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Abstract

An Efficient Run-Time System for Concurrent Programming

Language

Shruti Rathee

Our objective is to construct a Run-time System for Erasmus. Software systems

nowadays are becoming very complex, so the last thing a programmer would want

to do is to worry about the internal management of communication. We describe a

system that provides Erasmus with a well-defined level of abstraction. This run-time

system also provides processes with independence, which means that no two processes

know each others’ location.

Erasmus is a process oriented concurrent programming language being developed

by Peter Grogono at Concordia University and Brian Shearing at The Software Fac-

tory in England. Erasmus is based mainly on cells, processes, and their interactions

through message passing. For every cell there will be a manager to initiate the

communication and also to route the communication, whether it is local or remote.

Programmers should only be deciding which kind of data they want to send and the

rest will be taken care by the run-time system.

For communication within a cell, channels with local communication methods will

be used; for communication over the network or on different processors, a broker with

remote communication methods will complete the communication link. There is also

a separate protocol for a manager process to decide between local and remote com-

munication. This thesis discusses in detail the issues related to process independence.

It also explains how processes can be separated from the communication protocols.

This run-time system will provide software of greater simplicity and fewer irrelevant

details.
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Chapter 1

Introduction

1.1 Concurrent Programming

In concurrent programming several streams of operations execute together concur-

rently. A single stream of operations in concurrent programming executes similar to

sequential programs but with a key difference being that in concurrent programming

those streams are able to communicate with each other as opposed to the sequential

programming. Concurrent programs due to their very nature have a number of op-

erations instructions and sequence of such instructions are called as threads and due

to this reason sometimes concurrent programming is also known as multi-threaded

programming [38].

Concurrent programs in general are very difficult to implement due to non-deterministic

nature of the program execution which in turn is caused because of the multiplicity

of possible inter leavings of the operation among the threads. Also there are multiple

number of the threads interacting with each other making it very difficult to analyze

the programs [35]. In some languages like Java, thread communication for concur-

rency is maintained through shared variables and an explicit signaling mechanism.

There are possibilities of operation interleaving and the execution of a program being

1



CHAPTER 1. INTRODUCTION 2

non-deterministic which means that its very difficult to reproduce program bugs [7].

To consider the concurrent programming example, lets say we have a variable sr at

two places A and B and we have to increment sr. The preferable steps would then be

as follows:

fetch sr=0

B fetches sr=0

A computes the value sr++=1

A stores the value 1 in sr

B computes new value sr++=1

B stores the value 1 in sr

With the above program, we will get the value of sr as 1. In the case that B would

have retrieved the value after A was done, sr would end up being 2 and this is what

we call as a race condition [38]. To avoid this situation the best thing is to have

a locking mechanism on the objects. So the data object that is locked by a thread

cannot be accessed or modified by any other thread. In Java locking is used for

interference prevention and only the operations declared as synchronized are inhibited

from execution during locking of an object.

1.2 Shared Memory vs. Message Passing

Shared memory allows processes to read and write the data from the same location,

that is, they share a common address space, while in message passing, processes

send messages to each other. Both of these methods have their own advantages and

disadvantages. In shared memory there are no delays on the other hand message

passing can cause delays. In shared memory whenever any process writes a value at

any address it can override the contents assuming no locking but this is not in the

case in message passing. In asynchronous message passing there are chances that if
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nobody is receiving a message on the other side, there will be a buffer overflow and

messages will be lost. Also, there are no common distributed memory platforms that

exist for the shared memory but for message passing libraries have been available since

1980s. There is also a standard for message passing, which is the Message Passing

Interface (MPI) [36].

1.2.1 Reasons for choosing message passing

Message passing was chosen for our project because it gives us more control over

process communication. In message passing the client will send message to a server

and the server will reply to the client rather than invoking a method. Unlike method

invocation in which concurrency cannot be achieved, message passing allows the client

to send a message and instead of waiting for a reply, the client can execute other tasks

and later on can collect results from the server at any time. This has an advantage

that it does not disturb the entire communication process [1].

In shared memory one of the biggest problems is race condition. So if we have

two processes P1 and P2 and process P2 is trying to do an operation on a variable for

instance and at the same time P1 changes it then this can lead to a race condition and

can cause non-determinism or in worst case it can lead to incorrect results, as shown

in Section 1.1. In shared memory this can be avoided by using locks or creating cache

coherence but then it has a possible disadvantage of consuming excess of resources,

which can be a bottleneck for the communication at a later stage. So by keeping

these aspects in mind message passing was chosen.

1.3 Process independence

Our choice of the communication model is message passing, for the reasons explained

above. The communication is assumed to happen between distributed processes and
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thus location transparency is important. This means processes will operate indepen-

dently of their location. Message passing is our main communication method and it

should be achieved in a way that no two processes know each others location. But to

send data from one process to another they need to know their address or memory

location, hence location transparency is very difficult to attain.

We proposed a solution to use a manager, channel and broker for the communi-

cation. In this proposed model, processes do not communicate directly instead they

will communicate through a channel in the case of local communication and through

a broker in the case of remote communication.

Manager is responsible for providing the address of the process to the channel or

broker and then either of them will communicate to the process on the other side.

Both the broker and the channel have similar configurations in terms of commu-

nication protocols with a key point being that the broker will be used on the network

and the channel for local communication. Two brokers on the network can commu-

nicate with each other. When a process wants to communicate with another process,

the manager creates the instance of that process and checks whether that process is

local or remote. Accordingly, it sends a request to either channel or broker.

A broker is just like a process that is used to assign ports and initiate commu-

nication. For this reason, this forms an integral part of our solution to the problem

at hand since the interface of the broker is the same as a process and hence commu-

nicating processes think they are interfacing with another process while at the same

time inducing distributed behavior.

1.4 Organization of thesis

In Chapter 2 we will have a look at some of the sequential languages that don’t

support concurrency but are widely used for implementing concurrency. Also we will
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discuss about some concurrent languages that will be used later to compare with

Erasmus in Section 5. Then we will have a thorough examination of the paradigms

that give rise to concurrency with some examples and which ones are suitable for

differing situations. We will go on further to do a discussion on the syntax of message

passing mechanisms in various programming languages. This will be followed by some

more discussion about how these languages decide whether to do a remote or local

invocation when talking about communication protocols.

In Chapter 3 we discuss Erasmus, the language for which this communication

model is being implemented. Also we take a look at the design goals for Erasmus

and then go on to explain how communication takes place in Erasmus. After that we

explore if there are any special compilation requirements in Erasmus for the deploy-

ment of the programs from one platform to another. Furthermore we do a discussion

on the CSP-like languages and will explain some languages in detail with their im-

plementations.

Chapter 4 looks at the design process in the implementation of communication in

Erasmus and in doing so we will discuss about the experiments we did with different

types of resources and about the problems that we encountered during implementa-

tion. We will then explain briefly why we chose Unix as an appropriate platform for

development. Besides, we will provide details of our implementation.

In chapter 5 we take a note on the performance measurement and compare this

communication implementation with some other languages of interest, which we have

mentioned in Chapter 2 and Chapter 5.

Chapter 6 summarizes the work we have done and new prospects for future work.



Chapter 2

Background

2.1 Sequential and concurrent languages

Sequential programming languages are languages in which sequences of the statements

are executed one by one on a single processor. These types of languages differ from

concurrent programming as in the latter the sequence statements may be executed

concurrently that is at the same time. Although some of the sequential language

provide some concurrent features for increased efficiency. Such languages include C,

C++, JAVA, Erlang [11].

We have already discussed concurrency in Section 1.1. We have a vast number of

concurrent languages that can be divided into three classes, namely, procedure ori-

ented, message oriented, and operation oriented [8]. In Message oriented languages

processes communicate using send and receive operations. These types of languages

do not have any shared objects so the processes have no access to any object directly.

But, there is a third-party known as the manager, which takes care of objects. When-

ever any action is required message is sent to manager to process it and on completion

manager sends a reply confirmation [8].

Objects in message-oriented languages are never concurrently or directly accessed

6



CHAPTER 2. BACKGROUND 7

by other objects. Some examples of these types of languages are Gypsy and PLITS [8].

A second category of languages is Procedure oriented in which processes communicate

by shared variables. Unlike message oriented they have active, passive and shared

objects. In this class of languages, programs access the objects directly and procedures

are called for performing the operations. Mutual exclusion must be ensured for shared

objects. The languages in this category are concurrent PASCAL, Modula, Mesa and

Edison. A third class is the Operation oriented with the processes interacting using

remote procedure calls. These types of languages are combination of message oriented

and procedure oriented. In this the process calling the operation synchronizes while

implementing the operation and then later continues asynchronously. Examples of

such languages are Distributed Processes, StarMod, Ada, and SR [8].

2.1.1 Communication Sequential Process (CSP)

Hoare first described CSP in his paper in 1978 [19]. It is known as a formal language,

used for description of communication patterns in concurrent systems. In Original

CSP, programs were parallel composition of some sequential programs and were able

to communicate with each other. All the processes in CSP start together and are

handled in parallel. Below is an example of such a parallel command:

parallel= *[a:character; process1?a -> process2!a]

This is a repeating process; repetition follows by receiving a character from process1

and sending it to process2. The example for parallel command for concurrent exe-

cution is:

[S :: CL || R :: CL]

The sending process would name the receiving process as its destination and re-

ceiving process will name sending process as its source. The resulting communication

that takes place is synchronous, so both the sending and receiving processes should be

ready at the time of communication. In CSP we have semantics and type matching.
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The above is an example of guarded command with three processes X, Y, Z. In CSP,

X?k means read k. Whenever a process is ready it will write its value into variable k

and will execute.

For concurrent communication with guards there can be three possibilities. First

possibility is when a process is ready and will write the variable as discussed above.

Second, when no process is ready it will iterate through processes X, Y, Z till the

time it will find at least one ready process to communicate. We will put * before

the communication block for iteration. A third possibility exists when more than one

process is ready to communicate. A process will be chosen non-deterministically to

start communication.

2.1.2 Erlang

Erlang was developed in Ericsson labs. The computer science lab at Ericsson wanted

to develop a language that was suitable for developing next generation products for

telecom. They found lots of languages but none had all the required features in one,

so they developed their own language. The main contribution in the success of Erlang

is its concurrency feature. In Erlang processes execute in their own memory space

and have their own heaps and stacks. Communication in Erlang is performed using

message passing in an asynchronous way [31]. Even if a receiving process is not ready

to receive the sending process can send the message and continue processing requests

from other processes. As sender is not blocked after sending message. Erlang has

been made with location transparency in mind which means that for the programmer

there is no difference if receiver is on same processor or different. By default the

distributed programming model in Erlang has been implemented using TCP/IP [20].

In the Figure 2.2 we have communication between the server and the client. They

use TCP/IP protocol; client sends the request to the server for calculating the volume

of a square box. The client sends two attributes in the message, the volume it wants
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Figure 2.2: Erlang Communication between processes

to get and the side of the square to calculate the volume. On the server the function

to calculate the volume will use the value 4 for side provided by the client. It then

replies back with the calculated result.

Erlang is highly influenced by languages such as Prolog, LISP and SmallTalk,

which explain its features of sequential programming, concurrent programming as

well as functional programming. First we go on to discuss sequential programming

methods and features. One of the features of sequential programming in Erlang is

case construct, which relies on pattern matching. We will take an example to show

case construct that will evaluate an expression and will match the result against list

of matching clauses.

case lists:member(foo,Check_List) of

true -> ok;

false -> {error,unknown_element}

end

In the part of code above with case construct we check if foo is a member of list
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named Check_List. If it is a member then atom ok will be returned otherwise a

tuple {error,unknown_element} will be returned.

In addition to case construct we can also implement Guards which can be placed

either in case or receive clause in Erlang. Let us take an example of calculating the

factorial of a number with and without guards.

factorial(0) -> 1;

factorial(N) ->

N * factorial(N-1)

In the above code we always need the factorial(0) clause in order to make sure

that the function will terminate, but if we use guards for the same purpose we only

have to select the recursive clause which will work with the condition that N is greater

than 0. The code below demonstrates that:

factorial(N) when N>0 ->

N*factorial(N-1);

factorial(0) ->1

The execution of a process in Erlang is termed as an activity and if those activities

run concurrently to each other they are termed as processes. They communicate with

each other using message passing and this forms the basis of concurrent programming

in Erlang. Messages are sent using their process identifiers [6]. If we want to send a

message of any data type we can send it using the statement:

Pid ! Message

All processes in Erlang have their own mailbox in which a message will be stored.

When a message is sent it is actually copied to the receivers mailbox. Erlang ensures

that messages are stored in the receiver’s mailbox in the order in which they are

received. However, the receiver does not have to handle them in that order. This
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2.1.3 Java

Java [37] was developed at Sun Microsystems by James Gosling with multi paradigm

features such as object-oriented, structured, sequential and others. Java is considered

as one of the most famous languages of the 2000s, which is contributed by its feature

called WORA or “write once read anywhere”. When java programs are compiled

they produce a machine independent code called byte-code. They can be executed

on any system running JVM (Java Virtual Machine) independent of the architec-

ture of the system. In Java threads and processes support concurrency. In java 1.5

concurrency can be achieved by using the package java.util.concurrent. Threads

communicate using shared variables that can create problems like race conditions. In

order to circumvent these problems Java supports locks and synchronization of the

threads. For implementing synchronization we use synchronized keyword, which

ensures that only one thread at a time is executed. This can be done in code by using

the synchronized keyword with the method name.

public synchronized void method1(){

//definition here

}

In Java, threads are non-deterministic in nature so every time a program is run,

different behavior may be seen. There are two ways of creating a thread, one by

implementing the runnable interface and another by extending the thread class.

The method of implementing Runnable is considered as the easy one because we

just have to implement only one method run () and a class implementing runnable.

After all this we can initiate the object of the thread and use another method to start

the thread.

public void run()

Thread(Runnable objthread, String namethread);
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void start();

The other method requires the class to extend the Thread class and then override

the run method in it. This is not very helpful since Java does not allow multiple

inheritances and thus makes it difficult to extend any other behavior.

public class FirstThread extends Thread

{

public void run()

{

for (int i=1; i<=5; i++)

{

System.out.println( "Message from First Thread : " +i);

try

{

Thread.sleep(1000);

}

catch (InterruptedException interruptedException)

{

System.out.println( "First Thread is interrupted when it

is sleeping"+interruptedException);

}

}

}

}

Now the main class to start the thread:

public class ThreadDemo

{
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Figure 2.4: Communication in Java using rmi with stub and skeleton

public static void main(String args[])

{

FirstThread firstThread = new FirstThread();

firstThread.start();

} }

In the above examples threads have been used for communication.

In Java distributed programming is supported with the help of Remote Method

Invocation (RMI) [26]. It is basically an extension of local method invocation applied

over a network. When two Java virtual machines want to communicate, RMI will

initiate the object calls between them. A typical RMI always has two parts: a stub

and a skeleton. The communication flow proceeds as shown Figure 2.4. Stub is

the object on the client side. Whenever a client makes a call for an object it will

communicate with the stub. Skeleton serves the same purpose for the server side

and hence the stub communicates with the skeleton in order for communication to

proceed.
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Having supporting the distributed concepts of communication Java has location

transparency and to get references for communication it uses a service called as nam-

ing service. Java uses an interface that has all the methods, which can be called by

the objects. Below is an example of such an interface:

package montrealServer;

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface montrealServer extends Remote {

<T> T startExecute(Task<T> t) throws RemoteException;

}

In the code above montrealServer is extending the interface Remote. Extending the

Remote interface will let the JVM recognize it as RMI ready and it can be invoked

by any other JVM. In Java, object serialization is used for transporting the object

between java virtual machines. For the use of serialization the class is implemented

as java.io.Serializable.

2.1.4 Ada

A team at CII-Honeywell-Bul led by Ichbiah developed Ada in 1980s but later in 1990s

it was revised under the advisory of Tucker and was released as an internationally

standardized object oriented language known as ADA 95 [24]. It is highly influenced

from languages like Algol68, C++, Smalltalk and Pascal. Ada was developed for the

design of very large software systems with various features. Among those features are

compile time as well as run time checks to check all kind of possible bugs and errors.

It has dynamic memory management, automatic garbage collection and its syntax is

similar to the English language. It allows users to define their own data types. These

are examples of data types: there are many more.
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type new_data is range 1 .. 42;

type another_data is range 1 .. 29;

type third_data is mod 67;

In Ada the basic unit of concurrency is a task that is also a type. It supports con-

current tasks, which are also sometimes synchronized. Ada uses the rendezvous for

communication that has similarity to the object calling in object oriented program-

ming languages [30]. There is usually a call statement that will call the entry using the

name of the task directly and the task that responds will execute an accept statement

that is defined for it. This is very similar to the client-server model in which a client

will make a request and the server will complete the request using a service among

the pool of available services. Let us take an example of an online mobile recharge

system in which the website will have some predefined tasks which any client can use.

Below is an example of a task:

task type mobile is

entry Recharge (PhoneNo :in Phone; Amount: in Money;

Result:out Boolean );

entry Message (PhoneNo :in Phone; Amount: in Money;

Result:out Boolean );

entry changePlan (PhoneNo :in Phone; Plan: in Name;

Result:out Boolean );

end mobile;

Website : mobile; -- creates a mobile task

In the above code Phone and Money refers to the predefined types. There are three

different types of functions created inside the server task, which can be requested by

the client. The call by Client for the task is:

-- customer task
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Website.Recharge(09487652802, 100);

When this task is requested, the website task will process the request and will call the

function to recharge the mobile phone. In these kinds of tasks the client and server

both have to wait if no task is being serviced or being asked by any client. Both the

client and the server should be ready to communicate to create a rendezvous. Like

many other languages Ada also provides the select() statement by which any task

can choose which request it wants to process. The syntax for selection is:

select

accept ...; -- entry point logic

or

accept ...; -- entry point logic

or

accept ...; -- entry point logic

end select;

Or we can use select with the guard statement like:

select

when <BOOLEAN condition> =>

accept ...; -- entry point logic

or

when <BOOLEAN condition> =>

accept ...; -- entry point logic

or

when <BOOLEAN condition> =>

accept ...; -- entry point logic

end select;
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2.2 Paradigms for concurrency

We have already discussed concurrency in Section 1.1. We will now have a look at

its paradigms.

2.2.1 Shared memory

Shared memory is the fastest form of inter-process communication. Processes share

memory, which can be accessed simultaneously. This memory provides a very fast way

to communicate and avoids the problem of redundant copies. All the processes share

the same view of data making them easy to program. Apart from being the fastest

and efficient way of communication it is limited to the same machine. If two processes

share memory are on different processors they should be cache coherent. This implies

that if any process makes a change to some data, that change is immediately reflected

for all the other processes or there is a chance of conflicting data [2].

Race condition is another problem that can occur during simultaneous access for

writing. In race condition the order of execution of the process actions affects the

output of the process [3]. As discussed before in Section 1.1 race condition and cache

coherence in shared memory, there is a need of synchronization that can be achieved

by using one of the following methods, namely semaphores, mutex, read-write locks

and condition variables. Let us take an example of how communication takes place-

assuming use of semaphores on the server [22]:

1. Server gets access of the memory object (shared) using semaphores.

2. Server will read the input from the input file to the memory object.

3. After read completion the server notifies client.

4. The client will take the data from same memory object and will write it to the

output file.

During communication the data will be transferred for a total of two times with
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synchronized communication using semaphores.

2.2.2 Transactional memory

Transactional memory is a model that controls the memory access in concurrent

programming. In concurrent programming it should always be ensured that no two

processes change the same memory space at same time otherwise we can have race

condition. We use locks or other methods for the synchronization of the communica-

tion. Transactional memory can be used as an alternative to locks. In this approach

fragments of the programs are marked as transactions and are executed atomically.

The threads in the program execute the transactions so if at any time two threads

access the same memory and have a conflict the transaction will be aborted. Trans-

actions in transactional memory should be executed serially so that no two processes

should be interleaving each others steps. There is also atomicity, which means that

the processes have a sequence of the transaction and after completion, it can be

flagged either as a commit or abort. As discussed, it is a way of controlling the

memory access and hence has some defined ways of accessing the memory, some

of which are Load-Transactional (LT), Load-Transactional-exclusive (LTX),

and Store Transactional (ST). They all differ in how they access the memory and

perform transactions. LT reads value from a shared memory to register, LTX reads

value from shared memory to register but with a hint about memory update and ST

writes a register to shared memory [21].

It is important to know about the states of the transaction and for that there

are some instructions such as commit to make the changes and inform all the other

processes about the changes to avoid a race condition. Another instruction, abort,

is used to discard all the changes and the changes that are usually discarded are

the ones for which the location with which a commit has been performed has been

already accessed by another process. The instruction validate informs whether a
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transaction has been aborted or not by returning a Boolean value, which is false in

case if the transaction was aborted. An example follows:

1. Read from location (shared memory) using Load-Transaction exclusive or Load

Transactional.

2. Validate read using Validate instruction to return True or False.

3. Copy the value read using Store transactional.

4. At last do a commit (instruction) to make changes that are visible to other pro-

cesses.

2.2.3 Message Passing

Message passing is another way of concurrent programming for inter-process commu-

nication. Two basic functions of message passing are send and receive. It can either

be synchronous or asynchronous. Synchronous message passing works with a blocking

send and receive. Sender will be blocked until receiving process is performing receive

function and receiver will be suspended until a message sent is to be received. It is

very easy to implement. Sending and receiving have no overhead because messages

are not buffered. While in asynchronous mode the sender is not blocked and if no

one is ready to accept the message, it is queued at the receiver side but if the re-

ceiver becomes ready to receive and no messages have been sent then the receiver

will be blocked. On the other hand, there is another concept of message passing

called rendezvous mode, which is a synchronous request reply service. Asynchronous

and synchronous message passing are one-way communication that is from sender to

receiver but rendezvous mode is two way communication. When in client-server re-

ceiver is responsible for sending a reply message rendezvous mode is used. The client

is blocked until server sends a reply [25].

In message passing all the processes have their own local memory and they use

messages to communicate with other processes. To make things more clear we can tie
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up the three models of message passing with three different types of communications

likely channels can be represented by synchronous message passing, ports by asyn-

chronous message passing and entry by rendezvous mode. We will take small pseudo

codes to explain them all one by one. Below the first pseudo code is for channels

doing synchronous message passing.

Channel ch = new Channel();

tp.start(new Sender(ch,sendng));

rp.start(new reciever(ch,recvng));

At one time there can be more than one channel, which can be ready to communi-

cate, so for these type of issues we can use selective receives. We will use select()

for choosing between channels and channel will start the communication when both

sender and receiver is ready.

Next is port that can be associated with asynchronous message passing. This is a

many to one communication so two senders or more will communicate with a receiver

by the use of unbounded port. In this type of communication sending process is never

blocked and receiving process should not necessarily be ready.

Port pt = new Port();

tp1.start(new asysend(pt,sendng1));

tp2.start(new asysend(pt,sendng2));

rp.start(new asyrecv(pt,recvng));

Last one is entry, which is used as a rendezvous communication. We will have more

than one client requesting for services but only one will get the entry and the receiver

will reply to the sender after receiving the message.

Entry ent = new Entry();

tp.start(new Client(ent,sendng,"Q"));

tp.start(new Client(ent,sendng2,"w"));
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rp.start(new Server(ent,recvng));

In all the above listings of the pseudo codes tp, tp1, tp2 are the instances of the

threads, sendng, recvng are the instances for the slots.

2.3 Synchronous or Asynchronous

Both synchronous and asynchronous are equally good during implementation, each

of them have their own share of advantages and disadvantages. For instance in syn-

chronous no buffer space is required, there is no overhead, and at any particular time

only one message is overdue. Sender always has a confirmation of successful commu-

nication [16]. But it can be a disadvantage too; the sending process can’t do anything

but just keep on waiting for the confirmation receipt. In asynchronous we have the

advantage of increased concurrency and receiver and sender can do another tasks

while the communication is in progress. Receiver can periodically check the buffer for

messages at certain intervals of time. But sometimes it can be a bottleneck as buffer

can overflow and we can lose some messages. A good example for synchronous com-

munication is a real time chat server while email services can serve a good example

for asynchronous communication.

So, it’s safe to say that the choice depends on the requirements; in our system

we have decided to choose synchronous communication. We are using channels and

whenever a process requests a service, that request is sent to a channel and then

waits for the channel to respond. Channel will then send that request to the server; if

server is busy it will respond with a busy message otherwise it will send the message of

processing and communication starts. Our processes communicate indirectly in a syn-

chronous way and only one process is processed at a time by any channel. All similar

technologies like RMI, RPC and CORBA are based on synchronous communication.
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2.4 Message Passing Syntax

The syntax for message passing depends on the programming language and the li-

braries that we use for the communication. In message passing the sender sends a

message to the receiver that can be considered as an object and all objects are dif-

ferent from each other. There are three things to consider in the syntax for message

passing, namely, receiver, message selector and arguments. In Section 2.2.3 above,

we discussed about different kinds of message passing classes that affect the syntax

of message passing. Some languages use message passing for distinguishing between

local and remote invocation. Java supports message passing and it uses a channel

for the distinction between local and remote, which is well known as remote method

invocation [10]. Below Figure 2.5 is giving a small overview of the methods for com-

munication in different languages.

First we have Java, which is among the most famous and most widely used pro-

gramming language. Java due to its vast architecture has different syntax for local

and remote invocation. For local communication it uses shared variables. As there are

many disadvantages to this technique, it uses locks to synchronize processes to do a

task without any non-deterministic behavior. When talking about remote communi-

cation it uses RMI (remote method invocation), which we have already explained

in detail in Section 2.1.3.

Then comes Erlang, which is well known for its concurrency. When talking about

local object calling it uses asynchronous message passing. It uses the PID (process

identifier) for identifying the receiving end. It uses asynchronous methods for all

the sending and therefore the receiving processes have mailboxes. Data is copied from

sender to receiver’s mailbox during communication. For remote communication by

default it uses TCP/IP ports over the network.

CSP (communication sequential process) uses synchronous message passing for
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its local communication. It has indirect naming channels for remote communication

[34].

Joyce programming language is influenced by CSP and likewise it also uses chan-

nels for synchronous message passing for local as well as remote communication. But

in contrast to its descendant languages its channels are bidirectional.

Occam is among the very few languages that use same syntax for local as well

as remote communication. Although for local communication it uses unidirectional

synchronous message passing, for remote communication it uses single ended channels

that are called ports but they both use the same interface.

Go is a new language and is very close to what we have in Erasmus. Although it

uses message passing but there is a feature in the programming language that while

doing communication we have to create a buffer for the channels and that buffer

value will decide that if it will use synchronous or asynchronous communication. For

network communication it uses network channels and a pre-defined library of its own

known as netchan. It has many other methods for remote communication.

Mozart is the programming language with multi paradigm feature. For concur-

rency it uses threads and for communication it uses message passing. It is a concur-

rent language so its model is often mentioned as concurrent message passing model

in which we use ports for channel communication.
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Figure 2.5: Message Passing Syntax



Chapter 3

Erasmus

3.1 Design goals

These are the main goals of the Erasmus project [33]:

1. Level of abstraction should be more defined, as programmers do not necessarily

have the details of how the process communication is taking place and how they

are mapped to processor at run time. For example, feasibility of modification

of Fat client to thin client should be there without the modification of code.

2. Instead of having different entities for everything we can just have a fixed entity

that can be used from time to time at all the scales in the software.

3. A language should have facility for interfaces in it so that software can be

built with interfaces and when all these interfaces are combined with different

specifications, it gives a complete solution of the software. It gives software

more flexibility for future.

4. Encapsulation should be implemented in a language. In Erasmus we have en-

capsulation property by having cells that have processes in them which are

isolated from each other. Processes inside cells can communicate to each other

27
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through shared variables and cells can only communicate by synchronous mes-

sage passing.

5. For any software one thing that can be a big challenge in the long term is

refactoring. As software grows it can be very costly for an organization to

refactor software each time they want it to release it on some new platform.

So a language should be easy to refactor. In Erasmus we have separated the

compilation and the deployment. Any software that is developed in Erasmus

can be very easily transferred from one platform to another and refactored.

6. A language should be type safe so that it can detect all kinds of errors and

doesn’t give problems later in the software by giving non-deterministic bugs. In

Erasmus we have static type checking for language safety.

7. Programmers today should be more concerned about adding functionality rather

than to worry about adding an additional process tomorrow.

3.2 Communication

Erasmus uses p.m:=e to send message m on port p and x:=p.m to receive message m

on port p. In these statements, p is a port, m is a message, e is an expression (rvalue),

and x is a variable (lvalue). For running a process it should be deemed as runnable.

Processors that are not running are stored in queues. Usually we can have either

a global queue for all ready processes or we can have separate queues for different

memory partitions. But both can be tricky when considering different situations, and

in some cases their combination could prove to be better. There can be two queues

so that if a process is ready to execute it is in the ready queue and if it is blocked we

can transfer it to another queue [11].

Erasmus in contrast to other programming languages communicates with processes
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using message passing. The structural unit of Erasmus is called a cell. Cells define

the boundaries of the processes and the control flow is always inside this defined

boundary. Cells can exchange data but cannot invoke methods in one another. In

Erasmus processes are linked using channels that in turn are associated with a protocol

that decides what kind of message one can send and in a given order [1]. Cells own all

the channels and each channel has its own global unique identifier. For the structure

of the channels they have protocol and fields. In pseudocode, we use P to denote a

protocol, p to denote a port, and f to denote a field. Another entity needed is the

reader and writer queue so that we can assign them as readers and writers. There are

queues for p.f (field of protocol P) as p.f.writers and p.f.readers. There is also

a queue for each field of protocol. In Erasmus when a process is in a queue it will be

blocked until it can receive data using its field protocol. Similarly it will be used for

writing that the process will be blocked until it writes using its field protocol. Let us

first consider a simple message transfer in Erasmus:

It is important to recall that in order to receive a message, port expressions are

usually used as an rvalue. So if a process ”rho” wants to read something it will do so

as:

v := p.f

v is the variable represented as lvalue. So for message transfer there can be two

cases, first one that no process is ready to send any information and second one when

a process wants to send information. If the process is ready to send information then

it should be in writers queue. For the first case it can be said that no writer is waiting,

that is, p.f.writers queue is empty, so we can put that process in the readers queue

and the process will be removed from the ready queue. In the second case we can

remove the first entry from the writers queue and the process ready will be put into

the ready queue. The pseudo code for all this is:

if empty p.f.writers then
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add(rho,v) to p.f.readers

else

(sigma,e) := first p.f.writers

v := e

resume sigma -- become runnable

It will be same for the writing process too except the fact that the write operation

only waits if reader is not ready, while read operation always waits even after storage

of lvalue. The pseudo code is given as:

p.f := e -- e can be an expression or a rvalue

if empty p.f.readers then

add(rho,v) to p.f.writers

else

(sigma,e) := first p.f.readers

v := e

resume rho -- become runnable

Erasmus includes the functionality that allows us to choose the channel to commu-

nicate on using a select statement [9]. “In Erasmus there is a condition that at

most only one process connected to a channel may access the channel with a select

statement” 1 [11]. With a select statement there can be one of two cases that either

a process is ready to send/receive or there is no process ready at that moment. In

the second case we set the program counter back to the beginning of the select

statement and restart the process of checking whether any channel has a process in

its readers queue or not. If we have a request to process it will be completed normally

and if we have more than one requests at a time then the choice will be made using

any of the three policies, namely, ordered, fair or random. Execution with select

pseudo code:

1
This restriction has been removed in newer versions of Erasmus.
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Figure 3.1: communication in erasmus between client and server

Select

if (ch : writers(ready))

read (p.f)

else

reset select();

3.3 Special Requirements

Software nowadays is very expensive to create or maintain and refactoring applications

time to time with environment changes can be very expensive. One of the goals of

Erasmus is to separate the deployment of a program from its compilation. Lameed

(2008) demonstrated one way of achieving this goal. We do external mapping of the

cells by which we can easily decide which cell to map on what processor reducing the

communication time for the processes communicating too often. We can map cells on

the processors that are closer to the scheduler to make tasks fast. Erasmus programs

provide portability for the programs without changing them but we should have a

separate configuration file for mapping cells to the processors. Lets take an example
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of a simple program:

sqProt = [*(query: Float; ^reply: Text)];

square = { p+:sqProt |

loop

q: Float := p.query;

p.reply := text (q*q);

end

};

When we compile the above program, it will generate the code for the uniprocessor

but if we use the configuration file below it allows us to configure its cells on different

processors. The configuration file in Erasmus is a valid XML file with some specific

tags. We used XML because it is widely used by most of the programmers and easy

to create and map. Below are the example tags we use in the XML file.

<Mapping>

<Processor>spainish.encs.concordia.ca

<Port>4534</Port>

<Cell>firstcell<Cell>

<Cell>secondcell<Cell>

</Processor>

</Mapping>

There are only four tags so mapping is easy and fast. Whenever a program is compiled

the compiler extracts the data from the XML file and organizes it into a table thus

generating unique identification for all the cells. The information retrieved is about

processor, cell name, port number and the data is appended to a text file, which is

eventually read by the processor. If no entry is found then it means that the cell has
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not been mapped yet and the default value of 0 is used for the local host and port

number.

Although Lameed’s implementation was completed and tested, it was an “exis-

tence proof” rather than a practical system. Consequently, Lameed’s compiler was

not incorporated into the mainstream of Erasmus development.

3.4 Implementation of CSP like languages

Hoare first described CSP in 1978 [19]. CSP stands for Communicating Sequential

Processes and it describes how patterns interact in concurrent systems. Languages

like Occam, Go, and Limbo are highly influenced by CSP. Go programming language

took features of Newsqueak and Limbo (concurrency) from CSP [27]. Erlang is an-

other language that is influenced by the CSP methodology. Armstrong, the creator

of Erlang developed a new term, Concurrency Oriented Programming which repre-

sented the languages that used concurrency as one of their paradigms [23]. According

to Hoare, in real life human beings work in a concurrent way so its natural to have

programming languages that do the same and hence this paradigm of concurrency

was influenced from CSP. Let’s take few examples of CSP like languages.

3.4.1 Occam

David May developed Occam a parallel programming paradigm language at Inmos

Limited, Bristol, England [12]. It was originally developed to program transputers.

Its name has been derived from a thirteenth century philosopher known as William

of Occam. Like many other languages it is based on the CSP of Tony Hoare. Re-

searchers in the Inmos first developed an Occam concurrency model that led to the

development of the programming language Occam [4]. Concurrent programming in
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Occam is also based on message passing. It does not have any shared variables and

the communication between concurrent processes is done with channels. Communi-

cation mechanism in Occam is one-directional, point-to-point and un-buffered. So

if information needs to be sent to several processes together more channels will be

needed and the same applies in the case of bi-directional communication. In Occam

the syntax used for concurrent programs is [13]:

PAR

......Write code for the first process

......Write code for the second process

// to give priority to some processes we need the syntax like:

PRI PAR

......Write code for the high priority process

......Write code for the low priority process

As shown in above code when there are more than one process priority code is written

for them and priorities will be only served if the processes above have either of the

states viz. terminated, stopped or waiting.

Two processes should be the components of a parallel program to pass the infor-

mation to each other on a channel.

CHAN OF INT pipep:

PAR -- major process

SEQ -- minor process 1

.....

pipep ! 5

.....

INT acc: -- minor process 2

SEQ
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.....

pipep ? acc

.....

In the above listing functioning of the process pipep ! 5 and pipep ? acc are similar

to a process1 copying the value of 5 into the variable acc of process2 and both the

actions are synchronized. Both send and recv should be ready at the same time for

communication. Although it is a very efficient method of communication in Occam

but there are few limitations to this method such as for one component process

a channel can only be used for either input or output communication. Another

limitation is that one channel can be only used between two processes in parallel;

more than two processes need more channels for communication. We can however

accomplish this by adding more channels like CHAN OF INT pipep, chnl, which will

declare channels pipep and chnl with same protocol. Here we have used INT (integer)

protocol.

For communication with other processors Occam uses ports and they are called

’single-ended channel’ in Occam. The declaration of port and way of communication

is same as that of a channel.

PORT OF INT sgnl.in:

PORT OF [12]BYTE beta.out:

SEQ

INT vrble:

SEQ

sgnl.in ? vrble

...

beta.out ! "Good Morning"

Although input and output methods are similar to the channel, they are more re-

stricted than a channel in few aspects. For the declaration of a port we cannot use
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a named protocol or a sequential protocol. They can only handle the data types of

real, integer, Boolean and their respective arrays.

3.4.1.1 Occam-pi

Occam-pi is a newer version of Occam language implemented by KRoC, the Kent

Retargetable Occam Compiler. The symbol ‘pi’ is used for naming because it has

several ideas inspired from Pi-calculus [14]. It has a number of extensions to Occam’s

previous versions like nested protocols, run-time process creation, protocol inheri-

tance, data, processes, recursion, array constructors, mobile channels and extended

rendezvous.

3.4.2 Joyce

Joyce [15] is a secure programming language based on CSP and Pascal. Per Brinch

Hansen designed it in 1980s. It consists of the nested procedures that define a com-

municating agent. An initial agent is activated when a program starts its execution

and ”agents” can dynamically activate subagents. Variables of an agent are inacces-

sible by other agent. However they can communicate by transmitting the symbols

through channels. On channel, communication will take place only once, however

more than one agent can use the same channel and transfer symbols in both the di-

rections. Communication in Joyce takes place when two processes are ready to send

and receive a symbol through same channel i.e., synchronous. Processes can create

channels dynamically and can access them through the local port variables. When-

ever a channel is created its pointer is assigned to a port variable and that pointer can

be passed to the subagents. When an agent has completed its procedures it will wait

for the subagents to complete and it will then terminate. All the channels created by

the agent also terminate with the agent. The variable types are known as port types

and they are defined as follows:
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T = [s1(T1), s2(T2), s3(T3), . . . , sN(TN)].

Let us now examine in detail how communication takes place in Joyce. We will

assume that we have two agents p and q that accesses the same channel through

different variables a and c simultaneously and that port variables must be of same

type. An output command like this: b!s_i(e_i) means that b is the port variable

which outputs the message e_i of corresponding message type T_i and s_i is the

name of one of the symbol of the classes of T.

For input command we have c?s_i(v_i) that denotes a port variable c, s_i

denotes one of the symbol classes of T and v_i denotes the message of type T_i.

This communication takes place when both p and q match that is when p is ready

to output the symbol on a channel and q is ready to take the symbol from the same

channel.

3.4.3 Mozart/Oz

Mozart was developed by Gert Smolka in 1990s at the Saarland University and later

on developed by Seif Haridi and Peter van Roy [18]. It is a multi-paradigm language

with features like concurrency, functional programming, object oriented, logical, im-

perative and constraint programming. Mozart is highly influenced by languages like

Erlang, CSP, Prolog and LISP. The major strengths of this language are constraint

logic programming and distributed programming which makes the design of network-

transparent distributed model possible. In Mozart you can do several activities all

together with the help of its concurrency feature. Concurrency in Mozart uses threads,

which are the executing programs in the processor.

thread T in

T={Funxtn 10}
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Figure 3.2: Message passing communication using three ports

{Browse T}

end

{Browse 15*15}

In the above part of code we have created a thread and later calling a function Funxtn

inside the thread T. After that call, we used browse to print out the result. In Mozart,

concurrency is also sometimes achieved with message passing. The model used in

Mozart for message passing is the message-passing concurrent model that uses ports

for the purpose of channel communication. Let us take an example to explain the

message passing communication-using ports. Suppose we have three processes that

pass integers to each other. When Process 1 receives the integer it randomly passes

it to either Process 2 or Process 3. This case applies to the other two processes

as well. This is implemented by the use of port objects by sending the integer to the

objects of the processes. The figure 3.2 is known as the component diagram. The

instances of the process component are created to execute it and will use them to call

the objects.
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fun {Prgrm tple}

{NewPortobject2

proc {$$ Message}

case Message of intgr then

Randm={OS.rndm} mod {Width tple} + 1

in

{Send tple.Randm intgr }

end

end}

end

Here tple is a tuple that contains other processes. We have the instances of the

processes as P1, P2, and P3. To start the execution we will have Send command.

{Send P1 intgr}:

P1 = { Prgrm tple(P2 P3) }

P2 = { Prgrm tple(P1 P3) }

P3 = { Prgrm tple(P1 P2) }

In Mozart there is another kind of concurrency model with ports but in this model

thread and ports both have access to the shared objects. We have already discussed

about the disadvantages of shared resources and the use of locks to manage situations

that arise due to sharing. Locks make sure that if a process accesses any critical

region it should be the only one with exclusive permissions [32]. In Mozart we can

implement the locks by using the entities in the language such as cells, variables and

threads. However we also have a direct method called thread-reentrant lock. Locks

have certain operations like:

1. To return a new lock we have {NewLock N}.

2. To check if we have a reference to a lock {IsLock L}.
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3. To guard a statement in a program we can have lock L then there can be two

cases, one if there is no thread executing the statement block any other thread

can enter it for the execution. If there is already a thread all the other threads

that try to enter will be suspended. Statement block is defined as:

<statement> end guards <statement>

3.4.4 Limbo

Limbo programming was designed by Sean Dorward, Rob Pike and Phil Winter-

bottom. It is used to develop applications for small, distributed systems [28]. It

has various features and some of which are garbage collection and type checking at

compile time from ML, Channels from Occam, declaration from Pascal, alternating

on channels from Communicating Sequential Processes and many others. In Limbo

inter-process communication takes place through channels. Channels are used as a

kind of data type in the language and are considered to have reference semantics.

When channels are assigned a value they are actually being assigned a reference of

the objects. Here is an example to show how channels are created in Limbo [17]:

chan of data-type

With the statement above we can create a channel of specific data type but if a

channel is declared without any assignment, it is assigned null by default. To use a

channel we have to assign it as shown:

ch: chan of string;

ch= chan of int;

Also we can have the notation as:

chan of(int,string)

Channels transmit integer as well string tuples. And once the channel’s object

has been declared it can be used to send information. Let us assume c is an object:
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c<-=(467,"Hey There")

In Limbo channels are un-buffered. Sender exists until there is any receiver but

using the bufchan function of a module of Limbo it is possible to create buffers in the

channel. The function bufchan takes a string chan, a size as an argument and creates

an asynchronous task to accept the input from the channel with the argument. It

can save number of strings equal to the argument string chan, meanwhile it tries to

send the strings to the users.

3.4.5 Go

Go programming language was developed by Robert Griesemer, Ken Thompson, and

Rob Pike in 2007 at Google [27]. It is a general-purpose concurrent language with

multiple paradigms such as imperative and structured. Go programming language

was developed for systems programming and has an explicit support for concurrent

programming. Like other languages it has a wide variety of types such as Boolean

types, numeric types, and string, array, slice, struct, interface and channel types.

An interface type is basically used to implement interfaces and can store value of

any type. All the variables that are uninitialized by default are assigned nil value.

Example for an interface is:

interface {

Recv(w Buffer) bool

Send(w Buffer) bool

Close()

}

In an interface all the methods should have a unique name.

The type that is used for implementing concurrency model and synchronization

of two concurrent functions is Channel Type. Like Interface type the value of all

uninitialized channel is always nil.
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ChannelType = ("chn" ["<-"] | "<-" "chn") ElementType.

In ChannelType, <- is used to specify the direction of the channel to denote if it

is sending or receiving. If no direction is specified, it is assumed to be bi-directional.

To create a new channel with some initialized value there is a built-in function and

the value used to initialize is the buffer size of the channel [5].

make(chn int,178)

The initialized value is the one that decides if the communication will be syn-

chronous or asynchronous. If the value is greater than zero, communication is said to

be asynchronous and if it is not specified or zero it is said to be synchronous. It also

has the select statements to help it decide which communication takes place.

SelectStmt = "slct" "{" { CommClause} "}"

CommClause = CommCase ":" StatementList .

CommCase = "case" ( SendStmt | RecvStmt ) | "default" .

RecvStmt = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .

RecvExpr = Expression . (it must be the receiving function)

In Go language there is another entity called Goroutine; these are lightweight threads

of the Go language. These are used to execute parallel tasks in the language. As

mentioned in Google docs, Goroutines have a very useful application while doing

parallel programming. “Goroutines are multiplexed onto multiple OS threads, if

one should block, such as while waiting for I/O, others continue to run”. Another

important aspect of the Goroutine is that when used with channels it provides the

paradigm of the Go programming language as is defined in Effective Go as “Do not

communicate by sharing memory; instead, share memory by communicating.” The

main idea for communication is that if there is an un-buffered channel when receiving

or sending, Goroutines will synchronize to avoid complexity otherwise they are free

to communicate either concurrently or in parallel.



Chapter 4

Communication in Erasmus

In this chapter we will discuss about resources that have been used during imple-

mentation and detailed description of implementation of each module for the whole

communication.

4.1 Design Issues

To implement the run time communication system for Erasmus, we had to consider

some constraints that are also our requirements for the implementation. Erasmus has

no shared variables and it only uses synchronous communication. Thus synchronous

message passing was chosen as the main method of communication. In Erasmus

processes belong to cells and the size of a cell can be as small as a few kilobytes or

as large as the whole distributed system. A cell can have any number of processes

in it fitting its size. The cell manages the communication of the processes that it

owns as well as communication with other cells. A cell cannot invoke methods in

other cells but can communicate with them using synchronous message passing. In

our run time system a cell is implemented as a manager that invokes all the processes

defined inside it. Communication among processes inside a cell takes place through

channels and processes have ports that are connected to these channels. As Erasmus

43
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programs may also be distributed, i.e., run on a network of processors. We have

implemented broker for communication over the network. Each cell has one broker,

which can handle two channels at the same time. A process knows nothing about

what it is communicating with, whether the message stays in memory or has to go over

a network. As a manager is the cell, it decides whether a process should use channel

or broker for the communication. To do that selection manager has to know second

process’ location with respect to first process. At any instant there can be number of

processes running at the same time, asking for resources, so for that instead of finding

the location of a process we tried to find if a process is present on the same processor

or not. We tried different methods such as signals, unnamed pipes and named pipes

but except for named pipes all the methods either needed to communicate with the

process or had an ambiguous nature. We have implemented a named pipe with read

and write permissions on every process and when a process is invoked it opens a

named pipe on one end. Manager looks for an open named pipe on the other end and

if it finds an open pipe with same name then it reckons that the process is on the

same processor and it choses channel for the process otherwise the communication

request is sent to the broker.

Another requirement was that a process during communication with either channel

or broker should have a feel of communication with another process and not with any

middleware. So both channel and broker should have same interface similar to that

of a process. Also we wanted communication among process to have the facility of

selection among incoming connections i.e., with select(). Communication over the

network requires a network protocol and TCP/IP is the obvious choice because it is

the Internet standard and softwares that implement are widely available. TCP/IP also

has a select() in it. For channel we tried many inter process communication protocol

on windows but only named pipe with overlapped input/output was the closest one.

Although it worked similarly like select() but for communication a process needed
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different set of attributes than used for a select(). So we researched about inter

process communication on other platform like Unix and after some research found

out that communication with named pipe on Unix works similar to TCP/IP with

select(). On Unix too we chose the protocol for communication over network as

TCP/IP with select() for the reason mentioned above and named pipe was chosen

for inter process communication. So the protocol for interface of a channel is named

pipe with select() and for broker’s interface the protocol is implemented using

TCP/IP with select(). We will explain the implementation details and the problems

encountered while implementation in further sections.

4.2 Existing Resources

We used Unix as the platform for development and for programming we have used

the C++ programming language. The programs are written in Xcode for MAC OS X.

We have used the following libraries:

1. iostream: It is an input/output stream library used for performing actions on

strings of characters.

2. cstring: It is needed for memset. In our program it has been used for copying

the memory block using memcopy.

3. sys/socket.h: It is a header for the internet protocol family. Like other

headers it also defines structures like socklen_t, sa_family_t, sockaddr,

msghdr, cmsghdr. In our program we have used socklen_t and sockaddr

for sa_family_t, sa_family and char sa_data[] for socket address

4. netdb.h: It is needed for the definitions for database operations of the network.

It also defines the hostnet structures, netnet, protent and servent structures.
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In our program we used the following hostnet structures: int_addrtype (ad-

dress type); int h_length (the length of the address in bytes); char **h_ addr_lists

(a pointer to an array of pointers to network addresses, in network byte order,

for the host, terminated by a null pointer).

5. stdio.h: It is needed for standard input output . In our program we used it

for stderr, which is a standard error output stream for printing out the error.

6. vector: It is used to define vector container class. We used it to contain the port

numbers that are randomly assigned to the channels for the communication.

7. sys/time.h: This is the header used for defining the timeval and itimerval

structures that has the following members: time_t, tv_sec, seconds, suseconds_t

, tv _usec, microseconds. In our program we used it to create the structures

for the time of select() struct timeval.

8. sys/types.h: This is used for the data types in the program. It includes the

definition of various types and some of them are clock_t, clockid_t, gid_t,

id_t, size_t, useconds_t, time_t, pid_t. We used this in our program for

the process id using the pid_t.

9. unistd.h: This is the header that is used in the program to define various kinds

of constant symbols, types and for the declaration of functions.

10. fcntl.h: It is a header file in Unix used for many functionalities but in our

program we have used it to set the flags of the descriptors specially in select()

for pipes and TCP/IP.

11. sys/stat.h: This is the header that is used to define the data structure of the

data values returned from the functions like fstat(), lstat(), stat().
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4.3 Experiment with different resources

The first experiment was conducted by varying the platform. Initially some parts of

the program were written on Windows platform in C++. We wanted communication

on both local and remote machines to be universal and to use select for both local

and remote connections. TCP/IP works similar for Windows as well as Unix. For

both platforms, it has select with same type of arguments so we were able to achieve

same level of transparency on both the platforms. But our local communication was

not implemented the same way as remote. For the local connection we used named

pipes, but on Windows this was not a suitable implementation for two reasons. First,

it has the ability to communicate on network and hence it was very difficult to dif-

ferentiate between local and remote communication. Second, there is no select()

on named pipe in Windows. In Windows it uses overlapped I/O as its functionality

for select(). Although it works similarly, we needed local and remote communi-

cations to be replicas of each other. We had to find something similar to remote

functioning. In Unix we tried implementing named pipe and it only supported local

communication. It had a select() statement with the arguments similar to remote

communication. In named pipe select(), pipe names are used as selector instead

of ports. Hence, we decided to change the platform of development to Unix since

the features of named pipe and TCP/IP in UNIX met all our requirements with the

added ability to communicate using select().

Secondly, we performed experiments with different types of inter-process commu-

nication methods to differentiate between local and remote methods. First experiment

was with signals. We thought that we could use signals to notify the processes when

any other process is ready to communicate instead of sending messages. So signals

were the best option to start a process, or to start communication and to abort it.

But sending signals required us to know the location of the process beforehand and
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also required the receiving process to reply which in turn lead to initiation of com-

munication which we wanted to avoid. Next we tried using unnamed pipes on all the

processes. As soon as any process starts it detects the presence of other unnamed

pipes on the processor. But because of their unnamed nature they are able to detect

pipes, which are not even related to our required processes. Hence we came to a

conclusion to use named pipes. We will explain how it is implemented later on in

Section 4.5.

4.4 Unix as most appropriate and adaptable

Motive of our research is to implement communication in a way that either process has

the least role in communication, in other words insulated from the communication.

We want our communication to be universal with the same protocol in effect for local

and remote communication. Processing of processes shouldn’t be different for different

set of programs and it applies for local as well as remote. For all the requirements

we needed a component like a channel in between the processes. We needed similar

functionalities for inter process communication and also for remote communication.

In Unix platform we have huge number of libraries that are deemed stable for use for

a long time providing us enough choices and resources for our research development.

We have used named pipe for local and sockets for remote communication in Unix that

have same functionality as required, which is not present in the windows platform.

Another reason to use Unix is the absence of licensing requirements.

4.5 Detailed description of implementation

In our program we have created a number of classes such as manager class for trigger-

ing the communication, local channel class to handle the connection for local services

and remote channel class for remote connections. Process class to add the ports and
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pipes dynamically whenever required by the process and to send the control either to

local or remote depending on the current process requirement. The program starts

by calling main(), which calls the manager to select the channel among local and

remote. To do the selection we decided to check it on the local site instead of sending

requests unnecessarily over remote processors. For that we have used a named pipe.

All processes have a named pipe on them, which opens one end of pipe as soon as a

process is initiated. Manager after process initiation checks for the presence of same

name named pipes and if found any then local connection is selected and otherwise

it can connect to the remote connection.

If we have a local connection open, the next thing that we had to achieve was

to detect incoming connections and select one among them. Processes don’t know

about the other processes on the processor so select() was used to check if there were

any incoming connections from any process to send or receive. If it had a receiving

connection the control would be passed to receive connection class else to the sending

class. But if there was no incoming connection we can pass the control again to the

main(). For remote communication everything proceeds in the same way as it does

for local communication. First select() will check if it has any incoming connection

for either receive or send and if not any, the control is passed back to main(). There

can be a critical case for example if a process Process1 wants to communicate with

a process Process2 but Process2 is already busy with another process Process3.

Then in such a case we have make use of a process control block for every process.

Each time a process will send a request its state will be saved and the state has

associated fields of processing, ready or done. Other than that, the process control

block will store information about which process it sent the request to and how many

times the request had been sent. The process control block can save up to five process

states. Even after communication is over, a process will retain some communication

information in its process control list. If a process denies serving an incoming request
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Figure 4.1: Implementation using three ports

from another process then the requesting process will try to resend the request for

up to three times each request being sent after a fixed interval of time. There is a

counter for each time a request is sent. As soon as the counter reaches a value of 3 the

requesting process will drop the request and control is transferred back to main().

The process will then start over its communication with another process.

4.5.1 Basic message transfer

Now let us discuss the implementation in detail by taking some examples. There

are three processes named solver, helper and server. Each of them has their own

specific functions. They are implemented as part of a cell called manager. A channel

connects server, solver and helper to each other and each connection has its own

dedicated channel as shown in figure. We have channel ch1 between solver and server;

Channel ch2 between helper and server, Channel ch3 for helper and solver. A simple

experiment of sending random numbers and calculating the average of those numbers

on a processor inside a cell was performed. Server served the purpose of generating
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the random number and sending them to either solver using ch1 or to helper using

ch2 depending on whichever requests for it.

Num = protocol { ^w:Word }

Num protocol is for specifying which channel will be used for sending numbers.

Random(100) function will be called to generate random numbers between 0,1,2....99.

Small pseudo code to show the processing:

Server = process ch1,ch2: +Num

{

loop select

{

|| ch1.w := random(100)

|| ch2.w := random(100)

}

}

Helper can send a request to either of the processes: server or solver. But its function

differs depending upon which channel the request was sent. If a request is sent on

channel ch2 it will receive the number from server and will increment its numval. If

sent on channel ch3 it will get the number from solver and in reply it will send the

average of the numbers it has received from the solver. Another protocol to calculate

the average of numbers is also needed. The main objective of sending the average

computation is to show that a channel can transmit different kinds of values.

Average = protocol {request; ^r:Real }

Helper = process ch2: -Num; ch3: +Average

{

average: Real := 0;

numvals : Word := 0;
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loop select

{

|| average + = ch2.w;

numvals +=1

|| ch3.request;

ch3.r := average / numvals;

average := 0;

numvals := 0

}

}

Solver is the one that acts as client. It sends a request to the helper on channel ch3

and to the server on channel ch1. It retrieves the value from server and average from

helper. Then, with the helper on channel ch3 solver performs two actions of read and

write.

Solver = process ch1: -Num; ch3: -Average

{

for (n := 0; n<100; n +=1)

{

w: Word := ch1.w;

ch3.request;

r: Real := ch3.r

}

}

After discussing about all the three processes, we go on to discuss the cell manager.

Manager is the process that initiates the communication by invoking the methods for

other processes. When a cell process starts execution it creates an instance of the
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manager that will create the processes and start communication. The pseudo code

is:

Manager = cell

{

ch1,ch2: Num;

ch3: Average;

Server(ch1,ch2);

Solver(ch1,ch3);

Helper(ch2,ch3);

}

4.5.2 Selection among local and remote

The main part of our implementation was to choose between local and remote com-

munication. After manager will start the communication it will call the function

check_local() to start communication either local (channel) or remote (broker).

Function check_local() returns a variable integer value used by manager to select

among channel and broker. The code is:

check_local()

{

int err;

status = mkfifo("recv",0666);

fd1 = open("recv",O_WRONLY);

fd2 = open("sendd", O_RDONLY);

if(fd1<0 && fd2<0)

{

err = 1;// a const for remote
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}

else if(fd1>0 || fd2>0)

{

err = 2; // a const for local

}

else

{

err = 3; // a const for progrm failure error

}

return err;

}

So a named pipe is opened on the processes as soon as it is created by the manager

and check_local() function will check if any pipe is open for communication just by

checking the presence of named pipe on the system. After selection has been made

communication will continue with select() statement on either local or remote.

4.5.3 Channels and Broker

When two processes communicate with each other locally they go through a channel

while for remote communication they go through a broker. Named pipe has been used

for channel implementation while TCP/IP for broker implementation. The broker is

implemented in a way that it can handle two channels. It is important to point out

that its implementation is same as that of the channel. Whenever manager starts the

processes it decides whether to use a channel or broker but there will be no effect

of this selection on the processes as all the processes follow the same protocol for

communication. The common protocol for channel and broker in pseudo code is:

run(){
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ProccessBlockList list[5];

int i =0;

char *num=0;

addChannel(new RemoteChannel());

for(int a=0;a<=3;a++){

if(a<3){

if(ports[i]->readyToRecieve_remote()){

remote_list[k].updateProcessBlock("waiting");

ports[i]->recieve_remote(num);

break;

}

if(ports[i]->readyToSend_remote()){

remote_list[k].updateProcessBlock("ready");

ports[i]->sendto_remote(num);

break;

}

sleep(300);}

else{

manager();

}

}

}

In the above pseudo code we have shown that regardless of choosing a channel or

broker, a list is created for every process that can store up to five process states with

which it will communicate. After selection among channel or broker the request is

sent to select() to check any incoming connection for read/write. Then the state of

the process in the list created will be updated to waiting. But if select() does not
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Figure 4.2: Remote Communication Implementation

receive any incoming requests, then instead of waiting forever it will wait for some

time and will retry for three more times. If in the mean time it receives a connection it

will proceed with the communication otherwise control will be passed to manager().

4.6 Problems encountered and their solutions

In this section, we describe some of the problems that were encountered in the im-

plementation of communication, and explain the solutions that were used.

4.6.1 Local versus Remote

Our goal was to have network as well as local communication with the ability that

processes are able to select their communication medium. For remote communica-

tion, we chose TCP/IP with ports, which are assigned whenever a communication

connection is ordered. It has the ability to check any incoming communications and

to make a selection among them using select(). For local communication, many

different approaches were tested but using named pipes was the closest match for

our requirements. However, on windows if a named pipe finds any process on other
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processor it can communicate remotely. Other than that there was the problem with

named pipes that they had no select(), only overlapped input/output. The next

best option to using named pipe was unnamed pipes. But it too proved to be futile

since because unnamed pipes can communicate with any random anonymous pipe in

the system and hence are preferable for child parent process communications.

Hence we decided to test the different methods of communication on different plat-

form like Unix. In Unix the implementation of network communication was same as

that of windows with same features, but our main reason to change platform was local

communication. We tried using named pipe on Unix and it was just limited to local

communication and had the select() which helped us to match the implementation

of both local and remote communications. So we have implemented named pipe and

TCP/IP with select() for local and network communication simultaneously on the

Unix platform.

4.6.2 Distinguishing local and remote

We wanted to implement a distributed approach and hence we did not want processes

to know about the location of other processes. When a process wants to start commu-

nication it should not be worried if a process is local or remote and it should use same

parameters for both kind of communication. The only thing a process should know

is what kind of data it has to send. We needed another process to help the other

processes on the system to direct them for either local or remote communication.

The idea behind our approach is that we can have thousands of processes in a system

asking for resources at some point of time and instead of wasting resources remotely

we can try to fulfill their requirements locally. We needed something cost efficient

in our process cycle. We chose local process and created named pipes on them. If

any process has access to that pipe then there are chances they can communicate di-

rectly. Whenever a process was online and their named pipe was accessible they were
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considered local. Process calls the channel to start the communication and checks if

a process is available or is busy. Even if at the same time two pipes tried to check

local connection it will not affect the processing as named pipe can communicate with

more than one pipe at the same time.

4.6.3 Symmetrical selection

One of our goals was to have linear communication between processes no matter if

they have select() or not. For that we had channels, brokers and manager cells but

the problem occurred when both the communicating sides had select() on them.

We knew that if both communicating processes had select it would not be possible to

communicate, as they both would have waited forever. This problem is very critical

problem for any language and even for Erasmus. To tackle this the solution we have

assigned a random timer with wait(time) for any process with select(). So, if

select() does not receive any incoming connection for that amount of time it will

start sending data directly to the process. In that case it will send the data and wait

if somebody is listening so that it can communicate. Otherwise it will again start

with the loop for local and remote because there might be the case that the processes

it wants to communicate are busy.

4.6.4 Concurrent communication

Another problem that we faced was if a process P1 is already in communication and

there is a request from another process P2 and hence P1 would not reply to that

process since it was already busy. To tackle this, we created a buffer of size 5 to keep

record of information about process to which a request is sent. It stores information

like its process id so that it can retry sending requests after some time and complete

its processing. Process P2 will resend request to process P1 for a total of three times.

If in vain, it will stop trying and will continue sending request to another process.
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This way no process will be starved waiting forever and no process’s resources will

be wasted and no deadlock will occur because maximum of three chances are given

to start the communication.

4.6.5 Idle processes

Another difficult problem was if a process has not got any connection demands and

has been idle for a while. It is an unpleasant scenario and very difficult to solve if

a process becomes idle as no process can communicate with that process. For that

reason no process gets idle forever by itself.
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Results

5.1 Performance measurements

In previous chapter we discussed all about how we implemented our solution and now

we will take a look at its performance in comparison with the well-known language

Java. Usually C++ applications give better performance than Java due to the fact

that Java has JVM. We did performance tests on MAC OS X for C++ using Xcode

and using Eclipse Juno for Java on the same platform. For the first performance

measurement we took data of fixed number of bytes (839 bytes) while the number of

repetitions was changed and the time taken to send the data was then measured in

seconds.

From the figure of performance measurement 1, we can see that C++ gave a

better performance than Java when run for 5, 10, 15 times but on increasing the loop

counter both seemed to achieve similar performance with Java being slightly faster

for longer loops.

In second figure we have measured the performance on how performance will vary

with the change of number of bytes so we ran our process for 15 times and increasing

the number of bytes in each message gradually. We found that C++ in small byte data

60
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Figure 5.1: Performance measurement with varying number of sending process repe-
tition times
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Figure 5.2: Performance measurement with varying number of bytes
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performed faster than Java while later on they were almost same. At the conclusion

it is not fair to say which language was faster as both of them performed similarly.

In Java the performance varies with the use of different methods for writing data like

if we use its usual method for writing its slow but when we used Inputstream.read

it performed faster.

5.2 Comparison with other languages

In this section we will compare the implementation of our communication method

with other languages that we have mentioned throughout the previous chapters. We

have concurrent programming implemented in our module and hence we will compare

on the basis of concurrent communication paradigms via shared variables and via

message passing.

5.2.1 Communication via shared variables

Communication via shared memory has been around from many years. It is considered

among the fastest method of communication but it comes with its disadvantages.

Due to these disadvantages many new languages as well as old ones like CSP and its

derivatives don’t rely on shared memory communication. In Erasmus we use message

passing for communication. Some high level languages like Java uses shared memory

communication for inter threaded communication. Especially in sequential languages

with concurrency, it can be a bottleneck as shared memory can result in duplication of

data or data inconsistency and race condition as explained in an example above in the

section of shared memory. There might be a case that a process wants to use a variable

but it has already been changed by some other process. In such cases programmers

have to be very careful about the implementation in order to avoid non-determinism.

Some like Mozart/Oz use operations and types that allow the protection of data while
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one process is using the memory space.

However in Erasmus we eliminated these problems with the help of synchronous

message passing. Only processes within the same cells can communicate with each

other. In Erasmus every cell has its own control thread and no two processes will

access memory at the same time avoiding the disadvantages of shared memory [11].

5.2.2 Communication via message passing

We have briefly discussed message passing and its types in Section 2.2 and 2.3 in

which we usually send a message when the receiver is ready and there is no wait

in between (synchronous), and there can be information or data sent out even if

nobody is receiving yet (asynchronous). In the second type that is asynchronous

we need something to hold the data similar to a buffer. In functional languages

objects are usually created only when they are needed and often they can be very

large likely as computer’s available memory. So the unbounded buffer will be an

obvious fit for such kind of languages. In Erasmus we use synchronous message

passing in contrast to languages like Erlang and Mozart/Oz that communicate using

asynchronous message passing.Channel and message passing in Erasmus are highly

influenced by Joyce programming language.

But in Joyce there is no facility to provide the sequencing of the messages when

they are sent together, although in Erasmus we do have that.

Some languages like CSP and its derivatives use channels for message passing com-

munication and as discussed above in Section 2.3 they have unidirectional channels.

During communication receiver always passes a message of acknowledgement to the

sender, however in Erasmus we have a request reply mode for communication [11].



Chapter 6

Conclusions and Future Work

In our Final chapter we will conclude our research and any future prospects will be

discussed.

6.1 Conclusions

In the previous sections we have discussed about the various aspects of concurrent

communication, a more effective way for concurrent communication and comparison

amongst the many different languages. If we start with chapter 1 we gave an intro-

duction to concurrent programming, since in order to implement it, we should be able

to understand it completely. We gave some reasons that although concurrency can

be achieved by shared memory as well as message passing; it is good idea to go with

message passing. We wanted to implement concurrency in a distributed way so we

have a provided a detailed problem statement of the message passing syntax and how

it is independent of its local or over different processors.

In chapter 2 we gave a brief background on sequential languages as well as concur-

rent languages, which gave us an idea about their current implementation together

with their advantages and disadvantages. For achieving concurrency it is very im-

portant to know about its different paradigms and how the communication should
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take place so we discussed the features of these paradigms. Then we went on to

discuss about how different languages manipulate their communication syntax when

conditions vary.

In chapter 3 we discussed in detail about Erasmus. Since it is a new language,

we discussed about its goals and how different it is from other languages that exist

today. The most crucial point is that our thesis is about designing communication in

Erasmus so knowing more about Erasmus gave us ideas for making its communication

more efficient. Another thing we discussed about was need of platform independency

in programming languages. In Erasmus we have compilation and deployment as

separate modules so there is no need of porting the code for each new platform giving

it platform independence. Later on we discussed about CSP as it has a high influence

on Erasmus and languages like Occam, Go, Joyce, Mozart and limbo as they give a

more clear idea about Erasmuss implementation.

Chapter 4 is the most important part of our thesis; this is where we discussed our

implementation of communication in Erasmus and the resources that we required in

terms of libraries, platforms and programming languages. We have discussed about

all the options we tried for implementing communication and also discussed the ones

we chose. We gave a broad view on implementation with state diagrams and imple-

mentation pseudo codes. While doing all these we encountered many different kinds

of challenges and we have tried to discuss the possible solutions and how we tackled

the problems by finding the appropriate solution for those problems.

Lastly in chapter 5 we compared Erasmus with all the languages we mentioned

in chapter 2 and 3. We compared those languages by talking about the way they

communicate, e.g. by message passing and shared variables etc. We also discussed

how Erasmus is different from them at the same time inheriting some of their features.

Some performance measurements have been done to check how efficiently our solution

really works.
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6.2 Future Work

What we did for this thesis is a small section of the Erasmus development and there

are myriads of things left to do. So in this section we will highlight the tasks, which

will serve as future work:

1. Right now our program for communication by sending the integer number lo-

cally and over the network but in future we would like to send all kind of data

types.

2. We have designed the communication for local and remote but we still have to

integrate this code in the Erasmus compiler.

3. After integrating the code in Erasmus we would like to take the performance

measurements on the installed code.

4. We would like to do fairness tests with one server and more than one client, to

check if all the clients are served equally by the server.

5. We have to evaluate the practical value of the techniques we have developed.

6. Generalization of our implementation from 1:1 (one client, one server) to m:n

(m clients, n servers). Right now we just have a single point of communication

but later on there should be a provision for multiple processes in a processor.
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