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Abstract

Multifactor analysis plays an important role in data analysis since most real-world
datasets usually exist with a combination of numerous factors. These factors are usually
not independent but interdependent together. Thus, it is a mistake if a method only
considers one aspect of the input data while ignoring the others. Although widely used,
Multilinear PCA (MPCA), one of the leading multilinear analysis methods, still suffers
from three major drawbacks. Firstly, it is very sensitive to outliers and noise and unable
to cope with missing values. Secondly, since MPCA deals with huge multidimensional
datasets, it is usually computationally expensive. Finally, it loses original local geometry
structures due to the averaging process. This thesis sheds new light on the tensor
decomposition problem via the ideas of fast low-rank approximation in random
projection and tensor completion in compressed sensing. We propose a novel approach
called Compressed Submanifold Multifactor Analysis (CSMA) to solve the three
problems mentioned above. Our approach is able to deal with the problem of missing
values and outliers via our proposed novel sparse Higher-order Singular Value
Decomposition approach, named HOSVD-L1 decomposition. The Random Projection
method is used to obtain the fast low-rank approximation of a given multifactor dataset.
In addition, our method can preserve geometry of the original data.

In the second part of this thesis, we present a novel pattern classification approach
named Sparse Class-dependent Feature Analysis (SCFA), to connect the advantages of
sparse representation in an overcomplete dictionary, with a powerful nonlinear classifier.
The classifier is based on the estimation of class-specific optimal filters, by solving an

L1-norm optimization problem using the Alternating Direction Method of Multipliers.



Our method as well as its Reproducing Kernel Hilbert Space (RKHS) version is tolerant
to the presence of noise and other variations in an image. Our proposed methods achieve
very high classification accuracies in face recognition on two challenging face databases,
i.e. the CMU Pose, Illumination and Expression (PIE) database and the Extended YALE-
B that exhibit pose and illumination variations; and the AR database that has occluded
images. In addition, they also exhibit robustness on other evaluation modalities, such as
object classification on the Caltech101 database. Our method outperforms state-of-the-art
methods on all these databases and hence they show their applicability to general

computer vision and pattern recognition problems.
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Chapter 1

Introduction

In the well-known list of the “Top 10 algorithms” that have had the greatest influence on the
development and practice of science and engineering during the 20th century [1, 28], we
can find three entries that have a very close relationship to matrix decomposition problem,
including the QR algorithm [82], the decompositional approach to matrix computation [98]
and Krylov subspace iteration [27]. As Stewart explained in [98], the principal purpose of
matrix decomposition and computation methods is not only to solve any particular prob-
lem but also to construct generally computational platforms that have the ability to solve
the variations of these problems flexibly. When it happens, these methods can be then
translated and emerged easily in computer hardware and distributed widely in numerous

fields with more applications.

The problem of data decomposition becomes more interesting and challenging when the
dimensionality of input data is increased. Then, instead of dealing with matrices, we now
have to face up to fensors and multiple factor data. The purpose of this thesis is to present
a novel tensor decomposition method that has the ability to analyze any given multifactor
data. In addition, we also introduce a new pattern classification method that allows us to
achieve very high classification accuracy on challenging databases with different modali-

ties. The rest of this chapter is organized as follows. In the first section of this chapter,

1



we show the motivation for our discussed problem. Then, in the second section, we review
some other standard deterministic tensor decomposition algorithms and discuss their limi-
tations. The third section then shows our contributions in this thesis. Finally, we summary

the thesis organization and the notations used within this thesis in the last sections.

1.1 Motivation

Dimensionality reduction is the process of reducing the number of variables or dimensions
from a given high-dimensional data into a low-dimensional one. Since a digital image is
a numeric representation of high-dimensional pixel values, it therefore can be analyzed
efficiently via dimensionality reduction approaches. In addition, these methods can also
remove unnecessary components and only keep the critical features in the analyzed data.
There are numerous dimensionality reduction methods listed in this area, to name a few,
Principal Component Analysis (PCA) [55, 105], Linear Discriminant Analysis (LDA) [8],
Unsupervised Discriminant Projection (UDP) [121], Isomap [102], Locally Linear Em-
bedding (LLE) [89, 91], Laplacian Eigenmaps [9], Neighborhood Preserving Embedding
(NPE) [50], Linearity Preserving Projection (LPP) [51], etc. Figure 1.1 shows some exam-
ples of the dimensionality reduction methods mentioned above.

In the real world, however, data analyzed usually exists under the combination of nu-
merous factors, particularly for facial images. Those facial images vary significantly due
to numerous factors such as pose, illumination or subject identity [10, 70]. In addition, if
soft-biometrics information is being studied, the use of facial images can also provide age,
gender and ethnicity information of the given subjects. Therefore, in facial image analysis,
dimensionality reduction approaches not only aim to reduce the number of dimensions of
given high-dimensional data, but to also study the relationships among the different factors.
For example, in the soft-biometrics problem [118], i.e., determination of age, gender and

ethnicity of a subject in a given image, the method has to have the ability to extract the age

2
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Figure 1.1: Dimensionality reduction with various approaches [106, 107]: (A) Original
data distribution in 3 dimensions, (B) Principal Component Analysis, (C) Kernel PCA,
(D) Linear Discriminant Analysis, (E) Isomap, (F) Locally Linear Embedding, (G) Lapla-
cian Eigenmaps, (H) Neighborhood Preserving Embedding and (K) Linearity Preserving
Projection.

information regardless of gender and ethnicity factors. Figure 1.2 shows the drawbacks
of a commercial face recognition system that doesn’t consider the relationships among the
factors [2]. The face matching scores of two given subjects are dramatically dropped under
different lighting conditions in the probe images.

Although the topic of multiple factor analysis and tensor decompositions has been stud-
ied actively for the past four decades in applied mathematics area, i.e. decompositions in
data arrays [58, 104], it is still a rather new topic in image analysis and computer vision
[40, 43,47, 63, 67, 81, 108]. However, these methods are still very limited in representing
data structures and are also unable to handle multi-dimensional data with missing values.

With the recent fast development of compressed sensing techniques, there is a need to



(A) (B)

Figure 1.2: An example to show how face matching scores fall dramatically due to lighting
variations when a commercial Face Recognition system [2] is used. (A): Gallery facial
images, (B): Probe facial images. The numbers are the matching scores produced by the
commercial Face Recognition system [2].

develop a new multiple factor analysis approach that can benefit from the efficiency of
compressed sensing. Therefore, this thesis proposes a novel method for dimensionality
reduction based on multiple factor analysis and applies this method to the problem of face

recognition.

1.2 Multiple Factor Analysis

As discussed in Section 1.1, multifactor analysis plays an important role in data analysis
since most real-world datasets usually exist with a combination of various factors. These
factors are not independent but inferdependent. In other words, relationships always exist
among analyzing factors in real-world datasets. Therefore, it is not a good idea if a face
recognition system focuses on only the subject identification factor and disregards all the
other factors [127]. For example, given facial images as shown in Figure 1.3, several factors
can be extracted, such as subject identity, illumination and pose conditions. There are some
recent studies [4, 97] showing that recognition accuracies of face recognition systems are
strongly affected by extrinsic factors, e.g. head pose [85], lighting condition [10], and

intrinsic factors, e.g. facial aging [119], facial expressions. However, according to the
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surveys in [4, 97, 127], there is no quantified approach to analyze relationships among
these factors in order to decompose the subject factor from other factors so that it can be

used effectively in face recognition engines.

One of the leading multilinear analysis approaches is Multilinear Principal Component
Analysis (MPCA), or Tensorfaces [108, 110]. This method was based on multilinear alge-
bra to present relationships among factors of given data. Figure 1.3 shows an example of
multifactor representation on the Extended Yale-B database. There are three subjects, each
with nine poses and 64 lighting conditions chosen in this example. Figure (A) presents
the distribution of the first two principal components. Meanwhile figure (B) shows the dis-
tribution of 64 lighting conditions of the first subject. Finally, figure (C) shows the facial

images of the first subject across 11 lighting conditions and nine different poses.

The heart of Multilinear Principal Component Analysis is to use Principal Component
Analysis (PCA) [105] and Higher-order Singular Value Decomposition (HOSVD) [62] in

order to decompose a given tensor. Sun et al. [100] presented the High Order Orthogo-

Figure 1.3: Multi-factors in the Extended Yale-B DB: (A) Distribution of the first two prin-
cipal components trained on first three subjects with nine poses and 64 lighting conditions,
(B) Distribution of 64 lighting conditions of the first subject, (C) Facial images of the first
subject across 11 lighting conditions and nine different poses.
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Figure 1.4: Multifactor data presented in Tensor form (left) and the corresponding elemen-
tary Tensor projection (right).

nal Iteration (HOOI) to generalize the ideas of Higher-order SVD. Generalized Low Rank
Approximation (GLRAM) [64, 123] proceeds the alternative projection to find the optimal
projection matrices. Recently, instead of dealing with multilinear approaches, researchers
have proposed nonlinear geometrical structures created by multiple factors. Vasilescu and
Terzopoulos [108, 109] presented a kernel based MPCA to analyze these nonlinear struc-
tures. To fit the manifold structures, created by the variations of body posture and viewpoint
in the motion image space, Park and Savvides solved the multifactor analysis using mani-
fold learning algorithms [79]. Pang et al. [77] presented an ¢;-norm tensor to solve outliers

but their method can easily fail in a local minimum.

1.3 Thesis Contributions

Although widely used, Multilinear Principal Component Analysis still suffers from three
major drawbacks. Firstly, it is known that MPCA cannot work on data with missing values,
as shown in Figure 1.5. It is also unable to perform well on noisy data or data with outliers.
Secondly, since MPCA deals with high multi-dimensional datasets, it is usually compu-
tationally expensive. Therefore, it is hard to employ it in practical applications. Finally,
MPCA normally loses the original local geometry structures due to the averaging process.

Park and Savvides [78, 80] detailed this limitation and presented a Submanifold Preserving

6



|
(A) (B)

Figure 1.5: (A) Tensor with missing values and (B) the tensor and multifactor flattening
process

Multifactor Analysis (SPMA) to keep the factor dependent geometry. The submanifold
coordinate is aligned using Procrustes analysis [45] and employs the mean shape as the
reference. However, their method is unable to deal with missing values and doesn’t allow

for high accuracy in local alignment.

This thesis presents a novel approach named Compressed Submanifold Multifactor
Analysis (CSMA) to solve the three mentioned problems. Firstly, instead of using the
traditional Singular Value Decomposition (SVD), which is unable to deal with input data
containing missing values and outliers, a novel Singular Value Decomposition solving via
¢1-norm (SVD-/;) multifactor approach is proposed to decompose factors in given tensors.
Our proposed approach can therefore avoid the distortion of outliers efficiently. Secondly,
Random Projections (RP) are employed to reduce the number of dimensions of input data
in order to reduce the computational time. The theories behind Random Projection in ma-
trix decomposition are also provided to guarantee that it is able to preserve the properties
of the compressed multifactor data. Finally, in order to avoid distortions of multifactor

structures, a robust local alignment approach is employed to prevent the averaging process.

In addition, this thesis also proposes a novel approach named Sparse Class-dependent
Feature Analysis (SCFA), to combine the advantages of sparse representation in an over-

complete dictionary, with a powerful nonlinear classifier. The classifier is based on the

7



estimation of class-specific optimal filters, by solving an /;-norm optimization problem.
We show how this problem is solved using the Alternating Direction Method of Multipliers
(ADMM) and also explore relevant convergence details. Our method as well as its Repro-
ducing Kernel Hilbert Space (RKHS) version is tolerant to the presence of noise and other
variations in the image. This method achieves very high classification accuracies when

applied to the problems of face recognition and object classification.

1.4 Thesis Organization

In chapter 1, we present the motivation for our work, a brief introduction of multiple factor
analysis, and our main contributions in this thesis. The remainder of this thesis is organized
as follows. Chapter 2 provides background and reviews previous multifactor analysis and
tensor methods. In chapter 3, we revisit the area of Compressed Sensing, one of the hot
topics in applied mathematics and computer sciences nowadays. The null-space condition,
uniqueness and restricted isometry property (RIP) are discussed in detail. In addition, the
¢,-norm minimization theories that are of great importance to this thesis are also reviewed
carefully. In chapter 4, we present our novel Compressed Submanifold Multifactor Anal-
ysis approach that is able to deal with multifactor datasets containing noisy and missing
values. Our approach allows the representation of data in a compressed form, while still
preserving data structures. We present our SVD-¢; multifactor decomposition approach
to deal with multifactor datasets that contain missing data and outliers. The method bor-
rowed from recent state-of-the-art ideas in /;-norm formulation is then solved by using
Alternative Direction Method of Multipliers optimization method. In chapter 5, we present
our novel pattern classification approach, named Sparse Class-dependent Feature Analysis,
to combine the advantages of sparse representation in an overcomplete dictionary, with a
powerful nonlinear classifier. In order to evaluate our proposed methods, a number of ex-

periments are conducted and are described in detail in chapter 6. In these experiments, our
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methods show improvement in both efficiency in dealing with missing data as well as in
classification results. Finally, we provide some conclusions and scope for future work in

chapter 7.

1.5 Notation

In this thesis, boldface lowercase letters represent vectors, e.g. X, and boldface uppercase
letters denote matrices, e.g. X. Higher-order tensors or multidimensional data are denoted
by calligraphic uppercase letters, e.g. X. Given a matrix X, X' is the transpose of X.
Meanwhile, ¢, denotes the (>-norm of a vector, i.e. Vx € R",[|x]. = (31, 27)Y/2, 4
denotes the ¢;-norm of a vector, i.e. Vx € R™, [|x||; = > 7", |2;]. In a number of studies, it
is shown that /; norm gives much sparser solution than ¢, norm [30, 35]. The trace-norm

of a given matrix X, denoted by ||X||., is computed by the sum of the singular values of X.

Finally, < X, Y > denotes the trace of X'Y.
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Chapter 2

Literature Review

One of the first studies related to tensors and multifactor analysis was carried out by Hitch-
cock in 1927 [52]. In his work, a tensor was presented as a combination of a specific
number of rank-one tensors. Cattell [23] proposed new concepts to analyze multiple axes
and parallel proportional representations in 1944. Based on these concepts, Carroll et al.
[22] developed a method named Canonical Decomposition (CANDECOMP) in 1970 that
was widely used among the researchers in the community of psychometrics in 1970. Dur-
ing this period, another popular method for tensor decomposition, named PARAFAC [48],
was also introduced by Harshman. CANDECOMP and PARAFAC are the state-of-the-art
tensor decomposition methods that have been applied successfully in numerous areas, es-
pecially in the field of brain imaging where they were called the topographic components
model [48]. In 1963, another well-known method, Tucker decomposition, was introduced
[103]. During its development, the method has been called by many different names, such
as three-mode PCA [60], N-mode PCA [56], Higher-order SVD [62], N-mode SVD [110]
and three-mode factor analysis [103]. This method has been applied successfully in a num-
ber of fields, i.e. computer vision, data mining, graph analysis, signal processing, numerical
analysis, numerical linear algebra, neuroscience and especially psychometrics and chemo-

metrics [58, 67]. While PARAFAC and the Tucker decomposition methods are fruitful
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for certain dense and structured tensors, they are still limited when applied to large-scale
and sparse tensors. Hence, Savas and Elden presented Krylov-type methods for tensor
decomposition and low-rank approximations in large-scale and sparse data [92]. Several
Krylov-type procedures have been subsequently introduced that generalize matrix Krylov
methods for tensor computations. The words “multifactor” and “tensor” are used inter-
changeably with the same meaning in this thesis. A detailed review of tensor methods can
be found in [58, 67].

The rest of this chapter is organized as follows. First, we review the preliminaries of
multifactor analysis and higher-order tensor decompositions. We then review two main
fundamental tensor decomposition methods, i.e. PARAFAC and Tucker decomposition

before showing the limitations of these fundamental tensor decomposition methods.

2.1 Mutifactor Analysis Preliminaries

A tensor or a multifactor model can be represented as a multi-dimensional or /NV-way array,
1.e. X € Rmxnm2x-xnn ]n other words, as defined in [58], an /Nth-order tensor is a result
of the tensor product of N vector spaces defined in their own coordinate system. Figure
2.1 shows an example of a third-order tensor (N = 3). Noticeably, when N > 3, the visual

representation of that higher-order tensor will become more complicated. Decompositions

Tensor

Mode-1 —
. 1 .

n, —=

Elementary
V. .‘x x U U xauT;
]
>“Mode-3
Mode-2 N,

Figure 2.1: An example of a third-order tensor (N = 3), X € R *n2xns
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Figure 2.2: Examples of tensor fibers and tensor slices: (A) Mode-1 tensor fibers z. ; ., (B)
Mode-2 tensor fibers x; . ,, (C) Horizontal slices X; . .

of higher-order tensors have become one of the interesting topics among applied mathe-
maticians for decades [3]. Compared to matrices, higher-order tensors have a couple of
differences and are more complicated in definition and representation. In this section, we
review the preliminaries of tensors and provide details on the associated notation used in

this thesis.

2.1.1 Tensor Terminologies

Tensor Modes

The modes of a given tensor X € R™*"2*:*"~ are the number of different dimensions N
of that tensor. They are also called “orders” or “ways” in a number of published articles.
Using this definition, matrices can be simply considered as tensors with a mode of two.
Higher-order tensors, i.e. third-order or higher, are denoted by boldface Euler script letters
as defined in section 1.5. The element (i1, 2, %3) of a third-order tensor X" is denoted by
Xi,,isis- Figure 2.1 shows an example of a tensor with a mode of three (N = 3). Most of
tensors defined in this thesis are denoted in a restricted sense, i.e. a three-dimensional array

of real values, X € R"™*"2*"3 where the vector space is equipped with some algebraic

structures to be defined.
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Tensor Fibers

Given an Nth-order tensor X € R"™*"2**"~ jts tensor fibers can be computed by keep-

ing its all tensor indices except one, i.e. X X; o X

5,22,13,.. 4N 2

,,.-Figures

155508, 0IN D o 1,825, IN —

2.2 (A) and (B) show two examples of mode-1 and mode-2 tensor fibers of a third-order
tensor. When computed from a given tensor, fibers are always considered as column vec-

tors.

Tensor Slices

Tensor slices have almost similar properties as tensor fibers except that they involve releas-
ing two factors instead of one. Given an /NV-order tensor X' € R *"2* X"~ /it tensor slices

can be computed by keeping its all tensor indices except two, i.e. X. X;

BRETN N 155584, UN 2

cos Xt o, iy, Figure 2.2 (C) shows the horizontal tensor slides of a third-order tensor

X, denoted by X, ... Alternatively, the i3-th frontal slice of a third-order tensor, X. . ;,, may

be denoted more compactly as X;,.

2.1.2 Tensor Inner Product and Tensor Norm

Tensor Inner Product

Given two higher-order tensors X and )) with the same dimensions, i.e. X', ) € R *"2X >N

the tensor inner product is computed as in Eqn. (2.1).

ny n2 nN
(X,)) = Z Z Z X1 izynsinYinin,oin 2.1)
i1 19 iN
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Tensor Norm

Based on the definition of tensor inner product, the tensor norm or the Frobenius norm of

atensor X € R *"2X*"N jg simply defined as in Eqn. (2.2).

ni n2

1] p = (2,202 = (D> wa, inXivin,in) (2.2)

i1 72

Similar to the property in matrices, multilinear multiplication by orthogonal matrices does
not change the Euclidean length of the corresponding fibres of the tensor. Therefore, the
tensor norm is invariant to any orthogonal transformation. For example, given a set of
orthogonal matrices, i.e. Uy, Us, Us, V1, V5, and V3, the following property in tensors has
been proven:

|X]|F = [[(U1, Uz, U3).X||p = || X.(V1, V2, V3) || (2.3)

2.1.3 Rank-One Tensor

Given an Nth-order tensor X' € R™ *"2**"~ it is called rank-one tensor if and only if it

can be represented as the outer product of /V vectors as in Eqn. (2.4).
X 2 v oy oy® (2.4)

where “o”denotes the outer product of vectors. In other words, each element of the tensor

X is the product of the corresponding vector elements, as defined below:

2 yOy® v e (1, ny (2.5)

Xi17i27---7iN 11 12 ’LN ?

Figure 2.3 shows an example of a third-order tensor that satisfies rank-one property.
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Figure 2.3: An example of tensor representation: the third-order tensor X is presented
under the outer product of three vectors v(!), v(2) and v(3).
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2.1.4 Tensor Rank

Given an Nth-order tensor X' € R™*"2**"~ jts rank, denoted by rank(X), is defined
as the smallest number of rank-one tensors whose sum can generate the tensor X'. Rank
computation in tensors are much more complicated than the one in matrices. Given a
random tensor, there is no straightforward method to determine the rank of that tensor since
itis an NP-hard problem [49]. In practice, in order to determine the rank of a given tensor, it
is usual to numerically fit various rank- /& components, as is done in the PARAFAC method,

discussed in section 2.2.

2.1.5 Tensor Flattening

Given an Nth-order tensor X € R™*™2*--*"~ jts flattening, also called tensor unfold-
ing or tensor matricization, is a technique to reorder the elements of its /NVth-order tensor
into a matrix. It is clear that the tensor X can be flattened along its different modes. De-
tails on tensor flattening methods can be found in Kolda et al. [58]. In our work, we
are only interested in mode-n flattening. The mode-n flattening of an Nth-order tensor
X € Rrmxm2x-xnn jg denoted by X, that arranges the mode-n fibers to be the columns
of the resulting matrix. Figure 2.4 shows an example of how a 2 x 3 x 2 tensor can be

flattened into three mode-3 unfolding matrices, i.e. X(1), X(2) and X3).
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Tensor X(Q)
2x3x2

Figure 2.4: An example of tensor flattening. Given a third-order tensor X € R?*3*2 it can
be flattened in mode-3 into three unfolding matrices X1y € R****?, X(5), and X3).

2.1.6 n-Mode Product

The n-mode matrix product denotes the multiplication of a tensor by a matrix or a vector
in mode n. Given an Nth-order tensor X € R™*"2**"N and a matrix Y € R "*, their
k-mode product, which is denoted by (X % Y), can be computed as follows:

Nk

(X Xk Y) iy = O KivsinoinY jin (2.6)

=1
It is to be noted that in our work, we only consider the multiplication of a tensor by a
matrix. However, tensors can be also multiplied together. In that case, their notation and

computation will be more complicated. [58] provides details on tensor multiplication.

2.1.7 Matrix Kronecker, Khatri-Rao and Hadamard Products

In this section, we review several important types of products, including the Kronecker
product, the Khatri-Rao product, and the Hadamard product. These matrix product methods

are used widely in our thesis.
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Kronecker Product

Given two matrices X € R"™*™ and' Y € R™2*"2, their Kronecker product K € R (m1m2)x(n1ng)

which is denoted by X ® Y, can be computed as follows:

ZL‘ljlY xLQY J]LnlY
x271Y .I'Q’QY xZ,nlY

K=X®Y = 2.7)
Ty 1Y Ty 2Y o Ty, Y

(m1m2) X (nlng)
Khatri-Rao Product

Given two matrices X € R™*"and Y € R"™2*", their Khatri-Rao product R € R(mima)xn

which is denoted by X © Y, can be computed as follows:

R=XOY =[x @YX O X DV, (2.8)

where x; and y, are columns of X and Y respectively. In other words, the Khatri-Rao
product can be considered as the Kronecker product of the matching columns of X and Y.

When x and y are vectors, the Kronecker and Khatri-Rao products are identical.

Hadamard Product

Given two matrices X and Y € R™*", their Hadamard product H € R™*", which is

denoted by X *x Y, can be computed as follows:

T11Y11 T12U12 -~ TiaYin
T21Y2,1 X22Y22 .. T2nY2n

H=XxY = (2.9)
Tmi1Ym,1 Tm2Ym2 - TmnYmn

mxn

Again, [58] provides more details on these products and their useful properties.
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Figure 2.5: An example of PARAFAC tensor decomposition, a tensor X is approximated
by a sum of K" components of rank-one tensors.

2.2 PARAFAC Decomposition

The PARAFAC decomposition method factorizes a tensor into a sum of component rank-
one tensors. Given a third-order tensor X € R™*"2*"3 and a redefined positive integer K,

the PARAFAC decomposition can be calculated as follows:
K
X ~ fo}) ox? ox® (2.10)
r=1

where x\" € R™, x? € R™ and x\¥) € R™ r =1,..., K. When denoted in element-wise

form, Eqn. (2.10) can be rewritten as follows:
K
Xi gk = ZXZ(}T)XE?X](::Z,VZ = ]., ,’n,l,j = ]., ceey N9; k= ]., .y n3. (211)
r=1

Generally, the PARAFAC decomposition of an Nth-order tensor A can be simply found

using the Alternative Least Square (ALS) method as follows:
min || X — X|| (2.12)
X
where X is calculated as given in Eqn. (2.10):

X =3 AxMo ox™ =\ xM X XM (2.13)



Algorithm 1 PARAFAC Decomposition Method [58]
Input: Tensor X number K
Output: ), X ,Vi=1,..,N
Initialize X IR”ZXK Vz =1,.,N
repeat
forVn e [ 1..N] do
Ve XWTXD g XOmDTX (=D X (DT (D) g XV T V)
X A (X ) ® .. oXMH oX D 6 o XW)yf
normalize columns of X(”), norms are named as \
end for
until fit ceases to improve or maximum iterations exhausted

In order to find X*), the Alternative Least Square approach fixes all XV, Vi # k. The
procedure is repeated until some convergence criterion is satisfied. Assuming we want to

solve for X!, then the minimization problem can be defined as follows,

min Xy XX XD 6 Lo XYk (2.14)
where )N((l) = X® diag(\). Then, we can find the optimal solution to the problem (2.14)
as follows:

~(1
X" = X (XM 0 XD 6 o X))t (2.15)

Due to the pseudoinverse property of the Khatri-Rao product, Eqn. (2.15) can be written as
follows:
XY = Xy (XM @ o XO)XMTXD) 45 XOTX)f (2.16)
Algorithm (1) shows the pseudocode of the PARAFAC decomposition algorithm. This
method is simple to understand and implement. However, it is easy to see that there are two
limitations to this method. Firstly, it is assumed that the number of component rank-one
tensors /K has to be given. Secondly, The solution is not guaranteed to converge to a global
minimum. In addition, the final solution is also heavily dependent on the starting guess.

Figure 2.5 shows an example of how the FARAFAC tensor decomposition method works.
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Figure 2.6: An example of Tucker decomposition, a tensor X' € R *"2*"3 ig approximated
by a combination of a core tensor Z € R™*™2*™3 and three factor matrices, i.e. V; €
Rnlxml, Vg € R™2*m2 gnd V3 € Rmsxms,

Algorithm 2 HOSVD Decomposition Method [58, 62]
Input: Tensor X
Output: 2, X9 Vi=1,..,N
forVn € [1..N] do
X « R, leading left singular vectors of Xn)
end for
Z e X x XOT 5y XOT sy XIT

2.3 Tucker Decomposition

Given an Nth-order tensor X € R™ *"2*-*"~ the Tucker decomposition factorizes it into
a core tensor Z € R™*™m2>xm~N multiplied by a matrix V; € R™*™ along each mode .

Mathematically, the Tucker decomposition can be represented as follows:

,,,,,

Q1o s N

Notice that these factor matrices are usually orthogonal. The Tucker decomposition
became more popular after the publication of the Higher-order SVD method, that was pro-
posed by Lathauwer [62]. The HOSVD decomposition method is summarized by Algo-
rithm (2).
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Figure 2.7: An example to show the decomposition process of the classical Singular Value
Decomposition method. Given a matrix A of size d x n, the SVD method will decompose
A into two orthonormal matrices U and V, and a diagonal matrix ..

2.4 Higher-order SVD (HOSVD)

Multilinear PCA is an extension of Principal Component Analysis to multi-factor frame-
works, where SVD is at the heart of the decomposition process. This section first reviews

the traditional computation of SVD and then discusses its limitations.

2.4.1 Singular Value Decomposition (SVD)

Given n training images, each with d pixels, denoted by a 2D matrix X € R?*", a pair of

singular vectorsu € R% and v € R"™ of X can be computed using Eqn. (2.18).
Xv=Xu and u'X=)\v' (2.18)

where A € R is the corresponding singular value. Generally, X can be reformulated [55]
as shown below:

X=> Auv] or X=USV' (2.19)
=1

where r denotes the rank of X, » < min(d,n) and u; € R? and v; € R” are orthonormal,
where each has the length of 1 and every pair is orthogonal,i.e. U'U=TIand V'V =1 &
is a diagonal matrix containing the square root of the eigenvalues of U or V in descending
order. Each (u;, v;) pair forms a pair of left and right singular vectors with singular value
Ai > 0, where A\, > A1, VEk € [1,r — 1]. Tt follows that each u; is an eigenvector of

XX and each v; is an eigenvector of X' X, and the corresponding eigenvalues are A\?. In
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Figure 2.8: An example to show the decomposition process of the Higher-order SVD
method. Given a third-order tensor X', HOSVD method will decompose it into three matri-
ces V1, Vs and V3, the core tensor Z and the matrix U that satisfy the HOSVD condition.

order to find the top singular vectors, the unit vector v; that maximizes ||Xv|| will be first
computed and then u; is found from that. Generally, to compute the complete SVD, we
first find wy, v; and ;. Then we iteratively employ this on the matrix (X — /\1111V1T). In

other words, a rank-1 matrix is subtracted at each iteration.

2.4.2 Higher-Order SVD (HOSVD)

Higher-Order SVD [62] is a multilinear generalization of Singular Value Decomposition.
Given an Nth-order tensor X, HOSVD can decompose it into a core tensor Z and N
orthogonal matrices, i.e. a matrix U for pixel values and N matrices V; to represent N
factors. Without lost of generality, assume that n = 3. Thus, a tensor X' € R&*n1xn2xns

can be decomposed using HOSVD as follows:

X=Zx;U" xu V] x3V] x4 VJ (2.20)

where X, is the k-mode matrix product of a tensor, as defined in Section 2.1.6. Figure 2.9

(top) shows an example of the HOSVD decomposition. In Multilinear PCA, HOSVD is
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Figure 2.9: Higher-order SVD is a multilinear generalization of the SVD. In HOSVD, the
third-order tensor X’ is decomposed into one core tensor Z and three orthogonal matrices:
matrix U (pixels), factor V; (subjects), and factor V5 (lighting). The columns of each or-
thogonal matrix form the basis of each of the three vector spaces of a tensor X'. In MPCA,
HOSVD is reformulated in terms of matrices, instead of tensors, using the Kronecker prod-
uct. In MPCA, the first three images of subject 1 are represented on the first column V] of
V!, while the next three images of subject 2 depend on the second column V7 of V. The
same representation is used for 3 lighting conditions V, . Note that U is identical to the
matrix U in PCA.

reformulated in terms of matrices, instead of tensors, using the Kronecker product. The

equivalent form of Eqn. (2.20) in MPCA can be presented as follows,

X=UZV,®V,;®V3)" (2.21)

where @ denotes the Kronecker product (defined in section 2.1.7). U is identical to the
matrix U in Eqn. (2.19). A matrix Z results from the pixel-mode flattening of a core tensor
presented in [108]. V is the right singular vector matrix of the flatten tensor X along the

factor k. From Eqn. (2.21), Z can be derived as follows,

Z=U'X(V,;®V,®V,) (2.22)

Figure 2.9 (bottom) shows how Multilinear PCA decomposition can be carried out.
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Chapter 3

Compressed Sensing Revisited

3.1 Sensing Method

The revolutionary fields of compressed sensing and sparse signal approximation have been
rapidly developed during this decade [6, 16, 18, 19, 20, 21, 29, 87]. Alongside the ac-
celerated growth in numerous applications, such as: medical image processing [68, 69],
single-pixel imaging [32], face recognition systems [113, 114], etc., the theories of sparse
and compressible signal representation have been fully enriched by many researchers in
this field [16, 19, 87]. Compressed sensing [88, 101] is defined as a signal acquisition
paradigm that allows recovering estimates of compressible and sparse signals from high
ambient dimensions /N using linear measurements )/ with much fewer dimensions (i.e.,
M < N). Therefore, the protocol in compressed sensing aims to directly acquire only
important information from a given signal. This approach has the ability to acquire and

recover signals in the most efficient way possible and avoid a data deluge.

3.1.1 Motivation

The motivation for compressed sensing can be envisioned by considering the following

problem. Given a matrix ® of size M x N, where M < N, and a signal y € RM, the
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question that arises is if there exists a sparse vector x such that y ~ ®x or not. In other
words, we want to find a sparse vector or a set of sparse coefficients x so that the signal y
can be approximated by projecting this sparse vector x onto the given dictionary ®. The
sparsity in this case is measured by counting the number of non-zero entries in a given
vector, i.e., ||x||¢, = number of non-zero entries in X, = > . I(x; # 0). It is clear that the
number of non-zero entries in x has to be smaller or equal to M at most. The matrix ® is
also called a dictionary or overcomplete dictionary or frame in some contexts. From these
definitions, the problem can be redefined as a problem of finding the sparsest vector x that
satisfies the linear system y = ®x. In the optimization framework, the problem can be

denoted as shown in Eqn. (3.1).
P(0) : min [|x]|¢, subject to 'y = ®x 3.1)

There are three important questions regarding Eqn. 3.1 that need to be answered that have
resulted in three key research topics in compressed sensing [90]. Firstly, when is the solu-
tion to P(0), as shown in Eqn. (3.1), unique? Secondly, what are the most efficient ways
to solve for P(0)? Finally, given a training data set X = X;, Xo, ..., X,y, how can we learn a

dictionary ® so that it can support sparse representations on the training data set X?

There are many variants of P(0) in the definition of the Eqn. (3.1). They are listed in

the following equations:

mxin I1X]] ¢ subjectto 'y = ®x (3.2a)
mxin I1X]] ¢ subjectto |y — ®x|| < e (3.2b)
min ly — ®x|| subjectto  ||x||g, < K (3.2¢)
min [ly — ®x||* + 7%x]ls, (3.2d)

where € denotes the reconstruction error permitted by the system, / is the maximum
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number of non-zero entries allowed in reconstructed signals, 7 is a trade-off parameter
between sparsity and reconstruction fidelity. It must be noted that if the support set €2
is given in the solution to P(0), then the problem reduces to that of a simple feasibility
problem, i.e. y € R(®gq), as in numerous well-known problems such Matching Pursuit
(MP) [11, 74], Orthogonal Matching Pursuit (OMP) [83], etc. However, it is very hard to
find the support set €2 in practical applications. One approach is to enumerate all possible
supports, and then pick the the smallest one that leads to a feasible solution. This method,
however, is a combinatorial and exponential time algorithm, since P(0) is reducible to an
NP-complete problem. In a general case, this problem cannot be solved in polynomial
time. However, a fast solution may exist in some special cases of signals. In this section,

we discuss when signals can be recovered.

3.1.2 Null-space Condition

Given a matrix ® € RM*Y | the null-space of the matrix ® is defined as follows:

N(®)=a:Pa=0. (3.3)

From this definition, it can be concluded that for any two distinct sparse signals x and
x' that need to be recovered, where x,x' € X, the following constraint holds: x # Xx'.
This is because it is impossible to find two different vectors x and x’ from the same given
measurement y and the same dictionary ® as in Eqn. (3.1) with the constraint of x = x'.
Assume that ®x = ®x’. Then we have &x—®x’ = 0 or &(x—x') = 0, where (x—x') € 3.
From this condition, the signal x can be uniquely recovered from dictionary @ if and only
if there doesn’t exist any vector in Yo in the null-space N(®). In compressed sensing,
the spark property is one of the most common method used to evaluate this condition. The
spark computation will be discussed in detail in section 3.1.3. The fundamental idea in this

section is that sparse vectors in the null-space of the matrix have to limit uniqueness. Such
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conditions are referred to as null-space conditions.

Given a matrix ® € RM*Y, assume that these exists a vector n € N(®) such that
Inlle, < 2K. Let €2 be the support set, 2 = supp(n). Now, we can construct a K -sparse
vector X, such that supp(x) = A C €, and x5 = 1. Giveny = ®x, both x and (x — 7)) are

in the solution set, furthermore ||x — 7n|¢, < |IX||¢,-

3.1.3 Spark

Definition of Spark [35]. The spark of a matrix ® = (¢, P, ..., Py |, d; € RM is defined
as the smallest set of linearly dependent columns.

The definition of Spark(®) is contrast to the one of Rank(®) defined as the largest set
of linearly independent columns. From the spark definition, the following condition can be
deduced:

2 < Spark(®) < Rank(®)+1=M+1 (3.4

In practice, dictionaries are typically full-rank and overcomplete, with M/ < N. Matrices
whose entries are independent and identically distributed (i.i.d.) sampled from random
distributions typically have Spark(®) = M + 1. Given a random square matrix ® of size

M x M, such as Gaussian ones, it is almost surely non-singular.

Lemma (Null-space and Spark Constraint) [35]. Ifn € N(®), then

Imlle, = Spark(®)

Proof. Assume that In € N(®), and we have ||n||;, < Spark(®).
Then, let Q = supp(n) = i|n; # 0.
It is to be noted that |Q2| = |[n||,, < Spark(®).

Therefore, the columns of ® corresponding to indices in €2 are linearly dependent.
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Hence, Spark(®) < || = ||n||y, < Spark(®). This is a contradiction and therefore

the lemma is true. [

3.1.4 Uniqueness via Spark

Theorem (Gorodnitsky-Rao, 1997; Donoho-Elad, 2003). If a system'y = ®x has a

solution xo such that ||x||s, < Spark(®)/2, then xq is also the unique sparsest solution.

Proof. Recall from Lemma of null-space and spark constraint, that
If n € N(®) then ||n|,, > Spark(®).
Suppose 3xg, zo such that y = $xy = Pz, and ||zg||,, < ||X0]|¢,-
Then, since ®(zy — X¢) = 0, therefore (zy — X¢) is also in null-space, i.e. (zg — Xo) €

N (®). From the definition of spark, we have:

[%olle, + llzolle, > [Ix0 + 2Zolle, > spark(®).

This result contradicts clearly the theorem above, where ||x||, < Spark(®)/2. Therefore,

X 1s the unique sparsest solution. 0

However, spark usually cannot be computed in practice. It is immediately clear that
there are C'’ subset selections needed to be verified either Spark(®) < S or Spark(®) >
S. The computation of Spark(®) is a combinatorial problem. Its computation is quite
expensive. Therefore, we resort to coherence as a way to estimate, at least the lower bound,

the spark.

3.1.5 Coherence

Definition of Coherence [35]. Given a matrix ® = [¢p,, ¢, ..., ¢ ] with unit-norm columns
(|[@;]| = 1), its mutual coherence is defined as the largest absolute normalized inner prod-

uct between different columns in ®. Generally, the mutual coherence j1(®) is denoted as
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follows:

() = I<ig N i) m

The mutual-coherence y(®) measures how similar two elements of the given dictionary
®. In other words, it is a way to evaluate the dependence between columns in ®. When the
dictionary @ is unitary where all pairwise columns are orthogonal, then mutual-coherence
1(®) equals zero. In the regular cases of compressed sensing, where the dictionary ®
usually has more columns than rows, the mutual-coherence p(®) must be positive. In
addition, the smaller mutual-coherence 1(®) is, the better it is to support representations
with higher sparsity. Ideally, we always aim to achieve the smallest possible coherence in
a given very large dictionary. However, it is usually impossible in practice. The following

theorem shows the lower bound of the coherence ;. computed from a dictionary ®.

Theorem (Welsh, 1974; Strohmer-Heath, 2004). Given a general M x N full-rank dic-

tionary ®, where (M < N), the following condition always holds:

Proof. This theorem can be proved as follows:
Let G = ®' &, then it is clear that Rank(G) = M,
Let \; be the eigenvalues of G, where v = 1, ..., M.

Then, we have Zf\il Ai = Trace(G) = N. Apply {5 — ¢, norm equivalence, the

following condition is achieved:

IGI5 = DN = (3w VALY
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or

N?
G|%2 > —

It is to be noted that G;; = 1 and p(®) > |G, j.;«;/, then
2
N+ N(N-1)p2(®) > T
Therefore, p?(®) > AL O

M(N—1)"

3.1.6 Uniqueness via Coherence

Theorem [35). If a given systemy = ®x has a solution x, such that ||x||¢, < (1 + ﬁ),
then x is also the unique sparsest solution.

The bound of this condition has been determined to be (1 + 1/u(®)) < 1 + /M.
Meanwhile, as defined in section 3.1.3, Spark(®) < M + 1. Therefore, the difference
between (1+1/u(®)) and Spark(®) is usually very large. However, it is only the sufficient

condition and very pessimistic.

3.2 Measurement Matrices in Compressed Sensing

In compressed sensing, given a linear system defined as follows:
y=ox+e 3.5)

where x € R”Y denotes the unseen signal that the system is trying to recover. The signal
x is usually supposed to be sparse. However, in most practical applications, it will be
compressible or approximately sparse in a given transform basis such as wavelet, Hadamard
or random projection matrices. Meanwhile, vectory € R defines the measurement vector
that is usually available in practical applications. € € R™ denotes the measurement noise
that is typically modeled as bounded in energy or with a known statistical model such as

the Gaussian or Poisson distributions. The nature of these noises usually depends on a
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particular application. Finally ® € R**" denotes the measurement or the sensing matrix.
The design of ® plays a crucial role in the analysis of compressed sensing. In compressed
sensing problems, we are usually interested in the underdetermined problem where we
have fewer equations than unknowns which is clearly ill-posed, i.e. M < N. The problem
now is to study the possibility of reconstructing x with high accuracy. Assuming that the
observed system doesn’t have noise, then the reconstruction signal x* can be determined as
follows:

X" = arg min [|x|l;, subjectto Px =y (3.6)
xeRN

3.2.1 Optimal Measurement Matrices

In practice, most designed sensors are usually linear. Therefore, they are just instantiations
of the measurement matrix ¢. For example, the pinhole camera can be modeled as an
identity operator, i.e. each pixel directly observes the intensity level of light in a cone,
center on the pinhole, in the scene. The resolution of the camera and the camera geometry
determines the size of the cone.

When the measurement matrix ¢ is square with the sizes of M x M and invertible,

from Eqn. (3.5), the estimate of the solution can be found as in Eqn. (3.7).
x=0ly=x+dle (3.7)
And the error incurred by this estimate can be computed as in Eqn 3.8.
Ix — || = [[@ e[l < [|©7"][le]| (3.8)

Therefore, the key question in this section is that: what are good measurement matrices?.
Clearly, without any other constraints, we can arbitrarily increase the eigenvalues of @,
and the error will decrease to zero. Most applications introduce constraints that avoid such

naive solutions.
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® Bounded energy: ||| < B: common in applications where sensing is active, such

as: radar, sonar, X-ray, etc.

® Bounded entries: ®;; < 1 : in most passive sensors, the elements of the signal

cannot be amplified.

® Non-negativity and passive: 0 < ®; ; < 1: Light, in incoherent imaging regimes, is
non-negative. Hence, most applications involving light is restricted to have measure-

ment matrices that are non-negative.

® Toeplitz structure: in many applications, measurement involves convolution of a
pulse with the scene structure. In these cases, the measurement matrix is Toeplitz

as well as bounded in energy (energy is equal to that of the pulse send out), i.e. radar.

Suppose we look at matrices with |®; ;| < 1. Then, the error incurred by the estimator

x = &1y is lower bounded.

Ix — x| = [|2~"el| > [le]l/V'M (3.9)

Matrix constructions that achieve the lower bound are referred to as Hadamard matrices.
But Hadamard matrices are not known for all values of M. There are many constructions.
Of these, Sylvester’s construction is very famous, as it constructs for M = 29 and has a

fast transform.

If we restrict ourselves to matrices that are non-negative as well (0 < &, ; < 1), then

for an M x M matrix, ||x — x|| > 2]||e||/v/M + 1. A variant of the Hadamard matrices

called S-matrices almost achieve this.

In the underdetermined linear system, which is of interest to us. Our focus is solely on
the /1-norm minimization problem as applied to the linear system y = ®x + e. However, it
is impossible to extend the defined problem into non-sparse signals, i.e. X is not exactly K-
sparse, but at best well approximated by a /-sparse signal, in the presence of measurement

noise e.
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Given x” € RY, the K-sparse signal that best approximates x in /,-norm can be
computed as follows:

~0 . 0
X; = arg min |[x° —X 3.10
K ® Ixlok | o (3-10)

A solution can be easily found by selecting the top K -entries in magnitude of x, and re-
placing the other entries by zero. Note that this solution is potentially non-unique when
Xo has entries with equal magnitude. We can define the error in this K -sparse estimate as

o (x"), that can be computed as follows:

0 0 0 : 0
ok (X")p = [[X" = Xgll, = min [jx" —x, (3.11)
Ixllo<K

Note that, this is the least possible error when a non-sparse vector is approximated using
a K -sparse vector. This error is associated with a nonlinear estimator that has full access

to x°.

3.2.2 Null-Space Property (NSP)

Definition of NSP. Given a matrix ®, it is said to satisfy the null-space property (NSP) of
order K with constant 0 < v < 1, if Vn € N(®) and VA C {1,2,..., N} of cardinality K,

A=K,

ie,

Imaller < Ylimaclle

Note that, by definition this implies that there is no 2/ sparse vector that exists in the
null-space of ®. Therefore, the null-space property of order K implies that Spark(®) >
2K. Tt also implies that the sorted coefficients of the null-space vectors cannot decay

rapidly to zeros.
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3.2.3 Restricted Isometry Property (RIP)

In order to reconstruct the signal x* in Eqn. (3.6) with high accuracy, the measurement
matrix ¢ has to satisfy the Restricted Isometry Property (RIP) [17] which is defined as

follows.

Definition of RIP. The measurement matrix ® is said to satisfy RIP of order K with con-

stant 8 if and only if V||x||¢, < K, we have the following condition:

(1= 0r)llelle, < N1@x[lf, < (1+ o) [lxlz,-

In this definition, the lengths of all /K '-sparse vectors are approximately preserved. The
definition becomes meaningful when it satisfies three following conditions. Firstly, 6, has
to be smaller than one, i.e. dx < 1. Secondly, 05 < 1 implies that no vector in the
null-space N (®) is K-sparse. Therefore, if we have dx < 1, then we can conclude that
Spark(®) > K. Finally, if < 1, then ® is a one-to-one map on all //2-sparse vectors.

That is, no two K /2-sparse vector map to same point under action of ®.

Lemma of RIP. Let x, and x5 have disjoint supports. If ||x1||¢, = K1 and ||x2||s, = Ko,

and ® satisfies RIP of order Ky + Ko, then || Px1, Pxs|| < Ok, 1k, ||x1||]|x2]|-

Proof. The proof of this Lemma can be shown as follows:
Let x; and X, be unit-norm. Noting that x; + X, are (K + Kj)-sparse. Using the RIP

definition, we have:

2(1 = O iz) < @1 £ %2) 7 < 2(1 + Oy k)

Now,

(Px1, PXz) = ([|P(x1 + Xa)[|* — [|D(x1 — %2)[|*) /4
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Hence,

(Px1, Px2) < (2(1 + 0, 11,) — 2(1 = Ok, 1 K,)) /4 = Ok, 1K

Similarly,

(Px1, Px9) > (2(1 — Ok, 4x,) — 2(1 4+ 014 k,)) /4 = =K1+ K

3.2.4 From RIP to NSP

The constraint in the RIP condition is more powerful than the one in NSP. Given a matrix
®, if it satisfies the RIP condition, then it also satisfies the NSP condition. The relationship

between RIP and NSP is concisely shown by the following theorem.

Theorem (Candes, 2008) 1. If the measurement matrix ® satisfies RIP of order 2K, then

it also satisfies NSP of order K with

Voo

[ R

v

Proof. Letn € N(®). Let T be the support of largest K entries of 7, T the next K largest

entries, 75 the next set, and so on. Therefore, T are all disjoint.
(1= d20) [nzoum I < 1 @nmp0r |17

H¢77TOUT1 H2 = <(I)77TOUT1’ _(I)n(ToUTl)c>

= <(I)T]To + CI)UTN - Z (I)UTJ->

i>2
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= <CI)77T0 + (I)UTM - Z (I)nTj>

j>2

< Sarc(Imm |l + lm ) Nl

Jj=2

< \/§52KH77T0UT1H Z ”77Tj H

Jj=2
Note that each entry of 77, is less than or equal to any entry of 77,_,. Therefore, each entry
of 1z, is less than |17, , ||, /K. Therefore, |[nr,|| < |z, [le,/VE.

Since 7, and 77, are orthogonal, |9z, || + |77y || < V2||nzyur, || Hence, we obtain:

|‘(I)77T0UT1 ”2 < \/§52KH77T0UT1 H Z ”77ij1 Hl/\/?

Jj=2

< V20 [nmon nze 11/ VE

Putting it all together,

V205k

2 g

1y lley < VEnnlle < VE |nnon || <

3.2.5 Random Projections for Compression

Given N data points with high dimensions in an Euclidian space R¢, the random projec-
tion method allows embedding these points randomly in some low dimension, logarithmic
in N and independent of d, without distorting the pairwise squared distances between the
points by more than a factor of 1 4 ¢ (as shown in Figure 3.1). Unlike other regular di-
mensionality reduction methods that usually depend on the number of training samples
and their dimensionality, i.e. PCA [55, 105], LDA [8], LPP [51], etc., this method is still
able to reduce the dimensions of training data without having to worry about the number of

samples available. It has been considered as an efficient dimensionality reduction method
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Figure 3.1: Examples of RP for dimensionality reduction. (A) the first two eigenvectors
trained from all images of the first subject in the Extended Yale-B database, (B) the first
two eigenvectors trained from the images in (A) projected on RP subspace at 50% of the
original energy, (C) the first two eigenvectors trained from those images projected on RP
subspace at only 10% of the original energy.

in many papers [12, 54]. The idea of the random projection is detailed in the following

Johnson-Linderstrauss lemma [54].

Lemma (Johnson-Lindenstrauss) [54]. Given a set X of N points x1,Xs,....xy € R
and any scalar €, where € € (0, %), X is projected onto an uniform random k-dimensional

subspace where

9ln N

2 _ 2.3
€ 3€

k> +1=0(¢*InN)

Yu,v € X, the following property is achieved with probability at least %

(1= o)l = [ < llo@) — o) < (1 + ) Ju —»|

where ¢(u), ¢(v) are the projections of u, v, Lipschitz mapping from a high dimen-
sional space R? into a low dimensional one R¥. The proof of this lemma can be found in
[26]. More precisely, this lemma is deduced from another lemma on norm preservation,

described as follows:

Lemma (Norm preservation [35]). Let x € R? assume that all the entries of the random

matrix ® € R**? are sampled independent and identically distributed from a standard
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normal distribution N (0, 1/k), then the following property holds:

1
Pr((1—e)lx|* < ||ﬁ<1>x|!2 < (1+€)|x|?) > 1 — 2 (/4

From this lemma, it can be concluded that there is only a need of k = C/(e* — €*) in
order to guarantee the existence of a measurement matrix ¢ nearly isometric on x with a
positive probability. When C' large enough, there is a very small probability that the norm
preservation condition is violated. In practice, most of random Gaussian or Bernoulli ma-
trices with a considerable number of rows all satisfy the condition of norm preservation.
In addition, it has been observed that for random matrices with entries of random vari-
ables following the i.i.d sub-Gaussian distribution or any zero-mean random variable with
a bounded distribution, a random variable « satisfies Pr(|a| > T') = 0.

There is a strong relationship between the RIP condition and the Johnson-Lindenstrauss
lemma discussed above. Most random projection methods used to map data points from a
high dimensional space into a linear and distance preserving space are also able to generate
a matrix that satisfies the RIP condition. The following theorem shows the conditions

necessary for random matrices to satisfy RIP.

Theorem (Baraniuk et al., 2008). Let the entries of the random matrix ® € R**? be inde-
pendent and identically distributed sampled from a standard normal distribution N (0, 1/k).
If

k=Cs logg

then the random matrix ® is near-isometric with constant € on all s-sparse vectors with a
probability > 1 — e~ 2k,

This theorem can also be applied on s-sparse signals obtained from a transform ba-
sis, e.g. wavelet, Hadamard, etc. In addition, the RIP conditions can be violated with a

probability that exponentially reduces in s.
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Figure 3.2: Illustration of the solution z* in cases: A) {s-norm in 2D, B) ¢;-norm in 2D, C)
l9-norm in 3D and D) /;-norm in 3D.

3.3 Ep-norm Minimization

In this section, we review the intuition behind using the ¢;-norm in compressed sensing
problems. Generally, the /,-norm minimization problem defined in Eqn. (3.6) can be

defined as follows:

N

X" = arg min ||x||, subjectto 'y = Px (3.12)

Depending on an assigned value of p, we can find the solution in Eqn. (3.12) in different
ways. When p < 1, the equation is no longer a formal norm. Therefore, these cases will
not be considered in our problems. In this section, we will analyze this equation when p is

equal to zero, one, and two.
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3.3.1 /5-norm Minimization

When the value of p is assigned to two, p = 2, the Eqn. (3.12) becomes the Least Square

Error (LSE) or /5-norm |x||,, or ||x|| and is defined as follows:
x* £ arg min ||x||, subjectto 'y = dx (3.13)

or

N

x* £ argmin [[x||7,  subjectto y= dx (3.14)

The method of Lagrange multipliers can be applied to solve this problem. It is defined as
follows: [35]:
L(x) £ [|x]7, + A" (2x —y) (3.15)

where A\ is the Lagrange multipliers for the constraint set. Then, we take the derivative of

I'(x) with respect to x and set it to zero in order to find the optimal point:

O (x)
0x

=2+ AP =0 (3.16)

Then, the solution x* is computed as follows:

X = BT (3.17)
from Eqn. (3.14) and (3.17), we have:
y = ox* = —%@@TA (3.18)
Then, A can be found as follows:
A= 2007y (3.19)
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Finally, the solution x* can be found:

1
X = —§q>T>\ = o7 (poT) ly (3.20)
This is the closed-form pseudo-inverse solution. @ is known as a full-rank matrix for

solving a strictly convex problem. Using this form, we can easily find a unique solution.

3.3.2 /;-norm Minimization

When the value of p is assigned to one, p = 1, the Eqn. (3.12) becomes the ¢;-norm

problem that we are interested in:
x* £ argmin ||x|l,  subjectto y= ®x. (3.21)
where the ¢;-norm is defined as:

Ixfle, £ Ixil (3.22)

i
Eqgn. (3.21) is clearly convex but not strictly so. Additionally, it may have more than
one solution. It can be claimed that these solutions are gathered in a set that is bounded
and convex, and there always exists at least one with at most N non-zeros among these
solutions.

As discussed above, it can be claimed that /;-norm always gives a sparser solution than
ly-norm does. This idea is illustrated in Figure 3.2. Imagine that the constraint on the
subspace y = ®x is a two dimensional (2D) line in 2D cases or a plane in 3D cases. In
Figures 3.2.A and 3.2.C, the solution x* of ¢ norm is the intersection point between the
line (or the plane) and the circle (or the ball). In this case, the solution points x*(x1, z3) (or
X*(x1, za,,x3)), where x; # 0, are mostly valid. In other words, the solutions of ¢;-norm

are not frequently sparse. However, for the case /;-norm (Figures 3.2.B and 3.2.D), the
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solution points (or the intersection) x* usually stay on the axes. Therefore, there is at least
one value in 2D cases (or two values in 3D cases) with x; = 0. This provides some intuition
for why the solutions of /;-norm are always sparser than the ones from ¢,-norm.

There are numerous algorithms that pursue ¢; minimization, i.e. Orthogonal Matching
Pursuit (OMP), Gradient Projection [42, 83], Homotopy [30, 76], Iterative Thresholding
[116], Augmented Lagrangian [122], etc. One of the most fundamental and popular algo-

rithms is the Orthogonal Matching Pursuit which is presented in detail in [35].

3.3.3 /y-norm Minimization

When the value of p is assigned to zero, p = 0, the Eqn. (3.12) becomes the {y-norm

problem and defined as follows:
X" £ arg min [[x[ls,  subjectto y = Px (3.23)
where ||x||¢, is defined as follows:
Il 2 g I, =l 3~ = #6240 324

In this case, the sparsity of a given vector x can be simply calculated by counting the num-
ber of non-zeros entries intuitively. It can be seen that the /y-norm provides a very simple
and easily grasped notion of sparsity. However, it is not a practical solution, especially
when we need to solve a vector X in a very huge dimensional space.

Beyond conceptual issues of uniqueness and verification of solutions, one is easily
overwhelmed by the apparent difficulty of solving this problem. This is a classical prob-
lem of combinatorial search. One sweeps exhaustively through all possible sparse subsets,
generating corresponding subsystems y = ®gxg where ®g denotes the matrix having |S|
columns chosen from those columns of ¢ with indices in S and checking if y = ®sxg can

be solved. The complexity of the exhausted search is exponential in M, and indeed, it has
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been proven that ¢ is, in general, NP-Hard. Tao et al. [101] have proved that this {y-norm

problem can be replaced by the norm problem of ¢; which can be easy to find solution.
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Chapter 4

Compressed Submanifold Multilinear

Analysis (CSMA)

Multifactor analysis plays an important role in data analysis since most real-world datasets
usually exist under the combination of numerous factors which are usually not independent
but interdependent together. Multilinear Principal Component Analysis, or Tensorfaces
[108, 110] has been become one of the leading multilinear analysis methods since last
decade. The heart of Multilinear PCA is to use Principal Component Analysis and Higher-
order SVD to decompose factors from a given tensor [58, 62]. However, since this method
is developed from the regular multilinear algebra and the ¢s-norm Higher-order SVD to
construct the relationships among factors of given data, it is therefore impossible to deal
with missing values in the data. In addition, it is also very sensitive against noises usually
existed in practice. Finally, this method also has very expensive computation when deal-
ing with huge multi-dimensional data for dimensionality reduction and averaging factors
among submanifolds. In order to overcome these limitations, we propose a novel method
named Compressed Submanifold Multilinear Analysis (CSMA) that allows handling miss-
ing values. Given a tensor with missing values, our method is still able to decompose its

factors and presents them in a meaningful way. Our proposed method also has ability to
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detect outliers and decompose tensors robustly against noises. The method keeps the full
use of individuals submanifold without running any averaging process. In the first section
of this chapter, we review the limitations as well as the motivation for the current multi-
factor decomposition methods. Then, we present our proposed CSMA method in details in

the second section of the chapter.

4.1 Motivation of CSMA

In this section, we first review and demonstrate the disadvantages in the classical Multi-
linear PCA method. We then show the motivation to develop our novel method named
Compressed Submanifold Multilinear Analysis (CSMA) in order to overcome these limi-

tations.

4.1.1 Limitations of Multilinear PCA

Although widely used, Multilinear PCA, one of the leading multilinear analysis methods,
still suffers from three major drawbacks. First, it is very sensitive to outliers and noise
and unable to cope with missing values. Second, since MPCA deals with huge multi-
dimensional datasets, it is usually computationally expensive. Finally, it loses original

local geometry structures due to the averaging process.

Missing Values and Outliers

Since the heart of the Multilinear PCA is employed by using Principal Component Analysis
and Higher-order SVD to decompose factors from a given tensor, the efficiency of the
decomposition is therefore much depend on the SVD process. However, the regular SVD
method is very sensitive to outliers and noisy values usually existed in given data due to
the equal treatment for all input data points and the disability in detecting outliers of the

regular /5-norm computation. The problem of the SVD subspace estimation defined in
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Figure 4.1: An example to show the limitation of the classical SVD method. (A) The
classical SVD method can present good enough the subspace when the input data doesn’t
contain any noisy values or outliers. (B) However, when the data have some outliers,
the represented subspace will be affected. It happens because the classical SVD is very
sensitive to outliers and noises.

section 2.4.1 becomes equivalent to the optimization of the cost function ¢ that can be

solved by using />-norm as follows:

€(U,V) = ||Xd><n - wazrwvzw)ni

n

d
:E E (X — uzv

i=1 j=1

where the matrix X,.,, is defined as in Eqn. (2.19). The presented equation describes the
first 7 columns of the orthonormal matrices U and V representing a subspace to minimize
the defined /y-norm cost function. This truncated process can be denoted as U = U(:
,1:7r)and V = V(:,;1 : r). The SVD solution can be simply solved in a regular closed
form with the given /5-norm cost function. As shown in section 3.3, the /5-norm process
however treats all input data equally and doesn’t have ability to detect the outliers (or
sparse components). Therefore, Multilinear PCA 1is usually sensitive to outliers and noisy
values from given input data. Figure 4.1 shows an example of the limitations in SVD

representation. When input data is good enough (without noises or outliers), the SVD
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Figure 4.2: An example of three-order tensor X € R3*3*3 with a missing value X. Notice
that X may only miss some of its dimensions, i.e. X. ;5 or X. ., or all of its dimensions
X j k-

method can generate a good subspace to represent the data distribution. However, when
the data contains some noises or outliers, this subspace easily receives a structure distortion
due to these noises. Therefore it doesn’t present well enough the data distribution.

In addition, as presented in Eqn. (2.19), there is no mechanism to denote missing values
in the regular SVD representation. The input matrix X that need to be decomposed must be
filled with values for all d x n items. Otherwise, it becomes unsolvable. Because of this,
the Multilinear PCA method is clearly unable to decompose any given tensor accompanied

with missing values as shown in Figure 4.2.

Tensors with High Dimensions

The complexity of Multilinear PCA can be counted on the computational time used in
matrix multiplication and Singular Value Decomposition computation steps. In general, it
requires to spend O(m x n x d) time on multiplication of two matrices X of sizes m x n
and Y of size n x d. Meanwhile, given a matrix X of sizes m x n, it takes O(max(m, n) x
min(m, n)?) time to compute its SVD formulation.

Since SVD consumes much more time than matrix multiplication, we consider the time

the method spends only for SVD, not for matrix multiplication, during the training step.
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Figure 4.3: The illustration to averaging process with 6 training images of 3 subjects and 2
lighting conditions. The 6 x 6 matrix is the Gram matrix of the reordered images with an
appropriate permutation matrix. In (A), two 3 x 3 blocks in grey are the Gram matrices of
2 lightings. Each of two subsets consists of 3 subjects’ faces under each of 2 lightings. The
averaging of the Gram matrix G; of these 3 x 3 block matrices in grey presents the average
dot products among 3 subjects across 2 lightings. This process is applied similarly for the
subject factor in (B).

First of all, PCA performs the SVM operation a single time when this method computes
the SVD of X € R™™ to compute the linear transformation matrix U. It often occurs that
d is greater than n and in this case, PCA requires O(d x n?) to learn a training set. The
matrix U can be calculated using n X n Gram matrix X TX as well as using X, and PCA’s
training time can be reduced to O(n?).

Calculating U is necessary in MPCA. Additionally, MPCA uses SVD to calculate V;
from X*) X®T ¢ Rrsxne in the three-factor framework. Thus MPCA runs in T'(n3) +
T(n3) + T(n3) more time than it takes PCA to run. In big O notation, MPCA takes O(n?)

to run.

Local Geometry Structure Averaging

One of the most important properties in Principal Component Analysis is that the low-
dimensional subspaces obtained by this method always preserve the dot products between

pairs of samples. As shown in Eqn. (4.1), given a matrix X, the Gram matrix of X and
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the Gram matrix of the PCA projected components Ypcy = U'X = V' are always

identical. This property can be illustrated as in Eqn. (4.1).

Gx = X'X=(UzvH)(Uzv")
= VXU'UZV' = vX?v’
Gy,o, = YpeaYpoa=(EVH)(ZV)

= VX?v' 4.1)

In order to further understand the properties of the decomposed parameters in Multilinear
PCA, another equivalent approach can be shown to compute these parameters. In this
approach, the process of the Multilinear PCA computation is employed based on averaging
parts of the Gram matrix as illustrated in Fig. 4.3 [80]. When ¢ = 1, the Gram matrix G,

of the first factor can be computed as,

Gi=— 0D GX(: iy i) (42)

G, is the mean of all n% Hf\il n; Gram matrices of factor-1-variant subsets and X; = X{(:
.2, 13). A similar approach can be employed to find the other Gram matrices G;. The Gram
matrix denotes the Euclidean distances of all sample pairs. Therefore, factor-i parameters
computed by G; show the mean structure of the ni H,]L n; factor-i-variant submanifolds.
MPCA aims to independently decompose the relationships of multifactors through the av-

eraging process. From Eqns. 4.1 and 4.2, the Gram matrix G; can be simply derived as

follows,

— v,V (4.3)
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Figure 4.4: A comparison between the classical SVD method and the SVD-/; method. (A)
Both methods fit very well on the subspace when the input data doesn’t contain any noisy
values or outliers. (B) When the data contains some outliers, the SVD subspace will be
affected, meanwhile the SVD-/; subspace still represents good enough the subspace. It
happens because the SVD-/; is robust against noises and outliers.

Therefore, in order to avoid the averaging process when computing Gram matrices G;, [80]
uses the columns of 3;V, to compute it. Procrustes is then employed for local alignment
to remove the differences in each coordinate while preserving structures of each manifold.
However, although exploring the submanifold property, this method still remains with two
major drawbacks. First, this method is unable to deal with missing values. In addition, it
also doesn’t allow the high accuracy in local alignment. Therefore, our solution to remedy

these drawbacks will be introduced in the following sections.

4.1.2 Innovations in CSMA

The limitations presented in section 4.1.1 have become the motivation for us to develop
a new tensor approach to overcome these disadvantages. In this section, we outline the
advantages in our proposed method compared to the standard deterministic Multilinear

PCA algorithm. The details of our algorithms can be found in next few sections.
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Tensor Completion with /;-norm Solutions

The regular /5-norm solution still remains three limitations as discussed in section 4.1.1.
Instead, we propose to solve the Higher-order SVD in a newly defined framework with the
support of ¢1-norm optimization. Indeed, section 3.3 shows that ¢;-norm representation
is able to efficiently detect outliers and clearly robust against noises. Figure 4.4 presents
an example to show the advantages of our proposed SVD-/; subspace representation com-
pared to the one derived from ¢;-norm. When there are no outliers or noises existed in
a given data, the SVD-/; method can generate a subspace as good as the one created by
the SVD-/,. However, when the given data contains some outliers or noises, the subspace
generated by the SVD-/; method is more robust than the one created by the SVD-/5.

In addition, far apart from the traditional Multilinear PCA, our proposed framework
allows presenting input tensors with missing values efficiently. Since our method has ability
to present missing values and complete missing holes in given tensors, it therefore can be
named as a tensor completion method. Our proposed framework is then solved using the
Alternative Direction Method of Multipliers (ADMM) method [13, 124] that can be used

efficiently to solve the multi-variable optimization problems.

Low-Rank Approximation with Random Projection

Derived from Johnson-Linderstrauss lemma, Random Projection can be clearly employed
in order to speed up the computation in multifactor Singular Value Decomposition with
both ¢;-norm and ¢>-norm cases. In worst cases, the standard /,-norm based Singular Value
Decomposition low-rank approximation can take up to O(dn?) time to decompose a ma-
trix, where (d > n). Meanwhile, Random Projection can help to speed it up to O(dn logn)
time. However, in practical applications, input matrices are mostly k-sparse. In other
words, these given matrices usually have at least m non-zeros entries. In that case, stan-
dard Singular Value Decomposition methods may consume O(mn) time while Random

Projection takes only O(m logn + nlog?n) time [111].
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Local Coordinate Alignment

Park and Savvides [78, 80] presented a procrustes analysis [45] approach to avoid the av-
eraging distortion when decomposing a tensor. However, this method is unusable when
solving the tensors with missing values because its formula doesn’t allow representing
missing values. We therefore, present a Stratified method [7, 84] that can help to avoid the
averaging process to align the local coordinates while still able to preserve submanifold
structures. More importantly, compared to other alignment methods, this approach is able
to deal with missing and noisy data. The proposed local coordinate alignment method will

be presented in detail in Section 4.4 of this chapter.

4.2 Multifactor /;-based Decomposition

There are numerous methods that have ability to deal with missing data and outliers in the
problem of 2D matrix decomposition, to cite a few [39, 57, 61, 64, 99, 128]. However,
in this section, we are going to present a new SVD-/; formula that can be incorporated
into the multifactor framework to decompose factors. This method can converge very fast
when pursuing the Alternative Direction Method of Multipliers. In addition, this SVD-/;
algorithm is also able to decompose relationships among factors from a given tensor. In
this section, we first introduce the proposed SVD-/; formula. Then, we present how to use
the Alternative Direction Method of Multipliers to solve the problem. Finally, the ¢;-norm
based Higher-order SVD (HOSVD-/,) is also presented. We demonstrate how to use the

HOSVD-/; to handle the multifactor data to cope with missing values.

4.2.1 SVD-/; Reformulation

Given a matrix X;, € R%*™ which is flattened from a tensor X along the factor k, instead of
using the regular SVD method as defined in section 2.4.1, it can be reformulated by solving

the /1-norm problem in addition to the defined weight parameters. This SVD-¢; problem
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can be solved by minimizing the ¢;-norm error with the constraints as follows,

. X, — b T
o in Wi © (Xp — UpZe V)|l
st., UU,=LVV,=1I (4.4)
or
: (k) R (B) ()T
sit.,  uPTa® = yPTyW g (4.5)

where all symbols are defined similarly to the ones in Eqn. (2.19). Far apart from SVD-
{5, our defined SVD-/; formula allows to decompose X, with missing values and outliers
denoted by the weight matrix W, flattened along the factor £ from the weight tensor W.
In the given matrix Xy, if the value of the data point at the position (4, j) exists, its weight
is set to a positive number, Wy (i,7) > 0. Otherwise, if the value of the data point at
the position (i, 7) is missing, its weight is set to zero, Wy (i, j) = 0. The error between the
matrix X;, and reconstruction from the SVD-/; is minimized by using the /;-norm distance.
It is the key idea that allows the reconstruction results in our method robust against noises

and outliers.

In the Eqn. (4.4), the ® symbol denotes the component-wise multiplication. Uy and Vy,
are two decomposed matrices. The constraints U] U, = Iand V]V, = I are to guarantee
both two matrices Uy and Vj are all orthonormal, where each has the length of 1 and
every pair is orthogonal, as the ones in the standard SVD method. ¥, is a diagonal matrix
containing the square root of eigenvalues from Uy or V in descending order. r denotes
the rank of X, where r» < min(d, n), ugk) € R% and ng) € RR™ also have the length of 1.
Each pair of (ugk), ng)) denotes left and right singular vectors with singular value )\gk) > 0,

where \; > A4, V1 < k < r — 1. It follows that each ugk) is an eigenvector of kag
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and vgk is an eigenvector of X, X;, and the corresponding eigenvalues are )\gm. In the

following analysis, X is used in place of X, for simplicity of notation.

4.2.2 Alternative Direction Method of Multipliers Solutions

The Eqn. (4.4) is unsolvable in general cases because it belongs to general non-convex
problems. In that equation, we have to optimize three variables, i.e. Uy, 3, V. and two or-
thogonal constraints. However, thanks to the recent advanced results from the optimization
studies, especially the ALM/ADMM method, the minimization problem in Eqn. (4.4) can
be solved in the following way. First, we redefine the problem in the form of trace norm
regularization as shown in Eqn. (4.6),
o in o [WO X - E)y + AE[.
st., E=U,X,V,,
U, U, =1,

ViV, =1 (4.6)

The objective function defined in this minimization problem includes two main terms. The
first /1-norm term aims to preserve the sparsity property in the reconstruction. Meanwhile
the second trace norm term guarantees the low rank property of the solutions. The param-
eter A controls the trade-off between trace norm regularization and reconstruction fidelity.
In this equation, instead of optimizing three variables as in Eqn. (4.4), there are now four
variables need to be optimized, i.e. Uy, X, Vi, E. More importantly, let’s analyze the
property of E. As defined in the constraints, we have E = UkaV;. This equation can be
further analyzed. In combining with two matrices 3, and V}, let U be a new orthogonal
decomposed matrix computed from a matrix V by using Singular Value Decomposition
method, i.e.,

[0, %, Vi] = SVD(V) 4.7)
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or

V =UX,V, (4.8)

where U' U = I. Given Uy, and U, it is easy to find a matrix U that qualifies the condition
U, = UfJ, where U'U = I. From these definitions, the matrix E can be redefined as

follows:

E = UX.V,
— UU%,V,

= UV 4.9)

It is noticed that the two matrices U and V in this section are different from those in section
4.1.1. In addition, since U is orthogonal, i.e. U'U = 1, its trace norm then becomes one,

ie. |U|l, = [[U"||. = 1. Therefore, the trace norm of E can be computed as follows,
[E[l. = UVl = [[VIl. (4.10)

From the results shown in Eqns. (4.9) and (4.10), the problem (4.6) can be then simplified

as in [128] as follows,

min - [Wo (X —E) + AV

st., E=UV,U'U=I 4.11)

There are now only three variables need to be optimized, i.e. Uy, Vi, E in this equation.
More importantly, two defined terms in the objective function now have become indepen-
dent, i.e. |[W® (X — E)||; and ||V||.. Therefore, it can be solved by using ALM/ADMM

method. The corresponding augmented Lagrangian function of the Eqn. (4.11) can be
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computed as follows,

Ly(U.V.EY) £ [WoX-E)lL+A|V].+

<Y,E-UV > +§||E—UV||%

where Y is the Lagrange multiplier of linear constraint, 5 denotes the penalty parameter

for the violation of the linear constraint, it is a nonnegative number, 5 > 0. The problem

(4.11) can be solved using ALM/ADMM approach to minimize the variables iteratively as

follows,
U = arg miny L(U, V), Ef, YY)

Vi = arg miny L(U, V, Ef YY)
E't! = argming L(U™™, VT E, YY)
Yt—i—l — Yyt + ﬁ(EtH o Ut+1Vt+1)

\

Given V! and E/, find U'"!

For known V' and E' in the iteration ¢, U'*! can be updated by solving the following

equivalent problem,

min I+ 7Y - UV

st., UU=I

This is the form of orthogonal Procrustes problem [45]. The global optimal solution can be

found using the Singular Value Decomposition approach as follows,

[U,S, V] =SVD((E'+ p~'YH)V'T)

or
(Et + 6—1yt)vt—|— — U/s/V/
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Finally, U™ can be updated as follows [128],

Ut+ 1 — U/V/T

Given U'™! and E', find VI™!

In the second step, when U™ and E' are given, V'™ can be found using the following
formula,

min V] + < VLE UV > D[R - UV

Since U™ is orthogonal, it can be rewritten as,
1
min ATV + SV = UT(E + 7Y%

This is the problem of Singular Value Thresholding (SVT) [15]. The soft-thresholding

(shrinkage) operator is defined as follows,
T, [z] = max(|z| — T,0)sgn(x)

where sgn(x) is the sign function. In SVT, the Singular Value Decomposition is first
employed,
U, S, V] = sud(UT(E' + 571Y"))

Then, the optimal values of V'™ can be updated by shrinking the operator T,[z] to the

diagonal matrix S',

VA UTy STV
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Given U'™! and V!, find E'™!

Given U™ and VI, E**! can be updated using shrinkage technique as follows [128],
min [W © (X~ B)[, + 5B — (U — g7y
Therefore, the observed and missing values in E can be updated as follows,

WOE + Wo (X - Tz [X - UTVH 4 g71y1)
WOE + Wo UV 4 =iyt

where W is the complement of W. Figure 4.5 compares the eigenfaces produced by the
regular SVD-/5 and our SVD-/; approach. These eigenfaces are generated using three
subjects with frontal faces at 21 different lighting conditions in CMU-PIE database. We
can see that the subspaces reconstructed by SVD-/; method still keep all properties as the

ones in SVD-/5 method.

4.2.3 Higher-order SVD-/,

Similar to HOSVD, our proposed Higher-order SVD-/; is also a multilinear generalization
of ¢;-norm based SVD method. Given an N-order tensor X € R**™ X"~ that allows
missing values and outliers, it can be decomposed using our proposed HOSVD-/; into a
core tensor Z and n orthogonal matrices, i.e. a matrix U and N matrices V; to present /N

factors as follows,
X=Zx;U0" x3 V] X3V, X4... x(ni1) Vi (4.12)

where X, is the k-mode matrix product of a tensor. In addition, SVD-/; can help to re-

formulate HOSVD in the form of Multilinear PCA in combining with Kronecker product.
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Figure 4.5: Basis eigenvectors produced from CMU-PIE DB. (A) The first six eigenvectors
trained by SVD-/5 on three subjects at frontal pose and 21 different lighting conditions, (B)
The corresponding eigenvectors trained by our proposed SVD-/; method.

The equivalent form of Eqn. (4.12) in MPCA-/; can be denoted as follows,

X=UZ(V;®Vy® ... @ V(yi1) ' (4.13)

where ® denotes the Kronecker product. The matrix Z results from the pixel-mode flat-

tening of a core tensor. The matrices U and V}, are the right singular vector matrix of the
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Figure 4.6: Eigenvectors using SVD-/; on CMU-PIE: (A) Subject variations, (B) Pose
variations, (C) Lighting variations, and (D) U, X Z.

flatten tensor X along the factor £. They are computed as in Eqn. (4.4). From Eqn. (4.13),

Z can be derived as follows,
Z=U'X(Vi®Vy®..0 Viny1)) (4.14)

Figure 4.6 shows the tensorfaces produced using our SVD-¢; decomposition approach to

the multifactor analysis.

4.3 Higher-order SVD in Random Projection

According to Johnson-Linderstrauss lemma [54], given a set of n points in the Euclidian
space R?, it can be embedded in a high dimension, logarithmic in n and independent of

d, without distorting the pairwise distances by more than a factor of 1 4+ <. The idea of
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Random Projection has been explained in details in the Johnson-Linderstrauss lemma in
chapter 3. In this section, we first present how efficient that low rank approximation is to
support in Random Projection. Then the approximation of Random Projection in Singular
Value Decomposition is also analyzed in order to guarantee that it can be employed usefully

in tensor decomposition.

4.3.1 Low-Rank Approximation

Given a tensor X, there are two steps that can be employed to produce a compressed tensor
as follows. First, the tensor X is projected into a Random Projection subspace with [
dimensions in order to get high probability lower dimensions, but is still able to preserve
distances and angles of . Then, the decomposition is employed and preserves the top r
singular vectors (r < [) on the flattened matrices. The low-rank approximation of X is
derived via SVD-/; from these components. Alg. 3 shows the main steps in our proposed

CSMA method.

4.3.2 Random Projection in SVD

Given a matrix A with the size of d x n flattened from a tensor X along the factor £, let
[ X n matrix B = \/?RTA be achieved by embedding A into a d x [ random matrix R.

From Eqn. (2.19), A and B can be formulated as follows:

A=> ouyv] and B=) \ab/ (4.15)
=1

i=1

We will show that the singular values in Eqn. (4.15) are approximately preserved.

Lemma 2 [111]: Given a positive constant ¢, if [ > C' 106%" for sufficiently large constant

C then, with high probability,

ix? > (1—e)i03 (4.16)
=1

i=1

62



Algorithm 3 Compressed Submanifold Multifactor Analysis
Input: Tensor X of facial images with n factors
Output: U,Zand V,, k=1,...,n
Generate RP subspace R qualified Lemma 1
Low-rank approximation X to X via RP subspace R
Flatten X to X along the dimension of pixels
U, V] = SVD-/,(X)
for V factor k € [1..n| do

Flatten X to X}, along factor k

Uk, V| = SVD-4; (Xy)
end for
Z=U"xX,x(ViaV,®..0V,)
Local Coordinate Alignment

Let rank-r approximation to the original matrix be:
A, =A> bb/ (4.17)
i=1

The main result of this section is presented in the following theorem.

Theorem 1 [111]: For a large enough constant C, if [ > C' 106% then
1A = A% < [|A = A7 + 2¢[| A7 (4.18)

where ||A||r is the Forbenius 2-norm, defined as the sum of squares of all values of A. The
difference ||A — A, || r presents the accuracy of the approximation. In other words, Theorem
1 shows that the matrix achieved via the two-step approach discussed above gives the same

results as the matrix computed via the best rank-r approximation.

4.4 Adaptive Local Coordinate Alignment

In order to avoid the averaging process as in Multilinear PCA, a Stratified approach is
employed to generalize procrustes analysis [7, 84]. An example of averaging elimination

process can be seen in Figure 4.7. Far apart from other alignment methods, this approach
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can deal with missing and noisy data. In this method, we aim to maximize the model

likelihood defined as follows:

£(S,7) =2 ad(zn)iﬁ T e ssbins 1)1 (4.19)

i=1 j=1
where v; ; € {0, 1} is a mask value to represent missing values, S £ (S, ...,S,,) € R¥>™,
S, € Rtand T £ {Ty, ..., T,} are unknown reference shape and global transformation
respectively. A;; € R? are observed samples flattened from tensor X with a Gaussian
distribution of unknown variance o?. Maximizing Eqn. (4.19) is equivalent to minimize

the data-space cost £:

n m

ES,A) A wijllAi — (aiS; +by)|13 (4.20)

i=1 j=1

where 7 is now the affine transformation A, and A; = (a;,b;) € R™*? x R?. The optimal
reference shape S” is achieved via two steps:

Step 1: Find the initial values by approximating Eqn. (4.20) as follows:

E(S,A) = E(S,B) £ > wijllalAi; + b — 53 (4.21)

i=1 j=1

where B; = (a},b]) = (a; ', a; 'b;) is the inverse of A;. It can be interpreted as a negative

log likelihood under the hypothesis that the residuals are Gaussian i.i.d. in the registered

shape points. The optimization problem is now formed as follows:
réliBng(S, B) st. STS=TandS’1=0 (4.22)

The solution S* of Eqn. (4.21) can be solved simply using SVD as in [7].
Step 2: Given the initial reference shape which is near-optimal, the iterative Gauss-

Newton method is employed to refine the solution.
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Figure 4.7: A comparison between MPCA and CSMA. Figure (A) is three submanifolds
under 30 lighting conditions at 3 different poses from Extended Yale-B database. These
submanifolds have different structures. (B) In MPCA decomposition, it aims to preserve
the global geometry in data space by averaging all three submanifolds to the same structure.
In other words, PCA aims to preserve the distances between all pairs of samples regardless
of the presence of multiple factors. Because PCA aims to preserve so much information
about all the distances, PCA requires high-dimensional subspaces and does not provide
efficient dimension reduction. (C) In CSMA decomposition, it aims to preserve all of the
blue and red curves, not merely their averages. Thus, the reconstruction obtained by CSMA
more reliably represents the original structure than that obtained by MPCA.
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Chapter 5

Sparse Class Dependent Feature

Analysis (SCFA)

Dictionary learning methods have recently received a lot of attention for classification prob-
lems, to cite a few [5, 53, 115, 120, 126]. While traditional dictionary based approaches
like K-Singular Value Decomposition (K-SVD) [5] are optimal for image representation
and compression, other methods like Discriminative-KSVD (D-KSVD) [126] and Label
Consistent-KSVD (LC-KSVD) [53], incorporate an overcomplete dictionary along with
simple discriminative functions in the K-SVD framework, to build optimal classifiers. Due
to this simplistic classification structure, their performance is usually limited. In this chap-
ter, we propose a novel approach named Sparse Class-dependent Feature Analysis (SCFA),
to combine the advantages of sparse representation in an overcomplete dictionary, with
a powerful nonlinear classifier. The classifier is based on the estimation of class-specific
optimal filters, by solving an ¢;-norm optimization problem. We show how this problem
is solved by using the Alternating Direction Method of Multipliers and also explore rel-
evant convergency details. Our method as well as its Reproducing Kernel Hilbert Space
(RKHS) version is tolerant to the presence of noise and other variations in the image. We

achieved very high classification accuracies in face recognition (in the presence of lighting
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variations, i.e. Extended Yale database [44] and with occlusions, i.e. AR database [75])
and object (Caltech101) [41] databases. Our method outperforms the state of the art in all
these databases and hence shows its applicability to general computer vision and pattern

recognition problems.

5.1 Dictionary Learning Based for Classification

Sparse representation in overcomplete dictionaries has been gaining a lot of popularity in
recent years, with various studies being published, regarding their utility in image denoising
[36], compression [14], classification [115] amongst others. The use of such overcomplete
“basis functions” for signal representation has advantages such as flexibility, robustness
to noise, etc. These methods ‘infer’ a dictionary from a set of exemplary samples. The
Method of Optimal Directions (MOD) [59] and K-Singular Value Decomposition (K-SVD)

[5] are two examples of this class of methods.

These algorithms have garnered significant attention recently, for the purpose of build-
ing dictionaries for signal classification. Yang et al [120] developed a unified framework to
learn both a classification model and a corresponding overcomplete dictionary. Other ap-
proaches such as the D-KSVD approach by Zhang and Li [126] incorporated a dictionary
based classification function into the K-SVD framework and thus jointly solved an opti-
mization problem for dictionary building. A more recent paper by Jiang et al [53] called
the Label Consistent KSVD (LC-KSVD) incorporated a strategy of ‘class specific dictio-
nary atoms’ into their K-SVD framework. Their work also contains a function to minimize
the classification error based on these dictionary atoms. Other algorithms like [72, 73] treat
dictionary learning and classifier design as two separate problems and do not derive a sin-
gle dictionary to solve both problems simultaneously. The advantage of decoupling these
two design requirements is that the classification design becomes simple allowing the in-

corporation of powerful nonlinear classification tools such as the Kernel Class-dependent
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SCFA

Figure 5.1: A comparison between KCFA and SCFA for face matching on AR face
database. Given probe images P; with different variations, e.g. facial expressions, lighting
and occlusions, not in the target images T, the filter responses in SCFA to the correct target
subject are usually sharper and stronger than the ones in KCFA.

Feature Analysis (KCFA) approach [93, 117]. This has been used successfully for both
classification and dimensionality reduction. However, KCFA by itself is very sensitive to
outliers and noise in image data. Furthermore, it uses raw image pixel values as inputs
during the design phase. Hence its application is limited to matching images acquired un-
der heavy constraints. Its performance drops dramatically when used with face databases
having a lot of appearance variation, human iris data or with general objects presented in
the Caltech101 dataset, due to the presence of a lot of variability therein. The first row in

Figure 5.1 with very low filter responses shows an example of that problem.

In this chapter, we propose a novel dictionary learning based pattern classification
method named Sparse Class-dependent Feature Analysis (SCFA) to overcome the limi-
tations discussed above. Our method is a highly discriminative, dictionary based classifi-
cation approach using optimal image filters. The filter design is set up as an ¢;-norm based
optimization problem, which is solved using the Alternating Direction Method of Multi-
pliers (ADMM). The performance reported here, on a variety of standard databases shows

that our method surpasses the state-of-the-art and is applicable to general computer vision
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and pattern recognition problems as shown in Figure 5.2.

The remainder of this chapter is organized as follows. In section 5.2, we briefly review
the background as well as the solutions in the regular Class Feature-dependent Analysis and
its kernel version. We first review the fundamental ideas of the correlation filters and class-
dependent feature analysis. Then, we show how to find the solution by using the regular
l5-norm formulation. Its kernel version that allows achieving better accuracy rates is also
presented in this section. In section 5.3, we introduce our proposed Sparse Class-dependent
Feature Analysis method solved in the form of ¢;-norm optimization. Its advanced version
implemented in the Reproducing Kernel Hilbert Space that allows the tolerant capability
to the presence of noise and other variations from given images is also presented in this

section.

5.2 Kernel Class-dependent Feature Analysis

The method of Class-dependent Feature Analysis [93] uses a set of Minimum Average
Correlation Energy (MACE) filters [71] to extract facial features. For classifying a given
testing image, MACE filters are determined for every subject during the training stage. We

briefly review this method in this section.

5.2.1 Class-dependent Feature Analysis (CFA)

Given N training images of size M x M, the Average Correlation Energy (ACE) of a filter

response [71] can be computed as follows,
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where d = M?, H(u,v) is the filter in frequency domain and X;(u, v) is the 2D Fourier
transform of the ¢th training image. D = ﬁ Zf\il XX is a d x d diagonal matrix
with the average power spectrum of the training images along its diagonal, and + indicates
the complex conjugate transpose of a matrix. The MACE filter pre-specifies the value of
correlation peak at origin given by,

X*th =u (5.2)

where X is a d X N complex valued matrix. The column vector u contains pre-specified
correlation values, with 1 at the origin, for the ‘authentic’ class to which the MACE filter

corresponds and O for all other images belonging to the ‘imposter’ classes.

5.2.2 CFA Solution Analysis

The CFA solution is obtained by minimizing the energy £ subject to the constraint (5.2)

and can be reformulated,
h* £ arg min |[h™Dh|]y; st u=X"h (5.3)
The Lagrangian form to solve (5.3) is given by,
I'(h) £ [h*Dhlj; + A"(X*h —u) (5.4)

where A are the Lagrange multipliers. Setting the derivative of I'(h) w.r.t. h to zero, gives

the optimal solution,

o (h)

——~ =2Dh+ A'X* =0 55
o + (5.5)
From (5.3) and (5.5), we can derive,
1
u=X"h*= —éXD‘1X+>\ (5.6)
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This is the closed-form solution, where X is a full-rank matrix. Hence, the MACE filter h*
can be derived,

h* = D !'X(XtD'X) 'u (5.7)

In practice, the Optimal Tradeoff Synthetic Discriminant Function (OTSDF) filter [86] is
used, instead of the MACE filter, since it has noise tolerance C. The OTSDF is designed
to minimize the output noise variance h™ Ch while holding the average correlation energy

h*Dh fixed. Similar to Eqn. (5.7), the final OTSDF filter can be shown to be,

h' =T 'X(X'T'X) 'u (5.8)

where T = (aD + v/1 — a?C) and 0 < o < 1 is a parameter that controls the trade-off
between noise tolerance and discrimination. In our experiments, « is empirically set to 0.3

which achieves the high recognition accuracy.

Given a test image y, the correlation of that image with N OTSDF filters can be ex-
pressed as,

c"=H"y =[hhy---hy]y (5.9)

where h; is an OTSDF filter corresponding to class i. The assigned class is chosen based

on the highest filtered response value.

5.2.3 Kernel Class-dependent Feature Analysis (KCFA)

Kernel CFA overcomes the poor performance of the linear CFA classifier due to the pres-
ence of nonlinearities in the data. Data is ‘pre-whitened’ before deriving the kernel OTSDF

filter closed form solution. The correlation output of test image y with filter h, using
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Eqn. (5.8) is,
y h =y [T X(XTT'X) 'u]
- (%) (%%)

where X = T~2X and y = T_%y denote the pre-whitened version of X and y. Using the

(5.10)

kernel trick here yields the kernel correlation filter with mapping ®,

- K(Y: XZ)'K(XZJ Xj)_lu

Although KCFA has been used successfully in face recognition [93, 117], it suffers from
major drawbacks. First, it is very sensitive to outliers. The performance drops dramatically
when data contains noise or outliers, due to illumination variation, noise during acquisition
etc. as shown in Figure 5.1. Second, it is also sensitive to variations in image appearance,
e.g. facial expressions, pose variations, object perspective, etc. Hence, it is applied only to
classification problems with a fixed template, i.e. frontal faces, fixed view target recogni-
tion etc. The reason for this drawback is that, OTSDF filters are trained using image pixel
values. The proposed SCFA method, addresses these drawbacks by using sparsity in an

overcomplete dictionary, in the filter design phase.

5.3 Sparse Class-dependence Feature Analysis (SCFA)

This section describes our dictionary based SCFA classifier, which outperforms state-of-
the-art discriminative dictionary based classifiers, while overcoming the limitations of KCFA
classifiers discussed above. This method involves estimating the filters h in Eqn.(5.7)
by solving a constrained ¢;-norm problem. The objective function is converted into an

equivalent convex problem, then put into an Alternating Direction Method of Multipliers
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Figure 5.2: An example to show the discriminative power of SCFA compared to state of
the art. The sum of all classification peak values corresponding to subject 60, 41 and
39 from the Caltech101 database are shown in row 1, 2 and 3 respectively using various
methods. SCFA hardly shows any response for classes other than the ‘genuine’ class. All
other methods show responses for ‘imposter’ classes too.

(ADMM) framework. Our solution to this problem as well as stopping criteria are pre-

sented in this chapter.

5.3.1 /;-norm Filter Design

Consider the constraint in Eqn. (5.3) where the data matrix X is expressed in terms of its

pre-whitened form X =T:X (Eqgn. (5.10)), the following constraint can be derived,
u=(T:X)th = X*(T2h) = X*h (5.11)
Similarly, the objective function term,

h* = argm&thJ’ThHQ
= argmin |(T2h)*(T2h)|,

= argmin Ih*hl, st u=X"h (5.12)
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Hence the equivalent problem to (5.3) can be expressed as,
h* £ argmin |h]? st u=X"h (5.13)
h

Instead of the /5-norm used here, the problem will be solved using ¢;-norm, which esti-
mates a sparse solution. In the following analysis, h is used in place of h for simplicity of

notation. The redefined problem is as follows,
h* £ argmin [Fhl|; st u= X*h (5.14)

where F can be an arbitrary form with ‘weights’ along the diagonal to emphasize important
components in h based on prior information. This problem is traditionally solved using a
LASSO solver [24],

m&néufh—ungmumul (5.15)

where )\ is a parameter that controls the trade-off between sparsity and reconstruction fi-
delity. Several algorithms can be found in literature to solve this problem, i.e. homotopy

[76], LARS [34].

In our work, this problem is solved in the ADMM framework [13] which is easy to
compute and converges fast at the early stage. Eqn. (5.15) can easily be converted into this
framework by introducing a constraint vector z. Then, it can be re-written with an explicit
constraint as follows,

N e
min 2| X" h — w5 + Allz||x

(5.16)
st. Fh—z=0
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The corresponding augmented Lagrangian form for Eqn. (5.16) is given below,

1 ~
Ly(h,2,y) = 5 |X 0 — w4+ Azl +
p (5.17)
py” (Fh —2) + 2 |[Fh — 5

where y is the augmented Lagrange multipliers and p > 0 is the step length. Eqn. (5.16) can
be then optimally solved using the following iterative scheme. In the following expressions,

the superscript ‘¢’ indicates the ¢-th iteration.

1) Solve for h'™! with fixed z’ and y*

This is done simply by setting the derivative of Eqn. (5.17) w.r.t. h to zero and solving for
h,
! = (XX + pF 'F) " (Xu + pF " (z' — y")) (5.18)

2) Solve for z'™! with fixed h'™! and y*
In Eqn. (5.17), when L,(h, z,y) is minimized according to z, it then becomes,
7z = arg mzin Mz||y + py' T (Fh'™! —z) + gHthJrl — z? (5.19)
This problem can be solved via a simple soft thresholding operator [31],
zt = S,,,(Fh'*! + y") (5.20)

For group Lasso (A ). ||x;||2 for disjoint z; € R™), the soft thresholding operator can be

defined as follows,

S.(a) = (1 i ) a (5.21)
+

lall2

where (.), is the positive part.
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3) Solve for y'*! with fixed h’*! and z'*!

In the final step, the Lagrange multiplier y**! can be updated as follows [33],

y* =y +Fh't! — g (5.22)

5.3.2 Stopping Criteria

The convergence in ADMM has been studied in several previous work [13, 33]. Results
were shown with general penalties or inexact minimization via Douglas-Rachford splitting,
splitting operator, etc. In the primal feasibility problem for general ADMM, the necessary

and sufficient optimality conditions for the optimal value p* is as follows,
Ah*+Bz" —c=0 (5.23)

where A = F, B = —1 and ¢ = 0 in the case of Eqn. (5.16), and the corresponding dual
feasibility is,

0€df(h’)+ATy"
(5.24)

0€ dg(z*) +B'y"

where f(h) = |XTh — u|3}, g(z) = ||z|; and 9 is the subdifferential operator. The
residuals for the primal and dual feasibility condition at iteration k can be computed as

rk = Ah* + Bz* — cand s* = pATB(z" — z"1).

The residuals of the optimality conditions can be related to a bound on the objective

sub-optimality of the current point. From the convergence proof in [13], we can derive,

Fx) 4+ g(2") —p* < —(v") 7" + dlls" 2
(5.25)
< Iy*llallr*llz + dll s* 12
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where ||h* — h*||; < d. Therefore, the reasonable termination criterion is that the primal

residual 7 and dual one s* have to be small enough,

Ir¥l2 < Vpe™ + € max{|| Ah®||5, [ Bz"[|2, [|c]»}

5]l < vite™ + e ATy

where €% ¢ > () denote the absolute and relative tolerance respectively. The factors VD
and y/n are computed due to the £, norms are in R? and R"™ respectively. In our case, the

relative stopping criterion is set "¢ = 1073,

5.3.3 Discriminative Dictionary for Sparse Coefficients

In the classical KCFA method, pixel values are used as inputs. Therefore, it does not
have the capability to represent images robustly. It is easily affected by noise distortions
and illumination variations. Instead, in our method, sparse coefficients extracted from a

discriminative dictionary are used as inputs to the filters discussed in 5.3.1.

Given a set Y of d-dimensional N images, Y € R%*¥, the overcomplete dictionary
Y (Y = [vy,...,vg] € R>K) with K items (K > d) for sparse representation X (X =

(X1, ..., xy] € RE*N) of Y can be achieved via the following optimization problem,
<Y, X >=argmin[|Y - YX|3 st Vi, |xillo <€ (5.26)

where ||[Y — YX||3 denotes the reconstruction error and £ is a sparsity constraint factor to

guarantee that each signal has fewer than £ items in its decomposition.

The overcomplete dictionary Y and X can be found from Eqn. (5.26) using the K-
SVD algorithm. This approach works robustly and efficiently in the applications of image

compression and representation. Given a trained overcomplete dictionary Y, sparse coding

78



computes the sparse representation X, of a testing set Y 7.5 by solving,

Xreo = argmin [Yrew = YX|3 st Vi, Jxillo < &

5.3.4 Reproducing Kernel Hilbert Space (RKHS)

The filter design in section 5.3.1 can be extended to an RKHS. Eqn. (5.14) can be rewritten

in a kernel version as,
h* £ arg min [[Fh, st u= Xih (5.27)

where X are mapped from the original X using a kernel mapping ®. ® : RY — [, and

the Radial Basis Function (RBF) kernel is defined by,

In our experiments, SCFA in RKHS always reports higher accuracy compared to the linear

one. Therefore, all our experiments in section 6.4 are reported using SCFA in RKHS.
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Chapter 6

Experimental Results

In this chapter, we first provide a detailed analysis of the usefulness of our proposed Com-
pressed Submanifold Multifactor Analysis on both random or toy samples and challenging
face databases. We demonstrate that our CSMA method can outperform the other state-
of-the-art methods in classification results. In addition, we show that our method supports
the efficient functionalities that we cannot find in the other classical tensor decomposi-
tion methods. Then, in the second section of this chapter, we show that our Sparse Class
Dependent Feature Analysis achieves highest classification rates compared to the other
sparse-based classification methods in different modalities, e.g. objects and faces. The fa-
cial images collected from the databases are detected and landmarked automatically with
79 points using Modified Active Shape Model (MASM) [94, 95] which allows to give
higher landmarking accuracy than the classical Active Shape Model (ASM) method [25].
Figure 6.1 shows an example of MASM that gives better fitting results than the classical

ASM method.

81



(b)

(d) (e) ®)

Figure 6.1: Sample ASM fitting results. The images in the first row are the initialization
provided to the ASMs while the images in the second row show the corresponding fitting
results under such initialization conditions. (a) An example of poor initialization, (b) Accu-
rate initialization provided to the classical ASM implementation (c) Accurate initialization
provided to MASM, (d) Fitting results produced by MASM under poor initialization condi-
tions, (e) Fitting results produced by classical ASM under accurate initialization conditions,
(f) Fitting results produced by MASM under accurate initialization conditions.

6.1 CSMA Experiments

6.1.1 CSMA in Tensors with Random Values

In this section, in order to show the robustness of our proposed Compressed Submanifold

Multifactor Analysis, it will be evaluated on tensors constructed by random values. We first
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Table 6.1: CSMA Reconstruction Errors on Tensors with Missing Values.

.%Of 0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90%
missing data

Mean 0.0 0.0 |16.2 | 374|588 | 75.1 | 949 | 113.3 | 135.5 | 150
SD 0.0 0.0 [055] 49 | 85 | 55 | 1.9 | 21.7 | 31.1 | 28.8

show its ability in decomposing tensors with missing values. Then, in the second exper-
iment, we will show the robustness of our proposed method against tensors with random

noise values.

CSMA on Tensors with Missing Values

In the first experiment, in order to show the robustness against missing values, our proposed
CSMA method is evaluated on random or toy samples with missing values. A 3-factors
tensor X € R10O*15x20x10 "where the first dimension presents pixels, is randomly generated
with a set of missing values. Unfortunately, Principal Component Analysis [55, 105], Lin-
ear Discriminant Analysis [8], Linearity Preserving Projection [51], Multilinear PCA and
Submanifold Preserving Multifactor Analysis cannot be employed in this case due to the
missing data. However, our proposed Compressed Submanifold Multifactor Analysis ap-
proach is able to solve this problem efficiently. The tensor X" is decomposed into subspace
U, core matrix Z and three factor matrices Vi, Vo, V5, where X = UZ(V, ® Vo ® V3)T.
It 1s generated with a different number of missing values varying from 0% to 90% of its
sizes. For each number of missing values, the experiments are repeated N = 50 times. The
mean 1/N Zf\; | X — ;|| and the standard deviation (SD) of the reconstruction errors are
computed. Table 6.1 shows the reconstruction errors with different percentages of missing
values. This table shows the efficiency of our CSMA method in reconstructing tensor X
from a given tensor X with missing data. Even for large percentages of missing data (up
to 70%), the reconstruction errors are reasonable and the standard deviations are small.

However, above 70% of missing data, the standard deviation increases significantly.
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Table 6.2: CSMA Reconstruction Errors (PSNR) on Tensors with Noisy Values (Mean =+

SD).
| Noise (0) | PCA | MPCA | SPMA | CSMA |

0.0 205+ 1.3[300£6.9 [ 594+4.7[351+0.5

0.1 20+1.7 [ 20£21 [19+15]| 254+0.5

0.2 15434 | 1613 [16%+6.2 | 19+4.1

0.3 13+£34 | 15+1.3 [ 15+6.2 | 18+4.1

CSMA on Tensors with Noise

In the second experiment, in order to show the robustness against noise, our CSMA method
is evaluated on a 3-factors tensor X' € R!0*15x20x10 Thigs X is randomly generated with
additive white Gaussian noise with the mean of zero and the standard deviation o varying
from 0.0 to 0.9. It is then decomposed using four different methods, i.e. PCA, MPCA,
SPMA and our proposed CSMA approach. The reconstruction errors between the original
X and the reconstructed X' are computed using the Peak Signal-to-Nose Ratio (PSNR)

scores (decibels) as shown in Eqn. (6.1).

PSNR =20 x logy, (M)

VMSE ©D

where max(X') is the maximum positive value in the tensor X" and MSE is the mean square
error between the original tensor X and the reconstructed one X with the sizes of ny X Ny X
ng X ny:

MSE =

X — X3 6.2)

4
Hl-zlni

This evaluation scheme is also repeated N = 50 times at every given o value. The mean
and the SD of the PSNR scores at these o values are collected. The experimental results
are shown in Table 6.2. Our proposed CSMA approach gives the highest PSNR scores in

the reconstruction among four decomposition methods.
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6.1.2 The Robustness of Random Projection

In order to study the effectiveness of random projection, our proposed system is evalu-
ated with different sizes of the random projection subspace constructed on CMU-PIE face
database [96]. This database includes 68 subjects collected under 21 lighting and 13 pose
conditions. Figure 6.2 shows some example faces of a subject collected under 9 different
lighting conditions and 9 pose variations in CMU-PIE face database.

In the experiment on this database, all facial images within five lighting conditions are
selected for training and the remaining are used for testing. The face matching is proceeded
with the random projection subspace varying from 30% to 90% of the size of the given
tensors. The experimental results are shown in Figure 6.3. According to these results, the
face matching rate is rather robust with different sizes of the random project subspace. It
doesn’t change much when the random projection subspace ranges from 50% to 90% of

the sizes of the given tensors.

6.1.3 Comparison on CMU-PIE Database

In this experiment, our CSMA method is compared to other state-of-the-art decomposition
methods, i.e. PCA, LDA, LPP, MPCA and SPMA, on the challenging CMU-MPIE face
database that has been described in section 6.1.2. Our experiment also uses all facial im-
ages within five lighting conditions for training and the remaining for testing. This database

setup is used to evaluate for all methods mentioned above. The Receiver Operating Char-

Figure 6.2: Examples on CMU-PIE Database with 9 lighting conditions (first row) and 9
pose variations (second row).

85



CSMA with different sizes of Random Projection on CMU-PIE DB

h T

____________________

______________________________________________

True Positive Rate

T

04 0.5
False Positive Rate

Figure 6.3: CSMA Face Matching on CMU-PIE DB with different sizes of Random Pro-
jection subspaces.

acteristic (ROC) curves of the face matching with the cosine distance are computed for all
methods and the experimental results are shown in Figure 6.4. According to these results,

our proposed method achieves better face matching rate compared to the other methods.

6.1.4 Comparison on Extended YALE-B Database

The Extended YALE-B database [44] has 38 subjects collected under 9 pose and 64 illu-
mination conditions. Some examples of faces changing in pose and illumination are shown
in Figure 1.3. Similar to the experiment in section 6.1.3, all facial images in 10 lighting
conditions are used for training. The rest that include all facial images in the remaining
54 lighting conditions are used for testing. The Receiver Operating Characteristic curves
of the face matching with the cosine distance are also used to evaluate all the methods on

this database. The experimental results are shown in Figure 6.4. According to this results,
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ROC for Face Matching on CMU-PIE DB ROC for Face Matching on Extended Yale-B DB
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Figure 6.4: Comparison between CSMA and the other subspace decomposition methods
on CMU-MPIE DB (left) and Extended Yale-B DB (right).

our proposed method achieves better face matching rate than the other methods, e.g. PCA,

LDA, LPP, MPCA and SPMA.

6.2 Background Substraction via SVD-/;

In this section, we demonstrate that our proposed SVD-/; decomposition method presented
in chapter 4 can be also applied for the background substraction problem. In this problem,
given an off-line video with a fixed camera recording moving objects, e.g. people, cars,
animals, etc., we need to distinguish these moving objects against the background so that
they can be used as inputs for further processing steps, such as object recognition, activity
recognition, tracking, etc.

In our experiments, the method is experimented on a video collected by Elgammal et
al. [37, 38]. There are 30 frames with the resolution of 120 x 160 in three RGB channels
recorded in the video. All these frames are setup as column vectors where moving objects,
i.e. rain, cars and lighting, can be considered as outliers. Meanwhile the background infor-
mation in every frame is considered as actual input values. The background and foreground
in every frame are then classified using our proposed SVD-/; method. Figure 6.5 show the

background-foreground classification results. In that figure, the images in the first row are
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Figure 6.5: An example of background substraction in videos. The images in the first row
are from the original video. The corresponding images in the second row are the moving
objects extracted from the video. The images in the last row are the background computed
using SVD-/; on the input video.

some frames recorded in the original video. Meanwhile the images in the second row are
the detected foreground (or car) and the images in the third row are the detected background
using our proposed method. Our method has ability to adapt the lighting and noise (rain)

variations in the video.

6.3 Image Inpainting

Our proposed CSMA method can also be employed efficiently in the inpainting application.
In this problem, the input tensor X" is now a degraded image. The method aims to generate
the clean image represented by tensor X without any outliers or noise, e.g. X = X+ N,
where A depicts outliers or noise. In these experiments, the A value that controls the trade-
off between the low-rank regularization term and the sparsity in Eqn. (4.11) is set to 1073,

The maximum rank of the matrix flattened from the tensor A will be employed. Since
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90% Missing Pixels PSNR = 27.1 dB

Figure 6.6: An example of CSMA in the inpainting problem with different percentages of
missing pixels in an color image of size 250 x 219 pixels (the first column). The reconstruc-
tion results (the second column) show that CSMA can restore a degraded image containing
90% missing values (the third row) with a high accuracy reconstruction (PSNR = 27.1 dB).

the quality of restoration results is the top priority in this application, random projection is
therefore set as equal to the size of input images. We also use Peak Signal-to-Noise Ratio

as the figure of merit to measured the quality of the restored images in these experiments.

Our proposed CSMA method has ability to restore degraded images containing a large
number of missing values. In the first experiment of this section, our tensor-based recon-
struction algorithm is evaluated with different percentages of missing values, i.e. 30%,
50% and 90%, of the total number of pixels in the input image. The method is able to re-
construct the degraded images with high accuracy, e.g. high PSNR values, as shown in Fig.
6.6. When the percentages of missing values are up to 90% of the pixels in the input image,
the degraded image loses most important information and structure as shown in the first
figure of the third row in Fig. 6.6. Human eyes cannot recognize the real pattern behind

this degraded image. However, our method is still able to restore it with a high accuracy
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Figure 6.7: The comparison between CSMA and Liu et al. method [66] in the inpainting
problem. The red circle shows CSMA gives less reconstruction errors than [66] does in
this example. (The comparison of reconstruction errors can be seen clearer when zooming
300%)

rate (PSNR = 27.1 dB) as shown in the second figure of the third row in Fig. 6.6.

In the second experiment, our tensor-based reconstruction algorithm is compared with
the other tensor decomposition methods, i.e. Low Rank Tensor Completion (LRTC), Sim-
ple LRTC (SiLRTC), SiLRTC without relaxation, Fast LRTC (FaLRTC), FaLRTC without
relaxation, presented by Liu et al. [65, 66] in the inpainting application. The experiments
are run on a color image of size 250 x 219 pixels as the image shown in the fourth col-
umn in Fig. 6.6. The above-mentioned tensor-based inpainting methods are also evaluated
with different percentages of missing values, i.e. 30%, 50% and 90%, of the total number
of pixels in the input image. In each case, the PSNR reconstruction results (PSNR) and
the computation times (seconds) are computed. Table 6.3 shows the comparison of the
experimental results. As the results in this table show the LRTC algorithm consumes less
computation time, but their reconstruction accuracy is not as good as the others. The recon-
struction result of our method is better than two methods, i.e. LRTC and SiLRTC without

relaxation, and is comparable with the other methods, i.e. FaLRTC, FaLRTC and SiLRTC.
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Table 6.3: Image Inpainting Comparison between our CSMA method and Liu et al. method
[66].

30% missing | 50% missing | 90% missing
Methods PSNR | Time | PSNR | Time | PSNR | Time
(dB) (s) (dB) (s) (dB) (s)
LRTC 32.1 254 12.4 15.6 9.7 21.6
FaLRTC 36.3 | 323.6 | 334 |3724 | 272 | 5027
FaLRTC 36.5 | 2184 | 334 |389.6 | 272 | 7458
No relaxation
SiLRTC 36.3 | 3599 | 325 |[360.8 | 224 | 4769
SILRTC 13,4 12806 | 334 | 2866 | 98 | 105
No relaxation
CSMA 36.3 | 108.9 | 33.1 148 27.1 | 397.2

However, our method requires the lowest computation time among all these methods in all
experiments. As shown in Fig. 6.7, our method is able to reconstruct degraded images at
least as comparable to the FaLRTC algorithm in [66]. All experiments in this section are

processed on a CPU with Intel Core 17, 2.93 GHz and 8 GB of RAM.

6.4 SCFA Experiments

In this section, our proposed Sparse Class-dependent Feature Analysis approach is eval-
uated on two challenging face databases, e.g. the Extended Yale-B and AR databases.
Finally, to show the robustness of the SCFA for any application, results are reported using

the Caltech101 dataset as well.

6.4.1 Experiments on Extended YaleB Database

As discussed in section 6.1.4, there are 38 subjects collected under 9 pose and 64 illumina-
tion conditions in the Extended Yale-B database. We follow the same evaluation protocol
presented in [53, 126], where all frontal images with illumination variation are selected.
There are 32 images per subject selected for training and the rest are used for testing.

Each facial image is projected onto a 504 dimensional random projection subspace (as
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Table 6.4: Classification results on the Extended Yale-B database with the same database
selection as in [53]. The first column shows the name of the methods, the second column
shows the classification results. The third column shows the number of samples per subject
used in dictionaries.

Methods \ Acc. (%) \ Notice

K-SVD [5] 93.1 15 samples
D-KSVD [126] 94.1 15 samples
SRC [115] 83.3 15 samples
SRC [115] 97.0 32 samples
LC-KSVD2 [53] 95.0 15 samples
LC-KSVD2 [53] 96.7 32 samples
KCFA [93, 117] 88.0 32 samples
SCFA (Our method) 95.5 15 samples
SCFA (Our method) 97.5 32 samples

Table 6.5: Classification results on the Extended Yale-B database. In the second column,

the results are presented using Mean and Standard Deviation (SD) within 20 times.
| Methods | Acc. (Mean£SD) | Notice |

K-SVD [5] 94.83 £1.48 % | 32 samples
SRC [115] 98.34 £0.63 % | 32 samples
LC-KSVDI1 [53] 94.83 £0.95 % | 32 samples
LC-KSVD2 [53] 96.41 £0.96 % | 32 samples

KCFA [93, 117] 87.49 + 3.8 % 32 samples
SCFA (Our method) | 96.31 + 0.52 % | 15 samples
SCFA (Our method) | 98.64 + 0.48 % | 32 samples

in [53]). Our proposed approach is compared to K-SVD, D-KSVD, LC-KSVD, sparse
representation-based classification (SRC) [115] and the classical KCFA. The performance

of our method is evaluated using dictionary sizes of 15 and 32.

The first set of experiments, shown in Table 6.4 is performed in the same manner as that
presented in [53]. The data set is partitioned randomly into a training set and testing set
and the classification experiment was run once to determine accuracies in Table 6.4. Here,
SCFA achieves the best performance amongst the methods. Compared to the classical

KCFA, our accuracy increases by about 10%.

In Table 6.5, a better experimental setup is used where the random selection of the

training and testing sets as well as the classification experiment is repeated 20 times. For

92



Table 6.6: Classification results on the AR database.

Methods | Acc. (%) | Notice
K-SVD [5] 91.0 20 samples
SRC [115] 88.17 5 samples
SRC [115] 99.0 20 samples

LC-KSVDI1 [53] 89.83 5 samples

LC-KSVD2 [53] 90.67 20 samples

KCFA [93, 117] 86.33 20 samples
SCFA (Our method) 97.5 5 samples
SCFA (Our method) | 99.17 | 20 samples

each run, all the discussed methods are evaluated. Finally, the mean and the standard
deviation (SD) of the 20 results are computed for every method. These values are reported
in Table 6.5. Here too, we see that SCFA achieves the highest accuracy with a mean of
98.64%. It is 10% better than the result from KCFA and 2% better than that from LC-
KSVD2. In addition our method reports the least standard deviation (0.48) as well as less
computation time than SRC (see Table 6.7), thus showing its versatility and practicality.

Figure 6.8 shows some sample faces recognized with 100% classification rate.

6.4.2 Experiments on AR Database

The AR database [75] has 4,000 facial images collected from 126 subjects as shown in
Figure 6.8. Each subject has 26 facial images with different facial expressions, illumina-
tion conditions and occlusions. We follow the evaluation protocol presented in [53, 126].
There are 2,600 facial images selected from 50 males and 50 females. In the same manner

as in [53] for dimensionality reduction, each facial image is projected onto a 504 dimen-

Table 6.7: Computation time for recognizing a test face image on the Extended Yale-B
database on a CPU with Intel Core 17, 2.93 GHz and 8 GB of RAM.

’ Methods \ Avg. Time (ms) \ Notice
SRC [115] 82.5 15 samples
SRC [115] 91.1 32 samples
SCFA (Our method) 2.6 15 samples
SCFA (Our method) 4.9 32 samples
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Table 6.8: Computation time for recognizing a test face image on the AR database.

| Methods | Avg. Time (ms) | Notice
SRC [115] 87.6 5 samples
SRC [115] 127 10 samples
SCFA (Our method) 2.8 5 samples
SCFA (Our method) 4.3 10 samples

Figure 6.8: Example training and testing images in Extended YaleB (first two rows) and
AR databases (the third row) classified with 100% accuracy.

sional random projection subspace. The performance of our method is evaluated using two
different dictionary sizes of 5 and 20.

Our SCFA approach is also compared to the methods described in section 6.4.1. The
results are shown in Table 6.6. Our method achieves the best accuracy rates and we see that
it is 10% better than the classical KCFA approach. We also compare our computation time
with that of SRC (which also reports high accuracies) in Table 6.8 and we see the gain in

time when using our proposed method.

6.4.3 Experiments on Caltech101 Dataset

The Caltech101 database [41] consists of 9,144 images from 101 classes of objects and
one class of backgrounds. These objects are collected with large appearance variations,
different illumination and materials as shown in Figure 6.9. Due to this, classical KCFA
is unable to achieve the high classification on this database due to the huge variations of

objects. We follow the evaluation protocol presented in [53], with 30 images per subject
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Table 6.9: Classification results with different number of training images per subject on the
Caltech101 dataset

Num. of Train. 5 10 15 20 | 30

Samples
Malik [125] 46.6 | 55.8 | 59.1 | 62.0 | 66.2
Griffin [46] 442 | 545 | 59.0 | 63.6 | 67.6
Wang [112] 512 | 59.8 | 654 |67.7| 734
SRC [115] 546 | 625 | 67.3 | 69.7 | 72.5
K-SVD [5] 70.2 | 70.5 | 70.7 | 71.7 | 73.9

LC-KSVDI1 [53] 61.5| 67.6 | 69.1 | 70.2 | 73.8
LC-KSVD2 [53] 61.6 | 68.18 | 70.4 | 73.2 | 74.0
KCFA [93, 117] 61.0 | 62.8 | 65.5 | 68.6 | 70.8
SCFA (Our method) | 72.9 | 73.0 | 73.1 | 73.2 | 74.9

Figure 6.9: Example images in Caltech database.

for training and the rest for testing. Here, in addition to methods compared with so far, we
compare our proposed approach with other state-of-the-art methods used with this database,
e.g. [46, 112, 125]. Different numbers of training images per subject are used, e.g. 5, 10,
15, 20 and 30, in these experiments. Table 6.9 tabulates our relevant results. Here too we

see the superiority of the proposed approach compared to the state of the art.
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Chapter 7

Conclusion

This thesis has built a bridge to fill the gap between the tensor decomposition research top-
ics to analyze relationships among factors from given tensors and the Compressed Sens-
ing, one of the hottest research topics nowadays. In first few chapters, we have briefly
reviewed the terminologies as well as the fundamental backgrounds presented in multi-
factor analysis and Compressed Sensing problems. In chapter 4, we have then introduced
a novel Compressed Submanifold Multifactor Analysis approach in order to analyze any
given multifactor data with missing values and outliers. Compared to the state-of-the-art
Multilinear PCA method that averages the shapes of each factor and therefore loses the
original structures, our approach has the ability to keep geometrical structures of the input
factors robustly. More importantly, our proposed method also provides the capability ef-
ficiently to handle missing values and detect outliers and noisy values from given tensors.
These achievements were obtained thank to the power of the ¢;-based Higher-order Sin-
gular Value Decomposition method proposed in section 4.2.1 in this thesis. The proposed
CSMA is then evaluated and achieved the outperformed recognition accuracy compared to
the standard multifactor decomposition methods, i.e. Multilinear PCA, Submanifold Mul-
tifactor Analysis and others, on two challenging databases, i.e. CMU-MPIE and Extended

YALE-B. The face recognition accuracy obtained by these experiments shows the robust-

97



ness of our CSMA method compared to the others. These results are due to the fact that
our CSMA method can deal with missing values, detect outliers and ignore noisy values.
Additionally, the parameters in our method can preserve the structure of factor-dependent
submanifolds in the space generated from input data which is impossible in Multilinear
PCA due to its parameter averaging process.

In addition, in the second part of this thesis, we have also presented a novel dictionary
based nonlinear classification model, named Sparse Class-dependent Feature Analysis. The
method benefits from the use of both sparse representation in a dictionary and class specific
optimal filters. The performance improvement is due to our powerful non-linear classifi-
cation tool optimized in tandem with a highly flexible feature representation. In summary,
our method outperforms the state of the art in face recognition on Extended Yale-B and
AR databases and object recognition on Caltech101 database. Hence, the proposed method
can depict its wide applicability to solve general computer vision and pattern recognition

problems.
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