
© 2012 ACEEE
DOI: 01.IJIT.02.01.

ACEEE Int. J. on Information Technology, Vol. 02, No. 01, March 2012

532

Data oriented and Process oriented Strategies for
Legacy Information Systems Reengineering

Malleswara Talla, and Raul Valverde
John Molson School of Business, Concordia University, Montreal, Canada.

mrtalla@jmsb.concordia.ca, rvalverde@jmsb.concordia.ca

Abstract–The legacy information systems often implement
manual data updates for information obtained from external
systems. The manual updates are cumbersome, error prone,
and expensive. The legacy systems miss interfaces to external
systems that could be used for automatic updates of system
data. Moreover, the legacy systems also lack extensions to
supplier or customer systems that are essential for creating
supply chain relationships. This paper explores the data
oriented and process oriented models of legacy systems, and
discusses the details of systems development and evolution
models mainly aiming at an ongoing reengineering of legacy
systems. This paper proposes simple strategies for creating
interfaces to external systems for automatic updates of data,
and for adapting to the process evolution that requires a legacy
information system to extend its communications with
external systems that could help in creating successful supply
chain relationships. These strategies can reshape a legacy
system to be reengineered into a new enterprise information
system whether the legacy system is of a data oriented model,
or of a process oriented model.

Key words–Legacy system, Data oriented model, Process
oriented model, System reengineering, Data structure.

I. INTRODUCTION

A legacy system is an application that uses an obsolete
hardware platform or software which is hard and expensive
to maintain. Due to the fact that a legacy system is old, it is
hard to find the skill set for maintaining the software or
replacing hardware parts if a hardware failure occurs. Recent
trend is the shortening life period of software systems and to
quickly adapt to the new developments in software
engineering; otherwise the systems become outdated very
soon and become legacy systems. The huge investment in a
legacy systems often compel reengineering and reuse of
system components for evolution, maintenance and newer
hardware platforms. Therefore, legacy systems range from
traditional software systems to recent component-based
systems. The modeling techniques that were used during
legacy systems development also serve as building blocks
during reengineering phase. This paper presents both
traditional data and process oriented modeling techniques
and proposes reengineering approaches that would prolong
the life span of a legacy system.

The systems documentation often includes models that
describe the requirements collected during initial system
analysis phase of software development process [1]. These
requirements models simplify the system complexity and help
software maintenance process [2]. The requirement models

are often remodelled during system architecture phase based
on the software development methodology chosen. This
paper focuses on traditional data and process models and
attempts to propose few reengineering strategies.

The traditional data oriented reengineering focuses on
migrating databases of legacy systems to current relational
databases, enterprise data standardization, integration of
disparate information systems, etc. [3]. The data oriented
reengineering can also be conducted by focusing on
improving data objects one by one in a pragmatic manner as
presented in this paper. This approach eliminates the
possibility of system failures, and minimizes the impact on
overall system while reengineering the system. The process
oriented reengineering considers each work activity and
remodels a relevant part of the legacy system. The effort
could be as simple as extending the legacy information system
to an external process.

II. TRADITIONAL DATA MODEL REENGINEERING

The traditional software development methodologies
include data models for organizing data and its documentation
[4]. Data modeling is also called as database modeling
because a data model is often implemented as a database [2],
as depicted in Entity Relationship Diagram (ERD) that
presents the data in terms of the entities and their
relationships. An entity is an instance of a class of persons,
places, events, objects, or concepts about which data is
captured and stored. An entity is a single occurrence. An
attribute is a descriptive characteristic of an entity. A
compound attribute could include multiple attributes, in other
words, a group of attributes or a data structure. A relationship
is a natural association that exists between two or more
entities. The relationship may represent an event for linking
the entities. Cardinality defines a minimum and a maximum
number of occurrences of an entity that may be related to a
single occurrence of the other entity. Since all relationships
among entities are bi-directional, cardinality must be defined
in both directions for a relationship. Every entity must have
a key which is an attribute, or a group of attributes, which
assumes a unique value for each entity instance. It is
sometimes called an identifier. A primary key is the candidate
key that uniquely identifies an entity instance. A foreign
key is the primary key of another entity that is duplicated in
the entity for the purpose of identifying the relationship.

47

ACEEE Int. J. on Information Technology, Vol. 02, No. 01, March 2012

© 2012 ACEEE
DOI: 01.IJIT.02.01.532

Figure 1. Sample ERD of an ordering system

Reengineering techniques for Data models
The business logic and data are interwoven that makes

reengineering harder to accomplish. It is important to focus
on the importance of data in the context of application as
follows:
 Volume of data: number of entity instances,
 Security: business critical data,
 Mining: data for searching using a keyword,
 Complexity: interwoven data that makes it harder to
isolate,
 Availability: of data within local database,
 Redundancy: duplicate data for simplifying systems
development, or data which is also available on a different
system.
 Heterogeneity: different in nature of data, etc.

We may like to conduct the reengineering of entire
application at once, but it is cumbersome and it may fail,
given the huge task of system reengineering. Conversely, if
the reengineering is carried out in a pragmatic manner
focussing one feature of the system at a time, reengineering
will be successful. Here, we propose an approach for
reengineering that focuses on reducing data duplication or
redundancy of data. Traditional legacy systems focus on
centralized data processing whereas the contemporary
systems use distributed data processing architectures for
parallel, specialized, and secure processing that increases
the speed of response time. Traditional legacy information
systems duplicate a lot of data into its local data base; such
data requires periodic updates that introduce a margin of
error as the data does not reflect upon real time data. The
source of such data into the database may be often in the
form of spread sheets or flat files. The legacy information
system can be reengineered by changing the sourcing of
such data to use the original data source over the network,
instead of a lengthy spread sheets or data entry. The proposed
reengineering technique in figure 2 uses the existing network
applications that provide data in real time. This approach
improves system performance and reduces the quantization
error, introduced due to periodic manual updates of data.

Figure 2. Legacy systems reengineering to use external data sources

In figure 2, two interfaces to different systems are proposed:
(a) a customer interface that enables a customer to update an
order processing part of a legacy system; (b) an external
system interface where the currency rate fluctuations are
automatically incorporated into the legacy system for
eliminating manual data entry of currency exchange rates.
Similarly, system improvements can be carried out one by
one till the entire legacy system is reengineered.

III. TRADITIONAL PROCESS MODEL REENGINEERING

The traditional approach for information system
requirements is to describe the business activities as
processes carried out within and across organizations.
Typically, a business process represents a set of workflows
in a department of an organization, and a software application
is designed to reflect upon the workflows as a set of
interactions among entities and data stores, to eventually
deliver a service. The data flows through the processes
reflecting upon the procedures, policies and logic for
implementing the software, as modeled in data flow diagrams
(DFD) that serve as tools. In a process, work is performed in
response to requests or data flows or conditions [4]. Unlike
traditional data models, the process models depict
concurrency of interacting processes as a set of data flows
among entities and data-stores. The figure 3 reflects upon an
order processing process that interacts with entities such as
customers, warehouse, shipping, billing, etc. The repository
of data are presented in figure 3, as data stores such as
customers, inventory, and sales orders each of which
maintains the necessary information.

Figure 3. Sample Data Flow Diagram

The system exchanges data as inputs and outputs within its
process environment. An external agent or an external entity

48

© 2012 ACEEE
DOI: 01.IJIT.02.01.

ACEEE Int. J. on Information Technology, Vol. 02, No. 01, March 2012

532

defines a person, an organization unit, or a system internal or
external to organization that lies outside the software system
scope, but interacts with the system being studied [4].
External agents provide inputs into the system, and receive
outputs from the system [2]. A data store is an inventory of
data which is frequently implemented as a file or database
[4]. It is data at rest compared to a data flow which is data in
motion. Data stores depicted on a DFD store all instances of
data entities depicted on an ERD. A data flow represents an
input of data to a process, or the output of data from a process.
It may also be used to represent the creation, reading, deletion,
or updating of data in a file or database. A control flow
represents a condition or non-data event that triggers a
process. The following strategy for process modeling is
proposed in [4]:
1. Draw a context DFD to establish initial system scope.
A context diagram defines the scope and boundary for the
system. Because the scope of a software system frequently
changes during the requirements and design phases of
software development, the context diagram may also change
to reflect upon the same.
2. Draw a functional decomposition diagram to partition the
system into subsystems. A decomposition diagram shows
the top-down functional decomposition or structure of a
system. It provides an outline for arriving at data flow
diagrams.
3. Create an event-response or use-case list for the system in
order to determine what business events the system must
respond to, and what responses are appropriate. Some of the
inputs on the context diagram are associated with events.
4. Draw an event DFD or event handler for each event. For
each event, illustrate any data stores from which records
must be ‘read’ should be added to the event diagram. Data
flows should be added to reflect upon the data read. Any
data stores in which records must be created, deleted, or
updated should be included in the event diagram. Data flows
to the data stores should be named to reflect upon the nature
of the update.
6.Merge event DFDs into a system diagram. The system
diagram is said to be exploded from the single process on
context diagram. The system diagram shows either: all of the
events for the system on a single diagram, or all of the events
for a single subsystem on a single diagram.
7. Draw detailed and primitive DFDs for the more complex
event handlers. Each event process on the system diagram(s)
must be exploded into either a procedural description or a
primitive data flow diagram. For event processes that are not
very complex – in other words, they are both an event and an
elementary process, they should be described. The data flow
diagrams show all the elementary process, data stores and
data flows for single events
8. Document the logic of each elementary process using
structured English.
9. Document data flows and processes in the data dictionary.

Reengineering techniques for Process models
Usually systems are not reengineered often, as a result,

the same legacy software systems are in-use although an
organization radically changed or reorganized its processes.
An organization employs different ways of adapting to
process changes, often conducting appropriate data entry
in to and out of a legacy system to continue using it. This
additional data entry is cumbersome and expensive; instead,
it is profitable to gradually reengineer the legacy system.

 A methodology for reengineering is presented in [5]
focusing on business process, as follows:
 Prepare for reengineering,
 Map and analyze As-Is process,
 Design To-Be process
 Implement reengineered process, and
 Improve continuously.
While planning a legacy system reengineering, one should
target process improvements such as (a) work balancing, (b)
work-flow redesign, (c) eliminating non-value-added
activities, and (d) revising administrative controls [6]. A
process can be viewed as a set of sub-processes with
performance criteria as follows:
 Distributed processing for faster response,
 Data redundancy across processes,
 Increased automation to integrate and minimize manual
processes,
 Simplifying cross functional processes,
 Eliminating redundant sub-processes,
 New process creation and integration,
 Integrating current enterprise applications, e.g. Supply
Chain Management (SCM), Customer Relationship
Management (CRM), Enterprise Resources Planning (ERP),
etc.

As discussed earlier, if the reengineering is carried out in
a pragmatic manner focussing one feature at a time,
reengineering will be successful. Here, we propose an
approach for reengineering that focuses on integrating a new
process, e.g. supplier process via web interface as presented
in figure 4. It is possible to reengineer few parts of a legacy
system by providing user interfaces to integrate new
processes; for example, automatic inventory replenishment
can be achieved by extending the system to integrate a
supplier process as follows in Figure 4.

This approach in figure 4 integrates the external supplier
processes and eliminates the order transaction processing
delays. The legacy system can use the current business rule
set and automatically generate new orders while respecting
the lead time to suppliers.

Figure 4. Legacy systems reengineering to integrate external
supplier process

49

ACEEE Int. J. on Information Technology, Vol. 02, No. 01, March 2012

© 2012 ACEEE
DOI: 01.IJIT.02.01.532

It also eliminates or simplifies the purchasing process.
Although legacy systems use older software development
methodologies and older hardware platforms, they still
employ modular design, and it is possible to reengineer a
business process, part by part, selectively.

IV. TRADITIONAL DATA MODELS AND PROCESS MODELS

Both data models and process models are in fact
interwoven sine every process has a set of data inputs and
outputs following a set of actions. The process reengineering
involves changing the business rules whereas data
reengineering involves organizing, controlling and managing
data. The legacy systems often interface external systems
using manual processes, whereas contemporary systems use
Intranets/Extranets. The data model is often described using
ERD while the process model is described using DFD. The
process model reengineering sometimes may require different
inputs and may produce different outputs focusing mainly
new business rules. The figure 5 presents the process and
data models distinctly, identifying the internal and external
processes and entities as well. While developing data-
oriented reengineered model, both original and reengineered
versions of data are kept and used interchangeably for
smoother and gradual reengineering. It is sometimes required
to switch from reengineered data to original data models
during reengineered system development.

Figure 5. Data oriented vision versus Process oriented vision of a
Legacy system

Figure 6. Co-existing original and reengineered data models of a
Legacy system

Both original data model and reengineered data model to
coexist, the “ifdef … endif, and ifndef ….. endif” pre-processor
statements can be used during reengineered software
development stage.

#ifdef ORIGINAL_DATA
 ….. Software with original data …….
#endif

#ifndef ORIGINAL_DATA
 ….. Software with reengineered data …….
#endif

The process reengineering improves the system to match
the latest ways of working. The business rules and external
processes often change and system needs to adapt to such
changes quickly, in order to avoid manual update processes
and related overhead. The data model reengineering focuses
on improving the data structures and the associated imple-
mentation. Both data and process models adapting the busi-
ness model to the most recent requirements effectively. Once
the systems reengineering is completed, the systems staff
needs to be trained so that they understand the features and
the impact on business process. The data model reengineering
is relatively easier to accomplish compared to process
reengineering. However, well planned reengineering is often
cost effective than developing new products that accom-
plish the same goals. It is also possible to model a system
such that some parts of the system can be data oriented
whereas the other parts can be of process model, which means
the reengineering can be of both data and process models.
Moreover, the system reengineering can be a gradual and an
ongoing activity that keeps the systems maintenance staff
well involved that proves the systems investment worth-
while.

CONCLUSIONS

In this paper, the traditional data and process modelling
of legacy information systems and reengineering approaches
were presented. The reengineering approach focused on
systems evolution to benefit from in-house experience of
systems team, able to maintain and evolve the software
system. A fully reengineered system reflects upon the current
business model and the feature set required sustaining the
business in a medium term. It is argued that the traditional
methodologies are not comprehensive enough to accurately
model systems, then the only way to meet business
requirements in an enterprise setting is to create several
models in detail across the width and depth of the business.
The paper recommends a gradual reengineering of system
rather than a radical one shot, big budget, and expensive
reengineering that can fail. The paper recommends a
reengineering of both data model and process model in order
to reorganizing the data and process models in a pragmatic
way. The paper presented the approaches for reengineering
with examples. The reengineering approaches proposed in
this paper prolong the legacy information system lifespan in
a cost effective manner.

50

© 2012 ACEEE
DOI: 01.IJIT.02.01.

ACEEE Int. J. on Information Technology, Vol. 02, No. 01, March 2012

532

REFERENCES

[1] Jacobson, I., Christerson, M., Jonsson, P. & Overgaard, G.,
(1993). Object-oriented Software Engineering: A Use Case Driven
Approach, Addison-Wesley, Wokingham, England
 [2] Satzinger, J.W., Jackson R.B., and Burd S.D., (2002). Systems
Analysis ad Design in a Changing World, Course Technology, Bos-
ton, Mass
[3] Alice H. Muntz, and Christian T. Ramiller (1994). “A
Requirement-Based Approach to Data modeling and Reengineering”,
Proc. of the 20th VLDB Conf. Santiago, Chile, 1994. pp. 643-646.
[4] Whitten, J. L., Bentley D. L. and Dittman K.V. (2000). Systems
Analysis and Design Methods, McGraw-Hill, New York.
[5] Subramanian Muthu, Larry Whitman, et al. (1999). “Business
Process Reengineering: A Consolidated Methodology”, Proc. of
The 4th Annual International Conference on Industrial Engineering
Theory, Applications, and Practice, Nov 1999.
[6] Victor Raj (2008). “Process to Product Orientation – A Re-
engineering Experience from a Developing Country”, Proceedings
of The 2008 IAJC-IJME International Conference, ISBN 978-1-
60643-379-9.

Malleswara Talla is a Professor (sessional) in the department of
Decision Sciences & MIS at John Molson School of Business
(JMSB), Concordia University, Montreal. He received B.Tech.
degree from J.T.U. College of Engineering, Kakinada, India in 1979,
a M.Tech. degree in 1981 from I.I.T., Kharagpur, India, and a Ph.D.
degree from Concordia University, Montreal, in 1995 specializing
in Computer Communications and Networks. He worked for Tata
Consultancy Service (TCS), Bombay, and Societe Internationale de
Telecommunications Aeronautique (S.I.T.A), Montreal for several
years.

 Dr. Talla managed several projects involving data communications,
computer networks, and business performance excellence. Dr. Talla
is a member of Canadian Operations Research Society (CORS),
Professional Engineers of Ontario (PEO), Institute of Electrical
and Electronics Engineers (IEEE), Project Management Institute
(PMI), The Association for Operations Management (APICS), and
The Institute for Internal Controls (THEIIC). His teaching and
research interests are mainly in Operations Management,
Management Information Systems, Systems Re-engineering,
Business Intelligence, Data Communications and Computer
Network, Software Engineering and Evolution, Software
Architecture, Design, and Development. Dr. Talla is a registered
professional engineer in Canada.

Raul Valverde is working as a Professor in the department of
Decision Sciences & MIS at John Molson School of Business
(JMSB), Concordia University in Montreal. He holds a Bachelor
of Science degree in Mathematics and Management from Excelsior
College (US), a M. Eng. degree in Electrical & Computer Engineering
from Concordia University, and a Ph.D. degree in Information
Systems from University of Southern Queensland, Australia. He
has more than 17 years of professional experience in IT/IS,
mathematical modeling, and financial analysis. Dr. Valverde is a
member of the Society of Management Accountants, Canadian
Operational Research Society, Institute of Internal Controls,
Forensic CPA society, Professional Engineers of Ontario and the
Association for Operations Management. His main research
interests include Supply Chain Systems, Risk Management, E-
business, Information Security and Auditing, Accounting and
Financial Information Systems, Fraud Detection and Reengineering.
Dr. Valverde is a registered professional engineer and accountant in
Canada.

51

