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Abstract 

A Model for Turbulent Compressible Vortices 

Gurpreet Singh Badwal 

In this thesis the effects of turbulence are introduced by combining the past 

turbulent tangential velocity model with the preceding work on the laminar compressible 

vortices. The radial and axial velocity components are derived from the tangential and 

mass conservation equations. The temperature is then found numerically from the energy 

equation. Upon code verification several characteristics of the problem have been 

examined in detail. 

The mysterious temperature separation is known since 1933 from the work of first 

Ranque and then Hilsch. Although several possibilities for its origin have been suggested 

no comprehensive theory for its causality has yet reported. The present novel approach is 

used to show conclusively that the cause of the thermal effect is the product of 

competition between the heating up of the gas because of friction and cooling due to 

material element expansion as it moves towards the region of decreasing pressure.  

As originally inferred empirically, it is now shown theoretically that stream wise 

vortices within supersonic flow fields and high Rossby number atmospheric vortices such 

as tornadoes and waterspouts, display the classical heating/cooling effect. The new 

information is used to elaborate on several, yet inexplicable instrument recordings related 

to these natural phenomena.  Finally the new results are used to justify some odd 
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physiological encounters made by several witnesses, trapped inside overpassing tornado’s 

funnels, and lived to tell their unusual experiences. 

The new basic methodology and findings can now be used to improve the design 

of vortex tubes. 

Keywords: Vortex model, compressible vortices, turbulent vortices, temperature 

separation. 
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1 Introduction 
 

Real fluid motion cannot be comprehended without the appearance of vortices. 

These emerge in every scale; from the smallest that is found in super-cooled liquids to 

even galaxies. Therefore, these can be seen in both the natural world and in engineering. 

Naturally generated vortices are the, dust devils, tornadoes, waterspouts, fire whirls, 

hurricanes, polar, oceanic, volcanic, or yet galactic vortices.  In technology, vortices can 

be an undesirable consequence of fluid motion that engineers try to weaken if not erase. 

These include wingtip vortices in airplanes, ship and aero-vehicle propellers under full 

thrust. In other applications such as the vortex separators, vortex combustors and 

incinerators, Ranque-Hilsch tubes, and vortex heat exchangers, vortex separator, the 

vortex tube, vortex steam traps, various components of turbo-machinery, plasma arcs 

swirl action is crucial for the proper operation of the devise and the designer is aiming to 

produce it most efficiently. 

Wingtip vortices emerge due to pressure differential below and above the wing 

surfaces. These are responsible for the induced drag, which reduces the wing’s lift 

efficiency, the aircraft’s maneuverability, and produce losses.  Also they are responsible 

for generating vibration and noise. 

In addition, the general concept of vortex flow can be by analogy of benefit to 

plasma physics, electromagnetism, and optics. All the previous mentioned reasons have 

made their study attractive to researchers in various disciplines for many years. 
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A free and forced vortex is characterized based on vorticity. In a forced vortex, 

the curl of velocity vector field is non-zero whereas it is equal to zero for free vortex. The 

core radius (rc) is the radius where the tangential velocity attains a maximum, and the 

core is designated as the sector where 0 cr r  . Intense or strong is the vortex where the 

magnitude of tangential velocity is much larger than both the radial and axial. In 

concentrated vortices most of the vorticity exists inside the core. 

Helmholtz (1858) and Rankine (1858) initiated the scientific study of vortices. 

Their contributions opened the doors for research in the new area of vortex dynamics. 

Since then a large amount of information has been amassed that has led into their better 

understanding.  

For the incompressible steady state kind classical vortex mathematical 

formulations are due to Rankine (1858), Burgers (1948), Sullivan (1959), and Scully 

(1975). Rankine’s (1858) model is the simplest all of them. It assumes no radial and axial 

velocities and the tangential component is only a function of the radius. Inside the core, 

the tangential velocity varies proportionally with the radius (forced-vortex) while outside 

it is inversely proportional to the radius (free- or potential-vortex). There is no 

discontinuity in the velocity profile but it has a sharp peak at the point where it changes 

from forced to free modes at (rc). However, there exists an unrealistic jump discontinuity 

in the vorticity field. While vorticity remains constant inside the core, it drops abruptly to 

zero at (rc), and remains zero for the rest of the interval [rc , ∞).  In reality however it 

should be a smooth transition of vorticity profile from forced vortex to free vortex. 
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Burger’s (1948) tangential velocity provides a continuous transition for the 

vorticity at cr . The vortex model assumes the radial velocity to vary linearly with the 

radius. This model produced an improvement between the predicted and observed values 

of tangential velocity near the core. The assumed radial and axial velocity components do 

satisfy the equations of continuity, radial and axial momentum. However, the radial 

velocity varies linearly with the radius making it unbounded for the case of unconfined 

whirls. 

Scully (1975) proposed an empirical formula for the tangential velocity, which 

has also a smooth transition for the vorticity at the core radius. He assumed non-zero 

radial and axial velocity distributions. But, the calculated values of tangential velocity 

near the core radius are far from the observed laminar eddies. 

All vortex models are single cell vortices. Sullivan (1959) proposed a new vortex 

formulation where radial and axial velocity components reverse their directions near 

center of vortex thus producing a central recirculation zone. This type of vortex is known 

as two-celled vortex. Alike to Burgers the radial velocity is unbounded as r∞. 

Vatistas et al. (1991) proposed a new tangential velocity formula. Based on 

theoretical and experimental study on concentrated vortex in vortex chamber, they 

showed that the azimuthal velocity component does not depend strongly on the axial 

direction Vatistas et al. (1986). By using this, the new family of tangential profiles the 

radial velocity component deduced from  -momentum equation while the axial velocity 

component was determined from continuity. Depending upon the value of the exponent 

(n), one can obtain tangential velocity distributions from Rankine (1858) to Scully (1975) 
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vortex models. All velocity distributions for this model are finite for any r for all the 

values of exponent n except for n < 1. Further studies by Vatistas (1998) produced a new 

vortex model, capable of generating profiles ranging from jet-like to wake–like shapes. 

With proper choice of scaling constant, one could also develop a single cell or double cell 

vortex. The steady state vortex flow can be converted into time decaying vortex flow 

with proper choice of transformations under assumptions of incompressible, intense 

vortex flow Vatistas and Aboelkassem (2005). Through this technique, steady state 

solutions can also be recovered from time–decaying vortices and vise versa. 

The temperature separation in vortex tubes is known to the technical and scientific 

communities since the early 19 hundreds from the work of Ranque (1933) and Hilsch 

(1947). Although its causality has yet to be completely resolved, the manifestations, 

design, and modus operandi of the device are simple to understand and apply. In fact 

numerous mechanical components are presently spot-cooled using vortex tubes. The 

main part of the devise is an ordinary pipe of circular cross-section. Compressed air is 

admitted tangentially into the tube, from the side pipe wall, at high velocity whereby the 

entering flow splits into two streams. One of the streams exits the confinement through a 

central circular orifice located at one end of the tube, with a temperature considerably 

lower than it had at the inlet. The other leaves the pipe from the opposite end via a 

peripheral annular slit, with a temperature much higher than the inlet. The general 

thermal effect however, as it will be shown latter, is not exclusive to the specific 

engineering application, the vortex tube. 
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2 Previous work and thesis objectives 
 

2.1  Previous work 

For most of the vortices encountered in science and engineering the flow could be 

assumed as incompressible. However, there are instances where density changes as a 

result of fluid motion cannot be neglected. Tailor (1930) presented a theoretical paper on 

isentropic potential vortex where he considered effects of compressibility. Sibulking 

(1962) performed an unsteady analysis for the flow development inside vortex tubes. The 

temperature and velocity were calculated as a function of radius. Mack (1960) studied the 

compressible laminar, vortex flow created inside a rotating cylinder considering a perfect, 

heat conducting gas. 

Aboelkassem and Vatistas (2007) extended the previous work of Vatistas and et 

al. (1991) incompressible vortices into compressible. Density variation in mathematical 

formulation of governing equations was included via the energy and state equations. The 

governing equations were simplified based on order of magnitude analysis performed by 

Aboelkassem and Vatistas (2007). Then using the analogy between incompressible and 

compressible flow, and upon renormalization, all the velocity components from 

incompressible flow became applicable also to compressible vortex category.  The 

temperature variation was calculated from the energy equation, while the density and 

pressure changes were obtained from the radial momentum and the equation of state 

respectively. The radial and axial velocity components contain dimensionless density

  were affected by change in density, whereas tangential velocity form, contains no 
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density term and thus should remain the same. Taking the Prandtl Number equal to 2/3, 

an exact solution of energy equations was found. 

The results also proved that there are very small changes in temperature values for 

Prandtl numbers ranging from (0.680-0.716). The temperature, density, and pressure 

decrease as the flow converges from far towards center of the vortex. It was also found 

that the previous flow properties decrease with the vortex Mach number. 

As discussed previously, solutions to laminar incompressible and compressible 

vortex flows were possible due to the abundance of previous work on this subject matter. 

Turbulent vortex flows however are comparatively more complex than laminar. 

Ramasamy and Leishman (2006) studied turbulent helicopter tip vortices and found that 

these to be laminar inside core. Flow transition was observed when a critical vortex 

Reynolds number was reached. The flow changes entirely to turbulent flow at a second 

critical Reynolds number. In this region the tangential velocity decreases at a slower pace 

as compared to laminar, which leads to the conclusion that turbulent vortices cannot be 

modeled using the previous methods. 

Vatistas (2006) included the effects of turbulence by modifying the original 

laminar tangential velocity (for n=2) formula. The value of a new exponent in the 

proposed tangential velocity formula was obtained by the least square method. The new 

turbulent model approximated fairly the experimental result of Ramasamy and Leishman 

(2006). 

Among the vortex flow applications is also the vortex tube. Ranque (1933) was 

the first who discovered the energy separation phenomenon by injecting tangentially a 
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pressurized gas into a cylindrical tube pipe. The term “energy separation” here means that 

the flow segregates into two flow regions; one sector is hot (its static temperature is 

higher than the inlet) while the other is cold (its temperature is lower than the inlet). 

Ranque came to the conclusion that expansion and compression of the gas is the main 

reason for the energy separation. Hilsch (1947) produced a more efficient design of the 

tube. He reported that internal friction is the main reason behind “energy separation” 

which causes the transfer of heat from core to outer region and thus cooling down of gas 

in core and heats up the gas in the peripheral region. The vortex tube became also known 

with name of its two invertors (Ranque- Hilsch tube). 

Deissler and Perlmutter (1960) published a theoretical paper on turbulent 

compressible vortex flow and pointed out that the shear work, done by or on fluid 

element, is the main cause behind the separation. Based on observations many 

researchers proposed various theories about the origin of the phenomenon. However no 

one gave a concrete account of the event. Due to this reason the cause became so 

mysterious that some called upon Maxwell’s demon to resolve the impasse. The most 

recent attempt to explain the cause is by Liew and Zeegers (2012). They argued that as a 

gas packet moves towards the region of higher pressure it compresses, causing an 

increase in temperature near to wall of vortex tube. If the fluid element moves instead 

towards lower pressure region (towards the core), it becomes cooler due to its expansion. 

They also assumed that both expansion and compression of fluid element is very fast and 

there is no time for heat transfer between fluid elements and their surroundings and thus 

the process is adiabatic. 

The theories mentioned above tried to explain the cause of energy separation in 
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confined vortices (such as in vortex tubes). The energy separation phenomenon has also 

been found in unconfined vortices such as in tornadoes and interaction of vortices with 

shock waves Katz (1960), Cattafesta and Settles (1992) respectively. Therefore, the main 

thermal event is not exclusive to vortex tubes. 

Work on simple formulations for steady turbulent, compressible vortices is 

nonexistent. The only papers that we were able to locate in the open literature were those 

of Grasso and Pirozzoli (1999) and Pirozzoli et al (1999) concerning decaying and 

starting turbulent compressible vortices respectively. 

2.2 Thesis Objectives 

 

In present study, we extended the previous work of Aboelkassem and Vatistas 

(2007) on the laminar compressible into turbulent compressible vortex flow. The effects 

of turbulence were captured by introducing the modified tangential velocity formula of 

Vatistas (2006). The radial and axial velocity components were derived from tangential - 

momentum and conservation of mass equations respectively. The solution of energy 

equation under laminar and turbulent flow conditions was obtained for any value of 

Prandtl number ranging from 0.680 (Helium) to 0.716 (Nitrogen) using numerical 

integration embedded in Matlab’s routine quadl (adaptive Lobatto quadrature within an 

error of 10
-6

). 

The temperature is then used to calculate the radial distribution of density and 

pressure using radial-momentum equation and equation of state respectively. The effects 

of Prandtl number on solution of the energy equation were also tested. The numerical 

results are also shown to respect the second law of thermodynamics. 
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The novel approach is then used to explain the mysterious energy separation 

phenomenon that causes the thermal effect. It was found that this is due to the 

competition between the heating up of the gas generated by friction, and cooling down 

due to its expansion as it moves towards the region of decreasing pressure. Past study of 

the tornadoes also reveals this thermal effect and the same methodology also explains its 

cause. Thus, in present study, we also considered unconfined vortex flow in order to 

support the reason behind this effect. 
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3 The Governing Flow Equations 

3.1 Laminar Compressible Vortex Flow 

Consideration is given here to general form of the conservation of mass and 

momentum equations for an isolated vortex, when the fluid properties are assumed not to 

depend strongly on temperature. Moreover, the flow field is considered to be steady, 

compressible, and axisymmetric where gravity is neglected. Under these conditions the 

conservation equations take the following simpler form, 

Conservation of Mass 

   r z r
ρV ρV ρV

+ + = 0
r z r

 

 
 

Radial Momentum 

2 2

θr r r r r z r

r 2 2

VV V V V V V V1 p μ 1 1
V - = - + + - + + +

r r ρ r ρ r r 3 r r z rr r

          
    

         
 

Tangential Momentum 

2

θ r θ θ θ θ

r 2 2

V V V V V Vμ 1
V + = + -

r r ρ r rr r

   
 

  
 

 Axial Momentum 

2 2

z z z z z r z r

r z 2 2

V V V V V V V V1 p μ 1 1
V + V = - + + + + + +

r z ρ z ρ r r 3 z r z rr z

          
  

            

Interest is now focused on the classical solutions where the total velocity vector 

has the form: 

     r θ zq V r ,V r ,V = zfn r    
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Where the variables are explained in the nomenclature and the coordinate system 

is given in Figure 3.1. 

 

Figure  3.1 Definition of the coordinate system. 
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Using the dimensionless form of the variables, Aboelkassem and Vatistas (2007): 

r maxV = uV  

θ θmaxV = VV  

z θmaxV = ζhV  

ρ =βρ  

cr =ξ r  

2
θmaxp = Πρ V  

θmax cρ V r
Re=

μ


 

T = T Θ  

cz =ζ r                                                                                                                    (A) 

and furthermore considering a strong vortex flow, in which both the radial and axial 

velocity components are very small (order of magnitude of  ) as compared to the 

tangential velocity component, the dimensionless conservation of  mass and momentum 

equations are, Aboelkassem and Vatistas (2007):  

Conservation of Mass 

 βu βu
+βh + = 0

ξ ξ

δ δ δ



                                                                                               (3.1.1) 

Note that all the terms in the conservation of mass have same order of magnitude. 

Therefore, the equation remains the same.    
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Radial momentum 

 22 2

2 2

hζu V 1 1 4 u 1 u u 1
u - = - + + - +

ξ ξ β ξ Reβ 3 ξ ξ ξ ξ 3 ζ ξ

δ δ 1 1 δ δ δ δ δ

     
  

         

The radial momentum equation contains two terms having order of magnitude 1. 

Neglecting the terms of orderd  or smaller yields: 

2βV
=

ξ ξ




                                                                                                                (3.1.2) 

A similar procedure can be implemented on tangential and axial momentum 

equations. 

Tangential momentum 

2

2 2

V uV V 1 V V
Reβ u + = + -

ξ ξ ξ ξξ ξ

1
δ 1 δ 1 1 1 1

δ

   
 

         

or                                                                      

2

2 2

V uV V 1 V V
Reβ u + = + -

ξ ξ ξ ξξ ξ

   
 

  
                                                                 (3.1.3) 
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Axial momentum 

       2 2

2

2 2

2

ζh ζh ζh ζh1 1 1
u + ζh = - + + + +

ξ β ζ Reβ ξ ξξ ζ

δ δ δ 1 δ δ δ δ

1 u u
+ h +

3 ζ ξ ξ

δ δ δ

   


   

  
 

  

 

Therefore 

0






                                                                                                           (3.1.4) 

From the axial momentum equation the conclusion is that the dimensionless static 

pressure does not vary in the axial direction. Therefore, the pressure must be only a 

function of , and the partial derivative in equation (3.1.2), changes into total. 

2d βV
=

dξ ξ


                                                                                                      (3.1.5) 

It is also clear from continuity and the momentum equations that there are five 

unknowns  u,V,h,β,Π  and only four equations to solve. Therefore, in order to determine 

the unknowns, one more equation is required. The extra equation will be the equation of 

state. 
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The gas is assumed to be calorically perfect  p vc ,c ,μ,k, γ . The equations on the thermal 

side are: 

The equation of state and energy equation in dimensional form are given as 

follow: 

Equation of State 

p=ρRT  

Energy Equation  

p r r

1 d dT dT dp
k r +Φ = ρc V -V

r dr dr dr dr

 
 
   

Where , is the dissipation function, given by, 

22 2 2

θ θr r z

2 2

z r r

V VV V V 1
Φ=2μ + + + - +

r r z 2 r r

V V V1 1
+ -

2 r 3 r r

         
       

         

    
    

     

 

In dimensionless form with the order of magnitude designation of the state and 

energy equations are Aboelkassem and Vatistas (2007): 

State Equation 

2

0

βΘ
Π=

γM

1 1

                                                                                                         (3.1.6) 
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Energy Equation 

  2

02 2 2

c c c

kT kT kTd dΘ dΘ d
ξ +Φ = βPrReu - PrRe γ -1 M u

dξ dξ dξ dξr ξ r r

1 1
1 1 

 

  
   
  

                (3.1.7) 

   Using the order of magnitude, the dissipation function is: 

2
2 2 2 22 2

θmax θmax θmax θmax2

c c c c

2 2 2

2 22 2

θmax θmax2

c c

2 2

V V V Vu u 1 V V
Φ = 2μ + + h + -

r ξ r ξ r 2 r ξ ξ

δ δ δ 1 1

V V1 h 1 u u
+ ζ - + h +

2 r ξ 3 r ξ ξ

δ δ

             
            

              

       
      

         

 

Neglecting terms of  or higher yields: 

22

θmax

2

c

V dV V
Φ =μ -

r dξ ξ

 
 
 

 

 

2

2 2

o 2

c

k T d V
Φ =PrM γ -1 ξ

dξ ξr


     
     
      

 

 2

o 2

c

k T
Φ =PrM γ -1 f

r


 
 
 

            

Inserting the above expressions of   and 
d

dξ


 in equation (3.1.7) gives, 
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   
2

2 2

0 0

1 d dΘ dΘ βV
ξ + Pr γ -1 M f = βPrReu - PrRe γ -1 M u

ξ dξ dξ dξ ξ

 
 
                 (3.1.8) 

Taking U=βReu  and H = βReh  yields: 

Conservations of Mass: 

 
1 d

Uξ +H = 0
ξ dξ

                                                                                           (3.1.9)                                                                                            

Radial momentum  

2d βV
=

dξ ξ


                                                                                                               (3.1.10) 

Tangential momentum 

   
U d d 1 d

Vξ = Vξ
ξ dξ dξ ξ dξ

 
 
 

                                                                        (3.1.11) 

Energy Equation 

 
2

2

0

1 d dΘ dΘ UV
ξ -PrU = -Pr γ -1 M f +

ξ dξ dξ dξ ξ

  
  

   
                                          (3.1.12) 

Equation of State 

2

0

βΘ
=
γM

                                                                                                       (3.1.13) 
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3.2 Turbulent Compressible Vortex Flow 

The general form of the conservation of mass, the three momentum equations, 

equation of state, and energy equation that were derived in section (3.1) remain the same 

for turbulent compressible vortex flow. The effects of turbulence are roughly 

approximate using the effective viscosity, whereby the molecular viscosity ( mol ) is 

augmented by a constant eddy viscosity (ueddy ) component.   

The experiments of Ramasamy and Leishman (2006) on helicopter blade tip 

vortices revealed that in the case of turbulent flow, the rate of decrease in the tangential 

velocity profile (outside the core) is smaller than the laminar. Thus, the tangential 

velocity profile is shifted upwards as the flow becomes turbulent. Also there are five 

equations containing six unknowns. Therefore, the system is undetermined. In order to 

close this system, one variable must be assumed and the rest could be found using the 

conservations equations. 

 To account for the effect of turbulence, the tangential velocity of Vatistas (2006) 

for a turbulent vortex was used: 

m

θ

4
θmax

V a +1
V = = ξ

V a + ξ

 
 
 

                                                                          (3.2.1) 

This dimensionless tangential velocity (V) must attain a maximum at   = 1 which 

requires that
a +1

m=
4

. The tangential velocity for the laminar vortex case (n=2) can be 

recovered by setting a = 1. The degree of turbulence is defined by the scaling constant 

(a); as a decreases turbulence level increases. The last constant is evaluated by curve 



19 
 

fitting equation (3.2.1) to the experimental values via the least square method, 

2
a+1

4N

j j 4
j=1 j

a +1
E = V - ξ

a + ξ

 
  
   
   

   

Where
 jV is the experimental velocity value at the discrete pointx j

. The average 

value for the dataset given in Figure 3.2 was found to be 0.7. The velocity of a turbulent 

vortex (a = 0.7) is seen to lift up from the laminar profile (a = 1.0). The vortex of Han et 

al. (1997) is laminar and incompressible. The vortices of Ramasamy and Leishman 

(2006) and Koval and Michaelov (1972) are turbulent and incompressible. The rest 

represent turbulent compressible vortices with Mach numbers ranging from 0.48 in 

Kalhoran and Smart (2000) to 0.98 in Pivirotto (1966). Because, the incompressible 

turbulent vortex of Ramasamy and Leishman (2006) and Koval and Michaelov (1972) 

correlate well with the compressible group, density variations seem not to affect the 

tangential velocity to a great degree. The last was previously proposed by Aboelkassem 

and Vatistas (2007). 

  The radial velocity U is derived using the tangential momentum equation and is 

given by, 

7 3

1

8 4 8 4

1 2 3 1 2 3

4b mξ 12amξ
U =- +

b ξ + b ξ + b b ξ + b ξ + b

 
 
 

                                                        (3.2.2) 
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Where     2

1 2 3b =- 2m -1 ;b =- 2a m -1 ;b =a . 

 

Figure  3.2 Dimensionless tangential velocity profiles for laminar and turbulent vortices. 

 

Figure  3.3 The radial velocity distribution for laminar and turbulent vortices. 
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The Figure3.2 illustrates the dimensionless tangential velocity profiles for laminar 

and turbulent vortices. Parameter a = 0.7 is found via the least squares method, curve 

fitting of  equation (3.2.1)  to the cumulative experimental data points shown in this 

figure, excluding of course the data of Han et al, (1997). The velocity of a turbulent 

vortex (a = 0.7) is seen to lift up from the laminar profile (a = 1.0). Except the vortices of 

Ramasamy and Leishman (2006) and Koval and Michaelov (1972) the rest are 

compressible turbulent vortices with Mach numbers ranging from 0.48 in Kalhoran and 

Smart (2000) to 0.98 in Pivirotto (1966). Because, the incompressible turbulent vortices 

in Ramasamy and Leishman (2006) and Koval and Michaelov (1972) correlate well with 

the compressible group, density variations do not seem to affect the tangential velocity to 

a great degree.  

The Figure 3.3 shows the radial velocity distribution for laminar and turbulent 

vortices. The velocity components in both cases are everywhere negative indicating that 

the radial flow is converging towards the center. 

The axial velocity H is determined from conservation of mass, 

 

10 6 2 10

1 2 1 3 3 1

2
8 4

1 2 3

16b b mξ +32b b mξ + 48amb ξ - 48amb ξ
H =

b ξ + b ξ + b

 
 
 
 

                             (3.2.3) 

3.3 The Boundary Conditions 

 

The equations derived in sections (3.1) and (3.2) require boundary conditions 

these are: 
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(i) 
dΘ dH

ξ = 0 V = 0,U = 0, = 0, = 0
dξ dξ

 

(ii)  2

0ξ Θ,β, γM Π 1                     
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4 Numerical Solution 

The energy equation derived in the chapter 3 is an ordinary, second order, linear 

differential equation (that requires 2-boundary conditions). For the laminar case, it can be 

solved analytically by taking Pr =2/3. Its exact solution can be found in Appendix A. As 

for as the turbulent vortex flow is concerned, the energy equation cannot be solved 

analytically. 

Moreover, exact solution of the energy equation under laminar flow assumption is 

not known analytically for Pr numbers other than 2/3. Therefore, numerical integration is 

adopted to solve the energy, valid for any Pr number, for both laminar and turbulent 

flows.  

4.1 Numerical Method Applied on Energy Equation under Laminar 

Flow assumption 
 

The simplified equations (3.1.9), (3.1.10), and (3.1.11) for the laminar 

compressible vortex flow have exactly the same forms as those for incompressible 

vortices, Vatistas and Aboelkassem (2005).Using the analogy between incompressible 

(n=2) and compressible vortices U, V and H for laminar compressible vortex are as 

follows: 

  

3

4

- 6ξ
U =

1+ ξ
   ;  

4

2 ξ
V =

1+ ξ
 ;  

 

2

2
4

24ξ
H =

1+ ξ

;

 

8

3
4

4ξ
f =

1+ ξ
 

The energy equation is given by (3.1.12)                                                                                         
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 
2

2

0

1 d dΘ dΘ UV
ξ - PrU = -Pr γ -1 M f +

ξ dξ dξ dξ ξ

  
  

   
 

Multiply both sides of energy equation by    we obtain,                      

  2 2

0

d dΘ dΘ
ξ - PrUξ = -Pr γ -1 M fξ + UV

dξ dξ dξ

 
    

 
  

 Let  
dΘ

Y = ξ
dξ

 

Above equation becomes 

 2 2

0

dY
- PrUY = -Pr(γ -1)M fξ + UV

dξ
                                                         (4.1.1)               

The integrating factor  λ for the above equation is: 

ξ

0

λ = exp - PrUdξ
 
  
 
                                                                                         (4.1.2)

 

Equation (4.1.1) can then be rewritten as follow:      

   2 2

0d Yλ = -Pr(γ -1)M fξ +UV λdξ    

Integration of above equation along with boundary condition at vortex center (the 

derivative of is zero) yields the change of temperature with the radius, 

   

 
ξ

2

2 0

0

fξ + UV λdξ
dΘ

= - Pr(γ -1)M
dξ ξ λ


                                                            (4.1.3) 
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The variation of temperature with the radius is obtained by integrating the 

previous equation once more, and implementing the additional boundary condition that 

requires that far away from vortex center,   should approach asymptotically its ambient 

value of one. 

 After some straightforward mathematical manipulations the following equation 

for the temperature is obtained,                                         

 

 

ξ

2

ξ

2 0
ξ 0

0

ξ

2

2 0
0

0

fξ + UV λdξ

Θ = -Pr(γ -1)M dξ +
ξλ

fξ + UV λdξ

  Pr(γ -1)M dξ +1
ξλ









         (4.1.4)                                                                                      
 

Expression (4.1.4) is a generalized equation derived from the energy equation 

(3.1.12) valid for both laminar and turbulent compressible vortex. 

The final form of the integrating factor ( ) is obtained by inserting the value of U 

in equation (4.1.2), 

 
3Pr

4 2λ = 1+ξ                                                                                                   (4.1.5) 

This is the final form of λ valid for the linear differential equation (3.1.12) under 

laminar flow conditions. 
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4.2 Numerical Method Applied on Energy Equation under Turbulent 

Flow assumption 
 

The integrating factor ( ) for the turbulent vortex is obtained by inserting the 

expression of U from equation (3.2.2) in (4.1.2),

 

ξ ξ7 3

1

8 4 8 4

1 2 3 1 2 30 0

4b mPrξ 12amPrξ
λ = exp dξ + dξ

b ξ + b ξ + b b ξ + b ξ + b

 
  
 
   

 1 2λ = exp I + I                                                                                                      (4.2.1)                                                                                                     

Where  

7 3

1

1 28 4 8 4

1 2 3 1 2 3

4b mPrξ 12amPrξ
I = dξ ; I = dξ

b ξ + b ξ + b b ξ + b ξ + b   

The Integral  1 2I and I  are solved separately as follow: 

7

1

1 8 4

1 2 3

4b mPrξ
I = dξ

b ξ + b ξ + b  

Inserting
4ξ = t ,

3

dt
dξ =

4ξ
 in above equation and by simple mathematical 

manipulations gives the following expression of  1I , 

 

1

1

2b 1

2

2
1 2 1 3

1 1 2

1 2 3

b mPr

2

1 2 3

1 b

2 2b b -4b b
1 2 2 1 3

2

1 2 2 1 3

t
I = b mPr dt

b t + b t + b

b t + b t + b
I = ln

2b t + b - b - 4b b

2b t + b + b - 4b b

 
 
 
 
 
  
  
  
  


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Putting back 
4t ξ in above equation yields,                            

 

1

1

2 b1

2

2
1 2 1 3

b mPr

8 4

1 2 3

1 b

4 2 2b  b -4b b
1 2 2 1 3

4 2

1 2 2 1 3

b ξ + b ξ + b
I = ln

2b ξ + b - b - 4b b

2b ξ + b + b - 4b b

 
 
 
 
 
  
  
  
  

                                (4.2.2)                                                                                                      

The same procedure can be applied to find the second integral  2I  and is given by, 

2
2 1 3

3amPr

4 2 b -4b b
1 2 2 1 3

2
4 2

1 2 2 1 3

2b ξ + b - b - 4b b
I = ln

2b ξ + b + b - 4b b

 
 
 
 

                                                     (4.2.3)                                                                                                      

Inserting the values of (4.2.2) and (4.2.3) in (4.2.1) we obtain: 

 

1

1

2 b1
2

2 1 3

2

2
1 2 1 3

b mPr

3amPr

8 44 2 b -4b b
1 2 31 2 2 1 3

b4 2
4 21 2 2 1 3 2b b -4b b

1 2 2 1 3

4 2

1 2 2 1 3

b ξ + b ξ + b2b ξ + b - b - 4b b
λ =

2b ξ + b + b - 4b b
2b ξ + b - b - 4b b

2b ξ + b + b - 4b b

 
 
 

 
 

 
  

    
  
  
  

 

The above expression is the integrating factor of the linear differential equation 

(3.1.12) under turbulent vortex flow conditions. 
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5 Implementation of the Matlab Code 
 

In the last chapter, the integrating factor  λ  was derived for any Prandtl number 

for the energy under the assumption of laminar and turbulent compressible vortex flows. 

Equation (4.1.4) is general and thus applicable to both laminar and turbulent vortices. 

Note that the two flows have different expressions for  U,V,f,λ . Equation (4.1.4) is 

solved using numerical integration routine quadl (adaptive Lobatto quadrature within an 

error of 10
-6

) embedded in Matlab. 

In order to solve energy equation numerically, the entire domain of the 

independent variable    is divided into small parts. To determine the integrand more 

accurately, the midpoint rule of numerical integration is used where the integrand is 

calculated at the center of each part. This value gives the height of the function and 

multiply with the step size
ξ

h =
No.of Parts


 
 
 

 provides the area under the curve. The 

Matlab Code script file could be found in Appendix B. 

5.1 Verification of Matlab Code 

It was mentioned in chapter 4, that the energy equation for laminar compressible 

vortex, valid for Pr=2/3, has exact solution .This is, 

   
2

2 - 2
Exact Solution 0 4

1 ξ π
Θ =1+ γ -1 M tan ξ - -

6 21+ξ

 
 
 

                                       (5.1.1) 

The detailed derivation for the exact solution of energy equation is given in Appendix A. 
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The Code is first implemented to solve the energy equation under laminar flow 

conditions for Pr =2/3. The results from the two approaches (exact and numerical) are 

compared on Table 5.1: 

Table  5-1 Comparison of exact solution of energy equation under laminar flow condition 

with numerical solution for Pr=2/3, ξ  =200 and number of nodes=20,000. 

 

M0 = 0.5 M0 = 1.0 

ξ Θ (Exact) Θ (Numerical) Θ (Exact) Θ (Numerical) 

0 0.97382 0.973821 0.89528 0.895284 

0.5 0.973981 0.973982 0.895926 0.895929 

1 0.978577 0.978577 0.914307 0.91431 

1.5 0.986844 0.986845 0.947376 0.94738 

2 0.991995 0.991996 0.967982 0.967985 

2.5 0.994756 0.994756 0.979023 0.979026 

3 0.996326 0.996327 0.985306 0.985309 

3.5 0.997291 0.997292 0.989164 0.989167 

4 0.997922 0.997923 0.991688 0.991692 

4.5 0.998357 0.998357 0.993426 0.99343 

5 0.998668 0.998669 0.994672 0.994676 

 

The required values used to perform the calculations are: Pr =2/3, Mo = 0.5, ξ = 

200 and number of nodes = 20,000. The exact and numerical solutions are seen to match 

up to fifth decimal place. This confirms the adequacy of the Matlab code in obtaining 

acceptable numerical solution for the problem under consideration. 
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Figure  5.1 Maximum absolute relative percentage difference between the numerical and 

exact solution of the energy equation under laminar flow condition with M0=0.8,Pr=2/3 

and 200  . 

 

We will explain later why infinity was assumed to be 200 times core radii. We 

took number of nodes equals to 20,000.In order to explain this, an experiment was 

conducted by calculating the maximum absolute relative percentage error between the 

numerical and exact solution of the energy equation. 

Figure 5.1 shows that the maximum absolute relative percentage error decreases 

by increasing the number of nodes. The error becomes insignificant as number of nodes 

reaches 20,000. 
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6 Results for Laminar Compressible Vortex Flow 
 

6.1 Calculation of Density and Pressure 
 

The temperature values, obtained through numerical integration of Eq. (4.1.4), are 

then employed to calculate the density and pressure using equations (14) and (6) of 

Vatistas and Aboelkassem (2006) respectively, 

ξ 2 2
2

0

0 0

V V
exp γM dξ - dξ

ξΘ ξΘ
β =

Θ

   
  

    
 

                                                                 (6.1.1)                                      

ξ 2 2
2

0

0 0

2

0

V V
exp γM dξ - dξ

ξΘ ξΘ
Π =

γM

   
  

    
 

                                                                (6.1.2)                                                            

6.2 Effect of Prandtl Number 
 

The effect of Prandtl number is also examined here. The Prandtl number for most 

of the gases at one atmosphere and 300 K varies from 0.680 (Helium) to 0.716 

(Nitrogen). The influence that the Pr number has on temperature is tested for

0M = 0.8 andξ = 200 . If one takes the Pr =2/3 for air instead of 0.707, the results 

presented on Table 6.1 show that the maximum deviation occurs at vortex center and is 

less than 0.5%. 

Moreover, if we take the Pr =2/3 for Nitrogen (where actual value of Pr=0.716) to 

calculate the temperature, the maximum percentage difference is found to be less than 

0.6%. It is clear from the tabulated results that there are very small changes in 
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temperature profile as a result of modest changes in Pr numbers. Therefore, since the 

results are not affected to a large degree by Pr, the value Pr =2/3 is used for our 

subsequent calculations. 

Table ‎6-1  Comparison between solution of energy equation under laminar flow condition 

for values of Pr =2/3 and 0.707 for M0 = 0.8, ξ = 200 and number of nodes = 20,000.
 

  Pr = 2/3 Pr =0.707(Air)   

ξ  Θ Θ % Difference 

0 0.9330 0.9289 0.43 

0.5 0.9334 0.9294 0.43 

1 0.9452 0.9418 0.35 

1.5 0.9663 0.9643 0.21 

2 0.9795 0.9783 0.13 

2.5 0.9866 0.9858 0.08 

3 0.9906 0.9900 0.06 

3.5 0.9931 0.9926 0.04 

4 0.9947 0.9944 0.03 

4.5 0.9958 0.9955 0.03 

5 0.9966 0.9964 0.02 
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Table ‎6-2  Comparison between solution of energy equation under laminar flow for Pr 

=2/3 and 0.716, for M0 = 0.8, ξ  = 200 and number of nodes = 20,000. 

 

Pr = 2/3 Pr =0.716 

 ξ Θ Θ % Difference 

0 0.9330 0.9280 0.53 

0.5 0.9334 0.9285 0.53 

1 0.9452 0.9411 0.43 

1.5 0.9663 0.9638 0.26 

2 0.9795 0.9780 0.15 

2.5 0.9866 0.9856 0.10 

3 0.9906 0.9899 0.07 

3.5 0.9931 0.9926 0.05 

4 0.9947 0.9943 0.04 

4.5 0.9958 0.9955 0.03 

5 0.9966 0.9963 0.03 

  

6.3 Effect of Mach number on Temperature, Density and Pressure 

 

The radial momentum equation (3.1.10) implies that the centrifugal force is 

balanced by the rate of change of pressure in the radial direction, which is directly 

proportional to the radius. Therefore, increase in the centrifugal force will cause a 

corresponding increase in the static pressure see Figure 6.1. 
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Figure  6.1 Variation of dimensionless pressure vs. vortex Mach number for a laminar 

vortex for Pr=2/3, number of nodes =20,000, ξ 200  . (Note that p p  is equivalent to

2
0M ) 

 

As the fluid element moves from the outer periphery towards the vortex center, 

the fluid element expands. Consequently, the temperature and density decrease towards 

the vortex center see Figures 6.2 and 6.3. The drop in the temperature and density at the 

center become more at higher Mach numbers. 
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Figure  6.2 Variation of dimensionless temperature vs. vortex Mach number for a laminar 

vortex with Pr =2/3, ξ  = 200, and number of nodes = 20,000. 
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Figure  6.3 Variation of Density vs. vortex Mach number for a laminar vortex with Pr 

=2/3,  ξ  = 200 and number of nodes = 20,000. 

 

6.4 Second Law of Thermodynamics applied to Laminar Compressible 

Vortex Flow 

 

All governing equations are derived from the conservation equations of mass, 

momentum, and energy along with the state equation. In order to be realistic the model 

must also obey the second law of thermodynamics, i.e. entropy must increase in flow 

direction. The Oswatitsch’s (1945) entropy equation, when applied to the laminar 

compressible vortex under consideration gives,   
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   
ξ2 2

2

ξ 0ξ

0 0

V V
ΔS = ln(Θ) + γ -1 M dξ - dξ

ξΘ ξΘ

 
 
 
                                             (6.4.1) 

A more detailed description of the above equation is mentioned in Appendix A. 

The result shown in Figure 6.4 confirms that our mathematical model does indeed 

obeying the second law of thermodynamics, namely the entropy increases stream wise. 

The variation of entropy with different vortex Mach numbers is also shown in the same 

Figure.  

 



38 
 

 

Figure  6.4 Change in Entropy with vortex Mach number for a laminar vortex with Pr 

=2/3,   ξ = 200, and number of nodes = 20,000. 

 

6.5 Explanation of Decrease in Temperature towards Centre of Vortex 
 

The change of temperature as a function of the radius is given by equation (4.1.3) 
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ξ ξ

2

2 20 0
0 0

f ξλdξ UV λdξ
dΘ

- = Pr(γ -1)M + Pr(γ -1)M
dξ ξ λ ξ λ

Heating of Fluid Cooling of Fluid

F = Element D = element

Due to Friction Due toexpansion

   
   
   
   
   

 

           (6.5.1)    

The negative sign in front of temperature derivative indicates that the fluid 

element is moving from the periphery towards the vortex center. 

The results for a laminar vortex are plotted in Figure 6.5. 
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Figure  6.5 Net effect of heating and cooling of fluid element due to viscous dissipation 

and fluid element expansion respectively in a laminar vortex for M0=0.4, with Pr =2/3,  

ξ  = 200, and number of nodes = 20,000. 

 

It is clear from Figure 6.5 that as the fluid element is moving along the flow 

direction (negative radial direction), it comes under the influence of two effects i.e. 

heating of fluid element due to viscous forces which ultimately tends to increase its 

temperature. Pressure is also decreasing (see Figure 6.1) in flow direction. Therefore, the 

fluid element expands (the volume of the elementary fluid element is proportional to 1/β

). This causes cooling of the element.    
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It is apparent from Figure 6.5 that  F D  and D is always negative. Therefore, 

the net effect of heating of fluid element (F) due to friction and cooling down (D) due to 

expansion is always negative  F +(-D) < 0    throughout the radial interval [0, ∞). 

Because of this, the temperature decreases monotonically from ∞ to 0, attaining a 

minimum at center of the vortex. 

Rott (1959) looking for exact solutions to the equations of compressible line 

vortices came across the static temperature decrease. However, being aware of his 

model’s limitations remarked that the applicability of his results to the Ranque-Hilsch 

tube is doubtful for several reasons. Most important of them being that the formulation 

could not predict the 'hot' side of the phenomenon. The “… only modest values of 

heating” Rott (1959) that he discovered pertains to the stagnation and not to the static 

temperature. The static temperature (like for a = 1 case) is below the ambient throughout 

the field. Understandably, the forecast of the “hot” feature was not possible because 

Burgers’s (1948) vortex is not applicable to turbulent vortices. In addition, since the 

radial velocity in Burgers vortex varies linearly with the radius, the formulation is 

inappropriate for unconfined vortices. The last is evident from several observations where 

the radial velocity is far from being directly proportional to the radius see for example 

Hite and Mih (1996)   and Trenberth et al. (2007). 
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7 Results for Turbulent Compressible Vortex 

Flow 
 

7.1 Verification of the numerical procedure 

 

Before we proceed with the discussion of results through productive runs it is 

important that we deal first with some important numerical issues. 

Alike to the laminar compressible vortex all the integrals in the energy equation 

are evaluated numerically via the recursive adaptive Lobatto quadrature, with tolerance 

error of 10
-6

. The results have also been verified through the symbolic algebra system 

Theorist (an older version of LiveMath) as well as numerically using a central finite 

difference solver. Also, the computational turbulent vortex results, for Pr = 2/3, M0= 0.8, 

a = 0.7,  = 200, and number of nodes = 20,000, indicated that the residual ε  in the 

energy equation, 

   2 2

0

d dΘ dΘ
ξ -PrUξ +Pr γ -1 M fξ +UV = ε

dξ dξ dξ

 
 
 

 

was less than  210
-8

. See Figure 7.1. 
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Figure  7.1 Residual of solution of energy equation under turbulent compressible vortex 

flow condition with Pr=2/3, M0= 0.8, a = 0.7,  = 200 and number of nodes=20,000. 

 

The integrals in the rate and temperature equation involve infinite limits. The last 

requires integration until a radius, which is satisfactorily far away from the center of the 

vortex. Numerical experiments for the temperature 0 with different values of   are 

shown in Figure 7.2. These indicated that the relative difference between values of 0
 

when  is taken as 200 and 400 was only 7.210
-4

. Thus, in order to economize on the 

computations, a radius of   = 200 was finally deemed to be sufficiently “far” without 

loss of physics. This is the criterion for infinity that we adopted for our computations for 

both laminar as well as turbulent vortices. 
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Figure  7.2  Variation of temperature at vortex center vs.   with parameters M0=0.8, 

Pr=2/3, number of nodes=20,000 and a=0.7. 

 

The effect of Prandtl number on the results of the energy equation for a turbulent 

vortex was also examined. The results for M0 =0.8 and are shown on Tables 7.1 and 7.2. 

These indicate that the maximum difference occur at  ξ = 2.0  yielding a small 

percentage difference.  
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Table ‎7-1 Comparison between solution of energy equation under turbulent flow 

condition for values of Pr =2/3 and 0.707 with 0M  =0.8, = 200 and number of 

nodes=20,000. 

  Pr =  2/3 Pr = 0.707    

  Θ Θ % Difference 

0 0.9217 0.9226 0.10 

0.5 0.9228 0.9237 0.10 

1 0.9482 0.9504 0.23 

1.5 0.9870 0.9904 0.34 

2 1.0091 1.0126 0.35 

2.5 1.0195 1.0227 0.31 

3 1.0241 1.0270 0.28 

3.5 1.0260 1.0285 0.24 

4 1.0265 1.0287 0.21 

4.5 1.0263 1.0282 0.18 

5 1.0258 1.0274 0.16 
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Table ‎7-2  Comparison between solution of energy equation under turbulent flow 

condition for values of Pr=2/3 and 0.716 with 0M  =0.8, = 200 and number of 

nodes=20000. 

 

Pr =  2/3 Pr = 0.716 (Nitrogen) 

 ξ Θ Θ % Difference 

0 0.9217 0.9228 0.12 

0.5 0.9228 0.9239 0.13 

1 0.9482 0.9508 0.28 

1.5 0.9870 0.9911 0.41 

2 1.0091 1.0133 0.42 

2.5 1.0195 1.0233 0.38 

3 1.0241 1.0276 0.33 

3.5 1.0260 1.0290 0.29 

4 1.0265 1.0291 0.25 

4.5 1.0263 1.0286 0.22 

5 1.0258 1.0277 0.19 

 
 

Moreover, if someone takes Pr =2/3 for Nitrogen in place of its actual value of 

0.716, the maximum percentage difference occurs at  ξ = 2.0
 
and it is less than 0.5%. 

Thus, there is insignificant change in the solution of the energy equation with modest 

changes in the Prandtl number values. Therefore, from now onwards we will assume a Pr 

=2/3 for rest of the calculations. 

Experimental work that deals with the detail profiles of the main fluid dynamic 

parameters for unconfined vortices is limited. Due to the small size of vortex tubes 
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reliable experimental radial profiles of any fluid property is also hard to find. 

Nevertheless, as means to partially authenticate the present theoretical model, the 

pressure data of Pivirotto (1966) in a larger confinement were used. The experimental 

records for two Mach numbers (0.51and 0.98) depicted in Figure 6.3 show an acceptable 

agreement with the calculated pressure profiles. 

 

Figure  7.3 Validation of the calculated pressure profiles from Eq.6.1.2, and using the 

experimental data of Pivirotto (1966). These were performed in a gaseous-vortex reactor 

(cold), for advanced space propulsion. The comparisons with two datasets (M0 = 0.51 and 

0.98) show a fair agreement between the two. ξ 200  .  

 

Therefore, with all of the abovementioned evidence one can use the present 

numerical method with sufficient confidence to probe into the very nature of the event. 
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7.2 Results and discussion of mechanically produced vortices 
 

Equation (4.1.4) is next solved numerically using the expressions of V, f, U, 
 
for 

a turbulent vortex. The results of the temperature distribution are given in Fig. 7.4. 

 

Figure  7.4 Variation of temperature vs. the radius for a = 0.7, Pr =2/3, = 200 , M0 = 

0.4 and number of nodes=20,000. 

 

The graph shows that as the fluid element moves from far towards the vortex 

center increases. It attains a maximum value of temperature at  4.06m  , and then it 

starts to decrease, reaching finally a minimum at the center of the vortex.  
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In order to explain this phenomenon, one has to pay attention what happens to the 

fluid element as it moves towards the center. This could be explained using equation 

(6.5.1). 

As shown in Figure 7.5, there is a competition between heating of the element due 

to viscous action (F) and cooling due to its expansion (D). Viscous dissipation tries to 

heat up the element. As the fluid moves towards the lower pressure region it expands and 

hence its temperature decreases. Therefore, the net effect of F and D will decide whether 

the temperature increases or decreases. 
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Figure  7.5 Net effect of heating and cooling of fluid element due to viscous dissipation 

and expansion respectively for a=0.7, Pr=2/3, = 200 ,
0M = 0.4 and number of 

nodes=20,000. 

 

In the interval (∞, m ), heating of fluid element due to friction (F) is greater than 

cooling (D). The combined effect will be positive or the fluid will heat up. At m  ~ 4.06, 

F = D (or the temperature derivative is zero) and hence the temperature will achieve its 

maximum value  max 1.0066  . For radii  0 < ξ < 4.06 , cooling of fluid element (D) 

due to expansion is more than heating of the fluid element (F) due to friction. The net 

effect will cool the gas down. The temperature minimum will of course occur at the 

vortex center, where the derivative of the temperature is zero. The Ranque-Hilsch thermal 
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effect was discovered in vortex tubes but it is not exclusive to this particular application. 

The observations of the stream wise isolated vortex within a supersonic stream Cattafesta 

and Settles (1992) show indeed a similar characteristic for the temperature (see their fig. 

7). After more than 80 years from its discovery, the last analysis identifies clearly the 

mechanism that gives rise to the general Ranque-Hilsch temperature separation.  

The effects of Vortex Mach number are shown in Figure 7.6. As the vortex Mach 

number increases the temperature at the hottest spot goes up and the minimum 

temperature at the center decreases. However, the radial locations where the temperature 

maximum occurs and the radius at which   crosses the ambient value of one remain the 

same.  Therefore, the degree of temperature separation is a function of the Mach number; 

the higher M0 the higher the heating and cooling of the gas. 
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Figure  7.6 Dimensionless temperature vs. vortex Mach number for turbulent vortex for 

a=0.7, Pr=2/3, = 200   and number of nodes=20,000. 

 

The temperature, density and pressure values for a turbulent vortex are obtained 

from Eqs. 4.1.4, 6.1.1 and 6.1.2 respectively. These are compared with the corresponding 

profiles for a laminar vortex. Stream wise, both the pressure and the density decrease 

monotonically with the radius. Excess friction in a turbulent vortex causes the vortex to 

attain lower temperature, pressure and density values at the origin. Therefore, excessive 

friction augments both heating and cooling. 
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Figure  7.7 Dimensionless temperature variation with vortex Mach number for turbulent 

vortex for Pr=2/3, = 200 and number of nodes=20,000. 
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Figure  7.8 Dimensionless pressure variation with vortex Mach number for turbulent 

vortex for Pr=2/3, = 200 and number of nodes=20,000. 
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Figure  7.9 Dimensionless density changes vs. vortex Mach number for turbulent vortex 

for Pr=2/3, = 200   and number of nodes=20,000. 

 

 Oswatitsch’s (1945) entropy equation given in section (6.4) is applied next to the 

turbulent flow under the assumptions of intense compressible vortex conditions.   

In Figure 7.10, the entropy change is positive  ΔS > 0
 
along the flow direction. 

This demonstrates that the present mathematical formulation for turbulent compressible 

vortex flow derived in section (3.2) respects also the second law of thermodynamics. The 

change of entropy obtained from Eq. (6.4.1) for different Mach numbers is shown in the 

same Figure. 
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A similar radial profile for the entropy can also be found in the experimental 

results of Settles and Cattafesta (1993). 

 

Figure  7.10 Change in Entropy value with vortex Mach number for turbulent vortex for 

Pr=2/3, a=0.7, = 200   and number of nodes=20,000. 

As expected, the change of entropy for laminar flow is less than the turbulent (see Figure 

7.11).  
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Figure  7.11 Comparison of Change in Entropy of laminar and turbulent compressible 

vortex for Pr=2/3, = 200   and number of nodes=20,000. 

 

For laminar vortices, constant (a) was equal to one. For present case of turbulent 

compressible vortex flow, we took a =0.7. This scaling constant (a) represents degree of 

turbulence. The turbulence levels increase with decreasing of the scaling constant a. It is 

important to examine the effects that the constant (of turbulence) has on the temperature 

profile.  
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Figure  7.12 Effect of scaling constant (a) on temperature profile of turbulent vortex flow 

for Pr=2/3, = 200 , 0M =0.4  and number of nodes=20,000. 

Figure 7.12 shows that the dimensionless temperature for laminar case (a =1.0) 

has a maximum at . For turbulent flow (a<1) the maximum value of temperature is seen 

to increase at the maximum radius location and to drop further at the center with 

parameter a. The last is indeed consistent with the previous statement: “excessive friction 

augments both heating and cooling”. As the degree of turbulence increases the location of 

max is seen to move towards the vortex center.  
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8 The Ranque-Hilsch effect in Atmospheric 

Vortices 
 

The Ranque-Hilsch
 
effect can also be found in in atmospheric vortices such as 

tornadoes and mature waterspouts. These having a high Rossby number (ratio of inertia 

to Coriolis force due to Earth’s rotation) between 10
3
-10

4
, bear an intimate similarity to 

their mechanically produced vortices. Therefore, although intense atmospheric whirls 

will be used to support the present theoretical results, the conclusions are also applicable 

to those produced mechanically. In extreme tornadoes and mature waterspouts 

compressibility effect give rise to Ranque-Hilsch effect. Evidence from these vortices can 

also be used to validate the present findings. 

In chapter 6 and 7, we discussed the two competing mechanisms i.e. heating of 

fluid element due to viscous forces (F) and cooling (D) due to expansion as it moves 

towards the lower pressure region. The temperature distribution was plotted in Figure 7.7 

that indicated the presence of the Ranque-Hilsch
 
effect. 

On June 27 of 1955 a tornado struck Scottsbluff, Nebraska with fury Van Tassel 

(1955). The estimated tangential velocity for this tornado was found to be 484MPH 

(215.11 m/s). The vortex Mach number M0 = 0.63 was calculated on the temperature 27

0C  (80 
o
F) for that day. Figure 8.1 and 8.2 show the results of temperature and density 

variations for this tornado. 
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Figure  8.1 Temperature distribution in radial direction in degree Celsius for M0 =0.63. 

Figure 8.1 clearly shows the Ranque-Hilsch effect for the tornado under 

examination. The hottest region in this tornado is occurring at ( = 4.06mξ ) where the 

temperature reaches 32
0C  (five degree rise in temperature value than ambient 

temperature) and minimum temperature at center of vortex equals is 12
0C . An observer 

under the passing Scottsbluff’s tornado will feel first a chilling effect due to the sudden 

drop in temperature of 15
0C .  

According to Van Tassel (1955) three radio broadcasters reporting this tornado 

were trapped inside Scottsbluff’s cemetery and found shelter in the basement of a 
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building. During the overhead passage of the tornado they experienced the following odd 

micro-climatic changes: “… the temperature dropped from a mild summer value until the 

broadcasters were chilled until they were actually cold.” Van Tassel (1955). 

 

Figure  8.2 Density changes in  3Kg/m  in the radial direction for M0=0.63. 

At center of vortex, the air density from the normal ρ =1.161  dropped to

ξ=0ρ = 0.4257 3/Kg m . Van Tassel also mentions that the center of the tornado passed 

about 100 ft. (   = 0.9). The density at this distance should be 0.64 
3Kg/m  , which 

corresponds to the density equivalent to an extreme altitude of about 6,300 m above sea 

level. Therefore, the oxygen thin conditions made it “difficult to breathe and suffocating” 
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Van Tassel (1955). Since the tornado had a forward velocity, this physiological effect last 

for a short period of time. 

Furthermore, the radial static pressure distribution, which also includes a 

substantial deficit at the center of the twister Van Tassel (1955), is alike to the 

distributions produced by the present model. In fact one of the probes of Lee et al. (2004) 

registered a pressure deficit of 850 millibars (mb) of Mercury in the 2004 tornado of 

Manchester, South Dakota. Under their conditions, the present model produced a value of 

840 mb. But even the calculated slightly less pressure is justifiable. Their subsequent data 

analysis indicated that, during this period, the probe was recording events that were 

taking place certainly inside its funnel but not exactly at the tornado’s axis but slightly off 

center. 

Montgomery (see Moore 1955), an observer for U.S Weather Services, recorded 

the heating effect outside the tornado in Blackwell, Oklahoma (1955). The reported 

account is: “The air was hot near the funnel, the temperature of my thermometer rises 

from 74 
0F  to 80 

0F  when the storm struck”. 

Another type of atmospheric whirl where the fundamental characteristics of 

Ranque-Hilsch thermal effect appears is the waterspout. Probes towed from various 

aircrafts across mature waterspouts produced a number of radial profiles for the 

temperature. The cumulative results are given in Figure8.3, reproduced from Golden 

(1974). In his schematic he identified the following temperature anomaly. Moving from 

the outer periphery towards the center of the waterspout, the static temperature increases, 

reaching a maximum value, and then dropping to a minimum sub ambient value at the 
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center of the eddy. Unfortunately, the absence of detailed values for the tangential 

velocity distribution within these vortices, make a direct comparison of the present 

analysis with the radial profile of the temperature records weak. Nevertheless, the 

persistent, from many studies, qualitative heating up, followed by cooling of air reaching 

the smallest value at the center of rotation, i.e. the Ranque-Hilsch thermal effect, is amply 

evident. 

 

Figure  8.3 The temperature anomaly in mature waterspouts whereΔT = T-T   . (From: 

Golden (1974)). 

 

 

 

!
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9 Conclusions 
 

In present study, the laminar compressible vortex flow was extended into 

turbulent compressible vortex flow by combining the previously proposed tangential 

velocity model with the proceeding work on the laminar compressible vortex flow. The 

general form of equations of the conservation of mass, Three Navier –Stokes equations 

describing the compressible vortex flow were simplified by assuming steady, axis 

symmetric flow, where body forces acting on the fluid element were neglected. The 

equations in dimensionless form were further simplified under intense vortex flow 

condition. The undetermined system of equations was solved assuming a turbulent 

tangential velocity component and introducing the energy and state equations.   

The modified tangential velocity formula (n=2) was used to determine the radial 

velocity component from tangential-momentum equation, whereas the axial velocity 

component was deduced using conservation of mass equation. The energy equation was 

solved for both laminar and turbulent compressible vortex flow conditions for any value 

of Prandtl Number using numerical integration routine quadl embedded in the Matlab 

software. 

Comparing the results against the exact solution verified the numerical solution of 

energy equation under laminar flow conditions. The results also suggested that Prandtl 

number has no significant effect on solution of energy equation. Therefore, one can use 

the exact solution of energy equation to find the density and pressure distribution using 

radial-momentum and equation of state respectively. The temperature, pressure and 

density of a fluid element decreases as it moves towards center.      
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The results revealed that for laminar flow, cooling of fluid element due to its 

expansion is always bigger than its heating caused by viscous dissipation. This causes a 

continuous drop in temperature, attaining minimum value at vortex center. The increased 

value of vortex Mach number augmented the temperature, density and pressure decrease. 

For the case of turbulent compressible vortex, Prandtl number was also found to 

have an insignificant effect on the energy equation. The radial distribution of density and 

pressure were calculated using radial-momentum and equation of state respectively. The 

results of energy equation under turbulent flow condition shows that the temperature of 

fluid element increases and attaining higher value than ambient from far infinity to 

certain location of radius. From this location to vortex center, the temperature starts 

decreasing. In the interval (∞, m ), heating of fluid element due to friction is greater than 

cooling (D). For radii  m0 < ξ <ξ , cooling of fluid element due to expansion is more 

than heating of the fluid element due to friction. The location of maximum temperature 

value does not change with vortex Mach number for same value of scaling constant. Both 

laminar and turbulent mathematical models are obeying the second law of 

thermodynamics. 

The results also reveal that the puzzling Ranque-Hilsch effect represents general 

thermal phenomenon is akin to all compressible intense vortices. The combined effect of 

mechanical friction and gas expansion produces the temperature separation into hot and 

cold regions. The observations made by live witnesses or instruments while inside F5 and 

F4 tornadoes were found to be in agreement with the present theoretical finding. 
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10  Future Work 
 

In the present analysis of laminar and turbulent compressible vortex flow, all fluid 

properties were assumed to be constant with temperature. In reality however, the fluid 

properties (Cp, Cv, ,k and Pr) vary with temperature. Figure 7.7 of section 7.2 indicates 

that as the Mach number increases the temperature separation enlarges. As the flow 

becomes supersonic, there are significant changes in temperature values and thus its 

effect on the fluid properties cannot be neglected.  

Therefore, one should formulate a new mathematical model where the fluid 

properties are functions of temperature. The generalized energy equation, along with the 

rest relevant conservation equations can then be solved numerically. Since the tangential 

velocity is known not to depend on compressibility both laminar and turbulent models 

can be used as a parameter that closes the system of equations. Using this approach one 

can then explore the physics of supersonic vortices.  
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Appendix A 
 

(i) Exact solution of energy equation under laminar flow for a Pr = 

2/3. 

The exact solution of the energy equation under laminar compressible vortex flow 

condition is determined analytically by assuming a Pr = 2/3 as follow: 

The energy equation is given by (3.1.12), 

 
2

2

0

1 d dΘ dΘ UV
ξ - PrU = -Pr γ -1 M f +

ξ dξ dξ dξ ξ

  
  

   
                                                (1) 

Multiplying ξ on both sides of above equation gives, 

 
2 2

2

02

d Θ 1 dΘ UV
+ - PrU = -Pr γ -1 M f +

ξ dξ ξdξ

  
  

   
                                                       (2) 

The radial and tangential velocity components under laminar compressible vortex 

flow condition are given as follow: 

3

4

- 6ξ
U =

1+ ξ
,

4

ξ
V =

1+ ξ
 

The Viscous dissipation function ( f ) is calculated using tangential velocity 

component, 

 

2
8

2

3
4

d V 4ξ
f = ξ =

dξ ξ 1+ξ

  
  

  
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 Putting   
dΘ

Y =
dξ

,

2
'

2

d Θ
Y =

dξ
, Pr=2/3, 

3

4

- 6ξ
U =

1+ ξ
,

4

ξ
V =

1+ ξ
and 

 

8

3
4

4ξ
f =

1+ ξ
in 

equation (2) yields, 

 
 

 

8 44
' 2

0 35 4

ξ +3ξ1+5ξ 4
Y + Y = γ -1 M

ξ +ξ 3 1+ξ

 
 
 

                                                                   (3) 

Let    be the integration factor of above differential equation and is given by, 

4

5

1+5ξ
dξ

ξ+ξ
λ=e

 
 
  


 

5λ = ξ +ξ                                               

Multiplying   on both sides of equation (3) and after some straightforward 

mathematical manipulations yields, 

     
 

 

5 4

' 5 4 2

0 2
4

ξ 3+ξ4
Y ξ +ξ + 1+5ξ Y = γ -1 M

3 1+ξ
 

The first two terms of above equation can be combined together and is written as 

follow, 

   
 

 

5 4

5 2

0 2
4

ξ 3+ξ4
d Y ξ +ξ = γ -1 M dξ

3 1+ξ

 
 

                                                                  (4) 

Integration of above equation yields, 
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   
   

5 9
5 2

0 2 2
4 4

4 3ξ ξ
Y ξ +ξ = γ -1 M dξ + dξ

3 1+ξ 1+ξ

 
 
 
 

   

Upon solving the integrals of above gives, 

     

 

2
5 2 - 2

0 4

2 2
- 2

14

4 3 3 ξ
Y ξ +ξ = γ -1 M tan ξ - +

3 4 4 1+ ξ

ξ 3 1 ξ
- tan ξ + +C

2 4 4 1+ ξ

   
  
    

   
  

   

 

Where C1 is the constant of integration and further simplifications of above equation 

yields, 

  
   

5
2 1
0 2 54

C2 ξ
Y = γ -1 M +

3 ξ +ξ1+ξ

 
 
 
 

                                                                  (5) 

Inserting back 
dΘ

Y =
dξ

 in equation (5) gives, 

 
   

5
2 1
0 2 54

CdΘ 2 ξ
= γ -1 M +

dξ 3 ξ +ξ1+ξ

 
 
 
 

       

Inserting the boundary condition in above equation that requires the 
dΘ

dξ
=0 at 

vortex center gives C1=0 and equation reduces to, 
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 
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2

0 2
4

dΘ 2 ξ
= γ -1 M

dξ 3 1+ξ

 
 
 
 

                                                                                         

 Integrating above equation once more yields, 

   
2

2 - 2

0 24

1 ξ
Θ= γ -1 M tan ξ - +C

6 1+ξ

  
  

  
                                                                  (6) 

C2 is constant of integration determined by applying second boundary condition 

that requires the temperature attain its ambient value  1  as ξ , 

  2

2 0

1 π
C =1- γ -1 M

6 2

 
 
 

 

Inserting C2 in equation (6) gives the radial distribution of temperature, 
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2 - 2

0 4

1 ξ π
Θ=1+ γ -1 M tan ξ - -

6 1+ξ 2
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This is the exact solution of energy equation under laminar compressible vortex 

flow conditions valid for a Pr=2/3.  

(ii) Entropy Equation   

Oswatitsch’s entropy (1945) equation is given by,  

 
  2

0

d ΔS 1 d dΘ
ΘPrU = ξ + Pr γ -1 M f

dξ ξ dξ dξ

 
 
 

                                                        (1) 

Subjected to boundary condition ΔS 0  as ξ  , where 
p

s - s
ΔS =

c

  
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The value of L.H.S. of equation (1) is determined by rearranging the terms of 

equation (3.1.12) yields, 

   
2

2 2

0 0

1 d dΘ dΘ UV
ξ +Pr γ -1 M f =PrU -Pr γ -1 M

ξ dξ dξ dξ ξ
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 
 

                     (2)      

Comparing equations (1) and (2) gives following expression of entropy, 
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Integrating above equation from 0 to ξ  produces 
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0
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C1 is the constant of integration and is calculated using boundary condition at far 

away from vortex center that requires,                                      

As ξ   ,ΔS 0  and 1   , gives  
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Inserting value of C1 in equation (3) gives the radial distribution of change in entropy, 

   
ξ2 2

2

ξ 0ξ

0 0

V V
ΔS = ln(Θ) + γ -1 M dξ - dξ

ξΘ ξΘ

 
 
 
                                                       (4) 

This is the entropy equation valid for both laminar and turbulent compressible 

vortex flow. 
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Appendix B 
 

(i) Source Code for Laminar Compressible Vortex Flow 

function[Chi,Theta,Texactsolution,Beta,Pi,DeltaS,F,D,h]=LaminarFlow(M0,Pr,xf,N) 

 

% N represents number of parts 

% h represents the step size 

% i represents the number of nodes 

% Pr is Parandtl number 

% gamma is specific heat ratio 

% xf is the value of dimensionless radius at infinity 

% M0 is vortex Mach number 

% F represents heating of fluid element due to friction  

% D represents cooling of fluid element due to its expansion 

% lambda represents integration factor 

% DT represents derivative of Temperature w.r.t. to x 

% Tzero Represents value of temperature at vortex center 

  

% U = ((-6.*(x.^3))./(1+x.^4))       

% f = ((4.*(x.^8))./((1+x.^4).^3))  

% V = (x./((1+x.^4).^(0.5)))    

% Vsquare = ((x.^2)./(1+x.^4))  

% F1 = (f.*x + U.*(V.^2))*lambda 

% F2  =x*lambda 

% F3 = Vsquare/x 

% F4 = Vsquare/x 

% F5 = f*x*Lambda 

% F6 = U*Vsquare*Lambda 

  

format long 

gamma = 1.4; 

h =(xf)/N;      

i =N+1;  

  

for i=1:(N+1) 

x(i) = (i-0.5)*h ;%Integral is calculated at center of each node 

end 

  

lambda  = ((1+(x.^4)).*((6.*Pr)./4)); 

for n =1:N 

F1 = @ (x) ((((4.*(x.^9))./((1+x.^4).^3))+((-

6.*(x.^3))./(1+x.^4)).*((x.^2)./(1+x.^4))).*((1+(x.^4)).*((6.*Pr)./4))) ; 

UpperIntegral(n) = quadl(F1,0,x(n)); 
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end 

  

for o =1:N 

F2(o)  = x(o)*lambda(o); 

Height(o) = UpperIntegral(o)/F2(o) ;  

base  = h; 

Strip = Height.*(h); % Represents area of small strip  

SummationofStrips  = sum(Strip); 

Tzero = 1+ Pr*(gamma-1)*(M0^2)*SummationofStrips;  

end 

  

addition (1)=Strip(1); 

  

for p= 2:N 

addition(p)  = addition(p-1)+Strip(p); 

end 

  

for q =1:N 

T(q) = -Pr*(gamma-1)*M0^2*addition(q)+Tzero; 

end 

  

Chi = 0:h:xf ; 

Theta = [Tzero T]; 

Texactsolution = 1+ ((gamma-1).*(M0.^2)./6).*(atan(Chi.^2) - ((Chi.^2)./(1+Chi.^4))-

pi./2) ;     

  

%% Calculations of Density and Pressure 

 

for r=1:N+1 

F3 = @ (Chi) ((Chi)./(1+(Chi.^4)))  ; 

DensityIntegralConstant = quadl(F3,0,xf); 

DensityIntegral(r) = quadl(F3,0,Chi(r)); 

Beta(r) = (1/(Theta(r)))*exp(gamma*(M0^2)*(DensityIntegral(r)-

DensityIntegralConstant)/Theta(r)) ; 

Pi(r) = Beta(r)*Theta(r) ;  

end 

  

%% Calculation of Entropy 

 

for s=1:N+1 

F4 = @ (Chi) (Chi./(1+Chi.^4))  ; 

EntropyIntegralConstant = quadl(F4,0,xf); 

EntropyIntegral(s) = quadl(F4,0,Chi(s)); 

DeltaS(s) = log(Theta(s))+((gamma-1)*(M0^2)/Theta(s))*(EntropyIntegralConstant-

EntropyIntegral(s)); 

end  
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x1= Chi(2:N+1); 

Lambda = ((1+(x1.^4)).*((6.*Pr)./4))  ; 

LowerValue = x1.*Lambda ; 

  

%% Calculation of heating (F) due to Viscous Dissipation and Cooling (D) of fluid 

element due to its expansion 

 

for t =1:N    

F5 = @ (x1) (((4.*(x1.^9))./((1+x1.^4).^3)).*((1+(x1.^4)).*((6.*Pr)./4))); 

F6 = @ (x1) (((-

6.*(x1.^3))./(1+x1.^4)).*((x1.^2)./(1+x1.^4)).*((1+(x1.^4)).*((6.*Pr)./4))); 

upperF(t) = quadl(F5,0,x1(t)); 

upperD(t) = quadl(F6,0,x1(t)); 

end 

 

hdtf = Pr.*(gamma-1).*(M0.^2).*upperF./LowerValue; 

cdte = Pr.*(gamma-1).*(M0.^2).*upperD./LowerValue; 

F = [0 hdtf];  

D = [0 cdte]; 

DT = F+D;  

end 

  

 

(ii) Source Code for Turbulent Compressible Vortex Flow 
 

function[Chi,Theta,Thetamax,Chim,Beta,Pi,DeltaS,F,D,h]=TurbulentFlow(M0,Pr,xf,N,a) 

  

% N represents number of parts 

% h represents the step size 

% i represents the number of nodes 

% a is Scaling Constant represents degree Turbulence 

% Pr is Parandtl number 

% gamma is specific heat ratio 

% xf is the value of dimensionless radius at infinity 

% M0 is vortex Mach number 

% F represents heating of fluid element due to friction  

% D represents cooling of fluid element due to its expansion 

% lambda represents integration factor 

% Tzero represents the value of temperature at vortex center 

% Chim is the Location of x corresponds to Thetamax   

 

  

% f = ((16.*(m.^2).*((a+1).^(2.*m)).*(x.^8))./((a+(x.^4)).^(2.*(m+1)))) 

% V       = ((((a+1).^m).*x)./((a+(x.^4)).^m)) 
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% Vsquare = ((x.^2).*(((a+1)./(a+(x.^4))).^(2.*m))) 

% F1      = (f.*x + U.*(V.^2))*lambda 

% F2      = x*lambda 

% F3      = Vsquare/x 

% F4      = Vsquare/x 

% F5      = f*x*Lambda 

% F6      = U*Vsquare*Lambda 

  

format long 

gamma=1.4;  

h =(xf)/N;  

i =N+1;  

  

for i=1:(N+1)    % Integral is calculated at center of each node  

x(i) = (i-0.5)*h ;  

end 

  

m      = (a+1)/4;     

b1     = -((2*m)-1); % m,b1,b2,b3 are constants 

b2     = -2*a*(m-1) ; 

b3     = (a)^2; 

U = (-

((4.*m.*b1.*(x.^7)./(b1.*(x.^8)+b2.*(x.^4)+b3))+(12.*a.*m.*(x.^3)./(b1.*(x.^8)+b2.*(x.

^4)+b3)))); 

lambda  = ((((2.*b1.*(x.^4)+ b2-((((b2).^2)- 4.*b1.*b3).^(0.5)))./(2.*b1.*(x.^4)+ b2 

+((((b2).^2)- 4.*b1.*b3).^(0.5)))).^( 3.*a.*m.*Pr./((((b2).^2)- 

4.*b1.*b3).^(0.5)))).*((((b1.*(x.^8) + b2.*(x.^4)+b3).^(1./(2.*b1)))./(((2.*b1.*(x.^4)+ 

b2-((((b2).^2)- 4.*b1.*b3).^(0.5)))./(2.*b1.*(x.^4)+ b2 +((((b2).^2)- 

4.*b1.*b3).^(0.5)))).^( b2./(((((b2).^2)- 4.*b1.*b3).^(0.5)).*2.*b1)))).^(m.*b1.*Pr))); 

  

for n =1:N 

F1 = @ (x) ((((16.*(m.^2).*((a+1).^(2.*m)).*(x.^9))./((a+(x.^4)).^(2.*(m+1))))+((-

((4.*m.*b1.*(x.^7)./(b1.*(x.^8)+b2.*(x.^4)+b3))+(12.*a.*m.*(x.^3)./(b1.*(x.^8)+b2.*(x.

^4)+b3)))).*((x.^2).*(((a+1)./(a+(x.^4))).^(2.*m))))).*((((2.*b1.*(x.^4)+ b2-((((b2).^2)- 

4.*b1.*b3).^(0.5)))./(2.*b1.*(x.^4)+ b2 +((((b2).^2)- 4.*b1.*b3).^(0.5)))).^( 

3.*a.*m.*Pr./((((b2).^2)- 4.*b1.*b3).^(0.5)))).*((((b1.*(x.^8) + 

b2.*(x.^4)+b3).^(1./(2.*b1)))./(((2.*b1.*(x.^4)+ b2-((((b2).^2)- 

4.*b1.*b3).^(0.5)))./(2.*b1.*(x.^4)+ b2 +((((b2).^2)- 4.*b1.*b3).^(0.5)))).^( 

b2./(((((b2).^2)- 4.*b1.*b3).^(0.5)).*2.*b1)))).^(m.*b1.*Pr)))); 

UpperIntegral(n) = quadl(F1,0,x(n)); 

end 

  

for o =1:N 

F2(o)  = x(o)*lambda(o); 

Height(o) = UpperIntegral(o)/F2(o) ;  

base  = h; 



81 
 

Strip = Height.*(h); % Represents area of small strip  

SummationofStrips  = sum(Strip); 

Tzero = 1+ Pr*(gamma-1)*(M0^2)*SummationofStrips;  

end 

  

addition(1)=Strip(1); 

for p= 2:N 

addition(p)  = addition(p-1)+Strip(p);  

end 

  

for q =1:N 

T(q) = -Pr*(gamma-1)*M0^2*addition(q)+Tzero; 

end 

  

Chi = 0:h:xf ; 

Theta = [Tzero T]; 

Thetamax = max(Theta) ; 

Chim = Chi(Theta == Thetamax); 

 

%% Calculations of Density and Pressure 

 

for r=1:N+1    

F3 = @ (Chi) (Chi.*(((a+1)./(a+(Chi.^4))).^(2.*m)))  ; 

DensityIntegralConstant = quadl(F3,0,xf); 

DensityIntegral(r) = quadl(F3,0,Chi(r)); 

Beta(r) = (1/(Theta(r)))*exp(gamma*(M0^2)*(DensityIntegral(r)-

DensityIntegralConstant)/Theta(r)) ; 

Pi(r) =  Beta(r)*Theta(r) ;  

end 

  

%% Entropy calculation  

 

for s=1:N+1 

F4 = @ (Chi) (Chi.*(((a+1)./(a+(Chi.^4))).^(2.*m)))  ; 

EntropyIntegralConstant = quadl(F4,0,xf); 

EntropyIntegral(s) = quadl(F4,0,Chi(s)); 

DeltaS(s) = log(Theta(s))+((gamma-1)*(M0^2)/Theta(s))*(EntropyIntegralConstant-

EntropyIntegral(s)); 

end 

  

x1= Chi(2:N+1); 

Lambda  = ((((2.*b1.*(x1.^4)+ b2-((((b2).^2)- 4.*b1.*b3).^(0.5)))./(2.*b1.*(x1.^4)+ b2 

+((((b2).^2)- 4.*b1.*b3).^(0.5)))).^( 3.*a.*m.*Pr./((((b2).^2)- 

4.*b1.*b3).^(0.5)))).*((((b1.*(x1.^8) + b2.*(x1.^4)+b3).^(1./(2.*b1)))./(((2.*b1.*(x1.^4)+ 

b2-((((b2).^2)- 4.*b1.*b3).^(0.5)))./(2.*b1.*(x1.^4)+ b2 +((((b2).^2)- 

4.*b1.*b3).^(0.5)))).^( b2./(((((b2).^2)- 4.*b1.*b3).^(0.5)).*2.*b1)))).^(m.*b1.*Pr))) ; 
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LowerValue = x1.*Lambda ; 

 

%% Calculation of heating (F) due to Viscous Dissipation and Cooling (D) of fluid 

element due to its expansion 

 

for t =1:N   

F5 = @ (x1) 

(((16.*(m.^2).*((a+1).^(2.*m)).*(x1.^9))./((a+(x1.^4)).^(2.*(m+1)))).*((((2.*b1.*(x1.^4)

+ b2-((((b2).^2)- 4.*b1.*b3).^(0.5)))./(2.*b1.*(x1.^4)+ b2 +((((b2).^2)- 

4.*b1.*b3).^(0.5)))).^( 3.*a.*m.*Pr./((((b2).^2)- 4.*b1.*b3).^(0.5)))).*((((b1.*(x1.^8) + 

b2.*(x1.^4)+b3).^(1./(2.*b1)))./(((2.*b1.*(x1.^4)+ b2-((((b2).^2)- 

4.*b1.*b3).^(0.5)))./(2.*b1.*(x1.^4)+ b2 +((((b2).^2)- 4.*b1.*b3).^(0.5)))).^( 

b2./(((((b2).^2)- 4.*b1.*b3).^(0.5)).*2.*b1)))).^(m.*b1.*Pr))));   

 

F6 = @ (x1) ((-

((4.*m.*b1.*(x1.^7)./(b1.*(x1.^8)+b2.*(x1.^4)+b3))+(12.*a.*m.*(x1.^3)./(b1.*(x1.^8)+b

2.*(x1.^4)+b3)))).*((x1.^2).*(((a+1)./(a+(x1.^4))).^(2.*m))).*((((2.*b1.*(x1.^4)+ b2-

((((b2).^2)- 4.*b1.*b3).^(0.5)))./(2.*b1.*(x1.^4)+ b2 +((((b2).^2)- 4.*b1.*b3).^(0.5)))).^( 

3.*a.*m.*Pr./((((b2).^2)- 4.*b1.*b3).^(0.5)))).*((((b1.*(x1.^8) + 

b2.*(x1.^4)+b3).^(1./(2.*b1)))./(((2.*b1.*(x1.^4)+ b2-((((b2).^2)- 

4.*b1.*b3).^(0.5)))./(2.*b1.*(x1.^4)+ b2 +((((b2).^2)- 4.*b1.*b3).^(0.5)))).^( 

b2./(((((b2).^2)- 4.*b1.*b3).^(0.5)).*2.*b1)))).^(m.*b1.*Pr)))); 

 

upperF(t) = quadl(F5,0,x1(t)); 

upperD(t) = quadl(F6,0,x1(t)); 

end 

  

hdtf = Pr.*(gamma-1).*(M0.^2).*upperF./LowerValue; 

cdte = Pr.*(gamma-1).*(M0.^2).*upperD./LowerValue; 

F = [0 hdtf];  

D = [0 cdte]; 

DT = F+D;     

end 

  

 

 

 

 

 

 


