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Abstrat

Fourier methods for numerial solution of FBSDEs.

Polynie Oyono Ngou, PhD.

Conordia University, 2014.

We present a Fourier analysis approah to numerial solution of forward-bakward stohas-

ti di�erential equations (FBSDEs) and propose two implementations. Using the Euler time

disretization for bakward stohasti di�erential equations (BSDEs), Fourier analysis allows

to express the onditional expetations inluded in the time disretization in terms of Fourier

integrals. The spae disretization of these integrals then leads to expressions involving dis-

rete Fourier transforms (DFTs) so that the FFT algorithm an be used. We quikly presents

the onvolution method on a uniform spae grid. Loally, this �rst implementation produes a

trunation error, a spae disretization error and an additional extrapolation error. Even if the

extrapolation error is onvergent in time, the resulting absolute error may be high at the bound-

aries of the uniform spae grid. In order to solve this problem, we propose a tree-like grid for the

spae disretization whih suppresses the extrapolation error leading to a globally onvergent

numerial solution for the BSDE. The method is then extended to FBSDEs with bounded oe�-

ients, re�eted FBSDEs and higher order time disretizations of FBSDEs. Numerial examples

from �nane illustrate its performane.
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Introdution

Sine 1990, when Pardoux and Peng [96℄ proved the existene and uniqueness of solutions of bak-

ward stohasti di�erential equations (BSDEs), researh on the subjet has been proli� both

in theory and appliations. Pardoux and Peng [97℄ generalized the well-known Feynman-Ka

formula by showing the relationship between BSDEs and quasilinear partial di�erential equa-

tions (PDEs) whereas Antonelli [4℄ introdued forward-bakward stohasti di�erential equations

(FBSDEs) and also established their well-posedness. Another artile by Pardoux and Tang [98℄

studies FBSDEs well-posedness and generalizes the result of Pardoux and Peng [97℄ to oupled

FBSDEs. The reader may �nd an introdutory theory of FBSDEs in Appendix A. This study

addresses spei�ally the problem of numerial resolution of FBSDEs whih has been an ative

area of researh for the last two deades. The interest in numerial solutions for FBSDEs mainly

stems from their various appliations, espeially in mathematial �nane, and the lak of general

losed form solutions.

This short introdution �rst provides indiations on the notation used throughout the dou-

ment. Then a presentation is given on the Euler time disretization for BSDEs sine we mostly

rely on this sheme in this study. The introdution ends with a summary of the thesis ontent.

Notation

For a �xed terminal time T > 0, onsider the omplete �ltered probability spae (Ω, F , F, P),

so that F = {Ft : t ∈ [0, T ]} where the �ltration is generated by a d-dimensional Brownian

motion {Wt}t∈[0,T ] and F0 ontains the P-null sets of the σ-algebra F . We shall make use of

the following operators and spaes through our presentation:

• For any vetor x ∈ Rn
, we note the Eulidean norm as |x| =

(∑n
i=1 x

2
i

) 1
2
. For a matrix b ∈

R
n×m

, we use the Frobenius norm whih veri�es

|b| 12 = Tr(bb∗) where b∗ is the transpose matrix of b. Also, ‖b‖2 represents the spetral

norm of b when b is a square matrix.

• Cn(Rm) is the set of n-times di�erentiable real valued funtions on Rm
, and Cn

b (R
m)

denotes that the derivatives are absolutely bounded up to order n.

• B(Rm) is the Borel set on R
m
.

• S is the Skorohod set of real valued àdlàg funtions on [0, T ].

• Lp(Rn) is the spae of FT -measurable Rn
-valued random variables X suh that ‖X‖Lp =

E [|X |p]
1
p <∞ for p ∈ N and L∞

denotes the spae of bounded random variables.

• Lp
S(R

n) is the spae of Rn
-valued adapted proesses X suh that

‖X‖Lp

S
= E

[
sup

t∈[0,T ]

|Xt|p
] 1

p

<∞,

1



L∞
S denotes the spae of bounded proesses.

• Lp
I(R

n) is the spae of preditable Rn
-valued proesses X suh that

‖X‖Lp

I
= E



(∫ T

0

|Xt|2 dt
) p

2




1
p

<∞.

For a given stohasti proess X on (Ω,F), we simplify the notation of the onditional expeta-

tion with respet to Ft as

E

x
t [u(XT )] = E [u(XT )|Xt = x] (I.1)

for any deterministi funtion u where the onditional expetation is taken under the physial

probability measure P. Additional indiations will be given when using an equivalent probability

measure. Also, C and K will denote generi onstants in our various inequalities.

Finally, all numerial results in this thesis are produed using a Pentium (R) Dual-Core,

T4200 model proessor with 2.0 GHz.

The Euler sheme

Many numerial methods for FBSDEs with Lipshitz oe�ients presented in Chapter 1 (and

partiularly Monte Carlo regression and spae disretization methods) are based on a time dis-

retization alled the Euler sheme. Those methods only di�er in their approximations of the

onditional expetations involved in the time disretization. This setion intends to present the

main time disretization algorithms for (F)BSDEs and the assoiated onvergene result.

The Euler sheme is a time stepping method designed for SDEs and appliable to BSDEs

and deoupled FBSDEs with Lipshitz oe�ients. We shall onsider the deoupled FBSDE of

equation (A.5) with deterministi oe�ients. The disrete time proedure that we present was

�rst introdued by Zhang [123, 124℄ followed by Bouhard and Touzi [20℄ and Hu, Nualart and

Song [61℄ among others. A onise summary of the method also �gures in the review paper of

Bouhard, Elie and Touzi [19℄.

Beause of the assumption of Lipshitz oe�ients, the forward SDE disretization is usually

performed with an Euler sheme using a partition π = {0 = t0 < t1 < ... < tn = T } of the

interval [0, T ]. The numerial solution {Xπ
t }t∈[0,T ] relies on the values at times nodes de�ned as




Xπ

0 = x0

Xπ
ti+1

= Xπ
ti + a(ti, X

π
ti)∆i + σ(ti, X

π
ti)∆Wi

(I.2)

where ∆i = ti+1 − ti and ∆Wi =Wti+1 −Wti for i = 0, 1, ..., n− 1. We get

Xπ
t = Xπ

ti , t ∈ [ti, ti+1) (I.3)

and this disretization yields a strong

1
2 -order onvergent solution sine the error EX,π on the

forward proess satis�es

E2
X,π := E

[
sup

t∈[0,T ]

|Xt −Xπ
t |2
]
= O(|π|) (I.4)

with Landau notation as shown in Kloeden and Platen [69℄ where |π| is the maximal time step

|π| = max
0≤i<n

∆i. (I.5)

2



An Euler sheme also helps in disretizing the bakward proess and leads to the following

time stepping

Y π
ti = Y π

ti+1
+ f(ti, X

π
ti , Y

π
ti , Z

π
ti)∆i − (Zπ)∗ti∆Wi. (I.6)

Taking the onditional expetations on both sides of equation (I.6) yields

Y π
ti = E

[
Y π
ti+1

|Fti

]
+ f(ti, X

π
ti , Y

π
ti , Z

π
ti)∆i

and if one �rst multiplies both sides of equation (I.6) by the Brownian inrement ∆Wi and takes

the onditional expetation after, we get

Zπ
ti =

1

∆i
E

[
Y π
ti+1

∆Wi|Fti

]
.

Those last two equations de�ne the bakward algorithm for numerial solution of BSDEs





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

Y π
ti = E

[
Y π
ti+1

|Fti

]
+ f(ti, X

π
ti , Y

π
ti , Z

π
ti)∆i

(I.7)

known as the impliit Euler sheme sine the value of the approximate forward proess Y π
ti

appears on both sides of the system last equation. We hoose ξπ suh that

‖ξ − ξπ‖2L2 = O(|π|) (I.8)

whih is possible, for instane, in the Markovian ase by taking ξπ = g(Xπ
T ) for ontinuous

terminal onditions g.

In order to avoid solving a non-linear equation to reover the bakward proess values Y π
ti ,

one may onsider an alternative sheme whih is expliit in the bakward proess values





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

Y π
ti = E

[
Y π
ti+1

+ f(ti, X
π
ti , Y

π
ti+1

, Zπ
ti)∆i|Fti

]
.

(I.9)

and alled the expliit Euler sheme. The approximate bakward and ontrol proesses are then

de�ned as done previously for the forward proess as

Y π
t = Y π

ti , Z
π
t = Zπ

ti for t ∈ [ti, ti+1). (I.10)

Another expliit sheme onsists in replaing the onditional expetation of the driver by

the driver values at onditional expetations from the expliit sheme of equation (I.9). This

proedure leads to the sheme





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]
, 0 ≤ i < n

Y π
ti = E

[
Y π
ti+1

|Fti

]
+ f(ti,E

[
Y π
ti+1

|Fti

]
, Zπ

ti)∆i, 0 ≤ i < n.

(I.11)

We will denote the sheme of equation (I.11) the expliit Euler sheme 1 and the sheme of

equation (I.9) is denoted the expliit Euler sheme 2.

The global disretization error Eπ in the bakward and ontrol proesses is de�ned as

E2
π := max

0≤i<n
E

[
sup

t∈[ti,ti+1]

∣∣Yt − Y π
ti

∣∣2
]
+

n−1∑

i=0

E

[∫ ti+1

ti

∣∣Zs − Zπ
ti

∣∣2 ds
]

(I.12)

3



and, under Lipshitz onditions on the FBSDE oe�ients, admits the bound

E2
π ≤ C

(
|π|+

n−1∑

i=0

E

[∫ ti+1

ti

∣∣Zs − Z̄π
ti

∣∣2 ds
])

(I.13)

where

Z̄π
ti =

1

∆i
Eti

[∫ ti+1

ti

Zsds

]
(I.14)

and the onstant C depends exponentially on the Lipshitz onstants due to the usage of the

Gronwall's inequality in the proof. From this equation, a regularity property on the ontrol

proess Z is needed to prove the onvergene of the Euler sheme.

This regularity result is proved by Zhang [124, 123℄ in the ontext of Lipshitz oe�ients.

Knowing that Z̄π
ti is the projetion on the spae Fti-measurable random variables, and hene

the best Fti-measurable approximation, of {Zt}t∈[0,T ] on the interval [ti, ti+1] we have

n−1∑

i=0

E

[∫ ti+1

ti

∣∣Zs − Z̄π
ti

∣∣2 ds
]

≤
n−1∑

i=0

E

[∫ ti+1

ti

|Zs − Zti |2 ds
]

≤ C |π| (I.15)

from equation (A.18). Consequently, the Euler shemes have a disretization error of

Eπ = O(|π| 12 ). (I.16)

Summary

Chapter 1 gives an overview of existing numerial methods divided in three groups: partial dif-

ferential equation (PDE) based methods, spatial disretization based methods and Monte Carlo

regression based methods. Overall, PDE based methods require strong regularity ondition on

the FBSDE oe�ient whereas Monte Carlo methods are time onsuming. Spatial disretization

methods may be seen as a tradeo� between the two other groups of methods.

The purpose of this thesis is the development of a spatial disretization method using ana-

lyti and numerial Fourier tehniques. These tehniques have already proved very e�ient in

various areas suh as in numerial methods for PDEs or in mathematial �nane. In the on-

text of numerial methods for FBSDEs, numerial Fourier tehniques have the advantage and

partiularity of being spetral methods espeially in the group of spatial disretization methods

for FBSDEs.

Chapter 2 gives the representation of BSDE numerial solutions as Fourier integrals and

proposes a �rst implementation of a fast Fourier transform (FFT) based method for BSDEs.

The numerial resolution is performed on a uniform grid and a loal error analysis reveals a

onsistent method with trunation errors under smoothness onditions on the BSDE oe�ients.

Numerial examples then illustrate the auray of the method.

Even though the proedure in Chapter 2 is onsistent and suitable for various appliations,

the presene of trunation errors makes it less aurate. Chapter 3, whih is the entral hapter

of this thesis, introdues an alternative tree-like grid that removes the trunation error leading

to a onditionally stable and globally onvergent method. A simulation method for BSDEs is

then developed and the onvergene of the approximation is proved.

Chapter 4 fouses on the spae disretization of FBSDEs as an extension of the material of

Chapter 3. In the ontext of FBSDEs, we show that the Fourier representation of the BSDE

numerial solution is possible and then build a onditionally stable and globally onvergent

4



method. Nonetheless, the omputations have to be performed through matrix multipliation

instead of the FFT algorithm as in Chapter 2 and 3 so that Fourier methods are less e�ient

when applied on FBSDEs .

Finally, Chapter 5 visits the very reently proposed Runge-Kutta sheme for (F)BSDEs.

Runge-Kutta shemes are higher order time onvergent time stepping methods that improve

the half order onvergene of the Euler sheme used in the previous hapters. Here also, we

haraterize the numerial solutions and apply the method developed in Chapter 4 (or Chapter 3

in the simple BSDE ase). In the more general setting of Runge-Kutta shemes, the onditional

stability and global onvergene of the method is established under mild onditions on some

harateristi funtions.
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Chapter 1

A literature review of numerial

methods for FBSDEs

Solutions to FBSDEs an be found through either the four-step sheme or the method of ontin-

uation

1

. In the former method, proposed by Ma, Protter and Yong [79℄, the forward and ontrol

proesses are expressed expliitly in terms of a funtion whih solves a Cauhy problem for a

quasilinear paraboli PDE. Yong [114℄, for the latter method, gives impliit solutions using the

notion of bridge whih identi�es new solutions of FBSDEs from known ones. Hene, on one hand

solving a FBSDE expliitly by means of the four-step sheme requires an expliit solution to a

quasilinear PDE, whih is not an easy task, and on the other hand the method of ontinuation

only gives impliit solutions. For this reason, numerial methods are being developed in order to

seek approximate solutions to FBSDEs. The �rst numerial methods to appear were the PDE

based method of Douglas, Ma and Protter [40℄ along with the random time partition sheme of

Bally [7℄ and the tree based sheme of Chevane [28℄.

The present hapter gives an overview of existing numerial methods for FBSDEs and is

organized as follows. Setion 1.1 deals with the four-step sheme based methods that numer-

ially solve the quasilinear PDE. Spatial disretization methods, inluding quantization tree

methods and multinomial trees, are presented in Setion 1.2. Setion 1.3 is about Monte Carlo

regression based methods and the �nal setion summarizes numerial methods for BSDEs with

non-Lipshitz oe�ients.

1.1 Four-step sheme based methods

Even if all numerial methods for FBSDEs an be linked to the four-step sheme, we an learly

distinguish those treating the assoiated quasilinear PDE diretly. These methods impose dif-

ferentiability and boundedness onstrains on the FBSDE oe�ients in order to ensure the

onvergene of the numerial sheme for the PDE. Also, their extension to multidimensional

FBSDEs remains an open problem due to the lak of algorithms for multidimensional PDEs.

Nonetheless, four-step sheme based methods an ompute numerial solutions to the most gen-

eral oupled FBSDEs. Here, we present those methods aording to the type of algorithm used

to solve the PDE numerially.

1

See the book of Ma and Yong [81℄
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1.1.1 Finite di�erene methods

In 1996 Douglas, Ma and Protter [40℄ initiated numerial methods for FBSDEs. In that pa-

per, the authors rely on the four-step sheme and solve the quasilinear paraboli PDE using a

ombination of harateristis and �nite di�erene method.

Two similar types of FBSDE with nonlinear oe�ients are onsidered: a �general ase�

FBSDE where the di�usion oe�ient of the forward proess does not depend on the ontrol

proess and a �speial ase� one where, in addition to the di�usion oe�ient of the forward

proess, the forward and bakward drifts do not depend on the ontrol proess. Thus, the

stohasti equations are oupled in both ases and all involved proesses (namely the forward

and bakward proesses, the ontrol proess and the Brownian motion) are assumed to be one-

dimensional.

When solving the �speial ase� FBSDE





dXt = a(t,Xt, Yt)dt+ σ(t,Xt, Yt)dWt

−dYt = f(t,Xt, Yt)dt− ZtdWt

X0 = x0 , YT = ξ

(1.1.1)

the PDE redues to

∂u

∂t
+ a(t, x, u)

∂u

∂x
+

1

2
σ2(t, x, u)

∂2u

∂x2
+ f(t, x, u) = 0 (1.1.2)

whih is �rst modi�ed using a time hange of variable to get an initial value value problem. A

method of harateristis is then applied and redues the quasilinear advetion-di�usion PDE

into a di�usion PDE. A �nite di�erene sheme then disretizes the resulting PDE with a �rst

order forward di�erene in time along the harateristi and a seond order entral di�erene in

spae. For a time step of ∆t and a spae step of ∆x, this gives a solution uki at time mesh tk

and grid point xi of the form

uki − ūk−1
i

∆t
=

1

2
σ2(tk, xi, u

k−1
i )D2[uki ] + f(tk, xi, u

k−1
i ) (1.1.3)

where ūk−1
i = uk−1(xi−a(tk, xi, uk−1

i )∆t) is the solution value along the harateristi obtained

by interpolation, and

D2[uki ] =
uki+1 − 2uki + uki−1

(∆x)2

stands for the seond order �nite di�erene for the seond derivative. The sheme produes a

onvergent solution with a �rst order loal trunation error in both time and spae.

The availability of a numerial solution to the PDE then allows the onstrution of numerial

solutions for the forward and bakward SDEs using the four-step sheme representation of their

solutions and this onstrution is made possible sine the approximate solution to the PDE sat-

is�es the Lipshitz ondition. A forward (or expliit) Euler sheme

2

gives a numerial solution

to the forward SDE and the approximate solution to the bakward SDE is obtained by interpo-

lating the PDE approximate solution at the values of the forward SDE numerial solution. This

proedure reprodues the onvergene rates of the underlying Euler sheme. More preisely,

we get a half (

1
2 ) order strongly onvergent sheme for the solutions of both the forward and

bakward SDE and a �rst order weakly onvergent sheme for the forward SDE solution.

The numerial solution for the �general ase� FBSDE





dXt = a(t,Xt, Yt, Zt)dt+ σ(t,Xt, Yt)dWt

−dYt = f(t,Xt, Yt, Zt)dt− ZtdWt

X0 = x0 , YT = ξ

(1.1.4)

2

See Kloeden and Platen[69℄.
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where the PDE takes the form

∂u

∂t
+ a

(
t, x, u, σ(t, x, u)

∂u

∂x

)
∂u

∂x
+

1

2
σ2(t, x, u)

∂2u

∂x2
+ f

(
t, x, u, σ(t, x, u)

∂u

∂x

)
= 0, (1.1.5)

seeks not only approximate solutions for the forward and bakward proesses but also for the

ontrol proess. This requires the implementation of a numerial sheme for the derivative of

the PDE solution. Hene, the authors dedue a seond quasilinear advetion-di�usion PDE de-

sribing the aforementioned derivative by di�erentiating the initial PDE. The resulting system

of PDEs is then solved by applying the numerial sheme of the �speial ase� to eah PDE. In-

terpolations on the numerial solution of the PDE system help in solving the forward SDE with

an Euler sheme and omputing values for the bakward SDE solution and the ontrol proess.

Again, the method is half (

1
2 ) order strongly onvergent for the triple of proesses solution to the

FBSDE and �rst order weakly onvergent for the solution of the forward SDE and the ontrol

proess.

Milstein and Tretyakov [89, 90℄ also used a �nite di�erene method on PDEs to solve FBSDEs

numerially. The algorithms in both papers are based on the four-step sheme but apply to a

less general type of FBSDEs. In the �rst paper [89℄, the authors onsider a oupled FBSDE

where the forward oe�ients do not depend on the ontrol proess and the driver depends only

linearly on it. The seond paper [90℄ generalizes the �rst by introduing the ontrol proess in

the forward drift and a nonlinear driver in the ontrol proess. The driver has the form

f(t, x, y, z) = f1(t, x, y, z) + f2(t, x, y, z)y + f3(t, x, y, z)z (1.1.6)

and this struture leads to the PDE

∂u

∂t
+ ã

(
t, x, u, σ(t, x, u)

∂u

∂x

)
∂u

∂x

+
1

2
σ2(t, x, u)

∂2u

∂x2
+ f2

(
t, x, u, σ(t, x, u)

∂u

∂x

)
u

+ f1

(
t, x, u, σ(t, x, u)

∂u

∂x

)
= 0 (1.1.7)

where ã = a+ σf3.

One of the major di�erenes between the approah of Milstein and Tretyakov [89, 90℄ and

the one of Douglas, Ma and Protter [40℄ is in the numerial resolution of the quasilinear PDE.

Indeed, Milstein and Tretyakov [89, 90℄ hose a layer method whih is a �rst order numerial

algorithm for paraboli PDEs grounded on these PDEs probabilisti representation. At time

node tk and for a time step of ∆t, the numerial solution uk of the PDE in equation (1.1.2) is

given, for instane, by

uk(x) =
uk+1(x

+
k ) + uk+1(x

−
k )

2
+ (∆t)f (tk, x, uk+1(x)) (1.1.8)

where

x±k = x+ (∆t)a (tk, x, uk+1(x)) ±
√
∆tσ (tk, x, uk+1(x)) . (1.1.9)

As to the stohasti part, the forward SDE resolution may onsist of an Euler or Milstein

sheme and the bakward and ontrol proesses are obtained by interpolating the PDE numerial

solution. The seond major di�erene with Douglas, Ma and Protter [40℄ approah being that a

�nite di�erene on the PDE numerial solution approximates the derivative of the PDE solution.

Indeed, the disrete operator Dl de�ned as

Dl[uk+1](x) =
uk+1(x

+
k )− uk+1(x

−
k )

2σ (tk, x, uk+1(x))
√
∆t

, (1.1.10)
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whih is a entral �nite di�erene for the �rst derivative in the layer method, may be used to

approximate the derivative in various situations.

The method's rate of mean-square onvergene is

1
2 for the FBSDE triple solution when an

Euler sheme disretizes the forward SDE and 1 for the forward and bakward solutions when

the Milstein sheme is used. The Milstein sheme on the forward SDE also yields a �rst order

mean-square onvergene for the ontrol proess if the �nite di�erene on the PDE numerial

solution is �rst order aurate.

1.1.2 The spetral method

It an be noted that, exept for the Milstein and Tretyakov [89, 90℄ method under the Milstein

sheme with its �rst order onvergene, numerial methods for FBSDEs yield a half order on-

vergene

3

. In their paper, Ma, Shen and Zhao [80℄ propose a four-step based numerial method

with an enhaned rate of onvergene.

A uni-dimensional fully oupled FBSDE with ontinuously di�erentiable oe�ients is on-

sidered. These oe�ients must satisfy further growth and boundedness onditions. In parti-

ular, the forward proess volatility, whih does not depend on the ontrol proess, must have a

bounded seond derivative.

The algorithm is applied to the quasilinear PDE expressed in divergene form

∂u

∂t
+ ã

(
t, x, u,

∂u

∂x

)
∂u

∂x
+

∂

∂x

(
1

2
σ2(t, x, u)

∂u

∂x

)
+ f (t, x, u) = 0 (1.1.11)

for some Lipshitz and bounded funtion ã. The disretization of this PDE starts with a �rst

order impliit time stepping that leads to an uni-dimensional ellipti equation in spae at eah

time node, but other time disretizations may be hosen

4

to reah higher orders of auray. At

time step tk, the solution uk is expressed as

uk −
(
∆t

2

)
∂

∂x

(
σ2(tk, x, uk+1)

∂uk
∂x

)
=

uk+1 + (∆t)

(
ã

(
tk, x, uk+1,

∂uk+1

∂x

)
∂uk+1

∂x
+ f(tk, x, uk+1)

)
. (1.1.12)

The struture of the spae domain, and more preisely the fat that it is the whole real line,

imposes the usage of Hermite polynomials

5

in the spetral method. Hene, at eah time step,

the PDE solution uk and the term σ2(tk, x, uk+1)
∂uk

∂x are interpolated with weighted polynomials

with weight funtion

w(x) = e−
1
2x

2

(1.1.13)

and an integration by parts of the ellipti ordinary di�erential equation (ODE) gives a variational

equation using Hermite quadrature. The last step for solving the PDE is to �nd the interpolation

weights from the variational equation. The proedure produes a numerial solution

6

with �rst

order auray in time and spetral onvergene in spae.

Conerning the numerial solution to the forward proess, Ma, Shen and Zhao [80℄ propose

three di�erent highly aurate shemes inluding the �rst order Milstein sheme and two

3
2 -

strongly onsistent shemes in addition to the usual expliit Euler sheme. In partiular, the

Euler sheme leads to an approximation of the triple of proesses whih is half order aurate.

The idea that the method onvergene rate an be improved when using a higher time stepping

3

This inludes four-step and Monte Carlo regression based methods as we will see later in this review.

4

The authors mention an alternative Adam�Bashforth sheme.

5

See Appendix C for a de�nition of Hermite polynomials and more preisely equation (C.10).

6

Inluding the solution to the PDE and its derivative.
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method for the PDE and a higher order sheme for the forward SDE is illustrated with numerial

examples. The authors are able to reah a

3
2 -order of onvergene for the FBSDE solution.

1.2 Spatial disretization based methods

Quantization based methods aim to weaken the regularity onditions imposed on the FBSDE

oe�ients in PDE based methods. Those methods onsist of replaing a (ontinuous) random

variable by a disrete one in order to estimate the expetations involved in the loal representa-

tion of the FBSDE. Hene, the methods avoid the diret numerial treatment of the assoiated

quasi-linear PDE.

1.2.1 Quantization tree methods

After a time disretization of some loal representation of FBSDE, quantization tree methods

typially disretize the forward proess spae at eah time node using a quantization grid. A

funtion, alled the quantizer, projets the values of the forward proess on the grid. Calulating

the onditional expetations involved in the loal representation of the FBSDE then depends on

the availability of transition probabilities at eah time step.

In order to avoid solving a PDE numerially, Bally [7℄ developed a method for BSDEs with

a driver depending on the ontrol proess but the resolution of the BSDE has to be done at

Poisson random times to prove the method onvergene. This inonveniene was mainly due to

the unknown path regularity of the ontrol proess. Chevane [28℄ overame the time disretiza-

tion randomness by proposing the �rst quantization tree and onvergent method for deoupled

FBSDEs.

Chevane [28℄ onsiders Markovian ases where the bakward proess terminal value depends

only on the forward proess terminal value and his method applies if the BSDE driver does not

depend on the ontrol proess. Also, the deoupled FBSDE oe�ients (forward SDE oe�ients,

the driver and the terminal funtion) have to satisfy further di�erentiability and boundedness

onditions.

The forward SDE is disretized (over a deterministi time grid) by a weak Euler sheme where

the Brownian inrements are replaed by a disrete random variable

7

. As to the bakward SDE,

its disrete loal representation uses the driver's upper value. This disretization yields a �rst

order absolute error (in time).

In order to ompute an approximate solution for the bakward equation, Chevane [28℄ uses

a �xed spae grid for the forward SDE at eah time step and the forward proess values on the

spae grid are determined with the losest neighbor rule as the quantizer. More preisely, at

eah time step the weak solution values of the forward proess (using the previous time step

projetions) are projeted on the grid and the projetion itself is de�ned for any number as the

least value among the losest grid point values to the number. The bakward proess values are

then omputed (bakward in time) by evaluating the BSDE disrete loal representation using

the forward proess projeted values and the transition probabilities provided by the aforemen-

tioned disrete random variable. The proedure yields a weak solution for the BSDE that is �rst

order aurate in time and spae.

Other quantization tree methods inlude the methods of Bally and Pages [8℄ and Bally, Pages

and Printems [9℄. The methods are designed for re�eted BSDEs (RBSDEs) and partiularly for

7

The disrete random variable must have zero mean, zero third moment, an unit variane and �nite �fth

moment.
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the problem of priing multidimensional Amerian options and require only the usual Lipshitz

onditions needed for the deoupled RFBSDE well-posedness. Along with the method, the au-

thors address the problem of optimal grid and transition probability hoie. Finally, Delarue and

Menozzi [35℄ developed a quantization method for solving paraboli PDEs via their probabilisti

representation through oupled FBSDEs. An interpolation proedure was then proposed by the

same authors in [36℄ as an improvement of the method.

1.2.2 Multinomial trees

Multinomial trees di�er from quantization trees in two main fashions. First, the BSDE is it-

self disretized in multinomial methods whereas quantization methods only disretize the BSDE

loal representation. Also, multinomial trees replae the Brownian inrements that appear in

the disrete version of the FBSDE with disrete random variables: in quantization methods, the

forward proess is diretly targeted.

Indeed, note that Chevane disretizes only the loal representation of the BSDE but not

the BSDE itself beause of the unknown regularity of the ontrol proess. Hene, he does not

provide a numerial solution for the ontrol proess. The diret disretization of the BSDE

8

is

later made possible by Briand, Delyon and Memin [21℄ along with Ma, Protter, San Martin and

Torres [78℄ with the proof of its onvergene with quasi-minimal onditions on the BSDE driver

and terminal random variable.

Briand, Delyon and Memin [21℄ and Ma, Protter, San Martin and Torres [78℄ both disretize

Brownian inrements with a symmetri Bernoulli distribution leading to a binomial tree. The

method applies to one dimensional problems but an be generalized to multidimensional

9

BSDEs.

Nonetheless, one an note di�erenes between the papers regarding the onditions of the BSDE

oe�ients, the onverging objets, the type of onvergene and the indued algorithms. Indeed,

the BSDE driver of Briand, Delyon and Memin [21℄ depends on the ontrol proess whereas in

[78℄ it does not but requires ontinuity. Also, the �rst paper [21℄ proves onvergene in probability

for the forward and ontrol proesses whereas the latter [78℄ proves onvergene in distribution

for the forward proess and the stohasti integral of the ontrol proess with respet to the

Brownian motion. Finally, Briand, Delyon and Memin [21℄ propose only an impliit method

whereas Ma, Protter, San Martin and Torres[78℄ put forth a suitable expliit algorithm.

In general, the BSDE is disretized on an uniform partition with time step ∆ as

Yti = Yti+1 +∆f(ti, Yti , Zti)−
√
∆Ztiǫi+1 (1.2.1)

where the ǫi are a sequene of independent, symmetri and disrete random variables. Equation

(1.2.1) an be numerially solved with the impliit bakward algorithm

Yti = E

[
Yti+1 |Gti

]
+∆f(ti, Yti , Zti) (1.2.2)

Zti =
1√
∆
E

[
Yti+1ǫi+1|Gti

]
(1.2.3)

where G is the disrete �ltration generated by the sequene of ǫi's. For the expliit sheme, one

may onsider

Yti = E

[
Yti+1 |Gti

]
+∆f(ti,E

[
Yti+1 |Gti

]
, Zti) (1.2.4)

instead of the expression of equation (1.2.2).

8

By replaing the Brownian inrements in the BSDE with random steps.

9

Bouhard and Touzi [20℄ onsider �questionable� the extension of tree methods to high dimension problems

due to the di�ulty of suh extensions.
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Building on Briand, Delyon and Memin [21, 22℄ and Ma, Protter, San Martin and Torres

[78℄, Peng and Xu [99℄ worked on impliit and expliit algorithms for one dimensional BSDEs

and re�eted BSDEs (RBSDEs) based on the binomial method and proved their onvergene

for the bakward and ontrol proesses under minimal onditions on the BSDE driver. Finally,

in the paper of Briand, Delyon and Memin [22℄, the approximation of the Brownian motion is

generalized from (saled) random walks used in [21℄ to martingales.

1.3 Monte Carlo regression based methods

Simulation methods mostly apply to deoupled FBSDEs and essentially started with the work

of Zhang [124℄ and his proof of the ontrol proess path regularity. This path regularity allows

the implementation of strongly onvergent (simulation based) algorithms with a deterministi

time disretization and avoid time node randomization as in Bally [7℄, numerial treatment of

the quasilinear PDE as in Douglas, Ma and Protter [40℄ or high regularity onditions on the

BSDE oe�ients as in [40℄ or [28℄. Moreover, the main advantage of simulation based methods

lies in their e�ieny for multidimensional problems.

1.3.1 Bakward shemes

The numerial implementation of Zhang's [124℄ method requires only the usual Lipshitz on-

ditions on the FBSDE oe�ients needed for the problem well-posedness. In partiular, some

Lipshitz regularities

10

are de�ned for the BSDE terminal value funtion that is allowed to be

non-Markovian, in the sense that it may depend on the whole forward proess path.

Given a (deterministi) time partition, the forward SDE desribing a (non-homogeneous) Ito

di�usion is numerially integrated with an Euler sheme whih yields a half (12 ) order strongly

onvergent solution. The mean square error (MSE), when valuing the BSDE terminal funtion

with the Euler solution of the forward proess, is �rst order onvergent in time in ase the

terminal funtion is Markovian or L1
-Lipshitz. The MSE is of the order of log(∆t−1)∆t for

time step ∆t in the L∞
-Lipshitz ase.

As to the BSDE itself, Zhang [124℄ disretizes it with an expliit Euler sheme and the

bakward and ontrol proess values are reovered bakward in time using the BSDE loal

representation. More preisely, expetations taken on the BSDE disretization ompute the

approximate adapted solutions of the BSDE. The sheme is proved to be onvergent in the

L2
-sense of Zhang [124℄ and its onvergene for the bakward and ontrol proesses is strongly

related to the Lipshitz regularity of the BSDE terminal value funtion. Indeed, the sheme

yields a squared error of the order of log(∆t−1)∆t if either the driver does not depend of the

ontrol proess or the time partition is K-uniform

11

. If in addition the BSDE terminal value

funtion is Markovian or L1
-Lipshitz, then the onvergene is half order in time (i.e a squared

error of order one). Zhang gives the following general error bound

sup
t∈[0,T ]

∥∥∥Yt − Ŷt

∥∥∥
2

L2
+
∥∥∥Z − Ẑ

∥∥∥
2

L2
I

≤ C
(
|π|+ ‖ξ − ξπ‖2L2

)
(1.3.1)

for a given time partition π, where Ŷ and Ẑ are the BSDE pieewise onstant numerial solutions.

When giving orders of onvergene for his algorithm, Zhang [124℄ does not provide any

method for the valuation of the expetations involved in the BSDE loal disrete representation

and numerial solution so that the order of onvergene are valid when valuing exat expeta-

tions. Thus, not only does one still need an approximate method for the expetations in order

10

De�nition 2.1 of Zhang [124℄.

11

De�nition 5.2 of Zhang [124℄.
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to implement the Zhang [124℄ algorithm but the orders of onvergene have to be updated to

take into aount the error indued by the approximation. Two main papers appeared to solve

this problem.

Bouhard and Touzi [20℄ onsider a (deoupled) FBSDE where the forward proess is a mul-

tidimensional time homogeneous Ito di�usion. The bakward proess is taken uni-dimensional

for simpliity. As in Zhang [124℄, an expliit Euler sheme numerially integrates the forward

SDE but the bakward SDE is disretized with an expliit Euler sheme. Nonetheless, ondi-

tional expetations still need to be omputed in order to approximate the bakward and ontrol

proesses disrete loal representations.

In order to approximate the expetations, Bouhard and Touzi [20℄ apply a Malliavin alulus

based regression method whih fores the simulated forward proess values at eah time node

to be independent. Hene, the forward proess values at eah time node have to be simulated

independently of its values at any other time node leading to a partiularly time onsuming

proedure.

For a �xed number N of paths (in the forward proess simulation), the algorithm yields an

Lp
-error of the order ∆t−1

for the bakward proess. Hene, the method has the undesired

property that errors tend to explode for a �xed number of simulated paths when reduing the

time step. The Lp
-error due to the expetation approximation multiplies this time stepping error

on the bakward proess and is of the order of ∆t−1− d
4pN− 1

2p
, where the forward proess has

dimension d, for a global Lp
-error of the order of ∆t−2− d

4pN− 1
2p
. From this result, the authors

point out that if the number of simulated paths is taken to be n3p+ d
2
, where n is the number of

time steps in an uniform time grid, then one ahieves a half order global Lp
-onvergene in time

for the bakward proess. The artile ends with an extension of the method to RBSDEs and a

numerial example on an Amerian option priing problem.

One of the main disadvantages of the Malliavin weights regression method is its ompu-

tational omplexity. Crisan, Manolarakis and Touzi [33℄ address this problem and propose a

simpli�ation of the algorithm in Bouhard and Touzi [20℄. The simpli�ation onsists in using

alternative Malliavin weights and preserves the method's onvergene features.

Using similar ideas, Gobet, Lemor and Warin [53℄ proposed another simulation method for

multidimensional deoupled FBSDEs that does not require independent simulations of the for-

ward proess. Conditions on the FBSDE oe�ients are those needed for well-posedness and,

partiularly, the terminal funtion is assumed to have the L∞
-Lipshitz property in the non-

Markovian ase. As usual, a forward Euler sheme approximates for the forward proess.

The bakward algorithm for the BSDE is also built on a bakward Euler disretization and

uses least squares regression to approximate the BSDE solution. At eah time step, the bak-

ward and ontrol proesses are represented as linear ombinations of some basis funtions. The

projetion oe�ients for both proesses are then determined by minimizing the regression mean

square error with Piard iterations. The authors suggest orthogonal polynomials or hyperubes

as hoies of basis funtions.

The (partial) onvergene study in [53℄, made on the bakward and ontrol proess, gives a

rather omplex expression for the upper bound of the method L2
-squared error. Nonetheless, it

highlights another drawbak of simulation-based bakward shemes: the fat that errors au-

mulate through the iterations sine, at any time step, the approximations are omputed using

previous ones.

Beside the most used expliit and impliit Euler shemes for BSDEs, other disretization

13



shemes an be found in the literature. Zhao, Shen and Peng [125℄ introdued θ-shemes where

the bakward SDE is loally disretized with the driver and the ontrol proess weighted upper

and lower values. The numerial solutions Yti and Zti at mesh time ti then solve the following

system of equations

Yti = Eti

[
Yti+1

]
+∆i

{
(1 − θ1)Eti

[
f(ti+1, Yti+1 , Zti+1)

]

+ θ1f(ti, Yti , Zti)} (1.3.2)

0 = Eti

[
∆WiYti+1

]
+∆i(1 − θ2)Eti

[
f(ti+1, Yti+1 , Zti+1)∆Wi

]

−∆i

{
(1− θ2)Eti

[
Zti+1

]
+ θ2Zti

}
(1.3.3)

where θ1 and θ2 are hosen in [0, 1] and may depend on the mesh time ti. The trapezoidal

rule whih onsists in setting θ1 = 1
2 and θ2 = 1 is known to be seond order aurate for

the bakward proess and �rst order aurate for the ontrol proess under di�erentiability and

boundedness onditions on the driver and the terminal ondition. One may refer to Zhao, Wang

and Peng [126℄ or Li and Zhao [74℄.

More reently, Zhao, Zhang and Ju [127℄ arried out a multistep sheme but the onditional

expetations in their method are valued using Gauss-Hermite quadrature instead of Monte Carlo

regression.

1.3.2 Forward shemes

Forward shemes were designed by Bender and Denk [10℄ to address the two problems inherent

in simulation-based bakward methods: the error explosion for small time steps and the error

aumulation due to embedded expetation approximations.

As in Gobet, Lemor and Warin [53℄, Bender and Denk [10℄ develop a method for multi-

dimensional deoupled FBSDEs with a non-homogeneous di�usion as the forward proess, a

non-Markovian L∞
-Lipshitz terminal funtion and the usual (and minimal) onditions on the

FBSDE oe�ients.

Instead of disretizing the BSDE loally, the authors employ Riemann type sums and Piard

iterations on the bakward and ontrol proesses to approximate the bakward integral at eah

time step. More preisely, the approximate bakward proess is expressed in terms of the previous

Piard iteration proesses and the obtained bakward stohasti integral is disretized with

lower Riemann sums. Taking the expetation from the subsequent expression preserves the

adaptedness of the numerial solutions and gives formulas for the values of the urrent Piard

iteration bakward and ontrol proesses at the di�erent time nodes.

The n-th Piard iteration on a time partition π = {0 = t0 < t1 < ... < tN = T } then takes

the form

Y n
ti = Eti


ξπ +

N−1∑

j=i

f(tj , X
π
tj , Y

n−1
tj , Zn−1

tj )∆j




(1.3.4)

Zn
ti = Eti


∆Wi

∆i


ξπ +

N−1∑

j=i

f(tj , X
π
tj , Y

n−1
tj , Zn−1

tj )∆j






(1.3.5)

where Y n−1
tj and Zn−1

tj are the values of the numerial solutions obtained in the previous Piard

iteration for the bakward and the ontrol proesses respetively.

Even though Piard iterations are the main feature in the method, the algorithm remains

quite e�ient sine, in general, very few iterations are needed to have satisfatory results.

The forward proess an be simulated with a forward Euler sheme and the onditional ex-

petations involved at eah Piard iteration evaluated with a regression method forward through
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time nodes. The authors use a least squares regression with orthogonal basis funtions, as in

Gobet, Lemor and Warin [53℄, to approximate the onditional expetations.

The algorithm produes a numerial solution with a half order L2
-onvergene in time when

the onditional expetations are exat whih is similar to the result of Zhang [124℄ for bakward

methods. More spei�ally, the quadrati error is given by

sup
t∈[0,T ]

‖Yt − Y n
t ‖2L2 + ‖Z − Zn‖2L2

I
≤ C

(
|π|+ ‖ξ − ξπ‖2L2 +

(
1

2
+ C |π|

)n)
(1.3.6)

Finally, the proedure's onvergene is also proved in the L2
-sense without spei�ation of the

rate of onvergene.

Finally, an algorithm using Piard iterations was reently onstruted by Bender and Zhang

[11℄ for weakly oupled FBSDEs with oe�ients satisfying monotoniity onditions.

1.4 Methods for quadrati growth BSDEs

If numerial methods for FBSDEs with Lipshitz oe�ients have mainly attrated researhers,

the non-Lipshitz ases are beoming a growing interest. Among BSDEs with non-Lipshitz

oe�ients, those with quadrati growth are ertainly the most studied. Sine the proof of their

well-posedness by Kobylanski [70℄ for bounded terminal onditions, the studies of Briand and

Hu [24℄ extended the result to unbounded terminal onditions with exponential moments and

onvex driver.

Nonetheless, numerial methods for quadrati BSDEs are available only in the bounded

terminal value ase. This omes from the fat that the martingale de�ned by the Ito-integral

of the ontrol proess (Z •W )t =
∫ t

0
ZsdWs does not neessary onserve its the BMO property

when the terminal ondition is unbounded, making the derivation of regularity and onvergene

results arduous in that ase.

Furthermore, numerial resolution of quadrati BSDEs faes a major obstale even in the

bounded terminal ondition ase. Indeed, the existing time disretization methods, and parti-

ularly the Euler sheme, fail to onverge for general quadrati BSDEs.

Imkeller and Dos Reis [65℄ try to overome those di�ulties by proposing a method that

applies to deoupled FBSDEs with bounded terminal ondition and di�erentiable oe�ients.

First, the authors prove the required path regularities for the solutions of quadrati BSDEs.

Their numerial method relies on a trunation of the driver whih redues the problem from a

quadrati framework to a Lipshitz one. Hene, the lassial time disretization an be used on

the modi�ed BSDE.

For one-dimensional BSDEs, a family of di�erentiable trunation funtions hn : R → R is

de�ned suh that hn(z) is simultaneously bounded by |z| and the integer n + 1. Then, any

numerial method for FBSDEs with Lipshitz oe�ients an be applied to the approximated

BSDE

−dY n
t = f(t,Xt, Y

n
t , hn(Z

n
t ))dt− Zn

t dWt

where the ontrol proess is replaed by its trunated value in the BSDE driver.

Sine lassial algorithms already onverge for the trunated BSDE, the method's global

onvergene depends on the onvergene of the trunated BSDE solution to the atual solution.

Thanks to the BMO property of the proess Z •W , a onvergene rate is provided and is given,

for any β > 0 and p ∈ N
∗
, by the following error bound

‖Y n − Y ‖2p
L2p

S

+ ‖Zn − Z‖2p
L2p

I

≤ Dβn
− β

2q
(1.4.1)
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where Dβ and q are given onstants.

The authors point out the lak of e�ieny of the trunation approah. Indeed, the method's

onvergene is assured when the time step ∆t is inversely proportional to the exponential of the

Lipshitz onstant related to the trunated driver. More preisely, the global error, inluding

the disretization error, is bounded by

Dβ

(
1

nβ
+
eCn2

N

)

where N is the number of time steps and C > 0 is related to the Lipshitz onstant of the driver.

Hene, one needs to onsider more time steps when this Lipshitz onstant slightly inreases, so

to say when one tries to get a slightly better approximation through trunation.

Reently, another numerial algorithm was proposed by Rihou [103℄. It solves for deoupled

FBSDE with bounded terminal values and a forward volatility that is only a funtion of time

on an nonuniform time grid. The main feature of Rihou's approah is the Hölder ontinuity of

the terminal value funtion.
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Chapter 2

Convolution method for BSDEs

In this hapter, we implement a quadrature method for numerial solution of BSDEs. An Euler

sheme disretizes the equation and we apply an FFT (Fast Fourier Transform) algorithm to

value the onditional expetations indued by the time disretization. Hene, the approah is

a typial spatial disretization method with the feature that the FFT algorithm serves as an

alternative to trees and quantization when omputing the quadratures.

The FFT algorithm omputes the (inverse) disrete Fourier transform (DFT) of a given

funtion and is widely used in various �elds, and partiularly in spetral and pseudo-spetral

methods for PDEs. In addition to its �exibility, one of its main advantages is its e�ieny as

the FFT algorithm omputes the values of the disrete Fourier transform of n funtion values

in O(n log(n)) operations.

Two interesting �nanial appliations of the algorithm are those of Carr and Madan [26℄ and

Lord et al. [76℄. These two papers employ the FFT algorithm to ompute quadratures in the

ontext of option priing under Lévy proesses. The �rst paper deals with European options

whereas the latter treats Amerian options. Our approah is muh loser to the one of Lord

et al. [76℄ sine the numerial resolution of the BSDE is also made by dynami programming

through the Euler sheme.

2.1 Preliminaries

In this hapter, we study the numerial solution of BSDEs of the form

Yt = g(WT ) +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Z∗
sdWs (2.1.1)

where W is a d-dimensional Brownian motion with driver f : [0, T ]×R×Rd → R and terminal

ondition g : Rd → R. Conditions on f and g are given in setion A.1 of appendix A. In addition,

Proposition A.2 assures the well-posedness of suh BSDEs.

It is known

1

from Pardoux and Peng [96℄ that if the Cauhy problem to the di�usion PDE





∂u
∂t + 1

2

∑d
i=1

∂2u
∂x2

i

+ f(t, u,∇u) = 0, (t, x) ∈ [0, T )× Rd

u(T, x) = g(x)
(2.1.2)

has a unique solution then the solution (Y, Z) for the BSDE admits the representation

Yt = u(t,Wt) (2.1.3)

1

See setion A.2.2 in the appendix.
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Zt = ∇u(t,Wt). (2.1.4)

This representation plays an important role in the sequel, sine the onvolution method impliitly

solves the PDE of equation (2.1.2).

2.2 Convolution for BSDEs

In this setion, we present the main ideas behind the onvolution method. More preisely, we

build numerial approximations to the BSDE of equation (2.1.1), using a time disretization

of the BSDE. Thereafter, we give some useful properties of these solutions. For simpliity, we

develop the method in the one dimensional ase, i.e d = 1.

2.2.1 The approximate solutions and their properties

The starting point of the onvolution method for BSDEs is the Euler sheme. We will mainly

onsider its expliit version whih takes the form





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

Y π
ti = E

[
Y π
ti+1

|Fti

]
+ f(ti,E

[
Y π
ti+1

|Fti

]
, Zπ

ti)∆i

(2.2.1)

on a time mesh π = {t0 = 0 < t1 < ... < tn = T } and refer to it as the Euler sheme 1. A

similar version of the Euler sheme was already proposed by Peng and Xu [99℄ in the ontext

of binomial trees with the di�erene that the authors ompute the expetations after the spae

disretization and, hene, with a disrete �ltration.

Sine the Brownian motion W is a Markov proess, we de�ne the approximate gradient

u̇i : R → R at time mesh ti, i = 0, 1, ..., n− 1 as

u̇i(x) =
1

∆i
E

[
Y π
ti+1

∆Wi|Wti = x
]

(2.2.2)

so that the approximate ontrol proess is given by

Zπ
ti = u̇i(Wti). (2.2.3)

We let the intermediate solution ũi : R → R at time ti take the form

ũi(x) = E

[
Y π
ti+1

|Wti = x
]
. (2.2.4)

Consequently, an approximate solution of the PDE of equation (2.1.2) at mesh time ti onsists

of a real-valued funtion ui : R → R satisfying

Y π
ti = ui(Wti) (2.2.5)

an be de�ned as

ui(x) = ũi(x) + ∆if(ti, ũi(x), u̇i(x)) (2.2.6)

where

u̇i(x) =
1

∆i

∫ ∞

−∞
(y − x)ui+1(y)h(y|x)dy (2.2.7)

ũi(x) =

∫ ∞

−∞
ui+1(y)h(y|x)dy (2.2.8)
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for i = 0, 1, ..., n− 1 and un(x) = g(x). Note that u̇i is the approximate solution for the gradient

of the PDE solution ∇u at mesh time ti. Similar expressions are obtained by Delarue and

Menozzi [35℄ in the ontext of FBSDEs and quasi-linear PDEs.

Also, the funtion h is the density funtion of Wti+1 onditional on the value of Wti . By the

stationary and the independene of Brownian inrements, we have that

h(y|x) = h(y − x). (2.2.9)

As in Lord et al. [76℄, the relation of equation (2.2.9) plays a entral role in the onvolution

method sine it allows us to express the funtions ũi and u̇i as onvolutions. This, in addition,

simpli�es the appliation of Fourier transforms and hene the omputation of the integrals of

equations (2.2.7) and (2.2.8) via the DFT as we shall see in the sequel. Indeed

h(x) = (2π∆i)
− 1

2 exp

(
− x2

2∆i

)
(2.2.10)

sine inrements of a Brownian motion are normally distributed.

The impliit Euler sheme an also be onsidered in this analysis, only the expression for the

approximate solution di�ers. Indeed when the BSDE is disretized with the time stepping





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

Y π
ti = E

[
Y π
ti+1

|Fti

]
+ f(ti, Y

π
ti , Z

π
ti)∆i

(2.2.11)

the approximate solution has ui the impliit form

ui(x) = ũi(x) + ∆if(ti, ui(x), u̇i(x)). (2.2.12)

The approximate gradient u̇i and the intermediate solution ũi satisfy equations (2.2.7) and (2.2.8)

respetively. The impliit representation of equation (2.2.12) is solvable for the approximate

solution ui when

|π|K < 1 (2.2.13)

where K is the Lipshitz onstant of the driver f . In this ase, the expliit and impliit shemes

produe solutions with similar properties. For this reason, we mainly fous the analysis on the

expliit Euler sheme 1.

The solution (Y π
i , Z

π
i ) and (ui, u̇i), i = 0, 1, ..., n− 1, display important properties that are

worth mentioning. These properties are easily extensible to the multidimensional ase even

though we present them in the one-dimensional setting. The next lemma desribes the integra-

bility property of the solution (Y π
i , Z

π
i ).

Lemma 2.1. Suppose the onditions of Assumption A.2 are satis�ed and p ≥ 2. Then there

exists a positive onstant Cπ > 0 depending on the Lipshitz onstant K, the time horizon T ,

the partition π suh that

sup
i

‖Y π
i ‖Lp + sup

i
∆

1
2

i ‖Zπ
i ‖Lp ≤ Cπ

(
‖ξ‖Lp + T sup

t∈[0,T ]

|f(t, 0, 0)|
)
. (2.2.14)

Hene, if ξ = g(WT ) ∈ Lp
and f(., 0, 0) ∈ C

Y π
i ∈ Lp

and Zπ
i ∈ Lp.

Proof. Let's �rst note that for 2 ≤ p <∞

‖Zπ
i ‖pLp =

1

∆p
i

E

[∣∣
Eti

[
Y π
i+1∆Wi

]∣∣p]

19



≤ 1

∆p
i

E

[
∆

p
2

i

∣∣
Eti

[
(Y π

i+1)
2
]∣∣ p2
]
(by the Cauhy-Shwartz inequality),

≤ ∆
− p

2
i E

[
Eti

[∣∣Y π
i+1

∣∣p]]
(by Jensen's inequality),

= ∆
− p

2

i E

[∣∣Y π
i+1

∣∣p]

= ∆
− p

2

i

∥∥Y π
i+1

∥∥p
Lp . (2.2.15)

Also, letting Ỹ π
i = Eti

[
Y π
i+1

]
, we have

∥∥∥Ỹ π
i

∥∥∥
p

Lp
= E

[∣∣
Eti

[
Y π
i+1

]∣∣p]

≤ E

[
Eti

[∣∣Y π
i+1

∣∣p]]
(by Jensen's inequality),

=
∥∥Y π

i+1

∥∥p
Lp . (2.2.16)

Sine, by the Lipshitz property of the driver f ,

|Y π
i | ≤

∣∣∣Ỹ π
i

∣∣∣+∆iK
(∣∣∣Ỹ π

i

∣∣∣+ |Zπ
i |
)
+∆i sup

t∈[0,T ]

|f(t, 0, 0)|

where K is the Lipshitz onstant of f . Hene, we have that

‖Y π
i ‖Lp ≤

∥∥∥Ỹ π
i

∥∥∥
Lp

+∆iK
(∥∥∥Ỹ π

i

∥∥∥
Lp

+ ‖Zπ
i ‖Lp

)
+∆i sup

t∈[0,T ]

|f(t, 0, 0)|

(using Minkowsky inequality),

≤ (1 + ∆iK +∆
1
2

i K)
∥∥Y π

i+1

∥∥
Lp +∆i sup

t∈[0,T ]

|f(t, 0, 0)|

(using inequalities (2.2.15) and (2.2.16)),

≤
n−1∏

j=i

(1 + ∆jK +∆
1
2
i K)

(
‖ξ‖Lp + T sup

t∈[0,T ]

|f(t, 0, 0)|
)

(by Gronwall's Lemma),

≤ exp

(
KT +K

n−1∑

i=0

∆
1
2

i

)(
‖ξ‖Lp + T sup

t∈[0,T ]

|f(t, 0, 0)|
)

≤ 1

2
Cπ

(
‖ξ‖Lp + T sup

t∈[0,T ]

|f(t, 0, 0)|
)

(2.2.17)

From the inequalities of equation (2.2.17) and (2.2.15) we have

∆
1
2

i ‖Zπ
i ‖Lp ≤ 1

2
Cπ

(
‖ξ‖Lp + T sup

t∈[0,T ]

|f(t, 0, 0)|
)
. (2.2.18)

Taking the supremum on the left hand side of (2.2.17) and (2.2.18) then leads to the result of

equation (2.2.14) for 2 ≤ p <∞. Finally, taking the limit as p→ ∞ gives the result in the ase

p = ∞ and ompletes the proof.

As to the approximate solution (ui, u̇i), we �rst present their di�erentiability properties. This

property will be used in the error analysis of the onvolution method.

Lemma 2.2. If the driver f ∈ C1,2,2
is twie di�erentiable in the bakward and ontrol variables

and the driver g ∈ C2
is also twie di�erentiable then the approximate solution ui ∈ C2

and the

approximate gradient u̇i ∈ C2
are both twie di�erentiable for i = 0, 1, ..., n− 1.

Proof. The result follows by applying Leibniz's integral rule suessively.

It is important to ensure the approximate solution (ui, u̇i) is lose enough to the PDE so-

lution u and its gradient ∇u. The next lemma desribes the error indued by the BSDE time

disretization through equations (2.2.6), (2.2.8) and (2.2.7). It holds sine we know from Zhang

[124, 123℄ that the time disretization of the BSDEs yields a �rst order (quadrati) error term.
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Lemma 2.3. Under the onditions of Assumption A.2, we have that

max
0≤i<n

E

[

sup
t∈[ti,ti+1]

|u(t,Wt)− ui(Wti)|
2

]

+
n−1
∑

i=0

E

[
∫ ti+1

ti

|∇u(t,Wt)− u̇i(Wti)|
2
ds

]

= O(|π|) (2.2.19)

for any time disretization π = {0 = t0 < t1 < ... < tn = T }.

Equations (2.2.6) and (2.2.8), along with the expression of the density of equation (2.2.9),

show that the intermediate solution ũi and the approximate gradient u̇i are suessive onvolution

transformations. More spei�ally, they are (generalized) Gauss-Weierstrass transforms sine

the kernel h is the Gaussian density. We give a quik introdution to the Gauss-Weierstrass

transform in Appendix D. This presentation stems from the impressive literature on onvolution

transformations. The books of Hirshman and Widder [60℄ or Zemanian [120℄, for instane, are

dediated to the subjet and also to the partiular ase of Gauss-Weierstrass transform. In

addition, Appendix E ontains an introdution to Fourier analysis that is used in the sequel.

2.2.2 Constrution of the onvolution method

For a dampening parameter α ∈ R and any funtion f , we de�ne the funtion fα
as

fα(x) = e−αxf(x). (2.2.20)

Taking the Fourier transform of ũαi gives

F[ũαi ](ν) =

∫ ∞

−∞
e−iνxe−αx

∫ ∞

−∞
ui+1(y)h(y − x)dydx

=

∫ ∞

−∞
e−iνx

∫ ∞

−∞
uαi+1(y)e

α(y−x)h(y − x)dydx

= F[uαi+1](ν)F[e
−αzh(−z)](ν) (2.2.21)

using the onvolution theorem of Proposition E.5. Moreover

F[e−αzh(−z)](ν) =

∫ ∞

−∞
e−iνze−αzh(−z)dz

=

∫ ∞

−∞
ei(ν−iα)xh(x)dx

after the hange of variable x = −z,
= φ(ν − iα) (2.2.22)

where

φ(ν) = exp

(
−1

2
∆iν

2

)
(2.2.23)

is the harateristi funtion of the density h.

The equality of equation (2.2.22) is well-de�ned sine |φ(ν − iα)| < ∞ for any α ∈ R.

Nonetheless, the struture of the terminal ondition g (and more generally, the preeding ap-

proximation ui+1) will have a major impat in the hoie of the dampening parameter α. Indeed,

the equations (2.2.21) and (2.2.22) then lead to

F[ũαi ](ν) = F[uαi+1](ν)φ(ν − iα) (2.2.24)

and hene the parameter α must be hosen so that the dampened funtions uαi , i = 0, 1, ..., n,

are integrable and admit Fourier transforms.
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Using the same approah, the Fourier transform of u̇αi gives

F[u̇αi ](ν) = − 1

∆i
F[uαi+1](ν)F[ze

−αzh(−z)](ν)

= − i

∆i
F[uαi+1](ν)

∂

∂ν
F[e−αzh(−z)](ν)

= − i

∆i
F[uαi+1](ν)

∂

∂ν
φ(ν − iα)

= (α+ iν)F[uαi+1](ν)φ(ν − iα). (2.2.25)

where the seond equality holds by Proposition E.4.

From equations (2.2.24) and (2.2.25), we reover the funtions ũi and u̇i by taking the inverse

Fourier transform and adjusting for the dampening fator

ũi(x) = eαxF−1
[
F[uαi+1](ν)φ(ν − iα)

]
(x) (2.2.26)

u̇i(x) = eαxF−1
[
(α+ iν)F[uαi+1](ν)φ(ν − iα)

]
(x). (2.2.27)

It is possible to onstrut an alternative expliit haraterization of the BSDE numerial

solution. One may onsider diretly the expliit Euler sheme





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

Y π
ti = E

[
Y π
ti+1

+ f(ti, Y
π
ti+1

, Zπ
ti)∆i|Fti

] (2.2.28)

to de�ne the approximate solution of the PDE of equation (2.1.2). We refer to this sheme as

the expliit Euler sheme 2. In this ase, the approximate solution and the approximate gradient

onsist of funtions vi and v̇i at mesh time ti whih take the form

vi(x) =

∫ ∞

−∞
ṽi+1(y)h(y − x)dy (2.2.29)

where

ṽi+1(x) = vi+1(x) + ∆if(ti, vi+1(x), v̇i(x)), (2.2.30)

v̇i(x) =

∫ ∞

−∞
(y − x)vi+1(y)h(y − x)dy (2.2.31)

for i = 0, 1, ..., n − 1 and vn(x) = g(x). Following the steps of the previous haraterization,

these equations naturally lead to

vi(x) = eαxF−1
[
F[ṽαi+1](ν)φ(ν − iα)

]
(x) (2.2.32)

v̇i(x) = eαxF−1
[
(α+ iν)F[vαi+1](ν)φ(ν − iα)

]
(x). (2.2.33)

In this ase, both vαi and ṽαi for i = 0, 1, ..., n− 1 along with the dampened terminal ondition

are assumed to be integrable so that they admit Fourier transforms.

2.3 Implementation

As seen in Setion 2.2, the numerial approximations of the BSDE solution an be expressed

in terms of onvolutions representing the onditional expetations involved in the expliit and

impliit Euler shemes. We present, in this setion, the numerial tehniques whih will allow

us to ompute the quadratures in the solution expressions.
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2.3.1 Spae disretization

From equations (2.2.26), (2.2.27),(2.2.32) and (2.2.33) one noties that omputing the approxi-

mate solutions ui and vi at mesh time ti redues to omputing a funtion θ : R → R depending

of two funtions ψ : C → C and η : R → R in the following manner

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α(ν)ψ(ν)dν (2.3.1)

if we drop the dampening fator eαx. 2

This integral is numerially omputed by disretizing the Fourier spae with an uniform grid

of N + 1 points {νi}Ni=0 on the interval [−L
2 ,

L
2 ] of length L , where N is even, suh that

νi = ν0 + i∆ν (2.3.2)

where ν0 = −L
2 and ∆ν = L

N . Hene, for any x ∈ R

θ(x) ≈ 1

2π

∫ L
2

−L
2

eiνxη̂α(ν)ψ(ν)dν

≈ ∆ν

2π

N−1∑

i=0

eiνixη̂α(νi)ψ(νi) (2.3.3)

where the integral is approximated using lower Riemann sums and

η̂α(νi) =

∫ ∞

−∞
e−ixνiηα(x)dx =

∫ ∞

−∞
e−ixνie−αxη(x)dx. (2.3.4)

This last integral is also omputed using a uniform grid of N + 1 points {xj}Nj=0 suh that

xj = x0 + j∆x (2.3.5)

where ∆x is hosen so that the Nyquist relation

3

is satis�ed, i.e

∆x =
2π

L
. (2.3.6)

We approximate the integral of equation (2.3.4) by �rst restriting the integration interval to

[x0, xN ] = [− l
2 ,

l
2 ] and then applying a omposite quadrature rule with weights {wi}Ni=0 so that

η̂α(νi) ≈
∫ xN

x0

e−ixνiηα(x)dx (2.3.7)

≈ ∆x

N∑

j=0

wje
−ixjνiηα(xj)

= ∆x · e−ix0νi

N∑

j=0

wje
−iji 2π

N e−ijν0∆xηα(xj)

= ∆x · e−ix0νi




N−1∑

j=0

wje
−iji 2π

N e−ijν0∆xηα(xj) + wNη
α(xN )




sine N is even. Assuming that

ηα(x0) = ηα(xN ), (2.3.8)

2

For a suitable funtion η, the transform de�ning the funtion θ an be interpreted as dampened onditional

expetation of η or ∇η depending of the funtion ψ.
3

In its expliit form, we have ∆ν ·∆x = 2π
N
. One may then hoose ∆x �rst and retrieve ∆ν form the Nyquist

relation.
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we have, for i = 0, 1, ..., N − 1,

η̂α(νi) ≈
2π

∆ν
e−ix0νiD

[
{(−1)jw̃jη

α(xj)}N−1
j=0

]
i

(2.3.9)

sine e−iν0∆x = −1 with

w̃j = wj + δN−j,NwN (2.3.10)

where δi,j stands for the Kroneker's delta.

A similar approah an be found in Lord et al. [76℄ who enhane the disrete Fourier transform

with a omposite trapezoidal quadrature rule to ompute this last integral. However, the authors

omit the assumption of equation (2.3.8) leading to onsiderable numerial errors, espeially

around the boundaries of the restrited domain [x0, xN ].

Note that

(α + iν)F[ηα](ν) = F

[
αηα +

∂ηα

∂x

]
(ν)

and hene, when using ψ(ν) = (α + iν)φ(ν − iα), the Fourier oe�ients of the derivative

∂ηα

∂x

are impliitly onsidered. For this reason, we also assume that

∂ηα

∂x
(x0) =

∂ηα

∂x
(xN ) (2.3.11)

for a di�erentiable funtion η.

The values of the funtion θ are omputed at the grid points {xk}N−1
k=0 by ombining equations

(2.3.3) and (2.3.9)

θ(xk) ≈
N−1∑

j=0

eiνjxkψ(νj)e
−ix0νjD

[
{(−1)iw̃iη

α(xi)}N−1
i=0

]
j

= eikν0∆x
N−1∑

j=0

eijk
2π
N ψ(νj)D

[
{(−1)iw̃iη

α(xi)}N−1
i=0

]
j

= (−1)kD−1

[{
ψ(νj)D

[
{(−1)iw̃iη

α(xi)}N−1
i=0

]
j

}N−1

j=0

]

k

. (2.3.12)

Sine we use the DFT, the underlying trigonometri (and hene periodi) interpolation allows

us to set

θ(xN ) = θ(x0). (2.3.13)

We shall see, in the following sub-setion how to adjust the method to onsider funtions that

do not satisfy the onditions of equations (2.3.8) and (2.3.11).

2.3.2 Numerial onsiderations

The integrability ondition on the dampened approximate solutions (uαi , v
α
i and ṽαi ), partiularly

on the terminal value funtion gα, may seem too onstraining sine it narrows the sope of

BSDEs that an be numerially solved by the method. In fat, the ondition has no e�et on

the numerial method sine we are performing a domain trunation when valuing numerially

the Fourier transform of the dampened approximate solutions by the DFT in equation (2.3.7).

Indeed, this integral trunation imposes an integrability ondition only on the trunated funtion

Ξ(x) = ηα(x)1[x0,xn](x) (2.3.14)

where

1A(x) =




1 if x ∈ A

0 if x /∈ A
(2.3.15)
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is the indiator funtion. The proedure is equivalent to solving the BSDE on the restrited

domain [x0, xN ].

An important step in the onvolution method for BSDEs presented here is the hoie of

the parameter α used for dampening purposes. As already mentioned, the optimal dampening

parameter strongly depends on the struture of the funtion η and will onsiderably improve

the auray of the approximation of equation (2.3.9). Indeed, the DFT algorithm gives better

results when α is hosen suh that

ηα(x0) = ηα(xN ). (2.3.16)

Sine we intend to solve not only for the PDE solution u but also for its derivative ∇u, we also
need

∂ηα

∂x
(x0) =

∂ηα

∂x
(xN ) (2.3.17)

where we assume that the funtion η is di�erentiable at least at the boundaries of the restrited

domain.

Note that, even for very simple terminal value funtions g the ondition of equation (2.3.16)

may be impossible to satisfy. A straightforward example is provided by the funtion g(x) = x on

the interval [x0, xN ] = [−1, 1]. In order to address this problem, we slightly modify the funtion

η by adding a linear funtion to get the modi�ed dampened funtion ηαβ,κ de�ned as

ηαβ,κ(x) = e−αx(η(x) + βx+ κ). (2.3.18)

The following lemma gives the optimal hoie for the dampening parameter α ∈ R, and the

oe�ients β ∈ R and κ ∈ R.

Lemma 2.4. Suppose the real funtion η ∈ C1[a, b] is di�erentiable with

∂η

∂x
(a) 6= ∂η

∂x
(b)

and let ηαβ,κ be its dampened and modi�ed funtion as de�ned in equation (2.3.18). Then

α =
1

b − a
log

(
∂η
∂x (b) + β
∂η
∂x (a) + β

)
, (2.3.19)

κ =
e−αb(η(b) + βb)− e−αa(η(a) + βa)

e−αa − e−αb
(2.3.20)

solve the system of nonlinear equations




ηαβ,κ(a) = ηαβ,κ(b)
∂ηα

β,κ

∂x (a) =
∂ηα

β,κ

∂x (b)
(2.3.21)

for any β /∈ { ∂η
∂x (a),

∂η
∂x (b)}. If, in addition,

β > max

(
|∂η
∂x

(b)|, |∂η
∂x

(a)|
)

(2.3.22)

then also α ∈ R and κ ∈ R.

Proof. The �rst equation of the system (2.3.21) gives (2.3.20) in a straightforward manner. Sine

η is di�erentiable, ηαβ,κ is also di�erentiable and

∂ηαβ,κ
∂x

(x) = −αηαβ,κ(x) + e−αx

(
∂η

∂x
(x) + β

)

and the system (2.3.21) leads to (2.3.19). Clearly, if the inequality (2.3.22) holds then both

∂η
∂x (b) + β and

∂η
∂x(a) + β are stritly positive and α ∈ R.
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The transform of equation (2.3.18) may seem over parametrized sine we use three param-

eters to satisfy only two onditions. However, using only two parameters may lead to omplex

parameters or to an inonsistent system.

Remark 2.5. When implementing the method, the values of derivative

∂η
∂x at x0 and xN an

be approximated by �nite di�erene. We use the seond order forward (resp. bakward) �nite

di�erene when estimating

∂η
∂x (x0) (resp.

∂η
∂x (xN )) as follows

∂η

∂x
(x0) =

−3η(x0) + 4η(x1)− η(x2)

2∆x
+O(∆x2) (2.3.23)

∂η

∂x
(xN ) =

3η(xN )− 4η(xN−1) + η(xN−2)

2∆x
+O(∆x2). (2.3.24)

Also, one needs a positive onstant, whih represent the minimal slope allowed in the linear

transform βx + κ, say ǫ > 0, as an input. Set

β = ǫ+max

(
|∂η
∂x

(xN )|, |∂η
∂x

(x0)|
)
. (2.3.25)

Whenever

∂η
∂x(xN ) = ∂η

∂x0
(b), one an set α = κ = 0 and

β = −η(xN )− η(x0)

xN − x0
. (2.3.26)

Under the transformation of equation (2.3.18 ), the omputation of our approximate solution

is not signi�antly more omplex. One just has to make simple adjustments for the oe�ient

β ∈ R and κ ∈ R. For both Euler shemes of equations (2.2.1) and (2.2.28), properties of the

onditional expetation allows the adjustments and the following theorem gives their essene.

Theorem 2.6. Let η : [a, b] → R be an integrable funtion and de�ne ηβ,α : [a, b] → R as

ηβ,κ(x) = η(x) + βx+ κ

suh that ηαβ,κ is the dampened and modi�ed funtion of η aording to equation (2.3.18). Then

the funtion θ : [a, b] → R of equation (2.3.1) admits the alternative representation

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αxβ (2.3.27)

if ψ(ν) = (α+ iν)φ(ν − iα) or

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αx(βx + κ) (2.3.28)

if ψ(ν) = φ(ν − iα) .

Proof. First, let ψ(ν) = (α+ iν)φ(ν − iα). By de�nition, we know that

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α(ν)ψ(ν)dν

=
e−αx

∆i
E

[
η(Wti+1 )∆Wi|Wti = x

]

=
e−αx

∆i

(
E

[(
η(Wti+1) + βWti+1 + κ

)
∆Wi|Wti = x

]
− β∆i

)

=
e−αx

∆i
E

[
ηβ,κ(Wti+1)∆Wi|Wti = x

]
− e−αxβ

=
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αxβ.
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Similarly, if ψ(ν) = φ(ν − iα), we have

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α(ν)ψ(ν)dν

= e−αx
E

[
η(Wti+1)|Wti = x

]

= e−αx
E

[
ηβ,κ(Wti+1)|Wti = x

]
− e−αx(βx+ κ)

=
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αx(βx+ κ).

The solution for the ontrol proess Zπ
ti satis�es

Zπ
ti =

1

∆i
Eti

[(
Y π
ti+1

+ βWti+1 + κ
)
∆Wi

]
− β (2.3.29)

for any onstants β, κ ∈ R and at any time step ti, i = 0, 1, ..., n− 1. Its onditional expetation

must be shifted downward by β when using the transform funtion ηαβ,κ instead of ηα. Thus,

equation (2.3.1) an be replaed by

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α(ν)ψ(ν)dν

=
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αxβ (2.3.30)

whenever ψ(ν) = (α + iν)φ(ν − iα) and the integral of this last equation is omputed by the

method presented in equation (2.3.12) after optimizing for α, β and κ.

Moreover, for any Fti+1-measurable random variable Y we have

Eti [Y ] = Eti

[
Y + βWti+1 + κ

]
− βWti − κ. (2.3.31)

For both proposed shemes, the onditional expetations involved in the expression of the forward

solution Y π
ti must be orreted by the linear funtion βx+κ. Equivalently, the relation of equation

(2.3.1) is replaed by

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α(ν)ψ(ν)dν

=
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αx(βx + κ) (2.3.32)

whenever ψ(ν) = φ(ν− iα) where the integral of the last equation is omputed with the method

of equation (2.3.12).

As to the interval length of the frequeny domain L, we set it large enough so that the value

of the harateristi funtion φ is approximately zero (0) at the boundaries of the trunated

frequeny domain [−L
2 ,

L
2 ]. Ideally, the trunated real spae [x0, xN ] is entered around zero (0)

or more generally around the initial value of the Brownian motion {Wt}t∈[0,T ].

The struture of the BSDE driver f may have an undesirable e�et on the algorithm, speially

when it is a non-smooth funtion. This problem an be solved simply by reduing the time step

∆i. As a general rule, the larger is the Lipshitz onstant of the driver f , the smaller should the

time step ∆i be. Due to the e�ieny of the DFT algorithm, the method is well adapted for

relatively large values of n, the number of time steps.

Many quadrature rules are available to ompute the approximate solution and approximate

gradient values. One may use the omposite trapezoidal rule with weights of the form

wi = 1− 1

2
(δ0,i + δN,i) , i = 0, 1, ..., N (2.3.33)
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leading to w̃i = 1. The omposite Simpson rule will improve auray in presene of a smooth

driver f .

Finally, the implementation of the onvolution method gives the approximation values {uik}Nk=0

and {u̇ik}Nk=0 to the approximate solutions ui and u̇i for i = 0, 1, 2, ..., n− 1. The detailed algo-

rithm is as follows:

Algorithm 2.1. Convolution Method

1. Disretize the restrited real spae [− l
2 ,

l
2 ] and the restrited Fourier spae [−L

2 ,
L
2 ] with N

spae steps so to have the real spae nodes {xk}Nk=0 and the Fourier spae nodes {νk}Nk=0

2. Set un(xk) = g(xk)

3. For any i from n− 1 to 0

(a) Compute α, β and κ, de�ned in equation (2.3.18), suh that

η = (ui+1)
α
β,κ (2.3.34)

and η satis�es the boundary onditions.

(b) Compute θ(xk) through equation (2.3.12) for k = 0, 1, ..., N with

ψ(ν) = φ(ν − iα) (2.3.35)

and retrieve the values ũik as

ũik = eαxkθ(xk)− (βxk + κ) (2.3.36)

through Theorem 2.6.

() Compute θ(xik) through equation (2.3.12) for k = 0, 1, ..., N with

ψ(ν) = (α+ iν)φ(ν − iα) (2.3.37)

and retrieve the values u̇ik as

u̇ik = eαxkθ(xk)− β (2.3.38)

through Theoreom 2.6.

(d) Compute the values uik as

uik = ũik +∆if(ti, ũik, u̇ik) (2.3.39)

for k = 0, 1, ..., NiN through equation (2.2.6) when using the expliit Euler sheme 1

or as

uik = ũik +∆if(ti, uik, u̇ik) (2.3.40)

through equation (2.2.12) under the impliit Euler sheme.

Under the impliit Euler sheme, the node values uik for the approximate solution solve a

non-linear system of equation (2.2.12). For small time steps, and partiularly if the ondition

of equation (2.2.13) is satis�ed, the node values uik an be omputed iteratively using Piard

iterations. When the node values are available under the impliit or expliit Euler sheme,

an approximate solution to the BSDE onsists of a (linear) interpolation of a Brownian path

values through the node values {uik}Nk=0 and {u̇ik}Nk=0 for i = 0, 1, 2, ..., n− 1. The problem of

simulation is treated with more details in Chapter 3. the next setion deals with the problem

spae disretization errors.
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2.4 Loal spae disretization error

The onvolution method indues two (2) main types of error. Aside from the time disretization

error Eπ that we already disussed in the introdution, we have a spae disretization error.

We fouses on the study of this last error term. We limit the error analysis to the onvolution

method on the expliit Euler sheme 1 sine equivalent results are easily obtained for expliit

Euler sheme 2 and the impliit Euler sheme using the same tehniques. When onsidering

the impliit sheme, the ondition of equation (2.2.13) must be satis�ed to assure existene and

uniqueness of the impliit approximate solution ui.

Throughout the setion, {uik}Nk=0, {ũik}Nk=0 and {u̇ik}Nk=0 denote the numerial solution of

equation (2.3.12) obtained from the onvolution method at time mesh ti given the solution ui+1

at time ti+1, i = 0, 1, ..., n−1. The onvolution method indues a spae disretization error when

approximating the values of ui(xk) and u̇i(xk) by uik and u̇ik respetively. We will partiularly

desribe the loal behavior of this error term. We de�ne it as

Eik := |ui(xk)− uik|+ |u̇i(xk)− u̇ik| . (2.4.1)

The following theorem gives an error bound for the spae disretization error under smooth-

ness onditions on the BSDE oe�ients f and g.

Theorem 2.7. Suppose f ∈ C1,2,2
and g ∈ C2

. Then for any i = 0, 1, ..., n−1 and k = 0, 1, ..., N ,

the onvolution method applied on the trunated interval

[
− l

2 ,
l
2

]
yields a (loal) disretization

error of the form

Eik = χ(xk) +O (∆x) +O
(
e−K∆−1

i
l2
)

(2.4.2)

where the extrapolation error χ sati�es

|χ(xk)| ≤ C

(∫ l
2

l
2−|xk|

h(y)dy

) 1
2

(2.4.3)

for some positive onstants C,K > 0 depending on the driver f , the terminal funtion g and T

when using the trapezoidal quadrature rule.

Proof. Suppose the solution ui+1 at time ti+1 is known. Sine f ∈ C1,2,2
and g ∈ C2

, it is easily

shown that ui+1 ∈ C2
. Also, we know from Zhang [124℄ and Bouhard and Touzi [20℄ that

Y π
ti+1

= ui+1(Wti+1 ) is square integrable so that ui+1 is square integrable (with respet to the

Gaussian density).

In the light of Theorem 2.6, we an limit ourselves to the ase where

ui+1

(
− l

2

)
= ui+1

(
l

2

)
and

∂ui+1

∂x

(
− l

2

)
=
∂ui+1

∂x

(
l

2

)

so that α = β = κ = 0. Let {ck}∞k=−∞ be the Fourier oe�ients of ui+1 on

[
− l

2 ,
l
2

]
. We have

that

ũi(xk) =

∫

|y−xk|≤ l
2

ui+1(y)h(y − xk)dy +

∫

|y−xk|> l
2

ui+1(y)h(y − xk)dy

=

∫

|y|≤ l
2

ui+1(xk + y)h(y)dy +

∫

|y|> l
2

ui+1(xk + y)h(y)dy

where

∫

|y|> l
2

ui+1(xk + y)h(y)dy = E

[
ui+1(xk +∆Wn−1)1R\[− l

2 ,
l
2 ]
(∆Wn−1)

]
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= O
(
e−Kl2

)

for some onstantK > 0 whih is inversely proportional to ∆i by Cauhy-Shwartz and Cherno�

inequalities sine the solution ui+1 is square integrable. Hene

ũi(xk) =

∫

|y|≤ l
2

T∞(xk + y)h(y)dy

+

∫

|y|≤ l
2

(ui+1(xk + y)− T∞(xk + y))h(y)dy

+O
(
e−Kl2

)
(2.4.4)

where T∞(x) =
∑∞

k=−∞ cke
ik 2π

l
x
for x ∈ R. So that, on one hand, we have

∫

|y|≤ l
2

T∞(xk + y)h(y)dy

=

∞∑

j=−∞
cje

ij 2π
l
xkφ

(
j
2π

l

)
−
∫

|y|> l
2

T∞(xk + y)h(y)dy

=

N
2 −1∑

j=−N
2

cje
ij 2π

l
xkφ

(
j
2π

l

)
−
∫

|y|> l
2

T∞(xk + y)h(y)dy +O(∆x)

(by Proposition E.6),

=

N
2 −1∑

j=−N
2

φ

(
j
2π

l

)
cje

ij 2π
l
xk +O(∆x) +O

(
e−Kl2

)

(by boundedness of T∞ and Cherno� inequalities),

= (−1)k
N−1∑

j=0

φ(νj)(−1)j−
N
2 cj−N

2
ei

2π
N

jk +O(∆x) +O
(
e−Kl2

)

= (−1)k
N−1∑

j=0

φ(νj)D
[
{(−1)sui+1(xs)}N−1

s=0

]
j
ei

2π
N

jk

+ O(∆x) +O
(
e−Kl2

)
(by Proposition E.8),

= ũik +O(∆x) +O
(
e−Kl2

)
.

On the other hand, assuming xk ≥ 0 without loss of generality, let's de�ne χ0 as

χ0(xk) =

∫

|y|≤ l
2

(ui+1(xk + y)− T∞(xk + y))h(y)dy

=

∫ l
2

l
2
−xk

(ui+1(xk + y)− ui+1(xk + y − l))h(y)dy

sine T∞ is periodi and T∞(x) = ui+1(x) on the interval [− l
2 ,− l

2 ]. Equation (2.4.4) them

beomes

ũi(xk) = ũik + χ0(xk) +O(∆x) +O
(
e−Kl2

)
(2.4.5)

and we notie that, by the ontinuity of ui+1,

|χ0(xk)| ≤ C0

∫ l
2

l
2−|xk|

h(y)dy (2.4.6)

for some positive onstant C0 > 0 whih is independent of ∆i.

Similarly

u̇i(xk) =
1

∆i

∫

|y|≤ l
2

ui+1(xk + y)yh(y)dy +
1

∆i

∫

|y|> l
2

ui+1(xk + y)yh(y)dy
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where

1

∆i

∫

|y|> l
2

ui+1(xk + y)yh(y)dy

=
1

∆i
E

[
ui+1(xk +∆Wn−1)∆Wn−11R\[− l

2 ,
l
2 ]
(∆Wn−1)

]

≤ K

∆i
E

[
(∆Wn−1)

21
R\[− l

2 ,
l
2 ]
(∆Wn−1)

] 1
2

(by Chauhy-Shwartz inequality),

= O
(
∆i

− 1
2 e−K∆i

−1l2
)

(by suessively applying Cauhy-Shwartz and Cherno� inequalities),

= O
(
e−

1
2K∆i

−1l2
)
.

Hene

u̇i(xk) =
1

∆i

∫

|y|≤ l
2

T∞(xk + y)yh(y)dy +O
(
e−K∆i

−1l2
)

+
1

∆i

∫

|y|≤ l
2

(ui+1(xk + y)− T∞(xk + y)) yh(y)dy. (2.4.7)

Letting c′j = ij 2πl cj , we have

1

∆i

∫

|y|≤ l
2

T∞(xk + y)yh(y)dy

=

∞∑

j=−∞
c′jeij

2π
l
xkφ

(
j
2π

l

)
− 1

∆i

∫

|y|> l
2

T∞(xk + y)yh(y)dy

=

N
2 −1∑

j=−N
2

c′jeij
2π
l
xkφ

(
j
2π

l

)
− 1

∆i

∫

|y|> l
2

T∞(xk + y)yh(y)dy +O(∆x)

=

N
2 −1∑

j=−N
2

φ

(
j
2π

l

)
c′jeij

2π
l
xk +O(∆x) +O

(
e−K∆i

−1l2
)

(by boundedness of T∞ and Cherno� inequality),

= (−1)k
N−1∑

j=0

φ(νj)(−1)j−
N
2 c′j−N

2
ei

2π
N

jk +O(∆x) +O
(
e−K∆i

−1l2
)

= (−1)k
N−1∑

j=0

iνjφ(νj)D
[
{(−1)sui+1(xs)}N−1

s=0

]
j
ei

2π
N

jk

+ O(∆x) +O
(
e−K∆i

−1l2
)
(by Proposition E.8),

= u̇ik +O(∆x) +O
(
e−K∆i

−1l2
)
. (2.4.8)

By equations (2.4.7) and (2.4.8)

u̇i(xk) = u̇ik + χ1(xk) +O (∆x) +O
(
e−K∆i

−1l2
)

(2.4.9)

where K > 0 and, letting υ(y) = ui+1(xk + y)− T∞(xk + y),

χ1(xk) = ∆−1
i

∫

|y|≤ l
2

yυ(y)h(y)dy

= ∆−1
i

∫

|y|≤ l
2

y2
υ(y)− υ(0)

y
h(y)dy

= ∆−1
i

∫

|y|≤ l
2

y2
(
∂υ

∂x
(y) +

∂2υ

∂x2
(ξ)y

)
h(y)dy (for some ξ ∈

[
− l

2
,
l

2

]
),
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= ∆−1
i

∫

|y|≤ l
2

y2
∂υ

∂x
(y)h(y)dy (by symmetry),

= ∆−1
i

∫

|y|≤ l
2

y2
(
∂ui+1

∂x
(xk + y)− ∂T∞

∂x
(xk + y)

)
h(y)dy.

Sine

∂T∞

∂x is the Fourier expansion of

∂ui+1

∂x , we get

|χ1(xk)| ≤ C1∆
−1
i

∫ l
2

l
2−|xk|

y2h(y)dy

≤ C1

(∫ l
2

l
2−|xk|

h(y)dy

) 1
2

(2.4.10)

by the boundedness of

∂ui+1

∂x and Chauhy-Shwartz inequality, for some onstant C1 > 0.

The Lipshitz property of the driver f ompletes the proof from the relations in equations

(2.4.5), (2.4.6), (2.4.9) and (2.4.10).

Theorem 2.7 deomposes the spatial disretization error in three parts: the trunation error,

the disretization error and the extrapolation error. Most PDE based and spatial disretization

based methods for BSDEs fail in giving a bound for the error due to trunation. The error

analysis shows that the trunation error O(e−K∆−1
i

l2) has a spetral onvergene of index 2

when applying the onvolution method. Also, the disretization error O (∆x), of �rst order, is

similar to other PDE based methods suh as Douglas et al. [40℄ or Milstein and Tretyakov [90℄.

It is important to notie that the onvolution method presented here is a (Fourier) spetral

as shown in the proof of Theorem 2.7. Hene, the spae disretization error is atually also

spetral when the BSDE oe�ients are smooth f ∈ C∞
and g ∈ C∞

. The proof of Theorem

2.7 produes only a �rst order spae disretization error sine the smoothness of the BSDE

oe�ients is restrited to the seond order di�erentiability.

The extrapolation error χ is spei� to the onvolution method implemented using the DFT.

Equation (2.4.3) shows that errors appear and may aumulate around the boundaries of the

trunated domain. Nonetheless, the trunation error is mainly time related through the density

h and an be on�ned at the boundaries for �ne time disretizations as shown in the following

orollary.

Corollary 2.8. Under the onditions of Theorem 2.7,

lim
|π|→0

χ(xk) = 0 (2.4.11)

for any xk ∈
(
− l

2 ,
l
2

)
.

Proof. If xk = 0 then equation (2.4.3) gives |χ(0)| ≤ 0 and the result holds. If xk 6= 0 and

xk ∈
(
− l

2 ,
l
2

)
, then

lim
|π|→0

(∫ l
2

l
2−|xk|

h(y)dy

) 1
2

=

(
lim

|π|→0

∫ l
2

l
2−|xk|

h(y)dy

) 1
2

=

(
lim

∆i→0

∫ l
2

l
2−|xk|

h(y)dy

) 1
2

=

(∫ l
2

l
2−|xk|

δ(y)dy

) 1
2

(where δ is the Dira delta funtion),

= 0

sine 0 /∈
[
l
2 − |xk| , l

2

]
. Equation (2.4.3) then leads to the result.
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2.5 Extensions

Various simple extensions an be made of the onvolution method. One of the most important

one is re�eted BSDEs. We also onsider the onvolution method under arithmeti Brownian

motion. These ases have interesting appliations in mathematial �nane, espeially for option

priing.

2.5.1 Re�eted BSDEs

Euler shemes have been onstruted for re�eted BSDE with ontinuous barrier whih make

it possible the appliation of the onvolution method to suh BSDEs. Consider the solution

(Y, Z,A) of the system





−dYt = f(t, Yt, Zt, )dt+ dAt − ZtdWt

Yt ≥ Bt , dAt ≥ 0 , ∀t ∈ [0, T ]
∫ T

0
(Yt −Bt)dAt = 0 , YT = g(WT )

(2.5.1)

where the lower barrier is a deterministi funtion B : [0, T ]×R → R of time and the Brownian

motion

Bt = B(t,Wt). (2.5.2)

This RBSDE is assoiated to the following obstale problem





∂u
∂t + 1

2
∂2u
∂x2 + f(t, x, u,∇u) = 0,

u(t, x) ≥ B(t, x), (t, x) ∈ [0, T ]× R

u(T, x) = g(x), x ∈ R

(2.5.3)

as established by El Karoui et al. [45℄. An adaption of the Euler sheme 1 provides the numerial

solution to the re�eted BSDE through the equations





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

∆Aπ
ti =

(
E

[
Y π
ti+1

|Fti

]
+ f(ti,E

[
Y π
ti+1

|Fti

]
, Zπ

ti)∆i −B(ti,Wti)
)−

Y π
ti = E

[
Y π
ti+1

|Fti

]
+ f(ti,E

[
Y π
ti+1

|Fti

]
, Zπ

ti)∆i +∆Aπ
ti

(2.5.4)

where for any number x ∈ R, x− = max(0,−x).
The problems of time disretization of RBSDEs and their onvergene were treated in

Bouhard and Chassagneux [18℄ for the impliit Euler sheme. Peng and Xu [99℄ proposed

an equivalent sheme with a disrete �ltration and proved its onvergene under a binomial

method. This sheme is easily solved with a onvolution method by notiing that the approxi-

mate solution ui, the approximate gradient u̇i and the approximate re�etion ūi at mesh time

ti an be written as

ui(x) = ũi(x) + ∆if(ti, ũi(x), u̇i(x)) + ∆ūi(x) (2.5.5)

where

u̇i(x) =
1

∆i

∫ ∞

−∞
(y − x)ui+1(y)h(y|x)dy (2.5.6)

ũi(x) =

∫ ∞

−∞
ui+1(y)h(y|x)dy (2.5.7)

∆ūi(x) := ūi+1(x) − ūi(x)
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= [ũi(x) + ∆if(ti, ũi(x), u̇i(x)) −B(ti, x)]
−

(2.5.8)

for i = 0, 1, ..., n− 1 and un(x) = g(x). The omputation of the approximated gradient u̇i and

the intermediate solution ũi is idential to the non-re�eted ase exposed in Setion 2.3.

One an also build an alternative sheme from the expliit Euler sheme 2 as follows





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

∆Aπ
ti =

(
E

[
Y π
ti+1

+ f(ti, Y
π
ti+1

, Zπ
ti)∆i|Fti

]
−B(ti,Wti)

)−

Y π
ti = E

[
Y π
ti+1

+ f(ti, Y
π
ti+1

, Zπ
ti)∆i|Fti

]
+∆Aπ

ti .

(2.5.9)

and de�ne the approximate solution vi, the approximate gradient v̇i and the approximate re�e-

tion v̄i as

vi(x) =

∫ ∞

−∞
ṽi+1(y)h(y − x)dy +∆v̄i(x) (2.5.10)

where

ṽi+1(x) = vi+1(x) + ∆if(ti, vi+1(x), v̇i(x)) and (2.5.11)

v̇i(x) =

∫ ∞

−∞
(y − x)vi+1(y)h(y − x)dy (2.5.12)

∆v̄i(x) := v̄i+1(x)− v̄i(x)

= [ṽi+1(x)−B(ti, x)]
−

(2.5.13)

for i = 0, 1, ..., n− 1 and vn(x) = g(x).

One may even onsider another sheme proposed by Peng and Xu [99℄ based on the penal-

ization method used by El Karoui et al.[45℄ to proved re�eted BSDEs well-posedness. But sine

the penalization method relies on estimates that approahes the RBSDE solution from below,

the sheme neessarily under-estimates the RBSDE solution.

Alternative to the Euler sheme itself an be found in the θ−shemes of Zhao, Shen and Peng

[125℄. We already gave a desription of these latter shemes in equations (1.3.2) and (1.3.3) to

whih a re�eted feature an easily be added.

2.5.2 Arithmeti Brownian motion

We an extend the onvolution method to onsider an arithmeti Brownian motion

Xt = x0 + µt+ σWt (2.5.14)

as the forward proess and solve for a Cauhy problem to an advetion-di�usion equation





∂u
∂t + µ∂u

∂x + 1
2σ

2 ∂2u
∂x2 + f(t, x, u, σ∇u) = 0 , (t, x) ∈ [0, T )× R

u(T, x) = g(x), x ∈ R.
(2.5.15)

to whih an obstale an be added when in the presene of a re�eted BSDE. The forward proess

inrements are indeed stationary, independent and normally distributed with density

h(x) =
1

(2π∆i)
1
2σ

exp

(
− (x− µ∆i)

2

2σ2∆i

)
. (2.5.16)

and harateristi funtion

φ(ν) = e∆i(iµν− 1
2σ

2ν2). (2.5.17)

The development of the onvolution method in this ase also leads to transforms idential to

equation (2.3.1) with ψ(ν) = φ(ν − iα) when omputing the approximate solutions vi or the
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intermediate solutions ũi and ψ(ν) = σ(α + iν)φ(ν − iα) when omputing the approximate

gradients u̇i and v̇i. In our odes, the approximate gradients u̇ and v̇ are atually estimates for

σ∇u = σ ∂u
∂x but the shemes an easily be modi�ed so as to estimate the gradient ∇u diretly.

The equivalenes

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α(ν)ψ(ν)dν

=
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αx(β(x+ µ∆i) + κ) (2.5.18)

when ψ(ν) = φ(ν − iα) and

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α(ν)ψ(ν)dν

=
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αxβσ (2.5.19)

when ψ(ν) = σ(α + iν)φ(ν − iα) of Theorem 2.6 still holds.

2.6 Numerial results

The onvolution approah to BSDEs presented in this hapter an be used in various applia-

tions where a (numerial) solution to a PDE or a BSDE is needed. Here, we give examples of

appliations in numerial solution to PDEs, simulation of (R)BSDEs and option priing in a

one-dimensional framework.

2.6.1 Simulation of (R)BSDEs

The availability of a numerial solution to the PDE underlying the BSDE learly makes it easy

to simulate the BSDE itself. Many authors, inluding Douglas, Ma and Protter [40℄ and Milstein

and Tretyakov [89, 90℄, put forth a PDE approah to solve (oupled) FBSDEs numerially as

disussed in Chapter 1. The onvolution method, along with the binomial tree method of Peng

and Xu [99℄, is a lighter and more suitable method for the less general ase of BSDEs.

We shall �rst onsider the one-dimensional linear BSDE with generator

f(t, y, z) = ay + bz + c (2.6.1)

with a, b and c being real numbers. These BSDEs were already treated in Peng and Xu [99℄

where the authors indiate that the initial value for the forward proess Y of suh a BSDE is

given by

Y0 = e(a−
1
2 b

2)T
E

[
g(WT )e

bWT
]
+
c

a

(
eaT − 1

)
. (2.6.2)

where we take a maturity T = 1,

g(x) = |x|, (2.6.3)

as the terminal ondition and a = −1, b = 2 and c = 1 for the sake of this example.

The PDE is solved on the restrited, real spae domain [x0, xN ] = [−10, 10] with N = 212

grid points. The number of time steps n is set to 1000 and the minimal slope to ǫ = 5.

When simulating the BSDE, the restrited real spae domain plays a key role sine it has

to ontain the path values of the Brownian motion. One way to selet the domain is by taking

it large enough so that the probability that the Brownian motion �nishes in the restrited

domain approahes one (1). Indeed, the larger the restrited domain, the larger is the number
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Figure 2.6.1: Numerial solution to the linear PDE.

The surfaes are obtained with the onvolution method applied on Sheme 1 on the restrited domain

[x0, xN ] = [−10, 10] with N = 212 grid points, n = 500 time steps and a minimal slope of ǫ = 5.

Table 2.6.1: Estimates for the initial value of the linear BSDE forward proess.

n (number of time steps) 100 500 1000 2000

Convolution (Sheme 1) 1.3785 1.3750 1.3746 1.3743

Convolution (Sheme 2) 1.3777 1.3748 1.3745 1.3743

Trinomial tree (Sheme 1) 1.3785 1.3750 1.3746 1.3743

For the onvolution method, the estimates are valued on the restrited domain [x0, xN ] = [−10, 10] with 212

grid points and a minimal slope of ǫ = 5.

of grid points N sine the spae step ∆x must be small enough for the numerial solution of

the PDE to detet the variation in the Brownian motion paths. When the Brownian motion

takes intermediate values that are not on the spae grids, the orresponding values for the BSDE

solution an be interpolated (linearly) from the PDE solutions. The numerial solutions for the

PDE (approximate solution and gradient) are presented in Figure 2.6.1.

A Monte Carlo method gives an estimate of 1.3745 with a standard deviation 0.0045 for the

initial value of the forward proess Y0 using equation (2.6.2) and 5× 106 trajetories. With this

estimate as a benhmark, Table 2.6.1 displays the values obtained with the onvolution method

on the seond sheme where only the number of time steps is hanged among the spei�ed inputs.

Additional results obtained with a trinomial tree method are presented for omparison. As one

an see, both the onvolution and the trinomial tree estimates lose up on �ner time grids.

Figure 2.6.2 shows three (3) simulated paths for the Brownian motion W and the orre-

sponding simulated paths for the forward proess Y and the ontrol proess Z. Paths for the

bakward and ontrol proesses (Yt and Zt respetively) are simulated using the solution from

the onvolution method applied on Sheme 1 on the restrited domain [x0, xN ] = [−10, 10] with

N = 212 grid points, n = 1000 time steps and a minimal slope of ǫ = 5. The same number of time

steps is used to simulate the Brownian paths (Wt). An advantage of the onvolution method

over tree based methods is the simpli�ation of the simulation proedure sine the Brownian

path does not have to be approximated by saled random walk as in Peng and Xu [99℄.
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Figure 2.6.2: Path simulation for the BSDE solution.
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It is possible to simulate re�eted BSDEs in a similar manner. If we onsider the re�eted

BSDE with the same driver and terminal ondition as in the previous non-re�eted and linear

ase and set the re�eting barrier to be

B(t, x) = g(x) = |x| , (t, x) ∈ [0, T ]× R, (2.6.4)

then we get the approximate solution and the approximate gradient displayed in Figure 2.6.3.

In order to simulate the re�eting proess A, we ompute the re�etion inrements from

equation (2.5.8) at eah time step along the Brownian path. Summing those inrements then

gives the orresponding path values for the re�eting proess. Three (3) simulated Brownian

paths and their ounterparts for the RBSDE solution are plotted in Figure 2.6.6. Paths for the

bakward, ontrol and re�eting proesses (Yt, Zt and At respetively) are simulated using the

solution from the onvolution method applied on Sheme 1 on the restrited domain [x0, xN ] =

[−10, 10] with N = 212 grid points, n = 1000 time steps and a minimal slope of ǫ = 5. We

naturally use n = 1000 time steps to simulate the Brownian paths (Wt).

The onvolution method returns a forward proess initial values of Y0 = 1.3820 for both

Shemes 1 and 2 with the spei�ed inputs. Those estimates are idential to the approximation

given by the trinomial tree method (Sheme 2) with the same number of time steps n = 1000 as

the onvolution methods.

2.6.2 Option priing under Blak-Sholes model

Through option priing problems, we will partiularly treat the ase of BSDEs with non-linear

drivers that was not onsidered in the previous examples. An introdution to �nanial applia-

tions of BSDEs, partiularly to imperfet markets and Amerian option problems, an be found

in El Karoui and Quenez [48℄, El Karoui, Pardoux and Quenez [46℄ or El Karoui, Peng and

Quenez [47℄. Also the elebrated papers of Blak and Sholes [17℄ and Merton [88℄ onstitute

the �nanial basis in this setion.

For the market model onsisting of a single risky asset (or stok) {St}t∈[0,T ] with the dynami

St = eXt
(2.6.5)

where the proess {Xt}t∈[0,T ] represents the stok return, we prie an European all option with

maturity T = 1 and strike prie K under a lending rate of r = 0.01 and a borrowing rate R.
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Figure 2.6.3: Numerial solution to the linear PDE with obstale.

The surfaes are obtained with the onvolution method applied on Sheme 1 on the restrited domain

[x0, xN ] = [−10, 10] with N = 212 grid points, n = 500 time steps and a minimal slope of ǫ = 5.

Figure 2.6.4: Path simulation for the re�eted BSDE solution.
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Figure 2.6.5: Absolute errors on Amerian all option pries and deltas.
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Estimates were obtained by applying the onvolution method (Sheme 1) on the restrited domain

[x0, xN ] = X0 + [−5, 5] with N = 212 grid points, n = 1000 time steps and a minimal slope of ǫ = 5. The option

has stike prie K = S0 = 100 with R = r = 0.01.

The return proess is an arithmeti Brownian motion

Xt = X0 +

(
µ− 1

2
σ2

)
t+ σWt (2.6.6)

suh that the stok has an initial value of S0 = eX0 = 100, an expeted return rate of µ = 0.05

and a volatility of σ = 0.2.

The all option prie then follows a BSDE with the return proess {Xt}t∈[0,T ] as the forward

proess, the driver

f(t, y, z) = −ry −
(
µ− r

σ

)
z + (R− r)

(
y − z

σ

)−
(2.6.7)

and the terminal funtion

g(x) = (ex −K)
+

(2.6.8)

under those imperfet market onditions.

When the borrowing rate equals the lending rate R = r = 0.01, the European and Amerian

all options have the same prie. Figure 2.6.5 shows the struture of the absolute error on stok

option pries and deltas where the true values are omputed using the Blak-Sholes formula.

As expeted the errors are ampli�ed at the boundaries of the trunated domain, but also for

around-the-money options in a lesser extend due to the non-smoothness of the terminal funtion

g. In addition, out-of-the-money options have smaller absolute errors ompared to in-the-money

options and option pries also presents smaller absolute errors ompare to option deltas.

The Blak-Sholes formula gives all option pries of 4.6101, 8.4333 and 14.1929 at strike

pries K = 110, 100 and 90 respetively. Also, the true values for the option deltas are 0.7507,

0.5596 and 0.3720 when the strike prie is K = 90, 100 and 110 respetively. Table 2.6.2 gives

the prie estimates with both onvolution shemes and the trinomial tree method using di�erent

time steps and the indiated strike pries. Also, Table 2.6.3 ontains the relative errors for the

option deltas obtained from the approximate gradient by

Delta =
u̇0(X0)

σS0
(2.6.9)

when using Sheme 1 or

Delta =
v̇0(X0)

σS0
(2.6.10)

for Sheme 2. A similar omputation allows to obtain the option deltas from the trinomial tree

approah.
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Table 2.6.2: Relative errors (in perentage) for Amerian all option pries on non-dividend-

paying stok with no market fritions.

K (Strike) n=500 n=1000 n=2000 n=5000

Convolution

(Sheme 1)

110 0.0456 0.0217 0.0108 0.0043

100 0.0178 0.0095 0.0047 0.0024

90 0.0049 0.0028 0.0014 0.0007

Convolution

(Sheme 2)

110 0.0087 0.0239 0.0022 0.0001

100 0.0059 0.0024 0.0012 0.0007

90 0.0028 0.0014 0.0007 0.0004

Trinomial tree

(Sheme 1)

110 0.0065 0.0369 0.0087 0.0022

100 0.0356 0.0012 0.0047 0.0024

90 0.0007 0.0028 0.0021 0.0007

For the onvolution method, the option pries are valued on the restrited domain [x0, xN ] = X0 + [−5, 5] with

N = 212 grid points and a minimal slope of ǫ = 5. Both the lending and the borrowing rates are taken equal

R = r = 0.01.

Table 2.6.3: Relative errors (in perentage) for the Amerian all option deltas on non-dividend-

paying stok with no market fritions.

K (Strike) 90 100 110

Convolution (Sheme 1) 0.0133 0.0010 0.2414

Convolution (Sheme 2) 0.0133 0.0010 0.2414

Trinomial tree (Sheme 1) 0.0133 0.0010 0.2414

For the onvolution method, the option deltas are valued on the restrited domain [x0, xN ] = X0 + [−5, 5] with

N = 212 grid points and a minimal slope of ǫ = 5. The number of time steps is set to n = 2000 for all three

methods. The borrowing and lending rates are equal R = r = 0.01.

The results of Table 2.6.2 and 2.6.3 show the auray of the onvolution method on a RBSDE

with a smooth linear driver. Indeed, the relative error perentages remain low (less than 0.3%)

for the estimated option pries and deltas. However, out-the-money option estimates seem to

display the largest relative errors. In the same order of idea, option deltas have larger relative

errors ompared to option pries whih on�rms the observations on Figure 2.6.5. Overall,

the preision of the onvolution method is similar to the trinomial method sine both methods

display similar relative errors.

For a borrowing rate of R = 0.03 (di�erent from the lending rate r = 0.01), the Blak-

Sholes formula does not apply but the onvolution method is able to produe the prie and

delta surfaes for option along with estimates. Surfaes are displayed in Figure 2.6.6 for the

at-the-money European all option. Table 2.6.4 gives the at-the-money European option prie

estimates with di�erent time disretizations. Table 2.6.5 ompletes the information on option

prie with out-of-the-money European option pries. All three methods (onvolution method

on Sheme 1 and 2 and the trinomial method) return idential delta values as an be seen on

Table 2.6.6 when applied with n = 2000 time steps. The similarity in the estimates given by the

onvolution method and the trinomial method is an indiation of the good performane of the

onvolution in non-smooth and non-linear driver ases.
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Table 2.6.4: At-the-money all option pries under imperfet market onditions.

n (number of time steps) 500 1000 2000 5000

Convolution (Sheme 1) 9.4132 9.4133 9.4133 9.4134

Convolution (Sheme 2) 9.4127 9.4131 9.4132 9.4133

Trinomial tree (Sheme 1) 9.4107 9.4136 9.4130 9.4132

For the onvolution method, the estimates are valued on the restrited domain [x0, xN ] = X0 + [−5, 5] with

N = 212 grid points and a minimal slope of ǫ = 5. The risk free rates are R = 0.03 when borrowing and

r = 0.01 when lending and the option strike prie is K = S0 = 100.

Figure 2.6.6: At-the-money European all option prie and delta surfaes.

Surfaes were obtained by trunating the approximate solution and grandient of the onvolution method

(Sheme 1) on the restrited domain [x0, xN ] = X0 + [−5, 5] with N = 212 grid points, n = 1000 time steps and

a minimal slope of ǫ = 5. The option has stike prie K = S0 = 100 with R = 0.03 and r = 0.01.

The option priing an be made using a Monte Carlo method suh as the forward sheme

of Bender and Denk [10℄. But in the ontext of uni-dimensional BSDEs, Monte Carlo methods

will generally be heavier than spae disretization methods. As an illustration, the onvolution

method on both Sheme 1 and 2 runs in approximately 4.4 seonds when priing the option of

Table 2.6.4 with n = 1000 time steps. On the other hand, the trinomial tree method runs in

0.25 seond. As to the forward sheme, it runs in 18 seonds with only n = 20 time steps

4

.

Fifty (50) independent valuations with the Monte Carlo method give a 95% on�dene interval

of [9.3972, 9.4222] whih inludes all estimates of Table 2.6.4. Hene, the onvolution method is

faster that Monte Carlo methods but slower than the trinomial (or binomial) method.

The Amerian all options, whih solves a re�eted BSDE with the barrier funtion

B(t, x) = g(x) = (ex −K)+ , (t, x) ∈ [0, T ]× R (2.6.11)

essentially have the same prie as their European ounterparts under the market onditions

stated above sine our risky asset {St}t∈[0,T ] pays no dividend and, hene, the early exerise

premium is null. This an be seem numerially by simulating sample paths for the orresponding

4

We also used the 7 �rst power funtions and 100000 paths to generate the estimates. The Piard iterations

are stopped whenever the di�erene in two onseutive pries is less than 10−4
for a maximum number of 10

integrations.
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Table 2.6.5: Out-of-the-money European all option pries under imperfet market onditions.

K (Strike) n = 500 n = 1000 n = 2000 n = 5000

Convolution

(Sheme 1)

110 5.2932 5.2933 5.2933 5.2934

90 15.4290 15.4291 15.4291 15.4292

Convolution

(Sheme 2)

110 5.2924 5.2929 5.2931 5.2933

90 15.4289 15.4291 15.4292 15.4292

Trinomial tree

(Sheme 1)

110 5.2933 5.2918 5.2938 5.2935

90 15.4295 15.4297 15.4295 15.4293

For the onvolution method, the option pries are valued on the restrited domain [x0, xN ] = X0 + [−5, 5] with

212 grid points and a minimal slope of ǫ = 5. The risk free rates are R = 0.03 and r = 0.01.

Table 2.6.6: European all option deltas under imperfet market onditions.

K (Strike) 90 100 110

Convolution (Sheme 1) 0.7814 0.5987 0.4104

Convolution (Sheme 2) 0.7814 0.5987 0.4104

Trinomial tree (Sheme 1) 0.7814 0.5987 0.4104

For the onvolution method, the option deltas are valued on the restrited domain [x0, xN ] = X0 + [−5, 5] with

N = 212 grid points and a minimal slope of ǫ = 5. The number of time steps is set to n = 2000 for all three

methods. The risk free rates are R = 0.03 and r = 0.01.

RBSDE solution. On Figure 2.6.7, one noties that the ost for hedging the (at-the-money)

Amerian option is negligible either the option �nishes in or out the money. Similar results are

obtained for in and out-of-the-money Amerian all options.

If we introdue a dividend rate of δ = 0.035 under imperfet market onditions (R = 0.03

and r = 0.01), the forward (return) proess takes the form

Xt = X0 +

(
µ− δ − 1

2
σ2

)
t+ σWt. (2.6.12)

The European and Amerian option pries di�er and the Blak-Sholes formula does not apply.

Table 2.6.7 ompares the European and Amerian all option pries under the onvolution and

the trinomial method at di�erent strike pries. Table 2.6.8 does the same exerise for option

deltas.

If the deltas omputed with the onvolution and the trinomial method are idential, the

onvolution method gives slightly higher option pries ompared to the trinomial method. This

di�erene in option pries between both methods may �nd its explanation in the extrapolation

errors generated by the onvolution method or in the non-smoothness of the option prie and

delta funtions.

Nonetheless, the di�erene between European and Amerian option pries shows that the

onvolution method aptures the re�eting e�et. This di�erene between both option pries

an be visualized on Figure 2.6.8. Finally, Figure 2.6.9 shows the typial sample paths for the

Amerian option where the re�eting proess At (hedging ost) is now non-zero for in-the-money

path indiating a di�erene in prie with the European all option.
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Figure 2.6.7: Sample paths for the Amerian all option on non-dividend-paying stok.
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Paths are simulated using the solution from the onvolution method applied on Sheme 1 on the restrited

domain [x0, xN ] = X0 + [−5, 5] with N = 212 grid points, n = 1000 time steps and ǫ = 5. We used n = 1000

time steps to simulate the stok prie (St). Also, the Amerian option, with stike K = S0 = 100, was pried

under imperfet market onditions: R = 0.03 and r = 0.01.

Table 2.6.7: European and Amerian all option pries on dividend-paying stok.

K (Strike) European Amerian

Convolution (Sheme 1)

110 3.9963 4.0322

100 7.4712 7.5610

90 12.8339 13.0505

Convolution (Sheme 2)

110 3.9962 4.0321

100 7.4712 7.5609

90 12.8339 13.0505

Trinomial tree (Sheme 1)

110 3.9958 4.0317

100 7.4716 7.5614

90 12.8333 13.0500

For the onvolution method, the option deltas are valued on the restrited domain [x0, xN ] = X0 + [−5, 5] with

N = 212 grid points and a minimal slope of ǫ = 5. The number of time steps is set to n = 2000 for all three

methods. The risk free rates are R = 0.03 and r = 0.01. The dividend yield is δ = 0.035.
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Table 2.6.8: European and Amerian all option deltas on dividend-paying stok.

K (Strike) European Amerian

Convolution (Sheme 1)

110 0.3322 0.3362

100 0.5117 0.5207

90 0.7014 0.7203

Convolution (Sheme 2)

110 0.3322 0.3363

100 0.5117 0.5207

90 0.7014 0.7204

Trinomial tree (Sheme 1)

110 0.3322 0.3362

100 0.5117 0.5207

90 0.7014 0.7204

For the onvolution method, the option deltas are valued on the restrited domain [x0, xN ] = X0 + [−5, 5] with

N = 212 grid points and a minimal slope of ǫ = 5. The number of time steps is set to n = 2000 for all three

methods. The risk free rates are R = 0.03 and r = 0.01. The dividend yield is δ = 0.035.

Figure 2.6.8: Di�erene in prie between the Amerian and European all options on dividend-

paying stok.

Surfaes was obtained by trunating the approximate solutions of the onvolution method (Sheme 1) on the

restrited domain [x0, xN ] = X0 + [−5, 5] with N = 212 grid points, n = 1000 time steps and a minimal slope of

ǫ = 5. The option has stike prie K = S0 = 100 with R = 0.03, r = 0.01 and δ = 0.035.
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Figure 2.6.9: Sample paths for the Amerian all option on dividend-paying stok.
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Paths are simulated using the solution from the onvolution method applied on Sheme 1 on the restrited

domain [x0, xN ] = X0 + [−5, 5] with N = 212 grid points, n = 1000 time steps and a minimal slope of ǫ = 5.

The option has stike prie K = S0 = 100 with R = 0.03, r = 0.01 and δ = 0.035.

Overall, the onvolution method implemented on a uniform grid gives satisfatory results.

The numerial results shows the method's auray even on BSDEs with unbounded terminal

onditions and non-smooth oe�ients. Nonetheless, the error analysis indiates the presene of

a trunation error. Sine the trunation error depends on the time disretization and not on the

spae disretization, a more suitable spae disretization an suppress it. The following hapter

investigates the issue.
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Chapter 3

Alternative disretization of

onvolution

This hapter proposes an alternative disretization of the onvolution method developed in

Chapter 2. This alternative disretization is motivated by the absene of onvergene of the

onvolution sheme in the previous hapter. The non-onverging error term is due to an extrap-

olation that ours for most spae nodes. This error term is larger for the spae nodes around

the boundaries of the restrited domain as shown in the error analysis of the previous hapter.

In order to avoid extrapolation, we work with two di�erent restrited domains. The �rst

domain disretizes the Brownian inrement and the seond disretizes the spatial domain on

whih the BSDE solution is de�ned. The sheme then ombines both disretizations by hoosing

the same spae step for eah of them. The FFT algorithm is one again used to perform the

quadratures so to maintain the algorithm's e�ieny. If the proedure fores the ontration

of the spae grid through times steps, we are able to build a spae grid suitable for simulation

whih assures onvergene.

3.1 Alternative disretization

We shall illustrate the alternative disretization with the expliit Euler sheme 1 with the ap-

proximate solutions of equations (2.2.6), (2.2.7) and (2.2.8). On the time mesh π = {t0 = 0 <

t1 < ... < tn = T } suh that

∆i = ti+1 − ti, i = 0, 1, ..., n− 1, (3.1.1)

these equations may be written as

ui(x) = ũi(x) + ∆if(ti, ũi(x), u̇i(x)) (3.1.2)

where

u̇i(x) =
1

∆i

∫ ∞

−∞
yui+1(x+ y)h(y)dy (3.1.3)

ũi(x) =

∫ ∞

−∞
ui+1(x+ y)h(y)dy (3.1.4)

after a hange of variable for i = 0, 1, ..., n − 1 and un(x) = g(x). Under the impliit Euler

sheme, equation (3.1.2) may be replaed by

ui(x) = ũi(x) + ∆if(ti, ui(x), u̇i(x)) (3.1.5)

with the additional the ondition of equation (2.2.13) on the time disretization.
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3.1.1 Alternative transform

In order to ompute the onvolutions of equations (3.1.3) and (3.1.4) with the FFT algorithm, the

main requirement was that the funtion values and the derivative values math at the boundaries

of the trunated domain. In Chapter 2, we used a transform to meet that requirement. Given

a funtion η : [a, b] → R and η ∈ C1
, we onsidered the transform

ηαβ,κ(x) = e−αx(η(x) + βx+ κ) (3.1.6)

and the oe�ients α, β and κ were hosen suh that




ηαβ,κ(a) = ηαβ,κ(b)
∂ηα

β,κ

∂x (a) =
∂ηα

β,κ

∂x (b).
(3.1.7)

The transform in equation (3.1.6) presents two main disadvantages. First, it uses three

oe�ients when only two onditions need to be satis�ed, leaving the third oe�ient almost

free. Hene, we require a simpli�ed transform with only two oe�ients. Also, the transform

depends exponentially on the dampening oe�ient α. A linear dependene in the oe�ients

is more suitable so that the error indued is also linear.

We propose the alternative transform

ηα,β(x) := η0β,0 + αx2 = η(x) + αx2 + βx (3.1.8)

satisfying 


ηα,β(a) = ηα,β(b)

∂ηα,β

∂x (a) = ∂ηα,β

∂x (b).
(3.1.9)

The following lemma gives a method to selet the oe�ients α and β for the transform of

equation (3.1.8).

Lemma 3.1. Suppose the real funtion η ∈ C1[a, b] is di�erentiable and let ηα,β be its trans-

formed funtion as de�ned in equation (3.1.8). Then

α =
∂η
∂x(a)−

∂η
∂x (b)

2(b− a)
, (3.1.10)

β =
η(a)− η(b)

(b − a)
− α(b + a) (3.1.11)

solve the system of linear equations de�ned by the onditions of equation (3.1.9).

Proof. The �rst equation of the system (3.1.9) gives (3.1.10) in a straightforward manner. Equa-

tion (3.1.11) is given by the seond equation of the system.

A major feature of the transform in equation (3.1.8) is the absene of dampening. Thus, the

onvolutions on Sheme I are represented as

ũi(x) = F−1 [F[ui+1](ν)φ(ν)] (x) (3.1.12)

u̇i(x) = F−1 [iνF[ui+1](ν)φ(ν)] (x) (3.1.13)

whenever ui+1, i = 1, 2, ..., n is integrable from equations (2.2.26) and (2.2.27). Numerially,

the trunation solves the integrability problem so that dampening is not needed. Hene, non-

integrable funtions an be treated as already indiated in Subsetion 2.3.2.

The next theorem gives the representation of onvolution under the transform of equation

(3.1.8).
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Theorem 3.2. Let η : [a, b] → R be an integrable and di�erentiable funtion and let ηα,β be its

transformed funtion as de�ned in equation (3.1.8). Then the funtion θ : [a, b] → R given by

θ(x) = F−1 [F[η](ν)ψ(ν)] (x) (3.1.14)

admits the alternative representation

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α,β(ν)ψ(ν)dν − (2αx + β) (3.1.15)

if ψ(ν) = iνφ(ν) or

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − α(x2 +∆i)− βx (3.1.16)

if ψ(ν) = φ(ν) .

Proof. First, let ψ(ν) = iνφ(ν). By de�nition, we know that

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂(ν)ψ(ν)dν

=
1

∆i
E

[
η(Wti+1)∆Wi|Wti = x

]

=
1

∆i
E

[(
ηα,β(Wti+1)− αW 2

ti+1
− βWti+1

)
∆Wi|Wti = x

]

=
1

∆i
E

[(
ηα,β(Wti+1)− α(Wti +∆Wi)

2 − βWti+1

)
∆Wi|Wti = x

]

=
1

∆i
E

[
ηα,β(Wti+1)∆Wi|Wti = x

]
− (2αx+ β)

=
1

2π

∫ ∞

−∞
eiνxη̂α,β(ν)ψ(ν)dν − (2αx+ β).

Similarly, if ψ(ν) = φ(ν), we have

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂(ν)ψ(ν)dν

= E

[
η(Wti+1 )|Wti = x

]

= E

[
ηα,β(Wti+1)|Wti = x

]
− α(x2 +∆i)− βx

=
1

2π

∫ ∞

−∞
eiνxη̂α,β(ν)ψ(ν)dν − α(x2 +∆i)− βx.

As in Chapter 2, the values of the derivatives an be approximated by �nite di�erenes.

Another approah is to use the approximation of the derivative given by the onvolution method.

3.1.2 Alternative grid

The disretization proposed in this hapter onsiders a �xed spae grid for the integrated variable

y in equations (3.1.3) and (3.1.4) whih represents the Brownian inrement. This variable is

restrited on the interval of length l > 0 entered at zero (0) with an even number N ∈ N∗
of

steps. Hene, the spae step is given by

∆x =
l

N
. (3.1.17)

This spae is then used for the grid disretizing the domain variable x whih represents the

Brownian proess itself. At eah time node ti, i = 0, 1, 2, ..., n, the spatial domain is restrited

on an interval of length Nil where Ni ∈ N is a positive integer with

Ni = N0 + i. (3.1.18)
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In order to maintain a spae step of ∆x at eah time step, we disretize the spatial domain with

NiN spae steps. Sine we enter the spatial domain at W0 = 0, we get the spae nodes

xik = −Nil

2
+ k∆x, k = 0, 1, ..., NiN (3.1.19)

at mesh time ti. In partiular, if N0 = 0 then the spae grid at mesh time t0 is omposed of the

single point

x00 =W0. (3.1.20)

More preisely, we start the spae grid at mesh time t0 with (N0N + 1) points. Then at

eah times step, we add N new points to the spae grid of the previous time step. Moreover,

those new N points are equally distributed at both boundaries of the previous restrited spae

domain. These ideas are re�eted in the relationship between spae nodes of onseutive spae

grids sine

xik = xi+1,k+N
2
, k = 0, 1, ..., NiN. (3.1.21)

Figure 3.1.1 gives examples of alternative grids using di�erent parameter values.

This approah already underlies tree based methods to a lesser extent however the present

disretization o�ers more �exibility. Whereas the number of spae grid points at mesh time

t0 is limited to 1 in multinomial methods, it an be seleted almost freely in this alternate

disretization. Also, the number N + 1 of nodes on the Brownian inrement restrited domain

an be ompared to the number of branhes in a multinomial method. Hene, this alternative

disretization an be seen as a reombining tree with N + 1 branhes and N0N + 1 initial grid

points sine we use a �xed spae step ∆x.

The Fourier relations of equations (3.1.12) and (3.1.13) all for a disretization of the Fourier

spae as well. At eah mesh time ti, i = 1, 2, ..., n, the Fourier spae is restrited on an interval

of length L entered at zero (0) and disretized with NiN spae steps. The equidistant nodes

are thus of the form

νik = −L
2
+ k∆νi, k = 0, 1, ..., NiN (3.1.22)

where ∆νi =
L

NiN
. The Nyquist relation holds whenever L is suh that

Ll = 2πN. (3.1.23)

For a �xed time mesh, the length of the Brownian inrement restrited interval l, the number

of spae steps of this interval N and the number N0 ompletely de�nes the spae grid desribed

above.

3.1.3 Numerial implementation

In this hapter, we seek numerial approximations of equations (3.1.12) and (3.1.13) at eah

mesh time ti, i = 0, 1, ..., n− 1. At time ti, we use the generi funtions θi : R → R, ψ : R → C

and θi+1 : R → R suh that

θi(x) =
1

2π

∫ ∞

−∞
eiνxθ̂i+1(ν)ψ(ν)dν. (3.1.24)

We assume that the funtion θi+1 satis�es the boundary value equalities

θi+1

(
−Ni+1l

2

)
= θi+1

(
Ni+1l

2

)
(3.1.25)

∂θi+1

∂x

(
−Ni+1l

2

)
=

∂θi+1

∂x

(
Ni+1l

2

)
. (3.1.26)
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Figure 3.1.1: Examples of alternative grids with di�erent values of N0 and N .

(a) N0 = 0 and N = 2.
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Hene, the Fourier integral

θ̂i+1(ν) =

∫ ∞

−∞
e−iνxθi+1(x)dx (3.1.27)

is restrited on the interval [−Ni+1l
2 , Ni+1l

2 ] and disretized using the grid points {xi+1,k}Ni+1N
k=0

with a quadrature rule with weights {wk}Ni+1N
k=0 . As to the inverse Fourier integral of equation

(3.1.24) we restrit it on the interval [−L
2 ,

L
2 ] and disretize it with lower Riemann sums.

Following the steps of Setion 2.3.1, the values of the funtion θi on the grid points {xi+1,k}Ni+1N−1
k=0

are given by

θi(xi+1,k) ≈ (−1)kD−1
[
{ψ(νi+1,j)D[θi+1]j}Ni+1N−1

j=0

]
k

(3.1.28)

where

D[θi+1]j = D

[
{(−1)sw̃sθi+1(xi+1,s)}Ni+1N−1

s=0

]
j

(3.1.29)

and the weights {w̃j}Ni+1N−1
j=0 are de�ned as in equation (2.3.10). Consequently, equation (3.1.21)

gives

θi(xik) ≈ (−1)k+
N
2 D−1

[
{ψ(νi+1,j)D[θi+1]j}Ni+1N−1

j=0

]
k+N

2

(3.1.30)

for k = 0, 1, ..., NiN .

Due to the absene of dampening, we hose

ψ(ν) = φ(ν) (3.1.31)

when omputing the approximate solution ui and

ψ(ν) = iνφ(ν) (3.1.32)

when omputing the approximate gradient u̇i for i = 0, 1, ..., n− 1.

The bakward algorithm on the alternative grid is not signi�antly more omplex than the

regular grid of Chapter 2. One simply needs to take into aount the domain ontration

through time steps and disretize the Fourier spae aordingly. The following algorithm details

the numerial proedure on the alternative grid.

Algorithm 3.1. Convolution Method on Alternative Grid

1. Disretize the restrited real spae [−Nnl
2 , Nnl

2 ] and the restrited Fourier spae [−L
2 ,

L
2 ]

with NnN spae steps so to have the real spae nodes {xnk}NnN
k=0 and {νnk}NnN

k=0

2. Value un(xnk) = g(xnk)

3. For any i from n− 1 to 0

(a) Compute α and β de�ning the transform of equation (3.1.8), suh that

θi+1 = (ui+1)
α,β

(3.1.33)

and θi+1 satis�es the boundary onditions of equations (3.1.25) and (3.1.26).

(b) Compute θi(xik) through equation (3.1.30) for k = 0, 1, ..., NiN with

ψ(ν) = φ(ν) (3.1.34)

and retrieve the values ũik as

ũik = θi(xik)− α(x2i,k −∆i)βxi,k. (3.1.35)
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() Compute θi(xik) through equation (3.1.30) for k = 0, 1, ..., NiN with

ψ(ν) = iνφ(ν) (3.1.36)

and retrieve the values u̇ik as

u̇ik = θi(xik)− (2αxik + β) . (3.1.37)

(d) Compute the values uik as

uik = ũik +∆if(ti, ũik, u̇ik) (3.1.38)

for k = 0, 1, ..., NiN through equation (3.1.2) when using the expliit Euler sheme 1

or as

uik = ũik +∆if(ti, uik, u̇ik) (3.1.39)

through equation (3.1.5) under the impliit Euler sheme.

(e) Update the real spae grid with equation (3.1.21) and the Fourier spae grid by dis-

retizing the interval [−L
2 ,

L
2 ] with NiN spae steps so to have the real spae nodes

{xik}NiN
k=0 and {νik}NiN

k=0 .

The algorithm produes the numerial solutions {uik}NiN
k=0 , {ũik}NiN

k=0 and {u̇ik}NiN
k=0 , i =

0, 1, ..., n− 1. The next setion deals with error onsiderations under the alternative disretiza-

tion.

3.2 Error analysis

First, we give a bound for the loal disretization error. Let {uik}NiN
k=0 , {ũik}NiN

k=0 and {u̇ik}NiN
k=0

denote the numerial solutions obtained from the onvolution method at time mesh ti given the

solution ui+1 at time ti+1. For the onvolution method on the alternative grid, we de�ned the

loal disretization error as

Eik := |ui(xk)− uik|+ |u̇i(xk)− u̇ik| (3.2.1)

for i = 0, 1, ..., n− 1 and k = 0, 1, ..., NiN .

Theorem 3.3. Suppose that the driver f ∈ C1,2,2
and the terminal ondition g ∈ C2

. Then the

onvolution method yields a disretization error of the form

Eik = O (∆x) +O
(
e−K|∆i|−1l2

)
(3.2.2)

for some onstant K > 0 on the alternative grid and under the trapezoidal quadrature rule.

Proof. The proof of this result is similar to the proof of Theorem 2.7 and strongly relies on

the ideas developped in Appendix E.3. We suppose the solution ui+1 at time ti+1 is known.

The solution ui+1 ∈ C2
is twie di�erentiable sine f ∈ C1,2,2

and g ∈ C2
. Also, ui+1 is square

integrable with respet to the Gaussian density.

As in Theorem 2.7, we limit ourselves to the ase where

ui+1

(
−Ni+1l

2

)
= ui+1

(
Ni+1l

2

)
and

∂ui+1

∂x

(
−Ni+1l

2

)
=
∂ui+1

∂x

(
Ni+1l

2

)

so that the oe�ients of the transform are α = β = 0. Let Ti be the Fourier polynomial

interpolating ui+1 on

[
−Ni+1l

2 , Ni+1l
2

]
suh that

Ti(x) := TNNi+1[ui+1](x), x ∈ R. (3.2.3)
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We have that

ũi(xik) =

∫

|y|≤ l
2

ui+1(xik + y)h(y)dy +

∫

|y|> l
2

ui+1(xik + y)h(y)dy

where

∫

|y|> l
2

ui+1(xik + y)h(y)dy = O
(
e−Kl2

)

for some onstant K > 0 whih is inversely proportional to ∆i by the Cauhy-Shwartz and

Cherno� inequalities sine the solution ui+1 is square integrable. Hene

ũi(xik) =

∫

|y|≤ l
2

ui+1(xik + y)h(y)dy +O
(
e−Kl2

)

=

∫

|y|≤ l
2

Ti(xik + y)h(y)dy +O (∆x) +O
(
e−Kl2

)

(by Proposition E.10),

=

∫

R

Ti(xik + y)h(y)dy −
∫

|y|> l
2

Ti(xik + y)h(y)dy

+O (∆x) +O
(
e−Kl2

)

=

∫

R

Ti(xik + y)h(y)dy +O (∆x) +O
(
e−Kl2

)

(by Cherno�'s inequality, sine Ti is bounded),

=

∫

R

Ni+1N

2 −1∑

j=−Ni+1N

2

dje
ij 2π

Ni+1l
(xi,k+y)

h(y)dy +O(∆x) +O
(
e−Kl2

)

=

Ni+1N

2 −1∑

j=−Ni+1N

2

dje
ij 2π

Ni+1l
xi,kφ

(
j

2π

Ni+1l

)
+O(∆x) +O

(
e−Kl2

)

=

Ni+1N

2 −1∑

j=−Ni+1N

2

dje
ij 2π

Ni+1l
x
i+1,k+N

2 φ

(
j

2π

Ni+1l

)
+O(∆x) +O

(
e−Kl2

)

= (−1)k+
N
2

Ni+1N−1∑

j=0

φ(νi+1,j)(−1)j−
Ni+1N

2 d
j−Ni+1N

2

e
i 2π
Ni+1N

j(k+N
2 )

+ O(∆x) +O
(
e−Kl2

)

= (−1)k+
N
2

Ni+1N−1∑

j=0

φ(νi+1,j)D[ui+1]je
i 2π
Ni+1N

j(k+N
2 )

+ O(∆x) +O
(
e−Kl2

)

(by Proposition E.9 when using the trapezoidal quadrature rule),

= ũik +O(∆x) +O
(
e−Kl2

)
.

Similar tehniques show that

u̇i(xk) = u̇ik +O (∆x) +O
(
e−Kl2

)
(3.2.4)

where K > 0 is inversely proportional to ∆i. The Lipshitz property of the driver f ompletes

the proof.

As expeted, the alternative disretization improves the loal error bound by eliminating

extrapolation errors. The result of Theorem 3.3 establishes the onsisteny of the onvolution
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method with respet to the approximate funtions ui and gradients u̇i. Hene, the onvolution

method is onsistent to the PDE solution u and its derivative

∂u
∂x sine the time disretization is

itself onvergent.

Furthermore, the absene of extrapolation errors in the loal disretization allows us to

develop a bound for the global disretization error. The following orollary proves helpful when

deriving the global disretization error bound.

Corollary 3.4. Under the onditions of Theorem 3.3,

sup
i,k

Ei,k = O(∆x) +O
(
e−C|π|−1l2

)
(3.2.5)

where C > 0 and |π| = supi∆i.

We de�ne the global error as

El,∆x := sup
i,k

eik + sup
i,k

ėik (3.2.6)

where

eik = |un−i(xk)− un−i,k| (3.2.7)

and

ėik = |u̇n−i(xk)− u̇n−i,k| (3.2.8)

for i = 1, ..., n with e0,k = ė0,k = 0. The next theorem desribes the stability and onvergene

properties of the onvolution method.

Theorem 3.5. Suppose the onditions of Theorem 3.3 are satis�ed. If the disretization is suh

that

sup
i

max

(
∆x√
2π∆i

,
∆x

π∆i

)
≤ 1 (3.2.9)

then the onvolution method is stable and the global disretization error El,∆x satis�es

El,∆x = O(∆x) +O
(
e−C|π|−1l2

)
(3.2.10)

where C > 0.

Proof. First note that from the de�nitions of equations (3.2.1) and (3.2.7)

eik ≤ En−i,k + |un−i,k − un−i,k|
≤ En−i,k + (1 +∆iK) |ũn−i,k − ũn−i,k|

+ ∆iK |u̇n−i,k − u̇n−i,k| (3.2.11)

where K > 0 is the Lipshitz onstant of the driver f . Also, we have that

ėik ≤ En−i,k + |u̇n−i,k − u̇n−i,k| . (3.2.12)

from equations (3.2.1) and (3.2.8).

Furthermore, the onstrution of the onvolution method gives

|ũi,k − ũi,k| ≤
∣∣∣∣D−1

[
{φ(νi+1,j)D[ui+1 − ui+1,s]j}Ni+1N−1

j=0

]
k+N

2

∣∣∣∣+ Ei,k

(by Theorem 3.3 sine the transform funtion is given),

≤ 1

Ni+1N




Ni+1N−1∑

j=0

φ(νi+1,j)


 sup

k
|ui+1(xi,k)− ui+1,k|+ Ei,k

(using the matrix-vetor representation of DFTs),
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≤ 1

Ni+1N




Ni+1N−1∑

j=0

φ(νi+1,j)


 sup

k
en−i−1,k + Ei,k

≤ (∆νi+1)
−1

Ni+1N

(∫

R

φ(x)dx

)
sup
k
en−i−1,k + Ei,k

=
∆x

(2π∆i)
1
2

sup
k
en−i−1,k + Ei,k. (3.2.13)

Similarly,

|u̇i,k − u̇i,k| ≤
∣∣∣∣D−1

[
{ψ(νi+1,j)D[ui+1 − ui+1,s]j}Ni+1N−1

j=0

]
k+N

2

∣∣∣∣+ Ei,k

(by Theorem 3.3 sine the transform funtion is given),

≤ 1

Ni+1N




Ni+1N−1∑

j=0

|νi+1,j |φ(νi+1,j)


 sup

k
en−i−1,k + Ei,k

(using the matrix representation of DFTs),

≤ (∆νi+1)
−1

Ni+1N

(∫

R

|x| φ(x)dx
)
sup
k
en−i−1,k + Ei,k

=
∆x

π∆i
sup
k
en−i−1,k + Ei,k. (3.2.14)

Then, ombining the inequalities of equations (3.2.11), (3.2.13) and (3.2.14) leads to

ei,k ≤ C0Ei,k + (1 + 2∆iK)max

(
∆x√
2π∆i

,
∆x

π∆i

)
sup
k
ei−1,k

≤ C0 sup
i,k

Ei,k + (1 + 2∆iK)max

(
∆x√
2π∆i

,
∆x

π∆i

)
sup
k
ei−1,k

where C0 > 0 and K > 0 is the Lipshitz onstant of the driver f . So that

sup
k
ei,k ≤ C0 sup

i,k
Ei,k + (1 + 2∆iK)max

(
∆x√
2π∆i

,
∆x

π∆i

)
sup
k
ei−1,k

≤ C0 sup
i,k

Ei,k + (1 + 2∆iK)ζ sup
k
ei−1,k (3.2.15)

for some positive number ζ satisfying

sup
i

max

(
∆x√
2π∆i

,
∆x

π∆i

)
≤ ζ ≤ 1.

From the inequality of equation (3.2.15), Gronwall's Lemma yields

sup
k
ei,k ≤ C0e

2TK sup
i,k

Ei,k (3.2.16)

for i = 0, 1, ..., n knowing that e0,k = 0. Hene, the onvolution method is stable for the

approximate solution ui sine its error at any time step is absolutely bounded.

The inequalities of equations (3.2.12), (3.2.14) and (3.2.16) lead to

sup
k
ėi,k ≤

(
C1 +

∆x

π∆i
C0e

2TK

)
sup
i,k

Ei,k

≤
(
C1 + C0e

2TK
)
sup
i,k

Ei,k (3.2.17)

for a positive onstant C1 > 0. Hene, the onvolution method is also stable for the approximate

gradient u̇i.

The result of equation (3.2.10) follows by taking the supremum on the left hand sides of

equations (3.2.16) and (3.2.17) other time steps and applying Corollary 3.4.
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Similar to most expliit methods for PDEs

1

, the onvolution method displays a stability

ondition desribed in equation (3.2.9). This ondition is atually weaker ompared to other

methods, espeially the expliit �nite di�erene method sine the ondition is easily satis�ed. In

general, Theorem 3.5 shows that the onvolution method onverges when the spae disretization

is relatively as �ne as the time disretization and/or the square root of the time disretization.

Other numerial methods for BSDEs, and partiularly Monte Carlo based method, have a

stability and onvergene ondition. Indeed, error explosion ours for �ne time disretizations

in the bakward methods of Gobet et al. [53℄ and Bouhard and Touzi [20℄. In order to maintain

stability and onvergene, the spae disretization has to be re�ned by inreasing the number of

simulated paths.

The next orollary gives a method of disretization to produe a onvergent sheme. It also

on�rms that the major variables that impat onvergene are the maximal time step |π| and
the spae step ∆x. The length of the trunated domain l has but a negligible e�et on the global

error El,∆x for �ne time disretizations. Nonetheless, large values of l are preferable to improve

speed of onvergene but also for simulation reasons as we shall see in Setion 3.3.

Corollary 3.6. If the spae disretization is suh that

∆x ≤
√
2π min

0≤i<n
∆i (3.2.18)

then the ondition of equation (3.2.9) holds and the onvolution method applied on Sheme 1

onverges on the alternative grid as |π| → 0.

Proof. Assume without loss of generality that |π| < 1 then we have that

max

(
∆x√
2π∆i

,
∆x

π∆i

)
<

∆x√
2π∆i

≤ 1

for i = 0, 1, 2, ..., n− 1 where the last inequality holds by equation (5.3.9). Hene, the stability

ondition of equation (3.2.9) holds.

Clearly |π|+∆x→ 0, and onsequently El,∆x → 0 by Theorem 3.5, as |π| → 0.

As already mentioned in Chapter 2, the impliit Euler sheme will provide numerial so-

lutions with similar properties as those developed in Theorem 3.3 and Theorem 3.5. Indeed,

the onvergene properties under the impliit Euler sheme an be established when the time

disretization satisfy the ondition

|π|K < 1 (3.2.19)

where K is the Lipshitz onstant of the driver f . The numerial solution to the BSDE is

expliitly de�ned in the next setion.

3.3 Simulation of BSDEs

The availability of approximations for the funtions ui and u̇i , i = 0, 1, 2, .., n allows us to

simulate the BSDE. A numerial approximation of the BSDE solution an indeed be onstruted

1

For instane, the expliit �nite di�erene method on the heat equation

∂u

∂t
=
∂2u

∂x2
.

The spae step ∆x and the time step ∆ have to satisfy an a stability and onvergene ondition of the form

∆ ≤ 1

2
∆x2

as shown by the Von Neumann stability analysis of the sheme in Tveito and Winther [110℄, page 132.
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from the numerial solution of the approximate solution {uik}NiN
k=0 and the approximate gradient

{u̇ik}NiN
k=0 , i = 0, 1, 2, ..., n. The approah is similar to most four step sheme (or PDE) based

methods for solving BSDEs.

Let (Ui, U̇i) be the extended solution at time mesh ti de�ned on the trunated interval

Ii = [−1

2
Nil,

1

2
Nil]. (3.3.1)

More preisely, Ui : Ii → R (resp. U̇i : Ii → R) is the funtion obtained by linearly interpolating

the approximate solution {uik}NiN
k=0 (resp. the approximate gradient {u̇ik}NiN

k=0 ) on the spae

grid

2

. Hene, if x ∈ [xik, xi,k+1] and N0 > 0 then

Ui(x) = uik +
ui,k+1 − uik
xi,k+1 − xik

(x− xik) (3.3.2)

and similarly

U̇i(x) = u̇ik +
u̇i,k+1 − u̇ik
xi,k+1 − xik

(x− xik) (3.3.3)

for i = 0, 1, ..., n− 1 and k = 0, 1, ..., NiN − 1. In the partiular ase where N0 = 0, we set

U0(x) = u00δx,0 (3.3.4)

U̇0(x) = u̇00δx,0 (3.3.5)

so that there is no interpolation at time t0 = 0.

An extended solution for the approximate solution was also de�ned by Douglas et al. [40℄

using linear interpolation. Nonetheless, Douglas et al. [40℄ onsider extensions on both time and

spae. Also, the trunation inherent to the onvolution method fores us to set the extended

solution to a graveyard value outside the spae grid. Here, we set it as zero (0) but the boundary

values of the numerial solution an be used.

An important feature of the extension is that it does not introdue an additional error term

sine the interpolation error is of a lesser order (in spae) than the global disretization error

El,∆x. The following theorem gives the interpolation (quadrati) error bound.

Theorem 3.7. Suppose the driver f ∈ C1,2,2
, the terminal ondition g ∈ C2

and the stability

and onvergene ondition of equation (3.2.9) is satis�ed. Then

sup
i

sup
x∈Ii

|ui(x) − Ui(x)|2 + sup
i

sup
x∈Ii

∣∣∣u̇i(x)− U̇i(x)
∣∣∣
2

= O(∆x2) +O
(
e−C|π|−1l2

)
(3.3.6)

where C > 0.

Proof. First note that sine f ∈ C1,2,2
and g ∈ C2

, we have that ui ∈ C2
and u̇i ∈ C2

are both

twie di�erentiable (using the Leibniz integral rule reursively). Hene, for x ∈ [xik, xi,k+1]

ui(x) − Ui(x) = ui(x)− uik − ui,k+1 − uik
xi,k+1 − xik

(x − xik)

= ui(x)− ui(xik)−
ui(xi,k+1)− ui(xik)

xi,k+1 − xik
(x − xik)

+ O(∆x) +O
(
e−C|π|−1l2

)

2

The numerial solutions {uik}NiN

k=0 and {u̇ik}NiN

k=0 are atually omplex numbers. Sine they approximate real

values, their imaginary parts are of the order of the global disretization error El,∆x and hene negligible. For

this reason, we de�ne the funtions Ui and U̇i as real-valued funtions using the projetion of the approximate

solutions onto the real line.
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(by Theorem 3.5),

= O(∆x2) +O(∆x) +O
(
e−C|π|−1l2

)

(sine ui is twie di�erentiable),

= O(∆x) +O
(
e−C|π|−1l2

)
.

If N0 = 0, the last equation obviously holds at x = 0.

Clearly,

sup
i

sup
x∈Ii

|ui(x)− Ui(x)|2 = O(∆x2) +O
(
e−C|π|−1l2

)
(3.3.7)

sine the Ii are bounded intervals.

The same tehniques show that

sup
i

sup
x∈Ii

∣∣∣u̇i(x)− U̇i(x)
∣∣∣
2

= O(∆x2) +O
(
e−C|π|−1l2

)
(3.3.8)

and the result follows.

The approximation of the BSDE solution (Y, Z) is then given by the ouple (y, z) de�ned on

[0, T ) as

yt =

n−1∑

i=0

Ui(Wti)1[ti,ti+1)(t) (3.3.9)

zt =

n−1∑

i=0

U̇i(Wti)1[ti,ti+1)(t) (3.3.10)

where {Wt}t∈[0,T ] is a standard Brownian motion. By the de�nition of (y, z) and the ontinuity

of linear interpolations, and hene of the extended funtions Ui : Ii → R and U̇i : Ii → R, we

obtain the following orollary.

Corollary 3.8. The proesses (y, z) are both F−adapted, àdlàg and onstant on any interval

[ti, ti+1), i = 0, 1, ..., n− 1. Moreover,

(y, z) ∈ L∞
S (R2) (3.3.11)

i.e the proesses are bounded.

The (quadrati) error on the BSDE solution is de�ned as

E2
π,l,∆x := max

0≤i<n
E

[
sup

t∈[ti,ti+1)

|Yt − yt|2
]
+

n−1∑

i=0

E

[∫ ti+1

ti

|Zs − zs|2 ds
]

(3.3.12)

and haraterized in the next theorem.

Theorem 3.9. Suppose the driver f ∈ C1,2,2
, the terminal ondition g ∈ C2

, the stability and

onvergene ondition of equation (3.2.9) is satis�ed and

ξ = g(WT ) ∈ L4
(3.3.13)

then

E2
π,l,∆x = O(|π|) +O(∆x2) +O

(
e−C(N0+1)2l2 + e−C|π|−1l2

)
(3.3.14)

where C > 0.
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Proof. We have that

E2
π,l,∆x ≤ 2E2

π + 2 max
0≤i<n

E

[
sup

t∈[ti,ti+1]

∣∣Y π
ti − yt

∣∣2
]

+ 2

n−1∑

i=0

E

[∫ ti+1

ti

∣∣Zπ
ti − zs

∣∣2 ds
]

≤ 2 max
0≤i<n

E

[
sup

t∈[ti,ti+1)

∣∣Y π
ti − yt

∣∣2
]
+ 2

n−1∑

i=0

E

[∫ ti+1

ti

∣∣Zπ
ti − zs

∣∣2 ds
]

+ C1 |π| (by the result of equation I.16),

= 2 max
0≤i<n

E

[∣∣Y π
ti − yti

∣∣2
]
+ 2

n−1∑

i=0

∆iE

[∣∣Zπ
ti − zti

∣∣2
]
+ C1 |π|

≤ 2 max
0≤i<n−1

E

[
|ui(Wti)− Ui(Wti)|2 1Ii

(Wti )
]

+ 2
n−1∑

i=0

∆iE

[∣∣∣u̇i(Wti)− U̇i(Wti)
∣∣∣
2

1Ii
(Wti)

]

+ 2 max
0≤i<n−1

E

[∣∣Y π
ti

∣∣2 1R\Ii
(Wti)

]
+ 2

n−1∑

i=0

∆iE

[∣∣Zπ
ti

∣∣2 1R\Ii
(Wti)

]

+ C1 |π|

≤ 2 max
0≤i<n

sup
x∈Ii

|ui(x)− Ui(x)|2 + 2T max
0≤i<n−1

sup
x∈Ii

∣∣∣u̇i(x) − U̇i(x)
∣∣∣
2

+ 2 max
0≤i<n

E

[∣∣Y π
ti

∣∣2 1R\Ii
(Wti)

]
+ 2

n−1∑

i=0

∆iE

[∣∣Zπ
ti

∣∣2 1R\Ii
(Wti)

]

+ C1 |π|

= 2 max
0≤i<n

E

[∣∣Y π
ti

∣∣2 1R\Ii
(Wti)

]
+ 2

n−1∑

i=0

∆iE

[∣∣Zπ
ti

∣∣2 1R\Ii
(Wti )

]

+ C1 |π|+ C2∆x
2 + C3e

−C4|π|−1l2

(by Theorem 3.7),

≤ 2 max
0≤i<n

E

[∣∣Y π
ti

∣∣2 1R\Ii
(Wti )

]
+ 2T max

0≤i<n
E

[∣∣Zπ
ti

∣∣2 1R\Ii
(Wti )

]

+ C1 |π|+ C2∆x
2 + C3e

−C4|π|−1l2

≤ 2 max
1≤i<n

E

[∣∣Y π
ti

∣∣2 1R\Ii
(Wti )

]
+ 2T max

1≤i<n
E

[∣∣Zπ
ti

∣∣2 1R\Ii
(Wti )

]

+ C1 |π|+ C2∆x
2 + C3e

−C4|π|−1l2

(sine W0 ∈ I0),
≤ C1 |π|+ C2∆x

2 + C3e
−C4|π|−1l2 + C5 max

1≤i<n
E

[
1R\Ii

(Wti)
] 1

2

(by the Cauhy-Shwartz inequality and Lemma 2.1),

≤ C1 |π|+ C2∆x
2 + C3e

−C4|π|−1l2 + C5 max
1≤i<n

e−C6ti
−1N2

i l
2

(by Cherno�'s inequality),

≤ C1 |π|+ C2∆x
2 + C3e

−C4|π|−1l2 + C5e
−C6T

−1(N0+1)2l2 .

This last inequality is equivalent to the result.

As shown in Theorem 3.9, three di�erent error terms ompose the simulation (quadrati)

error E2
|π|,l,∆x: the time disretization error, the spae disretization error and the trunation

error. The time disretization error appears naturally knowing that the onvolution method is

based on an expliit Euler sheme and is of �rst order as is the original Euler sheme. The spae
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disretization error, of seond order, results from both the global disretization error El,∆x and

the quadrati form of the simulation error. The trunation error is in�uened by the probability

that the Brownian motion path exits the spae grid at a given time step. It remains spetral of

index 2 with respet to the trunation length l, and to some extent with respet to the length of

the trunated domain at the �rst time step (N0 + 1)l. Thus, inreasing N0 improves the speed

of onvergene. However, onvergene is assured for large values of l as long as the assumptions

of Theorem 3.9 are satis�ed.

In partiular, the ondition of equation (3.3.13) and its use in the proof of Theorem 3.9

indiate that the simulation error E2
|π|,l,∆x is ontrollable outside the spae grid when the ap-

proximate bakward proess Y π
ti and the approximate ontrol proess Zπ

ti are in L4
. These

onditions are satis�ed for a large range of BSDEs inluding BSDEs with terminal funtion g of

exponential growth suh that

|g(x)| ≤ Cep|x|, x ∈ R (3.3.15)

for some onstants C > 0 and p ≥ 0. Unfortunately, the BSDE well-posedness does not require

the ondition of equation (3.3.13). Thus, the onvolution method may not onverge for some

well-posed BSDEs in the sense of the simulation error E2
|π|,l,∆x in equation (3.3.12).

We an de�ne an alternate simulation error by disarding the ourrenes of the Brownian

motion outside the alternative grid. Then, the alternate simulation (quadrati) error Ē2
|π|,l,∆x is

Ē2
|π|,l,∆x := max

0≤i<n
E

[
sup

t∈[ti,ti+1)

|Yt − yt|2 1Ii
(Wti)

]

+

n−1∑

i=0

E

[∫ ti+1

ti

|Zs − zs|2 1Ii
(Wti)ds

]
. (3.3.16)

From the proof of Theorem 3.9, the following orollary stands.

Corollary 3.10. Suppose the driver f ∈ C1,2,2
, the terminal ondition g ∈ C2

and the stability

and onvergene ondition of equation (3.2.9) is satis�ed, then

Ē2
π,l,∆x = O(|π|) +O(∆x2) +O

(
e−C|π|−1l2

)
(3.3.17)

where C > 0.

3.4 Extensions

In this setion, we disuss further extensions of the onvolution method on the alternative grid.

These extensions inlude Re�eted BSDEs and also BSDES based on an arithmeti Brownian

motion.

3.4.1 Simulation of RBSDEs

We de�ned, in Setion 2.5, expliit shemes for the RBSDEs





−dYt = f(t, Yt, Zt, )dt+ dAt − ZtdWt

Yt ≥ Bt , dAt ≥ 0 , ∀t ∈ [0, T ]
∫ T

0 (Yt −Bt)dAt = 0 , YT = g(XT )

(3.4.1)

where

Bt = B(t,Wt) (3.4.2)

60



for a deterministi funtion B : [0, T ]× R → R. The time disretization of the RBSDE through

Euler sheme 1 is essentially equivalent to

ui(x) = ũi(x) + ∆if(ti, ũi(x), u̇i(x)) + ∆ūi(x) (3.4.3)

with

u̇i(x) =
1

∆i

∫ ∞

−∞
(y − x)ui+1(x+ y)h(y)dy (3.4.4)

ũi(x) =

∫ ∞

−∞
ui+1(x+ y)h(y)dy (3.4.5)

∆ūi(x) = [ũi(x) + ∆if(ti, ũi(x), u̇i(x))−B(ti, x)]
−

(3.4.6)

for i = 0, 1, ..., n− 1 and un(x) = g(x).

The onvolution method on the alternative grid provides numerial estimates for the approx-

imate solution {uik}NiN
k=0 , the approximate gradient {u̇ik}NiN

k=0 and the approximate inrement

{∆ūik}NiN
k=0 , i = 0, 1, ..., n − 1. We de�ne the extended funtions Ui and U̇i as in equations

(3.3.2) and (3.3.3). An additional extended funtion ∆Ūi : Ii → R is de�ned by linearly interpo-

lating the values {∆ūik}NiN
k=0 on the spae grid at time mesh ti. Hene, for any x ∈ [xik, xi,k+1],

∆Ūi(x) = ∆ūik +
∆ūi,k+1 −∆ūik
xi,k+1 − xik

(x− xik) (3.4.7)

for i = 0, 1, .., n− 1. When N0 = 0, we simply have

∆Ū0(x) = ∆ū00δx,0. (3.4.8)

A numerial approximation of the RBSDE solution (Y, Z,A) onsists of the triplet (y, z, a)

where

yt =
n−1∑

i=0

Ui(Wti)1[ti,ti+1)(t) (3.4.9)

zt =
n−1∑

i=0

U̇i(Wti)1[ti,ti+1)(t) (3.4.10)

at =
n−1∑

i=0

∆Ūi(Wti)1[ti,T )(t) (3.4.11)

and {Wt}t∈[0,T ] is a standard Brownian motion. By de�nition, the triple of proesses {(yt, zt, at)}t∈[0,T )

is F−adapted and àdlàg. Both proesses {yt}t∈[0,T ) and {zt}t∈[0,T ) are in L
∞
S (bounded) whereas

the proess {at}t∈[0,T ) is non-dereasing.

3.4.2 Arithmeti Brownian motion

When the forward proess is the arithmeti Brownian motion X

Xt = x0 + µt+ σWt, (3.4.12)

the BSDE solution is assoiated to the Cauhy problem on the advetion-di�usion equation





∂u
∂t + µ∂u

∂x + 1
2σ

2 ∂2u
∂x2 + f(t, x, u, σ∇u) = 0 , (t, x) ∈ [0, T )× R

u(T, x) = g(x), x ∈ R.
(3.4.13)

We already mentioned in Chapter 2 that the forward proess inrements are indeed stationary,

independent and normally distributed with density

h(x) =
1

(2π∆i)
1
2σ

exp

(
− (x− µ∆i)

2

2σ2∆i

)
. (3.4.14)
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and harateristi funtion

φ(ν) = e∆i(iµν− 1
2σ

2ν2). (3.4.15)

In this ase, the onvolution method is applied with ψ(ν) = φ(ν) when omputing the

intermediate solutions ũi and with ψ(ν) = iνφ(ν) when omputing the approximate gradient u̇i.

Though, we approximate the approximate gradient through the quantity σ∇u = σ ∂u
∂x and hene

use ψ(ν) = iσνφ(ν) in our implementation.

The equivalenes of onvolution representation under the transform of equation (3.1.8) are

given by

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂(ν)ψ(ν)dν

=
1

2π

∫ ∞

−∞
eiνxη̂α,β(ν)ψ(ν)dν

−α
[
(x+ µ∆i)

2 + σ2∆i

]
− β(x + µ∆i) (3.4.16)

when ψ(ν) = φ(ν) and

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂(ν)ψ(ν)dν

=
1

2π

∫ ∞

−∞
eiνxη̂α,β(ν)ψ(ν)dν

−σ [2α(x+ µ∆i) + β] (3.4.17)

when ψ(ν) = iσνφ(ν). The omputation of the approximate solution ui and the approximate

gradient u̇i as well as the BSDE simulation are done as desribed in the previous setions.

3.4.3 The Euler sheme 2

As stated in Chapter 2, the approximate solution vi and the approximate gradient v̇i satisfy

vi(x) =

∫ ∞

−∞
ṽi+1(x+ y)h(y)dy (3.4.18)

where

ṽi+1(x) = vi+1(x) + ∆if(ti, vi+1(x), v̇i(x)) , (3.4.19)

v̇i(x) =

∫ ∞

−∞
(y − x)vi+1(x+ y)h(y)dy (3.4.20)

for i = 0, 1, ..., n− 1 and vn(x) = g(x) under the expliit Euler sheme 2.

In this setting, one noties that two suessive onditional expetations have to be omputed

at eah time step through these equations. In order to maintain auray as desribed in Setion

3.2, a total of 2N points have to be disarded on the spae grid at eah time step

3

. As a ompar-

ison, only N points are lost in the alternative grid presented above. Thus, the implementation

of Euler sheme 2 is more omputationally demanding ompared to the Euler sheme 1.

Nonetheless, it is possible to implement the Euler sheme 2 on the alternative grid of Setion

3.1. Indeed, a simple algorithm onsists in using all values of the approximate gradient omputed

through equation (3.4.20) in the intermediate solution of equation (3.4.19). Hene, only N points

are disarded from the spae grid when omputing the approximate solution with equation

(3.4.18). As a onsequene, the Euler sheme 2 will display an additional extrapolation error,

3N points are disarded after omputing equation (3.4.20) and N other points when omputing equation

(3.4.18) whih inludes the solution of (3.4.20).
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espeially at the boundaries on the trunated domain. The omplete algorithm is given in

Algorithm 3.2.

Indeed, simple adaptations of Algorithm 3.2 allow us to solve for RBSDEs and/or for arith-

meti Brownian motion. These modi�ation were already disussed in the beginning of this

setion. Also, the simulation of (R)BSDEs follows naturally in the setting of Sheme 2 from the

presentation of the numerial solution for Sheme 1.

Algorithm 3.2. Convolution Method on Alternative Grid (sheme 2)

1. Disretize the restrited real spae [−Nnl
2 , Nnl

2 ] and the restrited Fourier spae [−L
2 ,

L
2 ]

with NnN spae steps so to have the real spae nodes {xnk}NnN
k=0 and {νnk}NnN

k=0

2. Value vn(xnk) = g(xnk)

3. For any i from n− 1 to 0

(a) Compute α and β de�ning the transform of equation (3.1.8), suh that

θi+1 = (vi+1)
α,β

(3.4.21)

and θi+1 satis�es the boundary onditions of equations (3.1.25) and (3.1.26).

(b) Compute θi(xi+1,k) through equation (3.1.28) for k = 0, 1, ..., Ni+1N with

ψ(ν) = iνφ(ν) (3.4.22)

and retrieve the values v̇ik as

v̇ik = θi(xi+1,k)− (2αxi+1,k + β) . (3.4.23)

() Compute the values ṽi+1,k as

ṽi+1,k = vi+1,k +∆if(ti, vi+1,k, v̇ik) (3.4.24)

for k = 0, 1, ..., Ni+1N through equation (3.4.19).

(d) Compute α and β de�ning the transform of equation (3.1.8), suh that

θi+1 = (ṽi+1)
α,β

(3.4.25)

and θi+1 satis�es the boundary onditions of equations (3.1.25) and (3.1.26).

(e) Compute θi(xik) through equation (3.1.30) for k = 0, 1, ..., NiN with

ψ(ν) = φ(ν) (3.4.26)

and retrieve the values vik as

ṽik = θi(xik)− α(x2i,k −∆i)βxi,k. (3.4.27)

(f) Update the real spae grid with equation (3.1.21) and the Fourier spae grid by dis-

retizing the interval [−L
2 ,

L
2 ] with NiN spae steps so to have the real spae nodes

{xik}NiN
k=0 and {νik}NiN

k=0 .

3.5 Numerial results

The numerial results on the alternative grid stands as a omplement of the results presented in

Setion 2.6. We intend to demonstrate the absene of extrapolation error and give illustrations

of the (spae and time) onvergene order on the alternative grid. Sine the trunation error is

demonstrated to be of spetral order, it an be easily set to the order of epsilon mahine

4

and,

hene, be onsidered negligible.

4

We use a double preision arithmeti with epsilon mahine ǫ = 2.2204 × 10−16
.

63



3.5.1 Spae and time onvergene order

In Appendix D, we develop losed form expressions for the approximate solution of the BSDE

with driver

f(t, y, z) = ay + bz (3.5.1)

and terminal ondition

g(x) = eϕx. (3.5.2)

Equations (D.14) and (D.15) give the bakward and ontrol proess true solutions and equations

(D.16) and (D.17) give the approximate solutions after time disretization. It learly follows

from these equations that the time disretization is onvergent as expeted. We would like to

test the onvergene of the numerial solutions to the true solutions u and ∇u and also to the

approximate solutions ui and u̇i, i = 0, 1, ..., n− 1.

We solve the BSDE with terminal time T = 0.1 and oe�ient parameters a = 3, b = −5 and

ϕ = 0.15 on uniform time meshes with ∆ = T
n and spae grids with N0 = 0. For a given time

mesh with n time steps and a spae grid with interval length l and N spae steps, we ompute

two di�erent errors. On one hand, the error of the numerial solutions with respet to the true

solutions is omputed as

ETrue = max
0≤i<n

max
0≤k≤NNi

|u(ti, xik)− uik|

+ max
0≤i<n

max
0≤k≤NNi

|∇u(ti, xik)− u̇ik| . (3.5.3)

On the other hand, the error of the numerial solutions with respet to the approximate solutions

is given by

EApp = max
0≤i<n

max
0≤k≤NNi

|ui(xik)− uik|

+ max
0≤i<n

max
0≤k≤NNi

|u̇i(xik)− u̇ik| . (3.5.4)

We hene onsider the maximal absolute error of the numerial solutions with Sheme 1 over

the entire grid on the solution u and its gradient ∇u.
The error of the numerial solutions with respet to the approximate solutions (EApp) is er-

tainly the most important one sine it indiates the auray of the onvolution method when

omputing the onditional expetations appearing in the Euler sheme. On the alternative grid,

this error term inludes the spae disretization error and the trunation error as shown in The-

orem 3.5. We will use the error EApp to analyze the spatial onvergene of the method. As

to the error of the numerial solutions with respet to the true solutions (ETrue), it inorpo-

rates the underlying time disretization error and an be used to analyze the e�et of the time

disretization proedure.

In order to perform a spatial onvergene analysis, we set n = 20 and we hoose l large

enough so that the trunation error an be negleted. More preisely, we set

l = 25
√
∆ (3.5.5)

and the trunation error is of the order of e−252C
whih is expeted to be losed to mahine

error for the onstant C > 0. The BSDE is then solved for di�erent spae disretizations with

N = 2j , j ∈ {1, 2, 3, 4, 5, 6}. Figure 3.5.1 shows the log-log plot of the maximal errors EApp and

ETrue for eah of the spae disretizations.

A �rst observation on Figure 3.5.1 is that the error with respet to the true solutions ETrue

does not hange throughout the di�erent spae disretizations. This indiates that the time

disretization error remains onstant sine we hose a onstant time step (n = 20 ) for eah of
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Table 3.5.1: Relative errors (in perentage) on the alterntive grid for European put option pries

K (Strike) n=50 n=100 n=200 n=500

Convolution

(Sheme 1)

110 0.0149 0.0746 0.0335 0.0083

100 0.6537 0.3269 0.1639 0.0660

90 1.0993 0.0635 0.2549 0.0416

Convolution

(Sheme 2)

110 0.1102 0.0268 0.0095 0.0013

100 0.7450 0.3730 0.1871 0.0753

90 1.00745 0.0525 0.2494 0.0398

Trinomial tree

(Sheme 1)

110 0.0830 0.0646 0.0200 0.0087

100 0.1891 0.0990 0.0501 0.0374

90 0.0388 0.3072 0.1035 0.0324

The onvolution method on the alternative grid is performed with a uniform time mesh and parameters N0 = 5,

l = 15
√
∆σ and N = 23. All methods use a uniform time mesh.

where the return proess {Xt}t∈[0,T ] satis�es

Xt = X0 +

(
µ− 1

2
σ2

)
t+ σWt (3.5.12)

with initial prie S0 = eX0 = 100, volatility σ = 0.2 and expeted return µ = 0.05. In addition,

the market o�ers a lending rate of r = 0.01. Under these onditions, a European put option

with strike prie K solves the BSDE with linear driver

f(t, y, z) = −ry −
(
µ− r

σ

)
z (3.5.13)

and the non-smooth terminal funtion

g(x) = (K − ex)
+
. (3.5.14)

The maturity of all onsidered options is T = 1.

At strike pries K = 110, 100 and 90, the Blak-Sholes formula returns put option pries

of 13.5156, 7.4383 and 3.2974 respetively and option deltas of −0.2655, −0.4404 and −0.6468

respetively. Table 3.5.1 and Table 3.5.2 give the relative errors for various time disretizations

produed by the estimates from the onvolution methods on the alternative grid. For omparison

purposes, these tables also ontain the relative errors of the estimates from the trinomial method

as presented in Appendix C. Sine the numerial results in Setion 2.6.2 indiate satisfatory

preision for relatively oarse time grids, we limit the number of time steps to n = 500. As

expeted, the relative error dereases when the number of time steps inreases so that the

preision of the onvolution method is improved on �ner time grids when using an alternative

spae grid.

Overall, the onvolution and trinomial methods give similar results sine they produe similar

relative errors partiularly for �ne time disretizations. Nonetheless, the error on at-the-money

option pries are slightly higher than those on out-of-the money and in-the-money option pries

under the onvolution method. As to option deltas, out-of-the money options have higher errors

than in-the-money options. Those observations are onsequenes of the non-smoothness of the

terminal ondition g and the way errors di�use through the approximation solution and the

approximate gradient under the onvolution method on the alternative grid.
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Table 3.5.2: Relative errors (in perentage) on the alternative grid for European put option

deltas.

K (Strike) n=50 n=100 n=200 n=500

Convolution

(Sheme 1)

110 0.1039 0.1063 0.0506 0.0172

100 0.2244 0.1113 0.0553 0.0219

90 0.7750 0.2329 01808 0.0332

Convolution

(Sheme 2)

110 0.1532 0.1311 0.0633 0.0226

100 0.3849 0.1924 0.0965 0.0389

90 0.9876 0.3503 0.2413 0.0583

Trinomial tree

(Sheme 1)

110 0.1865 0.0243 0.0424 0.0132

100 0.2657 0.1264 0.0596 0.0240

90 0.4370 0.3030 0.0680 0.0385

The onvolution method on the alternative grid is performed with parameters N0 = 5, l = 15
√
∆σ and N = 23.

All methods use a uniform time mesh.

Figure 3.5.3: Absolute errors at the European put option maturity.
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Errors were omputed using the numerial solutions (Sheme 1) on the alternative grid with parameters

l = 6
√
∆σ, N0 = 10 and N = 25. The uniform time mesh has n = 100 time steps.
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Figure 3.5.4: Absolute errors at the European put option issuane.
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Errors were omputed using the numerial solutions (Sheme 1) on the alternative grid with parameters

l = 6
√
∆σ, N0 = 10 and N = 25. The uniform time mesh has n = 100 time steps.

As already mentioned, the onvolution method uses Fourier series interpolation whih has a

partiular behavior when applied to non-smooth funtions. It is well-known that trigonometri

interpolations display high osillations around the disontinuities of the interpolated funtion.

Those high osillations are known as the Gibbs phenomenon and an be observed in the onvo-

lution method on the alternative grid. Figure 3.5.3 illustrates the Gibbs phenomenon in option

pries and option deltas when the (at-the-money) option is lose to maturity. If the osillations

seem to be higher for option deltas, they are more persistent for option pries. Indeed, osil-

lations disappear in option deltas lose to the option issuane as shown in Figure 3.5.4. Also,

Figure 3.5.4 indiates that the error indued by the Gibbs phenomenon di�use along the point

of disontinuity through time steps sine the errors in option pries at the option issuane are

learly higher when the option is at-the-money.

Of ourse, the presene of the Gibbs phenomenon is independent of the grid used under the

onvolution method. Hene, this analysis also holds for the uniform spae grid of Chapter 2.

However, the presene of the extrapolation error on a uniform grid makes the analysis more

ompliated sine this error globally dominates the spae disretization error whih ontains the

error indued by the Gibbs phenomenon.

We onlude this setion with the numerial resolution of RBSDEs using the onvolution

method through Amerian put option priing. The barrier in this ase is given as usual by

B(t, x) = g(x), (t, x) ∈ [0, T ]× R. (3.5.15)

Table 3.5.3 shows at-the-money Amerian put option prie and delta estimates from the onvo-

lution and the trinomial methods. The estimates from both methods remain similar whih is an

indiation of the onvolution method auray for RBSDEs on the alternative grid. Similarly,

the regularity of the prie and delta surfaes of Figure 3.5.5 gives an idea of the stability of

the numerial solutions for RBSDEs from the onvolution method. Finally, this regularity and

auray allows for a reliable path simulation for (R)BSDEs as illustrated in Figure 3.5.6.

The implementation of the onvolution method on the alternative grid produes a loal dis-

retization error exempt of trunation errors. The BSDE numerial solution was formally de�ned

and a global error analysis was onduted. The numerial results presented in this setions also
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Table 3.5.3: Amerian put option prie and delta estimates

K (Strike) Prie Delta

Convolution (Sheme 1)

110 13.6860 -0.6402

100 7.5115 -0.4466

90 3.3234 -0.2518

Convolution (Sheme 2)

110 13.6855 -0.6402

100 7.5112 -0.4465

90 3.3235 -0.2517

Trinomial tree (Sheme 1)

110 13.6860 -0.6402

100 7.5135 -0.4465

90 3.3239 -0.2518

Estimates were omputed using the numerial solutions (Sheme 1) on the alternative grid with parameters

l = 15
√
∆σ, N0 = 5 and N = 23. The uniform time mesh has n = 1000 time steps for all methods.

Figure 3.5.5: At-the-money Amerian put option prie and delta surfaes.

The surfaes are obtained using the numerial solutions (Sheme 1) on the alternative grid with parameters

l = 6
√
∆σ, N0 = 10 and N = 25. The uniform time mesh has n = 100 time steps.
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Figure 3.5.6: Path simulation for the at-the-money Amerian put option.
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The paths are interpolated from the numerial solutions (Sheme 1) on the alternative grid with parameters

l = 6
√
∆σ, N0 = 10 and N = 25. The uniform time mesh has n = 100 time steps.

on�rm the theoretial results developed in the error analysis. However, the onvolution is lim-

ited to the BSDE ase. Hene, the following setion extends the results to the more general

FBSDE framework.
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Chapter 4

A Fourier interpolation method for

FBSDEs

An important and interesting extension of the onvolution method onsists in applying it to

FBSDEs. Unfortunately, the onvolution representation of our approximate solutions, as devel-

oped and used in Chapters 2 and 3, are unavailable in the FBSDE ase. The reason for this

inonveniene is that the forward proess in a general FBSDE setting, even though a Markovian

proess, does not have independent inrements. Hene the distribution funtion of the forward

proess inrement does not depend exlusively on the inrement, but also on the proess's last

position.

In this hapter, we shall use some of the ideas introdued in the previous hapters in order

to build a numerial method for FBSDEs. The main purpose is to obtain a numerial solution

on a uniform spae grid as �exible as the one in Chapter 3 and resulting in a onvergent sheme.

The majority of spae disretization and PDE methods for FBSDEs fail in produing a uniform

spae grid whih makes the implementation of those methods quite hallenging. Milstein and

Tretyakov [89, 90℄ and Delarue and Menozzi [35, 36℄ are notable examples. The reason for the

extend usage of non-uniform spae grids stems from the non-stationarity of the forward proess

1

.

Nonetheless, a uniform spae grid seems to be easier to handle and more suitable for simulation.

4.1 Preliminaries

As already indiated, we work on the omplete �ltered probability spae (Ω, F , F, P) where the

�ltration F = {Ft : t ∈ [0, T ]} is generated by a d-dimensional Brownian motion {Wt}t∈[0,T ].

The general FBSDE for whih we seek a numerial solution is a system of the form





dXt = a(t,Xt)dt+ σ(t,Xt)dWt

−dYt = f(t,Xt, Yt, Zt)dt− Z∗
t dWt

X0 = x0 , YT = ξ

(4.1.1)

where the forward drift a : [0, T ]× Rd → Rd
, the forward volatility σ : [0, T ]× Rd → Rd×d

, the

driver f : [0, T ]× Rd × R × Rd → R are deterministi funtions. The initial ondition x0 ∈ Rd

and the terminal ondition takes the Markovian form ξ = g(XT ) where g : Rd → R.

We assume the usual Lipshitz and growth onditions on deoupled FBSDE oe�ients. The

following Assumption gives the details.

1

In the weak sense.
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Assumption 4.1.1. There exist positive onstants K1, K2 K3, and K4 suh that the oe�ients

of the FBSDE (4.1.1) satisfy

|a(t, x1)− a(t, x2)| ≤ K1 |x1 − x2| (4.1.2)

‖σ(t, x1)− σ(t, x2)‖2 ≤ K1 |x1 − x2| (4.1.3)

|a(t, x)|+ ‖σ(t, x)‖2 ≤ K2 (4.1.4)

|f(t, x1, y, z)− f(t, x2, y, z)| ≤ K1 |x1 − x2| (4.1.5)

|f(t, x, y1, z1)− f(t, x, y2, z2)| ≤ K1 (|y1 − y2|+ |z1 − z2|) (4.1.6)

|f(t, x, y, z)| ≤ K3(1 + |x|+ |y|+ |z|) (4.1.7)

for any t ∈ [0, T ], x, x1, x2 ∈ Rd
, y, y1, y2 ∈ R, z, z1, z2 ∈ Rd

.

Moreover σ2 := σσ∗
is (uniformly) invertible, ontinuous and bounded

∥∥(σ2(t, x))−1
∥∥
2
≤ K4 (4.1.8)

for any t ∈ [0, T ], x ∈ Rd
.

In addition, the terminal value is square integrable

‖ξ‖2L2 := E
[
|g(XT )|2

]
<∞. (4.1.9)

A solution of the system of stohasti di�erential equations (4.1.1) is a triple of proesses

(X,Y, Z) where the forward proess X ∈ L2
S(R

d) is adapted and square integrable. In addition,

the bakward proess Y ∈ L2
S(R) and the ontrol proess Z ∈ L2

I(R
d) are also adapted and

square integrable.

The problem of well-posedness for the systems of stohasti di�erential equations (4.1.1) has

been widely studied. The existene and uniqueness result of the forward proess X is established

through SDE theory. Pardoux and Peng [96℄ proved the well-posedness of the bakward SDE.

As indiated by Pardoux and Peng [97℄, the FBSDE of equation (4.1.1) is assoiated with

the following Cauhy problem on a quasilinear (paraboli) PDE





∂u
∂t + Lu+ f(t, x, u, σ∗(t, x)∇u) = 0, (t, x) ∈ [0, T )× Rd

u(T, x) = g(x), x ∈ Rd
(4.1.10)

where

Lu =

d∑

i=1

ai(t, x)
∂u

∂xi
+

1

2

d∑

i,j=1

σ2
ij(t, x)

∂2u

∂xi∂xj
. (4.1.11)

The FBSDE solution an hene be expressed in terms of the PDE solution u as

Xt = x0 +

∫ t

0

a(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs (4.1.12)

Yt = u(t,Xt) (4.1.13)

Zt = σ∗(t,Xt)∇u(t,Xt). (4.1.14)

through the four step sheme of Ma, Protter and Yong [79℄.

4.2 Numerial implementation

We develop the numerial implementation of the Fourier interpolation method method. In

this setion, the basis on the time and spae disretizations are given. The presentation gives

Fourier representation of numerial solution in the general multidimensional ase. The numerial

implementation however is restrited to the one-dimensional ase.
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4.2.1 Time disretization and Fourier representation

As usual, the starting point is the expliit Euler sheme 1 applied to the FBSDE of equation

(4.1.1). On the time mesh π = {t0 = 0 < t1 < ... < tn = T } with time steps

∆i = ti+1 − ti, i = 0, 1, ..., n− 1, (4.2.1)

the time disretization takes the form





Xπ
0 = x0

Xπ
ti+1

= Xπ
ti + a(ti, X

π
ti)∆i + σ(ti, X

π
ti)∆Wi

Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

Y π
ti = E

[
Y π
ti+1

|Fti

]
+ f(ti, X

π
ti ,E

[
Y π
ti+1

|Fti

]
, Zπ

ti)∆i

(4.2.2)

where ∆Wi =Wti+1 −Wti . First note that

σ(ti, X
π
ti)Z

π
ti =

1

∆i
E

[
Y π
ti+1

σ(ti, X
π
ti)∆Wi|Fti

]

=
1

∆i
E

[
Y π
ti+1

(∆Xπ
i −∆ia(ti, X

π
ti))|Fti

]
(4.2.3)

with ∆Xπ
i = Xπ

ti+1
−Xπ

ti . Hene, the approximate solution ui at mesh time ti an be written as

ui(x) = ũi(x) + ∆if(ti, x, ũi(x), u̇i(x)) (4.2.4)

where the intermediate solution ũi and the approximate gradient u̇i at mesh time ti satisfy

ũi(x) = E

[
Y π
ti+1

|Xπ
ti = x

]

=

∫

Rd

ui+1(x+ y)hi(y|x)dy (4.2.5)

σ(ti, x)u̇i(x) =
1

∆i
E

[
Y π
ti+1

σ(ti, X
π
ti)∆Wi|Xπ

ti = x
]

=
1

∆i

∫

Rd

(y −∆ia(ti, x))ui+1(x + y)hi(y|x)dy (4.2.6)

for i = 0, 1, ..., n− 1 and un(x) = g(x). Moreover, the funtion hi is the onditional density of

the disrete forward inrement ∆Xπ
i given an initial position of Xπ

ti = x at mesh time ti. From

the Euler sheme in equation (4.2.2), hi is the density of a Gaussian random variable with mean

∆ia(ti, x) and variane-ovariane matrix ∆iσ
2(ti, x).

The density is expliitly given by

hi(y|x) = (2π)−
d
2

∥∥∆iσ
2(ti, x)

∥∥− 1
2

2
exp

(
− 1

2∆i
y∗(σ2(ti, x))

−1y

)
(4.2.7)

where y = y −∆ia(ti, x) with harateristi funtion

φi(ν, x) = ei∆iν
∗a(ti,x)− 1

2∆iν
∗σ2(ti,x)ν. (4.2.8)

The density funtion hi and the harateristi funtion φi satisfy the relation

hi(y|x) =
1

(2π)d

∫

Rd

e−iν∗yφi(ν, x)dν. (4.2.9)

Consequently, they also satisfy

yhi(y|x) = − 1

(2π)d

∫

Rd

e−iν∗yi∇νφi(ν, x)dν
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= ∆ia(ti, x)hi(y|x)

+
∆iσ

2(ti, x)

(2π)d

∫

Rd

e−iν∗yiνφi(ν, x)dν (4.2.10)

where the �rst equality holds by Proposition E.4.

Hene, assuming ui+1 is (Lebesque) integrable, equation (4.2.5) leads to

ũi(x) =
1

(2π)d

∫

Rd

ui+1(x+ y)

∫

Rd

e−iν∗yφi(ν, x)dνdy

(using the relation of equation (4.2.9)),

=
1

(2π)d

∫

Rd

∫

Rd

e−iν∗yui+1(x + y)φi(ν, x)dydν

=
1

(2π)d

∫

Rd

eiν
∗xF[ui+1](ν)φi(ν, x)dν

= F−1[F[ui+1](ν)φi(ν, x)](x). (4.2.11)

Sine σ(t, x) is a full rank matrix, equation (4.2.6) is equivalent to

u̇i(x) =
σ∗(ti, x)

(2π)d

∫

Rd

ui+1(x+ y)

∫

Rd

e−iν∗yiνφi(ν, x)dνdy

(using the relation of equation (4.2.10)),

=
σ∗(ti, x)

(2π)d

∫

Rd

∫

Rd

e−iν∗yui+1(x+ y)iνφi(ν, x)dydν

=
σ∗(ti, x)

(2π)d

∫

Rd

eiν
∗xF[ui+1](ν)iνφi(ν, x)dν

= σ∗(ti, x)F
−1[F[ui+1](ν)iνφi(ν, x)](x). (4.2.12)

We use the Fourier representations in equations (4.2.4), (4.2.11) and (4.2.12) in the implemen-

tation of the method under the expliit Euler sheme 1. Equation (4.2.4) an be replaed by

ui(x) = ũi(x) + ∆if(ti, x, ui(x), u̇i(x)) (4.2.13)

under the impliit Euler sheme. In this ase, the ondition on the time disretization of equation

(2.2.13) has to be satis�ed.

If the forward proess X admits the onditional harateristi funtion

φt(ν, x, τ) = E

[
eiν

∗(Xt+τ−Xt)|Xt = x
]
, (4.2.14)

then the onditional harateristi funtion may be used in the onvolution method. The pro-

edure leads to the expressions

ũi(x) = F−1[F[ui+1](ν)φti (ν, x,∆i)](x) (4.2.15)

u̇i(x) = σ∗(ti, x)F
−1[F[ui+1](ν)iνφti (ν, x,∆i)](x) (4.2.16)

for the intermediate solution and the approximation gradient in plae of equations (4.2.11) and

(4.2.12). By using the onditional harateristi funtion, we are onsidering the true distribution

the forward inrement ∆Xi = Xti+1 − Xti instead of the Gaussian distribution of its Euler

disretization ∆Xπ
i in the onditional expetations.

4.2.2 Spae disretization

Before disretizing the Fourier integrals in the one-dimensional ase d = 1, we �rst onsider the

behavior of the relations in equations (4.2.11) and (4.2.12) under the alternative transform. The

next theorem gives the result and its proof is essentially similar to the proof of Theorem 3.2.
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Theorem 4.1. Let uα,βi+1 be the alternative transform de�ned in equation (3.1.8) of the approx-

imate solution ui+1. Then the intermediate solution ũi and the approximate gradient u̇i in

equations (4.2.5) and (4.2.6) satisfy

ũi(x) = F−1[F[uα,βi+1](ν)φ(ν, x)](x)

−α[(x+∆ia(ti, x))
2 +∆iσ

2(ti, x)]

−β(x+∆ia(ti, x)) (4.2.17)

u̇i(x) = σ(ti, x)F
−1[F[uα,βi+1](ν)iνφ(ν, x)](x)

−σ(ti, x)[2α(x +∆ia(ti, x)) + β]. (4.2.18)

As usual, we selet the parameters α and β suh that the funtion uα,βi+1 and its derivative

values are equal at the boundaries of a given interval through the method of Lemma 3.1. Con-

sequently, it su�es to ompute the values of a generi funtion θi : R → R at eah time step ti

verifying

θi(x) =
1

2π

∫ ∞

−∞
eiνxθ̂i+1(ν)ψ(ν, x)dν. (4.2.19)

with ψ : R2 → C and θi+1 : R → R. We may assume that θi+1 satis�es the value and derivative

onditions at the boundaries of a given interval.

The spae disretization is performed with an alternative grid as desribed in Chapter 3. In

this ase, the alternative grid disretizes the forward proess X and not the Brownian motion

as in the previous hapter. The grid is de�ned by the inrement interval length l > 0, its (even)

number of spae steps N > 0 and the initial number of intervals N0 > 0 at mesh time t0. The

grid an be easily built suh that the initial forward value x0 is a grid point at the initial time

step t0 i.e

x0 ∈ {x0,k : k = 0, 1, ..., NN0}. (4.2.20)

We assume that the grid is entered at the initial value of the forward proess X0 = x0. This

requirement simpli�es the error analysis even though a shifted grid does not alter the onvergene

results. Moreover, a shifted grid may be useful to take into aount the presene of a drift in

the forward proess X or a known onstraint on the support of its atual transition density.

Hene, assuming that

θi+1 (xi+1,0) = θi+1

(
xi+1,NNi+1

)
(4.2.21)

∂θi+1

∂x
(xi+1,0) =

∂θi+1

∂x

(
xi+1,NNi+1

)
. (4.2.22)

and following the disretization steps of Setion 1.2 or Setion 3.1, we have

θi(xik) ≈ (−1)k+
N
2 D−1

[
{ψ(νi+1,j , xik)D[θi+1]j}Ni+1N−1

j=0

]
k+N

2

(4.2.23)

for k = 0, 1, ..., NiN . In addition,

D[θi+1]j = D

[
{(−1)sw̃sθi+1(xi+1,s)}Ni+1N−1

s=0

]
j
. (4.2.24)

where the weights {w̃j}Ni+1N−1
j=0 are as in equation (2.3.10).

In equation (4.2.23), the generi funtion ψ depends on the spae node xik. If the relation

generalizes for all spae nodes xik, k = 0, 1, ..., NiN , the funtion values θi(xik), k = 0, 1, ..., NiN ,

an not be omputed with a single diret FFT proedure. Instead, a separate FFT proedure

using the values of the generi funtion ψ at xik is needed to ompute the funtion value θi(xik).

Nonetheless the vetor-matrix representation of the FFT proedure in equation (4.2.23) allows

the omputation of all funtion values θi(xik) with a matrix multipliation.
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In the vetor-matrix representation, equation (4.2.23) write

θi(xik) = (−1)k+
N
2 F̂k+N

2
Ψ(xik)D[θi+1] (4.2.25)

where F̂k+N
2
is the (k + N

2 )th row of the Ni+1N dimension inverse FFT matrix F̂ and Ψ(xik)

is the Ni+1N dimension diagonal matrix built with the values {ψ(νi+1,j , xik)}Ni+1N−1
j=0 . Let Θ(i)

be the NiN dimension vetor of the funtion values θi(xik) suh that

Θ
(i)
1+k = θi(xik) (4.2.26)

for k = 0, 1, ..., NiN . The matrix representation gives

Θ(i) = Ψ̂(i)
D[θi+1] (4.2.27)

where Ψ̂(i)
is the (NiN + 1)×Ni+1N matrix suh that

Ψ̂
(i)
1+k,1+j = (−1)k+

N
2 ω̄

j(k+N
2 )

i ψ(νi+1,j , xik) (4.2.28)

with ω̄i = ei2π(Ni+1N)−1

, k = 0, 1, ..., NiN and j = 0, 1, ..., Ni+1N − 1.

The algorithm for this Fourier interpolation method for (deoupled) FBSDEs is essentially

similar to Algorithm 3.1. One just has to adapt the methods of omputation by using the

equations introdued in this setion.

4.3 Error analysis

The error analysis for the Fourier interpolation method follows the ideas of Chapter 3. As in

Setion 3.2, Fourier interpolation is used to derive a loal disretization error whih naturally

leads to a global disretization error under a stability ondition. From the global error bound,

the simulation error is obtained using the time disretization error of Zhang [124℄ or Bouhard

and Touzi [20℄ as in Setion 3.3. We fous the analysis as usual on the expliit Euler sheme 1.

The next theorem gives a bound for the loal disretization error de�ned in equation (3.2.1).

Theorem 4.2. Suppose that the driver f ∈ C1,2,2
and the terminal ondition g ∈ C2

and

Assumption 4.1.1 is satis�ed. Then the Fourier interpolation method yields a disretization

error of the form

Eik = O (∆x) +O
(
e−K|∆i|−1l2

)
(4.3.1)

for some onstant K > 0 on the alternative grid and under the trapezoidal quadrature rule.

Proof. Following the steps of Theorem 3.3, the trunation error relies on the expression

∫

|y|> l
2

h(y|xi,k)dy = P

[
|∆Xπ

i | >
l

2

∣∣Xπ
ti = xi,k

]

= P

[(
∆Xπ

i

σ(ti, xi,k)
√
∆i

)2

>
l2

4σ2(ti, xi,k)∆i

∣∣Xπ
ti = xi,k

]
.

Let ζ = l2

4σ2(ti,xi,k)∆i
and knowing that the random variable

(
∆Xπ

i

σ(ti,xi,k)
√
∆i

)2
follows a non-

entral hi-square distribution with one (1) degree of freedom and non-entrality parameter

λ =
(

a(ti,xi,k)
σ(ti,xi,k)

)2
∆i, we have

∫

|y|> l
2

h(y|xi,k)dy ≤ inf
0<s< 1

2

(1− 2s)−
1
2 e−sζ+ λs

1−2s

(by Cherno�'s inequality)
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< Ce−sζ

(sine λ is bounded by Assumption 4.1.1),

< Ce−
s
4 (σ

2(ti,xi,k)∆i)
−1l2

< Ce−
sK
4 (∆i)

−1l2

for some onstants C,K > 0 and s ∈ (0, 12 ) where the last inequality holds sine σ−2
is also

bounded from bellow.

This last inequality haraterizes the trunation error. The Fourier interpolation then gives

the �rst order spae disretization error and the Lipshitz property of the driver f ompletes the

proof.

Theorem 4.2 implies that the struture of the loal disretization error does not hange when

solving a FBSDE with bounded forward oe�ients on the alternative grid. The loal spae

disretization error is still of �rst order and the spae trunation error of spetral order with

index 2. The boundedness of the forward drift a and volatility σ plays a key role in maintaining

these onvergene properties for the Fourier interpolation method. Also, the global disretization

error de�ned in equation (3.2.6) displays the same struture in our FBSDE ase under a slightly

di�erent stability ondition that takes into aount the presene of bounded forward proess

oe�ients. The next theorem states the result.

Theorem 4.3. Suppose the onditions of Theorem 4.2 are satis�ed. If the spae disretization

is suh that

sup
i

max

(
K

1
2
4 ∆x√
2π∆i

,
K4∆x

π∆i

)
≤ 1 (4.3.2)

then the Fourier interpolation method is stable and the global disretization error El,∆x satis�es

El,∆x = O(∆x) +O
(
e−C|π|−1l2

)
(4.3.3)

where C > 0 and K4 is the upper bound of equation (4.1.8).

Proof. In the proof of Theorem 3.3, we established that

eik ≤ En−i,k + |un−i,k − un−i,k|
≤ En−i,k + (1 +∆iK) |ũn−i,k − ũn−i,k|

+ ∆iK |u̇n−i,k − u̇n−i,k| (4.3.4)

ėik ≤ En−i,k + |u̇n−i,k − u̇n−i,k| . (4.3.5)

In the FBSDE ase presented in this hapter, and assuming that the values of the funtion ui+1

and the sequene {ui+1,s}Ni+1N
s=0 math at the boundaries of the trunated interval,

|ũi,k − ũi,k| ≤
∣∣∣∣D−1

[
{φ(νi+1,j)D[ui+1 − ui+1,s]j}Ni+1N−1

j=0

]
k+N

2

∣∣∣∣

≤ 1

Ni+1N




Ni+1N−1∑

j=0

|φ(νi+1,j , xik)|


 sup

k
|ui+1(xik)− ui+1,k|

(using the matrix-vetor representation of DFTs),

≤ 1

Ni+1N




Ni+1N−1∑

j=0

|φ(νi+1,j , xik)|


 sup

k
en−i−1,k

≤ (∆νi+1)
−1

Ni+1N

(∫

R

|φ(ν, xik)| dν
)
sup
k
en−i−1,k
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=
∆x

(2πσ2(ti, xik)∆i)
1
2

sup
k
en−i−1,k

≤ K
1
2
4 ∆x

(2π∆i)
1
2

sup
k
en−i−1,k. (4.3.6)

where the last inequality holds by Assumption 4.1.1. Similarly,

|u̇i,k − u̇i,k| ≤
∣∣∣∣D−1

[
{ψ(νi+1,j , xik)D[ui+1 − ui+1,s]j}Ni+1N−1

j=0

]
k+N

2

∣∣∣∣

≤ 1

Ni+1N




Ni+1N−1∑

j=0

|iνi+1,jφ(νi+1,j , xik)|


 sup

k
en−i−1,k

(using the matrix representation of DFTs),

≤ (∆νi+1)
−1

Ni+1N

(∫

R

|νφ(ν, xik)| dν
)
sup
k
en−i−1,k

=
∆x

πσ2(ti, xik)∆i
sup
k
en−i−1,k

≤ K4∆x

π∆i
sup
k
en−i−1,k. (4.3.7)

The rest of the proof is idential to the proof of Theorem 3.3. The inequalities of equations

(4.3.4), (4.3.6) and (4.3.7) lead to

ei,k ≤ C0Ei,k + (1 + 2∆iK)max

(
∆x√
2π∆i

,
∆x

π∆i

)
sup
k
ei−1,k

≤ C0 sup
i,k

Ei,k + (1 + 2∆iK)max

(
∆x√
2π∆i

,
∆x

π∆i

)
sup
k
ei−1,k

where C0 > 0 and K > 0 is the Lipshitz onstant of the driver f . Consequently,

sup
k
ei,k ≤ C0 sup

i,k
Ei,k + (1 + 2∆iK)max

(
∆x√
2π∆i

,
∆x

π∆i

)
sup
k
ei−1,k

≤ C0 sup
i,k

Ei,k + (1 + 2∆iK)ζ sup
k
ei−1,k (4.3.8)

for some positive number ζ satisfying

sup
i

max

(
K

1
2
4 ∆x√
2π∆i

,
K4∆x

π∆i

)
≤ ζ ≤ 1.

and the Gronwall's Lemma yields

sup
k
ei,k ≤ C0e

2TK sup
i,k

Ei,k (4.3.9)

from the inequality of equation (4.3.8) for i = 0, 1, ..., n knowing that e0,k = 0. The last equation

establishes the stability of the Fourier interpolation method for the approximate solution ui sine

its error at any time step is absolutely bounded.

The inequalities of equations (4.3.5), (4.3.7) and (4.3.9) lead to

sup
k
ėi,k ≤

(
C1 +

∆x

π∆i
C0e

2TK

)
sup
i,k

Ei,k

≤
(
C1 + C0e

2TK
)
sup
i,k

Ei,k (4.3.10)

for a positive onstant C1 > 0. Hene, the onvolution method is also stable for the approximate

gradient u̇i.

The result of equation (4.3.3) follows by taking the supremum on the left hand sides of

equations (4.3.9) and (4.3.10) other time steps and applying Theorem 4.2.
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Let (Ui, U̇i) be the extended solution at time mesh ti as de�ned at equations (3.3.2) and

(3.3.3). The numerial solution {(xt, yt, zt)}t∈[0,T ) to the FBSDE (4.1.1) takes the form

xt =

n−1∑

i=0

Xπ
ti1[ti,ti+1)(t) (4.3.11)

yt =

n−1∑

i=0

Ui(X
π
ti)1[ti,ti+1)(t) (4.3.12)

zt =

n−1∑

i=0

U̇i(X
π
ti)1[ti,ti+1)(t) (4.3.13)

on the time interval [0, T ). The quadrati error on the FBSDE solution is

E2
π,l,∆x := max

0≤i<n
E

[
sup

t∈[ti,ti+1)

|Xt − xt|2
]
+ max

0≤i<n
E

[
sup

t∈[ti,ti+1)

|Yt − yt|2
]

+

n−1∑

i=0

E

[∫ ti+1

ti

|Zs − zs|2 ds
]

(4.3.14)

and the next theorem, inspired by Theorem 3.9, desribes its error bound.

Theorem 4.4. Suppose the driver f ∈ C1,2,2
, the terminal ondition g ∈ C2

, the stability and

onvergene ondition of equation (3.2.9) is satis�ed and

ξ = g(XT ) ∈ L4
(4.3.15)

then

E2
π,l,∆x = O(|π|) +O(∆x2) +O

(
e−C(N0+1)2l2 + e−C|π|−1l2

)
(4.3.16)

where C > 0.

Proof. Sine the quadrati error of the Euler sheme on the forward proess is of �rst order in

time we learly have

max
0≤i<n

E

[
sup

t∈[ti,ti+1)

|Xt − xt|2
]
= O(|π|). (4.3.17)

As to the bakward part, the proof follows the steps of Theorem 3.9. The Euler sheme also gives

a quadrati error of �rst order in time for the bakward and ontrol proesses. The quadrati

spae disretization error and the spetral spae trunation error are onsequenes of Theorem

4.3.

The error due the simulation on a �nite grid redues to the expressionmax1≤i<nE
[
1R\Ii

(Xπ
ti)
]

whenever g(XT ) ∈ L4
. Sine the intervals Ii are entered at X0, we further have

max
1≤i<n

E

[
1R\Ii

(Xπ
ti)
]

≤ max
1≤i<n

P

[
Xπ

ti ≥ X0 +Ni
l

2

]

+ max
1≤i<n

P

[
Xπ

ti ≤ X0 −Ni
l

2

]

≤ max
0<i<n

inf
s>0

e−s(X0+Ni
l
2 )Mti(s)

+ max
0<i<n

inf
s>0

es(X0−Ni
l
2 )Mti(−s)

by Cherno�'s inequality where Mti is the moment generating funtion of Xπ
ti . The moment

generating funtion Mti satis�es

Mti(s) = E

[
esX

π
ti

]
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= E

[
e
sXπ

ti−1
Eti

[
e
s
(

Xπ
ti
−Xπ

ti−1

)
]]

= E

[
e
sXπ

ti−1φi−1(−is,Xπ
ti−1

)
]

≤ e
1
2∆i−1K

2
2s

2+∆i−1K2|s|
E

[
e
sXπ

ti−1

]

(by Assumption 4.1.1),

≤ esX0e
1
2 tiK

2
2s

2+tiK2|s|

(after a reursion),

≤ esX0e
1
2TK2

2s
2+TK2|s|

for any s ∈ R, so that

max
1≤i<n

E

[
1R\Ii

(Xπ
ti)
]

≤ 2 max
0<i<n

inf
s>0

e−sNi
l
2 e

1
2TK2

2s
2+TK2s

≤ 2 max
0<i<n

e
− 1

2TK2
2
(TK2−Ni

l
2 )

2

≤ K max
0<i<n

e−CN2
i l

2

≤ Ke−C(N0+1)2l2 .

Overall, the boundedness of the forward drift a and volatility σ is ruial in the Fourier

interpolation method. Not only does it allow us to derive a bound for the loal trunation error

in Theorem 4.2 but it also leads to the method's global stability as shown by equation (4.3.2).

The proof of Theorem 4.4 also indiates that the boundedness of the forward oe�ients is

neessary for the ontrol of the simulation error.

The Fourier interpolation method an obviously be extended to re�eted FBSDEs following

the proedure of Setion 3.4.1. For a re�eted FBSDE with a lower barrier of the form





dXt = a(t,Xt)dt+ σ(t,Xt)dWt

−dYt = f(t,Xt, Yt, Zt, )dt+ dAt − ZtdWt

Yt ≥ Bt , dAt ≥ 0 , ∀t ∈ [0, T ]
∫ T

0
(Yt −Bt)dAt = 0

X0 = x0 , YT = g(XT )

(4.3.18)

where

Bt = B(t,Xt) (4.3.19)

we may de�ne the approximate solutions of the re�eted FBSDE as

ui(x) = ũi(x) + ∆if(ti, x, ũi(x), u̇i(x)) + ∆ūi(x) (4.3.20)

u̇i(x) =
1

∆i

∫ ∞

−∞
(y − x)ui+1(x+ y)h(y|x)dy (4.3.21)

ũi(x) =

∫ ∞

−∞
ui+1(x+ y)h(y|x)dy (4.3.22)

∆ūi(x) = [ũi(x) + ∆if(ti, x, ũi(x), u̇i(x)) −B(ti, x)]
−

(4.3.23)

for i = 0, 1, ..., n − 1 and un(x) = g(x). The Fourier interpolation method presented in this

hapter allows us to ompute the values of numerial solutions uik and u̇ik for the bakward

and ontrol proesses. The values for numerial solution of the re�eting proess ∆ūik follow

naturally. De�ning the extended funtions Ui, U̇i and ∆Ūi as in equations (3.3.2), (3.3.3) and
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(3.4.7) respetively, the numerial solution (x, y, z, a) of the re�eted FBSDE solution (X,Y, Z,A)

write

xt =
n−1∑

i=0

Xπ
ti1[ti,ti+1)(t) (4.3.24)

yt =
n−1∑

i=0

Ui(X
π
ti)1[ti,ti+1)(t) (4.3.25)

zt =
n−1∑

i=0

U̇i(X
π
ti)1[ti,ti+1)(t) (4.3.26)

at =
n−1∑

i=0

∆Ūi(X
π
ti)1[ti,T )(t). (4.3.27)

For this hapter, we will omit the numerial results. The material presented here is a gener-

alization of Chapter 3 . Hene, the numerial results from the previous hapters and the error

analysis onduted in this one already give an insight of the Fourier interpolation method per-

formane. Also, the present hapter an be viewed as a speial ase of the following hapter

so that the numerial results provided in Chapter 5 on�rm the error analysis on the method

presented here.
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Chapter 5

Disretization of FBSDEs with

Runge-Kutta shemes

Runge-Kutta shemes, introdued by Chassagneux and Crisan [27℄, are a reent development of

time disretization methods for FBSDEs. They are themselves an extension of the well-known

Runge-Kutta methods for ODEs to FBSDEs. Hene, the shemes produe numerial solutions

of higher order of onvergene and their properties are studied in Chassagneux and Crisan [27℄

on a deoupled FBSDE. More preisely, the authors provide a disretization of the bakward

SDE assuming that a disretization of the forward SDE is available.

In this hapter, we develop a Fourier method for the numerial solution of one-dimensional

BSDEs using Runge-Kutta shemes. The main ideas leading to BSDE numerial solutions were

already introdued in Chapter 3. Hene, we shall use the Fourier transform representations of

the various onditional expetations involved in the Runge-Kutta shemes to de�ne approximate

solutions to the BSDE. These approximate solutions are then omputed on an alternative grid

using the FFT algorithm in order to retrieve higher order onvergent numerial solutions.

5.1 Runge-Kutta shemes

This setion gives the formal de�nition of Runge-Kutta shemes. We also propose simple as-

sumptions on the time disretization of the forward SDE whih lead to a simpli�ation of the

sheme expressions.

5.1.1 Time disretization

In the general setting, the FBSDE onsidered is of the form





dXt = a(Xt)dt+ σ(Xt)dWt

−dYt = f(Yt, Zt)dt− Z∗
t dWt

X0 = x0 , YT = g(XT )

(5.1.1)

where W is a d−dimensional Brownian motion. The forward drift a : Rd → Rd
, the forward

volatility σ : Rd → Rd×d
, the driver f : R × Rd → R and the terminal funtion g : Rd → R

are all deterministi funtions. It is always possible to generalize the system to onsider time

dependent oe�ients.
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Assumption 5.1.1. In addition to the usual Lipshitz and linear growth onditions

1

, we suppose

that all oe�ients are bounded. In partiular, the bakward drift f ∈ Cm
b and the terminal

funtion g ∈ Cm
b with m ≥ 2 are at least twie di�erentiable.

The BSDE is disretized on the time partition π = {0 = t0 < t1 < ... < tn = T } as usual

with suessive time steps

∆i = ti+1 − ti , i = 0, 1, ..., n− 1

and maximal time step

|π| := max
0≤i<n

∆i. (5.1.2)

Let q ∈ N∗
, we onsider the q-stage Runge-Kutta sheme giving the following numerial solution

at mesh time ti

Zπ
ti = Eti


Hϕ1

ti,∆i
Y π
ti+1

+∆i

q∑

j=1

βjH
ϕ1

ti,(1−γj)∆i
f(Y π

i,j , Z
π
i,j)




(5.1.3)

Y π
ti = Eti


Y π

ti+1
+∆i

q+1∑

j=1

αjf(Y
π
i,j , Z

π
i,j)




(5.1.4)

for a set positive oe�ients {γj}q+1
j=1 suh that 0 = γ1 < ... < γq+1 = 1. The intermediate

solutions {(Y π
i,j , Z

π
i,j)}qj=2 take the form

Zπ
i,j = Eti,j

[
H

ϕj

ti,j ,γj∆i
Y π
ti+1

+∆i

j−1∑

k=1

βjkH
ϕj

ti,j ,(γj−γk)∆i
f(Y π

i,k, Z
π
i,k)

]

(5.1.5)

Y π
i,j = Eti,j

[
Y π
ti+1

+∆i

j∑

k=1

αjkf(Y
π
i,k, Z

π
i,k)

]
(5.1.6)

where

ti,j = ti + (1 − γj)∆i, 1 ≤ j ≤ q + 1 (5.1.7)

with (Y π
i,1, Z

π
i,1) = (Y π

ti+1
, Zπ

ti+1
), (Y π

i,q+1, Z
π
i,q+1) = (Y π

ti , Z
π
ti) and terminal ondition

(Ytn , Ztn) = (g(XT ), σ
∗(XT )∇g(XT )). (5.1.8)

The oe�ients {αj}q+1
j=1 , {βj}qj=1, {αjk : 1 ≤ j ≤ q, 1 ≤ k ≤ j} and {βjk : 1 ≤ j ≤ q, 1 ≤ k < j}

are all positive and satisfy

q+1∑

j=1

αj = 1 (5.1.9)

βjj = 0, 1 ≤ j ≤ q, (5.1.10)

j∑

k=1

αjk =

j−1∑

k=1

βjk = γj , 1 < j ≤ q. (5.1.11)

Let Bm
denote the set of ontinuous and bounded funtions on [0, 1] suh that

Bm := {φ ∈ Cb :
∫ 1

0

skφ(s)ds = δ0,k, k ≤ m and k,m ∈ N
∗}. (5.1.12)

The stohasti oe�ient Hϕ
t,∆ with t ∈ [0, T ) and ∆ > 0 is de�ned as

Hϕ
t,∆ :=

1

∆

∫ t+∆

t

ϕ

(
s− t

∆

)
dWs (5.1.13)

1

See Assumption 4.1.1.
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with ϕ ∈ Bm
for some m ∈ N∗

.

The global error of the q−stage Runge-Kutta sheme Eπ is de�ned as

E2
π := max

0≤i<n

∥∥Yti − Y π
ti

∥∥2
L2 +

n−1∑

i=0

∆i

∥∥Zti − Zπ
ti

∥∥2
L2

= max
0≤i<n

E

[∣∣Yti − Y π
ti

∣∣2
]
+

n−1∑

i=0

∆iE

[∣∣Zti − Zπ
ti

∣∣2
]

(5.1.14)

and is hene weaker than the error Eπ onsidered for the Euler sheme. Nonetheless, the global

error Eπ is easier to handle sine it is strongly related to the loal time disretization error.

The sheme an be represented by the following tableau

γ1 α1,1 0 . . . 0 0 β1,1 0 . . . 0

γ2 α2,1 α2,2 . . . 0 0 β2,1 β2,2 . . . 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

γq αq,1 αq,2 . . . αq,q 0 βq,1 βq,2 . . . βq,q

γq+1 α1 α2 . . . αq αq+1 β1 β2 . . . βq

One an observe that if αq+1 = 0 and αjj = 0, 1 < j ≤ q, then the q-stage Runge-Kutta

sheme is expliit. Otherwise, the sheme is impliit. For instane, the Runge-Kutta shemes

with tableau

0 0 0 0

1 0 1 1

and the sheme with tableau

0 0 0 0

1 1
2

1
2 1

known as the Crank-Niholson sheme onstitute 1−stage impliit Runge-Kutta shemes. The

only 1−stage expliit Runge-Kutta sheme admits the tableau

0 0 0 0

1 1 0 1

In Chassagneux and Crisan [27℄, the impliit and the expliit 1−stage Runge-Kutta shemes

are shown to be one-half (12 ) order onvergent. The Crank-Niholson sheme, already studied in

Crisan and Manolarakis [31℄, presents a �rst order of onvergene. Notie that the Euler shemes

used in the previous hapters are not 1−stage Runge-Kutta shemes sine they do not lead to

any onsistent tableau. Nonetheless, their struture is equivalent to the expliit 1−stage Runge-
Kutta sheme and both shemes display the same half (12 ) order of onvergene. The following

tableau gives a example of expliit 2-stage Runge-Kutta shemes of �rst order of onvergene

for γ2 ∈ (0, 1] and β1 ∈ [0, 1].

0 0 0 0 0 0

γ2 γ2 0 0 γ2 0

1 1− 1
2γ2

1
2γ2

0 β1 1− β1

5.1.2 Further simpli�ation

From the q-stage Runge-Kutta sheme for BSDEs, one noties that we have at least 2q onditional

expetations to ompute at eah time step. These onditional expetations an be simpli�ed and

made more suitable for numerial implementation if we onsider a reasonable time disretization

of the forward SDE. Hene, we make the following assumption that we will use throughout the

hapter.
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Assumption 5.1.2. (1). The forward SDE is disretized with the pieewise onstant proess

Xπ
suh that for t ∈ [ti, ti+1) we have

Xπ
t = Xπ

ti (5.1.15)

pathwise.

(2). The forward SDE time disretization with global error EX,π is of order m > 0 i.e

E2
X,π := max

0≤i≤n

∥∥Xti −Xπ
ti

∥∥2
L2 = O(|π|2m). (5.1.16)

The onditions of Assumption 5.1.2 are not hard to meet. Many higher order time disretiza-

tions for forward SDEs satisfying the onditions for a given order m > 0 are indeed available.

Appendix B stands as an introdution to It�-Taylor expansion based shemes as an example and

a more omplete presentation of these shemes an be found in Kloeden and Platen [69℄ among

others. The next theorem gives a simpli�ation of the BSDE time disretization expressions.

Theorem 5.1. Under Assumption 5.1.2 (1), the solution of the q-stage Runge-Kutta sheme

satis�es

{(Y π
i,j , Z

π
i,j)}q+1

j=2 ∈ Fti (5.1.17)

for 0 ≤ i < n. Consequently, we an write

Zπ
i,j = Eti

[
H

ϕj

ti,j ,γj∆i

(
Y π
ti+1

+∆iβj,1f(Y
π
ti+1

, Zπ
ti+1

)
)]

(5.1.18)

Y π
i,j = Eti

[
Y π
ti+1

+∆iαj,1f(Y
π
ti+1

, Zπ
ti+1

)
]

+∆i

j∑

k=2

αjkf(Y
π
i,k, Z

π
i,k) (5.1.19)

for 0 ≤ i < n and 1 < j ≤ q + 1 where ϕq+1 = ϕ1, βq+1,1 = β1 and αq+1,k = αk.

Proof. Clearly (Y π
i,q+1, Z

π
i,q+1) = (Y π

ti , Z
π
ti) ∈ Fti from equations (5.1.3) and (5.1.4). For 1 < j ≤

q and 0 ≤ i < n, we have

Y π
i,j = E

[
Y π
ti+1

+∆i

j∑

k=1

αjkf(Y
π
i,k, Z

π
i,k) |Xπ

ti,j

]

(starting from equation (5.1.6)),

= E

[
Y π
ti+1

+∆i

j∑

k=1

αjkf(Y
π
i,k, Z

π
i,k) |Xπ

ti

]

(by Assumption 5.1.2 sine ti,j ∈ [ti, ti+1)),

= Eti

[
Y π
ti+1

+∆i

j∑

k=1

αjkf(Y
π
i,k, Z

π
i,k)

]

so that Y π
i,j ∈ Fti . Similar arguments also show that Zπ

i,j ∈ Fti starting from equation (5.1.5).

Sine{(Y π
i,j , Z

π
i,j)}q+1

j=2 ∈ Fti , we naturally get equation (5.1.19) from equations (5.1.6) and

(5.1.4) . In addition, knowing that

Eti

[
H

ϕj

ti,j ,(γi−γk)∆i

]
= 0 , 1 < k < j (5.1.20)

leads to equation (5.1.18) from equations (5.1.5) and (5.1.3).

As a onsequene of Assumption 5.1.2, if the q−stage Runge-Kutta sheme and the forward

SDE time disretization are of order m > 0 then error of the FBSDE numerial solution de�ned

as EX,π+Eπ is of order m. We must hene hoose the Runge-Kutta sheme and the SDE sheme

aordingly.
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5.2 Fourier transform representations

We develop the Fourier representation of our approximate solution for the BSDE under various

time disretizations for the forward SDE. First we fous on the simple framework of BSDEs then

we onsider the FBSDE ase. For impliit Runge-Kutta shemes, we assume that

|π|K < 1 (5.2.1)

where K is the Lipshitz onstant of the driver f for well-posedness reasons.

5.2.1 The BSDE ase

In the ontext of BSDEs where the forward proess is simply a Brownian motion

2

Yt = g(WT ) +

∫ T

t

f(Ys, Zs)ds+

∫ T

t

ZsdWs, (5.2.2)

the Euler time disretization satis�es Assumption 5.1.2 at any order of onvergene m > 0.

Indeed, the Euler sheme is exat at any time node for a Brownian motion. We an then used

the result of Theorem 5.1 with any Runge-Kutta sheme for BSDE without limiting the sheme

onvergene order.

Following Theorem 5.1, the intermediate solution {(ui,j, u̇i,j)}q+1
j=2 at mesh time ti, 0 ≤ i < n,

are given by

u̇i,j(x) = E

[
H

ϕj

ti,j ,γj∆i
ũi+1(Wti+1 , βj,1)|Wti = x

]
(5.2.3)

ui,j(x) = E

[
ũi+1(Wti+1 , αj,1)|Wti = x

]
+∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x)) (5.2.4)

for 1 < j ≤ q + 1 with ϕq+1 = ϕ1, βq+1,1 = β1 and αq+1,k = αk . The approximate solution ui

and approximate gradient u̇i at mesh time ti, 0 ≤ i < n, are then

ui(x) = ui,q+1(x) (5.2.5)

u̇i(x) = u̇i,q+1(x) (5.2.6)

with

ũi+1(x, α) = ui+1(x) + ∆iαf(ui+1(x), u̇i+1(x)) (5.2.7)

and

un(x) = g(x) (5.2.8)

u̇n(x) = ∇g(x). (5.2.9)

From the analysis performed in Chapter 2 and Chapter 3, equation (5.2.4) naturally leads to

ui,j(x) = F−1 [F [ũi+1(., αj,1)] (ν)φ(ν)] (x) + ∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x)) (5.2.10)

when ũi+1(., α) is Lebesgue integrable where φ is harateristi funtion on the Brownian inre-

ment

φ(ν) = exp

(
−1

2
∆iν

∗ν

)
(5.2.11)

Moreover, if the funtion ũ(., β) ∈ C1
is di�erentiable, equation (5.2.3) gives

u̇i,j(x) =
1

γj∆i
E

[
∇ũi+1(Wti+1 , βj,1)

∫ ti+1

ti,j

ϕj

(
s− ti,j
γj∆i

)
ds|Wti = x

]

2

This an be extended to arithmeti Brownian motion and Brownian motion with time dependent oe�ients.
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(by the duality formula),

= E

[
∇ũi+1(Wti+1 , βj,1)|Wti = x

]

= F−1 [F [∇ũi+1(.;βj,1)] (ν)φ(ν)] (x)

(when ∇ũi+1(., β) is Lebesque integrable),

= F−1 [iνF[ũi+1(.;βj,1)](ν)φ(ν)] (x) (5.2.12)

where the last inequality holds by Proposition E.4.

Equations (5.2.10) and (5.2.12) haraterize the Fourier transform representation of q−stage
Runge-Kutta shemes. It is important to note that these expressions do not depend on the

funtion ϕj . As a onsequene their hoie is irrelevant under Fourier methods in the BSDE

ase even though they play a key role in the onvergene of Runge-Kutta shemes. When using

the Fourier representations, one an always assume that the funtions ϕj are onsistent with the

onvergene order of the Runge-Kutta sheme. In addition, the expressions for the onditional

expetations are essentially similar to those developed in Chapter 3.

5.2.2 The FBSDE ase

Runge-Kutta shemes for FBSDEs require higher order time disretizations for SDE for onver-

gene reasons. In order to develop Fourier representations of the FBSDE numerial solutions,

another requirement is the availability of expliit onditional harateristi funtions. We hene

make the following additional assumption on the forward SDE time disretization.

Assumption 5.2.1. The forward SDE time disretization admits the onditional harateristi

funtions φi : R
d × Rd → C

φi(ν, x) = E

[
e
iν∗

(

Xπ
ti+1

−Xπ
ti

)

|Xπ
ti = x

]
(5.2.13)

and Φi,j : R
d × Rd → Cd

Φi,j(ν, x) = E

[
H

ϕj

ti,j ,γj∆i
e
iν∗

(

Xπ
ti+1

−Xπ
ti

)

|Xπ
ti = x

]
(5.2.14)

for 0 ≤ i < n and 1 < j ≤ q + 1 with ϕq+1 = ϕ1.

In this setting, and letting the terminal onditions be

un(x) = g(x) (5.2.15)

u̇n(x) = σ∗(x)∇g(x), (5.2.16)

the intermediate solutions ui,j at time step ti, 0 ≤ i < n and 1 < j ≤ q + 1 are given by

ui,j(x) = E

[
ũi+1(X

π
ti+1

;αj,1)|Xπ
ti = x

]
+∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x))

= E

x
ti

[
1

(2π)d

∫

Rd

e
iν∗Xπ

ti+1F [ũi+1(.;αj,1)] (ν)dν

]

+∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x))

=
1

(2π)d

∫

Rd

E

x
ti

[
e
iν∗Xπ

ti+1

]
F [ũi+1(.;αj,1)] (ν)dν

+∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x))
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(using Fubini's theorem),

=
1

(2π)d

∫

Rd

eiν
∗xφi(ν, x)F [ũi+1(.;αj,1)] (ν)dν

+∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x))

= F−1 [F [ũi+1(.;αj,1)] (ν)φi(ν, x)] (x) + ∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x)) (5.2.17)

whenever ũi+1(., α) is Lebesgue integrable.

As to the intermediate solutions u̇i,j , 0 ≤ i < n and 1 < j ≤ q + 1, we have

u̇i,j(x) = E

[
H

ϕj

ti,j ,γj∆i
ũi+1(X

π
ti+1

;βj,1)|Xπ
ti = x

]

= E

x
ti

[
H

ϕj

ti,j ,γj∆i

1

(2π)d

∫

Rd

e
iν∗Xπ

ti+1F [ũi+1(.;βj,1)] (ν)dν

]

=
1

(2π)d

∫

Rd

E

x
ti

[
H

ϕj

ti,j ,γj∆i
e
iν∗Xπ

ti+1

]
F [ũi+1(.;βj,1)] (ν)dν

(using Fubini's theorem),

=
1

(2π)d

∫

Rd

eiν
∗xΦi,j(ν, x)F [ũi+1(.;βj,1)] (ν)dν

= F−1 [F [ũi+1(.;αj,1)] (ν)Φi,j(ν, x)] (x) (5.2.18)

for an integrable funtion ũi+1(., α). In addition, letting DsX
π
ti+1

be the Malliavin derivative of

Xπ
ti+1

given Xπ
ti = x, we have

Φi,j(ν, x) = E

[
H

ϕj

ti,j ,γj∆i
e
iν∗

(

Xπ
ti+1

−Xπ
ti

)

|Xπ
ti = x

]

= iνEx
ti

[(
1

γj∆i

∫ ti+1

ti,j

DsX
π
ti+1

ϕj

(
s− ti,j
γj∆i

)
ds

)
e
iν∗

(

Xπ
ti+1

−Xπ
ti

)

]

(by the duality formula),

= iνEx
ti

[
Hi,je

iν∗

(

Xπ
ti+1

−Xπ
ti

)
]

(5.2.19)

with

Hi,j =
1

γj∆i

∫ ti+1

ti,j

DsX
π
ti+1

ϕj

(
s− ti,j
γj∆i

)
ds. (5.2.20)

Even if the expressions in equations (5.2.17) and (5.2.18) appear too general, they are im-

plementable with the Fourier interpolation method on the alternative grid in various partiular

ases. Indeed some SDE time disretizations allow us to retrieve not only the harateristis

φi and Φi,j and also the Fourier representation under the alternative transform. In the sequel,

we give two notable examples with It�-Taylor expansion shemes for the forward SDE in the

one-dimensional ase. As already mentioned, an introdution to these shemes an be found in

Appendix B. We shall mainly fous on half order and �rst order shemes.

Half order It�-Taylor shemes

The Euler sheme onstitute the main example of half order It�-Taylor sheme sine

Xπ
ti+1

= Xπ
ti + a(Xπ

ti)∆i + σ(Xπ
ti)∆Wi

= Xπ
ti +

∑

ı∈A 1
2
\{∅}

Fı(X
π
ti)I

ı
ti,ti+1

89



where F(0)(x) = a(x), F(1)(x) = σ(x). In addition, we have that, for s ∈ (ti, ti+1),

DsI
(0)
ti,ti+1

= 0 (5.2.21)

and

DsI
(1)
ti,ti+1

= 1. (5.2.22)

Hene,

DsX
π
ti+1

= F(1)(x) (5.2.23)

so we get, from equation (5.2.19), that

Φi,j(ν, x) = iνF(1)(x)E

[
e
iν
(

Xπ
ti+1

−Xπ
ti

)
]
(sine ϕj ∈ B0

),

= F(1)(x)iνφi(ν, x). (5.2.24)

The onditional harateristi funtion is expliitly given by

φi(ν, x) = exp

{
∆i

(
iF(0)(x)ν − 1

2
F 2
(1)(x)ν

2

)}
(5.2.25)

sine the inrement has a Gaussian distribution.

Equations (5.2.17) and (5.2.18) along with the harateristis of equations (5.2.25) and

(5.2.24) de�ne the Fourier method under half order It�-Taylor shemes for SDEs and the method

is implementable with the proedure given in Chapter 3. The following theorem generalizes the

result of Lemma 4.1 to half order It�-Taylor shemes under Runge-Kutta shemes.

Theorem 5.2. Let ũα,βi+1(., y) be the alternative transform de�ned in equation (3.1.8) of the ap-

proximate solution ũi+1(., y). Then the intermediate solutions ui,j and u̇i,j in equations (5.2.17)

and (5.2.18) satisfy

ui,j(x) = F−1[F[ũα,βi+1(., αj,1)](ν)φi(ν, x)](x)

−α[(x+∆iF(0)(x))
2 +∆iF

2
(1)(x)] − β(x+∆iF(0)(x))

+∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x)) (5.2.26)

u̇i,j(x) = F(1)(x)F
−1[F[ũα,βi+1(., βj,1)](ν)iνφi(ν, x)](x)

−F(1)(x)[2α(x +∆iF(0)(x)) + β]. (5.2.27)

under a half order It�-Taylor sheme.

First order It�-Taylor shemes

Consider the �rst order sheme

Xπ
ti+1

= Xπ
ti +

∑

ı∈A1\{∅}
Fı(X

π
ti)I

ı
ti,ti+1

= Xπ
ti +

∑

ı∈A 1
2
\{∅}

Fı(X
π
ti)I

ı
ti,ti+1

+ F(1,1)(X
π
ti)I

(1,1)
ti,ti+1

.

Then knowing that, for s ∈ (ti, ti+1),

DsI
(1,1)
ti,ti+1

= I
(1)
ti,s + I

(1)
s,ti+1

(using the fundamental theorem of alulus),

= I
(1)
ti,ti+1

, (5.2.28)
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the Malliavin derivative of the disretized forward proess is given by

DsX
π
ti+1

= F(1)(x) + F(1,1)(x)I
(1)
ti,ti+1

. (5.2.29)

Equation (5.2.19) leads to

Φi,j(ν, x) = iνF(1)(x)E

[
e
iν
(

Xπ
ti+1

−Xπ
ti

)

|Xπ
ti = x

]

+ iνF(1,1)(x)E
x
ti

[
I
(1)
ti,ti+1

e
iν
(

Xπ
ti+1

−Xπ
ti

)
]

(sine ϕj ∈ B0
),

= F(1)(x)iνφi(ν, x)

+ iνF(1,1)(x)E
x
ti

[
I
(1)
ti,ti+1

e
iν
(

Xπ
ti+1

−Xπ
ti

)
]

= F(1)(x)iν(1 + ζi(ν, x))φi(ν, x) (5.2.30)

with

ζi(ν, x) =
iνF(1,1)(x)∆i

1− iνF(1,1)(x)∆i
(5.2.31)

sine

F(1,1)(x)E
x
ti

[
I
(1)
ti,ti+1

e
iν
(

Xπ
ti+1

−Xπ
ti

)
]

= F(1)(x)F(1,1)(x)∆iE
x
ti

[
iνe

iν
(

Xπ
ti+1

−Xπ
ti

)
]

+F 2
(1,1)(x)∆iE

x
ti

[
iνI

(1)
ti,ti+1

e
iν
(

Xπ
ti+1

−Xπ
ti

)
]

using the duality formula, so that

F(1,1)(x)E
x
ti

[
I
(1)
ti,ti+1

e
iν
(

Xπ
ti+1

−Xπ
ti

)
]

= F(1)(x)ζi(ν, x)E
x
ti

[
e
iν
(

Xπ
ti+1

−Xπ
ti

)
]

= F(1)(x)ζi(ν, x)φi(ν, x). (5.2.32)

Equations (5.2.17) and (5.2.18) along with the expression in equation (5.2.30) haraterize

the method under �rst order disretizations on the forward proess when the harateristi φi

is available. The proedure introdued in Chapter 4 allows to do the omputations given the

harateristis φi and Φi,j using the following theorem.

Theorem 5.3. Let ũα,βi+1(., y) be the alternative transform de�ned in equation (3.1.8) of the ap-

proximate solution ũi+1(., y). Then the intermediate solutions ui,j and u̇i,j in equations (5.2.17)

and (5.2.18) satisfy

ui,j(x) = F−1[F[ũα,βi+1(., αj,1)](ν)φi(ν, x)](x)

−α
[
(x+∆iF0(x))

2 +∆iF
2
(1)(x) +

1

2
∆2

iF
2
(1,1)(x)

]

−β(x+∆iF0(x))

+∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x)) (5.2.33)

u̇i,j(x) = F(1)(x)F
−1[F[ũα,βi+1(., βj,1)](ν)iν(1 + ζi(ν, x))φi(ν, x)](x)

−F(1)(x)
[
2α
(
x+∆iF0(x) + ∆iF(1,1)(x)

)
+ β

]
. (5.2.34)

under a �rst order It�-Taylor sheme.
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Proof. By the de�nition of the alternative transform, we must have that

ui,j(x) = F−1[F[ũα,βi+1(., αj,1)](ν)φi(ν, x)](x)

−Ex
ti

[
α(Xπ

ti+1
)2 + βXπ

ti+1

]

+∆i1{j>2}

j−1∑

k=2

αjkf(ui,k(x), u̇i,k(x)). (5.2.35)

Notie that

E

x
ti

[
Xπ

ti+1

]
= x+∆iF(0)(x) (5.2.36)

and

E

x
ti

[
(Xπ

ti+1
)2
]

= E

x
ti

[
Xπ

ti+1

]2
+Varxti [X

π
ti+1

]

= (x +∆iF(0)(x))
2

+Ex
ti

[(
F(1)(x)I

(1)
ti,ti+1

+ F(1,1)(x)I
(1,1)
ti,ti+1

)2]

= (x +∆iF(0)(x))
2

+∆iF
2
(1)(x) +

1

2
∆2

iF
2
(1,1)(x) (5.2.37)

knowing that E

x
ti

[(
I
(1)
ti,ti+1

)2]
= ∆i, E

x
ti

[(
I
(1,1)
ti,ti+1

)2]
= 1

2∆
2
i and

E

x
ti

[
I
(1)
ti,ti+1

I
(1,1)
ti,ti+1

]
= 0. Equations (5.2.35), (5.2.36) and (5.2.37) lead to the expression for

ui,j in equation (5.2.33).

The de�nition of the alternative transform also requires

u̇i,j(x) = F(1)(x)F
−1[F[ũα,βi+1(., βj,1)](ν)iν(1 + ζi(ν, x))φ1(ν, x)](x)

−Ex
ti

[
H

ϕj

ti,j ,γj∆i
(α(Xπ

ti+1
)2 + βXπ

ti+1
)
]

= F(1)(x)F
−1[F[ũα,βi+1(., βj,1)](ν)iν(1 + ζi(ν, x))φ1(ν, x)](x)

−F(1)(x)E
x
ti

[
2α(Xπ

ti+1
) + β

]

−F(1,1)(x)E
x
ti

[
I
(1)
ti,ti+1

(
2α(Xπ

ti+1
) + β

)]

(using the duality formula),

= F(1)(x)F
−1[F[ũα,βi+1(., βj,1)](ν)iν(1 + ζi(ν, x))φ1(ν, x)](x)

−F(1)(x)
[
2α
(
x+∆iF(0)(x) + ∆iF(1,1)(x)

)
+ β

]
(5.2.38)

using the duality formula one again.

One noties that when using the half and �rst order It�-Taylor shemes, the Fourier repre-

sentations do not depend on the saling funtions ϕj sine the harateristi Φi,j do not depend

on them. In general, the expression for the harateristi Φi,j in equations (5.2.19) and (5.2.20)

tells that if the forward SDE time disretization is suh that the Malliavin derivative DsX
π
ti+1

is independent of s ∈ [ti, ti+1) then the Fourier representations are independent of the saling

funtions ϕj . This is due to the fat that the saling funtion ϕj are at least in B0
, i.e they

integrate to 1.

5.3 Error analysis

We denote by {ui,j,k}NiN
k=0 and {u̇i,j,k}NiN

k=0 the intermediate numerial solutions obtained at mesh

time ti, i = 0, 1, ..., n−1 and stage j, 1 < j ≤ q+1, from the proedure of Chapter 4 when using
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a q−stage Runge-Kutta sheme. In addition, {ui,j,k}NiN
k=0 and {u̇i,j,k}NiN

k=0 are the intermediate

numerial solutions obtained at the intermediate stage j, 1 < j ≤ q + 1, of the mesh time ti

given the exat solutions ui+1 and u̇i+1 at time ti+1. We have from the notation previously used

that the numerial solution at mesh time ti is given by

ui,k = ui,q+1,k (5.3.1)

u̇i,k = u̇i,q+1,k (5.3.2)

and omputed from the intermediate solutions {ũi,k}NiN
k=0 , 0 < i ≤ n where ũn,k = ũn(xn,k).

When the exat solutions ui+1 and u̇i+1 are known at ti+1, we also write

ui,k = ui,q+1,k (5.3.3)

u̇i,k = u̇i,q+1,k. (5.3.4)

The loal (spae) disretization error has the form

Eik := |ui(xk)− ui,k|+ |u̇i(xk)− u̇i,k| (5.3.5)

for i = 0, 1, ..., n− 1 and k = 0, 1, ..., NiN . The following assumptions prove ruial in the error

analysis that fouses exlusively on the one-dimensional ase d = 1 and expliit Runge-Kutta

shemes even though the results an be generalized to impliit Runge-Kutta shemes when the

ondition of equation (5.2.1) is satis�ed.

Assumption 5.3.1. There are positive onstants p0, s0 ,K0 and C0 > 0 suh that

max(|φi(is0, x)| , |φi(−is0, x)|) ≤ eK0∆i
(5.3.6)

and, hene, the disrete version of the forward proess has onditional exponential moments. In

adddition, ∫

Rd

|φi(ν, x)| dν + max
1<j≤q+1

∫

Rd

|Φi,j(ν, x)| dν ≤ C0∆
−p0

i . (5.3.7)

The next theorem gives a desription of the loal (spae) disretization error bound where

we assume that the time disretization is given.

Theorem 5.4. Suppose that Assumptions 5.1.1, 5.1.2, 5.2.1 and 5.3.1 are satis�ed. Then the

Fourier interpolation method yields a loal spae disretization error of the form

sup
i,k

Eik = O (∆x) +O
(
e−Kl

)
(5.3.8)

for some onstant K > 0 on the alternative grid and under the trapezoidal quadrature rule for

any expliit q-stage Runge-Kutta sheme.

Proof. One again, we follow the steps in the proof of Theorem 3.3. The trunation error when

omputing the numerial solutions u̇i,j,k is

E

xik

ti

[
H

ϕj

ti,j ,γj∆i
ũi+1(X

π
ti+1

;βj,1)1|∆Xπ
i |> l

2

]

< KExik

ti

[∣∣∣Hϕj

ti,j ,γj∆i

∣∣∣ 1|∆Xπ
i |> l

2

]

(by boundedness of the BSDE oe�ients),

< KExik

ti

[(
H

ϕj

ti,j ,γj∆i

)2] 1
2

E

xik

ti

[
1|∆Xπ

i |> l
2

] 1
2

(by the Cauhy-Shwartz inequality)

= KExik

ti

[∫ ti+1

ti,j

(
1

γj∆i
ϕj

(
s− ti,j
γj∆i

))2

ds

] 1
2

E

xik

ti

[
1|∆Xπ

i |> l
2

] 1
2
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(by It� isometry)

< K∆
− 1

2

i E

xik

ti

[
1|∆Xπ

i |> l
2

] 1
2

(by the boundedness of funtions ϕj),

≤ K∆
− 1

2
i

(
inf
s>0

e−s l
2φi(−is) + inf

s>0
e−s l

2φi(is)

) 1
2

(by Cherno�'s inequality)

< K∆
− 1

2
i e−s0

l
4+

1
2K0∆i

< Ke−s0
l
4

using Assumption 5.2.1. The Fourier interpolation leads to a �rst order spae disretization

error by the twie di�erentiability of the driver f and the terminal ondition g when omputing

the numerial solutions u̇i,j,k.

The same statements hold for the numerial solutions ui,2,k using idential arguments. By

reursion and using the Lipshitz property of the driver f , the statements hold for ui,j,k, 1 <

j ≤ q+1. Sine the mesh time ti and the spae node xik are arbitrary, the spae trunation and

disretization error bounds hold for any i and k.

Loally, the trunation error remains spetral. Nonetheless, it is just of index 1 in this

general setting where the onditional harateristi funtion φi is unspei�ed. In Chapter 3

and 4, the quadrati exponential form of the harateristi funtion is the main reason for the

spetral onvergene of index 2 in the trunation error. The spae disretization error though

is unhanged with �rst order due to the seond order di�erentiability of the BSDE oe�ients.

Indeed, the Fourier interpolation produes a spae disretization error with a higher order when

the driver f and the terminal funtion g have the required smoothness. We already illustrated

the phenomenon in the numerial results of Setion 3.5.1. In general, if f ∈ Cm+1
b and g ∈ Cm+1

b ,

we an expet a spae disretization error of order m whih is the onvergene order of the

underlying Fourier interpolation.

We now turn to the global spae disretization error El,∆x as de�ned in equation (3.2.6).

The next theorem gives its error bound.

Theorem 5.5. Suppose the onditions of Theorem 5.4 are satis�ed. If the disretization is suh

that

sup
i

{
C0∆x

π∆p0

i

}
≤ 1 (5.3.9)

then the Fourier interpolation method is stable and yields a global disretization error El,∆x of

the form

El,∆x = O(∆x) +O
(
e−Kl

)
(5.3.10)

where K > 0 for any expliit q-stage Runge-Kutta sheme.

Proof. From the de�nition of the global spae disretization error, we may write

eik ≤ En−i,k + |un−i,k − un−i,k| (5.3.11)

ėik ≤ En−i,k + |u̇n−i,k − u̇n−i,k| . (5.3.12)

Let's assume the boundary values of the funtion ũi+1 and the sequene ũi+1,s are mathed on

the alternative grid so that we don't have to treat the alternative transform. Under an expliit

q−stage Runge-Kutta sheme, we have

|u̇i,j,k − u̇i,j,k| =

∣∣∣∣D−1
[
{Φi,j(νi+1,m, xik)D[ũi+1 − ũi+1,s]m}Ni+1N−1

m=0

]
k+N

2

∣∣∣∣
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≤
∑Ni+1N−1

m=0 |Φi,j(νi+1,m, xik)|
Ni+1N

sup
k

|ũi+1(xik, β1,j)− ũi+1,k|

≤ ∆x

2π

(∫

Rd

|Φi,j(ν, xi,k)| dν
)
sup
k

|ũi+1(xik, β1,j)− ũi+1,k|

≤ C0∆x

2π∆p0

i

sup
k

|ũi+1(xik, β1,j)− ũi+1,k|

(using Assumption 5.3.1),

≤ C0∆x

2π∆p0

i

(1 + ∆iK) sup
k
en−i−1,k

+
C0∆x

2π∆p0

i

∆iK sup
k
ėn−i−1,k

(sine f is Lipshitz and β1,j is bounded),

≤ C0∆x

2π∆p0

i

(1 + ∆iK) sup
k
en−i−1,k

+
C0∆x

2π∆p0

i

(1 + ∆iK) sup
k
ėn−i−1,k. (5.3.13)

Similarly, we get

|ui,2,k − ui,2,k| ≤
∣∣∣∣D−1

[
{φi(νi+1,m, xik)D[ũi+1 − ũi+1,s]m}Ni+1N−1

m=0

]
k+N

2

∣∣∣∣

≤ ∆x

2π

(∫

Rd

|φi(ν, xi,k)| dν
)
sup
k

|ũi+1(xik, α1,2)− ũi+1,k|

≤ C0∆x

2π∆p0

i

sup
k

|ũi+1(xik, α1,2)− ũi+1,k|

(using Assumption 5.3.1),

≤ C0∆x

2π∆p0

i

(1 + ∆iK) sup
k
en−i−1,k

+
C0∆x

2π∆p0

i

(1 + ∆iK) sup
k
ėn−i−1,k

so that we get

|ui,j,k − ui,j,k| ≤ C0∆x

2π∆p0

i

(1 + ∆iK) sup
k
en−i−1,k

+
C0∆x

π∆p0

i

(1 + ∆iK) sup
k
ėn−i−1,k (5.3.14)

reursively for 1 < j ≤ q+1 using the Lipshitz property of the driver f and the boundedness of

the Runge-Kutta oe�ients. Equations (5.3.11) and (5.3.12) ombined with equations (5.3.14)

and (5.3.13) lead to

sup
k
ei,k + sup

k
ėi,k ≤ 2 sup

i,k
Eik

+
C0∆x

π∆p0

i

(1 + ∆n−iK)

(
sup
k
ei−1,k + sup

k
ėi−1,k

)

≤ 2 sup
i,k

Eik + ζ(1 + ∆n−iK)

(
sup
k
ei−1,k + sup

k
ėi−1,k

)

where

sup
i

{
C0∆x

π∆p0

i

}
≤ ζ ≤ 1.

Gronwall's Lemma then yields

sup
k
ei,k + sup

k
ėi,k ≤ 2eTK sup

i,k
Eik (5.3.15)

95



so that the sheme is stable. The result of equation (5.3.10) follows by taking the supremum on

the left hand side of equation (5.3.15) other time step and applying Theorem 5.4.

In this general ase, the global disretization error maintains the struture of the loal dis-

retization error under a stability ondition. Equation (5.3.9) indiates that the spae disretiza-

tion has to be relatively as �ne as the time disretization to ensure stability. Hene, stability an

always be reahed for any time disretization by re�ning the spae disretization. However, the

struture of the harateristi funtions φi and Φij determines the relative re�nement needed

for the spae disretization.

The simulation of FBSDEs is not di�erent from Chapter 3 and 4. Letting (Ui, U̇i) be the

extended solution at time mesh ti of equations (3.3.2) and (3.3.3), we de�ne the approximate

proesses (x, y, z) as

xt =
n−1∑

i=0

Xπ
ti1[ti,ti+1)(t) (5.3.16)

yt =
n−1∑

i=0

Ui(X
π
ti)1[ti,ti+1)(t) (5.3.17)

zt =
n−1∑

i=0

U̇i(X
π
ti)1[ti,ti+1)(t) (5.3.18)

for t ∈ [0, T ). The boundedness of bakward and ontrol proess solutions {yt}t∈[0,T ) and

{zt}t∈[0,T ) was established in Chapter 3 (Corollary 3.8) and holds in the Runge-Kutta framework.

We will instead fous on the simulation error Eπ,l,∆x de�ned as

E2
π,l,∆x := max

0≤i<n
‖Xti − xti‖2L2 + max

0≤i<n
‖Yti − yti‖2L2 +

n−1∑

i=0

∆i ‖Zti − zti‖2L2 . (5.3.19)

The next theorem desribes the error bound.

Theorem 5.6. Suppose that Assumptions 5.1.1, 5.1.2, 5.2.1 and 5.3.1 are satis�ed. If the

stability and onvergene ondition of equation (5.3.9) holds and both the forward disretization

and q-stage Runge-Kutta sheme are of order m > 0 then

E2
π,l,∆x = O(|π|2m) +O(∆x2) +O

(
e−C(N0+1)l + e−Cl

)
(5.3.20)

where C > 0.

Proof. The proof is essentially similar to the proof of Theorem 3.9. Sine we assume that both

the forward and the bakward shemes are of order m > 0 the time disretization error O(|π|2m)

is obviously of order m. Also the spae disretization error O(∆x2) and the spae trunation

error O(e−Cl) follow from Theorem 5.5 and the quadrati nature of the simulation error.

Sine the driver f and the terminal funtion g are bounded, the remaining error term is

related to

max
0<i<n

E

[
1R\Ii

(Xπ
ti)
]

≤ max
0<i<n

inf
s>0

e−s(X0+Ni
l
2 )φti(−is)

+ max
0<i<n

inf
s>0

es(X0−Ni
l
2 )φti(is)

by Cherno�'s inequality where φti is the harateristi funtion of Xπ
ti . It is shown by reursion

and using Assumption 5.3.1 that

φti(−is0) ≤ eK0T+s0X0

φti(is0) ≤ eK0T−s0X0 .
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Hene,

max
0<i<n

E

[
1R\Ii

(Xπ
ti)
]

≤ 2eK0T max
0<i<n

e−s0Ni
l
2

≤ 2eK0T e−s0(N0+1) l
2 .

A simple extension of q-stage Runge-Kutta shemes to re�eted FBSDE onsists in applying

the re�etion at the last stage and for all time nodes ti. Let's onsider the system





dXt = a(t,Xt)dt+ σ(t,Xt)dWt

−dYt = f(t,Xt, Yt, Zt, )dt+ dAt − ZtdWt

Yt ≥ Bt , dAt ≥ 0 , ∀t ∈ [0, T ]
∫ T

0 (Yt −Bt)dAt = 0

X0 = x0 , YT = g(XT )

(5.3.21)

where

Bt = B(t,Xt). (5.3.22)

The numerial solution of a q−stage Runge-Kutta sheme an be de�ned as

ui(x) = ui,q+1(x) + ∆ūi(x) (5.3.23)

u̇i(x) = u̇i,q+1(x) (5.3.24)

∆ūi(x) = [ui,q+1(x)−B(ti, x)]
−

(5.3.25)

instead of equations (5.2.5) and (5.2.6). The intermediate solutions uij and u̇ij , 1 < j ≤ q + 1,

are de�ned as previously and their numerial values may be given by the Fourier method on

the alternative grid. From there, the simulation a numerial solution (x, y, z, a) for the re�eted

FBSDE is onduted through the equations

xt =

n−1∑

i=0

Xπ
ti1[ti,ti+1)(t) (5.3.26)

yt =

n−1∑

i=0

Ui(X
π
ti)1[ti,ti+1)(t) (5.3.27)

zt =

n−1∑

i=0

U̇i(X
π
ti)1[ti,ti+1)(t) (5.3.28)

at =

n−1∑

i=0

∆Ūi(X
π
ti)1[ti,T )(t) (5.3.29)

where the extended solutions Ui, U̇i and ∆Ūi are as in equations (3.3.2), (3.3.3) and (3.4.7)

respetively.

5.4 Appliation to ommodity derivatives

We test the onvergene properties of the Fourier interpolation method on Runge-Kutta shemes

with a problem of ommodity derivative priing under a model proposed by Luia and Shwartz

[77℄. We shall test the method's onvergene and behavior on smooth and unbounded FBSDE

oe�ients. The non-smoothness of BSDE oe�ients a�ets only the spae disretization error

and was already studied in Chapter 3. Also, the unbounded oe�ient framework inludes
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the bounded oe�ient ase so that the ideas developed here also hold for bounded oe�ient

FBSDEs.

The ommodity spot prie X is de�ned by

Xt = eS(t)+Vt
(5.4.1)

where the deterministi funtion S : R+ → R represents the seasonality omponent of the

ommodity and V is the prie di�usion following an Ornstein-Uhlenbek proess aording to

the Vasiek [111℄ model

dVt = −κVtdt+ σdWt. (5.4.2)

As indiated by Luia and Shwartz [77℄, the ommodity spot prie X satis�es the stohasti

di�erential equation

dXt = κ(θ(t)− lnXt)Xtdt+ σXtdWt (5.4.3)

where

θ(t) =
1

κ

(
σ2

2
+
dS

dt
(t)

)
+ S(t). (5.4.4)

We onsider the ommodity prie as our forward proess through equation (5.4.3).

When the risk free rate r and the market prie of risk λ are both onstant, the forward (or

future) prie Ft,T := Yt = u(t,Xt) with maturity T > 0 at time t < T is given by

Yt = E

Q
t [XT ]

= eS(T )+(lnXt−S(t))e−κ(T−t)−σλ
κ

h(T−t,κ)+σ2

4κ
h(T−t,2κ)

(5.4.5)

with

h(τ, κ) = 1− e−κτ
(5.4.6)

where the expetation is taken under the equivalent risk measure Q. It an be shown that the

forward prie solves a BSDE with linear driver

f(t, y, z) = −λz (5.4.7)

and terminal ondition

g(x) = x. (5.4.8)

Options on forward ontrats an also be represented in form of BSDEs in this spot prie model

but we limit our analysis to forward prie estimation. From equation (5.4.5) the ontrol proess

(or equivalently the forward prie delta) is given by

Zt = σXt∇u(t,Xt)

= σe−κ(T−t)u(t,Xt). (5.4.9)

The adjustment speed of the di�usion proess is κ = 1.5 and the volatility of the di�usion is

set to be σ = 0.065. The seasonality omponent is given by

S(t) = ln P̄ + 0.05 sin(2πt) (5.4.10)

and the initial spot prie by

X0 = P̄ eV0 = 0.95P̄ (5.4.11)

where we normalize the real value

3

of the ommodity P̄ = 1. Also, the maturity of the forward

ontrat is T = 0.25 and we suppose a market prie of risk of λ = 0.25.

3

The real value P̄ an be onsidered as the prodution ost (per unit) of the ommodity.
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The FBSDE is solved on an alternative grid entered at X0 with a uniform time mesh. For

a given number of time steps n and the initial number N0 = 1 of intervals, the length of an

inrement interval is set as

l =
1.8

N0 + n
(5.4.12)

so that the trunated interval at time tn has length 1.8. This restrition keeps the spae nodes

in the upper half plane knowing that the ommodity prie is a positive proess. Moreover, the

number of spae steps on an inrement interval is N = 2.

We numerially solve the BSDE with the expliit 1−stage Runge-Kutta sheme of half order

and an expliit 2−stage Runge-Kutta sheme of �rst order. Under the expliit 1−stage sheme,

the ommodity prie is disretized with an Euler sheme whereas a Milstein sheme is used

for the forward proess X under the expliit 2−stage Runge-Kutta sheme. Note that for the

Milstein sheme,

F(1,1)(x) = σ2x (5.4.13)

and

I
(1,1)
ti,ti+1

=
1

2
(∆W 2

i −∆i) (5.4.14)

and we estimate the harateristi funtion with a Gaussian harateristi

φi(ν, x) = exp

{
∆i

(
iF(0)(x)ν − 1

2

(
F 2
(1)(x) +

1

2
∆iF

2
(1,1)(x)

)
ν2
)}

. (5.4.15)

In addition, we use an expliit 2−stage Runge-Kutta sheme with tableau

0 0 0 0 0 0
2
3

2
3 0 0 2

3 0

1 1
4

3
4 0 1 0

Under both FBSDE disretizations, we ompute two di�erent types of error. The �rst error

ETrue evaluates the maximal absolute error of the numerial solution with respet to the true

solution

ETrue = max
0≤i<n

max
0≤k≤NNi

|u(ti, xik)− uik|

+ max
0≤i<n

max
0≤k≤NNi

|u̇(ti, xik)− u̇ik| (5.4.16)

where

u̇(t, x) = σx∇u(t, x) = σe−κ(T−t)u(t, x). (5.4.17)

The seond error ESim approximates the simulation error Eπ,l,∆x. Given the numerial solution

{Xπ
ti,j}mj=1 , i = 0, 1, ..., n− 1 with m > 0 simulated paths for the forward proess, we ompute

the numerial solution {(yti,j, zti,j)}mj=1 of the bakward proess through equations (5.3.17) and

(5.3.18). The error ESim hene writes as

ESim =
1

m

m∑

j=1

max
0≤i<n

∣∣u(ti, Xπ
ti,j)− yti,j

∣∣

+
1

m

m∑

j=1

(
n−1∑

i=0

∆i(u̇(ti, X
π
ti,j)− zti,j)

2

) 1
2

. (5.4.18)

We systematially use m = 1000 paths. Even if the errors ETrue and ESim may be of the

same order, they are interpreted di�erently. The error ETrue gives the behavior of the maximal

approximation error on the grid whereas ESim gives the behavior of the error on the relevant

part of grid when solving the FBSDE numerially. Figure 5.4.1 displays the errors under the
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expliit 1−stage Runge-Kutta sheme with n ∈ {5, 10, 20, 50, 100} and Figure 5.4.2 shows the

errors under the expliit 2−stage sheme.

The error graphs of Figures 5.4.1 and 5.4.2 look almost idential and on�rm that the 2−stage
sheme is of �rst order and the 1−stage sheme of (at least) half order. The extra-e�ieny of

the 1−stage sheme may be attributed in this partiular ase to the simpliity of the driver f

and the terminal ondition g.

In Figure 5.4.3, we present the absolute errors along the simulated paths for the BSDE

solution. One noties that the maximal errors our at the initial time t0 = 0 for the forward

prie (Yt) and at maturity T = 0.25 for the ontrol proess (Zt). Nonetheless, the simulation

errors are of the same order (10−4
) for both proesses. This information is on�rmed by the

ontour plot of Figure 5.4.4 not only along the simulated paths but on the entire grid.

Moreover, the ontour plot gives indiation on the soure of errors. Indeed, Figure 5.4.4

shows that the maximal errors mainly our for the upper spae node values on the alternative

grid and they derease for lower spae node values. This is due to the unbounded nature of the

spot prie proess oe�ients. Sine the volatility of the spot prie is a positive and inreasing

funtion of the spot prie

4

, higher spot prie values lead to higher loal volatility. Hene, the

�xed length of inrement interval l may not be su�iently large to ensure auray for higher

spae node values. In general, the phenomenon is ampli�ed with the magnitude of the forward

proess oe�ients as illustrated in the ontour plot of Figure 5.4.5 where we hoose a higher

value for the volatility σ and keep the other parameters unhanged. Similar results an be

obtained by seleting a higher value for the speed of adjustment κ as shown in Figure 5.4.6 .

We end this hapter with an e�ieny study of our shemes. Using the parameters initially

given, the BSDE is solved on a uniform time grid with n ∈ {10, 20, 40, 50, 60, 80, 100} time steps

and N ∈ {2, 22, 23, 24} spae steps and value the omputation time. Figure 5.4.7 displays the

results. First note that sine the Fourier interpolation method of Chapter 4 performs matrix

multipliations, it is muh slower than the onvolution method of Chapter 3. As a omparison,

the onvolution method runs in less than half a seond of CPU time on the grids onsidered in

Figure 5.4.7 and using the same omputing devie.

As shown in Figure 5.4.7, the omputation time of Fourier interpolation method inreases

with the number of time steps leading to a tradeo� between omputation speed and auray.

The exponential nature of the urves suggests that preferene has to be given to the oarsest time

disretization providing a satisfatory level of auray. Similarly, the omputation time also

inrease drastially with the number N of spae steps. Coarse spae grid insuring auray are

hene also preferable. Sine a total number of 2q onditional expetations are omputed under

a q-stage Runge-Kutta sheme, we an expet the 1-stage sheme to run twie as fast as the

2-stage sheme. This is on�rmed on Figure 5.4.7, espeially when looking at the omputation

times for n = 100.

4

See equation (5.4.3).
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Figure 5.4.3: Simulation errors using the 2-stage Runge-Kutta sheme.
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The numerial solution is obtained on a time mesh with n = 100 time steps and returns an forward prie of

1.0121 and initial value of 0.0453 for the ontrol proess. The exat values are 1.0123 and 0.0452 respetively.

Figure 5.4.4: Contour plot of errors using the 2-stage Runge-Kutta sheme.
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The numerial solution is obtained on a time mesh with n = 100 time steps and returns an forward prie of

1.0121 and initial value of 0.0453 for the ontrol proess. The exat values are 1.0123 and 0.0452 respetively.
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Figure 5.4.5: Errors using the 2-stage Runge-Kutta sheme with σ = 0.08.
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The numerial solution is obtained on a time mesh with n = 100 time steps and returns an forward prie of

1.0115 and initial value of 0.0558 for the ontrol proess. The exat values are 1.0119 and 0.0556 respetively.

Figure 5.4.6: Errors using the 2-stage Runge-Kutta sheme with κ = 3.
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The numerial solution is obtained on a time mesh with n = 100 time steps and returns an forward prie of

1.0238 and initial value of 0.0316 for the ontrol proess. The exat values are 1.0257 and 0.0315 respetively.

103



Figure 5.4.7: CPU time (in seonds) of Runge-Kutta shemes.
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Conlusion

The present thesis investigated the appliation of Fourier methods to numerial solutions of

FBSDEs. In general, the method proposed onsists of expressing the solution from a BSDE time

disretization in terms of Fourier integrals using some available harateristi funtions. The

Fourier integrals are then disretized over a uniform spae grid. In partiular, the alternative

grid of Chapter 3 produes a onsistent, stable and globally onvergent FFT based method for

BSDEs using the Euler time disretization.

The results of Chapter 3 were extended to the FBSDE ase and, in this framework, bounded-

ness onditions are neessary on the forward proess oe�ients to ensure onsisteny, stability

and onvergene. Even if the method is still based on Fourier analysis, a matrix multipliation

is need in the FBSDE ase sine the inrement of the forward proess are not neessarily inde-

pendent. The matrix multipliation may lead to e�ieny problems espeially on �ne time and

spae grids.

While the Euler sheme onstitutes the primary time disretization for BSDEs used in this

thesis, we fous on higher order Runge-Kutta shemes in Chapter 5. In this general framework,

we expliitly de�ne the harateristi funtions and perform the error analysis aordingly. Under

some integrability onditions on the harateristis, the Fourier interpolation based method is

onsistent, stable and globally onvergent.

We mainly illustrate the onvergene and e�ieny properties of the Fourier method with

derivative priing examples from mathematial �nane. Option priing problems under the

Blak and Sholes model are onsidered in Chapter 2 and Chapter 3. The numerial example of

Chapter 5 deals with a ommodity modeling problem.

The thesis proposes a numerial implementation of the method only in the one-dimensional

ase. Hene, the extension of the method to the multidimensional framework is of importane.

The de�nition of an alternative transform to mimi periodiity seems to be the only requirement

for onvergene in the multidimensional ase. However, e�ieny may be problemati espeially

when the method is applied to FBSDEs.

It may also be interesting to investigate alternative basis funtions. Indeed, Fourier basis

funtions have well known disadvantages suh as their lak of loalization or their non-ausality.

As an alternative to Fourier basis funtions, wavelets an be used and produe e�ient algorithms

in the one-dimensional and the multidimensional framework for the BSDE and FBSDE ases.

Sine Runge-Kutta methods for BSDEs are quite reent, the problem of their implementa-

tion o�ers many researh opportunities. An interesting area of researh ould be the Fourier

representation of BSDE solutions under higher order time disretization for the forward proess.

Also, Monte-Carlo and spatial disretization based methods an be extended to these shemes

with relative ease. Finally, (higher order) time disretizations for FBSDEs with non-Lipshitz

oe�ients are still an open problem.
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Appendix

A Elements of FBSDE theory

Forward bakward stohasti di�erential equations (FBSDEs) are quite reent mathematial

objets. Many interesting results have been proved onerning their existene, uniqueness and

properties. Some of those properties are partiularly important for numerial simulation.

This appendix serves as an introdution to the theory of FBSDEs with Lipshitz oe�ients.

We over the existene and uniqueness results in Setion A.1 and present major properties of

FBSDEs in Setion A.2.

A.1 Classi�ation of FBSDEs

From the well-known lassial theory of stohasti di�erential equation (SDE), see Kloeden and

Platen [69℄ or Øksendal [94℄, we onsider a forward proess satisfying




dXt = a(t,Xt)dt+ σ(t,Xt)dWt

X0 = x0
(A.1)

where a : [0, T ]×Rd → Rd
is the forward drift oe�ient, σ : [0, T ]×Rd → Rd×d

is the forward

di�usion (or volatility) oe�ient. Both oe�ients are assumed to be deterministi

12

funtions.

The F0-measurable random variable x0 ∈ Rd
de�nes the initial ondition and is assumed to be

onstant. The SDE is interpreted as the integral equation

Xt = x0 +

∫ t

0

a(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (A.2)

with t ∈ [0, T ]. In addition, we assume that both oe�ients a and σ along with the initial

ondition x0 satisfy the regularity onditions listed below.

Assumption A.1. (on the forward SDE oe�ients).

H1. The oe�ients a and σ are uniformly Lipshitz ontinuous in the spae variable. Thus,

there exists K > 0 so that

|a(t, x)− a(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K |x− y|

for t ∈ [0, T ] and x, y ∈ Rd
.

H2. The oe�ients a and σ have linear growth. Thus, there exists K > 0 suh that

|a(t, x)|+ |σ(t, x)| ≤ K(1 + |x|)

for t ∈ [0, T ] and x ∈ R
d
.

12

It is indeed possible to onsider stohasti oe�ients.
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For stohasti oe�ients, the inequalities of assumptions (H1) and (H2) hold almost surely

and the oe�ients have to satisfy additional measurability and square integrability onditions.

Expliitly, the funtional a : Ω× [0, T ]×Rd → Rd
and σ : Ω× [0, T ]×Rd → Rd

are measurable

with respet to P ⊗ B(Rd) (where P is a σ-algebra on Ω × [0, T ]) and square integrable with

respet to dP× dt, with

E

[∫ t

0

{
|a(t, 0)|2 + |σ(t, 0)|2

}
dt

]
<∞.

The solution of the forward SDE of equation (A.1) is an adapted and ontinuous proess

{Xt}t∈[0,T ] ∈ L2
S . The following proposition, due to It� and proved in Kloeden and Platen [69℄,

states the forward SDE well-posedness.

Proposition A.1. Under assumptions (H1) and (H2), the forward stohasti di�erential equa-

tion given by equation (A.1) admits a unique (strong) solution X = {Xt}t∈[0,T ].

Instead of an initial ondition, we may onsider an equation evolving bakward in time from

a terminal ondition formally given by




−dYt = f(t, Yt, Zt)dt− Z∗

t dWt

YT = ξ.
(A.3)

Equation (A.3) is alled a bakward stohasti di�erential equation (BSDE). The orresponding

integral equation takes the form

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Z∗
sdWs, (A.4)

with t ∈ [0, T ]. We shall suppose, for simpliity, that the bakward proess {Yt}t∈[0,T ] is uni-

dimensional. The (deterministi) funtion

f : [0, T ]× R× R
d → R

stands for the bakward proess driver (or generator), the FT -measurable random variable ξ

de�nes the terminal ondition, and the adapted proess {Zt}t∈[0,T ] taking values in Rd
is alled

the ontrol proess.

In order to ensure existene and uniqueness, the driver f and the terminal ondition ξ satisfy

the following regularity onditions:

Assumption A.2. (on the bakward SDE oe�ients).

H3. The driver f is uniformly Lipshitz ontinuous in the spae variables, i.e there exists K > 0

suh that

|f(t, y1, z1)− f(t, y2, z2)| ≤ K(|y1 − y2|+ |z1 − z2|).

H4. The terminal ondition ξ is square integrable, i.e ξ ∈ L2
.

When the driver is stohasti then it must be measurable with respet to P ⊗B(R)⊗B(Rd)

and square integrable with respet to dP× dt

E

[∫ T

0

|f(t, 0, 0)|2 dt
]
<∞.

Also, the inequality of assumption (H3) holds P−almost surely.

A pair of adapted proesses (Y, Z) is alled a solution of the BSDE of equation (A.3) if it

satis�es equation (A.3), the proess {Yt}t∈[0,T ] ∈ L2
S is ontinuous and {Zt}t∈[0,T ] ∈ L2

I .

Pardoux and Peng [96℄ proved an existene and uniqueness result for the BSDE.
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Proposition A.2. Under assumptions (H3) and (H4), the bakward stohasti di�erential equa-

tion given by equation (A.3) admits a unique solution (Y, Z).

A deoupled forward-bakward stohasti di�erential equation is obtained by ombining a

forward SDE and a bakward SDE in the following manner





dXt = a(t,Xt)dt+ σ(t,Xt)dWt

−dYt = f(t,Xt, Yt, Zt)dt− ZtdWt

X0 = x0, YT = ξ

(A.5)

where the forward oe�ients a and σ do not depend upon the solution of the bakward equation

(Y, Z) but the measurable driver

f : [0, T ]× R
d × R× R

d → R

may depend on the forward proess X .

The terminal ondition ξ is said to be Markovian if it an be written as a funtional of the

forward proess terminal value, i.e

ξ = g(XT ) (A.6)

for some funtion g : Rd → R and non-Markovian if the funtional involves other state variables.

In this last ase we simply write ξ = G(X) with

G : Sd → R (A.7)

suh that |G(0)| ≤ K for some onstant K > 0 where 0 is the zero-valued vetor funtion on

[0, T ]. The funtional G is said to be L∞
-Lipshitz if there exists a onstant K > 0 suh that

|G(x)−G(y)| ≤ K sup
t∈[0,T ]

|x(t) − y(t)| (A.8)

and L1
-Lipshitz if there exists a onstant K > 0 suh that

|G(x)−G(y)| ≤ K

∫ T

0

|x(t) − y(t)| dt (A.9)

for x, y ∈ Sd
.

As to the solution to the deoupled FBSDE, it onsists of a triple of proesses (X,Y, Z)

and its existene and uniqueness naturally follow from Propositions A.1 and A.2 after simple

adaptations of hypothesis (H3) for a stohasti driver.

When the driver f is independent of the ontrol proess Z = {Zt}t∈[0,T ], one an rewrite the

bakward equation using an expetation representation as

Yt = E

[
ξ +

∫ T

t

f(s,Xs, Ys)ds

∣∣∣∣∣Ft

]
(A.10)

with t ∈ [0, T ] and the ontrol proess Z = {Zt}t∈[0,T ] an then be obtained through the mar-

tingale representation theorem.

Also, many speial ases of oupled forward-bakward di�erential equations have been on-

sidered. The most general ase takes the form





dXt = a(t,Xt, Yt, Zt)dt+ σ(t,Xt, Yt, Zt)dWt

−dYt = f(t,Xt, Yt, Zt)dt− ZtdWt

X0 = x0 , YT = ξ

(A.11)
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where both forward oe�ients depend on the pair of proesses solution of the bakward equation.

Pardoux and Tang [98℄ have proved the FBSDE well-posedness, i.e, existene and unique-

ness for the FBSDE solution (X,Y, Z) in three sub-ases with a probabilisti approah under

monotoniity ondition and stohasti oe�ients. In partiular, the Markovian ase where the

forward volatility σ : [0, T ]×Rd×R → Rd×d
is independent of the ontrol proess Z = {Zt}t∈[0,T ]

is treated.

In the general situation of equation (A.11), the four step sheme of Ma, Protter and Yong

[79℄ provides onditions for the well-posedness of a FBSDE with deterministi oe�ients. Also,

the method of ontinuation of Yong [114℄ onstitutes an alternative method to show FBSDE

well-posedness in the random oe�ient ase.

An important variation of BSDEs is the lass of re�eted BSDEs (RBSDEs) introdued by

El Karoui et al. [45℄. They are obtained by imposing boundary onditions on lassial BSDEs

and de�ned by the dynamis




−dYt = f(t, Yt, Zt)dt− ZtdWt + dAt

YT = ξ
(A.12)

where the re�eting proess {At}t∈[0,T ] is a inreasing proess allowing the forward proess to

satisfy the boundary ondition.

The solution of the di�erential equation onsists of a square integrable forward proess Y

satisfying the boundary ondition, the ontrol proess Z and a bounded variation proess A

whih satis�es minimality onditions. One may refer to Ma and Yong [81℄ for existene and

uniqueness results or El Karoui, Pardoux and Quenez [46℄ for appliations to Amerian option

priing.

A.2 Properties of solutions to FBSDEs

Additional theoretial results, whih play a key role in numerial methods for solutions of FB-

SDEs, are available. We present them for FBSDEs with Lipshitz oe�ients but equivalent

results exist non-Lipshitz ases. In the following subsetions, we present the relation between

FBSDEs and quasilinear partial di�erential equations (PDEs) and also results on moment esti-

mates of FBSDE solutions.

A.2.1 A priori estimates and regularity of solutions

The triple solution (X,Y, Z) of the FBSDE whose oe�ients are allowed to be stohasti embeds

some regularity properties that are worth mentioning. First, we have the following moment

estimates for the forward proess.

Proposition A.3. For any p ≥ 2, there exists a onstant C depending on the time horizon T ,

the Lipshitz onstant K and p suh that the unique solution {Xt}t∈[0,T ] of the forward SDE of

equation (A.1) with Lipshitz (and measurable square integrable) oe�ients a and b satis�es

E

[
sup

t∈[0,T ]

|Xt|p
]

≤ CE

[
|x0|p +

∫ T

0

|a(t, 0)|p + |σ(t, 0)|p dt
]

(A.13)

E [|Xt −Xs|p] ≤ CE

[
|x0|p + sup

t∈[0,T ]

|a(t, 0)|p + sup
t∈[0,T ]

|b(t, 0)|p
]
|t− s|p/2 .

(A.14)

for any x ∈ Rd
and s, t ∈ [0, T ].
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Moment estimates, from El Karoui, Peng and Quenez [47℄, are also available for solutions of

BSDEs.

Proposition A.4. For any p ≥ 2, there exist a onstant C depending on the time horizon T ,

the Lipshitz onstant K and p suh that the unique solution (Y, Z) of the BSDE of equation

(A.3) with Lipshitz (and measurable square integrable) driver veri�es, for s, t ∈ [0, T ],

E

[
sup

t∈[0,T ]

|Yt|p
]
+E



(∫ T

0

|Zt|2 dt
)p/2




≤ CE

[
|ξ|p +

∫ T

0

|f(t, 0, 0)|p dt
]
, (A.15)

E [|Yt − Ys|p]

≤ CE

[(
|ξ|p + sup

t∈[0,T ]

|f(t, 0, 0)|p
)
|t− s|p−1

+

(∫ t

s

|Zu|2 du
)p/2

]
.

(A.16)

We now state a result on the stability property of the FBSDE solution and its ontinuous

dependene to the FBSDE oe�ients.

Proposition A.5. Suppose (Xδ, Y δ, Zδ) is the solution of the perturbed deoupled FBSDE with

initial value xδ0, terminal ondition ξδ and oe�ients aδ, σδ
and f δ

satisfying the Lipshitz

onditions suh that xδ0 → x0 as δ → 0 and

lim
δ→0

E

[∣∣aδ(t, x)− a(t, x)
∣∣2 +

∣∣σδ(t, x)− σ(t, x)
∣∣2
]

= 0,

lim
δ→0

E

[∣∣ξδ − ξ
∣∣2 +

∣∣f δ(t, y, z)− f(t, y, z)
∣∣2
]

= 0.

Then, we have that

lim
δ→0

E

[
sup

t∈[0,T ]

∣∣Xδ
t −Xt

∣∣2 + sup
t∈[0,T ]

∣∣Y δ
t − Yt

∣∣2 +
∫ T

0

∣∣Zδ
t − Zt

∣∣2 dt
]
= 0. (A.17)

Pardoux and Tang [98℄ obtained results similar to Propositions A.3, A.4 and A.5 for p = 2

in di�erent oupled ases. Proofs of well-posedness of uni-dimensional BSDEs usually rely on

an important property whih is slightly stronger than the previous proposition and given by the

omparison theorem bellow. The proof of this proposition and the proposition itself �gure in El

Karoui, Peng and Quenez [47℄.

Proposition A.6. Let (Y i, Zi) be the unique solution to the BSDE of equation (A.3) with driver

f i
and terminal value ξi for i = 1, 2. If the following inequalities hold

• ξ1 ≥ ξ2, P-a.s

• δft = f1(t, y, z)− f2(t, y, z) ≥ 0, dP× dt-a.s and for all y ∈ R and z ∈ Rd

then Y 1
t ≥ Y 2

t almost surely for any time t ∈ [0, T ].

Also, a path regularity property for the ontrol proess Z was proved by Zhang [123, 124℄.

The result is entral when proving onvergene of FBSDE time disretizations.

Proposition A.7. Suppose the terminal funtion G is L∞
-Lipshitz and the ontrol proess Z

is àdlàg. Then, there is a onstant C depending on T and K only suh that, for any partition

π = {0 = t0 < t1 < ... < tn = T } of [0, T ], we have

n∑

i=1

E

[∫ ti

ti−1

∣∣Zt − Zti−1

∣∣2 + |Zt − Zti |2 dt
]
≤ C(1 + |x0|2) |π| , (A.18)

where |π| = max1≤i≤n |ti − ti−1| is the partition maximal time step.
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When the FBSDE oe�ients are deterministi, the ontrol proess Z displays àdlàg paths

for L∞
-Lipshitz terminal funtions and ontinuous paths for L1

-Lipshitz terminal funtions as

shown by Ma and Zhang[82℄. A more reent result due to Gobet and Makhlouf [54℄ extends the

ontrol proess regularity to irregular Markovian terminal funtion g lying in the spae

L2,α =

{
g : E

[
g(XT )

2
]
+ sup

t∈[0,T ]

E [g(XT )−Et [g(XT )]]
2

(T − t)α
<∞

}
(A.19)

for α ∈ (0, 1].

A.2.2 Relation to quasilinear PDEs

The solution (X,Y, Z) of a FBSDE depends on the onnetions between its omponents sine, for

instane, oe�ients of one of the FBSDE equations may depend on a omponent desribed by

the other equation. This onnetion is learly established for oupled FBSDEs with deterministi

oe�ients and Markovian terminal ondition, i.e for the general situation of equation (A.11)

with the terminal ondition of equation (A.6). In this ase, the FBSDE is linked to the quasilinear

paraboli PDE





∂u
∂t + Lu + f(t, x, u, z(t, x, u,∇u)) = 0, (t, x) ∈ [0, T )× Rd

u(T, x) = g(x), x ∈ Rd
(A.20)

where ∇ :=
(

∂
∂x1

, ..., ∂
∂xd

)
represents the gradient operator,

z : [0, T ]× R
d × R× R

d → R
d

is a funtion suh that

z(t, x, y, p) = pσ(t, x, y, z(t, x, y, p)), (A.21)

and

Lu =

d∑

i=1

ai(t, x, u, z(t, x, u,∇u))
∂u

∂xi

+
1

2

d∑

i,j=1

bij(t, x, u, z(t, x, u,∇u))
∂2u

∂xi∂xj
(A.22)

with b = σσ∗
.

Under various onditions on the existene, uniqueness and regularity of solutions to both

equations (A.20) and (A.21), it an be shown

13

that the triple of proesses (X,Y, Z) satis�es

Xt = x0 +

∫ t

0

ã(s,Xt)ds+

∫ t

0

σ̃(t,Xt)dWt (A.23)

where ã : [0, T ]× Rd → Rd
and σ̃ : [0, T ]× Rd → Rd×d

are given by

ã(t, x) = a(t, x, u(t, x), z(t, x, u(t, x),∇u(t, x))),
σ̃(t, x) = σ(t, x, u(t, x), z(t, x, u(t, x),∇u(t, x)))

and the two remaining solution proesses are de�ned as

Yt = u(t,Xt), (A.24)

Zt = z(t,Xt, u(t,Xt),∇u(t,Xt)). (A.25)

This result leads to a proedure, introdued by Ma, Yong and Protter [79℄, for solving oupled

FBSDEs alled the four step sheme that goes as follows:

13

See Ma, Yong and Protter [79℄ or Ma and Yong [81℄ in Chapter 4, Theorem 1.1 for proof.
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Four Step Method.

1. Find the funtion z : [0, T ]× Rd × R× Rd → Rd
de�ned by equation (A.21).

2. Solve the nonlinear PDE of equation (A.20) using the funtion z to get the funtion u :

[0, T ]× R
d → R.

3. Solve the forward SDE of equation (A.23) to get the forward proess X.

4. De�ne the proesses Y and Z aording to equations (A.24) and (A.25) respetively using

the funtions u and z and the forward proess X.

B Time disretization of SDEs

The formal de�nition of higher order time disretizations uses the multi-index notation and iter-

ated Brownian integral presented in Chapter 5 of Kloeden an Platen [69℄ and also in Chassagneux

and Crisan [27℄. The set M of multi-indie with entries in {0, ..., d} is given by

M := {∅}
⋃

∪∞
j=1{0, ..., d}j (B.1)

and for any multi-index ı ∈ M the measures ℓ and ℓ̄ return the length and the number of zero of

the multi-index respetively with ℓ(∅) = 0. Moreover, −ı (resp. ı−) is the multi-index obtained

by deleting the �rst (resp. last) entry of ı and (j)m refers to the multi-index of length m > 0

whose entries are idential and equal to j ∈ {0, ..., d}. A hierarhial set A ⊂ M is a set of

multi-indie suh that

sup
ı
ℓ(ı) <∞ and − ı ∈ A, ∀ı ∈ A\{∅}.

For instane, it is easily shown that the set

Am = {ı : ℓ(ı) + ℓ̄(ı) ≤ 2m or ℓ(ı) = ℓ̄(ı) = m+
1

2
, 2m ∈ N

∗}

is a hierarhial set. We de�ne the iterated Brownian integral Iıs,t with index ı of length ℓ(ı) = l

reursively as

Iıs,t :=





1 , if l = 0
∫ t

s
Iı−s,udu , if l > 0 and ıl = 0

∫ t

s I
ı−
s,udW

j
u , if l > 0 and ıl = j, 1 ≤ j ≤ d.

(B.2)

On a time partition π = {0 = t0 < t1 < ... < tn = T } of [0, T ], a strong order sheme for the

forward proess de�ned by the SDE (A.1) then has the form

Xπ
ti+1

= Xπ
ti+1

+
∑

ı∈Am\{∅}
Fı(X

π
ti)I

ı
ti,ti+1

(B.3)

for some bounded funtions Fı : Rd → Rd
related to the SDE oe�ients a and σ. General

strong shemes are interesting mainly for their onvergene properties. Kloeden and Platen

[69℄ (Theorem 11.5.1, page 391) show that a strong sheme built with the hierarhial set Am

onverges with order m i.e

E2
X,π := max

0≤i≤n

∥∥Xti −Xπ
ti

∥∥2
L2

= O(|π|2m). (B.4)
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C Gauss quadrature approah to BSDEs

Instead of the onvolution approah of Chapter 2 and Chapter 3, a Gauss quadrature an be used

to ompute the onditional expetations involved in the numerial solution of BSDEs. In this

setion, we present the method in the deterministi and stohasti points of view. Nonetheless,

both approahes are equivalent in pratie sine the resolution of the stohasti approah is made

through the deterministi approah presented bellow.

C.1 Deterministi approah

Starting from the Euler time disretization, we develop a deterministi algorithm for the approx-

imate solution ui and the approximate gradient u̇i in Chapter 2. At time step ti, the solutions

may be written as

ui(x) = ũi(x) + ∆if(ti, ũi(x), u̇i(x)) (C.1)

where

u̇i(x) =
1

∆i

∫ ∞

−∞
yui+1(x+ y)h(y)dy (C.2)

ũi(x) =

∫ ∞

−∞
ui+1(x+ y)h(y)dy (C.3)

for i = 0, 1, ..., n− 1 and un(x) = g(x).

The presene of the Gaussian density h in equation C.2 and C.3 allows the usage of Gaussian

quadrature based numerial method. Indeed, knowing the Gaussian density h has the form

h(x) = (2π∆i)
− 1

2 exp

(
− x2

2∆i

)
, (C.4)

equations C.2 and C.3 an be written as

u̇i(x) = (2π∆i)
− 1

2

∫ ∞

−∞
yui+1

(
x+ y

√
∆i

)
e−

1
2y

2

dy (C.5)

ũi(x) = (2π)−
1
2

∫ ∞

−∞
ui+1

(
x+ y

√
∆i

)
e−

1
2y

2

dy (C.6)

after a hange of variable. The approximate solution and gradient values an hene be ap-

proximated loally with a Gauss-Hermite quadrature. For a onise introdution to Gaussian

quadratures, one may refer to Chapter 9 of Kress [71℄, Chapter 6 of Kiusalaas [72℄, Chapter 4

of Burden and Faires [25℄, Chapter 3 of Moin [91℄, Chapter 5 of Sauer [106℄ or Chapter 8 of

Hildebrand [58℄ among many others.

At a partiular spae position x ∈ R, the intermediate solution ũi and the approximate

gradient u̇i at time mesh ti may be omputed with the N−points Gauss-Hermite quadrature

with N > 1 as

ũi(x) =

N∑

j=1

wjui+1(x+ yj
√
∆i) + E0 (C.7)

u̇i(x) =
1√
∆i

N∑

j=1

wjyjui+1(x+ yj
√

∆i) + E1. (C.8)

where E0 and E1 stand for the integration errors. In addition, the integration nodes {yj}Nj=1

and weights {wj}Nj=1 are retrieved from the Nth order polynomial of the family of orthogonal

polynomials with weight funtion w(x) = e−
1
2x

2

.
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Suppose the polynomials Hn of degree n ∈ N satisfy

∫

R

Hn(x)Hm(x)w(x)dx = 0, n 6= m. (C.9)

Then {Hn}n∈N is said to be a family of orthogonal polynomials with weight funtion w : I → R

for some interval I. The literature on orthogonal polynomials is onsiderable, we will limit

ourselves to Szegö [109℄ or Stahl and Totik [108℄ for a theoretial approah and Marellán and

Van Asshe [86℄ or Gautshi, Golub and Opfer [51℄ for appliations. A �rst property of interest

for orthogonal polynomials has to do with their zeros and is stated in the next proposition. The

statement may be found in Szegö [109℄ (Theorem 3.3.1, page 44).

Proposition C.1. The zeros of the orthogonal polynomials Hn are real, distint and loated in

the interior of the interval I.

In our ase, the orthogonal polynomials {Hn}n∈N are the (probabilisti) Hermite polynomials

sine the weight funtion is w(x) = e−
1
2x

2

. The Hermite polynomials admits the representation

Hn(x) = (−1)ne
1
2x

2 dn

dxn
e−

1
2x

2

(C.10)

and the reurrene formula

Hn+1(x) = xHn(x) − nHn−1(x) (C.11)

with initial polynomials H−1(x) = 0 and H0(x) = 1.

When performing the Gauss-Hermite quadrature, the nodes {yj}Nj=1 and weights {wj}Nj=1

are hosen suh that any polynomial of degree 2N − 1 or less is integrated exatly by the

approximation. As a onsequene, the following proposition holds and is an adaptation of the

results of Hildebrand [58℄ (pp. 388-390).

Proposition C.2. The nodes {yj}Nj=1 of the Gauss-Hermite quadrature are the N real and

distit zeros of the orthogonal polynomial HN . Also, the weights satisfy

wj =
(N − 1)!

N [Hn−1(yj)]2
(C.12)

for j = 1, 2, ..., N .

Another interesting feature of the weights wi is that they sum to one (1). Indeed

N∑

j=1

wi =

∫

R

(2π)−
1
2 e−

1
2x

2

dx = 1

sine onstant funtions are integrated exatly. The error terms E0 and E1 admits the bound

given in the following proposition whih is also adapted from Hildebrand [58℄ (pages 388-390).

Proposition C.3. If un+1 ∈ C2N
, then

E0 = u
(2N)
i+1 (ζ)

∆N
√
2πN !

(2N)!
(C.13)

and

E1 =
(
∆

1
2 ζu

(2N)
i+1 (ζ) + (2N)u

(2N−1)
i+1 (ζ)

) ∆N−1
√
2πN !

(2N)!
(C.14)

for some ζ ∈ R.

Hene, estimates of the approximate solutions ui and the approximate gradient u̇i, i =

0, 1, ..., n − 1, may be omputed using a lassial multinomial tree with N branhes through

equations C.1, C.7 and C.8. For N = 2 and N = 3, the multinomial tree reombines whih eases

the implementation of the Gauss-Hermite method.
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C.2 Stohasti approah

Following Briand, Delyon and Mémin [21℄ and Peng and Xu [99℄, the BSDE

Yt = g(WT ) +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

ZsdWs (C.15)

is disretized on the time mesh π = {t0 = 0 < t1 < ... < tn = T } with a number n of time steps

and ti = i∆ where ∆ = T
n . The disretization then gives the disrete time BSDE

Y π
ti = Y π

ti+1
+∆f(ti, Y

π
ti , Z

π
ti)−

√
∆Zπ

tiǫi+1 , i = 0, 1, ..., n− 1 (C.16)

where {ǫi}ni=1 is a sequene of disrete independent and identially distributed random variables

suh that ǫi ∈ Fti . The Gauss-Hermite quadrature approah gives a systemati way to de�ne the

random variable ǫi. Indeed, one may selet them so that their probability distribution funtion

is given by

fN (y) =
N∑

j=1

wjδ(y − yj) , y ∈ R (C.17)

leading to the probability measure

P [ǫi ∈ A] =

N∑

j=1

wjδyj
(A) , A ⊆ R (C.18)

where δ is the Dira delta funtion and δx is the Dira delta measure. Hene, ǫi takes the value

yj with probability wj . The following proposition holds sine the Gauss-Hermite quadrature

integrates monomials of degree less that 2N exatly.

Proposition C.4. The �rst 2N − 1 moments of ǫi are those of a standard normal distribution.

Let {Wπ
t }t∈[0,T ] be the adapted proess de�ned as

Wπ
t =

√
∆

⌊t∆−1⌋∑

i=1

ǫi , (C.19)

then the disrete BSDE terminal value is given by

Y π
T = g(Wπ

T ). (C.20)

The next proposition desribes how the sale random walk {Wπ
t }t∈[0,T ] may be used to approx-

imate the standard Brownian motion in this ontext.

Proposition C.5. Suppose that for a sequene {kn}n∈N where 0 ≤ kn ≤ 1 and limn→∞ kn = 0,

∆− 1
2
E [ǫi∆Wj ] = δi,j(1 − kn), i, j = 1, 2, ..., n. (C.21)

Then the adapted proess {Wπ
t }t∈[0,T ] is suh that

sup
t∈[0,T ]

|Wπ
t −Wt| → 0 (C.22)

as n→ ∞, where the onvergene holds in probability.

Proof. First notie that the proess {Wπ
t }t∈[0,T ] is a martingale, so that

|Wπ
t −Wt| is a sub-martingale by Jensen inequality. Also, for any ε > 0

P

[
sup

t∈[0,T ]

|Wπ
t −Wt| > ε

]
≤ ε−2

E

[
|Wπ

T −WT |2
]
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by Doob's inequality, where

E

[
|Wπ

T −WT |2
]

= E

[
(Wπ

T )
2
]
− 2E [Wπ

TWT ] +E

[
(WT )

2
]

= ∆

n∑

i=1

E

[
ǫ2i
]
− 2

√
∆E



(

n∑

i=1

ǫi

)


n∑

j=1

∆Wj




+ T

= 2T − 2
√
∆E

[
n∑

i=1

ǫi∆Wi

]

= 2T − 2T (1− kn)

= 2Tkn.

From this last equation, we have that P
[
supt∈[0,T ] |Wπ

t −Wt| > ε
]
→ 0 as n→ ∞.

For any t ∈ [0, T ], we extend the disrete solution suh that

Y π
t = Y π

ti , t ∈ [ti, ti+1) (C.23)

Zπ
t = Zπ

ti , t ∈ [ti, ti+1). (C.24)

The following proposition holds as a onsequene of Proposition C.5 and Theorem 2.1 of Briand,

Delyon and Mémin [21℄.

Proposition C.6. Suppose that Assumption A.2 holds, g ∈ Cb and the ondition of equation

(C.21) holds. Then

sup
t∈[0,T ]

|Y π
t − Yt|+

∫ T

0

|Zπ
t − Zt|2 dt → 0 (C.25)

as n→ ∞, where the onvergene holds in probability.

The boundedness of the terminal ondition g is required only to ensure the onvergene in

mean of g(Wπ
T ) and g

2(Wπ
T ) to g(WT ) and g

2(WT ) respetively. This onvergene in mean then

allows to meet the requirements of Theorem 2.1 in Briand, Delyon and Mémin [21℄.

In general, the BSDE is then numerially solved with the expliit sheme of equations (1.2.4)

and (1.2.3). A partiular ase of this general (Gauss-Hermite) multinomial approah is the

binomial method of Peng and Xu [99℄ where ǫi has the distribution funtion

f2(y) =
1

2
(δ(y − 1) + δ(y + 1)) . (C.26)

In the trinomial approah that we use in Chapter 2, the distribution of the disrete inrements

ǫi is given by

f3(y) =
2

3
δ(y) +

1

6

(
δ(y −

√
3) + δ(y +

√
3)
)
. (C.27)

D The Gauss-Weierstrass transform

The onvolution method starts with expressions of the approximate solutions in integral forms.

For the expliit Euler sheme 1 and the impliit Euler sheme, the intermediate solution ũi

and the intermediate gradient u̇i at time mesh ti are onvolution transformations. Convolution

transformations are speial ases of integral transformations and have been extensively studied

and applied. The books of Hirshman and Widder [60℄ summarizes the theory and appliations

range from signal proessing to probability and statistis.

In our ase, the onvolution integrals involved in the approximate solutions are partiularly

Gauss-Weierstrass transformations. Hirshman and Widder [60℄ give an overview in Chapter

8 of their book. Additional results may be found in authors suh as Hille [59℄, Widder [113℄,

Bilodeau [14, 13℄, Zemanian [118, 119℄ among others.

116



D.1 De�nition and onnetion to BSDEs

Let's onsider the Gaussian density ht with

ht(x) = (2πt)−
1
2 e−

x2

2t
, t > 0, x ∈ R. (D.1)

For a real valued funtion g : R → R, the Weierstrass transform of g an be de�ned as the

funtion u : R → R

u(x) = e
1
2D

2

g(x)

:=

∫

R

g(y)h1(x− y)dy (D.2)

whenever the integral onverges where D := d
dx is the �rst order di�erential operator. Hene,

u is the onvolution transform of g with kernel h1. The literature usually de�nes the transform

at sale t = 2, we use sale t = 1 for onveniene purposes to suit our approximate solution

expressions.

The generalized Gauss-Weierstrass transform onsiders kernel at di�erent sales t > 0 and

may be de�ned as

u(t, x) = e
t
2D

2

g(x)

:=

∫

R

g(y)ht(x− y)dy. (D.3)

The literature has foused mainly on the inversion problem for the Gauss-Weierstrass trans-

form. For entire real valued funtions u on R suh that the omplex extension u(x+ iy) satis�es

some analytial and growth onditions, Hirshman and Widder [60℄ (Theorem 3.2, page 180) show

that the inverse Gauss-Weierstrass transform of u is given by

e−
t
2D

2

u(x) =

∫

R

ht(y)u(x+ iy)dy. (D.4)

Hene, an entire funtion u (satisfying analytial and growth onditions) an be represented as

the Gauss-Weierstrass transform of g where

g(x) = e−
1
2D

2

u(x). (D.5)

Theorem 13.3 (page 207) of Hirshman and Widder [60℄ gives a growth ondition on the inverse

Gauss-Weierstrass transform g. One must have that

|g(x)| < Meax
2

(D.6)

for some onstant M > 0 and −∞ < a < 1
2 in our ase.

The Gauss-Weierstrass transform has strong links with di�usion PDE. Notie the kernel ht

of equation (D.1) is the Green's funtion assoiated to the di�usion operator

L =
∂

∂t
− 1

2

∂2

∂x2
.

Hene, the funtion u(T − t, x) = e
T−t
2 D2

g(x) is the solution to the Cauhy problem





∂u
∂t + 1

2
∂2u
∂x2 = 0, (t, x) ∈ [0, T )× R

u(T, x) = g(x), x ∈ R.
(D.7)

This PDE is itself assoiated to the BSDE with null driver and terminal ondition g.

The approximate solutions for our BSDE admit representations in term of Gauss-Weierstrass

transform. The following proposition sums up the idea in the one-dimensional ase for the Euler

sheme 1 and holds for the impliit Euler sheme. Similar expressions an be developed for the

Euler sheme 2.

117



Proposition D.1. For the Euler sheme 1, the intermediate solution ũi and the approximate

gradient u̇i at mesh time ti satisfy

ũi(x) = e
∆i
2 D2

ui+1(x) (D.8)

u̇i(x) = Dũi(x) =
dũi
dx

(x) (D.9)

for i = 0, 1, ...n− 1.

Proof. The representation of equation (D.8) follows obviously from the integral representation

of the intermediate solution ũi in equation (2.2.8) given equation (2.2.9) holds. Also, di�erenti-

ating the intermediate solution integral in equation (2.2.8) leads to equation (D.9) assuming the

di�erential and integral operators an be interhanged.

The proposition shows that the approximation solutions for BSDEs are obtained by solving

a di�usion PDE with null driver between onseutive mesh times.

For some input funtions g, the Gauss-Weierstrass transform is known in losed form. These

input funtions inlude Hermite polynomials, exponential funtions and Gaussian funtions

with sale parameter stritly less than

1
2 . Hirshman and Widder [60℄ gives a table of di�er-

ent transforms on page 178 using an alternative de�nition of the Gauss-Weierstrass transform.

The orthogonality of Hermite polynomials also leads to interesting series expansions for Gauss-

Weierstrass transforms whih an be used to represent approximate solutions for BSDEs. Ele-

ments on this subjet may be found in Hille [59℄ or Bilodeau [14℄.

D.2 Closed forms for approximate solutions

We next give an example where the numerial solutions for BSDEs an be developed in losed

form. We will limit to linear BSDEs with drivers of the form

f(t, y, z) = ay + bz (D.10)

and terminal ondition g : R → R. It is well-known in this linear ase that the bakward proess

is given (see El Karoui, Peng and Quenez [47℄)

Yt = Et

[
g(WT )Γ

t
T

]
(D.11)

where, for s ≥ t,

Γt
s = e(a−

1
2 b

2)(s−t)+b(Ws−Wt). (D.12)

If we set, for any ϕ ∈ R,

g(x) = eϕx
(D.13)

then the BSDE solution an be represented as

Yt = e(a+bϕ+ 1
2ϕ

2)(T−t)g(Wt) (D.14)

Zt = ϕe(a+bϕ+ 1
2ϕ

2)(T−t)g(Wt). (D.15)

The approximate solutions for the BSDE derived from the Euler sheme 1 on an equidistant

time grid π = {0 = t1 < t2 < ... < tn = T } with time step ∆ = T
n is

ui(x) = (1 + a∆+ bϕ∆)n−ie
1
2ϕ

2(T−ti)g(x) (D.16)

u̇i(x) = ϕ(1 + a∆+ bϕ∆)n−i−1e
1
2ϕ

2(T−ti)g(x) (D.17)

i = 0, 1, ..., n− 1. This numerial solution may be obtained by indution using Proposition D.1

and knowing that the Gauss-Weierstrass transform of g is e
t
2D

2

g(x) = e
1
2ϕ

2tg(x).
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E Elements of Fourier analysis

Fourier analysis studies funtion representations as trigonometri series. It has been a topi of

researh sine Joseph Fourier's work on the appliation of Fourier series to the heat equation in

the beginning of the nineteenth entury. In addition to partial di�erential equations, appliations

of Fourier analysis now inlude signal proessing, probability theory or �nane among others.

For the main theoretial tool in the onvolution method of Chapters 2 and 3 is Fourier analysis,

this appendix aims to be an overview of the subjet. Many books are also available on theoretial

or pratial aspets of Fourier analysis. Many results in this appendix an be found in the books

of Vretblad [112℄, Edwards [43℄, Bernatz [12℄ and Plato [101℄ for instane.

Setion E.1 presents omplex Fourier series and their basi properties. Results of the Fourier

transform are given in Setion E.2 and Setion E.3 deals with Fourier series approximation and

its relationship with the disrete Fourier transform (DFT).

E.1 Fourier series expansion

Let h : R → C be a omplex-valued funtion de�ned on the real line. Suppose in addition that

the following assumption holds.

Assumption E.1. The funtion h : R → C is periodi with period 2π and integrable on [−π, π]
with ∫ π

−π

|h(t)| dt <∞. (E.1)

The omplex Fourier series assoiated with the funtion h is the expansion of the form

∞∑

k=−∞
cke

ikx
(E.2)

where the Fourier oe�ients are de�ned as

ck =
1

2π

∫ π

−π

h(t)e−iktdt (E.3)

and i =
√
−1 is the imaginary unit.

Another Fourier series expansion that is widely used is the real Fourier series whih is the

expansion of the form

1

2
a0 +

∞∑

k=1

(ak cos(kx) + bk sin(kx)) (E.4)

where the (real) Fourier oe�ients are

ak =
1

π

∫ π

−π

h(t) cos(kt)dt (E.5)

bk =
1

π

∫ π

−π

h(t) sin(kt)dt. (E.6)

The equivalene between the omplex and the real Fourier series expansions an be established

by observing the relationship between their respetive oe�ients. Indeed, it's easily shown that

ak = ck + c−k and bk = i(ck − c−k). (E.7)

For this reason, we fous on the omplex Fourier series of equation (E.2) in the rest of this

appendix.

Some of the most important issues with Fourier series expansion are the study of their

onvergene and uniqueness. Sine the funtion h is assumed periodi with period 2π, one an
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limit the study of its Fourier series on the interval [−π, π]. Unfortunately, the integrability

ondition of Assumption E.1 gives only very little information on the Fourier oe�ients and

onsequently on the onvergene of the Fourier series. The next proposition illustrates this idea

and it an be found in Vretblad [112℄ (Lemma 4.1, page 79).

Proposition E.1. Suppose h satis�es Assumpion E.1 then the sequene of Fourier oe�ients

{ck}k∈Z is bounded with

|ck| ≤
1

2π

∫ π

−π

|h(t)| dt (E.8)

and onverges to zero ( 0)

lim
|k|→∞

ck = 0. (E.9)

Indeed, the onvergene of Fourier oe�ients to zeros (0) does not ensure the onvergene of

the series expansion. Moreover, onvergene of the Fourier series expansion does not guarantee

its onvergene to the funtion h. Hene, further smoothness assumptions have to be made on

the funtion h as shown by the following proposition. The proposition is stated in Vretblad [112℄

(Theorem 4.2, page 83) and ideas of its proof an be found in the same referene or in Edwards

[43℄.

Proposition E.2. Assume the funtion h satis�es Assumption E.1 and admits the Fourier

oe�ients {ck}k∈Z suh that the serie of Fourier oe�ients onverges absolutely

∞∑

k=−∞
|ck| <∞. (E.10)

If h is ontinuous then the Fourier series of equation (E.2) onverges uniformly to h on

[−π, π].

A result similar to Proposition E.2 (Carleson's theorem) uses less onstraints on funtion

h. It an atually be shown that the Fourier series expansion of a ontinuous and integrable

funtion h onverges to h almost everywhere on [−π, π] in the Lebesque sense. Almost everywhere

onvergene also holds if h ∈ Lp([−π, π]) with p > 1.

Continuity also guarantees uniqueness of the Fourier series expansion (See Corollary 4.1, page

84 of Vretblad [112℄). Hene, for a ontinuous funtion h satisfying Assumption E.1 we an write

h(x) =
∞∑

k=−∞
cke

ikx
, x ∈ [−π, π] (E.11)

where the equality holds almost everywhere in the Lebesque sense.

An interesting result gives a desription of Fourier oe�ients when the funtion h is di�er-

entiable. We state it as in Vretblad [112℄ (Theorem 4.4 page 85).

Proposition E.3. If h ∈ Cm[−π, π] then

|ck| ≤M |k|−m
(E.12)

for some onstant M .

It is possible to de�ne the Fourier series of the periodi funtion h with period b − a on

a general interval [a, b] by a hange of variable. All results exposed previously holds and the

expansion takes the form

h(x) =

∞∑

k=−∞
cke

ik 2π
b−a

x
(E.13)

where the omplex oe�ients are given by

ck =
1

b− a

∫ b

a

h(t)e−ik 2π
b−a

tdt. (E.14)
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E.2 Fourier transform

The Fourier transform of an integrable funtion h : Rd → C with

∫

Rd

|h(t)| dt <∞ (E.15)

is the funtion ĥ : Rd → C de�ned as

ĥ(ν) := F[h](ν) =

∫

Rd

e−iν∗xh(x)dx. (E.16)

The inverse Fourier transform reovers the funtion h from its Fourier transform ĥ through the

relation

h(x) := F−1[ĥ](x) =
1

(2π)d

∫

Rd

eiν
∗xĥ(ν)dν. (E.17)

Among the various properties of the Fourier transform (and its inverse transform) suh as

linearity and relations under shifting and saling, two of them are of partiular importane in

Chapter 2 and throughout the thesis. We present these properties in the one-dimensional ase

sine they an easily generalized. The �rst relates the initial funtion with the derivatives of its

Fourier transform.

Proposition E.4. Let ĥ , the Fourier transform of the funtion h, be di�erentiable. Then

F[xh(x)](ν) = i
∂ĥ

∂ν
(ν) (E.18)

and

F[
∂h

∂x
(x)](ν) = iνĥ(ν). (E.19)

Proof. For the �rst part of the proposition, we have that

∂ĥ

∂ν
(ν) =

∂

∂ν

∫ ∞

−∞
e−iνxh(x)dx

=

∫ ∞

−∞

∂

∂ν
e−iνxh(x)dx,

assuming the integral and the di�erential operators an be interhanged, so that

∂ĥ

∂ν
(ν) = −i

∫ ∞

−∞
e−iνxxh(x)dx

= −iF [xh(x)] (ν).

As to the seond part, we have

iνĥ(ν) =

∫ ∞

−∞
iνe−iνxh(x)dx

= −
∫ ∞

−∞

(
∂

∂x
e−iνx

)
h(x)dx

=

∫ ∞

−∞
e−iνx ∂h

∂x
(x)dx − e−iνxh(x)

∣∣∞
−∞

(applying the intregration by part formula),

= F

[
∂h

∂x
(x)

]
(ν)

whenever h is integrable.

The seond property is the well known onvolution theorem whih de�ne the Fourier trans-

form of a onvolution of two funtions as the produt of the individual Fourier transforms.
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Proposition E.5. (Convolution theorem) Let h ∗ k be the onvolution of the funtions h

and k i.e

(h ∗ k)(x) =
∫ ∞

−∞
h(x− t)k(t)dt

then

F[h ∗ k] = F[h]F[k]. (E.20)

Proof. The proof is straightforward,

F[h ∗ k](ν) =

∫ ∞

−∞
e−iνx

∫ ∞

−∞
h(x− t)k(t)dtdx

=

∫ ∞

−∞

∫ ∞

−∞
e−iνxh(x− t)k(t)dxdt.

The hange of variable z = x− t then gives

F[h ∗ k](ν) =

∫ ∞

−∞

∫ ∞

−∞
e−iν(z+t)h(z)k(t)dzdt

=

∫ ∞

−∞
e−iνzh(z)dz

∫ ∞

−∞
e−iνtk(t)dt.

E.3 Fourier series and the disrete Fourier transform

In order to approximate a funtion with Fourier series, on may onsider trunating the Fourier

series expansion. Proposition E.3 naturally leads to a result on this proedure. Hene, the proof

of the following theorem is mainly based on the onvergene of hyper-harmoni series.

Proposition E.6. Suppose the funtion u satis�es Assumpsion E.1 and admits the Fourier

series expansion

u(x) =

∞∑

k=−∞
cke

ikx
, x ∈ [−π, π] . (E.21)

If h ∈ Cm+1[−π, π] with m ≥ 1 then for any N ∈ N∗

u(x) =

N−1∑

k=−N

cke
ikx +O(N−m). (E.22)

Proof. Let eN be suh that u(x) =
∑N−1

k=−N cke
ikx + eN . Then by Proposition E.3

|eN | ≤ 2M

∞∑

k=N

k−m−1

= 2MN−m−1
∞∑

k=0

(
1 +

k

N

)−m−1

= 2MN−m−1
∞∑

n=1

N−1∑

k=0

(
n+

k

N

)−m−1

≤ 2MN−m
∞∑

n=1

n−m−1

= CN−m

for some onstant C > 0 and for any m ≥ 1.
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For an approximation by Fourier series trunation to be useful, the Fourier oe�ients in-

volved in the trunated series must be available. Deriving analytial formulas for the Fourier

oe�ients of a given funtion is usually a very tedious task. Hene, approximating the oe�-

ients appears muh more suitable.

The disrete Fourier transform (DFT) transforms a set of real or omplex numbers {xj}N−1
j=0

into another set {x̂j}N−1
j=0 through the relation

x̂k := D[x]k =
1

N

N−1∑

j=0

e−ijk 2π
N xj (E.23)

for k = 0, 1, ..., N − 1. The inverse DFT performs the reiproal operation by omputing the set

of numbers {xj}N−1
j=0 using the numbers {x̂j}N−1

j=0 as

xk := D−1[x̂]k =

N−1∑

j=0

eijk
2π
N x̂j (E.24)

for k = 0, 1, ..., N − 1.

The DFT and inverse DFT operations an be represented in a matrix and/or vetor form.

In partiular, the DFT takes the form




x̂0
.

.

.

x̂N−1


 =

1

N
F




x0
.

.

.

xN−1


 (E.25)

where F is a Vandermonde matrix,

F =




1 1 1 . . . 1

1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)




(E.26)

with ω = e−
2π
N

i
. The inverse DFT is represented aordingly by




x0
.

.

.

xN−1


 = F̂




x̂0
.

.

.

x̂N−1


 (E.27)

where F̂ satis�es

F̂ =

[
1

N
F

]−1

= FH . (E.28)

i.e, F̂ is the Hermitian transpose of F .

This matrix-vetor representation is useful in many ases and espeially in the proof of energy

onservation properties of the DFT. The following proposition, known as the Parseval's theorem,

is an illustration.

Proposition E.7. Let the senquene x̂ =
[
x̂0 . . . x̂N−1

]∗
be the disrete Fourier transform

of x =
[
x0 . . . xN−1

]∗
, then

|x̂|2 =
1

N
|x|2 . (E.29)
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Proof. Let ‖.‖2 be the indued Eulidean norm on omplex matries A ∈ Cn×m
. We know that

‖A‖2 = r(AHA) (E.30)

where, for a square matrix M ∈ Cm×m
, r(M) is the spetral radius of M .

Note that, from equation (E.25), we have

|x̂|2 ≤ 1

N2
‖F‖2 |x|

2

≤ 1

N2
r(FHF ) |x|2

≤ 1

N2
r(NIN×N ) |x|2 (by equation (E.28)),

≤ 1

N
|x|2 . (E.31)

Also, from equation (E.27), we have

1

N
|x|2 ≤ 1

N

∥∥∥F̂
∥∥∥
2
|x̂|2

≤ 1

N
r(FHF ) |x̂|2

≤ 1

N
r(NIN×N ) |x̂|2 (by equation (E.28)),

≤ |x̂|2 . (E.32)

Both equations (E.31) and (E.32) then lead to the result.

The DFT is strongly related to Fourier series and trigonometri approximation. If we onsider

a integrable real funtion h : [a, b] → R suh that h(a) = h(b) and h admits the omplex Fourier

series expansion

h(x) =

∞∑

k=−∞
cke

ik 2π
b−a

x
(E.33)

on the interval [a, b]. The DFT allows to approximate the oe�ients ck given a sampling of the

funtion h at equidistant nodes through the following proposition that an be found in Plato

[101℄.

Proposition E.8. Let {h(xk)}N−1
k=0 be the values at equidistant nodes {xk}N−1

k=0 of a real funtion

h. Assume that the funtion h ∈ C2([a, b]) is twie di�erentiable on [a, b] with h(a) = h(b) and

xk = a+ k∆ where ∆ = b−a
N where N is even. Then

ck−N
2
= e−i(k−N

2 ) 2π
b−a

a
D[{(−1)ih(xi)}N−1

i=0 ]k +O(∆2) , (E.34)

for k = 0, 1, ..., N − 1.

Proof. Under the onditions of this proposition, the DFT is simply a omposite trapezoidal

quadrature whih yields a seond order error.

Instead of a Fourier series trunation to approximate a funtion u, a better approah is an

interpolation with trigonometri polynomials. For any even integer N , the real valued funtion

h : [a, b] → R an be interpolated by a trigonometri polynomial TN [h] of the form

TN [h](x) =

N
2
−1∑

k=−N
2

dke
ik 2π

b−a
x

(E.35)

at equidistant nodes {xk}N−1
k=0 suh that

TN [h](xk) = h(xk) , k = 0, 1, ..., N − 1. (E.36)

The Fourier oe�ients {dk}n−1
k=−n are exatly omputed by a DFT.
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Proposition E.9. Supposed the trigonometri polynomial TN [h] interpolates the real valued

funtion h : [a, b] → R at the nodes {xk}N−1
k=0 with x0 = a and xi = xi−1 + b−a

N suh that the

relations of equation (E.36) hold. Then, the Fourier oe�ients are given by

ei(k−
N
2 ) 2π

b−a
adk−N

2
= D[{(−1)ih(xi)}N−1

i=0 ]k , (E.37)

for any k = 0, ..., N − 1.

Proof. Let's note that for i = 0, 1, ..., N − 1,

h(xi) =

N
2 −1∑

k=−N
2

dke
ik 2π

b−a
xi

=

N−1∑

k=0

dk−N
2
ei(k−

N
2 ) 2π

b−a
xi

=

N−1∑

k=0

dk−N
2
ei(k−

N
2 ) 2π

b−a
aeiki

2π
N e−iiπ,

so that

(−1)ih(xi) = D−1

[{
dk−N

2
ei(k−

N
2 ) 2π

b−a
a
}N−1

k=0

]

i

sine e−iiπ = (−1)i. Taking the DFT gives the result.

An error bound is available for the trigonometri interpolation previously de�ned. It su�es

to ombine the result of Propositions E.6 and E.8 to have a proof of the following proposition.

Proposition E.10. If the funtion h ∈ C2([a, b]) satis�es Assumtions E.1, then the trigonomet-

ri polynomial TN [h] interpolating h as de�ned in equations (E.35) and (E.36) satis�es

h(x) = TN [h](x) +O(∆x) (E.38)

for any x ∈ [a, b] where ∆x = b−a
N .

Let's notie that the error bound in Proposition E.10 is given in the L1
-norm. A variation of

this result exists with the L2
-norm and the error term is, in that ase, of seond order under an

additional square integrability ondition on the funtion seond derivative (Plato [101℄, Theorem

3.10, page 46). The previous proposition an be generalized for smooth funtions. It an indeed

be shown that for any (periodi) funtion h ∈ Cm+1([a, b]), the trigonometri interpolation error

is of order m.
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