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ABSTRACT
A Comprehensive Data Security Framework for OLAP Domains

Ahmad Altamimi

Online Analytical Processing (OLAP) has become an increasingly important and
prevalent component of enterprise Decision Support Systems. OLAP is associated
with a data model known as a Cube, a multi-dimensional representation that allows
for the extraction and intuitive visualization of broad patterns and trends that would
otherwise not be obvious to the user. One must note, however, that not all of the
collected data should be universally accessible. Specifically, DW/OLAP systems
almost always house confidential and sensitive data — identification information,
medical data, or even religious beliefs and ideologies — that must, by definition, be
restricted to authorized users. In this thesis, we provide models and algorithms for
protecting the data in multi-dimensional data cube spaces.

To this end, the thesis addresses three distinct but related themes. In the
opening part of this study, we propose an authentication and authorization framework
that builds upon an algebra designed specifically for OLAP domains. It relies on
robust query re-writing rules to ensure consistent data access across all levels of
the conceptual data cube model. In the second part, we present a framework for
controlling malicious inferences caused by unprotected access to coarser level aggregations.
Our framework prevents complicated inferences through a combination of initial
query restrictions and the removal of the remaining inferences. In the final part,
we enhance the core framework with an object-oriented security design model and
client side language extensions that collectively produce a more intuitive and usable

infrastructure.
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The purpose of this study is to design a comprehensive end-to-end framework for
OLAP security that is flexible, intuitive, and powerful. In short, the framework allows
administrators to associate security policies with an intuitive conceptual model that
maps directly to the model that users see. Restrictions then can be propagated
transparently from users to all the hierarchical data. Moreover, the framework
provides an automatic form of inference control that is fast enough in practice to
not affect query time.

To ground our conceptual work, we have integrated our research themes on the
top of an OLAP-specific DBMS server (Sidera). Sidera gives us the opportunity to
explore performance and correctness issues that would not be possible without such
direct access to a DBMS. In addition, we have evaluated its efficiency with a pair
of common industrial DBMS, a row-based DBMS (PostgreSQL) and a column-store
DBMS (MonetDB). The evaluation is done using two common benchmarks (e.g.,
SSB and APB). The results show the ratio of checking time to execution time varies
considerable, depending on the specification of the underlying query. These times are

acceptable, particularly given that checking costs do not grow with data set size.
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Chapter 1

Introduction

Data warehousing (DW) and On-Line Analytical Processing (OLAP) play a pivotal
role in modern organizations. Designed to facilitate the reporting and analysis re-
quired in decision making environments [26], OLAP builds upon a multi-dimensional
data model that intuitively integrates the vast quantities of transactional level data
collected by contemporary organizations. Ultimately, this data is used by managers
and decision makers in order to extract and visualize broad patterns and trends that
would otherwise not be obvious to the user.

One must note that while the data warehouse serves as a repository for all collected
data, not all of its records should be universally accessible. Specifically, DW/OLAP
systems almost always house confidential and sensitive data, such as social security
numbers, credit cards information, or medical history that must, by definition, be
restricted to authorized users. As a result, various pieces of legislation designed to
protect individual privacy have been proposed. One can consider, for example, the
United States HIPAA-Health Insurance Portability and Accountability Act, which
regulates the privacy of personal health care information, the GLBA (Gramm-Leach-

Bliley Act, also known as the Financial Modernization Act), the Sarbanes-Oxley Act,



and the EUs Safe Harbour Law [43]. These laws usually require strict technical secu-
rity measures for guaranteeing privacy, and failure to comply with them is normally
strongly sanctioned, with severe penalties being imposed.

In this context, organizations make promises to keep the data they collect and
store secret. But keeping one’s promises is usually easier said than done. The data
may be attacked in various ways: from outside through penetrating the security
defense system or from inside by violating the privacy commitments under which the
data have been collected. The outsider attacks can be prevented by using a variety
of defensive mechanisms (e.g., firewalls, or encryption methods). However, the most
challenging threats often come from insiders. That is the case because the insider
knows what the company’s most valuable data assets are, as well as where to look
for and how to access them. In a survey of 43 organizations that had experienced a
data breach, the Ponemon Institute found that over 88 percent of all cases involved
incidents resulting from insider attacks [95]. Thus, organizations need to maintain
a high level of security to protect the data from malicious users while, at the same
time, ensuring the availability of data to legitimate users. How one prevents privacy
breaches cause by inappropriate disclosures while simultaneously ensuring access to
valid users is in fact the main topic of this research.

One of the main problems that organizations face in this context is the reconcil-
iation of two contradictory goals: privacy and wutility for analytical purposes. The
tension between these goals is clear: perfect privacy (but no utility) can be achieved
by simply refusing to answer any queries about the data; perfect utility (but no
privacy) can be achieved by answering all queries about the data exactly. Clearly,

neither of these extremes is likely to be acceptable in production environments. Thus,



the organization must carefully employ a rich but flexible security model in order to
balance the competing goals of privacy and utility.
In fact, any such security model must provide two main countermeasures: Access

control and Inference control.

e Access Control is the process that restricts unauthorized users from accessing
protected data. It can be thought of as occurring in two phases: Authentica-
tion and Authorization. Authentication is an identity verification mechanism
that attempts to determine whether a user has valid credentials to access the
system or not. Usually, the client query provides user credentials, which are
then received and checked against a list of valid accounts in order to make the
authentication decision. If the provided user credentials correspond to a valid
account, then the authentication decision is successful and the query is passed
on for authorization checking. Otherwise, the query will be rejected. In turn,
Authorization is the process of determining if the user has permission to access
a certain data resource. The outcome of the authorization process is an au-
thorization decision that permits or denies the user access, based on the user’s

credentials or privileges.

Access control techniques in traditional data management systems, such as re-
lational databases, are quite mature. However, these techniques cannot be di-
rectly applied to OLAP domains. Specifically, OLAP’s conceptual data model
is considerably more abstract than the relational model used by conventional
relational database management systems. The difference in the data models
makes it more difficult to express and enforce the security requirements one

would commonly see in OLAP settings. In addition, existing access control



mechanisms are largely unaware of more subtle inference attacks, a problem of

considerable importance in the OLAP domain.

e Inference Control attempts to prevent attackers from inferring or guessing sen-
sitive data. The malicious inference is a threat that access control methods are
insufficient to thwart on their own. For example, it is possible for a user possess-
ing some degree of external knowledge to combine the results of multiple valid
queries so as to obtain data that is itself meant to be protected. As a simple
example, a user might infer the salary of a second employee by virtue of the fact
that she knows the combined salary of both employees. Access control alone
cannot capture such an inference, as the total salary would represent seemingly

innocent aggregation to the access control mechanism.

Inference control has been extensively studied in statistical databases and cen-
sus data since the 1970’s [2]. However, most of the proposed techniques demand
complicated computations over the entire data set and/or archiving all previous
queries. Such requirements often lead to prohibitive performance overhead and
storage demands, which is particularly problematic for interactive OLAP sys-

tems in which query results may be expected in a matter of seconds or minutes.

1.1 Research Overview

The primary purpose of the research described in this thesis is to understand and
provide solutions to the privacy threats in OLAP environments. More specifically,
the current research is essentially divided into three stages. In the first stage, we ex-
plore the development of a robust OLAP authentication and authorization framework

that supports the basic security countermeasures for an OLAP data model known as



a cube. In particular, we seek to provide reliable security mechanisms that support
the hierarchical nature of the cube. To do so, we propose a set of concise but robust
transformation rules that are used to rewrite queries containing unauthorized data
access and thereby ensure that the user only receives the data that he/she is autho-
rized to see. The query rules are directly associated with the conceptual properties
and elements of the OLAP data model itself. A primary advantage of this approach
is that by manipulating the conceptual data model, we are able to apply query re-
strictions not only on direct access to OLAP elements, but also on certain forms of
indirect access (i.e., alternative aggregation levels). In addition, we have designed and
integrated data structures and algorithms utilized by the functions that manipulate
the elements of the conceptual data model. To underscore the practical viability of
the proposed framework, the experimental evaluation highlights the processing over-
head relative to the execution costs of the underlying query. The results demonstrate
that the ratio of checking time to execution time is quite small.

In the second stage, we focus on an inference control framework. While many
restriction based models adopt a detect-and-remove approach, which typically re-
quires complex computations over the data and is thus too expensive to be applied
in OLAP systems, our framework prevents inferences through restrictions. In other
words, instead of detecting inferences, we prevent them by eliminating the source of
the inference. This is done by pre-computing the accessible data and then restricting
access to only this data. Restrictions can be computed off-line before queires are actu-
ally received. Hence, computational costs can be significantly minimized. Moreover,
the effectiveness of this approach does not depend on specific types of aggregation

functions, external knowledge, or sensitivity criteria.



To demonstrate the validity of our research, we have coupled our framework with
two different database management systems, a popular open source column-store
DBMS (Monetdb), and an object-relational row-based DBMS (Postgre SQL). We
utilize the Star Schema Benchmark (SSB), a variation of the original TPC-H bench-
mark augmented for OLAP settings, and the APB-1 OLAP Benchmark release 11, a
widely-known data warehouse benchmark, to conduct a series of experiments. Re-
sults show that our methods are efficient in terms of both run-time performance and
storage requirements.

In the third and final stage of the research, we focus on the interface between
the security components and the database management system itself. Specifically, in
order to utilize the proposed authorization and inference prevention mechanisms, it is
necessary to extend the languages and/or APIs that permit system administrators and
security specialists to define and maintain security policies. To this end, we propose
several enhancements to current DBMS software stacks. First, we describe an abstract
security design model based upon an Object Oriented paradigm. Fundamental policy
classes are defined, along with state and behavior characteristics relevant to the OLAP
domain. Next, we discuss language extensions and programmatic APIs that would
expose the underlying model to end users and programmers in an intuitive manner.
Finally, we present the details of the server-side policy database and policy logic
manager, along with a discussion of the issues relevant to the creation of complex
Role hierarchies. To underscore the viability of the design model, we provide a small

but representative case study using policy examples from the thesis itself.



1.2 Thesis Structure

The thesis is organized as follows. Chapter 2 provides basic background material
needed to understand data warchousing and Online Analytical Processing (OLAP),
the core characteristics of the conceptual data model, schema mapping issues, and the
primary features of column store databases. The succeeding chapters present the core
contributions of the thesis. Chapter 3 describes an OLAP-aware framework for query
authentication and authorization via query re-writing. Chapter 4 describes extensions
required in order to protect OLAP data cubes from malicious inferences, and discusses
the implementation and architecture. A set of algorithms is also presented for each of
the primary operations. Chapter 5 then discusses the OO design model, including the
use of declarative language enhancements and a client side API to support graphical
design tools. Finally, in Chapter 6, we offer final conclusions and briefly describe

possible future work.



Chapter 2

Background Material

2.1 Introduction

Organizations collect data for social and commercial purposes and typically store
that data in the enterprise’s Data Warehouse (DW). In short, a Data Warehouse
is a repository for multiple heterogeneous data sources, organized under a unified
schema in order to facilitate management decision making [57]. Data warehouse
technology includes data cleaning, data integration, and Online Analytical Processing
(OLAP). The latter is associated with analysis techniques such as summarization,
consolidation, and aggregation, as well as the ability to view information from different
perspectives.

In warehousing environments, data is often represented using a data model known
as a Cube, a multi-dimensional representation of the core measures and relationships
within the associated organization. We note that large portions of the data cube are
either confidential or sensitive and must, by definition, be restricted to authorized
users. However, the data may still be attacked by malicious users in order to access
or infer sensitive knowledge from the database. Such occurrences, which significantly

impact the trustworthiness and reliability of the OLAP model, have motivated the



development of recent approaches that seek to devise meaningful privacy preserving
OLAP techniques [109, 93, 44, 4, 38, 37].

In this chapter, we are going to introduce the primary concepts that we need to be
familiar with before discussing the details of our work. Section 2.2 gives an overview
of a typical Data Warehouse and its architecture. Section 2.3 introduces OLAP
systems and the canonical data cube. Section 2.4 then looks at the architecture of
a conventional relational OLAP server. The mapping of logical to conceptual data
objects is then presented in Section 2.5. A data structure for the management of
hierarchical OLAP attributes is described in Section 2.6. Section 2.7 discusses the
primary features row and column store databases, while Section 2.8 concludes the

chapter with brief summary.

2.2 The Data Warehouse

The Data Warehouse (DW) is a repository of organizational data and is designed
to facilitate reporting and analysis within the organization [54]. In a warehouse,
the data is often a combination of multiple, and usually varied, sources that are
then combined into one comprehensive and easily manipulated database. As the
data enters the warehouse, it is cleaned and transformed and stored with a fully
integrated structure and format. The transformation process may involve conversion,
summarization, filtering and condensing of data. Multiple technologies are utilized in
the analysis process, including the generation of “canned queries”, data mining, and

OLAP [26].
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2.2.1 Architectural Overview

Many researchers and practitioners support the notion that a data warehouse archi-
tecture can be formally understood as a series of layered materialized views, with data
from one layer derived from data of a lower level. Data sources, also called operational
databases, form the lowest such layer. The central component of the architecture is
the global (or primary) data warehouse (i.e., the warehouse proper). Ultimately, it
maintains a historical record of the data that results from the transformation, integra-
tion, and aggregation of detailed data found in the data sources. The topmost layer is
the local, or client, warehouses which contain highly aggregated data, directly derived
from the global warehouse. There are various forms of local warehouses, including
the data marts often associated with OLAP databases. These OLAP-centric systems
may utilize either relational database systems or proprietary multidimensional data
structures.

All the data warehouse components, processes, and data are — or at least should
be — tracked and administered from some form of metadata repository. This repos-
itory serves as an aid both to the administrator and the designer of the warehouse.
Figure 2.1 gives a rough overview of the typical data warehouse architecture. A brief

listing of its physical components would include the following:

e Sources. The data sources (or operational DBs) are often relational databases
but may include information from other sources (text, XML, bar code readers,
etc.). They are designed for “every day”, data entry purposes and are not well

suited to analytical queries.
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Figure 2.1: Data Warehouse architecture

e Data Loading. The Extract, Transform, and Load (ETL) tools are the back-
bone of the data warehouse input process. They are used to copy data from
operational data sources to the data warechouse and eventually on to the data

marts.

e Core Warehouse. The central warehouse database is the cornerstone of the
architecture. It can be extremely large in practice, primarily as a consequence
of storing historical data at a very granular level of detail. For example, every
“sale” that has ever occurred in an organization may be recorded and subse-
quently related to various dimensions or entities of interest. This allows the data
to be sliced and diced, summed and grouped in an almost limitless number of

ways.

e Data Marts. The Data Marts are subsets of the data warehouse. Each Data
Mart can contain different combinations of tables, columns and rows from the
Enterprise Data Warehouse. They enable faster response to queries because the

volume of the managed data is much smaller than in the data warehouse, and
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the queries can be distributed between different machines. There are a number
of design types for the data mart; the star schema and snowflake schema are

the most common models [25].

e Client Tools. The principal purpose of data warehousing is to provide infor-
mation to users in support of the decision making process. These users interact
with the data warehouse using front-end tools, which typically provide a graph-
ical, interactive interface that obscures much of the overwhelming detail and

structure of the underlying warehouse.

2.2.2 The Star Schema

The Star Schema is perhaps the simplest data warehouse design, and consists of two
basic types of tables: Facts and Dimensions. The fact table typically contains a large
number of rows, sometimes in the hundreds of millions or even billions of records.
These records provide us with the facts or measures that become the objects of anal-
ysis. Each of these numeric measures depends in turn on a set of dimensions, which
provide the context for the measure. For example, Figure 2.2 shows a part of the star
schema for the data warehouse benchmark known as APB-1 release II [8]. This star
schema consists of one fact table (“Sales”) that is joined to four dimension tables:
Product, Customer, Time, and Channel. When a unit or item is sold a new mea-
sure is entered in the fact table (i.e., “Units_Sold”) and linked with dimensions via
the relevant foreign keys: product code, customer ID, and time ID. Taken together,
the dimensions are assumed to uniquely determine the measure. Thus, the multidi-
mensional data model views a measure as a value in the multidimensional space of

dimensions.
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Each dimension is in turn described by a set of attributes. For example, the Prod-
uct dimension consists of six attributes: division, line, family, group, class, and code.
Moreover, the attributes of a dimension may be related via a hierarchy of relation-
ships that aid in summarization. In the above example, the product information
would often contain a hierarchy that separates products into divisions such as food,
drink, and non-consumable items, with each of these divisions further subdivided a
number of times until reaching the lowest level (i.e., “Product Code”).

Dimension are typically de-normalized (i.e, not all table redundancy is removed),
with dimension hierarchies represented within a single physical dimension table. At
query time, each de-normalized dimension table is joined to the fact table as neces-
sary. In this scenario, de-normalizing the dimension tables significantly decreases the
number of costly joins that would otherwise be required with a normalized schema.
Since the dimension tables are comparatively small when compared to the enormous
fact tables, and since updates are typically performed via system controlled ETL pro-
cesses, the redundancy produced by the de-normalization process is of little interest
in most OLAP contexts. It is worth noting that when standard normalization is
employed, a Snowflake Schema is created. In this less common model, dimensional
hierarchies are explicitly represented with multiple physical tables.

In addition to the fact and dimension tables, data warehouses store selected sum-
mary tables containing pre-aggregated data. In the simplest case, this summary data
corresponds to the aggregation of the fact table on one or more selected dimensions..
Pre-aggregated data can be represented in the database in at least two ways. Let us
consider, for example, how a summary table(s) from the star schema of Figure 2.2

could represent total sales “by product by year”. We could potentially represent
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the summary data by encoding the aggregated tuples in the same fact table without

adding any new tables. This may be accomplished by adding new level /summary

fields in the fact table and using nulls for non-summary rows. However, this ap-

proach tends to create a bloated fact table (most rows do not contain summary data)

and an awkward schema design. Alternatively, we can create a summary table that

essentially functions as a very compact supplemental fact table.

2.3 OLAP systems

The term Online Analytical Processing or OLAP was coined by E.F. Codd in 1992 [19].

Codd defined twelve features that should be present in any OLAP application, of

which the following five are probably the most important:

1. Multidimensional conceptual view. The data model representation in

OLAP should be multidimensional in nature, thus allowing analysts to execute

intuitive operations such as “slice and dice”, rotate and axis pivot.
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2. Transparency. The user should not have to understand the physical resources
that are used for storage and data processing and how the data is actually

organized.

3. Accessibility. OLAP should present the user with a single logical schema of

the data.

4. Flexible reporting. Reporting facilities should present information in almost

any way the user wants to view it.

5. Unlimited dimensions and aggregation levels. A serious tool should sup-
port more than just a few concurrent dimensions (Codd actually indicated that

15-20 would be ideal).

2.3.1 The Multi Dimensional Model

To facilitate complex analysis and visualization, OLAP data is organized accord-
ing to the multidimensional data model. Specifically, we represent data within a
d-dimensional space such as the one depicted in Figure 2.3. In this context, the
multidimensional model can be described as a data abstraction that allows one to
view aggregated data from a number of perspectives (dimensions). In fact, for a
d-dimensional space, A;, As, ... , Ay there are exactly 27 distinct dimension combi-
nations (cuboids) that represent the underlying Star Schema. We often refer to this
collection of views as the Power Set [58], with each cuboid representing a unique view
of the data at a given level of granularity.

In practice, not all cuboids need actually be present in order to carry out OLAP

analysis. This is the case since any cuboid can be computed by aggregating the cell
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values in the Fact table (or base cuboid) across one or more dimensions. Neverthe-
less, for cuboids that have been pre-computed and stored to disk, real time query
performance can be significantly enhanced. If the data cube does in fact contain all
27 possible views, it is described as a “full cube”, while the term “partial cube” is
used if only a subset of views has been constructed. In reference to Figure 2.3, we can
see that, in addition to the base cuboid, we have materialized five three-dimensional
cuboids (i.e., “By Time, Customer, and Product”), five two-dimensional cuboids (i.e.,
“By Customer and Product”), four one-dimensional cuboids (i.e., “By Product”, “By
Customer”, “By Time”, and “By Channel”, respectively), and one zero-dimensional
cuboid (i.e., the “Grand Total”).

Ultimately, the data cube provides a more intuitive representation of the data
warehouse Star Schema. It requires of the user no assumptions about how the data is
physically stored. Advanced OLAP servers may in fact take the data from the tables
of the original Star Schema and further process it. The data may be stored in a series
of new tables or even a multidimensional array. We refer to the first type of sys-
tem as Relational OLAP (ROLAP), while the second is known as Multi-dimensional
OLAP (MOLAP). With MOLAP, an implicit indexing along the axes of the multi-
dimensional array is provided, but performance sometimes deteriorates as the space
and the associated cube array becomes more sparse (high dimensionality/high car-
dinality). Conversely, in ROLAP systems, cuboids are stored as distinct tables and
tend to scale well since only those records that actually exist are materialized and
stored. However, an explicit multidimensional indexing is required in order to be used

effectively.
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2.3.2 Dimension Hierarchies

A dimension hierarchy describes a hierarchical relationship among two or more dimen-
sion members. For example, Figure 2.5 presents an example of a dimension hierarchy
for a customer dimension and shows how data is ordered by CustomerID, Store, and
Retailer. A specific customer belongs to a particular store which, in turn, belongs to
a particular retailer. A dimension hierarchy can use ordered levels to organize and ag-
gregate data, with each level containing aggregate values for the levels below it. It is
possible to group all values of the dimension into a single “total” value (i.e., the top or
coarsest level), while the lowest contains the most detailed values for that dimension.
For instance, let us consider the dimension Customer of Figure 2.5. CustomerID is
the most detailed or granular level, with Retailer being the topmost member for this
dimension. Note that the number 87 that appears beside the Montreal Retailer node
represents the aggregated total sales for its lower levels (i.e., customers 12 and 19).

Physically, we can represent the previous hierarchy by additional columns in the
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Figure 2.5: The Customer dimension hierarchy example

Seq CustomerlD Retailer Store
1 c21 Moantreal Quebec
2 Cc19 Mantreal Quebec
3 05 Laval Quebec
4 Cc22 Sherbrook Quebec
5 Cc29 Sherbrock Quebec

Figure 2.6: A hierarchy dimension table

associated dimension table, as in Figure 2.6. The concept of the dimension hierarchy

will be further discussed in Chapter 3.

2.4 The Sidera server prototype

The work described in this thesis is part of a larger project whose focus is to design,
implement and optimize an OLAP-specific DBMS server (Sidera)[39]. Sidera offers us
the possibility of defining security measures over the multidimensional data model. It
allows us to implement our theoretical ideas within a true OLAP server engine. This
gives us the opportunity to explore performance and correctness issues that would

not be possible without such direct access to a DBMS. In this section, we present a
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Figure 2.7: The core architecture of the parallel Sidera OLAP server

simple architectural overview of the Sidera system, with a brief look at the Sidera

frontend and backend servers.

2.4.1 DBMS Architecture

Eavis et al., in their paper entitled “Sidera: a cluster-base server for Online Analyti-
cal Processing”, presented a comprehensive architectural model for a fully parallelized
OLAP server [39]. The system consists of a pair of server executables (i.e. frontend
and backend) that boot simultaneously and subsequently share a collection of com-

munication channels. Figure 2.7 illustrates the fundamental design of the prototype.
1. The Sidera Frontend

The server interface (i.e., the frontend node) serves as an access point for end user
queries. Figure 2.8 is an illustration of the Sidera frontend, a multi-threaded head
node that handles logins, authentication, and transfer of queries to the backend nodes.
Its core function is to receive user requests and to pass them along to the backend

nodes for resolution. It does not participate in query resolution directly, other than



21

)
i

() | )
( )
Query Dispatch
thread | Backend
Query
Query )
Pending R Query [\ 9 G
thread ~ Backend
| ( a ) Dispatcher \5)‘_’
2 uery
thread thread G>_ Backend
Users _< >_> —/
1 Main server SR a
> thread Query K
T \thread ) Results BRCSLe
Query
Wend Server L J Backend Server
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to collect the final result from the backend instances and return it to the user. The
numbered sequence in the Figure indicates the processing cycle for a typical query.
We note that the Authentication and Authorization components discussed in this

thesis will be integrated into the frontend.
2. The Sidera Backend

The backend server consists of multiple nodes, which operate within the fully coor-
dinated architecture. Each node houses a Parallel Service Interface (PSI) component
that allows it to hook into the global communication fabric and thereby participate
in parallel sorting, merging, and aggregation operations. The backend network is
responsible for storage, indexing, query planning, I/O, buffering, and metadata man-
agement. As such, it is responsible carrying out virtually all of the query resolution

tasks. Figure 2.9 depicts the processing loop on the backend server instances.
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2.4.2 Query Interface

Sidera uses a native OLAP query language API called NOX to provide responsive
and intuitive query facilities [40]. NOX queries are object-oriented and support in-
heritance, re-factoring and compile-time checking. Underlying this functionality is a
domain specific algebra and language grammar that are used to transparently convert
queries written in the native development language into algebraic operations under-
stood by the server. This algebra forms the basis of the intermediate query format
that will be used by the security framework discussed throughout the rest of the the-

sis. Below, we provide a listing of the core operations defined by the NOX algebra

[110).

e SELECTION Operator (o,cube): provides the identification of one or more

cells from within the full d-dimensional search space. This is one of the two
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core OLAP operations and is commonly referred to as “slicing” and “dicing”.
A logic predicate p defines cells of interest within the d-dimensional space. The
predicate has a syntactical form that allows mathematical expressions to be
compared to each other and different conditional expressions can be combined

with logical operators such as AND and OR.

PROJECTION Operator (Tmeasure, ... measure, CUb€): provides the identifi-
cation of presentation attributes, including both measure attributes and feature
attributes. This is the second core OLAP operation and it is mainly concerned
with preparing results for presentation in formats such as diagrams, objects or
simply text. In other words, it selects of a subset of display attributes (measures

or features).

Set Operations on Data Cubes: OLAP set operations includes UNION
(cubey | cubey), which performs the union of two cubes over an n-dimensional
space sharing common dimensional axes, INTERSECTION (cube; () cubes)
that performs the intersection of two cubes over an n-dimensional space sharing
common dimensional axes, and DIFFERENCE (cube; - cubes) that performs
the difference of two cubes over an n-dimensional space sharing common dimen-

sional axes.

CHANGE LEVEL Operator (”/;e(f;;iizlf . f(measure,)): modifies of the gran-
ularity of aggregation for the current result set. This process is typically referred
to as “drill down” and “roll up”. The roll-up operation groups cells in a Cube

based on a given aggregation hierarchy, while the drill-down goes down through
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an aggregation hierarchy in order to show more detailed data. The gamma rep-
resentation of the change level operation implies that as the level of the data
is changing, the measure values are also changing according to functions that

aggregate or decompose data values (along the levels of the hierarchy).

e PIVOT (¢pase): performs the rotation of the cube axes to provide an alternate
perspective of the cube. In this operation, no recalculation of cell values is

required.

It is important to mention that after defining the queries programmatically, they
are directly converted into XML format (embedded within the re-written source code).
As a concrete example, Listing 2.1 illustrates a simple SQL query that summarizes
the total sales of Quebec’s stores in 2011. The corresponding XML encoding of the
query is provided in Appendix C. With a little effort one can see how the total sales

in 2011 for Quebec stores is captured by the sequence of nested XML statements.

Select Store.province, SUM(sales)

From Store, Time, Sales

Where Store.store_ID = Sales.store_.ID AND
Time. time_ID = Sales.time_ID AND
Time.year = 2011 AND
Store.province = ’Quebec’

Group by Store.province

Listing 2.1: A simple SQL OLAP query

To validate the received XML query, the system relies on a Document Type Dec-
laration (DTD) grammar that is used to describe the structure of the XML query.
The grammar itself is given in Appendix C. (We note that the development of the
grammar itself was not part of the current thesis). Ultimately, its purpose is to rep-

resent the functionality of the analytics queries one would expect to see in a Business
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Intelligence context.

2.5 Conceptual to Logical Data Model Mapping

To build a security module that can apply access restrictions to an underlying re-
lational database, the module must know how hierarchies are structured or defined
in the database in order to map the high level security constraints to the relational
schema. There are in fact a number of ways that such a framework can be imple-
mented, including both text-based and graphical methods. For instance, in the open
source Mondrian OLAP query processing system, there is a full XML grammar that
is used to define this mapping [81]. In short, an XML schema is utilized to define
a multi-dimensional database. The schema contains a conceptual model, consisting
of cubes, hierarchies, and members, and defines a mapping of this model onto the
logical (i.e., relational) model. The logical model (typically a star schema) ultimately
represents the low level tabular data physically stored by the DBMS backend. In our
work, we assume the existence of such a mapping component.

A sample Mondrian schema for the star schema depicted in Figure 2.2 is given in
Listing 2.2, where the schema contains a single cube, called “Sales”. The Sales cube
has four dimensions, “Product”, “Customer”, “Time”, “Channel” and four measures,
“Units Sold”, “Dollar Sales”, “Product Cost”, and “Shipping Cost”. Each dimension
has a hierarchy. For instance, the Customer has three levels — Retailer, Store, and
CustID — each associated with a specific column in the Customer table. Using this
schema, it is therefore possible to map conceptual elements such as hierarchies to
the tables and columns storing the relevant data values. In turn, query (re)writing

modules can use this information to dynamically restructure user queries in order to
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remain consistent with administrator-defined data access policies.

<Schema>
<Cube name="‘‘Sales”>
~.<Table_name="‘‘Sales” />
<Dimension name=‘‘Product” _foreignKey="*‘Code”>
<Hierarchy hasAll=‘‘false” _primaryKey=*‘Code”>
<Table name=‘‘Product”/>

ceo<Level_name=‘‘division” column=‘‘Division” .
uniqueMembers="*‘true” />
<Level name=‘‘family” _column="‘‘Family”
uniqueMembers=*‘false” />
ceo<Level_name=‘‘class” column=‘‘Class” _uniqueMembers=*‘false” />
<Level name=‘‘code” _column="‘‘Code” type=‘‘Numeric” -
uniqueMembers="*‘true” />
</Hierarchy>
</Dimension>
<Dimension name="‘‘Customer” .foreignKey="*CustID”>

<Hierarchy hasAll=‘‘true” .primaryKey="‘‘CustID”>
<Table name=‘‘Customer” />

coow<Level.name=‘‘retailer” column=‘‘Retailer”.
uniqueMembers="*‘true” />
<Level name=‘‘store” _column=‘‘Store” uniqueMembers=*‘false” />

cec<Level_name=‘‘custID” column="‘‘CustimelD” _type="*‘Numeric”
uniqueMembers="*‘true” />

-..</Hierarchy>

c.</Dimension>

~.<Dimension._name="‘‘Time” foreignKey="‘‘TimelD”>

w..<Hierarchy_.hasAll=‘‘true” primaryKey=*‘TimelD”>
ceo.<Table_name="*‘Time” />

<Level name=‘‘year” .column=‘‘Year” type=‘‘Numeric” .
uniqueMembers="*‘true” />
<Level name="‘‘quarter” _column="‘‘Quarter”
uniqueMembers="*‘false” />
ceow<Level_name=‘‘timelD” column="‘‘TimelD” _type="‘‘Numeric”
uniqueMembers="‘‘true” />
coo</Hierarchy>
-.</Dimension>
~.<Dimension._name="‘‘Channel” foreignKey="*‘ChanlD”>

c..<Hierarchy_hasAll=‘‘true” primaryKey="*‘ChanlD”>
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cooo<Table_name=‘‘Channel” />

<Level name=‘‘channel” _column="‘‘Channel” type="‘‘Numeric” .
uniqueMembers="‘‘true” />
<Level name="‘‘chanlD” _column="‘‘ChanID” type=‘‘Numeric” .
uniqueMembers="‘‘true” />
</Hierarchy >
</Dimension>
<Measure name="‘‘Units Sold” _column=‘‘Units._.Sold”
aggregator="‘‘sum” _formatString="##H##"/>
<Measure name="‘‘Dollar Sales” _column=‘‘Dollar_Sales”
aggregator="‘‘sum” _formatString="# #HHHH#"/>
<Measure name="‘‘Product Cost” _column="‘‘Product.Cost”

aggregator="‘‘sum” _formatString=""“# ###.00" />
<Measure name="‘‘Shipping Cost” .column=*‘Shipping._Cost”
aggregator="‘‘sum” _formatString=""# ###.00" />
</Cube>
</Schema>

Listing 2.2: An XML definition schema

2.6 The mapGraph Hierarchy Manager

Internally, Sidera houses meta data for dimension hierarchies using the mapGraph
hierarchy manager. The mapGraph [41] is a suite of algorithms and data structures
for the manipulation of attribute hierarchies in “real time”. MapGraph builds upon
the notion of hierarchy linearity [83]. A hierarchy is consider linear if there is a
contiguous range of values R; of dimension attribute A; that may be aggregated
into a contiguous range R;. To establish the linearity of each dimension hierarchy,
a sorting technique is used with data subsequently being stored at the finest level
of granularity. For instance, Figure 2.10(a) shows the Store dimension table with
the hierarchy Store_Number, City, Province, and Country. The finest level of the
Store dimension is Store_Number; therefore, transactional data would be stored at

this level. Figure 2.10(b) illustrates the sorted table. Finally, a compact, in-memory
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Encoded v i
Store Number City Province | Country e Store Number City Province | Country
11 luneau Alacka USA themastdetallcn 1 20 Timmins Ontario | Canada
12 Timmins | Ontario | Canada valies 2 12 Timmins Ontario | Canada
12 Montreal | Quebec | Canada 3 30 Montrea! Quebec | Canada
20 Timmins | Ontario | Canada 4 22 Mantrea Quenac | Canada
22 Montreal | Quebec | Canada E 23 Montreal Quebec | Canada
23 Mantreal | Quebec | Canada B 18 Montreal Quebec | Canada
30 Montreal | Quebec | Canada 7 50 L
ava Quebec | Canada
31 Laval Quebec | Canada ::ﬂ:zi‘"‘:{’:‘; > 8 31 Laval Quebec | Canada
as Juneau | Alacka usA IRRRIIENS 9 a0 Sharbroak  Quenac | Canada
a0 Sherbrock | Quebec | Canada 10 a1 Sherbrook Quebec | Canada
41 Sherbrock | Quebec | Canada 11 55 Sherbropok Quebec | Canada
44 luneau Alaska USA 1
12 35 lunsau Alaska USA
50 Laval Quebec | Canada 13 11 lunsau Alazka Usa
55 Sherarock | Quesec | Canada 14 44 P aLl Kinsha USA

(a) )]

Figure 2.10: (a)A Store dimension table (b)The corresponding sorted table

look-up data structure (i.e., the hMap structure) is then used to support efficient real
time transformations between arbitrary levels of the dimension hierarchy. Figure 2.11
shows the corresponding hMap.

Each record in the hMap consists of two values: a native attribute representa-
tion (i.e., values of attributes Types of Store dimension) and an integer value that
represents the corresponding maximum encoded value in the primary attribute. For
example, the city of Timmins has two stores with encoded numbers 1 and 2 while
Montreal has four stores, encoded with the numbers 3 through 6. Using this struc-
ture, one can perform a mapping from the most detailed encoded level value to the
corresponding sub-attribute value (i.e., attribute level values), and vice versa. For
instance, a Store encoded as 13 is located in Juneau and, as a consequence, it is lo-
cated in the state of Alaska in the USA country (i.e., Alaska has a maximum encoded
Number = 14).

While a number of commercial products and several research papers do support hi-

erarchical processing for simple hierarchies, specifically those that can be represented
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Figure 2.11: The hMap of the Store dimension.

as a balanced tree, mapGraph is unique in that it can enforce linearity on unbalanced
hierarchies (i.e., optional nodes), as well as hierarchies defined by many-to-many par-
ent /child relationships. The end result is that users may intuitively manipulate com-
plex cubes at arbitrary granularity levels and can navigate easily through dimension

levels.

2.7 Column-oriented Database Systems

In recent years we have seen the introduction of a number of column-oriented database
management systems, including MonetDB [94] and C-Store [108]. These systems
have been shown to perform more than an order of magnitude faster than traditional

row-oriented database systems (row-stores) for large, read-intensive data repositories
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Figure 2.12: (a)Simple two dimensions table (b)Row-oriented database serialization
(c¢)Column-oriented database serialization
such as those found in data warehouses, decision support, and business intelligence
applications that support analytical workloads. The reason behind this performance
advantage is straightforward: column-stores are much more I/0 efficient for read-only
queries since they only have to read from disk those attributes actually referenced
(directly or indirectly) by a query [1]. Figure 2.12 shows a simple table, and illustrates
how a row-oriented and column oriented database would serialize data during a query
IO operation. Specifically, Figure 2.12(a) presents a two-dimensional table, upon
which a typical query might be executed. In turn, Figure 2.12(b) shows how the
row-oriented database would serialize values, while Figure 2.12(c) illustrates how a
column-oriented database would serialize the same values.

Loosely speaking, the DBMS must coax the two-dimensional table into a one-

dimensional series of bytes in order for the operating system to write to RAM, the
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hard drive, or both. In our example, the table includes an employee identifier (Em-
pld), name fields (Lastname and Firstname) and a salary (Salary). The row-oriented
database serializes all of the values in a row together, then the values in the next
row, and so on. Conversely, the column-oriented database serializes all of the values
of a column together, then the values of the next column, and so on. Consequently,
the serialization of the column database is more efficient when an aggregate needs
to be computed over many rows and when only a subset of the available columns is
required. It can also be more efficient for write operations if, for example, a sequence
of column values (perhaps all of them) are updated at once. These scenarios may
seem unlikely in the general case but one must keep in mind that warehouses are
often loaded or updated via large bulk operations.

We note that, while the original Sidera design includes its own storage engine
(R-trees, bitmaps, compression algorithms, etc), it has been extended in the current
project so as to include the column-store MonetDB as an alternative storage backend.
MonetDB was one of the earliest column-store solutions and includes the following

primary features:

e A column-store database kernel. MonetDB is built on the canonical representa-
tion of database relations as columns. They can be large entities, up to hundreds
of megabytes in size, and are swapped into memory by the operating system

and compressed on disk as required.

e Multi-core support. MonetDB is designed for multi-core parallel execution on

desktops to reduce response time for complex query processing.

e A versatile algebraic database kernel. MonetDB is designed to accommodate
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different query languages through its proprietary algebraic-language, called the
MonetDB Assembly Language (MAL).

e High-performance features. MonetDB excels in applications where the database
can be largely held in main-memory or where a few columns of a broad relational

table are sufficient to handle individual requests.

2.8 Conclusion

In this chapter, we have examined some of the core concepts of Online Analytical
Processing and the Multi-Dimensional data model and explained how OLAP provides
meaningful analysis by summarizing the data from this model. We also discussed
the data warehouse architecture as a three tiered model, including a review of the
canonical Star Schema. We then presented the architectural model for the Sidera
platform, a robust parallel OLAP server designed for cluster applications. The server
consists of a publicly accessible frontend and a collection of identical backend servers.
The mapping from conceptual to logical data model was then discussed, along with an
example to illustrate the basic process. Finally, we looked at the mapGraph hierarchy
manager and the column-store database architecture that have been integrated into

Sidera during this research project.



Chapter 3

An OLAP-aware framework for
query authentication and
authorization

3.1 Introduction

Many organizations collect personal data during their social, medical or financial
activities in order to analyze and extract useful knowledge from it. Individuals have
strong concerns about this data. In fact nine out of ten respondents to a survey
by the Economist Intelligence Unit said they were worried that their financial data
would be compromised and then used to steal money from them, while eight out of
ten were worried their personal data would be used to target marketing campaigns
at them [42]. In order to reduce privacy concerns, various pieces of legislations have
been introduced, including the health Insurance Portability and Accountability Act
(HIPAA) enacted by the US. Congress and the GLBA (Gramm-Leach-Bliley Act, also
known as the Financial Modernization Act). As such, a failure to protect individual’s
privacy cannot only cause immense damage to an organization, but also lead to

lawsuits and regulatory fines resulting from violation of the law by which the data

33



34

was collected.

Adopting these protocols helps organizations convince individuals that their per-
sonal data is protected from intentionally being misused for profit. However, privacy
breaches may occur in various ways after personal data have been collected. The
data may be stolen by attackers that infiltrate the system through the exploitation of
existing vulnerabilities. Such outsider attacks can be addressed by defensive mech-
anisms such as firewalls, encryption and the like. A more challenging threat comes
from insiders. The insider knows what the most valuable data assets are, where to
look, and how to access them. For example, a financial services company may want
to analysis its customer’s records, which usually contain private personal data. With-
out sufficient security mechanisms safeguarding the data, the organization’s analysts
may obtain and later misuse the financial data, which leads to privacy breaches of
individuals and consequently causes damages to the organization’s interests.

To address these privacy concerns, organizations rely upon two control abstrac-
tions: policies and mechanisms. Security policies are high-level requirements that
determine which user, under what circumstances, may access specific data. This can
be accomplished by defining a series of conditions (restrictions and/or exceptions),
usually by the system administrator, for controlling and monitoring user access [50].
A security policy is determined primarily by the sensitivity of the data. If the data
is sensitive, a security policy should be developed to maintain tight control over ac-
cessing that data. For instance, within a hospital the pathological history of patients
may be considered as sensitive data. The policy could establish that only doctors
and nurse practitioners may access the pathological history of patients; any other

user should be restricted from accessing this data.
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Security mechanisms are responsible for imposing security policies. Briefly, the se-
curity mechanism translates a user’s access request, often in terms of a structure that
a system provides, and evaluates it against security policies. If the mechanism reveals
any violation of policy conditions, the access request is considered insecure and, as
a consequence, it will be denied. In fact, this is done in two phases: Authentication
and Authorization. Authentication provides a way of identifying a user, typically by
providing a valid user name and valid password (user’s credentials) before access is
granted. The user’s credentials are verified against a list of valid accounts provided
by the database administrator. If the credentials match, the user is granted access.
If they don’t, authentication fails and the access is denied.

Following authentication, the authorization process determines what the user can
actually access. Simply put, authorization is the process of enforcing policies: autho-
rizing a user to access only a subset of the database based on his/her permissions.
Together, authentication and authorization work in a synergistic relationship to pro-
vide an access control mechanism. The main purpose of the access control mechanism
is to prevent unauthorized access that could lead to a breach of security.

Many access control mechanisms have been proposed for traditional data manage-
ments systems (i.e., relational database systems) [62, 123, 96]. Some of them provide
only a way to restrict data access at coarse granularity, where “granularity” refers
to the size of the individual data items that can be authorized. For instance, one
might allow access to a table at the granularity of rows or columns. Others are more
restrictive and can support access control to an individual cell. The authors in [96] for
example, proposed a model for fine-grained authorization based on adding predicates

to authorization grants to support authorization at the level of row, column or cell.
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However, directly applying the access control techniques of relational databases
to the OLAP domain meets with two difficulties. First, the data model of OLAP
is different from the standard relational model used by relational databases. The
difference in the data models makes it difficult to express and enforce the security
requirements of OLAP. Second, access control in relational databases provides little
protection against malicious inferences of sensitive information to which OLAP is
more vulnerable (this problem will be discussed in Chapter 4).

We note that the distinct data model changes the logic or focus of the access
control mechanism. Specifically, OLAP is associated with a more abstract conceptual
model and includes dimensions of the multidimensional cube, hierarchies within each
dimension, and the aggregated cells. One can, of course, work at the level of tables,
columns, etc., but this is quite difficult if abstract ideas like hierarchies or dimensions
are spread throughout or across tables. Moreover, this sort of “traditional” approach
is very error prone since one must be extremely careful to manually restrict or include
all possible levels of aggregation.

For example, assume the simple star schema for a commercial enterprise DW
shown in Figure 3.1. The schema consists of one fact table “Sales” and three di-
mension tables: Store, Time and Product. The Sales table contains sales records
that become the objects of analysis, while the dimension tables contain descriptive
attributes for those records. Each dimension is associated with a distinct aggrega-
tion hierarchy. Stores, for instance, are organized in Country, Province, City and
Store_number. Now, suppose we have the following policy: the sales totals of the

individual provinces should not be accessed by the marketing employees.
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Figure 3.1: A simple star schema

According to the policy, the marketing employees should be restricted from ac-
cessing the provincial sales. However, even with this restriction, the employees can
in fact compute (or indirectly access) it by aggregating the sales of the lower levels
of the associated dimension hierarchy (City or Store_number in our example). This
is also applicable to specific values where it can be computed from the lower level
values.

Ideally, the system administrator should not be responsible for identifying and
manually ensuring that all implied levels/values are included in the policy. Instead,
we present in this chapter an OLAP-aware framework for query authentication and
authorization that is based on a query rewriting technique. The framework enforces
distinct data security policies that, in turn, may be associated with user populations
of arbitrary size. In short, our framework rewrites queries containing unauthorized
data access to ensure that the user only receives the data that he/she is authorized

to see. Rewriting is accomplished by adding or changing specific conditions within



38

the query according to a set of concise but robust transformation rules. In case of
query modification, the user is informed by a warning message that telling him /her
that the query is modified during security concerns. However, in this case, the user
should not know what he/she is restricted from, since this may be used as external
information in some case to infer the protected data [64].

Because our methods specifically target the OLAP domain, the query rules are
directly associated with the conceptual properties and elements of the OLAP data
model itself. A primary advantage of this approach is that by manipulating the con-
ceptual data model, we are able to apply query restrictions not only on direct access to
OLAP elements, but also on certain forms of indirect access. The primary objective is
to allow DB people to work at a higher level of abstraction — one that matches their
intuitive understanding of an OLAP database. Ideally, we would produce a system
that transparently propagates aggregation logic across hierarchy levels. In a sense,
this is conceptually similar to the purpose of SQL itself — we tell the DBMS what
we want to secure rather than telling it exactly how to provide the protection.

In addition, we present the data structures and algorithms utilized by the mech-
anisms that manipulate the hierarchical elements of the conceptual data model. The
performance of the transformation process is closely associated with these mecha-
nisms. To underscore the practical viability of the proposed methods, we include an
experimental section that highlights the processing overhead relative to the execution
costs of the underlying query.

The remainder of this chapter is organized as follows. In Section 3.2, we present
an overview of related work. Basic concepts related to our research are introduced in

Section 3.3. Our objectives and methodology are discussed in Section 3.4. The OLAP
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query rewriting model and its associated transformation rules, including query rep-
resentation and hierarchy processing, are then presented in detail in Section 3.5. The
implementation and performance issues are presented in Section 3.6. Experimental

results are discussed in Section 3.7, with final conclusions offered in Section 3.8.

3.2 Related Work

The need for strong security mechanisms has long been recognized in the context
of relational database management systems. A variety of Access Control techniques
have in fact been proposed to restrict access to the appropriate authorized users.
Each such technique aims to restrict users and/or processes to performing only those
operations (read, write, or execute) on the objects, tables or columns for which they
are authorized. For each such operation, the access controls either allow or disallow
that operation to be performed.

During the early stages of database security research, the primary focus was on
Discretionary Access Controls (DACs) [51]. The basic form of DAC authorization
consists of a triple (s, o, a), such that a set of security subjects s can execute actions
a on a set of security objects o. The earliest DAC model was the Access Matrix,
whereby authorization is represented in an |s |*|o | matrix in which rows are subjects,
columns are objects and the mapping of subject and object pairs results in the set
of rights the subject s has over the object o. A primary benefit associated with the
use of a DAC is that it can be implemented relatively easily. However, in practice,
large organizations give rise to extremely large access matrices. Maintaining matrix
contents can be difficult as the matrix needs to be updated with each update to the

subjects (e.g., addition of users) or objects (e.g., addition of columns).
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In the 1980’s the focus moved to Mandatory Access Controls (MACs) [11]. The
most common form of MAC is the multilevel security policy, which secures data by
assigning security labels to subjects and objects, and subsequently compares these
labels to the level of sensitivity at which a user is operating. The access controls in
MACs restrict subjects from accessing information labeled with a higher level. In
other words, a user can access the data in his/her security level or in a lower security
level(s) but not in a higher level(s). MAC is relatively straightforward from a design
perspective and is considered a good model either for systems in which confidentiality
is a primary access control concern, or in which the objects being protected are
valuable. That being said, MAC systems can also be expensive to implement due to
the necessity for applications to be rewritten to adhere to MAC labels and properties.
Also, MACs do not provide each user with a distinct authorization (i.e., access to only
their own data address), nor fine-grained least privilege.

An alternative approach was introduced in the 1990’s [101]. This new model is
known as Role Based Access Control (RBAC). RBAC consists of roles, permissions,
and users. Roles are created for various job functions, with permissions for specific
operations then assigned to these roles. Users are assigned particular roles, and
through those role assignments acquire permissions to perform particular operations.
The consolidation of access control for many users into a single role entry allows for
much easier management of the overall system and much more effective verification
of security policies. However, in large systems, role inheritance — and the need
for finer-grained customized privileges— makes administration potentially unwieldy.
Additionally, it is inappropriate for multi-dimensional data modeling due to the fact

that it is based on relational concepts (i.e., tables, columns, rows, and cells), and
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thus, cannot be implemented directly on top of the multi-dimensional modeling.

A number of security models that restrict data warehouse access have also been
proposed in the literature [46, 61, 98, 13]. Some of them focus strictly on the design
process. Extensions to the Unified Modeling Language to allow for the specification
of multi-dimensional security constraints has been one approach that has been sug-
gested [46]. In fact, a number of researchers have looked at similar techniques for
setting access constraints at an early stage in the OLAP design process [12, 60].
Others have developed security requirements for the entire Data Warehouse life
cycle [65, 82, 127]. In this case, they first propose a model (agent-goal-decision-
information) to support the early and late requirements for the development of DWs,
then extend that model to capture security aspects in order to prevent illegitimate
attempts to access the warehouse. Such models have great value of course, partic-
ularly if one has the option to create the warehouse from scratch. That being said,
their focus is not on authentication and authorization algorithms per se, but rather on
design methodologies that would most effectively use existing technologies, such as,
Model Driven Architecture (MDA) and the standard Software Process Engineering
Metamodel Specification (SPEM) from the Object Management Group (OMG).

Other researchers have attempted to augment the core Database Management
System (DBMS) with authorizations views [63, 98, 99, 130]. Typically, alternate views
of data are defined for each distinct user or user group. A query () is inferred to be
authorized if there is an equivalent query )’ which uses only authorized views. The
end result is often the generation of a large number of such views, all of which must
be maintained manually by the system administrator. Clearly, this approach does not

scale terribly well, and would be impractical in a huge, complex DW environment.
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Query rewriting has also been explored in DBMS environments in a variety of
ways, with search and optimization being common targets [31]. Beyond that, however,
rewriting has also been utilized to provide fine grained access control in Relational
databases [69, 96]. To answer a query @) in [69], masked versions of related tables are
generated by replacing all the cells that are not allowed to be seen with NULL. After
that, @ is evaluated as a normal query on the masked versions of the tables. This
approach does not leak information not allowed to be seen, but it returns incorrect
results when a query contains any negation, as expressed using the keywords MINUS,
NOT EXISTS or NOT IN [123].

In the Truman model [96], on the other hand, the database administrator de-
fines a parametrized authorization view for each relation in the database. Note that
parametrized views are normal views augmented with session-specific information,
such as the user-id, location, or time. The query is modified transparently by sub-
stituting each relation in the query by the corresponding parametrized view to make
sure that the user does not get to see anything more than his/her own view of the
database. In this model, the user can also write queries on base relations by plugging
in the values of session parameters such as user-id or time before the modified query
is executed.

The query rewriting technology has also been adopted in some commercial databases
for fine-grained access control. For example, Oracle Virtual Private Database (VPD) [118§]
limits access to data by appending a predicate clause to the user’s query. Here, the
security policy is encoded as policy functions defined for each table. These functions
are used to return the predicate, which is then appended to the query. This process

is done in a manner that is entirely transparent to the user. That is, whenever a user
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accesses a table that has a security policy, the policy function returns a predicate,
which is appended to the user’s query before it is executed. However, it is difficult to
write predicates involving the case of self-joins. For instance, Oracle does not allow
defining policies on a table that would access the table itself as this would create
an infinite loop [90]. As demonstrated in [102], in complex cases the user may be
authorized to view certain data, but a correct query is transformed into an invalid
one by attaching the predicate. Moreover, writing policy functions corresponding to
business policies is a lot of work since we have to write a function for each protected
data item.

Ultimately, we note that the mechanisms discussed above (e.g., Oracle’s VPD)
are not tailored specifically to the OLAP domain and, as such, either have limited
ability to provide fine grained control of the elements in the conceptual OLAP data

model or would make such constraints exceedingly tedious to define.

3.3 Basic Concepts

Before discussing the details of our authorization framework, we first introduce a

number of basic concepts that are relevant to our research.

3.3.1 Data Cube

As introduced in Chapter 2, a data cube is composed of a series of d dimensions —
sometimes called feature attributes — and one or more measures [58]. The dimensions
can be visualized as delimiting a d-dimensional hyper-cube, with each axis identifying
the members of the parent dimension (e.g., the days of the year). Cell values, in turn,

represent the aggregated measure (e.g., sum) of the associated members. Figure 3.2
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Figure 3.2: A Simple three dimensional data cube

provides an illustration of a very simple three dimensional cube on Store, Time and
Product. Here, each unique combination of dimension members represents a unique
aggregation on the measure. For example, we can see that Product OD923 was

purchased 78 times at Store MQ15 in January (assuming a Count measure).

3.3.2 Dimension Hierarchy

In the discussion that follows, we shall closely follow the dependency lattice defined
in [53]. The attributes of each dimension are partially ordered by the dependency
relation < into a dependency lattice. For instance, referring to Figure 3.2, we see that
Stores are organized in Country — Province — City groupings. These attributes
are partially ordered into Store Number < City =< Province =< Country within
the Store dimension. The Store Number is the lowest or base level in the Store
dimension. In practice, data is physically stored at the base level so as to support

run-time aggregation to coarser hierarchy levels. More formally, the dependency
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lattice is expressed in Definition 1.

Definition 1. A dimension hierarchy H; of a dimension D;, can be defined as H;
= (Lo, Ly, ...,L;) where Ly is the lowest level and L; is the highest. There is a
functional dependency between Ly_1 and Ly such that L,y =< Ly, where (0 < h < j).

We note that there are in fact many variations on the form of OLAP hierar-
chies [78] (e.g., symmetric, ragged, non-strict). Regardless of the form, however,
traversal of these aggregation paths — typically referred to as rollup and drill down
— is perhaps the single most common query form. It is also central to the techniques

discussed in this chapter.

3.3.3 Authorization Objects

Authorization objects define those elements that are not allowed to be accessed by
users. In relational settings, objects can be tables, records of a table, or fields of a
record. An analogous representation can be defined on data cubes along one or more
dimensions. Objects can also be associated with any vertical portion of the data
cube. Specifically, one can restrict one or more dimensions or dependency lattices,
thus giving additional opportunities for finer authorization. Further details are given

in Section 3.5.3.

3.3.4 Access Control Policies

Access Control Policies restrict — per user— any portion of the data cube (defined
as Authorization Objects) by specifying for each user a set of restrictions on that
object. Policies can be defined not only on dimensions but also on hierarchies, or on
any level within each hierarchy. This can divide a data cube vertically or horizontally

depending on how the policy is actually defined. The partitioning is considered to
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be vertical if the policy is created on a dimension, and horizontal if it is created on a
specific hierarchy level value. Of course, in some cases, the authorization policy can be
more complex and enforced at a fine-grained level (cell value). For ease of exposition,
and without loss of generality, in the rest of this chapter we restrict authorization to
only one cube.

It is also possible that an exception to an authorization policy is required. One
can set a policy to restrict access to a specific data object, and also define exceptions
to specify a subset of the object that may be accessed. Suppose we have the following
policy for instance: all users except local administrators should not know the sales
of stores. We note that the exception should be a subset of the restriction. In our

example, only administrators are permitted to know the sales of stores.

3.4 Objectives and Methodology

3.4.1 Objectives

In this chapter, we describe an OLAP-aware framework for query authentication and
authorization. The framework is based on a query rewriting technique that enforces
distinct security policies that, in turn, may be associated with user populations of
arbitrary size. In brief, our framework relies on a set of structures and rules to dynam-
ically transform user queries that contain unauthorized data access into equivalent
queries that can be executed against the original data.

The primary objectives of our approach are:

e To enforce privacy policies without any modification to the existing data cubes
and/or without creating any additional materialized views. Doing so would

allow for relatively simple integration into existing systems.
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e To define an OLAP-centric authentication and authorization database for stor-
ing, managing, and mapping privacy policies and users permissions to the con-

ceptual properties and elements of the data cube model itself.

e To apply query restrictions not only on direct access to data cube elements,
but also on certain forms of indirect access, while ensuring its availability to

legitimate users.

e In cases where the results of rewritten queries may differ from those of original

query, the user should be notified.

3.4.2 The Methodology

The methodology employed in pursuing these objectives requires a clear understand-
ing of the tradeoffs inherent in this domain. Ultimately, the key technical challenge
is to balance utility and privacy. Perfect privacy (but no utility) can be achieved by
refusing to answer any query that breach as the policy; perfect utility (but no privacy)
can be achieved by answering all queries about the data exactly. In the middle, a
sufficient security model should balance the competing goals of privacy and utility. It
should return as much information as possible, while satisfying authorization policies.

As such, our general approach builds upon a series of Authorization Rules to
decide whether user queries should be rejected, executed directly, or transparently
and dynamically transformed. In the latter case, we identify a set of minimal changes
that would allow queries to proceed against a subset of the requested data. The rules
are classified into four classes depending on the restricted data level and the existence
of exceptions, as follows: (i) The first class is considered when a user requests access

to protected coarse level data with no exception(s); (ii) The second class is considered
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for the complementary case (i.e., for protected coarse level data with exception(s));
(iii) The third class is applied when a request access protected fine-grained values
(i.e., cell value) with exception(s); (iv) Finally, the last class is applied to protected
fine-grained values without exception(s).

To demonstrate that the modified query is secure (i.e., returns only the permitted
data), we then have to show that the modified query is equivalent to the initial query,
minus the possible restrictions. Formally, for data objects D involved in a query
(¢ whose the modified version is Qm, @m(D) = Qc(D - O) should be true for the
authorization object O (see Definition 4).

Because of the maturity of the database domain in general, it is important to
ground our approach with a robust experimental evaluation. To this end, we will
provide a working prototype. Figure 3.3 describes the prototype components and the
correlations between them. In our prototype, the system administrator is responsible
for defining security policies and users accounts (identified by users credentials), which
are stored in a centralized authentication and authorization database (i.e., the Au-
thentication database). Once the query is received, the query is parsed and converted

into a simplified data structure (i.e., the Query Object).

3.5 Authentication and Authorization Modules

In this section, we will describe our general framework, giving a detailed description of
its two primary components (Authentication and Authorization) and how they
are associated with other system components. This work has been undertaken as
part of a larger experimental OLAP-specific DBMS server called Sidera. Sidera is a

comprehensive prototype of a fully parallelized OLAP server. However, it currently
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Figure 3.3: The prototype components

does not provide any form of access control. The work described in the remainder of

this thesis provides such a framework.

3.5.1 The Authentication Module

The authentication component is responsible for verifying user credentials against a
list of valid accounts. These accounts are provided by the system administrator and
are kept — along with their constituent permissions — in the Authentication DB. The
Authentication DB consists of a set of tables (users, permissions, and objects)
that collectively represent the meta data required to authenticate and authorize a
user. For example, the users table stores basic user credentials (typically a user
name and password pair), while the permissions table records the fact that a given
user(s) may or may not access certain controlled objects. Figure 3.4 illustrates a

slightly simplified version of the Authentication DB schema. In the current prototype,
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storage and access to the Authentication DB is provided by the SQLite toolkit [107].

SQLite is a small, open source C language library that is ideally suited to tasks that

require basic relational query facilities to be embedded within a larger software stack.

As mentioned in Chapter 2, the user’s query is represented in XML format in

our system. In order to properly authenticate the query, it must first be parsed and

decomposed into its algebraic components. In fact, the parsing is done in two phases.

First, the DOM parser utility is used to produce a DOM tree that represents the raw

contents of the XML document. In this phase, the parser not only builds the tree

but also verifies that the received query has valid syntax corresponding to the DTD

query grammar — the grammar itself is depicted in Appendix C. An XML document

is considered as valid if it contains only those elements defined in the DTD. If the

query is syntactically valid, the query proceeds to the second phase. Otherwise, a
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parsing error message is returned to the user.

As an example, suppose a user John sends the query given in Appendix C that
summarizes the total sales of Quebec’s stores in 2011. The corresponding node tree is
shown in Figure 3.5. We can easily see that the content of this parse tree is equivalent
to the original query. Specifically, it is executed against the cube Furniture Sales and
consists of two OLAP operations (Projection and Selection). The projection operation
returns the dimension attribute Customer.Province, as well as one measure attribute
— Sales. The Selection operation filters the returned information via two conditions
on the dimensions Customer (i.e., Province = Quebec) and Time (Year = 2010). The
user name “John” and the password “J86mn” represent the user credentials.

In the second phase of the process, the DOM tree is converted into a simplified
data structure. This “Query Object” is cached in memory and contains all the query
elements (i.e., returned attributes, query conditions along with its dimensions and
attributes, and user credentials). The purpose of this final conversion process is to

transform the user query into a simple, minimal data structure that represents the
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Figure 3.6: Authentication and Authorization Framework

query in a compact but expressive form.

Once the parsing is completed, the Authentication module extracts the user cre-
dentials to verify them against a valid account stored in the Authentication DB. If the
verification is successful, the DBMS proceeds with the authorization process. Other-
wise, the query is rejected and the user/programmer is notified. The upper part of

Figure 3.6 depicts the processing logic of the Authentication module.
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3.5.2 The Authorization Module

The second — and more significant — phase is authorization, the process of deter-
mining if the user has permission to access specific data elements. Specifically, when
a user requests access to a particular resource, the request is validated against the
permitted resource list assigned to that user in the Authentication database. If the
requested resource produces a valid match, the user request is allowed to execute as
originally written. Otherwise, the query will either be rejected outright or modified
according to a set of flexible transformation rules. To decide if the query will be
modified or not, we rely on a set of authorization objects against which the rules
will be applied. The rules themselves will be discussed in Section 3.5.4. The lower
portion of Figure 3.6 graphically illustrates the Authorization module and indicates

its interaction with the Authentication component.

3.5.3 Specifying Authorization Objects

In order to make authorization decisions, we must first define the authorization ob-
jects. Note that the objects in the OLAP domain are different from those in the
relational context. In a relational model, objects include logical elements such as
tables, records within those tables, and fields within each record. In contrast, OLAP
objects are elements of the more abstract conceptual model and include the dimen-
sions of the multi-dimensional cube, the hierarchies within each dimension, and the
aggregated cells (or facts). In practice, this changes the logic or focus of the authen-
tication algorithm. For instance, a user in a relational environment may be allowed
direct access to a specific record (or field in that record), while an OLAP user may

be given permission to dynamically aggregate measure values at/to a certain level of
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detail in one or dimension hierarchies. Anything below this level of granularity would
be considered too sensitive, and hence should be protected. In fact, the existence of
aggregation hierarchies is perhaps the most important single distinction between the
authentication logic of the OLAP domain versus that of the relational world.

We note that in the discussion that follows, we assume an open world policy,
where only prohibitions are specified. In other words, permissions are implied by
the absence of any explicit prohibition. We use the open world policy mainly for
practical reasons, as the sheer number of possible prohibitions in an enterprise OLAP
environment would be overwhelming.

Before discussing the authorization rules themselves, we first look at a pair of
examples that illustrate the importance of proper authorization services in the OLAP
domain. In the discussion that follows, we assume the Store-Product-Time data cube
of Figure 3.2 where the Store dimension hierarchies include Store_Number < City <
Province < Country. We begin with the definition of a policy for accessing a specific

aggregation level in a data cube dimension hierarchy.

Example 1. An employee, Alice, is working in the Montreal store associated with
the data cube. The policy is simple: Alice should not know the sales totals of the
individual provinces.

Clearly, Alice is prohibited from reading or aggregating data at the provincial level
in the Store dimension hierarchy. However, in the absence of any further restrictions,
it would still be possible for her to compute the restricted values from the lower
hierarchies levels (e.g., City or Store_ZNumber). Ideally, the warehouse administrator
should not be responsible for identifying and manually ensuring that all implied levels
be included in the policy. Instead, our model assumes this responsibility and can, if

necessary, restrict access to all child levels through the use of the Below function. As
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the name implies, this function returns a list consisting of the specified level L; and
all the lower levels of the associated dimension hierarchy. Figure 3.7(a) illustrates
an example using a Below(Province) instantiation. Here, all levels surrounded by the
dashed line are considered to be Authorization Objects, and thus should be protected.
The formalization of the Below function is given by Definition 2.

Definition 2. In any dimension D; with hierarchy H;, the function Below(L;) is
defined as Below(L;) ={L; \J L; : such that L; < L; holds}, where L; is the prohibited
dimension level.

As shown in Example 1, a policy may restrict the user from accessing any of the
values of a given level or levels. However, there are times when this approach is too
coarse. Instead, we would like to also have a less restrictive mechanism that would
only prevent the user from accessing a specific value within a level(s). For instance,
suppose we want to alter the policy in Example 1 to make it more specific. The new

policy might look like the following:

Example 2. Alice should not know the sales total for the province of Quebec.

In Example 2, we see that Alice may view sales totals for all provinces other than

Quebec. However, Alice can still compute the Quebec sales by summing the sales of
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individual Quebec cities, or by summing the sales of Quebec’s many stores. In other
words, she can use the values of the lower levels to compute the prohibited value.
Hence, all these values should also be protected. To determine the list of restricted
member values, our model adds the Under function. Figure 3.7 (b) provides an
example using Under(Quebec). Here, all the values surrounded by the dashed line
should be protected.

Finally, it is also possible that exceptions to the general authorization rule are
required. For instance, Alice should not know the sales of stores in the province of
Quebec except for the stores in the city/region she manages (e.g., Montreal). Fig-
ure 3.8 graphically illustrates this policy. In this case, the circled members represent
the values associated with the exception that would, in turn, be contained within a
larger encapsulating restriction. Note that a user may have one or more exceptions on

a given hierarchy. The formalization of the exception object is given in in Definition 3.
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Selection:

Product .Name, Store.province, Sum(sales)
Condition:

Store.Province = “Quebec’ AND

Time.Year = 2011
From:

Sales

Listing 3.1: A Query in Simple Form

Definition 3. For any prohibited level L;, there may be an Exception E such that E
contains a set Ev of values belonging to Under(L;). That is, Ev € values of Under(L;).

To summarize, authorization objects consist of the values of the prohibited level
and all the levels below it, excluding zero or more exception value(s). We formalize

the concept of the Authorization Object in Definition 4.

Definition 4. An Authorization Object O = {{v} : {v} = values of Under(L;) - Ev},
where L; 1s the prohibited level, and Ev are the exception values.

3.5.4 Authorization Rules

We now turn to the query authorization process itself. As noted, pre-compiled queries
are encoded internally in XML format. For the sake of simplicity (and space con-
straints), we will depict the received queries in a more compact form in this section.
For example, suppose the simple query in Listing 3.1 that is divided into three el-
ements: the SELECTION element, the CONDITION element, and the FROM element.
The SELECTION element lists all attributes and measures the user wants to retrieve.
The CONDITION element, in turn, limits or filters the data we fetch from the cube.
Finally, the FROM element indicates the cube from which data is to be retrieved.

In the discussion that follows, we will assume the existence of a cube corresponding

to Figure 3.2. That is, the cube has three dimensions (Product, Store, and Time).
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Dimension hierarchies include Product_Number < Type =< Category for Product,
Store_Number < City < Province < Country for Store, and Month < Year for Time.
Selection operations correspond to the identification of one or more cells associated
with some combination of hierarchy levels.

One of the advantages of building directly upon the OLAP conceptual model and
its associated algebra is that it becomes much easier to represent, and subsequently
assess, authorization policies. Specifically, we may think of policy analysis in terms
of Restrictions, Exceptions, and Level Values that form a bridge between the algebra
and the Authentication DB. There are in fact four primary policy classes, as indicated

in the following list:
1. L; Restriction + No Exception
2. L; Restriction 4+ Exception
3. Restriction on a specific value P of level L; + no Exception
4. Restriction on a specific value P of level L; + Exception

As mentioned, the query must be validated before execution. If validation is
successful, then it can be executed as originally specified. Otherwise, the query
is either rejected or rewritten according to a set of transformation rules. In the
remainder of this section, we describe the four policy classes and the processing logic

relevant to each.

Policy Class 1: L; Restriction + No Exception

If a user is prohibited from accessing level L; and the user has no exception(s), then

the authorization objects consist of the values of level L; and all the levels below it.
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Selection :
Store.City, Product.Type, SUM(sales)
Condition:
Time.year = 2011 AND
Store.Country = ’Canada’ AND
Product . Category = ’Furniture’
From:
Sales

Listing 3.2: Rule 1 example

In short, this means that if the user query specifies level L; or any of its children in
the SELECTION element, then the query should simply be rejected. Moreover, if any
value belonging to the L; level or any of its children is specified in the CONDITION
element of the query, the query should also be rejected. The formalization of the rule

and an illustrative example is given below.

Rule 1. If a user is prohibited from accessing the values of level L;, and there is no

exception, then the Authorization Objects (O) = {v : v € Below(L;) }.

Example 3. If Alice sends the query depicted in Listing 3.2, which summarizes the
total sales of Canada’s stores in 2011 for furniture products, and she is restricted
from accessing/reading provincial sales, the query should be rejected.

Why is this query rejected? Recall that Alice is restricted from accessing provincial
sales. Consequently, we see that an implicitly prohibited child level (i.e., City) is a

component of the SELECTION element. So, if we allow this query, Alice can in fact

compute the provincial sales by summing the associated city sales.

Policy Class 2: L; Restriction + Exception

In this case, the authorization objects that should be protected consist of the prohib-

ited level value and all values below it, ezcept of course for the value of the exception
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Selection :

Store.province , Product.Type, SUM(sales)
Condition:

Time.year = 2011 AND

Store.City = "Montreal > AND

Product . Category = ’Furniture’
From:

Sales

Listing 3.3: Rule 4 example

or any value under it. Let us first formalize this case, before proceeding with a detailed

description.

Rule 2. If a user is restricted from accessing the values of level L;, and the user
has an exception E, then the Authorization Objects (O) = {v : v € Below(L;) -
Under(Ev) }.

As such, when a user is prohibited from accessing the L; level — excluding the
exception values — then the query can be (i) allowed to execute, or (ii) modified

before its execution. Let’s look at these two cases now.

Rule 3. The query will be allowed to execute without modification if the prohibited
level value Lv or any of its more granular level values in (Below(L;)) exists in the
CONDITION element AND is equal to the exception value (Ev) or any of its implied

values in (Under(Ev)).

Example 4. Suppose that we have the following policy: Alice is restricted from ac-
cessing provincial sales except the sales for Canadian provinces. If Alice resubmits
the query in Listing 3.1, it will now be executed without modification because the
prohibited value (e.g., Quebec) is under the exception value (e.g., Under(Canada)).

But what if Alice has an exception value only for a more detailed child level of L;

(e.g., the city of Montreal)? In this case, if Alice submits the previous query, it should
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now be modified by replacing the restricted value (e.g., Quebec) in the CONDITION
element with the exception value (e.g., Montreal). In this example, Alice gets only
the values that she is allowed to see. The modified query is depicted in Listing 3.3.

Rule 4 gives the formalization of this case.

Rule 4. If the prohibited level value Lv or any of its more granular level values
(Under(Lv)) exists in the CONDITION element, and the exception value belongs to
this set of values, then the query should be modified by replacing the prohibited value

with the exception value.

In addition to the scenario just described, the query can also be modified by
adding a new predicate to the CONDITION element when the prohibited level or any

of its child levels exists in the SELECTION element only.

Rule 5. If the prohibited level Lv or any of its more granular levels (Below(L;))
exists in the SELECTION element only, then the query should be modified by adding

the exception E as a new predicate to the query.

Example 5. Suppose that Alice sends the query depicted in Listing 3.4. In this case,
the query will be modified by adding a new predicate (i.e., Store. Province = ‘Quebec’),
because the prohibited level (i.e., City) exists in the SELECTION element. After the
modification, Alice will see only the cities of Quebec. The modified query is depicted
in Listing 3.5.

The complete processing logic for Policy Class 2 (i.e., Rule 3, Rule 4, and Rule 5)
is encapsulated in Algorithm 1. Essentially, the algorithm takes the prohibited level
L; and the exception E as input and produces as output an authorization decision to

execute or modify the query. The process is divided into two main parts or conditions.

In the first case, we are looking at situations whereby the prohibited level L, exists
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Selection:

Store.City , Product.Type, SUM(sales)
Condition:

Time.Year = 2011 AND

Product.Type = ’'Indoor’
From:

Sales

Listing 3.4: Simple OLAP Query 2

Selection:
Store.City , Product.Type, SUM(sales)
Condition:
Time.Year = 2011 AND
Product.Type = ’'Indoor’ AND
Store.Province = ’Quebec’
From:
Sales

Listing 3.5: Rule 5 example

in the query CONDITION element. Here, the query can either be allowed to execute
directly or further modified. It is executed directly if the prohibited value Lv is equal
to the exception value Fv or any value under Fv. However, if the exception value
Ev is equivalent to any value under Lwv, then the query is modified by replacing the
prohibited level with the exception level AND the prohibited level value with the
exception value.

In the second case, we target the scenario whereby the prohibited level L; exists
in the SELECTION element only. Here, we modify the original query by adding the

exception F as a new condition.
Policy Class 3: Restriction on a specific value P of level L; + no Exception

We now turn to the classes in which specific values at a given level are restricted, as

opposed to all members at a given level. We begin with the simplest scenario.
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Algorithm 1 The procedure of Policy Class 2

Input: The prohibited level L; and the exception FE.
Output: Decision to directly execute or modify.

1: Let Ev = F value

2: for Each level L; € Below(L;) do

3:  if L; exists in the query CONDITION element then

4: Let Lv = L; value

5: if Lv == Ev OR Lv € Under(Ev) then

6: Allow the query to execute without modification

7 else if Ev € Under(Lv) then

8: Replace E by L;, and Ev by Lv, then inform the user, and allow the query

to execute

9: end if

10:  else if L; exists only in the query SELECTION element then

11: Add F as new condition to the user query, inform the user, and allow the
query to execute

12:  end if

13: end for

Rule 6. If a user is prohibited from accessing a specific value P of level L;, and the
user has no exceptions, then the Authorization Objects(O)= {v : v € P U Under(P)

where P is the prohibited value}.

Here, the prohibited value P, or some value under P, exists in the query CON-
DITION element. As per Rule 6, the query should simply be rejected. But what if
the level of the prohibited value L; exists in the SELECTION element only? In this
case, the query should be modified by adding a new predicate obtained from the

authorization policy to the query CONDITION element as formalized in Rule 7 below.

Rule 7. If the prohibited level L; or any of its more granular levels (Below(L;))
exists in the SELECTION element only, then the query should be modified by adding

a new predicate to the query CONDITION element.

Now, let’s look at the following example:
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Selection :

Store . City , Time.Month, SUM(sales)
Condition:

Time.year = 2011 AND

Product . Type = ’Outdoor’
From:

Sales

Listing 3.6: Simple OLAP Query 3

Selection:
Store . City , Time.Month, SUM(sales)
Condition:
Time.year = 2011 AND
Product . Type = ’Outdoor’ AND
Store.Province != "Quebec’
From:
Sales

Listing 3.7: Rule 7 example

Example 6. Suppose that Alice is restricted from accessing Quebec’s sales. If Alice
sends the query depicted in Listing 3.6, the query should be modified as shown in
Listing 3.7.

The associated query summarizes the sales of cities in 2011 for outdoor products.
As noted, the SELECTION element contains an implicitly prohibited child level (City),
so instead of rejecting the query we modify it by adding (Store.Province != ‘Quebec’)
as a new predicate to the condition. Note that the new predicate applies the au-

thorization policy. In this example, it excludes all the sales cities of the province of

Quebec which are not allowed for Alice.

Policy Class 4: Restriction on a specific value P of level L; + Exception

Finally, we add an exception to the queries described by Class 3. Here, the relevant

authorization objects consist of the prohibited value (P), minus the exception values.
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Selection:
Store.City, Product.Type, SUM(sales)
Condition:
Store.City = *Montreal’ AND
Product . Type = ’Indoor’ AND
Time.Year = 2011
From:
Sales

Listing 3.8: Rule 9 example

Rule 8. If a user is restricted from accessing a value P of level L;, and the user has
an exception E, then the Authorization Objects(O)= {v : v € (P U Under(P)) - (Ev

U Under(Ev))} where P is the prohibited value and E is the exception.

In this scenario, the query can either be allowed to execute or modified according

to the following associated rules.

Rule 9. The query will be allowed to execute, if the prohibited value P exists in the
CONDITION element AND is equal to the exception value FEv or any value

Under(Ewv).

Example 7. Suppose that Alice is restricted from accessing the sales of Canadian
provinces, except for the sales of Quebec. If Alice sends the Query depicted in List-
ing 3.8, the query will be allowed to execute since the prohibited value (i.e., Montreal)
is under the exception value (i.e., Quebec).

Rule 10. If the prohibited value level L; exists in the query SELECTION element
only, the query will be modified by adding the exception E as a new predicate. In

principle, this rule is similar to Rule /.

Rule 11. When P exists in the query CONDITION element AND Ev is under P, the
query is modified by replacing the prohibited level L; by the exception level E AND

the prohibited level value P by the exception value Fwv.
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Algorithm 2 illustrates the full processing logic for Policy Class 4 (Rule 8, Rule 9,
Rule 10, and Rule 11). In short, the authorization module takes the prohibited level
value P and the exception F as input and gives as output an authorization decision
to execute or modify the query. The algorithm is divided into two main parts. The
first component targets the case whereby the prohibited value P exists in the query
CONDITION element. Here, the query can be modified or executed directly. The
query is allowed to execute directly if the prohibited level value P is equal to the
exception value Fv OR P belongs to the values Under(Ev). Conversely, the query is
modified by replacing the condition that contains the prohibited value by a new one
containing the exception if the exception value Ev belongs to the set of values under
P.

In the second case, a new condition (exception F) is added to the query CONDI-
TION element when the prohibited level P or any level below it Below(P) exists in

the SELECTION element only.

3.6 Implementation and Performance Issues

To implement the Below and Under functions, a number of additional algorithms and
data structures are needed in order to efficiently manipulate dimension hierarchies and
to retrieve attribute values. These structures are initialized once the server receives a
query and are subsequently exploited by the DBMS engine during query resolution.
Below, we describe the core structures, along with the methods required to implement

the associated functions efficiently.
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Algorithm 2 The procedure of Policy Class 4

Input: The prohibited value P of level L; and the exception FE.
Output: Decision to directly execute or modify.

1: Let Ev = F value

2: for Each level L; € Below(L;) do

3:  if L; exists in the query CONDITION element then

4: Let Lv = L; value

5: if (Lv == P) AND (P € Under(Ev)) then

6: Add E as a new condition instead of the condition that contains L;, inform
the user, and allow the query to execute

7 else if (Lv € Under(P)) AND (Lv == Ev OR Ev € Under(Lv)) then

8: Allow the query to execute without modification

9: end if

10:  else if L; exists only in the query SELECTION element then

11: Add E as new condition to the user query, inform the user, and allow the

query to execute
12:  end if
13: end for

3.6.1 The Implementation of the Below Function

We begin by giving a brief description of the primary data structures (i.e., mapGraph)
utilized during function execution. The mapGraph [41] was discussed in Chapter 2;
however, we briefly review the relevant concepts here. The mapGraph builds upon
the notion of dimension hierarchy linearity [83]. We encode a hierarchical dimension
table (for example called dim) by building a mapping table that is sorted by Ay,
A1, ..., Ay, where A; is the base attribute in the hierarchical dimension. For each
hierarchical attribute level Att in dim, we change the schema of dim by adding a
new column called AttID. The values of AttID are created as consecutive integer
IDs. Specically, we associate the consecutive distinct values for each column Att
with consecutive integer IDs. Finally, a look-up data structure is built based on these

integers in order to support efficient real time transformations between arbitrary levels



68

[Attribute (Store Number) ]

—_—
—» Level 1 (City)
City MapGraph
2 | Timmins

The maximum — 6 | Mantreal
encoaded value

Laval
11 | Sherbrock

s | 14 | Juneau

L— Level 2 (Province)
Pravince MapGraph
2 Ontario
11 | Quebec
14 | Alaska
L Level 3 (Country)
Country MaptGraph
11 Canada
14 USA

Figure 3.9: The mapGraph of the Store dimension

of the dimension hierarchy. Figure 3.9 provides an illustration of this structure for
the Store dimension with the hierarchy Store_Number, City, Province, and Country.

Referring to the Store mapGraph, each record consists of an integer value that
represents the corresponding maximum encoded value in the primary attribute (i.e.,
Store_ZNumber) and a native attribute representation (i.e., values of attributes Types
of Store dimension). For instance, the maximum encoded value for the City of Mon-
treal is 6, which means that Montreal has four stores, encoded with the numbers 3
through 6. Using this structure, one can perform a mapping from the most detailed
encoded level value to the corresponding sub-attribute value (i.e., attribute level val-
ues), and vice versa. In the Store dimension, Store_Number = 7 is located in City = 3

(Laval) and, as a consequence, it is located in Province = 2 (Quebec) in the Country

= 1 (Canada).
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Performance and storage requirements for the mapGraph are quite impressive.
Worst case query time is bounded as O(log n), where n is the cardinality of the
destination level of the dimension hierarchy. Moreover, the collective size of a d-
attribute mapGraph depends on the cardinality of non-base levels exclusively, which
are very small compared to the base level. In practice, this would likely be no more
than a few dozen kilobytes for large data cube problems.

Now suppose we have the query in Listing 3.9 and the following policy: the mar-
keting users should not know the sales totals of the individual provinces. In order
to make the authorization decision (execute, modify, or reject the query), we have
to specify the authorization objects. To this end, the returned attributes and the
query conditions in the Selection and Where clauses should be inspected against the
policy. We note that the query returns the sales of individual cities, which can be
used to compute the restricted values. However, we need an automated way to de-
termine if a restricted level value can be computed from another level. The Below
function is responsible for that. When it is invoked, it takes the prohibited level (i.e.,
Store.Province in our example) as an argument and uses the mapGraph to retrieve
a list consisting of the prohibited level and all the lower levels of the associated di-
mension hierarchy (i.e., Province, City, and Store_Number). Then, according to the
proposed Rules, one can determine if the query is safe to execute or not. In this
example, according to Rule 1 (i.e., the query should be rejected if a restricted level
or any of its children exists in the query), the query should be rejected because one

of the prohibited levels (Store.City) exists in the returned list.
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Select Product.Name, Store.City, Sum(sales)

From Product, Store, Sales

Where Product.product_ID = Sales.product_ID
AND Store.store_ID = Sales.store_.ID AND
Store.Province = ’'Quebec’ AND
(Product.Name = ’LNx’ AND

Product. price >= 24000)
Group by Product.Name, Store.city
Order by Product.Name, Store.city;

Listing 3.9: Simple SQL OLAP Query

3.6.2 The Implementation of the Under Function

The Under function is invoked when the policy is less restrictive, as is the case in the
following situation: an employee Alice should not know the sales total for the country
of Canada. Alice is restricted from accessing specific value (the sales of Canada).
Suppose that Alice sends the query in Listing 3.9, assuming this less restrictive policy.
We note that the user query has two conditions, with the second condition related
to the policy (i.e., Store.Province = ‘Quebec’). The condition filters the sales for the
province of Quebec. However Alice should not know the sales total for the country
Canada, so we have to determine if the province of Quebec is in Canada or not (i.e.,
if Quebec is Under Canada). By using the Under function, one can retrieve the
encoded values of Canada and Quebec from the mapGraph structure, then find if
there is an intersection between them. If so, we say that Quebec is Under Canada.
In our example, Canada has Stores with encoded numbers 1 through 11, and Quebec
has Stores of encoded numbers 3 through 11. Clearly, there is an intersection between
them. According to Rule 6, the query should be rejected because Alice attempts to

access a restricted data.
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As noted, the mapGraph is very useful when hierarchical attribute levels are in-
volved in the OLAP query. However, in some cases, it is a non-hierarchical at-
tribute that is restricted (e.g., the Name or Price attributes of Product). In this case,
we need another structure that deals with non-hierarchical attributes. The FastBit
[128] bitmap index structure is used to create a very efficient compressed bitmap
index. Fastbit uses the Word-Aligned Hybrid compression mechanism to compress
the bitmap indexes [128]. This compression scheme produces a FastBit compressed
index that is up to 10 times faster than the compressed bitmap index (run-length
encoding) implementation from popular commercial database management (DBMS)
product (i.e., Microsoft and Oracle). FastBit compressed bitmap indexes for each
non-hierarchical attribute also provide very efficient searching and retrieval opera-
tions compared with other techniques such as the B+ tree or B* tree.

Given FastBits performance and its open source license, we chose to integrate the
FastBit library with our framework. This integration allows us to easily find those
records that contain specific values on a given attribute in the dimension. For exam-
ple, suppose the Product dimension has four records (i.e., four products), numbered
1 through 4, and a non-hierarchy attribute (Product Price) is added to the Product
dimension attributes. The bitmap index for the Product Price attribute is illustrated
in Figure 3.10(a), while Figure 3.10(b) illustrates the bitmap index for the Product
Name. Each index consists of four bit strings (number of products), each of length
four. In each string, the 1’s indicate the encoded values for the primary key.

Now, suppose that Alice is restricted from accessing all products whose names
start with “LN”. Further, we will assume that she resends the query in Listing 3.9.

Since the Product Price and the Product Name are non-hierarchical attributes, we
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Product Price Product Name
12k | 25k | 32k | 33k LN221 | LN426 | OD923 | OD258
Product 7510 | 1 | o 1] 1 0 0 0
Number 515 [ 1 0| o 2 0 1 0 0
3 1 0 0 0 3 0 0 1 0
4 0 0 0 1 4 0 0 0 1
(a) bitMap of Product Frice {b) bitMap of Product Name
Products {1,2} .
Products (2,3,4} 0 have Name = LN* | 1 0 Product 2 is the
intersection.
have price >= 24K 1 > 1 1| <
1 AND 0| =1|0
1 0 0

Figure 3.10: The bitMap of Product Price and Product Name

use their bitmap indexes to retrieve the base level numbers for those products, and
then determine if there is an intersection between the two. Figure 3.10 illustrates
how to identify those products whose Name starts with “LN” AND whose price >
24K. The array at the lower left represents the products of price > 24K, in this case
Products 2, 3, and 4. The array in the center represents the products with names
starting with “LN”. Products 1 and 2 are identified in this case. The AND operator
determines the intersection between them, with the final result are shown in the last
array. As we can see, there is in fact a non-empty intersection (i.e., Product_Number
2 has a price > 24K and a name starts with LN); thus, the query should be rejected.

Algorithm 3 summarizes the logic of the checking process.

3.7 Experimental Results

Because of the potential to impact overall query resolution time, considerable effort
has been made to ensure the efficiency of the authorization logic, including the ex-

ploitation of compact data structures such as mapGraph and the FastBit bitmap
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Algorithm 3 The processing logic of Below and Under Functions

Input: The policy condition S, and the Query Q.
Output: Returns True if Q is valid, False otherwise.
1: Initialize the mapGraph (hM) and the bitMap (fB) if they have not been initial-
ized

2: Let QA be the query attributes

3: if S has a hierarchy attribute then
4:  Let SR be the range of S using hM
5: else

6:  Let SR be the range of S using B
7: end if

8: for each attribute a; in QA do

9: if a; is hierarchy attribute then
10: Get the range of a; QR using hM
11: if QRN SR #0 then

12: Return False

13: end if

14:  else if a; is non-hierarchy attribute then
15: Get the range of a; QR using B
16: if QRN SR #0 then

17: Return False

18: end if

19:  end if
20: end for

21: Return True
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indexes. Moreover, the analysis of policy classes is based primarily upon a restricted
set of IF/ELSE cases that, in turn, manipulate a small in-memory Authentication
Database. Given the motivation to include OLAP-aware authentication mechanisms
within fully functional database management systems, however, it is important to
actually verify that our checking approach does not in fact seriously degrade query
performance. As noted earlier, the authorization framework has been incorporated
into a DBMS prototype specifically designed for OLAP storage and analysis (Sidera).
Sidera provides its own query optimizer and storage facilities. However, for testing
purposes, this integrated environment is not necessarily ideal as it is difficult for the
reader to determine if the balance between checking and execution is reflective of
current systems. Furthermore, it may not be obvious that our authentication model
has the potential for integration with standard database servers.

For the above reasons, we have plugged-in a standards-compliant DBMS server
(i.e., MonetDB) as the backend database. MonetDB is a popular open source database
management system [94]. It is a column store DBMS; as opposed to the more familiar
row-based systems. Column stores are particularly well suited to OLAP workloads
as the ability to efficiently extract only the columns of interest can significantly im-
prove IO performance. In the current context, MonetDB is essentially responsible
for execution of the final query, while the Sidera DBMS components described in the

chapter carry out all authentication and authorization operations.

3.7.1 The Test Environment

We utilize the Star Schema Benchmark (SSB) [92], a variation of the original TPC-H
benchmark augmented for OLAP settings. In short, SSB consist of a central Fact

Table and four dimension tables, with a set of 13 analytic queries executed against
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the data. Queries are divided into four query categories, with each category providing
increasingly sophisticated restrictions on the associated dimensions. A full listing of
the queries can be found in the Appendix A. As a final note, we stress that Monet
does not provide an internal OLAP-aware conceptual model. To ensure compatibility
with the mechanisms described throughput this chapter, it was necessary to develop
SQL conversion middleware, a significant research effort of its own. The details of
the middleware architecture are described in the next chapter.

For the following tests, we have used the SSB generator (with default settings)
to produce a Fact table of 6 million records, with each dimension housing up to
200,000 records. These tables are created and loaded into the backend MonetDB.
The experiments themselves were run on a 12-core AMD Opteron server with a CPU
core frequency of 2100 MHz, 1.1/L2 cache size of 128K and 512K respectively, and a
shared 12MB L3 cache. The server was equipped with 24 GB of RAM, and eight 1TB
Serial ATA hard drives in a RAID 5 configuration. The supporting OS was CentOS
Linux Release 6.0. All OS and DBMS caches were cleaned between runs.

A set of four simple but typical authorization policies was created, as follows.

e We generated one constraint across a full dimension (i.e., the Product.Part is

restricted).

A second constraint on an attribute, along with an exception (i.e., the attribute

s_region is restricted with an s_province exception).

A third constraint on an attribute value with an exception value (i.e., d_year <

1998 is restricted except d_year = 1995 or 1996).

The last constraint prohibits access to a cuboid as a whole.
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These policies are enforced by our framework and applied against the SSB queries.
In particular, policies are defined as a set of conditions that are stored in the Au-
thentication database. Once a query is arrived, it is parsed and decomposed into
its algebraic components for authentication and authorization. The user credentials
are obtained from the query, and used to authenticate the user. If authentication is
successful, the applicable policies are retrieved from the repository based on the user
credentials. Finally, the query elements (i.e., the returned attributes in the Select
clause and the conditions in the Where clause) are validated against the policies. If
there is no violation, the query is sent to the MonetDB management system for ex-
ecution against the SSB data as originally written, otherwise, the query is modified
according to the authorization rules and the modified version is then executed.

For example, suppose that our framework received the query Q¢ depicted in List-
ing 3.10 (i.e., Query number 3 of SSB) with the existing policies. As noted, policy
number 3 is violated by the last condition listed in the Where clause of Qc. There-
fore, according to the authorization rules, )¢ should be modified before executing by
replacing the condition that breaches the policy with a new one Cnew derived from
the policy exception. Specifically, the condition (i.e., d_year BETWEEN 1992 AND
1997) is replaced with the Cnew (i.e., d_year = 1995 or d_year = 1996) to become

safe query. Listing 3.11 depicts the modified version (m.

3.7.2 The Test Results

In terms of the results, we have isolated each of the four query classes and show
authentication processing versus the subsequent query execution time in Figure 3.11,
Figure 3.12, Figure 3.13, and Figure 3.14. Note that for queries which violated the

policy and were not candidates for re-writing, the query execution time is still listed
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Select c_city , s_city , d.year, SUM(lo_.revenue) as revenue
FROM Customer, Lineorder, Supplier, Date
'WHERE 1o_custkey = c_custkey AND
lo_suppkey = s_suppkey AND
lo_orderdate = d_datekey AND
c_nation = 'UNITED.STATES’ AND
s_nation = 'UNITED.STATES’ AND
d_year BETWEEN 1992 AND 1997
GROUP BY c_city , s_city , d_year
ORDER BY d_year asc, revenue desc;

Listing 3.10: Query3 of SSB

Select c_city, s_city , d.year, SUM(lo_.revenue) as revenue
FROM Customer, Lineorder, Supplier, Date
'WHERE 1o_custkey = c_custkey AND
lo_suppkey = s_suppkey AND
lo_orderdate = d_datekey AND
c_nation = 'UNITED_STATES’ AND
s_nation = 'UNITED_STATES’ AND
d_year = 1995 OR d_year = 1996
GROUP BY c_city , s_city , d_year
ORDER BY d_year asc, revenue desc;

Listing 3.11: A Modified Version of Query3of SSB
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Figure 3.11: Performance for SSB schema, Query 1 category
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Figure 3.12: Performance for SSB schema, Query 2 category
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Figure 3.14: Performance for SSB schema, Query 4 category

so as to give the reader a better sense of the relative balance between checking and
execution. A few additional points are worth noting. First, the ratio of checking time
to execution time varies considerable, depending on the specification of the underlying
query. In particular, many OLAP queries are very expensive to execute, given the
amount of sorting and aggregation involved. In this case, execution times range from
less than a second for Query Class 1 to about 2.4 seconds for Query Class 2. As the
database gets larger, of course, these times will continue to grow. Second, the checking
costs are quite modest, in the range of 80-300 milliseconds. More importantly, the
size of the underlying database has little effect upon the checking costs, as only the
cube meta data is inspected. In practice, it is extremely unlikely that, from an end
user’s perspective, authorization costs would have a tangible impact on database
access and analysis. As a final point, we re-iterate that column stores are well suited
to this environment. The execution times for traditional row store database servers
can be one to two orders of magnitude larger. In such environments, the ratio of

checking to execution costs would be far more extreme. Figurer 3.15, Figurer 3.16,
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Figure 3.15: Performance for SSB schema on Monetdb and PostgreSQL, Query 1
category

Figurer 3.17, and Figurer 3.18 show the execution time for SSB queries using Monetdb
(column-oriented) and Postgre SQL (row-store) database systems. One must note
the difference between them, which results from the amount of data read from disk.
Specifically, in column-store database systems each attribute is stored in a separate
column, such that successive values of that attribute are stored consecutively on disk.
This is in contrast to most common database systems (i.e., Oracle, Microsoft SQL
Server, and Postgre SQL) database systems that store relations in rows (row-stores)
where values of different attributes from the same tuple are stored consecutively.

Further experiments and discussions will be presented in Chapter 4.

3.8 Conclusions

In this chapter, we have discussed a query re-writing model to provide access control
in multi-dimensional OLAP environments. We began by high lighting a conceptual

model that focused on the data cube and its constituent dimension hierarchies. From
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there we introduced the notion of authorization objects designed to identify and con-
strain the relationships between parent/child aggregation levels. We then presented a
series of rules that exploited the authorization objects to decide whether user queries
should be rejected, executed directly, or dynamically and transparently transformed.
In the latter case, we identified a set of minimal changes that would allow queries to
proceed against a subset of the requested data.

While the authentication and authorization framework has been integrated into a
prototype DBMS that provides OLAP-specific indexing and storage, we believe that
the general principles are broadly applicable to any contemporary DBMS product.
To this end, we combined the framework with MonetDB, an open source DBMS that
provides efficient column oriented services. Using the Star Schema Benchmark, we
showed that for common OLAP queries, authentication and authorization services
represent a negligible impact on overall query execution time. For this reason, we

believe that our methods are viable for not only OLAP-specific database management
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systems, but more conventional platforms as well.

Finally, it is important to point out that the framework presented in this chapter
cannot block all attempts to access restricted data. In particular, it is possible for
a user possessing some degree of external knowledge to combine the results of mul-
tiple walid queries to obtain data that is itself meant to be protected. We refer to
such exploits as inference attacks. In the next chapter we will present mechanisms
for inference detection that will piggy back on top of the core authentication and

authorization framework to provide an even greater level of security for OLAP data.



Chapter 4

Protecting OLAP Cubes from
Inference Attacks

4.1 Introduction

In the previous chapter, we discussed a query re-writing model to provide access con-
trol in multi-dimensional OLAP environments. In short, we introduced a series of
rules to decide whether user queries should be rejected, executed directly, or trans-
parently and dynamically transformed. The model can be used to ensure that user
queries pertaining to sensitive data will not be answered. However, users can still un-
cover sensitive information by combining non-sensitive data with their own knowledge
(e.g., external knowledge). In practice, a user can issue a sequence of non-sensitive
queries whose answers, when taken together, will allow the user to infer something
that was meant to be protected. We refer to such privacy breaches as inference
problems, and the goal of inference control is to protect sensitive data from being
inferred.

Two general environments have been targeted by inference control mechanisms:
the interactive and non-interactive settings. With the non-interactive setting, the

original database is first sanitized so as to preserve privacy and then the modified

84
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Employee Year Sales
Tom 2011 100
Jim 2011 120

David 2011 90
Tom 2012 120
Jim 2012 125

(a)SalesRelation.

2011 | 2012 SUM(Sales)
Tom 100 120 220
Jim 120 125 245
David a0 90
SUM(Sales) 310 245

(b)Two-dimensional Data Cube.

Figure 4.1: An example of an Inference Problem

version is released. In the interactive setting, on the other hand, a security mechanism
is placed between the users and the database. Queries posed by the users, and/or
the responses to these queries, may be modified in order to protect the privacy of the
respondents.

In this work, we consider the interactive setting (OLAP systems), where the user
poses aggregate queries in order to analyze data and then navigates through the
details interactively. These queries usually involve aggregating a large amount of
data, with the result expected in a few seconds. Such a fast response is often achieved
through comprehensive pre-processing, often focusing on the materialization of multi-
dimensional aggregates (represented as a data cube) from which the answer to queries
can be more easily derived. Although these aggregates give the user the ability to
analyze the data in real time, they can also be used to infer sensitive data.

For example, Figure 4.1(a) shows a base table that is used to construct the data
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cube in Figure 4.1(b). Here, the attributes Employee and Year are dimensions and the
attribute Sales is the measure. Suppose the company invites an analyst Bob to analyze
the data, but worries that Bob may misuse the sensitive information about each
individual. Consequently, they restrict access to the measure values. Aggregations
of those values however are allowed to be retrieved. Moreover, Bob can identify the
empty cells. An inference problem may occur if Bob sums the total sales of years
2011 and 2012, then subtracts from the result (e.g.,555) the total sales of Tom and
Jim (220 and 245 respectively). The individual sales of David are then successfully
inferred as 90. In fact, Bob can infer all the restricted values in the base table in the
following way. Bob finds the maximum sales in 2011 and gets 120 as the result. He
can then infer that the sales of Jim must be 100 or 120, though he cannot match the
values to exact cells. Bob then finds the minimum sales of Jim and gets 120. Now,
he can infer that the sales of Jim and Tom in 2011 are 120 and 100 respectively. By
subtracting these values from their total sales, Bob also infers their sales in 2012 as
125 and 120 respectively.

The inference problem has been studied extensively in statistical databases [2]. In
general, the proposed methods restrict the queries or perturbate the original data or
answers of queries in order to provide sufficient protection of sensitive information.
However, most of the methods considered in statistical databases have two limitations.
First, they adopt a detect-then-remove strategy, which requires complex computations
over the data and hence are too expensive to be applied in large OLAP systems.
Second, some of the proposed methods are only suitable for limited situations. For
example, they provide privacy for only one type of aggregation (e.g., SUM) or provide

privacy for a fixed sensitivity criteria. Because of these limitations, most modern
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commercial OLAP systems lack effective security countermeasures or, at best, only
utilize a simple — and often inadequate — security model.

In this chapter, we present a robust model for controlling malicious inferences. The
model is motivated by Cross-Out the work first presented by Wang et al. [119], in
which the authors suggested a possible approach for inference prevention. Instead of
detecting inferences directly, complex inferences are prevented by restricting queries.
The approach does not depend on specific types of aggregation functions, external
knowledge, or sensitivity criteria. We note, however, that this approach has not yet
been implemented in real world settings, and its viability in practice has remained an
open question. In fact, straightforward or direct implementations are likely to be very
slow. Therefore, in this part of our work, we present a series of algorithms and data
structures that can be used to efficiently implement the general model. In particular,
we address performance concerns associated with the extensive disk accesses that are
required in order to make inference assessments. To further ground the research, we
have integrated the inference control model on the top of a DBMS designed specifically
for OLAP (Sidera), as well as a pair of popular relational database management
systems, and have evaluated its efficiency against common benchmarks.

The remainder of this chapter is organized as follows. In Section 4.2, we present
an overview of related work. The objects and methodology are presented in Section
4.3. Section 4.4 provides a brief overview of the basic terminology and structures
relevant to the inference problem in general. Section 4.5 and 4.6 discuss the primary
contribution of the chapter. First, data cube inferences are illustrated through a series
of representation examples, then methods and algorithms are presented in Section 4.6

to prevent such inferences. Section 4.7 describes the architecture of our prototype
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framework along with its primary components. The experimental results are then

presented in Section 4.8, with final conclusions offered in Section 4.9.

4.2 Related Work

There is a rich literature on the inference problem, principally from the statistics
community [35, 113, 30, 28, 34, 33, 112]. The proposed methods can be classified
into two broad categories: perturbation-based and restriction-based methods. The
perturbation-based inference control methods prevent malicious inference by adding

noise to data to provide approximate answers. These methods can be organized into:

e Input Perturbation, where the original data are randomly modified, and answers

to queries are computed using the modified data.

e Qutput Perturbation, where correct answers to queries are computed exactly

from the real data, but noisy versions of these are reported.
e Rounding, where the original data values are replaced with rounded ones.

The methods based on data perturbation have many limitations. Firstly, if the
data are modified, re-identication by means of matching algorithms is harder and
uncertain. Secondly, when a user re-identifies data, he/she cannot be confident that
the compiled data is consistent with the original data. Finally, because OLAP tasks
may require low-level details, potential errors in modified values may be significant,
preventing OLAP users from gaining trustworthy insights.

The restriction-based methods do not alter data; rather, they produce partial
suppression or reduction of detail in the original data. There are many techniques in

this category:
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o Table Restriction [28], which restricts the complete tables that are likely to have

a positive disclosure.

e Cell Suppression [35], which suppresses the sensitive cells that can cause disclo-
sure of individual data so that possible inferences can subsequently be detected
and removed. While such a detection method is effective for two-dimensional
cases, it is intractable for three or more dimensional tables, even for small sizes

22].

e Microaggregation [33, 124], which replaces clusters of sensitive values with their
averages. However, this method defines partitions without considering the rich
hierarchies inherent in data cubes, and hence the results may contain many

clusters of values that are meaningless to OLAP users.

e Query Restriction 79, 80], which rejects unsafe queries that can lead to a com-
promise, depending on the number of values involved in the query answer.
However, this technique does not consider aggregations in data cubes, where

the distinct values can be inferred from aggregations.

The privacy problem has also been considered in the data mining area. A number
of techniques such as Randomization and k-anonymity [44, 37, 3, 93] have been sug-
gested in recent years. In Randomization, the sensitive data are modified by adding
random distortion values in order to create data distributions that can be used for
data mining purposes [3]. In most cases, the underlying data cannot be recovered and
thus, may be of marginal use. It is also important to note that OLAP users heavily
depend on ad-hoc queries that aggregate small, overlapping sets of values. The pre-

cise answers to such queries are not obtainable from distribution models alone, even
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if the models can be successfully reconstructed.

In k-Anonymity [109, 93], the underlying data is not destroyed; instead, the granu-
larity of the data representation is reduced in such a way that a given record cannot be
distinguished from at least (k-1) other records. So any attempt to link an individual
in the physical world to (the sensitive values in) such records will end up with at least
k indistinguishable choices. In [17], it has been shown that optimal k-anonymization
is NP-hard. Furthermore, the technique is not effective with increasing dimension-
ality, since the data can typically be combined with either public or background
information to reveal the identity of the underlying record owners. Similarly, there
are a number of other partition-based privacy models such as L-diversity [77] and
t-closeness [70] that model the adversary differently and have different assumptions
about background knowledge.

Query auditing techniques have also been utilized [68, 64]. Here, the query is
denied if the response could reveal sensitive information and answered exactly other-
wise. This technique returns precise answers to queries; however, it often needs either
complicated computations over the entire data set or the bookkeeping of every single
answered query. This results in prohibitive on-line performance overhead and storage
requirements.

It also has been pointed out that denying a query can actually leak extra infor-
mation to snoopers in some cases [64]. A mechanism called Simulatable Auditing has
been proposed in response to this issue. Simulatable Auditing implies that the deci-
sion of answering or denying a query can be deduced by both auditor and attacker. In
other words, the auditor makes the decision based only on the past answered queries

and the newly posted query, without accessing stored data values. Thus, if there
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exists a result for the newly posted query which is consistent with the past queries
and causes privacy disclosure for one variable, the query is denied. Simulatable Au-
diting has two drawbacks. First, utility is greatly reduced because it denies many
queries which are not actually harmful. Second, it adds computational overhead since
for each consistent result, the auditor needs to examine if there is privacy disclosure
occurring, in addition to the work of finding the consistent result.

Recently, differential privacy has been proposed as a rigorous privacy model
that makes no assumption about an adversary’s background knowledge [36]. A
differentially-private mechanism ensures that the probability of any output data is
equally likely from all nearly identical input data sets and thus guarantees that all out-
puts are insensitive to any individual’s data. Most of the differential privacy methods
are based on an interactive framework [48], where a user can pose aggregate queries
through a private mechanism, and a response is returned after adding noise to it. To
ensure privacy, a database owner can answer only a limited number of queries before
she has to increase the noise level to a point that the answer is no longer useful. Thus,
the database can only support a fixed number of queries for a given privacy budget.
This is a big problem when there are a large number of users because each user can
only ask a small number of queries. In a non-interactive framework, the database
owner first anonymizes the raw data and then releases the anonymized version for
public use [86]. However, this approach is not suitable for high-dimensional data
with a large domain because when the added noise is relatively large compared to the
count, the utility of the data is significantly diminished.

Finally, the inference problem has also been studied in OLAP systems. There are

two types of methods that have been proposed: inference control [72, 120, 122] and
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input/output perturbation [4, 38, 100], which follows the same principle of pertur-
bation techniques as seen in statistical databases. Specifically, it either perturbs the
original data stored in the data warehouse server with random noise, or adds random
noise to the query answers in order to preserve privacy. Existing studies support
COUNT [4] and SUM [100] queries for input perturbation, and general aggregation
functions for output perturbation [38]. While this approach can be very useful for
privacy protection, precise query answers (without perturbation) are often preferred
in OLAP systems when important decisions need to be made based on the data [87].
Thus, we focus on the inference control approach in this work.

With the inference control approach, after receiving a query from a user, the
inference control mechanism determines whether answering the query may lead to an
inference problem, and then either rejects the query or answers it precisely. Most
existing solutions for inference control in OLAP are suitable for only one type of
aggregation, SUM-only [72, 120, 121, 122], COUNT-only [4], or MIN/MAX-only [87].
It is important to note, however, that OLAP relies on complex queries involving the
aggregation of data with mixed aggregate functions, such as SUM, MIN, MAX, etc.,

so such restrictions are not likely to be accepted in practice.

4.3 Objectives and Methodology

4.3.1 Objectives

In this chapter we discuss the issue of inference attacks on protected data and present a
general model for controlling malicious intrusions within the OLAP domain. Building
upon ideas from the recent literature, we will describe mechanisms to balance the

accessibility with appropriate access constrains. Specific objectives include:
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e Improve the performance of the inference checking process to the extent that

the checking phase has minimal impact on real time query requirements.
e To clearly define the primary data structures required to support this approach.

e To present efficient algorithms that utilize these data structures in a manner

that allows the performance objectives to be reached.

e To provide complexity analysis, where necessary, to demonstrate that execution
costs — using parameter settings relevant to the OLAP domain — can be

appropriately bounded.

e To ground the underlying research with a concrete prototype that demonstrates

practical viability.

4.3.2 Methodology

Although many methods have been proposed in order to preserve privacy in the
database context, the majority are suitable only for special, restricted cases. A small
number have been shown — in theory at least — to be capable of providing inference
protection that could be extended to the OLAP domain, but the computational over-
head is clearly prohibitive. In this chapter, we build on recent research that has strong
theoretical support but whose real world viability has not yet been demonstrated. In
fact, it is the design, implementation and evaluation of the algorithmic framework
that represents both the primary objective and achievement of this phase of the re-
search. We emphasize that the maturity of the database field, coupled with scale of
current industrial applications, all but requires that abstract ideas be grounded in

such a way.
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We therefore propose a series of algorithms and data structures that support ef-
ficient real time inference control. To demonstrate practical applicability, we will
integrate the associated inference control module into common DBMS products —
both row-store and column-store — to demonstrate performance on accepted bench-
mark test suites. We will show that the experimental analysis supports the claim that
inference checking can, in fact, be carried out without a meaningful impact upon final

query execution times.

4.4 Basic Concepts

Before going into the details of the proposed methods, we first briefly discuss basic

concepts that are relevant to our research.

4.4.1 OLAP System Model

We have discussed the basic concepts of the OLAP model in Chapter 2. We now re-
view these concepts through a motivating example. Figure 4.2 shows the underlying
Star Schema database that is used to create a Data Cube. The central table (Sales)
is the Fact table that contains measure values used for analysis, and the surrounding
tables are the Dimension tables (Customer, Product, and Time) that contain de-
scriptive attributes. Each dimension attribute is partially ordered into a dependency
lattice by the dependency relation < to produce a hierarchy. For instance, the Cus-
tomer dimension has the following lattice: custkey < c_nation < c_region =< all. The
product of the previous lattices gives distinct dimension combinations (aggregations
or cuboids) that collectively represent the data cube.

Figure 4.3 represents a simple 2-dimensional data cube lattice based upon the
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Customer Time
custkey | c_nation | c_regicn datekey | d_month | d_year
Alice Canada America 19-06-11 June 2011
Tom Canada America 23-10-11 | October 2011
Li USA America 12-12-11 | December 2011

Customer Hierarchy
ali

Sales
saleskey | custkey | datekey prodkey  soles
S 10012 Mlice 19-06-11 P11 26
- 10014 Tom 19-06-11 P25 26
custkey 10013 Alice | 23-10-11 P25 a5
10018 Tom 23-10-11 P30 24
10016 | 73-10-11 P11 31
10020 L 12-12-11 30 1.2
Product
prodkey | p_type | p_category
P11 Furniture Indoor
P25 lurniture Indoor
P30 Garden Outdoor

Figure 4.2: A simple database instance

Customer and Date dimensions — a more complex lattice will be presented later
in the chapter. The base cuboid contains the individual records that are used to
populate/compute the cuboids. All cuboids are related by an Ancestor or Descendant
relationship if the dependency relation exists amongst their attributes. We say that a
cuboid ¢; with attributes (aq, as, ..., a,) is an Ancestor to a cuboid ¢; with attributes
(b1,ba, ..., by) if the ¢; attributes are partially ordered with respect to ¢;, such that
by =X ay,by <X as,...,b, <X a,. For example, the cuboid <c_region,datekey> is an
ancestor to the cuboid <c_nation,datekey>.

The dependency relation also exists amongst cuboids cells. For example, the
cuboid <c_region, datekey> depends on the cuboid <c_nation, datekey>; hence, the
cell <America, 23-10-11> of the former also depends on the cells <Canada, 23-10-

11> and <USA, 23-10-11> of the latter and can be computed using them. Generally,
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Figure 4.3: A simple

datekey
19-06-11 23-10-11 12-12-11
ﬁ Alice 26 35
E Tom 26 24
© Li 31 12

2-dimensional data cube
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any cuboid can be computed using its descendant cuboids or, of course, using the

base cuboid, as it depends on both.

4.4.2 External Knowledge

A user may have previous knowledge about data that is obtained from external sources
outside the OLAP system. When the user combines this knowledge with his/her
legitimate query answers, sensitive data can be inferred. We refer to such knowledge

as the external knowledge of the user. There are various types of external knowledge.

Ezxample 8. Due to privacy concerns, suppose that the administrator of the data
cube depicted in Figure 4.3 does not want a user Bob to have access to the base
cuboid, but will allow access to its ancestor <c_nation, datekey>. If Bob knows
about empty cells — as external knowledge — then the Sales of Li in (12-12-11)
can be inferred from just one aggregate query over the ancestor cuboid <c_nation,
datekey> on datekey (12-12-11). Moreover, if Bob knows that the Sales of Alice and
Tom in (19-06-11) are equal, then these values can also be inferred as 26, which is half

the sales of 52 retrieved from the cuboid <c_nation, datekey> on datekey (19-06-11).

It is difficult to present a universal model that captures all external knowledge
types. Developing such a model is still an open problem drawing considerable at-
tention from data privacy studies [84, 16]. In this work, we assume that if the user
knows the value as pre-knowledge, then the value is accessible (not sensitive) to the

user. This assumption can also be applied to cuboids.
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4.5 Protecting OLAP Cubes from Inference At-
tacks

In the previous chapter, we discussed an OLAP-aware framework to provide access
control in multi-dimensional OLAP environments. The framework prevents any sensi-
tive value from being computed from below (from its descendants). However, in many
cases sensitive data can be inferred from above (from its ancestors). Such inferences
can easily infiltrate the first line of defense established by the access control frame-
work. This section addresses inference control in data cubes. We begin by presenting
a number of examples that illustrate various inference scenarios. Then, methods that

target inference attacks are discussed.

4.5.1 Inferences in OLAP Data Cubes

An inference problem occurs when the value of a sensitive data item is disclosed to
users by combining non-sensitive data with their own knowledge (external knowledge).
In practice, a user can issue a sequence of non-sensitive queries whose answers, when
taken together, will allow the user to infer something that was meant to be protected.

Many methods have been proposed to address the inference problem. However,
most adopt a detect-then-remove approach that requires complex computations over
the data and hence are too expensive to be applied in large OLAP systems. For
instance, the auditing method proposed in [18] has been shown to be NP-hard. Oth-
ers are only suitable for limited situations. For example, only one type of aggre-
gation is allowed, SUM-only [72, 122], COUNT-only [4], or MIN/MAX-only [87].
Unfortunately, a practical OLAP system does not restrict its users to SUM-only or

COUNT-only. Complex OLAP queries rely on different aggregate functions, such as
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SUM, COUNT, MIN, MAX, etc. Moreover, inference checking time should be modest
relative to query execution time since the checking is done at run time.

We note that some of the inference cases discussed earlier can be addressed in
relatively straightforward ways. For instance, in Example 8, Bob infers the cell value
of <Ii, 12-12-11> because the query is issued over an extremely small set size (only
one value). That is, the inference is made when a query with a set size = 1 is answered.
A simple solution is to block such queries, so the inference can be identified. This
technique has been considered in statistical databases [29] and also investigated and
formalized in the OLAP domain [129]. A second inference occurs when Bob infers
cell values of <Alice, 19-06-11> or <Tom, 19-06-11>. This can also be prevented
by assuming one of these cells to be an empty cell. As a result, the same solution
can be applied since the set size of the query is then equal to 1. However, there still
exists another important kind of inference that cannot be easily solved. The following

example illustrates this case.

Ezample 9. Figure 4.4 shows three cuboids (<c_nation, d_month>, <c_region,
d_month>, and <c_nation, d_year>) taken from the 2-dimensional data cube lat-
tice depicted in Figure 4.3. Suppose that Bob is restricted from accessing cuboid
<c-nation, d_month>, but can access its ancestors cuboids (<c_region, d_-month>
and <c_nation, d_year>). An inference is possible using SUM-only queries in the

following way.

e Bob sums the two cells <America, April> and <America, June> in the ancestor

cuboid <c_region, d_month> and gets 98 as the result.

e Then he subtracts from the result the two values of <USA, 2011>, <Canada,

2011> (25 and 55 respectively) in the other cuboid <c_nation, d_year>.
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\\ Unpratected Ancostors //'
~ > -

[c_region,d_month] [c_nation,d_vear]

~——
Rt

April  May | Juze July e | | USA | Canada | Brozil Spain |
America | 40 34 58 22 c_nation,d_month| | 2001 [ 25 [ 55 [ 74 25|
lrope 20 5
April May | June | July
TISA 10 15
Canada 30 25 ‘ rolecled Cubuid
Buazil 34 13 22
Sprain 20 5

Figure 4.4: Another example of inference problem on data cubes

The protected cell <Brazil, May> is then correctly inferred as 18.

In this case, there is no longer a straightforward solution for inference control.

Moreover, we note that a second inference is also possible using MAX, MIN, and

SUM, as indicated in the following query plan:

Bob applies the MAX to <2011, Spain> and <Europe, July> and gets 20 and

5 as the result, respectively.

He can infer that one of the three cells <Spain, April>, <Spain, May>, and

<Spain, June> must be 20, but he does not exactly know which is 20.

Bob then sums the sales of Spain and gets 25 as the result. He concludes that

one of these three cells must be 20 and the other two cells are zeroes.

Finally, Bob applies the MIN to Europe’s cells and determines all the sales of
Spain. Consequently, Bob can infer all the protected cells by applying additional

queries, and hence the whole data cube can be discovered.

From the above examples, we note that the inference is made possible by accessing

multiple ancestors of the protected cuboid. We can formalize this type of inference

problem as follows.
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Definition 5. Given a data cube containing n cuboids (c1, ca, ..., ¢,), inference may
occur when values of a protected cuboid ¢; can be computed from other unprotected
cuboids c;, such that ¢; < ¢; holds, and i, j € n.

4.5.2 Preventing Malicious Inference

As noted, protected data can be inferred by accessing its ancestors as shown in Ex-
ample 9. A simple and direct solution to control this inference is to decline all access
to the ancestor’s values. However, such an approach is far too restrictive, as it hides
too much information from users. While it meets the security requirements, it also
renders OLAP systems useless. An ideal solution should maximize the availability of
queries while at the same time providing satisfactory security.

Wang et al. [119] proposed such a solution, where malicious inferences are pre-
vented through restrictions. Specifically, a set of cuboids free of inference problems
is first computed with respect to the protected cuboids, then the user is restricted to
access only this safe set. That is, the resulting set acts as a virtual tier between the
user queries and the data cube, where all cuboids belonging to this set are considered
as unprotected cuboids while the remaining are protected. We refer to the safe set as

the Answerable set. Example 10 illustrates the process.

Ezxample 10. Suppose the administrator of the data cube depicted in Figure 4.5
restricts an employee Alice from accessing the cuboid ¢ <c_region, datekey>. As
noted, restricting access to only this specific cuboid ¢ does not, however, prevent
Alice from revealing it, as inferences are possible from unprotected cuboids to the
protected one. Asshown in Example 9, by combining the two ancestors of ¢ (e.g., <all,
datekey> and <c_region, d_month>) Alice can infer ¢ (e.g., <c_region, datekey>).

Therefore, additional cuboids must be restricted in order to prevent such inferences.
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Figure 4.5: An example of preventing Inferences Problem

Specifically, we must identify those that contribute to the inference.

To specify these additional cuboids, not all cuboids in the data cube need be
considered. Specifically, given the redundancy inherent in a data cube, we can simplify
the process by ignoring any cuboid that either carries redundant information or is
irrelevant to the inference. In other words, a cuboid can be ignored if it is either not
an ancestor to ¢ or an ancestor of other cuboids. The first simplification is due to
the assumption that only ancestors cause inferences, while the second is due to the
fact that derived cuboids are redundant. Thus, we have the minimal elements in the
set of ancestors, namely the basis of the data cube with respect to ¢, as formalized in
Definition 6.

Definition 6. [119]

Given a data cube L of n cuboids (c1, ca, ..., ¢,) and a protected cuboid c, we
define a function Basis(L,c) = { ca : ca € L, ¢ <X ¢4, where (¢, € L ¢, X ) implies
Ca =Cp }.

For instance, from Example 10, we have: Basis(L,<c_region, datekey>) = { <all,
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datekey>, <c_region, d_month> }. That is, we only need to consider the two ancestors
<all, datekey> and <c_region, d_month>.

Because the basis result includes more than one ancestor, the following conclusion
can be made. Inferences are possible only if the Basis(L,c) includes more than one
cuboid. That is, although L may include many cuboids, those that are in the basis are
the only ones that contribute to the inference. For instance, inferences are possible
in Example 10 because the basis includes two cuboids. Thus, restricting access to
only one of these cuboids will eliminate such inferences (e.g., restricting the access
to <all, datekey> or <c_region, d_month> would prevent the inference of <c_region,
datekey>).

A question then arises: is the protected cuboid now safe from disclosure? Un-
fortunately, the answer is NO. Because inference is transitive, the unprotected finer
descendants can first be inferred using their ancestors, at which point they can be
used to derive the protected one c. Therefore, we should not only prevent inferences
to ¢ but also to those that can be used to derive it or, more precisely, to the finer
descendant cuboids that can be aggregated to compute ¢. This would include cuboids
<c-nation, datekey> or <custkey, datekey> in our example.

Thus, for each protected cuboid’s descendants, the process of restricting ancestors
should be repeated. Conversely, to prevent such a situation, a subset of the cuboids
that are free of inferences (i.e., an answerable set) can be constructed by growing
from an unprotected cuboid or root r. More precisely, we first choose an unprotected
cuboid 7 satisfying ¢ < r, and then include all the ancestors of r to form a set. The
result must satisfy the requirement that its basis with respect to ¢ includes only one

cuboid. Hence, the result is free of inferences to c. Referring to Figure 4.5, the cuboid
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<custkey, d_month> is chosen as a root. All its ancestors are then included to form
the answerable set (i.e., all cuboids above the dashed line). From any cuboid — other
than those in the answerable set — exactly one line extends into the answerable set.
For instance, two lines go from the protected cuboid <c_region, datekey>, one to
the cuboid <c_region, d_month>, and another for cuboid <all, datekey>, which is
not in the answerable set. Similarly, from <c_nation, datekey>, a line extends to
<c_nation, d_month> but the other line does not go to the answerable set. This
formation indicates the absence of inferences.

Beside the security aspect, we note that the answerable set should also be maximal.
Maximality is achieved by choosing a root that can be used to build the answerable set
and that includes as many cuboids as possible. We refer to such a root as a minimal
root. For instance, referring again to Figure 4.5, the cuboid <custkey, d_month> is
the minimal root, given that it has the maximum number of cuboids above it.

Finally, we note that the correctness of this general approach — in term of its
ability to prevent complex inferences — has been formally demonstrated [119]. We
reiterate, however, that it has not yet been implemented in a real-world setting and
its practical viability is unknown. In fact, a direct implementation is likely to be
unusable in practice as the required data set scanning would severely impact query
execution time. In other words, each cuboid in the data cube should be inspected in
order to determine if it houses protected data. In addition, to find a minimal root, all
the unprotected cuboids should be checked to determine the one that best achieves
the maximality aspect.

Given its potential, however, we have chosen to build upon this model, and in

the next section we will describe algorithms and data structures that can be used to
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implement it efficiently. In particular, we address the issue of finding the minimal
root to construct the answerable set and the performance concerns associated with

the extensive disk accesses that are required in order to make inference assessments.

4.6 Inference Control Module

To ground the research, we propose a framework for the practical implementation of
the previous model. The framework consists of several components that communi-
cate with one another in order to prevent inferences in large-scale OLAP systems.
The primary component of this architecture is the inference control module. In this
section, we discuss this module, while the other components are discussed in the next
section.

We note at the outset that the purpose of the inference control module is to assess
every query in order to prevent any possible inference attacks. To achieve this, the
module employes a series of algorithms in order to find a minimal root and construct
an answerable set. The response to the query is then returned to the user only if
the module concludes that the response is derived from the answerable set. In the
remainder of this section, we present the details of the control module architecture.
The structures used by the module are discussed in Section 4.6.1, while procedures
for finding a minimal root and assessing the query are discussed in Section 4.6.2 and

Section 4.6.3, respectively.

4.6.1 The Hierarchy Manager and the Cuboid Hash Manager
Structures

We first present a pair of data structures central to the efficient implementation

of the model. We begin with a hierarchical structure that manipulates dimension
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17 | Taiwan
22 | China
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Figure 4.6: The Hierarchy Manager structure for the Customer dimension

hierarchies, and then discuss a look-up structure that facilitates cuboid searching
during the root finding process. We refer to the two structures as the Hierarchy

Manager and the Cuboid Hash Manager respectively.
The Hierarchy Manager

The Hierarchy Manager has been discussed in Chapter 2. However, we briefly review
the relevant concepts here. The Hierarchy Manager is used to manipulate complex
cubes at arbitrary granularity levels. It includes meta data that describes the di-
mension hierarchies in terms of the number of levels, their ordering, and the values
corresponding to each level. Figure 4.6 provides an illustration of this structure for
the Customer dimension hierarchy of Figure 4.5.

As noted, the Customer dimension has three hierarchy levels ordered as custkey,
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which is the base level, followed by c_nation and finally c_region, which is the top
level. Each level in turn has different values. Using this meta data, the cuboid can be
converted to its numeric representation as a pre-step in the creation of minimal roots.
Moreover, it is also used in conjunction with the Cuboid Hash Manager to create a

candidate’s minimal roots list, as discussed in the next subsection.
The Cuboid Hash Manager

The Cuboid Hash Manager, on the other hand, indexes cuboids by their weights in
conjunction with the Hierarchy Manager. The cuboid weight represents the number
of cuboids above it (e.g., the number of ancestors). The Cuboid Hash Manager is
used to create a candidate’s minimal roots list if the constructed Answerable Set is
not valid (to be discussed shortly). To actually build the Cuboids Hash Manager, the
cuboid names are first transformed into numeric format by giving a distinct identifier
to each attribute in the cuboid. The given number represents the level number of the
attribute in its corresponding dimension hierarchy.

Recall, for example, the Customer dimension from Figure 4.6. This dimension
has four hierarchy levels: custkey < c_nation < c_region < all. Each hierarchy level
is given a distinct number from the base level to the top level. For instance, the
custkey attribute is given the number 1, the c_nation attribute is given the number
2, and so on for the other dimension attributes. So the transformation of the cuboid
<c_nation, d_year> is <2,3>, where the number of the levels in Customer and Date
are 4. Secondly, the weight of each cuboid is found and stored in the Hash Manager.
For instance, referring to the data cube depicted in Figure 4.5, the cuboid <2,3> is
of weight 5 (i.e., there are five cuboids above it). Figure 4.7 provides an illustration

of the Hash Manager structure for this data cube.
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Key Data Number Name

11 <1,2> |——» 1 <custkey,d_month>
8 <2,2> |—» 2 <c_nation,d_month>
7 <1,3> |———* 3 <custkey,d_year>
5 <3,2>» |T—* 4 <c_region,d_manth>
5 <2,3> [ 5 <c_nation,d_year>
3 <14> |[T—————* 6 <custkey,all>

2 <4,2> |T———* 7 <all,d_month>

Figure 4.7: The cuboid Hash Manager structure

As noted, the records in the Hash Manager are sorted according to their weights in
order to efficiently retrieve these values at run time. Each record in the left structure
has two values: the key, which stores the cuboid weight, and the data that stores
the cuboid’s numeric representation. In turn, entries in the right column contain the
cuboid number and its native name. For instance, the cuboid <custkey, d_month>

has the numeric representation <1,2> and it is of weight 11.

4.6.2 Finding a Minimal Root and Constructing an Answer-
able Set
Finding a root is the first step of constructing an Answerable Set. Recall that the
purpose of constructing this set is to prevent the protected cuboid ¢ from being
inferred. However, due to the fact that derived cuboids are often redundant within
the data cube, we know that ¢ can actually be derived from its more granular levels
(descendants). This gives users an additional opportunity to compute c at an alternate
level of detail and, as a consequence, to bypass restrictions. Therefore, any cuboid

that allows one to derive ¢ must be specified as a protected cuboid.
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At the same time, the administrator should not be burdened with the responsibil-
ity of specifying all these cuboids. For this reason, we define the function Descen-
dants(.) that finds all cuboids from which the protected cuboid can be derived. The
function definition is formally stated in Definition 7. We refer to this set of cuboids
as the Protected Cuboids Set P. Definition 8 then describes the set P.

Definition 7. For any protected cuboid ¢ within a data cube L, we define Descen-

dants(L,c) = { ¢, : ¢4 € L, such that ¢, < ¢ holds}.

Definition 8. For a data cube L and a protected cuboid ¢, P = { ¢ |Jcp: ¢, €
Descendants(c) }.

That is, P is the union of ¢ and all cuboids that can be used to derive it. However,
restricting access to cuboids in P does not completely secure ¢ from being inferred.
Because inferences are transitive, a user can first infer a cuboid finer descendants,
and then continue to derive c. For instance, the base cuboid can be inferred from its
unprotected ancestors, and then can be used to compute any protected cuboid within
the data cube. Thus, cuboids in P must be restricted not only from direct access, but
also from inferences. This should be considered when finding a root and constructing
an answerable set.

In addition to that scenario, the answerable set should be maximal with respect to
the number of cuboids it includes. This is achieved by choosing a minimal root that
has as many cuboids as possible above it. However, it is not practical in most real-
world data cubes to check every unprotected cuboid to determine that it satisfies this
notion of maximality. In data cubes, the number of cuboids increases exponentially
with the number of dimensions/levels. Specifically, we may represent the total number
of such cuboids as follows: T = [, (L; + 1), where n is the number of dimensions

in the cube, and L; is the number of levels associated with dimension .
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Algorithm 4 Constructing a Minimal Root

Input: A protected cuboid c.
Output: A minimal root r.
. Initialize the Hierarchy Manager hM
: Convert ¢ to its numeric representation cn
: Find the deepest/lowest attribute ¢, among cn
: for Each attribute a in ¢n do
if ¢, is not equal a then
find the base level a; of a
set r; = ag
else
find the next level of the deepest attribute c,.1 of ¢,
set 1, = Cqq1
end if
: end for
: Return r

© PN DT W

T =

We therefore describe a new algorithm for the efficient identification of the minimal
root. The algorithm — listed in Algorithm 4 — assumes a protected cuboid ¢ as its
input and produces a minimal root r as output. The process starts by initializing
the Hierarchy Manager hM with meta data that describes the dimension hierarchies.
It then converts the restricted cuboid ¢ — in conjunction with the hM — into its
numeric representation. This representation supports very fast creation of the root
at run time. For instance, for a k-attribute cuboid < aq, as, ..., a; > a numeric
representation can be created as < x1, xo, ..., xx >, where x; is the number of
attributes a; in the corresponding dimension.

The deepest/lowest attribute amongst the ¢ attributes is found in step 3. The
key components of the algorithm then begin at step 4, where the minimal root is
constructed by replacing the lowest attribute by the next attribute level in the corre-
sponding dimension, and the remaining attributes by the base attribute level of their

corresponding dimensions. The following example illustrates the process.
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Figure 4.8: An example of constructing a Minimal Root

Example 11. Figure 4.8 shows the dependency lattice of the 2-dimensional data
cube depicted in Figure 4.5. Each integer denotes an attribute of the corresponding
dimension. For instance, <c_region, datekey> is represented as <3,1>, where the
c_region attribute is the 3'¢ level in the dimension, and datekey is the 1% level in the
dimension. Let ¢ = <c_region,datekey>, which is converted into <3,1>. The lowest
attribute is defined as datekey (1) and will be replaced by the next attribute level
d_month (2). The remaining attributes are then replaced by their base levels (in our
example, c_region(3) is replaced by custkey(1)). This process results in a minimal
root r <1,2>.

After specifying r, all cuboids above it are included to form the Answerable.

The function Ancestors(.) is then used to specify these cuboids as formalized in

Definition 9.
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Definition 9. A function Ancestors(.) is defined as Ancestors(r) = { ¢,: such that
r =< ¢, holds}.

This set is safe to be queried, while the remaining cuboids are considered as
protected and cannot be accessed. In our example, all cuboids above the dashed line
form the answerable set. Note that the protected cuboids — not included by the
answerable set — either belong to P (see Definition 8), or are ancestors of cuboids
in P that may cause inferences if they remain accessible. For instance, referring to
Figure 4.8, the cuboids in P include ¢ <3,1>, along with its descendants, and the
cuboid <4,1>, which is an ancestor of c.

The Answerable Set is considered to be valid if it contains at most one ancestor
for any protected cuboid. That is, any protected cuboid must have only one cuboid
above r to prevent inferences. The function Above() in Definition 10 formalizes this
concept.

Definition 10. Let A be the answerable set, while P is the set of all protected cuboids
of size n. We then have Above({(c;): 1 < i < n}) = { Ancestors(c;) (| A }.

We say that A is valid if Above({(c): 3 c € P}) = 1.

For instance, referring to Figure 4.8, no inference is possible from the Answerable
Set to any protected cuboid, since Above(.) only includes one cuboid for any protected
cuboid.

If the Answerable Set is not valid, a new root should be specified. To do so, the
Cuboid Hash Manager is first used to build a candidate root list from the cuboids
of the Answerable Set. This list consists of candidate cuboids having a weight (e.g.,
the number of cuboids above it ) equal to or smaller than the weight of the rejected
root, ordered by their weights. The entries of the list are then checked to find a valid

root. In the worst case, we have to check all the entries of the list. If no valid root is
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found or the list length is equal to zero, then there are no more candidate roots and

the query should be rejected. Algorithm 5 describes this process.

Algorithm 5 Finding the Minimal Roots

Input: A set C of protected cuboids.
Output: The Minimal Roots R.
1: Initialize the Hierarchy Manager (hM)
2: Initialize the Cuboids Hash Manager (cM)
3: Minimize the protected cuboid (PC)
4: for Each protected cuboid ¢; in PC do

5. Construct a Candidate Root r; for ¢;
6:  Create an Answerable Set A; using r;
7. if A; is valid then
8: add r; to R
9: else
10: Construct a Candidate Root List (CL) using ¢M
11: if length of CL equals to 0 then
12: print ”No Root”
13: else
14: for Each ¢, in CL do
15: Create an Answerable Set A, using ¢,
16: if A, is valid then
17: add ¢, to R
18: break
19: end if
20: end for
21: end if
22:  end if
23: end for
24: Return R

Essentially, Algorithm 5 starts by initializing the Hierarchy Manager and the
Cuboids Hash Manager in Steps 1 and 2 respectively. The Hierarchy Manager is used

to construct a minimal root, while the Cuboid Hash Manager is used to create a
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candidate roots list if the initial constructed minimal root is not valid. The algorithm
assumes a set of protected cuboids C' as its input and produces a set of minimal
root(s) R as output. Multiple roots are possible in practice because sometimes more
than one cuboid could be protected. If so, C' is examined and minimized to produce
the set PC in Step 3. Specifically, a cuboid ¢; can be eliminated from C' if ¢; =< ¢;
exists, where ¢; is another protected cuboid in C'. For instance, suppose C' contains
two overlapping protected cuboids <s_nation, d_month> and <s_region, d_year>.
The former can be eliminated because it is a descendant of the latter. In other words,
inferences to the former will be automatically prevented when finding the latter’s root.

The minimization process is formalized as the function Minimize() in Definition 5.

Definition 11. For any protected cuboid C, we define a function Minimize(.) as
Minimize(C) = { C - ¢;, where ¢; € C and there is another protected cuboid c; € C
satisfying ¢; = ¢; }.

At this point, we are finally in a position whereby every thing is set to construct
a root r for each cuboid in PC. This is done in Step 5, followed by creating an
Answerable Set A corresponding to r in Step 6. The set A is then validated in Step 6
and, if the validation is successful, r is added to the returned roots set R. Otherwise,
a Candidate Root List CL is constructed using the Cuboid Hash Manager c¢M and
the entries of this list are then checked to find a valid root. If no valid root is found
or the list length is equal to zero, the query is rejected. Otherwise, the valid root is

added to R.
Time Complexity

In this section, we discuss the computational and storage requirements of our algo-

rithms. We note that our algorithms can be done off-line. In other words, Roots
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and answerable sets can be computed regardless of the queries the user might eventu-
ally ask. Therefore, before receiving any query, the algorithms are executed and the
results (e.g., roots and answerable sets) are specified. This has great advantage in
reducing the on-line complexity, because the most computationally expensive tasks
can be shifted to off-line processing.

However, if necessary, the algorithms can also be executed efficiently at run time
(based on actual incoming queries). To see this, note that the key function of con-
structing a minimal root r (as per Algorithm 4) depends only on the number of
attributes in the protected cuboid ¢, which is relatively small. Specifically, finding
the base level for each attribute in ¢ is done in O(1), and finding the next level for
the deepest attribute in ¢ takes O(log m) using the Hierarchy Manager, where m is
the cardinality for the destination level. Therefore, the complexity of Algorithm 4 is
O(n + log m), where n is the attribute count of ¢, which is relatively small for typical
data cubes.

On the other hand, Algorithm 5 finds a set of minimal roots for a set of protected
cuboids. In terms of minimal construction, cost can be bounded as O(|C|* |[S]),
where C' is the number of protected cuboids and S is the number of the remaining
unprotected cuboids. We note, however, that OLAP servers rarely materialize all
possible cuboids and, as such, the cost of computation in practice is quite acceptable
(as will be shown in the Experimental Results section). Moreover, it is important to
understand that data set size has no impact whatsoever on the cost of minimal root
finding, since the cost is related to the metadata only. Consequently, the performance

does not deteriorate when production scale warechouses are employed.
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4.6.3 Checking User Queries

The inference control model discussed in this chapter can be integrated with exist-
ing access control mechanisms. In our system, Sidera has been equipped with the
access control module discussed in Chapter 3. The module checks every incoming
query and denies/modifies any request for accessing protected data. The inference
control mechanism is then enforced by rejecting any query that can not be derived
from the answerable set. Such an approach brings no additional on-line performance
overhead to the OLAP system since a query needs to be checked by the access con-
trol mechanisms anyway. This partially explains why the checking times listed in the
experimental section are similar to those given in Chapter 3.

Before looking at the experimental results themselves, we walk through a com-
plete example to demonstrate how costs are accumulated in practice. The example
considers part of the 4-dimensional data cube depicted in Figure 4.9. We begin by
introducing a set of constraints that are specified by the data cube administrator,

and then we illustrate the steps that form the checking process itself.
Example

Figure 4.9 depicts part of a lattice for a 4-dimensional data cube based upon Cus-
tomer, Product, Supplier, and Date dimensions. The Customer dimension consists of
the following attributes: custkey, c_nation, c_region. The Product dimension consists
of prodkey, p_type, and p_category attributes. The Supplier dimension is made up of
suppkey, s_nation, and s_region attributes. Finally the Date dimension has datekey,

d_month, and d_year attributes. All cuboids are related by the dependency relation.
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PROJECTION:
Attributes: Date.d_year, Supplier.s_region
Measures: sum (sales)
SELECTION:
Product.p_type = Furniture AND
Customer.c_nation = Canada AND
Date.d_year <2009 and Date.d_year 22011
FROM:
Sales

Figure 4.10: An example of checking the user query

Due to privacy concerns, the administrator of the data cube may not want a user
to have access to all the data stored in it. In this case, we regulate the access of
user Jim as follows. First, Jim should not learn the value of any customer’s sales,
although he may access the aggregated values of nations or regions. Second, any sales
before 2011 should not be accessed by Jim. Now, suppose that Jim issued the query
depicted in Figure 4.10 (represented in the IR format) that sums up the total sales
for Furniture by customers who live in Canada for years between 2009 and 2011.

As illustrated in Figure 4.9, Jim should not access the three cuboids <custkey,
prodkey, suppkey, datekey>, <custkey, prodkey, suppkey, d_month>, and <custkey,
prodkey, s_region, d_month>. Moreover, he should not access cells before 2011. Sup-
pose the first constraint is specified by the administrator with a cuboid <custkey,
prodkey, s_region, d_-month>, indicating that no aggregation finer than those in this
cuboid should be accessed by Jim. Clearly, the two cuboids <custkey, prodkey, sup-
pkey, d_month> and <custkey, prodkey, suppkey, datekey> are implied by this con-
straint in the sense that from either of them the specified cuboid <custkey, prodkey,

s_region, d_month> can be computed.
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As mentioned earlier, restricting access to these cuboids does not completely se-
cure them. Jim can infer <custkey, prodkey, suppkey, datekey> or <custkey, prodkey,
suppkey, d_month>, then continue to derive <custkey, prodkey, s_region, d_month>.
Thus, an Answerable Set needs to be computed by growing from a root and including
all its ancestors. This can be accomplished by converting the cuboid <custkey, prod-
key, s_region, d_month> to its numeric representation, specifying the lowest attribute
level, and finding a root as <c_nation, prodkey, suppkey, datekey>. Then all cuboids
above the root are from the answerable set (cuboids above the dashed line in the
figure).

To determine if the query can disclose protected data, the cuboid that will be
used to answer the query (i.e., the Answerable Cuboid) is specified and examined
to make sure that it is above the root (not a protected cuboid). For this query, the
Answerable Cuboid <c_nation, p_type, s_region, d_year> is above the root. Thus,
the query is processed to check the next constraint.

The second constraint in the example restricts Jim from accessing sales before
2011. This constraint is different from the first one. The first divides the organization
dimension into two parts: employee and {department, branch, all}, based on the
dimension hierarchy. The second partitions the time dimension horizontally, based
on the attribute values. This, in fact, can be enforced directly by the access control
model (see Chapter 3), which identifies the protected cell and anything below it.

Referring back to the query, there are three conditions in the Selection element (
p-type = Furniture, c_nation = Canada, and d_year between 2009 and 2011). The last
condition filters data for years between 2009 and 2011. However, there is a constraint

on year (sales of year 2010 is restricted). According to the rules proposed in Chapter
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3, if there is an intersection between a query condition and a constraint and there is
no exception, the query should be rejected. Clearly, there is an intersection between
them and, as a result, the query will be rejected. Algorithm 6 illustrates the checking

process.

Algorithm 6 Checking Query Selection Elements

Input: A set S of constraints and the Query Q.
Output: Returns True if Q) is valid, False otherwise.
1: Let QC be the query conditions
2: for Each Condition ¢; in QC do
3:  for Each Constraint s; in S do

4: if ¢; N s; # 0 then
5: Return False;

6: end if

7. end for

8: end for

9: Return True

The time for checking a query is quite small. In the first phase, the time is equal
to the time to build the Answerable Cuboid + the time to determine if this cuboid is
above any valid root. To build the cuboid, we rely on the memory resident IR that
consists of the query’s operational elements. Query attributes are simply retrieved
directly from the IR structure, which can be done quickly. The latter time (the time
to determine if the Answerable Cuboid is above any valid root) is also small, and is
equivalent to O(|R|), where R is the number of valid roots. In practice, the number
of valid roots is quite small (i.e., at most it equals the number of protected cuboids).

The complexity of the second phase (checking the query conditions) represented

in Algorithm 6, is O(|Q|* [S]), where @ is the number of query conditions and S is
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Figure 4.11: The architecture of the security framework

the number of constraints. Both () and S are small in practice, typically in the range

of 4 to 5 based on queries listed in the widely used OLAP benchmarks [8, 92].

4.7 QOur Prototype Framework

In this section, we discuss the remaining components of our framework. Figure 4.11
illustrates the basic design. The framework has been incorporated into a DBMS
prototype specifically designed for OLAP storage and analysis (Sidera). While this
server provides its own query optimizer and storage facilities, it does not provide any
form of data access security. This offers us the possibility to define security measures
on top of the multidimensional data model, and gives us the opportunity to explore
performance and correctness issues that would not be possible without such direct
access. Our objective therefore is to enhance the existing DBMS with not only access

control, but inference control as well.
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Referring to Figure 4.11, the user initiates the process by submitting a query us-
ing a standard client query language. In this chapter, we will assume for convenience
that this language is SQL, though the general principles would also apply to other
languages such as MDX or even Sidera’s own native XML language. When the query
arrives, the Query Translator compiles the query into an Intermediate Representa-
tion (IR) using an OLAP-specific algebra developed for the original Sidera DBMS
[110]. The OLAP algebra supports fundamental cube operations and allows for their
compact representation. More importantly, the algebraic format easily captures the
modifications to the query made during the security checking stages. Further details
are given in Section 4.7.1.

In our prototype, we assume that the OLAP system is protected by a basic access
control mechanism. In this case, the methods discussed in Chapter 3 are integrated
into the Access Control Module so as to restrict access to authorized data only. Upon
receiving a query in the IR format, the Access Control Module first decides whether
the query is legitimate with respect to the queried data. This can be done by checking
the Authentication database, which contains access control rules and policies. Then,
if necessary, it modifies/rewrites the query in order to prevent unauthorized data
access.

Once the query has been examined and possibly modified, the query should then
be assessed for possible inference attacks. The Inference Control Module assumes
this responsibility and utilizes a specific set of algorithms and data structures for this
purpose as illustrated in the previous section. Assuming that the query is acceptable
at this stage (either in its native or modified form) it will if necessary be converted

back to the appropriate query format (e.g., SQL, MDX) by the IR Converter module
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before execution. Finally, the Query Execution module receives the query in its final
form, sends it to the backend query engine for execution and receives the results that
will be returned to the end user. The functionality of the IR Converter and Query

Execution module is quite straightforward and hence is not discussed further.

4.7.1 Query Translating

The initial SQL query is received by the Query Translator, and then converted to the
corresponding IR form using the OLAP-specific algebra. The algebra operators are
listed in Section 2.4.2. Further details can be found in [110].

We note that the specification of the algebra is strongly influenced by prior lan-
guage research in the OLAP domain [97, 47]. That being said, it’s utilization within
the context of inference control, or even security in general, is to the best of our
knowledge unique.

The Query Translator itself can be broken down into three conceptual components:

e Parser: The parser decomposes the original SQL query into its core elements,

and then maps them to the corresponding Schema Objects.

e Producer: The producer creates the IR using the OLAP algebra/grammar
as described by the Schema middleware. The generated IR will be used to
determine if unauthorized accesses or malicious inferences exist. If the validation
process is successful, the IR will be transformed back to the SQL format for

execution.

e Schema Objects: The Schema Objects serve as the bridge between the Parser
and Producer. In other words, they represent parsed IR elements such as Di-

mensions and Attributes or operations like Selection, Projection, etc.
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SELECT PROJECTION:

Date.d_year, Praduct.p_type, sum(sales) Attributes: Date.d_year, Product.p_type

FROM Measures: sum(sales)

Date, Product, Customer, Sales SELECTION:

WHERE Product.p_category = Indoor and
Date.datekey = Sales.datekey and Customer.c_region = AMERICA
Product.prodkey = Sales.prodkey and FROM:

Customer.custkey = Sales.custkey and Sales
Product.p_category = Indoor and
Customer.c_region = AMERICA (1) The returned attributes are translated into

GROUP BY PROJECTION element (Attributes).

Date.d_year, Praduct.p_type (2) Measures are translated into PROJECTION element

ORDER BY (Measures).

Date.d_year, Product.p_type; (3) Filters are translated into SELECTION element.
(4) The cube name is added to the FROM clause.

Figure 4.12: A simple query in SQL format and an equivalent query in our OLAP
algebra

For example, suppose we have the simple query depicted in Figure 4.12, which
generates a list of product types and years with sales totals for category (Indoor) that
are sold in America. A more compact, but equivalent query represented in the IR, is
illustrated in the right side of the figure.

Note that some of the original query elements are ignored in the translation process
and thus will be ignored in the security checking process. These elements are related
to GROUP BY clauses, ORDER BY clauses, and JOIN operations defined within
the WHERE clause that already exist either in the SELECT or WHERE clauses.
We can see, for example, in Figure 4.12 that the the GROUP BY and ORDER BY
attributes (e.g., Date.d_year, Product.p_type) are already specified in the SELECT
clause, which is itself checked during the checking process. Therefore, rechecking such

elements would represent a pointless duplication of resources.
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4.8 Experimental Results

In the previous sections, we described components of our framework and their con-
stituent processes in detail. In this section, our focus turns to the practical efficiency
of the framework. Specifically, it is important to verify that our approach does not
impact query performance in a meaningful way. As noted in the previous chapter,
our framework has been incorporated into a DBMS prototype specifically designed
for OLAP storage and analysis. While Sidera provides its own query optimizer and
storage facilities, it is important to understand that there is no tight coupling between
the security subsystem and the backend database. As such, it is possible to plug-in
any standards-compliant DBMS server. For test purposes, in fact, this can be an
advantage as it provides more intuitive test results and underscores the potential for
integration with standard database servers. As such we have also coupled our secu-
rity model with two common database management systems, a column store DBMS
(MonetDB), and a row-based DBMS (Postgre SQL).

In terms of the test environment, all of the experiments were run on a 12-core
AMD Opteron server with a frequency of 2100 MHz, L1/12 cache sizes of 128K and
512K respectively, and a shared 12MB L3 cache. The server was equipped with 24
GB of RAM and eight 1TB Serial ATA hard drives in a RAID 5 configuration. The
supporting OS was CentOS Linux Release 6.0. All OS and DBMS caches were cleaned
between runs.

The first series of experiments was carried out using the Star Schema Bench-
mark [92], a data warehousing benchmark derived from TPC-H. The SSB schema
consists of a central fact table (i.e., Lineorder) and four dimension tables (i.e., Cus-

tomer, Part, Supplier, and Date) as illustrated in Figure 4.13. The SSB generator
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Customer Hierarchy | CUSTOMER(C_) LINEORDER(LO. ) PART(P) | part Hierarchy
REGION CUSTKEY ORDERKEY PARTKEY MFGR
NAME 1 LINENUMBER NAME 1
ADDRESS CUSTKEY MFGR [t:m:utm]
CITY PARTKEY CATEGORY
NATION —> SUPPKEY BRAND1
REGION ORDERDATE  |€ COLOR
CUSTKEY PHONE QUANTITY TYPE PARTKEY
MKTSEGMENT DISCOUNT SIZE
REVENUE CONTAINER
Supplier Hierarchy SUPPLIER(S) TAX
SUPPKEY | COMMITDATE 4-L DATE(D.) | Date Hierarchy
NAME SHIPMODE DATEKEY Year
CITY SUPPLYCOST —|  DATE L*]
NATION EXTENDEDPRICE MONTH Maonth
REGION ORDTOTALPRICE YEAR 1
PHONE . e DATEKEY

Figure 4.13: The SSB Schema

(with default settings) was used to produce a fact table of 180 million records, in
which each dimension houses between 60,000 and one million records. Note that the
SSB data set utilized in this chapter is larger than the one used in Chapter 3. We
do that to emphasize scalability issues. In other words, we want to show that the
checking time is not affected in seriously way by the underlying data set.

The second benchmark employed is the APB-1 benchmark, release I [8]. The APB
database generator (with a channel of 40) was used to load two fact tables: Actvars,
with approximately 86 million records, and Planvars with approximately 62 million
records. The fact tables are joined to four dimension tables: Product, Customer,
Time, and Channel, each housing up to 36000 records.

Finally, it is important to mention that these experiments were carried out us-

ing five simple but typical authorization constraints. Specifically, we generated one
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constraint for each dimension. For example, one of them was on the dimension it-
self, along with an exception (e.g., the Part is restricted except for the p_brandl
attribute). A second constraint was placed on an attribute value (i.e., Date.d_year
> 1997). Two additional constraints were placed on an attribute value with an ex-
ception value (e.g., Customer.c_region = AMERICA is restricted except c_nation =
CANADA, and Supplier.s_region = ASIA is restricted except s_nation = TAIWAN).
The last constraint prohibits access to a cuboid as a whole. Every tested query

violates one or more constraints.

4.8.1 Evaluation using the Star Schema Benchmark

In the following two subsections, we examine both the translation time and the per-
formance of the SSB queries. (Note that testing is conducted using the MonetDB
backend — we will discuss PostgreSQL performance at the end of the Section). To
begin, the SSB provides 13 analytic queries that can be divided into four categories.
Each category provides increasingly sophisticated restrictions on the associated di-
mensions. For example, the first category consists of queries with conditions on only
one dimension; the second category has queries with conditions on two dimensions,
and so on. However, SSB does not focus on self-joins, sub queries, or compound query
forms; therefore, we provided a complementary set of six queries that cover the query
forms that are lacking in SSB. These queries are listed in Appendix B, while the SSB

queries themselves can be found in Appendix A.
Translation Time

Recall that our framework builds upon an OLAP algebra designed specifically for

multi-dimensional models. However, all SSB queries (and complementary queries)
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Figure 4.14: Translation time for SSB queries

are written in SQL format and thus need to be translated into our algebra before the
checking process can proceed. SQL transformation is performed as per the methods
defined in [15]. Figure 4.14 shows the query translation time for the 13 SSB queries
(i.e., Query number 1 through 4_2), and of the complementary set queries (i.e., Query
number 5 through 10). As should be clear, the translation costs for both query groups
are quite small, in the range of 12-54 milliseconds. That being said, at least one of the
complementary queries is slightly more expensive to process due to the complexity of

the transformation.
Checking Versus Execution

In this section, we will look at the checking times of our framework compared to
the final execution times of the SSB queries. We have again divided the queries into
two query classes (standard and complementary) and show the performance ratios
in Figure 4.15 and Figure 4.16. Note that the query execution time is still listed for

queries that violate the policy and were not candidates for re-writing so as to give
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Figure 4.15: Performance for SSB queries

the reader a better sense of the relative balance between checking and execution.
The ratio of checking time to execution time varies considerably, depending on
the specification of the underlying query. In particular, many OLAP queries are very
expensive to execute, given the amount of sorting and aggregation involved. In this
case, execution times ranged from about 39 seconds for Query Class 1 to more than
80 seconds for Query Class 4. As the database gets larger, of course, these times
will continue to grow. However, the checking costs are quite modest, in the range of
200-600 milliseconds. Compared to the execution time, these times should be more

than acceptable, particularly given that checking costs do not grow with data set size.
Checking using various restrictions number

In this subsection, we present a set of experiments to determine if the checking time
would be influenced with the number of violated restrictions. In other words, we

want to show that our framework does not effect seriously by the number of defined
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Figure 4.16: Performance for complementary queries

restrictions. For this purpose, we selected queries number 4 through 4_2 and defined
restrictions on one dimension, then two dimensions, then three dimensions, and then
four dimensions. Figure 4.17 illustrates these times. One must note that the number
of restrictions does not affect the checking time significantly as the checking process
is dependent on the meta data not on the under laying data set. For instance, in
most case the different between the checking time when there are four restrictions to

one restriction is less than 50 ms.

4.8.2 Evaluation using the APB-1 Benchmark

In this subsection, we discuss the experimental results using the APB Benchmark.
Again, we focus on the translation and execution times. In this case, we consider
10 analytic queries, with each providing sophisticated restrictions on the associated
dimensions (i.e., some queries have only one condition, others have up to four con-

ditions). The queries themselves are executed against two fact tables. For example,
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Figure 4.19 illustrates queries posed against the Actvars table, while Figure 4.20 il-
lustrates queries posed against the Planvars table. The full query set is listed in

Appendix D.
Translation Time for APB Benchmark Queries

Again, the APB queries are written in SQL format and need to be translated into
our algebra. Figure 4.18 shows the translation time. As was the case with SSB, the

translation costs are quite small, in the range of 38-75 milliseconds.
Performance of APB Queries

In terms of the checking results, we have isolated the APB queries into two query
classes based on the target fact table. For example, Figure 4.19 shows the ratio of pro-
cessing cost to query execution time against the Actvar fact table, while Figure 4.20

shows the results for the Planvars fact table. Again, the query execution time is still
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Figure 4.18: Translating time of APB queries

listed for queries that violate the policy and were not candidates for re-writing, in
order to give a better sense of the relative balance between checking and execution.

It should be clear that the checking time is again quite small, in the range of
39-600 milliseconds. This implies that little or no I/O is required during the checking
phases once the DBMS process has started. This is the case since the Hierarchy
Manager can be pre-loaded with the appropriate meta data. For the queries, however,
both benchmarks’ databases are extremely large and we cannot expect them to be
preloaded into memory without enormous hardware resources. In other words, there
are strong limits on the amount of optimization that can be performed during the
execution phase. We also note that, in terms of this specific test case, the conditions
of Query 1 and Query 8 do not violate the policy constraints and thus the checking
times for each of them are less than for other queries.

As a final point, we re-iterate that column stores are well suited to the analytics
environment. Specifically, column stores tend to be much more I/O efficient for read-

only queries since they only have to read from disk (or from memory) those attributes
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Figure 4.21: Execution time for SSB queries on MonetDB and PostgreSQL

actually accessed by a query. Figure 4.21 and Figure 4.22 illustrate the execution time
for both SSB and APB queries using MonetDB and Postgre SQL. Here we can see that
the execution times for traditional row store database servers are noticeably larger
than those for column store databases. In such environments, the ratio of checking

to execution costs would be far more extreme.

4.9 Conclusions

In this chapter, we addressed the issue of inference attacks on protected data. Building
on the authorization mechanism discussed in the previous chapter, we presented a
general model for controlling malicious inferences in the OLAP domain. Rather than
employing a detect-then-remove approach, we exploit recent findings in the literature
suggesting that a more robust system can be produced by only allowing queries that

are determined up front to be free of inferences. Because no viable implementation of
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Figure 4.22: Execution time for APB queries on MonetDB and PostgreSQL

the Answerable Set approach has been presented, however, the focus of the current
research has been the design of such a framework. To this end, we proposed a series
of algorithms and data structures that support efficient real time inference control.
To demonstrate the viability of our approach, we coupled our framework with
MonetDB, a popular column-sore database system. MonetDB does not, of course,
provide any form of OLAP-centric security, whether access control or inference con-
trol. The success of this integration demonstrates that the general principles behind
our framework are broadly applicable to any standards compliant DBMS product,
regardless of any native understanding of the data cube model. Our analysis of
complexity, coupled with experimental analysis, underscores that fact that inference
checking can, in fact, be carried out without a meaningful impact upon query ex-
ecution times (both in column store and row store environments). We believe this

achievement represents an important contribution to the literature in the area.



Chapter 5

OSSM: An Object Oriented
Security Specification Language for
OLAP Systems

5.1 Introduction

One of the most important features of any OLAP system is the protection of data
against unauthorized disclosure (secrecy), while at the same time ensuring accessibil-
ity by authorized users whenever needed (availability). Considerable effort has been
devoted to addressing various aspects of secrecy and availability. T'wo main objectives
are considered in this context. The first is the identification and specification of suit-
able security policies that establish for each subject which object he/she can access
within the system and under which circumstances. The second is the development of
a suitable access control mechanism implementing the stated policies so as to ensure
that a user accesses only what is authorized and no more.

As a result, a number of researchers have focused on developing more expressive

security policies and more powerful access control systems. In fact, many publications
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have emphasized supporting access control mechanisms for traditional data manage-
ments systems (i.e., relational database systems) [62, 123, 96] and OLAP systems
[7, 61, 12, 65]. Security policies, on the other hand, have also been considered in
the literature, with three levels of policy specification having been identified [23]: (i)
High-level abstract policies, which can be business goals, service level agreements, or
trust relationships. These policies are not enforceable and their realization involves
refining them into one of the other two policy levels. (ii) Specification-level policies or
business-level policies, which are specified by the system administrator and related to
specific objects. (iii) Low-level policies or configurations such as security mechanism
configurations or device configurations that are related to hardware. In this phase
of the research, we focus on the second kind of policies (i.e., Specification policies),
and discuss language elements and concepts used to express these policies. We then
describe a policy specification model that is based on the Object Oriented paradigm.

Many languages have been designed or extended for expressing specification-level
policies (hereafter simply referred to as “policies”). Broadly, these languages are based
on XML concepts [89, 125, 115] or logic programming [9, 27, 88]. For instance, the
eXtensible Access Control Markup Language (XACML) is one of the most relevant
XML-based languages [56, 89]. It is an industry-driven declarative policy language
that has been adapted to provide native database support. The purpose of XACML
is the expression of policies against objects that are themselves identified in XML.
Such XML-based languages are particularly suitable to convey requirements related
to authorization and privacy for web-based systems [103]. However, it can be more
difficult to adapt them to other environments (i.e., OLAP domains) [126]. Moreover,

policies expressed directly in XML are verbose and hard to read and write [10].



138

Conversely, languages such as ALOPA [88], SecPal [9], and Binder [32] rely on con-
cepts and techniques from formal logic, specifically from logic programming. Logic
languages are particularly attractive as policy specification languages. One obvious
advantage lies in their clean and unambiguous semantics, suitable for implementa-
tion validation, as well as formal policy verification. However, some researchers and
practitioners object that logic-based specifications may be complicated or even intim-
idating to some users [117]. Specifically, security administrators and end users are
usually not experts in formal logic and need simple and user-friendly approaches that
allow them to easily understand system behavior in order to maintain control over
security specifications, and to easily learn the syntax of policy languages.

Moreover, most of these policy languages are generic in nature and would map
poorly, if at all, to the OLAP domain. In particular, access privileges in OLAP
databases can be intuitively associated with conceptual entities such as dimensions
and hierarchical aggregation levels. Mapping these conceptual entities to the physical
elements of the DBMS storage layer (i.e., tables, rows, columns) can, however, be a
significant technical challenge. Furthermore, the existence of aggregation hierarchies
provides opportunities for malicious users to subvert the intended protection layers.
For example, one might work around a restriction on the summation of provincial
sales totals by “rolling up” municipal sales results instead. Failure to protect all such
possibilities would introduce potential vulnerabilities into the system.

In this chapter, we present an OLAP Security Specification Model (OSSM) that
formulates comprehensive OLAP-specific policies in an intuitive manner. The formal
semantics for the model are based on the concepts of the Object Oriented paradigm.

OSSM enables admins or security users of OLAP systems to make use of the concepts
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of classes and objects in building their policies. A primary goal of this approach is
to model policies in a way that as closely as possible reflects the way humans tend
to think about them. Simply put, they can think of policy components (Subjects,
Objects and Roles) as abstract objects residing in memory. Each abstract object can
be re-used and combined in order to create a complete policy. That is, our approach
defines abstract objects without any reference to the physical data; this provides a
higher level of abstraction, and a clearer and more flexible design.

To support the evaluation of the OSSM approach, we provide a policy implemen-
tation and evaluation framework developed specifically for this environment. The
framework hides the low-level policy details and enables administrators to intuitively

define policy specifications. Four main components comprise this framework:

e An abstract object oriented API that allows security specialists to design policies

using an intuitive compositional paradigm.

e Concrete language integration options permitting both traditional declarative

specification and more powerful programmatic applications.

e A policy repository component that stores the policies generated by the user

interface.

e A policy manager component, which is a bidirectional component that retrieves
policies stored in the policy repository upon requests received from the outside

access control module.

Ultimately, to underscore the practical viability of the proposed approach, an

OLAP-centric case study is also provided.
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The remainder of this chapter is organized as follows. In Section 5.2, we present
an overview of related work. Section 5.3 describes the conceptual OLAP data model
that grounds the language’s design, as well as the basic terminology relevant to policy
specification. Our objectives and methodology are discussed in Section 5.4. The
OSSM and its associated classes and methods are presented in detail in Sections 5.5,
5.6, and 5.7. A discussion of the integration with the policy engine is described in
Section 5.8. Managing Overlapping Roles is then disccused in Section 5.8.3. A case

study is presented in Section 5.10. Final conclusions are offered in Section 5.11.

5.2 Related Work

The need for security languages to support the specification of access control policies
has long been identified in the literature. During the early stages, the primary focus
was on network policy specification. Multiple approaches have been proposed that
range from formal policy languages, to rule-based policy notation using an if-then-else
format, to the representation of policies as entries in a table consisting of multiple
attributes [49, 59, 24]. The most notable work in this area is the Internet Engineering
Task Force (IETF) policy model, in which the authors introduce a policy language
based on the notion of a path [59]. A key objective of this language is to ensure that
all attributes associated with the policy — including the service type of the traffic,
conditions used to trigger the policy, and the actions executed when the policy is
triggered — are all bound to a predefined path.

Policy specification languages within distributed environments have also been in-
vestigated. A variety of security languages have been proposed [75, 76, 10, 91, 115].

Ponder2, for example, is a language for specifying security and management policies



141

for distributed systems. It utilizes XML as the specification mechanism and spec-
ifies policies in a subject-action-target (SAT) format [115]. SecPAL credentials, on
the other hand, are expressed using predicates defined by logical clauses, in the style
of constraint logic programming [10], while the RDBAC framework utilizes Transac-
tion Datalog to provide reflective access control in which privileges are expressed as
database queries [91]. Of course, these approaches have great value when used on
large-scale networks and distributed systems. However, they do not scale well within
OLAP domains since they are often fragmented, dependent on infrastructure, and do
not take into account the multidimensional conceptual data model.

The Unified Modeling Language (UML) is also used to formulate security policies.
For example, in [5, 6], Alam et al proposed a security language called SECTET-PL,
and show how to express trust policies by using predicate expressions whose grammar
is expressed in UML. In [52], the authors presented a Trust Management Framework
that supports policy life cycle management using UML diagrams. However, none of
these works are designed specifically for the OLAP domain. Instead, they target the
policy model design itself.

Recently, policy specification in web-based applications has been proposed [111,
14, 20, 55]. SELinks, for instance, targets web apps and provides a uniform pro-
gramming model (in the style of LINQ and Ruby on Rails), with language syntax
for accessing objects residing either in the database or at the server [20]. Still other
frameworks investigate the association of security policies with client side code, with
protection provided by the interception and analysis of database queries [45]. XACML
[89], initially defined by the Organization for the Advancement of Structured Informa-

tion Standards (OASIS), is a declarative access control policy language that expresses
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policies in an XML specification for information control over the Internet. For the
most part, however, all such policy languages and/or extensions are generic in nature
and would map poorly, if at all, to the OLAP domain.

Modifications to SQL have occasionally been discussed as well, including exten-
sions to the SELECT and REVOKE statements in order to define a purpose driven
authorization model [116]. SQL to XML transformations have also been studied. It
is possible, for example, to employ control expression languages to map policies from
relational environments to those represented in XML [71]. In this context, the re-
lational database is first published as an XML structure (i.e., XML tree), then the
policies defined over the relational database are formulated over XML trees. However,
this model has not been implemented and it’s efficiency is unknown even for small
databases, also it is not applicable for multidimensional modeling where millions
of records may be materialized. In terms of commercial systems, implementations
generally provide very basic privilege mechanisms that are directly associated with
relational tables; the concepts of the multidimensional model are rarely considered.

Finally, we note that while language extensions to specifically support OLAP have
not been addressed, a number of researchers have investigated more general design
issues for the data warehousing context, including both early requirement targets such
as agents, decisional goals, and quality goals [66], as well as late stage conceptual-
to-logical model mappings for authorization and auditing purposes [106]. A survey
of objectives, features, and limitations of warehouse security modeling was provided
in [105]. Still, we re-iterate that design methodologies typically assume the existence
of conventional security languages and policy engines upon which the design model

would eventually be implemented.
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5.3 Preliminaries

Before discussing the semantics and syntax of the OSSM, we provide an introduction
to the conceptual data model upon which the language is based and give a brief
overview of the basic terminology and structures relevant to policy specification in

general.

5.3.1 Subjects, Objects and Roles

As mentioned in Chapter 2, we consider multidimensional environments that consist
of one or more data cubes. Each cube is composed of a set of dimensions and one
or more measures of interest. A dimension can contain a hierarchy that enables the
data associated with dimension values to be aggregated at various levels. Figure
5.1 provides an illustration of a very simple three dimensional cube on Store, Time
and Product. Store, for instance, is organized in Country — Province — City —
Store_number levels.

Security considerations in the data cube context range from simple authentication
to the complex data authorization that provides protection for sensitive data. Such
security considerations can be achieved by using policies. Policies determine which
subjects or users have access to a specific data object. For example, the policy could
establish that a user is restricted from accessing a specific level of aggregation within
a dimension but not the more coarse levels.

Supporting policies are typically based upon a combination of three basic com-
ponents. The first component, Subjects, represents users to which authorizations are
granted. A Subject can be a single user or a group of users within the system. Objects

on the other hand, refer to the data to be protected. An object can be any partition
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Figure 5.1: A simple three dimensional data cube

of a data cube defined along one or more dimensions in order to give an additional
opportunity for finer authorization. Finally, Roles are named collections of privileges
and represent organizational agents intended to perform certain job functions within
an organization.

For example, let us assume that we have an organization in which roles are created
based on the job functions of users or subjects. Constraints are subsequently assigned
to specific roles based on the requirements of these jobs. Subjects in turn are then
assigned appropriate roles based on their qualification. A Subject can be authorized
to play several roles, and a role may be assigned to multiple subjects. Figure 5.2
shows the basic relationship between subjects, roles and constraints. As illustrated,
a subject may be mapped to one or more roles, and each role may have different

constraints with respect to the access of a specific data item.
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5.3.2 Role Hierarchy

Because roles within an organization typically have overlapping permissions, roles
themselves may be organized into a hierarchy which, in turn, defines a partial ordering,
denoted as <. Such hierarchies support a more expressive representation of their
semantics. More formally, we can say that given a role domain R, let r;, r; € R be
individual roles. If r; precedes r; in the hierarchy ordering (r; < r;), we say that r;
is partially ordered relative to r; and, furthermore, that r; is a child of r;, and r; is
a parent of r;. This implies that r; inherits all constraints that are assigned to 7,
and that all users who are mapped to r; are affected by the 7; constraints. This is

formally expressed in Definition 12.

Definition 12. A role r; in a role hierarchy R inherits all constraints of roles L =
(1, ..., rs), wherer; < r; andr; <1, 21, for aroler, € R. We say that r; inherits
all constraints of roles reachable from r; to the Root role of R.

An example of a role hierarchy is illustrated in Figure 5.3, where any role inherits

all constraints that are assigned to its parents up to the Root role. For instance,
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suppose that a Store dimension with four attributes (e.g., Country, Province, City, and
Store_Number) should not be accessed by users of the Marketing role. Consequently,
any user who is assigned to the Marketing Role or any of its children is restricted from
accessing the Store dimension and, by extension, is also restricted from accessing all

the attributes of the specified dimension.

5.3.3 Object Oriented Concepts

The Object Oriented paradigm is a design philosophy based on the concepts of classes
and attributes that are often used for more accurately modeling real world objects
[67]. Such objects share two fundamental characteristics: states and behaviors. States
describe object characteristics, while behaviors define what operations an object can
perform.

Software objects are conceptually similar to real-world objects: they too consist of

state and related behavior. An object stores its state in fields/members and exposes
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Figure 5.4: (a)A Role Class in UML notations (b)A Role Class in the C++ language

its behavior through methods/functions. Both fields and methods are encapsulated
in a class, which provides the structure for objects. For example, with reference to the
role hierarchy depicted in Figure 5.3, all roles have common characteristics, including
a role name and a set of constraints that are manipulated by a set of actions (e.g.,
create_role, set_name, add_constraints, etc.). Figure 5.4(a) and 5.4(b) show the Role
class declaration in the UML class notation, and in the C++ language, respectively.

The BaseRole class describes the details of a role object. It is composed of three
components: the name of the class, a list of fields, and a list of methods. The
main() function depicted in Figure 5.4(b) simply illustrates how objects are created.
Specifically, an object is an instance of a class. We say that the bRole object has
been created out of the BaseRole class.

The Object Oriented paradigm offers numerous opportunities to improve and

simplify the design of applications. Besides the encapsulation concept, which implies
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that access to fields in an object can only be performed via a specified method,
inheritance and polymorphism are also provided [85]. As we will see, both can be
effectively exploited in policy specification settings. Simply put, inheritance allows
one to define a class in terms of another class. The existing class is called the base
class, and the new class is referred to as the derived class. For example, Figure
5.5 illustrates a simple inheritance relationship, where the relationship between the
base class (e.g., BaseRole) and the derived class (e.g., ReportingRole) are represented
in (a) UML notation and (b) the syntax for creating the derived class in the C++
language. Here, rights may be inherited across the defined roles.

Polymorphism on the other hand, allows one to exploit method overloading [104].

Method overloading is the ability to define several methods for a given class, each
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with the same name but different parameters. In the policy context, this gives an ad-
ministrator the ability to instantiate a policy — or any of its components — multiple

times, but with new parameters.

5.4 Objectives and Methodology

5.4.1 Objectives

Most of the proposed policy languages and APIs presented in the literature are generic
in nature and would map poorly, if at all, to the OLAP domain. Therefore, the
following objectives have been identified with respect to the design and development

of a reliable policy model suitable for the OLAP domain.

e Define a high-level design model based on the well-established typing and inher-
itance features of object-oriented languages. Such a system should allow policies
to be mapped directly to the conceptual data cube without any reference to the

underlying relational data or physical configurations.

e Model policies without requiring modifications to the existing access control

mechanism.
e Verify policy semantics to ensure that statements are mutually consistent.

e In cases where the policies are valid, provide a repository to store policy re-

quirements.

e Provide a simple mapping of the OO design model to the “flat” declarative syn-
tax of the SQL language. Doing so would not only allow security administrators
to work in a familiar setting, but would enable simple updating and reporting

with standard SQL client software.
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e Provide a native language(s) API that directly exposes the features of the object
oriented design model. These client side libraries would be particularly well

suited to the development of graphical design tools.

5.4.2 The Methodology

Policy specification requires a formal basis (i.e., a suitable programming language or
API with clear syntax) that allows administrators or security personnel to specify and
manage appropriate security policies. For this purpose, we propose a syntactically
clear policy specification model (i.e., OSSM) that borrows from the feature set of
the object-oriented paradigm. OSSM relies on the concepts of classes and objects
to create instances of various policy constructs such as Subject, Role, and protected
objects. These instances/objects are then combined together to create policies.

The object orientation provides us with the means to cope with expressivity,
extensibility, flexibility, and reusability. Expressivity is provided via a direct mapping
to the conceptual elements of the OLAP domain, rather than to the low-level storage
components of the physical layer. Extensibility is achieved by allowing policies to
be added or modified to meet the requirements associated with existing or future
users. Flexibility is provided since unique policy instances can be created to cater to
special security requirements. Finally, reusability is achieved by allowing designers
to instantiate policies — or any of their components — multiple times with new
parameters.

In keeping with our focus on grounding our conceptual work, OSSM is then folded
into a prototype implementation that natively understands the OLAP model. The
prototype is depicted in Figure 5.6 and includes three main components: the User

Interface Tool, the Policy Repository, and the Policy Manager. The User Interface
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Tool permits the administrator to define policies either programmatically or visually

in a declarative manner (we note that in this research project we do actually design

or provide such graphical software). The policies are then validated syntactically

and semantically, and stored in the Policy Repository. In turn, the Policy Manager

retrieves policies from the policy repository and sends them to the access control

mechanism for enforcement.

The core principles of our approach are two fold. Firstly, we describe the object

oriented representation of security elements.

This creates an intuitive picture for
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designers in the same way that the data cube provides an intuitive picture for OLAP
users (even if the data is actually stored in flat tables). Secondly, we avoid replacing
the existing access control mechanisms, and at the same time hide the low-level policy
details. This assists human administrators in modeling policies in a way that as closely
as possible reflects the way humans tend to think about them, taking into account
the nature of the underlying multidimensional OLAP model.

Finally, in order to illustrate the simplicity of our approach and to demonstrate
how such specifications might be defined using OSSM, we provide a small but repre-

sentative policy case study.

5.5 The OLAP Security Specification Model (OSSM)

As noted in Section 5.2, researchers have proposed a number of general authorization
policy languages, as well as methods to support more fine grained, and hence more
flexible, security models. That being said, such approaches are by design “lowest
common denominator” solutions. In other words, none assume any specific under-
lying conceptual model. While this assures a wide range of application options in
theory, it also implies that domain-specific implementations would require extensive
development, with each such project being both expensive and incompatible with sim-
ilar systems. Given the multi-billion dollar scale of the OLAP /analytics industry, we
believe there is ample motivation for the design of a security specification and execu-
tion environment that supports the development of intuitive policy schemas mapping
directly to the conceptual model understood by both end users and administrators.
In this section, we describe a security model (OSSM) that is based on the Object

Oriented paradigm. OSSM is used for specifying and managing security policies to
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cover the wide range of security requirements implied by the OLAP domain. We
consider the concepts or the basic components of the security policies (e.g., Subjects,
Objects and Roles) as objects, and define a set of classes to represent them. FEach class
focuses on a specific concept and defines all functionality related to that concept. This
includes all aspects of object management, such as an object’s properties, operations
and necessary data structures. That is, classes encapsulate both the properties of
objects and the operations that can be carried out on those objects. Therefore, the
defined objects can be re-used and combined with each other in order to represent
more sophisticated policies.

The core OSSM classes are the Subject Class (SC), Object Class (OC), Role Class
(RC), and Policy Class (PC) and, collectively, they represent the basic elements of
our object oriented security model. Specifically, SC defines the objects that provide
properties of the system’s users, OC defines the objects to be protected, RC defines
objects based on the job functions of users and, finally, the PC is created from these
SC and RC classes, based on the requirements of the security policy.

Operations are also defined within classes in order to modify object characteristics.
The most basic object actions are those that allow objects to be created and destroyed.
Other common actions include updating objects, assigning or revoking an existing
subject to/from one or more existing roles, or obtaining information about these
objects. These actions and others are defined as methods in the corresponding classes.
A detailed description of these methods and their corresponding classes, along with

a series of examples, are presented in the next sections.
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5.6 OSSM Classes

Before providing the fundamental structure of the OSSM classes, there are several
points worth noting. First, the open world policy is adopted, whereby Restrictions
specify denials for an access. Specifically, access is denied if there exists a negative
authorization /restriction for it, and allowed otherwise. We use the open world pol-
icy mainly for practical reasons, as the sheer number of possible prohibitions in an
enterprise OLAP environment would be overwhelming.

Second, Restrictions and Exceptions are defined relative to the OLAP conceptual
model. In other words, specifications refer explicitly to cube elements such as dimen-
sion and hierarchies. In addition, Restrictions are implicitly read-only, as updates are
expected to be performed by administrator-defined ETL (Extract-Transform-Load)
processes. Consequently, the language does not expose read-write access options.

Third, Restrictions and Exceptions are grouped together or encapsulated into
Roles, which may be organized hierarchically in a tree-based schema as shown in
Figure 5.3. Child Roles inherit the properties of the parent. However, additional
restrictions in the Child produce more limited access privileges. Note that single
inheritance (e.g., in the Java style) is utilized.

Finally, Users may be associated with multiple Roles. In such cases, cube access
rights are represented as the union of individual Role specifications. In particular, a
user is never denied access to existing privileges by virtue of their concurrent member-
ship in a more limited Role. More details are given in Section 5.8. In the remainder

of this section, we list and describe the OSSM classes.
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5.6.1 The Subject Class (SC)

The Subject Class (SC) provides a template, or blueprint, to define the properties and
the operations common to all of the system’s users. These properties and operations
are represented within a class as fields and methods, and are defined as a tuple (A,
M), where A is a set of fields that characterizes the class objects — as formally stated

in Definition 13 — and M is a set of methods allowed on these objects.

Definition 13. Let A be a set of attributes shared by a set of subjects. A is represented
by class fields and defined as the union of the subject’s identifier SI and the subject’s
attributes SA, where SA is a n-tuple of fields (a1, as, ..., a,) that characterizes the
subject, and SI is an identifier that explicitly defines every subject of that particular
class for it’s entire life. We say that A = ST U SA.

Assume now the following simple example, which will be used throughout this

section to illustrate the concepts and the notions of the classes.

Example 12. Suppose an analyst Bob is invited to study the data cube depicted
in Figure 5.1, given that the following two restrictions should be satisfied. First, due
to privacy concerns, the sales totals of all cities in the province of Quebec should not
be accessed by Bob except for the sales of the city of Montreal. Second, assume that

any sale done before 2005 should not be used for the analysis.

By applying the definition of SC to Example 12, we will have a Subject (e.g., Bob)

with the following elements:

e A = A subject identifier U a set of attributes that describes the subject (e.g.,

subject name, password, and role identifiers).

e M = A set of methods (e.g., create subject, update subject, drop subject, assign

subject-role, get subject info).
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Figure 5.7(a) then depicts the SC in UML class diagram notation. The class
contains four fields. The first stores the subject identifier, which is of type int and is
automatically generated when the object is created. The next two fields are of type
string and are used for storing the user credentials (e.g., subjectName and password)
provided by the administrator. The last field is used to hold a list of role identifiers
that the user is associated with. We note that these fields are private members, which
are accessible only from within the methods of the same class. However, the class
methods are defined with public access — they are accessible from anywhere the class
object is visible. The SC methods can be classified into two broad categories: Control
Methods and Manipulation Methods. Together, they are used to create and assign
privileges to users in order to give them permissions to access certain data. Figure
5.7(b), for example, illustrates how one would provide the SC declaration in the C++
language. For now, only method declarations are presented; syntax and definitions
are given in Section 5.7. However, brief descriptions for these methods are given

below.

e The Control Methods are used to create, update, and destroy subjects, and in-
clude the createSubject() method that creates a SC object, the updateSubject()
method that modifies the attributes of an existing object, and the dropSubject()

method that removes a specified object if it is not being used anymore.

e The Manipulation Methods, on the other hand, provide the most direct method
for granting and revoking user privileges and authority. While some of these
methods are used to maintain user-role memberships, others are used to obtain
user information. For instance, the methods addSubjectRole() and removeSub-

jectRole() are used to associate an existing user with one or more roles, and to
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void removeSubjectRole(int rolelD);
The Manipulation

int getSubjectID(); ! Methods
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Figure 5.7: (a)The UML Class Diagram of SC (b)The SC declaration in C++
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remove a user from the relevant role membership, respectively. The methods
getSubjectRoles() and getSubjectRestrictions(), on the other hand, are used
to obtain all roles for a specific user, and all restrictions on a specific user,

respectively. Further details and examples are given in Section 5.7.

5.6.2 The Object Class (OC)

The Object class (OC) provides a template to describe the protected data. The data
contained in data cubes is presented at different levels of granularity (here “granu-
larity” refers to the size of individual data elements that can be authorized to users)
such as the dimensions of the multidimensional cube, hierarchies within each dimen-
sion, and the aggregated cells. Administrators can, of course, specify the protected
data at the level of tables, columns, etc. but this is quite difficult if abstract ideas
like hierarchies or dimensions are spread throughout or across tables. Moreover, due
to the redundancy inherent in a data cube, even if such data is protected, it can be
computed from its more granular levels. Therefore, any level that allows protected
data to be derived must also be protected.

Ideally, the system administrator should not be responsible for identifying or speci-
fying all possible data items. Instead, we define the protected data as abstract objects
that are directly associated with the conceptual properties and elements of the OLAP
data model itself. These abstracted objects are defined using Object Classes without
any reference to their locations or their granularity. A primary advantage of this ap-
proach is to allow administrators to work at a higher level of abstraction — one that
matches their intuitive understanding of an OLAP database — and to transparently
propagate authorizations associated with the data object across all levels that may

be used to reveal such data.
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Given the above, we now turn to the declaration of OC itself. OC consists of a
tuple (A, C, E, M), where A is a set of attributes describing the data object to be
protected, C is a set of conditions that specifies the protected values, E is a set of
conditions that specifies the exception, if one exists, and M is the set of methods
allowed on the class objects. Definition 14 and Definition 15 formalize C and E,

respectively.

Definition 14. Let C be a set of conditions that specifies the protected values. C' is
defined as an n-tuple (cy, ..., ¢,) that may be connected by logical operators (AND,
OR) to define complex predicates protecting a cube element. We say that C forms a
general representation of any criteria/condition that may restrict any element in a
data cube by applying both arithmetic and logical operators.

Definition 15. Let E be a set of conditions (ey, ..., en) that specifies the exception
values. E defines a subset of the protected values as an exception, such that E C C.

Example 13. Recall the restrictions of Example 12. The previous definitions will
be applied to the first restriction only, where the sales of Quebec cities are restricted
except the city of Montreal. However, the definitions can be easily applied to the

second one. As such, a protected object obj can be defined as the following:

e A = An object identifier U a set of attributes to describe the object (e.g., object

description, object type).
e (' = The restriction (e.g., Stores.Province = “Quebec”).

e F = The exception (e.g., Stores.City = “Montreal”).

M = A set of methods (e.g., create object, drop object, update object, get

object info).
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Figure 5.8: (a)The UML Class Diagram for OC (b)The OC declaration in C++
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Figure 5.9: An instance of Object Class

For instance, Figure 5.8(a) and Figure 5.8(b) provide the declaration of OC in
UML class notation, and in the C++ language to illustrate a practical implemen-
tation. As noted, besides the attributes A that identify the protected data object,
OC contains two structures that explicitly define the protected data object (i.e., di-
mension, an attribute within an attribute, or an attribute value). Specifically, while
the first structure (ProtectedObject) refers to the protected data object, the second
structure (ObjectException), defines the exception for this object, if it exists.

Figure 5.9 then depicts an instance of the Object Class, as per the given example.
The dimName and the attName attributes in the ProtectedObject structure store
the dimension name and the attribute name of the protected objects (e.g., Stores and
Province). The operator attribute stores the conditional operator. In this case, it is
the equality operator =, but other possibilities include <, >, <>, etc. Finally, the
valuesRange attribute stores the range of the protected values. On the other hand,
the attributes of the ObjectException structure store the same information but for

the exception.
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Ultimately, the OC objects are controlled and managed by a set of methods M.
While the methods createObject(), dropObject(), and updateObject() are used to
create, drop, and update an object, the methods getProtectedObject() and getOb-
jectException() are used to obtain the object’s details. The syntax and definitions of

these methods, along with further details, are given in Section 5.7.

5.6.3 The Role Class (RC)

The Role Class (RC) is used to create objects that represent the system’s roles. A role
regulates the activities of its members through a set of restrictions. In our approach,
instead of specifying such restrictions for each user, they are specified on data objects
representing shared roles. In other words, restrictions are associated with the data
objects that are grouped together or encapsulated into Role objects, as formally stated

in Definition 16.

Definition 16. Let OCy, OCy, ..., OC, be n objects of Object Class (OC). We
define a Role class from these n objects as a tuple (O,A,M), where O is the set of
protected objects created by OC, A is a set of fields that characterizes the Role objects,
and M is the set of methods allowed on the Role objects.

That is, the RC is always based on OC objects and therefore at least one object

of OC should exist prior to the initialization of any RC object.

Ezample 14. Suppose a new role (e.g., Analysis) is defined with the protected

object (e.g., obj) created in Example 13. The analysis role would be defined as:

e O ={obj}.

e A = A role identifier U a set of attributes to describes the role (e.g., role name,

role description).
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e M = A set of methods (e.g., create role, drop role, update protected objects,

get role info).

Figure 5.10(a) and Figure 5.8(b) depict RC in both UML class notation and the
C++ language. As noted, besides the protectedObjects attribute that contains the
associated protected objects, RC includes attributes that describe the Role Objects
(e.g., RoleID, RoleName, etc.) and a set of methods that controls the RC objects (e.g.,
createRole(), dropRole(), getRoleObjects(), and getRoleID()) and that manipulates
the protected objects associated with these objects (e.g., addProtectedObject() and
removeProtectedObject()). Further descriptions of these methods are given in Section
5.7.

Ultimately, Roles may be structured within a role-hierarchy, with inheritance of
restrictions such that a role may inherit all restrictions that are assigned to its parents
up to the top of the hierarchy. Consequently, all users who are mapped to this role
are affected by the role’s restrictions plus all the inherited restrictions. Figure 5.11(a)
shows a Role Class Hierarchy in UML Class notation, while Figure 5.11(b) illustrates
it’s implementation in the C++ language. In this figure, objects created by the

DerivedRole class inherit all the protected objects from the base Role.

Example 15. Suppose the administrator in Example 12 wishes to build the simple

roles hierarchy that is depicted in Figure 5.12,

To build such a hierarchy, each child role should be created as a derived role with
respect to its parent. This can be done by using the Role class to create the base roles,
and the DerivedRole class to create the derived roles. For instance, the e_Reporting
role should be created using the DerivedRole class. Consequently, any user who is

assigned to this role will be restricted from accessing the Product dimension data —
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Figure 5.10: (a)The UML Class Diagram for RC (b)The RC declaration in C++
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Figure 5.11: (a)The Role hierarchy in UML Class Diagram (b)The Role hierarchy in
C++
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Figure 5.12: A simple roles hierarchy

by the role restrictions — and any sales data after 2013 — by the inherited restrictions.

5.6.4 The Policy Class (PC)

Once we have defined the different classes that we will have in our system, we proceed
to the definition of the policy class (PC). The PC allows administrators to specify
the requirements of the organization’s security policies relevant to the various cube
elements. These requirements outline the association between Subjects, protected
data, and Roles — the security policy components. So far, we have defined the
different classes that create objects to represent these basic components. We now turn
to the PC itself. The definition of PC is formally stated in Definition 17, followed by

an example to show its construction.

Definition 17. Let SC be a Subject Class and RC be a Role Class. We define a
Policy Class (PC) as a tuple (SO,RO,A,M), where

e SO and RO are the Subject and Role objects that have been created by SC and
RC.

o A is a set of fields that identifies the policy object and defines the association
between its components.

o M is the set of methods allowed on the Policy objects.
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Example 16. By applying the class definition of PC to the policy of Example 12,

the following policy (e.g., policyl) can be constructed.
e SO = {Bob} — the subject that has been created by the SC.
e RO = {Analysis} — the protected object that has been created by the RC.

e A = A policy identifier U a set of attributes to describe the policy and the
association between its components (e.g., role name, role description, Subjects

Roles Assignment).

e M = A set of methods (e.g., create role, drop role, update protected objects,

get role info).

With respect to the definition of PC, it can be considered as a composite class
where Subject and Role objects are the components. In other words, it encapsu-
lates the data that defines these components and the association between them. For
instance, referring to Example 16, Bob and Analysis objects represent these compo-
nents, and the association between them is represented by the Subjects Roles Assign-
ment attribute. In addition, the class includes a set of methods that control these
components. Figure 5.13(a) and Figure 5.13(b) depict the PC representation in UML
class notation and in the C++ language, respectively.

As noted in the figure, the subjects and roles fields store the SC and RC objects,
while the association between them is represented by the field SubjectsRolesAssign-
ment and can be modified by using the methods assignSubjectRole() and withdraw-
SubjectRole() that allows one to define complex policies and reduces the complexity
of associating users with roles. Further details about these methods are given in the

next section.



 Policy
Publc Class

2% policylD: int

¥ subjects: vector <Subject>

2 roles: vector <Role>

:-50 SubjectsRolesAssignment: vector <vector <int>>:
¥ policyDescription: string

¥ createPolicy() : boolean

@ dropPolicy() : boolean

W addSubject{subject: Subject) : void

@ addRole(role: Role) : void

¥ removeSubject{subject: Subject) : void

¥ removeRale(role: Role) : void

W assign(subject: Subject, role: Role) : boolean

W withdraw(subject: Subject, role: Role) : boolean
¥ selectSubjectRoles(subjectlD: int) : vector <Role>
¥ selectRoleSubjects(ralelD: int) : vector <Subject>
W selectPolicyRoles() : vector <Role>

@ selectPalicySubjects() : vector <Subject>

Y

168

Ga ss Policy {

int policylD;
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Figure 5.13: (a)The PC in UML Class Diagram (b)The PC declaration in C++
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5.7 Integration Options

In the preceding sections, we have described an abstract data model for the speci-
fication and maintenance of authorization objects within multi-dimensional environ-
ments. Such a model provides end users — in this case administrators and schema
designers — with the ability to focus on access constraints without concern for physi-
cal storage representation or even syntactical idiosyncrasies. That being said, policies
must eventually be specified in a concrete manner and entered into a policy repos-
itory in some way. In the current context, we suggest that this would be done in
two distinct, but cooperative forms. On the one hand, the conceptual representation
can be exposed directly in an Object Oriented programmatic API. On the other, a
more conventional SQL-style interface can be provided for direct interaction with the
DBMS in a manner consistent with conventional approaches. Because the OO ap-
proach ultimately “piggy backs” on top of the SQL model, we begin the discussion

of the integration options with this more conventional implementation.

5.7.1 Declarative Language Extensions

Existing access policies are typically specified via SQL statements, most notably the
GRANT/REVOKE commands of the Data Control (sub) Language (DCL). Here,
basic privileges (e.g., INSERT, SELECT, UPDATE, EXECUTE) can be associated
with the elements of the logical schema (e.g., tables, views, procedures). For con-
venience, privileges can in turn be organized into simple Roles. For example, the
testing Role can be created by the database designer, with the ability to create new
tables then assigned to this role.

The more sophisticated security constraints discussed throughout this thesis can
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in fact be integrated into this specification environment. Moreover, the OO char-
acteristics of the conceptual model can be “flattened” to suit the simple declarative
structure of the DCL without sacrificing expressibility. In the remainder of this sec-
tion, we describe the extensions — organized in two categories: Control Commands
and Manipulation Commands — to the current SQL/DCL language required to sup-

port a rich authentication and authorization model for the OLAP domain.
The Control Commands

The control commands are responsible for defining policy objects (e.g., Subjects,

Protected Objects, and Roles). We provide an overview of each command below.

1. The CREATE Command creates Subjects, Roles, and Protected Objects

depending on the given parameters, as listed below.

e The Create Subject command creates a new user account identified by a
password. The new user’s privilege domain is initially empty; thus, it should

be assigned to one or more roles.
The Syntax: Create Subject subject_name With password
The parameters subject_name and password respectively determine the name of

the new user account and its password.

e The Create Role command defines a new role that can be a child of another
existing role. After creating the role, one can add restrictions and define mem-

bership within that role.

The Syntax: Create Role role_name Child? parent_name?
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The keyword Role specifies that a new role may be created, while the Child
keyword indicates that the new role is a child of another role. If the parent role
is missing, the new role is assumed to be the root role. Parameters role_name
and parent_name determine the name of the new role, and the parent role name

respectively.

e The Create Restriction command creates a restriction on accessing a specified
data cube element. This includes a dimension, an attribute within a dimension,

or an attribute value(s) with/without exception.
The Syntax: Create Restriction restriction_name On cube_element

The keyword Restriction specifies a new limitation to be created. The On
keyword determines the restricted element. Parameters restriction-name and
cube_element determine the name of the new restriction and the name of the
restricted element respectively. However, certain restrictions may have excep-

tion(s). In this case, the syntax is extended as following:

The Syntax: Create Restriction restriction_.name On cube_element Except

exception;

The keyword Fzxcept indicates that an exception exists, while the parameter

exception determines the limitation exception.

2. The DROP Command removes a specified object. Using this command one

can drop a pre-initialized object as shown below.

e The Drop Subject command removes a user account permanently from the

policy repository. Consequently, its roles memberships will also be removed
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automatically.

The Syntax: Drop Subject subject_name

e The Drop Role command removes a specific role. It is not necessary to re-
move role memberships. Instead, the command automatically revokes any user

membership for the specified role.

The Syntax: Drop Role role_name

e The Drop Restriction command removes a defined restriction and conse-

quently removes it from all associated roles.

The Syntax: Drop Restriction restriction_name

2. The UPDATE Command updates the properties of an existing protected
object /restriction or a subject. There are two variants of this command. The first
variant updates the restriction itself or its exception if it is exists, while the second
one updates the subject password.

The Syntax: Update restriction.-name Set Restriction newRestriction

The keywords Set Restriction specify that an existing restriction would be up-
dated. The name of the restriction is determined by the restriction_name parameter,
while the newRestriction parameter determines the new restriction. However, in order
to update an exception, the syntax is modified by as follows:

The Syntax: Update restriction_name Set Exception newEzception;

The keywords Set Ezception specify that an existing exception should be updated.
The name of the restriction is determined in the restriction_name parameter, while

the newEzception parameter determines the new exception.
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The Manipulation Commands

The manipulation commands are used to manage policy objects. While some com-
mands are used to maintain role memberships, others are used to retrieve the secu-
rity object’s information. Generally, these commands contain clauses referring to the

name of the security object that is being processed. Some examples:

1. The Assign Command assigns an existing subject to one or more existing
roles according to his/her duties.

The Syntax: Assign subject-name To role_name

The subject_name parameter determines the name of the user account, while the
role_name parameter determines the role to be assigned. The following example adds
the user account Sue to the role Marketing.

Example: Assign Sue To Marketing

2. The Revoke Command is used when a subject’s duties are changed; for
instance, when a subject’s restrictions are no longer needed. The subject should then
be revoked from the role that restricts the subject access. The syntax of this command
is shown next, followed by an example that illustrates how Sue can be revoked from
the role Marketing.

The Syntax: REVOKE subject_-name From role_name

Example: REVOKE Sue From Marketing

3. The Add Command adds a restriction to a specific role. As a result, all
subjects assigned to that role will be affected by this restriction.

The Syntax: Add restriction_name To role_name;
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The restriction_name and role_name parameters determine the name of the re-

striction to be added to the role.

4. The Remove Command represents the complementary case of the previous
command (e.g., the Add command). A restriction and/or its exception can be re-
moved from a specific role to make it less restrictive.

The Syntax: Remove Restriction restriction-name From role_name

The parameter restriction-name determines the name of the restriction to be
removed from a role that, in turn, is determined by the parameter role_name. In
case of deletion of the exception only, the following command is used. However, this
deletion will affect all roles that hold the specified restriction.

Syntax: Remove Exception From restriction_name

5. The Select Command retrieves an object’s details or its membership infor-
mation. The same command is used with all objects but uses different parameters.

Some examples are listed next.

e Select Subjects Of Role role_name: Gets all subjects assigned to a specific role.
e Select Roles Of Subject subject_-name: Gets all roles of a specific subject.

e Select Restrictions On Subject subject_name: Gets all restrictions on a specific

subject.

e Select Restrictions Of Role role_name: Gets all restrictions of a specific role.
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5.7.2 Programmatic API

While SQL has been the de facto standard for general database interaction for the
past several decades, programmatic APIs have also been developed. Perhaps most
significantly, ODBC and JDBC have become the standard means by which to deliver
query statements to the DBMS and, subsequently, receive results. More recently,
Object Relational Mapping (ORM) frameworks such as Hibernate [73] have been
developed to minimize the impact of the impedance mismatch caused by Object-to-
Table mapping logic.

In such cases, of course, it is important to note that the queries encapsulated by the
APIs methods are typically data queries. In other words, such queries are interactively
retrieving and updating dynamic operational data. Strictly speaking, it is possible for
an OO implementation of the security classes previously discussed to be used directly
against the DBMS. However, in most situations it would be cumbersome to specify
and maintain policy specifications programmatically (i.c., writing application code to
view and maintain policy objects). In fact, a more likely scenario would be the use
of graphical tools to allow intuitive modeling and maintenance of complex enterprise
policies.

It is in this context that an OO API could be quite useful. Specifically, the
design of modeling applications would be significantly simplified by a direct proxy
interface. In other words, the policy classes discussed in the preceding sections could
be exposed as wrappers to the backend repository. Developers could then manipulate
policy objects within the graphical interface in order to provide security specialists
with an intuitive, point-and-click mechanism for setting and modifying authorization

constraints.
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Figure 5.14 provides a simple illustration of the model. Here a client side Object
(i.e., OC) houses data related to a given Policy Object specification. The imple-
mentation exposes an OO API to the programmer who can then provide graphical
representation. It terms of the class implementation itself, it would function as a
proxy in the sense that it would relay data (e.g., object instantiation and updates)
to the DBMS repository. To do so, it would utilize the low level JDBC/ODBC API
to transmit the extended SQL statements described in Section 5.7.1. All of this logic
would, however, be transparent to the user as he/she would simply work with the
graphical representation of the policy objects.

In the remainder of this section, we provide a brief overview of the primary meth-
ods (classified into two broad categories: Control and Manipulation methods) that
one would utilize as part of the OO API. A more complete listing of the methods can

be found in Appendix E.
The Control Methods

1. The CREATE Methods are responsible for creating Subjects, Protected ob-
jects, Roles, and Policies. They act as constructors that prepare the new objects for
use either as targets or as subjects in the policy definition process. Four variants of

this method are listed below.

e The CreateSubject() Method is used to create new subject accounts. The
new account privilege is initially empty; thus, it should be assigned to one or

more roles to define its privileges.

e The CreateObject() Method creates a protected data object specified by a

set of restrictions. These restrictions can be considered as conjunctions of basic
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conditions, which are deduced as per the given policy.

e The CreateRole() Method can be used to create different roles based on the
fundamental processing tasks within the organization. Each role encapsulates

one or more protected data objects to limit the accessing of its members.

e The CreatePolicy() Method creates different policy instances. Each policy
defines the association between a Subject and a Role in order to specify the
subject access rights. However, the policy complexity can be substantially in-
creased by combining additional Subjects and Roles. These components can
either be created within the method itself or passed as formal parameters to
provide re-usability. Multiple policies can then be created and individually

tailored in order to achieve the required security objectives.

2. The UPDATE Methods update the properties of an existing Protected Object
or Subject. On one hand, the attributes of a protected object can be updated using
the UpdateObject() method. In this case, variants include (i) modification to
the protected data itself (ii) modification of the exception value(s), if it exists, or
addition of the exception otherwise. On the other hand, the UpdateSubject()

method updates the Subject’s properties, such as the Subject’s password.

3. The DROP Method permanently removes an existing object. It acts as the de-
structor in object oriented languages in deallocating memory and doing other cleanup
for a class object and its class members when the object is not used anymore. It is
important to mention that it is not necessary to remove the object membership(s) be-

forehand. Instead, the drop method should automatically remove any membership(s)
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for the given object. For instance, there is no need to explicitly remove Subjects

assigned to a Role prior to dropping it.
The Manipulation Methods

1. The ASSIGN Method provides the most direct method for granting user
privileges and authority. It is used to associate an existing Subject with one or more
existing Roles. Consequently, the Subject will be affected by the new restrictions

through his/her Role participation.

2. The WITHDRAW Method takes the responsibility of removing a Subject
from a relevant Role membership due to the evolution of the Subject’s duties. This

removal will not affect his membership in any other Role.

3. The ADD Methods add predefined Subjects and Roles to a Policy. Specifi-
cally, the AddSubject() method adds a predefined Subject, while the AddRole()

method adds a Role to limit the subject.

4. The REMOVE Methods form the complementary case of the previous meth-
ods (e.g., the Add methods). An existing Subject or Role can be removed from a

Policy using the RemoveSubject() or RemoveRole() methods, respectively.

5. The SELECT Methods are used to query information about the policy com-
ponents. Four different methods are utilized. The first two methods are used to re-
trieve memberships information. For instance, the SelectRoleSubjects() retrieves

the membership for a specific Role, while the SelectSubjectRoles() retrieves the
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Roles that a specific Subject is involved in. The other two methods are SelectPol-
icyRoles() and SelectPolicySubjects(). They retrieve the information about the
Roles and the Subjects that participate in a specific Policy, respectively.

To illustrate how such methods can be utilized, recall the concrete policy of Ex-
ample 12 that restricts the access of the analyst Bob. Further, we assume that the
role Analysis of Example 14 will be defined with a membership that includes Bob.
According to this example, the subject Bob and the role Analysis should be defined
first through the methods CreateSubject() and the CreateRole(), then Bob will be
assigned to the role Analysis through the Assign() method. Figure 5.15 and Figure
5.16 show the syntax diagrams for the CreateSubject() and CreateRole() methods, re-
spectively. The syntax diagram of the Assign() method as well as the syntax diagrams

of the rest of the methods are provided in Appendix E.

CreateSubject method | o

| CreateSubject header I——»l variohle declaration I—"—)| return starement

CreateSubject header | o

(boafean)—»( Create.&'ubject)—.@

return statement |___

(retum)—»( boolean value )4»@

Figure 5.15: The Syntax Diagram for the CreateSubject method
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Referring to Figure 5.15, the first syntax diagram starts with the method header,
followed by some optional variable declarations, and ends with the return statement.
The method header shows the return type, which is a boolean value, followed by the
method name and two parameters (e.g., subjectName and password). The parameters
subjectName and password determine the name of the new subject account and its
password. These parameters are used to identify each subject in the system uniquely.
Finally, the return statement returns true if the subject is created successfully, and

false otherwise.

| CreateRole method |_‘_

| CreateRole header |——>| variable declaration F—>| QOSL objects creation '—PI return statement

| CreateRole header |__

(boo!ean)—»( CreateRole J

| QOSL objects creation ' .
—l—b data object creation

| return statement |”_

(retum )—»( boolean value )

Figure 5.16: The Syntax Diagram for the CreateRole method

On the other hand, Figure 5.16 depicts the syntax diagram for the CreateRole()
method. As shown in the figure, the create method header is followed by optional

variable declarations and object creation, and ends with the return statement. The
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objects here are of type Object and define different restrictions on user access. As
noted, at least one object must be defined to execute this method successfully. In the

case of successful creation, the method returns true, and false otherwise.

5.8 The OSSM Policy Engine Structure

While the proposed security model provides the logic and syntax for defining security
policies, it is important to note that without an appropriate server-side engine to
support the client-side language interfaces, the process of defining, storing, and man-
aging security policies is not possible. In this section, we discuss a policy management
engine and provide a detailed description of its structure and functions.

Referring back to Figure 5.6, we note that the engine consists of three main
components; namely, the user interface component that is used for defining security
policies, the policy repository component that stores the policies generated by the
user interface, and the policy manager component that manages the policies stored in
the policy repository. In the following subsections, we will discuss these components

and describe their functionality.

5.8.1 The User Interface

The user interface is the means by which an administrator actually defines policies.
It is an important part of the overall framework since it hides low-level policy details
and permits the administrator to define the language classes using either a declarative
syntax or an OOP interface. Details of the options for language interfaces have been

discussed in the previous section.
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ObjectException ProtectedObject RolesOhjects
dimName protect|D rolelD
attName dimName object!D
operator attName
rangeBegin aperator
rangeEnd rangeBegin Objects
protect!D rangeEnd objectlD

objectlD J ObjectDescription

Figure 5.17: The Policy Repository

5.8.2 The Policy Repository

The policy repository is used to store the policies generated by the language inter-
face. It acts as a bridge between the interface software and the policy management
component. In short, the interface is used to create policies, which are then stored in
the repository, and which the policy management component later consumes.

The Policy Repository itself consists of a set of tables (Subjects, Objects, Roles,
and Policies) that collectively represent the meta data required to define security
measures. For example, the Subjects, Objects, and Roles tables store the main com-
ponents required to create policies, which are subsequently stored in the Policies
table. Figure 5.17 illustrates a slightly simplified version of the policy repository.
Note that this meta-schema is the same as the one depicted in Figure 3.4 but with

some additional components.
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In the current prototype, storage and access to the Policy Repository is provided
by the SQLite toolkit [107]. SQLite is a small, open source C language library that
is ideally suited to tasks that require basic relational query facilities to be embedded

within a larger software stack.

5.8.3 The Policy Management component

The policy manager is a bidirectional component: the access control module requests
policies that are associated with a specific user when it receives his/her query; the
policy manager, in turn, contacts the policy repository and retrieves the applicable
policies, which are then sent to the access control module to enforce them. The
access control module enforces policies by permitting/rejecting requests to access a
particular data item. However, the policy manager may need to resolve the conflicting
authorizations before forwarding them to the access control mechanism. In other
words, in a typical scenario, a user may play multiple roles, according to his/her
duties. Roles may therefore have overlapping access rights due to these overlapping
responsibilities. In such situations one role (i.e., senior role) may have privileges to
access all pieces of data authorized for one or more other roles (i.e., junior roles) but
the inverse is not true. For instance, an administration role may have full access to the
data cube, while an analysis role might restrict access to one or more dimension(s).
To address such issues, our policy management component relies on an open source
library called tree.hh [114] to organize the roles in a hierarchical structure (i.e., a tree
structure). A discussion of how inheritance is resolved in the context of overlapping

roles is provided in the next section.
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5.9 Managing Overlapping Roles

It would be helpful to be able to assign a user to more than one role according
to his/her duties. Each role would have different permissions to access specific data
elements. In most cases, roles do not overlap/conflict. However, in a rapidly changing
enterprise environment, a user would likely have more than one role, and some of
these roles may very well overlap. Most existing OLAP servers apply a “Restriction
takes Precedence” principle. The problem with this approach is that it may lead to
unintended restrictions on accessible data. In other words, if a user is a member of
several roles with different permissions, the user will be restricted according to the
permissions of the least powerful role, which results in restricting the user from access
to data even if he/she is permitted to access them by using other role(s).

For example, suppose the administrator of the data cube depicted in Figure 5.1
is included in the roles shown in Figure 5.18 and assigns user Alice to the Admin-
istration role, which has full access to the whole cube. Over time, and because of
special situations, Alice is assigned also to the Marketing role, which restricts her
from accessing Product dimension data. In this example, Alice’s roles conflict; Alice
is restricted from accessing Product data because of the Marketing role, but at the
same time, she is allowed to access the same data because of the Administration role.

To address this issue, Alice should be given the highest permissions amongst her
roles by finding her highest non-conflicting roles. To do this, roles should be orga-
nized in a hierarchal structure (i.e., a tree structure) in order to pick-up the highest
role/node. To represent roles in this form, the open source tree.hh library is em-

ployed, an STL-like container class designed to represent n-ary trees [114]. Tree.hh
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Figure 5.18: An example of Roles Hierarchy
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Figure 5.19: Roles Hierarchy represented in a tree structure

provides various types of iterators such as breadth first, depth first, and sibling itera-
tors. In general, access methods are compatible with the C++ STL libraries. In our
case, we assume a depth first search strategy, where the algorithm traverses the tree
starting from the root role(s) and explores as far as possible along each branch before
backtracking. If the role is identified as an assigned role, the role’s restrictions are
extracted and the traversal then backtracks to another branch. In the worst case, we
have to visit each node exactly once, since we do not cross the same edge more than
once. As such, the time complexity is O(n) where n is the number of roles/nodes,
which is generally quite small.

Figure 5.19 illustrates the Role Tree associated with the roles hierarchy depicted
in Figure 5.18. Numbers near each node represent the roleID. In the roles tree, every
node is connected to an arbitrary number of child nodes/roles. At the top of the
tree, there may also exist a set of roles which are characterized by the fact that they

do not have any parents. Nodes at the same level are called “siblings” and are not
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Users Roles Table Highest Roles Table

UserlD| User_name|RolelD| Role_name UserlD RolelD | Role_name
1 Sue 4 Marketing 1 4 Marketing
1 Sue 9 e_Marketing 1 & e Reporting
1 Sue 6 e _Reporting 1 2 t Supporting
1 Sue 2 t Supporting TR

Figure 5.20: User’s roles in the Policy Repository

overlapping. So, if a user is assigned to sibling roles, the user’s permissions will be
the union of all his role’s restrictions. However, nodes at different levels may indeed
overlap. Each node may inherit its parent’s restrictions if any exist.

To improve the search performance, the user’s role(s), along with their restrictions,
are stored in the Policy Repository. In addition, the highest or most privileged roles
amongst the user roles are also stored there. So, instead of re-executing the search
process each time the user sends a query, his highest roles are retrieved from the
security database and cached in memory for future queries. Figure 5.20 illustrates an
example of user roles, along with the highest roles that are stored in the repository.

Of course, the user’s roles can be changed or affected by API methods (e.g.,
Assign, Withdraw, and Drop). For example, assume that the user Sue is assigned to
the following roles: Marketing, e_Marketing, e_Reporting, and t_Supporting. Sue’s
restrictions will be defined by the union of these roles. Note, e_Marketing is a child of
the Marketing role and because the user utilizes the highest role, e_Marketing is not
listed in the highest roles table. As a consequence, its restrictions will be ignored.

Now, suppose the user Sue becomes an Administrator user. The roles Marketing,



Users Roles Table Highest Roles Table

UserID| User_name|RolelD| Role_name UserlD RolelD | Role_name
1 Sue 4 Marketing 1 1 Administration
1 Sue 9 e_Marketing
1 Sue 6 e_Reporting
1 Sue 2 t_Supporting
1 Sue 1 [Administration

(a) After executing: Assign Sue to Administration

Users Roles Table Highest Roles Table

UserlD| User_name|RolelD| Role_name UserlD RolelD | Role_name
1 Sue 4 Marketing 1 4 Marketing
1 Sue 9 e_Marketing 1 6 e_Reporting
1 Sue b e_Reporting 1 2 t_Supporting
1 Sue 2 t_Supporting

(b) After executing: Withdraw 5ue from Administration

Users Roles Table

Highest Roles Table

UserlD| User_name|RolelD| Role_name UserlD RolelD | Role_name
1 Sue 9 e_Marketing 1 9 e Marketing
1 Sue B e Reporting 1 6 e_Reporting
1 Sue 2 t_Supporting 1 2 t_Supporting

Figure 5.21:

(c) After executing: Draop Role Marketing
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How the tables are affected by Assign, Withdraw, and Drop operations



190

0 RCOT

1 | Administration 2| t_Supporting
! ! T
3 [ Reporting ] 8[ t_Marketing } 9{ e_Marketing 5| Accounting

I
; —

6{ e_Reporting J 7| p_Reporting }

o e

t_Marketing, and e_Reporting will no longer be listed in the highest roles table, and

Figure 5.22: The updated roles tree

their restrictions will be ignored in the security checking process because they are
children of the the Administration role. Now, suppose that the policy is once again
altered and the user Sue is withdrawn from the same Administration role. The
user’s highest roles should then be reset to Marketing, e_Reporting, and t_Supporting.
Figure 5.21 shows an example using the Assign, Withdraw and Drop methods, and
their effect on the security tables.

Finally, we note that the Roles Tree itself may also be affected by the Drop Role
command. For instance, when a role is dropped, the tree is re-structured by moving
all children of the deleted role so that they become siblings of that role. For example,
suppose the Marketing role is dropped. Here, the t_Marketing and e_Marketing roles
should be connected directly to the Administration role. For this purpose, we also
provide an algorithm to rebuild the tree. It starts from the parent of the deleted

node, extracts the sub-trees of its child nodes, then attaches each one to the parent
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of the deleted role. The full tree can be re-structured if necessary. Figure 5.22 shows

the roles tree after dropping the Marketing role.

5.10 Case Study

We now discuss an example to illustrate both the power and intuitive nature of our
approach. In the following, the policy and the database employed are borrowed from
the Experimental Section of Chapter 4 (Section 4.8). Specifically, our main goal is to
show how such a policy can be specified using the OSSM approach. For this purpose,
we utilize the database defined by the Star Schema Benchmark (SSB) [92], which
consists of one Fact table (e.g., Lineorder) and four Dimension tables (e.g., Customer,
Part, Supplier, and Date) as depicted in Figure 5.23. Each dimension defines its own
hierarchy. Supplier, for example, includes the suppkey < s_city < s_nation < s_region
hierarchy. We note that while the SSB schema itself is defined at the logical level
(i.e., a series of relations/tables), it is a straightforward process to map the elements
of the OLAP conceptual model (i.e., the data cube) to the logical level and to the
elements of the physical DBMS (i.e., columns, indexes, data types). We will therefore
discuss policy specification at the cube level, without further concern for the details
of physical storage.

Concerning the policy, the SSB schema exposes numerous cube elements that can
be secured to various degrees. For instance, one can create restrictions on the whole
data cube, a dimension, an attribute within a dimension, or a specific value within
the data cube. We begin by assuming that we have a Role hierarchy equivalent to
the simple one depicted in Figure 5.3, with three users — Sue, Bob and Yan —

having access to the database. Sue is included in the t_Marketing and t_Accounting
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[ CUSTKEY ] PHONE
MKTSEGMENT
Supplier Hierarchy SUPPLIER(S_)
SUPPKEY
NAME
CITy
NATION
REGION
PHONE

SUPPKEY

LINEDRDER{LCI_]I PART{P_} Part Hierarchy
ORDERKEY PARTKEY MFGR
LINENUMBER NAME [%
CUSTKEY MFGR [ carecony |
PARTKEY CATEGORY ¥
SUPPKEY BRAND1 BRANDI
ORDERDATE COLOR
QUANTITY TYPE [ PARTKEY J
DISCOUNT SIZE
REVENUE CONTAINER
TAX
COMMITDATE DATE(D_) Date Hierarchy
SHIPMODE DATEKEY [ Year ]
SUPPLYCOST DATE v
EXTENDEDPRICE MONTH [ Month |
ORDTOTALPRICE YEAR v
[ DATEKEY J

Figure 5.23: The SSB Schema.

Roles. Bob is associated with the Accounting Role only, while Yan is mapped to the

Administration Role. The following restrictions/constraints are then added.

e Users within the Marketing Role are restricted from accessing the data of the

Part dimension (note that this restricts all Part attributes and attribute values).

e The child Role e_Marketing should prohibit access to North American customer

data except that of Canadian customers.

An additional constraint is added to the Accounting Role, whereby its users are

restricted from accessing the data of Asian suppliers, except those in Taiwan.

e The child Role t_Marketing should prevent access to Sales data after the year

1997.
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A few additional points are worth noting. First, the policy constraints are specified
on the conceptual entities of the data cube, such as dimensions and hierarchical
aggregation levels. Second, the constraints themselves restrict some/all data in each
entity of the data cube, and therefore every query of the Benchmark will be affected by
at least one constraint of this policy. For instance, the first three constraints restrict
access to the dimensions Part, Customer, and Supplier, respectively, and the last
constraint restricts access to the sales data in the Fact table. Third, the constraints
cover the different granularity of the data cube. For example, while the first one
restricts the whole dimension (e.g., Part), the second and the third restrict specific
values within the data cube with/without exceptions. As a final point, the roles are
organized into a hierarchy that enables inheritance. This means that the constraints
of the parent roles are inherited by their children, and therefore, the child members
are affected by these inherited constraints.

Throughout the previous sections, we discussed the classes and methods that are
used to create and manipulate policy objects. In the next subsections, we show how
these objects are gathered together to define policies. We also demonstrate how our

methods would be invoked in order to maintain policy objects.

5.10.1 Defining the Policy Objects

Listing 5.10.1 illustrates the process of defining policy objects, in which the create
methods are used to define instances of various policy constructs such as Subjects,
Roles, and Protected Objects. We note that this particular example utilizes the pro-
grammatic API (via a C++ library) rather than the SQL-style declarative interface,
though either could of course be used by the administrator. The process starts by

creating a new subject (e.g., Sue) with the user name and the password Sue and
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Su465, respectively. While only one subject is created in the example, other subjects
would be created in the same way.

The protected objects are then defined using the createObject() method that spec-
ifies the protected dimension, attribute and values. For instance, the first restriction is
defined on the Part dimension and named as partDimension — the other restrictions
can be defined in like manner. These protected objects are then grouped together and
added to a specific role in order to restrict the access of its members. For instance, the
partDimension will be added to the role Marketing to restrict its users from accessing

the Part dimension data.

void main ()
{
//Create the subjects (e.g., Sue)
Subject Sue;

try {
John.createSubject (”"Sue” , ”Su465”);
}

catch(const invalid_argument& e) {
)

cerr << ”"Error:.” << e.what( ) << endl;

//Create the restrictions (e.g., on Part dimension)
Object partDimension;

try {
partDimension. createObject () ;
¥

catch(const invalid_argument& e) {
cerr << 7"Error:.” << e.what( )
}

//Create the roles (e.g., t_Marketing)
Role t_marketingRole;

try {
t_marketingRole.createRole () ;
¥

catch(const invalid_argument& e) {
cerr << 7Error:.” << e.what( )

<< endl;

<< endl;
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}

//The manipulation methods

/...
}

5.10.2 Manipulating the Policy Objects

After creating the different policy objects, the administrator can maintain these ob-
jects by using the manipulation methods. Listing 5.10.2 depicts these methods. As
shown in statement 1 and 2, the subjects and roles are added to the policy prior to
the assignment step, where a subject can be a member of one or more roles. We note
that the protected objects can be created during role creation or separately. In this
example, the protected objects are created — as per the methods in the previous
section — then added to the roles. For instance, the partDimension object — created
in Listing 5.10.1 — is added to the Marketing role in statement 3.

After that, the subjects should be assigned to roles in order to to carry out their
duties. For instance, in statement 4, Sue is assigned to the role t_Marketing. Note that
via her association with t_Marketing, Sue has restricted access to Sales data after the
year 1997. However, another restriction is implicitly included (e.g., partDimension)
through Role inheritance. Specifically, this restriction is inherited from the Marketing
Role (via t_-Marketing).

Throughout the lifetime of the system, the administrator can obtain information
about Roles, Subjects or Policies. For instance, the policy roles are retrieved in
statement 5, then a specific role (e.g., the t_Marketing role) is queried to obtain
its memberships (e.g., statement 6). Finally, if the policy changed due to security

reasons, a subject can be revoked from a certain role as shown in statement 7. Of
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course, this does not affect his/her other roles. However, if a subject is removed from

a policy as in statement 8, his/her memberships in all roles in the policy are removed

completely.

void main ()

{

//The creation methods

Policy policyl;
if (policyl.createPolicy ()){

//1.Add the subject Sue to the policy
policyl.addSubject (Sue);

//2.Add the Marketing role to the policy
policyl .addRole(marketingRole) ;

//3.Add the protected object to the role
marketingRole.addProtectedObject (partDimension) ;

//4.Assign Sue to the role t-Marketing
policyl .assign (Sue,t_-marketingRole);

//5.0btain the policy roles
vector <Role> PolicyRoles;
PolicyRoles = selectPolicyRoles () ;

//6.0btain the role memberships
vector <Subject> RoleSubjects;
RoleSubjects = selectRoleSubjects (t_-marketingRole.getRolelD ());

// 7. Revoke Sue from the role Marketing
policyl .withdraw (Sue,t_-marketingRole);

//8.Remove the subject Sue from the policy
policyl.removeSubject (Sue) ;
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5.11 Conclusions

In this chapter, we have presented a security policy design model called OSSM. OSSM
is based on the object oriented paradigm, which is appropriate for managing complex
objects and relationships. The basic policy type supported by the model is the Au-
thorization Policy. Such policies specify the relationship between subjects, objects,
and conditions. All policies in OSSM are defined over sets of objects created by cor-
responding classes in an object-oriented manner. Roles, Subjects, and other elements
can in turn be defined and reused within policy specifications in order to enhance re-
usability. Furthermore, our model supports an evolving role hierarchy with possibly
overlapping role specifications.

To facilitate the use and proper execution of the OSSM commands, we also pro-
vide a small policy engine prototype. The engine hides policy details and associates
constraints with the conceptual elements of the data cube model. To illustrate the
simplicity of the approach, we have also provided a case study and indicated how
policies might be specified in such a scenario. Given the size of the OLAP market,
and the importance of properly protecting analytics/warehouse data, we believe that
this kind of domain-specific approach represents a significant improvement relative to

current alternatives.



Chapter 6

Conclusions

6.1 Summary

In this thesis we have presented a comprehensive solution for the protection of sen-
sitive data within OLAP domains. Ultimately, the algorithms and data structures
we have discussed allow users to identify and exploit useful data trends and patterns
without concern that the integrity of the underlying data will be compromised. The
contributions of the current work are three-fold. First, we have developed a framework
to restrict unauthorized users from accessing data that has been explicitly protected.
Second, we presented a solution for controlling malicious inferences caused by un-
protected coarser aggregations. Third, we enhanced the functionality of our security
framework with a flexible Object Oriented design model, as well as providing support
for both declarative policy specification and programmatic interaction.

In terms of authorization and authentication, we have discussed a query re-writing
model to provide access control in multi-dimensional OLAP environments. We began
by defining a conceptual model that focused on the data cube and its constituent
dimension hierarchies. From here, we introduced the notion of authorization objects

designed to identify and constrain the relationships between parent/child aggregation
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levels. We then presented a series of rules that exploited the authorization objects in
order to decide whether user queries should be rejected, executed directly or dynami-
cally and transparently transformed. In the latter case, we identified a set of minimal
changes that would allow queries to proceed against a subset of the requested data.

In the second part of the thesis, we presented a framework for controlling mali-
cious inferences. We began by describing the framework components and how they
interacted with the OLAP query. Specifically, after receiving the query, the DBMS
middleware parses the query, identifies the relevant OLAP objects, and re-writes the
original query to include a native DBMS representation of the query. In turn, the
control component rejects any query that might lead to malicious inference. We then
discussed data structures and algorithms utilized by the model in order to provide
acceptable performance characteristics during the query checking process. The ex-
perimental results demonstrate that the model is efficient and readily implementable
within OLAP environments.

Finally, we discussed the issue of design abstractions and associated language
support. To that end, we described an object oriented design model that would
allow security professional to focus on the specification of policies without concern
for physical schema design. Declarative language extensions, as well a direct mapping
to the OO design model, were presented in the context of client side programming
options. On the server side, we discussed the structure and maintenance of the
repository database, including the methods used to address overlapping security roles.

A case study utilizing examples from the thesis was also analyzed.
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6.2 Future Work

The research described in this thesis represents a foundation for the development of
a complete OLAP security system. That being said, this is a large topic and there
are numerous opportunities for additional research. Below, we identify a number of
possible projects or research themes that would significantly extend the functionality

of the current research:

1. Improve the query language conversion middleware.

At present, our query language conversion middleware (i.e., SQL and MDX
translators) supports a wide range of common query patterns. However, they
do not cover support the full syntax of either language. For example, the SQL
conversion module cannot at present translate all forms of nested queries, while
the MDX middleware does not support all MDX functions (there are more than

100 functions in the language).

2. Full Implementation of the IR Converter.

The IR Converter is not yet fully implemented. At present, the backend server
supports either direct execution of the OLAP algebra (i.e., using Sidera’s native
query processor) or execution via an SQL compliant DBMS (the MonetDB). In
the latter case, valid queries are converted from our internal OLAP algebra to
SQL form prior to execution. However, it would be important to extend the
IR converter to be able to convert valid queries not only to SQL but to MDX

format as well.

3. Provide security countermeasures for materialized views.
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At present it is conceivable that materialized views could be considered as a
mechanism for bypassing security for sensitive data that has been otherwise
protected. However, since the query re-writing is performed during the security
checking phase, all security restrictions can be associated with common data
cube elements (i.e., dimensions, attributes, etc). We can protect the sensitive
data when using pre-generated views by executing the query only if a user has

access to elements that are used to define the corresponding view.

. Consider other kinds of attacks.

To maximize data utility, our security framework considers those situations in
which inference is associated with the computation of an exact sensitive value.
However, other methods can be used to infer sensitive data. For example, a
classifier can be built based on query results, and then utilized to infer sensitive
data[21]. Considering this type of attack could significantly extend the scope of

our security framework.

. Provide security countermeasures for the collaborative business in-

telligence.

Collaborative environments introduce new requirements for access control, which
cannot be met by using existing models developed for non-collaborative domains
[74]. The reason is that there are more resources to be accessed and more com-
plex security policies and rules from different partners to be obeyed in such
a system than these in an individual information system. This increases the
security concerns since, simultaneously cooperating attackers may be existed.

Considering this type of attack could motivate the future work research.
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In conclusion, we believe that the mechanisms presented in this thesis represent
a significant contribution to the literature in that they define a comprehensive data
security model specifically tailored to the OLAP domain. Not only have we discussed
general solutions to core problems, but we have also tried to emphasize the application
and implementation issues relevant to real world settings. While there is, as we have
noted above, additional work that can be pursued in the future, we believe that the
current work clearly demonstrates that enhanced OLAP security is both useful and

possible in practice.
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Appendix A

The Star Schema Benchmark
Queries

Below, we provide a listing of the 13 queries found in the Star Schema Benchmark.

e Queryl:

SELECT sum (lo_extendedprice * lo_discount) as revenue

FROM lineorder, date

WHERE lo_orderdate = d_datekey and d_year = 1993 and lo_discount between
1 and 3 and lo_quantity < 25;

e Queryl_1:

SELECT sum (lo_extendedprice * lo_discount) as revenue

FROM lineorder, date

WHERE lo_orderdate = d_datekey and d_yearmonthnum = 199401 and lo_discount
between 4 and 6 and lo_quantity between 26 and 35;

e Queryl_2:

SELECT sum (lo_extendedprice * lo_discount) as revenue

FROM lineorder, date

WHERE lo_orderdate = d_datekey and d_weeknuminyear = 6 and d_year =
1994 and lo_discount between 5 and 7 and lo_quantity between 26 and 35;
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o Query2:

SELECT sum (lo_revenue), d_year, p_brand1

FROM lineorder, date, part, supplier

WHERE lo_orderdate = d_datekey and lo_partkey = p_partkey and lo_suppkey
= s_suppkey and p_category =

"MFGR#12" and s_region = "AMERICA’

GROUP BY d_year, p_brand1

ORDER BY d_year, p_brandl;

e Query2_1:

SELECT sum(lo_revenue), d_year, p_brandl

FROM lineorder, date, part, supplier

WHERE lo_orderdate = d_datekey and lo_partkey = p_partkey and lo_suppkey
= s_suppkey and p_brandl between 'MFGR#2221" and 'MFGR#2228" and
s_region = "ASTA’

GROUP BY d_year, p_brand1

ORDER BY d_year, p_brandl;

o Query2_2:

SELECT sum(lo_revenue), d_year, p_brandl

FROM lineorder, date, part, supplier

WHERE lo_orderdate = d_datekey and lo_partkey = p_partkey and lo_suppkey
= s_suppkey and p_brandl = '"MFGR#2221" and s_region = "EUROPE’
GROUP BY d_year, p_brand1

ORDER BY d_year, p_brandl;

e Query3:

SELECT c_city, s_city, d_year, sum(lo_revenue) as revenue

FROM customer, lineorder, supplier, date
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WHERE lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_orderdate
= d_datekey and c_nation = 'UNITED STATES’" and s_nation = "UNITED
STATES’ and d_year between 1992 and 1997

GROUP BY c_city, s_city, d_year

ORDER BY d_year asc, revenue desc;

Query3_1:

SELECT c_nation, s_nation, d_year, sum(lo_revenue) as revenue

FROM customer, lineorder, supplier, date

WHERE lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_orderdate
= d_datekey and c_region = "ASIA’ and s_region = ’ASTA’ and d_year > 1992
and d_year < 1997

GROUP BY c_nation, s_nation, d_year

ORDER BY d_year asc, revenue desc;

Query3_2:

SELECT c_city, s_city, d_year, sum(lo_revenue) as revenue

FROM customer, lineorder, supplier, date

WHERE lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_orderdate
= d_datekey and (c_city = "UNITED KI1’ or c_city = 'UNITED KI5’) and
(s_city = "UNITED KI1’ or s_city = "UNITED KI5’) and d_year > 1992 and
d_year < 1997

GROUP BY c_city, s_city, d_year

ORDER BY d_year asc, revenue desc;

Query3_3:

SELECT c_city, s_city, d_year, sum(lo_revenue) as revenue
FROM customer, lineorder, supplier, date
WHERE lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_orderdate =
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d_datekey and (c_city = "UNITED KI1’ or c_city = 'UNITED KI5’) and (s_city
= "UNITED KI1’ or s_city = 'UNITED KI5’) and d_yearmonth = "Dec1997’
GROUP BY c_city, s_city, d_year

ORDER BY d_year asc, revenue desc;

Query4:

SELECT d_year, s_nation, p_category, sum(lo_revenue - lo_supplycost) as profit
FROM date, customer, supplier, part, lineorder

WHERE lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_partkey
= p_partkey and lo_orderdate = d_datekey and c_region = "AMERICA’ and
s-region = "AMERICA’ and (d_year = 1997 or d_year = 1998) and (p-mfgr =
'MFGR#1’ or p_mfgr = '"MFGR#2’)

GROUP BY d_year, s_nation, p_category

ORDER BY d_year, s_nation, p_category;

Query4_1:

SELECT d_year, c_nation, sum(lo_revenue - lo_supplycost) as profit

FROM date, customer, supplier, part, lineorder

WHERE lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_partkey
= p_partkey and lo_orderdate = d_datekey and c_region = "AMERICA’ and
s_region = "AMERICA’ and (p_mfgr = '"MFGR#1’ or p_mfgr = '"MFGR#2’)
GROUP BY d_year, c_nation

ORDER BY d_year, c_nation;

Query4_2:

SELECT d_year, s_city, p_brand1, sum(lo_revenue - lo_supplycost) as profit
FROM date, customer, supplier, part, lineorder

WHERE lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_partkey
= p_partkey and lo_orderdate = d_datekey and c_region = "AMERICA’ and
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s_nation = 'UNITED STATES’ and (d_year = 1997 or d_year = 1998) and
p-category = '"MFGR+#14’

GROUP BY d_year, s_city, p_brand1

ORDER BY d_year, s_city, p_brandl;



Appendix B

The Complementary Query Set

Below, we provide the complementary set of 6 queries.

e Queryb:
SELECT distinct d_year
FROM supplier, date, lineorder

WHERE lo_suppkey = s_suppkey and lo_orderdate = d_datekey and s_suppkey
< 120

UNION

SELECT distinct d_year

FROM customer, date , lineorder

WHERE lo_custkey = c_custkey and lo_orderdate = d_datekey and c_custkey <
300 ;

e Query6:

SELECT d_year, s_nation, sum(lo_revenue) as profit

FROM date, customer, supplier, lineorder

WHERE lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_orderdate
= d_datekey and c_region = AMERICA and s_region = AMERICA and (d_year
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= 1997 or d_year = 1998)
GROUP BY d_year, s_nation

UNION

SELECT d_year, c_nation, sum(lo_revenue) as profit

FROM date, customer, lineorder

WHERE lo_custkey = c_custkey and lo_orderdate = d_datekey and c_region =
AMERICA and (d_year = 1997 or d_year = 1998)

GROUP BY d_year, c_nation;

QueryT7:

SELECT distinct c_nation

FROM customer

WHERE c_region <> ASIA and c_region in
(SELECT distinct s_region

FROM customer

WHERE s_suppkey = 10905 );

Query8:

SELECT c_nation, sum(lo_quantity)

FROM part, customer, lineorder

WHERE p_partkey = lo_partkey and c_custkey = lo_custkey and
cregion = AMERICA and p_brandl <> MFGR#111 and p_partkey =
(SELECT sum(lo_partkey)

FROM lineorder

WHERE lo_custkey = 100 ) CROUP BY c_nation;

Query9:
SELECT distinct p_name
FROM part, supplier, lineorder
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WHERE p_partkey = lo_partkey and s_suppkey = lo_suppkey and s_region =

AMERICA and

p_partkey not in

(SELECT distinct lo_partkey
FROM lineorder

WHERE lo_orderdate > 19980801);

Query10:

SELECT distinct s_nation

FROM supplier, lineorder

WHERE lo_suppkey = s_suppkey and lo_custkey in
(SELECT c_custkey

FROM customer

WHERE c_city = "UNITEDSTY9’)

UNION

SELECT distinct c_nation

FROM customer, lineorder

WHERE lo_custkey = c_custkey and lo_orderdate > 19980801,



Appendix C

A Query in XML format and its
DTD grammar

The XML encoding of the query depicted in Listing 2.1.

<?xml version="1.0" encoding="UTF-8’7>
<DOCTYPE QUERY SYSTEM ” ClientQuery .dtd” []>
<QUERY><DATA QUERY>

<CUBENAME>Furniture Sales</CUBENAME>

<OPERATION_LIST>
<OPERATION>
<PROJECTION>
<MEASURE_LIST>
<MEASURE>S ales < /MEASURE>
</MEASURE_LIST>
<ATTRIBUTE_LIST>
<PROJECTION_DIMENSION>
<DIMENSION NAME>Store </DIMENSION_ NAME>
<ATTRIBUTE>Province </ATTRIBUTE>
</PROJECTION_DIMENSION>
</ATTRIBUTE_LIST>
</PROJECTION>
< JOPERATION>

<OPERATION>
<SELECTION>

229




230

<DIMENSION _LIST>
<COMPOUND_DIMENSION>
<DIMENSION_LIST>
<DIMENSION>
<DIMENSION_NAME>Store </DIMENSION_NAME>
<EXPRESSION>
<RELATIONAL_EXP>
<BASIC_EXP>
<SIMPLE_EXP>
<EXP_VALUE>
<ATTRIBUTE>Province </ATTRIBUTE>
</EXP_VALUE>
</SIMPLE_EXP>

<COND_OP>
<RELATIONAL_OP>EQUALS</RELATIONAL_OP>

< /COND.OP>

<SIMPLE_EXP>
<EXP_VALUE>
<CONSTANT>Quebec < /CONSTANT>
</EXP_VALUE>
</SIMPLE_EXP>
</BASIC_EXP>
< /RELATIONAL _EXP>
</EXPRESSION>
< /DIMENSION>
< /DIMENSION_LIST>

<LOGICAL_OP>AND< /LOGICAL_OP>

<DIMENSION>
<DIMENSION_ NAME>Time< /DIMENSION_NAME>
<EXPRESSION>
<RELATIONAL_EXP>
<BASIC_EXP>
<SIMPLE_EXP>
<EXP_VALUE>
<ATTRIBUTE>Y ear </ATTRIBUTE>

</EXP_VALUE>
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</SIMPLE_EXP>

<COND_OP>
<RELATIONAL OP>EQUALS< /RELATIONAL OP>
< /COND_OP>

<SIMPLE_EXP>
<EXP_VALUE>
<CONSTANT>2011< /CONSTANT>
< /EXP_VALUE>
</SIMPLE_EXP>
</BASIC_EXP>
< /RELATIONAL EXP>
< /JEXPRESSION>
< /DIMENSION>
</DIMENSION_LIST>
< JCOMPOUND_DIMENSION>
< /DIMENSION _LIST>
< /SELECTION>
< JOPERATION>

</OPERATION_LIST>
< /DATA QUERY>

<USER_CREDENTIALS>
<USER_.NAME>John < /USER_ NAME>
<PASSWORD>J86mn < /PASSWORD>
< /JUSER_.CREDENTIALS>

< JQUERY>

The DTD grammar that is used to describe the structure of the previous XML

query.

<?xml version="1.0" encoding="UTF-8"7>
<!ELEMENT QUERY ((DATA.QUERY | META QUERY), USER)>

<!l—User—>
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<!ELEMENT USER (USERNAME, PASSWORD)>
</ELEMENT USERNAME (#PCDATA)>
</ELEMENT PASSWORD (#PCDATA)>

<!—— Data queries—>
<!ELEMENT DATA QUERY
(CUBENAME, OPERATION_LIST , FUNCTION_LIST? ) >
<!ELEMENT CUBENAME (#PCDATA)>
<!ELEMENT OPERATION_LIST (OPERATION+)>
<!ELEMENT OPERATION (
SELECTION |
PROJECTION |
CHANGE_LEVEL |
CHANGEBASE |
PIVOT |
DRILL_ACROSS |
UNION |
INTERSECTION |
DIFFERENCE ) >

<l—— Selection —>

<!ELEMENT SELECTION (DIMENSION_LIST)>

<!ELEMENT DIMENSION_LIST ( DIMENSION | COMPOUND_DIMENSION)>

<!ELEMENT COMPOUND_DIMENSION (DIMENSION_LIST, LOGICAL.OP,
DIMENSION_LIST)>

<!ELEMENT DIMENSION (DIMENSION NAME, EXPRESSION)>

<!ELEMENT DIMENSION NAME (#PCDATA)>

<!l—— Projection —>

<!ELEMENT PROJECTION (MEASURE_LIST, ATTRIBUTE_LIST?)>
<!ELEMENT MEASURE_LIST (MEASURE+)>

<!ELEMENT ATTRIBUTE_LIST (PROJECTION_DIMENSION+)>

<!ELEMENT PROJECTION_DIMENSION (DIMENSION.NAME, ATTRIBUTE)>
<!ELEMENT MEASURE (#PCDATA)>

<l—— Rollup/Drill down —>
<!ELEMENT CHANGELEVEL (CHANGE_LEVEL_LIST+)>
<!ELEMENT CHANGE_LEVEL_LIST (DIMENSIONNAME, TARGET_LEVEL)>
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<IATTLIST CHANGE_LEVEL_LIST
direction (UP | DOWN) #REQUIRED>
<!ELEMENT TARGET LEVEL (#PCDATA)>

<!—— Changing the base —>
<!ELEMENT CHANGEBASE (CHANGE_BASE_LIST+)>
<!ELEMENT CHANGE_BASE_LIST (PROJECTION_DIMENSION )>
<IATTLIST CHANGE_BASE_LIST

modification (ADD | REMOVE) #REQUIRED>

<l—— Pivot —>

<!ELEMENT PIVOT (PIVOT_LIST)>

<!ELEMENT PIVOT_LIST (PIVOT_-PAIR+)>

<!ELEMENT PIVOT_PAIR (OLD_DIMENSION, NEW _DIMENSION)>
<!ELEMENT OLD_DIMENSION (#PCDATA)>

<!ELEMENT NEW_DIMENSION (#PCDATA)>

<!l—— Drill across —>

<!ELEMENT DRILL_ACROSS (DATA.QUERY, COMPAREFACT?)>
<!ELEMENT COMPAREFACT (#PCDATA)>

<!l—— RATIO —>

<!—— <!ATTLIST DRILL_ACROSS
output (BOTH | REPLACE) #REQUIRED> —>

<!—— Union —>
<!ELEMENT UNION (DATA QUERY)>

<!l—— Intersection —>
<!ELEMENT INTERSECTION (DATA QUERY)>

<!l— Difference —>
<!ELEMENT DIFFERENCE (DATA QUERY)>

<!—— Dimension Expressions —>

<!ELEMENT EXPRESSION (RELATIONALEXP | COMPOUNDZEXP)>
<!ELEMENT COMPOUNDEXP (EXPRESSION, LOGICAL_OP, EXPRESSION)>
<!ELEMENT RELATIONALEXP (BASIC_EXP | OLAPEXP)>

<!ELEMENT BASIC_EXP (SIMPLE_EXP, COND.OP, SIMPLE_EXP)>




<!ELEMENT OLAP EXP (SIMPLE_EXP, OLAP.OP, OLAP_LIST)>

<!ELEMENT SIMPLE_EXP (EXP_VALUE | ARITHMETIC_EXP)>

<!ELEMENT ARITHMETIC_EXP (SIMPLE_EXP, ARITHMETICOP,
SIMPLE_EXP )>

</ELEMENT EXP_VALUE (
CONSTANT |
ATTRIBUTE |
FUNCTION_LIST )>

<!ELEMENT CONSTANT (#PCDATA)>
<IELEMENT ATTRIBUTE (#PCDATA)>

<!—— Dimension Operators —>
<!ELEMENT LOGICAL_.OP (#PCDATA)>
<!—— AND | OR —>

</ELEMENT COND.OP (
RELATIONAL.OP |
EQUALITY_OP )>

</ELEMENT RELATIONAL.OP (#PCDATA)>
<l-— GT | GIE | LT | LTE) —>

</ELEMENT EQUALITY.OP (#PCDATA)>
<l—— EQUALS | NOT.EQUAL —>

</ELEMENT OLAP.OP (#PCDATA)>
<l—— INRANGE | IN_LIST)> —>

<ELEMENT OLAP_LIST (VALUE+)>
<IELEMENT VALUE (#PCDATA)>

</ELEMENT ARITHMETIC_.OP (#PCDATA)>
<l—— ADD | SUBTRACT | MULTIPLY | DIVIDE) —>

<!l—— Generic Functions —>
<!ELEMENT FUNCTION_LIST (FUNCTION+)>
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</ELEMENT FUNCTION (PARENT, FUNCTIONNNAME, ARGUMENTLIST?)>
</ELEMENT PARENT (#PCDATA)>

</ELEMENT FUNCTIONNAME (#PCDATA)>

</ELEMENT ARGUMENT LIST (ARGUMENTH)>

</ELEMENT ARGUMENT (#PCDATA)>

<!—— Meta data queries: this will be extended later —>
<!ELEMENT META QUERY (CUBENAME)>

<IATTLIST META QUERY

scale (FULL | PARTIAL) #REQUIRED>
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Appendix D

The APB-1 OLAP Benchmark
Release 11 Queries

Below, we provide a listing of the 10 queries found in the APB-1 OLAP Benchmark
Release 1I.

e Queryl:

SELECT division_level, retailer_level, base_level, year_level, sum (unitssold)
as units, sum (dollarsales) as Dollars, sum (dollarsales)/sum (unitssold) as
AvgSellingPrice

FROM actvars, prodlevel, timelevel, custlevel, chanlevel

WHERE product_level = code_level and time_level = month_level and cus-
tomer_level = store_level and channel level = base_level and channel level =
"Y63A674WLAGL’

GROUP BY division_level, retailer_level, base_level, year_level

ORDER BY division_level, retailer_level, base_level, year_level;

o Query2:

SELECT division_level, retailer_level, year_level, sum (unitssold) as units, sum
(dollarsales) as dollarsales, sum (dollarcost) as dollarcost, sum (dollarsales)-sum

(dollarcost) as margin, (sum (dollarsales)-sum (dollarcost))/sum (dollarsales) as
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marginpct

FROM actvars, prodlevel, timelevel, custlevel

WHERE product_level = code_level and time_level = month_level and cus-
tomer_level = store_level and division_level <> "PNLY9LTO0CW24’ and retailer_level
> 'RODM4G10OLU1P’ and year_level = 1995

GROUP BY division_level, retailer_level, year_level

ORDER BY division_level, retailer_level, year_level,

o Query3:

SELECT class_level, retailer_level, month_level, sum (unitssold) as Units, sum
(dollarsales) as DollarSales, sum (DollarCost) as DollarCost

FROM actvars, prodlevel, timelevel, custlevel

WHERE product_level = code_level and time_level = month_level and cus-
tomer_level = store_level and class_level = "B48F3WC38AAM’ and retailer_level
= 'RODM4G10LU1P’

GROUP BY class_level, retailer_level, month_level

ORDER BY class_level, retailer_level, month_level;

o Query4:

SELECT class_level, retailer_level, quarter_level, base_level, sum (dollarsales) as

DollarSales

FROM actvars, prodlevel, custlevel, timelevel, chanlevel

WHERE product_level = code_level and time_level = month_level and cus-
tomer_level = store_level and channel_level = base_level and class_level < 'B48F3WC38AAM’
and retailer_level = "/RODM4G10LU1P’ and quarter_level > "1996Q1’

GROUP BY class_level, retailer_level, quarter_level, base_level

ORDER BY class_level, retailer_level, quarter_level, base_level;

e Queryb:
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SELECT class_level, retailer_level, quarter_level, sum (dollarsales) as DollarSales
FROM actvars, prodlevel, custlevel, timelevel, chanlevel

WHERE product_level = code_level and time_level = month_level and cus-
tomer_level = store_level and channel_level = base_level and class_level <
'B48F3WC38AAM’ and retailer_level > 'RODM4G10OLU1P’ and quarter_level
> "1996Q1

GROUP BY class_level, retailer_level, quarter_level

ORDER BY class_level, retailer_level, quarter_level;

Query6:

SELECT class_level, retailer_level, quarter_level, sum (dollarsales)

FROM actvars, prodlevel, custlevel, timelevel, chanlevel

WHERE product_level = code_level and time_level = month_level and cus-
tomer_level = store_level and channel_level = chanlevel.base_level and class_level
<’CWICAWGGWO0ZK’ and retailer_level <> "FV37172FDIG5’ and quarter_level
> ’1995Q1°

GROUP BY class_level, retailer_level, quarter_level

ORDER BY class_level, retailer_level, quarter_level;

QueryT:

SELECT class_level, retailer_level, base_level, quarter_level, "Actual’,

sum (unitssold) as Units

FROM actvars, prodlevel, timelevel, custlevel, chanlevel

WHERE product_level = code_level and time_level = month_level and cus-
tomer_level = store_level and channel_level = base_level and class_level <
'B48F3WC38AAM’ and retailer_level > "/RODM4G10OLU1P’ and base_level =
"JRSPFIZ0Q93N’ and quarter_level > 1996Q1’

GROUP BY class_level, retailer_level, base_level, quarter_level

ORDER BY class_level, retailer_level, base_level, quarter_level;
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e QueryS:

SELECT retailer_level, month_level, sum (unitssold) as UnitsSold, sum (dol-
larsales) as DollarSales, sum (dollarsales)/sum (unitssold) as AvgSellingPrice,
sum (DollarCost) as DollarCost, sum (dollarsales)- sum (DollarCost) as Margin
FROM planvars, timelevel, custlevel

WHERE time_level = month_level and customer_level = store_level and re-
tailer_level = 'RODM4G10OLU1P’

GROUP BY retailer_level, month_level

ORDER BY retailer_level, month_level;

e Query9:

SELECT code_level, quarter_level, sum (unitssold) as UnitsSold, sum (dol-
larsales) as DollarSales, sum (dollarsales)/sum (unitssold) as AvgSellingPrice,
sum (DollarCost) as DollarCost, sum (dollarsales)- sum (DollarCost) as Margin-
Dollars

FROM planvars, timelevel, prodlevel

WHERE time_level = month_level and product_level = code_level and quar-
ter_level > ’1996Q1" and code_level > "UCOAYD4861N6’

GROUP BY code_level, quarter_level

ORDER BY code_level, quarter_level,

e QuerylO:

SELECT class_level, retailer_level, year_level, sum (unitssold) as UnitsSold
FROM planvars, timelevel, prodlevel, custlevel

WHERE time_level = month_level and product_level = code_level and cus-
tomer_level = store_level and class_level < 'B48F3WC38AAM’ and retailer_level
= '"RODM4G10OLU1P’ and year_level = 1996

GROUP BY class_level, retailer_level, year_level,



Appendix E

The Methods Syntaxes

Below, we provide a listing of the method syntax illustrated in Chapter 5.

e The CreateSubject() Method: Figure E.1 shows the syntax diagrams for this
method. The first syntax diagram starts with the method header followed by
some optional variable declarations and ends with the return statement. The
method header shows the return type, which is a boolean value, followed by
the method name and two parameters (e.g., subjectName and password). The
parameters subjectName and password, respectively, determine the name of the
new subject account and its password. These parameters are used to identify
each subject in the system uniquely. Finally, the last syntax diagram returns

true if the subject is created successfully, and false otherwise.

e The CreateObject() Method: The syntax of the method is shown in Figure
E.2, which is similar to the syntax of the CreateSubject() method. However,
the variable declarations in this method are mandatory. As shown in the third
syntax diagram, the protected data and its exception are defined via Protecte-
dObject and ObjectException variables, respectively. Together, they represent

the deduced conditions required to explicitly state the protected element.

e The CreateRole() Method: Figure E.3 depicts the syntax diagram for the
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CreateSubject method | e

| CreateSubject header I——bl variahle declaration |—‘—>| return statement

CreateSubject header | .

()~

return statement ] o

(rerum)—»( boolean value Jﬁ

Figure E.1: The Syntax Diagram for the CreateSubject method

CreateObject method | L

| CreateObject header H variable deciaration ‘—rl return statement

CreateObject header | e

(boofean)—»( CreateObject

variable declaration | L

—)[ objectDescription H ProtectedObject H—»[ ObjectException j—l—»

return statement | L

(retum)—)( boolean value )_{D

Figure E.2: The Syntax Diagram for the CreateObject method
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| CreateRole method |_‘_

| CreateRole header ’J—’l variable declaration '——>| 0051 objects creation '—>| return statement

| CreateRole header |__

(boo!ean)—-( CreateRole )

J—DI data object creation I——>

(retum )—s( boolean value )

| QOS5 abjects creation '

| return statement |”_

Figure E.3: The Syntax Diagram for the CreateRole method

method. As shown in the figure, the create method header is followed by op-
tional variable declarations and objects creation, and ends with the return state-
ment. The objects are declared, instantiated, and possibly initialized. However,
these objects can be created separately/outside the CreateRole method and

passed as parameters so they can be reused by other roles.

The CreatePolicy() Method: Figure E.4 shows the syntax for the method.

The syntax starts with the header followed by some optional variable declara-
tions and objects creation and ends with the return statement. The objects
are declared, instantiated, and initialized. In the CreatePolicy() method, those
objects are of types Subject and Role. One or more Subjects and Roles must
be defined prior to executing this method. In the simplest case, the created
policy specifies the association between one Subject and one Role in order to
define the access rights that a subject is authorized to apply. However, complex

policies can be specified by defining more than one Subject and Role within the
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| CreatePolicy method |__=

| CreatePolicy header I——>| variable declaration I 2 I QOSL objects creation H return statement

| CreotePolicy header |__

(boo!ean)—»( CreatePolicy j

‘ Q051 abjects creation “_:

—T—> Subject object creation I Role object creation I

‘ return statement |”_

( return )—)( boolean value )—,EJ

Figure E.4: The Syntax Diagram for the CreatePolicy method

policy. Each Subject then can be assigned to one or more Roles, and each Role

in turn, can be associated with more than one Subject.

The UpdateObject() Method: The syntax diagram of the method is depicted in
Figure E.5, which starts with the header that specifies the method’s name and
the values to be replaced. Theses values are represented by two parameters,
the protObj that holds the new protected data, and the objFzcep that holds the
new exception value(s). In the case of a successful update the method returns

true, otherwise false.

The UpdateSubject() Method: Figure E.6 depicts the syntax diagram of this
method, where it follows the same logic as that of the UpdateObject() method.
As depicted in the figure, the syntax starts with the header that shows the
return type, followed by some optional variable declarations, and ends with the

return statement. The method’s header specifies the method’s name and one
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UpdateObject method | e

| UpdateQbject header I——l variable declaration ‘—bl return statement

UpdateObject header |___

()~ () G . G

| variable declaration “__

—)[ ohjectDescription ]—|>[ ProtectedObject ]——h-[ ObjectException ]—T—»

| return statement ‘“_

(retum)-»( boolean value )—»@

Figure E.5: The Syntax Diagram for the UpdateObject method

parameter (e.g., newPasscode), where the newPasscode is the new password

value to be replaced. In case of successfully updating, the method returns true.

The DROP() Method: Figure E.7 depicts the syntax diagram for the Drop
method. The first syntax diagram starts with the method’s header followed
by the return statement. The method’s header shows the return type, which
is a boolean value, and indicates that it takes no arguments. The last syntax
diagram returns the boolean value true if the object is drooped successfully, and

false otherwise.

The ASSIGN() Method: The syntax diagram of the method is illustrated in
Figure E.8. As noted, the method header has two parameters: subject and role
objects (e.g., the subject that will be assigned to the role). The main statement

in the assign method is the assignment statement that associates the specified
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UpdateSubject method | e

| UpdateSubject header '——-l varigble declaration l——pl return statement

UpdateSubject header |“_

( baofean)-»(UpdateSubject)

return statement | o

(n?turn )—)( boolean value )_,@

Figure E.6: The Syntax Diagram for the UpdateSubject method

| DropObject method J___

Drop method header I—’l return statement |

| Drop method header J___

(boo!ean)—»( DropObject )
‘ return staternent |___
(rerumj—»( boolean value )

Figure E.7: The Syntax Diagram for the Drop object method
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| Assign method | o

| Assign method header ’J—>‘ variable declaration ’—l—)l assignment statement I—bl return statement

| Assign method header |___

return statement | .

(retumr )—»( hoolean value )-»@

Figure E.8: The Syntax Diagram for the Assign method

Subject with the specified Role. Of course, a Subject can be assigned to more

than one role by re-executing this method.

The WITHDRAW() Method: Figure E.9 illustrates the syntax of the method.
As shown in the figure, the method’s header has two parameters (e.g., sub-
ject and role) that identifies the involved objects, followed by the withdrawal
statement, which is the main statement in this method and which removes the
Subject membership from the specified Role. The method returns true if the

operation is successfully executed, and false otherwise.

The ADD Methods: Figure E.10(a) and Figure E.10(b) depict the syntax di-
agrams for the AddSubject() and AddRole() methods, respectively. Their
syntax starts with the header followed by some optional variable declarations
and ends with the return statement. The method’s header has one parameter
(e.g., subject or role). As the names indicates, the parameter subject represents
the Subject that will be added to the policy, and the role parameter represents
the Role that needs to be added to the policy. Finally, the return statement
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| Withdraw method | e

| Withdraw method header ’J—)l variable declaration ’—l—)l withdraw statement |—>| return statement

| Withdraw method header |___

- GrmD-- ) 0

return statement | .

(return)—b( baoolean value jA’O

Figure E.9: The Syntax Diagram for the Withdraw method

returns true whenever the operation is executed successfully.

The REMOVE Methods: Figure E.11(a) and Figure E.11(b) depict the syntax
diagrams for the RemoveSubject() and RemoveRole() methods, respectively.
They start with the method header that has one parameter (e.g., subject or role)
identifying which object should be removed, followed by an optional variable
declaration and ends with the return statement. In case of successful removal,

the method returns true, otherwise false.

The SELECT Methods: Figure E.12(a) and Figure E.12(b) show the syntax
of the SelectRoleSubjects() and SelectSubjectRoles() methods, respectively. As
shown in the figures, the methods receive one parameter and return a list of
objects as a response. For instance, the first method receives a role identifier

and returns all subjects assigned to the specified role.

On the other hand, Figure E.13(a) and Figure E.13(b) show the syntax of the
SelectPolicyRoles() and SelectPolicySubjects() methods, respectively. These

methods do not receive parameters; however, they return Subjects and Roles
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AddSubject method |___

l AddSubject header I——’l variable declaration I—'—>| return statement |

()~ )
| return statement |::=
(return)—»( boolean value )4»@

(a)

| AddSubject header |::

AddRole method | .

| AddRole header }J—'l variable declaration }» return statement |

| AddRole header

(boo(ecm |—)( AddRole );,' I
| return statement |::_
( return )—»( baolean value )_>@

(h)

Figure E.10: (a)The Syntax Diagram for the AddSubject method (b)The Syntax
Diagram for the AddRole method
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RemoveSubject method | e

|Remove5ubject headerl——’l variable declaration I——>| return statement |

| RemoveSubject header

(baa!ean)—»(removeSubject) n
(return)—»( beoolean value J

(a)

| return statement ]

RemoveRole method |__:

| RemoveRole header ’J——‘ variable declaration I»‘L>l return statement |

| RemaoveRole header

(boofean)—»( RemoveRole n n
(retum )—p( boolean value )_.@

(b)

| return stotement |..:

Figure E.11: (a)The Syntax Diagram for the RemoveSubject method (b)The Syntax
Diagram for the RemoveRole method
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SefectSubjectRoles method |,,= | SelectSubjectRoles header H return statement |

SelectSubjectRales header |..: (Rofes Lis [J—’(ﬁfe':ﬁ”bjecmﬂl’ﬂ n subjectlD
| return statement | = (retumH Subject’s Roles )

(a)

SelectRoleSubjects method |::: | SelectRoleSubjects I—-l return statement |

SelectRoleSubjects header |::: Cjubjects UsD—»Gen‘ectRo.feSubjects)_.@ —;@
return statement | o (rewm )—b( Role’s Subjects )

(h)

Figure E.12: The Syntax Diagrams for the SelectRoleSubjects and SelectSubjectRoles
methods

that are controlled by the Policy.
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| SelectPolicyRoles method | . | SelectPolicyRoles header H return statement |

( Roles List )—,(Sei’ectPoﬁcyHo!es n
| return statement J e ("E'Wm )—{ Falicy Roles )

(a)

| SelectPolicyRoles header

| SefectPalicySubjects methad | o= | SelectPolicySubjects header H return statement |

| SelectPolicySubjects header |,.= GUbeCfS USf)—»(SE’JECtP olicySubjects )—-.—l
| return statement J e (retum )—n( Policy Subjects j

(b)

Figure E.13: The Syntax Diagrams for the SelectPolicyRoles and SelectPolicySubjects
methods



