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TESTING FOR COMMON CONDITIONALLY
HETEROSKEDASTIC FACTORS

By PROSPER DOVONON AND ERIC RENAULT!

This paper proposes a test for common conditionally heteroskedastic (CH) features
in asset returns. Following Engle and Kozicki (1993), the common CH features prop-
erty is expressed in terms of testable overidentifying moment restrictions. However, as
we show, these moment conditions have a degenerate Jacobian matrix at the true pa-
rameter value and therefore the standard asymptotic results of Hansen (1982) do not
apply. We show in this context that Hansen’s (1982) J-test statistic is asymptotically
distributed as the minimum of the limit of a certain random process with a markedly
nonstandard distribution. If two assets are considered, this asymptotic distribution is a
fifty—fifty mixture of x%_, and x3,, where H is the number of moment conditions, as op-
posed to a x7,_,. With more than two assets, this distribution lies between the x7, , and

X% (p denotes the number of parameters). These results show that ignoring the lack of
first-order identification of the moment condition model leads to oversized tests with a
possibly increasing overrejection rate with the number of assets. A Monte Carlo study
illustrates these findings.

KEYWORDS: Common features, GARCH factors, nonstandard asymptotics, GMM,
GMM overidentification test, identification, first-order identification.

1. INTRODUCTION

ENGLE AND KOZICKI (1993) HAVE GIVEN MANY EXAMPLES of the interesting
question, “Are some features that are detected in several single economic time
series actually common to all of them?” Following their definition, “a feature
will be said to be common if a linear combination of the series fails to have
the feature even though each of the series individually has the feature.” They
proposed testing procedures to determine whether features are common. The
null hypothesis under test is the existence of common features. As nicely ex-
emplified by Engle and Kozicki (1993), a unified testing framework is provided
by the Hansen (1982) J-test for overidentification in the context of generalized
method of moments (GMM). Under the null, the J-test statistic is supposed to
have a limiting chi-squared distribution with degrees of freedom equal to the
number of overidentifying restrictions. After normalization, a common feature
to n individual time series is defined by a vector of (n — 1) unknown parame-
ters and the limiting distribution under the null will be y*(H — n + 1), where
H stands for the number of moment restrictions deduced from the common
features property. Engle and Kozicki (1993) successfully applied this testing
strategy to several common features of interest (regression common feature,
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cofeature rank, Granger causality, and cointegration). When they came to the
common conditionally heteroskedastic (CH) features, they acknowledged that
it was their first nonlinear example. Unfortunately, they did not realize that, as
already pointed out by Sargan (1983) in the context of instrumental variables
(IV) estimation, nonlinearities may give rise to nonstandard asymptotic behav-
ior of GMM estimators when an estimating equation, seen as function of the
unknown parameters, may have a zero derivative at the true value, although
this function is never flat. It turns out that, as shown in the next section, this is
precisely the case in the “test for common CH factors” that motivates the test
for common CH features.

While Sargan (1983) focused on nonstandard asymptotic distributions of
GMM estimators in the context of linear instrumental variables estimation
with some nonlinearities (and associated singularities) with respect to the pa-
rameters, we rather set the focus in this paper on the testing procedure for
common CH features. The reason why it is important is twofold.

First, detecting a factor structure is a key issue for multivariate modeling
of the volatility of financial asset returns. Without such a structure (or, alter-
natively, ad hoc assumptions about the correlations dynamics), there is an in-
flation of the number of parameters to estimate and nobody can provide re-
liable estimators of joint conditional heteroskedasticity of a vector of more
than a few (10 or even 5) asset returns. Many factor models of conditional
heteroskedasticity have been studied in the literature since the seminal paper
of Diebold and Nerlove (1989). Let us mention among others Engle, Ng, and
Rothschild (1990), Fiorentini, Sentana, and Shephard (2004), and Doz and Re-
nault (2006). In all these models, it is assumed that the factors have conditional
heteroskedasticity, but the idiosyncracies do not. The test for common CH fea-
tures is then a universal tool for detecting any of these factor structures.

Second, the singularity issue a la Sargan (1983) that we point out for the esti-
mation of common features parameters has perverse consequences for testing
for the factor structure. We show that the test computed with the standard crit-
ical value provided by a x*>(H — n + 1) will be noticeably oversized. In other
words, the mechanical application of Hansen’s (1982) J-testing procedure will
lead the empirical researcher to throw away too often hypothetical factor struc-
tures that are actually valid. The main purpose of this paper is to characterize
the degree of overrejection and give ways to compute correct critical values
or at least valid bounds for a conservative testing approach. More precisely,
we show that the right asymptotic distribution for the J-test statistic under the
null involves some y*(H — q) for ¢ < n — 1 and this is the reason why the use
of the critical value based on x?(H — n+ 1) leads to overrejection. By contrast,
the distribution y*(H) always provides a conservative upper bound.

The issue addressed in this paper, albeit seemingly related to the recent lit-
erature on weak identification, is not redundant with extant results. By contrast
with the common weak identification setting (Staiger and Stock (1997), Stock
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and Wright (2000)), we share with the setting of Andrews and Cheng (2012)
the fact that “in the present paper, the potential source of weak identification
is an explicit part of the model.” Irrespective of the choice of instruments and
regardless of any finite sample issue, the valid asymptotic distribution of the J-
test statistic under the null involves a mixture of chi-squares with more degrees
of freedom than the standard y>(H — n + 1). As a result, the rank deficiency
leads to an oversized test when the J-test setting is compared to standard crit-
ical values. This is in sharp contrast to the common intuition (see, e.g., Cragg
and Donald (1993, 1996)) that rank deficiency should lead to conservative tests,
since the restrictions under test would be less binding than they seem to be. In
our case, all the parameters are actually identified and, due to the rank de-
ficiency of the Jacobian matrix, the J-test statistic may not be as sensitive to
parameter variation as it is in standard settings; chi-squared distributions with
larger degrees of freedom show up as if some parameter were actually known.

The fact that the parameters of interest are always identified also implies
that our setting and the setting of Sargan (1983) as well do not naturally fit into
the general framework for identification put forward by Andrews and Cheng
(2012). It would take a quite convoluted re-parameterization of our model to
handle it with Andrews and Cheng’s (2012) toolbox of models for which some
parameters are unidentified in some parts of the parameter space. In the con-
text of maximum likelihood estimation (MLE), several authors have met a sit-
uation of local singularity similar to ours. Melino (1982), Lee and Chesher
(1986), and Rotnitzky, Cox, Bottai, and Robins (2000) have documented the
nonstandard rates of convergence of the MLE implied by the singularity of the
Fisher information matrix. Of course, the issue of the singularity of the Jaco-
bian matrix in the GMM is germane to the singularity of the Fisher information
matrix in the MLE context and, following Sargan (1983), we get nonstandard
rates of convergence of GMM estimators for quite similar reasons. We actually
provide an interpretation in terms of the random Fisher information matrix
closely related to the analysis proposed by Andrews and Mikusheva (2012) as
well as Qu (2011). However, our main focus is not the asymptotic distribution
of GMM estimators, but the impact of it for the distribution of the J-test statis-
tic for overidentification. This issue could not be addressed in the MLE context
since the first-order conditions of likelihood maximization are by definition just
identified estimating equations. Moreover, our asymptotic result is new since
it gives a well defined asymptotic distribution for a test statistic, while extant
results could only acknowledge that there is no such thing as a well defined rate
of convergence for estimators.

The paper is organized as follows. The issue of testing for CH factors and
the intrinsic singularity that comes with it is analyzed in Section 2. Section 3
provides the relevant asymptotic theory for the J-test statistic of the null of
common CH features. Our main focus of interest is the degree of overrejec-
tion implied by the use of standard critical values. Since the correct asymptotic
null distribution involves some x*(H — q) for ¢ < n — 1, very large samples (as
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are often available in finance) are not a solution to the problem pointed out in
this paper, quite the contrary indeed. This prediction is confirmed by the small
Monte Carlo study provided in Section 4. This Monte Carlo study also indi-
cates that the asymptotic results are helpful in evaluating likely finite-sample
performance and in providing more correct critical values. It is in particular
worth realizing that the size of the test is related to the tail behavior of the
distribution of the test statistic under the null. In this respect, even a relatively
small mistake on the number of degrees of freedom of the chi-squared at play
may make a big difference in terms of the probability of rejection. Section 5
concludes and sketches other possible contexts of application of the general
testing methodology put forward in this paper.

Appendix A in the Supplemental Material (Dovonon and Renault (2013))
discusses alternative regression-based approaches for testing for common CH
factors. It shows that such alternative approaches do not protect against singu-
larities discussed in this paper and regardless of the approach, tests based on
standard chi-squared asymptotic distributions are not valid anymore. In addi-
tion, we make explicit in Appendix A an interpretation in terms of the Fisher
information matrix for the kind of singularity as well as associated nonstandard
asymptotic inference that are the focus of interest in this paper. This analysis,
and in particular a comparison with Andrews and Mikusheva (2012), allows us
to make even more explicit the difference between our setting and the kind
of singularity implied by weak identification in the context of maximum like-
lihood, as discussed by Andrews and Mikusheva (2012) and also Qu (2011).
All proofs appear in Appendix B of the Supplemental Material (Dovonon and
Renault (2013)).

2. TESTING FOR COMMON CONDITIONALLY HETEROSKEDASTIC FEATURES

A n-dimensional stochastic process (Y;),s is said to have (n — K) time-
invariant (conditionally heteroskedastic) CH common features, K < n, if it has
a conditional covariance matrix given by

(1) Var(Y,1|8:) = AD,A" 4+ 0,

where

(i) D, is a diagonal matrix of size K with diagonal coefficients o7, k =
1,...,K,

(ii) A isa n x K matrix and (2 is an n x n symmetric positive semidefinite
matrix,

(iii) the stochastic processes (Y;)=o and (07,)i<k<x =0 are adapted with re-
spect to the increasing filtration (§,) -

In this context, CH common features are by definition any vector 6 # 0 in R”
such that Var(0'Y,,|§,) is constant. The decomposition (1) clearly warrants
the existence of at least (n — K) directions of common features since the vec-
tors 6 such that 8'A = 0 fulfill the required condition. Moreover, we will see
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that the dimension (n — K) can be defined without ambiguity thanks to the
following maintained assumption.

ASSUMPTION 1: (i) We have Rank(A) = K. (ii) The term Var(Diag(D,)) is
nonsingular, where Diag(D,) is the K-dimensional vector with coefficients Dy,
(=0t), k=1,...,K.

REMARK 2.1: A common intuition about the variance decomposition (1) is
a CH factor model with K factors and constant factor loadings:

Y=+ BF 4 U,

Var(F 1|8 = Vi, E((F,,u,,)'I§) =0, Var(u,118,) = 2, and Cov(F,,
U118 =0.

As recently developed by Hecq, Laurent, and Palm (2012), this CH factor
model can be tightly related to CH common features by a simple diagonaliza-
tion of the conditional variance matrix of the factors: V, = P,D,P;, with D, a
diagonal matrix and P, an orthogonal matrix. Then

) Var(Y,.,|§,) = BP.D,P'B + Q.

One may then see (2) as a convenient generalization of our model (1) by con-
sidering time varying factor loadings: A, = BP,. However, this more general
framework (where V; and thus P, are not diagonal) does not fit into our model
of CH common features for the following reason. Our focus of interest is the
set of portfolio returns 6'Y,,, 8 # 0 with constant conditional variance. How-
ever, in the framework (2), since

Var(6'Y,,113,) = 6 BP,.D,P,B'6 + 66,

we see that it amounts to eliciting 6 such that the vector D;”*P!B'6 has a con-
stant norm. We want to characterize the CH common feature as a simple al-
gebraic property of the vector 0 of portfolio weights. It would clearly take, in
general, some convoluted assumptions about the joint dynamics of the coef-
ficients of the matrix D;”*P, to deduce the required property of 6 from the
condition that the norm of D,”*P,B'6 is constant. The only natural way to char-
acterize easily the time invariance of the above norm as an algebraic property
of the vector # of common features is to assume that D;/*P, is diagonal, that
is, P, (and in turn V}) is diagonal.* In other words, we need to preclude con-
ditional correlations between the latent CH factors. Then the change of basis

2All the results of this paper could be generalized to the case where no linear combination of
Vech(P,D,P)) is constant. However, beyond the diagonal case with the maintained Assumption 1,
such a restriction seems hard to interpret.
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P, is immaterial and from now on, we can interpret the CH features as possi-
bly (but not necessarily) underpinned by a CH factor model with uncorrelated
factors and constant factor loadings:

(3) Yiii=m+ AF:+1 + Ut

Var(F418:) = D,, E((Ft/_H’ u;+1)/|gt) =0, Var(u,4118,) = {2, and Cov(F,
u41|8:) =0.
Then CH common features are vectors 6 such that 'Y, ., = 0'u, ;.

REMARK 2.2: In the context of factor model (3), restricting A to be full col-
umn rank basically means that one cannot reduce the dimension K of the vec-
tor F, of factors. However, since the testable implications of our model are
encapsulated in the decomposition of conditional variance (1), irrespective of
the latent factors F,, we need to maintain instead that the conditional vari-
ances o,k =1,2,...,K, cannot be linearly combined to erase conditional
heteroskedasticity; hence Assumption 1. Irrespective of its specific interpreta-
tion, our general framework (1) along with Assumption 1 allows us to charac-
terize the CH common features as the null space of A’

LEMMA 2.1: Under Assumption 1, the CH common features are the vectors 0,
solution in R", 6 £ 0, of

A6=0.

The key idea of this paper is to test for the existence of CH common fea-
tures through the unpredictability of squared returns (6'Y,,;)?, that is, the null
hypothesis

4) H,:there exists 6 € R", 6 # 0 such that E((6' Yt+1)2|&) is constant.
For the sake of expositional simplicity, we make sure that for all 6 € R”,
E((G/Y,H)zl&) =constant < A'9=0
by maintaining the following assumption.
ASSUMPTION 2: We have E(Y,.1|§,) =0.

Under Assumption 2, the existence of CH common features is obviously
equivalent to the null hypothesis (4). For all practical purpose, this approach
will work insofar as we are ready to assume that the vector Y,,; of returns is
unpredictable, that is, £(Y,,|5,) is constant. A preliminary demeaning would
then allow us to be back to the framework of Assumption 2.
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REMARK 2.3: It is worth noting that the point made by this paper is even
more general. According to a common view of risk compensation (see Doz
and Renault (2006) for more discussion), if there is some return predictability,
it should go through risk premium and variance predictability. Then, with a
standard linear risk compensation in the spirit of GARCH-in-mean modeling,
the factor model (1) implies

(5) Yin=a+ A&+ AF 4ty

Then we obviously have
(6) ANo=0 = E((O/YM)2|&) = constant.

The main goal of this paper is to show that a test of (4) performed as an overi-
dentification test with standard critical values would be oversized. Implication
(6) shows that the same test used to test for the existence of common fea-
tures would be a fortiori oversized in the context of return predictability con-
formable to (5).

As usual, the null hypothesis Hj is tested through a test of its consequence
H,(z) for a given choice of an H-dimensional vector z, of instruments,

Hy(z) :there exists 6 e R", 0 # 0,
such that E(zt[(ﬁ’YH])2 —c(0)]) =0,

where ¢(0) = E((0'Y,,1)%).

The consequence H,(z) is implied by H, insofar as the variables z, are valid
instruments, that is, are §,-measurable. Besides validity, the instruments z,
must identify the CH common features 6 if one aims to devise a test of Hy(z)
based on Hansen’s (1982) theory of the J-test for overidentification.

By the law of iterated expectations, the CH common features model (1) gives

E(z2/((0Yi1)" = ¢(0))) = E((z, — Ez)0/(AD, A’ + 0)0)
and then, by a simple matrix manipulation,
(7) E(z,((O/Y,H)2 —¢(0))) = Cov(z,, tr(¢'AD,A'8))
= Cov(z,, Diag'(A'606'A)Diag(D,))
= Cov(z,, Diag(D,)) Diag(A'86'A).

The convenient identification assumption about the vector z, of instruments is
then given by the following assumption.
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ASSUMPTION 3: (i) The vector z, is §,-measurable and Var(z,) nonsingular;
(ii) Rank[Cov(z,, Diag(D,))] =K.

Assumption 3(i) is standard. Assumption 3(ii) is nonrestrictive by virtue
of Assumption 1(ii), insofar as we choose a sufficiently rich set of H instru-
ments, H > K. Sufficiently rich means here that, for any linear combination of
K volatility factors o7, k =1, ..., K, there exists at least one instrument z,,,
h=1,...,H,thatis correlated with this combination.

From (7), we see that under Assumptions 1, 2, and 3, Hy(z) amounts to
Diag(A’66'A) = 0 and then implies that | A’0||> = tr(A'60'A) = 0, that is, f is a
common feature. Conversely, any common feature clearly fulfills the condition
of Hy(z). We have thus proved the following lemma.

LEMMA 2.2: Under Assumptions 1, 2, and 3, the common features are the so-
lutions 0 in R", 6 # 0, of the moment restrictions

p(0) = E(z/((0'Y,1)" — c(8))) =0,

where c(0) = E((0'Y,41)?).

As in Engle and Kozicki (1993), CH common features are thus identified by
moment restrictions Hy(z). Then Hy(z) will be considered as the null hypoth-
esis under test so as to test for common features.

Following Hansen (1982) as well as Engle and Kozicki (1993), we aim in this
paper to test the CH common features model through a J-test of overidenti-
fication applied to the moment conditions Hy(z). In line with Hansen (1982),
we maintain the following assumption.

ASSUMPTION 4: The process (z,,Y;) is stationary and ergodic such that
E(lz/1*) < oo and E(||Y.||*) < co. Moreover, both z, and vec(Y,Y)) fulfill a
central limit theorem.

Engle and Kozicki (1993) focused on the particular case K =n — 1 so as
to be sure that the moment restrictions of Hy(z) (under the null hypothe-
sis that they are valid) define a unique true unknown value 6° of the com-
mon feature 6, up to a normalization condition (such as Y, 6; = 1). Irre-
spective of a choice of such an exclusion/normalization condition to identify
a true unknown value 6°, we show that the standard GMM inference theory
will not work for moment restrictions H,(z). This issue comes from the nul-
lity of the moment Jacobian at the true value, that is, at any common feature.
To see this, note that by virtue of the square integrability conditions in As-
sumption 4, we can change the order of expectation and differentiation, and
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write

J
reo = [9—9/15(,2,((9’1@“)2 —c(0)))

= E[2{2(0'Yo) Y/, —2E[(0Y,11) Y}, ]}]

+1

=2Cov(z, [Yt+1Yt/+1] 0)‘

Then by the law of iterated expectations, I'(0) = 2E((z, — E(z,))0'(AD, A’ +
£2)) =0when 6’ A =0, that is, when 6 is a common cofeature.

PROPOSITION 2.1: Under Assumptions 2 and 4, for any common feature 6,
& , 2
I'(0) = —ZE(z((6Y1) = c(0))) =0.

For the application of the GMM asymptotic theory, we then face a singular-
ity issue that is, as announced in the Introduction, an intrinsic property of the
common CH factor model. Irrespective of the quality of the instruments, the
sample size, and/or the identification restrictions about the common features
6, any choice of a true unknown value 6° will lead to a zero Jacobian matrix
at 0°. The rank condition fails by definition. Our main focus of interest will
then be the impact of this rank failure on the behavior of the J-test statistic for
H,(z), both asymptotically and in finite sample. However, it is worth stressing
that, as discussed in Appendix A, a test for the CH common features model
based on a more standard regression-based approach of testing for CH effects
would not allow us to circumvent the problem of rank failure.

For the purpose of any asymptotic theory of estimators and testing proce-
dures, local identification must then be provided by higher order derivatives.
Since our moment conditions of interest Hy(z) are second-order polynomials
in the parameter 6, the only nonzero higher order derivatives are of order 2.
Let ® be the parameter space and let us assume that exclusion restrictions
characterize a set ®, C ® C R” of parameters that contains at most only one
unknown common feature 6°, up to a normalization condition .

ASSUMPTION 5: We have 6 € O, C R" such that O@* = O, NN is a compact set
and

(€@ and YA=0) < (0=10").

REMARK 2.4: A typical normalization condition would be the unit cost con-
dition to interpret 6'Y,,; as a return per dollar invested:

Nz{(?eR”,Xn:Hi:l}.
i=1
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This normalization can be maintained without loss of generality except if one
wants to consider arbitrage portfolios for which >_7 , 6; = 0. Then an alter-
native normalization condition would be N’ = {6 € R", 8§, = 1}. Note that the
latter choice implies that we know one particular asset, for example, Asset 1,
entering the common feature. To avoid this assumption, an alternative would
be N ={6€R",> ., 67 =1}. This latter alternative, albeit feasible, will not
be explicitly considered to keep the simplicity of linear normalization. In this
context, Assumption 5 will be fulfilled with ©, = 0, that is, @* = ® N\ in the
setting of Engle and Kozicki (1993), that is, K = n — 1. In this case, ® may
be an arbitrarily large compact subset of R”". If more than one dimension of
common features exists (K < n — 1), a practitioner may typically write some
exclusion restrictions (like zero weight for some particular assets) to define a
proper subset 0, of ® such that Assumption 5 is fulfilled. Note that in this lat-
ter case, we are formally back to the particular case K = n — 1 by excluding the
assets that do not enter into the definition of a given common feature. More
precisely, if the time varying conditional heteroskedasticity of n assets can be
captured with K factors, K =n—1—gq, g > 0, a natural parsimonious approach
leads us to look for g + 1 linearly independent common features, each of them
involving only n — g assets. Then a normalization condition A is sufficient for
identification.

Under Assumptions 1-5, global identification amounts to second-order
identification.

LEMMA 2.3: Let p;(0) = E(z;,((0'Y,11)* —c(0))) andlet h=1, ..., H be the
hth component of p(0). Under Assumptions 1-5, we have

2
V6 € O, ((9—9%’%(0“)(9—9%)1hH:o & (0=90").

Note that Lemma 2.3 is a direct consequence of Lemmas 2.1 and 2.2 and
Proposition 2.1 thanks to the polynomial identity

d,
p(0) = p(0) + 22 (o) (0 — 0"

v3((0-0y @) o- )

Of course, since p(#) is a polynomial of degree 2 in 0, the Hessian matrix
does not depend on 6°. However, we maintain the general notation since we
refer to a concept of second-order identification that may be useful in more
general settings (see Dovonon and Renault (2009)). Moreover, the interest
of revisiting global identification in terms of second-order identification is to
point out the rate of convergence we can expect for GMM estimators. The

1<h<H
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nullity of the Jacobian matrix implies that the square-root-7 rate of conver-
gence is not warranted. However, since second-order identification is ensured
by Lemma 2.3, we expect the GMM estimators not to converge at a slower rate
than T'/*. We will actually show in Section 3 that T'/* is only a lower bound,
while faster rates may sometimes occur.

3. ASYMPTOTIC THEORY

The key idea of Engle and Kozicki (1993) was to apply the theory of J-test
for overidentification to the moment conditions defined by Hy(z):

E($(0)=0; ¢,(0)=2z((0Y1)’ —c(0); 6e0O.

As already announced, the main point of this paper is that the standard asymp-
totic theory as derived by Hansen (1982) will not work due to failure of the rank
condition (see Proposition 2.1):

E(M(e) ):0_
0=60

e
An additional issue worth addressing, albeit much simpler, is the need to re-
place, as Engle and Kozicki (1993) do, the above unknown function ¢(8) with
a feasible sample counterpart. We first sketch the relevant asymptotic theory
for these two issues before focusing on the overidentification test of interest.

3.1. Feasible Moment Conditions
Throughout, we will rather work with the feasible moment conditions
®)  E(¢r(9)=0, ¢,r(0)=(z—2)((0Y) —&r(0), 0e6,
where zp = 131z and ér(0) = 2 3 (0'Y,.0)%
As a result, the moment conditions now have a double array structure and

the GMM asymptotic distributional theory will then follow from a central limit
theorem applied to the sample mean of this double array:

_ 1T
b7r(0) = T ; b 7(0).

Then, for any given 6, we can relate the sample mean ¢ (6) of feasible mo-
ments to two sample means without any double array,

9) VT ¢1(0) = VTh7(0) +VTir(6) + 0p(1),
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where 07(0) = £ Y"1 v,(0), v,(0) = p.(c(8) — (0'Y,11)?), and . = E(z,). (See
the explicit derivation of (9) as part of the proof of Corollary 3.1.)

Note in addition that it follows from Lemma 2.2 and Proposition 2.1 that, un-
der the null Hy, both ((6°), v,(6°)) and 2:(6)|4_y are martingale difference
sequences. Then the central limit theorem of Billingsley (1961) for station-
ary ergodic martingale difference sequences implies that /7 (/. (6°), v,.(6°))’
and /T4 "7’9, (0)|g—p, are asymptotically normal. Note that VT2 d;Z (0)|gego = s -
VT( (79/(9”9 o —20"L% Zt . Y, Y]) is also asymptotically normal.

Overall, we will use the facts that, first, ~/T (,(6°), ¥,(8°))’ is asymptoti-
cally normal by the central limit theorem for martingale difference sequences

and, second, ~/T (ajg (0)]g=p0, ZL(0)]g—0) = Op(1) to draw the following con-
clusion.

COROLLARY 3.1: If Assumptions 1-5 hold, then /T ¢1(6") is asymptotically
normal with asymptotic variance 3(6°) given by

E((zi = p)(z = ) (0" Yin) = (6")))  and

I B
VT 5 (® 9:90_0,,(1).

REMARK 3.1: Note that if one interprets the null hypothesis H, as stem-
ming from the CH factor model (3) and one assumes in addition that the id-
iosyncratic terms u, are independent from instruments z,, then, by the law of
iterative expectations, one can use an even simpler formula for the asymptotic
variance matrix under H,: 3(6°) = Var((0"Y,,,)?) Var(z,).

We assume throughout that the asymptotic variance 3(6°) is nonsingular.
It is worth noting that, in contrast to the weak identification literature (Stock
and Wright (2000)), we do not need a functional central limit theorem for the

empirical process (vT($1(0) — Ed7(0)))geo. Moreover, we assume through-
out that the stationary and ergodic process (z;, Y,) fulfills the integrability con-
ditions needed for all the laws of large numbers of interest. Thanks to the poly-
nomial form of the moment restrictions, they will ensure the relevant uniform
laws of large numbers for ¢+(6) and its derivatives. In particular, any GMM
estimator will be consistent under Assumptions 1, 3, and 5 if we define a GMM
estimator as

br =argmin /. (0)Wr b1 (0),

where Wr is a sequence of positive definite random matrices such that
plim(W;) = W is positive definite.

For the purpose of identification, we consider in the rest of the paper
K =n — 1 along with the normalization N'= {6 € R*: )" 6; = 1}. In light
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of Remark 2.4, setting K to n — 1 is not overly restrictive.> We also mention
that our results do not depend on our particular choice of linear normalization
as long as the identification of 6° via Assumption 5 is guaranteed.

Writing 6, =1 — Z;:ll 0;, the effective parameter set is given by the projec-
tion of ®* on its n — 1 first components. For economy of notation, we keep
O to denote this parameter set and 0 = (0,)1<;<,.1 € O C R”_‘l denotes the pa-
rameter of interest. We shall consider the functions ¢,(0), ¢r(6), and p(0) as
defined on ® c R""!. For the sake of notational simplicity, we will often de-
note by p (=n — 1) the dimension of the unknown vector 6 of parameters of
interest. We will maintain throughout the assumption that the true unknown
value is an interior point.

ASSUMPTION 6: The vector 6° belongs to the interior of @ C R? = R"!

3.2. Rates of Convergence

Throughout the paper, inference about the unknown vector 6 of common
features will be based on the aforementioned feasible moment conditions:

E(¢r(0))=0, 6O CR’.

Then, along the lines of Chamberlain (1986), one could easily deduce from
Proposition 2.1 that the partial information matrix for 6 is zero. Therefore
(see Chamberlain’s Theorem 2), it must be impossible to build a regular +/7 -
consistent estimator for 6. In our GMM context, the intuition of this result
is quite clear. For any given positive definite matrix W of size H, one gets a
consistent GMM estimator 0; as the solution of

(10) by =argmin ¢4 (O)Wr b1 (),

where W; is a sequence of positive definite random matrices such that
plim(W;) = W. Then, due to Proposition 2.1, in the Taylor expansion of the
first-order conditions of the minimization problem (10), the term of degree 1
(involving the Jacobian matrix of the moment conditions) will be negligible in
front of the quadratic term. Thus, the latter term will determine the asymptotic
order of magnitude of 6 — 6. Since the quadratic term will be of order T2,
we can only extract an order T2 for || — 6°|]>. Hence we get the following
result.

31t is worth mentioning that all of our results remain valid for K < n — 1 with a suitable defini-
tion of @,. In this instance, the degrees of freedom derived in Theorem 3.2 need to be carefully
adapted.
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PROPOSITION 3.1: Under Assumptions 1-5, if 67 is the GMM estimator as
defined by Equation (10), then

[6r — 6" = 0p(T71).

Proposition 3.1 ensures a convergence rate for the GMM estimator 67 at
least as fast as T'/*, but possibly less than the standard T'/2. Proposition 3.2
below completes this statement as follows. On the one hand, it proves directly
that, as expected from the Chamberlain’s impossibility result, 7/4(6; — 6°)
does not converge to zero in probability and thus the slow rate 74 may prevail.
On the other hand, it also proves that T'/“(éT — 0°) may converge to zero with
a positive probability. In other words, depending on which part of the sample
space the infinite “observed” sample lies in, the rate of convergence may be
either T'* or faster, possibly 7'/2.

The relevant partition of the sample space will be defined by the asymptotic
behavior of the sequence Z;(60°) of symmetric random matrices of size p, with
coefficients

& p - .
Z1(0°) = W%(G“)Wﬁ(br(eo), ij=1,...,p.

By Assumption 4, the sequence Z;(6°) converges in distribution toward a
random matrix Z(X) with Gaussian coefficients
(92p/
36,90,

Zi(X)= (" yWX; X~N(0,3(6")).

We show in Appendix A of Dovonon and Renault (2013) that the random
matrix Z(X) can be interpreted as a random Fisher information matrix com-
puted from the dominating part of the relevant Hessian matrix. As a matter of
fact, Proposition 3.2 below shows that it is when the matrix Z(X) is positive
semidefinite (a random event that we denote by (Z(X) > 0)) that our statis-
tical information about 6 is the “richest” so that a rate of convergence faster
than T/* is warranted for any GMM estimator associated to the weighting ma-
trix W. By contrast, when Z(X) is not positive semidefinite (a random event
that we denote by (Z(X) > 0)), our statistical information about 6 is really im-
paired by the lack of first-order identification, so that we cannot do better than
the slow rate of convergence 7"/*. The precise result is as follows.

PROPOSITION 3.2: If Assumptions 1-6 hold with K = n — 1, then the sequence

(TY4(67 — 6°Y, Vec (Z1(6°)))’ has at least one subsequence that converges in dis-
tribution, and for any such subsequence with limit distribution (V', Vec (Z(X)))/,
we have 0 < Prob(Z(X) > 0) < 1 and

Prob(V =0|Z(X)>=0)=1 and Prob(V =0|(Z(X) > 0))=0.
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Proposition 3.2 establishes that we have positive probability to observe
each of the two possible patterns of convergence: (i) with positive probabil-
ity 77 < 1/2, the rate of convergence of 7 is faster than 7"* and T*(6; — 6°)
converges to 0 in probability; (ii) with probability 1 — 7 > 1/2, the rate of con-
vergence of Or is T'* but never faster and TV4(f; — 6°) is asymptotically a
nondegenerate random variable with a zero-probability mass at the value 0. At
least some linear combinations of 67 cannot converge faster than the slowest
possible rate T4,

In the particular case of interest where p =1 (two assets with one common
feature), it is obvious that 7 = 1/2: for the real-valued and zero mean Gaus-

sian variable Z(X) = %(GU)WX , positive and negative values are equally
likely. More generally, the heterogeneity of rates of convergence over the sam-
ple space is characterized by conditions that make the matrix Z(X) positive
semidefinite or not, that is, by sign restrictions on some multilinear functions
of the Gaussian vector with zero mean X. We end up with a mixture of asymp-
totic distributions (with different rates) that are dependent on the location of
the (asymptotically) observed sample, that is, a setting germane to the frame-
work of pretest estimators.

This classification of rates of convergence extends the one described by
Sargan (1983) in the context of linear instrumental variables (with nonlineari-
ties with respect to parameters). Similar results have been derived by Rotnitzky
et al. (2000) for maximum likelihood estimation with singularities in the infor-
mation matrix. However, our main focus of interest here, specific to GMM, is
the nonstandard asymptotic distribution of the J-test statistic for overidentifi-
cation induced by the nonstandard asymptotic behavior of the GMM estima-
tor.

Let us first consider a GMM estimator 9T associated to an arbitrary, albeit
positive definite, asymptotic weighting matrix W. The value function of the
minimization problem (10) is then

I = T‘Z)/T(éT)WT(Z)T(éT)-

The key intuition is that, due to zero Jacobian and nonstandard rates of con-
vergence derived in Propositions 3.1 and 3.2, a Taylor expansion of J}/ around
6° will no longer depend primarily on first-order terms (terms that are linear
with respect to (ér — 6")), but rather on second-order terms. More precisely,
if 97 = TY*(; — 6°) and G is a (H, p?) matrix gathering the second deriva-
tives of the moment conditions with respect to the p components of 6 (see
Appendix B of Dovonon and Renault (2013)),

2 2 2 4
G= <Vec< o (00)),Vec( il (60)),...,Vec( o pr (00))> :
7090 9000 9000
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we have
TV =T (6°)Wr(6°) + T2 (6°)W G Vec(dr1);)
+ %Vec/(f)Tf)/T)G’WG Vec(0r07) 4+ op(1).
It is useful to introduce the R?-indexed random process
TV (0) = TP (6° + T~V 0)Wrdr(6° + T~ 4v),

where v € R” is implicitly defined as v = T"*(6 — 6°). By definition, J)} =
TV (bp) = min,cy, J (v), where Hy = {v € RP:v = TV4(0 — 6°), 6 € O). Let
J" (v) be the RP-indexed random process defined by

J"(v) = X'WX + X'WG Vec(vv)
+ %Vec’(vv/) G'WGVec(w'), veR?,

where X ~ N (0, 3(6%)). Note that X'W G Vec(vv') = v'Z(X)v so that J" (v)
is also given by

1
(11) J")=XWX +VZ(X)v+ 1 Vec' (vv')G'W G Vec(vv'), veR”.

By construction, for each v € R?, J "(v) converges in distribution toward
J" (v). Lemma B.6 of Dovonon and Renault (2013, Appendix B) shows that
this convergence in distribution actually occurs uniformly on any compact sub-
set of R”. Upon the tightness of their respective minimizers, the minimum of
I (v) converges in distribution toward the minimum of J" (v). This is formally
stated in the following theorem.

THEOREM 3.1: If Assumptions 1-5 hold, K = n — 1, and 6° is an interior
point of O, then J} = min,ey, J" (v) converges in distribution toward J" =
minUeRp JW('U).

Theorem 3.1 gives the asymptotic distribution of J}'" as the minimum of the
limiting process J" (v). This distribution is rather unusual since J" (v) is an
even multivariate polynomial function of degree 4. In general, the minimum
value of J" (v) does not have a closed form expression. In usual cases, polyno-
mials of degree 2 are often derived as the limiting process that yields the usual
chi-squared distribution. (See, e.g., Koul (2002) for the treatment of minimum
distance estimators derived from locally asymptotically normal quadratic dis-
persions that include the locally asymptotically normal models as a particular
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case as well as the usual GMM framework when the local identification condi-
tion holds.) This peculiarity of J” (v) makes the determination of critical values
for asymptotic inferences involving J) rather difficult.

One possible way may consist of simulating a large number of realizations of
X and getting an empirical distribution of the minimum value of J" (v). How-
ever, a brute force simulation approach is not trivial since it would involve plug-
ging in first step estimators of nuisance parameters such as 3(6°), W, and G.
Dovonon and Gongalves (2013) have recently developed a bootstrap-based al-
ternative technique.

For the purpose of a non-simulation-based asymptotic inference strategy,
the next subsection shows that the standard choice of W = 3~1(6°) allows us to
get an asymptotic distribution for J} that is still tightly related to chi-squared,
albeit mixing several distributions, not only xy*(H — p) but also x*(H) (and
possibly some intermediate degrees). Note that our focus on the case W =
371(6°) is motivated by the search for closed form formulas for the distribution
of J and not by efficiency considerations. Since the rates of convergence of
any GMM estimator are heterogeneous depending on the occurrence of the
event (Z(X) > 0) (the occurrence of which itself depends on the choice of
W), there is no such thing as an efficient GMM estimator.

3.3. Overidentification Test

The GMM overidentification test statistic based on the moment condition
E(¢,r(6)) =0is given by

Jr =T (0r)Wrdr(0r),

where J; is the minimum value of the GMM objective function using the so-
called optimal weighting matrix, which is defined as a consistent estimate of the
inverse of the moment conditions’ long run variance, that is, W~! = 3(6°) =
limy_, o Var(~/T ¢7(6°)). From Corollary 3.1, one may consider

T-1

1 ~ i
12 Wi'=2 > (2 =20z = 20 (0, Vi) = & (),
t=1

where 6; denotes any consistent estimator of 6°, for instance, a GMM esti-
mator obtained with identity matrix W7. Note that as far as controlling for the
size of the test is concerned, we actually only need to estimate consistently the
variance matrix 3(6°) under the null. Then a much simpler estimator is avail-
able in the context of Remark 3.1 by replacing population variances by sample
counterparts.

Note that J; stands for J}' above, while we erase, for simplicity, the upper
index W for all quantities J when W is the limit of the above optimal choice
of Wr. Recall that this specific choice of weighting matrix no longer deserves
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to be called optimal. However, it will allow us a direct comparison with two
chi-squared distributions, namely x*(H) and x*(H — p). First, we have, by
definition,

Jr <Jr(0) = TE,(6°) Wrdr(6°) > J(0) ~ x*(H).

However, due to the nullity of the Jacobian matrix, the common asymptotic
theory that states that J; behaves in large samples as a chi-squared random
variable with H — p degrees of freedom (Hansen (1982)) is no longer valid.
From the general result (3.1), we know that the limiting distribution of Jr is
the distribution of

J = min{X/WX + X'W G Vec(vv') + ! Vec' (vv')G'W G Vec(vv') }

veRP 4

Obviously

(13) J>L= minz{X’WX—i—X/WGLH— %u’G’WGu}.
ueRP

We will actually see below that J > L with a positive probability, while L will
always follow a distribution y*(H — p). This is the key intuition of the rea-
son why the standard J-test for identification, which is based on the statistic
Jr converging to J but using critical values computed from y*(H — p), will be
asymptotically oversized. To be more precise, it is first useful to get the follow-
ing lemma.

LEMMA 3.1: With L defined in (13) (and W = 371(6")), we have the decom-
position

where L is stochastically independent of (S, Z(X)), and L ~ x*(H — p), S ~
X2 (p),and J(0) ~ x*(H), where: H = dim(¢7(0)) and p = dim(6).

Lemma 3.1 is a key input to prove our main result as given by Theorem 3.2
below.

THEOREM 3.2: Under the same conditions as Theorem 3.1 with W = 371(8°),
the overidentification test statistic Jr is asymptotically distributed as J, which is
such that

L<J<J0) with
(i) Z(X)=0=J=J(0) and (ii) Yc > 0, Prob(L > ¢) < Prob(J > ¢).
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REMARK 3.2: The proof of Theorem 3.2 actually shows that Vc > O,
Prob(L > ¢, Z(X) > 0) < Prob(J > ¢, Z(X) > 0). This obviously implies the
inequality given in Theorem 3.2(ii) above, since by virtue of the always valid
inequality L < J, we have, on any measurable part B of the sample space,
Prob((L > ¢) N B) < Prob((J > ¢) N B). However, it is worth realizing that
the part of the sample space where Z(X) > 0 is actually responsible for the
strict inequality and, as a consequence (see Remark 3.3 below), for overre-
jection of the J-test. When Z(X) > 0, all the components of § are estimated
at a rate faster than 7'4. Then since the Jacobian matrix is nil at the true
value and only higher order terms matter in Taylor expansions, it is as if the
parameters were actually known. This is the reason why the asymptotic distri-
bution of the J-test statistic coincides in this case with J(0), following x*(H).
When the event (Z(X) > 0) does not occur, depending on the part of the
sample space, only a number p; < p of components of 6 are estimated at a
rate faster than 7'/4. Then we may expect in such cases that the J-test statis-
tic asymptotically behaves as a y*(H — q),q = p — p:. In other words, the
eventual asymptotic distribution under the null of Jr should be a mixture of
distributions x*(H — ¢),q=0,1, ..., p. Then it is not surprising that critical
values computed from y?(H — p) lead to overrejection as formally proved in
Remark 3.3 below.

REMARK 3.3: By application of the Portmanteau lemma (see, e.g., van der
Vaart (1998, Lemma 2.2.(v), p. 6)), the convergence in distribution of Jr toward
J implies that

liminfProb(J; > x7_,(H — p)) > Prob(J > x;_,(H — p))

T—o00

> Prob(L > x:_(H— p)) =a.
Hence, the standard J-test will be oversized, regardless of the nominal level.

The particular case p =n — 1 =1 allows us to prove results that are even
more explicit for two reasons. First, there is no intermediate distribution
X*(H—-q),q=0,1,..., p,to consider between y*(H) and y*(H —1). Second,
Z(X) is now a univariate Gaussian variable, and thanks to the symmetry of the
normal distribution with zero mean, conditioning by the event (Z(X) > 0) has
no impact on the distributions of interest and the conditioning event always
has a probability 1/2. In other words, we can show the following corollary.

COROLLARY 3.2: Under the same conditions as Theorem 3.2, if p =1, the J-
test statistic follows asymptotically under the null a fifty—fifty mixture of x?% and
X3, More precisely,

J=1(z>0)J(0)+1(z<0)L,
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where z is standard normal such that 1(z > 0) is independent of J(0) and L,
respectively; I1(A) denotes the usual indicator function.

Note that the case p =1 is precisely the one studied by Engle and Koz-
icki (1993): out of two asset returns Y;, and Y, is it possible to find an ho-
moskedastic portfolio return (1 — ) Y3, + 6Y,,?7 The standard J-test based on
quantiles of x*(H — 1) will overreject this null hypothesis because an (asymp-
totically) exact test should use instead quantiles of the mixture x*(H — 1) +
1X*(H). It is worth keeping in mind that even though these two distributions
may not be so different, their tails are different and thus the impact on cor-
responding critical values will be nonnegligible. Of course, this impact will be
even more dramatic with large p (a large number n = p + 1 of assets at stake),
since then common critical values are based on x?>(H — p), while as shown
above, the bound y*(H) is sharp. Note that this upper bound always allows us
to define an asymptotically conservative test.

REMARK 3.4: Of course, the price to pay for a conservative test based on
X*(H) is some power loss. However, it is worth stressing that this power loss
is not as much an issue here as in common settings. In general, failure to re-
ject a null hypothesis (when it should be rejected) leads to omit some relevant
variables and may result in biased estimators. By contrast, more often than
not, the type 1 error (keeping some irrelevant variables) has only a price in
terms of efficiency loss. Here, failure to reject the null (while it should be re-
jected) means that we overestimate the number of common features, that is,
we underestimate the number of factors. In other words, some relatively minor
sources of conditional heteroskedasticity might be omitted. However, the type
1 error, namely the overestimation of the number of factors, would be much
more detrimental. It is not only a matter of efficiency loss, but even more im-
portantly, a matter of identification. If some factors are irrelevant, they cannot
be disentangled from homoskedastic noise (as captured by the matrix (2 in (1))
and they are hardly identified. This lack of identification will likely lead to very
noisy estimators, not only for the weakly identified factor loadings, but also, by
contamination, for all the model parameters.

Overall, the power issues, that are not explicitly addressed in this paper, are
as follows.

(i) We do claim that it is less detrimental to possibly underreject (for in-
stance, by using the conservative critical values based on y*(H)) than to over-
reject by using the common critical values based on x*(H — p).

(ii)) Of course, when the number of common features under test is small
in front of the number of instruments, the difference between the two criti-
cal values becomes relatively small. For instance, from Corollary 3.2, one can
compute the asymptotic null rejection probabilities of the J-test if an applied
researcher (mistakenly) uses the (1 — @) quantile of a y*(1) distribution. With
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nominal size 5% and H =2, 4, 6, 10, they equal 9.8, 7.4, 6.8, and 6.3%, respec-
tively. Therefore, in more overidentified situations, the overrejection becomes
less detrimental.

(iii) Strictly speaking, the singularity issue that is the focus of interest of this
paper does not occur under the alternative hypothesis. Therefore, the text-
book treatment of power issues is still valid. First (see, e.g., Hall (2005, Theo-
rem 5.2)), the J-test for overidentification is consistent under fixed alternatives
and, second (see, e.g., Hall (2005, p. 156) or Andersen and Sorensen (1996)),
in finite samples, the larger is the number of degrees of freedom, the smaller is
the power. For this reason, a researcher may want to keep (H — p) relatively
small; that is typically the case where the risk of overrejection pointed out in
this paper will be the largest.

4. MONTE CARLO EVIDENCE

The Monte Carlo experiments in this section investigate the finite-sample
performance of the GMM overidentification test proposed in this paper for
testing for common CH factors. However, it is worth keeping in mind that the
nonstandard behaviors of the GMM usual statistics are not alleviated by large
samples. It is then also important to simulate large samples to assess at what
stage nonstandard behaviors are prevalent.

We simulate according to five designs (D1-D5) an asset return vector pro-
cess Y., that satisfies

Yt+1 = AFH—l + Ut+1~

Design D1 generates a bivariate vector of two asset returns Y,,; with a single
conditionally heteroskedastic factor fi,,; (F;1 = fi,.11) following a Gaussian
generalized autoregressive conditionally heteroskedastic (GARCH(1, 1)) dy-
namic, that is,

2 2 2
fl,t+1 = 01;€41, O}, =wi+ 011f1,, + ,310':71’

where ¢,’s are independent and identically distributed normal random vari-
ables with mean 0 and variance 1 (&,,; ~ NID(0, 1)). We choose w; =0.2, a; =
0.2, and B; = 0.6. The factor loading vector is set to A = (1, 0.5)" and the bi-
variate vector of idiosyncratic shocks is U,,; ~ NID(0, 0.51d,); F,;y and U,
are independent throughout. Design D2 also simulates a bivariate vector of
two asset returns Y,,; but with two independent GARCH factors. The vector
of conditionally heteroskedastic factors is F;1 = (fi 141, fo.ri1), Where fi 41 is
independent of f;,,;, a GARCH process with w, = 0.2, a; = 0.4, and 8, = 0.4.
The factor loading A = Id, and the idiosyncratic shocks U,,; ~ NID(0, 0.51d,).

Designs D3, D4, and D5 all generate trivariate vectors of three asset returns
Y, with one, two, and three GARCH factors, respectively. For all of them, the
idiosyncratic shocks U,,; ~ NID(0, 0.51d;). The single factor in design D3 has
the same GARCH dynamics as the factor in design D1 with factor loading A, =
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(1,1, 0.5)". In design D4, the dynamics of the two GARCH factors are the same
as those in D2 with factor loading matrix A = (A4|A;); Ay = (1,1,0.5) and
A, =(0,1,0.5). The return process in design D5 is generated by the GARCH
factors F, 1 = (fi.111, o041 f3.041)"; these factors are mutually independent and
w3 =0.1, 3 =0.1, and B; = 0.8 for f;,,;. The factor loading matrix is set to
Id,.

Thanks to their respective parameter configurations, the GARCH factors
fir,i=1,2,3, considered in these experiments are stationary ergodic with fi-
nite fourth moments so that the returns processes inherit the same properties.
The sets of instruments z;, and z,, that we introduce below are also stationary
and ergodic with finite second moment and the conditions in Assumption 4 are
fulfilled. (We refer to Bollerslev (1986) and Lindner (2009) for the conditions
that guarantee these probabilistic properties for GARCH processes.)

Designs D1 and D4 satisfy the null hypothesis to be tested (with p =n — 1),
including the parameter identification requirement. Designs D2 and D5 corre-
spond to the alternative where the GARCH features in the simulated returns
are not common. In design D3, where the three simulated returns share one
common GARCH factor, the parameters of one candidate common feature
are globally unidentified since the space of CH common features is of dimen-
sion 2.

The parameter values considered in these designs match those found in em-
pirical applications for monthly returns and are also used by Fiorentini, Sen-
tana, and Shephard (2004) in their Monte Carlo experiments. Each design is
replicated 10,000 times for each sample size T. The sample sizes that we con-
sider are 50, 100, 1,000, 2,000, 5,000, 10,000, 20,000, 30,000, 40,000, 50,000,
100,000, and 200,000. We include such large sample sizes in our experiments
because of the slower rate of convergence of the GMM estimator. Since the un-
conditional rate of convergence of this estimator is 7'/* and not /T as usual,
we expect the asymptotic behaviors of interest to be confirmed for larger sam-
ples than those commonly relied on.

For each simulated sample, we evaluate the GMM estimator according to

(10). The weighting matrix Wr is set to the inverse of 3 given by (12) com-
puted at the first stage GMM estimator of 6 associated to the identity weight-
ing matrix. We use a set of two instruments z;, = (Y}, Y})’ to test for common
GARCH factors for the bivariate simulated returns and use z,, = (Y3, Y3, Y2)'
to test for common GARCH factors for the trivariate simulated returns. While
Engle and Susmel (1993) suggested to use as instruments, not only lagged
squared returns but also lagged cross products, the latter ones do not appear to
be needed to get the evidence we want to illustrate: overrejection of the stan-
dard test under the null and excellent power of the conservative x*(H) test
under the alternative.

The rate of convergence as derived in Propositions 3.1 and 3.2 will be illus-
trated by the GMM estimator from design D1. From Theorem 3.2, the J-test
statistic from this design is expected to follow asymptotically a fifty—fifty mix-
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FIGURE 1.—Simulated bias and standard deviation of the GMM estimator 6 in design D1
(2 Assets—1 Factor: (2A-1F)) and simulated rejection rate of the J-test using critical values from
X3, x3, and the mixture 1y? + 1 2. Nominal levels 5% and 1% for design D1 and 5% for D2
(2A-2F).

ture of x; and x;3 instead of a xi as one would get under standard settings
where there is first-order local identification. The J-test statistic from design
D4 is expected to lead to substantial overrejection if the critical values of x?
(the usual asymptotic distribution of J7) are used, while the critical values of
x3 would control the size of the test. Design D3 will give an idea about the
behavior of the J-test when the moment condition model is well specified but
nonidentified, even globally. Designs D2 and D5 will illustrate the power of the
test to detect the lack of factor structure.

The results are summarized in Figures 1 and 2. The T'* rate of convergence
of the GMM estimator is confirmed by the fact that the simulated standard
deviation of T'/49 is stable around 2.5 as the sample size grows (see Figure 1).
Evidence that the estimator cannot be V/T-consistent lies in the fact that the
standard deviation of /76 increases with the sample size. The rejection rate
of the J-test for design D1 confirms that the fifty—fifty mixture of chi-squares
derived as an asymptotic distribution provides a quite accurate approximation
(an actual rejection rate between 4.5% and 5% for a nominal rate of 5%) for
sample sizes greater than or equal to 2,000. By contrast, for these sample sizes,
the usual critical values computed from the standard y*(1) distribution lead to
rejection rates that are more than 170% of the nominal.

The rejection rate of the true model in design D4 also confirms the results
of Theorem 3.2. The rejection rate from the standard x? almost triples (at
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D4: Rej. rate (a =0.05) D3: Rej. rate (@ =0.05)
0.2 0.05 "

0.15 0.04

0.1

_____________

0.05 4 0.01

D4: Rej. rate (@ =0.01)
0.04 0.01

0.03 0.008

0.006
0.02

0.004

0.01
J~— == 0.002

xf -- -xg Nominal

FIGURE 2.—Simulated rejection rate of the J-test using critical values from x? and 3 for
designs D3 (3A-1F), D4 (3A-2F), and D5 (3A-3F). Nominal levels 5% and 1%.

about 13%) the nominal rate (5%), while the critical values from a x3 offer a
conservative test.

Designs D2 and D5 highlight the power of our test for common conditionally
heteroskedastic features. Under the alternative, as the sample size grows, the
null is rejected even with the conservative bound in 100% of the cases. It is
worth mentioning that this test converges slowly since sharp rejection rates are
not obtained before T = 2,000.

In design D3, where there is no parameter identification at all, the asymp-
totic distribution of the J-test seems to significantly squeeze to the left, making
both x3 and 3 useful to carry out tests with a correct size. An asymptotically
correct critical value for the J-test (even one that accounts for first-order un-
deridentification) would therefore underreject. This suggests that the results of
Cragg and Donald (1996) and Staiger and Stock (1997), namely that the GMM
overidentification test is undersized in the case of global identification failure,
also hold in our context.

5. CONCLUSION

This paper sets the focus on an important albeit simple case of nonstandard
behavior of the J-test statistic for overidentification. This is important because
the detection of CH common features or, equivalently, of (GARCH) factor
structures with fixed factor loadings, is crucial for modeling multivariate con-
ditional heteroskedasticity. However, the case considered in this paper is the
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simplest possible, since second-order identification is addressed with quadratic
functions. As documented at least in the MLE literature (see, e.g., Rotnitzky et
al. (2000) and Lee and Chesher (1986)), second-order identification with first-
order identification failure is at stake with more complicated nonquadratic set-
tings.

Extensions of these results to a GMM framework is worthwhile for at least
two reasons. First, as exemplified in the present paper, nonstandard non-
Gaussian asymptotic distribution of estimators may not prevent us from re-
covering asymptotic (mixtures) of chi-squares for the J-test of overidentifica-
tion. This overidentification issue could not be addressed in the MLE context.
Second, as mentioned in the paper, there is no such thing as an obvious effi-
ciency argument to elicit a specific weighting matrix for GMM when first-order
identification fails. For these reasons, further work is warranted. Nonquadratic
moment conditions with possible local singularities are actually pervasive in fi-
nancial econometrics. An important example is inference about risk premium
in equilibrium when investors have preferences for higher order moments.
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