell Diagram for the Jeffcott Rotor with Imbalance and the Effect of the 

Casing 

The Fig.13 shows the Campbell Diagram obtained from the finite element 

analysis of the Jeffcott rotor considering unbalance mass on the disk and the casing 

connected to the rotor. This plot is provided in variable shaft speeds from 0 t0 300 rad/s 

with intervals of 50 rad/s. The curve veering phenomenon happens at the speed of 50 

rad/s.  
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3.4. Strain Energy Calculation by ANSYS Software 

The strain energy will be measured individually for any frequency and at different 

speeds. Fig.14 shows the distribution of the strain energy in the rotor for the frequency of 

10.94 Hz and the speed of 100 rad/sec. Also, the rotor elements are defined to be free in 

rotation whereas the elements of the casing are defined to be stationary.  

 

Figure 14 Strain Energy Distribution of Rotor on Frequency of 10.949 Hz 
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Fig. 15 provides the strain energy of the casing and its distribution on the 

circumferential elements in which the energy is transmitted from the rotor to the bearing 

elements. For this case, the strain energy distribution is obtained at the second mode 

shape with the frequency of 37.79 Hz and for the shaft speed of 300 Hz. Strain energy 

acceptance criteria should be satisfied for each frequency and shaft speed. 

 

Figure 15 Strain Energy of the Casing on Frequency of 37.79 Hz 
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3.5. Results and Discussion 

The modal analysis is performed for the simple rotor and the results are presented. 

Analytical calculations on the simple Jeffcott rotor are validated using the finite element 

model analysis results provided by ANSYS software. The process was repeated for the 

simple rotor including the bearings and the casing. The Campbell diagram was plotted. 

Therefore, this study will throw more light into the study of more complicated 

models such as large industrial models in the next chapters. 
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CHAPTER 4:  FINITE ELEMENT ANALYSIS OF AN INDUSTRIAL 

ROTOR 

4.1. Studies on the Simulated Turbine with a Shaft and Eight Disks 

Industrial Gas turbines and turbojets consist of three sections which are the 

compressor, the combustion chamber and the turbine ‎[64]. The combustion chamber is 

independent of the shaft and is connected to the stator (casing) of the gas turbine engine. 

The rotor of these engines consists of a long shaft with rows of disks which are attached 

with the compressor and the turbine blades as shown in Fig. 16. 

 

Figure 16 Gas Turbine Parts ‎[65] 

The number of rows of discs attached on a shaft varies from 5 to 20 in order to 

increase the pressure of the incoming air in the compressor and to recover the energy in 

the turbine. The number of discs attached on a shaft may vary according to the different 
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manufacturing standards set by different industries ‎[64]. The thickness of the compressor 

discs decreases from the entrance to the last row. The discs which are closest to the center 

of the shaft have less thickness than the ones at the end. Moreover, the diameter of the 

discs also decreases in the same manner as the thickness. The numbers of rows of the 

turbine section discs are usually less than those of the compressor section discs. The 

number of rows varies from 2 to 7 depending on the manufacturer. The radius as well as 

the thickness of the disks will increase from the starting point to the end of the shaft. 

A conceptual model considering the turbine and the compressor sections is 

designed and simulated using ANSYS. As shown in Fig. 17, the model consists of 8 discs 

with five discs in compressor section and the remaining three discs in the turbine section.  

 

Figure 17 Oblique View of the Simplified Rotor 
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The model dimensions are represented in in Fig. 18. All dimensions are in meters.  

 

Figure 18 Dimensions of the Rotor Model  

(Left section is turbine and right section is the compressor) 

The analytical study done previously for the simple model of the Jeffcott rotors 

can be used as a reference for the complex models. The element selection process follows 

the same process as in the previous analysis. Therefore, SOLID187 element is selected 

which possesses all the required features and can be used to build the model efficiently. 

The modeling part is completed taking into consideration the Coriolis Effect as well. The 

gyroscopic effect is not visible in the dynamics equations considering a rotating 
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coordination system. Large disks with large inertia cannot be expressed well in stationary 

frames. Therefore, Coriolis forces should be activated in the generated code to consider 

gyroscopic moments on the rotating frame ‎[63]. The model is meshed with the mapped 

Tetrahedral meshing elements as shown Fig. 19. 

 

Figure 19 Meshed View of the Simplified Rotor 

Assuming the same material properties mentioned in Table 2, the model was 

analyzed using the same boundary conditions in the modal test and the deflection of the 

rotor in different mode shapes are obtained. The results for the natural frequencies and 

the mode shapes for 30 sub-steps can be found in Appendix F. The first three natural 

frequencies can be obtained from the analyses which correspond to the torsional natural 
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frequency and the forward and backward natural frequencies. Due to the symmetry of the 

rotating system, the forward and the backward natural frequencies are equal. 

 

Figure 20 First Axial Mode Shape of the Simplified Rotor 

The stress distribution here is shown along the shaft. The boundary conditions in 

this model are defined as fixed nodes at both ends of the shaft. Therefore, the maximum 

axial deflection is observed between the disks on the shaft. All of the displacements at 

both ends are fixed.  As shown in Fig. 20, the approximate numerical value of the 

maximum axial stress in the first sub-step is 0.77 which is small. For this mode shape the 

effect of the centrifugal stiffening or the gyroscopic effect has not been observed. 
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Figure 21 First Bending Mode Shape of the Rotor 

In this sub-step, the first bending mode shape at one of the natural frequencies is 

observed. The maximum deflection and the maximum stress could be observed around 

the center of the shaft and is more dominant on the right hand side because of the higher 

weight. Because of the centrifugal stiffening, the smallest compressor disk may have 

effect in bending deflection of this mode. Therefore, for this case, the whole shaft could 

be considered like a simply supported beam fixed at both ends with a distributed load and 

a maximum load at the center of gravity of all the disks. The natural frequency obtained 

for the bending mode is approximately 6.056 Hz. 
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Figure 22 First Bending Motion of the Rotor in the Opposite Plane 

For this sub-step, the natural frequency is equal to that of the previous mode shape. 

Due to the symmetry of the system, the bending deflection can be observed in the other 

plane. This mode shape is related to the forward whirl motion of the shaft and the disks. 

As shown in Fig. 22, for both the mode shapes obtained previously, there are only two 

nodes on the deflection behavior that represent the first bending mode shape. The natural 

frequency for this case is approximately 6.058 Hz. 
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Figure 23 Second Axial Mode Shape of the Rotor 

The second axial mode shape is observed after the first bending mode shape of the 

system. The stress distribution is provided in Fig. 23. The high value of the maximum 

deflection is noticeable in the middle of the shaft due to fixed boundary conditions at 

both ends. For this case, the location of the maximum stresses is around the middle of the 

shaft and is approximately 0.558E9    ⁄  for the frequency of 12.43 Hz. 
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Figure 24 Second Bending Mode Shape of the Rotor 

Fig. 24 depicts the second bending mode shape which is around 20.136 Hz with 

three nodes. The maximum deflection is amplified due to the gyroscopic effect and the 

centrifugal stiffening in the disks and the shaft. For this model, a considerable gyroscopic 

effect can be observed because of the rotation of the discs about the lateral axis. 
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Figure 25 Second Bending Mode Shape of the Rotor in the Opposite Plane 

The second bending mode shape to show the forward whirl deflection in another 

plane is depicted in Fig. 25. In this case, the gyroscopic effect would be significant 

because of the rotation of the largest compressor disc for the second bending mode 

frequency in the high speed region of the operating range. The obtained natural frequency 

is approximately 20.1537 Hz which is close to the natural frequency shown in Fig. 25, 

corresponding to the related mode shape due to the symmetry. Therefore, it can be 

interpreted that the natural frequency graph follows an increasing pattern with increasing 

speeds.  
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Figure 26 Campbell Diagram of the Simplified Model 

Fig. 26 represents the Campbell diagram of the shaft model with eight disks. The 

graph of variation of the natural frequencies with the rotating speed is shown in the above 

figure. The red line at the bottom of the plot indicates the first backward whirl frequency 

of the system which is identical to the forward natural frequency when the rotating speed 

is zero. The light blue line at the bottom is the first forward whirl natural frequency. The 

horizontal lines in the plot are representing the torsional vibrations natural frequencies. 

The Campbell diagram can be used to obtain the critical speeds by investigating the 

points where the speed of the system matches the natural frequencies. The operating 

speed range of the system should be far from the region of the critical speeds. The 

diagram also depicts an important phenomenon called the “Curve Veering” which can be 
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observed at the operating speed of approximately 955 rpm and the natural frequency 

around 37.2 Hz. 

4.2. Curve Veering in Campbell Diagram 

The phenomenon of “curve veering” is sometimes observed in vibrating systems 

when the natural frequencies or eigenvalues are plotted against a system parameter such 

as the aspect ratio, the non-homogeneities, or the material properties. When natural 

frequencies of a vibrating system are plotted against a system parameter, sometimes two 

natural frequencies which approach each other and appear to cross each other at some 

points, strangely veer away without crossing. The phenomenon is called “curve veering”, 

and the mode shapes of the vibrating system change drastically in the vicinity of such 

veering. In rotating systems the characteristics such as critical speed are influenced by the 

rotational speed, and hence the rotational speed is a system parameter. Campbell 

diagrams which are plots of natural frequencies against the running speed of the rotor 

were observed to show the curve veering behavior. By suitable design changes in the 

rotor-bearing system it is possible to avoid such curve veering. 

4.3. Studies on the LP Section of the Industrial Rotor 

The geometrical construction of the Industrial Rotor is divided into three main 

sections, namely, the low pressure (LP) section, the intermediate pressure section (IP) 

and the high pressure (HP) section. The low pressure section is composed of a hollow 

shaft with two disks in the compressor section (not including the Inlet Guide Vanes) and 

five disks in the turbine section. There are two bearings in the compressor portion and the 
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turbine portion which connect the shaft to the casing and there is one inter-shaft bearing 

in the middle portion of the shaft which connects the low pressure section to the 

intermediate and the high pressure sections.  

Reducing the model of a rotating structure considering damping and gyroscopic 

effect with methods such as Guyan reduction or dynamic reduction does not give 

reasonable answers. And there are large errors in the results. Friswell, Penny and 

Garvey ‎[55] published a study on this topic to highlight these problems. Due to such 

issues, the importance of using finite element method models considering the minimum 

reduction in the actual model is a necessity. 

In this section the methodology developed in the previous analysis is applied on the LP 

section in order to carry out the “Rotor dynamics acceptance criteria assessment”. 

4.3.1. Simplified Modeling of the LP Section of Industrial Rotor 

The complex geometrical features of the actual industrial rotors pose some 

limitations on the modeling and analysis procedure in the finite element method solver 

such as ANSYS. Because of the large number of nodes involved in a model, the time 

required by ANSYS to deliver a complete solution of such complicated CAD models of 

the industrial rotors is more which is undesirable in engineering practice. When the 

models include some sharp corners the software makes very fine elements in the meshing 

process which requires large analysis time. In order to simplify the geometry of the 

model and reduce the computation time, the sharp corners can be replaced by fillets. For 

this purpose, the IGES (Initial Graphics Exchange Specification) format model is 
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exported to the AutoCAD software as shown in Fig. 27 and a new simplified model is 

generated that would require considerably less time for the analysis in ANSYS software. 

 

Figure 27 LP Section of the Rotor, Before and After Simplification 

 

4.3.2. Modeling Techniques 

The simplified model shown in Fig. 28 consists of two closed areas, in which the 

hollow portion on the left side of the rotor is subtracted after it has been imported into 

the ANSYS software.   
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Figure 28 Simplified Model Imported from AutoCAD 

Finally, a 3D model is generated which is shown in Fig. 29. The selected material 

properties for this model are the same as that of the simple model. The meshing of the 

model was done using the „SOLID187‟ element. This element is a 10-tetrahedral element 

as shown in Fig. 4.  
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Figure 29 A Simplified 3D Meshed Model of Rotor LP Section 

 

4.3.3. Modal Analysis of LP Rotor 

Considering the boundary conditions on the bearing points as fixed key points, the 

modal analysis is performed on the model. The obtained natural frequencies for the first 

three modes using a free vibration analysis are as shown in Table 8.   
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Table 8 Natural Frequency of LP Rotor 

Mode No. 1 2 3 

Frequency, Hz 16.5 36.7 144.4 

 

Corresponding to the natural frequencies tabulated above, the first three mode 

shapes can be observed in Fig. 30, Fig. 31 and Fig. 32 which show the first three mode 

shapes with zero speed of rotation corresponding to the natural frequencies given in 

Table 8.  

 

Figure 30 First Mode Shape of the LP Rotor 
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Figure 31 Second Mode Shape of the LP Rotor 

 

Figure 32 Third Mode Shape of the LP Rotor 
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4.3.4. Campbell Diagram for the LP Rotor 

The natural frequencies for the rotor speeds of 0, 150 and 300 rad/sec are plotted 

in Fig. 33. The forward and the backward whirls are presented with different colors as 

mentioned in the left bar of the plot. For example, the first mode at zero speed starts at a 

frequency of 16.5 Hz and branches out into two parts whereas the second mode and the 

third mode start at the frequencies of 36.7 Hz and 144.4 Hz, respectively. The change in 

natural frequency values for different rotor speeds for all the three modes is summarized 

in Table 9. The occurrence of some of the natural frequencies in pairs is because of the 

axisymmetric geometry of the rotors.  

 

Figure 33 Campbell Diagram for Simplified LP Section of the Rotor 

 



57 
 

The two natural frequencies split due to the gyroscopic effect. The natural 

frequency which is independent of the shaft speed has a value close to the first natural 

frequency value. This natural frequency which is independent of the shaft speed with a 

constant value represent the natural frequency of the casing or the rotor in the axial 

direction. From the obtained mode shapes, it was identified as the axial natural frequency 

of the rotor. For the first mode, the forward frequency and the backward frequency does 

not have the same starting point because of the “curve veering” occurring in the 

neighborhood. 

Table 9 Modal Analysis Results for LP Section for Different Rotational Speeds in Hz 

 Shaft Speed in rad/sec 

Mode 

Number 

0 150 300  

1 16.5 

FW: 20.0 

BW: 10.2 

FW: 20.0 

BW: 6.8 

2 36.7 

FW: 45.5 

BW: 30.1 

FW: 57.0 

BW: 25.0 

3 144.4 

FW: 144.9 

BW: 144.2 

FW:145.3 

BW:143.8 
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Chapter 4 reveals the allowed region of operating speed by finding the critical 

speeds in the Campbell diagram in order to operate away from those regions. Applying 

strain energy method, the safe region for operational speeds can be obtained. 
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CHAPTER 5: CONCLUSIONS AND FUTURE 

RECOMMENDATIONS 

5.1. Conclusions: 

A methodology has been established to analyze a rotor system with and without 

the casing in the ANSYS platform considering the gyroscopic effect and the centrifugal 

stiffening. The rotor is mounted on isotropic bearing elements, COMBIN14, and 

connected to the casing through the RBE3 element which distributes the bearing loads on 

to the casing. The methodology was used to analyze a simple rotor with a single disk and 

a flexible shaft. The disk is mounted at a location away from the midpoint of the shaft in 

order to have significant gyroscopic effects. The analysis yielded the following results: 

(i) Natural frequencies 

(ii) Campbell diagram 

(iii) Strain energy distribution for the casing and the rotor components 

The methodology was adopted for the analysis of a complex industrial rotor. The 

natural frequencies and the Campbell diagram are obtained and discussed. The results of 

the dissertation research confirmed the significance of the gyroscopic effect and the 

centrifugal stiffening in the critical speed analysis. The gyroscopic effect and the 

centrifugal stiffening can change the natural frequencies of the system at high rotational 

speeds in the range of 300 rad/sec by about 100%. It should be noted that both the effects 

depend on the geometry of the system. Therefore, the details of the geometrical features 
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of large industrial rotors should be considered while applying the assessment criteria for 

the system. The rotor dynamic tool-box of the ANSYS can handle the complicated 

geometry of the industrial model considering the above mentioned effects. Consequently, 

the critical speed analysis of the high pressure and the intermediate pressure rotors 

considering the geometry of the casing should also be modeled along with the low 

pressure section in the ANSYS in order to study the critical speeds of the whole system 

under the specified operating conditions. 

 

5.2. Future Recommendations: 

The following analysis can throw more light into the dynamic behavior of large 

industrial rotors. The possibility of finding the safe region of operational speeds by 

numerical methods depends on the accurate knowledge of rotordynamic behavior of these 

systems. The following studies could be performed to analyze more details in this topic. 

 Centrifugal stiffening of the flexible components must be considered since it 

influences the dynamic behavior of the rotor. 

 The curve veering effect must be examined from the Campbell diagram and the 

necessary changes must be implemented in order to avoid the region of operation. 

 Perform steady state forced response analysis, considering uniform structural 

damping and simulating imbalance at different locations of the industrial rotor. 
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 Computing and comparing the separation margin and amplification factors in all 

of the scenarios of the first recommendation. 

 Effect of blades need to be modeled. Considering a point mass in space connected 

with a massless element to the disk is recommended for this process. 

 Studying the effect of casing on the vibration response of the industrial rotor.
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Appendix A: Schematic View of the Industrial Rotor 
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Appendix B: Flow Charts in API 616 Standard 
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Appendix C: ANSYS Codes for a Simple Rotor without Casing 

WPSTYLE,,,,,,,,0 

/PREP7   

K,1,0,0,0,   

K,2,0.5,0,0, 

K,3,1,0,0,   

K,4,1.5,0,0, 

K,5,1.5,-0.025,0,    

K,6,1,-0.025,0,  

K,7,0.525,-0.025,0,  

K,8,0.525,-0.425,0,  

K,9,0.5,-0.425,0,    

K,10,0.475,-0.425,0, 

K,11,0.475,-0.025,0, 

K,12,0,-0.025,0, 

A,1,2,3,4,5,6,7,8,9,10,11,12 

VROTAT,1,,,,,,1,4,360,   

/VIEW,1,1,1,1    

/ANG,1   

/REP,FAST    

/REPLOT,RESIZE   

/REPLOT,RESIZE   

ET,1,SOLID187    

MPTEMP,,,,,,,,   

MPTEMP,1,0   
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MPDATA,EX,1,,2e11    

MPDATA,PRXY,1,,0.3   

MPTEMP,,,,,,,,   

MPTEMP,1,0   

MPDATA,DENS,1,,7860  

SMRT,6   

MSHAPE,1,3D  

MSHKEY,0 

!*   

FLST,5,4,6,ORDE,2    

FITEM,5,1    

FITEM,5,-4   

CM,_Y,VOLU   

VSEL, , , ,P51X  

CM,_Y1,VOLU  

CHKMSH,'VOLU'    

CMSEL,S,_Y   

!*   

VMESH,_Y1    

!*   

CMDELE,_Y    

CMDELE,_Y1   

CMDELE,_Y2   

!*   

/REPLOT,RESIZE   
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/REPLOT,RESIZE   

d,node(0,0,0),all    

d,node(1.5,0,0),all  

/REPLOT,RESIZE   

FINISH   

/SOL 

antype,modal 

modopt,qrdamp,8,,,on 

mxpand,8,,,yes   

coriolis,on,,,on 

! Solve 7 load-steps with rotational speed 

omega,0  

solve    

omega,50 

solve    

omega,100    

solve    

omega,150    

solve    

omega,200    

solve    

omega,250    

solve    

omega,300    

solve    
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FINISH   

/POST1   

prcamp   

plcamp   

/REPLOT,RESIZE   

/REPLOT,RESIZE 

 

Appendix D: ANSYS Codes for a Model and Casing  

WPSTYLE,,,,,,,,0 

/REPLOT,RESIZE   

/REPLOT,RESIZE   

WPSTYLE,,,,,,,,0 

/PREP7   

K,1,0,0,0,   

K,2,0.5,0,0, 

K,3,1,0,0,   

K,4,1.5,0,0, 

K,5,1.5,-0.025,0,    

K,6,1,-0.025,0,  

K,7,0.525,-0.025,0,  

K,8,0.525,-0.425,0,  

K,9,0.5,-0.425,0,    

K,10,0.475,-0.425,0, 

K,11,0.475,-0.025,0, 

K,12,0,-0.025,0, 
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A,1,2,3,4,5,6,7,8,9,10,11,12 

VROTAT,1,,,,,,1,4,360,   

/VIEW,1,1,2,3    

/ANG,1   

/REP,FAST    

/VIEW,1,1,1,1    

/ANG,1   

/REP,FAST    

ET,1,SOLID187    

MPTEMP,,,,,,,,   

MPTEMP,1,0   

MPDATA,EX,1,,2e11    

MPDATA,PRXY,1,,0.3   

MPTEMP,,,,,,,,   

MPTEMP,1,0   

MPDATA,DENS,1,,7860  

SMRT,6   

SMRT,10  

MSHAPE,1,3D  

MSHKEY,0 

FLST,5,8,6,ORDE,2    

FITEM,5,1    

FITEM,5,-8   

CM,_Y,VOLU   

VSEL, , , ,P51X  
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CM,_Y1,VOLU  

CHKMSH,'VOLU'    

CMSEL,S,_Y   

VMESH,_Y1     

CMDELE,_Y    

CMDELE,_Y1   

CMDELE,_Y2   

esel,,type,,1,2  

cm,RotatingPart,elem 

allsel   

K,100,0,-0.445,0,    

K,101,1.5,-0.445,0,  

K,102,1.5,-0.465,0,  

K,103,0,-0.465,0,    

A,100,101,102,103    

alist, all   

VROTAT,41,,,,,,1,2,360,  

vlist, all   

FLST,5,4,6,ORDE,2    

FITEM,5,5    

FITEM,5,-8   

CM,_Y,VOLU   

VSEL, , , ,P51X  

CM,_Y1,VOLU  

CHKMSH,'VOLU'    
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CMSEL,S,_Y   

VMESH,_Y1    

CMDELE,_Y    

CMDELE,_Y1   

CMDELE,_Y2   

n,17300,1.5,0,0  

n,17301,0,0,0    

FLST,5,5,1,ORDE,5    

FITEM,5,5271 

FITEM,5,5275 

FITEM,5,5279 

FITEM,5,5283 

FITEM,5,17300    

NSEL,S, , ,P51X  

RBE3,17300,ALL,All,  

FLST,5,5,1,ORDE,5    

FITEM,5,5270 

FITEM,5,5274 

FITEM,5,5278 

FITEM,5,5282 

FITEM,5,17301    

NSEL,S, , ,P51X  

RBE3,17301,ALL,All,  

FLST,5,17026,1,ORDE,4    

FITEM,5,1    
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FITEM,5,-17024   

FITEM,5,17300    

FITEM,5,-17301   

NSEL,S, , ,P51X  

d,node(0,-0.446,0),all   

d,node(0,0.446,0),all    

d,node(1.5,-0.446,0),all 

d,node(1.5,0,0.446),all  

! bearings   

et,3,combin14    

keyopt,3,2,1 

et,4,combin14    

keyopt,4,2,2 

et,5,combin14    

keyopt,5,2,3 

r,2,4.378e+7 

type,3   

real,2   

e,17301,1    

e,17300,4    

type,4   

real,2   

e,17301,1    

e,17300,4    

type,5   
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real,2   

e,17301,1    

e,17300,4    

finish   

/SOLU 

antype,modal 

modopt,qrdamp,20,,,on    

mxpand,20,,,yes  

coriolis,on,,,on 

cmomega,RotatingPart,0   

solve    

cmomega,RotatingPart,50  

solve    

cmomega,RotatingPart,100 

solve    

cmomega,RotatingPart,150 

solve    

cmomega,RotatingPart,200 

solve    

cmomega,RotatingPart,250 

solve    

cmomega,RotatingPart,300 

solve    

FINISH   

! Plot Campbell Diagram  
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plcamp   

! Print Campbell Diagram 

prcamp   

PRCAMP,,,,,RotatingPart,,    

PLCAMP,,,,,RotatingPart,,    

/REPLOT,RESIZE   

/REPLOT,RESIZE   

FINISH   

 

Appendix E: ANSYS Codes for the Shaft with Eight Disks 

WPSTYLE,,,,,,,,0 

/PREP7   

K,1,0,0,0,   

K,2,0.25,0,0,    

K,3,0.5,0,0, 

K,4,0.75,0,0,    

K,5,1.5,0,0, 

K,6,1.75,0,0,    

K,7,2,0,0,   

K,8,2.25,0,0,    

K,9,2.5,0,0, 

K,10,3,0,0,  

K,11,3,-0.05,0,  

K,12,2.535,-0.05,0,  

K,13,2.535,-0.55,0,  
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K,14,2.5,-0.55,0,    

K,15,2.465,-0.55,0,  

K,16,2.465,-0.05,0,  

K,17,2.285,-0.05,0,  

K,18,2.285,-0.5,0,   

K,19,2.25,-0.5,0,    

K,20,2.215,-0.5,0,   

K,21,2.215,-0.05,0,  

K,22,2.03,-0.05,0,   

K,23,2.03,-0.45,0,   

K,24,2,-0.45,0,  

K,25,1.97,-0.45,0,   

K,26,1.97,-0.05,0,   

K,27,1.775,-0.05,0,  

K,28,1.775,-0.4,0,   

K,29,1.75,-0.4,0,    

K,30,1.725,-0.4,0,   

K,31,1.725,-0.05,0,  

K,32,1.525,-0.05,0,  

K,33,1.525,-0.35,0,  

K,34,1.5,-0.35,0,    

K,35,1.475,-0.35,0,  

K,36,1.475,-0.05,0,  

K,37,0.775,-0.05,0,  

K,38,0.775,-0.45,0,  
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K,39,0.75,-0.45,0,   

K,40,0.725,-0.45,0,  

K,41,0.725,-0.05,0,  

K,42,0.53,-0.05,0,   

K,43,0.53,-0.5,0,    

K,44,0.5,-0.5,0, 

K,45,0.47,-0.5,0,    

K,46,0.47,-0.05,0,   

K,47,0.285,-0.05,0,  

K,48,0.285,-0.55,0,  

K,49,0.25,-0.55,0,   

K,50,0.215,-0.55,0,  

K,51,0.215,-0.05,0,  

K,52,0,-0.05,0,  

FLST,2,52,3  

FITEM,2,1    

FITEM,2,2    

FITEM,2,3    

FITEM,2,4    

FITEM,2,5    

FITEM,2,6    

FITEM,2,7    

FITEM,2,8    

FITEM,2,9    

FITEM,2,10   
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FITEM,2,11   

FITEM,2,12   

FITEM,2,13   

FITEM,2,14   

FITEM,2,15   

FITEM,2,16   

FITEM,2,17   

FITEM,2,18   

FITEM,2,19   

FITEM,2,20   

FITEM,2,21   

FITEM,2,22   

FITEM,2,23   

FITEM,2,24   

FITEM,2,25   

FITEM,2,26   

FITEM,2,27   

FITEM,2,28   

FITEM,2,29   

FITEM,2,30   

FITEM,2,31   

FITEM,2,32   

FITEM,2,33   

FITEM,2,34   

FITEM,2,35   
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FITEM,2,36   

FITEM,2,37   

FITEM,2,38   

FITEM,2,39   

FITEM,2,40   

FITEM,2,41   

FITEM,2,42   

FITEM,2,43   

FITEM,2,44   

FITEM,2,45   

FITEM,2,46   

FITEM,2,47   

FITEM,2,48   

FITEM,2,49   

FITEM,2,50   

FITEM,2,51   

FITEM,2,52   

A,P51X   

FLST,2,1,5,ORDE,1    

FITEM,2,1    

FLST,8,2,3   

FITEM,8,1    

FITEM,8,10   

VROTAT,P51X, , , , , ,P51X, ,360,4,  

SMRT,6   
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SMRT,10  

MSHAPE,1,3D  

MSHKEY,0 

MPTEMP,,,,,,,,   

MPTEMP,1,0   

MPDATA,EX,1,,2e11    

MPDATA,PRXY,1,,0.3   

MPTEMP,,,,,,,,   

MPTEMP,1,0   

MPDATA,DENS,1,,7860  

ET,1,SOLID187    

FLST,5,4,6,ORDE,2    

FITEM,5,1    

FITEM,5,-4   

CM,_Y,VOLU   

VSEL, , , ,P51X  

CM,_Y1,VOLU  

CHKMSH,'VOLU'    

CMSEL,S,_Y   

VMESH,_Y1    

CMDELE,_Y    

CMDELE,_Y1   

CMDELE,_Y2   

ANTYPE,0 

ANTYPE,2 
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MODOPT,LANB,16   

EQSLV,SPAR   

MXPAND,16, , ,1  

LUMPM,0  

PSTRES,0 

MODOPT,LANB,16,0,5000, ,OFF  

FLST,2,2,3,ORDE,2    

FITEM,2,1    

FITEM,2,10   

/GO  

DK,P51X, ,0, ,0,ALL, , , , , ,   

FINISH   

/SOL 

/STATUS,SOLU 

SOLVE    

FINISH   

/POST1   

SET,LIST 

SET,LIST 

SET,LIST 

FINISH   

/SOL 

ANTYPE,2 

antype,modal 

modopt,qrdamp,30,,,on    
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mxpand,30,,,yes  

coriolis,on,,,on 

omega,0  

solve    

omega,1000    

solve    

omega,1500    

solve    

omega,2000    

solve    

omega,2500    

solve    

omega,3000    

solve    

omega,3500    

solve    

omega,4000    

solve    

FINISH   

/POST1   

SET,LIST 

prcamp   

plcamp   

FINISH  
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Appendix F: Results of Finite Element Analysis by ANSYS Software 

**INDEX OF DATA SETS ON RESULTS FILE  ** 

        

SET TIME/FRE Q(Damped) T 
IME/FREQ 

(Undamped) 

LOAD 

STEP 
SUBSTEP CUMULATIVE 

1 3.06E-04 0 j -3.06E-04 1 1 1 

 
3.06E-04 0 j 

    
2 -3.06E-04 0 j 6.056 1 2 2 

 
-3.06E-04 0 j 

    
3 0 6.056 j 6.0582 1 3 3 

 
0 -6.056 j 

    
4 0 6.0582 j 12.432 1 4 4 

 
0 -6.0582 j 

    
5 0 12.432 j 20.136 1 5 5 

 
0 -12.432 j 

    
6 0 20.136 j 20.154 1 6 6 

 
0 -20.136 j 

    
7 0 20.154 j 38.638 1 7 7 

 
0 -20.154 j 

    
8 0 38.638 j 43.049 1 8 8 

 
0 -38.638 j 

    
9 0 43.049 j 43.086 1 9 9 

 
0 -43.049 j 

    
10 0 43.086 j 49.394 1 10 10 

 
0 -43.086 j 

    
11 0 49.394 j 65.173 1 11 11 

 
0 -49.394 j 

    
12 0 65.173 j 67.029 1 12 12 

 
0 -65.173 j 

    
13 0 67.029 j 67.093 1 13 13 

 
0 -67.029 j 

    
14 0 67.093 j 80.233 1 14 14 

 
0 -67.093 j 

    
15 0 80.233 j 80.325 1 15 15 

 
0 -80.233 j 

    
16 0 80.325 j 81.659 1 16 16 

 
0 -80.325 j 

    
17 0 81.659 j 92.711 1 17 17 

 
0 -81.659 j 

    
18 0 92.711 j 95.868 1 18 18 

 
0 -92.711 j 

    
19 0 95.868 j 95.983 1 19 19 
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0 -95.868 j 

    
20 0 95.983 j 113.12 1 20 20 

 
0 -95.983 j 

    
21 0 113.12 j 113.24 1 21 21 

 
0 -113.12 j 

    
22 0 113.24 j 114.85 1 22 22 

 
0 -113.24 j 

    
23 0 114.85 j 114.96 1 23 23 

 
0 -114.85 j 

    
24 0 114.96 j 137.28 1 24 24 

 
0 -114.96 j 

    
25 0 137.28 j 139.22 1 25 25 

 
0 -137.28 j 

    
26 0 139.22 j 139.28 1 26 26 

 
0 -139.22 j 

    
27 0 139.28 j 142.28 1 27 27 

 
0 -139.28 j 

    
28 0 142.28 j 188.28 1 28 28 

 
0 -142.28 j 

    
29 0 188.28 j 196.64 1 29 29 

 
0 -188.28 j 

    
30 0 196.64 j 196.72 1 30 30 

 
0 -196.64 j 

    
31 3.06E-04 0 j -3.06E-04 2 1 31 

 
3.06E-04 0 j 

    
32 -3.06E-04 0 j 6.056 2 2 32 

 
-3.06E-04 0 j 

    
33 0 1.1885 j 6.0582 2 3 33 

 
0 -1.1885 j 

    
34 0 7.1001 j 12.432 2 4 34 

 
0 -7.1001 j 

    
35 0 12.432 j 20.136 2 5 35 

 
0 -12.432 j 

    
36 0 14.647 j 20.154 2 6 36 

 
0 -14.647 j 

    
37 0 15.818 j 38.638 2 7 37 

 
0 -15.818 j 

    
38 0 20.765 j 43.049 2 8 38 

 
0 -20.765 j 

    
39 0 28.577 j 43.086 2 9 39 

 
0 -28.577 j 

    
40 0 32.349 j 49.394 2 10 40 

 
0 -32.349 j 

    
41 0 38.638 j 65.173 2 11 41 
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0 -38.638 j 

    
42 0 40.327 j 67.029 2 12 42 

 
0 -40.327 j 

    
43 0 43.916 j 67.093 2 13 43 

 
0 -43.916 j 

    
44 0 49.394 j 80.233 2 14 44 

 
0 -49.394 j 

    
45 0 60.074 j 80.325 2 15 45 

 
0 -60.074 j 

    
46 0 65.173 j 81.659 2 16 46 

 
0 -65.173 j 

    
47 0 70.646 j 92.711 2 17 47 

 
0 -70.646 j 

    
48 0 81.659 j 95.868 2 18 48 

 
0 -81.659 j 

    
49 0 92.711 j 95.983 2 19 49 

 
0 -92.711 j 

    
50 0 104.79 j 113.12 2 20 50 

 
0 -104.79 j 

    
51 0 109.78 j 113.24 2 21 51 

 
0 -109.78 j 

    
52 0 137.29 j 114.85 2 22 52 

 
0 -137.29 j 

    
53 0 142.28 j 114.96 2 23 53 

 
0 -142.28 j 

    
54 0 188.28 j 137.28 2 24 54 

 
0 -188.28 j 

    
55 0 212.97 j 139.22 2 25 55 

 
0 -212.97 j 

    
56 0 259.15 j 139.28 2 26 56 

 
0 -259.15 j 

    
57 0 320.19 j 142.28 2 27 57 

 
0 -320.19 j 

    
58 0 336.93 j 188.28 2 28 58 

 
0 -336.93 j 

    
59 0 345.29 j 196.64 2 29 59 

 
0 -345.29 j 

    
60 0 354.68 j 196.72 2 30 60 

 
0 -354.68 j 

    
61 3.05E-04 0 j -3.06E-04 3 1 61 

 
3.05E-04 0 j 

    
62 -3.05E-04 0 j 6.056 3 2 62 

 
-3.05E-04 0 j 

    
63 0 0.80808 j 6.0582 3 3 63 
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0 -0.80808 j 

    
64 0 5.0548 j 12.432 3 4 64 

 
0 -5.0548 j 

    
65 0 10.329 j 20.136 3 5 65 

 
0 -10.329 j 

    
66 0 12.432 j 20.154 3 6 66 

 
0 -12.432 j 

    
67 0 14.731 j 38.638 3 7 67 

 
0 -14.731 j 

    
68 0 17.492 j 43.049 3 8 68 

 
0 -17.492 j 

    
69 0 23.025 j 43.086 3 9 69 

 
0 -23.025 j 

    
70 0 24.084 j 49.394 3 10 70 

 
0 -24.084 j 

    
71 0 29.286 j 65.173 3 11 71 

 
0 -29.286 j 

    
72 0 38.638 j 67.029 3 12 72 

 
0 -38.638 j 

    
73 0 46.479 j 67.093 3 13 73 

 
0 -46.479 j 

    
74 0 48.636 j 80.233 3 14 74 

 
0 -48.636 j 

    
75 0 49.394 j 80.325 3 15 75 

 
0 -49.394 j 

    
76 0 62.362 j 81.659 3 16 76 

 
0 -62.362 j 

    
77 0 65.173 j 92.711 3 17 77 

 
0 -65.173 j 

    
78 0 81.659 j 95.868 3 18 78 

 
0 -81.659 j 

    
79 0 90.799 j 95.983 3 19 79 

 
0 -90.799 j 

    
80 0 92.711 j 113.12 3 20 80 

 
0 -92.711 j 

    
81 0 137.28 j 113.24 3 21 81 

 
0 -137.28 j 

    
82 0 137.59 j 114.85 3 22 82 

 
0 -137.59 j 

    
83 0 142.28 j 114.96 3 23 83 

 
0 -142.28 j 

    
84 0 188.28 j 137.28 3 24 84 

 
0 -188.28 j 

    
85 0 294.46 j 139.22 3 25 85 
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0 -294.46 j 

    
86 0 363.11 j 139.28 3 26 86 

 
0 -363.11 j 

    
87 0 453.61 j 142.28 3 27 87 

 
0 -453.61 j 

    
88 0 479.52 j 188.28 3 28 88 

 
0 -479.52 j 

    
89 0 491.17 j 196.64 3 29 89 

 
0 -491.17 j 

    
90 0 499.12 j 196.72 3 30 90 

 
0 -499.12 j 

    
 

 


