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Abstract

Quantum charge transport in 10-nanometer scale suspended graphene

transistors

Vahid Tayari, Ph.D.

Concordia University, 2014

Since the discovery of graphene there has been a growing interest in fabricating

and studying nanometer scale graphene devices for future nanoelectronic applications.

We developed a nanoetching technique called electromigration to fabricate ≈ 10 nm

scale suspended and clean graphene quantum dots (QD) and ballistic transistors. Be-

cause these devices are so small, we were able to explore the fundamental quantum

properties of their relativistic-like charge carriers.

Using our electromigration technique, we tailored the shape and size of suspended

graphene channels, forming ultra-short devices which behave as graphene QDs if

they are narrow (≈ 30 nm) or ballistic transistors if they are wider (≈ 100 nm). Our

≈ 30×30 nm suspended graphene QDs are, to our knowledge, the smallest suspended

graphene QDs made to date. We measured electron transport across these devices

and observed a variable charging energy as a function of the charge occupation of the

dot, as expected due to the chaotic billiard transport of Dirac fermions. We observed

signatures of electron-vibron (e-v) coupling in our suspended QDs and measured their

self-actuated out-of-plane vibron resonances (bending mode), whose frequencies range

up to ≈ 100 GHz.

We used a gold film to locally gate graphene and create ultra-short p-n junc-

tions. We fabricated ≈ 20 − 100 nm long suspended graphene ballistic transistors

and measured n-p-n junctions (down to ≈ 10 nm p-n junctions). We observed coher-

ent ballistic transport in agreement with the theory of Dirac fermions, and measured

Fabry-Pérot interferences in our devices. We measured coherence lengths up to ≈ 700

nm in our graphene transistors, which is much longer than the length of the channels

of the transistors. This showed that the graphene contacts (gold covered) are also

ballistic.

The fabrication method we developed to make ultra-short suspended graphene
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devices, combined with the observation of clear signatures of quantum coherent trans-

port, opens the way to explore graphene physics and applications at the 10 nm scale.
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Chapter 1

Introduction

Experimental electron transport in 10 − 100 nm scale graphene nanostructures is

still largely unexplored. At this scale the quantum properties of the relativistic-like

charge carriers (Dirac fermions) in graphene offer a platform for fundamental studies

and the fabrication of advanced nanoelectronic devices. To fabricate devices down to

the 10 nm-scale, we have developed a nanoetching technique based on electromigra-

tion [1, 2, 3]. Fig. 1.1 shows one of our ultra-short graphene transistors. Fabrication

at this scale is currently beyond the limit of standard nanofabrication methods.

In contamination-free 10 nm-scale suspended graphene devices, charge carriers

(electrons or holes) do not scatter while traversing the device. Thus, they preserve

their quantum phase which can be used to store quantum information. Depending on

the graphene-contact interface resistance, ultra-short graphene devices can be either

ballistic channel (quantum wires) or quantum dots (quantum puddles). We observe

quantum dot (QD) behavior in devices whose width is ≈ 30 nm when T = 4.2 K,

whereas we observe ballistic transport in wider devices.

We explore charge transport in 10 nm scale suspended graphene devices with

widths ranging from 30 nm up to 1.5 μm. We suspend the devices to remove sub-

strate disorder, and the associated charge scattering, to preserve the quantum nature

of the charge transport. We also remove contamination and residues, such as H2O

and organic residues from nanofabrication with Joule effect annealing of the samples.

We can reduce the effect of edge disorder by increasing the width of the devices. We

observe clear QD behavior in ≈ 30 nm wide devices [1]. These ≈ 30×30 nm graphene

QDs are among the smallest made to date, and the first such devices to be suspended
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Figure 1.1: Scanning electron microscope image of one of our ultra-short graphene
transistor (length ≈ 23 nm).

(to the best of our knowledge). We observe signatures of electron-vibron (e-v) cou-

pling in suspended quantum dots. In these nano-electromechanical systems (NEMS),

we demonstrate vibrational frequencies on the order of 100 GHz, which is orders of

magnitude higher than previously reported for graphene resonators [4, 5, 6, 7, 8, 9].

These suspended graphene QDs offer a platform which will be useful for studying

the effects of strain on Dirac fermion transport and e-v coupling. High-frequency

suspended graphene NEMS can be used as ultra sensitive force/mass sensors.

In wider devices, W > 30 nm, we measure coherent ballistic transport consistent

with theoretical predictions for Dirac fermions [10] (in preparation). These devices

form n-p-n transistors. A p-n junction is an interface between two types of semicon-

ductors which are hole (p) and electron doped (n). p-n junctions are the building

blocks of modern integrated circuits. To fabricate a graphene based ballistic p-n

junction it is necessary to create a charge carrier density gradient in a sub-micron

region. Usually, a global back gate and a local top gate are used to dope graphene and

create this charge carrier density gradient. Although there has been a lot of effort to

reduce the size of p-n junctions [11, 12, 13], the thickness of the necessary insulating

layer between the gate and graphene limits the downsizing of the junction p-n. We

2



demonstrate ≈ 23 nm long suspended graphene ballistic n-p-n and n-n’-n junctions

(10 nm p-n junctions. To make these small p-n junctions, the smallest reported, we

dope graphene using the gold contacts themselves. Since the spacing between the

graphene and the gold film deposited on the graphene is ≤1 nm, it does not limit the

size of the n-p or (n-n’) junction.

We observe Fabry-Pérot (FP) interference in the conductance (G) of our transis-

tors as a function of the charge carrier density and bias voltage, which demonstrate

quantum coherent transport [10]. FP oscillations arise from interferences between the

wavefunctions of reflected and transmitted carriers. The maximum coherence length

(up to 700 nm) in our devices is much longer than the length of the transistor channel.

This demonstrates that the ballistic transport is extended in graphene buried under

the gold contacts. Thus, our graphene transistors are connected by graphene contacts

which can transmit the quantum information in the phase of the charge carriers over

a distance of ≈ 700 nm [10]. These ballistic n-p-n transistors and wires (graphene

contacts) are the building blocks needed to develop graphene-based quantum nano-

electronics. The devices that we fabricate also provide a platform for future studies

of the effects of strain (gauge field) on the phase of the carriers in 10 nm scale p-n

junction.

The structure of this thesis is as follows: the remainder of Chapter 1 will provide

a brief introduction to graphene. In Chapter 2 we will describe the microfabrication

procedures required to create suspended gold break-junctions covering graphene. In

Chapter 3 we will describe a nanoetching technique which we have developed to fab-

ricate ≈ 30 nm long suspended graphene QDs. We will also discuss the signatures

of e-v coupling in our suspended QDs which indicate vibrational frequencies up to

≈ 100 GHz. In Chapter 4, we will explain how to fabricate ballistic transistors, whose

widths is > 30 nm, using the nanoetching technique described in Chapter 3. We will

then demonstrate ballistic transport in ≈ 23 to 105 nm long ballistic (n-p-n) transis-

tors in agreement with the theory of Dirac fermions. We will show that the charge

carriers have phase coherence length up to ≈ 700 nm in these transistors, indicating

the formation of coherent ballistic transport under the gold contacts.
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1.1 Graphene

Graphene is a one-atom thick carbon crystal with a two-atom basis hexagonal lattice.

It is an ideal two-dimensional system. Graphene has outstanding properties such as

a linear band dispersion at low energy, is the strongest material known, and has very

high heat conductivity. These qualities make it a promising material for fundamental

studies and industrial applications [14, 15, 16].

The low energy dispersion relation of charge carriers (electrons and holes) in

graphene is linear. The behavior of these carriers can thus be described by the

theory of Dirac fermions. One of the interesting properties of Dirac fermions is that

they cannot be stopped by a potential barrier when incident at a zero angle. In other

words, the transmission probability of Dirac fermions through a potential barrier of

any height is unity at normal incidence (θ = 0) [17]. This anomalous tunneling

property is called Klein tunneling and gives rise to a very high electronic mobility in

graphene [18], which makes graphene a promising candidate for high-speed electronics

[19]. Graphene has incredible mechanical properties. It can sustain up to a 25% strain

[7, 20], which makes it an ideal material for high-frequency NEMS [7, 4]. NEMS can

have applications in mass/force sensors [21, 22] and in computation [4]. Graphene can

also tolerate very high current densities and high temperatures [18, 23, 24, 25]. This

offers the possibility to anneal graphene at high temperatures using Joule heating, to

remove any absorbed contaminants [18, 23]. Graphene has a very high heat conduc-

tivity which can have applications in heat management in nanoelectronics [23, 26].

In the following subsections we will describe graphene’s band structure, and introduce

Klein tunneling.

1.2 Band structure of graphene

We calculate the band structure of graphene using the tight-binding approximation.

Figure 1.2 shows the hexagonal lattice of graphene with lattice vectors �a1 =
a
2
(3,
√
3)

and �a2 = a
2
(3,−√3), where a = 1.42 Å is the carbon-carbon distance [14]. Fig. 1.2

shows that the lattice structure of graphene consists of two sublattices, sublattice A

(blue circles) and sublattice B (red circles). The nearest neighbor vectors connect
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the two lattices, and are as following [14]:

�δ1 =
a

2
(1,
√
3) �δ2 =

a

2
(1,−

√
3) �δ3 = −a(1, 0) (1.1)

The wave function of electrons can be considered as a superposition of the wave

Figure 1.2: Graphene’s hexagonal lattice. Details the hexagonal lattice of graphene
with lattice vectors �a1 = a

2
(3,
√
3) and �a2 = a

2
(3,−√3), where a = 1.42 Å is the

carbon-carbon distance. The lattice structure consists of two sublattices, sublattice
A (blue circles) and sublattice B (red circles). �δ1, �δ2 and �δ3 are the nearest neighbor
vectors.

functions on sublattice A and sublattice B:

ψ(r) =
∑
Ai

eik·rAiφ(r− rAi
) + λ

∑
Bj

eik·rBjφ(r− rBj
) (1.2)

Where λ = 1 is a prefactor and used to factorize the wavefunctions. The Hamiltonian

of the lattice can be approximated as:

H = H0 +ΔU (1.3)

Where H0 is the Hamiltonian of and electron due to the potential of a single carbon

atom, and ΔU is a correction due to hopping to nearest neighbour atom. The energy

5



band structure can be extracted by finding the eigenvalues of the Hamiltonian as:

Hψ(r) = (H0 +ΔU)ψ(r) = E(k)ψ(r) (1.4)

The above equation leads to two equations be solved by projecting into < φ(r− rAi
)|

from the left, then repeating the same thing with < φ(r−rBj
)|. E(k) can be found by

diagonalizing these two equations. To do so, we make use of the fact that the atomic

wavefunctions of the different carbon atoms are orthogonal (
∫
drφ∗(r − rAi

)φ(r −
rAj

) = δij and
∫
drφ∗(r − rAi

)φ(r − rBj
) = 0 ). Finally, the band structure of

graphene can be written as:

E(k) = Eo ±
√
3t2 + 2t2 cos(ky

√
3a) + 4t2 cos(kx

3a

2
) cos(ky

√
3a)

2
(1.5)

where Eo is the energy given by Ho, t is the nearest neighbor hopping energy t =

(
∫
drφ∗(r−rAi

)ΔUφ(r−rAj
) ≈2.8 eV [14]. Figure 1.3 shows the energy as a function

of kx and ky (Eq. 1.5). It demonstrates that close to the crystal momentum points

(K = (2π
3a
, 2π
3
√
3a
) andK’ = (2π

3a
,− 2π

3
√
3a
)) the energy is linear as a function of momentum

(see Fig. 1.3). This can be written as E(k) = ±�vFk, which is similar to the dispersion

relation of photon E(k) = ±�ck, but with the velocity of light replaced by the Fermi

velocity vF ≈ c/300.

1.2.1 Klein tunneling in graphene

It is predicted that Dirac fermions can traverse any potential barrier with perfect

transmission at normal incidence. This transmission does not depends on the barrier

height in contrast to non-relativistic quantum tunneling, in which the transmission

exponentially decays with barrier height. This anomalous tunneling for Dirac fermions

is known as Klein tunneling [27]. Fig. 1.4(a) shows a cartoon of Klein tunneling for

a Dirac fermion with Fermi an energy of E and a linear energy dispersion through a

potential barrier with a height of V0. Since Dirac fermions are superposition states

of matter (electron or conduction band state) and anti-matter (hole or valence band

state), an electron-like particle can shift into a hole like particle when it hits the

potential barrier (potential well for a hole) and revet back to an electron state on

the other side of the barrier [14]. Fig. 1.4(b) shows the transmission of carriers as a

6



Figure 1.3: The tight-binging band structure of graphene. Energy of electronic states
vs kx and ky. The inset shows that close to the K = (2π

3a
, 2π
3
√
3a
) and K’ = (2π

3a
,− 2π

3
√
3a
)

points is linear. Courtesy of Andrew McRae.
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function of the incident angle. The transmission is perfect for an incident angle of

θ ≈ 0, and drops quickly as the incident angle increases. This figure also indicates

that the transmission at θ ≈ 0 is weakly dependent on V0.

Figure 1.4: Klein tunneling in graphene. (a) Shows a cartoon of Klein tunneling for
a Dirac fermion with an energy E and linear energy dispersion through a potential
barrier with a height of V0. (b) Transmission vs incident angle for two barrier heights
200 meV (red) and 285 meV (blue curve). Reproduced from reference [27].
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Chapter 2

Fabrication of suspended

gold-on-graphene break-junctions

We are interested in exploring the electronic properties of graphene at the 10-100

nanometer scale. This objective requires the delicate fabrication of clean and sus-

pended graphene devices. Fig. 2.1(a) is a tilted SEM image of a suspended gold

bowtie-shaped bridge covering graphene, where the center of the bowtie is ≈ 100

nm and is ≈ 500 nm at the base. These bowtie-shaped bridges are known as break-

junctions. Fig. 2.1(b) shows a schematic indicating the geometry and structure of

our completed devices. This suspended geometry allows us to tune the electronic

properties of 10 nanometer scale graphene devices by changing the carrier density in

graphene.

In this chapter we will discuss the multi-step fabrication process required to obtain

such suspended gold bowtie-shaped bridges covering graphene. We will later break

this bridge using an electromigration technique which will open a gap in the gold to

expose a 10 nm section of graphene (see Fig. 2.1 (b)) [2, 28, 29]. We will explain the

details of electromigration in chapters 3 and 4, since electromigration can be used

either to tailor graphene down to a narrow quantum dot or a wide ballistic transistor.

In this chapter, we will also demonstrate the instrumentation and electronics which

we use to do low-temperature electron transport in our nanometer-sized graphene

devices.

We will describe the microfabrication procedures required to create suspended
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Figure 2.1: Suspended gold bowtie-shaped bridges covering graphene. (a) Tilted SEM
image of a suspended gold bowtie-shaped bridges covering graphene (break-junction)
before electromigration. A cartoon of the ultra short graphene device showing the
graphene flake is suspended over etched SiO2. Gold electrodes act as source and drain
and the bottom Si layer works as gate electrode.
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gold break-junctions covering graphene. This includes graphene deposition, locat-

ing graphene, making electrical contacts, wiring and packaging the devices.

We start with a 4” SiO2/Si wafer upon which we build our devices. Using pho-

tolithography followed by metal evaporation, we define reference grids on the wafer

which will help us to locate graphene after the deposition. We use optical microscopy

and Raman spectroscopy to distinguish between single-layer and multi-layer graphene.

We pattern gold break-junctions and gold contacts on the graphene flakes using elec-

tron beam lithography (EBL) followed by photolithography. We suspend our devices

using a buffered oxide etch (BOE) to remove the silicon dioxide under the gold break-

junction and suspend the bridge. Finally, we wire up and package our devices to be

connected to BNC cables.

Fig. 2.1(a) and (b) demostrate our fabrication objective: an ultra small graphene

device suspended over the back gate. The graphene channel acts as a field effect tran-

sistor with source, drain (gold contacts) and gate (Si layer) electrodes. Suspension

decouples graphene from the disordered substrate. Moreover, graphene is anchored to

the gold bridge from both sides and is free to vibrate, forming an ultra short graphene

NEMS. Also, suspension reduces heat dissipation through the substrate and makes it

possible to anneal the graphene flake by flowing a large current (as will be explained

in Chapter 3).

2.1 Deposition and locating graphene

In this section we describe how to deposit graphene on a wafer, and create a reference

grid to allow us to find and locate the flake. Then we discuss Raman spectroscopy

and optical contrast ratio technique which allow us to identify single-layer graphene

crystal.

2.1.1 Wafer back-side etching

We use 4” (100 mm) wide and 550 micron thick wafers. The wafers are made of highly

doped Si covered by thin layers of 300 nm thermally grown SiO2 on both sides. We

use the conductive Si layer as the back-gate electrode. This requires removing the

insulating layer of SiO2 from the back side of the wafers to make electrical contact to

the doped-Si layer. To do so, we use RIE etching to remove the SiO2 layer.
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RIE is an anisotropic dry etching method based on a reactive plasma. It uses radio

Figure 2.2: RIE etching a wafer. Image shows that after RIE process SiO2 layer
(purple color) is removed and Si layer (grey color) is visible. The top cartoon shows
the cross section of the wafer before and after etching.

frequency (RF) voltage source to ionize and accelerate gas molecules inside a cham-

ber into a reactive plasma. RIE etches the surface of materials through chemical and

physical etching. The chemical etching results from the reaction between the ions and

the surface, while the physical etching is the result of bombarding the surface with

high energy molecules. The chemical etching is isotropic while the physical etching

is highly anisotropic.

We start by cleaning the chamber with an O2 plasma, using a 20 SCCM flow rate,

a power of 300 W, and a pressure of 100 mTor for 15 minutes. Then we place the

wafers face down in the RIE chamber, to etch the back side of the wafer while pro-

tecting the front side. We then flow a mixture of CHF3 and O2 gases, with flow rates

of 22.5 and 2.5 SCCM respectively. In addition, the pressure and RF power are set to

100 mTorr and 300 W respectively. We etch for 15 min then, the chamber is purged

3 times with N2 and the samples are taken out. The Si layer has a distinct grey color

compared to the purple color of the SiO2, which allows a visual confirmation that

SiO2 has been removed. Fig. 2.2 shows the back side of a wafer before and after RIE

etching. We measure the thickness of SiO2 with ellipsometry to ensure that the SiO2

film has been removed.
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2.1.2 Ellipsometry

We use ellipsometry to measure the thickness of the SiO2 film. Ellipsometry takes

advantage of the change in polarization between the incident and reflected light from

a thin film in order to measure its thickness. Fig. 2.3 shows an ellipsometer with a

UV polarizer and analyzer. The wafer is placed and aligned on the stage so that the

reflected light reaches the four detectors in the analyzer. The software can extract the

thickness of the film by comparing the change in polarization between the reflected and

incident light. After RIE etching the backside of our wafers we use the ellipsometer

to confirm that there is no oxide left.

Figure 2.3: Ellipsometry measurement. Ellipsometry measures the change in polar-
ization between incident and reflected light from a thin film to characterize a thin
film. We use ellipsometry to measure the thickness of the SiO2 film.

2.1.3 Photolithography of reference grids

We create reference grids on the wafers to create precise micron-scale coordinate

systems, which will later be used to locate graphene crystal. We use photolithography

to fabricate reference grids on the SiO2/Si wafer. Fig. 2.4 shows a 4” wafer with

reference grids. We divide 4” wafers in 5 × 5 mm chips. Each chip has a 4 × 4 mm

grid which includes letters, numbers and � shapes to divide the 4 × 4 mm area into

13



100× 100 μm squares.

Photolithography is a typical technique used to define a micron-size pattern on

Figure 2.4: Photolithography pattern. Using the photolithography mask we designed,
we can make 90 grids on each 4” wafer panel (a). The size of each grid is 4× 4 mm
and contains letters, numbers and � shapes, panel (b) and (c). � shapes divide the
grid to 100× 100 μm squares, panel (d).

a substrate. The substrate is spin-coated by a thin layer of photo-sensitive material

called photoresist. Then, the substrate is covered by a mask with a pre-defined

pattern and exposed to UV light. The exposure changes the chemical properties of

the photoresist and makes it more or less soluble (positive or negative resist) in a

developer. Developing removes the exposed photoresist and results in the transfer of

the mask pattern to the resist. Fig. 2.5 shows the different steps of photolithography.

We spin-coat S1813 as a positive resist on 4” wafers at 4000 rpm for 30 seconds,

with a ramping acceleration of 456 rpm/s2. This results in a uniform thickness of

about 1.5 μm. After the spinning process, we soft-bake the sample on a hotplate

at 115o C for 60 seconds and let the sample cool down for a few minutes. The

hard-contact mode is used to bring the wafer in contact with the mask. Given the

thickness of the resist and the size of the pattern, the exposure dose is chosen to

be ≈ 40 mJ/cm2. After exposure, the wafer is soaked in photoresist developer MF-

318 for 60 seconds followed by rinsing with deionized water to remove the developer.

Optical microscopy is used to check the quality of the process.
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Figure 2.5: Photolithography procedure. Cartoon of the photolithography procedure
from exposure to metal lift-off. Photoresist is spin-coated and baked on the wafer
to form a thin layer. Then, the substrate is covered by a mask with a pre-defined
pattern and exposed to UV light. A developing agent removes the photoresist where
it was exposed. A thin film of a metal is evaporated on the sample. Finally, the
sample is put into a warm solvent (usually acetone) which dissolves the photoresist
and lifts-off the metal layer, except where it sits directly on the substrate.
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2.1.4 Metal deposition

After the photoresist is developed we deposit a thin layer of metal, usually gold, on

the developed sample to create a visible and permanent reference grid. Fig. 2.6(a)-

(c) show the thermal evaporator, RF sputterer and E-beam evaporator which we

use for metal deposition. The thermal evaporator and RF sputterer are very useful

for a quick metal deposition for micron sized lithography patterns, and the E-beam

evaporator provides a wider range of deposition material. We deposit 5 nm of Ti (or

Cr) followed by 80 nm of gold for reference grids. The Ti or Cr layer is as an adhesive

layer between the gold and SiO2 film. After deposition of the metal, the wafer is

placed in a warm solvent (usually acetone) which dissolves the photoresist. It lifts-off

the metal layer except where it sits directly on the substrate. Fig. 2.6 (d) and (e)

show the sample after development and after metal lift-off, respectively.

2.1.5 Graphene crystals: Deposition and measurement of the

number of layers

We use mechanical exfoliation [15, 30] to deposit graphene crystal on 5×5 mm SiO2/Si

chips. This method makes the highest quality graphene reported and provides some

single-layer crystals of several microns. We start by placing a few millimeters-sized

pieces of Kish Graphite on Scotch tape. Then, we fold the tape and smooth it out

with tweezers to remove any air pockets. Peeling apart the tape cleaves the graphite

flakes into thinner and thinner flakes. We do this repeatedly, 15 to 20 times. At last,

we stick the tape on the chip and use tweezers to smooth it out. After waiting 10

min, we gently peel-off the tape from the chip. Using optical microscopy, we identify

and locate the graphene flakes. A single layer of graphene is not visible on most

substrates, but has good contrast on a 300 nm-thick SiO2 layer on top of Si. A single

layer of graphene can change the reflection of the light from the substrate and slightly

modify the contrast so that the graphene becomes visible under optical imaging [31].

Fig. 2.7 shows some single and bilayer graphene flakes that we deposited and located

with respect to reference grids.

Data extracted from the CCD camera, which is mounted on the optical micro-

scope, can be analyzed to distinguish the number of layers of graphene flakes, as we

will discuss here. Fig. 2.8(a) shows our BX51M Olympus optical microscope equipped
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Figure 2.6: Metal deposition. (a), (b) and (c) show the thermal evaporator, RF-DC
Sputterer and electron beam evaporator respectively that we use for metal deposition.
(d) Optical image of a sample before metal deposition (after development). (e) Optical
image of a sample after lift-off.
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Figure 2.7: Optical characterization of graphene. Optical images of graphene flakes
deposited on SiO2/Si chips using the mechanical exfoliation technique. (a),(b)and
(c) are single-layer graphene flake and (d) is a bilayer flake (confirmed by Raman
spectroscopy and contrast ratio analysis.)
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with a CCD camera which we use to locate and identify graphene crystals. It allows us

to extract the individual intensity of red, green and blue light s as well as the total in-

tensity at each pixel. Fig. 2.8(b) shows an interesting flake with different thicknesses.

The number of layers is reasonably easy to estimate due to the geometry of the flake.

The reflected intensity for red, green, blue and total (Itotal = (IRed+IGreen+IBlue)/3)

are extracted along the dashed lines shown in Fig. 2.8(b). Fig. 2.8(c) shows how the

intensity of different colors changes along line 1 in Fig. 2.8(b). Black dashed lines in

Fig. 2.8(c) indicate where the flake starts and ends. We use contrast ratio [32] to see

how the average intensity changes for the pixels taken on the flake compared to the

pixels taken on the background substrate. The contrast ratio is defined as:

C =
∣∣∣Iontheflake − Ibackground

Ibackground

∣∣∣ (2.1)

In Fig. 2.8(d) we plot the contrast ratio for red, green, blue and total light. The

contrast ratio for green and total light are quantized and scale linearly with the

number of layers in Fig. 2.8(b). We used this method for different flakes of different

thicknesses. We found a good agreement between the extracted number of layers in

the flake with the results from Raman spectroscopy. This method is an easy and

quick way to measure the number of layers in a flake [32].

We discuss Raman spectroscopy as another technique to count the number of

layers in graphene crystals. Raman spectroscopy is based on inelastic scattering

of visible light from a crystal. The frequency shifts of the scattered light provides

information about the phonons or vibronic modes of the system.

Fig. 2.9(a) shows the Raman shifts for single and bi-layer graphene [33]. The

Raman spectrum of graphene has four major peaks, G, D, G’ and D’. The G peak

is around 1582 cm−1 and arises from the in-plane optical phonons of graphene. The

D peak is around 1350 cm−1 which is strongly dependent on the disorders within the

flake and shifts to higher frequencies with increasing laser excitation. The D’ peak is

around 2700 cm−1 and is an overtone of the D peak. The G’ peak is around 3248 cm−1

and is an overtone of the G peak [33, 34, 31]. These peaks not only give information

about the number of layers, but the stacking of the layers as well [34].

Fig. 2.9(b) and (d) show the evolution of the G peak with an increasing number

of layers [33, 34]. In graphene, the G peak position is around 1585± 1 cm−1 which is

about 3−5 cm−1 higher than in graphite (1582±1 cm−1). The G peak for bi-layers is
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Figure 2.8: Optical contrast of graphene. (a) Our BX51M Olympus optical micro-
scope equipped with a CCD camera and Analysis Imager software. (b) Optical image
of a flake with different thicknesses. (c) Individual intensity of red, blue, green and
total light versus the pixel coordinates. The data were extracted from the flake shown
in (b) along line 1. (d) Intensity ratio for red, green, blue and total light are plotted
versus the number of layers for the flake shown in (b). The dashed line is the linear
fit to the data for total light. The data are extracted along the dashed lines in (b) to
compare the contrast ratio of different colors for different thicknesses.
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Figure 2.9: Raman spectrum of graphene. (a) Raman spectrum of single-layer
graphene (top) and bilayer graphene (bottom). Reproduced from reference [33]. (b)
and (c) show the evolution of the G and D’ peaks as the number of layers increases.
Reproduced from reference [33, 34]. (d) Indicates the shift of the G peak as the num-
ber of layers increases. (Inset shows the G peak for single(bottom), bilayer (middle)
and graphite (top)). (e) Shows that the ratio of the integrated intensities of the G
and D peaks increases almost linearly when the number of layers increases from one
to four layers. Reproduced from reference [33].
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also located at 1581±1 cm−1. Fig. 2.9(c) shows the evolution of the D’ peaks with an

increasing number of layers [33, 34]. Graphene has a single sharp D’ peak at 2678.8±1

cm−1 but the bilayer has a broader D’ peak which contains four components. The

two innermost peaks are positioned at 2683 ± 1 cm−1 and 2701.8 ± 1 cm−1. The

intensity of the D’ peak significantly decreases with a decreasing number of layers.

D’ in graphite is small, broad, and contains two inner peaks. Fig. 2.9(e) also shows

the behavior of the ratio of the integrated intensities of G/D’ peaks as a function of

the number of layers [33]. This ratio changes almost linearly as the number of layers

increases from one to four layers.

We use a Raman microscope with an excitation laser at 514 nm. Trying different

power and exposure times, we obtained a excellent result with power = 25 μW and

a 50 second exposure time. Fig. 2.10 shows the Raman spectrum for single-layer

graphene, bilayer graphene and graphite. Fig. 2.10 (a)-(c) show the Raman spectrum

of single-layer graphene. The G and D’ peaks are positioned at 1583 ± 1 cm−1 and

2678±1 cm−1 respectively. The ratio of the integrated intensities of the G/D’ for this

flake is about 0.18, which is in agreement with the reported spectrum for single-layer

graphene. Fig. 2.10(d)-(f) show the spectrum for a bilayer graphene flake. The G

and D’ peaks are positioned at 1581 ± 1 cm−1 and 2699 ± 1 cm−1 respectively. We

can almost distinguish the four components in the bilayer D’ peak. The ratio of the

integrated intensities of the G/D’ is about 0.32 which is close to the expected value

for a bilayer. Fig. 2.10(g)-(i) show the spectrum for a thick graphite crystal. The G

and D’ peaks in the graphite flake are located at 1582 ± 1 cm−1 and 2726 ± 1 cm−1

respectively. The shape of the D’ peak is very similar to the theoretical prediction.

The ratio of the integrated intensities of the G/D’ is about 0.74 which is very close

to the expected value. We use Raman spectroscopy to distinguish single and bilayer

graphene flake which we located using optical microscopy. Compared to AFM and

optical spectroscopy, Raman spectroscopy is a more powerful and reliable way to

distinguish single-layer and bilayer graphene crystals. It is the best way to count the

number of layers in the flake due to their specific fingerprints.
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Figure 2.10: Raman spectrum of our graphene flakes. (a) Optical image of single-layer
graphene. (b) Raman spectrum of single-layer graphene flake in (a). (c) Zoom-in on
the D’ in (b). (d) An optical image of a bilayer graphene flake. (e) Raman spectrum
of the bilayer shown in (d). (f) Zoom-in on the D’ peak in (e). (g) Optical image of
a graphite flake in (g). (h) Raman spectrum of the graphite flake. (i) Zoom-in on
the D’ peak. Inset in (i) the D’ peak of single-layer graphene (blue), bilayer graphene
(black) and graphite (red).
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2.2 Making gold break-junctions

In this section we will explain the fabrication steps required to make suspended gold

break-junctions covering graphene. We use electron beam lithography to generate

gold break-junctions on graphene. Using photolithography, we connect electrical con-

tacts to the break-junctions. Then, we remove the graphene which is not covered by

the gold break-junction with O2 plasma. Finally, we use HF acid to etch some of the

SiO2 substrate to suspend the gold break-junction.

2.2.1 Electron beam lithography

Electron beam lithography (EBL) is a technique used to define nanometer scale pat-

terns and circuits. The principle is the same as photolithography, except that it uses

an electron beam and electron sensitive resist instead of photoresist. In EBL, the

desired pattern is designed in a Design CAD software and converted using the pat-

tern generator software. An EBL generator focus the electron beam on the substrate

and trace the pattern define in the CAD design to expose the resist. Alignment of

the nanometer scale break-junctions on graphene is crucial at this stage. We use �
shapes made in section 2.1 to find the exact location of the graphene flakes and also

align the CAD designed break-junctions on top of them. After exposure, the sample

is developed in an EBL developer and metal film is deposited, followed by lift-off.

Fig. 2.11 shows the geometry of some of our e-beam patterns. Using EBL we gen-

erate two kinds of patterns: break-junctions (see Fig. 2.11(a),(b) and (c)) and short

length gap junctions. Fig. 2.11(a) shows an optical image of three break-junctions

on top of graphene. Fig. 2.11(b) and (c) show zoom-in SEM images of the three

break-junctions shown in (a). Fig. 2.11(d) indicates the geometry and dimensions of

a break-junction. The center of the break-junction needs to be the narrowest section

of the entire circuit, since it will electromigrate from here as a result of its high resis-

tance (will be explained in Chapter 3). Gap junctions are two rectangular contacts

with a spacing of 100 nm up to a micron. Optical and zoom-in SEM images of 100

nm long gap junctions are shown in Fig. 2.11 (e) and (f).

We prepare our samples for EBL by spin-coating 5 × 5 mm chips by electron beam

resist. We use single and double layer resist for different resolutions. Since the thick-

ness of the metal deposition has to be at least three times thinner than the resist,
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Figure 2.11: Electron beam lithography patterns. (a) Optical image of three gold
break-junctions fabricated by EBL on top of a graphene flake. (b) SEM image of
the three break-junctions shown in the dashed box in (a). (c) Zoom-in view of the
break-junction shown in the dashed box in (b). (d) The CAD design dimensions and
geometry of the break-junction. (e) Optical microscopy image of 100, 200 and 300 nm
gap junctions made by EBL on graphene. (f) SEM image of the 100 nm gap junction
shown in the dashed box in (e).
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thinner resist can be used for thinner metal films. Thinner resist allows a higher

resolution. We use Copolymer EL9 (9% in ethyl lactate) and PMMA A4 (polymethyl

methacrylate 4% in anisole) as a bilayer resist, or a single layer of PMMA A4 for the

highest resolution. Both resists are spin-coated for 60 seconds at 3000 rpm and baked

at 170◦ C for 15 min. This gives copolymer and PMMA thicknesses of ≈300 nm and

≈200 nm respectively. After EBL exposure we develop the chips in a solution of 1:3

MIBK:IPA for 30 seconds, then quickly transfer them to methanol for 15 seconds and

finally rinse with IPA. EBL is followed by a 40 nm gold deposition and lift-off. We

do not use any adhesive layers such as Ti or Cr in this step. Adhesive layers leave an

undesirable film during the electromigration process and contaminate the graphene

channel. The electromigration procedure will be discussed in chapter 3.

Later in this chapter we will show how we interconnect the nanometer-sized break-

junction to the centimeter-sized BNC cables and measuring electronics.

2.2.2 Contact pads

The EBL pattern is too small to connect to macroscopic electronics. Thus, we first

connect micron scale gold arms to the nanometer scale EBL pattern. For this purpose

we make use of another photolithography step which attaches 300 μm long arms and

200× 200 μm square pads to the EBL pattern. Fig. 2.12 shows the photolithography

pattern connected to the EBL pattern. This photolithography step is followed by a

5 nm Ti/ 80 nm gold deposition and lift-off. Another reason for using this additional

lithography step is that the EBL pattern is made of only 40 nm thick gold with no

adhesive layer (Ti or Cr,) which makes it difficult to wire-bond (see next section).

The samples must be tested in this multi step fabrication process. After connecting

the 200 × 200 μm square pads to the EBL pattern, we may test the sample. Using

a probe station, we measure the resistance of each junction. The resistance range

should be about 50 Ω for ≈ 100 nm wide break-junctions. We repeat this step to test

the samples one by one throughout the fabrication process until the sample is loaded

in the cryostat. Fig. 2.13(a) shows the probe station and (b) two probes connected

to the photolithography pads for electronic testing.

26



Figure 2.12: Large contact pads. (a) Optical image of photolithography contact pads
(200× 200 μm) with 300 μm long arms and 200× 200 μm square pads. (b) Optical
image of the interconnections between the contacts pads and the EBL pattern.

Figure 2.13: Probe station set-up. (a) Image of the electrical probe station that we
use to test the samples. (b) Probes are contacted to the sample via the 200× 200 μm
square pads.
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2.2.3 Graphene etching

The break-junction samples are built on top of micron-sized graphene flakes. To

prepare the junctions for electromigration and make a nanometer sized graphene

junctions, we have to remove the portion of graphene which is not covered by the

gold break-junctions (see Fig. 2.14). To do this we expose the sample to an oxygen

plasma. The O2 plasma etches the graphene completely, except where it is masked by

the gold break-junction. We use a 20 SCCM flow rate of oxygen, a chamber pressure

of 200 mTorr and a power of 300 W for 45 seconds. Fig. 2.14 shows SEM images of

a sample before and after O2 plasma.

Figure 2.14: Removal of graphene by oxygen plasma. (a) SEM image of three break-
junctions on top of a graphene flake before oxygen plasma. (b) The same sample after
oxygen plasma. Graphene has been removed by the oxygen plasma where it was not
masked by the gold break-junctions.

2.2.4 Suspension of the gold break-junctions

After the O2 plasma etch, the samples are ready for suspension. The suspension is

not only to decouple devices from the substrate’s electrostatic disorders, but also to

provide a mechanical degree of freedom to the device, which can be used to study

the electromechanical properties of the device, as well as to thermally decouple the

graphene from the substrate.

A buffered solution (BOE) of HF (hydrofluoric acid) is used to etch the SiO2

beneath the gold bridge and graphene. Fig. 2.15 (a) shows a tilted-SEM image of sus-

pended gold break-junctions. Suspending graphene devices is a challenging process

since the HF solution etches the SiO2 under graphene much faster than bare SiO2. It
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Figure 2.15: Suspension of gold break-junctions. (a) Tilted-SEM image of suspended
gold break-junctions with no graphene underneath. The sample is etched 75 nm
vertically (1 min in the solution). (b) Image of a break-junction on graphene. Sample
is also etched 75 nm vertically. (c) Tilted-SEM image of a break-junction etched
using HF vapor for 20 min at 45◦ C. (d) Image of a suspended break junction on
graphene, etched using a two step process of RIE for 80 nm and BOE for 70 nm. (e)
A suspended break junction on graphene, BOE (1:7 ratio of 49%HF:NH4F) etched
for 25 nm. (d) Image of a suspended gap junction on graphene. Sample is BOE (1:7
ratio of 49%HF:NH4F) etched for 145 nm.
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makes the etching rate in the horizontal direction under graphene much faster than

in the vertical direction. The thickness of the gold bridges is only 40 nm, such that

suspending the bridge over a long distance can cause the entire bridge to collapse.

Fig. 2.15 (a) and (b) show tilted SEM images of suspended gold break-junctions with

no graphene and with graphene respectively. Both sample are etched for 75 nm (1

min in the solution). Break-junctions with no graphene are uniformly suspended.

However, break-junctions on graphene are not uniformly etched due to the fact that

the SiO2 film was etched much faster horizontally.

We tried different techniques to find the best method of suspension. Fig. 2.15

(c) is a tilted SEM image of a sample which was etched using HF vapor. The result

was not very interesting since the etching of the surface was quite rough. Fig. 2.15

(d) shows a suspended junction using a combination of dry and wet etching. We

used RIE followed by HF etching. RIE etches the SiO2 vertically, except where it is

masked by gold, while HF etches the SiO2 both horizontally and vertically, resulting

in suspension of the gold bridge. The suspension looks reasonable but the resistance

of the samples was too high after this step. This might be due to RIE induced to

damaged the gold break-junctions.

We found that using a buffered solution of HF gave the best yield. This buffered

solution, BOE, consisted of a 1:7 ratio of 49%HF:NH4F. We measured and calibrated

the etching rate of BOE for different times. The thickness of the SiO2 film was mea-

sured precisely using ellipsometry to find the etching rate. After measuring the precise

etching rate, the required time of etching is calculated for each sample. The samples

were placed into the solution for the calculated time and then quickly transferred to

DI water. Finally, the samples were soaked in IPA and gently dried with a nitrogen

gun. Fig. 2.15 (e) and (f) show tilted-SEM images of a suspended break-junction and

a gap junction respectively. We used the same solution to etch the break-junction in

(e) and the gap junction in (f) for 25 nm and 145 nm respectively.

2.3 Packaging the sample

In this section, we will explain how we package the devices so that they can be

connected to the centimeter scale BNC cables and measurement electronics. We dice

and mount our chips into a chip carrier (see Fig. 2.16(a)) and, use a wire bonder
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to connect the gold pads of the samples to the chip carrier’s pins. Finally, the chip

carrier is mounted into a cryostat for measurement.

2.3.1 Wire-bonding

We explained in subsection 2.2.2 how we connect the nanometer scale EBL pattern to

the micrometer scale photolithography pattern. Here, we show how we interconnect

the micrometer scale photolithography pattern to a centimeter chip carrier.

We use a wire bonder (uses ultrasonic power) to weld thin (25 μm) Al wires to

Figure 2.16: Wire bonding. (a) Image of mounting the chip in the chip carrier
using silver paint courtesy of Andrew McRae. (b) Image of a wire bonded chip.
Photolithography square pads are connected to the chip carrier using Al wires. (c)
Tilted SEM image of a wire bonded chip. Bonds are connected from the square pads
to the chip carrier pins.

the gold contact pads of our samples to the chip carriers contacts. Fig. 2.16 shows

the wire bonding steps. A 5× 5 mm chip is mounted into a chip carrier using silver

paint. Silver paint is a conductive glue that we use to make a connection between

the Si layer (on the back side of the chip) and the gold pad of the chip carrier to

make the back gate electrode. Once the chip is mounted to the chip carrier, we use

the wire bonder to weld the Al wires from the photolithography pads to the pins of

the chip carrier. Fig. 2.16(b) shows an image of a wire bonded chip. We sometimes

use double bonds to each pad to have more robust contacts. Fig. 2.16(c) shows a

zoom-in tilted-SEM image of the Al wires attached to the photolithography pads.

After wire bonding, the chip carrier is mounted into the cryostat. Throughout the

wiring procedure, it is crucial to be electrically grounded to prevent electric discharge

which would destroy the nanometer size break-junctions (extremely small ”fuses”).
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2.4 Cooling down to low temperatures

Most of the exciting physics in graphene, briefly described in Chapter 1 and on which

we will elaborate later, happens at low energies. Thus, to explore these delicate

electronics and suppress the noise from thermal fluctuations we have to cool down the

samples. We use different methods and cryostats to cool down the samples. Fig. 2.17

(a) shows a liquid helium (LHe) dewar with a top-loaded electronic measurement

stick. Using a LHe dewar is a quick method to reach 4.2 K. It is also very easy and

convenient to load and unload the sample for testing purposes and data acquisition.

Fig. 2.17(b) shows our He-4 cryostat. The He-4 cryostat uses LHe-4 to cool down

the sample. It provides high cooling power and has been designed in such a way

that the sample space can be pumped down to high vacuum. It also has a 14 Tesla

superconducting magnet (0-14 Tesla) which allows temperature control from 1.5−420

K. Fig. 2.17 (c) shows our He-3 cryostat which can cool the samples down to 0.3 K. It

also has a 9 Tesla superconductive magnet. The He-3 cryostat does not require any

LHe refilling. It uses close cycle He-4 and He-3 gases to reach a base temperature of

0.3 K.

Figure 2.17: He-4 and He-3 Cryostats. (a) A liquid He dewar with a top-loading
measurement stick. (b) Our He-4 cryostat provides a temperature range of 1.5− 420
K and magnetic field up to 14 Tesla. (c) Our He-3 cryostat provides a temperature
range of 0.3− 300 K and magnetic field of up to 9 Tesla.
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2.5 Circuits and electronic setup

The methods we use for data acquisition are firstly centered around protecting the

sample, and secondly to reduce noise. We always keep the samples grounded when

not being measured, use a personal ground at all times and minimize the number

of ground loops in our system. To collect data we use a National Instruments Data

Acquisition System (DAQ) with custom measurement software. The circuits we use

for DC measurements are shown in Fig. 2.18. The lines from the sample to the

Ithaco current pre-amp are wrapped in an additional coaxial cable for shielding and

kept as short as possible to prevent noise pick-up. We optimize the sampling rates,

sensitivity, and rise-time averaging on the Ithaco, and all pre-amps are zeroed before

data acquisition to prevent offsets. Low pass filters are used on the Keithley voltage

source to prevent spikes in gate voltage, and voltage dividers are used when applying

bias voltage. Data is collected by the DAQ and stored on the controlling computer.

In this chapter we presented the fabrication procedures used to make suspended

graphene/gold break-junctions. The samples are the wired-up and cooled down. At

this stage they are ready for the final step of electromigration. In the next chapter

we will discuss the fabrication of 10 nm scale graphene transistors. We will explain

how we use a electromigrating technique to open a gap in the gold break-junction in

order to expose graphene, and study electron transport in the quantum dot regime.
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Figure 2.18: Circuits used for measurements. Electrical circuit for DC measurement,
courtesy of Andrew McRae.
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Chapter 3

Tailoring of graphene quantum dot

transistors via electromigration

Since the discovery of graphene in 2004, much effort has been put towards making

graphene quantum dot (QD) transistors because of graphene’s potential for ultra-

small nanoelectronics and quantum coherent computational applications [15, 16, 35,

36, 37, 38]. A QD transistor is made of a nanometer scale electronic island with

discrete energy levels, which is isolated by tunneling barriers from metallic contacts.

It can be extrinsically turned on (off) to allow (block) the flow of current through the

device.

In principle, the fabrication of a graphene QDs is difficult due to the absence of a

band gap in graphene’s band structure, Fig. 1.3. It was shown that in a narrow (≤100
nm) graphene constriction a band gap open up due to confinement [16]. A. K. Geim

et al. [15] fabricated graphene QDs by cutting graphene into narrow constrictions

using e-beam lithography followed by an O2 plasma. Fifty nm scale QDs were later

made by the same group and J. Gttinger et al., using a similar approach. It was

reported that graphene-based QDs larger than 100 nm behave like conventional QD

transistors with a periodic conductance and constant charging energy (EC) vs the

number of electrons in the dot. Such that the amount of energy needed to add one

electron to the QD is constant for each electron added to the QD due to the reflection

from the rough and disorder edges of graphene [35]. For graphene QDs smaller than

100 nm, EC becomes irregular and fluctuates with each electron added to the QD.

In the recent years, excited electronic states, spin states and the Zeeman effect were
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studied in graphene QDs [39, 40, 41].

Although 50 nm scale graphene QDs have been achieved, most of the reported

QDs show a disordered transport behavior, irregular EC and are coupled to sub-

strate disorder. Here, we demonstrate 30 nm-size suspended graphene QD transistors

(Fig. 3.1(a)). We have developed a nanoetching technique called feedback-controlled

electromigration to make clean and small graphene quantum dots. We have previ-

ously used a similar technique to make carbon nanotube QDs (Fig. 3.1(b)).

In Chapter 2 we explained how to make suspended graphene break-junctions covered

by gold. Here we will discuss the gold electromigration process, Where we break

the suspended gold bowtie, and expose the graphene underneath to form a gold-

graphene-gold junction (Fig. 3.1(a)). We can make graphene QDs in two ways using

electromigration [1]: 1) By cutting and narrowing down the graphene channel using

a large electrical field. 2) By introducing bulk defects (damaging) in graphene, using

a lower electric field but a higher power. Thus, we can in principle, decouple and

distinguish different sources of disorder. For example, removing substrate disorder by

suspension, tuning the effect of edge disorder by making the dot wider, and creating

bulk disorders by intentionally introducing defects via electromigration. One could

then study the effect of each disorder on charge transport.

Our electron transport data in graphene QDs as a function of the Fermi en-

ergy 1 of the QD and the Au leads shows irregular charging energies as expected for

graphene QDs smaller than 100 nm [35]. Since the dots are suspended, they can

vibrate mechanically. We observed the signature of electrons coupling with quan-

tized mechanical modes (vibron) in our transport data. Since our devices are very

short they can have very high vibrational frequencies. We extracted frequencies up to

≈ 100 GHz, which are among the highest reported frequencies for nanoscale graphene

resonator systems [7, 4]. We previously reported similar features of electron-vibron

(e-v) coupling for the bending mode in single-wall carbon nanotube QDs [3]. The sus-

pended graphene QDs we present here will in future projects serve as a platform for

studying the effects of mechanical strain (which creates an effective magnetic field),

on charge transport and e-v coupling.

The structure of this chapter is as follows. We first introduce the background to

understand electron transport in QDs and recent literature results in graphene QD’s.

1The Fermi energy is the highest occupied single particle energy level in the system.
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Figure 3.1: Electromigrated graphene and SWCNT QDs. (a) SEM image of a 24×44
nm suspended graphene quantum dot (false color). An ultra-short piece of graphene
(pink color) is connected to gold contacts (yellow color). The gaphene and gold con-
tacts are suspended over the SiO2 (dark blue). (b) SEM image of a 20 nm long sus-
pended single-wall carbon nanotube quantum dot (false color). The carbon nanotube,
shown by an arrow, is connecting the gold contacts (yellow color). The nanotube and
gold are suspended over SiO2 (dark blue).

Then, we describe the electromigration and nanoetching techniques used to generate

our suspended graphene devices. We explain how we make ≈ 30 nm graphene QDs,

by cutting or introducing bulk defects in graphene, and discuss our charge transport

data. Finally, we will discuss the signatures e-v coupling in our data. We show that

the extracted vibrational frequencies are very close to the frequencies expected based

on the geometry of the devices.

3.1 Electronic transport in QD transistors

In this section, we introduce the concepts of electron transport in a quantum dot.

Fig. 3.2 (a) shows a diagram of a QD field-effect transistor. The bottom gate is

used to capacitively tune the number of electrons on the dot. Fig. 3.2(b) shows a rep-

resentation of the electrical circuit of the device, indicating how the QD capacitively

couples to the source, drain and gate with respective capacitances of CS, CD and CG.

The ΓS and ΓD are the tunneling rates between the QD and the source and drain

electrodes, which allow electrons to tunnel across the dot. Fig. 3.2(c) is a top view
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Figure 3.2: Schematic of a QD transistor. (a) QD field effect transistor. (b) A
representation of the electrical circuit of the QD transistor. ΓS and ΓD are the
tunneling rates through source and drain electrodes, respectively. CS, CD and CG

are source, drain and gate capacitances respectively. (c) Top view SEM (false color)
image of one of our suspended graphene QD transistors. (d) An energy diagram
showing the alignment of the electronic energy levels in the source, QD and drain.
μN and μN+1 are the levels for the N th and (N + 1)th electrons.
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SEM (false color) image of one of our suspended graphene quantum dot transistors.

The graphene QD (pink color) is connected to the source and drain gold electrodes

(yellow color). The graphene QD, as well as the source and drain electrodes, are

suspended above SiO2 (dark blue) (see the tilted view in Fig. 2.1). Fig. 3.2(d) depicts

the electronic energy state in the leads and QD. The energy spectrum in the leads

is continuous and μS, μD are the Fermi levels in the source and drain respectively.

Thermal fluctuations (kBT ) broadening the Fermi energy in the leads are represented

by the blurry region. The bias energy, eVB, is the energy difference between μS and

μD. The energy spectrum of the dot is discrete, and μN and μN+1 are the energy

levels for the N th and (N + 1)th electrons. [42].

When there is no level available in the dot between μD and μS, there is no cur-

rent flow as electrons cannot tunnel through the dot (I = 0, see Fig. 3.3(b)). This

state is called Coulomb blockade, and is the ”off” state of the quantum dot transis-

tor. Alternatively, if an available level is between μD and μS, then current can flow

(I �= 0):

μD < μN+1 < μS I �= 0

Otherwise I = 0

When the dot is in its off state (see Fig. 3.3(a)) at low bias, increasing VB increases

μS until μS = μN+1 and current starts flowing (see Fig. 3.3(c)). For an even higher

VB multiple QD levels can be in the range of eVB and enhance conductance.

As the gate voltage, VG, is swept, the energy levels of the QD shift up or down. As

soon as one level lines up between μS and μD (see Fig. 3.3(b)), the QD transistor

switches to its ”on” state and current can flow. By plotting I vs VG, we can observe

Coulomb blockade oscillations (see Fig. 3.3(d)). In the Coulomb valleys (blockade

regions I = 0) the transistor is in its off state and the number of electrons in the dot

is well defined.

To visualize the electronic energy spectrum of the QD, the transport data is usually

displayed in 2D plots of I or dI/dV vs VB and VG (see Fig. 3.4). The Coulomb

blockade regions appear as diamonds (charge number=constant ), called Coulomb

diamonds. The shape of the diamonds reveals specific information about the QD

such as, its charging energy, gate, bias and drain capacitance. The gate capacitance,
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Figure 3.3: Schematic of Coulomb blockade. (a) Energy diagram of a QD transistor
in the Coulomb blockade regime (off state). There is no available level for electrons
to tunnel on the dot, since μN+1 > μS, μD and μN < μS, μD. (b) Energy diagram of
a QD transistor in the on state. There is an available level with μD < μN+1 < μS for
electrons to hop across the dot. (c) Cartoon of I−VB curve of the transistor showing
the blockade at low VB. As VB increases, μS increases until it reaches μN+1 of the dot
and current can flow. (d) Indicates a I − VG curve of the transistor. Tuning VG can
cause the energy levels on the QD to shift up or down, and align the dot levels μS and
μD. This results in periodic Coulomb peaks for I vs VG. In the blockade regime the
number of electrons on the dot, N and N +1, are well defined (ground state regions).
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Figure 3.4: Contour plot of a QD transistor. (a) Cartoon of a contour plot of dI/dV
vs VB and VG of a QD transistor with degenerate levels. ΔVG and EC charging energy
are shown in the drawing. (b) Data for a SWCN QD transistor. EC and δE (classical
and quantum energy) are shown in the contour plot. Three diamonds have the same
height, which is equal to EC , with a forth one equal to EC + δE due to four-fold
degeneracy. The number of electrons in the QD is shown in the plot. SWCNT QD
data are courtesy of Andrew McRae.
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CG, can be extracted directly from the width of the diamond (see Fig. 3.4) as:

CG =
e

ΔVG

(3.1)

The charge addition energy, δμN , is given by:

ΔμN = μN+1 − μN = δE + EC (3.2)

where ΔE is the energy spacing between the quantum levels and Ec = e2/Ctotal, is the

charging energy: i.e. the classical energy necessary to charge the QD. For simplicity,

we consider the energy levels of the dot to be spin degenerate and let ΔμN = EC .

EC can be extracted from the height of the Coulomb diamond (see Fig. 3.4) as:

1/2 heigh of the diamond =
EC

e
=

e2

Ctotal

Ctotal = CS + CD + CG (3.3)

The height and width of the diamonds are related by a prefactor α, which remains

constant for all charge states as long as the QD capacitances remain constant:

ΔVG = α
EC

e
α =

CS + CD

CG

+ 1 (3.4)

An inequality between source and drain capacitances results in a difference between

the positive and negative slopes of the Coulomb diamonds. The source and drain

capacitances are given respectively by:

ΔVB = −CG

CS

ΔVG ΔVB =
CG

CD + CG

ΔVG (3.5)

Information extracted from the blockade diamonds can be used to determine the

physical size of the QDs.

3.1.1 Background on graphene QD transistors

As we discussed in section 1.2 (Fig. 1.3) and 1.2.1 (Fig. 1.4), an infinite graphene

crystal has no band gap, and therefore the valence and conduction bands meet each

other at the Dirac point (see Fig. 1.3). Additionally, the Klein tunneling effect al-

lows charge carriers to tunnel through any potential barrier without backscattering
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(at a normal incident angle, see Fig. 1.4). These characteristics makes it challenging

to fabricate graphene QD transistors where electrons or holes have to be confined

(localized) on the dot. Basically, a graphene transistor cannot be switched off, since

there are always carriers which can Klein tunnel leading to a leakage current. These

challenges can be overcome by creating an energy band gap in the graphene’s band

structure to confine (localize) electrons (holes) in the dot, which forms a graphene

QD transistor with on and off states.

Several mechanisms have been suggested to open up an energy band gap in

graphene’s band structure, including chemical modification [43], hydrogen adsorp-

tion [44], special periodic substrates [45], and cutting it into narrow constrictions

[16]. Thus far the majority of experiments use the method of cutting graphene into

narrow constrictions [16, 35, 36]. Fig. 3.5(a) shows a cartoon of a narrow graphene

transistor connected with source and drain contacts. It has been shown that the band

gap in the graphene constriction is inversely proportional to its width, given by the

following expression [16]:

Eg =
2π�vF
W

(3.6)

where W is the width of the constriction, and � and vF ≈ 106 m/s are Planck‘s

Figure 3.5: Width dependence of band gap in graphene. (a) Cartoon of a graphene
nanoconstriction, width W , contacted with source and drain contacts. (b) Blue line
represents the energy gap plotted as a function of W (bottom axis). Red line repre-
sents the kBT (top axis), thermal fluctuations, as a function of temperature.

constant and the Fermi velocity in graphene, respectively. Fig. 3.5(b) shows the
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energy gap as a function of the width (bottom axis) and kBT as a function of T (top

axis). It is important to note that confinement effects can be observed only when

Eg ≥ kBT .

In the following section we will summarize some of the most recent literature

results, discuss their limitations and describe how our work contributes to this body

of literature.

3.1.2 Graphene QDs: recent results and their limitations

In this section we briefly discuss recent experimental work done in the field of

graphene QDs. We describe what has been achieved with respect to graphene QD

transistors, the limitations of these experiments and what our contributions will be

to resolve some of these issues.

In the majority of data reported on graphene QDs by A. K. Geim and colleagues,

and K. Ensslin‘s group (two leaders in the field) the band gap, EG, was engineered

by cutting the graphene using plasma etching [16, 35, 36, 37, 40]. Fig. 3.6(a) is a

SEM image of one of their graphene QDs (bright blue). The dark blue lines are the

etched lines. The graphene dot (central island) is connected to the source and drain

electrodes (made of graphene as well). The side gates are used to tune the tunnel

barriers (narrowest junctions made of graphene). Charge transport in this device is

measured as a function of VB, and the back and side gates (VG). This technique has

since been used by several other groups to fabricate graphene quantum dots.

In Fig. 3.6(b) the transport data as a function of VB and VG is shown, for the

quantum dot shown in Fig. 3.6(a). Coulomb diamonds are visible in the 2D plot,

indicating the Coulomb blockaded charge states. Using this technique, QDs ranging

in size from a few hundreds down to 40 nm have been fabricated and studied [16, 35].

A. K. Geim and colleagues have shown that for graphene QDs larger than ∼ 250

nm in diameter, the Coulomb diamonds are periodic. However, for diameters smaller

than 100 nm, the Coulomb diamonds become highly non-periodic. This non-periodic

behavior can be explained by the fact that any confinement for Dirac fermions leads

to quantum chaos, due to the chaotic trajectory of the Dirac fermions reflected by

the rough edges of the QD [35].

Thus far, 40 nm scale graphene QD transistors on substrate have been achieved

[35]. However commonly used techniques (such as plasma etching) which are used
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Figure 3.6: Formation of a graphene QD using plasma etching. (a) is an SEM image
of a graphene QD (bright blue) made by plasma etching of graphene. The dark blue
lines are the etched lines. The graphene dot (central island) is connected to the source
and drain electrodes, also made of graphene. (b) Conductance of a 40 nm graphene
QD as a function of VB and VG at T = 4 K. Reproduced from reference [35].

to make graphene quantum dots result in disordered edges. Additionally, most of

the reported graphene quantum dots are fabricated on substrate and are therefore

coupled to substrate disorder. Due to the complexity of fabrication it is very difficult

to suspend such QDs.

We can make QDs as small or smaller than the leading groups, ≈ 30−40 nm, and

are also able to suspended them and tailor their shape. We are able to distinguish

different sources of disorder which can affect the QD, such as substrate and bulk

disorder. Since our devices are suspended, they can be used as ultra-high frequency

graphene resonators and graphene based nanoelectromechanical systems (NEMS).

These will be used as a platform by our group, in the future, to study the effect of

mechanical strain on quantum transport and electron-vibron coupling in graphene.

In the next section we will describe the methods we have developed to fabricate

our suspended graphene quantum dots.

3.2 Electromigration: making gold-graphene-gold

nanogap

In chapter 2 we explained how we fabricate suspended gold-covered graphene bowtie

junctions. Here, we discuss how to open up a gap in the gold to expose a ≈ 10− 100

nm long graphene channel.
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Using standard micro- and nano-fabrication techniques, it is currently impossible to

make 10 nm suspended channels with good metal contacts. At this scale, lift-off of

the deposited metal becomes extremely difficult (see section 2.1.4). Therefore, we

use different, innovative techniques which make it possible to construct much smaller

devices.

We use a nanoetching technique based on electromigration to make 10 nm scale

Figure 3.7: Electromigration and making nanogaps. (a) Feedback controlled electro-
migration circuit . (b) I − VB curve of feedback-controlled electromigration circuit
showing sequential nanoetching of the junction, where each zig-zag of the I−VB trace
corresponds to one nanoetching step. (c) SEM of a break-junction before electromi-
gration. (d) SEM image of a break-junction after electromigration. It can be seen
that the gold break-junction was electromigrated and a 5 nm-long graphene channel
is exposed.

gold-graphene-gold nanogap. Electromigration has been previously used in the fabri-

cation of QD transistors made of different materials such as gold nanoparticles, C60,

carbon nanotubes and single organic complexes [2, 3, 28, 46, 47, 48, 49].

In standard electromigration, a bias voltage is ramped up so that the gold break-

junction heats up due to Joule heating, resulting in increased mobility of the gold
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atoms. This increased mobility, combined with momentum transfer from the elec-

trons, knocks the gold particles out of the beak-junction. Typically, a sudden break

will happen and a gap will open in the break-junction [28, 49].

The geometry and size of the electromigrated gap depends on several variables,

such as temperature, total series resistance, thickness of the gold film and suspension

of the break-junction. As etching takes place, resistance (R) increases so that Joule

heating increases, therefore electromigration speeds up. This is an avalanche process

which leads to an uncontrolled break, giving rise to a large gap and damage in the

graphene channel [49, 50, 51]. We adapted this feedback electromigration method

to suspend graphene break-junctions at high vacuum and low temperature, to better

control the electromigration process. Fig. 3.7(a) shows our electromigration circuit.

We use a Keithley 2400 as a DC voltage source in series with a low pass filter. The

current flowing through the junction is monitored via the voltage across a 10 Ω series

resistor, using voltage pre-Amp and DAQ connected to a computer. We increase the

voltage gradually, with an adjusted rate, while the real time resistance of the junc-

tion is monitored by the feedback system. As soon as the resistance of the junction

changes by a pre-defined amount, the feedback system lowers the voltage by a given

percentage allowing the junction to cool down (the breaking process will not start

until the local temperature of the gold reaches ∼ 400K [52]). We repeat this step mul-

tiple times, until the resistance of the sample reaches a target resistance (Rmax). This

allows us to either partially or completely break (or etch) the junction. Fig. 3.7(b)

shows an I −V curve of sequential breaking steps using the feedback control process.

Fig. 3.7(c) and (d) show SEM images of a break-junction before and after electromi-

gration. We can see that the gold break-junction has been electromigratated and a 5

nm-long graphene channel is exposed (see Fig. 3.7(d)).

How to control the size and shape of the junction? We are interested in mak-

ing ultra-short junctions with a rectangular geometry and smooth edges. We aim to

optimize the feedback control process to meet these goals. Fig. 3.8 shows the elec-

tromigration procedure for different junctions and the SEM images of these junctions

afterwards. Fig. 3.8(a) and (b) show a high power electromigration and the resulting

junction. Breaking the junction at a high power results in asymmetric and pointy

contacts. Moreover, it will likely damage the graphene crystal as we will discuss in sec-

tion 3.3. Fig. 3.8(c) and (d) show the electromigration of a wide junction (W ≈ 400
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Figure 3.8: Optimizing the feedback controlled electromigration. (a) I − V trace of
the feedback controlled electromigration process showing a high power breaking. (b)
SEM image of the break-junction after the electromigration in (a). (c) I − V curve
of the feedback controlled the electromigration of a wide junction. (d) SEM image
of the break-junction after electromigration in (c). (e) I − V curve of the feedback-
controlled electromigration at low power. (f) SEM image of the break-junction after
the electromigration in (e).
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nm). Electromigration of wide junctions leads to channels with very rough edges.

This is likely due to the formation of a temperature gradient surrounding impuri-

ties (hot spots) resulting in different electromigration rates across the break-junction.

Fig. 3.8(e) and (f) show a very low power electromigration. Electromigrations at

very low powers form atomic-scale gaps, where the edges of the gold contacts are not

sharp. Such atomic-scale junctions cannot be described with the theoretical models

for graphene transport, since their structure is unknown. We conclude that the elec-

tromigration of ≈ 100 nm wide suspended beak-junctions at low temperatures, with

powers ranging from 3 − 20 mW, results in ≈ 5 − 40 nm long graphene channels.

Fig. 3.9 shows the lengths of the electromigrated gaps versus their electromigration

breaking powers, which indicates that increasing the breaking power results in a longer

channel.

To control the breaking power in the electromigration process, we developed a two-

step process called fixed power breaking. Fig. 3.8 (e) shows a trace for the fixed power

breaking method. We partially electromigrate a break-junction to a predefined power,

and terminate the process by ramping down the voltage to zero when it reaches this

desired power (see Fig. 3.8 (e) red curve). This narrowed the junction for the second

step. Then, the voltage is ramped up across the narrowed (partially etched) junc-

tion while the feedback loop is disabled. At the predetermined power, the avalanche

electromigration process takes over and opens a 10 nm size gap in the junction. This

technique can be used to define the breaking power. Using the fixed power breaking

method we can engineer the length and geometry of the junction.

In sections 3.3 and 3.4 we will explain how to use this fixed power breaking method

to fabricate graphene QDs. In Chapter 4, we will elaborate on how to use it to make

ballistic graphene devices.

3.3 Fabrication of graphene QDs via defect engi-

neering

In this section we describe a method to fabricate graphene QDs by introducing defects

in the graphene channel during electromigration.

We use the feedback control system while electromigrating the junction continu-

ously, to a small power of less than a few mW, and a voltage of a few hundreds of
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Figure 3.9: Length of the electromigrated gaps versus their electromigration breaking
power.

mV (e.g. see Fig. 3.7). This forms a very short channel (sub-10nm, see Fig. 3.7(d)),

a smooth and relatively wide junction (about W ≈100 nm) which creates a very

transparent (high conductance) channel for the electrons. This transparent channel

is useful for studying ballistic charge transport in graphene, which will be discussed

further in chapter 4. However, such devices are too conductive to study QD trans-

port.

Starting with such short and wide devices with a high conductance, we can grad-

ually damage the graphene channel (add a defect) to increase the resistance of the

device and transform the device to a QD. To add controllable defects, we continue

the electromigration even after the graphene channel is completed. These additional

”current heating” steps can be used both to anneal graphene (remove fabrication

residues) or, if pushed to a higher power, introduce defects in the flake in a controlled

manner. Fig. 3.10 (c) and (e) show an I−VB curve of current annealing which locally

heats the flake up to a few hundred degrees [18] and evaporates the EBL residues and

absorbed water. To do so, typically VB is ramped up to a specific voltage and power,

and kept constant for a few minutes. The resistance of the sample is monitored and

VB is lowered manually.

Because the junctions are very short, the transport within it is ballistic, and not

much power dissipates in the graphene channel. Therefore, it is possible to apply a

very high electric field (VB/L) across the junction. We repeat the voltage ramp-up

multiple times, each time slightly increasing the final VB and consequently the electric
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Figure 3.10: Fabrication of a graphene QD by introducing defects in the graphene
channel. (a) Electromigration curve of the gold bridge using the feedback-controlled
process. Inset in (a) shows the I−VB curve after gold electromigration. (b) SEM top
view image of the device in (a), scale bar is 100 nm. (c) Defect creation in graphene
completed after electromigration in (a). Inset in (c) shows the I − VB curve after
the defect creation. (d) Gate sweep of the device I − VG following step (c). (e) The
second step in the creation of defects, to create a stronger charge confinement. Inset
in (e) shows the I − VB curve after step (e). (f) Shows the sweep I − VG after step
(e), where clear Coulomb Blockade oscillations are visible.
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field. A very high electric field is known to tear graphene [53, 54]. Using sequential

annealing steps, we observe a transition from 2D to 0D and electron transport regime,

which signals the formation of a QD. Fig. 3.10 shows the electromigration step, sub-

sequent annealing steps and how the transport changes from 2D to 0D (see the inset

of Fig. 3.10 (c) and (e)). Fig. 3.10 (a) shows the electromigration curve using the

feedback control mechanism. The final break occurs at a very small power and voltage

(P ≈ 0.3 mW, V ≈ 0.3 V and I ≈ 1 mA). Inset in Fig. 3.10 (a) shows a linear I−VB

curve taken immediately following electromigration. The I − VB curve indicates that

the graphene is not damaged and acts as a 2-dimensional electron gas. Fig. 3.10

(c) shows the first defect creation step. The device in Fig. 3.10 was not suspended

and was thermally anchored to the substrate. The main cause of defect formation

was therefore the strong electric field. Different jumps in Fig. 3.10 (c) show that R

suddenly changes due to the introduction of defects. The inset in Fig. 3.10 (c) shows

the I − VB curve of the sample following the step in (c), and indicates a significant

change in I − VB. The bias sweep is no longer straight and shows a weak Coulomb

blockade at low VB (resistance of the sample at 1 mV is about 46 kΩ). Fig. 3.10

(d) shows the I − VG curve following the step in (c). Interestingly, it shows both 2D

transport (parabolic shape) on top of 0D (Coulomb oscillations). Fig. 3.10 (e) is the

final defect creation step. VB is ramped up to about 1.8 V where a sudden break

occurs. The inset of Fig. 3.10 (e) shows a clear Coulomb blockade in the I−VB curve

(resistance of the sample is about 10 MΩ at 1 mV). Fig. 3.10 (f) shows the I − VG

curve following the step in (e), indicating that 2D transport has disappeared and a

clear Coulomb blockade is visible. When comparing Fig. 3.10 (d) and (f), one notices

that the peak spacing (width of the Coulomb diamonds) becomes larger in (f). This

indicates that the QD becomes smaller (smaller CG).

Although the junction experienced a high VB, the shape of the gold contact remained

symmetric. This is consistent with the fact that the transistor is sitting on the sub-

strate and thus does not reach T > 400 K.

Here, we described the method used to fabricate QDs by creating defects in the

graphene channel, using feedback controlled electromigration. In the next section we

will discuss how we fabricate a QD by cutting graphene into narrower channels.
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3.4 Fabricating QDs by ”cutting” graphene

In this section we describe how to make a graphene quantum dot by tearing the flake

along the length of the channel using high electric fields.

If the electromigration step which creates the channel (first step) takes place at a

high power and within a high electric field, it forms asymmetric and pointy contacts

(see Fig. 3.11). We observed that this process not only breaks and narrows down

the gold contacts, but at the same time tears the graphene channel into narrow

constrictions. It has been predicted that tearing graphene with an electric field can

create ordered edges [53, 54]. Thus, we expect to have much less edge disorder in

samples fabricated using this method. This would mean that the final area of the

channel corresponds to a single QD, rather than multiple dots of uncontrolled sizes.

By using the fixed power breaking method (explained in section 3.2) we are able

to break the junction at a predetermined power. Fig. 3.11(a)-(b) show the fixed power

break and an SEM image of a junction broken at high power (P ≈ 15 mW, I ≈11.7
mA and VB ≈ 1.1 V). The length and width of the produced channel are about 23

nm and 32 nm respectively. Fig. 3.11(c)-(d) show a device electromigrated at a high

power ( P ≈ 20 mW, I ≈ 14.8 mA and voltage VB ≈ 1.36 V). The length and width

of the channel are about 29 nm and 67 nm respectively. By comparing the geometry

of the two devices from their SEM images, we can see that the device in (d) is more

asymmetric (higher power) than the one in (b). The device in Fig. 3.11(e)-(f) was

not broken in a single step as the samples in (a) and (c), but rather with a series of

small breaks as can be seen in (e). Eventually, the final break takes place at high

power (P ≈ 15.6 mW I ≈12.7 mA and VB ≈ 1.23 V). After the break at high power,

we current annealed the sample (shown in (e)-(f)) in multiple steps up to 1.7 V. The

inset of Fig. 3.11(e) shows the final annealing step. The sample is suspended, and

annealing at a high power (after the final gold break) heats up the gold junction

(Joule heating) which allows its contacts to anneal into a more symmetric shape.

As we increase the gold breaking power, the length of the channel becomes longer

(see Figs. 3.9 and 3.11) and the contacts become pointier and more asymmetric. This

method can be used to fabricate narrower constrictions. By comparing the devices

shown in Fig. 3.11(b) and with (f), we can see that they were both created with a

similar power ((b) at P ≈ 13 and (f) at P ≈ 15.6 mW) but the device shown in

(f) has more symmetric contacts than the device shown in (b). This demonstrates
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Figure 3.11: Fabricating QDs by cutting graphene. (a) I − VB curve of the gold
electromigration for the sample (b). The final break takes place at high power (P ≈ 13
mW, I≈ 12 mA and VB ≈ 1.1 V. (b) Top view SEM image of the sample in (a). (c)
I − VB curve of the electromigration for sample (d). The final break takes place at
high power (P ≈ 20 mW, I ≈ 14.8 mA and VB ≈ 1.36 V. (d) Top view SEM image of
the sample in (c). (e) I−VB curve of the electromigration. The final break takes place
at high power (P ≈ 15.6 mW, I ≈ 12.7 mA , VB ≈ 1.23 V). Inset of (e) shows the
final current annealing step. The sample was annealed up to V ≈ 1.74 V, I ≈ 160μA.
(f) SEM image of the sample in (e) after annealing .
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how important the annealing step is (after the final break) to make the contacts

symmetric.

Here, we explained how to make a QD by cutting graphene at high power. The

electron transport data of the devices in sections 3.3 and 3.4 will be presented in the

following section.

3.5 Electron transport data in QDs

In this section we analyze the transport data taken in the suspended graphene QDs

presented in the previous section (Figs. 3.10 and 3.11). We use standard single elec-

tron transistor spectroscopy (section 3.1) to extract the charging energy and gate

capacitance of the dots. We will show that the area of the QD extracted from the

transport is in close agreement with the area measured in the SEM images, confirm-

ing that we can engineer the shape and size of our QDs.

Fig. 3.12(a) shows a 2D contour plot of dI
dVB

vs VB and VG for the device shown

in Fig. 3.10. Fig. 3.12(b) shows the 1D cut (along the dashed dark line in (a)) for I

vs VG at VB ≈ 3 mV for the same device, showing Coulomb oscillations. In most of

our devices we study a small VG range so as to avoid collapse of the suspended device

due to large electrostatic forces.

Fig. 3.12(c) is a 1D I − VB sweep (along the dashed red line in (a)). It shows the

Coulomb blockade around VB ≈ 0. The average charging energy, EC , over the VG

range is 8.8±1.5 meV. The average gate capacitance, CG, extracted from the width of

the diamonds is 1.7±0.3×10−19 F. Using the parallel plate capacitor approximation,

we calculate the area of the graphene QD to be 1848± 343 nm2. The area extracted

from the top view SEM image is 2380±210 nm2 (see Fig. 3.10). Thus, this is in agree-

ment with the area extracted from the transport data. This area is equivalent to a

square of ≈ 48× 48 nm. As expected for graphene QDs with diameters less than 100

nm, we see non-periodic Coulomb diamonds. This means that the charging energy

is not the same for each electron/hole added to the QD. This variable EC is due to

edge disorder, an effect which is enhanced in smaller QDs. The edge disorder creates

various angles of reflection. These angles depend on the energy of the electrons, and

affect transmission and charging energy of the QD.

Fig. 3.13 (a) also shows a 2D contour plot of dI
dV

vs VB and VG for the device shown
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Figure 3.12: Transport data from the graphene QD device shown in Fig. 3.10. (a)
2D plot of dI

dVB
− VB − VG . (b) 1D I − VG along the dark dashed line in (c). (c) 1D

cut I − VB along the red dashed line in (c).
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Figure 3.13: Electron transport data for the suspended graphene QD shown in
Fig. 3.11 (a)-(b). (a) dI

dVB
−VB−VG for the suspended graphene QD shown in Fig. 3.11

(a)-(b). (b) I −VG along the blue dashed line in (a). (c) I −VB along the red dashed
line in (a).
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in 3.11 (b). Fig. 3.13 (b) and (c) show the 1D cuts along VG and VB respectively.

The average EC and CG for this device are 12 ± 1.5 meV and 1.1 ± 0.15 × 10−19 F

respectively. The area extracted from CG is 1395 ± 242 nm2 which is very close to

the calculated SEM area of 1220± 170 nm2, (see Fig. 3.11).

Fig. 3.14(a) also shows a 2D contour plot of dI
dVB

vs VB and VG for the device

Figure 3.14: Electron transport data for the suspended graphene QD shown in
Fig. 3.11 (e)-(f). (a) dI

dVB
− VB − VG data for the suspended graphene QD shown

in Fig. 3.11 (e)-(f). (b) I −VG along the blue dashed line in (a). (c) I −VB along the
red dashed line in (a)

shown in Fig. 3.11(f). The average EC and CG for this device are 8.5 ± 2.6 meV

and 8.8 ± 1.9 × 10−20 F respectively. The area extracted from the CG is 990 ± 215

nm2, which is in agreement with the SEM area, 1062± 190 nm2, ≈ 24× 44 nm (see

Fig. 3.11 (f)).
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In summary, we have fabricated suspended graphene QDs as well as ≈ 20−30 nm

(devices shown in Fig. 3.11(b) and (f)) which are the smallest graphene QDs produced

to our knowledge, and the first such small QDs to be suspended. All three of our QD

devices show clear Coulomb blockade at low VB. Non-periodic charging energies is

observed in all of the QDs, as expected for graphene QDs smaller than 100 nm [35].

The area of each of the QDs, extracted from the transport data, is in agreement with

the corresponding area extracted from the SEM images. This confirms that we are

able to engineer the size and shape of our suspended graphene QDs, and there is a

very little ”bulk” disorder in the dots (we removed bulk disorder due to substrate).

The data suggests that the electric field during electromigration can cut graphene

with relatively low edges disorder [54].

In this section we explained how to electromigrate gold/graphene to create ultra-

short suspended graphene QDs. In some of these suspended dots we observed sig-

natures of electron-vibron coupling, and vibrational frequencies up to the 100 GHz

range. In the next section we discuss these data.

3.6 Graphene NEMS and the detection of the flex-

ural vibrational mode

The very large stiffness (Young’s modulus of ≈ 1.0 TPa) of graphene makes it an ideal

membrane for nanometer scale resonators and NEMS. There has been much effort in

fabricating micron scale graphene resonators. So far, megahertz range graphene res-

onators have been achieved [4, 7]. Graphene NEMS have a vast range of applications

such as sensing (mass/force) and information processing (quantum computing). In

this section we present the electron transport data for nanometer-scale graphene res-

onators. This initial data suggests resonance frequencies of up to 100 GHz.

In suspended QDs with high Q-factors (Quality-factor2) coupling between elec-

trons and out-of-plane vibrons (bending modes) can give rise to a positive feedback

between the tunneling electrons hopping on/off the QD and the mechanical vibrations

of the dot. This can lead to self-actuation of the vibrations when the tunneling rate

2The Quality factor is a parameter proportional to how many oscillation cycles a resonator can
do before it loses its energy. A high Q-factor means that the energy in the oscillator is not dissipated
rapidly.
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of the electrons matches the resonant frequency of the oscillator [3, 55]. When the

oscillator is driven on resonance by the current flow, the large amplitude vibrations

show a distinct dI/dV signature. This resonance can lead to current flow inside the

normally blockaded Coulomb valleys. The frequency of the oscillator can be extracted

from the amplitude of this current, deep within the normally blockaded region as:

f ≈ I

e
≈ Γ (3.7)

Where f is the frequency of flexural vibronic mode, I is the current, e is the electron

charge and Γ is the tunneling rate of the electrons.

We have previously seen this signature in very short suspended single-wall carbon

nanotube (SWCNT) QDs. We measured NEMS frequencies in these SWCNT-QDs

up to 280 GHz [3]. We also observe these signatures in our suspended graphene QD

transistors, and find that the frequencies extracted from transport data are close to

the vibronic frequencies expected based on the length of the devices measured by

SEM [4]:

f = ([A(
E

ρ
)1/2

t

L2
]2 + A20.57

T

ρL2wt
)1/2 (3.8)

where f is the frequency of the graphene resonator, E = 1.0 TPa is the Young’s

modulus of graphene, ρ = 220 kg/m3 is the mass density, t = 0.335 nm, w and L are

the thickness, width and length of graphene respectively, A is the clamping coefficient

which is 1.03 for a doubly clamped beam, and T is the tension applied to the flake.

Figure 3.15(a)-(b) are contour plots of the dI/dVB−VB−VG data showing the strong

dI/dV signature, which signals the onset of the vibrations in device Q1 (shown in

Fig. 3.11(b)). Fig. 3.15(c) is I (blue) and dI/dV (red) vs VB showing the dI/dV

peaks (circled). Figure 3.15 (d) expands the I − VB data around the resonance in

(a) and shows a clear step in I. ΔI is the difference between the current after and

before the dI/dV peak. We use this ΔI in (d) to extract the vibrational frequencies

for positive and negative VB.

We note that ΔI is either equal to or smaller than e× f , because the vibrons and

I may be out of phase. The extracted frequencies for the device shown in Fig. 3.15

cover a frequency range from ≈50 GHz to ≈100 GHz which correspond to theoretical

frequencies with 1 to 2% strain while w ≈ 50 nm and L ≈ 25 nm. The strain here is a

static strain resulting from bending of the gold bridge due to the suspension process.
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Figure 3.15: Signature of e-v coupling in the transport data of device Q1 (SEM in
Fig. 3.11(b)). (a) dI/dV − VB − VG data for device Q1 showing the strong dI/dV
signature at negative and positive bias. (b) Zoom-in on the rectangular section of (a).
(c) I (blue) and dI/dV (red) vs of VBias. The sharp dI/dV is visible (circled). (d)
Zoom-in of I vs VB of circled sections of (c). This indicates how ΔI is extracted. (e)
Extracted vibrational frequency vs VG for positive (blue) and negative (negative) VB.
(f) Frequency as a function of strain and tension for a suspended graphene resonator
with the dimensions of Q1 from SEM imaging (W = 50 nm and L = 25 nm ). Inset
is a tilted SEM image of the device.
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We see similar dI/dV signatures in Device Q3 (shown in Fig. 3.11(f)) as shown in

Figure 3.16: Signature of e-v coupling in transport data of device Q3. (a) dI/dV −
VB−VG data for device Q3 showing the strong dI/dV 2 pairs of signatures at negative
and positive bias indicated by arrows and letters. (b) Zoom on the rectangular section
of (a). (c) Extracted vibrational frequency vs VG along the 4 line in (a) A, B, C and D.
(d) Frequency as a function of strain and tension for a suspended graphene resonator
with the dimensions from the SEM of the (W = 40 nm and L =20 nm ). Inset is
tilted SEM image of the device.

Fig. 3.16 which shows strong dI/dV vibrational features. Fig. 3.16(a) is the contour

plot dI/dV −VB−VG data of device Q3 showing 2 pairs of dI/dV signatures in positive

and negative bias, shown by arrows and letters A, B, C and D. Fig. 3.16(b) expand

the data range around the resonance in (a). Vibrational frequencies are extracted as

far device Q1 from the ΔI from (a) and plotted in (c). We extract a frequency range

of a few GHz, which is close to the 5 GHz theoretical frequency at zero tension and
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strain (with L = 40 nm and W = 20 nm). A tilted SEM image of the device also

confirms that the leads are suspended and almost straight (see inset of 3.16(d)), we

would therefore expect very small tension on the flake.

We have shown that the extracted frequencies of the bending vibrons in our sus-

pended graphene QDs are in reasonable agreement with the theoretical frequencies

expected for graphene resonators of these dimensions. These QD-NEMS provide a

platform for the study of electron-vibron coupling in samples with different geome-

tries, as a function of magnetic field, temperature and external strain. Additionally,

there is the potential to develop ultra-high frequency NEMS for mass and force sen-

sors.

In this chapter, we described the electromigration and nanoetching technique

used to generate our devices. We described how to make QDs by defect creation

or graphene cutting. We achieved ≈ 20− 30 nm suspended graphene QDs, the small-

est graphene QDs produced to date to our knowledge. The size of each of the QDs

visible SEM imaging matches the area extracted from electron transport data, indi-

cating that there is a very little ”bulk” disorder in our dots. We observed signatures

of e-v coupling in our devices through transport data. We extracted up to 100 GHz

vibronic frequencies for our ultra-short graphene QDs. Suspended graphene quantum

dots offer a platform to study the effects of strain in transport and e-v coupling. Our

fabrication method offers the prospect of studying the various sources of disorder in

graphene QDs.
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Chapter 4

Ballistic transport in ultra short

suspended graphene devices

Since the discovery of graphene there has been a growing interest in fabricating and

studying nanometer scale graphene ballistic channels and p-n junctions [11, 56, 12, 13,

57, 58]. These devices are expected to be the building blocks for few nanometer-scale

graphene quantum transistors [19, 59, 60]. In very small and disorder-free devices,

electrons (or holes) can move ballistically. Having a ballistic channel requires that the

length of the channel be smaller than the mean free path (mfp) and phase-coherence

length of the carriers. Recently, a mean free path of up to the micron scale has been

reported [12, 19] which has made it possible to fabricate micron scale long ballistic

channels [19]. Ballistic charge carriers do not scatter, but preserve their quantum

phase information, which makes them a platform to explore the quantum behaviour

of Dirac electrons in graphene. Such optics-like phase coherence transport is very

promising for the development of quantum wires, and quantum bits for quantum

computing applications [61].

Transistors and logical circuits are based on p-n junctions. A p-n junction forms

at the interface of two semiconductors (or semi-metal in the case of graphene) which

are respectively hole (p) and electron doped (n). Thus, to fabricate a graphene-based

ballistic p-n junction it is necessary to create a charge carrier density gradient in

a sub-micron region. Usually, a secondary gate electrode (top or bottom) is used

to form the density gradient [11, 19]. Fig. 4.1 shows a cartoon of a graphene p-n-p

junction. A global back gate and a local top gate are used to electrostatically dope
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graphene and create a charge carrier density gradient at the edges of the top gate.

This configuration forms two p-n (or n-p) junctions back to back, i.e p-n-p (or n-p-

n). The p-n-p junction is created when the global back gate hole, and local top gate

electron, dope the graphene (or the other way around for a n-p-n junction). There

has been a lot of effort to reduce the size of graphene p-n junctions. However the

thickness of the necessary insulating layer between the gate and graphene limits the

downsizing of the junction. So far � 50 nm scale p-n-p (≈ 25 nm p-n) junctions have

been achieved by using a local top gate [11, 13].

Here we demonstrate the fabrication of several suspended graphene ballistic n-

Figure 4.1: Cartoon of graphene p-n-p junction. It shows that the graphene p-n
junction is formed by creating a density gradient using a local top gate. Adapted
from reference [11].

p-n (or n-n’-n) junctions, whose sizes range from ≈ 100 nm down to only ≈ 23 nm

(≈ 10 nm p-n junction). To achieve this resolution we used gold contacts, not only

to electrically contact the graphene, but also to dope (local gate) the graphene and

create an ultra sharp density gradient. The difference in the work functions of the

gold film and graphene leads to a charge transfer and doping of the graphene layer.

There is also contribution from a metal-graphene chemical interaction, which results

in a charge redistribution at the interface [57, 58, 62, 63, 64].

Because the spacing between graphene and the gold film deposited on the graphene

is ≤ 1 nm, we can reduce the size of the n-p or (n-n’ ) junction down to ≈ 10 nm.

Fig. 4.2 (a)-(b) show tilted SEM images of 10 and 100 nm scale suspended graphene
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transistors respectively. In the following section, we will describe the ballistic trans-

port through the n-p-n junction formed in these devices. In our devices, we observed

ballistic transport in agreement with the theory of Dirac fermions. We see Fabry-

Pérot (FP) oscillations demonstrating coherent ballistic transport. FP oscillations

result from the interference between the wavefunctions of reflected and transmitted

carriers. The maximum coherence length (up to ≈ 700 nm) extracted from the FP

oscillations in our devices is much longer than the length extracted from SEM images

for these devices. This demonstrates that the ballistic transport extends under the

gold contacts [10].

Figure 4.2: Tilted SEM image of our suspended graphene transistors. (a) 10 nm
long suspended graphene transistor. (b) 100 nm long graphene ballistic transistor
suspended between two gold contacts.

4.1 Theory of ballistic transport in graphene

In chapter 3 we discussed the fabrication of narrow and short graphene devices which

can have band gaps and form graphene quantum dots. Here, we discuss wider chan-

nels which give rise to open quantum dots and ballistic transistors. The term open

quantum dot refers to a QD where the discrete energy levels of the dots are broadened

due to highly transparent tunnel barriers (i.e G is a sizeable fraction of e2/h). Thus,

an open QD is the intermediate regime between a regular QD and a fully ballistic

channel. In this section we introduce a theoretical model, presented by Tworzydlo

et al. [56] which describes ballistic transport in graphene. This model predicts the

conductance due to Dirac fermions as a function of the Fermi energy for different
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lengths, L, widths, W , and aspect ratio, W/L, of the channel. We also show that

the predictions of this model are consistent with ballistic transport through graphene

n-p-n or p-n-p junctions.

Fig. 4.3 shows a schematic of a graphene transistor contacted by two gold leads

Figure 4.3: Cartoon of a graphene transistor contacted with gold leads (source and
drain). kxn and kyn are the longitudinal and transverse momentum of carriers in the
nth ballistic mode (sub-band).

(source and drain). L and W are the length and width of the graphene transistor

respectively. kxn and kyn are longitudinal and transverse momentum of the carriers

injected into the nth mode (i.e. subband) of the channel. The conduction modes form

due to confinement from W , which quantizes the possible values of ky → kyn where

n labels the nth mode. The values of kyn are [56]:

kyn =
π

W
(n+ 1/2) (4.1)

where n is an integer number (mode number). It was predicted that Dirac fermions

[17] experience perfect transmission at a normal incident angle (θ = 0) due to Klein

tunneling (see section 1.2.1). Fig. 4.4 shows the transmission for Dirac fermions

as a function of their incident angle on the potential barrier [17]. It shows that

transmission is highly angle dependent, and decreases for θ �= 0 on the potential

barrier. The angle of injection for each mode is given by θ = tan−1(kyn
kxn

). Thus,

a larger n results in a larger incident angle. Fig. 4.4 shows that for small incident

angles (θ ≈ 0), i.e. small kyn and n, transmission ≈ 1. Meaning, these modes cannot

be stopped by any potential barrier. As kyn increases the transmission drops quickly
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Figure 4.4: Angle dependence of Klein tunneling. Transmission probability of Dirac
fermions through a potential barrier in graphene, as a function of the incident angle
for a barrier height of 200 meV (red) and 285 meV (blue). The angle θ is defined by
θ = tan−1(kyn

kxn
). Transmission decreases to values ≤1 when θ �= 0, but remains at 1

for any barrier height fir θ = 0. Reproduced from reference [17].
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to small values when �vFkyn > μ where μ is the Fermi energy1. Thus, high angle

and high energy modes are filtered (reflected) by the potential barrier. We can see

in Fig. 4.4 the effect on the transmission of different barrier heights (200 meV (red)

and 285 meV (blue)).

Transmission of the nth mode is given by the following equation, considering that

the Fermi energy in the leads is μleads =∞ [56]:

Tn =

∣∣∣∣ kxn
kxn cos(kxnL) + i( μ

�vF
) sin(kxnL)

∣∣∣∣
2

(4.2)

kxn =

√
(
μ

�vF
)2 + (kny)2 (4.3)

Where Tn is the transmission for the nth mode. vF = 106 m/s is the Fermi velocity

in graphene, μ is the Fermi energy of the carriers in graphene and can be tuned by

VG and temperature, [23, 24]:

μ = �vF
√
πntotal, ntotal =

√
(n2

G + 4(no)2) (4.4)

nG =
CG

e
VG, no =

√
(
nimp

2
)2 + (nth)2, nth =

π

6
(
kBT

�vF
)2

Where nG and CG are the carrier density induced by the back gate, and the back

gate capacitance per unit area respectively. nimp is the impurity density and nth, kB,

T are the thermally generated carrier density, Boltzmann constant and temperature

respectively. Finally, the conductivity of the transistor, σ, is given by the sum over

the conductivity of each mode as follows:

σ =
4e2

h

L

W

N−1∑
n=0

Tn (4.5)

In the next sub-sections we will discuss the predictions of this model that are relevant

to our measurements.

1Fermi energy, EF , is the highest occupied single particle energy level in the system. At T = 0,
EF is the same as the chemical potential, μ.
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4.1.1 Conductivity, σ, vs charge density and dimensions

Minimum conductivity : The Tworzydlo et al. [56] model predicts that the minimum

conductivity, σmin, of graphene when its Fermi level is at the Dirac point (zero charge

carrier), is non zero (see Fig. 4.5(a)). This means that graphene-based transistors

cannot be switched off. This is due to Klein tunneling, where there are always some

evanescent modes (imaginary momentum) which travel between the leads with perfect

transmission. σmin depends on the aspect ratio, W/L, and for a wide transistor

(W 
 L) it is close to 4e2

πh
(≈ 25kΩ) (see Fig. 4.5(b)-(c)). The red curves in Fig. 4.5

(b)-(c) are σmin (σ at μ = 0) as a function of the aspect ratio, using L = 100 nm

and L = 10 nm respectively. We see that for small aspect ratios σmin can be much

smaller than 4e2

πh
.

Change in conductivity as the Fermi energy is gate modulated : Tworzydlo et al.

Figure 4.5: Conductivity, σ, vs charge density and dimensions. (a) σ as a function
of gate voltage. (b) σmin (red), i.e. at μ = 0, and σ at μ = 50 meV as a function
of aspect ratio (W/L) for L = 100 nm. (c) σmin (red) and σ at μ = 50 meV as a
function of aspect ratio (W/L) for L = 10 nm.

also predict that σ in longer graphene transistors can be more widely tuned by VG.

The black curves in Fig. 4.5 (b)-(c) show σ at μ = 50 meV (corresponds to VG ≈ 5 V

in our devices) as a function of W/L for L = 100 nm and L = 10 nm respectively. It

shows that the change in conductivity modulation, Δσ=(σmax−σmin), is much larger

for long channels than for short ones for the same change in Fermi energy.

Conductivity oscillations : Some oscillations in σ are visible at high VG in Fig. 4.5

(a). These oscillations are due to additional conduction modes becoming transport

modes with a real �k, rather than evanescent modes with an imaginary �k vector. As VG

increases the Fermi energy of the charge carriers increases. Since kyn = π
W
(n+0.5) and

the Fermi energy is μ = �vF
√

(kyn)2 + (kx)2, higher energy modes become transport
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modes as VG increases, and their contribution to the total transmission increases the

conductance in steps. This is only expected if there is no mode mixing, and we expect

our contact to mix modes so we should not see these features [65].

In the next section we will discuss ballistic transport through a single p-n junction

and how it is consistent with the model discussed in this section.

4.1.2 Graphene based p-n junction

In this section we discuss transport across a single p-n junction. We conclude that

transmission through a sharp p-n junction is very similar to the ballistic model dis-

cussed in section 4.1. A p-n junction is the interface between two types of semi-

conductors which are hole (p) and electron doped (n). A p-n junction in graphene

is formed by creating a potential step or carrier density gradient. Figure 4.6 shows

a cartoon of the potential step across a graphene p-n junction. The left side of the

junction is hole (p-doped) and the right side is electron (n-doped) doped. A p-n junc-

tion can be created by using a local gate to locally dope graphene and form a carrier

density gradient (see Fig. 4.1). [11, 19, 66]. It was calculated that the resistance of a

Figure 4.6: Diagram of a p-n potential barrier. A p-n junction is formed at the
interface of a hole-doped (left) and electron-doped (right) graphene. Adapted from
[19]

graphene p-n junction, Rpn is given by [66, 67]:

Rpn =
πh

2e2
1

W

√
�vF/e|Fpn| (4.6)
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e|Fpn| = 2.5�vFα
1/3(ρ′)(2/3) (4.7)

Where Fpn is the electric field at the p-n junction, and can be extracted from the car-

rier density gradient, ρ′, and α = e2/κ�vF is the strength of the Coulomb interaction,

where κ is the effective dielectric constant. Equation 4.6 shows that transmission

through a p-n junction is very sensitive to the gradient of carrier density as well as

the width, W , of the junction. Equation 4.6 can be expressed as a function of the

density induced by the global back gate, ρ2, and local gate ,ρ1, as follows [67]:

Rpn =
1

W

0.7

α1/6

h

e2

(
1− ρ1

ρ2

)2/3 ∣∣∣∣Dρ1
∣∣∣∣
1/3

(4.8)

Where D is the spacing between the local back gate and graphene.

In Fig. 4.7 we calculate the conductance, G, vs VG for L = 100 nm and W = 1.5

μm , with μleads = ∞ (red solid line), and μleads = 0.26 meV (blue point line) using

the ballistic model which was discussed in section 4.1. The μleads = 0.26 meV is

the expected doping for graphene covered by gold [68]. We also plot G vs VG for

resistance of a single p-n junction (equation 4.8) for ρ2 = ngate, ρ1 = ngate + 5× 1012

cm−2 which corresponds to μleads = 0.26 meV (black dashed line), D = 0.5 nm [57]

(spacing between gold and graphene, no adhesive layer is used) and W ≈ 1.5 μm. All

three models are in agreement as long as the doping from the contact is much bigger

than the doping from the back gate, which is the case for our samples. In addition,

the p-n interface is sharp and forms a large gradient.

It is expected that the ballistic resistance of one p-n junction is almost the

same as the resistance of p-n-p (n-p-n) or a series of p-n junctions [69], since the p-n

junction potential barrier filters out (reflects) the modes with large incident angles.

The modes that are filtered out in the first p-n junction do not contribute to the

transmission. However, the following p-n junctions are transparent to the modes

which were transmitted from the first p-n junction (θ ≈ 0), so the transmission

remains the same.

Comparing the p-n junction model and ballistic model (section 4.1), it is expected

that both approaches lead to the same result for a sharp p-n density gradient. The

ballistic transistor model consists of two sharp p-n junctions back-to-back, which

forms a n-p-n junction. The p-n junctions are sharp because they are formed at the

interface of suspended and metal covered graphene. While the graphene under the
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Figure 4.7: Transmission as a function of back gate (global gate). Red curve shows
ballistic model for μleads = ∞. Blue is the ballistic model for μleads = 0.26 meV.
Black curve is the p-n junction model for μleads = 0.26 meV where D = 0.5 nm

metal can be highly doped by the metal, the suspended side charge density is tuned

by a back gate voltage. This gives rise to a very sharp p-n junction at the interface

of graphene and graphene covered by gold. In our samples, gold directly touches

graphene since we do not use any adhesion layer, such as Ti or Cr. Moreover, the

junction is suspended and annealed. Thus, we expect to have sharp p-n junctions at

the interface of graphene and graphene covered by gold. Since the spacing between

gold and graphene is only a few angstroms [57] it will not be a limiting factor in

downscaling of the p-n junctions.

In the next section we will briefly summarize state-of-the-art results on graphene

p-n junctions and ballistic transistors. We will also discuss the limitations of current

results and how our work can make new and significant contributions to this field.

4.1.3 Experimental background

We review a few recent, high profile results to highlight the present state of affairs in

ballistic transport in graphene.

Since the discovery of graphene, there has been a growing interest in graphene-based

nanoelectronics, p-n junctions and transistors. One of the shortest graphene p-n

junctions to date was reported in 2009, Andrea F. Young et al. [11] (see Fig. 4.8(a)).
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Figure 4.8: Recent experimental results on graphene p-n junctions and ballistic tran-
sistors (p-n-p). (a) False color SEM image of a graphene 67 nm p-n junction Andrea
F. Young [11]. Contacts and graphene are colored yellow and blue, respectively. The
local top gate is also colored blue. The scale bar is 2μm. Inset is a zoom-in on the
local top gate. The scale bar is 20 nm. Reproduced from reference [11]. (b) False
color SEM image of a graphene p-n junction. Contacts are colored blue and bottom
local gates are yellow. Scale bar is 1.2μm. Reproduced from reference [19]. (c) SEM
image of a 52 nm long graphene ballistic channel. (d) Resistance as a function of gate
voltage for devices shown in (c). (black) 500 nm long, (red) 170 nm, and (blue) 52
nm.
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They fabricated a 67 nm-long graphene p-n junction. They made use of a top gate

to create a density gradient in graphene deposited on a SiO2 substrate. In 2012, Y.

Wu et al. [13] made a 52 nm long ballistic transistor (p-n-p) in graphene on a SiO2

substrate (see Fig. 4.8 (c)). They observed FP oscillations in R vs VG data (Fig. 4.8

(d)) as well as an asymmetry between hole transport (VG < 0) and electron transport

(VG > 0). The asymmetry in transport is because when VG > 0, the device is p-n-p,

while at VG < 0 is p-p’-p. This leads to a different resistance for VG > 0 and VG < 0.

In these devices, the p-n junctions are at the interface of graphene and graphene

covered by metal. These devices are similar to our devices, however our devices are

suspended, annealed and smaller.

In 2013, Peter Rickhaus et al. [19], made micrometer-scale suspended and clean

graphene ballistic p-n junctions. They made use of two bottom gates to create the

p-n junctions (see Fig. 4.8 (b)). Current annealing was used to anneal the sample.

They observed coherence transport up to ≈ 1.2 μm in graphene.

In summary, ≥ 52 nm ballistic graphene channels (on substrate) and 67 nm p-n

junctions have been achieved, but there are some limiting factors which prevent the

production of smaller ballistic and p-n junctions. In the next section, we mention

these limitations and our approach to resolve some of them.

4.1.4 Limitations of previous work and our contribution

One of the difficulties in downscaling graphene p-n junctions is the thickness of the

insulating spacer between the local gate and graphene. This insulating layer has to

be thick enough to prevent current leakage, but it complicates the fabrication and

limits the sharpness of the p-n junction to a length scale at least comparable to its

thickness. The electric field lines from the local gate broaden as the spacing between

the local gate and graphene increases. This forms a smooth charge density gradient

in graphene, instead of a sharp one, leading to wide p-n junctions. As an example,

in the device shown in Fig. 4.8 (a), the width of the local top gate is about 20 nm

and the insulator spacer ≈ 30 nm, but the length of the p-n junction is reported to

be about 67 nm.

Creating a ballistic channel requires removing sources of disorder. Suspension of

the channel removes the substrate disorder and high temperature annealing cleans

the sample of contamination and fabrication residues. For most of the reported
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devices, suspension is very difficult due to the geometry of the device and complexity

of the fabrication process. For devices on substrate, the Joule self-heating annealing

process would not be effective since the devices are thermally coupled to the substrate,

preventing them from reaching the high temperatures needed. These factors can

limit achieving high-quality and short graphene ballistic p-n junctions and n-p-n

transistors.

We have developed a nanoetching technique to create 5− 10 nm long graphene

Figure 4.9: Schematic of graphene/graphene-covered-gold interface. Graphene is
gated by a gold film forming a p-n junction at the graphene/graphene-covered-gold
interface.

p-n junctions. This resolution is beyond the limit of electron beam lithography (see

Fig. 4.2). We use BOE etching to etch away the SiO2 substrate and suspend the

device. In this way, we decouple the channel from the substrate disorder. We make

use of a current annealing process to self-anneal our devices to high temperatures.

It removes the contamination and residues, such as resist and H2O from the device,

which is kept under high vacuum. We also use gold electrodes to gate graphene.

Gold in contact with graphene n-dopes graphene2, which results in the formation of

n-p-n or n-n’-n junctions, depending on the doping from the back gate. Since gold

is touching graphene, the space between gold and graphene is minimized to a few

angstroms, resulting in doping graphene by gold. This doping arises from a difference

in the work functions of the gold film and graphene, which leads to a charge transfer

and doping of the graphene layer [57, 58, 63, 64]. Figure 4.9 shows that graphene is

gated by a gold film forming a p-n junction at the graphene/graphene-covered-gold

2Gold can also p-dope graphene if it is not annealed but high temperature annealing removes the
oxygen from gold and changes its work function so that n-dopes graphene [70].
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interface. This way the device consists of graphene contact (graphene-covered-gold)

and gold gates. This allows the formation of a very sharp density gradient and

consequently, an ultra short and sharp p-n junction.

In the next section, we will present the electromigration process to make 10 nm

scale suspended graphene p-n junctions. We will show how we can use nanoetching

to fabricate wide and short channels.

4.2 Electromigration of 10 nm-scale ballistic (p-n-

p) transistors

Wemake use of a feedback controlled electromigration to open a nanogap in suspended

break-junctions, as we explained in chapter 3. Here, we discuss how to adapt the

procedure to fabricate wider but short junctions, such that graphene is not in the QD

regime (with a band gap) but rather is ballistic. Fig. 4.10 shows the electromigration

process which led to a 26 nm long n-p-n and 92 nm wide junction (Device A). We

made use of the feedback control mechanism to break the junction at low power, with

the same technique that was presented in section 3.2. Then, we annealed the junction

using Joule self-heating to a high temperature (explained in Section 3.3). Since the

junctions are suspended, the heat created by Joule heating increases the temperature

of the channel. This ashes the contamination on graphene and on the gold contacts,

which results in clean graphene in both the exposed channel and under the suspended

gold contacts. The portion of the gold contact which is on the substrate (SiO2) is not

annealed due to thermal anchoring to the substrate, and thus remains disordered.

Fig. 4.10 (a) shows I − VB during electromigration for Device A. The final break

happened at about 4.7 mW (V ≈ 0.63 V and I ≈ 7.8 mA), and was followed by

a current annealing step up to V ≈ 1.7 V and I ≈ 0.73 mA (Inset in Fig. 4.10

(a)). Fig. 4.10 (b) shows the false color top view SEM image of Device A after this

process (dark blue, yellow and purple correspond to SiO2, gold contact and graphene,

respectively). The channel of Device A is ≈ 26 nm long and ≈ 92 nm wide.

The same recipe is used for Device C (Fig. 4.11), but with a higher voltage. The

channel of Device C is ≈ 23 nm long p-n-p and ≈ 32 nm wide. Device C was broken

at about 13 mW (V ≈ 1.1 V and I ≈ 11.8 mA) followed by current annealing up to

V ≈ 0.9 V and I ≈ 0.16 mA. SEM images of samples A and C show that the graphene
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Figure 4.10: Electromigration of ballistic transistor Device A. Low-power electro-
migration of suspended break-junction followed by current annealing results in the
formation of short and wide graphene channels. (a) I vs VB of the electromigration
curve for Device A. Device A was broken at 4.7 mW (V ≈ 0.63 V and I ≈ 7.8
mA) followed by a current annealing step (inset) up to V ≈ 1.7 V and I ≈ 0.73
mA. (b) Top view false color SEM image of Device A showing the geometry of the
graphene channel. Dimensions of the relatively rectangular channel are L ≈ 26 nm
and W ≈ 92 nm. Dark blue, bright yellow and purple correspond to SiO2, gold
contact and graphene, respectively.
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Figure 4.11: Electromigration of ballistic transistor Device C. Low-power electromi-
gration of suspended break-junction Device C. (a) I−VB data of the electromigration
curve for Device C. Device C was broken at 13 mW (V ≈ 1.1 V and I ≈ 11.8 mA),
and then current annealed (inset) up to V ≈ 0.9 V and I ≈ 0.16 mA). (b) Top view
false color SEM image of Device C showing the geometry of the graphene channel. Di-
mensions of the relatively rectangular channel are L = 23 nm and W = 32 nm. Dark
blue, yellow and purple correspond to SiO2, gold contact and graphene, respectively.
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channel is relatively rectangular and of roughly the same length, but of very different

widths. This is in agreement with the discussion in chapter 3 where we explained

how a larger breaking V (or electric field) leads to cutting the channel into narrower

ribbons.

In the next section, we will present the transport data for Device A and C as well as

for wider (W ≈ 1 μm) Devices (F and M).

4.3 Data: ballistic Dirac fermion transport

We present and discuss the transport data measured in devices with an aspect ratio,

W/L ≥ 1 and while length ranges from ≈ 23 nm up to ≈ 105 nm. We fabricated and

measured a total of ten devices, and focus our discussion on the four devices for which

we have the most complete data set. We show that the data are in good agreement

with the theoretical model presented in section 4.1 for the transport of ballistic Dirac

fermions in graphene, and demonstrate n-p-n transistors as short as 23 nm. To the

best of our knowledge these are the shortest such devices reported.

To show the sensitivity of the model (equation 4.2) on the length, L, and width, W ,

of the channel we plot the experimental and theoretical conductance, G, as a function

of VG in Fig. 4.12. The black line shows the experimental data and the blue dashed

line the theory using the L and W extracted from the SEM image of Device C (see

Fig. 4.11 (b)). We also plot the theoretical G for the same W but where L → 2L

(W = WSEM = 32 nm, L = 2LSEM = 46 nm, green dashed-dotted line) as well

as for W → 2W and L (W = 2WSEM = 64 nm, L = LSEM = 23 nm, red dashed

line). LSEM and WSEM are the length and width measured from the SEM image,

respectively.

The model is also very sensitive to the device geometry, and does not work for

rough edges and non-rectangular edges. We plot the experimental (black solid line)

and theoretical (dashed-dotted blue line) G vs VG for Device B in Fig. 4.13. As is

clear from the SEM image in Fig. 4.13 (a), the edges of the channel in Device B are

not rectangular, which result in a discrepancy from the model. This is explained by

the fact that roughness and non-rectangular edges change the angle of the injection

and affect the total transmission in a way which is not captured by the theoretical

model.
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Figure 4.12: Conductance (G) of Device C as a function of gate voltage. Black solid
line shows experimental data. Blue dashed line is the theoretical model predicting
ballistic transport in graphene for length and width extracted from the SEM image for
Device C (L = 23 nm and W = 32 nm). Green dashed-dotted line is the theoretical
model plotted for Device C with width equal to the SEM width, but the length is
twice as long (L = 46 nm and W = 32 nm). Red dotted line is the theoretical model
plotted for Device C with length equal to the SEM length, but the width is twice as
wide (L = 23 nm and W = 64 nm)
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Figure 4.13: Conductance (G) of device B as a function of gate voltage. (a) SEM
image of Device B shows non-rectangular edges. (b) G vs VG for Device B. Black solid
line shows experimental data. Blue dashed line is the theoretical model Laverage ≈ 64
nm and Waverage ≈ 54 nm extracted from the SEM image. (b) indicates that the
theoretical model does not work for devices with rough and non-rectangular edges.

No contact resistance or fitting parameter are added. Comparing the experimen-

tal data with the theoretical curves show that there is an agreement between the

experimental data and model using W = WSEM and L = LSEM for the devices with

rectangular edges. It also shows that conductance is very sensitive to geometry, L

and W , which confirms that our sample dimensions (SEM) match the ones describing

the model. This strongly suggests that the suspended channel visible in the SEM

image is not damaged and is ballistic.

Moreover, since the charge neutrality point (Dirac point) is very close to VG ≈ 0

(see Fig. 4.12) we conclude that the sample is very clean, since impurities shift the

Dirac point away from VG = 0 [18]. In addition, we observe highly reproducible

oscillations in conductance (see Fig. 4.12). We will explain in section 4.4 that these

oscillations arise from quantum coherent interferences between transmitted and re-

flected charge carriers. This optics-like interference in transport, called Fabry-Pérot

interference, also confirms that our devices show ballistic and phase coherent trans-

port. We do not see such oscillations in the theoretical model which only predicts

them at much higher energies (larger VG). We will explain the origin of the experi-

mental interferences in section 4.4
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Fig. 4.12 shows a semi-quantitative agreement between the experimental data

and theory. However, this agreement can be further improved if we include the ef-

fects of contact resistance and impurities. The origin of contact resistance, RC , arises

from the injection of the charge carriers from the gold into the graphene. Although

current annealing removes most of the impurities from the sample, a small density

of impurities (nimp) always remains. These impurities effectively smooth the G vs

VG curve around VG ≈ 0. In Fig. 4.14 (c) we show that including RC and nimp into

the theoretical model increases the agreement with the experimental data. RC in our

sample is much smaller than the total resistance of the samples. The RC fit param-

eter extracted from several of our of samples is plotted with respect to the width

of the samples in Fig. 4.14 (b). We see that RC is inversely proportional to W , as

it is expected for p-n junctions (equation 4.6). The contact area of our devices is

estimated to extend within a radius of one μm. This corresponds to the maximum

injection length measured in graphene (see Fig. 4.14 (a)) [71]. We use this area to

calculate RC per unit of area between graphene and gold in our samples:

RC =
R�
A

(4.9)

RC =
R�
AL

+
R�
AR

R� = RC(
1

AL

+
1

AR

)−1

Let R� be the contact resistance for one μm2, and AL and AR be the left and right

contact areas (area of graphene covered by gold for our devices). We find R� ≈
230 − 400 Ω μm2 in our sample. This is very close to the reported values in the

literature (see Fig. 4.14 (b) ) [23]. Charge impurities result from fabrication residues

and H2O on graphene. The density of impurities, nimp, can be etched from the

HWHM (half width half maximum) of R vs n in the diffusive regime [23]. We use

an impurity density of nimp ≈ 5 × 1010 cm2, which we extracted from our diffusive

samples, which were prepared and annealed with the same procedure as our ballistic

devices. Fig. 4.14 (c) shows the effect of adding impurities (orange dashed-dotted

line) in the model. It modestly shifts the minimum conductivity, however far away

from the Dirac point this change becomes negligible.
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Figure 4.14: Conductance (G) of Device C as a function of gate voltage, including
contact resistance and impurities. (a) SEM image of a device showing how the contact
area is extracted using a 1μm radius. (b) Contact resistance, RC , of our devices as a
function of width of the samples. (c) Conductance, G of Device C vs VG. The black
solid line shows the experimental data. The blue line is the G predicted by theory for
L and W from the SEM image of Device C (L = 23 nm and W = 32 nm). The green
line is the model plotted for Device C with the same dimensions and with a contact
resistance (R� = 241 Ωμm2). The orange line is the theory plotted for Device C with
the same dimensions and R� and with an impurity density of nimp = 5× 1010 cm2.
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4.3.1 Agreement of experimental data with the theoretical

model

We now compare data from four samples covering a broad range of L, W and W/L

ratio. We show data for two ultra short (L ≈ 20 nm ) devices whose W ≈ 32 and 92

nm. We also show data for two samples whose L ≈ 100 nm, and W ≈ 1.5 and 1 μm

(see table 4.1).

All of these devices are suspended and decoupled from the substrate disorder. We

Table 4.1: Width, length and aspect ratio for four Devices A, C, F and M (shown in
Fig. 4.15)

Device WSEM (nm) LSEM (nm) aspect ratio (W/L)
A 92 26 3.5
C 32 23 1.4
F 985 98 10.1
M 1485 105 14.1

made use of current annealing to remove contamination and fabrication residues. In

the widest devices (F and M) edge disorder has a much smaller effect on transport, and

the data show an even better agreement with the theory. Thus, substrate disorder,

contamination and edge disorder has been removed or minimized in these devices.

Fig. 4.15 shows low temperature (1.5 − 4 K) G vs VG for Devices A, C, F and

M. We limit our VG to ≤ 15 V for Devices F and M (gap junctions) and ≤ 7 V

for Devices A and C (break-junctions), because the samples are suspended and the

electrostatic force from the gate electric field could collapse the devices. The black

lines in Fig. 4.15 are the experimental data and the red curves show the ballistic

model. We observe good agreement between the theory and experimental data over

a wide range of length, width and aspect ratio. The minimum conductivity, σmin is

close to what the model predicts when including contact resistance and impurities.

We used nimp = 5× 1010 cm−2 for all samples. We observe better agreement between

theory and experimental data in the devices with a rectangular shape and smooth

contact edges, compared to non-square ones with rough edges.

If we compare transport on the electron side (positive VG) with the hole side (negative

VG) we notice an asymmetry for all samples. This is evidence of the creation of a

strong n-p-n junction in the channel.

We observed highly reproducible coherent oscillations in conductance at low bias
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Figure 4.15: G−VG data for ballistic devices. The black curves are the experimental
data and the red curve are the theoretical calculations. (a) Device A, W = 92 nm,
L = 26 nm with R� ≈ 394 Ω μm2. Data taken at T = 4.2 K. (b) Device C, W = 32
nm, L = 23 nm and R� ≈ 241 Ω μm2. Data taken at T = 4.2 K. (c) Device F,
W = 985 nm, L = 98 nm and R� ≈ 334 Ω μm2. Data taken at T = 1.5 K. (d) Device
M, W = 1485 nm, L = 105 nm and R� ≈ 227 Ω μm2. Data taken at T = 1.5 K.
Impurity density for all the samples is nimp = 5× 1010 cm−2.
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and low temperature. These oscillations are another signature of coherent ballistic

transport. We will discuss these oscillations in detail in the next section. In L ≈
20 − 30 nm devices we do not expect to see such coherent oscillations, because it

requires reaching a much higher Fermi energy (higher VG) than we can access. But

surprisingly, we see low energy oscillations in all the samples. In section 4.4 we will

discuss these low energy oscillations which apparently come from longer length scales

than the ones seen in the SEM images.

4.4 Fabry-Pérot oscillations and quantum coher-

ent transport

We first introduce the concept of Fabry-Pérot (FP) oscillations as a result of quantum

coherent transport in graphene. We then use this framework to analyze the conduc-

tance oscillations visible in the data of Fig. 4.15. We will analyze the FP oscillations

as a function of Fermi energy (see equation 4.4) at different VB and T to extract the

coherence length, LFP of the charge carriers in our devices.

In ballistic transport, charged carriers do not scatter while traversing the device

(except for elastic scattering at the source and drain contacts), and therefore they

preserve their quantum phase information. This leads to interferences between the

wavefunctions of reflected and transmitted carriers (see Fig. 4.16). This optics-like

interference is called Fabry-Pérot interference. The coherence length (length over

which the quantum phase is preserved) is very sensitive to disorder. The presence

and amplitude of FP oscillations are good measures of the quality of the samples. The

length of the FP cavity can be extracted from the energy spacing between subsequent

FP fringes (ΔE) [13, 72]:

ΔE = E2 − E1 =
π�vF
L

(4.10)

EF = �vF
√
πntotal

Where ntotal is the total carrier density in the channel given by Eq. 4.4 as a function

of VG, T and nimp.

87



Figure 4.16: Cartoon of a graphene channel showing reflected and transmitted modes.
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4.4.1 Length of the FP cavity and its dependance on T and

VB

Figure 4.17 shows transport data for Device F (W = 985 nm, L = 98 nm) for different

temperatures, T , where we observe clear FP oscillations, allowing us to extract the

FP cavity length in this device.

Figure 4.17(a) shows G − VG data for T = 1 up to 128 K. At 1 K we see

Figure 4.17: Temperature dependence of the conductance of Device F. (a) G vs VG

data for Device F at different temperatures, 1 K (red), 8 K (blue), 64 (black) and 128
K (green). (b) G vs EF data for Device F for the section indicated in (a).

oscillations with two periods (ΔEsmall ≈ 4 meV and slow oscillations ΔEbig ≈ 22

meV). As T increases these oscillations smear out. At 8 K, the small energy spacing

oscillations (ΔEsmall) which correspond to a long cavity according to the equation 4.10

are almost gone. By 64 K, these oscillations are gone, and the slow oscillations (ΔEbig)

survive until T = 128 K. We use equation 4.4 to translate VG into Fermi energy (EF ).

Fig. 4.17 (b) shows G vs EF for sample F at various T . The cavity length, LFP ,

can be extracted from this plot using equation 4.10. We find LFP ≈ 94 ± 5 nm and

≈ 700 ± 50 nm using ΔEbig ≈ 22 ± 1 meV and ΔEsmall ≈ 4 ± 1 meV respectively.

The LFP ≈ 94±5 nm cavity length is expected for the Device F, based on the length

of the device from the SEM image LSEM ≈ 98 nm (see Fig. 4.15 (c) ). However the

second length scale, LFP ≈ 700±50 nm is much longer than the length of the channel

seen.
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The visibility (amplitude) of the oscillations changes as a function of the temperature

Figure 4.18: FP oscillations at different temperatures for device F. (a) G vs EF for
Device F at T = 8 K and T = 16 K. (b) G vs EF for Device F at T = 64 K and
T = 128 K.

[11]. The FP interference should be visible when the energy spacing between the

oscillations, ΔE, is larger than the thermal fluctuation kBT . Thus, we expect to lose

visibility when the energy spacing, ΔEFP , is comparable with kBT . Thus,

if, ΔEFP 
 kBT (4.11)

then, LFP � LThermal

where LFP = π�vF
ΔEFP

and LThermal =
π�vF
kBT

.

Fig. 4.18 (a) shows the G vs EF for Device F at T = 8 K and T = 16 K. We can

still see the ΔEsmall at T = 8 K (kBT ≈ 0.7 meV) but with low visibility. By T = 16

K ( kBT ≈ 1.38 meV) these interferences are suppressed. Considering that at 16 K,

LThermal (equation 4.11) is about ≈ 1.5 μm, it puts the upper limits on the FP cavity

length at <1.5 μm. This is consistent with the FP cavity length of ≈ 700 ± 50 nm

extracted from ΔVG for low energy oscillations of ≈ 3− 4 meV.

Fig. 4.18 (b) shows the G vs EF for Device F at T = 64 K and T = 128 K. At 64 K,

where kBT ≈ 5.5 meV, we still see some high energy ΔEbig ≈ 22±1 meV oscillations.

However by 128 K, where kBT ≈ 11 meV, there are no visible oscillations. Considering

that LThermal is about ≈ 190 nm at T = 128 K, the FP cavity for these high energy
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interferences should be < 190 nm. This is in agreement with the LFP = 94 ± 5

nm we extracted from ΔVG. This confirms that we observe coherent interferences

corresponding to the length of the suspended graphene channel visible in the SEM

image (LSEM ≈ 98 nm) as well as coherence interference corresponding to a much

longer cavity. In the next section we will explain the origin of this longer cavity.

We observed similar FP interferences in four devices, and found a similar agreement

between the temperature and VG dependance of the interference pattern.

We continue our analysis by presenting a 2D map of FP oscillations as a function

of both VG and VB for Device C. We show that the measured FP cavity length from

VB and VG are also in agreement.

Fig. 4.19 (a) 2D map dI/dV − VB − VG data for Device C at T = 4.2 K. The FP

Figure 4.19: 2D map of FP interference for device C.(a) 2D map dI/dV − VB − VG

data for Device C at T = 4.2 K. (b)ΔVG as a function of
√
nG (carrier density). The

slope is ≈ 1.7× 10−8 V/m. (c) 1D cuts along VG sweeps in (a) at different VB.
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interference pattern is visualized in this 2D map as straight intersecting lines. The

cavity length can be extracted from the value of VB at the intersection points of two

lines. At these intersections, we have [73]:

ΔVB =
π�vF
eLFP

(4.12)

where ΔVB is the height of the VB crossing points, and eΔVB is the energy spacing

between fringes. We extract LFP ≈ 170± 20 nm in Device C from the average ΔVB

of ≈ 12± 2 mV.

The value of LFP can also be extracted from the horizontal ΔVG spacing of the fringes.

The energy spacing between two peaks can be extracted as follows:

ΔEFP =
π�vF
LFP

= �vF (
√
πn2 −√πn1) (4.13)

and the following approximation can be used to express Eq. 4.13 in terms of ΔVgate

(
√
n2 −√n1) ≈ n2 − n1

2
√
nG

=
CGΔVG

2e
√
nG

for ΔnG � nG (4.14)

where nG and CG are the carrier density induced with the gate, and gate capacitance

per unit of area respectively. Using equations 4.13 and 4.14 one finds:

ΔVG =
2e
√
πnG

CGLFP

(4.15)

Equation 4.15 shows that ΔVG should increase as nG (or VG). Fig. 4.19 (a) clearly

shows that ΔVG is increasing as VG increases to positive or negative voltages. In

Fig. 4.19 (b) we plot the ΔVG as a function of
√
nG. The slope of this plot gives the

FP cavity length as slope= 2e
√
π

CGLFP
. We extracted LFP ≈ 140± 20 nm from the slope

≈ 1.7× 10−8 V/m).

Finally, we also extracted the LFB from 1D cuts along VG, as we did previously for

Device F. Fig. 4.19 (c) shows G−EF data extracted from Fig. 4.19 (a) for Device C

(using equation 4.4). We find that LFP ≈ 200±20 nm. Fig. 4.19 (c) shows that as VB

increases to higher values, the oscillations disappear, which is likely due to inelastic

electron-electron scattering [74].

In summary we extracted the LFP ≈ 140 − 200 nm long from 2D data. This
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LFP ≈ 140 − 200 is much longer than LSEM ≈ 23 nm for Device C, similarly to

Device F (LSEM=95 nm, and LFPlong ≈ 700 nm), under the gold and from an ex-

tended FP cavity. This suggests that some conduction modes can ”leak” (due to

Klein tunneling) into the graphene under the gold contacts. This is possible, because

long sections of the gold contacts are suspended and annealed, which could mean that

graphene under these contacts is also ballistic.

4.5 Ballistic graphene contacts for graphene tran-

sistors

In the previous section we extracted the FP cavity length for different devices. The

maximum extracted cavity length was much longer than the channel of the device

measured by SEM. This suggests that some of the conduction modes coherently leak

into the graphene under the gold. In this section we will discuss the implication of

this observation for our devices, and the origin of this long FP cavity.

Fig. 4.20 (b) shows a tilted SEM image (≈ 85◦ tilt) of one of our samples. We

see that the horizontal distance etched under the gold bridge is much longer than the

depth (vertical distance) of the etch. According to this SEM image, the contacts are

suspended over a horizontal length of ≈ 800, nm although the sample was vertically

etched at ≈ 100 nm. We measured the suspended length, Lsus of several samples from

tilted SEM images and plot Lsus etched depth (see Fig. 4.20 (c)). The geometry of the

entire device is shown in detail in Fig. 4.20. One notices three distinct sections. Sec-

tion 1: the ballistic transistor channel which corresponds to the observed high energy

FP interferences. This section is surrounded by vacuum (vacuum/graphene/vacuum).

Section 2: suspended graphene covered by gold (gold/graphene/vacuum); we name

this section ”suspended contact”. Section 3: graphene sandwiched between gold and

SiO2 (gold/graphene/SiO2). These three sections have different carrier densities, gate

electric fields, disorder and phase coherence lengths.

During the electromigration and annealing processes, sections 1 and 2 become

very hot. It is reported that the temperature of graphene during annealing can reach

≥ 1000 K 3 [24]. This temperature is high enough to remove H2O and EBL resist,

3Graphene breakdown temperature in vacuum is around 2230 K [24].
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Figure 4.20: Suspended length of electromigrated graphene devices.(a) Cartoon
of a suspended graphene transistor showing the three sections: graphene/vacuum,
gold/graphene/vacuum and gold/graphene/SiO2. (b) Tilted SEM image (≈ 85 de-
gree) of a suspended break-junction. (c) Calibration curve showing the suspended
length vs the etched depth, which indicates how much sample is suspended horizon-
tally vs the etching depth. gold/graphene/SiO2.
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such that the graphene in sections 1 and 2 is very clean. Fig. 4.21 shows SEM images

of Devices A and C after electromigration and annealing. A close inspection reveals

that the texture of the gold film is very different between sections 3, 1 and 2. The

non-suspended section 3 did not heat up enough during annealing to ashen impurities

since it is thermally anchored to the substrate. Indeed Fig. 4.21 shows that the gold

film remains rough in section 3. Thus, it remains contaminated (H2O and EBL resist)

and disordered (SiO2 charge traps and phonons). Moreover, the gate electric field is

different in section 3 since the dielectric constant of SiO2 is almost four times larger

than that of vacuum. Looking at these three sections from the charge carrier’s elec-

tronic point of view, one notices the formation of two cavities. Cavity 1: suspended

graphene section 1 limited by the gold contacts, and Cavity 2: suspended graphene

limited by the SiO2 substrate.

The long FP cavity length extracted in section 4.4 and the suspended length

Figure 4.21: SEM images of devices A and C after electromigration and annealing.
(a) SEM images of Device C after electromigration and annealing processes. (b) SEM
images of Device A after electromigration and annealing processes.

(Fig. 4.20 (c)) are consistent. While section 1 is the transistor channel, since the

transport data agree with the ballistic model using L and W of section 1, there are

a few modes which coherently leak into section 2 (gold/graphene/vacuum), but are

reflected at the edge of the disordered section 3. These ”leaking” modes are the

ones with θ ≈ 0 and, as expected for Klein tunneling (see sections 1.2.1 and 4.1.2),

they cannot be stopped by n-p-n junctions. In order to observe FP interferences in

section 2 we must have ballistic transport in both sections 1 and 2. But section 3,

(gold/graphene/SiO2), is a diffusive section where carriers quickly lose their coher-

ence. Thus, we demonstrated that we have ballistic transistor channels (section 1)
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connected by ballistic graphene contacts (section 2). These ballistic wires could be

used to transport the coherent (quantum) information in graphene circuits [72, 75, 76].

4.6 Conclusion

In this chapter we reported electron transport in 23−105 nm long suspended graphene

ballistic n-p-n junctions. The shortest high-quality ballistic transistor we made was

23 nm long (≈ 10 nm p-n junction). We make use of gold-gated graphene/bare

graphene interference to create charge density gradients (p-n junctions) in graphene.

Since the spacing between gold and graphene is ≤ 1 nm [57], we could reduce the

size of the p-n junction down to the 10 nm scale. We observed ballistic transport in

agreement with the theory of Dirac fermions in ultra-short graphene devices [56]. We

observed FP interferences as evidence of coherent ballistic transport. We observed

coherent transport up to a length scale of ≈ 700 nm in suspended Devices F and M.

This suggests the formation of ballistic transport in graphene under the gold film.

Thus, graphene under the gold acts as ballistic electron contacts for the graphene

transistor channel. The combination of ballistic transistors (computing) and ballistic

wires (communication) form the building blocks for future graphene nanoelectronic

devices.

The devices we fabricated also provide a platform for future studies of the effects

of mechanical strain (gauge field) on the quantum phase of the carriers in 10 nm scale

p-n junctions.( i.e. strain-engineering of graphene electronics) [77].
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Chapter 5

Conclusion, and other

contributions

We have developed a feedback controlled electromigration technique capable of fabri-

cating≈ 10 nm scale clean suspended graphene quantum dots and ballistic transistors.

Our devices are, to our knowledge, the smallest suspended graphene devices made

to date. In such short devices, the quantum properties of the relativistic-like charge

carriers (Dirac fermions) in graphene offer a platform for fundamental studies and the

creation of nanoelectronic devices. We studied the effects of quantum lateral confine-

ment on electron transport, for widths ranging from 30 to 1500 nm. The 30 nm wide

devices show QD behaviour at T = 4.2 K. Measuring electron transport across these

devices, we observed a variable charging energy as a function of the charge occupa-

tion of the dot, as expected for the chaotic billiard transport of Dirac fermions. We

observed electron-vibron coupling and NEMS frequencies of ≈ 100 GHz. We demon-

strated ≈ 10 nm graphene p-n junctions and ballistic transistors which could be used

as the building blocks for graphene-based nanoelectronic circuits [78, 79]. Finally, we

showed coherent ballistic transport over distances of up to ≈ 700 nm in graphene

wires doped by a gold film, which could be used as buses for quantum information

[72, 75, 76]. A brief summary of data showing these effects is presented in Fig. 5.1.
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Figure 5.1: Summary of main results from suspended graphene QD and ballistic
devices. (a) and (b) are SEM images of a ≈ 26 nm long ballistic transistor and a
≈ 32 nm suspended graphene quantum dot respectively. (c) Contour plot dI/dV
as a function of VB and VG for the graphene quantum dot shown in (b). (d) G as a
function of VG for a ballistic transistor in agreement with the theory of Dirac fermions
[56]. (d) G as a function of Fermi energy, EF , at different temperatures for a 100 nm
long ballistic transistor showing FP oscillations phase coherent interference.
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5.1 Main results

In chapter 2 we explained the sample fabrication and experimental setup to create and

measure suspended nanometer-size gold on graphene break-junctions. We described

the wiring up of these nanometer scale devices to macroscopic electronics, and how

we cool them down to low temperatures.

In Chapter 3, we presented an electromigration method to etch nanogaps in these

suspended gold bridges, and expose an ≈ 10− 100 nm long graphene channels in the

center of the gold bridges [28, 2]. Such ≈ 10 nm scale transistors cannot be fabricated

using standard nanofabrication techniques. Using our electromigration technique we

can tailor the shape and size of the graphene channel to fabricate devices with differ-

ent channel length and widths. The narrower channels (≈ 30 nm) formed graphene

quantum dots while the wider ones (≈ 100 nm) acted as ballistic transistors (de-

scribed in chapter 4). Fig. 5.1(a)-(b) show examples of such devices. Fig. 5.1(b) is

a ≈ 24 × 44 nm suspended graphene QD which is, to our knowledge, the smallest

graphene QD made to date.

The electromigration tailored QDs that we fabricate, offer the prospect of distin-

guishing and isolating different sources of disorder in QDs: we can control substrate

disorder by suspension, edge disorder by making the devices wider, and bulk disorder

by intentionally introducing defects by electromigrating the graphene. This disorder

control should lead to the ability to make higher quality QD devices, by minimising

sources of disorder, and allow the study of effects of the different types of disorder on

charge transport in graphene [80, 81, 82].

We studied the charge transport across ≈ 30 nm graphene QDs as a function of

bias voltage (VB) and the charge occupation number (VG) [10]. As previously ob-

served for graphene QDs ≤ 100 nm, the charging energy, EC , of the QDs is variable

as a function of the charge occupation due to the chaotic billiard transport of Dirac

fermions bouncing off disordered graphene edges [35]. Fig. 5.1(c) is a contour plot

dI/dV − VB − VG for the 24 × 44 nm suspended graphene QD shown in Fig. 5.1(b)

and non-periodic Coulomb diamonds. Graphene QDs have applications in nanoelec-

tronics [76, 83, 84], spintronics [41, 85] and charge sensing [36].

We observed signatures of electron-vibron coupling in dI/dV − VB − VG data

in our suspended QDs. Due to a high Q-factor (after annealing/electromigration),

coupling between electrons and out-of-plane vibrons (bending mode) can gives rise
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to self-actuated vibrations [3]. We extracted vibrational frequencies of up to ≈ 100

GHz, in agreement with the frequencies expected from the geometry of the devices.

These frequencies largely exceed any reported frequencies for graphene NEMS [7, 4].

Suspended graphene NEMS offer a platform for studying the effects of strain on Dirac

electron transport and electron-vibron coupling. High-frequency suspended graphene

resonators are useful for ultra sensitive force/mass sensors and NEMS [4, 5, 7].

In Chapter 2 we fabricated 23− 100 nm long suspended graphene ballistic n-p-n

junctions (≈10 nm p-n junctions), Fig. 5.1(d). We made use of an ultra-clean (an-

nealed) gold film on top of graphene to n-doped the graphene. We build a p-n or n’-n

junctions across the gold-on-graphene-/bare-graphene interfaces. Since the spacing

between the gold film and graphene underneath it is ≤ 1 nm [57], we could reduce the

size of the p-n junctions down to the ≈ 10 nm scale. Fig. 5.1(a) shows an example

of such graphene n-p-n transistors. Graphene p-n junctions are the building blocks

of graphene-based high speed transistors [79, 86].

We demonstrated coherent ballistic transport in agreement with the theory of

Dirac fermions [56] in these 23 − 100 nm long suspended graphene transistors, as

shown in Fig. 5.1 (d). We see phase coherent interferences (Fabry-Pérot) in our de-

vices as evidence of coherent ballistic transport [10]. Fig. 5.1(e) is an example of

FP oscillations in a 100 nm long ballistic transistor. We measured phase coherent

lengths of up to 700 nm in our graphene devices. These phase coherent lengths are

much longer than the lengths extracted from SEM images of our devices (channel

of the transistor) which shows that some of the conductance modes are coherently

transmitted across the p-n junction and ”leak” into the contacts. This supports

the idea that we can achieve scattering-free (ballistic) transport in graphene buried

under a gold film, thus creating ballistic contacts for our ballistic transistors [10].

The devices that we fabricate may provide a platform for future studies of the ef-

fects of strain (gauge field) on the phase of the carriers in 10 nm scale transistors,

which offers the prospect of strain-engineering graphene electronics [77, 87]. Ballistic

graphene transistors and ballistic leads can be used as quantum bits and quantum

wires [60, 76, 88].
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5.2 Contributions to other research projects

I have made substantial contributions to other research projects which led to three

publications in peer-reviewed journals [2, 3, 23]. My contributions were focused on

developing the sample fabrication procedures and measurement methods, as well as

training fellow labmates. I also contributed to the construction of the instrumenta-

tion necessary for these experiments and assisted with the data analysis.

5.2.1 Few-hundred GHz carbon nanotube nanoelectromechan-

ical systems (NEMS)

In addition to graphene, we used our feedback controlled electromigration technique

to make clean suspended single-wall carbon nanotube (SWCNT) QDs ranging in

length from ≈ 3 nm up to a few 10s of nm [2].

Fig. 5.2 (a) shows a ≈ 22 nm long section of a SWCNT suspended between gold

Figure 5.2: Few-hundred GHz carbon nanotube nanoelectromechanical systems
(NEMS). (a) SEM image of ≈ 22 nm long SWCNT-QD. (b) Contour plot dI/dV −
VB−VG of a SWCNT-QD. The arrows point to the stretching vibron excitation modes
and the dashed lines indicate bending mode resonances.

contacts. We find that this device forms a clean and tuneable QD, and observe sig-

natures of both the stretching and bending vibrational modes. We used electron

transport to measure the energy spectrum of these devices. The arrows in Fig. 5.2
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(b) point to the stretching vibron exciations while the dashed lines indicate bending

mode resonances. We were able to measure the self-actuated bending mode using DC

transport, by making use of a positive feedback mechanism between tunneling elec-

trons and bending oscillations. In these NEMS, we measured fundamental bending

frequencies fbend ≈ 75− 280 GHz and extract quality factors Q ∼ 106. We find that

our NEMS’ bending frequencies can be tuned by a factor of two, with tension induced

by the electrostatic force from the gate electrodes [3].

5.2.2 Electronic thermal conductivity measurements in in-

trinsic graphene

We fabricated few hundreds of nm up to micron-scale clean suspended graphene

transistors. Fig. 5.3 (a) shows an SEM image of such a device. We extracted the elec-

tronic thermal conductivity in these devices using two-point DC electron transport

measurements in the nearly intrinsic regime, over a temperature range of 20 − 300

K. We used a Joule self-heating technique, in which the resistance of the samples is

used as both a heater and thermometer. Since our devices are suspended, we could

prevent heat leak to the substrate and achieve current annealing. We performed our

experiments at low bias voltages, where the electron and lattice temperatures are

decoupled. This allows us to detect the average temperature of electrons in graphene

and to extract the electronic thermal conductivity independently from the phononic

contribution, using the heat equation. We found Ke ranging from 0.5 to 11 W/m K

over the studied temperature range. Fig. 5.3 (b) shows Ke as a function of average

electron temperature for three different devices. The data (symbols) are consistent

with a model (solid lines) in which heat is carried by quasiparticles with the same

mean free path and velocity as graphene’s charge carriers [23]. The electronic ther-

mal conductivity of graphene and two-dimensional Dirac materials is of fundamental

interest and can play an important role in the performance of nanoscale devices.
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Figure 5.3: Electronic thermal conductivity measurements in intrinsic graphene. (a)
A tilted SEM image of a 400 nm long suspended graphene transistor. (b) Electronic
thermal conductivity Ke in the quasi-intrinsic regime. The solid lines are a theoretical
calculation and the symbols are the experimental data.
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