
Preserving Privacy Against Side-Channel Leaks

Wen Ming Liu

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy (Computer Science) at
Concordia University

Montréal, Québec, Canada

February 2014

c©Wen Ming Liu, 2014

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Wen Ming Liu

Entitled: Preserving Privacy Against Side-Channel Leaks

and submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (Computer Science)

complies with the regulations of the University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. R. Paknys Chair

Dr. T. Li External Examiner

Dr. D. Qiu External to Program

Dr. S. P. Mudur Examiner

Dr. O. Ormandjieva Examiner

Dr. L. Wang Thesis Supervisor

Approved by
Chair of Department or Graduate Program Director

20

Faculty of Engineering and Computer Science

ii

Abstract

Preserving Privacy Against Side-Channel Leaks

Wen Ming Liu, Ph.D.

Concordia University, 2014

The privacy preserving issues have received significant attentions in various do-

mains. Various models and techniques have been proposed to achieve optimal privacy

with minimal costs. However, side-channel leaks (such as, publicly-known algorithms of

data publishing, observable traffic information in web application, fine-grained readings in

smart metering) further complicate the process of privacy preservation. In this thesis, we

make the first effort on investigating a general framework to model side-channel attacks

across different domains and applying the framework to various categories of applications.

In privacy-preserving data publishing with publicly-known algorithms, we first the-

oretically study a generic strategy independent of data utility measures and syntactic pri-

vacy properties. We then propose an efficient approach to preserving diversity.

In privacy-preserving traffic padding in Web applications, we first propose a formal

PPTP model to quantify the privacies and costs based on the key observation about the

similarity between data publishing and traffic padding. We then introduce randomness into

the previous solutions to provide background knowledge-resistant privacy guarantee.

In privacy-preserving smart metering, we propose a light-weight approach to simul-

taneously preserving privacy on both billing and consumption aggregation based on the key

observation about the privacy issue beyond the fine-grained readings.

iii

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Dr. Lingyu Wang, for

his constant support, heartily guidance and enduring patience in every stage of my graduate

study. This thesis would not have been possible without his unselfish help. He is always

willing to share his knowledge, vision, and discipline with me. I also wish to express

my sincere thanks to my research collaborators. My gratitude also goes to my committee

members for providing valuable comments and feedback.

I also wish to express my appreciation to all the faculty and staff at CIISE for having

such a warm and friendly working environment. To each of my professors, I owe a great

debt of gratitude for their wonderful teaching, which has helped me in reaching this stage.

Moreover, I would like to thank Concordia University and the NSERC postgraduate awards

program for providing financial supports throughout my graduate career.

I thank my late parents for teaching me valuable lessons of life. I am especially

grateful to my wife for her love, encouragement, and sacrifice at all times. Thanks (or

rather apologies) also go to my little children who were accompanied insufficiently during

their golden developing period.

WEN MING LIU

iv

Table of Contents

List of Figures x

List of Tables xii

Chapter 1 Introduction 1

1.1 Background and Motivation . 1

1.2 Summary of Contributions . 5

Chapter 2 Related Work 9

2.1 Privacy Preservation . 9

2.2 Side-Channel Attack . 12

2.2.1 The case that disclosure algorithms is publicly known in PPDP . . . 13

2.2.2 The case that visible patterns in encrypted traffic are observed in

Web applications . 14

2.2.3 The case that readings are used for inferences in smart metering . . 16

Chapter 3 PPDP: k-Jump Strategy for Privacy Preserving Data Publishing 18

3.1 Overview . 18

3.2 The Model . 23

3.2.1 The Basic Model . 23

3.2.2 The Algorithms anaive and asafe 24

3.3 k-jump Strategy . 27

v

3.3.1 The Algorithm Family ajump(�k) 27

3.3.2 Properties of ajump(�k) . 30

3.4 Data Utility Comparison . 32

3.4.1 Data Utility of k-Jump Algorithms 32

3.4.2 Reusing Generalization Functions 44

3.4.3 asafe and ajump(1) . 49

3.5 Computational Complexity of k-Jump Algorithms 51

3.6 Making Secret Choices of Algorithms . 55

3.6.1 Secret-Choice Strategy . 55

3.6.2 Subset Approach . 57

3.6.3 The Safety of Subset-Choice Strategy 59

3.7 Summary . 61

Chapter 4 PPDP: An Efficient Strategy for Diversity Preservation With Publicly

Known Algorithms 63

4.1 Overview . 63

4.2 The Model . 68

4.2.1 The Basic Model . 69

4.2.2 l-Candidate and Self-Contained Property 71

4.2.3 Main Results . 74

4.3 The Algorithms . 79

4.3.1 The RIA Algorithm (Random and Independent) 80

4.3.2 The RDA Algorithm (Random and Dependent) 82

4.3.3 The GDA Algorithm (Guided and Dependent) 85

4.3.4 The Construction of SGSS . 87

4.4 Experiments . 88

4.4.1 Computation Overhead . 89

4.4.2 Data Utility . 90

4.5 Discussion . 93

4.6 Summary . 95

vi

Chapter 5 PPTP: k-Indistinguishable Traffic Padding in Web Applications 96

5.1 Overview . 96

5.2 The Model . 101

5.2.1 The Basic Model . 102

5.2.2 Privacy and Cost Model . 104

5.2.3 The SVMD and MVMD Cases . 106

5.3 PPTP Problem Formulation . 107

5.3.1 Ceiling Padding . 108

5.3.2 The SVSD and SVMD Cases . 109

5.3.3 MVMD Problem . 111

5.4 The Algorithms . 114

5.4.1 The svsdSimple Algorithm . 114

5.4.2 The svmdGreedy Algorithm . 115

5.4.3 The mvmdGreedy Algorithm . 116

5.5 Extension to l-Diversity . 117

5.5.1 The Model . 118

5.5.2 The Problem . 119

5.5.3 The Algorithms . 121

5.6 Evaluation . 124

5.6.1 Implementation Overview . 124

5.6.2 Experimental Setting . 125

5.6.3 Communication Overhead . 127

5.6.4 Computational Overhead . 128

5.6.5 Processing Overhead . 131

5.7 Summary . 132

Chapter 6 PPTP: Background-Knowledge Resistant Traffic Padding for Privacy

Preserving in Web Applications 133

6.1 Overview . 133

6.2 The Model . 138

vii

6.2.1 Traffic Padding . 138

6.2.2 Privacy Properties . 139

6.2.3 Padding Method . 141

6.2.4 Cost Metrics . 142

6.3 The Algorithms . 143

6.3.1 The Random Ceiling Padding Scheme 144

6.3.2 Instantiations of the Scheme . 146

6.4 The Analysis . 148

6.4.1 Analysis of Privacy Preservation 148

6.4.2 Analysis of Costs . 152

6.4.3 Analysis of Computational Complexity 155

6.5 Experiment . 156

6.5.1 Experimental Setting . 156

6.5.2 Uncertainty and Cost v.s. k . 157

6.5.3 Randomness Drawn from Bounded Uniform Distribution 158

6.5.4 Randomness Drawn from Normal Distribution 159

6.6 Summary . 161

Chapter 7 PPSM: Privacy-Preserving Smart Metering 162

7.1 Overview . 162

7.2 The Model . 167

7.2.1 Adversary Model . 167

7.2.2 Privacy Property . 168

7.2.3 Cost Metrics . 170

7.3 The Algorithms . 172

7.3.1 Smart Meter Initialization . 173

7.3.2 Reading Modifications . 174

7.3.3 Implementation Issues . 177

7.4 Summary . 177

viii

Chapter 8 Generic Model for Privacy Preserving against Side-Channel Leaks 178

8.1 Outline of Generic Model . 178

8.1.1 Privacy-related Components of an Application 178

8.1.2 Privacy Properties . 181

8.1.3 Cost Metrics . 182

8.1.4 Obfuscating Mechanisms . 183

8.2 Instantiations of Generic Model . 184

8.2.1 Privacy-Preserving Data Publishing 184

8.2.2 Privacy-Preserving Traffic Padding 185

8.2.3 Privacy-Preserving Smart Metering 186

8.2.4 Others . 187

Chapter 9 Conclusion and Future Direction 189

9.1 Conclusion . 189

9.2 Future work . 191

Bibliography 192

ix

List of Figures

3.1 The Decision Process of Different Strategies 28

3.2 The Construction for ajump(1) and ajump(i) (1 < i) 35

3.3 The Construction for ajump(i) and ajump(j) (1 < i < j) 39

3.4 The Construction for ajump(�k1) and ajump(�k2) (�k1 �= �k2) 43

4.1 Execution Time vs. Dataset Cardinality n 89

4.2 Data Utility Comparison: DM Cost vs. l 91

4.3 Data Utility Comparison: Query Accuracy vs. Query Condition(l = 6) . . . 92

4.4 Data Utility Comparison: Query Accuracy vs. Query Condition(l = 7) . . . 92

4.5 Data Utility Comparison: Query Accuracy vs. Query Condition(l = 8) . . . 92

4.6 Data Utility Comparison: Query Accuracy vs. Query Condition(l = 9) . . . 93

4.7 Data Utility Comparison: Query Accuracy vs. Query Condition(l = 10) . . 93

5.1 The Vector-Action Set in MVMD Case . 107

5.2 Padding Cost Overhead Ratio (k-Indistinguishability) 127

5.3 Padding Cost Overhead Ratio (l-Diversity) 128

5.4 Execution Time in Seconds (k-Indistinguishability) 129

5.5 Execution Time in Seconds (l-Diversity) 129

5.6 Processing Cost Overhead Ratio (k-Indistinguishability) 131

5.7 Processing Cost Overhead Ratio (l-Diversity) 132

6.1 Uncertainty and Cost Against k . 157

6.2 Uncertainty and Cost for Bounded Uniform Distribution Against Top Limit 158

x

6.3 Uncertainty and Cost for Bounded Uniform Distribution Against Minimal

Cardinality . 159

6.4 Uncertainty and Cost for Normal Distribution Against Mean 160

6.5 Uncertainty and Cost for Normal Distribution Against Standard Deviation . 160

7.1 Sequence of Meter Readings For a Smart Meter 172

xi

List of Tables

1.1 A Micro-Data Table and its Two Generalizations 3

1.2 Packet Sizes for the First Character Input of a Search Engine 4

1.3 An Reading Example for Smart Metering 5

3.1 A Micro-Data Table and Three Generalizations 19

3.2 Two Tables in the Permutation Set and Their Corresponding Generaliza-

tions under g1 . 20

3.3 The Disclosure Set of g2(t0) . 21

3.4 A Table t3 in the Permutation Set of g3(t0) and its Corresponding Disclo-

sure Set Under g2 . 22

3.5 The Notation Table . 23

3.6 The Algorithm anaive . 25

3.7 The Algorithm asafe . 26

3.8 The Algorithm Family ajump(�k) . 29

3.9 The Case Where ajump(i) Has Better Utility Than ajump(1) 38

3.10 The Data Utility Comparison Between ajump(j) and ajump(i) (1 < i < j) . 42

3.11 The Case Where Reusing Generalization Functions Improves Data Utility . 48

3.12 Algorithms: ajump(�k) and ds
�k
i With Any Given Privacy Property p(.) 52

3.13 The Secret-Choice Strategy asecret . 56

3.14 The Subset Approach For Designing the Set of Unsafe Algorithms 57

3.15 The Counter Example for Secret Choice among Unsafe Algorithms 59

xii

3.16 The Possible Subsets of Functions and the Corresponding Probability of

A,B, and C Being Associated With C0 . 59

4.1 The Motivating Example . 65

4.2 The Notation Table . 68

4.3 An Example . 69

4.4 procedure: l-candidate-to-P lm . 74

4.5 Notations for Algorithms . 80

4.6 The RIA Algorithm . 81

4.7 The RDA Algorithm . 83

4.8 The GDA Algorithm . 86

4.9 Description of OCC and SAL Datasets . 89

5.1 User Inputs and Corresponding Packet Sizes 97

5.2 s Value for Each Character Entered as the First (Second Column) and Sec-

ond (3-6 Columns) Keystroke . 98

5.3 Mapping PPTP to PPDP . 99

5.4 The Notation Table . 101

5.5 The svsdSimple Algorithm for SVSD-Problem 115

5.6 The svmdGreedy Algorithm For SVMD-Problem 116

5.7 The mvmdGreedy Algorithm For MVMD-Problem 117

5.8 The svsdDiversity Algorithm For SVSD-Diversity Case 121

5.9 The svmdDiversity Algorithm For SVMD-Diversity Case 123

6.1 User Inputs and Corresponding Packet Sizes 136

6.2 Rounding and Ceiling Padding for Table 6.1 137

6.3 Proposed Solution for Table 6.1 . 137

6.4 The Notation Table . 138

6.5 The Random Ceiling Padding Scheme: Stage One 145

6.6 The Random Ceiling Padding Scheme: Stage Two 145

xiii

6.7 The Sample Space for Transient Groups by Random Ceiling Padding and

Corresponding Events . 149

7.1 An Example . 164

7.2 The Possible Cases For a 200 Noise Reading 165

7.3 The Notation Table . 167

7.4 The Safe Candidate Producer (SCP) . 173

7.5 The Cyclical Reading Converter (CRC) 175

7.6 The Perpetual Reading Converter (PRC) 176

7.7 The Light Reading Converter (LRC) . 176

8.1 Customized Notions in Three Scenarios 184

8.2 A Micro-Data Table and its Generalization 185

8.3 Original Set and Possible Released Set for an Action-Sequences 186

8.4 Original Set and Possible Released Set for the Readings in a Household . . 187

xiv

Chapter 1

Introduction

1.1 Background and Motivation

The privacy preserving issue has attracted significant attentions in various domains,

such as, data publishing and data mining, location-based service, mobile and wireless net-

work, social network, web application, smart grid, and so on. However, side-channel leaks

further complicate the privacy preservation. Various side-channel attacks have been dis-

covered in many different domains, such as:

- data publishing (e.g. adversarial knowledge about a generalization algorithm itself

may allow adversaries to infer sensitive information from the disclosed data);

- Web-based Application (e.g. user input can be inferred from the packet sizes of

encrypted traffic between client side and server side);

- smart metering (e.g. the fine-grained meter readings may be used to track the appli-

ance usage patterns and consequently the sensitive information of households, such

as, the daily activities);

- cloud computing (e.g. the sharing of physical infrastructure among users allow ad-

versaries to extract information about co-resident VMs);

1

- Android smartphone (e.g. per data-usage statistics and speaker status may allow an

application without any permission to obtain the smartphone user’s identity and geo-

location as well as driving route);

- VoIP telephony (e.g. users’ conversations can be partially reconstructed from en-

crypted VoIP packets due to the use of VBR codecs for compression and length-

preserving stream ciphers for encryption in VoIP protocols);

- cryptography (e.g. information about the secret key may be retrieved from the physi-

cal characteristics of the cryptographic modules during the algorithm execution, such

as, timing, power consumption, and so on).

In summary, side-channel attacks are prevalent in different applications. On the

other hand, several approaches have been proposed to mitigate the threats of such attacks

for each specific application, such as, traffic shaping [95], traffic morphing [103], side-

buster [110] for web traffic, HTTPO [76] against encrypted HTTP leaks, DREAM [1],

EPPA [75] for smart metering, and so on.

However, there are no existing works on studying the generic model under the same

framework for different side-channel leaks. Such a study will establish a common under-

standing on the side-channel attacks, and enable us to apply similar solutions to different

applications and new applications.

In this thesis, we make the first effort on investigating a general framework to model

side-channel attacks across different domains and applying the framework to three emerg-

ing domains, namely, privacy-preserving data publishing (PPDP), privacy preserving traf-

fic padding (PPTP), and privacy-preserving smart metering (PPSM). More specifically, the

following questions are to be answered in each phase of the research.

- Firstly, can we design a generic model for different side-channel attacks?

While different domains may have different requirements for privacy, they similarly

need to balance two seemingly conflicting goals: privacy preservation and cost minimiza-

2

tion. Our main goal is to formulate a generic model for privacy preserving against side-

channel leaks. The model encompasses privacy requirements (such as, indistinguishability,

diversity, uncertainty), costs (such as, data utility, data accuracy, communication overhead,

computation overhead), the corresponding methods to ensure privacy and minimize the

costs 1. We will address this question in Chapter 8. Nonetheless, to make our discussion

more concrete and easy the understanding, we will first discuss three specific applications.

- Secondly, can we apply the generic model to data publishing with publicly-known

algorithms (PPDP)?

Most of existing solutions for PPDP assume that the only knowledge the adversaries

possess are the disclosed table and the required privacy properties. Actually, the adversaries

may also know the disclosure algorithm. Such extra knowledge may assist the adversaries

in further precisely predicting the possible original micro-data tables, and finally compro-

mise the privacy properties.

For example, the generalization g2(t0) shown in Table 1.1(c) satisfies 3-diversity

(the highest ratio of any person being associated with any condition is no greater than 1
3
,

see Chapter 2 for detail). However, when the adversary knows the generalization algorithm

has considered g1(t0) shown in Table 1.1(b) before it discloses g2(t0), he can infer that both

Charlie and David are definitely associated with cancer. We will detail the theoretical study

and efficient solution later in Chapters 3 and 4 , respectively.

(a). A Micro-Data Table t0 (b). Generalization g1(t0) (c). Generalization g2(t0)
Name DoB Condition

Alice 1990 flu
Bob 1985 cold

Charlie 1974 cancer
David 1962 cancer
Eve 1953 headache
Fen 1941 toothache

DoB Condition

1980∼ flu
1999 cold

1960∼ cancer
1979 cancer

1940∼ headache
1959 toothache

DoB Condition

1970 flu
∼ cold

1999 cancer
1940 cancer
∼ headache

1969 toothache

Table 1.1: A Micro-Data Table and its Two Generalizations

1We shall explain the concepts and discuss the details in the following chapters.

3

- Thirdly, can we apply the generic model to privacy-preserving traffic padding in

Web-applications (PPTP)?

Web-based applications essentially rely on the distrusted Internet as an internal com-

ponent for carrying the continuous interaction between users and servers. While encryp-

tions prevent adversaries from reading the data between these two components, some in-

formation is still observable, such as, packet sizes, directions, timings. By analyzing such

encrypted traffic features, the adversaries can potentially identify an application’s internal

state transitions as well as users’ inputs.

For example, Table 1.2 shows the identifiable packet sizes of each char as the first

keystroke entered in a popular real-world search engine. We can observe that six characters

(i, j, p, r, v, x) can be identified by a unique packet size. We will elaborate on the formal

PPTP model and the enhancement of prior-knowledge resistance later in Chapters 5 and 6

, respectively.

Char a b c d e f g
Size 509 504 502 516 499 504 502

Char h i j k l m n
Size 509 492 517 499 501 503 488

Char o p q r s t
Size 509 525 494 498 488 494

Char u v w x y z
Size 503 522 516 491 502 501

Table 1.2: Packet Sizes for the First Character Input of a Search Engine

- Fourthly, can we apply the generic model to privacy-preserving smart metering (PPSM)?

Smart grid essentially relies on the fine-grained usage information to provide sig-

nificant benefits for both utility and customers. However, the fine-grained meter readings

could also be used to track the appliance usage pattern and then infer sensitive information

of households, such as their daily activities.

4

For example, Table 1.3(b) shows when the reading is 300, the adversary can infer

that Fan is definitely used at that read period in the case that all the appliances in a house-

hold are shown in Table 1.3(a) (To ease the understanding of main problem, we assume that

each appliance consumes the labeled electricity). We will discuss the formal PPSM model

in detail later in Chapter 7.

(a). Appliance Set (b). Possible Readings
Item Labeled

(Watts)
Fan 200
Bulb 100
TV 100

Reading Use of Appliances

400 {{Fan,Bulb,TV}}
300 {{Fan,Bulb}, {Fan,TV}}
200 {{Fan}, {Bulb,TV}}
100 {{Bulb}, {TV}}
0 {∅}

Table 1.3: An Reading Example for Smart Metering

1.2 Summary of Contributions

As introduced in Section 1.1, the main purpose of this research is to understand and

provide model and solution to the privacy threats in different applications due to various

side-channel attacks. The rest of this Section overviews the five lines of the research in

three categories of applications as well as the study on the generic model, and delay the

details to the corresponding chapters.

Privacy-preserving data publishing with publicly-known algorithms

- Recent studies show that adversarial inferences using knowledge about a disclosure

algorithm can usually render the algorithm unsafe. The first line of the research

theoretically study a generic yet costly strategy which is independent of data utility

measures and syntactic privacy property [73, 74].

More specifically, we first show that a given unsafe generalization algorithm can be

transformed into a large family of distinct algorithms under a novel strategy, called k-

5

jump strategy. Second, we discuss the computational complexity of such algorithms

and prove that different algorithms under the k-jump strategy generally lead to in-

comparable data utility. We also confirm that the choice of algorithms must be made

among safe algorithms (Chapter 3).

- While k-jump strategy is theoretically superior to existing ones due to its indepen-

dence of utility measures and privacy models, it incurs a high complexity. To over-

come this challenge, the second line of the research proposes an efficient privacy

streamliner approach to preserving diversity [68].

More specifically, we first observe that a high computational complexity is usually

incurred when an algorithm conflates the processes of privacy preservation and utility

optimization. Based on such observations, we then propose a novel privacy stream-

liner approach to decouple those two processes for improving algorithm efficiency.

We also confirm our algorithms to be efficient through both complexity analysis and

experimental results (Chapter 4).

Privacy-Preserving Traffic Padding in Web Applications

- Recent studies show that many popular Web applications actually leak out highly

sensitive data from encrypted traffic due to side-channel attacks. The third line of

the research proposes a formal model for privacy-preserving traffic padding (PPTP)

which can quantify the effectiveness of mitigation techniques [69–71].

More specifically, we first observe an interesting similarity between PPTP and PPDP

issues. Based on such a similarity, we then establish a mapping between these two

issues and propose a formal PPTP model, which encompasses the quantification of

privacy requirements and padding costs. Such a model lays the foundation for further

studies of this issue. We also design efficient heuristic algorithms and confirm their

effectiveness and efficiency through experiments using real-world Web applications

(Chapter 5).

6

- While the model in previous line of research is among the first efforts on formally

addressing the PPTP issue, it relies on the assumption that adversaries do not possess

prior background knowledge about possible user inputs. In the fourth line of the

research, we propose a novel random ceiling padding approach whose results are

resistant to such adversarial knowledge [72].

More specifically, the approach injects randomness into the process of forming padding

groups, such that an adversary armed with background knowledge would still face

sufficient uncertainty in estimating user inputs. We formally present a generic scheme

and discuss two concrete instantiations. We then confirm the correctness and perfor-

mance of our approach through both theoretic analysis and experiments with two real

world applications (Chapter 6).

Privacy-Preserving Smart Metering

- Recent studies show that fine-grained meter readings may allow adversaries to infer

sensitive information about the households. In the fifth line of the research, we pro-

pose a novel light-weight technique for privacy-preserving smart metering (PPSM),

which can achieve multiple objectives through a single set of data and procedures.

More specifically, we first observe that satisfying certain privacy property for reading

does not necessarily lead to preserving the household’s privacy. Based on such ob-

servations, we propose a formal PPSM model, which encompasses the privacy prop-

erties and consumption accuracy. This model is among the first efforts on preserving

the household’s sensitive information (compared with preserving the readings). We

also design efficient algorithms and analyze their privacy preservation (Chapter 7).

Generic Model for Privacy Preserving against Side-Channel Leaks

- We make the first step to extract a generic model under the same framework for

various side-channel leaks in different categories of applications. Such a study will

7

bridge the gap among different communities on study of side-channel attacks. To

the best of our knowledge, there was no such an effort on the generic model in the

literature (Chapter 8).

Implications of Our Study

Our research shows the possibility of a generic framework for privacy preserving against

side-channel leaks and also leads to practical solutions with quantifiable privacy guarantee

for different applications against side-channel attacks. The generic framework will facili-

tate the works on preventing such attacks with less effort.

8

Chapter 2

Related Work

2.1 Privacy Preservation

The privacy preserving issue has received significant attentions in various domains,

such as, data publishing and data mining [25,46,90], mobile and wireless network [9] [11] [45],

social network [31] [83] [44], outsourced data [18] [97], multiparty computation [82], web

applications [9] [14] [22] [94], and so on.

In the context of privacy-preserving data publishing, various generalization tech-

niques and models have been proposed to transform a micro-data table into a safe version

that satisfies given privacy properties and retains enough data utility. In particular, data

swapping [30, 35, 39] and cell suppression [29] both aim to protect micro-data released in

census tables, but those earlier approaches cannot effectively quantify the degree of pri-

vacy. A measurement of information disclosed through tables based on the perfect secrecy

notion by Shannon is given in [80]. The authors in [34] address the problem ascribed

to the independence assumption made in [80]. The important notion of k-anonymity has

been proposed as a model of privacy requirement [90]. The main goal of k-anonymity is

to anonymize the data such that each record owner in the resultant data is guaranteed to

be indistinguishable from at least k − 1 other record owner. That is, each quasi-identifier

9

value in a micro-data should be at least shared by k tuples. Since the data owner modi-

fies the data, some information is distorted. Therefore, it is desirable to find the modified

table for k-anonymity with the minimum information loss. However, to achieve optimal

k-anonymity with the most data utility is proved to be computationally infeasible [79].

Since the introduction of k-anonymity, privacy-preserving data publishing has re-

ceived tremendous interest in recent years [27, 28, 37, 42, 46, 93, 100]. A model based on

the intuition of blending individuals in a crowd is proposed in [21]. A personalized re-

quirement for anonymity is studied in [104]. In [17], the authors approach the issue from a

different perspective, that is, the privacy property is based on generalization of the protected

data and could be customized by users. Much efforts have been made around developing

efficient k-anonymity algorithms [3–5, 12, 38, 61, 90], whereas the safety of the algorithms

is generally assumed.

Many more advanced models are proposed to address limitations of k-anonymity.

Many of these focus on the deficiency of allowing insecure groups with a small number of

sensitive values. For instance, l-diversity [77] requires that each equivalence class on the

disclosed table should contain at least l well-represented sensitive values; t-closeness [63]

requires that the distribution of a sensitive attribute in any equivalence class is close (roughly

equal) to the distribution of the attribute in the whole table; (α, k)-anonymity [102] requires

that the number of tuples in any equivalence class is at least k and the frequency (in fraction)

of each sensitive value is at most α, where k and α are data publisher-specified thresholds.

In addition, a generic model called GBP was proposed to unify the perspective of privacy

guarantees in both generalization-based publishing and view-based publishing [33]. These

privacy models in PPDP have been adjusting and applying to other domains.

In contrast to micro-data disclosure, aggregation queries are addressed in statistical

databases [2,42,92]. The main challenge is to answer aggregation queries without allowing

inferences of secret individual values. The auditing methods in [23, 36] solve this problem

by checking whether each new query can be safely answered based on a history of previ-

10

ously answered queries. The authors of [23, 56, 58] considered the same problem in more

specific settings of offline auditing and online auditing, respectively.

Compared with the aforementioned syntactic privacy models, recently, a seman-

tic privacy notation to provide provable resistance to adversaries’ background knowledge,

differential privacy [40] has been widely accepted as a strong privacy model mostly for an-

swering statistic queries. Differential privacy aims to achieve the goal that the probability

distribution of any disclosed information should be similar enough regardless of whether

that disclosed information is obtained using the real database, or using a database without

any one of the existing records.

However, although differential privacy is extended to privacy preserving data pub-

lishing (PPDP) [64,106], most existing approaches that ensure differential privacy are ran-

dom noise-based and are suitable for specific types of statistical queries. Further, Kifer

et al. [57] disproved some popularized claims about differential privacy and showed that

differential privacy cannot always guarantee the privacy in some cases. differential privacy

is also less applicable to our traffic padding due to the less predictable but larger sensitiv-

ity and the nature of budget share among executions of web applications(Chapters 5, 6).

Moreover, while the qualitative significance of the privacy parameter ε is well understood

in the literature, the exact quantitative link between this value and the degree of privacy

guarantee has received less attention. Actually, more and more works have concluded that

both differential privacy and syntactic privacy models have their place, and any one cannot

replace the other [26, 65]. It is also shown that differential privacy cannot always guaran-

tee the privacy in some cases [57]. Due to these reasons, we focus on syntactic privacy

properties in this research and regard the differential privacy as future work.

11

2.2 Side-Channel Attack

Various side-channel leakages have been extensively studied in the literature. By

measuring the amount of time taken to respond to the queries, an attacker may extract

OpenSSL RSA privacy keys [16], and similar timing attacks are proved to be still practical

recently [15]. By differentiating the sounds produced by keys, an attacker with the help of

the large-length training samples may recognize the key pressed [7]; Zhuang et al. further

present an alternative approach to achieving such attack which does not need the training

samples [115]. By exploiting queuing side channel in routers by sending probes from a far-

off vantage point, an attacker may fingerprint websites remotely against home broadband

users [49, 50]. Ristenpart et al. discover cross-VM information leakage on Amazon EC2

based on the sharing of physical infrastructure among users [87]. Search histories may

be reconstructed by session hijacking attack [19], while web-browsing histories may be

compromised by cache-based timing attacks [43]. Saponas et al. show the transmission

characteristics of encrypted video streaming may allow attackers to recognize the title of

movies [91].

Meanwhile, much efforts have been made on developing techniques to mitigate the

threats of such leakages. Countermeasures based on traffic-shaping mechanisms (such as,

padding, mimicking, morphing, and so on) are suggested against the exposure of identifi-

cation of encrypted web traffic in [95]. HTTPOS, a browser-side system, is proposed to

prevent information leakages of encrypted HTTP traffic through configurable traffic trans-

formation techniques in [76]. Timing mitigator is introduced to achieve any given bound

on timing channel leakage by delaying output events to limit the amount of information

in [6]. Zhang et al. present an approach to verifying the VMs’ exclusive use of a physical

machine. The approach exploits a side-channel in the L2 memory cache as a defensive

detection tool rather than a vector of attack [114]. Provider-enforced deterministic execu-

tion by eliminating all the internal timing channels has been proposed to combat timing

channel attack in cloud [8]. In the rest of this section, we review the work related to the

12

side-channel attacks targeted in our lines of research.

2.2.1 The case that disclosure algorithms is publicly known in PPDP

While most existing work assume the disclosed generalization to be the only source

of information available to an adversary, recent work [111] [101] shows the limitation of

such an assumption. In addition to such information, the adversary may also know about

the disclosure algorithm. With such extra knowledge, the adversary may deduce more in-

formation and eventually compromise the privacy property. In the work of [111] [101], the

authors discover the above problem and correspondingly introduce models and algorithms

to address the issue. However, the method in [101] is still vulnerable to algorithm-based

disclosure [52, 53], whereas the one in [111] is more general, but it also incurs a high

complexity.

In [111], Zhang et al. presented a theoretical study on how an algorithm should be

designed to prevent the adversary from inferring private information when the adversaries

know the algorithm itself. The authors proved that it is NP-hard to compute a generalization

which ensure privacy while maximizing data utility under such assumptions of adversaries’

knowledge. The authors then investigate three special cases of the problem by imposing

constraints on the functions and the privacy properties, and propose a polynomial-time

algorithm that ensures entropy l-diversity.

Wong et al. in [101] showed that a minimality attack can compromise most existing

generalization techniques with the aim of only a small amount of knowledge about the

generalization algorithm. The authors assume that the adversaries only have one piece

of knowledge that the algorithm discloses a generalization with best data utility. Under

this assumption, minimality attacks can be prevented by simply disclosing sub-optimal

generalizations. Unfortunately, the adversaries, equipped with knowledge of the algorithm,

can still devise other types of attacks to compromise sub-optimal generalizations.

Since the problem is discovered, some work have been developed to tackle the prob-

13

lem in the case that l − diversity is the desired privacy property [53, 68, 105, 113].

To improve the efficiency, a so-called exclusive strategy is proposed in [112] to

penalize the cases where a recursive process is required to compute the adversarial mental

image about the micro-data table. To examine the general case, we have proposed a k-

jump strategy [73](see Chapter 3 for the first line of our research) to penalize such cases

where with more control in the sense that only k, instead of all, generalization functions

will be skipped. Our proposed family of algorithms is general to handle different privacy

properties and different measures of data utility. Despite the improved efficiency, most of

those methods are still impractical due to the high complexity.

The concept of l-cover in [113] has been proposed for efficient diversity preserva-

tion. However, no concrete methods for building identifier partitions that can satisfy the

l-cover property was reported in [113], which is the main focus of the second line of our

research(see Chapter 4). The correctness and flexibility of our approach can be further con-

firmed by the following work in the literature. The authors of [105] introduce algorithms

that share the same spirit with our algorithms, and can achieve similar performance (more

precisely, their algorithms are slightly less efficient than ours since their time complexity

is O(n2logn)). In fact, under slight modification, their algorithms, such as ACE algorithm

which is originally intended to publish dynamic datasets [108], can be regarded as another

instantiation of our model and approach.

2.2.2 The case that visible patterns in encrypted traffic are observed

in Web applications

In the context of web applications, many side-channel leakages in encrypted web

traffic have been identified in the literature which allow to profile the web applications

themselves and their internal states [8,19,22,50]. Meanwhile, several approaches have been

proposed to analyze and mitigate such leakages, such as [6,76,95,103]. Recently, a black-

box approach has been proposed to detect and quantify the side-channel vulnerabilities in

14

web application by extensively crawling a targeted application [20].

Chen et al. in [22] demonstrated through case studies that side-channel problems are

pervasive and exacerbated in web applications due to their fundamental features. Then the

authors further study approaches to identifying such threats and quantifying the amount of

information disclosed in [110]. They show that an application-agnostic approach generally

suffers from high overhead and low level of privacy protection, and consequently effective

solutions to such threats likely will rely on the in-depth understanding of the applications

themselves. Finally, they design a complete development process as a fundamental solution

to such side channel attacks.

Traffic morphing is proposed in [103] to mitigate the threats by traffic analyzing

on packet sizes and sequences through network. Although their proposed system morph

classes of traffic to be indistinguishable, traffic morphing pads or splits packets on the fly

which may degrade application’s performance.

The aforementioned works share an important limitation, that is, they are lack of

privacy requirements, In such case, the degree of privacy, which the transformation of the

traffic is able to achieve, cannot be evaluated during the process of padding. Consequently,

it cannot ensure the privacy being satisfied. In contrast, our proposed algorithms follow-

ing the proposed model in the third line of our research theoretically guarantee the desired

privacy property. Our model and solutions provide finer control over the trade-off between

privacy protection and cost, and those solutions can certainly be integrated into the devel-

opment process.

Nonetheless, these solutions assume that adversaries do not possess prior back-

ground knowledge about possible user inputs. Our fourth line of research enhance pre-

vious works by mitigating the threats of background knowledge. Closest to this research,

most recently, a formal framework is proposed to measure security in terms of the amount

of information leaked from the observations without the assumption of any particular at-

tacks [10]. However, the main deficiency of [10] regarding to the estimation of privacy

15

renders it less applicable in practice.

2.2.3 The case that readings are used for inferences in smart metering

Electrical appliances, even small electric devices, generate detectable electric con-

sumption signatures [51, 60]. Based on such signatures, electric consumption data (col-

lected at a pre-configured granularity) of a household can be decomposed to identify the

status of appliances. A domestic electricity demand model based on occupant time-use data

has been presented and its example implementation is made for free download [86]. Worse

still, even simple off-the-shelf statistical tools can be used to extract complex usage patterns

from the consumption data without a priori knowledge of household activities [81], while

Rouf et al. showed that real-world automatic meter reading (AMR) systems are vulnerable

to spoofing attacks due to the unsecured wireless transmission and continuous broadcast of

fine-grained energy data [88].

Many surveys have been conducted to review and discuss the security and privacy

requirements and challenges(e.g. [99]). Some efforts have been made to preserve privacy

for the load monitoring [41]. In-residence batteries, together with corresponding battery

privacy algorithms such as Non-Intrusive Load Leveling (NILL) and stepping approach,

used to mask load variance of a household to the grid and consequently avoided recovering

of appliance profiles by grid [78, 109]. A distributed Laplacian Perturbation Algorithm

(DLPA) has been proposed to achieve provably privacy and optimal utility without the need

of a third trusted party [1]. An aggregation protocol is introduced to privately sum readings

from many meters without the need of disclose those raw meter readings [59]. A scheme

is designed to provide personal enquiry and regional statistics through anonymously-sent

readings [24]. EPPA achieves privacy-preserving multi-dimensional data aggregation by

using the homomorphic cryptosystem [75].

The other efforts were made to preserve privacy for billing. Rail et al. proposed a

set of protocols which allow uers themselves to produce a correct provable final bill without

16

disclosing fine-grained consumption data [84], and then the authors combined differentially

private mechanisms with oblivious payments to eliminate leakages drawn from the final

bill [32]. Recently, Lin et al. used trusted platform module (TPM) and cryptographic

primitive to support privacy preserving billing and load monitoring simultaneously [67].

17

Chapter 3

PPDP: k-Jump Strategy for Privacy

Preserving Data Publishing

In this chapter, we study the privacy issue for data publishing in the case that the

adversaries utilize the knowledge about the algorithms themselves as side-channel to refine

their guess about the original data, and then propose the strategy to transform an existing

unsafe algorithm into a large family of safe algorithms.

3.1 Overview

The issue of preserving privacy in micro-data disclosure has attracted much atten-

tion lately [46]. Data owners, such as the Census Bureau, may need to disclose micro-data

tables containing sensitive information to the public to facilitate useful analysis. There are

two seemingly conflicting goals during such a disclosure. First, the utility of disclosed data

should be maximized to facilitate useful analysis. Second, the sensitive information about

individuals contained in the data must be to an acceptable level due to privacy concerns.

The upper left tabular of Table 3.1 shows a toy example of micro-data table t0.

Suppose each patient’s name, DoB, and condition are regarded as identifier attribute, quasi-

identifier attribute and sensitive attribute, respectively. Simply deleting the identifier Name

18

is not sufficient because the sensitive attribute Condition may still potentially be linked to

a unique person through the quasi-identifier Age (more realistically, a quasi-identifier is

usually a combination of attributes, such as Age, Gender, and Zip Code). Nonetheless, we

shall not include identifiers in the remainder of the chapter for simplicity.

A Micro-Data Table t0 Generalization g1(t0)
Name DoB Condition

Alice 1990 flu
Bob 1985 cold

Charlie 1974 cancer
David 1962 cancer
Eve 1953 headache
Fen 1941 toothache

DoB Condition

1980∼1999 flu
cold

1960∼1979 cancer
cancer

1940∼1959 headache
toothache

Generalization g2(t0) Generalization g3(t0)
DoB Condition

1970∼1999 flu
cold

cancer
1940∼1969 cancer

headache
toothache

DoB Condition

1960∼1999 flu
cold

cancer
cancer

1940∼1959 headache
toothache

Table 3.1: A Micro-Data Table and Three Generalizations

To prevent such a linking attack, the micro-data table can be partitioned into anonymized

group and then generalized to satisfy k-anonymity [90, 96]. The upper right tabular in Ta-

ble 3.1 shows a generalization g1(t0) that satisfies 2-anonymity. That is, each generalized

quasi-identifier value is now shared by at least two tuples. Therefore, a linking attack can

no longer bind a person to a unique tuple through the quasi-identifier.

Nonetheless, k-anonymity by itself is not sufficient since linking a person to the

second group in g1(t0) already reveals his/her condition to be cancer. To avoid such a sit-

uation, the generalization must also ensure enough diversity inside each group of sensitive

values, namely, to satisfy the l-diversity property [77]. For example, assume 2-diversity is

desired. If the generalization g2(t0) is disclosed, a person can at best be linked to a group

with three different conditions among which each is equally likely to be that person’s real

condition. The desired privacy property is thus satisfied.

19

However, adversarial knowledge about a generalization algorithm itself may cause

additional complications [101, 111]. First, without considering such knowledge, an ad-

versary looking at g2(t0) in Table 3.1 can guess that the three persons in each group may

have the three conditions in any given order. Therefore, the adversary’s mental image of

t0 is a set of totally 3! × 3! = 36 micro-data tables, each of which is equally likely to be

t0 (a common assumption is that the quasi-identifier attribute, such as Age in t0, is public

knowledge).We shall call this set of tables the permutation set with respect to the given gen-

eralization. The left-hand side of Table 3.2 shows two example tables in the permutation

set (with the identifier Name deleted).

t1 g1(t1)
DoB Condition

1990 cancer
1985 flu
1974 cold
1962 cancer
1953 headache
1941 toothache

DoB Condition

1980∼1999 cancer
flu

1960∼1979 cold
cancer

1940∼1959 headache
toothache

t2 g1(t2)
DoB Condition

1990 cold
1985 flu
1974 cancer
1962 cancer
1953 headache
1941 toothache

DoB Condition

1980∼1999 cold
flu

1960∼1979 cancer
cancer

1940∼1959 headache
toothache

Table 3.2: Two Tables in the Permutation Set and Their Corresponding Generalizations
under g1

The permutation set would be the adversary’s best guesses of the micro-data table, if

the released generalization is his/her only knowledge. However, adversary may also know

the generalization algorithm, and can simulate the algorithm to further exclude some invalid

guesses from the permutation set. In other words, such knowledge may allow adversary to

obtain a more accurate estimation of the private information than that can be obtained from

the disclosed data alone. For example, assume that the adversary knows the generalization

20

algorithm has considered g1(t0) before it discloses g2(t0). In Table 3.2, t1 is not a valid

guess, because g1(t1) satisfies 2-diversity and should have been disclosed instead of g2(t0).

On the other hand, t2 is a valid guess since g1(t2) fails 2-diversity. Consequently, the

adversary can refine his/her guess of t0 to a smaller set of tables, namely, the disclosure

set, as shown in Table 3.3. Since each table in the disclosure set is equally like to be t0,

the desired 2-diversity should be measured on each row of sensitive values (as a multiset).

From this set of tables, the adversary can infer that both Charlie and David, whose DoB

are 1974 and 1962 respectively, are definitely associated with cancer. Clearly, 2-diversity

is violated.

DoB Condition

1990 flu cold flu cold
1985 cold flu cold flu
1974 cancer cancer cancer cancer
1962 cancer cancer cancer cancer
1953 headache headache toothache toothache
1941 toothache toothache headache headache

Table 3.3: The Disclosure Set of g2(t0)

A natural solution to the above problem is for generalization algorithms to evaluate

the desired privacy property, such as l-diversity, on disclosure set in order to determine

whether a generalization is safe to disclose. For example, consider how we can compute

the disclosure set of next generalization, g3(t0), in Table 3.1. We need to exclude every table

t in the permutation set of g3(t0), if either g1(t) or g2(t) satisfies 2-diversity. However, to

determine whether g2(t) satisfies 2-diversity, we would have to compute the disclosure set

of g2(t), which may be different from the disclosure set of g2(t0) shown in Table 3.3. The

left-hand side of Table 3.4 shows such an example table t3 in permutation set of g3(t0).

The disclosure set of g2(t3) as shown in right-hand side of Table 3.4 is different from the

disclosure set of g2(t0). Clearly, such a recursive process is bound to have a high cost.

The contribution of this research is three fold. First, we show that a given gen-

eralization algorithm can be transformed into a large family of distinct algorithms under

21

t3 Disclosure Set of g2(t3)
DoB Condition

1990 cancer
1985 cancer
1974 flu
1962 cold
1953 headache
1941 toothache

DoB Condition

1990 cancer cancer cancer cancer cancer cancer
1985 cancer cancer cancer cancer cancer cancer
1974 flu flu flu flu flu flu
1962 cold cold headache headache toothache toothache
1953 headache toothache cold toothache cold headache
1941 toothache headache toothache cold headache cold

Table 3.4: A Table t3 in the Permutation Set of g3(t0) and its Corresponding Disclosure Set
Under g2

a novel strategy, called k-jump strategy. Intuitively, the k-jump strategy penalizes cases

where recursion is required to compute the disclosure set. Therefore, algorithms may be

more efficient under the k-jump strategy in contrast to the above safe strategy. Second,

we discuss the computational complexity of such algorithms and prove that different algo-

rithms under the k-jump strategy generally lead to incomparable data utility (which is also

incomparable to that of algorithms under the above safe strategy). This result is somehow

surprising since the k-jump strategy adopts a more drastic approach than the above safe

strategy. Third, the result on data utility also has a practical impact. Specifically, while all

the k-jump algorithms are still publicly known, the choice among these algorithms can be

randomly chosen and kept secret, analogous to choosing a cryptographic key. We also con-

firm that the choice of algorithms must be made among safe algorithms. Furthermore, the

family of our algorithms is general and independent of the syntactic privacy property and

the data utility measurement. Note that in this research we focus on the syntactic privacy

properties which has been evidenced as complementary and indispensable to the semantic

notion of privacy, such as differential privacy [26, 64].

The rest of the chapter is organized as follows. Section 3.2 gives our model of

two existing algorithms. Section 3.3 then introduces the k-jump strategy and discusses its

properties. Section 3.4 presents our results on the data utility of k-jump algorithms. We

analyze the computational complexity of k-jump algorithms in Section 3.5, and confirm

that the secret choice must be made among safe algorithms such as the family of k-jump

algorithms in Section 3.6. Section 3.7 concludes the chapter.

22

3.2 The Model

We first introduce the basic model of micro-data table and generalization algo-

rithm in Section 3.2.1. We then review two existing strategies and related concepts in

Section 3.2.2. Table 3.5 lists our main notations which will be defined in this section.

t0, t Micro-data table
a, anaive, asafe Generalization algorithm
gi(.), gi(t) Generalization (function)
p(.) Privacy property
per(.), per(gi(t)), peri, perk

i Permutation set
ds(.), ds(gi(t)), dsi, dsk

i Disclosure set
path(.) Evaluation path

Table 3.5: The Notation Table

3.2.1 The Basic Model

A secret micro-data table (or simply a table) is a relation t0(QID, S) where QID

and S is the quasi-identifier attribute and sensitive attribute, respectively (note that each of

these can also be a sequence of attributes). We make the worst case assumption that each

tuple in t0 can be linked to a unique identifier (which the identifier is not shown from t0)

through the QID value (if some tuples are to be deemed as not sensitive, they can be simply

disregarded by the algorithm). Denote by T the set of all tables with the same schema, the

same set of QID values, and the same multiset of sensitive values as those of t0.

We are also given a generalization algorithm a that defines a privacy property p(.) :

2T → {true, false} and a sequence of generalization functions gi(.) : T → G (1 ≤ i ≤ n)

where G denotes the set of all possible generalizations over T . Note that the discussion

about Table 3.3 in Section 3.1 has explained why p(.) should be evaluated on a set of,

instead of one, tables, and we follow the widely accepted notion of generalization [90].

Given t0 as the input to the algorithm a, either a generalization gi(t0) will be the output and

then disclosed, or ∅ will be the output indicating that nothing is disclosed.

23

Note that in a real world generalization algorithm, a generalization function may

take an implicit form, such as a cut of the taxonomy tree [101]. Moreover, the sequence of

generalization functions to be applied to a given table is typically decided on the fly. Our

simplified model is reasonable as long as such a decision is based on the quasi-identifier

(which is true in, for example, the Incognito [61]), because an adversary who knows both

the quasi-identifier and the generalization algorithm can simulate the latter’s execution to

determine the sequence of generalization functions for the disclosed generalization.

3.2.2 The Algorithms anaive and asafe

When adversarial knowledge about a generalization algorithm is not taken into ac-

count, the algorithm can take the following naive strategy. Given a table t0 and the gen-

eralization functions gi(.) (1 ≤ i ≤ n) already sorted in a non-increasing order of data

utility, the algorithm will then evaluate the privacy property p(.) on each of the n gener-

alizations gi(t0) (1 ≤ i ≤ n) in the given order. The first generalization gi(t0) satisfying

p(gi(t0)) = true will be disclosed, which also maximizes the data utility. Note that our

discussion does not depend on specific utility measures as long as the measure is defined

based on quasi-identifiers.

Before giving the detail of naive strategy, we first formalizes the set of all tables in

T whose generalizations, under a given function, are identical with that of a given table in

Definition 3.1.

Definition 3.1 (Permutation Set) Given a micro-data table t0, a generalization function

gi(.), the permutation set of t0 under gi(.) is a function per(.) : G → 2T , defined by:

per(gi(t0)) = {t : gi(t) = gi(t0)}

Note that per(gi(t0)) is also written as peri when both gi and t0 are clear from

context. It is easily seen that, in the naive strategy, evaluating the privacy property p(.) on

24

a generalization gi(t0) is equivalent to evaluating p(.) on the permutation set per(gi(t0)).

Next we introduce the evaluation path in Definition 3.2. Informally, evaluation path

represents the sequence of evaluated generalization functions.

Definition 3.2 (Evaluation Path) Given a micro-data table t0, an algorithm composed of

a sequence of generalization functions gi(.)(1 ≤ i ≤ n), the evaluation path of t0 under the

algorithm is a function path(.) : T → 2[1,n], defined by:

path(t0) = {i : (the algorithm will evaluate t0 under gi) ∧ (1 ≤ i ≤ n)}

Note that although path(t0) is defined as a set, the indices naturally form a sequence

(we shall need this concept for later discussions). With these two concepts, we can describe

the above algorithm as anaive shown in Table 3.6.

Input: Table t0;
Output: Generalization g or ∅;
Method:

1. Let path(t0) = ∅;
2. For i = 1 to n
3. Let path(t0) = path(t0) ∪ {i};
4. If p(per(gi(t0))) = true then

5. Return gi(t0);
6. Return ∅;

Table 3.6: The Algorithm anaive

Unfortunately, the naive strategy leads to an unsafe algorithm as illustrated in Sec-

tion 3.1 (that is, an algorithm that fails to satisfy the desired privacy property). Specifically,

consider an adversary who knows the quasi-identifier ΠQID(t0), the above algorithm anaive,

and the disclosed generalization gi(t0) for some i ∈ [1, n]. Given any table t, by simulating

the algorithm’s execution, the adversary also knows path(t).

First, by only looking at the disclosed generalization gi(t0), the adversary can de-

duce t0 must be one of the tables in the permutation set per(gi(t0)). This inference

itself does not violate the privacy property p(.) since the algorithm anaive does ensure

25

p(per(gi(t0)) = true holds before it discloses gi(t0). However, for any t ∈ per(gi(t0)), the

adversary can decide whether i ∈ path(t) by simulating the algorithm’s execution with t

as its input.

Clearly, any t ∈ per(gi(t0)) can be a valid guess of the unknown t0, only if i ∈
path(t) is true. By excluding all invalid guesses, the adversary can obtain a smaller subset

of per(gi(t0)). We call such a subset of per(gi(t0)) the disclosure set, as formally stated in

Definition 3.3.

Definition 3.3 (Disclosure Set) Given a micro-data table t0, an algorithm composed of a

sequence of generalization functions gi(.)(1 ≤ i ≤ n), the disclosure set of t0 under gi(.)

is a function ds(.) : G → 2T , defined by:

ds(gi(t0)) = per(gi(t0)) \ {t : i /∈ path(t)}

A natural way to fix the unsafe anaive is to replace the permutation set with the cor-

responding disclosure set in the evaluation of a privacy property. From above discussions,

after gi(t0) is disclosed, the adversary’s mental image about t0 is ds(gi(t0)). Therefore,

we can simply modify the algorithm to ensure p(ds(gi(t0))) = true before it discloses

any gi(t0). We call this the safe strategy, and formally describe it as algorithm asafe in

Table 3.7.

Input: Table t0;
Output: Generalization g or ∅;
Method:

1. Let path(t0) = ∅;
2. For i = 1 to n
3. Let path(t0) = path(t0) ∪ {i};
4. If p(ds(gi(t0))) = true then

5. Return gi(t0);
6. Return ∅;

Table 3.7: The Algorithm asafe

Taking the adversary’s point of view again, when gi(t0) is disclosed under asafe, the

26

adversary can repeat the aforementioned process to exclude invalid guesses from per(gi(t0)),

except that now dsj (j < i) will be used instead of perj . As the result, he/she will conclude

that t0 must be within the set per(gi(t)) \ {t′ : i /∈ path(t′)}, which, not surprisingly, co-

incides with ds(gi(t0)) (that is, the result of the adversary’s inference is t0 ∈ ds(gi(t0))).

Since asafe has ensured p(ds(gi(t0))) = true, the adversary’s inference will not violate the

privacy property p(.). That is, asafe is indeed a safe algorithm.

A subtlety here is that the definition of disclosure set may seem to be a circular

definition: ds(.) is defined using path(.), path(.) using the algorithm asafe, which in turn

depends on ds(.). However, this is not the case. In defining the disclosure set, ds(gi(t))

depends on the truth value of the condition i /∈ path(t). In table 3.7, we can observe

that this truth value can be decided in line 3, right before ds(gi(t)) is needed (in line 4).

Therefore, both concepts are well defined.

On the other hand, we can see that for computing ds(gi(t0)), we must compute the

truth value of the condition i /∈ path(t) for every t ∈ per(gi(t0)). Moreover, to construct

path(t) requires us to simulate the execution of asafe with t as the input. Therefore, to

compute ds(gi(t0)), we will have to compute ds(gj(t)) for all t ∈ per(gi(t0)) and j =

1, 2, . . . , i − 1. Clearly, this is an expensive process. In next section, we shall investigate a

novel family of algorithms for reducing the cost.

3.3 k-jump Strategy

In this section, we first introduce the k-jump strategy in Section 3.3.1, and then

discuss its properties in Section 3.3.2.

3.3.1 The Algorithm Family ajump(�k)

In the previous section, we have shown that the naive strategy is unsafe, and the safe

strategy is safe but may incur a high cost due to the inherently recursive process. First, we

27

more closely examine the limitation of these algorithms in order to build intuitions toward

our new solution. In Figure 3.1, the upper and middle chart shows the decision process

of the previous two algorithms, anaive and asafe, respectively. Each box represents the ith

iteration of the algorithm. Each diamond represents an evaluation of the privacy property

p(.) on the set inside the diamond, and the symbol Y and N denotes the result of such an

evaluation to be true and false, respectively.

per1

g1 g2

t0

g1(t0)

Y
N per2

g2(t0)

Y
N

gi

peri

gi(t0)

Y
N

gn

pern

gn(t0)

Y
N ∅

ds1

per1

g1 g2

t0

g1(t0)

Y
N

ds2

per2

g2(t0)

Y
N

gi

dsi

peri

gi(t0)

Y
N

gn

dsn

pern

gn(t0)

Y
N ∅

ds1

per1

g1 g2

t0

g1(t0)

Y
N

g2(t0)

N

g2+k

g2+k(t0)

N

gn

gn(t0)

N ∅

anaive

asafe

ajump(k)

Y
ds2

per2

Y

Y
ds2+k

per2+k

Y

Y
dsn

pern

Y

Y
N N

→

N

Figure 3.1: The Decision Process of Different Strategies

Comparing the two charts, we can have four different cases in each iteration of the

algorithm (some iterations actually have less possibilities, as we shall show later):

1. If p(peri) = p(dsi) = false (recall that peri is an abbreviation of per(gi(t0))), then

28

clearly, both algorithms will immediately move to the next iteration.

2. If p(peri) = p(dsi) = true, both algorithms will disclose gi(t0) and terminates.

3. We delay the discussion of the case of p(peri) = false ∧ p(dsi) = true to later

sections.

4. We can see the last case, p(peri) = true ∧ p(dsi) = false, is the main reason that

anaive is unsafe, and that asafe must compute the disclosure set and consequently

result in an expensive recursive process.

Therefore, informally, we penalize the last case, by jumping over the next k−1 iter-

ations of the algorithm. As a result, we have the k-jump strategy as illustrated in the lower

chart of Figure 3.1. More formally, the family of algorithms under the k-jump strategy is

shown in Table 3.8.

Input: Table t0, vector �k ∈ [1, n]n;
Output: Generalization g or ∅;
Method:

1. Let path(t0) = ∅;
2. Let i = 1;
3. While (i ≤ n)
4. Let path(t0) = path(t0) ∪ {(i, 0)}; //the pair (i, 0) represents peri

5. If p(per(gi(t0))) = true then

6. Let path(t0) = path(t0) ∪ {(i, 1)}; //the pair (i, 1) represents dsi

7. If p(ds(gi(t0))) = true then

8. Return gi(t0);
9. Else

10. Let i = i + �k[i]; //�k[i] is the ith element of �k
11. Else

12. Let i = i + 1;
13. Return ∅;

Table 3.8: The Algorithm Family ajump(�k)

There are two main differences between ajump(�k) and asafe. First, since now in

each iteration the algorithm may evaluate peri and dsi, or peri only, we slightly change the

definition of evaluation path to be path(.) : T → 2[1,n]×{0,1} so (i, 0) stands for peri and

29

(i, 1) for dsi. Consequently, the definition of a disclosure set also needs to be revised by

replacing the condition i /∈ path(t) with (i, 1) /∈ path(t).

Second, the algorithm family ajump(�k) takes an additional input, an n-dimensional

vector �k ∈ [1, n]n, namely, the jump distance vector. In the case of p(peri) = true ∧
p(dsi) = false, the algorithm will directly jump to the (i + �k[i])th iteration (note that

jumping to the ith iteration for any i > n will simply lead to line 13 of the algorithm, that

is, to disclose nothing). In the special case that ∀i ∈ [1, n] �k[i] = k for some integer k, we

shall abuse the notation to simply use k for �k.

Despite the difference between asafe and ajump(�k), the final condition for disclosing

a generalization remains the same, that is, p(dsi) = true. This simple fact suffices to show

ajump(�k) to be a safe family of algorithms.

3.3.2 Properties of ajump(�k)

We discuss several properties of the algorithms ajump(�k) in the following.

3.3.2.1 Computation of the Disclosure Set

Again, the disclosure set is well defined under ajump(�k), although it may seem to

be a circular definition at first glance. First, ds(gi(t)) depends on the truth value of the

condition (i, 1) /∈ path(t). In table 3.8, we can then observe that this value can be decided

in line 6, right before ds(gi(t)) is needed (in line 7).

Although computing disclosure sets under ajump(�k) is similar to that under asafe,

the former is generally more efficient. Specifically, recall that under asafe, to compute

ds(gi(t0)) we must first compute ds(gj(t)) for all t ∈ per(gi(t0)) and j = 1, 2, . . . , i − 1.

In contrast, this expensive recursive process is not always necessary under ajump(�k).

Referring to the lower chart in Figure 3.1, to compute ds(gi(t0)) for any 2 < i <

2 + k, we no longer need to always compute ds(g2(t)) for every t ∈ peri. By definition,

ds(gi(t0)) = per(gi(t0)) \ {t : (i, 1) /∈ path(t)}. From the chart, it is evident that (i, 1) /∈

30

path(t) is true as long as p(per(g2(t))) = true (in which case path(t) will either terminates

at ds2 or jump over the ith iteration). Therefore, for any such table t, we do not need to

compute ds(g2(t)) in computing ds(gi(t0)).

As an extreme case, when the jump distance vector is (n, n − 1, . . . , 1), all the

jumps end at ∅ (disclosing noting). In this case, the computation of disclosure set is no

longer a recursive process. To compute ds(gi(t0)), it suffices to only compute per(gj(t))

for t ∈ per(gi(t0)) and j = 1, 2, . . . , i − 1. The complexity is thus significantly lower.

3.3.2.2 ds(g1(t0)) and ds(g2(t0))

The first two disclosure sets have some special properties. First of all, ds(g1(t0) =

per(g1(t0)) is true. Intuitively, since any given table itself generally does not satisfy the

privacy property, in computing ds1, an adversary cannot exclude any table from per1. More

specifically, when g1(t0) is disclosed, for all t ∈ per(g1(t0)), path(t) must always end at

ds1, because p(per(g1(t))) = true follows from the fact that per(g1(t)) = per(g1(t0))

(by the definition of permutation set) and p(per(g1(t0))) = true (by the fact that g1(t0) is

disclosed). Therefore, ds(g1(t0)) = per(g1(t0)) \ {t : (1, 1) /∈ path(t)} yields ds(g1(t0) =

per(g1(t0)).

Second, we show that ds(g2(t0)) is independent of the distance vector �k. That is, all

algorithms in ajump(�k) share the same ds(g2(t0)). By definition, ds(g2(t0)) = per(g2(t0))\
{t : (2, 1) /∈ path(t)}. As ds(g1(t0) = per(g1(t0)) is true, the case p(per(g1(t0))) =

true ∧ p(ds(g1(t0))) = false is impossible, and consequently the jump from ds1 is never

to happen (which explains the missing edge in the lower chart of Figure 3.1). Therefore,

the condition (2, 1) /∈ path(t) does not depend on the distance vector �k.

3.3.2.3 Size of the Family

First, with n generalization functions, we can have roughly (n − 1)! different jump

distance vectors since the ith (2 ≤ i ≤ n) iteration may jump to (n − i + 1) different

31

destinations , where the (n + 1)th iteration means disclosing nothing. Clearly, (n − 1)! is

a very large number even for a reasonably large n. Moreover, the space of jump distance

vectors will be further increased when we reuse generalization functions in a meaningful

way, as will be shown in later sections. Therefore, we can now transform any given unsafe

algorithm anaive into a large family of safe algorithms. This fact lays a foundation for

making secret choices of k-jump algorithm to prevent adversarial inferences.

Note here the jump distance refers to possible ways an algorithm may jump at each

iteration, which is not to be confused with the evaluation path of a specific table. For

example, the vector (n, n − 1, . . . , 1) yields a valid k-jump algorithm that always jumps to

disclosing nothing, whereas any specific evaluation path can include at most one of such

jumps. There is also another plausible but false perception related to this. That is, an

algorithm with the jump distance k (note that here k denotes a vector whose elements are

all equal to k) will only disclose a generalization under gi(.) where i is a multiplication of

k. This perception may lead to false statements about data utility, for example, that the data

utility for k = 2 is better than that for k = 4. In fact, regardless of the jump distance, an

algorithm may potentially disclose a generalization under every gi(.). The reason is that

each jump is only possible, but not mandatory for a specific table.

3.4 Data Utility Comparison

In this section, we compare the data utility of different algorithms. Section 3.4.1

considers the family of k-jump algorithms. Section 3.4.2 studies the case when some gen-

eralization functions are reused in an algorithm. Section 3.4.3 addresses asafe.

3.4.1 Data Utility of k-Jump Algorithms

Our main result is that the data utility of two k-jump algorithms ajump(�k) and

ajump(�k
′) from the same family is generally incomparable. That is, the data utility cannot

32

simply be ordered based on the jump distance of two algorithms. Note that, deterministi-

cally the data utility cannot be improved without the given table, and the data utility among

algorithms is only comparable for the given table. In other words, here the comparison of

data utility is independent of the given table, accordingly, the notation ajump(�k) does not

indicate the given table.

We do not rely on specific utility measures. Instead, the generalization functions

are assumed to be sorted in a non-increasing order of their data utility. Consequently, an

algorithm a1 is considered to have better or equal data utility compared to another algorithm

a2 (both algorithms are from the same family), if we can construct a table t for which a1

returns gi(t) and a2 returns gj(t), with i < j.

Such a construction is possible with two methods. First, we let path(t) under a2 to

jump over the iteration in which a1 terminates. Second, when the first method is not an

option, we let path(t) under a2 to include a disclosure set that does not satisfy the privacy

property p(.), whereas path(t) under a1 to include one that does. We first consider the

following two special cases.

• ajump(1) and ajump(i) (i>1) In this case, the evaluation path of ajump(1) can never

jump over that of ajump(i) (in fact, a jump distance of 1 means no jump at all).

Therefore, we apply the above second method, that is, to rely on different disclosure

sets of the same disclosed generalization.

• ajump(i) and ajump(j) (1 < i < j) For this case, we apply the above first method,

that is, by constructing an evaluation path that jumps over the other.

From now on, we shall add superscripts to existing notations to denote the distance

vector of different algorithms. For example, dsk
1 means the disclosure set ds1 under the

algorithm ajump(k).

3.4.1.1 ajump(1) vs. ajump(i) (i > 1)

First, we need the following result.

33

Lemma 3.1 For any ajump(1) and ajump(i) (i > 1) algorithms from the same family, we

have dsi
3 ⊆ ds1

3.

Proof: By definition, ds(g3(t0)) = per(g3(t0)) \ {t : (3, 1) /∈ path(t)}. Obviously,

for ajump(1), the disclosure set ds1
3(t0) is derived from the permutation set of g3(t0) by

excluding those are disclosed under g1 and g2, while for ajump(i) (i > 1), the disclosure

set dsi
3(t0) is derived from the permutation set of g3(t0) by excluding those permutation

set are safe under g1 or g2. In other words, to remove a table t from per(g3(t0)), not

only the permutation set but also disclosure set of g2(t) must satisfy the privacy property

for ajump(1); while only permutation set of g2(t) must satisfy the privacy property for

ajump(i) (i > 1), since in this case, no matter whether the disclosure set satisfies or not,

(3, 1) /∈ path(t). Formally,

ds1
3(t0) =per3(t0)/{t|(t ∈ per3(t0)) ∧ (p(per1(t)) = true

∨ (p(per2(t)) = true ∧ p(ds1
2(t)) = true))} (3.1)

dsi
3(t0) =per3(t0)/{t|(t ∈ per3(t0)) ∧ (p(per1(t)) = true ∨ p(per2(t)) = true)} (3.2)

from which the result follows.

From Lemma 3.1, we can have the following straightforward result for the case that

privacy property is set-monotonic (which p(S) = true implies ∀S ′ ⊇ S p(S ′) = true).

This result is needed for proving Theorem 3.1.

Lemma 3.2 The data utility of ajump(1) is always better than or equal to that of ajump(i)

(i > 1) when both algorithms are from the same family with a set-monotonic privacy

property p(.) and n = 3.

Proof: As shown in Section 3.3.2.2, per1(t0), per2(t0), and ds2(t0) are identical once

the sequence of generalization functions are given. Therefore, either t0 can be released by

g1 (or g2) in both ajump(1) and ajump(i) (i > 1), or it cannot be in both of them.

34

For g3, based on Lemma 3.1 and the definition of set-monotonic, dsi
3(t0) satisfies

privacy property only if ds1
3(t0) satisfies. The proof is complete.

Theorem 3.1 For any i > 1, there always exist cases in which the data utility of the

algorithm ajump(i) is better than that of ajump(1), and vice versa.

Proof: The key is to have different disclosure sets ds3 under the two algorithms such

that one satisfies p(.) and the other fails. Figure 3.2 illustrates such evaluation paths.

Figure 3.2: The Construction for ajump(1) and ajump(i) (1 < i)

By Lemma 3.2, the case where the data utility of ajump(1) is better than or equal to

that of ajump(i) (i > 1) is trivial to construct and hence is omitted. We only show the other

case where ajump(i) has better data utility. Basically, we need to design a table to satisfy the

following. First, per1 and per2 do not satisfy p(.) while per3 does. Second, p(dsi
3) = true

and p(ds1
3) = false are both true.

Table 3.9 shows our construction for the proof. The privacy property p(.) is that the

highest ratio of a sensitive value in a group must be no greater than 1
2
. Notice that here (and

35

in the remainder of the paper) p(.) is not necessarily set-monotonic. We show that ajump(i)

can disclose using g3, whereas ajump(1) cannot.

1. For this special case, dsk
3(t0) can be computed by first excluding any table t for which

p(per1(t)) = true. The tables in dsi
3(t0) must belong to one of the following four

disjoint sets.

In the first case, I has sensitive value C6. The number of tables in this case is
(
2
1

) ×(
2
1

) × (
(
4
1

) × (
3
1

)
) × (

(
6
2

) × (
4
2

)
) = 48 × 90 = 4320. Denote this set by S1. In the

other three cases, I does not have C6 and both N and O have C7, C8, or C9, denoted

respectively by S2, S3, and S4. Each of these includes
(
2
1

)×(
2
1

)× (
(
4
1

)×(
3
1

)
)×(

2
1

)×
(
(
4
1

)× (
3
1

)
) = 48 × 24 = 1152 tables.

Now consider generalizing these tables using g2. All tables in the last three sets

cannot be disclosed under g2 since each of their permutation sets under g2 fails the

privacy property. For the same reason, tables in the first set in which both N and O

have C7, C8, or C9, which is denoted as S ′
1, cannot be disclosed under g2, either. The

cardinality of S ′
1 is

(
2
1

)× (
2
1

)× (
(
4
1

)× (
3
1

)
) × (

4
2

)× (
3
1

)
= 48 × 18 = 864.

For ajump(i), all the tables in (S1 \ S ′
1) will be excluded from dsi

3(t0). The reason is

the following. Each of their permutation sets under g2 satisfies the privacy property,

so ajump(i) will disclose them either under g2 or after g3. Therefore, dsi
3(t0) =

S ′
1 ∪ S2 ∪ S3 ∪ S4. The highest ratio of sensitive value is that of A and B associated

with C0 or C1, which is 1
2
. Since dsi

3(t0) satisfies the privacy property, it can be

disclosed using g3 under ajump(i).

2. As to the case of ajump(1), the disclosure set of all the tables in S1 \S ′
1 do not satisfy

the privacy property and hence all of them cannot be removed from ds1
3(t0). The

reason is as follows. First, the permutation set of each such table under g2 satisfies

the privacy property. Next, consider their disclosure sets under g2. The set S1 \ S ′
1

can be further divided into three disjoint subsets as follows.

36

• Either N or O has C7 and the other has C8. This subset has
(
2
1

)× (
2
1

)× (
(
4
1

)×(
3
1

)
)× (

1
1

)× (
(
4
1

)× (
3
1

)
)× (

2
1

)
= 48× 24 = 1152 tables. Based on the sensitive

value of H , this subset can be further divided into two disjoint subsets again.

(a) H has C6. This subset has
(
2
1

)× (
2
1

)× (
(
3
1

)× (
2
1

)
) × (

1
1

)× (
(
4
1

)× (
3
1

)
) ×(

2
1

)
= 48 × 12 = 576 tables. For each table in this subset, to obtain its

disclosure set, we must exclude the tables that can be disclosed under g1

from its permutation set following the same rule as above. The tables in

its disclosure set must satisfy that both H and I have C6. The ratio of both

H and I being associated with C6 is 1.0 > 0.5. This clearly violates the

privacy property.

(b) H does not have sensitive value C6, but has either C4 or C5. This subset

has
(
2
1

) × (
2
1

) × (
3
1

) × (
2
1

) × (
1
1

) × (
(
4
1

) × (
3
1

)
) × (

2
1

)
= 48 × 12 = 576

tables. Similarly, the tables in the disclosure set must satisfy that two from

the set {E,F,G} have C6. Moreover, one and only one of H and I has

C6. Therefore, the ratio of both E, F , and G being associated with C6 is

2
3

> 0.5. This also violates the privacy property.

In summary, the disclosure set of every table in this subset under function g2 will

violate the privacy property, and consequently these tables cannot be disclosed

under g2. Therefore, the algorithm ajump(1) must continue to evaluate these

tables under g3 whose permutation set satisfies the privacy property.

• The other two cases are that N and O have C7 and C9, respectively, or C8

and C9, respectively. Similarly, each has 1152 tables, and for the same reason

as above, the disclosure set of each table in each subset does not satisfy the

privacy property, and hence cannot be disclosed under g2.

Consequently, all the tables in S1 \ S ′
1 cannot be removed from ds1

3(t0). Therefore,

ds1
3(t0) = S1∪S2∪S3∪S4. The ratio of I being associated with C6 is 48×90

48×(90+24×3)
=

37

0.556 > 0.5. This violates the privacy property. Therefore, the given table cannot be

disclosed using g3 under ajump(1).

QID g1 g2 g3 . . .
A C0 C0 C0 . . .
B C1 C1 C1 . . .
C C2 C2 C2 . . .
D C3 C3 C3 . . .
E C4 C4 C4 . . .
F C5 C5 C5 . . .
G C6 C6 C6 . . .
H C6 C6 C6 . . .
I C6 C6 C6 . . .
J C7 C7 C7 . . .
K C7 C7 C7 . . .
L C8 C8 C8 . . .
M C8 C8 C8 . . .
N C9 C9 C9 . . .
O C9 C9 C9 . . .

Table 3.9: The Case Where ajump(i) Has Better Utility Than ajump(1)

3.4.1.2 ajump(i) vs. ajump(j) (1 < i < j)

Next, we prove the data utility of ajump(i) and ajump(j) to be incomparable by

constructing non-overlapping evaluation paths.

Theorem 3.2 For any j > i > 1, there always exist cases where the data utility of the

algorithm ajump(i) is better than that of ajump(j), and vice versa.

Proof: Since both ajump(i) and ajump(j) can jump over iterations of the algorithm, we

can easily construct evaluation paths for the proof. Figure 3.3 illustrates such constructed

paths.

Firstly, the case where ajump(i) has better utility than ajump(j) (1 < i < j) is

relatively easier to construct. We basically need to construct a case satisfying the following

38

Figure 3.3: The Construction for ajump(i) and ajump(j) (1 < i < j)

conditions:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(if ω = 1), p(perω) = false;

(if ω = 2), p(perω) = true ∧ p(dsω) = false;

(if ω = i + 2), p(perω) = true ∧ p(dsi
ω) = true.

The above conditions imply that gi+2 will be used to disclose under ajump(i), while

the algorithm ajump(j) will jump over the (i + 2)th function to disclose under or after gj+2

since permutation set of g2 satisfies privacy property while disclosure set of g2 does not.

Secondly, we show the construction for the other case where ajump(i) has worse

utility than ajump(j) (1 < i < j). We basically need to construct a case satisfying the

following conditions:

39

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(if ω = 1), p(perω) = false;

(if ω = 2), p(perω) = true ∧ p(dsi,j
ω) = false;

(∀ω ∈ [3, j]), p(perω) = false;

(∀ω ∈ [j + 1, j + 2]), p(perω) = true;

(if ω = j + 1), p(dsi
ω) = false;

(if ω = j + 2), p(dsj
ω) = true.

The above conditions imply that gj+2 will be used to disclose under ajump(j). On

the other hand, when ajump(i) evaluates gi+2, since its permutation set does not satisfy

the privacy property, the algorithm will move to the next function, and repeat this until it

reaches gj+1. Since dsi
j+1(t0) does not satisfy the privacy property, the algorithm will jump

to gj+1+i and will disclose using a function beyond gj+2.

Table 3.10 shows our construction where the privacy property is again that the high-

est ratio of a sensitive value is no greater than 1
2
. We assume the table has many others

tuples not shown (the purpose of these additional tuples is only to ensure the data util-

ity of the generalizations is in a non-increasing order). The left (right) side of Table 3.10

shows the case where the data utility of ajump(i) is better (worse) than that of ajump(j)

(1 < i < j). Without loss of generality, we discuss the first 12 tuples in these two tables.

Firstly, we discuss the left side of Table 3.10. The given table, denoted by t0, cannot

be disclosed under g1 since p(per1) = false. For g2, we have p(per2) = true. The tables

in ds2 (note that dsi
2 ≡ dsj

2 as shown in Section 3.3.2.2) satisfy that E, F , G, and H have

the sensitive value C4, S, S, and C5, respectively. Clearly, p(ds2) = false, and g2(t0)

cannot be disclosed, either. Then ajump(i) and ajump(j) will jump to evaluate under gi+2

and gj+2, respectively.

40

Now we show that ajump(i) can be disclosed using gi+2. The dsi
i+2 can be computed

first by excluding the tables {t : p(per1(t) = true}. The tables in dsi
i+2 must belong to one

of the following three disjoint sets.

1. Two of A, B, and C have S. This subset has
(
3
1

)× (
5
1

)× 4!× 5! = 3× 5!× 5! tables.

2. Both D and E have S. This subset has 5! × 5! tables.

3. Both F and G have S. This subset also has 5! × 5! tables.

Next, ajump(i) will evaluate these tables using g2. Clearly, the permutation set of

each of these tables satisfies privacy property. The ajump(i) will further evaluate their ds2.

As discussed above, all the tables in last set cannot be disclosed under g2. Similarly, those

in second set cannot either. For the first set, all the tables which D has S are safe under g1.

In other words, the ds2 for each table in this set satisfies that two of A, B, and C have S,

which violates the privacy property. Summarily, all these tables are in dsi
i+2(t0). The ratio

of A, B, and C being associated with S are 2
5
, which is the highest ratio. Thus, gi

i+2(t0) can

be safely released. Besides, ajump(j) must disclose table t0 under or after gj+2, therefore,

in this case, ajump(i) has better data utility than ajump(j).

Secondly, we discuss the right side of Table 3.10. Similarly, ajump(i) will jump to

evaluate gi+2 while ajump(j) will jump to gj+2. For ajump(j), since p(perj+2) = true and

p(dsj
j+2) = true (The ratio of A, B, C, J , K, and L being associates with S is 2

9
which

is highest ratio), therefore, ajump(j) will disclose gj+2. For ajump(i), since p(peri+2) =

false, it will move to evaluate gi+3 and repeat until gj+1 due to the same reason. Obviously,

the tables in dsi
j+1 satisfy that both F and G have sensitive value S, which violates the

privacy property. Therefore, the algorithm ajump(i) jumps beyond gj+2 since j + 2 <

j + 1 + i. Clearly, with these constructions, both ajump(i) and ajump(j) will follow the

desired evaluation paths as shown in Figure 3.3.

41

(a). ajump(i) better than ajump(j) (b). ajump(i) worse than ajump(j)

QID g1 g2 . . . gi+2 . . . gj+2 . . .
A C0 C0 . . . C0 . . . C0 . . .
B C1 C1 . . . C1 . . . C1 . . .
C C2 C2 . . . C2 . . . C2 . . .
D C3 C3 . . . C3 . . . C3 . . .
E C4 C4 . . . C4 . . . C4 . . .
F S S . . . S . . . S . . .
G S S . . . S . . . S . . .
H C5 C5 . . . C5 . . . C5 . . .
I C6 C6 . . . C6 . . . C6 . . .
J C7 C7 . . . C7 . . . C7 . . .
K C8 C8 . . . C8 . . . C8 . . .
L C9 C9 . . . C9 . . . C9 . . .

. .

QID g1 g2 g3 . . . gj gj+1 gj+2 . . .
A C0 C0 C0 . . . C0 C0 C0 . . .
B C1 C1 C1 . . . C1 C1 C1 . . .
C C2 C2 C2 . . . C2 C2 C2 . . .
D C3 C3 C3 . . . C3 C3 C3 . . .
E C4 C4 C4 . . . C4 C4 C4 . . .
F S S S . . . S S S . . .
G S S S . . . S S S . . .
H C5 C5 C5 . . . C5 C5 C5 . . .
I C6 C6 C6 . . . C6 C6 C6 . . .
J C7 C7 C7 . . . C7 C7 C7 . . .
K C8 C8 C8 . . . C8 C8 C8 . . .
L C9 C9 C9 . . . C9 C9 C9 . . .

. .

Table 3.10: The Data Utility Comparison Between ajump(j) and ajump(i) (1 < i < j)

3.4.1.3 ajump(�k1) vs. ajump(�k2) (�k1 �= �k2)

Next, we extend the above results to the more general case in which the two algo-

rithms ajump(�k1) and ajump(�k2) both have an n-dimensional vector as their jump distances.

Theorem 3.3 For any �k1, �k2 ∈ [1, n]n, there always exist cases in which the data utility of

the algorithm ajump(�k1) is better than that of ajump(�k2), and vice versa.

Proof: Suppose the first element with different jump distance of �k1 and �k2 is the ith

element. Without the loss of generality, assume that �k1[i] < �k2[i]. Figure 3.4 illustrates

such constructed paths. There are two cases as follows,

First, �k1[i] = 1: Since ds
�k1
l = ds

�k2
l for all 1 ≤ l ≤ i, and ds

�k1
i+1 ⊇ ds

�k2
i+1, we

can construct in a similar way as in the proof of Theorem 3.1. Basically, we construct the

following evaluation path: per1 → per2 → . . . → peri → peri+1 → dsi+1 so that in one

case we have p(ds
�k1
i+1) = true ∧ p(ds

�k2
i+1) = false, whereas in the other case we have

p(ds
�k1
i+1) = false ∧ p(ds

�k2
i+1) = true.

Second, �k1[i] > 1: In this case, we consider two sub-cases.

1. (∃j)((i + �k1[i] ≤ j < i + �k2[i]) ∧ (j + �k1[j] > i + �k2[i])):

In this sub-case, we can construct the following two evaluation paths.

42

Figure 3.4: The Construction for ajump(�k1) and ajump(�k2) (�k1 �= �k2)

(a) ajump(�k1) : per1 → per2 → . . . → peri → ds
�k1
i → peri+ �k1[i] → . . . → perj →

ds
�k1
j → perj+ �k1[j] → . . .

ajump(�k2) : per1 → per2 → . . . → peri → ds
�k2
i → peri+ �k2[i] → p(ds

�k2

i+ �k2[i]
) =

true

(b) ajump(�k1) : per1 → per2 → . . . → peri → ds
�k1
i → peri+ �k1[i] → p(ds

�k1

i+ �k1[i]
) =

true

ajump(�k2) : per1 → per2 → . . . → peri → ds
�k2
i → peri+ �k2[i] → . . .

Since j + �k1[j] > i + �k2[i], the data utility of ajump(�k1) in the first case is worse than

that of ajump(�k2). Meanwhile, since i+ �k1[i] < i+ �k2[i], we have the converse result

in the second case.

2. ¬(∃j)((i + �k1[i] ≤ j < i + �k2[i]) ∧ (j + �k1[j] > i + �k2[i])):

In this sub-case, ds
�k1

i+ �k2[i]
⊆ ds

�k2

i+ �k2[i]
. We can reason as follows. The disclosure set

of gi+ �k2[i] under ajump(�k2) is computed by excluding from its permutation set the

43

tables which can be disclosed using g1 and those which p(per2(t)) = true; however,

the disclosure set under ajump(�k1) needs to further exclude the tables which can be

disclosed under some function gj and (j, 0) is in the evaluation path, where (i +

�k1[i] ≤ j ≤ i + �k2[i] − 1). Based on this result, we can construct the following

evaluation paths.

(a) ajump(�k1) : per1 → per2 → . . . → peri → ds
�k1
i → peri+ �k1[i] → . . . →

peri+ �k2[i] → p(ds
�k1

i+ �k2[i]
) = false

ajump(�k2) : per1 → per2 → . . . → peri → ds
�k2
i → peri+ �k2[i] → p(ds

�k2

i+ �k2[i]
) =

true

(b) ajump(�k1) : per1 → per2 → . . . → peri → ds
�k1
i → peri+ �k1[i] → . . . →

peri+ �k2[i] → p(ds
�k1

i+ �k2[i]
) = true

ajump(�k2) : per1 → per2 → . . . → peri → ds
�k2
i → peri+ �k2[i] → p(ds

�k2

i+ �k2[i]
) =

false

Clearly, the data utility of ajump(�k1) in the first (second) case is worse (better) than

that of ajump(�k2).

3.4.2 Reusing Generalization Functions

With the naive strategy, whether a generalization function satisfies the privacy prop-

erty is independent of other functions. Therefore, it is meaningless to evaluate the same

function more than once. However, we now show that with the k-jump strategy, it is mean-

ingful to reuse a generalization function along the evaluation path. This will either increase

the data utility of the original algorithm, or lead to new algorithms with incomparable data

utility to enrich the the existing family of algorithms. That is, reusing generalization func-

tions may benefit the optimization of data utility.

44

Theorem 3.4 Given the set of generalization functions, there always exist cases in which

the data utility of the algorithm with reusing generalization functions is better than that of

the algorithm without reusing, and vice versa.

Proof: Consider two algorithms a1 and a2 that define the functions g1, g2, g3, g4, . . .

and g1, g2, g3, g2′ , g4, . . ., respectively, where g2′(.) and g2() are identical. Suppose both al-

gorithms has the same jump distance k = 1, and the privacy property is not set-monotonic.

We can construct the following two evaluation paths.

1. a1(t0) : per1(t0) → per2(t0) → ds1
2(t0) → per3(t0) → per4(t0) . . .

a2(t0) : per1(t0) → per2(t0) → ds1
2(t0) → per3(t0) → per2′(t0) → ds1

2′(t0) →
p(ds1

2′(t0)) = true

2. a1(t0) : per1(t0) → per2(t0) → per3(t0) → per4(t0) → ds1
4(t0) → p(ds1

4(t0)) =

true

a2(t0) : per1(t0) → per2(t0) → per3(t0) → per2′(t0) → per4(t0) → ds1
4(t0) →

p(ds1
4(t0)) = false

Clearly, the data utility of a1 in the first case is worse than that of a2, while in the

second case it is better.

It is worth noting that although the same generalization function is repetitively eval-

uated, its disclosure set will depend on the functions that appear before it in the evaluation

path. Take the identical functions g2 and g′
2 above as an example, the disclosure set of g2

is computed by excluding from its permutation set the tables which can be disclosed under

g1; however, the disclosure set of g′
2 needs to further exclude tables which can be disclosed

under g3. Therefore, ds2′ ⊆ ds2. Generally, dsi′ ⊆ dsi when gi(.) is reused as gi′(.) in a

later iteration. This leads to the following.

Proposition 3.1 With a set-monotonic privacy property, reusing generalization functions

in a k-jump algorithm does not affect the data utility under ajump(1).

45

Proof: Suppose gi(.) is reused as gi′(.) in a later iteration of the algorithm. For

any table t, since dsi′(t) ⊆ dsi(t), p(dsi′(t)) = true implies p(dsi(t)) = true for any

set-monotonic privacy property p(.). Therefore, if p(dsi′(t)) = true, the algorithm will

disclose under gi(.); if p(dsi′(t)) = false then the algorithm will continue to the next

iteration. In both cases, gi′(.) cannot exclude the tables from permutation set other than

gi(.) can do, therefore, gi′(.) does not affect the data utility.

On the other hand, when generalization functions are reused at the end of the orig-

inal sequence of functions, some tables which will lead to disclosing nothing under the

original sequence of functions may have a chance to be disclosed under the reused func-

tions, which will improve the data utility.

Proposition 3.2 Reusing a generalization function after the last iteration of an existing

k-jump algorithm may improve the data utility when p(.) is not set-monotonic.

Proof: We construct a case in which reusing a function will improve the data utility.

Consider two algorithms a1 and a2 that define the functions g1, g2, g3 and g1, g2, g3, g2′ ,

respectively, where g2′(.) and g2(.) are identical. Suppose both algorithms have the same

jump distance k = 1, and the privacy property is not set-monotonic. We need to construct

the following two evaluation paths by which a1 will disclose nothing, while a2 will disclose

using g2′ .

1. a1(t0) : per1(t0) → per2(t0) → ds1
2(t0) → p(per3(t0)) = false

2. a2(t0) : per1(t0) → per2(t0) → ds1
2(t0) → per3(t0) → per2′(t0) → ds1

2′(t0) →
p(ds1

2′(t0)) = true

Table 3.11 shows our construction. The table will lead to disclosing nothing without

reusing g2, whereas reusing g2 will lead to a successful disclosure. In this example, the

jump distance is 1, and the privacy property is that the highest ratio of any sensitive value

is no greater than 1
2
.

46

More specifically, the given table, denoted by t0, cannot be disclosed under g1(.) or

g3(.) since p(per1) = p(per3) = false. For g2, we have p(per2) = true. The tables in ds2

must be in one of the following three disjoint sets.

1. C has the sensitive value C3. The number of such tables is
(
2
1

) × (
(
4
1

) × (
3
1

)
) = 24.

Denote this set by S1.

2. C does not have C3, and both D and E have C3. There are
(
2
1

)× (
2
1

)× (
2
1

)
= 8 such

tables. Denote it by S2.

3. C does not have C3, and both F and G have C3. Similarly, there are 8 such tables.

Denote this set by S3.

We then have ds2 = S1 ∪ S2 ∪ S3. The ratio of C being associated with C3 is

24
24+8+8

= 0.6 > 0.5, so g2(t0) cannot be disclosed, either.

Now, consider the case that g2 is reused as g2′ . To calculate the disclosure set of g2′ ,

the tables which can be disclosed under g1, g2, and g3 must be excluded from ds2′ . After

excluding the tables which can be disclosed under g1, we have that the remaining tables in

ds2′ are the same as above, that is, S1 ∪ S2 ∪ S3. These tables cannot be disclosed under

g2 as mentioned above. We further evaluate whether these tables can be disclosed using g3.

S1 can be further divided into three disjoint subsets as follows.

1. One and only one of D and E has C3, so does F and G. This subset has
(
2
1

)× (
2
1

)×(
2
1

)× (
2
1

)
= 16 tables, and is denoted by S11 .

2. Both D and E have C3. This subset has
(
2
1

)× (
2
1

)
= 4 tables, and is denoted by S12 .

3. Both F and G have C3. This subset also has 4 tables, and is denoted by S13 .

All the tables in S12 , S13 , S2, and S3 cannot be disclosed under g3 since their per-

mutation sets under g3 do not satisfy the privacy property (the highest ratios of a sensitive

value are respectively 0.6, 1.0, 0.6, and 1.0). On the other hand, the tables in S11 can be

disclosed under g3. We can reason as follows. Consider each table t in S11 under g3. Since

47

the tables which can be disclosed under g1 must be excluded from ds3(t), the remaining

tables in ds3(t) must be in one of the following two disjoint sets.

1. Both A and B have C3. This subset has 3! × 2! = 12 tables, and is denoted by S111
.

2. Two of C, D and E have C3. This subset has (
(
3
1

) × (
2
1

)
) × (

3
1

) × (
2
1

)
= 36 tables,

and is denoted by S112
.

We must exclude from ds3(t) the tables which can be disclosed using g2. The tables

in S111
cannot be disclosed under g2 since their permutation sets under g2 do not satisfy the

privacy property. Furthermore, the tables in S112
can be further divided into two disjoint

subsets based on whether C has C3. The tables in the case that C has C3 cannot be disclosed

using g2 because of the same reason as those in S111
, while the tables in the case that C

does not have C3 cannot be disclosed using g2 because of the similar reason as g2(t0). In a

word, all the tables in S111
and S112

cannot be disclosed using g2, accordingly, these tables

cannot be excluded from ds3(t). Thus, ds3(t) = S111
∪ S112

. The ratio of C, D, E, F or G

being associated with C3 in ds3(t) is 1
2

which is the highest ratio, accordingly, the tables in

S11 can be disclosed under g3.

Therefore, the disclosure set under the reused function g2′ must exclude the tables

in S11 , consequently, ds2′ = S12 ∪ S13 ∪ S2 ∪ S3. The ratio of F and G being associated

with C3 are 0.5, which is the highest ratio. Therefore, g2′(t0) can be safely disclosed.

QID g1 g2 g3 g2′

A C1 C1 C1 C1

B C2 C2 C2 C2

C C3 C3 C3 C3

D C4 C4 C4 C4

E C5 C5 C5 C5

F C3 C3 C3 C3

G C3 C3 C3 C3

Table 3.11: The Case Where Reusing Generalization Functions Improves Data Utility

48

3.4.3 asafe and ajump(1)

We show that the algorithm asafe is equivalent to ajump(1) when the privacy property

is either set-monotonic, or based on the highest ratio of sensitive values.

Given a group ECi in the disclosed generalization, let nri be the number of tuples

and nsi be the number of unique sensitive values. Denote the sensitive values within ECi

by {si.1, si.2, . . . , si.nsi
}. Denote by nsi.j

the number of tuples associated with si.j .

Lemma 3.3 If the privacy property is either set-monotonic or based on the highest ratio of

sensitive values, then a permutation set not satisfying the privacy property will imply that

any of its subsets does not, either.

Proof: The result is obvious if the privacy property is set-monotonic. Now consider

a privacy property based on the highest ratio of sensitive values, which is supposed to be

no greater than a given δ. Suppose that ECi is a group that does not satisfy the privacy

property, and in particular, si.j is a sensitive value that leads to the violation. First, based

on Lemma 3.5, we have that
nsi.j

nri
> δ. Let nt be the cardinality of any subset of the

permutation set. Since all tables in this subset have the same permutation set, each such

table has totally nsi.j
appearances of si.j in ECi. Therefore, among these tables, the total

number of appearances of si.j in ECi is nsi.j
×nt. On the other hand, assume that one subset

of the permutation set with totally nt tables actually satisfies the privacy property. Then,

the number of each sensitive value associated with a tuple should satisfy |si.j| ≤ δ × nt.

Therefore, the total number of sensitive values for all identities is:

nri × |si.j| ≤ nri × (δ × nt) < nri ×
nsi.j

nri

× nt = nsi.j
× nt. (3.3)

Therefore, we have nsi.j
×nt < nsi.j

×nt, a contradiction. Consequently, the initial

assumption that there exists a subset of the permutation set satisfying the privacy property

must be false.

49

Since the disclosure set is computed by excluding tables from the corresponding

permutation set, we immediately have the following.

Corollary 3.1 When the privacy property is either set-monotonic or based on the highest

ratio of sensitive values, the algorithm asafe has the same data utility as ajump(1).

For other kinds of privacy properties, we prove that the data utility is again incom-

parable between asafe and ajump(1). First, we compare their disclosure set under the 3rd

generalization function.

Lemma 3.4 The ds3 under asafe is a subset of that under ajump(1).

Proof: By definition, we have the following (where the superscript 0 denotes asafe).

ds1
3(t0) = per3(t0)/{t|(t ∈ per3(t0)) ∧ (p(per1(t)) ∨ (p(per2(t)) ∧ p(ds1

2(t))))} (3.4)

ds0
3(t0) = per3(t0)/{t|(t ∈ per3(t0)) ∧ (p(ds0

1(t)) ∨ p(ds0
2(t)))}

= per3(t0)/{t|(t ∈ per3(t0)) ∧ (p(per1(t)) ∨ p(ds1
2(t)))} (3.5)

Therefore, we have ds1
3(t0) ⊇ ds0

3(t0).

Theorem 3.5 The data utility of asafe and ajump(1) is generally incomparable.

Proof: Based on Lemma 3.4, we can construct the following two evaluation paths.

1. ajump(1) : per1 → per2 → per3 → p(ds1
3) = true

asafe : ds0
1(per1) → ds0

2 → p(ds0
3) = false

2. ajump(1) : per1 → per2 → per3 . . .

asafe : ds0
1 → p(ds0

2) = true

Clearly, the data utility of ajump(1) in the first case is better than that of asafe, while

in the second case it is worse.

50

3.5 Computational Complexity of k-Jump Algorithms

In this section, we analyze the computational complexity of k-jump algorithms.

Given a micro-data table t0 and one of its k-jump algorithm a, let nr be the cardinality of

t0, and np and nd be the number of tables in its permutation set and disclosure set under

function gi, respectively. In the worst case, np = nr! and nd ≈ np, in which there is only

one anonymized group and all the sensitive values are distinct.

Lemma 3.5 Given a micro-data table t0 under a generalization function, the distribution

of sensitive values corresponding to each identity in the permutation set is coincident with

the distribution of the multiset of sensitive values in the anonymized group the identity

belongs to.

The result of Lemma 3.5 is obvious due to the definition of permutation set. Besides,

to evaluate a permutation set against k-anonymity privacy property, we only need to count

the number of different sensitive values in each anonymized group. Based on these re-

sults, the running time of evaluating permutation set against privacy property reduces from

O(np × nr) to O(nr) for most existing privacy models, such as k-anonymity, l-diversity,

and so on. Given a table t0, let ep(t0) and ed(t0) be the running time of evaluating permuta-

tion set and disclosure set under a function gi, respectively. Since generally the disclosure

set does not satisfy Lemma 3.5, the running time of evaluating disclosure set is O(nd×nr).

Nevertheless, for simplicity, we will consider that O(ep(t)) = O(1) and O(ed(t)) = O(1)

in the following discussion. To facilitate the analysis, we elaborate the family of k-jump

algorithms as shown in Table 3.12.

Basically, an ajump(�k) algorithm checks the original table t0 against privacy prop-

erty p(.) under each generalization function in the given order and discloses the first gener-

alization gi in the sequence whose permutation set peri and disclosure set dsi both satisfy

the desired privacy property. To determine whether a table can be disclosed under certain

generalization function gi in the algorithm, its permutation set peri is evaluated first. If

51

Algorithm ajump(t0, sg,�k) Algorithm ds(t0, i, sg,�k)
Input: an original table t0,

sequence of functions sg =
(g1, g2, . . . , gn),
vector of jump distance �k,
and a privacy property p(.);

Output: a generalization gi(1 ≤ i ≤ n) or
∅;

1: i ← 1;
2: while (i ≤ n) do

3: if (p(per(gi(t0))=true) then

4: if (p(ds(t0, i, sg,�k)) = true) then

5: return gi(t0);
6: else

7: i ← i + �k[i];
8: end if

9: else

10: i ← i + 1;
11: end if

12: end while

13: return ∅;

Input: a table t0,
function i (to calculate t0’s disclosure
set),
sequence of functions sg =
(g1, g2, . . . , gn),
vector of jump distances �k,
and a privacy property p(.);

Output: the disclosure set dsi(t0);
1: dsi ← per(gi(t0));
2: for all (t ∈ dsi) do

3: j ← 1;
4: while (j ≤ i − 1) do

5: if (p(per(gj(t))) = true) then

6: if (p(ds(t, j, sg,�k)) = true)
then

7: dsi ← dsi/{t};
8: break;
9: else

10: j ← j + �k[i];
11: end if

12: else

13: j ← j + 1;
14: end if

15: end while

16: if (j > i) then

17: dsi ← dsi/{t};
18: end if

19: end for

20: return dsi;

Table 3.12: Algorithms: ajump(�k) and ds
�k
i With Any Given Privacy Property p(.)

the permutation set does not satisfy the privacy property, the table will not be disclosed

under this function and the algorithm moves to evaluate under next function, otherwise, its

disclosure set dsi is evaluated. If the disclosure set satisfies the privacy property, the table

can be disclosed under this function gi; otherwise, the algorithm will check the (i + �k[i])th

generalization function in a similar way. This procedure will continue until the table is suc-

cessfully disclosed under a function gi (1 ≤ i ≤ n) or fails to satisfy the privacy property

for all functions and nothing is disclosed.

52

To compute the disclosure set dsi of t0 under generalization function gi, we first

enumerate all possible tables by permuting each group in the generalization gi(t0). Then,

by following the algorithm, for each table t in the permutation set peri(t0), we first assume

it is the original table t0, check under the generalization functions in sequence following

the paths of the generalization algorithm, then determine whether it will not be disclosed

under generalization function gi. Such tables may fall into two different cases. First, the

table can be disclosured under certain generalization function gj(j < i) before gi; Second,

the table will not be checked by the generalization function gi, even it cannot be disclosed

before gi, which has been discussed in Section 3.3.2.1.

Based on the above detailed analysis of the algorithm, it can be shown that the run-

ning time of evaluating whether a given disclosure set satisfies privacy property is different

from the time of deriving that disclosure set. On one hand, we consider O(ed(t)) = O(1).

On the other hand, to derive dsi(t0), we must separately evaluate each table t in peri(t0) to

determine whether it is a valid guess.

With the aforementioned discussions, we can analyze the time complexity of k-jump

algorithms as follows.

Theorem 3.6 Given a micro-data table t0, a generalization algorithm of k-jump strategy

that considers the sequence of generalization functions g1, g2, . . . , gn in the given order and

the jump-distance k, the computational complexity of such k-jump strategy is O((maxp)
n
k)

where maxp is the maximal cardinality of possible tables in the permutation set among the

functions.

Proof: Given a jump-vector, we prove the result by mathematical induction on n. For

simplicity, we assume the jump-vector to be jump-distance k, where k is a constant.

The Inductive Hypothesis: To compute the disclosure set of micro-data table t0 un-

der generalization function i in k-jump strategy, its computational complexity is O((maxp)
i
k).

53

The Base Case: When i = 1, it is clear that we only need to evaluate whether the

permutation set satisfies the privacy property, whose running time is ep(t).

For i = 2, 3, . . . , 1+k, as mentioned before, the tables for which p(perj) = true for

any j < i will be removed from gi’s disclosure set. Therefore, the worst case is to evaluate

all the permutation sets under each j < i and evaluate both permutation set and disclosure

set under function i. Thus, the running time is O((i−1)×maxp × ep(t)+ ep(t)+ ed(t)) =

O((k × maxp + 1) × ep(t)), which is O((maxp)
1).

The Inductive Assumption: Suppose the inductive hypothesis hold for any j > 0,

the running time for i ∈ [2 + j × k, 1 + k + j × k] is O((maxp)
j+1).

The Inductive Step: Now we show the hypothesis also holds for j + 1, and equiva-

lently, for i = 2+(j+1)×k, 3+(j+1)×k, . . . , 1+k+(j+1)×k. Based on the assumption

above, the most-time-consuming case is that for each table t in permutation set peri(t0),

there exists an evaluation of disclosure set psm(t) where m ∈ [2+j×k, 1+k+j×k]. There-

fore, the running time is O(ep(t)+ . . .+maxp×O((maxp)
j+1)+ed(t)) = O((maxp)

j+2).

Therefore, the assumption holds for any j > 0, and equivalently, for any i ≥ 2. This

concludes the proof.

Summarily, it is shown that the computational complexity of the family of algo-

rithms is exponential in n
k

. Although the worse case complexity is still exponential, this

is, to the best of our knowledge, one of the first algorithms that allow users to ensure the

privacy property and optimize the data utility given that the adversaries know the algo-

rithms. Furthermore, unlike the safe algorithms discussed in [53, 105] which only work

with l-diversity, the family of our algorithms ajump(�k) is more general and independent of

the privacy property and the measure of data utility.

54

3.6 Making Secret Choices of Algorithms

In this section, we discuss the feasibility of protecting privacy by making a secret

choice among algorithms. Recall that we say an algorithm is safe if it can ensure the

privacy property for any micro-data in the case that the adversary knows the algorithm

itself, otherwise, we say it is unsafe.

3.6.1 Secret-Choice Strategy

From previous discussions, we know that the family of algorithms ajump share two

properties, namely, a large cardinality and incomparable data utility. The practical signifi-

cance of this result is that we can now draw an analogy between ajump and a cryptographic

algorithm, with the jump distance �k regarded as a cryptographic key. Instead of relying

on the secrecy of an algorithm (which is security by obscurity), we can rely on the secret

choice of �k for protecting privacy.

On the other hand, as discussed in previous sections, a safe algorithm (e.g., asafe

or ajump) usually incur a high computational complexity, therefore, one may suggest that

we can make the secret choice among unsafe but more efficient algorithms instead of safe

algorithms to reduce the computational complexity. We first formulate the secret-choice

strategy.

The secret-choice strategy among a set of algorithms can take the following three

stages. Given a table t0 and the set of generalization functions gi(.)(1 ≤ i ≤ n), the

strategy first defines a large set of generalization algorithms (either safe or unsafe) based

on the set of functions, then randomly and secretly selects one of these algorithms, and

finally executes the selected algorithm to disclose the micro-data. We can thus describe the

above strategy as asecret shown in Table 3.13.

There certainly exist many approaches to defining the sets of algorithms (the first

stage of asecret). We demonstrate the abundant possibilities through the following two

55

Input: Table t0, a set of functions gi(.)(1 ≤ i ≤ n);
Output: Generalization g or ∅;
Method:

1. Define a large set of generalization algorithms A = {a1, a2, . . . , am}
based on gi(i ∈ [1, n]]);

2. Select an j ∈ [1, m] randomly for representing one of the above algorithms aj;
3. Return (Call aj);

Table 3.13: The Secret-Choice Strategy asecret

examples.

First, each generalization function is slightly revised to be a generalization algo-

rithm. That is, instead of only evaluating whether the permutation set of a micro-data table

under the function satisfies the desired privacy property, such generalization algorithm fur-

ther discloses the generalization or nothing. To complete the random selection, the asecret

will randomly select one of such algorithms and then discloses its corresponding general-

ization if it satisfies privacy property or nothing otherwise. Intuitively, this approach may

be safe as long as the cardinality of the set of functions is sufficient large. However, such

randomness will generally lead to worse data utility since usually the number of functions

under which the permutation sets of a given micro-data satisfy privacy property is relatively

low compared to the total number of functions. Consequently, such algorithm will disclose

nothing for the micro-data with considerably high probability. Therefore, in the following

discussion, without loss of generality, the randomness refers to the selection of algorithms

which is not to be confused with the selection of functions in an algorithm. In other words,

we assume that the algorithms sort the functions in a predetermined non-decreasing order

of the data utility.

The k-jump strategy is another possible approach to defining the set of algorithms

based on a given set of generalization functions. In k-jump, k is the secret choice, while all

the functions appear in each algorithm and are sorted based on data utility. Given the set of

functions, the one and only difference among k-jump algorithms is the jump-distance (k).

As discussed above, k-jump algorithms are safe and the adversaries can at most refine their

56

mental image to the disclosure set no matter whether they know the k. In other words, it

is not necessary to hide the k among the family of k-jump algorithms. Similarly, we do

not need to make a secret choice among other categories of safe algorithms. Therefore, in

the remainder of this section, we will restrict the discussions on the case of secret choice

among the unsafe algorithms based on predetermined order of the generalization functions.

We show that secret choice among such unsafe algorithms cannot guarantee the privacy

through a family of unsafe algorithms.

3.6.2 Subset Approach

To facilitate our discussion, we design a straightforward subset approach to define

the set of unsafe algorithms for the first stage of asecret. Given a set of generalization

functions G = {g1, g2, . . . , gn}, the subset approach first construct all the subsets SG of G

which includes at least 2 functions. Then the naive strategy discussed in Section 3.2.2 is

adapted on each of such subsets to embody an algorithm. That is, the functions in a subset

is sorted in the non-increasing order of the data utility, and then the first function under

which the permutation set of given micro-data satisfies the privacy property is disclosed;

otherwise, ∅ will be the output and nothing is disclosed as shown in Table 3.14. We assume

that the adversaries know the set of functions G since they know the released micro-data

and in most cases the generalization is based on the quasi-identifier. We also call the secret-

choice strategy built upon subset approach subset-choice strategy.

Input: Set of function G = {g1, g2, . . . , gn};
Output: Set of algorithms SA

Method:

1. Let SA = ∅;
2. Let SG = 2G/{∅ ∪ {gi : 1 ≤ i ≤ n}};
3. For each element Sf in SG

4. Create in SA an algorithm by applying naive strategy on Sf ;
5. Return SA;

Table 3.14: The Subset Approach For Designing the Set of Unsafe Algorithms

57

From the adversaries’ point of view, when they know the disclosed data, the subset-

choice strategy (that is, the secret-choice strategy with the subset approach as its first stage),

the privacy property, and the set of functions G, they may be able to validate their guesses

and refine their mental image about the original data. With the knowledge about G, the

adversary can know there are
(|G|

2

)
+

(|G|
3

)
+ . . . +

(|G|
|G|

)
= 2|G| − |G| − 1 possible dif-

ferent secret choices; With the knowledge of the disclosed data, the adversary can further

know the following two facts. First, the original micro-data is in the permutation set of

the disclosed generalization. Second, the generalization function corresponding to the dis-

closed data should be a function in the selected algorithms, and consequently the number

of possible secret choices in his/her mental image is reduced to be 2|G|−1 − 1. Each secret

choice corresponding to an algorithm is equally likely selected. For each of these refined

secret choices, the adversary first assumes that it is the true secret choice, then deduces

the disclosure set for given disclosed data and corresponding naive algorithm in a similar

way discussed in Section 3.1. Finally, the adversary refines his/her mental image to be

(2|G|−1 − 1) disclosure sets.

Based on such a mental image, the adversary may refine his knowledge about an

individual’s sensitive information. For example, for entropy l-diversity, the adversary can

calculate the ratio of an individual being associated with a sensitive value in each disclosure

set, and then average the ratio among all disclosure sets. Whenever the average ratio among

the disclosure sets of an individual being associated with a sensitive value is larger than

1
l
, the privacy of that individual is violated. Taking k-anonymity as another example, the

adversary can simply count the number of sensitive values that an individual possibly being

associated with among all disclosure sets. If the resultant number for any individual is less

than k, the privacy of that individual is violated.

58

3.6.3 The Safety of Subset-Choice Strategy

In the following, we show that subset-choice strategy cannot ensure the privacy

property by constructing a counter-example.

Theorem 3.7 Given a subset-choice strategy, there exist cases that the strategy discloses

an unsafe generalization.

(a). The Table t0 (b). The set G of generalization functions for t0

QID S

A C0

B C0

C C0

D C1

E C2

F C3

G C4

H C5

I C6

g1 g2 g3 g4 g5

QID S QID S QID S QID S QID S
A C0 A C0 B C0 A C0 A C0

B C0 C C0 C C0 B C0 B C0

C C0 B C0 A C0 C C0 C C0

D C1 D C1 D C1 D C1 D C1

E C2 E C2 E C2 E C2 E C2

F C3 F C3 F C3 F C3 F C3

G C4 G C4 G C4 G C4 G C4

H C5 H C5 H C5 H C5 H C5

I C6 I C6 I C6 I C6 I C6

Table 3.15: The Counter Example for Secret Choice among Unsafe Algorithms

Possible SG Probability Possible SG Probability

A B C A B C
{g1, g5} 1 1 1

7
{g1, g2, g5} 1 1 1

{g2, g5} 1 1
7

1 {g1, g3, g5} 1 1 1
{g3, g5} 1

7
1 1 {g1, g4, g5} 1 1 1

7

{g4, g5} 2
3

2
3

2
3

{g2, g3, g5} 1 1 1
{g1, g2, g3, g5} 1 1 1 {g2, g4, g5} 1 1

7
1

{g1, g2, g4, g5} 1 1 1 {g3, g4, g5} 1
7

1 1
{g1, g3, g4, g5} 1 1 1 {g1, g2, g3, g4, g5} 1 1 1
{g2, g3, g4, g5} 1 1 1

Table 3.16: The Possible Subsets of Functions and the Corresponding Probability of A,B,
and C Being Associated With C0

Proof: One counter example, that an algorithm taking subset-choice strategy dis-

closes a generalization while the privacy is actually violated, is sufficient to prove the theo-

rem. Table 3.15 shows our construction for the proof. The left tabular shows the micro-data

59

table t0 whose identifiers are removed. The right tabular shows the five generalization func-

tions in G. For clarification purposes, we intentionally keep the original value of QID. In

other words, we only focus on the anonymized groups as illustrated by the horizontal lines

while omitting the modification of quasi-identifiers. For example, by g1, we partition t0 into

two anonymized groups: A and B form one anonymized group, while the others (C − I)

form another group. In this construction, the privacy property is 2-diversity and the data

utility is measured by discernibility measure (DM).

Suppose that the algorithm select subset SG of generalization functions to be SG =

{g4, g5}. Obviously, the permutation set of t0 under function g4 does not satisfy 2-diversity,

while it does so under g5. Therefore, based on the subset-choice strategy, the algorithm

discloses g5(t0).

Unfortunately, the knowledge of G and disclosed table will enable the adversary

to refine his mental image about the original micro-data, and finally violate the privacy

property since the adversary can infer that the ratio of A, B and C being associated with

C0 is 272
315

> 1
2
.

The adversary can reason as follows. There are totally
(
5
2

)
+

(
5
3

)
+

(
5
4

)
+

(
5
5

)
= 26

possible secret choices of SG. By observing the disclosed data, the adversary knows that

g5 ∈ SG and then refines the number of possible choices to be
(
4
1

)
+

(
4
2

)
+

(
4
3

)
+

(
4
4

)
= 15.

That is, one, two, three or all of g1, g2, g3 and g4 together with g5 form SG. Note that these

15 possible subsets are equally likely to be SG. The possible subsets of functions are shown

in the possible SG column of Table 3.16.

By the data utility measurement DM, g1, g2, and g3 have the same data utility which

is better than that of g4, and g4 has better data utility than g5. From the adversary’s point of

view, since g5 is disclosed, the micro-data t0 under any other functions in the selected SG

should violate the 2-diversity (otherwise, other generalization should be disclosed based on

the subset-choice algorithm).

60

Based on the disclosed data g5, the adversary knows that only three individuals can

share the same sensitive value (C0). Therefore, the anonymized group {C−I} in g1, whose

cardinality is 7, cannot violate 2-diversity, neither do groups {B, D− I} in g2, {A, D− I}
in g3, and {D − I} in g4. In other words, the reason that subset approach does not disclose

t0 using function g1, g2, g3 or g4 is that the group {A, B}, {A, C}, {B, C} or {A, B, C}
respectively does not satisfy 2-diversity. For example, suppose that SG = {g1, g5} and g5

is disclosed, then g1 must violate 2-diversity, therefore, both A and B should be associated

with C0, while C can be associated with any sensitive value in set {Ci : i ∈ [0, 6]}. The

similar analysis can be applied to other possible subsets SG and the probability of A, B,

and C being associated with C0 are shown in Table 3.16 when corresponding subset SG

of G is selected. Since each SG is equally likely selected, the ratio of A being associated

with C0 is 12×1+2× 1
7
+1× 2

3

15
= 272

315
> 1

2
, so do B and C. In other words, once the adversary

knows G, the subset-choice algorithm, subset approach, and the disclosed data g5, he/she

can infer that A, B, and C is associated with C0 with ratio higher than 1
2

even in the case

that she/he does not know the secret choice (the adversary does not know which subset of G

is selected). This clearly violates the privacy property. Thus we have proved the theorem.

The counter example in the above proof is sufficient to demonstrate that secret

choices made among unsafe algorithms does not always guarantee the privacy property.

Therefore, safe algorithms are still necessary for preserving the privacy property.

3.7 Summary

In this chapter, we have proposed a novel k-jump strategy for preserving privacy in

micro-data disclosure using public algorithms. We have shown how a given unsafe general-

ization algorithm can be transformed into a large number of safe algorithms. By construct-

ing counter-examples, we have shown that the data utility of such algorithms is generally

61

incomparable. The practical impact of this result is that we can make a secret choice from

a large family of k-jump algorithms, which is analogous to choosing a cryptographic key

from a large key space, to optimize data utility based on a given table while preventing

adversarial inferences. It has been shown that the computational complexity of a k-jump

algorithm with n generalization functions is exponential in n
k

which indicates a reduction

in the complexity due to k (We shall discuss an efficient solution in next chapter). We have

also shown that making a secret choice among unsafe algorithms cannot ensure the desired

privacy property which embodies the need of safe algorithms from another standpoint.

62

Chapter 4

PPDP: An Efficient Strategy for

Diversity Preservation With Publicly

Known Algorithms

While the strategy in previous chapter is theoretically superior to existing ones due

to its independence of utility measures and privacy models, and its privacy guarantee under

publicly-known algorithms, it incurs a high computational complexity. In this chapter, we

study an efficient strategy for diversity preserving data publishing with publicly known

algorithms (algorithms as side-channel).

4.1 Overview

In many privacy-preserving applications ranging from micro-data release [46] to

social networks [44, 83], a major challenge is to keep private information secret while

optimizing the utility of disclosed or shared data. Recent studies further reveal that utility

optimization may actually interfere with privacy preservation by leaking additional private

information when algorithms are regarded as public knowledge [101,111]. Specifically, an

63

adversary can determine a guess of the private information to be invalid if it would have

caused the disclosed data to take a different form with better utility. By eliminating such

invalid guesses, the adversary can then obtain a more accurate estimation of the private

information.

A natural solution to this problem is to simulate the aforementioned adversarial rea-

soning [73,101,111]. Specifically, since knowledge about utility optimization can assist an

adversary in refining his/her mental images of the private information, we can first simulate

such reasoning to obtain the refined mental images, and then enforce the privacy property

on such images instead of the disclosed data. However, it has been shown that such ap-

proaches are inherently recursive and deemed to incur a high complexity [111].

In this chapter, we observe that the interference between privacy preservation and

utility optimization actually arises from the fact that those two processes are usually mixed

together in an algorithm. On the other hand, we also observe a simple fact that to meet

both goals does not necessarily mean to meet them at exactly the same time. Based on such

observations, we propose a novel privacy streamliner approach to decouple the process

of privacy preservation from that of utility optimization in order to avoid the expensive

recursive task of simulating the adversarial reasoning.

To make our approach more concrete, we study it in the context of micro-data re-

lease with publicly known generalization algorithms. Unlike traditional algorithms, which

typically evaluate generalization functions in a predetermined order and then release data

using the first function satisfying the privacy property, a generalization algorithm under our

approach works in a completely different way: The algorithm starts with the set of gener-

alization functions that can satisfy the privacy property for the given micro-data table; it

then identifies a subset of such functions satisfying that knowledge about this subset itself

will not assist an adversary in violating the privacy property (which is generally not true for

the set of all functions, as we will show later); utility optimization within this subset then

becomes simulatable by adversaries [56], and is thus guaranteed not to affect the privacy

64

property. We believe that this general principle can be applied to other similar privacy pre-

serving problems, although developing the actual solution may be application-specific and

non-trivial.

The contribution of this chapter is twofold. First, our privacy streamliner approach

is presented through a general framework that is independent of specific algorithmic con-

structions or utility metrics. This allows our approach to be easily adapted to a broad

range of applications to yield efficient solutions. We demonstrate such possibilities by de-

vising three generalization algorithms to suit different needs while following exactly the

same approach. Second, our algorithms provide practical solutions for privacy-preserving

micro-data release with public algorithms. As confirmed by both complexity analysis and

experimental results, those algorithms are more efficient than existing algorithms.

The rest of this chapter is organized as follows. We first build intuitions through an

example in the remainder of this section. We then present our main approach and support-

ing theoretical results in Section 4.2. Section 4.3 devises three generalization algorithms by

following the approach. Section 4.4 experimentally evaluates the efficiency and utility of

our algorithms. We discuss the possibilities for extending our approach and the practicality

of the approach in Section 4.5. We finally conclude the chapter in Section 4.6.

A Micro-Data Table t0 The Disclosure Sets

Name DOB Condition

Ada 1985 flu
Bob 1980 flu
Coy 1975 cold
Dan 1970 cold
Eve 1965 HIV

Name Condition

t01 t02 t03 t04 t05 t06 t07 t08 t09 t10
Ada flu cold flu cold flu cold flu cold HIV HIV
Bob flu cold flu cold HIV HIV flu cold flu cold
Coy cold flu cold flu cold flu HIV HIV cold flu
Dan cold flu HIV HIV cold flu cold flu cold flu
Eve HIV HIV cold flu flu cold cold flu flu cold

Table 4.1: The Motivating Example

Motivating Example

The left table in Table 4.1 shows a micro-data table t0 to be released. To protect

individuals’ privacy, the identifier Name will not be released. Also, the identifiers are

65

partitioned into anonymized groups, with the quasi-identifier DOB inside each such group

modified to be the same value [90] (in this chapter, we will only consider generalization

and leave suppression [29] and bucketization [107] for the future work). For simplicity,

we will focus on the partitioning of identifiers while omitting the modification of quasi-

identifiers. For this particular example, we assume the desired privacy property to be that

the highest ratio of a sensitive value Condition in any anonymized group must be no greater

than 2
3

[77].

By our privacy streamliner approach, we need to start with all partitions of the

identifiers that can satisfy the privacy property. In this example, any partition that includes

{Ada, Bob} or {Coy,Dan} will violate the privacy property, since the two persons inside

each of those groups share the same condition. It can be shown that there are totally 9

partitions satisfying the privacy property, as shown below. We will refer to the set of such

identifier partitions as the locally safe set (LSS).

P1 = {{Ada, Coy}, {Bob, Dan, Eve}},

P2 = {{Ada, Dan}, {Bob, Coy, Eve}},

P3 = {{Ada, Eve}, {Bob, Coy, Dan}},

P4 = {{Bob, Coy}, {Ada, Dan, Eve}},

P5 = {{Bob, Dan}, {Ada, Coy, Eve}},

P6 = {{Bob, Eve}, {Ada, Coy, Dan}},

P7 = {{Coy, Eve}, {Ada, Bob, Dan}},

P8 = {{Dan, Eve}, {Ada, Bob, Coy}},

P9 = {{Ada, Bob, Coy, Dan, Eve}}

It may seem to be a viable solution to start optimizing data utility inside the LSS,

since every partition here can satisfy the privacy property. However, such an optimization

may still violate the privacy property, because it is not simulatable by adversaries [56]

unless if we assume the LSS to be public knowledge (that is, adversaries may know that

66

each identifier partition in the LSS can satisfy the privacy property for the unknown table

t0). Unfortunately, this knowledge about LSS could help adversaries to violate the privacy

property. In this case, it can be shown that adversaries’ mental image about the micro-data

table would only include t01 and t02 shown in the right table in Table 4.1. In other words,

adversaries can determine that t0 must be either t01 or t02. Clearly, the privacy property is

violated since Eve is associated with HIV in both cases.

Since the LSS may contain too much information to be assumed as public knowl-

edge, we turn to its subsets. In this example, it can be shown that by removing P7 from

the LSS, the disclosure set becomes {t01, t02, t03, t04}. The privacy property is now satisfied

since the highest ratio of a sensitive value for any identifier is 1
2
. We call such a subset of

the LSS the globally safe set (GSS). Optimizing data utility within the GSS will not vio-

late privacy property, because the GSS can be safely assumed as public knowledge and the

optimization is thus simulatable by adversaries.

However, there is another complication. At the end of utility optimization, one

of the generalization functions in the GSS will be used to release data. The information

disclosed by the GSS and that by the released data is different, and by intersecting the

two, adversaries may further refine their mental image of the micro-data table. In this

example, since the adversaries’ mental image about the micro-data table in terms of the

GSS is {t01, t02, t03, t04}, adversaries know both Ada and Bob must be associated with

either flu or cold. Now suppose the utility optimization selects P3, then from the released

table, adversaries will further know that either Ada or Eve must have flu while the other has

HIV. Therefore, adversaries can now infer that Ada must have flu, and Eve must then have

HIV.

To address this issue, we will further confine the utility optimization to a subset of

the GSS. In this example, if we further remove P3, P6, P8 from the GSS, then the corre-

sponding mental image of adversaries will contain all the 10 tables (from t01 to t10). It

can be shown that now the privacy property will always be satisfied regardless of which

67

partition is selected during utility optimization. Taking P1 as an example, from its corre-

sponding generalized table, adversaries may further refine their mental image about t0 as

the first six tables (from t01 to t06), but the highest ratio of a sensitive value is still 1
2
. We

call such a subset of identifier partitions the strongly globally safe set (SGSS). The SGSS

allows us to optimize utility without worrying about violating the privacy property.

Therefore, the key problem in applying the privacy streamliner approach is to find

the SGSS. The naive solution of directly following the above example to compute the LSS,

GSS, and eventually SGSS is clearly impractical due to the large solution space. In the rest

of this chapter, we will present more efficient ways to directly construct the SGSS without

first generating the LSS or GSS.

4.2 The Model

We first give the basic model in Section 4.2.1. We then introduce the concept of

l-candidate and self-contained property in Section 4.2.2. Finally, we prove that the SGSS

can be efficiently constructed using those concepts in Section 4.2.3. Table 4.2 summarizes

our notations.

t0, t, t(id, q, s) Micro-data table
I, Q, S Projection Πid(t), Πq(t), Πs(t)
Riq, Rqs, Ris Projection Πid,q(t), Πq,s(t), Πid,s(t)
C(.|t), Ci(.|t) A color of table t
SC(.|t) The set of colors in t
P (.|t), Pi(.|t) A identifier partition of table t
SP (.|t) A set of identifier partitions of t
ssl(.|t) Locally safe set (LSS) of t
ssg(.|t) Globally safe set (GSS) of t
sss(.|t) Strongly globally safe set (SGSS) of t

Table 4.2: The Notation Table

68

4.2.1 The Basic Model

We denote a micro-data table as t0(id, q, s) where id, q, and s denote the identi-

fier, quasi-identifier, and sensitive value, respectively (each of which may represent mul-

tiple attributes). Denote by I, Q, S the set of identifier values Πid(t0), quasi-identifier

values Πq(t0), and sensitive values Πs(t0) (all projections preserve duplicates, unless ex-

plicitly stated otherwise). Also, denote by Riq, Rqs, Ris the projections Πid,q(t0), Πq,s(t0),

Πid,s(t0), respectively.

As typically assumed, I, Q, and their relationship Riq may be known through ex-

ternal knowledge, and S is also known once a generalization is released. Further, we make

the worst case assumption that each tuple in t0 can be linked to a unique identifier value

through the corresponding quasi-identifier value. Therefore, both Ris and Rqs need to re-

main secret to protect privacy. Between them, Ris is considered as the private information

and Rqs as the utility information.

We say a micro-data table t0 is l-eligible if at most |t0|
l

tuples in t0 share the same

sensitive value. We call the set of all identifier values associated with the same sensitive

value si a color, denoted as C(t0, si) or simply Ci when t0 and si are clear from the context.

We use SC(t0) or simply SC to denote the collection of all colors in t0.

Example 4.1 The left-hand side of Table 4.3 (the right-hand side will be needed for later

discussions) shows a micro-data table t0 in which there are two colors: C1 = {id1, id2}
and C2 = {id3, id4}, so SC = {C1, C2}. �

Rqs

id q s

id1 q1 s1

id2 q2 s1

id3 q3 s2

id4 q4 s2

I Q S

P1 = {{id1, id3}, {id2, id4}}
P2 = {{id1, id4}, {id2, id3}}
P3 = {{id1, id2, id3, id4}}
P4 = {{id1, id2}, {id3, id4}}

Table 4.3: An Example

69

We denote by ssl(t0), ssg(t0), and sss(t0) the locally safe set (LSS), globally safe

set (GSS), and strongly globally safe set (SGSS) for a given t0, respectively (those concepts

have been illustrated in Section 4.1).

Example 4.2 Continuing Example 4.1 and assuming the privacy property to be 2-diversity [77],

it can be shown that ssl(t0) = {P1, P2, P3} and P4 /∈ ssl where P1, P2, P3, P4 are shown on

the right-hand side of Table 4.3. Further, {P1, P3} and {P2, P3} are both GSS and SGSS.

�

We have previously given a sufficient condition for the SGSS, namely, the l-cover

property [113]. In other words, a set of identifier partitions SP is a SGSS with respect to

l-diversity if it satisfies l-cover (however, no concrete method is given there to satisfy this

property, which is the focus of this chapter). Intuitively, l-cover requires each color to be

indistinguishable from at least l − 1 other sets of identifiers in the identifier partition. If

no ambiguity is possible, we also refer to a color C together with its l − 1 covers as the

l-cover of C. As these concepts are needed later in the proofs of our main results discussed

in Section 4.2.3, we repeat them in Definition 4.1 and 4.2 (note the remaining content of

this chapter can be understood without those definitions).

Definition 4.1 (Cover) We say ids1, ids2 ⊆ I are cover for each other with respect to a

set SP ⊆ ssl, if

• ids1 ∩ ids2 = ∅, and

• there exist a bijection f : ids1 → ids2 such that for any idsx ∈ Pi, Pi ∈ SP , there

always exists Pj ∈ SP satisfying idsx \ (ids1 ∪ ids2) ∪ f(idsx ∩ ids1) ∪ f−1(idsx ∩
ids2) ∈ Pj [113].

Definition 4.2 (l-Cover) We say a set SP ⊆ ssl satisfies the l-cover property, if every color

C has at least l − 1 covers idsi(i ∈ [1, l − 1]) with the bijections fi satisfying that

- for any id ∈ C, each fi(id) (i ∈ [1, l − 1]) is from a different color, and

70

- for any idsx ∈ P and P ∈ SP , we have |idsx∩C| = |idsx∩idsi|(i ∈ [1, l−1]) [113].

Example 4.3 Continuing Example 4.2 and considering SP = {P1, P3}, the colors C1 =

{id1, id2} and C2 = {id3, id4} provide cover for each other, since for C1 we have f1(id1) =

id3 and f1(id2) = id4, and for C2 we have f2(id3) = id1 and f2(id4) = id2. Further, SP

satisfies the l-cover property where {C1, C2} is the l-cover of both C1 and C2.

Similarly, for SP = {P2, P3}, C1 and C2 provide cover for each other since for

C1 we have f1(id1) = id4 and f1(id2) = id3, and for C2 we have f2(id3) = id2 and

f2(id4) = id1. Further, SP also satisfies the l-cover property. �

4.2.2 l-Candidate and Self-Contained Property

We first give a necessary but not sufficient condition for l-cover, namely, l-candidate.

As formally stated in Definition 4.3, subsets of identifiers can be candidates of each other,

if there exists one-to-one mappings between those subsets that always map an identifier to

another in a different color. We will prove later that any collection of subsets of identifiers

can be l-cover for each other only if they form an l-candidate.

Definition 4.3 (l-Candidate) Given an l-eligible micro-data table t0, we say

• ids1 ⊆ I and ids2 ⊆ I are candidate for each other, if

– ids1 ∩ ids2 = ∅ and |ids1| = |ids2|, and

– there exists a bijection f : ids1 → ids2, such that every id ∈ ids1 and f(id) ∈
ids2 are from different colors.

• ids1, ids2, . . . , idsl ⊆ I form a l-candidate, if for all (1 ≤ i �= j ≤ l), idsi and idsj

are candidates for each other.

• Denote by Canl(.|t0) = (can1, can2, . . . , can|SC |) a sequence of |SC | l-candidates

each cani of which is the l-candidate for the color Ci in t0 (note that there is exactly

71

one l-candidate for each color in the sequence, and Canl(.|t0) is not necessarily

unique for t0).

Example 4.4 In the table shown on the left-hand side of Table 4.3, the two colors C1 =

{id1, id2} and C2 = {id3, id4} are candidates for each other, and they together form a

2-candidate {C1, C2}. Also, we have that Canl(.|t0) = ({C1, C2}, {C1, C2}) (note that

Canl(.|t0) denotes the sequence of l-candidates and we use the indices in the multiset to

present the order in the remainder of this chapter, and if no ambiguity is possible, we shall

not distinguish the notations between a collection and a sequence). In this special case, it

has two identical elements, the first one for C1 and the second one for C2, since both colors

have the same l-candidate. �

Next we introduce the self-contained property in Definition 4.4. Informally, an

identifier partition is self-contained, if the partition does not break the one-to-one mappings

used in defining the l-candidates. Later we will show that the self-contained property is

sufficient for an identifier partition to satisfy the l-cover property and thus form a SGSS.

Definition 4.4 (Self-Contained Property and Family Set) Given a micro-data table t0 and

a collection of l-candidates Canl, we say

• an anonymized group G in an identifier partition P is self-contained with respect to

Canl, if for every pair of identifiers {id1, id2} that appears in any bijection used to

define Canl, either G ∩ {id1, id2} = ∅ or G ∩ {id1, id2} = {id1, id2} is true.

• an identifier partition P is self-contained if for each G ∈ P , G is self-contained.

• a set SP of identifier partitions is self-contained, if for each P ∈ SP , P is self-

contained; we also call such a set SP a family set with respect to Canl.

Next we introduce the concept of minimal self-contained identifier partition in Def-

inition 4.5 to depict those identifier partitions that not only satisfy the self-contained prop-

erty but have anonymized groups of minimal sizes. Intuitively, for any given collection

72

of l-candidates Canl, a minimal self-contained identifier partition may yield optimal data

utility under certain utility metrics (we will discuss this in more details later).

Definition 4.5 (Minimal Self-Contained Partition) Given a micro-data table t0 and a

collection of l-candidates Canl, an identifier partition P is called the minimal self-contained

partition with respect to Canl, if

• P satisfies the self-contained property with respect to Canl, and

• for any anonymized group G ∈ P , no G′ ⊂ G can satisfy the self-contained property.

Example 4.5 In Example 4.4, assume the bijections used to define l-candidate for C1 in

Canl are f1(id1) = id3 and f1(id2) = id4 while for C2 are f2(id3) = id1 and f2(id4) =

id2, then the identifier partitions P1 and P3 shown in the left-hand side of Table 4.3 satisfy

the self-contained property, whereas P2 does not. Also, P1 is the minimal self-contained

identifier partition, and {P1}, {P3}, {P1, P3} are all family sets. �

Similarly, assume the bijections used to define l-candidate for C1 in Canl are f1(id1) =

id4 and f1(id2) = id3 while for C2 are f2(id3) = id2 and f2(id4) = id1, then the identifier

partitions P2 and P3 satisfy the self-contained property, whereas P1 does not. Also, P2 is

the minimal self-contained identifier partition, and {P2}, {P3}, {P2, P3} are all family sets.

Finally, assume f1(id1) = id3, f1(id2) = id4 and f2(id3) = id2, f2(id4) = id1, then in

this case only P3 satisfies self-contained property, whereas P1 and P2 do not. It is clearly

evidenced by this example that, given micro-data table, its minimal self-contained partition

is determined not only by the Canl, but also the corresponding bijections. In this chapter,

we focus on deriving Canl and constructing minimal self-contained partitions as well as

family sets based on the bijections. Therefore, unless explicitly stated otherwise, Canl is

referred to itself together with the corresponding bijections in the remainder of this chapter.

73

4.2.3 Main Results

In this section, we first prove that the self-contained property and l-candidate pro-

vide a way for finding identifier partitions that satisfy the l-cover property, and then we

prove results for constructing l-candidates. All the proofs can be found in the Appendix B

due to space limitations.

First, in Lemma 4.1, we show that a minimal self-contained identifier partition al-

ways satisfies the l-cover property.

Lemma 4.1 Given an l-eligible micro-data table t0, every minimal self-contained partition

satisfies the l-cover property. Moreover, for each color C, its corresponding l-candidate in

Canl is also an l-cover for C (that is, C together with its l − 1 covers).

Proof: To prove the lemma, we first show the procedure l-candidate-to-P lm in Ta-

ble 4.4 based on the self-contained property to construct its minimal self-contained parti-

tion.

Input: an l-eligible table t0, a collection of l-candidates Canl

Output: the minimal self-contained partition;
Method:

1. Create a set of anonymized groups SG = ∅;
2. For each color Ci

3. For each idi,a ∈ Ci

4. Create in SG a anonymized group
Gi,d = {idi,a}

⋃l−1
u=1{fi,u(idi,a)};

5. Merge the anonymized groups which have common identifiers
to build minimal self-contained partition (P lm);

6. Return P lm;

Table 4.4: procedure: l-candidate-to-P lm

Then, we show that P lm ∈ ssl. As shown in Table 4.4, to satisfy the self-contained

property, for each identifier idi,a in each color Ci, the identifiers to which idi,a is mapped in

each of the l-1 candidates should be in the same final anonymized group. We call such set of

74

identifiers ,Gi,a = {idi,a}
⋃l−1

u=1{fi,u(idi,a)}, for ath identifier in color Ci is transient group.

Obviously, each transient group itself satisfies entropy l-diversity. Furthermore, based on

the Definition 4.4, for any color Ci in the micro-data table, if an identifier idi,a in Ci is in the

final anonymized group, then its whole transient group Gi,a will be in the final anonymized

group. In other words, in any final anonymized group G, the ratio of any identifier in any

Ci associated with the sensitive value Si equals to |nCi
|

|nCi
|×l+δ

where δ ≥ 0 and |nCi
| is the

number of identifiers from color Ci in the anonymized group. Therefore, it is less than or

equal to |nCi
|

|nCi
|×l

= 1
l
. Thus, each anonymized group in minimal self-contained partition

satisfies l-diversity, so does the minimal self-contained partition. We have thus proved that

P lm ∈ ssl.

Next, consider the l − 1 covers for each color Ci ∈ SC . Without loss of generality,

we rewrite its corresponding l-candidate as canl
i = {Ci, idsi,1, idsi,2, . . . , idsi,l−1} so that

Ci is the first element, we show that for the set of identifier partition P lm (|P lm| = 1),

idsi,1, idsi,2, . . . idsi,l−1 are l−1 covers of Ci. By Definition 4.1, Ci and idsi,u(u ∈ [1, l−1])

should satisfy following two conditions:

- Ci ∩ idsi,u = ∅, and

- there exists a bijection fi,u : Ci → idsi,u satisfying that for any idsx ∈ P lm, idsx′ =

idsx \ (Ci ∪ idsi,u)) ∪ fi,u(idsx ∩ Ci) ∪ f−1
i,u (idsx ∩ idsi,u) ∈ P lm.

The first condition is satisfied by the definition of l-candidate. For the second condition,

let the bijection fi,u be the corresponding bijection for idsi,u in the l-candidate canl
i. It is

obvious that idsx′ = idsx. Therefore, the second condition also holds.

Finally, we further show that the previous l − 1 covers of Ci satisfy the following

three conditions defined in the definition of l-cover.

- ∀(u �= w), idsi,u ∩ idsi,w = ∅, and

- ∀(id ∈ Ci), each fi,u(id) (u ∈ 1, l − 1]) is from different color.

75

- ∀(ids ∈ P lm), |ids ∩ Ci| = |ids ∩ idsi,u| (u ∈ [1, l − 1]).

The first two conditions follow directly from the definition of l-candidate. The last con-

dition is satisfied by the property of self-contained. In other words, given such P lm, all

colors have their l-covers, therefore, P lm satisfies l-cover property. Thus we have proved

the lemma.

In Lemma 4.2, we prove that an anonymized group in any self-contained identifier

partition must either also be a group in the minimal self-contained partition, or be a union

of several such groups. This result will be needed in later proofs.

Lemma 4.2 Given any l-eligible t0, a collection of l-candidates Canl and its correspond-

ing minimal self-contained partition P lm = {ids1, ids2, . . . , idsk}, any self-contained

identifier partition P satisfies that ∀(G ∈ P), either G ∩ idsi = ∅ or G ⊇ idsi (i ∈ [1, k])

is true.

Proof: We prove by contradiction. First assume that there exist G ∈ P and idsi ∈
P lm, such that G∩ idsi �= ∅ and idsi −G �= ∅. Then, due to idsi −G �= ∅, there must exist

identifier ido ∈ idsi such that ido /∈ G. Assume that ido ∈ G′, where (G′ ∈ P)∧(G′ �= G).

Moreover, due to G ∩ idsi �= ∅, there also exists identifier idi ∈ idsi such that idi ∈ G.

Thus there exist ido and idi which is a pair of identifiers for some bijection in Canl, and

G ∩ {ido, idi} = {idi} and G′ ∩ {ido, idi} = {ido}. However, By definition of self-

contained, it has the following transitive property. That is, if {id1, id2}, {id2, id3}, . . .,

{ida−1, ida} each pair satisfies that there exists bijections for the set of l-candidates such

that fi−1,i(idi−1) = idi or fi,i−1(idi) = idi−1. Then for any self-contained anonymized

group G, either G ∩ ∪a
i=1(idi) = ∅ or G ⊇ ∪a

i=1(idi). Thus by definition, since ido ∈ idsi

and idi ∈ idsi, ∀(G ∈ P), G ∩ {ido, idi} = ∅ or G ∩ {ido, idi} = {ido, idi}.

Therefore, neither G nor G′ satisfies self-contained, so does P , leading to a contra-

diction.

Based on Lemma 4.1 and 4.2, we now show that similar results hold for any self-

76

contained identifier partition and any family set, as formulated in Theorem 4.1.

Theorem 4.1 Given an l-eligible t0 and the l-candidates Canl, we have that

• any self-contained identifier partition P satisfies the l-cover property. Moreover, for

each color in t0, the corresponding l-candidate in Canl is also the l-cover for P .

• any family set Sfs satisfies the l-cover property. Moreover, for each color in t0, the

corresponding l-candidate in Canl is also the l-cover for Sfs.

Proof: First, we prove that any self-contained identifier partition P satisfies l-cover

property.

We first show that P ∈ ssl. Note that the privacy model l-diversity satisfies the

monotonicity property. That is, for any two anonymized groups G1 and G2 satisfying

l-diversity, the final anony-mized group derived by merging all tuples in G1 and in G2

satisfies l-diversity [100]. Based on Lemma 4.2, each anonymized group G in P satisfies

G = ∪X⊆{1,2,...,k}idsX . Therefore, each anonymized group G satisfies l-diversity, so does

P .

Then we have proved that, given the l-candidate canl
i of certain color Ci, the canl

i\{Ci}
are the l − 1 covers of Ci for P , similar to the proof of Lemma 4.1.

Finally, the set of l−1 set of identifiers canl
i\{Ci} are l−1 covers of color Ci which

satisfy the three conditions of l-cover definition.

Second, we prove any family set satisfies the l-cover property.

We first show that ∀(P ∈ Sfs), P ∈ ssl. Since the privacy model l-diversity satisfies

the monotonicity property [100], based on the definition of family set, it is clear that the

table generalization corresponding to each identifier partition in Sfs satisfies l-diversity.

Similar with previous proofs, for each color Ci ∈ SC and its corresponding l-

candidate canl
i = {Ci, idsi,1, idsi,2, . . . , idsi,l−1}, we have proved that for the family set

Sfs, idsi,1, idsi,2, . . . , idsi,l−1 are the l− 1 covers of Ci. Moreover, these l− 1 covers of Ci

satisfy the three conditions of l-cover. This completes the proof.

77

Based on the above results, once the collection of l-candidates is determined, we

can easily construct sets of identifier partitions to satisfy the l-cover property. Therefore,

we now turn to finding efficient methods for constructing l-candidates. First, Lemma 4.3

and 4.4 present conditions for subsets of identifiers to be candidates for each other.

Lemma 4.3 Given an l-eligible t0, any ids ⊆ I that satisfies |ids| = |C| and ids ∩C = ∅
is a candidate for color C.

Proof: By the definition 4.3, C and ids should satisfy the following two conditions:

- C ∩ ids = ∅ and |C| = |ids|;

- there exists a bijection f : C → ids, such that ∀(id ∈ C), id and f(id) are from

different colors.

The first condition follows directly from the condition of the lemma. Since |C| = |ids|,
there must exist bijection f : C → ids. Moreover, since C ∩ ids = ∅, ∀(idx ∈ ids),

idx /∈ C, by the definition of color, idx has sensitive value other than it of color C. In other

words, idx must belong to the other color C ′ other than C. Therefore, The second condition

is also satisfied, which completes the proof.

Lemma 4.4 Given an l-eligible t0, any ids1, ids2 ⊆ I satisfying following conditions are

candidates for each other:

• |ids1| = |ids2| and ids1 ∩ ids2 = ∅, and

• the number of all identifiers in ids1 ∪ ids2 that belong to the same color is no greater

than |ids1|.

Proof: The first constraint in the lemma respectively guarantees the first condition

of definition 4.3. Consider the second condition. Since |ids1| = |ids2|, there must exist

bijections between ids1 and ids2. Assume that the second condition of definition 4.3 does

not hold. Then there must exist at least |ids1| + 1 number of identifiers in ids1 ∪ ids2 with

78

identical sensitive value, which is in contradiction with the second constraint in lemma.

Therefore, the second condition of definition 4.3 also satisfies. Since the two conditions

both hold, the proof is complete.

Based on Lemma 4.3 and 4.4, we now present conditions for constructing l-candidates

of each color in Theorem 4.2. We will apply those conditions in the next section to design

practical algorithms for building the SGSS.

Theorem 4.2 Given an l-eligible t0, each color C together with any (l−1) subsets of iden-

tifiers {ids1, ids2, . . . , idsl−1} that satisfy following conditions form a valid l-candidate for

C:

- ∀(x ∈ [1, l − 1]), |idsx| = |C| and idsx ∩ C = ∅;

- ∀((x, y ∈ [1, l − 1]) ∧ (x �= y)), idsx ∩ idsy = ∅;

- the number of all identifiers in ∪l−1
x=1idsx that belong to the same color is no greater

than |C|.

Proof: To prove the theorem, we should show that any two sets of identifiers from

the sets C and idsx (x ∈ [1, l − 1]) are candidate for each other. The fact that C and each

idsx (x ∈ [1, l−1]) are candidate follows the Lemma 4.3, while the fact any two idsx, idsy

((x, y ∈ [1, l − 1]) ∧ (x �= y)) are candidate follows the Lemma 4.4. This completes the

proof.

4.3 The Algorithms

In this section, we design three algorithms for constructing l-candidates for colors

and analyze their complexities. It is important to note that there may exist many other ways

for constructing l-candidates based on the conditions given in Theorem 4.2. This flexibility

allows us to vary the design of algorithms to suit different needs of various applications, be-

cause different l-candidates will also result in different SGSSs and hence algorithms more

79

suitable for different utility metrics. We demonstrate such a flexibility through designing

three algorithms in the following.

To simplify our discussions, we say an identifier is complete (or incomplete) if it is

(or is not) included in any l-candidate; similarly, we say a color is complete (or incomplete)

if it only includes complete identifiers (or otherwise); we also say a set of identifiers is

compatible (or incompatible) with an identifier id, if there does not exist (or exists) identi-

fier in that set that is from the same color as id; finally, given any color, an identifier from

other colors is said to be unused with respect to that color if it has not yet been selected as

a candidate for any identifier in that color. Table 4.5 summarizes the notations used in the

algorithms.

n The number of (incomplete) tuples in t0
Ci The ith color, or the set of (incomplete) identifiers in the ith color
nc The number of (incomplete) colors in t0
SC The sequence of (incomplete) colors in t0
ni The number of (incomplete) tuples in color Ci

cania The set of (l − 1) identifiers selected for identifier idia in color Ci

cani l-candidate for color i

Canl The collection of l-candidates

Table 4.5: Notations for Algorithms

4.3.1 The RIA Algorithm (Random and Independent)

The main intention in designing the RIA algorithm is to show that, based on our

results in Theorem 4.2, l-candidate can actually be built in a very straightforward way,

although its efficiency and utility is not necessarily optimal. In the RIA algorithm, to con-

struct the l-candidates for each color Ci, (l− 1) identifiers cania are selected randomly and

independently for each identifier idia in Ci. The only constraint in this selection process for

any color is that the same identifier will not be selected more than once. Clearly, designing

such an algorithm is very straightforward. Roughly speaking, for each identifier idia in any

color Ci, RIA randomly selects (l− 1) identifiers from any other (l− 1) colors that are not

selected by other identifiers in Ci, and then form l-candidate cani for Ci from the cania of

each identifier.

80

Input: an l-eligible Table t0, the privacy property l;
Output: the set Canl of l-candidates for each color;
Method:

1. Let Canl = ∅;
2. For i = 1 to nc

// Iteratively construct l-candidate for each color Ci

3. For a = 1 to ni

// Iteratively select the l − 1 number of identifiers for
//each identifier idi,a in color Ci

4. Randomly select l − 1 different colors SC
ia from SC\{Ci};

5. Randomly select one unused identifier from each color in SC
ia;

6. Form cania by collecting the previously selected l − 1 identifiers in any order;
7. For i = 1 to nc

8. For w = 1 to l − 1
// Create the l-candidate cani for Ci based on the cania(a ∈ [1, ni])

9. Create in cani its wth candidate:
⋃ni

a=1 (the wth identifier in cania);
10. Let Canl = {cani : 1 ≤ i ≤ nc};
11. Return Canl;

Table 4.6: The RIA Algorithm

The RIA algorithm is shown in Table 4.6. RIA first set Canl = φ (line 1). Then,

Given the l-eligible table t0, RIA iteratively constructs l-candidate for all its colors (line 2-

9). In each iteration, RIA first repeatedly selects (l− 1) identifiers cania for each identifier

idi,a in color Ci. These identifiers are from (l − 1) different colors and not be used yet

by the other identifier in current color. Then RIA builds the (l − 1) candidates for current

color. To construct the wth candidate, RIA selects the wth identifier from each cania for

each identifier idi,a in color Ci. Consequently Ci, together with its (l− 1) candidates, form

the l-candidate, cani, for color Ci. Finally, all the cani for each color form the set Canl of

l-candidates, and RIA terminates and returns Canl.

The computational complexity of RIA algorithm is O(l · n) since: since: first, for

each color, each of its identifiers costs exactly (l−1) many constant times (line 4-6) to select

its (l − 1) identifiers, and there are ni identifiers in the color, so totally (l − 1) × ni. Then,

based on these identifiers, it takes (l − 1) × ni many times to create its l-candidate. There

81

are totally nc many colors in the micro-table. Finally it takes nc many times to create the set

of l-candidates. Therefore, in totally its computational complexity is O(
∑nc

i (2× (l− 1)×
ni) + nc) = O(l × n), because the size of all colors adds up to be n, and nc ≤ n. Note that

once an identifier select same identifier which was selected by the previously considered

identifier in the color, RIA must reselect other identifier for that identifier. During the

analysis of computational complexity, we ignore the time of solving such conflicts in colors

and identifiers in line 4 and line 5 respectively. It is reasonable for most cases in the real

life that ni × (l − 1) � n, since in such case the probability of conflicts is very low. Note

that the RIA algorithm only builds the l-candidates. In order to obtain the self-contained

identifier partition and hence the SGSS (as shown in Theorem 4.1), we still need to merge

the cania’s that share the common identifiers (which actually has a higher complexity than

O(l × n), but we will not further discuss it since our intention of introducing the RIA

algorithm is not due to its efficiency).

4.3.2 The RDA Algorithm (Random and Dependent)

The RDA algorithm aims at general-purpose data utility metrics that only depends

on the size of each anonymized group in an identifier partition, such as the well known

Discernibility Metric (DM) [13]. As we shall show through experiments, our RDA algo-

rithm will produce solutions whose data utility by the DM metric is very close to that of

the optimal solution, since the RDA algorithm can minimize the size of most anonymized

groups in the chosen identifier partition.

Roughly speaking, for the color Ci that has the most incomplete identifiers, the

algorithm randomly selects (l− 1) identifiers cania for each of its identifiers idia, one from

each of the next (l − 1) colors with the most incomplete identifiers, until the number of

incomplete colors is less than l. For the remaining identifiers, the algorithm simply selects

any l − 1 identifiers as their candidates from any compatible cania. The key difference

from the RIA algorithm is that the RDA algorithm will not consider an identifier once it

82

Input: an l-eligible Table t0, the privacy property l;
Output: the set Canl of l-candidates for each color;
Method:

1. Let nc be the number of colors in t0;
2. Let SC be the sequence of the colors in the non-increasing order of their cardinality;
3. Let Ci, ni (i ∈ [1, nc]) be the ith color and its cardinality;
4. While (nc ≥ l)

//Construct l-candidate for the color in which most number of incomplete identifiers
5. Determine the color Ci which has most number of incomplete identifiers;
6. For a = 1 to ni

7. If(idi,a is complete)
8. Skip to check the next identifier in current color;

// Iteratively select (l−1) identifiers for each identifier idi,a in color Ci

9. Randomly select l − 1 incomplete identifiers from l − 1 different colors in SC

with most incomplete identifiers;
10. Form cania by collecting the previously selected l − 1 identifiers in any order;
11. Remove the complete colors from SC , and recalculate nc;
12. Reorder the colors in SC based on their number of incomplete identifiers;
13. If (nc < l) Break;
14. While (SC �= ∅)
15. Select any incomplete identifier idj,b from the color Cj ∈ SC with the most number

of incomplete identifiers;
16. Select any l − 1 identifiers from the compatible cania with the minimal cardinality;
17. Form canjb by collecting the previously selected l − 1 identifiers in any order;
18. If (color Ci is complete) Remove it from SC ;
19. For i = 1 to nc

20. For w = 1 to l − 1
// Create the l-candidate cani for Ci based on the cania(a ∈ [1, ni])

21. Create in cani its wth candidate:
⋃ni

a=1(the wth identifier in cania);
22. Let Canl = {cani : 1 ≤ i ≤ nc};
23. Return Canl;

Table 4.7: The RDA Algorithm

has selected its candidates, or been selected as a candidate, in most cases. This difference

not only improves the data utility by minimizing the size of anonymized groups in the

identifier partition, but also ensures the sets of candidates selected for different identifiers

to be disjoint, which eliminates the need for the expensive merging process required by the

RIA algorithm.

83

The RDA algorithm is shown in Table 4.7. Compared to RIA algorithm, RDA

simply skips and does not reselect the l − 1 identifiers for the l − 1 candidates if the

identifiers have been selected (line 7-8), and ensures that each identifier is not selected as

candidates (line 9). Specifically, RDA algorithm first sets nc, Ci, ni, and SC to be the

number of colors, the ith color and its cardinality, and the sequence of colors in the non-

increasing order of cardinality in t0 respectively (line 1-3). Then, RDA iteratively selects

l − 1 identifiers cani,a for each identifier idi,a in color Ci until the number of incomplete

colors is less than l (line 4-13) . Here Ci is the color which has the most number of

incomplete identifiers in SC . In each iteration, RDA first selects one incomplete color with

most incomplete identifiers (line 5). Then for each of its incomplete identifiers, RDA forms

cania by randomly selecting (l − 1) incomplete identifiers from (l − 1) different colors in

SC (line 9-10), and removes the completed colors from SC , recounts nc, and reorders the

colors in SC in the non-increasing order of the number of incomplete identifiers (line 11-

12). Next, RDA forms cania for the remainder identifiers (line 14-18). In each iteration,

RDA first selects any incomplete identifier idj,b from the color Cj with the most number

of incomplete identifiers (line 15) , and then forms canjb by collecting any l − 1 identifiers

from any compatible cania with smallest size (line 16-17). Finally, all the cani for each

color form the set Canl of l-candidates, and RDA terminates and returns Canl (line 19-23).

Note that, we can derive the minimal self-contained partition directly through the

bijections in the l-candidates. In other words, each cania is a transient group (see proof of

Lemma 4.1) for minimal self-contained partition, furthermore, it is the anonymized group

in minimal self-contained partition when the intersection between any two cania is empty.

Actually, the construction of the set of l-candidate based on canias (Line 19-22 in RDA

algorithm) is only used to prove its existence. Therefore, in order to ensure that canias are

disjoint, line 16-17 can be replaced by: Append idj,b to its compatible cania with the mini-

mal cardinality. Since canias are disjoint, the merge process in Table 4.4 can be bypassed.

This will reduce the computational complexity and improve the data utility under certain

84

type of utility measures based on the size of the QI-groups, such as DM.

Furthermore, we show that the computational complexity of Line 9-12 is linear in l.

First, the remainder colors in SC are incomplete, and we can also design certain additional

data structure to store the incomplete identifiers in each incomplete color and record the

cardinality. Therefore, Line 9-10 can be processed in time linear in l. Second, since after

Line 9-10, only l − 1 colors (besides color Ci) are affected and their cardinality is only

reduced by 1, Line 11-12 also can be processed in time linear in l with the assistance of

additional structure. Based on previous discussions, the computational complexity of RDA

algorithm is O(n). First, Line 1-3 runs in O(n) time by applying bucket sort (Additionally,

nc << n holds for general cases in real world). Second, from Line 4-17, each identifier in

the micro-data table is considered once all through the process with the assistance of addi-

tional data structure. We will evaluate utility of the RDA algorithm through experiments in

the next section.

4.3.3 The GDA Algorithm (Guided and Dependent)

For both the RIA and RDA algorithms, we have assumed that the utility metric is

independent of the actual quasi-identifier values. Our intention of designing the GDA algo-

rithm is to demonstrate how our approach also allows designing algorithms that optimize

data utility based on actual quasi-identifier values. For this purpose, assuming the quasi-

identifier is composed of attributes q1, q2, . . . , qd, we assign an integer weight weighti to

each attribute qi(i ∈ [1, d]), and a rank rank ∈ [1, |qi|] to each value of the attribute qi.

Given any tuple ta in the micro-data table t0 and its value of each quasi-identifier attribute

ta[qi], we define its weighted-rank as wra =
∑d

i=1(weighti×rank(ta[qi])). Given any two

tuples ta and tb, we define their QI-distance as dab = |wra − wrb|. Also, given a tuple ta

and a set of tuples tB, we define the average QI-distance as daB =
∑

b∈tB
(dab)

|tB | . Intuitively, a

smaller QI-distance indicates that placing the two tuples into the same anonymized group

will produce better data utility (for example, patients from the same geographical region

85

should be grouped together).

Roughly speaking, for each incomplete identifier idi,a in the color Ci with the most

incomplete identifiers, the algorithm determines l − 1 incomplete colors that can minimize

the QI-distance between their first incomplete identifier with the largest weighted-rank and

idi,a, and then selects these l − 1 identifiers to be the l − 1 candidates for idi,a, until the

number of incomplete colors is less than l. For each remainder identifier idj,b, GDA selects

(l − 1) identifiers from its compatible cania which has the smallest average QI-distance

from idj,b.

Input: an l-eligible table t0, the privacy property l;
Output: the set Canl of l-candidates for each color;
Method:

1. Let nc be the number of colors in t0;
2. Let SC be the sequence of the colors in non-increasing order of their cardinality;
3. Let Ci, ni (i ∈ [1, nc]) be the ith color and its cardinality;
4. Compute the weighted-rank for each tuple in the table t0;
5. Sort the tuples in each color in ascending order of their weighted-rank values;
6. While (nc ≥ l)
7. Let Ci be the color with the most incomplete identifiers;
8. For each incomplete identifier idi,a in Ci

9. Create cania by selecting l − 1 incomplete identifiers from the first l−1
colors that minimize the QI-distance;
between their first and idi,a;

10. For each incomplete identifier idj,b

11. Create canjb by selecting l − 1 identifiers with minimal QI-distance from
compatible cania with the least average QI-distance;

12. For i = 1 to nc

13. For w = 1 to l − 1
// Create the l-candidate cani for Ci based on the cania(a ∈ [1, ni])

14. Create in cani its wth candidate:
⋃ni

a=1(the wth identifier in cania);
15. Let Canl = {cani : 1 ≤ i ≤ nc};
16. Return Canl;

Table 4.8: The GDA Algorithm

The GDA algorithm is shown in Table 4.8. Given a micro-data table t0 and an inte-

ger l, GDA first initialize the following: Set nc, Ci, ni, and SC to be the number of colors,

86

the ith color and its cardinality, and the sequence of colors in the non-increasing order of

cardinality in t0 respectively (line 1-3); Compute the weighted-rank for each identifier (tu-

ple) based on its quasi-identifier information (line 4); Sort the identifiers inside a color in

ascending order of their weighted-rank values (line 5). After that, GDA iteratively con-

structs cania for each identifier in the micro-table t0(line 6-11). In each iteration, GDA

repeatedly selects l − 1 identifiers cania for each identifier idi,a in color Ci. For each iden-

tifier idi,a, we select the l− 1 best colors among the whole set of colors other than Ci itself.

To judge the best colors, we compare the QI-distance between the QI-attributes of idi,a and

the first identifier in each color which is not yet mapped to any identifier in Ci. The less

the QI-distance is, the better the identifier is. Finally, all the cani for each color forms

the set Canl of l-candidates, and GDA terminates and returns Canl (line 12-16). From

the description above, the selection of l-candidate for each color is further decided by the

selection of l − 1 identifiers for each of its identifier, which in turn are selected based on

the QI-distance, it is, the local optimization. Therefore, the transient groups are expected

to be closer with regard to the QI-attributes, which may increase the data utility. However,

this approach cannot assure the size of the anonymized group since there may exists many

merges when construct the locally-minimal partition based on such set of l-candidates.

The computational complexity of GDA algorithm is O(n log n) since after sort-

ing each color based on the weighted-rank values, each identifier is processed only once

throughout the process of building l-candidates. Since this algorithm aims at minimizing

the average QI-distance inside each anonymized group, we will evaluate its data utility in

the next section based on such a quasi-identifier value-dependent metric.

4.3.4 The Construction of SGSS

Remind that our ultimate objective is to construct strongly globally safe set (SGSS)

in which the data utility is optimized later. Once Canl has been constructed by RIA,

RDA, or GDA algorithm, in this chapter we adopt the approach based on the corresponding

87

bijections in Canl to building the minimal self-contained partition and then the SGSS.

More specifically, for RDA and GDA algorithms, each cania, created in step 10 in

Table 4.7 and in step 9 in Table 4.8 respectively, forms an anonymized group. Then we

simply append the idj,b, in step 15 in Table 4.7 and in step 11 in Table 4.8 respectively, to

the selected cania. Similarly, for RIA algorithm, each cania created in step 6 in Table 4.6

forms an anonymized group, and we then merge the resultant anonymized groups which

have common identifiers to be disjoint sets. The algorithms in the literature to achieve

disjoint sets are applicable for our problem and the details are omitted here.

For the experiments in Section 4.4, we integrate the process in building the mini-

mal self-contained partitions into the algorithms of constructing Canl for RDA and GDA

algorithms.

4.4 Experiments

In this section, we evaluate the efficiency and utility of our proposed algorithms

through experiments. To compare our results to that reported in [105], our experimental

setting is similar to theirs. We adopt two real-world datasets, OCC and SAL, at the Inte-

grated Public Use Micro-data Series [89]. Each dataset contains 600k tuples. The domain

sizes of the six chosen attributes of both datasets are shown in Table 4.9. Among these,

we select four attributes, Age, Gender, Education, and Birthplace, as the QI-attributes for

both datasets, and we select Occupation and Income as the sensitive attribute for OCC and

SAL, respectively. For our experiment, we adopt the MBR (Minimum Bounding Rectan-

gle) function (similar to that in [105]) to generalize QI-values within the same anonymized

group once we obtain an identifier partition using our algorithms. As mentioned before, the

RIA algorithm is only introduced to demonstrate how simple an algorithm can be by fol-

lowing our approach, we will not evaluate its performance, but only focus on the RDA and

GDA algorithm. In fact, in these two algorithms, each cania forms an anonymized group

88

(transient group), and for the remainder identifiers shown in step 6 in Table 4.7 and step

7 in Table 4.8 are simply appended in the selected compatible anonymized groups (Step

19-22 in Table 4.7 and step 12-15 in Table 4.8 are used to represent the l-candidates). All

experiments are conducted on a computer equipped with a 1.86GHz Core Duo CPU and

1GB memory.

Attribute Age Gender Education Birthplace Occupation Income
Domain Size 79 2 17 57 50 50

Table 4.9: Description of OCC and SAL Datasets

We evaluate computational complexity using execution time, and evaluate data util-

ity of the released table using two measurements: Discernibility Metric (DM) [13] and

Query Workload Error (QWE, which is a utility metric that depends on quasi-identifier

values) [62].

4.4.1 Computation Overhead

0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 6 6.6

10

20

30

40
50
60
70
80
90

dataset cardinality n (× 106)

co
m

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

RDA
GDA

(a) SAL Dataset

0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 6 6.6

10

20

30

40
50
60
70
80
90

dataset cardinality n (× 106)

co
m

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

RDA
GDA

(b) OCC Dataset

Figure 4.1: Execution Time vs. Dataset Cardinality n

Figure 4.1 illustrates the computation time of both of our algorithms on both datasets

against the dataset cardinality n. We generate n-tuple datasets by synthesizing n
600k

copies

of OCC, SAL respectively (Reminder that both OCC and SAL contain 600k tuples). We

89

set l = 8 for this set of experiments, and conduct the experiment 100 times and then take

the average. From the results, it is clear that both of our algorithms are practically efficient,

and the computation time increases slowly with n. The RDA algorithm is slightly more

efficient than GDA. This is because, when selecting candidates for each identifier, RDA

considers the l − 1 colors with the most incomplete identifiers while GDA considers the

l − 1 colors whose incomplete identifiers have the least QI-distances. Therefore, the more

complex computation required by the GDA algorithm results in slightly more overhead

than RDA.

Comparing to Results in [105] In contrast to the results reported in [105], both of our

algorithms are more efficient, while the RDA algorithm requires significantly less time than

that in [105]. Although not reported here due to space limitations, we have also investigated

the computation time against l as well as the number of QI-attributes. Both algorithms are

insensitive to these two parameters. This is as expected since the computation complexity

of both algorithms only depends on the cardinality of dataset n.

4.4.2 Data Utility

We first conduct a set of experiments on the original SAL and OCC dataset to evalu-

ate the utility of released tables measured by the DM metric. Figure 4.2 shows the DM cost

(the lower cost the better utility) of each algorithm against l. From the results, we can see

that the DM cost of our RDA algorithm is very close to the optimal cost (calculated using

a separate algorithm), while the DM cost of the GDA algorithm is only slightly higher than

the optimal cost. This is as expected, because the RDA algorithm is specifically designed

for a general-purpose utility metric that aims to minimize the size of each anonymized

group regardless of actual quasi-identifier values, whereas the GDA algorithm will attempt

to minimize the QI-distance (the assignment of weight and rank for the GDA algorithm is

described below).

Following [105], we then evaluate the query workload error (QWE) by answering

90

6 7 8 9 10
3.0

3.6

4.2

4.8

5.4

6.0

6.6

l

D
M

 c
os

t (
×

10
6)

Optimal Cost
RDA
GDA

(a) SAL Dataset

6 7 8 9 10
3.0

3.6

4.2

4.8

5.4

6.0

6.6

l

D
M

 c
os

t (
×

10
6)

Optimal Cost
RDA
GDA

(b) OCC Dataset

Figure 4.2: Data Utility Comparison: DM Cost vs. l

count queries. The intention is to compare our algorithms with a utility metric that depends

on the actual quasi-identifier values. For this purpose, predicates on QI-attributes are con-

structed on Age, Gender, with an and operations between them, and with an and operations

between all the QI-attributes, respectively. We set weight to be 1,10000,1, and 1 for Age,

Gender, Education, and Birthplace, respectively. By processing 1000 randomly-generated

queries for each type of predicates, we intend to investigate how well the released table

preserves the Rqs relation. For each query, we first obtain its accurate answer acc from the

original micro-data table, and then adopt the approximation technique in [62] to compute

the approximate answer app from the released table output by our algorithms. The error

of an approximate answer is formulated as |acc−app|
max{acc,δ} [105], where δ is set to 0.5% of the

dataset cardinality. Then, the average error of all queries is taken as the QWE.

Figures 4.3, 4.4, 4.5, 4.6, and 4.7 show the average relative error against different

types of predicates for l = 6, 7, 8, 9 and 10 respectively. Compared to RDA, GDA now

has better utility, which is as expected since GDA does consider the actual quasi-identifier

values in generating the identifier partition, as mentioned in Section 4.3. Particularly, the

average relative error for querying on SAL and OCC with Gender as the only query con-

dition for l = 8 is reduced from 64%, 69% (of RDA) to 10%, 18%, respectively. Finally,

although not reported here due to space limitations, the utility result of our algorithms

91

Age Gender Age+Gender All QI−attributes
5%

15%

25%

35%
45%
55%
65%
75%

query condition

av
er

ag
e

re
la

tiv
e

er
ro

r

RDA
GDA

(a) SAL Dataset

Age Gender Age+Gender All QI−attributes
5%

15%

25%

35%
45%
55%
65%
75%

query condition

av
er

ag
e

re
la

tiv
e

er
ro

r

RDA
GDA

(b) OCC Dataset

Figure 4.3: Data Utility Comparison: Query Accuracy vs. Query Condition(l = 6)

Age Gender Age+Gender All QI−attributes
5%

15%

25%

35%
45%
55%
65%
75%

query condition

av
er

ag
e

re
la

tiv
e

er
ro

r

RDA
GDA

(a) SAL Dataset

Age Gender Age+Gender All QI−attributes
5%

15%

25%

35%
45%
55%
65%
75%

query condition

av
er

ag
e

re
la

tiv
e

er
ro

r

RDA
GDA

(b) OCC Dataset

Figure 4.4: Data Utility Comparison: Query Accuracy vs. Query Condition(l = 7)

Age Gender Age+Gender All QI−attributes
5%

15%

25%

35%
45%
55%
65%
75%

query condition

av
er

ag
e

re
la

tiv
e

er
ro

r

RDA
GDA

(a) SAL Dataset

Age Gender Age+Gender All QI−attributes
5%

15%

25%

35%
45%
55%
65%
75%

query condition

av
er

ag
e

re
la

tiv
e

er
ro

r

RDA
GDA

(b) OCC Dataset

Figure 4.5: Data Utility Comparison: Query Accuracy vs. Query Condition(l = 8)

92

Age Gender Age+Gender All QI−attributes
5%

15%

25%

35%
45%
55%
65%
75%

query condition

av
er

ag
e

re
la

tiv
e

er
ro

r

RDA
GDA

(a) SAL Dataset

Age Gender Age+Gender All QI−attributes
5%

15%

25%

35%
45%
55%
65%
75%

query condition

av
er

ag
e

re
la

tiv
e

er
ro

r

RDA
GDA

(b) OCC Dataset

Figure 4.6: Data Utility Comparison: Query Accuracy vs. Query Condition(l = 9)

Age Gender Age+Gender All QI−attributes
5%

15%

25%

35%
45%
55%
65%
75%

query condition

av
er

ag
e

re
la

tiv
e

er
ro

r

RDA
GDA

(a) SAL Dataset

Age Gender Age+Gender All QI−attributes
5%

15%

25%

35%
45%
55%
65%
75%

query condition

av
er

ag
e

re
la

tiv
e

er
ro

r

RDA
GDA

(b) OCC Dataset

Figure 4.7: Data Utility Comparison: Query Accuracy vs. Query Condition(l = 10)

measured by QWE are close to the results reported in [105] (no result based on DM was

reported there).

4.5 Discussion

Possible Extensions In this chapter, we have focused on applying the self-contained prop-

erty on l-candidates to build sets of identifier partitions satisfying the l-cover property, and

hence to construct the SGSS. However, there may in fact exist many other methods to con-

struct the SGSS, which will lead to potential directions of future work. First, there are

different ways for building the l-candidates for each color. As discussed above, theoreti-

93

cally any subset of I satisfying the constraints shown in Lemma 4.3 can be a valid candidate

for a color, and l − 1 such subsets together with that color will form a valid l-candidate for

that color if they satisfy the constraints shown in Theorem 4.2. Second, once l-candidates

are given, there still exist different ways, including applying the self-contained property,

for constructing sets of identifiers to satisfy the l-cover property. Third, even the l-cover

property is not necessarily the only valid way for directly building the SGSS. Finally, al-

though we have focused on l-diversity and the utility measures DM and QWE, the principle

of decoupling utility optimization from privacy preservation can potentially be applied to

other privacy applications to yield efficient solutions.

Practicality of Our Approach We have demonstrated the practicality of our approach by

showing through complexity analysis and experiments that our proposed algorithms are

efficient enough to be applied to real world applications. It is important to note that it would

be unfair to compare the performance of our algorithms to many existing algorithms that

ignore the issue of privacy breaches caused by adversarial knowledge about algorithms [48,

98]. As to utility, as discussed earlier, our proposed algorithms produce results comparable

to existing methods. We believe the flexibility of our approach may lead to other algorithms

with further improved utility. For the QWE metric, note that our experiments only evaluate

the QWE cost on the minimal self-contained partition. The utility may be increased by

fine-tuning the weight information for each quasi-identifier, and by optimizing among the

family set. We will conduct more experimental comparisons in terms of performance and

utility between our algorithms and the traditional approaches in our future work.

The Focus on Syntactic Privacy Principles We have focused on syntactic privacy principles

and methods, such as l-diversity and generalization, in this chapter. However, the general

approach of decoupling utility optimization from privacy preservation is not necessarily

limited to such a scope. In particular, one interesting issue is to consider its applicability to

differential privacy [40], which is being accepted as one of the strongest privacy models and

extended to privacy preserving data publishing [66]. On the other hand, since most existing

94

approaches that ensure differential privacy are random noise-based and are suitable for

specific types of statistical queries, we have regarded this direction as future work.

4.6 Summary

In this chapter, we have proposed a privacy streamliner approach for privacy-preserving

applications. We reported theoretical results required for instantiating this approach in the

context of privacy-preserving micro-data release using public algorithms. We have also

designed three such algorithms by following the proposed approach, which not only yield

practical solutions by themselves but also reveal the possibilities for a large number of

algorithms that can be designed for specific utility metrics and applications. Our exper-

iments with real datasets have proved our proposed algorithms to be practical in terms

of both efficiency and data utility. Our future work will apply the proposed approach to

other privacy-preserving applications and privacy properties in order to develop efficient

algorithms.

95

Chapter 5

PPTP: k-Indistinguishable Traffic

Padding in Web Applications

In this chapter, we present a formal PPTP model encompassing the privacy require-

ments, padding costs, and padding methods to prevent side-channel attacks due to unique

patterns in packet sizes and directions of the encrypted traffic among components of the

Web application.

5.1 Overview

Web-based applications are becoming increasingly popular. In contrast to their

desktop counterparts, Web applications demand less client-side resources and are easier

to deliver and maintain through using the Web browser as a thin client. On the other

hand, Web applications also present new security and privacy challenges, partly because

the untrusted Internet has essentially become an integral component of such applications

for carrying the continuous interaction between users and servers. Recent study showed

that the encrypted traffic of many popular Web applications may actually disclose highly

sensitive data, and consequently lead to serious breaches of user privacy [22]. Specifically,

by searching for unique patterns exhibited in packets’ sizes and/or timing, an eavesdrop-

96

per can potentially identify an application’s internal state transitions and the corresponding

users’ inputs. Moreover, such side-channel attacks are shown to be pervasive and funda-

mental to most Web applications due to many intrinsic characteristics of such applications,

such as low entropy inputs, diverse resource objects, and stateful communications.

Taking one popular real-world search engine as an example, Table 5.1 shows the

sizes and directions of packets observed between users and the search engine. Observe that

due to the user-friendly auto-suggestion feature, with each keystroke, the browser sends

a b-byte packet to the server; the server then replies with two packets of 60 bytes and s

bytes, respectively; finally, the browser sends a 60-byte packet to the server. In addition,

in the same input string, the b value of the first keystroke is about 50 larger than that of

the second one while each subsequent keystroke increases the b value by one byte from

the third keystroke, and the s value depends both on the current keystroke and on all the

preceding ones. Clearly, due to the fixed pattern in packet sizes (first, second, and last),

the packets corresponding to each input string can be identified from observed traffic, even

though the traffic has been encrypted.

User Input Observed Directional Packet Sizes

bee 641 →, ← 60, ← 544, 60 →,
585 →, ← 60, ← 555, 60 →,
586 →, ← 60, ← 547, 60 →

cab 641 →, ← 60, ← 554, 60 →,
585 →, ← 60, ← 560, 60 →,
586 →, ← 60, ← 558, 60 →
(b bytes) (s bytes)

Table 5.1: User Inputs and Corresponding Packet Sizes

Similar traffic patterns have also been observed in different categories of Web ap-

plications [22]. Therefore, we assume a worst case scenario in which an eavesdropper can

pinpoint traffic related to a Web application (such as using de-anonymizing techniques [95])

and locate packets for user inputs using the above technique. We use search engines as ex-

amples in this chapter due to their distinct and representative patterns. In reality, the s value

97

can be larger and more disparate as discussed in Section 5.6.

Moreover, the size of the third packet provides a good indicator of the input itself

(which again can be found in many Web applications [22]). Specifically, Table 5.2 shows

the s value for character (a, b, c and d) entered as the first (second column) and second

(3-6 columns) keystroke for a different search engine. Observe that the s value for each

character entered as second keystroke is different from that it is entered as the first, since

the packet size now depends on both the current keystroke and the preceding one. Clearly,

every input string can be uniquely identified by combining observations of packet sizes

about the two consecutive keystrokes (for simplicity, we only consider a−d combinations

here, whereas in reality it may take more than two keystrokes to uniquely identify an input

string).

Second Keystroke

First Keystroke a b c d

a 509 487 493 501 497
b 504 516 488 482 481
c 502 501 488 473 477
d 516 543 478 509 499

Table 5.2: s Value for Each Character Entered as the First (Second Column) and Second
(3-6 Columns) Keystroke

A natural solution for preventing such a side channel attack is to pad packets such

that each packet size will no longer map to a unique input (One extreme case is to pad all

packets to the identical size, namely, maximizing). However, such a solution does not come

free, since padding packets will result in additional communication and processing over-

head. In fact, it has been shown that a straightforward solution, such as random padding

(appending a random-length padding within a given interval to a packet) and rounding

(rounding packet sizes to the nearest intervals), may incur a prohibitive overhead (e.g.

21074% for a well-known online tax system [22]). Thus, we face two seemingly conflict-

ing goals. First, the difference in packet sizes needs to be sufficiently reduced to prevent

eavesdroppers from distinguishing between different users inputs based on corresponding

98

packet sizes. Second, the overhead for achieving such privacy protection should be mini-

mized. Finally, a tradeoff naturally exists between these two objectives.

We now consider a different way for padding the packets as shown in Table 5.3. The

first and last columns respectively show the s value and corresponding character with its

prefix (e.g., (c)d means the character d is entered as the second keystroke after its prefix c

is entered for the same input string). The middle two columns give two options for padding

packets (although not shown here, there certainly exist many other options). Specifically,

each option first divides the six keystrokes into three (or two) padding groups, as illustrated

by the (absence of) horizontal lines. Packets within the same padding group are then padded

in such a way that the corresponding s values become identical to the maximum value in

that group, and thus the characters inside the group will no longer be distinguishable from

each other by the s values. The objective now is to find a padding option that can provide

sufficient privacy protection and meanwhile minimize the padding cost. Note that gathering

such packet information is practical for most Web applications, as we will discuss later in

Section 5.6.1.

s Value Padding (Prefix)Char

Option 1 Option 2

473 477 478 (c)c
477 477 478 (c)d
478 499 478 (d)b
499 499 509 (d)d
501 509 509 (c)a
509 509 509 (d)c

Quasi-ID Generalization Sensitive Value

Table 5.3: Mapping PPTP to PPDP

Interestingly, this privacy-preserving traffic padding (PPTP) problem is naturally

associated with another well studied problem, namely, privacy-preserving data publishing

(PPDP) [47]. For example, in Table 5.3, if we regard the s value as a quasi-identifier

(such as DoB), the input as a sensitive value (such as medical condition), and the padding

options as different ways for generalizing the DoB into anonymized groups (for example,

99

by removing the day from a DoB), then we immediately have a classic PPDP problem, that

is, publishing DoBs and medical conditions while preventing adversaries from linking any

published medical condition to a person through his/her DoB [47].

The above connection between the two issues implies that we may borrow many

existing efforts in the PPDP domain to address the PPTP issue based on the similarity

between these two problems. On the other hand, there also exist significant differences

between the two. As an example, in Table 5.3, the second option will likely be considered as

worse than the first in the PPDP domain in terms of typical data utility measures (intuitively,

the second option leads to more utility loss due to its larger anonymized groups), whereas

it is actually better in the PPTP domain with respect to padding cost (it can be shown that

the second option incurs totally 24 bytes of overhead, in contrast to 33 by the first option).

As another example, we will show later that the effect of combining two keystrokes will

be equivalent to releasing multiple inter-dependent tables, which actually leads to a novel

PPDP problem.

In this chapter, we first present a model of the PPTP issue based on the mapping

to PPDP, which formally characterizes the interaction between users and Web applica-

tions, the observation made by eavesdroppers, the privacy requirement, and the overhead

of padding. Based on the model, we then formulate several PPTP problems under different

assumptions, and discuss the complexity. We show that minimizing padding cost under a

given privacy requirement is generally intractable. Next, we design several heuristic algo-

rithms for solving the PPTP problems in polynomial time with acceptable overhead. Fi-

nally, we demonstrate the effectiveness and efficiency of our algorithms by both analytical

and experimental evaluations.

The contribution of this chapter is threefold. First, the identified similarity between

PPTP and PPDP establishes a bridge between the two research areas, which will not only

allow for reusing many existing models and methods in the well investigated PPDP do-

main, but serve to attract more interest to the important PPTP issue. Second, to the best

100

of our knowledge, our formal model is among the first efforts on formally addressing the

PPTP issue (refer to Chapter 2 for a detailed review of related work). Third, the proposed

algorithms may provide direct and practical solutions to real world PPTP applications, as

evidenced by our implementation and comparative experimental studies. Moreover, those

algorithms demonstrate the feasibility of adapting existing PPDP methods to the PPTP

domain, and the challenges in doing so.

The rest of the chapter is organized as follows. Section 5.2 defines our PPTP model.

Section 5.3 formulates PPTP problems and analyzes the complexity. Section 5.4 devises

heuristic algorithms for the formulated problems. Section 5.5 proposes an extended version

of the PPTP solution to accommodate different likelihoods of possible inputs, including a

re-defined privacy model, the new PPTP problems, and corresponding PPTP algorithms.

Section 5.6 discusses the implementation of our solution, and experimentally evaluates the

performance of our algorithms. Finally, Section 5.7 concludes the chapter.

5.2 The Model

Section 5.2.1 first presents the basic model of interaction and observation. Sec-

tion 5.2.2 then maps PPTP to PPDP in order to quantify privacy protection and overhead.

Finally, Section 5.2.3 extends the basic model to more realistic cases. We will also demon-

strate its flexibility to adapt different privacy properties in Section 5.5. Table 5.4 lists main

notations that will be used throughout the chapter.

a, �a, Ai or A Action, action-sequence, action-set
s, v, �v, Vi or V Flow, flow-vector, vector-sequence, vector-set
�a[i], �v[i] The ith element in �a and �v
VAi or VA Vector-action set
pre(a, i) i-Prefix
dom(P) Dominant-vector
vdis(v1, v2) Vector-distance

Table 5.4: The Notation Table

101

5.2.1 The Basic Model

We model the PPTP issue from two perspectives, the interaction between users and

servers, and the observation made by eavesdroppers. First, Definition 5.1 formalizes the

interaction. Our discussions about Table 5.2 demonstrated how one keystroke may affect

another in terms of observations (packet sizes), and how an eavesdropper may combine

such multiple observations for a refined inference. Such inter-dependent user actions are

modeled as an action-sequence in Definition 5.1. The concept of action-set models a col-

lection of actions whose corresponding observations may be padded together.

Definition 5.1 (Interaction) Given a Web application, we define

- an action a as an atomic user input that triggers traffic, such as a keystroke or a

mouse click.

- an action-sequence �a as a sequence of actions with known relationships, such as con-

secutive keystrokes entered into real-time search engine or a series of mouse clicks

on hierarchical menu items. We use �a[i] to denote the ith action in �a.

- an action-set Ai as the collection of all the ith actions in a set of action-sequences.

We will simply use A if all action-sequences are of length one.

Example 5.1 Assume “bee” and “cab” in Table 5.1 to be the only possible inputs, we have

six actions, a11, a12, a13 and a21, a22, a23 corresponding to b, e (as second keystroke), e (as

third) in input “bee”, and c, a, b (as third keystroke) in input “cab”. There are two action-

sequences�a1 =〈a11, a12, a13〉 and�a2 =〈a21, a22, a23〉, and three action-sets A1 ={a11, a21},

A2 ={a12, a22}, and A3 ={a13, a23}. �

Definition 5.2 models concepts related to the observation made by an eavesdropper.

Note that a flow-vector is intended to only model those packets that may contribute to

identify an action (such as the s value in Table 5.1). Also, each action is not associated

102

with a flow but a flow-vector, which is itself a sequence, since a single action may trigger

more than one packet. Finally, unlike an action-set, a vector-set is defined as a multiset,

since it may contain duplicates (that is, packets nay share the same size).

Definition 5.2 (Observations) Given a Web application, we define

- a flow-vector v w.r.t. an action a as a sequence of flows, where each flow s represents

the size of a directional packet triggered by a. Denoted the relation between a and v

by f(a)=v.

- a vector-sequence �v as a sequence of flow-vectors corresponding to an equal-length

action-sequence �a, with each �v[i] corresponding to �a[i] (1 ≤ i ≤| �v |).

- a vector-set Vi (or simply V) as the collection of all the ith flow-vectors in a set of

vector-sequences, which corresponds to an action-set in the straightforward way.

Example 5.2 Following Example 5.1, we have six flow-vectors, v11 = 〈544〉, v12 = 〈555〉,
v13 = 〈547〉 and v21 = 〈554〉, v22 = 〈560〉, v23 = 〈558〉 (note that we only model those

packets whose sizes can help to identify an action), corresponding to actions a11, a12, a13

and a21, a22, a23, respectively. We have two vector-sequences �v1 = 〈v11, v12, v13〉 and �v2 =

〈v21, v22, v23〉, corresponding to action-sequences �a1 and �a2, respectively. We have three

vector-sets V1 = {v11, v21}, V2 = {v12, v22} and V3 = {v13, v23} corresponding to the three

action-sets A1, A2, and A3 in Example 5.1. �

Finally, Definition 5.3 models the joint information about interaction and observa-

tion, which is the collection of the pairs of the action and its corresponding flow-vector.

Definition 5.3 (Vector-Action Set) Given an action-set Ai and its corresponding vector-

set Vi, a vector-action set VAi is the set {(v, a) : v ∈ Vi ∧ a ∈ Ai ∧ fi(a) = v}.

103

Example 5.3 Following above Examples, given the action-set A1 and vector-set V1, then

the vector-action set is VA1 ={(v11, a11), (v21, a21)}. Similarly, VA2 ={(v12, a12), (v22, a22)},

VA3 ={(v13, a13), (v23, a23)}.

5.2.2 Privacy and Cost Model

For simplicity, we first consider a simplified case where every action-sequence and

flow-vector are of length one, namely, the Single-Vector Single-Dimension (SVSD) case.

That is, all actions are independent, and each action triggers only a single packet that can be

used to identify the action. In this case, we map a given vector-action set VA={(v, a) : v ∈
V ∧ a ∈ A ∧ f(a)=v} to a table T (v, a) with two attributes, the flow-vector v (equivalent

to a flow s here) as quasi-identifier and the action a as sensitive attribute. Note that we will

interchangeably refer to a vector-action set and its tabular representation from now on.

Definition 5.4 quantifies the amount of privacy protection under a given vector-

action set. This model follows the widely adopted approach of assuming a fixed privacy

requirement while minimizing the cost.

Definition 5.4 (k-Indistinguishability) Given a vector-action set VA, we define

- a padding group as any S ⊆ VA satisfying that all the pairs in S have identical

flow-vectors and no S ′ ⊃ S can satisfy this property, and

- we say VA satisfies k-indistinguishability (k is an integer) or VA is k-indistinguishable

if the cardinality of every padding group is no less than k.

Discussion One may argue that, in contrast to encryption, k-indistinguishability may not

provide strong enough protection. However, as mentioned before, we are considering cases

where encryption is already broken by side-channel attacks, so the strong confidentiality

provided by encryption is already not an option. Second, in theory k could always be

set to be sufficient large to provide enough confidentiality, although a reasonably large k

104

would usually satisfy users’ privacy requirements for most practical applications. Finally,

since most web applications are publicly accessible and consequently an eavesdropper can

unavoidably learn about possible inputs, we believe focusing on protecting sensitive user

input (by hiding it among other possible inputs) yields higher practical feasibility and sig-

nificance than on perfect confidentiality (attempting to hide everything).

As demonstrated in Section 5.1, we can map the PPTP model to PPDP. Meanwhile,

such mapped PPDP problems actually possess a unique characteristic. That is, the sen-

sitive values (actions) are always unique. Thus, by satisfying k-indistinguishability, the

vector-action set also satisfies l-diversity (l = k) in its simplest form [77]. Furthermore, a

probabilistic approach based on differential privacy [40] is another possible extension to

enhance our model such that the padding result will be immune to eavesdroppers’ prior

knowledge. Nonetheless, this simple model is sufficient to demonstrate the usefulness of

mapping PPTP to PPDP. For simplicity, we will first focus on k-indistinguishability in

Sections 5.2– 5.4, and delay the discussion about more general forms of l-diversity in Sec-

tion 5.5 to address cases where not all actions should be treated equally in padding.

In addition to privacy requirement, we also need a quantitative measure for the cost

of padding and processing. Across the whole vector-set, Definition 5.5 counts the number

of additional bytes after padded, while Definition 5.6 counts the number of flows that are

involved in padding. We focus on these simple models in this chapter while there certainly

exist other ways for modeling such costs.

Definition 5.5 (Distance and Padding Cost) Given a vector-set V , we define

- the vector-distance between two equal-length flow-vectors v1 and v2 as: vdis(v1, v2)=∑|v1|
i=1(|s1i−s2i|) where s1i and s2i are the ith flow in v1 and v2, respectively.

- the padding cost of V as: cost =
∑|V |

i=1(vdis(vi, v
′
i)) where vi and v′

i denote a flow-

vector in V and its counterpart after padding, respectively.

105

Definition 5.6 (Processing Cost) Given a vector-set V , we define the processing cost of V

as the number of flows in V which corresponding packets should be padded.

5.2.3 The SVMD and MVMD Cases

In the previous section, we have focused on the simplified SVSD case to facilitate

a focused discussion on the privacy and cost model. We now look at the more realistic

cases. First, we consider the Single-Vector Multi-Dimension (SVMD) case where each

flow-vector may include more than one flows (that is, an action may trigger more than

one packets that can be used to identify the action), whereas each action-sequence is still

composed of a single action. In this case, the vector-action set needs to be mapped to a

table T (s1, . . . , s|v|, a) with multiple quasi-identifier attributes (each flow corresponds to

an attribute). Thus, based on Definition 5.4, flow-vectors can form a padding group only if

they are identical with respect to every flow inside the vectors. Another subtlety is that the

model of vector-action set requires all the flow-vectors to have the same number of flows,

which is not always possible in practice. One solution is to insert dummy packets of size

zero which will then be handled as usual in the process of padding.

Next, we consider the Multi-Vector Multi-Dimension (MVMD) case in which each

action-sequence consists of more than one actions and each flow-vector includes multiple

flows. Definition 5.7 expresses the relationship between actions in an action-sequence.

Definition 5.7 (i-prefix, adjacent-prefix, adjacent-suffix) We define

- the i-prefix of an action-sequence �a = 〈�a[1],�a[2], . . . ,�a[t]〉 (i ∈ [1, t]), denoted as

pre(�a, i), as the sequence 〈�a[1],�a[2], . . . ,�a[i]〉, and we say �a[i−1] is the adjacent-

prefix (or simply prefix) of �a[i], and �a[i+1] is the adjacent-suffix (or simply suffix) of

�a[i],

- similarly, we define the i-prefix of vector-sequence �v, and the prefix, suffix of �v[i].

106

In the MVMD case, due to the prefix relationship, the flow-vector for an action may

provide additional information about flow-vectors that correspond to the previous actions

in the same action-sequence. Such knowledge may enable the eavesdropper to refine his

guesses about an action. Such a scenario is illustrated in Figure 5.1. Also, we slightly

change the definition of a vector-action set to accommodate the added prefix action infor-

mation, as shown in Definition 5.8. We will delay the discussion about how a padding

algorithm may satisfy k-indistinguishability in this case to the next section.

Prefix Flow-Vector v Action a
a22 v31 a31

v12 a32
v11 …
v11 …
v11 …
v11 …
v11 …

…
v1n …

Prefix Flow-Vector v Action a
a11 v21 a21

v12 a22
v11 …
v11 …
v11 …
v11 …
v11 …

…
v1n

Prefix Flow-Vector v Action a
v11 a11
v12 a12
… …
… …
… …
… …
… …

Figure 5.1: The Vector-Action Set in MVMD Case

Definition 5.8 (Vector-Action Set (MVMD Case)) Given t action-sets {Ai : 1 ≤ i ≤ t}
and the corresponding vector-sets {Vi : 1 ≤ i ≤ t}, the vector-action set VA is the collec-

tion of sets {{(v, a) :v∈Vi ∧ a∈Ai ∧ fi(a) = v} :1 ≤ i ≤ t}.

5.3 PPTP Problem Formulation

The formal model introduced in the previous section enables us to formulate a series

of PPTP problems and study their complexity. We first discuss the choice of our ceiling

107

padding approach among other possibilities in Section 5.3.1, and then address the SVSD

and SVMD cases in Section 5.3.2 and the MVMD case in Section 5.3.3.

5.3.1 Ceiling Padding

In choosing a padding method, we need to address two aspects, privacy protection

by satisfying the k-indistinguishability property, and minimizing padding cost. As pre-

viously mentioned, an application-agnostic approach, such as packet-size rounding and

random padding, will usually incur high padding cost while not necessarily guarantee-

ing sufficient privacy protection [22]. We now revisit this argument by showing that a

larger rounding size does not necessarily lead to more privacy. With our model, more

privacy can now be clearly defined as satisfying k-indistinguishability for a larger k. Con-

sider rounding the flows for the second keystrokes shown in Table 5.2 to a multiple of 64

(for example, 487 to 8×64 = 512). It can be shown that such rounding can achieve 2-

indistinguishability (detailed calculations are omitted), while increasing the rounding size

to 160 can achieve 3-indistinguishability. However, further increasing it to 256 can still

only satisfy 2-indistinguishability.

From another point of view, as demonstrated in Section 5.1, we can now apply

the PPDP technique of generalization to addressing the PPTP problem. A generalization

technique will partition the vector-action set into groups, and then break the linkage among

actions in the same group. One unique aspect in applying generalization to PPTP is that

padding can only increase each packet size but cannot decrease or replace it with a range

of values like in normal generalization. The above considerations lead to a new padding

method given in Definition 5.9. Basically, after partitioning a vector-action set into groups,

we pad each flow in a padding group to be the maximum size of that flow in the group.

Definition 5.9 (Dominance and Ceiling Padding) Given a vector-set V , we define

- the dominant-vector dom(V) as the flow-vector in which each flow is equal to the

108

maximum of the corresponding flow among all the flow-vectors in V .

- a ceiling-padded group in V as a padding group in which every flow-vector is padded

to the dominant-vector. We also say V is ceiling-padded if all the groups are ceiling-

padded.

Similar to the centroid in k-means clustering [55], dominant-vector is not necessary

to be an actual vector in V . We will focus on the ceiling padding method in the rest of

the chapter. When no ambiguity is possible, we will not distinguish between vector-set,

vector-action set, flow-vector, and vector-sequence.

5.3.2 The SVSD and SVMD Cases

In the SVSD case, there is only a single flow in each flow-vector of the vector-set.

Therefore, we only need to modify the vector-set by increasing the value of some flows to

form padding groups. The padding problem can be formally defined as follows.

Problem 5.1 (SVSD Problem) Given a vector-action set VA and the corresponding vector-

set V and action-set A, the privacy property k ≤ |V |, find a partition P VA on VA such that

the corresponding partition on V , denoted as P V = {P1, P2, . . . , Pm}, satisfies

- ∀(i ∈ [1, m]), |Pi| ≥ k;

- The padding cost
∑m

i=1(dom(Pi) × |Pi|) is minimal. �

In the SVMD case, there are more than one flows in each flow-vector of the vector-

set. The padding problem can be defined as follows:

Problem 5.2 (SVMD problem) Given a vector-action set VA and the corresponding vector-

set V (in which each flow-vector includes np flows) and action set A, the privacy property

k ≤|V |, find a partition P VA on VA such that the corresponding partition on V , denoted

as P V = {P1, P2, . . . , Pm}, satisfies

109

- ∀(i ∈ [1, m]), |Pi| ≥ k;

- The cost
∑m

i=1(
∑np

j=1((dom(Pi))[j]) × |Pi|) is minimal. �

Theorem 5.1 shows that the above PPTP problem is intractable, and indicates that

Problem 5.2 is NP-hard even when there are only two different flow values in the vector-set.

Theorem 5.1 Problem 5.2 is NP-complete when k=3 and the flow-vectors are from binary

alphabet
∑

.

Proof: The proof follows the work in [4] for reduction from the well-known NP-

hard problem, namely, the problem of Edge Partition Into Triangles (EPIT) [54], which is

defined as follows:

Given a graph G = (V, E) with |E| = 3m for some integer m, can the edges of G

be partitioned into m triangles with disjoint edges? This problem is still NP-hard even G

is simple.

For an arbitrary instance of EPIT problem (without loss of generality, the graph

is assumed to be simple), we construct a vector-action set VA with 3m pairs of (vector,

action) where the vector has |V | number of flows. Concretely, for each edge uiuj ∈ E,

to which ui and uj are incident, we create a (v, a) pair in VA such that the two flows in

v corresponding to ui and uj have zb
′s and all the other flows have za

′s (each vertex is

bijectively mapped to a flow in the flow-vector denoted by the subscript), where za and zb

are two positive integers and za < zb. Obviously, this reduction works in polynomial time

O(3mn). Note that padding is represented here by modifying za
′s in some flows to be zb

′s,

and correspondingly, the cost is shown by the total number of za
′s which is changed to zb

′s.

Now we show that the cost of optimal solution for Problem 5.2 is at most 3m if and

only if E in G can be partitioned into a collection of m disjoint triangles.

Suppose that there exists a partition of edges in G for EPIT. Consider any triangle

with vertexes ui,uj and ul, and edges uiuj , ujul and ului. Observe that, by modifying the

l, i, and j flows from za to zb respectively in the corresponding (v, a) pairs, we obtain a

110

group in size 3 with identical flow-vectors. Consequently, we get a solution to Problem 5.2

with cost 3m.

Conversely, suppose that there is a 3-indistinguishability solution for Problem 5.2

of cost at most 3m. Since G is simple, any two pairs in VA are different in at least 2 flows

(in the case that the corresponding edges in G share one common vertex). Consequently,

to make two pairs have identical flow-vector values, we should at least modify one flow

from za to zb for each (v, a) pair. Therefore, the solution cost is exactly 3m and each pair

is padded exactly one flow.

Since the solution satisfies 3-indistinguishability, any group in VA should be in size

at least 3. Observe that, for any group with size larger than 3, any of its pairs will have at

least two flows which are za and at least one other pair in the group has value zb. In other

words, in any such group, each pair should be at least padded two flows. Thus, each group

has exactly three pairs. The only possibility is that the corresponding edges for the tuples

in each group composes a triangle.

Besides, a given solution of Problem 5.2 can be verified in polynomial time whether

it satisfies k-indistinguishability and the cost is less than a given value or not.

Note that, at first glance, the SVMD problem may resemble the problem of k-means

clustering [55]. However, algorithms for k-means clustering cannot be directly applied

to our problem due to following differences between these two problems. First, k-means

clustering needs to partition a multiset into k groups, whereas in our problem, the minimal

size of each group must be at least k. Second, k-means clustering is to minimize the within-

cluster sum of squares, while our problem is to minimize the total distance between each

of the flow-vectors and the dominant-vector.

5.3.3 MVMD Problem

As mentioned in Section 5.2.3, by correlating flow-vectors in the vector-sequence,

an eavesdropper may refine his guesses of the actual action-sequence. We first discuss the

111

challenges of traffic padding in such cases by observing the traffic for the sequence of two

keystrokes as shown in Table 5.2.

Example 5.4 To revisit Table 5.2, suppose an eavesdropper has observed the flow for the

second keystroke. In order to preserve 2-indistinguishability with minimal padding over-

head, one algorithm may partition the 16 cells into eight groups such that the size of each

group is not less than 2, and assume that the queried strings (a)c and (c)a form one group.

When the eavesdropper observes that the flow for the second keystroke is 501, she cannot

determine whether the queried string is (a)c or (c)a.

However, suppose the eavesdropper also observes the flow corresponding to the

first keystroke, she can determine that the first keystroke is either (a) or (c) when the flow

is 509 or 502, respectively. Consequentially, she can eventually infer the queried string by

combining these observations. �

One seemingly valid solution is padding the flow-vector for each keystroke so that

2-indistinguishability is satisfied separately for each keystroke. Unfortunately, this will fail

to satisfy 2-indistinguishability. To pad traffic for the first keystroke, the optimal solution

is to partition {509, 504, 502, 516} into two padding groups, {502, 504} and {509, 516}.

However, when the eavesdropper observes the flow corresponding to the first keystroke,

he/she can still determine it must be either (a) or (c) when the size is 516 or 504, respec-

tively, because only when the first keystroke starts with (a) or (c) can the flow for second

keystroke be padded to 501. Therefore, the eavesdropper will eliminate (b) and (d) from

possible guesses, which violates 2-indistinguishability.

Another seemingly viable solution is to first collect all vector-sequences for the

sequence of keystrokes and then pad them such that the current input string as a whole

cannot be distinguished from at least k − 1 others. Unfortunately, such an approach cannot

guarantee the privacy property, either. First, the auto-suggestion feature requires the server

to immediately respond to the client upon each single keystroke. Second, when receiving a

112

single keystroke, the server cannot predict what would be the next input and hence cannot

decide which padding option is suitable. For example, suppose the flow corresponding to

(a) in (a)c should be padded to 509, while in (a)b to 516. When the server receives (a), it

cannot determine whether to pad (a) to 509 or to 516.

The discussed challenges mainly arise due to the approach of padding each vector-

set independently. We now propose a different approach. Intuitively, the partitioning of

a vector-set corresponding to each action will respect the partitioning results of all the

previous actions in the same action-sequence. More precisely, the padding of different

vector-sets is correlated based on the following two conditions.

- Given two t-sized vector-sequences �v1 and �v2, any prefix pre(�v1, i) and pre(�v2, i)(i ∈
[2, t]), can be padded together only if ∀(j < i), pre(�v1, j) and pre(�v2, j) are padded

together.

- For any two t-sized action-sequences �a1 and �a2 and corresponding vector-sequences

�v1 and �v2, if pre(�a1, i) = pre(�a2, i)(i ∈ [1, t]), then pre(�v1, i) and pre(�v2, i) must be

padded together.

Once a partition satisfies these conditions, no matter how an eavesdropper analyzes

traffic information, either for an action alone or combining multiple observations of pre-

vious actions, the mental image about the actual action-sequence remains the same. Due

to the similarity between the conditions and a related concept in graph theory, we call a

partition satisfying such conditions the oriented-forest partition.

Problem 5.3 (MVMD problem) Given a vector-action set VA = (VA1, VA2, . . . , VAt)

where VAi = (Vi, Ai) (i ∈ [1, t]), the privacy property k ≤ |Vt|, find the partition P VAi on

VAi such that the corresponding partition P Vi = {P i
1, P

i
2, . . . , P

i
mi
} on Vi satisfies

- ∀((i ∈ [1, t − 1]) ∧ (j ∈ [1, mi]))⎧⎪⎪⎨
⎪⎪⎩
|P i

j | ≥ k, if (|Vi| ≥ k),

|P i
1| = |Vi|, if (|Vi| < k);

113

- ∀(j ∈ [1, mt]), |P t
j | ≥ k;

- The sequence of P Vi is an oriented-forest partition;

- The total padding cost of P Vi (i ∈ [1, t]) is minimal. �

Obviously, Problem 5.3 is also NP-complete when k ≥ 3 since Problem 5.2 is

special case of Problem 5.3.

5.4 The Algorithms

In this section, we design three algorithms for partitioning the vector-action set into

padding groups to satisfy a given privacy requirement. Our intention is not to design an

exhaustive list of solutions but rather to demonstrate the existence of abundant possibilities

in approaching this PPTP issue. Note that when the cardinality of vector-action set is

less than the privacy property k, there is no solution to satisfy the privacy property. In such

cases, our algorithms will simply exit, which will not be explicitly shown in each algorithm

hereafter.

5.4.1 The svsdSimple Algorithm

The main intention of presenting the svsdSimple algorithm is to show that, when

applying k-indistinguishability to PPTP problems, an algorithm may sometimes be devised

in a very straightforward way, and yet achieve a dramatic reduction in costs when compared

to existing approaches (as shown in the Section 5.6).

The svsdSimple algorithm shown in Table 5.5 basically attempts to minimize the

cardinality of padding groups in the SVSD case. More specifically, svsdSimple first sorts

the single flow in the flow-vector into a non-decreasing order of the flows, and then selects

k pairs of (flow-vector, action) each time in that order to form a padding group. This is

repeated until the number of pairs is less than k. The remainder of pairs is simply appended

114

to the last padding group. The computational complexity is O(nlogn) where n = |VA|,
since step 2 costs O(nlogn) time and each pair is considered once for the remaining steps.

Algorithm svsdSimple
Input: a vector-action set VA, the privacy property k;
Output: the partition P VA of VA;
Method:

1. Let P VA = ∅;
2. Let SVA be the sequence of VA in a non-decreasing order of V ;
3. Let N = |SVA|

k
;

4. For i = 0 to N − 2

5. Let Pi =
⋃(i+1)×k

j=i×k+1(S
VA[j]);

6. Create partition Pi on P VA;
7. Create PN−1 =

⋃|SVA|
j=(N−1)×k+1(S

VA[j]) on P VA;
8. Return P VA;

Table 5.5: The svsdSimple Algorithm for SVSD-Problem

5.4.2 The svmdGreedy Algorithm

The svmdGreedy algorithm, which aims at both SVSD and SVMD problems, is

shown in Table 5.6. Roughly speaking, the svmdGreedy recursively divides the padding

group Pi in P VA, where |Pi| ≥ 2 × k, into two padding groups Pi1 and Pi2 until the

cardinality of any padding group in P VA is less than 2 × k. When svmdGreedy splits a

padding group Pi(VAi) into two, these resultant padding groups, Pi1 and Pi2, must satisfy

that (Pi1 ∪Pi2 = Pi) ∧ (Pi1 ∩Pi2 = ∅) ∧ (|Pi1| ≥ k) ∧ (|Pi2| ≥ k). Obviously, there must

exist many solutions of Pi1 and Pi2. svmdGreedy limits the optimizing process insides a

subset of possible solutions as follows. For each flow, svmdGreedy first sorts the flow-

vectors in non-decreasing order of that flow, then splits Pi into Pi1 and Pi2 at position pos

in the sorted sequence where (pos ∈ [k, |Pi| − k]). There are totally (np × (|Pi| − 2 × k))

possible solutions for all flows in the flow-vector, where np is the number of flows in flow-

vector. SvmdGreedy finally selects the one with minimal padding cost among this set of

solutions. Clearly, this algorithm can solve SVSD-problem when np is set to be 1.

115

Algorithm svmdGreedy
Input: a vector-action set VA, the privacy property k;
Output: the partition P VA of VA;
Method:

1. If(|VA| < 2 × k)
2. Create in P VA the VA;
3. Return;
4. Let np be the number of flows in flow-vector;
5. For p = 1 to np

6. Let SVA
p be the sequence of VA in the non-decreasing order of

the pth flow in the flow-vector;
7. For i = k to |SVA

p | − k
8. Let costp,i as the cost when SV

p is split at position i;
9. Let costp be a pair (c, i) where c is the minimal in (costp,i) and

i is the corresponding position;
10. Let cost be a triple (c, p, i) where c is the minimal in c of

costp(p ∈ [1, np]), and p and i are the corresponding p and i;
11. Split SVA

cost.p into VA1 and VA2 at position cost.i;
12. Return svmdGreedy(VA1);
13. Return svmdGreedy(VA2);

Table 5.6: The svmdGreedy Algorithm For SVMD-Problem

The svmdGreedy algorithm has an O(np × n2) time complexity in the worst case

(each time, the algorithm splits Pi into k-size Pi1 and (|Pi| − k)-size Pi2), and O(np × n×
logn) in average cases (each time, the algorithm halves Pi), where n = |VA|.

5.4.3 The mvmdGreedy Algorithm

Both svsdSimple and svmdGreedy algorithms tackle cases where each action-sequence

consists of a single action (correspondingly, each vector-sequence consists of a single flow-

vector). Our intention now in devising the mvmdGreedy is to demonstrate how the two

conditions mentioned in Section 5.3.3 facilitate the algorithm design. In this algorithm,

we extend PPDP solutions to a sequence of inter-dependent vector-action sets. The only

constraint in partitioning vector-action set VAi is to ensure all flow-vectors in a padding

group should have their prefix in an identical padding group of VAi−1.

The mvmdGreedy algorithm for MVMD-Problem is shown in Table 5.7. Roughly

116

speaking, mvmdGreedy partitions each vector-action set in the sequence in the given order,

each for the flow-vector corresponding to an action in an action-sequence. More specif-

ically, mvmdGreedy applies svmdGreedy to partition the first vector-action set in the se-

quence. For each remaining vector-action set VAi, mvmdGreedy first partitions it into

|P VAi−1| number of padding groups based on the adjacent-prefix of the flow-vectors, and

then applies svmdGreedy to further partition these padding groups.

Algorithm mvmdGreedy
Input: a t-size sequence D of vector-action sets, the privacy property k;
Output: the partition PD of D;
Method:

1. Let D = (VA1, VA2, . . . , VAt);
2. Let P 1 = svmdGreedy(VA1, k);
3. For each (w ∈ [1, |P 1|]), assign group G1

w ∈ P 1 a unique gid = w;
4. For i = 2 to t
5. Create in P i |P i−1| number of empty groups Gi

w(w ∈ [1, |Pi−1|]);
6. For each via in VAi

7. Let w be the gid of the group Gi−1
w in P i−1 that the prefix of

via in VAi−1 belongs to;
8. Insert via into Gi

w;
9. For each (w ∈ [1, |P i−1|])
10. P i = (P i \ Gi

w) ∪ svmdGreedy(Gi
w, k);

11. For each (w ∈ [1, |P i|]), assign group Gi
w ∈ P i a unique gid = w;

12. Return PD = {P i : 1 ≤ i ≤ t};

Table 5.7: The mvmdGreedy Algorithm For MVMD-Problem

Similarly, the mvmdGreedy also has an O(np × n2) time complexity in the worst

case (each time, the algorithm splits VAi into k-size VAi1 and (|VAi| − k)-size VAi2), and

O(np × n × logn) in average cases (each time, the algorithm halves VA), where n is the

total number of flow-vectors in those vector-sets.

5.5 Extension to l-Diversity

In previous discussion, we implicitly assume that each action in an action-set is

equally likely to occur. However, in real life, each action is not necessary to have equal

117

probability to be performed. In this section, we discuss an extension to our model to further

demonstrate that many existing PPDP concepts may be adapted to address PPTP issues.

Specifically, we adapt the l-diversity [77] concept to address cases where not all actions

should be treated equally in padding (for example, some statistical information regarding

the likelihood of different inputs may be publicly known).

5.5.1 The Model

We first assign an integer weight to each action to catch the information about its

occurrence probability among the action-set that it belongs to. The reason for assigning

weight instead is due to the utilization of such as access counter for visit statistics in most

applications.

Definition 5.10 (Weight-Set) Given an action-set Ai, the weight-set Wi is defined as the

collection of integer weights associated with the actions in that action-set.

Definition 5.11 (Occurrence Probability) Given an action-set A and corresponding weight-

set W , the occurrence probability of an action a with weight w in A is defined as pr(a, A) =

w∑|W |
i=1(wi)

.

Example 5.5 To revisit Example 5.1, given the action-set A1 = {a11, a21}, assume that the

weight for a11 = b and a21 = c are 20 and 5 respectively (clearly, in practice the value of

weight should be assigned based on the characteristics of applications). Then, the weight-

set is W1 = {20, 5}. Moreover, in action-set A1, the occurrence probability of b and c is

20
20+5

= 80% and 5
20+5

= 20%, respectively. �

Then we slightly change the definition of vector-action set to accommodate the

weight information. Since SVSD and SVMD are special cases of MVMD, w.l.o.g., we

only redefine the concept for MVMD.

118

Definition 5.12 (Vector-Action-Weight Set) Given t action-sets {Ai : 1 ≤ i ≤ t}, and

the corresponding weight-sets {Wi : 1 ≤ i ≤ t} and vector-sets {Vi : 1 ≤ i ≤ t}, the

vector-action-weight set VAW is the collection of sets {{(v, a, w) : v ∈ Vi ∧ a ∈ Ai ∧ w ∈
Wi} : 1 ≤ i ≤ t}.

Example 5.6 Following Example 5.5, given the action-set A1 = {b, c}, weight-set W1 =

{20, 5} and vector-set V1 = {544, 554}, the corresponding vector-action-weight set is

VAW1 ={(544, b, 20), (554, c, 5)}. �

We regard weight information as an additional information about the action, there-

fore, the mapping from PPTP to PPDP is consistent with what has been discussed before.

Definition 5.13 applies l-diversity to quantify the amount of privacy protection under a

given vector-action-weight set.

Definition 5.13 (l-Diversity) Given a vector-action set VAW , we define

- a padding group as any S ⊆ VAW satisfying that all the pairs in S have identical

flow-vectors and no S ′ ⊃ S can satisfy this property, and

- we say VAW satisfies l-diversity (l is an integer) or VAW is l-diverse if the occur-

rence probability of any action in any padding group is no greater than 1
l
.

Example 5.7 Following Example 5.6, the highest occurrence probability is b with 4
5
. Since

1
1

> 4
5

> 1
2
, VAW1 does not satisfy 2-diversity. �

5.5.2 The Problem

With the revised definitions, we now formulate the diversity problems, namely,

SVSD-Diversity, SVMD-Diversity, and MVMD-Diversity, for the SVSD case, SVMD

case, and MVMD case, respectively. Clearly, the main difference between the l-diversity

problems and aforementioned k-indistinguishability problems is the condition on the padding

119

group. That is, for k-indistinguishability, the cardinality of each padding group should be at

least k, whereas, for l-diversity, the maximal occurrence probability of each group should

be at most 1
l
, as demonstrated by Problem 5.4 for MVMD case.

Problem 5.4 (MVMD-Diversity Problem) Given a vector-action-weight set VAW = (VAW1,

VAW2, . . . , VAWt) where VAWi = (Vi, Ai, Wi) (i ∈ [1, t]), the privacy property l ≤
1

max
a∈At

(pr(a, At))
, find the partition P VAWi on V AWi such that the corresponding partitions

PAi = {PAi
1 , PAi

2 , . . . , PAi
mi
} on Ai and P Vi = {P Vi

1 , P Vi
2 , . . . , P Vi

mi
} on Vi satisfy

- ∀((i ∈ [1, t − 1]) ∧ (j ∈ [1, mi]))⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
a∈P

Ai
j

(pr(a, PAi
j)) ≤ 1

l
, if (max

a∈Ai

(pr(a, Ai)) ≤ 1

l
),

PAi
1 = Ai, if (max

a∈Ai

(pr(a, Ai)) >
1

l
);

- ∀(j ∈ [1, mt]), max
a∈P

At
j

(pr(a, PAt
j)) ≤ 1

l
;

- The sequence of P Vi is an oriented-forest partition;

- The total padding cost of P Vi (i ∈ [1, t]) after applying ceiling padding is minimal.

�

Observe that when the weights of all actions in any VAWi are set to be identical, and

l = k, Problem 5.4 is simplified to Problem 5.3. Informally, Problem 5.4 is at least as hard

as Problem 5.3.

Although l-diversity in PPTP shares the same spirit with that in PPDP, algorithms for

l-diversity in PPDP cannot be directly applied to our PPTP problems due to the following

main difference between these two problems. In PPDP, there are many tuples with same

sensitive values in the micro-data table, while in our problem, the action in an action-set is

not duplicated, and we assign a weight for each action to distinguish its possibility to be

performed by a user from other actions.

120

5.5.3 The Algorithms

To facilitate the explanation, we first present the svsdDiversity algorithm for SVSD

case to show the essence of design ideas to satisfy l-diversity as shown in Table 5.8.

Roughly speaking, svsdDiversity algorithm first sorts the actions in non-increasing order

of their weight values, and then among the actions with same weight, sorts them in a prede-

fined order based on their flow-vectors. In this algorithm, we sort them in non-increasing

order of the flows (note this step aims at reducing the padding cost in the resultant group

and there must exist alternative solutions for ordering). Based on the sorted version S

of vector-action-weight set, svsdDiversity iteratively removes actions from S to construct

the padding group until S is empty. In each iteration, svsdDiversity splits the sequence S

into two l-diverse sub-sequences, Pα− and Pα+, such that the first sub-sequence Pα− has

minimal possible cardinality.

Algorithm svsdDiversity
Input: a vector-action-weight set VAW , the privacy property l;
Output: the partition P VAW of VAW ;
Method:

1. Let P VAW = ∅;
2. Let S be the sequence of VAW in a non-increasing order of its W ;
3. If(pr(S[1], S) > 1

l
)

4. Return;
5. Sort elements in S with same weight value

in non-increasing order of its V ;
6. While (S �= ∅)
7. Let Pα− = {S[i] : i ∈ [1, α]}, Pα+ = {S[i] : i ∈ [α + 1, |S|]};
8. Let α ∈ [l, |S|] be the smallest value such that:

pr(S[1], Pα−) ≤ 1
l

and
(pr(S[α + 1], Pα+) ≤ 1

l
or Pα+ ≡ ∅)

9. Create partition Pα− on P VAW ;
10. S = Pα+;
11. Return P VAW ;

Table 5.8: The svsdDiversity Algorithm For SVSD-Diversity Case

Note that, in each iteration, the algorithm removes Pα− from S and further splits

Pα+. Before discussing the reasons, we first introduce the undividable diverse group con-

121

cept to define the padding group which can not be further split without reordering the

sequence.

Definition 5.14 (Undividable Diverse Group) Given a vector-action-weight set VAW , and

denote by S = (S[1], S[2], . . . , S[|A|]) the sequence of VAW in the non-increasing order

of its W , we say Pα− = (S[1], S[2], . . . S[α]), a sub-sequence of S, is a undividable diverse

group, if

- pr(S[1], Pα−) ≤ 1
l
, and

- there does not exist any integer β ∈ [1, α), such that

both pr(S[1], (S[1], . . . , S[β])) ≤ 1
l

and pr(S[β+1], (S[β+1], . . . , S[α])) ≤ 1
l

hold.

The Pα− in step 9 is a undividable diverse group by reasoning as follows. If α is the

smallest position that Pα− satisfies l-diversity, clearly, it cannot be further split. Otherwise,

suppose that β is the smallest position such that β < α and P1 = (S[1], S[2], . . . , S[β])

satisfies l-diversity, then P2 = (S[β + 1], . . . , S[α]) is not l-diverse, since based on the

condition in step 8, pr(S[β + 1], P2) = w[β+1]∑α
i=β+1 w[i]

≥ w[β+1]∑|S|
i=β+1 w[i]

> 1
l
. Similarly, splitting

Pα− at any position between β and α leads to same result, which confirms the statement.

Furthermore, svsdDiversity always terminates since appending action with smaller

weight value to an l-diverse padding group will never produce a group violating l-diversity.

Therefore, each iteration will result in either two l-diverse groups or one whole sequence

together with an empty sequence.

The svsdDiversity algorithm has O(nlogn) time complexity since step 2 and step

5 cost (nlogn) time and each action is considered once for the remaining steps, where

n = |VAW |.
Then, we design svmdDiversity and mvmdDiversity algorithms for SVMD-Diversity

and MVMD-Diversity problems, respectively. Similar to svsdDiversity, svmdDiversity fol-

lows the conditions shown in step 8 in Table 5.8 to split S as shown in Table 5.9. In contrast

to svsdDiversity, svmdDiversity first identifies all possible positions of given VAW which

122

satisfy the conditions for each flow, and then selects the one with minimal cost among all

possible positions in all the flows. The svmdDiversity has O(np×n2) in the worst case and

O(np × n × logn) in average cases.

Algorithm svmdDiversity
Input: a l-diverse vector-action-weight set VAW , the privacy property l;
Output: the partition P VAW of VAW ;
Method:

1. If(|VAW | < 2 × l)
2. Create in P VAW the VAW ;
3. Return;
4. Let S be the sequence of VAW in a non-increasing order of its W ;
5. Let np be the number of flows in flow-vector V ;
6. For p = 1 to np

7. Sort elements in S with same weight value in non-increasing order
of the pth flow in its V ;

8. Let Pαp,i− = {S[r] : r ∈ [1, αp,i]}, and
Pαp,i+ = {S[r] : r ∈ [αp,i + 1, |S|]};

9. Let Zp ⊆ {i : l ≤ i ≤ |S|} be the set of values such that:
∀(αp,i ∈ Zp), pr(S[1], Pαp,i−) ≤ 1

l
and

(pr(S[αp,i + 1], Pαp,i+) ≤ 1
l

or Pαp,i+ ≡ ∅)
10. Let αp be the value in Zp such that the cost is minimal among

all αp,i ∈ Zp when S is split at αp,i;
11. Let α ∈ {αp : p ∈ [1, np]} with the minimal cost;
12. If (Pα+ is empty)
13. Create in P VAW the Pα−;
14. Return;
15. Return svmdDiversity(Pα−);
16. Return svmdDiversity(Pα+);

Table 5.9: The svmdDiversity Algorithm For SVMD-Diversity Case

Similar to mvmdGreedy, mvmdDiversity first ensures that the partitioning satisfies

the conditions of an oriented-forest partition (refer to Section 5.4.3 for the main idea).

There is still another complication. In mvmdGreedy, an initial padding group based on

prefixes certainly satisfies k-indistinguishability only if the set of prefixes satisfies. How-

ever, this is not the case in mvmdDiversity since a vector-action set with size larger than l

will not necessarily be a l-diverse set. To address this issue, we confine the Zp in step 9 of

svmdDiversity in Table 5.9 to further satisfy that both the set formed by all suffixes (refer

123

to Definition 5.7) of Pαp,i− and that of Pαp,i+ are l-diverse. To facilitate the evaluation of

these two additional conditions, for each action, the algorithm can precompute the maximal

value and the summation of weight values of all its suffixes. Clearly, such computation can

be an integrated part of reading inputs, and does not increase the order of computational

complexity. Thus, the mvmdDiversity algorithm has O(np × n2) time complexity in the

worst case and O(np × n × logn) in average cases (detailed algorithm descriptions are

omitted due to space limitations).

5.6 Evaluation

In this section, we evaluate the effectiveness of our solutions and efficiency through

experiments with real world Web applications. First, Section 5.6.1 discusses the imple-

mentation of our techniques. Section 5.6.2 then elaborates on the experimental settings.

Finally, Section 5.6.3, 5.6.4, and 5.6.5 present experimental results of the communication,

computation, and processing overhead, respectively.

5.6.1 Implementation Overview

In previous sections, we have presented algorithms for determining the amount of

padding for each flow given the vector-action set. To incorporate our techniques into an

existing Web application requires following three steps. First, gather information about

possible action-sequences and corresponding vector-sequences in the application. Second,

feed the vector-action sets into our algorithms to calculate the desired amount of padding.

Third, implement the padding according to the calculated sizes. The main difference be-

tween implementing an existing method (such as rounding) and ceiling padding lies in the

second stage. Thus, we have focused on this stage in this chapter. Nonetheless, we will also

briefly describe how to collect the vector-action sets in Section 5.6.2 and how to facilitate

the third stage in Section 5.6.5.

124

One may question the practicality of gathering information about possible action-

sequences since the number of such sequences can be very large. However, we believe it is

practical for most Web applications due to following three facts. First, the aforementioned

side-channel attack on web applications typically arises due to highly interactive features,

such as auto-suggestion. The very existence of such features implies that the application

designer has already profiled the domain of possible inputs (that is, action-sequences) for

implementing the feature. Therefore, such information must already exist in certain forms

and can be easily extracted at a low cost. Second, even though a Web application may take

infinite number of inputs, this does not necessarily mean there would be infinite action-

sequences. For example, a search engine will no longer provide auto-suggestion feature

once the query string exceeds a certain length. Third, all the three steps mentioned above

could be part of the off-line processing, and would only need to be repeated when the Web

application undergoes a redesign.

Note that implementing an existing padding method, such as rounding, will also

need to go through the above three steps if only the padding cost is to be optimized. For

example, without collecting and analyzing the vector-action sets, a rounding method cannot

effectively select the optimal rounding parameter.

5.6.2 Experimental Setting

We collect testing vector-action sets from four real-world web applications, two

popular search engines engineB and engineC (where users’ searching keyword needs to

be protected) and two authoritative information systems, drugB for drugs and patentC

for patents, from two national institutes (where users’ health information and company’s

patent interest need to be protected, respectively). Such data can be collected by acting as a

normal user of the applications without having to know internal details of the applications.

For our experiment, these data are collected using separate programs whose efficiency is

not our main concern in this chapter.

125

We observe that the flows of drugB and patentC are more diverse and larger than

those of engineB and engineC evidenced by the standard deviations (σ) and the means (μ)

of the flows, respectively. Besides, the flows of drugB, patentC are much more disparate

in values than those of engineB, engineC . Later we will show the effect of these different

characteristics of flows on the costs.

All experiments are conducted on a PC with 2.20GHz Duo CPU and 4GB memory.

We evaluate the overhead of computation, communication, and processing using execution

time, padding cost ratio, and processing cost ratio, respectively. Specifically, for each

application, we first obtain the total size of all flows ttl for all possible actions before

padding, and then compute the padding cost cost as shown in Definition 5.5 after padding.

The padding cost ratio is formulated as cost
ttl

. We also count the number of flows which

need to be padded, and then formulate the processing cost ratio as the percent of flows to

be padded among all flows. Clearly, given the interval Δ for random padding, theoretically

the padding and processing cost ratio equal to Δ
2×ttl

and 1− 1
Δ

respectively. Thus, we omit

the comparison with it through the experiments.

To facilitate comparison, we use the engineB and drugB sets to compare the over-

heads for k-indistinguishability against an existing padding method, namely, packet-size

rounding (simply rounding) [22], and the engineC and patentC sets to compare those for

l-diversity against the other, namely, maximizing (a naive solution which pads each to be

maximal size in the corresponding flow). For rounding, we set the rounding parameter

Δ=512 and Δ=5120 for engineB and drugB, respectively. Note that these Δ values just

lead to results satisfying 5-indistinguishability in the padded data, and are adapted only for

the comparison purpose. For l-diversity, we assign each action a uniformly random inte-

ger in a given range as its weight value (default [1, 50]). Note that our algorithms ensure

the privacy for l-diverse vector-action sets and report exception for other sets regardless of

the distribution and values of weights, and in real-life, the weight value could be assigned

based on such as statistical results.

126

5.6.3 Communication Overhead

We first evaluate the communication overhead of our algorithms in the case of

length-one action-sequences. In such cases, the svmdGreedy and svmdDiversity algorithms

are equivalent to mvmdGreedy and mvmdDiversity, respectively. To apply the svsdSimple,

svsdDiversity algorithms, we generate four vector-action sets by synthesizing the flow-

vectors for the last action of the four collected sets.

For k-indistinguishability, figure 5.2(a) shows padding cost of each algorithm against

k. Compared to rounding [22], our algorithms have less padding cost, while svmdGreedy

incurs significantly less cost than that of rounding.

64 128 192 256 320

20%
40%

E
ng

in
eB

k
(a). One−Level Action

64 128 192 256 320

5%

10%
15%

D
ru

gB

64 128 192 256 320

20%

40%

E
ng

in
eB

k
(b). Many−Level Action

64 128 192 256 320

5%

10%
15%
20%

D
ru

gB

svsdSimple
(EngineB)

mvmdGreedy
(EngineB)

Rounding
(EngineB)

svsdSimple
(DrugB)

mvmdGreedy
(DrugB)

Rounding
(DrugB)

Figure 5.2: Padding Cost Overhead Ratio (k-Indistinguishability)

For l-diversity, figure 5.3(a) shows padding cost of each algorithm against l. From

the results, the padding costs of our algorithms are significantly less than that of maximiz-

ing. We observe that our algorithms are superior specially when the number of flow-vectors

in a vector-action set is larger since our algorithms have high possibility to partition the

flow-vectors with close value into padding group.

We then compare our algorithms with existing methods in the case of action-sequences

of lengths larger than one. Figure 5.2(b) and 5.3(b) show padding costs of our mvmdGreedy

and the rounding algorithm against k, and our mvmdDiversity and the maximizing algo-

rithm against l, respectively. Rounding and maximizing incur larger padding cost than

127

64 128 192 256 320

20%
40%
60%

E
ng

in
eC

l
(a). One−Level Action

64 128 192 256 320 64 128 192 256 320
l

(b). Many−Level Action

64 128 192 256 320

10%

20%

400%

P
at

en
tC

svsdDiversity
(EngineC)

mvmdDiversity
(EngineC)

Maximizing
(EngineC)

svsdDiversity
(PatentC)

mvmdDiversity
(PatentC)

Maximizing
(PatentC)

Figure 5.3: Padding Cost Overhead Ratio (l-Diversity)

mvmdGreedy and mvmdDiversity in all cases. For example, the padding cost ratio of max-

imizing for patentC is prohibitively high as 418%, which is 140 times higher than that

of mvmdDiversity when l = 64. The reason for mvmdGreedy, mvmdDiversity algorithms

have more padding cost in the case of many-level action than in one-level is as follows.

In many-level action, these algorithms first partition each vector-action set (except VA1)

into padding groups based on the prefix of actions and regardless of the values of flow-

vectors. Besides, the further ordering by the weight in mvmdDiversity results in slightly

more overhead than mvmdGreedy when l = k.

5.6.4 Computational Overhead

We first study the computation time of our mvmdGreedy and mvmdDiversity against

the flow data cardinality n as shown in Figure 5.4(a) and 5.5(a). We generate n-sized

flow data by synthesizing n∑
i(|VAi|) copies of the four collected vector-action sets. We set

k(l) = 160 for this set of experiments, and conduct each experiment 1000 times and then

take the average.

As the results show, our algorithms are practically efficient (1.2s and 0.98s for

2.7m flow-vectors for mvmdGreedy and mvmdDiversity, respectively) and the computa-

128

1 2 3 4 5 6 X |Engine|

0.5

1
1.5

Cardinality

E
ng

in
eB

8 16 32 64 X |Drug|

0.10
0.20

D
ru

gBmvmdGreedy:engineB

Rounding:engineB
mvmdGreedy:DrugB

Rounding:DrugB

(a) Flow Data Cardinality

64 128 192 256 320

1.15

1.2

1.3

1.4

1.5

E
ng

in
eB

k
64 128 192 256 320

0.135

0.14

0.15

D
ru

gB

mvmdGreedy:EngineB

mvmdGreedy:DrugB

(b) Privacy Property

Figure 5.4: Execution Time in Seconds (k-Indistinguishability)

tion time increases slowly with n, although our algorithms require slightly more overhead

than rounding (when it is applied to a single Δ value) and maximizing. However, this is

partly at the expense of worse performance in terms of padding cost. Note that the slight

reduction of execution time observed in Figure 5.5(a) for patentC at 32× |patentC | is

reasonable since: first, the cardinality of each initial padding group based on the adjacent-

prefixes may be smaller, which leads to less accumulated sorting time. Second, doubling

the size of vector-action sets may result in less execution time based on the complexity in

the average and worst cases (2nlog2n < n2).

1 2 3 4 5 6 X |Engine|

0.5

1
1.5

Cardinality

E
ng

in
eC

8 16 32 64 X |Patent|

0.10
0.20

P
at

en
tCmvmdGreedy:engineC

Maximizing:engineC
mvmdGreedy:PatentC

Maximizing:PatentC

(a) Flow Data Cardinality

64 128 192 256 320

0.8
1.0

E
ng

in
eC

l
64 128 192 256 320

1.5

2.5

3.5

4.5

P
at

en
tC

mvmdGreedy:EngineC

mvmdGreedy:PatentC

(b) Privacy Property

Figure 5.5: Execution Time in Seconds (l-Diversity)

129

We then study computation time against privacy property k on the two synthesized

vector-action sets (6×engineB and 64×drugB), and against l on the other two sets (6×
engineC and 64×patentC). As expected, rounding and maximizing are insensitive to k

and l since they do not have the concept of k and l, respectively. On the other hand, a

tighter upper bound on the time required for mvmdGreedy is O(np×n× 2k×λ) in the

worse case and O(np×n× log(2k×λ)) in the average case, where λ is the maximal number

of actions which has the same prefix in all action-sequences. Clearly, when λ is O(n), the

computational complexity here is equivalent to that in Section 5.4.3.

The reason for this tighter upper bound is that mvmdGreedy always feeds a vector-

action set with maximal 2k×λ cardinality to svmdGreedy (except VA1 whose size is 26,

a constant, for searchB), since: first, for each vector-action set VAi, mvmdGreedy first

partitions it into padding groups based on the prefix (which has O(|VAi|) solution). Second,

there are at most 2k adjacent-prefixes in same padding group of VAi−1. Therefore, when

2k×λ � n, the execution time of mvmdGreedy should be in the range of [log(2k×λ), 2k×λ]

times of O(np×n) which is the execution time of rounding algorithm. These two datasets in

our experimental environment satisfy above condition, for example, 26(λ)×320(k)�2.7m

for searchB. Observe that, mvmdDiversity does not satisfy the tighter upper bound since a

vector-action set with size larger than 2l probably cannot be split into two l-diverse subsets.

Figure 5.4(b) illustrates the computation time of mvmdGreedy against the privacy

property k. Interestingly, the computation time increases slowly (from 1.19s to 1.42s) with

k for engineB, and decreases slowly (from 0.147s to 0.136s) for drugB. Stress that the

results are reasonable since both results fall within the expected range. Figure 5.5(b) shows

that the computational time of mvmdDiversity increases slowly with l for patentC , and is

almost same for different l in the case of engineC .

130

5.6.5 Processing Overhead

Our previous discussions have focused on reducing the communication overhead

of padding while ensuring each flow-vector to satisfy the desired privacy property. To

implement traffic padding in an existing Web application, if the HTTPS header or data

is compressed, we can pad after compression, and pad to the header; if header and data

are not compressed, we can pad to the data itself (e.g., spaces of required padding bytes

can be appended to textual data). Clearly, the browser’s TCP/IP stack is responsible for

the header padding, while the original web applications regard the data padding as normal

data. An application can choose to incorporate the padding at different stage of processing

a request. First, an application can consult the outputs of our algorithms for each request

and then pad the flow-vectors on the fly. Second, an application can modify the original

data beforehand based on the outputs of our algorithms such that the privacy property is

satisfied under the modifications. However, padding may incur a processing cost regardless

of which approach to be taken. Therefore, we must aim to minimize the number of packets

to be padded. For this purpose, we evaluate the processing cost ratio, which captures the

proportion of flow-vectors to be padded among all such vectors.

64 128 192 256 320
0

0.2

0.4

0.6

0.8

1

k
(a). One−Level Action

64 128 192 256 320 64 128 192 256 320
0

0.2

0.4

0.6

0.8

1

k
(b). Many−Level Action

64 128 192 256 320

svsdSimple
(EngineB)

mvmdGreedy
(EngineB)

Rounding
(EngineB)

svsdSimple
(DrugB)

mvmdGreedy
(DrugB)

Rounding
(DrugB)

Figure 5.6: Processing Cost Overhead Ratio (k-Indistinguishability)

Figure 5.6 shows the processing cost of each algorithm against k. Rounding al-

131

gorithm must pad each flow-vector regardless of the k’s and the applications, while our

algorithms have much less cost for engineB and slightly less for drugB.

Similarly, from the results of the processing cost against l shown in Figure 5.7, we

can see that maximizing algorithm almost pads each flow-vector regardless of the l’s and

the applications, while our algorithms have much less cost for engineC and slightly less

for patentC .

64 128 192 256 320
0

0.2

0.4

0.6

0.8

1

l
(a). One−Level Action

64 128 192 256 320 64 128 192 256 320
0

0.2

0.4

0.6

0.8

1

l
(b). Many−Level Action

64 128 192 256 320

svsdDiversity
(EngineC)

mvmdDiversity
(EngineC)

Maximizing
(EngineC)

svsdDiversity
(PatentC)

mvmdDiversity
(PatentC)

Maximizing
(PatentC)

Figure 5.7: Processing Cost Overhead Ratio (l-Diversity)

5.7 Summary

As Web-based applications become more popular, their security issues will also

attract more attention. In this chapter, we have demonstrated an interesting connection

between the traffic padding issue of Web applications and the privacy-preserving data pub-

lishing. Based on this connection, we have proposed a formal model for quantifying the

amount of privacy protection provided by traffic padding solutions. We have also designed

algorithms by following the proposed model. Our experiments with real-world applications

have confirmed the performance of our solutions to be superior to existing ones in terms of

communication and computation overhead.

132

Chapter 6

PPTP: Background-Knowledge

Resistant Traffic Padding for Privacy

Preserving in Web Applications

The solutions in the previous chapter rely on the assumption that adversaries do

not possess prior background knowledge about possible user inputs, which is a common

limitation shared by most existing solutions. In this chapter, we propose a novel random

ceiling padding approach whose results are resistant to such adversarial knowledge.

6.1 Overview

Today’s Web applications allow users to enjoy the convenience of Software as a

Service (SaaS) through their feature-rich and highly interactive user interfaces. However,

recent studies show that such features may also render Web applications vulnerable to side

channel attacks, which employ observable information, such as a sequence of directional

packet sizes and timing, to recover sensitive user inputs from encrypted traffic [22]. Intrin-

sic characteristics of Web applications, including low entropy inputs, diverse resource ob-

133

jects, and stateful communications render such attacks a pervasive and fundamental threat

in the age of cloud computing.

Existing countermeasures include packet-size rounding (increasing the size of each

packet up to the closest multiple of given bytes) and random padding (increasing each

packet size up to a random value). Those straightforward approaches have been shown to

incur a high overhead and require application-specific implementation, while still not being

able to provide sufficient privacy guarantee [22]. A more recent solution, ceiling padding,

inspired by similar approaches in privacy-preserving data publication, partitions packets

into padding groups and increases the size of every packet inside a group to the maximum

size within that group in order to provide required privacy guarantee [71]. However, an

important limitation shared by most existing solutions is that they assume adversaries do

not possess any background knowledge about possible user inputs; the privacy guarantee

may cease to exist when such knowledge allows adversaries to refine their guesses of the

user inputs.

A natural way to address the above issue is to apply the well-known concept of

differential privacy [40], which provides provable resistance to adversaries’ background

knowledge. Nonetheless, applying differential privacy to traffic padding will meet a few

practical challenges. Specifically, introducing noises is more suitable for statistical aggre-

gates (e.g., COUNT) or their variants, which have more predictable, and relatively small

sensitivity; it is less applicable to traffic padding which has less predictable and often un-

bounded sensitivity (due to diverse resource objects), and individual packets’ sizes, instead

of their statistical aggregates, are directly observable. Moreover, while the qualitative sig-

nificance of the privacy parameter ε is well understood in the literature, the exact quanti-

tative link between this value and the degree of privacy guarantee is what an application

provider would need to convince users about the level of privacy guarantee, which has re-

ceived less attention. Therefore, the discussion of differential privacy is beyond the scope

of this chapter and is regarded as a future direction.

134

In this chapter, we propose a novel random ceiling padding approach to providing

background knowledge-resistant privacy guarantee to Web applications. We first adopt an

information theoretic approach to modeling a padding algorithm’s resistance to adversaries’

prior knowledge about possible user inputs. Armed with this new uncertainty privacy met-

ric, we then design a generic scheme for introducing randomness into the previously de-

terministic process of forming padding groups. Roughly speaking, the scheme makes a

random choice among all the valid ways for forming padding groups to satisfy the privacy

requirement. Consequently, an adversary would still face sufficient uncertainty even if s/he

can exclude certain number of possible inputs to refine his/her guesses of the true input.

We show that our proposed scheme may be instantiated in distinct ways to meet different

applications’ requirements by discussing two examples of such instantiation. Finally, we

confirm the correctness (the algorithms provide sufficient privacy guarantee) and perfor-

mance (the padding and processing cost), through both theoretic analysis and experiments

with two real world Web applications.

The contribution of this chapter is twofold. First, the proposed random ceiling

padding approach may lead to practical solutions for protecting user privacy in real-life

Web applications. As evidenced by our experimental results, the two padding algorithms

instantiated from the generic approach can provide required privacy guarantee with reason-

able costs. Second, although we have focused on the traffic padding issue in this chapter,

similar principles can be readily applied in other domains, such as privacy preserving data

publication [47], in order to enhance syntactic privacy metrics [77, 90] with the capability

of resisting adversarial background knowledge.

The rest of the chapter is organized as follows. The remainder of this section builds

intuitions through a running example. Section 6.2 defines our models. Section 6.3 intro-

duces a generic scheme and instantiates it into two concrete padding methods. Section 6.4

presents analysis on the privacy, costs, and complexity. Section 6.5 experimentally evalu-

ates the performance of our algorithms. We conclude the chapter in Section 6.6.

135

Motivating Example

Consider a fictitious website which, upon the login of a user, displays information

about the disease with which s/he is most recently associated. Table 6.1 shows a toy exam-

ple of sizes and directions of encrypted packets for the diseases starting with the letter C.

Clearly, the fixed patterns of directional sizes of the first, second, and last packets will allow

an adversary to pinpoint packets corresponding to different diseases from the observed traf-

fic. In this example, if an adversary observes a s-byte value to be 360 when a patient logins,

s/he can infer that the patient was likely diagnosed Cancer (note this example is simplified

to facilitate discussions, and the traffic pattern may be more complicated in reality).

Diseases Observed Directional Packet Sizes

Cancer 801 →, ← 54, ← 360, 60 →
Cervicitis 801 →, ← 54, ← 290, 60 →

Cold 801 →, ← 54, ← 290, 60 →
Cough 801 →, ← 54, ← 290, 60 →

(s bytes)

Table 6.1: User Inputs and Corresponding Packet Sizes

We now examine two existing solutions, rounding [22] and ceiling padding [71],

when applied to this example. Both solutions aim to pad packets such that each packet size

will no longer map to a unique disease. In this example, we should pad s-byte such that

each packet size maps to at least k = 2 different diseases, namely, 2-indistinguishability.

In Table 6.2, the third column shows that a larger rounding size does not necessarily lead

to more privacy, since rounding with Δ=112 and 176 cannot achieve privacy (the s-value

of Cancer after padding is still unique), whereas Δ = 144 does. Therefore, we may be

forced to evaluate many Δ values before finding an optimal solution, which is clearly an

impractical solution.

Next, the last column in Table 6.2 shows that the ceiling padding approach [71]

achieves 2-indistinguishability. When an adversary observes a 360-byte packet, s/he can

only infer that the patient has either Cancer or Cervicitis, but cannot be sure which is true.

136

Diseases s Value Rounding (Δ) Ceiling

112 144 176 Padding

Cancer 360 448 432 528 360
Cervicitis 290 336 432 352 360

Cold 290 336 432 352 290
Cough 290 336 432 352 290

Padding Overhead(%) 18.4% 40.5% 28.8% 5.7%

Table 6.2: Rounding and Ceiling Padding for Table 6.1

However, if the adversary happens to also possess some background knowledge through

outbound channels that, say, this particular patient is a male, then it is obvious now that the

patient must have Cancer.

In this chapter, we will adopt a different approach to traffic padding. Instead of de-

terministically forming padding groups, the server randomly (at uniform, in this example)

selects one out of the three possible ways for forming a padding group. Therefore, we

can see that a cancerous person will always receive a 360-byte packet, whereas the other

patients have 2
3

and 1
3

probability to receive a 290-byte and 360-byte packet, respectively,

as shown in Table 6.3.

Cancerous Person Person Diagnosed with Cervicitis
Possible s Value

Padding Group (Padded)

{Cancer, Cervicitis} 360
{Cancer, Cold} 360
{Cancer, Cough} 360

Possible s Value

Padding Group (Padded)

{Cervicitis, Cancer} 360
{Cervicitis, Cold} 290
{Cervicitis, Cough} 290

Table 6.3: Proposed Solution for Table 6.1

To see why this approach provides better privacy guarantee, suppose an adversary

observes a 360-byte packet and knows the patient to be a male. Under the above new

approach, the adversary can no longer be sure that the patient has Cancer, because the

following three cases will equally likely lead to a 360-byte packet to be observed. First,

the patient has Cancer and the server selects either Cervicitis, Cold, or Cough to form

the padding group. In the second and third case, the patient has either Cold or Cough,

137

respectively, while the server selects Cancer to form the padding group. Consequently, the

adversary now can only be 60%, instead of 100%, sure that the patient is associated with

Cancer.

6.2 The Model

We first describe our traffic padding model in Section 6.2.1. We then introduce

the concept of uncertainty in Section 6.2.2 and the random ceiling padding method in

Section 6.2.3. Finally we define our cost metrics in Section 6.2.4. Table 6.4 lists our main

notations.

a, �a, Ai or A Action, action-sequence, action-set
si, v, �v, Vi or V Flow, flow-vector, vector-sequence, vector-set
VAi or VA Vector-action set
�VA Vector-action sequence

dom(P) Dominant-Vector

Table 6.4: The Notation Table

6.2.1 Traffic Padding

We model the traffic padding issue from two perspectives, the interaction between

users and servers, and the observation made by adversaries. For the interaction, we call an

atomic input that triggers traffic an action, denoted as a, such as a keystroke or a mouse

click. We call a sequence of actions that represents a user’s complete input information an

action-sequence, denoted as �a, such as a sequence of consecutive keystrokes entered into a

search engine. We also call the collection of all the ith actions in a set of action-sequences

an action-set, denoted as Ai.

Correspondingly, for the observation, we denote a flow-vector as v to represent a

sequence of flows,
〈
s1, s2, . . . , s|v|

〉
, that is, the sizes of packets triggered by actions. We

denote a vector-sequence as �v to represent the sequence of flow-vectors triggered by an

138

action-sequence, and a vector-set as Vi corresponding to the action-set Ai. Finally, given

a set of action-sequences and corresponding vector-sequences, we define all the pairs of

ith actions and corresponding ith flow-vectors as the vector-action set, denoted as VAi or

simply VA when no ambiguity is possible. For a given application, we call the collection

of all the vector-action sets vector-action sequence, denoted as �VA.

6.2.2 Privacy Properties

We model the privacy requirement of a traffic padding scheme from two perspec-

tives. First, when adversaries observe a flow-vector triggered by a single action, they should

not be able to distinguish this action from at least k − 1 other actions that could have also

triggered that same flow-vector, which is formalized in the following.

Definition 6.1 (k-Indistinguishability) Given a vector-action set VA, a padding algo-

rithm M with output range Range(M, VA), we say M satisfies k-indistinguishability

w.r.t. VA (k is an integer) if

∀(v∈Range(M, VA)), |{a : Pr(M−1(v)=a)>0 ∧ a∈A}|≥k.

Example 6.1 Assume that there are only four possible diseases in Table 6.2, then the ceil-

ing padding solution as shown in the right column satisfies 2-indistinguishability. �

In the previous section, we have illustrated how adversaries’ background knowl-

edge may help them to breach privacy even though the k-indistinguishability may already

be satisfied. Therefore, our objective here is to first formally characterize the amount of

uncertainty faced by an adversary about the real action performed by a user (we will then

propose algorithms to increase such uncertainty in the next section). For this purpose, we

apply the concept of entropy in information theory to quantify an adversary’s uncertainty

in the following.

139

Definition 6.2 (Uncertainty) Given a vector-action sequence �VA, a padding algorithm

M, we define

- the uncertainty of v∈Range(M, VA), where VA∈ �VA, is defined as ϕ(v,VA,M) =

−
∑
a∈A

(Pr(M−1(v)=a)log2(Pr(M−1(v)=a));

- the uncertainty of algorithm M w.r.t. VA is defined as

φ(VA,M)=
∑

v∈Range(M,VA)

ϕ(v,VA,M)×Pr(M(A)=v);

- the uncertainty of algorithm M w.r.t. �VA is defined as

Φ(�VA,M) =
∏

VA∈ �VA

(φ(VA,M));

Example 6.2 To illustrate the above notions, following Example 6.1, the uncertainty of the

flow 360, denoted as ϕ(360, VA,M) (or simply ϕ(360) hereafter when no ambiguity is

possible) can be calculated as ϕ(360) = −(1
2
log2(

1
2
)+ 1

2
log2(

1
2
)) = 1. Similarly, we have

φ(VA) = ϕ(360)
2

+ ϕ(290)
2

= 1. Further, since the vector-action sequence is composed of a

single vector-action set, Φ(�VA)=φ(VA)=1. �

Finally, we model the privacy of a padding algorithm as its joint capabilities of

satisfying k-indistinguishability and δ-uncertainty. Note that here the former serves as a

basic privacy requirement (when no resistance to background knowledge is needed) while

the latter can be regarded as an enhanced requirement. Both parameters may be adjusted

according to different applications’ unique requirements for privacy.

Definition 6.3 (δ-uncertain k-indistinguishability) An algorithm M gives δ-uncertain k-

indistinguishability for a vector-action sequence �VA if

140

- M w.r.t. anyVA∈ �VA satisfies k-indistinguishability, and

- the uncertainty of M w.r.t. �VA is not less than δ.

6.2.3 Padding Method

To be more self-contained, we first review the ceiling padding method [69,71]. The

method deterministically partitions a vector-action set into padding groups, each of which

has a cardinality no less than k, and then breaks the linkage among actions in the same

group by padding the flows to be identical, as described in the following.

Definition 6.4 (Dominance and Ceiling Padding [71]) Given a vector-set V , we define

- the dominant-vector dom(V) as the flow-vector in which each flow is equal to the

maximum of the corresponding flow among all the flow-vectors in V .

- a ceiling-padded group in V as a padding group in which every flow-vector is padded

to the dominant-vector.

Clearly, the ceiling padding method is only designed to achieve the k-indistinguishability,

and will not provide sufficient privacy guarantee if the adversary possesses prior back-

ground knowledge.

In this chapter, we propose to introduce randomness into the process of forming

padding groups per each user request. Specifically, to response to an action, we first select

at random, from certain distributions, k− 1 other actions to form the padding group. Then,

we apply ceiling padding on the resultant group. To differentiate from the aforementioned

fixed padding group and the original ceiling padding method, we call the group formed on

the fly with randomness the transient group, and our method the random ceiling padding

in the following.

Definition 6.5 (Transient Group and Random Ceiling Padding) We say a mechanism M
is a random ceiling padding method if, when responding to an action a, it randomly selects

141

k−1 other actions and pads the flow-vector of action a to be the dominant-vector among the

corresponding flow-vectors of selected k−1 actions together with the original flow-vector

of action a. We also call those k actions a transient group.

Example 6.3 To achieve 2-indistinguishability, a mechanism M selects uniformly at ran-

dom 1 other action to form the transient group (Table 6.2). Then, the following two cases

could both lead to an observed s = 360 flow. First, the patient has Cancer and M selects

any one of the others to form the group (there are 3 possible transient groups in this case).

Second, the patient does not have Cancer but has one of the other threes, and M selects

Cancer to form the group. Each of them has only one possible transient group. Thus,

ϕ(360) = −(1
2
log2(

1
2
) + 3 × 1

6
log2(

1
6
)) ≈ 1.79.

Now, if the adversary knows that the patient can not have Cervicitis and observes

the s-byte value to be 360, s/he will no longer be able to infer which disease the patient

has. Formally, in this case, ϕ(360) = −(3
5
log2(

3
5
) + 2 × 1

5
log2(

1
5
)) = 1.37. �

6.2.4 Cost Metrics

In addition to privacy requirements, we also need metrics for the communication

and processing costs. For the former, we measure the proportion of packet size increases

compared to the original flow-vectors. For the latter, we measure how many flow-vectors

need to be padded among all the vectors in a �VA, as formalized in Definition 6.6 and 6.7,

respectively.

Definition 6.6 (Expected Padding Cost) Given a vector-action sequence �VA, an algo-

rithm M,

- the expected padding cost of action a in (a, v) ∈ VA where VA ∈ �VA is defined as

pcos(a, VA,M)=

||
∑

v′∈Range(M,VA)

(Pr(M(a) = v′) × v′) − v||1;

142

- the expected padding cost of a vector-action set VA ∈ �VA under algorithm M is

defined as pcos(VA,M)=
∑

(a,v)∈VA(pcos(a, VA,M)) and that of the vector-action

sequence is defined as pcos(�VA,M)=
∑

VA∈ �VA(pcos(VA,M)).

Definition 6.7 (Expected Processing Cost) The expected processing cost of a vector-action

sequence �VA under an algorithm M is defined as

rcos(�VA,M) =

∑
VA∈ �VA

∑
(a,v)∈VA(Pr(M(a) �= v))∑

VA∈ �VA |{(a, v) : (a, v) ∈ VA}| ;

Surprisingly, while introducing randomness into the process of forming padding

groups improves the privacy, this improvement does not necessarily come at a higher cost,

as shown in Example 6.4 (we will only compare the cost with the original ceiling padding

method hereafter, since ceiling padding has much less overhead than other methods, such

as rounding, as shown in our previous work [71]).

Example 6.4 For ceiling padding shown in last column of Table 6.2, the expected padding

cost can be calculated as pcos(VA, ceiling padding) = 70, and the expected processing

cost as rcos(VA, ceiling padding) = 25%.

On the other hand, for the random ceiling padding M shown in Example 6.3, we

have pcos(VA,M)=(360−360)+3×((1
3
×360+ 2

3
×290)−290)=70 and rcos(VA,M)=

0+3×1
3

4
=25%.

That is, these two methods actually lead to exactly the same expected padding and

processing costs, while the latter clearly achieves higher uncertainty (with the same k-

indistinguishability). �

6.3 The Algorithms

We first introduce a generic random ceiling padding scheme in Section 6.3.1, and

then discuss two example ways for instantiating the scheme into concrete algorithms in

143

Section 6.3.2. The main intention here is to show that the random ceiling padding method

can potentially be instantiated in many different ways based on specific applications’ needs.

In the coming sections, we will further show that even those straightforward ways we de-

scribe here can still achieve good performance in terms of the privacy guarantee and the

costs.

6.3.1 The Random Ceiling Padding Scheme

The main idea of our scheme is the following. In responding to a user input, the

server will form a transient group on the fly by randomly selecting members of the group

from certain candidates based on certain distributions (different choices of such candidates

and distributions will lead to different algorithms, as demonstrated in Section 6.3.2).

Our goal is two-fold. First, the privacy properties, k-indistinguishability and δ-

uncertainty, need to be ensured. Second, the costs of achieving such privacy protection

should be minimized. Clearly, a trade-off naturally exists between these two objectives.

We will demonstrate how to address this trade-off through two instantiations of the general

scheme with different methods of forming transient groups.

The generic random ceiling padding scheme consists of two stages as shown in Ta-

bles 6.5 and 6.6. The first stage (Table 6.5), a one-time process, derives the randomness

parameters and accordingly determines the probability of an action being selected as a

member of a transient group. As exemplified later in Section 6.4, both δ and costs are re-

lated to k (which is considered as a given constant), the vector values and their cardinalities

(which is determined for a given vector-action set), and the parameters of distribution from

which the randomness is drawn. Clearly, to determine the randomness parameters such that

δ is not less than a desired value while keeping the costs minimal is naturally an optimiza-

tion problem. In this chapter, we simplify the process by setting the size of each transient

group to k to ensure the indistinguishability (the proof is omitted due to space limitations).

144

Stage 1: One-Time Preprocessing
Input: the vector-action set VA,

the privacy properties kmin and δmin,
the randomness generator G;

Output: the parameters 〈P 〉 of G
Method:

1. Let V be the vector-set of VA, and A be the action-set of VA;
2. If (|VA| ≤ kmin) Return;
3. Compute the distribution DV of V ;
4. Compute 〈P 〉 based on its relation with δ, k, pcos, rcos, DV

when random ceiling padding is applied, such that
(1). k ≥ kmin and δ ≥ δmin;
(2). pcos and rcos are minimal;

5. Return 〈P 〉;

Table 6.5: The Random Ceiling Padding Scheme: Stage One

Once the randomness parameters are set, then repeatedly, upon receiving an action

a0, the second stage (Table 6.6) selects, randomly following the results of stage one, k −
1 other actions from the corresponding action-set A of vector-action set VA to form the

transient group, and then returns the dominant-vector of this transient group.

Stage 2: Real-Time Response
Input: the vector-action set VA,

the randomness parameters 〈P 〉 of G,
the privacy properties kmin and δmin,
the action a0

Output: the flow-vector v
′
0;

Method:

1. Let V be the vector-set of VA, and A be the action-set of VA;
2. Create AC by randomly selecting kmin−1 actions from

the subset of A based on 〈P 〉 of G;
3. AC = AC ∪ {a0};
4. Let VC be the subset of vector-set V which corresponds to AC ;
5. Return the dominant-vector of VC ;

Table 6.6: The Random Ceiling Padding Scheme: Stage Two

145

6.3.2 Instantiations of the Scheme

In this section, we discuss two example instantiations of the proposed random ceil-

ing padding scheme, and illustrate two different ways for reducing the padding and pro-

cessing costs while satisfying the privacy requirements. Basically, the two instantiations

differ in their ways of selecting candidates for members of the transient group, in order to

reduce the cost. First, to facilitate discussions, we introduce two new notions.

In Definition 6.8, intuitively, function fv(.) sorts a vector-action set VA based on

the padding cost, and we denote the resultant totally ordered set (chain) under the binary

relation �v by 〈VA〉v. The main objective of this step is to adjust the probability of an

action being selected as a member of the transient group, in order to reduce the expected

costs. Besides, in the case that each flow-vector in V includes a single flow, the flows

(integers) ordered by the standard larger-than-or-equal relation ≥ is also a chain that is

naturally identical for each v. Therefore, although the chain 〈VA〉v for different v∈V may

be different, in the rest of this chapter, we will use a single chain (simplified as 〈VA〉) for

analysis and experiment.

Definition 6.8 (Larger and Closer) Given a vector-action set VA, a pair (a, v) ∈ VA,

define a function fv :V →I (I for integers) as fv(v
′)= ||dom({v, v′})− v||1. Then, we say,

w.r.t. (a, v),

- (a′, v′)∈VA is larger than (a′′, v′′)∈VA, denoted by (a′, v′)�v (a′′, v′′), if fv(v
′) >

fv(v
′′)∨ ((fv(v

′) = fv(v
′′)) ∧ (a′ � a′′)), where � is any predefined order on the

action-sets;

- (a′, v′)∈VA is closer to (a, v) than (a′′, v′′)∈VA if |fv(v
′)|< |fv(v

′′)|.

a) Option 1: Randomness from Bounded Uniform Distribution

The step 2 of stage 2 in Table 6.6 may be realized in many different ways by choosing

group members from different subsets of candidates and based on different distributions.

146

Note that although choosing the members uniformly at random from all possible candidates

certainly leads to highest possible uncertainty, this also will incur prohibitive processing

cost. In fact, in Section 6.4, we will show through theoretical analysis that the uncertainty

of an algorithm can be dramatically increased even by a slight increase in the cardinality of

possible candidates for forming the transient group.

This first option draws candidates from a uniform distribution. It also allows users

to constraint the cardinality of candidate actions to be considered (ct) and the number of

such actions that are larger than given action (cl). More specifically, given a vector-action

set VA, and a pair (ai, vi) being the ith pair of its corresponding chain 〈VA〉, the transient

group of (ai, vi) will be selected uniformly at random from the sub-chain of the chain in the

range of [max(0, min(i− cl, |VA| − ct)), min(max(0, min(i− cl, |VA| − ct)) + ct, |VA|)]
(complete algorithms will be omitted due to space limitations) .

The action in a transient group which is in the least position of the chain 〈VA〉 will

determine the padding cost of (a, v) when a is performed. Thus, from this perspective, cl

should be as small as possible. However, cl should also be sufficiently large. For example,

if cl = 0, each action should be deterministically padded. Moreover, the ct determines

the cardinality of possible transient groups. More possibilities of transient groups will

complicate adversaries’ tasks in attacking (collecting the data of directional packet sizes

and analyzing the distribution of flow-vector information).

b) Option 2: Randomness from Normal Distribution

In this option, the action closer to a in the chain has higher probability to be selected as

a member of a’s transient group. To select a member, the distance between the selected

action and the performed action a in the chain 〈VA〉 (that is, the difference of the positions)

is drawn from normal distribution (rounded up to the nearest integer).

When the mean of normal distribution is set to zero, the two actions with equal

distance in the both sides of the performed action a in the chain are equally likely selected.

As mentioned before, the action in transient group with least position in the chain 〈VA〉

147

determines the padding cost. Thus, the mean can be adjusted to a positive integer, such

that the actions in larger positions than a would have a higher chance to be selected, and

consequently the expected cost will be reduced.

In addition, since increasing the standard deviation flattens the curve of the distri-

bution and allows more chances to draw a value far from the mean, it yields a higher prob-

ability to select an action farther away from the performed one in the chain 〈VA〉. Thus,

in practice, the standard deviation should be small enough to reduce the padding cost; it

also should not be too small in order to prevent the adversary from collecting the data and

analyzing the distribution of flow-vector values.

6.4 The Analysis

In this section, we evaluate the privacy degree, the costs, and the computational

complexity of our solution. For simplicity, we analyze those parameters for scenarios in

which each action-sequence and flow-vector are of length one, referred to as VAs, and the

randomness in our scheme (shown in Tables 6.5, 6.6) is drawn from a uniform distribution,

denoted by Mu.

To simplify the discussions, we use �s =
〈
s1, s2, . . . , s|�s|

〉
to denote the sequence of

distinct flow values in decreasing order, and use �n=
〈
n1, n2, . . . , n|�s|

〉
to denote that there

is ni number of actions in VAs whose flow value is si. We let �L=
〈
L1, L2, . . . , L|�s|

〉
, where

Li =
∑|�s|

j=i nj for (i ∈ [1, |�s|]). Also, we set N =
∑|�s|

i=1 ni (L1 = N). We say an action a in

VAs is an si-type action if its flow value equals to si before padding, denoted by a ∈ VAsi
.

6.4.1 Analysis of Privacy Preservation

For the purpose of analyses, we need to characterize the cardinality of transient

groups. Given a vector-action set VAs = (V, A) and its action a ∈ A, the Mu algorithm

selects k−1 other actions uniformly at random to form its transient group. For any action,

148

the cardinality of sample space with respect to the set of all possible transient groups is

equal to
(

N−1
k−1

)
[85]. Given a si-type action, we partition its sample space Ωi into i number

of disjoint events Ei,j , where j ∈ [1, i] and Ei,j is the set of transient groups for which the

maximal flow value is sj , as shown in Table 6.7.

Clearly, the actions with the same flow-vector value have the sample space with sim-

ilar events and corresponding cardinality. Note that there may exist some i such that Li < k

(Li as defined above). That is, the number of actions, whose flow values are less than or

equal to si, is less than k. However, since our algorithms always select k different actions

to form a transient group on-demand, without loss of generality, we assume that n|s̄| ≥ k

for the purpose of the analysis whereas our algorithms does not need such assumption.

Sample Number of Possible Events (Based on the Maximal Flow Value)

Space Transient Groups Event Cardinality

Ωi−1

Ωi

(
N−1
k−1

)
Ei,1

(
L1−1
k−1

)− (
L2−1
k−1

)
Ei,2

(
L2−1
k−1

)− (
L3−1
k−1

)
.

Ei,i−2

(
Li−2−1

k−1

)− (
Li−1−1

k−1

)
Ei,i−1

(
Li−1−1

k−1

)− (
Li−1
k−1

)
Ei,i

(
Li−1
k−1

)
Ωi+1

Table 6.7: The Sample Space for Transient Groups by Random Ceiling Padding and Cor-
responding Events

For a si-type action a, if the actions selected in a transient group are from those

whose flow value is less than or equal to si, the maximal flow value will be si in that group.

There are totally Li−1 such actions (excluding action a itself). Therefore, the cardinality

of Ei,i is equal to
(

Li−1
k−1

)
. Similarly, a transient group belongs to an event Ei,j where j < i

only if, in that group, there is at least a sj-type action and there is not any sk-type action

149

for all k<j. Therefore, the cardinality of Ei,j(j < i) equals to
(

Lj−1
k−1

)− (
Lj+1−1

k−1

)
. Clearly,

for one given execution, if the resultant transient group is in event Ei,j , the flow value of

action a is padded to sj by the Mu algorithm. The cardinality of each event in the sample

space for an action is shown in Table 6.7.

Note that the probability that the flow of an action is padded to a value is different

from the probability that the traffic with a padded flow value is triggered by an action. For

example, the flow of any s1-type action is always padded to s1. However, one observing a

s1-byte packet can only infer that the probability that this traffic is triggered by a s1-type

action is
n1×(N−1

k−1)
n1×(N−1

k−1)+(N−n1)×((N−1
k−1)−(N−n1−1

k−1))
≈ n1

N
.

Moreover, the adversary cannot collect the vector-action set even if s/he acts as a

normal user of the application using random ceiling padding technique. The reason is as

follows. First, the sample space is huge even for small-size vector-action set with reason-

able k value. For example, when |VA|=100 and k=20, the cardinality of sample space for

each action equals to
(
99
19

) ≈ 266. Second, since all users share one uniform random process

in the scheme, the distribution of events cannot be sufficiently approximated by collecting

flow-vector values for a special action just as many times as the cardinality of its sample

space.

Lemma 6.1 The Mu algorithm gives δ-uncertain k-indistinguishability for a VAs, where

δ= −
|�s|−1∑
i=1

(ni ×
(Li

k)
Li

(Li
k)−(Li+1

k)
log2

(Li
k)

Li

(Li
k)−(Li+1

k)
)

−
|�s|−1∑
i=1

(Li+1 ×
(Li

k)
Li

−(Li+1
k)

Li+1

(Li
k)−(Li+1

k)
log2

(Li
k)

Li
−(Li+1

k)
Li+1

(Li
k)−(Li+1

k)
)

+log2(n|�s|)

Proof: First, for the si (i ∈ [1, |�s| − 1), there are two cases for the action a that

Mu(a) = si as follows.

- Action a is a si-type action. Denote the set of such actions by A1. Clearly, |A1| = ni.

150

The Mu selects k − 1 actions which flow value is no larger than si to form the

transient group. The number of such transient groups for any si-type action is
(

Li−1
k−1

)
.

For all such ni actions, there are ni ×
(

Li−1
k−1

)
transient groups in total. Note that the

transient group could be identical for different actions. For such cases, it should be

counted once for each action since it is triggered by different actions.

- Action a is a sj-type action (j > i, that is, sj < si). Denote the set of such actions by

A2. Then, |A2| =
∑|�s|

j=i+1 = Li+1. The Mu selects at least one si-type actions and

zero number of actions which flow value is larger than si to form the transient group.

The number of such transient groups for any such action is
(

Li−1
k−1

)− (
Li+1−1

k−1

)
. For all

Li+1 such actions, there are Li+1 × (
(

Li−1
k−1

)− (
Li+1−1

k−1

)
) transient groups in total.

Since each transient group is formed equally likely, we then have Pr((M−1
u (si)) = a) =

⎧⎪⎪⎨
⎪⎪⎩

(Li−1
k−1)

ni×(Li−1
k−1)+Li+1×((Li−1

k−1)−(Li+1−1

k−1))
if a ∈ A1;

(Li−1
k−1)−(Li+1−1

k−1)
ni×(Li−1

k−1)+Li+1×((Li−1
k−1)−(Li+1−1

k−1))
if a ∈ A2,

which leads to the first two lines of Equation 6.1.

Second, for the s|�s|, the only case that Mu(a) = s|�s| is as follows. Action a is a s|�s|-

type action and all the members of its transient group are also s|�s|-type actions. The number

of such transient groups for any s|�s|-type action is
(

L|�s|−1

k−1

)
. We then have Pr((M−1

u (s|�s|)) =

a) = 1
n|�s|

for any s|�s|-type action, which leads to the last line of Equation 6.1. Thus we have

proved the lemma.

In summary, in random ceiling padding, an action cannot be distinguished from

at least other k − 1 different actions based on the traffic triggered, which satisfies k-

indistinguishablility. Moreover, the adversary cannot deterministically infer the action only

by the observation even s/he can further remove a limited number of actions based on prior

knowledge.

151

6.4.2 Analysis of Costs

In this section, we first compare the padding cost between ceiling padding and ran-

dom ceiling padding, then formulate the upper bound of padding cost for random ceiling

padding.

First, we show that the padding cost and the processing cost of ceiling padding

and random ceiling padding is deterministically incomparable. That is, these costs cannot

simply be ordered based on the algorithms themselves and will depend on specific vector-

action sets.

Lemma 6.2 There exist cases in which the expected padding cost of random ceiling padding

Mu is less than that of ceiling padding Mc, and vice versa.

Proof: For simplicity, we omit the action information and model the vector-action set

as an integer vector, where each entry represents the single flow value corresponding to an

action.

Firstly, we show the construction for the case where random ceiling padding has

less expected padding cost than ceiling padding.

Equation 6.1 shows our construction for the proof, where n = 2k − 1 and s1 > s2.

That is, �s = 〈s1, s2〉 and �n = 〈1, 2k − 2〉. Note that the equation presents a category of

vector-action sets instead of one specific set.

VA1 =
1︷︸︸︷
s1 ,

2k−2︷ ︸︸ ︷
s2, s2, . . . , s2︸ ︷︷ ︸

2k−1

(6.1)

To achieve k-indistinguishability, since the number of actions is less than 2k, ceil-

ing padding can only partition the sets into a padding group. Therefore, the flow corre-

sponding to s2-type actions must be padded to s1. Consequently, its expected padding cost

pcos(VA1,Mc)=1×(100%×(s1−s1))+(2k−2)×(100%×(s1−s2)) = (2k−2)×(s1−s2).

On the other hand, in random ceiling padding, given any action, the algorithm can

152

select any k−1 other actions from all the other 2k−2 possible actions to form its transient

group. Consequently, there are
(
2k−2
k−1

)
number of different transient groups. For the s1-

type action, the dominant-vector of any combination is s1 because s1 > s2. For the other

(2k − 2) s2-type actions, the corresponding flow will be padded to s1 only if that s1-

type action is selected to form their transient groups, which has
(
1
1

) × (
2k−3
k−2

)
=

(
2k−3
k−2

)
possible combinations. Otherwise, it will be padded to s2, which has

(
1
0

) × (
2k−3
k−1

)
=(

2k−3
(2k−3)−(k−1)

)
=

(
2k−3
k−2

)
possible combinations. In other words, the flow of the s2-type

actions has a (2k−3
k−2)

(2k−2
k−1)

= 50% chance of being padded to s1, and a 50% chance of remaining

the same (s2). Therefore, the expected padding cost for a s2-type action equals to 1
2
× (s1−

s2) + 1
2
× (s2 − s2) = s1−s2

2
. Thus, pcos(VA1,Mu) = 1× (s1 − s1) + (2k − 2)× s1−s2

2
=

(k − 1) × (s1 − s2).

In summary, for such category of vector-action sets, the expected padding cost of

ceiling padding is as twice as that of random ceiling padding.

Secondly, we show the construction for the other case where ceiling padding has

less expected padding cost that random ceiling padding.

Equation 6.2 shows our construction for the proof, where n = 2k and s1 > s2.

That is, �s = 〈s1, s2〉 and �n = 〈k, k〉. Note again that the equation presents a category of

vector-action sets.

VA2 =
k︷ ︸︸ ︷

s1, s1, . . . , s1,

k︷ ︸︸ ︷
s2, s2, . . . , s2︸ ︷︷ ︸

2k

(6.2)

To achieve k-indistinguishability, the padding cost of ceiling padding equals to 0,

since ceiling padding can simply partition the actions into two groups. One group in-

cludes all the actions which flow value equals to s1, and the other equals to s2. That is,

pcos(VA2,Mc) = 0.

On the other hand, in random ceiling padding, given an action, the algorithm will

randomly select any k − 1 actions from all the other 2k − 1 actions to form its group.

153

Consequently, there are
(
2k−1
k−1

)
number of different combinations. Furthermore, for the

actions with the flow is s1, no matter which combination is selected, the dominant-vector is

s1 since s1 > s2. For those flow is s2, if and only if the k−1 other actions are selected from

the left k − 1 s2-type actions, the dominant-vector is s2, otherwise the dominant-vector is

s1. Therefore, the expected padding cost for a s2-type action equals to (k−1
k−1)

(2k−1
k−1)

× (s2 − s2) +

(1− (k−1
k−1)

(2k−1
k−1)

)×(s1−s2). Thus, pcos(VA2,Mu) = k×(s1−s1)+k×(1− 1

(2k−1
k−1)

)×(s1−s2) ≈
k × (s1 − s2) for sufficiently large k.

In summary, for such category of vector-action sets, the expected padding cost of

ceiling padding is zero while it of random ceiling padding is around k × (s1 − s2).

Finally, based on the two constructions above, we have proved the lemma.

Through similar constructions in the proof of Lemma 6.2, we have result that the

processing cost between them is also incomparable (we omit the details in this paper due

to space limitations). Next, more generally, we formulate the padding and processing cost

of random ceiling padding as shown in Lemma 6.3.

Lemma 6.3 The padding and processing cost of Mu for a VAs are

pcos(VAs,Mu) =

|�s|∑
i=1

si(
N(

(
Li

k

)− (
Li+1

k

)
)(

N
k

) − ni), and

rcos(VAs,Mu) = 1− 1

(N
k)
×

|�s|∑
i=1

ni

Li

(
Li

k

)
, where L|�s|+1 =0.

Proof: Based on Table 6.7, we can lead to the aforementioned results.

First, we prove the result for the expected padding cost.

For any s1 type action, the expected padding cost equals 0. For an action which is

any si-type action other than s1-type,

pcos(a ∈ VAsi
, VAs,Mu) =

i−1∑
j=1

(
Lj−1
k−1

)− (
Lj+1−1

k−1

)
(

N−1
k−1

) sj +

(
Li−1
k−1

)
(

N−1
k−1

) si − si.

154

Thus, based on the definition of expected padding cost, we have pcos(VAs,Mu)

=
∑

VAsi∈VA

|VAsi
| × pcos(a ∈ VAsi

, VAs,Mu)

=

|�s|∑
i=1

si(
ni

(
Li−1
k−1

)
+ Li+1(

(
Li−1
k−1

)− (
Li+1−1

k−1

)
)(

N−1
k−1

) − ni)

=

|�s|∑
i=1

si(
Li

(
Li−1
k−1

)− Li+1

(
Li+1−1

k−1

)
(

N−1
k−1

) − ni)

which leads to the formula above.

Second, we prove the result for the expected processing cost.

For a si-type action (a, si),

Pr(Mu(a ∈ VAsi
) �= si) = 1 −

(
Li−1
k−1

)
(

N−1
k−1

) ;

Thus, based on the definition of expected processing cost, we have rcos(VAs,Mu)

=

∑
VAsi∈VAs

(|VAsi
| × Pr(Mu(a ∈ VAsi

) �= si))

|VAs|

= 1
N
×

|�s|∑
i=1

ni(1 −
(

Li−1
k−1

)
(

N−1
k−1

))

which leads to the above formula. Thus, we prove the lemma.

6.4.3 Analysis of Computational Complexity

The computational complexity of random ceiling padding algorithm, in the case that

randomness is drawn from a uniform random distribution, is O(k) due to the following.

First, the first stage of our scheme can be pre-calculated only once, when the vector-action

155

set is given, and does not need to be repeatedly evaluated each time when the scheme is

invoked to respond to an action. Therefore, although it runs in polynomial time of N (N as

above defined), for continuous execution of the algorithm, the computational complexity

for responding to each action is still O(1). Second, to select k random actions without

duplicates, Line 2 of second stage can be realized in O(k) time with many standard algo-

rithms. Finally, it takes O(k) times to select the corresponding vector-set for the selected

actions in Lines 3-4 and calculate their dominant-vector in Line 5.

6.5 Experiment

In this section, we evaluate the uncertainty and the cost under two implementa-

tion options of our scheme (see Section 6.3) through experiments with two real world

Web applications. First, Section 6.5.1 describes the experimental settings, and then Sec-

tion 6.5.2, 6.5.3, and 6.5.4 present experimental results for randomness drawn from bounded

uniform distribution and normal distribution, respectively.

6.5.1 Experimental Setting

We collect testing vector-action sets from two real-world web applications, a popu-

lar search engine Engine (where users’ searching keyword needs to be protected) and an

authoritative drug information system Drug (where users’ health information needs to be

protected).

We compare our solutions with the svmdGreedy (short for SVMD) [71] on four-

letter combinations in Engine and the last-level data in Drug due to the following. First,

one vector-action set is sufficient to demonstrate the results. Thus, we use a single vector-

action set instead of vector-action sequence. Second, as reported in [71], rounding and

random padding [22] lead to even larger overheads while they cannot ensure the privacy.

Thus, we compare our results with SVMD only.

156

In the first option (see Section 6.3.2), namely, TUNI option, we constraint the num-

ber of larger actions (cl) and the minimal number of possible actions to be selected (ct)

when the probability of an action to be selected is drawn from uniform distribution. In the

meantime, in the second option, namely, NORM option, we allow to adjust the mean (μ)

and standard deviation (σ) when it is drawn from normal distribution.

All experiments are conducted on a PC with 2.20GHz Duo CPU and 4GB memory

and we conduct each experiment 1000 times. To facilitate the comparisons, we use padding

cost ratio, processing cost ratio to measure the relative overheads of the padding cost and

processing cost, respectively.

6.5.2 Uncertainty and Cost v.s. k

The first set of experiments evaluates the uncertainty and cost of TUNI and NORM

options against SVMD. Figure 6.1(a), (b), and (c) illustrate the padding cost, uncertainty,

and processing cost against the privacy property k, respectively. In general, the padding

and processing costs of all algorithms increase with k, while TUNI and NORM have less

costs than those of SVMD. Meanwhile, our algorithms have much larger uncertainty for

Drug and slightly larger for Engine.

Figure 6.1: Uncertainty and Cost Against k

157

6.5.3 Randomness Drawn from Bounded Uniform Distribution

Figure 6.2 illustrates the uncertainty and cost of TUNI option on both vector-action

sets against the top limit cl. As expected, SVMD is insensitive to cl since it does not have

the concept of cl. On the other hand, both costs increase slowly with cl for TUNI. This

is because, larger cl allows the algorithm to have more chances to select larger actions

for transient group. The largest action in the transient groups determines the padding cost

in this case, and a single larger action leads to an increase of processing cost. From the

results, TUNI performs worse on Drug than on Engine w.r.t. cost. This is because, the

more diverse in the flow of Drug leads to more chances to select larger action even with

a small increase of cl. Despite the slight increase of cost with cl, TUNI generally has less

cost and larger uncertainty than SVMD for both vector-action sets.

Figure 6.2: Uncertainty and Cost for Bounded Uniform Distribution Against Top Limit

Figure 6.3 shows the uncertainty and cost against the minimal cardinality ct. Sim-

ilarly, SVMD is insensitive to ct due to the same reason. Also, TUNI demonstrates same

results on engine in terms of both uncertainty and cost regardless of the value of ct. This

is because, the constraint of minimal cardinality works only when the cardinality of pos-

sible actions is less than ct after applying cl parameter. In engine, the number of actions

which have the smallest flow value is extremely larger than the ct values in the experiment.

158

In other words, ct does not affect the results. For drug, the padding and processing costs

increase slowly with ct while the uncertainty decreases slowly.

Figure 6.3: Uncertainty and Cost for Bounded Uniform Distribution Against Minimal Car-
dinality

6.5.4 Randomness Drawn from Normal Distribution

Figure 6.4 illustrates the uncertainty and cost of NORM option on both vector-action

sets against the mean (μ) of normal random function. Compared with SVMD, NORM has

less cost and yet higher uncertainty. The mean values do not affect the uncertainty and

cost of SVMD since it does not take mean as a parameter. On the other hand, the cost of

NORM decreases almost linearly with the increase of mean from 0 to 16, and rapidly as μ

grows to 32 on both vector-action sets. In the meanwhile, the uncertainty of NORM slightly

changes for the mean from 0 to 16, and decreases rapidly when μ = 32. This is because,

when μ=32, NORM has negligible chance to select a larger actions for the group. In other

words, the vectors need not to be padded in most cases. Thus, in practice, we must tune the

parameters (μ and σ) to avoid such situation.

Figure 6.5 shows the uncertainty and cost against the standard deviation σ of normal

random function. Basically, all the three measurements decreases with the decrease of

159

Figure 6.4: Uncertainty and Cost for Normal Distribution Against Mean

σ. Compared with SVMD, the less the σ, NORM exhibits better. This is as expected

since the larger the standard deviation is, the flatter the curve of normal distribution is, and

consequentially, the more chances to draw a value far from the mean, which is equal to

select an action far from the performed one.

Figure 6.5: Uncertainty and Cost for Normal Distribution Against Standard Deviation

160

6.6 Summary

In this chapter, we have proposed a solution to reduce the impact of adversaries’

background knowledge in privacy-preserving traffic padding. The approach can poten-

tially be applied to other privacy-preserving issues, although we have focused on the traffic

padding issues in this chapter. We have also instantiated two algorithms by following the

proposed solution. Our experiments with real-world applications confirmed the perfor-

mance of the proposed solution in terms of both privacy and overheads. Our future work

will apply the proposed approach to privacy-preserving data publishing to achieve syntactic

privacy while mitigating the threat of adversaries’ prior-knowledge.

161

Chapter 7

PPSM: Privacy-Preserving Smart

Metering

In this chapter, we present an efficient technique for privacy-preserving smart me-

tering to simultaneously achieve multiple privacy objectives.

7.1 Overview

Smart meter with fine-grained consumption information benefits both utility (to bet-

ter schedule electric production) and customers (to cut down the cost) . However, recent

studies show that such features may also lead to serious breaches of customers’ privacy.

There typically exist two categories of approaches to prevent adversaries from violating

the individual’s privacy.

First, the smart meter, with the tariff information, accumulatively calculates the

amount of billing and sends the billing information once to the service provider (utility)

at each billing period. In such a way, the utility only knows the final billing and cannot

compromise the customers’ privacy. However, it may be challenging for such method

to remain consistent of the tariff information between utility and meters. Furthermore, the

utility cannot learn the trend of electrical consumptions for fine-grained period. Also, in the

162

cases that arguments on the billing between users and providers, such information cannot

be used as an evidence.

Second, at each time slot (e.g. 6 minutes), all the meters send the consumption

information to the predetermined collector, which then sums up (through homomorphic

encryption) and then sends the results to the utility. In such a way, the utility can learn

the total consumptions for each reading period and consequently can dynamically adjust

the producing of electric based on the consumptions. However, such approach does not

provide individual information in terms of consumptions and billings, and consequently,

the utility can only charge the collector totally and cannot charge individually.

Consequently, the aforementioned two solutions must both be applied to achieve

these two objectives. In the sequel, the privacy of both objectives must be preserved. Re-

cent solution in the literature integrates two objectives into one protocol with a single set

of security primitives. However, the communication between the smart meters and corre-

sponding counterparts remain separately which still incurs high overhead.

In this chapter, we observe that preserving the privacy with regard to the readings of

a customer’s electric consumption does not necessarily lead to preserving that customers’

privacy. On the other hand, we also observe that to preserve the privacy of both aggrega-

tion of readings and the billing of consumptions can be concurrently achieved. Based on

such observations, we propose a novel privacy model in smart meter to preserve semantic

privacy, which allows the smart grid to have one unique set of consumption readings for

each smart meter for the purpose of both aggregation analysis and billing.

The contribution of this chapter is two fold. First, we observe that the privacy issue

is not due to the readings themselves but the sensitive information behind the readings. Sec-

ond, to the best of our knowledge, our novel privacy model is the first effort on preserving

the individual sensitive information (compared with preserving the readings information).

The rest of the chapter is organized as follows.We first build intuitions through a

running example in the remainder of this section. Section 7.2 defines our model. Sec-

163

tion 7.3 design the algorithm for the smart meters, and briefly introduce the algorithms for

the other component of smart grid. We conclude the chapter in Section 7.4.

Motivating Example

The left table in Table 7.1 shows the electric appliances together with their cor-

responding labeled consumptions in watts for a fictitious household. For this particular

example, to simplify our discussion, we make the following assumptions. The smart meter

will send the consumption information once per 6 minutes (reading period), and the appli-

ances will be on or off for a complete reading period. Further, the measured consumption

of the appliances is consistent with the labeled one and the load type of the appliances

are const load [60]. Later we will remove this assumption by allowing the appliances to

consume in a given bounded range.

Appliance Set Possible Readings
Item Labeled

(Watts)
Fan 200
Bulb 100
TV 100

Reading Use of Appliances

40 {{Fan,Bulb,TV}}
30 {{Fan,Bulb}, {Fan,TV}}
20 {{Fan}, {Bulb,TV}}
10 {{Bulb}, {TV}}
0 {∅}

Table 7.1: An Example

We first examine the privacy issue behind the readings. The right table in Table 7.1

shows all the possible readings and corresponding possible usage of appliances (note that

the reading may be given by watts or kilowatt-hour. In this example, we use watt-hour for

explanation). For example, when Fan is on, and either Bulb or TV is on, the reading is 30;

when either Fan is on, or both Bulb and TV are on, the reading will be 20.

One existing solution is to add an amount of noise drawn from a geometric distribu-

tion with parameter p = ε
Δ

to the consumption in order to achieve ε-differential privacy for

the readings, where Δ is the maximum difference of two readings of given household [32].

164

Unfortunately, achieving differential privacy in readings does not mean to preserve the pri-

vacy of the customers. For example, suppose that ε = 0.1, a 20 reading implies that the

probability that Fan is not used is as 3.90 ≈ e1.36 times as that Fan is used.

The adversary can reason as follows. Δ = 40 which is the reading difference be-

tween the case that all appliances are used and the case that no appliance is used, con-

sequently, p = 0.1
40

= 1
400

. There are totally 5 possible cases which equally likely lead

to a 20 noise reading as shown in Table 7.2. On one hand, the only case, that Fan is

used, is that the original reading is 20 and the noise is 0. The probability of this case

Pr[(Fan is on) ∧ (Reading is 20)] = (1 − 1
400

)0 × 1
400

. On the other hand, there are four

cases that Fan is not used. That is, none, one, or both of Bulb and TV is used and the noise

is 20, 10, or 0, respectively. Therefore, when reading is 20, Pr[(Fan is off)
Pr[(Fan is on) =

∑5
i=2 Pr[casei]

Pr[case1]
≈

1+2×0.975+0.951
1

= 3.90.

Use of Appliances Original Noise Probability

Fan Bulb TV Reading Added (1−p)x×p
1

√
20 0 (399

400
)0 × 1

400

2
√ √

20 0 (399
400

)0 × 1
400

3
√

10 10 (399
400

)10× 1
400

4
√

10 10 (399
400

)10× 1
400

5 0 20 (399
400

)20× 1
400

Table 7.2: The Possible Cases For a 200 Noise Reading

We have shown that, although the above mechanism achieves 0.1-differential pri-

vacy, the adversary still can learn that the Fan is more likely off in the case that the reading

is 20. On the other hand, actually a special reading is not necessary to violate a given

privacy in terms of the usages of the appliances.

We need to switch to the adversary’s point of view. When an adversary observes a 20

reading, s/he knows that the customer either use the Fan or use both Bulb and TV, however,

s/he is not sure that which option is. In other words, s/he can only know that these two

options are equally likely true. However, when an adversary observes a 30 reading, s/he

will be fully sure that Fan is used no matter whether Bulb or TV is used.

165

In this chapter, we will adopt a novel privacy property to quantify such privacy

concerns. Intuitively, we must set the threshold of the maximal acceptable probability that

any appliances in a given household are used in any given reading period. In this example,

we assume that this probability is not less than 1
2
. Thus, the 20 reading is safe since all the

three appliances have 1
2

probability to be used. Moreover, the 30 reading is unsafe since

Fan is used for sure. Similarly, reading 40 is unsafe while readings 10 and 0 are safe.

However, sometimes the cases that an appliance is not used will also release private

information. Take an extreme case as an example. The reading 0 may infer that nobody is

at home in that reading period. Therefore, we need to also set the threshold of the minimal

acceptable probability that any appliances are used in any given reading period. In this

example, we assume the minimal probability to be 1
2

also. Considering both these two

thresholds, the only safe reading is 20 (the probability that any of the three appliances is

used is 1
2
).

Correspondingly, we will adopt a different approach to achieve the privacy. Basi-

cally, instead of adding noise to the reading such that the reading cannot be distinguished

from others, we send the safe readings directly, while for the unsafe readings we send the

most close safe readings (it could be larger or less than the original reading value) and leave

the remainder (it could be positive or negative) to the next reading period. In such way, we

will directly send 20 to the utility for a 20 reading while we will send 20 and leave the left

10 to a certain preassigned period when the consumption is 30. Therefore, for the reading

sequence of consumption 30,20,10, we will send 20,20,20 to the utility. It is worthy noting

that, when the adversary observes the third 20, s/he cannot infer that the original reading is

10 (either Bulb or TV is used) or 20 (either Fan is used or both Bulb and TV are used).

166

7.2 The Model

We first describe the adversary model and corresponding assumptions in Section 7.2.1.

We then introduce the privacy property in Section 7.2.2. Finally, we define the cost metrics

in Section 7.2.3. Table 7.3 lists our main notations which will be defined in this chapter.

A Appliance Set
U Utility, or Customer Set in Utility
G, Gs Candidate Set, Safe Candidate Set
Cr r-consumed Set (Consumption Set)
�R, �T Reading Sequence, Tariff Sequence

Table 7.3: The Notation Table

7.2.1 Adversary Model

The adversary can eavesdrop the encrypted readings at any point in the traffic path

between the smart meters and the utility. However, the adversary cannot break the security

of a cipher unless the utility can decrypt it.

We have the following assumptions about the smart grid and the adversary’s capa-

bility.

- The appliances will be on or off in the whole reading slot and will not switch between

on and off during a reading slot.

- The households are aware of the appliances they will use upon the installations of

the smart meters, and the maximal number of appliances in a household is not larger

than 30.

- There exist some safe readings for the given set of appliances.

167

7.2.2 Privacy Property

For a given household h, we denote an appliance set as Ah(id, l, d), where id, l,

and d denote the identity of appliance unique to the household, its corresponding labeled

electrical consumption in watts, and the possible bounded deviation from the labeled in

percentage for the real consumption, respectively. We denote reading frequency as φ to rep-

resent the number of hours between two readings. Denote by ID and L the set of appliance

identities
∏

id(Ah), and labeled electrical consumption
∏

l(Ah) (all projections preserve

duplicates, unless explicitly stated otherwise). Note that different households may have

different appliance set. When no ambiguity is possible, we will not specify the subscript

for household, and will not distinguish between A and L.

First, we introduce the concept of candidate set and r-consumed set in Definition 7.1

to depict all the possible reading values for the given appliance set, and all the possible

combination of appliances which can sum up to r watts.

Definition 7.1 (Candidate Set and Consumption Set) Given an appliance set A, we de-

fine,

- the candidate set G as the set {∪{sum : sum ∈ [
∑

(id,l,d)∈SA
(l×(1−d)),

∑
(id,l,d)∈SA

(l×
(1 + d))]} :SA∈2A};

- the r-consumed set Cr as the collection of sets

{{id : (id, l)∈SA} : (SA∈2A)∧ (
∑

(id,l,d)∈SA
(l× (1− d))≤r ≤ ∑

(id,l,d)∈SA
(l× (1 +

d)))}.

Example 7.1 Given the appliance set A in the left tabular of Table 7.1, and assume that

the deviation for each appliance is 0.0, then the candidate set G={0, 100, 200, 300, 400}.

Correspondingly, there are 5 consumption sets as shown in right tabular of Table 7.1,

e.g., C200 = {{Fan}, {Bulb, TV }}. Note that reading 20 corresponds to C200 since

20(watts
6minutes

) × 10(6minutes
hour

)=200(watts
hour

). �

168

We then measure the probability that an appliance is used for a given reading r, as

formalized in Definition 7.2.

Definition 7.2 (Occurrence Probability) Given a r-consumed set Cr corresponding to

the appliance set A, the occurrence probability of an appliance id ∈ ID w.r.t. Cr is de-

fined as

pr(id, Cr) =
|{I : (id∈I) ∧ (I∈Cr)}|

|Cr|

Example 7.2 Following Example 7.1, pr(Fan, C200) = 1
2

since Fan appears in one of the

two elements in C200. Similarly, pr(Bulb, C200)=pr(TV, C200)= 1
2
. �

Based on the occurrence probability, Definition 7.3 quantifies the amount of privacy

protection under a given r-consumed set. Basically, a reading r satisfies (δ1, δ2)-bounded

certainty, if the occurrence probability of each appliance in the corresponding r-consumed

set falls in the range of [δ1, δ2].

Definition 7.3 ((δ1, δ2)-Bounded Certainty) Given an appliance set A and the correspond-

ing candidate set G, we say a r-consumed set Cr (r∈G) satisfies (δ1, δ2)-bounded certainty

(0≤δ1≤δ2≤1) or Cr is (δ1, δ2)-bounded w.r.t. A if

∀(id∈ID), δ1 ≤ pr(id, Cr) ≤ δ2.

Example 7.3 Following Example 7.2, C200 w.r.t. A satisfies (1
2
, 1

2
)-bounded certainty (or

simply as 200 is (1
2
, 1

2
)-bounded hereafter when no ambiguity is possible) since, for all

appliances in A, the occurrence probability equals to 1
2
. �

Finally, we model the privacy of an algorithm for a sequence of readings in Defi-

nition 7.4. Informally, the privacy model requires at least a pre-configured percentage of

readings in the sequence is (δ1, δ2)-bounded.

169

Definition 7.4 ((α, δ1, δ2)-Undisclosed Privacy) An algorithm M gives (α, δ1, δ2)-undisclosed

privacy for a reading sequence �Rin (one record per φ hours) w.r.t. an appliance set A, if

the output, another equal-length reading sequence, �Rout = M(�Rin, A) satisfies that

1 −

∣∣∣{r : r∈ �Rout ∧ C r
φ

is (δ1, δ2)−bounded}
∣∣∣∣∣∣ �Rout

∣∣∣ ≤ α

7.2.3 Cost Metrics

In addition to privacy requirements, we also need metrics for the billing accuracy

for each user, the consumption accuracies for each user and for the utility. For the billing

accuracy, we measure the billing difference in total for the given period, as formulated in

Definition 7.5.

Definition 7.5 (Billing Error Rate) Given an input reading sequence �Rin for a customer

u, the corresponding output reading sequence �Rout and equal-length tariff sequence �T , the

billing error rate of u is defined as

errb(u, �Rin, �Rout, �T) =
|(�Rout − �Rin) · �T |

�Rin · �T
,

where · represents the dot product of two vectors.

Definition 7.6 measures the relative error rate of the readings for a customer in a

given sequence.

Definition 7.6 (Customer Consumption Error Rate) Given an input reading sequence

�Rin for a customer u, the corresponding output reading sequence �Rout, the customer con-

sumption error rate of u is defined as

errc(u, �Rin, �Rout) =

∑
i∈[1,| �Rin|] | �Rout[i] − �Rin[i]|∑

i∈[1,| �Rin|] �Rin[i]
,

170

where �Rin[i] and �Rout[i] are the ith reading in �Rin and �Rout, respectively.

Example 7.4 Following Example 7.3, given the input reading sequence �Rin =〈30, 20, 10〉,
the output reading sequence �Rout = 〈20, 20, 20〉 for the customer u in Table 7.1, suppose

that the corresponding tariff sequence �T =〈1, 2, 1〉, then the billing error rate errb(u, �Rin, �Rout, �T)

(or simply errb hereafter when no ambiguity is possible) can be calculated as:

errb = (20−30)×1+(20−20)×2+(20−10)×1
30×1+20×2+10×1

=0.

Similarly, the customer consumption error rate is as follows,

errc = |30−20|+|20−20|+|10−20|
30+20+10

= 20
60

= 1
3
. �

Definition 7.7 (Utility Consumption Error Rate) Given the utility U ={u1, u2, . . . , u|U |},

in which, each customer um has the corresponding input reading sequence �Rm
in and output

reading sequence �Rm
out, we define

- the utility consumption error rate of the ith reading is defined as

err(i, U) =
|∑um∈U(�Rm

out[i] − �Rm
in[i])|∑

um∈U(�Rm
in[i])

,

- the utility consumption error rate of the reading sequence is defined as

err(U) =

∑
i∈[1,| �Rm

in|] err(i, U)

| �Rm
in|

.

Example 7.5 Following Example 7.4, assume that there is only another customer in the

utility whose �Rin = 〈10, 30, 20〉, and �Rout = 〈20, 20, 20〉, then the error rate of first reading

slot err(1, U) = |(20−30)+(20−10)|
30+30

= 0. Similarly, err(2, U) = 1
5

and err(3, U) = 1
3
. Thus,

err(U)=
0+ 1

5
+ 1

3

3
= 8

45
. �

171

7.3 The Algorithms

In this section, we design algorithms for revising the readings to satisfy given (δ1, δ2)-

bounded certainty whereas minimize the aggregating error rate and billing error rate. Our

intention is not to design an exhaustive list of solutions but rather to demonstrate the exis-

tence of abundant possibilities in ensuring such privacy property with negligible commu-

nication and computation overheads.

Remind that the smart grid makes use of the fine-grained readings. Without loss of

generality, we split the consumption information into K×S readings as shown in Figure 7.1.

Figure 7.1: Sequence of Meter Readings For a Smart Meter

Basically, for a customer, a reading period (e.g. a day or a week) is split into S

number of reading slots such that any two neighbor reading slots have different tariff. A

billing cycle (e.g. a month or a year) includes K number of days which is the period of time

between billing statements as usual. In the billing cycle we preassign a special day, called

billing point, for each reading slot. Correspondingly, we regard the reading sequence as a

K×S reading matrix in our algorithms. Note that the subscripts in the matrix is just to show

the position of a reading in the billing cycle for different tariff and aggregated consumption,

and in our algorithm we handle each reading in real time.

The process in smart meter is divided into three steps. First, initialize the smart

172

meter to determine the safe readings (one-time process). Second, modify the reading such

that the resultant reading satisfies desired privacy property. Third, send the resultant reading

to the utility in a secure way.

7.3.1 Smart Meter Initialization

Before modifying the readings, we should first tell apart the readings which satis-

fies given (δ1, δ2)-bounded certainty, called Safe Candidate Set, from all possible readings

given the appliance set, called Candidate Set. In other words, we should identify all the

possible (δ1, δ2)-bounded readings.

Note that building safe candidate set is part of the one-time off-line processing given

the appliance set. In this section, we devise a very straightforward yet not necessarily

efficient way to build it as shown in Table 7.4. Nonetheless, the discussion of optimal

solution is regarded as future work.

Input:an appliance set A, the certainty property δ1, δ2,
the reading frequency φ;

Output: the safe candidate set Gs;
Method:

1. Let each consumption set Cr = ∅;
2. For each SA in 2A

3. Let r =
∑

(id,l)∈SA
(l);

4. Create SA on Cr;
5. For each Cr

6. If (Cr is (δ1, δ2)-bounded)
7. Create r on Gs;
8. Return Gs × φ;

Table 7.4: The Safe Candidate Producer (SCP)

Roughly speaking, given the appliance set A, the SCP algorithm examines each

possible appliance usage situations and corresponding electric power consumptions (lines

2-4), and then for each possible consumption value r, the algorithm justifies whether it is

(δ1, δ2)-bounded by verifying the corresponding r-consumed set (lines 5-7 in Table 7.4).

The computational complexity of SCP algorithm is O(|A|×2|A|) since: evaluating r

173

for each SA costs O(|A|) many times, and there are 2|A| many SAs, so totally O(|A|×2|A|).

Then, evaluating each Cr also costs O(|A|) many times and there are maximal 2|A| many

Crs.

Besides the safe candidate set, we should also randomly select a special day for

each reading slot, called Building Point Set. Note that, although for a single customer, the

building points are randomly selected, we should select the building point of any reading

slot for all the customers evenly distributes among the K days to reduce the errors of the

aggregated consumption.

7.3.2 Reading Modifications

With the information of safe candidate set, we next modify the reading to satisfy

(δ1, δ2)-bounded certainty. It is important to note that we may vary the design of algo-

rithms to suit different needs of smart meter capabilities, and the privacy and accuracy

requirements. We demonstrate such a flexibility through designing three light-weight algo-

rithms in the following.

7.3.2.1 Option 1: the CRC algorithm

The cyclical reading converter (CRC) algorithm aims at maximal billing accuracy

with reasonable utility consumption error as shown in Table 7.5. Roughly speaking, given

a reading rij which is at the ith reading period in the billing cycle and the jth reading slot

in that reading period, CRC first justifies whether the reading is on the billing point of jth

reading slot. If yes, CRC will sum up the current reading to the accumulated hold of jth

reading slot, reset the hold to be zero, and return the summation. Otherwise, the algorithm

returns the closest value in Gs (the one has minimal absolute difference between it and the

reading), and adds the difference to the hold of the jth reading slot.

The CRC algorithm achieves 0% billing error rate (100% billing accuracy) with-

out the knowledge of the detail tariff information while ensures (1
K

, δ1, δ2)-undisclosed

174

Input:a reading rij , the safe candidate set Gs,
the billing point set B[S], the hold set H[S];

Output: the resultant reading r′;
Method:

1. If (i=B[j]) //the billing point
2. Let r′ = H[j] + rij;
3. Let H[j] = 0;
4. Return r′;
5. If (rij ∈ Gs)
6. Return rij;
7. Let closest be r ∈ Gs with the minimal |r − rij| value;
8. H[j]+ = (closest − rij);
9. Return closest;

Table 7.5: The Cyclical Reading Converter (CRC)

privacy due to the following. First, the accumulated consumptions of any reading slots

for any customer in any billing cycle is identical before and after modification. Formally,

∀j,
∑

i(Rout[i][j] − Rin[i][j]) = 0 Thus, the billing of Rout is identical with that of Rin .

Second, there are at most S number of readings, which may be not (δ1, δ2)-bounded, among

the total S×K readings.

7.3.2.2 Option 2: the PRC algorithm

The perpetual reading converter (PRC) algorithm aims at strict privacy preservation

with reasonable billing error rate and utility consumption error rate as shown in Table 7.6.

Compared with CRC algorithm, the hold of each reading slot in PRC algorithm will never

be reset. Roughly speaking, if a reading rij is safe (in the safe candidate set), PRC returns

that reading directly, otherwise, PRC returns the closest value in Gs (the one has minimal

absolute difference between it and the reading), and adds the difference to the hold of the

jth reading slot.

The PRC algorithm ensures (0, δ1, δ2)-undisclosed privacy with reasonable billing

error rate and utility consumption error rate. First, the algorithm ensures that each returned

reading satisfies pre-determined (δ1, δ2)-bounded certainty. Second, the hold in each read-

175

Input: a reading rij , safe candidate set Gs, hold set H[S];
Output: the resultant reading r′;
Method:

1. If (rij ∈ Gs)
2. Return rij;
3. Let closest be r ∈ Gs with the minimal |r − rij| value;
4. H[j]+ = (closest − rij);
5. Return closest;

Table 7.6: The Perpetual Reading Converter (PRC)

ing slot is the only reason to cause the billing and consumption inaccurate, which can be

deemed as negligible for negligible for a long-term period in most cases.

7.3.2.3 Option 3: the LRC algorithm

For both CRC and PRC algorithms, we assume that the smart meters are aware of

the existence of different tariffs (note that such knowledge is different from knowing the

different tariffs themselves and the smart meters using our algorithms do not need to know

the tariffs). The parameters of those algorithms may need to be updated due to the change

of the tariff structure. Our intention of designing LRC algorithm is to demonstrate the

possibilities of totally tariff structure irrelevant solutions.

Input: a reading r, safe candidate set Gs;
Output: the resultant reading r′;
Method:

1. Let h = h + r;
2. Let closest be rc∈Gs with the minimal |h − rc| value;
3. Let h = h − closest;
4. Return closest;

Table 7.7: The Light Reading Converter (LRC)

In contrast to previous two algorithms, all reading slots share a single hold to store

the difference between original reading and returned reading in LRC algorithm as shown

in Table 7.7. Roughly speaking, LRC first sums up current reading with the accumulated

hold, then returns the closest value in Gs, and finally records the difference in the hold for

176

the next readings.

7.3.3 Implementation Issues

In previous sections, we have presented a vital component of handling the informa-

tion with regard to electric consumption exchanged between utility and customers. That is,

how the smart meters can modify the reading information to ensure the privacy property

while maximizing the billing accuracy and minimizing the consumption error.

To incorporate our techniques into the smart grid also requires ensure the integrity,

non-reputation when sending the consumption information from smart meter to the utility.

These objectives can be achieved by utilizing the existing solutions in the literature, such

as, TPM, encryption, and so on. In this chapter, we specially focus on the process in smart

meter to modify the information before communicating with the counterpart in the system.

7.4 Summary

In this chapter, we have proposed a novel light-weight approach to concurrently

achieve two privacy objectives (billing and load monitoring) through a single set of data

and fully under control of the smart meters. Based on the semantic explanation of privacies,

we have presented a formal model for privacies in smart grid. We have also designed three

efficient algorithms for reading modification and outlined implementation issue for our

approach. We will continue this preliminary work with experiments using both real and

synthetic data to confirm the effectiveness and efficiency of our solutions.

177

Chapter 8

Generic Model for Privacy Preserving

against Side-Channel Leaks

In this chapter, we outline the preliminary work on generic model for privacy-

preserving against side-channel leakages. We then demonstrate three example instantia-

tions of the generic model through aforementioned three different scenarios.

As discussed in previous chapters, we apply the following similar idea for the afore-

mentioned applications: we divide all the possible information into groups and then break

the linkage inside each group by obfuscating the observable information, such as, encrypted

packet sizes in web applications, smart reading for smart meters. Based on the similarity

of the components and solutions, we can extract the common information from different

domains and design a generic model over the models for specific applications.

8.1 Outline of Generic Model

8.1.1 Privacy-related Components of an Application

To prevent a side-channel attack, we need to first answer the following three ques-

tions: Who is the victim? What is the sensitive information? What is the side-channel

178

information? Correspondingly, we need the following three concepts to model these three

pieces of information. Note that, we preserve duplicates for all the sets in the remainder of

this chapter, unless explicitly stated otherwise.

- Identity Set: Denote by I the set of identity of each victim which can be used to

uniquely identify a victim. Note that the domain of identity set varies from appli-

cation to application and side-channel to side-channel. For example, it could be the

identifier of a record holder in a micro-data, such as, social insurance number, drive

license number.

Furthermore, the identities could be either permanent or temporary. For instance, a

session ID between a client and the Web application may expire or be abandoned.

However, it is typically assumed that this session information, together with addi-

tional information such as IP address and the access time of the client, enable an

adversary to associate it with a victim.

- Sensitive Set: Denote by S the set of sensitive person-specific information about the

victim for the given application. In contrast to confidentiality, for privacy, sensitive

set itself alone can be not private. In other words, knowing the possible sensitive

values does not mean to violate the privacy. However, the linkage between an identity

and the sensitive values is regarded as private.

For instance, the disease information in a medical record for a patient is considered

as sensitive information. Note that the sensitive information may be legible in some

scenarios and be illegible in others, specially in high-dimensional micro-data. Also,

it varies from applications whether a piece of information with which an identity is

associated is sensitive or not.

- Observable Set: Denote by O the set of observable information exposed due to the

side-channel leakages. Such information is usually different from the sensitive in-

formation which need to be protected. However, it can allow the adversary to refine

179

her knowledge about the possibility of an identity being associated with a sensitive

value.

For example, the directional packet sizes in the encrypted traffic between victims and

Web-based applications are visible to the adversaries. Different inputs or actions in a

Web application may lead to different patterns of such observable information which

allows adversaries to infer the victim’s actions.

With these three concepts, we call the victims’ information in a given scenario Orig-

inal Set, denoted as a relation t(i, o, s), where i ∈ I , o ∈ O, and s ∈ S denote the identity

value, observable value, and sensitive value, respectively. Denote by T the set of all rela-

tions with the same sets of I , O, and S as those of t.

We make the worst case assumption that each victim can be uniquely associated

with an observable value. For example, An adversary knows the quasi-identifier of a vic-

tim (identity) in a micro-data through extra knowledge such as voter list. Note that such

association could be time-sensitive. An adversary knows who triggers the traffic between

client and web application through de-anonymizing techniques [95] and the methods dis-

cussed in Chapter 5 for a specially given time.

Therefore, we need to remain Πi,s(t) and Πo,s(t) secret to protect the privacy. There

exist two seemingly conflicting goals. First, the sensitive information about an identity

must be limited to a given acceptable level to preserve the privacy, such as k-anonymity,

l-diversity, ε-differential privacy. Second, the costs to achieve the desired privacy should

be minimized. For example, the data utility for analysis or information loss in privacy-

preserving data publishing should be maximized or minimized; the padding overhead in

privacy-preserving traffic padding in Web application should be minimized.

There exist many methods to protect the sensitive information as well as minimize

the costs as discussed in Chapter 2. In the context of privacy preserving data publish-

ing, grouping-and-breaking basically partitions the records into groups and then breaks the

linkage between the quasi-identifier value and the sensitive value inside each group. In this

180

generic model, we extend such operation in PPDP to other applications. However,the way

to divide identities’ records into groups and the way to break the linkage inside a group

may be different. For example, for data publishing, we replace the quasi-identifier values

by a less accurate one; for traffic padding in Web applications, we increase the packet sizes

to a closer value; for privacy-preserving smart metering, we replace the readings by the

closest safe one. We shall discuss the differences in more detail in the next section.

8.1.2 Privacy Properties

As mentioned above, privacy concerns that the degree about how likely an identity

is associated with a sensitive value from the adversary’s perspective. Therefore, we need to

first formulate the adversary’s mental image given the finally released information (see next

subsection 8.1.3) and the side-channel information, such as, the algorithms themselves, the

observable encrypted packet sizes. We slightly abuse the concept of fuzzy set to model the

adversary’s mental image.

The mental image of an adversary about the sensitive information of an identity

in an application is denoted by a pair (i, (S, fiS)), where i is the identity, (S, fiS) is a

corresponding fuzzy set denoting the probability that the given identity is associated with

each sensitive value from the adversary’s perspective. Obviously, the values of member

function fiS : S → [0, 1] could be different for different identity. We call the collection

of all the (i, (S, fiS)) pairs for the identities in an application Inferred Set, denoted as

rI = (I, (S, fIS)). Different mechanisms may lead to different Inferred Set. Denote by

RI(t) the set of all possible inferred sets for a given original set t, and short as RI , if no

ambiguity is possible.

The concept of Inferred Set is generic enough to model different syntactic privacy

properties. Furthermore, Inferred Set simulates the view of an adversary instead of the

released information itself. To illustrate, we model two main privacy properties mentioned

in previous chapters in Definition 8.1 and 8.2.

181

Definition 8.1 (k-anonymity) Given an inferred set rI ∈ R, we say a rI satisfies k-

anonymity (k is an integer) if

∀((i, (S, fiS)) ∈ rI), |{s ∈ S : fiS(s) > 0}| ≥ k.

Definition 8.2 (l-diversity) Given an inferred set rI ∈ R, we say a rI satisfies l-diversity

if

∀((i, (S, fiS)) ∈ rI), max
s∈S

(fiS(s)) ≤ 1

l
.

8.1.3 Cost Metrics

In addition to privacy requirements, we also need metrics for the costs, such as

information loss, padding cost, processing cost, reading error rate, billing error rate, and

so on. The costs mainly incur due to the difference between the original information and

released information. Similar with inferred set, we also model the released information

based on the concept of fuzzy set.

The sensitive information of an identity of an application based on the released in-

formation is denoted by a pair (o, (S, f ′
oS)), where o is the observable information, (S, f ′

oS)

is a fuzzy set denoting the probabilistic distribution of sensitive information corresponding

to a given possible observable information. We call the collection of all the (o, (S, f ′
oS))

pairs in an application Released Set, denoted as rD = (O, (S, f ′
OS)). Similarly, different

mechanisms may lead to different Released Sets. Denote by RD(t) the set of all possible

released sets for a given original set t, and short as RD if no ambiguity is possible. Note

that, the Original Set t(i, o, s) can be also represented by a release set by removing identity

information i.

These concepts, together with some necessary information such as fine-grained tar-

iff for smart metering, allow us to model different costs. To illustrate, we exemplify the

discernibility measure (DM) for data publishing in Definition 8.3 and customer consump-

182

tion error rate for smart metering in Definition 8.4.

Definition 8.3 (Discernibility Measure (DM)) Given a released set rD = (O, (S, f ′
OS))

for a privacy-preserving data publishing, the discernibility measure is formulated as fol-

lows:

DM(rD) =
∑
o∈O

|{o′ : (o′ ∈ O) ∧ (o′ = o)}| .

Definition 8.4 (Customer Consumption Error Rate) Given a customer i, an original set

t(i, o, s) (a reading sequence of that customer) and its corresponding released set rD(O, (S, f ′
OS))

for a smart meter, the customer consumption error rate is formulated as follows:

errc(rD, t) =

∑ |t.o − rD.o|∑
t.o

.

8.1.4 Obfuscating Mechanisms

Previous two sections model the privacy properties and the corresponding cost met-

rics introduced to satisfy the privacy. In this section, we formulate the effect of the mecha-

nisms on the privacy degree and the overheads.

In addition to the released set, the adversary may also have some extra knowledge,

denote as E, such as the generalization algorithms, the observable encrypted packet size,

and so on. The effectiveness of mechanism M in terms of adversaries’ mental image

can now be formulated as M : T × E → RD × RI . A mechanism may have different

methods to affect the adversary’s inferred set and/or the released set, either by obfuscating

the relation between I and O, or by obfuscating the relation between O and S, or by both.

To facilitate the computation of the privacy guarantee and costs, we define an operation,

called concatenation and denoted by �, for two fuzzy sets given the corresponding three

sets as follows.

Definition 8.5 (Concatenation) Given three sets I , O and S, the concatenation between

(I × O, fIO) and (O × S, fOS) is defined as (I × O, fIO) � (O × S, fOS) = (I × S, fIS),

183

where fIS is calculated as follows.

(∀i ∈ I)(∀s ∈ S) : fis =
∑
o∈O

(fio × fos)

Note that, (I × S, fIS) is a variant of inferred set, and the former facilitates the

computation of the latter. The concrete mechanisms must be customized for applications.

8.2 Instantiations of Generic Model

Table 8.1 shows the mapping between the generic model and the models in previ-

ously chapters. We have customized the notions and notations in the three scenarios for

the purpose of explanation in Chapters 3- 7. In this section, we briefly discuss the main

challenges for the aforementioned three applications.

PPDP PPTP PPSM

identity set identifier (session id) (household)
observable set quasi-identifier vector-set candidate set

sensitive set sensitive attribute action-set consumption set

Table 8.1: Customized Notions in Three Scenarios

8.2.1 Privacy-Preserving Data Publishing

The main challenge for privacy-preserving data publishing is that the adversary may

be able to further infer the sensitive information when she knows the generalization algo-

rithm itself. The inferred set of the adversary is continuously refined during the running of

the algorithm.

Table 8.2 shows a toy example of micro-data table t(Name, gender, condition)

(original set) to be released. The privacy objective is to ensure that the highest ratio of a

sensitive value condition for each identifier Name must be no greater than 2
3
. When the

adversary only knows the released set g1(t), the desired privacy property is satisfied.

184

A Micro-Data Table t Generalization g1(t)
Identity Observable Sensitive

(Name) (Gender) (Condition)
Ada Female flu
Bob Male HIV
Coy Female cold
Dan Male HIV
Eve Female cough

Observable Sensitive

(Gender) (Condition)
flu

HIV
person cold

HIV
cough

Table 8.2: A Micro-Data Table and its Generalization

However, assume that the adversary knows about the generalization algorithm works

as follows: the algorithm releases
∏

(gender, condition), if it satisfies the privacy property;

Otherwise, it further replaces the gender by person, then either releases it if it satisfies, or

release nothing if it does not. Based on the released set, the adversary can reason that∏
(gender, condition) will not be disclosed only if both males are associated with HIV,

which violates the privacy. In such case, the inferred set is different from the released set.

Therefore, we need to evaluate the desired privacy property on the inferred set in-

stead of the released set. However, the recursive nature of computing the inferred set is

deemed to incur a high complexity. To avoid such recursion, we decouple the two pro-

cesses, privacy preservation and utility optimization, to improve the efficiency.

8.2.2 Privacy-Preserving Traffic Padding

In privacy-preserving traffic padding against side-channel due to encrypted packet

sizes, the side-channel information is modeled as observable set. We assume that the adver-

sary can locate the traffic between a victim and the web server. A straightforward solution is

to obfuscate the observable information by padding to the maximal in the group. However,

the correlation among the observable information in the sequence of actions may cause

additional complications.

The left tubular of Table 8.3 shows a toy example of the auto-suggestion feature in

Web-based application (suppose that it shows all the possible inputs). The privacy objective

185

in this example is to ensure that the adversary cannot distinguish from at least 2 different

inputs when observing the encrypted packet sizes.

Original Set Released Set
Observable Sensitive

(s-byte) (user input)
50 → 75 → 65 b → u → s
60 → 55 → 70 c → a → r
60 → 55 → 65 c → a → t
70 → 55 → 80 d → o → g

Observable Sensitive

(s-byte) (user input)
60 → 75 → 70 b → u → s
60 → 75 → 70 c → a → r
70 → 55 → 80 c → a → t
70 → 55 → 80 d → o → g

Table 8.3: Original Set and Possible Released Set for an Action-Sequences

When an adversary only observes the packet size of second keystroke is 55, she can

only infer that ’car’, ’cat’, and ’dog’ are equally likely to be the real input. However, when

she also observes the packet size of the first keystroke is 70, she can conclude that the input

is ’dog’, which violates the privacy requirement.

The aforementioned grouping and breaking techniques alone may lead to the re-

leased set as shown in right tabular of Table 8.3. That is, one algorithm may split cat and

car into two different groups. Unfortunately, this released set cannot be used in real case.

When the web server receives first keystroke ’c’, it must immediately response due to auto-

suggestion feature. However, since the server cannot predict the input is ’car’ or ’cat’, it

cannot decide whether to remain ’c’ to 60 or pad it to ’70’. Therefore, we need to apply

further constraints when splitting the inputs into groups as discussed in Chapter 5.

8.2.3 Privacy-Preserving Smart Metering

In privacy-preserving smart metering against side-channel due to fine-grained read-

ings, the side-channel information is also modeled as observable set. A straightforward

solution is to obfuscate the observable information by replacing the unsafe readings to the

closest safe readings. However, such mechanism may not ensure the privacy requirements.

The left tubular of Table 8.4 shows a toy example of all the possible readings and

the corresponding usage of appliances for a household. The privacy objective is to ensure

186

Original Set Released Set
Observable Sensitive

(reading) (usage of appliances)
400 {{Fan, Bulb, TV}}
300 {{Fan, Bulb},{Fan,TV}}
200 {{Fan}, {Bulb, TV}}
100 {{Bulb},{TV}}
0 {∅}

Observable Sensitive

(reading) (usage of appliances)
200 {{Fan, Bulb, TV},

{Fan, Bulb},{Fan,TV},
{Fan}, {Bulb, TV}}

100 {{Bulb},{TV}}
0 {∅}

Table 8.4: Original Set and Possible Released Set for the Readings in a Household

that the probability that any appliance is used inferred by any reading is no greater than 1
2
.

Obviously, the readings 200 is safe since all the three appliances have 1
2

probability to be

used. Similarly, readings 100 and 0 are safe, while 300 and 400 are not safe. The released

set will be as shown in right tubular of Table 8.4 by replacing a unsafe reading to the closest

one. Obviously, when an adversary observes a reading is 200, she can infer that Fan has

4
5

probability to be used, which violates the privacy. Besides, it usually incurs a high

computational complexity to enumerate all the possible usage of appliances. Therefore, it

is a must to design efficient heuristic methods to ensure the privacy as well as minimize the

billing and consuming error rate.

8.2.4 Others

Our generic model can also be applied to other categories of domains, such as,

android applications, cryptography, and so on. For example,

- The data-usage statistical information can be modeled as the observable information

in our model and apply grouping-and-breaking technique to make user’s identity

indistinguishable by observing the statistics for android system.

- The lengths of speech for voice guidance in Google Navigator for smart phone can

be partitioned into different groups, and unified inside each group such that a route

cannot be distinguished from sufficient other routes.

187

- We may consider the execution time of a cipher as the observable information and

obfuscate it of one secret-key to be identical with sufficient large number of other

keys of the cipher.

188

Chapter 9

Conclusion and Future Direction

9.1 Conclusion

As technology has advanced, new applications and products have emerged end-

lessly. Willingly or unwillingly, more and more information was spread out globally and

rapidly. The privacy preserving issues are becoming increasingly severe and accordingly

receiving significant attentions.

In this thesis, we studied privacy preservations against different types of side-channel

leakages in different scenarios: publicly-known algorithms in data publishing (Chapter 3

and Chapter 4), observable encrypted traffic information in web applications (Chapter 5

and Chapter 6), and fine-grained reading in smart metering (Chapter 7). We then made the

first effort on extracting a general framework to model side-channel attacks across different

domains (Chapter 8). The main works throughout this thesis can be summarized as follows.

For data publishing, we have proposed a novel k-jump strategy for micro-data dis-

closure. This strategy ensures the data privacy even in the case that the adversaries know

the disclosure algorithms. We have shown how to transform a given unsafe generalization

algorithm into a large number of safe algorithms. By constructing counter-examples, we

have shown that the data utility of such algorithms is generally incomparable.

189

To improve the efficiency, we have further proposed streamliner approach to pre-

serving diversity for data publishing. Instead of sequentially evaluating generalization

functions in a given order, and disclosing the first safe generalization, this strategy decou-

ples the process of preserving the diversity from the process of optimizing the data utility,

and consequently reduces the computation complexity.

For Web applications, we have established a mapping between the privacy-preserving

traffic padding (PPTP) and privacy-preserving data publishing (PPDP) issues, which allows

reusing many existing models and methods in PPDP as potential solutions for PPTP prob-

lems. We have also designed a formal model for the PPTP issue based on the mapping,

which allows quantifying privacy properties and padding overheads.

To relax the assumption on the adversaries’ prior knowledge about user input, we

have further proposed random ceiling padding approach to providing background knowledge-

resistant privacy guarantee to Web applications. Through our solution, the adversary would

still face sufficient uncertainty even if s/he can exclude certain number of possible inputs

to refine his/her guesses of the true input.

For smart metering, we have proposed a light-weight approach to simultaneously

achieving the objectives of preserving privacy on both billing and consumption aggregation

based on the key observation about the privacy issue beyond the fine-grained readings. Our

solution precedes existing ones by efficiently realizing multiple privacy objectives.

Finally, we formulate a generic model for privacy preserving against side-channel

leaks. The model encompasses privacy requirements, overheads, and methods to ensure

privacy and minimize the overheads. Such a study will bridge the gap among different

communities on study of side-channel attacks.

190

9.2 Future work

In the near future, I plan to focus on conducting the following studies. First, we will

further study the side-channel attacks in different applications, extract their commonali-

ties, and complete the generic model for privacy preserving against side-channel leakages.

Second, we will propose a privacy-preserving querying system to allow users to request for

desired micro-data through specially designed queries. Third, we will study data disclosure

and its safety issue in different settings, such as, cloud computing, big data.

191

Bibliography

[1] Gergely Ács and Claude Castelluccia. Dream: Differentially private smart metering.

CoRR, abs/1201.2531, 2012.

[2] N.R. Adam and J.C. Wortmann. Security-control methods for statistical databases:

A comparative study. ACM Comput. Surv., 21(4):515–556, 1989.

[3] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and

A. Zhu. k-anonymity: Algorithms and hardness. Technical report, Stanford Univer-

sity, 2004.

[4] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and

A. Zhu. Anonymizing tables. In ICDT’05, pages 246–258, 2005.

[5] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and

A. Zhu. Approximation algorithms for k-anonymity. Journal of Privacy Technology,

November 2005.

[6] A. Askarov, D. Zhang, and A.C. Myers. Predictive black-box mitigation of timing

channels. In CCS ’10, pages 297–307, 2010.

[7] D. Asonov and R. Agrawal. Keyboard acoustic emanations. Security and Privacy,

IEEE Symposium on, page 3, 2004.

[8] A. Aviram, S. Hu, B. Ford, and R. Gummadi. Determinating timing channels in

compute clouds. In CCSW ’10, pages 103–108, 2010.

192

[9] Michael Backes, Goran Doychev, Markus Dürmuth, and Boris Köpf. Speaker recog-

nition in encrypted voice streams. In ESORICS ’10, pages 508–523, 2010.

[10] Michael Backes, Goran Doychev, and Boris Köpf. Preventing Side-Channel Leaks

in Web Traffic: A Formal Approach. In NDSS’13, 2013.

[11] K. Bauer, D. Mccoy, B. Greenstein, D. Grunwald, and D. Sicker. Physical layer

attacks on unlinkability in wireless lans. In PETS ’09, pages 108–127, 2009.

[12] R.J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In

ICDE, pages 217–228, 2005.

[13] Roberto J. Bayardo and Rakesh Agrawal. Data privacy through optimal k-

anonymization. In ICDE ’05: Proceedings of the 21st International Conference

on Data Engineering, pages 217–228, 2005.

[14] I. Bilogrevic, M. Jadliwala, K. Kalkan, J.-P. Hubaux, and I. Aad. Privacy in mobile

computing for location-sharing-based services. In PETS, pages 77–96, 2011.

[15] BillyBob Brumley and Nicola Tuveri. Remote timing attacks are still practical. In

ESORICS’11, pages 355–371. 2011.

[16] D. Brumley and D. Boneh. Remote timing attacks are practical. In USENIX, 2003.

[17] J. Byun and E. Bertino. Micro-views, or on how to protect privacy while enhancing

data usability: concepts and challenges. SIGMOD Record, 35(1):9–13, 2006.

[18] N. Cao, Z. Yang, C. Wang, K. Ren, and W. Lou. Privacy-preserving query over

encrypted graph-structured data in cloud computing. In ICDCS’11, pages 393–402,

2011.

[19] C. Castelluccia, E. De Cristofaro, and D. Perito. Private information disclosure from

web searches. In PETS’10, pages 38–55, 2010.

193

[20] Peter Chapman and David Evans. Automated black-box detection of side-channel

vulnerabilities in web applications. In CCS ’11, pages 263–274, 2011.

[21] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. Toward privacy in public

databases. In Theory of Cryptography Conference, 2005.

[22] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-channel leaks in

web applications: A reality today, a challenge tomorrow. In IEEE Symposium on

Security and Privacy ’10, pages 191–206, 2010.

[23] F. Chin. Security problems on inference control for sum, max, and min queries.

J.ACM, 33(3):451–464, 1986.

[24] Cheng-Kang Chu, Joseph K. Liu, Jun Wen Wong, Yunlei Zhao, and Jianying Zhou.

Privacy-preserving smart metering with regional statistics and personal enquiry ser-

vices. In ASIA CCS ’13, pages 369–380, 2013.

[25] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. k-anonymous

data mining: A survey. In Privacy-Preserving Data Mining: Models and Algorithms.

2008.

[26] C. Clifton and T. Tassa. On syntactic anonymity and differential privacy. In ICDEW

’13, pages 88–93, 2013.

[27] L.H. Cox. Solving confidentiality protection problems in tabulations using network

optimization: A network model for cell suppression in the u.s. economic censuses.

In Proceedings of the Internatinal Seminar on Statistical Confidentiality, 1982.

[28] L.H. Cox. New results in disclosure avoidance for tabulations. In International

Statistical Institute Proceedings, pages 83–84, 1987.

[29] L.H. Cox. Suppression, methodology and statistical disclosure control. J. of the

American Statistical Association, pages 377– 385, 1995.

194

[30] T. Dalenius and S. Reiss. Data swapping: A technique for disclosure control. Journal

of Statistical Planning and Inference, 6:73–85, 1982.

[31] G. Danezis, T. Aura, S. Chen, and E. Kiciman. How to share your favourite search

results while preserving privacy and quality. In PETS’10, pages 273–290, 2010.

[32] George Danezis, Markulf Kohlweiss, and Alfredo Rial. Differentially private billing

with rebates. In IH’11, pages 148–162, 2011.

[33] A. Deutsch. Privacy in database publishing: a bayesian perspective. In Handbook of

Database Security: Applications and Trends, pages 464–490. Springer, 2007.

[34] A. Deutsch and Y. Papakonstantinou. Privacy in database publishing. In ICDT,

pages 230–245, 2005.

[35] P. Diaconis and B. Sturmfels. Algebraic algorithms for sampling from conditional

distributions. Annals of Statistics, 26:363–397, 1995.

[36] D.P. Dobkin, A.K. Jones, and R.J. Lipton. Secure databases: Protection against user

influence. ACM TODS, 4(1):76–96, 1979.

[37] A. Dobra and S.E. Feinberg. Bounding entries in multi-way contingency tables given

a set of marginal totals. In Foundations of Statistical Inference: Proceedings of the

Shoresh Conference 2000. Springer Verlag, 2003.

[38] Y. Du, T. Xia, Y. Tao, D. Zhang, and F. Zhu. On multidimensional k-anonymity with

local recoding generalization. In ICDE, pages 1422–1424, 2007.

[39] G.T. Duncan and S.E. Feinberg. Obtaining information while preserving privacy:

A markov perturbation method for tabular data. In Joint Statistical Meetings. Ana-

heim,CA, 1997.

[40] C. Dwork. Differential privacy. In ICALP (2), pages 1–12, 2006.

195

[41] Z. Erkin, J.R. Troncoso-Pastoriza, R.L. Lagendijk, and F. Perez-Gonzalez. Privacy-

preserving data aggregation in smart metering systems: An overview. Signal Pro-

cessing Magazine, IEEE, 30(2):75–86, 2013.

[42] I.P. Fellegi. On the question of statistical confidentiality. Journal of the American

Statistical Association, 67(337):7–18, 1993.

[43] E. W. Felten and M. A. Schneider. Timing attacks on web privacy. In CCS ’00,

pages 25–32, 2000.

[44] Philip W. L. Fong, Mohd Anwar, and Zhen Zhao. A privacy preservation model for

facebook-style social network systems. In ESORICS ’09, pages 303–320, 2009.

[45] Julien Freudiger, Mohammad Hossein Manshaei, Jean-Pierre Hubaux, and David C.

Parkes. On non-cooperative location privacy: a game-theoretic analysis. In CCS

’09, pages 324–337, 2009.

[46] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data publishing:

A survey of recent developments. ACM Computing Surveys, 42(4):14:1–14:53, June

2010.

[47] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data publishing:

A survey of recent developments. ACM Comput. Surv., 42:14:1–14:53, June 2010.

[48] Benjamin C. M. Fung, Ke Wang, and Philip S. Yu. Top-down specialization for

information and privacy preservation. In ICDE ’05, pages 205–216, 2005.

[49] X. Gong, N. Borisov, N. Kiyavash, and N. Schear. Website detection using remote

traffic analysis. In PETS’12, pages 58–78. 2012.

[50] X. Gong, N. Kiyavash, and N. Borisov. Fingerprinting websites using remote traffic

analysis. In CCS, pages 684–686, 2010.

196

[51] G.W. Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE,

80(12):1870–1891, 1992.

[52] X. Jin, N. Zhang, and G. Das. Algorithm-safe privacy-preserving data publishing.

In EDBT ’10, pages 633–644, 2010.

[53] X. Jin, N. Zhang, and G. Das. Asap: Eliminating algorithm-based disclosure in

privacy-preserving data publishing. Inf. Syst., 36:859–880, July 2011.

[54] V. Kann. Maximum bounded h-matching is max snp-complete. Inf. Process. Lett.,

49:309–318, March 1994.

[55] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko, R. Silverman, and A. Y.

Wu. An efficient k-means clustering algorithm: Analysis and implementation. IEEE

Trans. Pattern Anal. Mach. Intell., 24:881–892, July 2002.

[56] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable auditing. In PODS, pages

118–127, 2005.

[57] D. Kifer and A. Machanavajjhala. No free lunch in data privacy. In SIGMOD ’11,

pages 193–204, 2011.

[58] J. Kleinberg, C. Papadimitriou, and P. Raghavan. Auditing boolean attributes. In

PODS, pages 86–91, 2000.

[59] Klaus Kursawe, George Danezis, and Markulf Kohlweiss. Privacy-friendly aggre-

gation for the smart-grid. In PETS’11, pages 175–191, 2011.

[60] H. Y. Lam, G. S.K. Fung, and W. K. Lee. A novel method to construct taxonomy

electrical appliances based on load signaturesof. IEEE Trans. on Consum. Electron.,

53(2):653–660, May 2007.

[61] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito: Efficient fulldomain k-

anonymity. In SIGMOD, pages 49–60, 2005.

197

[62] Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. Mondrian multidimen-

sional k-anonymity. In ICDE ’06: Proceedings of the 22nd International Conference

on Data Engineering, page 25, 2006.

[63] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity

and l-diversity. In ICDE, pages 106–115, 2007.

[64] N. Li, W. H. Qardaji, and D. Su. Provably private data anonymization: Or, k-

anonymity meets differential privacy. CoRR, abs/1101.2604, 2011.

[65] Ninghui Li, Wahbeh Qardaji, and Dong Su. On sampling, anonymization, and dif-

ferential privacy or, k-anonymization meets differential privacy. In ASIACCS ’12,

pages 32–33, 2012.

[66] Ninghui Li, Wahbeh H. Qardaji, and Dong Su. Provably private data anonymization:

Or, k-anonymity meets differential privacy. CoRR, abs/1101.2604, 2011.

[67] Hsiao-Ying Lin, Wen-Guey Tzeng, Shiuan-Tzuo Shen, and Bao-Shuh P. Lin. A

practical smart metering system supporting privacy preserving billing and load mon-

itoring. In ACNS’12, pages 544–560, 2012.

[68] W. M. Liu and L. Wang. Privacy streamliner: a two-stage approach to improving

algorithm efficiency. In CODASPY, pages 193–204, 2012.

[69] W. M. Liu, L. Wang, P. Cheng, and M. Debbabi. Privacy-preserving traffic padding

in web-based applications. In WPES ’11, pages 131–136, 2011.

[70] W. M. Liu, L. Wang, P. Cheng, K. Ren, S. Zhu, and M. Debbabi. Pptp: Privacy-

preserving traffic padding in web-based applications. IEEE Transactions on De-

pendable and Secure Computing (TDSC), To appear.

[71] W. M. Liu, L. Wang, K. Ren, P. Cheng, and M. Debbabi. k-indistinguishable traffic

padding in web applications. In PETS’12, pages 79–99, 2012.

198

[72] W. M. Liu, L. Wang, K. Ren, and M. Debbabi. Background knowledge-resistant

traffic padding for preserving user privacy in web-based applications. In Proceedings

of The 5th IEEE International Conference and on Cloud Computing Technology and

Science (IEEE CloudCom2013), pages 679–686, 2013.

[73] W. M. Liu, L. Wang, and L. Zhang. k-jump strategy for preserving privacy in micro-

data disclosure. In ICDT ’10, pages 104–115, 2010.

[74] W. M. Liu, L. Wang, L. Zhang, and S. Zhu. k-jump: a strategy to design publicly-

known algorithms for privacy preserving micro-data disclosure. Technical report

(journal of computer security, pending major revision), Concordia University, 2013.

[75] Rongxing Lu, Xiaohui Liang, Xu Li, Xiaodong Lin, and Xuemin Shen. Eppa: An

efficient and privacy-preserving aggregation scheme for secure smart grid communi-

cations. Parallel and Distributed Systems, IEEE Transactions on, 23(9):1621–1631,

2012.

[76] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang, and R. Perdisci. Httpos:

Sealing information leaks with browser-side obfuscation of encrypted flows. In

NDSS ’11.

[77] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. L-diversity:

Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data, 1(1):3, 2007.

[78] Stephen McLaughlin, Patrick McDaniel, and William Aiello. Protecting consumer

privacy from electric load monitoring. In CCS ’11, pages 87–98, 2011.

[79] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In ACM

PODS, pages 223–228, 2004.

[80] G. Miklau and D. Suciu. A formal analysis of information disclosure in data ex-

change. In SIGMOD, pages 575–586, 2004.

199

[81] Andrés Molina-Markham, Prashant Shenoy, Kevin Fu, Emmanuel Cecchet, and

David Irwin. Private memoirs of a smart meter. In BuildSys ’10, pages 61–66,

2010.

[82] S. Nagaraja, V. Jalaparti, M. Caesar, and N. Borisov. P3ca: private anomaly detection

across isp networks. In PETS’11, pages 38–56, 2011.

[83] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In IEEE

Symposium on Security and Privacy ’09, pages 173–187, 2009.

[84] Alfredo Rial and George Danezis. Privacy-preserving smart metering. In WPES ’11,

pages 49–60, 2011.

[85] J.A. Rice. Mathematical Statistics and Data Analysis. second edition. Wadsworth,

Belmont, California, 1995.

[86] Ian Richardson, Murray Thomson, David Infield, and Conor Clifford. Domestic

electricity use: A high-resolution energy demand model. Energy and Buildings,

42(10):1878 – 1887, 2010.

[87] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my

cloud: exploring information leakage in third-party compute clouds. In CCS, pages

199–212, 2009.

[88] Ishtiaq Rouf, Hossen Mustafa, Miao Xu, Wenyuan Xu, Rob Miller, and Marco

Gruteser. Neighborhood watch: security and privacy analysis of automatic meter

reading systems. In CCS ’12, pages 462–473, 2012.

[89] Steven Ruggles, Matthew Sobek, J. Trent Alexander, Catherine Fitch, Ronald

Goeken, Patricia Kelly Hall, Miriam King, and Chad Ronnander. Integrated pub-

lic use microdata series: Version 3.0. http://ipums.org, 2004.

200

[90] P. Samarati. Protecting respondents’ identities in microdata release. IEEE Trans. on

Knowl. and Data Eng., 13(6):1010–1027, 2001.

[91] T. S. Saponas and S. Agarwal. Devices that tell on you: Privacy trends in consumer

ubiquitous computing. In USENIX ’07, pages 5:1–5:16, 2007.

[92] J. Schlorer. Identification and retrieval of personal records from a statistical bank.

In Methods Info. Med., pages 7–13, 1975.

[93] A. Slavkovic and S.E. Feinberg. Bounds for cell entries in two-way tables given

conditional relative frequencies. Privacy in Statistical Databases, 2004.

[94] J. Sun, X. Zhu, C. Zhang, and Y. Fang. Hcpp: Cryptography based secure ehr system

for patient privacy and emergency healthcare. In ICDCS’11, pages 373–382, 2011.

[95] Q. Sun, D. R. Simon, Y. M. Wang, W. Russell, V. N. Padmanabhan, and L. Qiu.

Statistical identification of encrypted web browsing traffic. In IEEE Symposium on

Security and Privacy ’02, pages 19–, 2002.

[96] L. Sweeney. k-anonymity: a model for protecting privacy. International Journal on

Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557–570, 2002.

[97] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure ranked keyword search over

encrypted cloud data. In ICDCS’10, pages 253–262, 2010.

[98] Ke Wang, Philip S. Yu, and Sourav Chakraborty. Bottom-up generalization: A data

mining solution to privacy protection. In ICDM ’04, pages 249–256, 2004.

[99] Wenye Wang and Zhuo Lu. Cyber security in the smart grid: Survey and challenges.

Computer Networks, 57(5):1344 – 1371, 2013.

[100] R. C. Wong and A. W. Fu. Privacy-Preserving Data Publishing: An Overview.

Morgan and Claypool Publishers, 2010.

201

[101] R.C. Wong, A.W. Fu, K. Wang, and J. Pei. Minimality attack in privacy preserving

data publishing. In VLDB, pages 543–554, 2007.

[102] R.C. Wong, J. Li, A. Fu, and K. Wang. alpha-k-anonymity: An enhanced k-

anonymity model for privacy-preserving data publishing. In KDD, pages 754–759,

2006.

[103] C. V. Wright, S. E. Coull, and F. Monrose. Traffic morphing: An efficient defense

against statistical traffic analysis. In NDSS ’09.

[104] X. Xiao and Y. Tao. Personalized privacy preservation. In SIGMOD, pages 229–240,

2006.

[105] X. Xiao, Y. Tao, and N. Koudas. Transparent anonymization: Thwarting adversaries

who know the algorithm. ACM Trans. Database Syst., 35(2):1–48, 2010.

[106] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms. In

ICDE ’10, pages 225–236, 2010.

[107] Xiaokui Xiao and Yufei Tao. Anatomy: simple and effective privacy preservation.

In VLDB ’06, pages 139–150, 2006.

[108] Xiaokui Xiao and Yufei Tao. M-invariance: towards privacy preserving re-

publication of dynamic datasets. In SIGMOD ’07, pages 689–700, 2007.

[109] Weining Yang, Ninghui Li, Yuan Qi, Wahbeh Qardaji, Stephen McLaughlin, and

Patrick McDaniel. Minimizing private data disclosures in the smart grid. In Pro-

ceedings of the 2012 ACM Conference on Computer and Communications Security,

CCS ’12, pages 415–427, 2012.

[110] K. Zhang, Z. Li, R. Wang, X. Wang, and S. Chen. Sidebuster: automated detection

and quantification of side-channel leaks in web application development. In CCS

’10, pages 595–606, 2010.

202

[111] L. Zhang, S. Jajodia, and A. Brodsky. Information disclosure under realistic assump-

tions: privacy versus optimality. In CCS, pages 573–583, 2007.

[112] L. Zhang, L. Wang, S. Jajodia, and A. Brodsky. Exclusive strategy for generalization

algorithms in micro-data disclosure. In Data and Applications Security XXII, volume

5094 of Lecture Notes in Computer Science, pages 190–204. 2008.

[113] L. Zhang, L. Wang, S. Jajodia, and A. Brodsky. L-cover: Preserving diversity by

anonymity. In SDM ’09, pages 158–171, 2009.

[114] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. Homealone: Co-residency detection

in the cloud via side-channel analysis. In Proceedings of the 2011 IEEE Symposium

on Security and Privacy, pages 313–328, 2011.

[115] Li Zhuang, Feng Zhou, and J. D. Tygar. Keyboard acoustic emanations revisited.

ACM Trans. Inf. Syst. Secur., 13(1):3:1–3:26, November 2009.

203

