
Modeling of Preemptive RTOS Scheduler with

Priority Inheritance

Karim Abdul Khalek

A Thesis

In

The Department

of

Electrical and Computer Engineering,

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Applied Science (Electrical and Computer Engineering)

at

 Concordia University

Montreal, Quebec, Canada

2013

© Karim Abdul Khalek, 2013

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Karim Abdul Khalek

Entitled: “Modeling of Preemptive RTOS Scheduler with Priority Inheritance”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 __ Chair

 Dr. Zahangir Kabir

 __ Examiner, External

 Dr. Nizar Bouguila To the Program

 __ Examiner

 Dr. Yan Liu

 __ Supervisor

 Dr. Samar Abdi

Approved by: ___

 Dr. W. E. Lynch, Chair

 Department of Electrical and Computer Engineering

___November 12, 2013_____ ___________________________________

 Dr. Robin A. L. Drew

 Dean, Faculty of Engineering and

 Computer Science

iii

ABSTRACT

Modeling of Preemptive RTOS Scheduler with Priority Inheritance

Karim Abdul Khalek

This work describes an approach to generate accurate system-level model of embedded

software on a targeted Real-Time Operating System (RTOS). We design a RTOS

emulation layer, called RTOS_SC, on top of the SystemC kernel. The system level model

can be used for software optimization in the early stage of a processor design. The model

precision is obtained by integrating key features which are provided in typical RTOS

schedulers. We first discuss a case study which shows the impact of the implemented

features on a priority-driven scheduler. We then present the abstraction of tasks

scheduling and communication mechanisms. To validate the accuracy of our model we

use the tasks response time metric with industrial-size examples such as MP3, Vocoder

and Jpeg encoder. The experimental results show a significant improvement compared to

existing RTOS models.

iv

Acknowledgments

I would like to take the opportunity to thank my supervisor, Dr. Samar Abdi,

for being a support and a guide to me throughout the two years which I have

spent on research. Dr. Samar has been more than a supervisor to me, he

taught me to always be confident and think about the problems as challenges

for me to develop my skills and knowledge. Most importantly, he trusts me

and each of his students, which encourages us to be more productive and

prove to ourselves and him that we are trustworthy. I am honored to work

with him and have as my supervisor.

I would like as well to thank my father and mother, who encouraged me to

keep on working hard and always look forward to more achievements. They

have been supporting and believing in my ability to reach my goals.

I would also like to thank my brother Wassim for involving himself with

every decision I take and always being there for me. Finally, I thank my

close friends Abdulla, Kazim, Paul, Richard, Zaid, Partha, Ehsan, Ali B,

Sethu, Tushar, Ali H, Ali N, Patrick, and Sanaya for all the advices they

gave me.

v

To all

vi

 Contents

1. Introduction 1

1.1 Methodology 4

1.2 Contribution 5

1.2.1 Preemption Modeling 6

1.2.2 Priority Inheritance Modeling 7

1.2.3 Software Timers 8

1.2.4 Scheduling Policies 8

1.2.5 Communication mechanisms 8

1.3 Related Work 9

1.3.1 RTOS models based on specific simulation engines 9

1.3.2 Clock-based RTOS models 9

1.3.3 Event-based RTOS models 10

1.4 Thesis Organization 13

2. Preemptive RTOS Modeling 14

2.1 Scheduler Modeling in A Preemptive RTOS Model 16

2.1.1 State Transition 16

2.1.2 CPU Time Consumption 17

2.3 Modeling Communication in A Preemptive RTOS Model 20

2.4 Timer and Pulse Modeling 22

2.5 Impact of Preemption and priority inheritance 24

vii

3. RTOS Modeling 29

3.1 Scheduler Modeling 29

3.2 Modeling Different Scheduling Algorithms 33

3.2.1. First-In-First-Out Scheduling Policy (FIFO SP) 33

3.2.2 Round-Robin Scheduling Policy (RR SP) 33

3.2.3 Rate-Monotonic Scheduling Policy (RM SP) 35

3.3 Modeling Inter-Task Communication with Priority Inheritance 37

3.3.1 Channels 37

3.3.2 Queues 43

3.4 Modeling Different Synchronization Services 47

3.4.1 Barriers 47

3.4.2 Condition Variables 48

3.5 Modeling Semaphores And Mutexes for Input/Output Communication With

Priority Inheritance 51

4. Experimental Results 56

4.1 Accuracy of RTOS model in a multithreaded application 56

4.2 Trace of Events 59

4.3 Impact of Accurate Trace of Events on Response Time 66

4.3.1 Average Response Time, using the First-In-First-Out policy 67

4.3.2 Average Response Time, using the Round-Robin policy 68

4.4 Software Validation and Optimization 70

viii

4.4.1 Functional validation using FIFO policy 70

4.4.2 Functional validation using RR policy 74

4.5 Model Execution Speed 83

Conclusion and Future Work 87

References 88

ix

List of Figures

Figure 1.1 Traditional SW/HW Design flow .. 2

Figure 1.2 SW/HW Design flow with RTOS models .. 2

Figure 1.3 Modeling Methodology ... 4

Figure 2.1 Task states in classical SystemC RTOS Model ... 15

Figure 2.2 Preemption modeling in Consume ... 19

Figure 2.3 Channel-based communication in RTOS ... 20

Figure 2.4 Message passing scenario .. 24

Figure 2.5 Tasks execution on (i) QNX, (ii) Model A, and (iii) Model B 26

Figure 3.1 Tasks state in RTOS Model .. 29

Figure 3.2 Preemption modeling in Round-Robin scheduling policy 35

Figure 3.3 Priority inversion scenario without Priority Inheritance at the receiver end ... 40

Figure 3.4 Priority inversion scenario with Priority Inheritance of REPLY-BLOCK

threads at the receiver end ... 41

Figure 3.5 Queue-based communication in RTOS model ... 42

Figure 3.6 Priority Inversion scenario caused by mutex, in a basic RTOS model 54

Figure 4.1 Qnx Momentics events’ trace .. 58

Figure 4.2 RTOS model events’trace in Gnuplot .. 58

Figure 4.3 (i) Uploading to and Downloading from Network (ii) Mp3Decoding and Voice

Encoding/Decoding (iii) Jpeg Encoding ... 60

Figure 4.4 Trace of events of Mp3 with voice on RTOS model 61

Figure 4.5 Trace of events of Mp3 with voice on QNX RTOS ... 63

Figure 4.6 Application’s average (a) error percentage in events’s trace, and(b) response

Thesis_draft_Sept16.doc#_Toc369859897
Thesis_draft_Sept16.doc#_Toc369859898
Thesis_draft_Sept16.doc#_Toc369859899
Thesis_draft_Sept16.doc#_Toc369859900
Thesis_draft_Sept16.doc#_Toc369859901
Thesis_draft_Sept16.doc#_Toc369859902
Thesis_draft_Sept16.doc#_Toc369859903
Thesis_draft_Sept16.doc#_Toc369859904
Thesis_draft_Sept16.doc#_Toc369859905
Thesis_draft_Sept16.doc#_Toc369859906
Thesis_draft_Sept16.doc#_Toc369859907
Thesis_draft_Sept16.doc#_Toc369859908
Thesis_draft_Sept16.doc#_Toc369859908
Thesis_draft_Sept16.doc#_Toc369859909
Thesis_draft_Sept16.doc#_Toc369859910
Thesis_draft_Sept16.doc#_Toc369859911
Thesis_draft_Sept16.doc#_Toc369859912
Thesis_draft_Sept16.doc#_Toc369859916

x

time .. 69

Figure 4.7 Tasks execution of Mp3+Jpeg on QNX with FIFO policy. 74

Figure 4.8 Tasks execution of Mp3+Jpeg in RTOS model with FIFO policy. 75

Figure 4.9 Tasks execution of Mp3+Jpeg on QNX with Round-Robin policy. 81

Figure 4.10 Tasks execution of Mp3+Jpeg on QNX with Round-Robin policy 82

Thesis_draft_Sept16.doc#_Toc369859916
Thesis_draft_Sept16.doc#_Toc369859917
Thesis_draft_Sept16.doc#_Toc369859918
Thesis_draft_Sept16.doc#_Toc369859919
Thesis_draft_Sept16.doc#_Toc369859920

xi

List of Listings

Listing 2.1 Transition from running to ready .. 15

Listing 2.2 Transition from running to suspended .. 16

Listing 2.3 Transition from suspended to ready .. 17

Listing 2.4 Pseudo-code for CPU time consumption .. 18

Listing 2.5 Pseudo-code for sending message on channel .. 21

Listing 2.6 RTOS Timers and Pulses .. 22

Listing 2.7 Pseudo-code for receiving message on channel... 22

Listing 2.8 Timer emulation in SystemC ... 23

Listing 3.1 Transition from running to ready in the RTOS model 31

Listing 3.2 Transition from suspended to ready in RTOS model 32

Listing 3.3 Pseudo-code for sending message on channel in RTOS model 37

Listing 3.4 Pseudo-code for receiving message on channel in RTOS model 39

Listing 3.5 Pseudo-code for sending message on queue ... 44

Listing 3.6 Pseudo-code for receiving message on queue .. 46

Listing 3.7 Pseudo-code for waiting on a barrier .. 48

Listing 3.8 Pseudo-code for waiting on a condition variable .. 49

Listing 3.9 Pseudo-code for notifying one of the waiting threads 50

Listing 3.10 Pseudo-code for notifying all waiting threads .. 51

Listing 3.11 Pseudo-code for semaphore wait .. 52

Listing 3.12 Pseudo-code for semaphore post .. 53

Thesis_draft_Sept1.doc#_Toc366574577
Thesis_draft_Sept1.doc#_Toc366574578
Thesis_draft_Sept1.doc#_Toc366574579
Thesis_draft_Sept1.doc#_Toc366574580
Thesis_draft_Sept1.doc#_Toc366574581
Thesis_draft_Sept1.doc#_Toc366574582
Thesis_draft_Sept1.doc#_Toc366574583
Thesis_draft_Sept1.doc#_Toc366574584
Thesis_draft_Sept1.doc#_Toc366574585
Thesis_draft_Sept1.doc#_Toc366574586
Thesis_draft_Sept1.doc#_Toc366574587
Thesis_draft_Sept1.doc#_Toc366574588
Thesis_draft_Sept1.doc#_Toc366574589
Thesis_draft_Sept1.doc#_Toc366574590
Thesis_draft_Sept1.doc#_Toc366574591
Thesis_draft_Sept1.doc#_Toc366574592
Thesis_draft_Sept1.doc#_Toc366574593
Thesis_draft_Sept1.doc#_Toc366574594
Thesis_draft_Sept1.doc#_Toc366574595
Thesis_draft_Sept1.doc#_Toc366574596

xii

List of Tables

Table 4.1 Accuracy of events trace with respect to QNX (in %) 56

Table 4.2Accuracy of the trace of event with respect to QNX using the MP3+Vocoder

with Jpeg example (in %) .. 66

Table 4.3 Response time (in us) of capture thread .. 66

Table 4.4 Average response time (in us) and error percentage of the MP3+AUD3 with

JPEG tasks (in us), using FIFO policy .. 67

Table 4.5 Average response time (in ms) of the capture thread with capture’s Priority

between 1 and 9 using FIFO policy .. 70

Table 4.6 Average response time (in ms) of the isr thread with capture’s priority between

1 and 9, using FIFO policy .. 72

Table 4.7 Average response time (in ms) of the capture thread with capture’s Priority

between 1 and 9 using RR policy .. 78

Table 4.8 Average response time (in ms) of the isr thread with capture’s priority between

1 and 9 using RR policy .. 79

Table 4.9 Speed comparison of on-target software vs. model .. 85

Thesis_draft_October18.doc#_Toc369878526
Thesis_draft_October18.doc#_Toc369878527
Thesis_draft_October18.doc#_Toc369878527
Thesis_draft_October18.doc#_Toc369878528
Thesis_draft_October18.doc#_Toc369878529
Thesis_draft_October18.doc#_Toc369878529
Thesis_draft_October18.doc#_Toc369878530
Thesis_draft_October18.doc#_Toc369878530
Thesis_draft_October18.doc#_Toc369878531
Thesis_draft_October18.doc#_Toc369878531
Thesis_draft_October18.doc#_Toc369878532
Thesis_draft_October18.doc#_Toc369878532
Thesis_draft_October18.doc#_Toc369878533
Thesis_draft_October18.doc#_Toc369878533
Thesis_draft_October18.doc#_Toc369878534

xiii

List of Acronyms

RTOS Real-Time Operating System

RTOS_SC Real-Time Operating System Emulator

VP Virtual Platform

ISS Instruction-Set Simulator

SW Software

HW Hardware

FIFO First-In-First-Out

RR Round-Robin

RM Rate-Monotonic

1

CHAPTER 1

1. INTRODUCTION

Today, with the wide variety of processors and increasing development of new

hardware platforms, such as OMAP, Tegra 2, Hummingbird, and Snapdragon, embedded

software developers are forced to transition to such platforms in order to enhance the

system performance. In addition, system designers are required to maintain fast

software/hardware integration and short time-to-market. Therefore, a system validation is

needed before the hardware becomes available to the designers. To realize this goal, many

software implemented models of the hardware are introduced, such as virtual platforms

(VPs). Software designers may profit from such models by developing the RTOS in

parallel with the hardware instead of waiting for the physical hardware to be delivered.

VPs, based on instruction-set simulators (ISS), are widely used to develop and optimize

embedded software before the hardware is available. The software can be compiled and

executed on the VP similar to execution on the real hardware platform. To overcome the

slow simulation of an interpretive ISS, VPs based on binary translation has been

introduced [2-4]. This approach consists of translating the legacy code instructions from

host to target. Dynamic binary translation is a commonly used technique since it enables

easy translation to different hardware architecture, compared to the static binary

translation [2]. With such models available early in the hardware development stage, the

time for software and hardware integration is reduced.

2

 In a traditional software and hardware design flow, shown in Figure 1.1, the hardware

implementation stage starts when the hardware architecture is selected. VPs may be

available prior to the hardware release, which allows system software developers to start

early implementation of the RTOS on the target hardware. Upon the release of the

hardware silicon, RTOS testing can be done on the silicon. On the other hand, the legacy

application software architecture may require optimization to take advantage of the new

 Figure 1.1 Traditional SW/HW Design flow

Figure 1.2 SW/HW Design flow with RTOS models

3

HW/SW platforms. Although hardware may be modeled at different levels of abstraction

for speed and accuracy tradeoff [3], application developers cannot benefit from such

models without the incorporation of an RTOS model.

In a conventional design flow where RTOS models are not available, RTOS

implementation must be completed on the VP, before testing and performance analysis of

the applications. Application code depends on RTOS services, such as hardware resource

accesses and task management. As a consequence, application testing and optimization

may not start until the end of the RTOS implementation. This delay leads to an increase in

the product’s time-to-market and hence, the additional pressure to deliver the product on

time. To avoid the time-to-market pressure and identify the optimization opportunities,

host-compiled models of the software executing on the hardware, and the software’s

interaction with other system components must be created early in the design process.

Figure 1.2 illustrates the software and hardware design flow when RTOS models are

introduced. Such models are independent from the VPs. To identify the optimization

opportunities in the legacy code, an RTOS model is required to model the key concepts

available in an RTOS, such as preemption and synchronization services. Furthermore,

applications can be directly linked to these models and tested independently of the RTOS.

Hence, software exploration and optimization can happen in parallel with the hardware

and RTOS development. The time until the software and hardware integration is therefore

reduced compared to the conventional design flow.

4

1.1 Methodology

Figure 1.3 illustrates our modeling methodology. We start with the application

software code and platform specification, shown on the LHS, and derive a functionally

equivalent SystemC model, shown on the RHS. The application software is targeted to a

specific RTOS, running on an embedded x86 processor. Concurrent application tasks A,

B, and C, are captured as processes or threads in an RTOS. Inter-task communication is

implemented using a message passing API, as in typical RTOSes. The target processor is

typically part of a larger hardware platform consisting of other system components such

as processors, DSPs, custom hardware accelerators, memories and I/O. It is assumed that

executable C/SystemC models of other system components are available.

On the RHS, we have a derived model of the system, which can be compiled and

executed on the host (typically a PC running Linux) before the hardware is available.

Figure 1.3 Modeling Methodology

5

Here, A', B', and C' are functionally equivalent abstractions of A, B, and C, and are

implemented as SystemC threads. Since SystemC does not natively support any RTOS

primitives for scheduling and communication, an RTOS emulation layer on SystemC,

named RTOS_SC, is modeled on top of the SystemC kernel.

SystemC natively supports timing and events; therefore, timers and pulses in the

application can be abstracted using native SystemC constructs. This part of the model has

a direct dependency on the SystemC libraries. Finally, we do not explicitly model the

memory management of the target platform or the I/O needed for debugging. These

services are used from the run-time system available on the host. A structured model with

clear semantics is understandable, maintainable and amenable to automation.

1.2 Contribution

One of the problems a priority-based scheduler has to deal with is priority inversion, a

very important issue that affects the functionality of the applications. This phenomenon

may cause tasks in soft and hard real-time applications to miss their deadlines. Therefore,

modern RTOSs solve this issue by implementing the following two features: (i)

preemption and (ii) inter-task communication protocols. In this paper, we present an

RTOS model that, unlike previous ones, detects and avoids priority-inversion in priority-

based multithreaded applications. To achieve this goal, we create a model of the CPU

time consumption and task communication, which incorporate features (i) and (ii).

Therefore, we present a methodology to accurately model preemption in an SLDL-based

RTOS model. Furthermore, we developed a model of priority inheritance protocol which

avoids priority inversion during inter-task and I/O communication.

Our model can be used by application developers for early validation and optimization

6

of the software. We use the task’s response time to measure performance and validate the

functional correctness of the embedded software. This metric represents the time duration

from the occurrence of the event until the time the task produces its results. Modeling

features (i) and (ii) leads to an accurate modeling of task’s response time, and therefore,

accurate performance estimation can be obtained.

In order to identify the optimization opportunities in soft and hard real-time

applications, a generic RTOS model is required. In this paper, we provide a general model

of the RTOS by modeling the following RTOS features in addition: software timers,

different communication mechanisms and different scheduling algorithms, such as First-

In-First-Out (FIFO), Round-Robin (RR) and Rate-Monotonic (RM).

1.2.1 Preemption Modeling

During software execution, application tasks may be blocked to wait for particular

resources, such as events and timers. When a resource is granted, the task is unblocked

and becomes ready to execute. Consequently, the RTOS selects a ready task to execute,

according to the algorithm specified by the user. The selection of the task to execute,

called rescheduling, always occurs before a running task is blocked on a resource.

Further, in RTOSs where a priority-driven scheduler is implemented, rescheduling also

occurs during task execution to ensure that the task with the highest priority is not

delayed from consuming CPU time, by a lower priority task. If a ready task has a higher

priority over the one running, preemption occurs.

Preemption is the temporary interruption of the task execution to give the CPU access

to a ready task with higher or equal priority. The preempted task is selected to run again if

it is the one with the highest priority among the ready tasks when rescheduling occurs.

7

Modeling a preemptive scheduler in an RTOS model provides two essential

improvements:

 Support of priority-driven scheduling at any time during simulation, as in a typical

RTOS [1].

 Abstraction of asynchronous interrupts and timer pulses, which leads to accurate

modeling of the software execution time.

1.2.2 Priority Inheritance Modeling

During message passing, preemption by itself may not be sufficient to maintain the

priority-based scheduling, due to the priority inversion phenomenon. Priority inversion

may occur when acknowledgment protocols, such as the double hand-shaking, are used.

These protocols cause tasks to be blocked, waiting to receive acknowledgments of the

data transmission. While these protocols are required to ensure reliable communication

between tasks, they lead to unexpected priority inversion scenarios by blocking the tasks’

execution during message passing. For instance, priority inversion may be encountered

when the sender task suspends execution to wait for a signal that indicates, to the receiver

task, a successful data transmission. During the sender’s suspension, the receiver is

required to process the sender’s request. As a result, the sender effectively operates at the

receiver’s priority, which may differ from the original sender priority. Therefore, the

execution time of other ready tasks may be delayed by this change in priority. This

phenomenon is called priority inversion. One of the essential RTOS features to ensure

accurate context switching during tasks communication is priority inheritance. It is

applied by assigning the priority of the receiver task to that of the sender.

8

1.2.3 Software Timers

Once preemption is modeled, software timers, an important feature in RTOSes, can be

modeled. The timer pulses enable the generation of interrupts on a timely basis. This

technique is commonly used in drivers to access peripherals and obtain data. Therefore in

our RTOS model, we implement a timer class which enables periodic tasks to be created.

1.2.4 Scheduling Policies

To meet the application requirements, such as deadlines for a job completion, software

developers may optimize the performance by changing the scheduling algorithm. We

provide three different policies that can be used in our RTOS model:

 First-In-First-Out (FIFO): This policy is the most commonly used in priority-

based applications since it enables preemption and guarantees low CPU overhead.

 Round-Robin (RR): This policy is assigned for tasks that may cause starvation

due to their high computation time. A time-slice is given to each task to complete

its job. If the job is not completed within this time, rescheduling occurs to allow

preemption.

 Rate-Monotonic (RM): This policy is assigned to periodic tasks which have

deadlines. The priority of the task depends on the period of the task. The task with

the shortest period is assigned the highest priority.

1.2.5 Communication mechanisms

We increase the optimization opportunities in an application by modeling the common

communication mechanisms implemented in RTOSes:

 Channels: Model reliable inter-task communication by transmitting data through

9

channels, to which different protocols can be modeled.

 Queues: Model message passing with less context switching but less reliability.

 Global Variables: Model I/O communication, with synchronization services such

as mutual exclusion, semaphores, conditional variables and barriers.

1.3 Related Work

To allow software designers to perform design space exploration and early validation

of real-time constraints, such as deadlines, a lot of work has been done to model the

RTOS executing on the target platform. The techniques used are divided into three

categories: (i) RTOS models based on specific simulation engines, (ii) clock-based RTOS

models and (iii) event-based RTOS models.

1.3.1 RTOS models based on specific simulation engines

Some RTOS models have been designed to target a specific RTOS [5-7]. With such

executable models, the application performance on a single RTOS may be accurately

measured. Therefore, the supported features and the scheduling algorithm can typically

be implemented as the target RTOS. However, these models can only adapt to the

selected RTOS, which limits the design space exploration. To solve this problem, generic

RTOS models based on specific simulation engines have been provided in [8-9]. These

models, however, prohibit the integration of such models with other hardware models,

which may themselves use other simulation engines.

1.3.2 Clock-based RTOS models

To avoid restrictions to a specific RTOS and complexity in SW/HW integration,

generic RTOS models based on SLDL have been introduced [10-20]. Based on these

10

languages, some of the proposed techniques use a clock-based approach to model an

RTOS. The simulation clock in such models is advanced in fixed micro steps for which

the user determines the interval. The accuracy of preemption modeling in these

approaches depends on the clock step value, and hence, performance estimation can be

done at a coarse-grained level. In [10], threads sharing the same resources, such as CPU

and memory accesses, were given a static time-slice to complete their execution.

Depending on the task priority, preemption may occur at the end of a time-slice. Using

this technique, application tasks that run the round-robin scheduling algorithm are

accurately modeled. However, hardware interrupts and events are not instantly handled

since preemption happens only at the end of the time-slice.

1.3.3 Event-based RTOS models

To model preemption with better accuracy, a technique has been proposed to decrease

the time interval between the clock micro-steps [11]. By reducing the interval, however,

the simulation time of the application increases. Therefore, another technique has been

proposed to dynamically change the clock- step value ∆ to the event arrival time Tin, if

the current simulation time C + ∆ > Tin [12]. Consequently, the remaining time (C + ∆) -

Tin is added to the new value of ∆, to obtain the original clock-step value. An accurate

estimate of Tin is obtained by assigning it to the earliest time at which an event may be

sent to the corresponding task. Furthermore, to obtain an accurate estimation of Tin, the

time interval during which the task generating the event is preempted is added to the

estimated time of the next input event. The drawback to this technique is that the

additional time delay caused by asynchronous communication such as shared memory

accesses is not taken into consideration. Moreover, the time for the interrupt occurrence

11

must be known and specified by the application developer in the specification model,

adding a limitation to the model.

In order to avoid the complexity of selecting the appropriate clock-step value that

minimizes preemption latency in a clock-based approach, previous techniques based on a

finer-grained time annotation have been introduced for RTOS modeling [13-20]. This

approach consists of dividing the application user code into segments in each of which a

“wait” statement is introduced to model the time it consumes. Techniques that follow this

approach provide more control over task management and hence accurate preemption

modeling.

In [13], a technique has been proposed to model a generic RTOS with a preemptive,

priority-based scheduler and task communication through channels. Based on the

specification model, a dynamic scheduling step is performed to refine the behavioral

model into an architectural model. A different approach was presented by Hessel for

software and hardware synthesis [16]. Some work has been done to obtain more accurate

results of the application execution time by modeling the RTOS overhead, which is

caused by scheduling and context switching [14-16]. Some of these models provide a

power estimation of the application running on the selected processor. Moreover, they

implement different scheduling policies and communication mechanisms. However, the

proposed methods do not accurately model preemption, since they depend on the timing

annotation granularity. If an interrupt occurs during time consumption, it is processed at

the end of the required time consumption and therefore delays preemption. Moreover,

these models do not take priority inversion, which affects the functionality of priority-

based schedulers, into consideration.

12

To improve the interrupt response time modeling, time modeling using a dynamic time

annotation technique has been proposed [18-19]. In [18], Posadas presents a technique to

enable preemption at the interrupt arrival time by changing the length of the code

segment during the software run-time. The segment scope ends either when a call to a

kernel function is reached or a timer interrupt occurs. Interrupts with unpredictable arrival

times, are handled at the end of the segment by dividing the annotations into two steps:

the time until the interrupt arrives and the time remaining for the task to complete its

initial time required. Although interrupts are accurately modeled in the proposed

methods, a dynamic estimation of the interrupt arrival time must be performed during

simulation, adding complexity to the model. In [1], a methodology has been suggested to

model preemption by interrupting the “wait” statements. Consequently, no calculation is

needed for the interrupt arrival time. However, none of these methods take into account

priority inheritance, which avoids priority inversion during communication.

A different solution to preemption modeling has been presented in [20]. When an

interrupt occurs during time consumption of a task, the task generating the interrupt - the

preemptor - is scheduled without interrupting the current task from its “wait” statement.

Upon completion of the preemptor’s time consumption, the preemption time interval of

the preempted task is modeled by waiting for the time interval which was consumed by

the preemptor. In case the preempted task completes its time execution before the

preemptor does, the preempted task suspends until its preemption time is known.

Compared to the immediate preemption approach in [18], this approach increases

simulation speed by reducing the number of calls for “wait” statements in the model.

However, the corrective measures taken during simulation to model the tasks’ preemption

13

time produce an inaccurate representation of the internal states of the processes. Due to

this impact, the internal states are hidden in the model. As a result, it becomes harder for

software designers to debug their application, providing less optimization opportunities.

Furthermore, the RTOS model may not be feasible when software complexity increases,

due to the excessive amount of computation produced.

In our model, we provide an accurate preemptive RTOS model; based on time

annotation granularity. We avoid priority inversion during communication by

implementing the priority inheritance protocol, which is available in modern RTOSes.

Furthermore, we improve the preemption modeling presented in [1] by providing a

solution to model multiple interrupts that can occur at the same logical time in an SLDL-

based RTOS model. Consequently, it is possible to obtain functional verification of soft

and hard real-time applications running on a target processor.

1.4 Thesis Organization

The thesis is organized as follows: In Chapter 2, we present our technique of modeling

a basic preemptive RTOS model. Further in this chapter, we discuss the modeling of

interrupts based on timer pulses. We provide an example that shows the effect of priority

inheritance on the accuracy of the RTOS model in measuring application performance.

We explain in Chapter 3, our methodology to accurately model preemptive RTOSs, with

our proposed methodology of modeling priority inheritance to solve priority inversion

during inter-task communication. In Chapter 4, we show the accuracy of our preemptive

RTOS model with priority inheritance through experimental results. We also demonstrate

how the model can be used for early, fast and accurate software validation and

optimization.

14

CHAPTER 2

2. PREEMPTIVE RTOS MODELING

Since SystemC does not natively support any RTOS primitives for scheduling and

communication, a model of an RTOS Emulation layer on top of the SystemC kernel is

needed. A classical preemptive RTOS model supports priority-based scheduling and inter-

task communication which are available in a typical RTOS. On the other hand, SystemC

provides a support for timing and events. Therefore, SystemC constructs can be used in an

application to abstract timers and pulses [19]. In a preemptive RTOS model, the tasks are

modeled as SC_THREADs and dynamically created using the SystemC kernel function.

Further, since task priorities are not supported by the SystemC kernel, a Task_SC class is

created. Task_SC has a task ID, a priority, an activation event, a state and a pointer to the

SystemC process handle.

When a software application is linked against the RTOS model, two main aspects must

be provided: correct event trace and accurate execution time. To meet these conditions,

the RTOS scheduler should always select the thread with the highest priority to execute

before the lower priority threads. However, the thread selection must be among threads

which are not blocked on a resource.

15

To differentiate between blocked and unblocked threads, a preemptive RTOS model

must have four different states defined for each thread as shown in Figure 2.1:

RUNNING, READY, SUSPENDED and TERMINATED. When the thread is created, it is

moved to a READY state. Among the ready tasks, the one with the highest priority is

selected to execute and hence moved to a RUNNING state. A thread is moved from a

SUSPENDED state to a READY state as soon as its access to the resource is granted. A

thread moves from a RUNNING state to a SUSPENDED state when it waits for a

specific event. It is finally moved to a TERMINATED state when it accomplishes its task.

It is also possible that a thread is moved from a RUNNING state to a READY state if

preemption occurs.

Figure 2.1 Task states in classical SystemC RTOS Model

void RTOS::RunningToReady ()

1: RTOS_task *t = ACTIVE;

2: ACTIVE = GetHighestReady();

3: tState = READY;

4: if (ACTIVE != t) {

5: ACTIVEActivation.notify();

6: wait (tActivation);

7: } // end if

Listing 2.1 Transition from running to ready

16

2.1 Scheduler Modeling in A Preemptive RTOS Model

2.1.1 State Transition

To implement the transitions states shown in Figure 2.1, private functions must be

defined in the scheduler class to obtain a preemptive RTOS model. Listing 2.1shows the

pseudo-code for transitioning from running to ready state. ACTIVE indicates the

currently running task and is stored in task pointer t. The ACTIVE task pointer is changed

to the highest priority ready task and set to RUNNING state by calling the

GetHighestReady function.

If the READY list is not empty and the returned READY task is different from the

caller, its Activation event is notified to enable its execution. The caller task’s state is

changed from RUNNING to READY and waits on its own Activation event.

Listing 2.2 shows the pseudo-code for the transition from running to suspended state.

The calling thread moves to SUSPENDED, and the highest READY priority is assigned to

ACTIVE. If a READY task exists, its’ activation event is notified. This function only

updates the task’s state. In order to block the thread, the SystemC wait statements will be

used after the return from this function.

void RTOS::RunningToSuspended ()

1: ACTIVEState = SUSPENDED;

2: ACTIVE = GetHighestReady();

3: if (ACTIVE != NULL) {

4: ACTIVEActivation.notify();

5: } // end if

Listing 2.2 Transition from running to suspended

17

Listing 2.3 shows the pseudo-code of the implementation of the SuspendedToReady

function. When the thread receives the resource that blocks its execution, the state of the

thread becomes READY. If the calling thread is the only one in the READY state, the

ACTIVE variable would point to NULL. In this case, the state of the current task is set to

RUNNING by the GetHighestReady function. Otherwise, the thread waits on its

activation event.

2.1.2 CPU Time Consumption

The system level model must contain delay annotations in the tasks to model their CPU

time consumption. Modeling the time consumption of a given code segment on a hardware

platform is an inherently difficult problem. The problem has been actively researched and

there are some well known methods for predicting software execution time based on a

model of the hardware. Typically, a prototype board with the processor core is available.

Therefore, in order to obtain accurate delays, we measure the execution time of the

computation blocks between the kernel calls on the processor. The delays are then back

annotated to the model.

On the other hand, the time delays supported by the SystemC wait statements are not

sufficient to model the CPU time consumption on a processor since they only allow

concurrent delay consumption, whereas the tasks follow an interleaved execution on a

processor. Therefore, we use the consume function to model the time required for

Void RTOS:: SuspendedToReady ()

1: RTOS_task *t = GetTask (sc_process_handle());

2: tState = READY;

3: if (ACTIVE == NULL)

4: ACTIVE = GetHighestReady(); //run caller

5: else

6: wait (tActivation);

Listing 2.3 Transition from suspended to ready

18

computational blocks to execute on a RTOS.

Listing 2.4 shows the pseudo-code of the implementation of the consume function, for

the FIFO scheduling policy. The TimeRemaining is the amount of time left to be

consumed by the task if it is preempted. The TotalBusyTime variable is used to obtain the

total CPU time consumption. This metric is essential to study the performance of the

application on the modeled RTOS. The SystemC event, called ScheduleEvent, is used to

allow preemption by rescheduling the active task. Due to interrupts and timer pulses, a

task may call the consume function while another has already issued a consume call. To

ensure that the user tasks do not share the CPU time consumption, ScheduleEvent is

notified after each new consume call.

Initially, the time requested to be consumed by the calling task is stored in

TimeRemaining. The variable Start stores the time before the SystemC wait on

TimeRemaining and the ScheduleEvent is called. After returning from the wait statement,

void RTOS::Consume (sc_time t)

1: sc_time TimeRemaining = t;

2: sc_time Start, Delta;

3: ScheduleEvent.notify();

4: while (true){

5: Start = sc_time_stamp();

6: wait (TimeRemaining, ScheduleEvent);

7: ACTIVE = GetTask (sc_process_handle());

8: Delta = sc_time_stamp() - Start;

9: TotalBusyTime += Delta;

10: if (Delta == TimeRemaining){

11: break;

12: }//end if

13: TimeRemaining -= Delta;

14: Running2Ready();

15:} // end while

16: Running2Ready();

Listing 2.4 Pseudo-code for CPU time consumption

19

the ACTIVE task pointer is updated to the current RUNNING task and the SystemC

timestamp is subtracted from the Start value (lines 8-9). The subtraction result is stored in

Delta to obtain the consumed time. Delta is then added to the TotalBusyTime. If Delta is

equal to TimeRemaining, the required amount of time in variable t is consumed.

Therefore, a break statement is called to break from the loop. However, if the

ScheduleEvent is notified prior to the end of the required time consumption,

TimeRemaining is subtracted by Delta and Running2ready is called. The task keeps

iterating until the requested time is consumed.

If the ScheduleEvent is notified at the same logical time as the end of the required time

consumption, the Running2Ready function is called before exiting the consume function.

As a result, RTOS_SC’s scheduler preempts the current task and selects the new task with

the highest priority to execute.

Figure 2.2 illustrates how a task preemption scenario is handled by the RTOS consume

function. The example contains a thread T1 having a higher priority than thread T2. We

assume that T1 is initially blocked until a timer pulse is received. Therefore, T2 executes

and calls the consume function to model a CPU time consumption of 20 time units.

ISR T1

Interrupt
Signal

Consume(20)

RUNNING for 10

Pre-empted

T2

SUSPENDED

Wakeup
Consume(5)

READY

Resume

SUSPENDED
RUNNING for 10

TERMINATED

Exit()

>

Figure 2.2 Preemption

modeling in Consume

20

However, after 10 time units, an ISR is triggered and hence ScheduleEvent is notified.

Consequently, the wait statement in the consume method is interrupted and T2 is

preempted by calling the RunningToReady function (Listing 4, lines 7-17). At this time,

ISR with the highest priority models its time consumption and sends a pulse to T1.

Therefore, T1 moves to a READY state. Since T1 has a higher priority than T2, T1 is

selected to execute. After T1 consumes its 5 time units, it moves to a SUSPENDED state

and waits for a pulse from ISR again. At this time, T2 is the only READY task. Therefore

it resumes the remaining 10 time units and terminates the job required.

2.3 Modeling Communication in A Preemptive RTOS Model

Figure 2.3 illustrates the double-handshake semantics of channel communication in an

RTOS. In order to buffer the transmitted data, the RTOS model requires an

implementation of channels. As seen in this figure, the receiver initially creates the

channel and opens it to receive data. The sender is also required to open the channel before

the beginning of the transactions. When MsgSend function is called the message is sent

…

Open channel C

…

MsgSend(dstid,

smsg, ssize,

rmsg, rsize)

…

Sender

Attach channel C

…

Open channel C

…

MsgReceive(…)

…

MsgRead(rcvid,

buffer, size,

offset)

…

MsgReply(rcvid,

status, msg, size)

…

Channel C

Send buffer

Reply buffer

Receiver

Blocking

Transactions

Figure 2.3 Channel-based communication in RTOS

21

through the common channel between the sender and the receiver tasks. The execution of

the calling thread is then suspended until a reply is sent from the receiver through the same

channel. On the other hand, the MsgReceive function is called to receive a message and

may suspend the calling task if no message was sent. The MsgReply method is used to

send a reply from the receiver to the sender task.

In a preemptive RTOS model, the message passing communication of an RTOS can be

modeled using a separate class defined on top of SystemC. To model the double

handshake synchronization, a boolean flag (SendFlag) and events, (SendEvent and

ReplyEvent) are defined in this class.

Listing 2.5 illustrates the MsgSend implementation in a preemptive RTOS model. The

array CH refers to the pool of channels, indexed by variable chid. MsgSend copies the

data pointed to by the sender into the send buffer. It then synchronizes with the receiver by

setting SendFlag to true and notifying SendEvent to indicate that the receiver can now

read from the send buffer. The sender waits for the reply by moving itself to the suspended

state and waiting on ReplyEvent. Once the receiver has written to the reply buffer and

notified ReplyEvent, the sender returns to the ready state and eventually copies over data

from the reply buffer.

void RTOS:: MsgSend (int chid, …)

1: Copy data into send buffer

2: CH[chid].SendFlag = true;

3: CH[chid].SendEvent.notify();

4: RunningToSuspended();

5: wait CH[chid]ReplyEvent;

6: SuspendedToReady();

7: Copy data from reply buffer;

Listing 2.5 Pseudo-code for sending message on channel

22

Listing 2.7 illustrates the MsgReceive implementation in a preemptive RTOS model. If

SendFlag is true, the receiver knows that the send buffer has already been written.

Therefore, it simply resets SendFlag and proceeds to read the data. Otherwise, the receiver

waits on SendEvent until the send buffer is written. The receiver puts itself in the

suspended state before the wait and returns to the ready state after the wait.

2.4 Timer and Pulse Modeling

In an RTOS, a timer can be set up to periodically send pulses to a user task at given

time intervals. Timers are a common feature of real-time embedded software, so their

modeling is highly pertinent. Listing 2.6 illustrates the key aspects of timer creation and

setup in an RTOS. Timers use system events (sigevent) as pulses that are sent over a

channel (lines 1-5). A timer specification (itimerspec) consists of an initial wait time

(it_value) for the first pulse and an interval wait time (it_interval) for subsequent periodic

void RTOS:: MsgReceive (int chid, …)

1: if (!CH[chid].SendFlag) {

2: RunningToSuspended();

3: wait (CH[chid].SendEvent);

4: SuspendedToReady();

5: }

6: CH[chid].SendFlag = false;

Listing 2.7 Pseudo-code for receiving message on channel

1 : sigevent pulse;

2 : timer_t timer;

3 : itimerspec tspec;

4: SIGEV_PULSE_INIT (&pulse, channel,…);

5 : timer_create(CLOCK_REALTIME, &pulse, &timer);

6 : tspec.it_value.tv_sec = 0;

7 : tspec.it_value.tv_nsec = 10 * 1e6; //10 ms

8 : tspec.it_interval.tv_sec = 0;

9 : tspec.it_interval.tv_nsec = 20 * 1e6; //20 ms

10:timer_settime(timerid, 0, &tspec, NULL);
 Listing 2.6 RTOS Timers and Pulses

23

pulses (lines 6-10). The timer initialized in Listing 2.6 sends pulses over channel at times

10ms, 30ms, 50ms, 70ms and so on, after timer_settime is called.

In order to emulate a timer in the SystemC model, we define a RTOS_timer class and a

corresponding SystemC thread (distinct from application tasks), whose functionality is

shown in the timer method in Listing 2.8. Similar to tasks, mutexes and channels, we

define a pool of RTOS_timer objects. A timer pulse is modeled as an event in the

RTOS_timer class. Corresponding to a timer creation in the RTOS, the SystemC model

allocates a timer object from the timer pool. The timer_settime method corresponds to

dynamic creation of the timer thread using sc_spawn.

1 : void timer(timer_id, it_value, it_interval){

2 : wait(it_value);//initial wait values

3 : while(true){

4 : Timers[timer_id]pulse.notify();

5 : ScheduleEvent.notify(0);

6 : wait(it_interval);//periodic wait values

7 : }// end while

8 : }

9 : void RTOS::Wait4TimerPulse (int timer_id){

10: Running2Suspended();

11: wait(Timers[timer_id]pulse);

12: Suspended2Ready();

13: }
Listing 2.8 Timer emulation in SystemC

24

The timer thread operation is fairly straightforward as seen in Listing 2.8. The timer

waits for the initial wait time as defined in the timer specification (it_value), followed by

an infinite while loop (lines 2-3). Inside the loop, the pulse event for the specific timer is

notified to wake up the task sensitive to the timer pulse. This is followed by a delta cycle

delayed notification of the scheduling event. The timer thread then waits for the interval

period (it_interval) until the next periodic pulse. The task sensitive to the timer calls the

Wait4TimerPulse method defined in the preemptive RTOS model, as shown in Listing

2.8 (lines 9-13). The waiting task is suspended while waiting for the timer pulse event.

The ScheduleEvent notification (line 5) in the timer thread is delta cycle delayed to allow

the waiting task to update its state to READY before the active task is moved to the ready

state (Listing 2.8, line 10) and forces a rescheduling of tasks.

2.5 Impact of Preemption and priority inheritance

In this section, we study the impact of preemption and priority inheritance on the

Figure 2.4 Message passing scenario

25

accuracy of an RTOS model. For this purpose, models A and B are created. Model A

implements a priority-driven scheduler in which the CPU time consumption and message

passing are modeled without preemption and priority inheritance. On the other hand,

model B implements a preemptive priority-driven scheduler without priority inheritance,

as described in Chapter 3.

In order to validate the accuracy of the models, we trace the events generated from the

execution of a multithreaded application on top of an RTOS kernel. The same application

is then tested on models A and B to compare the output of each model with the one

produced on the RTOS. We consider the QNX RTOS as our target system [16] and the

example illustrated in Figure 2.4 as the common application.

Figure 2.4 illustrates a message passing scenario of three tasks T1, T2 and T3, with

each executing at different priority. The blocks, labeled A1, B1, etc, indicate

computations that are executed between the message passing functions. The timestamps

specified in milliseconds, represent the intervals of time consumed by the computational

blocks on QNX. These time intervals are measured on QNX and back annotated to the

models. In addition to the message passing functions described in section III, the

following functions are implemented:

 MsgReceivePulse: This function suspends the calling task if no pulse is sent. In this

example, we set a timer pulse to be sent to T1 every 2ms.

 SetPriority: The receiver does not need to maintain the inherited priority when the

message transmission is completed. Therefore, after each reply, threads' priorities are

set back to the original ones by calling the SET_PRIORITY function.

26

Figures 2.5(i), 2.5(ii) and 2.5(iii) illustrate a portion of the tasks scheduling that occurs

when the scenario illustrated in Figure 2.4 is executed on QNX, model A and model B

respectively. The letters in these figures refer to the block names shown in Figure 2.4. To

indicate the task preemption during the execution of a block, this block is divided into

two: block-x and block-y. Furthermore, to study the response time of task T1, the timeline

is shown along with the transition states, illustrated in Figure 2.1. Initially, Figures 2.5(i)

and 2.5(ii) are compared. The following events are common to both models:

1) At 0ms, the schedulers in QNX and model A select T1 to start execution since it is the

READY thread with the highest priority.

2) At 3ms, T1 suspends to wait for the 2ms timer pulse. At this time, T3 becomes the

highest priority READY task and therefore, is selected to execute.

 Figure 2.5 Tasks execution on (i) QNX, (ii) Model A, and (iii) Model B

 Figure 2.5 Tasks execution on (i) QNX (ii) Model A (iii) Model B

27

3) At 5 ms, T1 receives the timer pulse.

Consequently, the QNX kernel preempts T3 and schedules T1, with the highest

priority, to resume execution. On the other hand, the scheduler in model A does not

instantly interrupt T3’s execution since preemption is not implemented in this model.

T3’s execution is then interrupted only to wait for a message to be sent through Ch2. As

a result, the time for block C1 is consumed before T1 executes. The time consumption

causes a delay of 2ms in the response time of task T1 compared to T1’s response time on

QNX. The absence of preemption in model A causes T1 to be delayed again from 19ms to

23ms. Therefore, for an execution time of 25ms, task T1 with the highest priority is

delayed for 6ms in model A with respect to QNX.

To avoid the thread being delayed by a lower priority, preemption is added to model B

that implements the same fixed priority scheduler of A. The accuracy of B is measured by

taking the same scenario illustrated in Figure 2.4. By looking at Figures 2.5(i) and

2.5(iii), it can be noticed that from 0ms to 9ms, the sequence of events generated by

model B matches the one obtained on QNX. However, a mismatch occurs at 9ms when

T1 sends a message to T2. On QNX, T2 inherits T1’s priority which is higher than T3’s

priority. Therefore, T2 is selected to execute immediately after the message is sent from

T1. However, because of the absence of priority inheritance in model B, T3's priority is

always greater than T2’s priority. Therefore, scheduling in model B happens as follows:

1) At 9ms, T3 is selected to resume execution before T2 receives the message.

2) At 12ms, T3 completes the 5ms time consumption for C1 and is moved to a

SUSPENDED state to wait for a message from Ch 2.

3) At 12ms, T2 is the only READY thread. Therefore, it runs and consumes the

28

annotated time for block B1 before receiving T1's message.

4) At 17ms, the time for block B2 is consumed and a reply is sent to T1.

5) At 19ms, T2 is preempted and T1 is selected to run.

Compared to QNX, Model B shows an additional delay of 4ms for the highest priority

thread. Therefore, even with models that implement preemptive schedulers, tasks

behaviors are different from the ones observed on the targeted RTOS. In this scenario, the

priority of T1 was inverted during message passing since T1 was dependent on T2, which

operates at a lower priority. To avoid such delay in the tasks response time, we create a

model, named RTOS_SC, in which preemption and priority inheritance are implemented.

29

CHAPTER 3

3. RTOS MODELING

3.1 Scheduler Modeling

To obtain a preemptive RTOS model in RTOS_SC, we implement the following states

as shown in Figure 3.1: RUNNING, READY, SUSPENDED and TERMINATED. In

addition, RTOS_SC has three states that represent blocking transactions during task

communication: SEND-BLOCK, RECEIVE-BLOCK and REPLY-BLOCK. Differentiating

Figure 3.1 Tasks state in RTOS Model

30

these states is essential to keep the priority-driven aspect when multiple tasks access the

same channel. If the sender task attempts to write to the send buffer of the receiver’s

channel by calling the MsgSend function, two cases arise.

1) MsgSend is issued before the MsgReceive function is called by the receiver task.

2) The receiver issues a call to the MsgReceive function before the MsgSend function is

called by the sender.

If the first scenario occurs, the sender is moved from RUNNING state to SEND-

BLOCK state. After the message is received, the sender automatically moves from SEND-

BLOCK state to a REPLY-BLOCK state and is suspended until a reply is sent from the

receiver through the MsgReply method. The replied data are sent through the reply buffer

of the same channel.

In the second case, the receiver is moved from RUNNING state to RECEIVE-BLOCK

state until a message is sent from the sender end. Further, if the sender task calls

MsgSend when the receiver is in a RECEIVE-BLOCK state, the sender does not need to

wait in the SEND-BLOCK state. Therefore, it automatically moves from RUNNING

state to REPLY-BLOCK state. Finally, after the reply, the sender moves to a READY

state by calling the SuspendedToReady function.

31

RTOS_SC defines private functions in the scheduler class which are similar to the

ones explained in Chapter 2. However slight modifications, which will be explained in

this section, are applied to some of these functions to obtain more accurate preemption

modeling.

In Chapter 2, the implementation of the RunningToReady function shows that the

calling threads exits this function and resumes the time consumption if the thread has the

highest priority among tasks in the READY state. However, if an interrupt is generated

while all tasks are suspended, the task which is blocked on this interrupt wakes up and

calls the consume function. Similarly, other tasks may call the consume function due to

the generation of interrupts at the same logical time. Therefore, it is possible that multiple

tasks accumulate in the consume function during the program execution. In this case, the

highest priority task should be the first to consume the CPU time.

void RTOS_SC::RunningToReady ()

1: RTOS_task *t = ACTIVE;

2: ACTIVE = GetHighestReady();

3: tState = READY;

4: RTOS_task *t’ = GetHighestConsume();

5: if (ACTIVE != t) {

6: ACTIVEActivation.notify();

7: wait (tActivation);

8: t’ = GetHighestConsume();

9: } // end if

10: while(ACTIVE != t’) {

11: t = ACTIVE;

12: ACTIVE = NULL;

13: tState = READY;

14: wait (tActivation);

15: t’ = GetHighestConsume();

16 : } // end while

Listing 3.1 Transition from running to ready in the RTOS model

32

Listing 3.1 shows the pseudo-code for transitioning from running to ready state in

RTOS_SC. Among possible tasks in the consume function, the task with the highest

priority is returned by the GetHighestConsume function and stored in task pointer t’(lines

3,8). If t’ is different than the ACTIVE task, ACTIVE is stored in t. The ACTIVE task

then points to NULL until a different thread is set to ACTIVE by the consume function

(lines 11-12). Since t is not the highest in consume, it waits on its Activation event. After

each wait statement t’ points to the highest priority task in the consume function in order

to compare the ACTIVE task to the most recent consuming tasks (line 11). The

comparison of ACTIVE to t’ repeats as long as ACTIVE is different than t’.

Listing 3.2 shows the pseudo-code of the implementation of the SuspendedToReady

function in RTOS_SC. After the thread’s activation event is notified, the priority of the

void RTOS:: SuspendedToReady ()

1: RTOS_task *t = GetTask (sc_process_handle());

2: tState = READY;

3: if (ACTIVE == NULL)

4: ACTIVE = GetHighestReady(); //run caller

5: else

6: wait (tActivation);

7: RTOS_task *t’ = GetHighestConsume();

8: while(t’ != NULL){

9: if(t’getPriority() > ACTIVEgetPriority()){

10: tState = READY;

11: wait (tActivation);

12: } //end if

13: else break;

14: } //end while

Listing 3.2 Transition from suspended to ready in RTOS model

33

ACTIVE thread has to be compared to the priority of the consuming threads (line 9). As

long as the priority of ACTIVE is not the highest, the thread waits again on its activation

event (lines 8-11). Otherwise, the active thread breaks out of the loop and resumes

execution (line 13).

3.2 Modeling Different Scheduling Algorithms

To obtain a generic RTOS model which enables design space exploration, different

scheduling policies are modeled: First-In-First-out, Round-Robin and rate-monotonic.

3.2.1. First-In-First-Out Scheduling Policy (FIFO SP)

The FIFO algorithm is commonly used in real-time applications, since it ensures a

minimum RTOS overhead by minimizing the context switching, compared to Round-

Robin policy. In a pre-emptive, priority-based scheduler, this algorithm ensures that the

highest priority thread is always the one selected for execution, at any time during

simulation. To select the highest priority task, the READY tasks are searched from the

oldest one in the READY list, to the newest one. In RTOS_SC, we model a pre-emptive,

priority-based FIFO SP, by accurately modeling pre-emption and priority inheritance, as

will be explained in this chapter.

3.2.2 Round-Robin Scheduling Policy (RR SP)

Round-Robin scheduling is modeled by giving a time slice, which is specified in the

specification model, for each thread running this policy. When the time slice elapses,

rescheduling occurs to allow a READY thread with greater or equal priority to run.

However, in our RTOS model, as in modern RTOSs, preemption does not only occur at

the end of the time slice, but at any time a higher priority task becomes ready for

execution. Compared to the pre-emptive scheduling with fixed priority, Round Robin

34

policy guarantees the execution of all threads with equal priorities. The preemptive

scheduling policy is not optimal for applications containing tasks with equal priorities.

When a running task takes large computation time, and a task at equal priority becomes

READY, the READY task may not be selected for execution when the scheduler runs the

FIFO scheduling policy. This process, called starvation, happens since the FIFO

algorithm allows preemption only for higher priority tasks.

In RR, if a READY thread exists at an equal priority to the one running, the running

thread is pushed to the end of the READY list at the end of the time-slice. Hence, the

ready threads with equal priorities to the last one running, get the chance to run.

However, consecutive calls to the consume function may occur in a thread. If thread

suspension occurs between two consume calls, its time-slice is reset to zero ms. On the

other hand, if the thread isn’t blocked between two consume calls, the time slice is

subtracted from the remaining time slice, which is calculated in the previous consume

call.

When RR SP is selected, preemption is modeled in the consume function, similar to the

methodology explained in Listing 2.4. However, the required time consumption, (CT), is

compared to the time slice (TS) assigned to the thread. If the time to be consumed is less

than TS, the thread waits for the time remaining from CT, and subtracts the time slice

after the consumption time elapses. However, if CT is greater than TS, the thread waits on

the TS to elapse in order to allow READY threads with equal priority to execute.

Otherwise, if there are no READY threads with equal or higher priority, TS is subtracted

from CT and stored in the remaining time. The thread then waits for either TS or CT,

depending on whether the remaining time is greater than TS or not. This procedure is

35

repeated until the thread finishes time consumption. Figure 3.2 illustrates an example of

the task execution in RR.

Figure 3.2 shows two threads, T1 and T2 with equal priorities. Initially, T1 and T2 are

READY to execute. T1, the first thread pushed to the READY list, starts execution. T1 is

then required to consume 7 time units (CT = 7). If the TS is 4 time units, rescheduling

occurs at this time since TS is less than CT. Therefore, task T2, runs and consume its 2

time units. When T2 suspends, T1’s CT becomes CT – TS, that is 3 time units. Since the

new CT is less than TS, T1 consumes CT time units. Therefore, T2 is not delayed for the

large computation time required by T1, but only for the time-slice.

3.2.3 Rate-Monotonic Scheduling Policy (RM SP)

This policy is used for applications containing periodic tasks. In such applications,

each task has a deadline to complete its job. To ensure that all deadlines are met, the

priority of the task is inversely proportional to the period. The shorter the period is, the

Figure 3.2 Preemption modeling in Round-Robin scheduling policy

36

higher the task priority would be. The priorities are statically assigned when this policy is

selected. Therefore, the following constraints must be satisfied in an application in order

to assign the rate-monotonic scheduling policy:

 All tasks are periodic.

 Deadlines are equal to the period.

 The overhead of context switching is negligible.

Furthermore, resource sharing, such as mutexes and queues, are not allowed when

RMSP is selected in order to prevent priority inversion. However, in our RTOS model, as

in modern RTOSs, RM SP is modified to avoid priority inversion by modeling the

priority inheritance protocol.

37

3.3 Modeling Inter-Task Communication with Priority

Inheritance

3.3.1 Channels

Listing 3.3 shows the pseudo-code for the MsgSend function. The variable Chid is

used as an index to select the corresponding channel among the pool of channels that are

available in the CH array. The variable RFlag is set to true by the receiver thread to

void RTOS_SC::MsgSend (int chid …)

1: int sid, sp;

2: if (!CH[chid].RFlag){ //Send-Block

3: RunningToSendBlock();

4: while(true){

5: wait(CH[chid].RecEvent);

6: sid = GetThreadId();

7: if(sid == CH[chid].HighestSender)

8: break;

9: } //end while

10: } //end if

11: SFlag = true;

12: Copy data into send buffer

13: sp = GetSenderPriority(); // Priority Inheritance

14: if(sp > GetRp())

15: SetReceiverPriority(sp);

16: CH[chid].SEvent.notify();

17: SendBlockToReplyBlock(); // Reply-Block

18: wait(CH[chid].RepEvent);

19: ReplyBlock2Ready();

20: Copy data from reply buffer;

Listing 3.3 Pseudo-code for sending message on channel in RTOS model

38

indicate that it is in RECEIVE-BLOCK state.The methods GetSenderPriority and

GetReceiverPriority are used to obtain the priorities of the receiver and sender. To allow

the receiver to inherit the sender’s priority, the function SetReceiverPriority is used. The

method GetThreadId is used to get the ID that is assigned to the calling thread. The

SystemC event RecEvent is notified when the receiver calls MsgReceive to allow a

SEND-BLOCK thread to send the message through the associated channel. RepEvent is

notified when the reply is sent from the receiver thread.

If RFlag’s value is true, the sender sends the message immediately (line 14).

Otherwise, it should wait in SEND-BLOCK state until REvent is notified. However, it is

possible that multiple threads attempt to send through the same channel before

MsgReceive is called on the receiver end. Therefore, before waiting for REvent’s

notification, the sender is pushed to a queue that represents the threads in SEND-BLOCK

state by calling the RunningToSendBlock function (lines 3-5).

Further, after REvent is notified, all the SEND-BLOCK threads that require access to

the receiver’s channel become ready to be selected by the SystemC kernel. In order to

ensure that the sender with the highest priority is the first one to send, the ID of this

sender is selected in MsgReceive. As long as the sender ID referred by sid is different

from HighestSender, the sender thread blocks in the wait statement (lines 4-5). If the

sender’s ID matches HighestSender, the calling thread returns from the wait statement

and breaks out of the loop (lines 7-8).

39

If the sender’s priority is greater than that of the receiver, the receiver inherits the

sender’s priority when the message is sent (lines 14, 15). The change in priority happens

before the receiver receives the message to avoid the priority inversion case shown by

model B in Chapter 2. After priority inheritance, the sender thread calls the

SendBlockToReplyBlock method to move to REPLY-BLOCK state until a reply is sent

from the receiver thread (line 18). Finally, when the reply is sent, the data is copied from

the reply buffer (line 20).

Listing 3.4 shows how the MsgReceive function is implemented in model RTOS_SC.

The method GetSid selects the SEND-BLOCK thread with the highest priority by

returning its assigned ID. The returned value is stored in channel member variable

HighestSender. In case no attempts were made to send data through the receiver’s

channel, the function GetSid returns -1 to indicate that the receiver is in RECEIVE-

void RTOS_SC:: MsgReceive (int channel_id, …)

1: int sp, rp;

2: CH[chid].HighestSender = GetSid();

3: CH[chid].RecEvent.notify();

4: if(CH[chid].HighestSender == -1)

5: CH[chid].RFlag = true;

6: RunningToReceiveBlock(); // Receive-Block

7: wait (CH[chid].SEvent);

8: ReceiveBlockToReady();

9: CH[chid].RFlag = false;

10: CH[chid].HighestSender = -1;

11: sp = GetHighestSp(); // Priority Inheritance

12: SetReceiverPriority(sp);

13: CH[chid].HighestSender = -1;

Listing 3.4 Pseudo-code for receiving message on channel in RTOS model

40

BLOCK state (line 2). Further, the calling thread notifies the RecEvent to allow the

thread with the selected ID to send the message. If HighestSender is equal to -1, the

RFlag is set to true (lines 4-5). The calling thread is then suspended until a message is

sent (line 6). After receiving the message, the RFlag is reset to false and the SenderId is

assigned to -1 to ensure that threads in SEND-BLOCK state are not selected until the next

time the MsgReceive function is called (lines 9-10).

The GetHighestSp function is used to return the highest priority thread among the

threads in SEND-BLOCK and REPLY-BLOCK states. The returned priority is stored in

the sp variable and the priority of the receiver is set to sp (line 12). The implementation of

priority inheritance at the receiver side is explained by the scenario shown in Figures

Figure 3.3 and Figure 3.4.

This application contains three threads S1, S2 and R, with S1 having a higher priority

than S2 and R having the highest priority. The task priorities are indicated inside the

parentheses. The receiver R starts execution and moves to a RECEIVE-BLOCK state

Figure 3.3 Priority

inversion scenario

without Priority

Inheritance at the

receiver end

41

when MsgReceive is called. Since the sender S1 is suspended on a resource, sender S2 is

the only READY thread at this time and hence, it is selected to execute. During S2’s

execution, it sends a message to the receiver task and waits for a reply. However, while R

is processing S2’s request, S1 receives its resource. In this case, if priority inheritance is

not modeled at the receiver end, S1 will not be able to execute because the receiver is

running at a higher priority. Consequently, S2 which has a lower priority than S1,

prevents S1 from executing by sending data to another thread with an even higher

priority. This form of priority inversion happens when the priority of the receiver is

greater than the sender’s priority. In order to solve this issue, the receiver inherits the

sender’s priority when the message is received (Listing 12, line 12). Further, the

inheritance happens at the receiver end since only then the receiver starts computing data

for the sender.

 Figure 3.4 Priority inversion scenario with Priority Inheritance of REPLY-BLOCK

threads at the receiver end

42

Figure 3.4 shows another case of priority inversion if the receiver inherits the senders

which are in a REPLY-BLOCK state. After the message from S2 is received, R moves

from a RECEIVE-BLOCK state to a RUNNING state and operates at S2’s priority. When

S1 is READY, R is preempted and S1 is selected to run. During its execution, S1 sends a

message to R and moves to SEND-BLOCK state. At this time, S2 is in a REPLY-BLOCK

state and hence, two threads exist in the MsgSend function. Since the receiver only

inherits senders in REPLY-BLOCK state, R’s priority would remain the same as S2’s

priority. However, another thread, say T, may exist with a priority of 12, which is greater

than the current priority of R and less than S1’s priority. If T obtains its resource before R

replies to S2, R would be preempted by T, and hence, S1becomes again a victim of

priority inversion. To avoid this problem, the receiver inherits the sender with the highest

priority among tasks in the SEND-BLOCK and REPLY-BLOCK states (Listing 12, lines

11-12).

Figure 3.5 Queue-based communication in RTOS model

43

3.3.2 Queues

Figure 3.5 illustrates asynchronous communication using queues for message passing.

The following implementation is used to minimize context switching, which adds

overhead to the task response time, when multiple threads communicate using the same

channel. Since multiple messages may be sent in a queue, the data transmitted are not

overwritten when queues are used for message passing. Therefore, synchronization

services such as mutexes are not required. Furthermore, communication protocols, such

as double hand-shake, are not modeled in queues to decrease the number of context

switches. Consequently, a non-blocking task communication is obtained, which increases

performance and allows queues to be used in the following cases:

 The data transmission is guaranteed during message passing

 The reliability in inter-task communications does not have a severe impact on the

application functionality.

The only place where threads may block, however, is when the queue is full or empty.

To enable a priority-based message transmission, a protocol is built to ensure the receipt

of message according to the priority it has.

Queue class, available in the RTOS_SC library, implements the mq_open, as seen in

Figure 3.5. It opens an existing queue or create one if the queue is opened for the first

time. It inputs the queue name, its attributes and policies and returns a reference to the

specified queue. For a given number of queues in the pool, the Queue instances are

created statically. The global AVAIL_QUEUES variable is an array of Queue instances.

44

Each queue has its own properties specified by the user. The properties includes the

maximum messages a queue can have, the maximum size of each message and if message

passing on the specified queue is blocking or non-blocking. In addition, a queue can have

a read only, write only or read and write policy. The type of signals, such as priority

pulses and events, is used to notify a thread of the queue status and is also declared by the

user. The mentioned parameters are specified in struct mqd_t and mq_attr. Having the

flexibility to specify the queue properties gives more control over the data, and therefore

increases the performance for a variety of communication systems.

The mq_send function is used to send a message to a queue, and the mq_receive

fuction, to receive the message according to the message priority. The methods mq_unlink

and mq_close() are used to delete a queue. If a queue is opened by more than one thread,

mq_unlink postpone the deletion until mq_close is called. mq_close always forces the

queue deletion even if the specified queue is used by other threads. Attempts to use a

deleted queue set error signals.

void Queue::mq_send (mqd_t mq_destination, char*msg, int sbytes, int msg_priority)

1: if(policy == WONLY || policy ==RDWT){

2: if(getCurrQueueSize() > getMaxMsgs() && geFlags() == 1){

3: Running2Suspended();

4: While(msg_priority < getHighestMsg())

5: wait(mq_event);

6: Suspended2Ready();

7: }

8: if(getMsgSize() > sbytes && getMaxMsgs() > getCurrQueueSize()){

9: push data and priority into specified queue

10: setNotifiedId();

11: }

12: else

13: return -1;

14: }

15: else

16: return –1;

 Listing 3.5 Pseudo-code for sending message on queue

45

mq_send(), shown in Listing 3.5, is used to push the data sent to the specified queue.

The inputs for this function are the queue from which the message is required to be sent,

the actual message, the number of bytes the message contains and the message priority.

Since multiple queues can be instantiated, the QueueID variable is used to indicate the ID

of the current queue in use. The getCurrQueueSize function returns the number of

messages in the selected queue. The method getMaxMsgs is used to return the queue size.

getFlags function returns 1 if the blocking property is set, and 0 if the non-blocking

property is set. getHighestMsg is a function that returns the highest priority message

among messages that are waiting to be sent to the selected queue. The size of a message

is indicated by the getMsgSize function.

 The function first checks if the opened queue has a write only (WONLY) or read and

write policy (RDWT), in order to allow writing the message to the queue. If any of these

conditions are met, the calling thread enters an if statement to check if the queue is full

and has the blocking property. If both conditions are true, mqsend blocks the calling

thread on the mq_event variable until a message is received (line 4). However, if multiple

threads call mq_send when the selected queue is full, the highest priority messages are

sent as messages are received (lines 4-5).

On the other hand, if the queue is not empty and the message size does not exceed the

maximum size allowed, the data are transmitted to the specified queue (line 9).

Furthermore, the setNotifiedId function is called to ensure that threads that are blocked, at

the receiver end, are unblocked in a FIFO order. Consequently the first thread ID in the

queue is returned by setNotifedId. If the queue is full, and a non-blocking property is set,

the function returns -1, to indicate that the message has not been sent to the queue.

46

Similarly, if the policy of the specified queue is set to read only, the function returns – 1

and no data is transferred to the queue.

Listing 3.6 shows the pseudo-code of the mq_receive method. mq_receive is used to

retrieve data from the selected queue. The getCurrThreadId method returns the calling

thread ID, and the getNotifiedId method returns the receiver thread ID, which is selected

in mq_send. mq_receive first checks first if the queue policy is read only (RDONLY) or

read and write (RDWT) in order to receive the messages in the queue (line 1). If any of

these conditions is true, the second if statement is executed to verify if the queue is

empty, and the blocking property is set for the specified queue (line 2). If both conditions

are true, the calling thread waits for a message to be sent to the empty queue, as long as

the current thread ID is different than the one returned by the getNotifiedId function (lines

4-5).

Void Queue::mq_receive (mqd_t mq_destination, char *msg, int qbytes,int

*msg_priority)

1: if(policy == RDONLY || policy ==RDWT){

2: if(geFlags() == 1 && queue.empty()){

3: Running2Suspended();

4: while(getCurrThreadId() != getNotifiedId())

5: wait(qsend);

6: Suspended2Ready();

7: }

8: else if(geFlags() == 0 && queue.empty())

9: return -1;

10: copy the data and priority to the receiver

11: delete message from the queue

12: resetNotifiedId();

13: return 0;

14: }

15: else

16: return -1;

Listing 3.6 Pseudo-code for receiving message on queue

47

If, the selected queue is empty and has the non-blocking property, the function returns

-1 to indicate that the no message has been received (line 8). Otherwise, if the queue is

not empty, the oldest message with the highest priority will be received first and removed

from the queue (lines 11-12). Further, the resetNotifedId function is called to reset the

selected receiver ID. In case the policy is set to WONLY, the function returns -1 to

indicate that reading from the selected queue is not allowed.

Other global functions are implemented in RTOS_SC, such as mq_notify. This

function can be used to register a notification for the calling thread, when the queue

transitions from empty to non-empty. However, when the thread requires a notification,

no other threads can be notified of the transition until the first calling thread gets the

notification.

3.4 Modeling Different Synchronization Services

In our model, we increase the design space exploration by modeling different

synchronization services, which may be used during communication. We model barriers

and condition variables in RTOS_SC since they are commonly used for inter-task

communication.

3.4.1 Barriers

One of the synchronization services which may be used for inter-task communication

is barriers. Any thread must stop at the point where it reaches a barrier and cannot resume

execution until a number of threads, specified by the pthread_barrier_init function, is

reached.

48

The function pthread_barrier_destroy, is used to delete the barrier initialized by

pthread_barrier_init. It takes as input an object of struct pthread_barrier_.

The struct pthread_barrier_t is available on Linux kernels and is, therefore, renamed to

pthread_barrier_ in RTOS_SC.

Listing 3.7 shows the pseudo-code of the implementation of the bar_wait function.

bar_wait is used to make a number of threads wait on a specified barrier. The number of

threads is stored in the curentBlockedThread and incremented as a thread reaches the

barrier (line 1). If the number of threads, specified in maximum, is attained, the threads

waiting on the selected barrier are notified and allowed to resume execution (line 3). The

last thread reaching the barrier shouldn’t then wait on the event but only notify the

threads, waiting on the barEvent variable. Since, these threads are all notified at the same

logical time, the function suspended2Ready is responsible of scheduling those threads to

resume execution from higher to lower priority.

3.4.2 Condition Variables

void barriers::bar_wait()

1: currentBlockedThreads++;

2: if(currentBlockedThreads == maximum){

3: barEvent.notify();

4: }

5: else {

6: running2suspended();

7: wait(barEvent);

8: suspended2ready();

9: }

10: return 0;

Listing 3.7 Pseudo-code for waiting on a barrier

49

To increase the control over user threads, condition variables can be used. A thread can

wait on a variable for which the attributes are initialized by creating an object of the

struct pthread_cond_ and assigning an ID or a name for it. Condition variables are always

used with a mutex to avoid undefined behavior: due to preemption, access to the shared

region may alter the value of the condition variable and produce unexpected results.

The struct name pthread_cond_t is used in Linux kernels and therefore cannot be used

with the same name in RTOS_SC. Hence, the struct initializing the condition variable is

renamed to pthread_cond_.

Listing 3.8 shows the pseudo-code of the pthread_cond_wait method. The

pthread_cond_wait method is used to allow the user to suspend a thread on a condition

variable until it receives a signal or a broadcast. Before being suspended, the associated

mutex is unlocked, by calling the mutexUnlock function (line 1). The function

storeThread is called to store the condition variable ID in an array, named condArray, for

which the thread ID is the index (line 4). If the ID of either the condition variable or the

mutex is not positive, pthread_cond_wait returns -1, indicating that one of them has not

been initialized. The function thread_wait makes the calling thread wait on the sc_event

int pthread_cond_wait(pthread_cond_ * cond, pthread_mutex_ * mutex)

1: mutexUnlock();

2: if(cond->ID <= 0 || mutex->ID <= 0)

3: return -1;

4: storeThread();

5: running2suspended();

6: thread_wait();

7: mutexLock();

8: suspended2ready();

9: return 0;

Listing 3.8 Pseudo-code for waiting on a condition variable

50

condEvent variable. After receiving a signal or a broadcast, the thread returns from the

wait and locks the thread again with the function mutexLock.

Listing 3.9shows the pseudo-code of the function pthread_cond_signal. This function

is used to notify the thread with the highest priority between all threads waiting on the

specified condition variable. The max variable is used to calculate the highest priority

thread, waiting on the input condition variable, cond. The thread variable stores the

thread ID of the thread waiting on cond. Both variables are initially assigned to -1. Each

thread in the scheduler has a variable named condID, which stores the ID of the condition

variable, if the thread is blocked on a condition variable. Otherwise, the value of condID

would be -1. Since pthread_cond_signal is a global function, the getCondId function is

used to return the condID of the thread, by specifying its index as input. Similarly, the

method getCondPriority is used to return the priority of the indexed thread. Threads’

priorities are compared to max as long as getCondId matches the ID, named cid, of the

input variable cond (line 3). Each time a higher priority than max is found, the priority

and thread ID are stored in max and thread respectively (lines 4-5). This process is

repeated for the total number of tasks, that is MAX_TASKS (line 2). If any of max and

int pthread_cond_signal(pthread_cond_* cond)

1: int max = -1, thread = -1;

2: for(int i = 0; i < MAX_TASKS; i++){

3: if(getCondId(i) == cond->cid && getCondPriority(i) > max){

4: max = getCondPriority(i);

5: thread = getCondId(i);

6: }

7: }

8: if(thread == -1 || max == -1)

9: return -1;

10: notifyWaitingCond(cond->cid, thread);

11: return 0;

Listing 3.9 Pseudo-code for notifying one of the waiting threads

51

thread remains -1, the function returns -1 indicating that no threads are waiting on cond.

Finally, the function notifyWaitingCond is called to notify the thread, which has the ID

equal to thread, and condition variable ID equal to cid.

Listing 3.10 shows the pseudo-coder for the implementation of the

pthread_cond_broadcast function. It is used to notify all the waiting threads on the

specified condition variable. The function supended2ready in pthread_cond_wait allows

then, the one with the highest priority to execute first.

3.5 Modeling Semaphores And Mutexes for Input/Output

Communication With Priority Inheritance

In our model, we provide means for communication between the tasks created by the

scheduler and the ones which are linked to other peripherals, such as hardware models.

To enable data transmission in input/output communication, we use shared variables.

Accesses to such variables are protected by modeling mutexes and semaphores.

The user is allowed to control access of multiple threads, accessing a shared region,

using semaphores. The semaphore is initialized by the user with sem_init() which takes as

int pthread_cond_broadcast(pthread_cond_* cond)

1: int thread = -1;

2: for(int i = 0; i < MAX_TASKS; i++){

3: if(getCondId(i) == cond->ID)

4: notifyWaitingCond(cond->ID, thread);

5: thread = getThreadId(i);

6: }

7: if(thread == -1)

8: return -1;

9: return 0;

Listing 3.10 Pseudo-code for notifying all waiting threads

52

input a pointer to the struct sem_t to initialize the semaphore, an integer specifying if the

semaphore is shared only by threads or by processes and the initial value of the

semaphore. The second parameter is neglected since only threads are created in

RTOS_SC.

The semaphore exists until the function sem_destroy() is called by the user. It takes as

input sem_t object. The function selects the convenient semaphore and deletes it.

The pseudo-code for the sem_wait function is shown in Listing 3.11. This function

allows a specific number of threads, which is stored in the maximum variable, to enter

into a critical region. If the semaphore has not been initialized by sem_init, the value of

the INIT variable would be 0, and hence, the sem_wait function exits by returning -1

(lines 1-2). Otherwise, the current number of locked threads, stored in the

currentLockedThreads variable, is compared to maximum (line 4). If

currentLockedThreads is greater than maximum, the function pushToWaitQ is called to

push the calling thread to a vector, in which the waiting threads are stored (line 5). The t

void semaphore::sem_wait()

1: if(!INIT)

2: return -1;

3: task * t = getCurrThread();

4: if(currentLockedThreads > maximum) {

5: pushToWaitQ();

6: running2suspended();

7: wait(t->semEvent);

8: suspended2ready();

9: }

10: currentLockedThreads++;

11: deleteWaitQ();

12: return 0;

Listing 3.11 Pseudo-code for semaphore wait

53

variable, in line 7, is an object of the task structure, which contains the semEvent variable.

This structure is defined to allow semaphores to be used, not only by tasks that belong to

the RTOS_SC scheduler, but also to be accessed by tasks that may belong to other

hardware models.

The calling thread, if it is a task defined by the scheduler, moves to a SUSPENDED

state and waits on the semEvent variable (lines 6-7). Only when a locked thread is

unlocked by calling the sem_post function, that the waiting thread will be allowed to

enter, in a priority-based order, the critical region. Upon return from the wait statement,

currentLockedThreads is incremented and the function deleteWaitQ is called to remove

the locked thread from the queue, if it has been pushed to it (lines 10-11).

The pseudo code for the sem_post function is shown in Listing 3.12. This function is

used to unlock a thread before it exits the critical region. The number of locked threads

represented by currentLockedThreads will be decremented to allow the waiting thread to

enter the protected region (line 3). However, if there are threads waiting to lock the

semaphore, the thread with the highest priority should be notified. Therefore, if the queue

in which the waiting threads are stored, is not empty (line 6), the getHighestInQ function

void semaphore::sem_post()

1: if(!INIT)

2: return - 1;

3: if(currentLockedThreads > 0)

4: currentLockedThreads--;

5: task * t ;

6: if(QSize() != 0){

7: t= getHighestInQ();

8: t->semEvent.notify();

9: }

10: return 0;

Listing 3.12 Pseudo-code for semaphore post

54

selects the thread at the highest priority from this queue (line 7). The semEvent variable

for the selected thread is then notified to allow it to lock the semaphore (line 8).

Mutexes are also modeled in RTOS_SC. They have the same implementation as

semaphores, except that the maximum number of locked threads is 1, in a mutex.

However, in both semaphores and mutexes, priority inversion may occur if pre-emption

happens during the access to shared region. The scenario shown in Figure 11, describes

this case.

Figure 3.6 shows a priority inversion scenario caused by the mutex. Initially, threads

T1 and T2 are suspended, on a timer pulse. Therefore, thread T3, with the lowest priority,

runs and access a shared region. Since it is the first thread accessing this region, the

mutex locks T3 and allows it to resume execution. The computation time needed by T3 to

Figure 3.6 Priority

Inversion scenario

caused by mutex,

in a basic RTOS

model

55

exit the shared region takes 5 time units. However, the highest priority thread T3, receives

an interrupt from the timer at the third time unit. Therefore, a basic preemptive scheduler

selects T1 to execute. During T1’s execution, T2 with an intermediate priority, receives

the timer pulses. In this case, the problem happens if T1 tries to access the same shared

region locked by T3, as seen in Figure 11. T1 is then blocked by the mutex until T3

unlocks it. T2 is therefore, selected to execute and consume the 10 time units required

before it suspends. At the 11th time unit, T3 awakes from pre-emption and unlock the

mutex, allowing T1 to lock it and resume execution. Consequently, T3 has caused T1

with the highest priority to be delayed for 10 time units by a lower priority thread, that is

T2.

In RTOS_SC, we avoid this form of priority inversion by applying, in the consume

function, the priority inheritance protocol, since pre-emption can only occur when this

function is called. If a higher priority thread, whether created by the RTOS_SC scheduler

or not, is blocked by the mutex/semaphore, the locked thread inherits the priority of the

one blocked by the same mutex/semaphore. In case multiple threads are blocked on a

semaphore, the locked thread inherits the highest priority blocked thread.

In the scenario explained above, when T1 tries to access the same mutex, which is

locked by T3, the RTOS_SC scheduler assigns the priority of T3 to that of T1. Therefore,

as opposed to the event trace shown in Figure 11, T3 would execute after T1 is blocked

on the mutex. T3 completes then the 5 time units and unlocks the mutex. Consequently,

T3 restores its original priority, allowing T1 to pre-empt T3 and access the shared region.

When T1 suspends, T2 is selected to execute and consume its 10 time units. T1 was not

then delayed for 10 time units by a lower priority thread.

56

CHAPTER 4

4. EXPERIMENTAL RESULTS

In this section, we validate the efficiency of the RTOS_SC model by using two

Smartphone use cases. In order to validate the accuracy of our RTOS model in

determining the application performance, we combine the Jpeg encoder, MP3 playback

and voice encoding/decoding (Vocoder) [1] in the first experiment. In the second

experiment, we only combine picture encoding with the MP3 playback to be able to show

how the application can be optimized. The target platform is the QNX RTOS, running on

a 2.8GHz Intel x86 embedded processor. The generated simulation models are running on

a 3,2 GHz host Intel i3 Xeon Processor, with linux as the host OS.

4.1 Accuracy of RTOS model in a multithreaded application

The functional accuracy of RTOS_SC is validated by comparing the sequence of the

message passing events with that obtained on the target. We use the tasks’ response time

to measure the timing accuracy. This metric represents the time duration from the

occurrence of the event until the time the task produces its results.

Time (in ms) RTOS_SC Model A Model B

45 100 92.43 71.43

Table 4.1 Accuracy of

events trace with respect

to QNX (in %)

57

Initially, we would like to show the accuracy of the events trace produced by the

scenario illustrated in Figure 2.4, on each of the three models. The execution time of this

example is 45ms which is the time for all threads to complete one iteration on the QNX

RTOS. As shown in Table 4.1, a significant percentage of error exists in the expected

sequence of events when priority inheritance and preemption are not implemented (model

A). When only preemption is modeled (model B), an increase in the accuracy is obtained.

However, since RTOS_SC implements both features, the application produces the same

order of events on RTOS_SC and QNX. The accuracy is calculated by dividing the

number of events that occur in the correct sequence (compared to QNX), by the total

number of events that occur from the beginning of the program until the specified time.

In our RTOS model, we facilitate debugging of the user code by automatically

generating a graph of the software trace of events with the timeline as seen in Figure 4.2.

Application developers may then easily validate their software functionality and

performance through an illustrated trace of the tasks’ states and events during simulation.

We use the gnuplot software to graphically generate the events’ trace.

Using the QNX Momentics software, we similarly generate illustration of the trace of

events obtained by running the application on the QNX target RTOS, as shown in Figure

4.1. The trace of events generated by our model is then compared to that generate on QNX

to prove the accuracy of our model.

58

Figure 4.1 Qnx Momentics events’ trace

Figure 4.2 RTOS model events’trace in Gnuplot

59

In both Figures 4.1 and 4.2, send signifies that a message has been sent, whereas

receive indicates that the message is received. reply signifies that a reply is sent from the

receiver ask to the sender. The transition from RUNNING (shown in green) to READY

(shown in purple) indicates preemption. By looking at Figures 4.1 and 4.2, we observe

that, by running the example provided in Chapter 2 on QNX RTOS and RTOS_SC, we

obtain the same timing and order of tasks’ execution.

4.2 Trace of Events

In order to appreciate the impact of accurate trace of events on the application’s

performance, the same models are tested by combining the MP3+Vocoder and the jpeg

encoder. Figures 4.1(i), 4.1(ii), and 4.1(iii) illustrate a scenario where the capture task

interrupts the execution of the MP3 application and sends a signal to the jpeg thread to

produce an image every 30ms. This time interval represents the average latency of an

image acquisition in modern cameras.

Figures 4.3(i) and 4.3 (ii) illustrate our Smartphone use case of MP3 playback

concurrent to a voice call. We assume that the caller wants to play an MP3 clip for the

callee, while hearing it himself. The audio from the MP3 file must be decoded and mixed

with the audio from the phone call at both ends, so that they can sing along or make

comments to each other while the music is playing. Hence, we have 4 audio streams on the

caller’s phone:

60

Figure 4.3 (i) Uploading to and Downloading from Network (ii) Mp3Decoding and Voice Encoding/Decoding (iii) Jpeg

Encoding

61

• Uplink audio: audio being transmitted to the network (including caller’s speech mixed

with MP3 audio);

• Downlink audio: audio received from the network (only the callee’s speech);

• Speaker audio: audio being sent to the phone's speaker (includes callee’s speech mixed

with MP3 audio);

• Microphone audio: audio coming from the phone's microphone (only the caller’s

speech);

For each stream there is a message:

• CLK_TX: Interrupt to transmit uplink audio to the network;

• CLK_RX: Interrupt to tell the system that downlink audio has just been received from

the network;

• I_AUDIO_TX_READY: Interrupt indicating that the D/A converter needs more data

to transmit to the speaker;

• I_AUDIO_RX_READY: Interrupt indicating that the A/D converter received new data

from the microphone.

To validate the accuracy of the application, which runs the Mp3 playback concurrently to

a voice call, the tasks’ order of execution on QNX RTOS and RTOS_SC is shown, for one

iteration, in Figures 4.4 and 4.5.

Figure 4.4 Trace of events of Mp3 with voice on RTOS model

62

63

Figure 4.5 Trace of events of Mp3 with voice on QNX RTOS

64

The embedded software consists of seven tasks: l1, uas, Vocoder, dspaudio, isr,

mixerctrl, and audiosal. Task l1 implements the uplink and downlink events (CLK_TX

and CLK_RX). Task isr is the interrupt handler that notifies the decoding task if more data

is needed by the buffer at the speaker (I_AUDIO_TX_READY) or if new data is available

at the microphone buffer (I_AUDIO_RX_READY).

As shown in Figures 4.4 and 4.5, the dsp_audio task starts execution prior to isr task,

due to priority inheritance: vocoder, with higher priority than both isr and dsp_audio,

sends a message to dsp_audio at time 1020. The scheduler therefore assigns the priority of

dsp_audio to that of vocoder. As for preemption it appears at time 1020 and 1023. At

1020, when dsp_audio replies to vocoder, the original priority of dsp_audio is restored to

4, which is less than isr’s priority. Therefore, the ready task isr, preempts dsp_audio and

starts execution. Similarly, preemption happens at time 1023, when dsp_audio receives the

last message sent by isr. After receiving and replying to isr’s message, dsp_audio restores

its original priority. Therefore, isr, with higher priority than each of dsp_audio, mixerctrl

and audiosal priorities, preempts dsp_audio and resumes execution until it is blocked to

wait for the next timer pulse to arrive. As shown by comparing these Figures, a very

accurate timing and order of execution is obtained in RTOS_SC. On the other hand,

running this application on top of Models A and B, show errors at time 1020 and 1023 for

Model A, and at time 1020 for Model B.

Such errors, however, may affect the application functionality if tasks with high

computation time, such as image encoding, are integrated into the application, as will be

shown in section 4.4.

65

To encode a jpeg image, the following operations are applied, as shown in Figure

4.3(iii):

1) Read: To read an image in blocks of 8 by 8 pixels

2) DCT: To perform a Discrete Cosine Transform

3) Quantize: To transform from continuous to discrete domain

4) Zigzag: To group similar frequencies

5) Huffman: To apply an entropy encoding algorithm with lossless data compression

In mobile phones, the jpeg image encoder usually has a lower priority than the MP3

decoder since a delay in the display of a picture is more tolerated than a sound delay. For

this reason, the jpeg priority is set to the lowest priority among all threads. However, if

we consider a device connected to a high speed vision camera, the jpeg encoder would be

prioritized over the sound when the camera button is pressed. Therefore, when this

application is running, capture’s priority is set to 9, which is the highest priority.

Consequently, a signal is sent to jpeg to operate at the highest priority. For this

application, we first select the FIFO scheduling policy and then the Round-Robin policy

in order to evaluate its’ performance with each policy. The assigned time-slice is 4ms, and

it is obtained by multiplying the clock speed on the target platform by 100 (100* 0.04=4).

66

Table 4.2 shows the accuracy of the trace of events generated for each of the models

A, B, and RTOS_SC in comparison with QNX. The event trace is calculated for five

seconds, running the FIFO scheduling algorithm. As shown in this table, integrating jpeg

encoding into MP3+Vocoder leads to a significant error percentage when preemption or

priority inheritance are not taken into account in the RTOS model. As a result, it is highly

possible that inaccurate timing of events generation causes a significant impact on the

efficiency of the application. The average response time of jpeg is measured for the same

scenario to show the impact of the event inaccuracy on real life applications.

4.3 Impact of Accurate Trace of Events on Response Time

Table 4.3 shows the time at which the capture thread receives a pulse (which means

that the camera button is pressed), and the response time of the capture task in each of the

Time QNX Model A Model B RTOS_SC

1040 1e3 2001.940 7801.821 8269.856 2002.000

1060 1e3 2001.977 6640.578 6911.366 2002.000

1120 1e3 2002.132 6747.026 7095.797 2002.000

3260 1e3 2002.060 6671.656 6938.491 2002.000

4108 1e3 2.002.138 6667.299 6946.139 2002.000

Table 4.3 Response time

(in us) of capture thread

Execution

Time(in ms)
Model A Model B RTOS_SC

1040 81.97 86.89 98.37

1060 79.61 85.44 99.77

1120 77.73 83.83 99.77

3260 77.01 83.83 98.28

4108 77.01 85.65 98.43

Table 4.2Accuracy of the

trace of event with respect to

QNX using the

MP3+Vocoder with Jpeg

example (in %)

67

QNX and the three RTOS models. The response time obtained by each model should

reflect the latency of the picture encoding on the targeted RTOS when this task is required

to operate at the highest priority. Since priority inheritance is not taken into consideration

in models A and B, the jpeg thread remains with the lowest priority and hence, will only

execute if all other threads are suspended. As a consequence, a late response time is

obtained in these models. However, modeling preemption and priority inheritance in

RTOS_SC allows the sender thread (capture), to change jpeg’s priority to the highest and

therefore, execute with a very accurate response time (approx. 2001us). As a result, the

efficiency of the application executing on QNX is correctly interpreted by RTOS_SC.

4.3.1 Average Response Time, using the First-In-First-Out policy

Table 4.4 shows the average response time and error percentage of each thread of the

application illustrated in Figures 4.3 (i), 4.3 (ii), and 4.3(iii), when it is executed on each of

Task
QNX

Response

Time

Model A Model B RTOS_SC

Response

Time

Error % Response

Time

Error % Response

Time

Error %

capture 2002.027 6905.676 245.106 7232.330 261.430 2002.000 -0.001

l1 3133.829 4194.826 33.856 6139.053 95.896 3021.429 -3.586

uas 7284.599 5267.557 -27.689 5268.971 -27.669 6923.527 -4.956

vocoder 9879.735 5101.148 -48.367 4300.476 -56.471 10002.951 1.247

isr 7468.294 4134.918 -44.633 3169.534 -57.560 7408.510 -0.800

dsp 9033.735 2654.239 -70.6185 3676.083 -59.307 9968.693 10.349

mixer 3914.741 9821.942 150.896 2365.556 -39.573 3505.102 -10.464

audiosal 3999.235 7670.799 91.806 2481.873 -37.941 3559.594 -10.993

Table 4.4 Average response time (in us) and error percentage of the MP3+AUD3 with

JPEG tasks (in us), using FIFO policy

68

the three models and QNX. In RTOS_SC, the averages of the tasks’ response time are

approximately equal to the ones obtained on QNX. On the other hand, in models A and B,

the modeled response time does not reflect the tasks’ response time on QNX, due to the

absence of preemption and priority inheritance. To confirm the accuracy of RTOS_SC

compared to models A and B, the error percentage of the obtained response times is

shown.

To obtain the error percentage we use the following formula: ((model’s response time –

QNX response time) / QNX response time) * 100. The results show a very small error

percentage in the RTOS_SC model, with an average of 5%. This error happens since the

time annotated to our model represents the average time consumed by each basic block in

the RTOS. Consequently, the annotated times may slightly differ from the time consumed

by each basic block obtained on the RTOS. However, models A and B show a significant

error, which demonstrates that they are unreliable for software optimization. Furthermore,

In the preemptive model (Model B), the percentage of error in the average response time is

higher, for some tasks, than the ones obtained in Model A. This result is due to the high

dependency of this application on message passing. Due to priority inheritance, priorities

are dynamically changed in the QNX RTOS, which affects the preemption time interval,

and consequently, the response time of the tasks.

4.3.2 Average Response Time, using the Round-Robin policy

The tasks’ response time on QNX and our model are approximately the same when

FIFO and Round-Robin policy are selected (Table 4.4), since the time consumed by the

jobs in each task do not exceed the time-slice of 4ms. Hence, preemption occurs at the

interrupt arrival only when the Round-Robin policy is selected, just as it occurs when the

69

FIFO policy is set. However, the time required for some tasks to complete a specific job

may be greater than the time-slice, which affects the response time of the tasks, as will be

seen in section 4.4 of this Chapter.

Figure 4.6 (a) and (b) summarizes the results for the errors percentage, measured on

each application with the FIFO policy. Both the error in the events’ trace and in the

average response time error of an application, must be measured to determine the

accuracy of the RTOS model compared to target RTOS. As seen in Figure RTOS_SC has

a negligible error percentage, of less than 5%, in the events trace (Figure 4.6(a)) and the

tasks’ response time (Figure 4.6(b)) for the three applications, which are executed for a

period of 5 seconds. However, the error in each of Models A and B is at least 15%.

(a) (b)

Figure 4.6 Application’s average (a) error percentage in events’s trace, and(b)

response time

70

4.4 Software Validation and Optimization

The results from the previous examples show that the integration of preemption and

priority inheritance in RTOS_SC allows for accurate modeling of tasks response time.

This implies that this metric may be used in our model to identify the optimization

opportunities of software architectures. For instance, task latency is a known issue which

may lead to starvation in multithreaded systems. The starvation phenomenon happens

when READY tasks with low priorities do not execute because of the continuous

presence of higher priority tasks in READY state. In RTOS_SC, we use the response time

of each task to detect such significant delays. When these delays are detected, the

application may be optimized, as will be shown in this section.

4.4.1 Functional validation using FIFO policy

To show how the starvation is detected and avoided in our model, we use the example

of the MP3 and the jpeg tasks (Figures 4.3(i) and 4.3(ii)). We assume that, while MP3 is

running, a button is pressed to successively download images that need to be compressed

capture’s

priority

QNX Model A Model B RTOS_SC

1 39.598 33.394 38.185 38.086

 2 39.594 33.236 38.154 38.042

3 35.996 33.342 38.002 36.824

4 34.996 33.592 37.957 35.594

5 32.994 33.600 37.981 33.002

6 32.994 33.559 38.111 33.000

7 33.000 33.775 38.125 33.000

8 33.000 33.482 38.098 33.000

9 33.000 33.564 37.987 33.000

Table 4.5 Average response

time (in ms) of the capture

thread with capture’s

Priority between 1 and 9

using FIFO policy

71

using jpeg encoder before they are stored in memory. In such a scenario, the sound is

prioritized over the jpeg image since a delay in sound is less tolerated than latency in a

picture display. On the other hand, the latency for jpeg encoding is desired to be within an

interval of 33 to 40ms [23]. Therefore, the goal is to optimize the Jpeg application while

preserving the Mp3 and Jpeg’s functionalities. We first study the effect of the change in

capture’s priority on jpeg’s efficiency when the FIFO policy is selected.

In Table 4.5, the response time of the capture task is measured for one iteration on

QNX and compared to the one obtained by each of the three RTOS models. The iteration

shown corresponds to the one with the greatest tasks’ response time in RTOS_SC. In

model A, the change in capture’s priority does not affect the response time. Moreover,

these response times do not reflect the ones obtained on QNX when capture runs at a

lower priority than isr. On the other hand, since model B takes preemption into account,

an additional delay to the capture task is shown (approximately 37ms). However, the

delay remains approximately the same in model B even when the priority of capture is

greater than that of the isr task. This is due to the absence of priority inheritance, which

makes the jpeg task run with the lowest priority and cause the capture task to operate at

the lowest priority (jpeg’s priority). In RTOS_SC, the response times obtained match the

ones shown by QNX. The results on QNX and RTOS_SC demonstrate that when

capture’s priority is greater or equal to isr’s priority, the jpeg encoding is the fastest.

However, to choose which priority is optimal for the capture task, we study the effect of

the change in capture’s priority on Mp3’s functionality.

In isr, when the MP3 tasks complete their jobs, the mixed data is written to a serial

buffer. It is then read and processed by the speakers to generate the Mp3 music as shown

72

in Figure 4.3(ii). To model the speaker part, we create a task in a separate model, which

reads from isr’s serial buffer. Consequently, isr’s functionality is preserved as long as data

is available to be read, and hence, no underflow occurs in the serial buffer. Table 4.6

shows the state of this buffer when the priority of capture is changed.

As shown by Table 4.6, the response times for the isr task in models A and B do not

consistently match the ones obtained by QNX. On the other hand, RTOS_SC accurately

models the response time produced by QNX. The response time of isr in RTOS_SC and

QNX is approximately 5ms when capture’s priority is less than or equal 4. Due to priority

inheritance, isr’s response time is not affected by the change in capture’s priority when it

varies between 1 and 4 due to priority inheritance. Each of the the Mp3 tasks inherit isr’s

priority, that is 5, and hence, prohibit the jpeg task with priority 4 from receiving

capture’s message. However, the isr task does not complete execution when capture’s

priority is greater than 4, as shown by underflow in Table 4.6. The starvation of isr is

capture’s

priority

QNX Model A Model B RTOS_SC

1 4.990 5.000 5.306 5.120

 2 5.000 5.117 5.220 5.035

3 4.996 underflow 5.572 5.230

4 4.979 underflow 5.774 5.232

5 underflow underflow 5.238 underflow

6 underflow underflow 5.291 underflow

7 underflow underflow 4.676 underflow

8 underflow underflow 5.279 underflow

9 underflow underflow 4.928 underflow

Table 4.6 Average

response time (in ms) of

the isr thread with

capture’s priority

between 1 and 9, using

FIFO policy

73

caused by the multiple execution of the jpeg task, with the highest priority. As a result of

isr’s delay, the speaker task reads from the serial buffer faster than the rate at which isr

can write into the same buffer. Therefore, the serial buffer suffers from an underflow of

data. Consequently, the underflow causes a halt in the music display which affects MP3’s

functionality.

The results shown by RTOS_SC in Tables 4.5 and 4.6 demonstrate that the optimal

priority for jpeg encoding on QNX is 4, when the FIFO policy is set and the MP3 tasks

execute with the priorities defined in Figure 4.3(ii). By assigning a priority of 4 to the

capture task, MP3+Jpeg application ensures a fast execution of the jpeg encoding process

while maintaining a correct functionality in both MP3 and Jpeg applications.

To explain how priority inheritance and preemption affects the performance and

functionality of the Mp3+Jpeg application, we illustrate the tasks’ different states and

events on QNX and the RTOS model using the QNX Momentics and Gnuplot software

respectively. Figures 4.7 and 4.8 show the tasks’ execution when capture’s priority is

assigned to 4.

74

Figure 4.7 Tasks execution of Mp3+Jpeg on QNX with FIFO policy.

75

Figure 4.8 Tasks execution of Mp3+Jpeg in RTOS model with FIFO policy.

76

In this application, we use S to indicate that a message is sent, whereas R is used to

indicate that a message is received, and Rep to indicate that a reply has been sent. As

shown in Figures 4.7 and 4.8, the pulses for capture and isr are received at the same time

(approximately 20ms). However, since the priority of capture task is 4, the isr task will

be able to complete writing to its buffer before the jpeg task starts execution. This can be

seen in Figures 4.7 and 4.8: the last time isr executes (in RUNNING state), it does not

send a message to the dsp_audio task, which means that isr has completed its job before

the execution of jpeg. The isr task, which has a higher priority that the capture task,

allows the dsp_audio, mixerctrl and audiosal tasks to inherit its priority, and hence, run at

a priority of 5. Therefore, the Mp3 tasks run with higher priorities than the Jpeg tasks

(with priority 4). Consequently the following events, which occur in both figures from

20ms until 23ms, are repeated until the completion of isr’s job (at 30 ms approximately in

both figures):

1) isr recives the timer pulse and sends a message to dsp_audio

2) dsp_audio inherits isr’s priority, receives the message from isr and sends a reply.

After the reply is sent, dsp_audio restores back its original priority of 4.

3) dsp_audio is then preempted by isr, with the highest priority, and is therefore moved

to READY state.

4) isr resumes execution and sends a message to dsp_audio

5) dsp_audio, inherits isr’s priority, and before dsp_audio receives isr’s message again,

dsp_audio sends a message to mixerctrl.

6) mixerctrl receives then dsp_audio’s message with priority 5 and sends a message to

audiosal.

77

7) audiosal receives mixerctrl’s message with priority 5, and replies to mixerctrl. After

the reply, audiosal restores back its original priority.

8) mixerctrl, is then the READY task with the highest priority. It preempts audiosal,

resumes execution and replies to dsp_audio. After the reply, mixerctrl restores back

its original priority.

9) dsp_audio, with priority 5, preempts mixerctrl, runs and replies to isr before

restoring its original priority.

10) isr preempts dsp_audio and resumes execution.

After completion of isr’s job, jpeg, being the only READY task, receives the message

from capture while hardware task start is concurrently reading the data written to the

serial buffer. On the other hand, assigning capture’s priority to 5 allows the scheduler to

select the jpeg task to start execution before the Mp3 tasks (when capture sends a

message to the jpeg task, at 20ms). Consequently, the isr task is delayed for 33ms, which

is the time taken by jpeg to produce its results. Due to the concurrent reading of the

hardware task from the serial buffer, an underflow occur in the serial buffer in both QNX

and our RTOS model as shown in table 4.6.

78

4.4.2 Functional validation using RR policy

In this section, we take the same application illustrated in Figures 4.3(ii) and 4.3(iii).

However, we select Round-Robin as the scheduling algorithm. We would like to study the

effect of this algorithm on the application functionality.

Compared to Table 4.5 where the FIFO scheduling algorithm was running, Table 4.7

shows, in both QNX and RTOS_SC model, a slightly higher response time for the

capture task when its priority is between 1 and 4. This delay is due to rescheduling at the

end of the time-slice which allows the MP3 tasks to execute, and preempt the jpeg task.

However, when the priority of capture is greater than any priority of the MP3 tasks (> 5),

the capture task’s response time is within the desired range (approximately 33ms). To

conclude which policy provides better results for this application, we validate isr’s

functionality, as shown in Table 4.8.

capture’s

priority

QNX Model A Model B RTOS_SC

1 38.956 38.394 38.185 38.320

 2 38.793 38.236 38.154 38.272

3 39.011 38.342 38.002 38.073

4 37.996 38.592 37.957 38.363

5 35.981 38.600 37.981 36.770

6 32.966 38.559 38.111 33.000

7 33.002 38.775 38.125 33.000

8 33.000 38.482 38.098 33.000

9 33.000 38.564 37.987 33.000

Table 4.7 Average response

time (in ms) of the capture

thread with capture’s

Priority between 1 and 9

using RR policy

79

Table 4.8 shows isr’s response time when the RR scheduling algorithm is selected.

Models A and B do not accurately model the response time obtained at the target QNX

RTOS. As for RTOS_SC, the response time is accurately modeled. Although isr’s

response time increases in both QNX and RTOS_SC model when capture runs at an

equal priority to isr (capture’s priority = 5), isr’s buffer does not experience an underflow

at this priority. The increased latency in the isr’s response time when capture priority is

set to 5 is not important, as long as there is no underflow in the isr’s buffer.

Since the time consumption required for jpeg is greater than the time slice,

rescheduling occurs at the end of each time-slice, which causes preemption of the jpeg

task. Consequently, using the Round-Robin policy, isr and capture may run at equal

priorities while ensuring correct functionality of the MP3+JPEG application. When the

FIFO policy is selected, however, having isr and capture running at an equal priority

caused the starvation of isr (Table 4.6). The underflow in isr’s buffer cannot be avoided in

capture’s

priority

QNX Model A Model B RTOS_SC

1 4.427 8.176 5.190 4.359

 2 4.052 7.958 4.220 4.971

3 3.726 8.802 5.618 4.650

4 3.802 8.572 4.972 5.012

5 102.986 8.992 5.066 103.372

6 underflow 8.080 4.620 underflow

7 underflow 9.337 3.930 underflow

8 underflow 8.916 5.563 underflow

9 underflow 7.857 4.876 underflow

Table 4.8 Average

response time (in ms) of

the isr thread with

capture’s priority

between 1 and 9 using

RR policy

80

both policies if the priority of capture is greater than that of the isr task, since the capture

task is continuously selected for execution.

To obtain the best performance for this application while maintain correct

functionality, the priority of capture must be 4 if the FIFO policy is selected, and 5 if the

Round-Robin policy is selected. Since the sound is more prioritized over jpeg encoding in

this application, selecting any of the scheduling policies ensure correct functionality. In

applications where the sound display is equal in priority to jpeg encoding, the round-

robin policy must be selected, to guarantee a minimum delay in the jpeg encoding and

continuous display of the MP3 sound clip. However, the jpeg encoding many not be

prioritized over the Mp3 display, if the main tasks have close deadlines to meet and high

computation time, as shown in our Mp3+Jpeg application. By accurately modeling

preemption and priority inheritance, we proved therefore, that our RTOS model allows

the application software designers to identify the optimization opportunities of

applications running on a target processor through accurate evaluation of the application

performance.

81

Figure 4.9 Tasks execution of Mp3+Jpeg on QNX with Round-Robin policy.

82

Figure 4.10 Tasks execution of Mp3+Jpeg on QNX with Round-Robin policy

83

Figures 4.9 and 4.10 illustrate the tasks states and events on QNX and our RTOS

model during the execution of Mp3+Jpeg. For the clarity purpose, we show the tasks

execution until the first time the isr task writes the processed data into the the buffer. The

same scenario is then repeated until isr completes writing to the buffer. For this trace, the

Round-Robin policy is selected and capture’s priority is set to 5. As seen in Figures 4.9

and 4.10, the Round-Robin scheduling algorithm allows preemption to occur at the end of

every time slice (with a period of 4ms). Therefore, the isr task, gets the chance to write

into the serial buffer at a faster rate than the reading of the hardware task from the same

buffer. Consequenly, the serial buffer does not experience an underflow, as shown in

table 4.8. The delay in isr’s response time, however, is due to the alternative execution

between the Mp3 tasks and the Jpeg tasks. Since the events and the timing of the events’

occurences in our RTOS model are accuarate compared to the QNX timing, we chose

Figure 4.10 to explain the tasks’ order of execution in both QNX and RTOS_SC:

1) At 20ms, the capture task sends a message to jpeg to start encoding.

2) At 20ms, jpeg task receives capture’s message and starts the encoding process, which

takes 33ms. However, since 33ms is greater than the assigned time slice of 4ms, jpeg

executes until the end of the time slice (at 24ms).

3) At 24ms, isr receives a timer pulse and sends a message to dsp_audio

4) At 24ms, dsp_audio inherits isr’s priority and becomes with priority 5. However, the

jpeg task, with equal priority to that of dsp_audio, is the older task in READY state.

Therefore, jpeg resumes execution until 28ms.

5) At 28ms, dsp_audio receives the message from isr and sends a reply. After the reply

84

is sent, dsp_audio restores back its original priority of 4.

6) dsp_audio is then preempted by jpeg, since it is the oldest READY task with the

highest priority. dsp_audio is therefore moved to READY state and jpeg resumes

execution until 32ms.

7) At 33ms, isr resumes execution and sends a message to dsp_audio

8) dsp_audio, inherits isr’s priority and moves to READY state. However, jpeg task is

the oldest task with priority 5 in the READY state. Therefore, jpeg resumes

execution for 4ms.

9) At 37ms, before dsp_audio receives isr’s message again, dsp_audio sends a message

to mixerctrl. jpeg task then preempts mixerctrl, being the older task in the READY

state. It then resumes an additional execution of 4ms.

10) At 41ms, mixerctrl receives then dsp_audio’s message with priority 5 and sends a

message to audiosal. jpeg then resume execution for 4ms.

11) At 45ms, audiosal receives mixerctrl’s message with priority 5, and replies to

mixerctrl at 46ms. After the reply, audiosal restores back its original priority. Further,

jpeg resumes execution of 4ms.

12) At 50ms, mixerctrl , is then the READY task with the highest priority. It preempts

audiosal, resumes execution and replies to dsp_audio. After the reply, mixerctrl

restores back its original priority. jpeg then resumes execution of 4ms.

13) At 54ms, dsp_audio, with priority 5, preempts mixerctrl, runs and replies, at 55ms, to

isr before restoring its original priority. At 55ms, jpeg resumes execution for 1ms

since the remaining time from 33ms is 1, which is less than the time slice period of

4ms.

85

14) At 56ms, jpeg sends a reply to capture task and therefore, capture is moved to ready

state. However, isr is the older task with the highest priority in the READY state. isr

then runs and sends a message to dsp_audio.

15) At 56ms, dsp_audio sends a message to mixerctrl, which sends a new message to

audiosal.

16) At 57ms, when the audiosal sends a reply to mixerctrl, capture task resumes

execution since it is the older READY task with priority 5.

4.5 Model Execution Speed

The execution speed of our SystemC-based RTOS model is an important quality metric

of the modeling methodology. It is well known that ISS-based simulation is typically a

few orders of magnitude slower than real-time execution of software on the target. Our

host-compiled SystemC model, on the other hand, was found to be much faster than the

real-time software execution on target. The SystemC model was executed on an Intel i3

processor running at 3.20GHz.

Number of

Iterations

Execution/Simulation Time (H:MM:SS.ms)

MP3 MP3 + Vocoder

QNX SystemC QNX SystemC

1 0:00:01.198 0:00:00.01 0:00:01.033 0:00:00.01

2 0:00:01.368 0:00:00.01 0:00:01.062 0:00:00.01

5 0:00:01.920 0:00:00.07 0:00:01.118 0:00:00.01

10 0:00:02.840 0:00:00.13 0:00:01.218 0:00:00.03

100 0:00:19.400 0:00:01.45 0:00:03.016 0:00:00.48

1000 0:03:05.0 0:00:20.29 0:00:21.018 0:00:04.93

10000 0:30:41.0 0:02:34.07 0:03:21.018 0:00:50.74

100000 5:06:41.0 0:30:45.58 0:33:21.018 0:08:41.90

1000000 51:06:41.0 4:36:01.44 5:33:21.018 1:28:07.38

Table 4.9 Speed comparison of on-target software vs. model

86

Table 4.9 compares the timing of the application software execution on QNX target

system versus the SystemC execution on host. Several numbers of iterations were

measured, ranging from one to a million. The time format in the table is

Hours:Minutes:Seconds.milliseconds. For a few iterations (<1000), there is no perceptible

difference, although the SystemC model is much faster. However, as the number of

iterations increase, we find a significant advantage to using the SystemC model. For a

million iterations, the MP3 model (Figure 4.3(ii)) is over 11X faster, and the

MP3+Vocoder (Figures 4.3(i) and 4.3(ii)) model is 3.8X faster than the respective real-

time software.

87

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we have presented an RTOS model that can be used for accurate and

early system validation. The advantage of our methodology over other proposed

techniques is that it accurately models preemption and priority inheritance, which makes it

feasible to incorporate the average response time metric into our model and use it as a tool

for software optimization. We validated our model using industrial size examples. Our

results show that our RTOS model is significantly faster (up to 11X) than real-time

software execution on target platform, and the estimated performances are very accurate,

with an average error of 5%, as compared to the target platform. Furthermore, we proved

that our modeling of the priority inheritance protocol during I/O and inter-task

communication, leads to an accurate evaluation of the application functionality. Therefore,

our model can be used by software designers to early determine the optimization

opportunities.

 In the future, we expect to expand our RTOS model to include tasks running on multi-

core target platforms. To achieve this goal, modifications have to be done in the modeled

RTOS scheduler in order to take into consideration multiple tasks executing in parallel.

Furthermore, we expect to incorporate power measurement into our RTOS model, and

therefore obtain an early and accurate evaluate of the application performance in terms of

execution time and power.

88

References

[1]. Lee, R., K. Abdel-Khalek, and S. Abdi. Early System Level Modeling of Real-Time

 Applications on Embedded Platforms. Quality Electronic Design, ISQED, March

 2013.

[2]. Hadjiyiannis, G., S. Hanono, and S. Devadas. ISDL: An Instruction Set Description

 Language for Retargetability. Design Automation Conference, 1997.

[3]. Gligor, M., N. Fournel, and F. Petrot. Using binary translation in event driven

 simulation for fast and flexible MPSoC simulation. Hardware/software codesign

 and system synthesis, CODES+ISSS, France, October 2009.

[4]. Hassan, M.A., K. Sakanushi, Y. Takeuchi, and M. Imai. RTK-Spec TRON: A

 Simulation Model of an ITRON Based RTOS Kernel in SystemC. In Proceedings

 of the Design, Automation and Test Conference, IEEE, 2005.

[5]. Yoo, S., I Bacivarov, A. Bouchhima, Y. Paviot, and A.A. Jerraya., TIMA

 Laboratory, FR. Building Fast and Accurate SW Simulation Models Based on

 Hardware Abstraction Layer and Simulation Environment Abstraction Layer.

 Design, Automation and Test in Europe Conference and Exhibition, DATE, 2003.

[6]. Desmet, D., D. Verkerst, and H. De Man. Operating System Based Software

 Generation for System On Chip. In Proceedings of DAC, June 2000.

[7]. Honda, S., T. Wakabayashi, H. Tomiyama, and H. Takada. RTOS-centric HW/SW

 Cosimulator for Embedded System Design. Hardware/Software Codesign and

 System Synthesis, CODES+ISSS, 2004.

[8]. Pasquier O., and J-P. Calvez. An object-base executable model for simulation of

 real-time Hw/Sw systems. In Proceedings of DATE 99, Munich, March 1999.

89

[9]. Lavagno, L., C. Passerone, V. Shah, and Y. Watanabe. A time slice based scheduler

 model for system level design. In Proceedings of Design, Automation and Test in

 Europe. March, 2005.

[10]. Yoo, S., G. Nicolescu, L. Gauthier, and A.A. Jerraya. Automatic Generation of Fast

 Timed Simulation Models for Operating Systems. In Proceedings of the 2002

 Design, Automation and Test in Europe Conference and Exhibition, IEEE, 2002.

[11]. He Z., A. Mok, and C. Peng. Timed RTOS Modeling for Embedded System Design.

 In RTAS, San Francisco, 2005.

[12]. Gerstlauer, A., H. Yu, and D. Gajski. RTOS Modeling for System-Level Design. In

 A.A. Jerraya, S. Yoo, D. Verkest, and N. When (eds.), Embedded Software for SoC.

 Springer, 2003.

[13]. Le Moigne, R., O. Pasquier, and J. P. Calvez. A generic RTOS model for real-time

 systems simulation with systemC. In proceedings of Design, Automation and Test in

 Europe Conference and Exhibition, February 2004.

[14]. Hessel, F., V.M da Rosa, I.M. Reis, R. Planner, C.A.M. Marcon, and A.A. Susin.

 Abstract RTOS modeling for embedded systems. In proceedings of Rapid System

 Prototyping, IEEE, 2004.

[15]. Tomiyama, H., Y. Cao, and K. Murakami. Modeling Fixed-Priority Preemptive

 Multi-Task Systems in SpecC. In Proceedings of the 10th Workshop on System And

 System Integration of Mixed Technologies (SASIMI’01), IEEE, 2001.

[16]. Shaout, A., K. Mattar, and A. Elkateeb. An ideal API for RTOS modeling at the

 system abstraction level. Mechatronics and Its Applications, ISMA, May 2008.

[17]. Posadas, H., J.A. Adamez, E. Villar, F. Blasco, and F. Escuder. RTOS modeling in

90

 SystemC for real-time embedded SW simulation: A POSIX model. Design

 Automation for Embedded Systems, December 2005.

[18]. Posadas, H., E. Villar, and F. Blasco. Real-Time Operating System Modeling in

 SystemC for HW/SW co-simulation. In Proceedings of DCIS, IST, Lisbon, 2005.

[19]. Schirner, G., and R. Domer. Introducing Preemptive Scheduling in Abstract RTOS

 Models using Result Oriented Modeling. Design, Automation and Test in Europe,

 2008. DATE, March 2008

[20]. QNX Realtime Operating Systems (RTOS) Software, available http://www.qnx.com

[21]. OSCI TLM-2.0 user manual, Open SystemC Initiative, 2008.

[22]. Perry West. High Speed, Real-Time Machine Vision.

 http://imagenation.com/pdf/highspeed

http://www.qnx.com/
http://imagenation.com/pdf/highspeed

