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Abstract

A Large-Scale Evaluation of High-Impact Password Strength Meters

Xavier de Carné de Carnavalet

Passwords are ubiquitous in our daily digital life. They protect various types of assets

ranging from a simple account on an online newspaper website to our health infor-

mation on government websites. However, due to the inherent value they protect,

malicious people have developed insights into cracking them. Users are pushed to

choose stronger passwords to comply with password policies, which they may not

like much. Another solution is to put in place proactive password-strength meter-

s/checkers to give feedbacks to users while they create new passwords. Millions of

users are now exposed to these meters at highly popular web services that use user-

chosen passwords for authentication, or more recently in password managers. Recent

studies have found evidence that some meters actually guide users to choose better

passwords—which is a rare bit of good news in password research. However, these

meters are mostly based on ad-hoc design. At least, as we found, most vendors do

not provide any explanation of their design choices, sometimes making them appear

as a black-box. We analyze password meters deployed in selected popular websites

and password managers. We document obfuscated open-source meters; infer the al-

gorithm behind the closed-source ones; and measure the strength labels assigned to

common passwords from several password dictionaries. From this empirical analysis

with millions of passwords, we shed light on how the server-end of some web service

meters functions, provide examples of highly inconsistent strength outcomes for the

same password in different meters, along with examples of many weak passwords be-

ing labeled as strong or even excellent. These weaknesses and inconsistencies may

confuse users in choosing a stronger password, and thus may weaken the purpose of
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these meters. On the other hand, we believe these findings may help improve existing

meters, and possibly make them an effective tool in the long run.
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Chapter 1

Introduction

1.1 Motivation

Passwords are characterized with long-standing problems and are often not secure

enough [46, 6, 53, 73, 33]; however, even with their apparent weaknesses, passwords

are likely to remain in use for the foreseeable future [30]. Thus, fixing their weaknesses

is an important and challenging problem to tackle. In the past few years, some

research has shown that the presence of a password meter during password creation

leads ordinary users towards more secure passwords [61, 23]. However, not all meters

are equal, and the strengths and weaknesses of widely-deployed password meters have

been scarcely studied so far. Furnell [26] analyzes password meters from 10 popular

websites to understand their characteristics, by using a few test passwords and stated

password rules on the sites. Furnell also reports several inconsistent behaviors of

these meters during password creation and reset, and in the feedback given to users

(or the lack thereof). Password checkers are generally known to be less accurate than

ideal entropy measurements; see e.g., [16, 67]. One obvious reason is that measuring

entropy of user-chosen passwords is problematic, especially with a rule-based metric;

see e.g., the historic NIST metric [15], and its weaknesses [67]. Allegedly better

password checkers have been proposed (e.g., [16, 63, 55, 31]), however we are unaware

of their deployment at any public website. We therefore focus on analyzing meters
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as deployed at popular websites, especially as these meters are guiding the password

choice of millions of users. We also extend the evaluation to meters embedded in

password managers, which help users organize their ever-growing set of passwords.

Except Dropbox and KeePass to some extent, no other meters in our test set

provide any publicly-available explanation of their design choices, or the logic behind

their strength assignment techniques. Often, they produce divergent outcomes, even

for otherwise obvious passwords. Examples include: Password1 (rated as very weak

by Dropbox, but very strong by Yahoo!), Paypal01 (poor by Skype, but strong by

PayPal), football#1 (very weak by Dropbox, but perfect by Twitter). In fact, such

anomalies are quite common as we found in our analysis. Sometimes, very weak

passwords can be made to achieve a perfect score by trivial changes (e.g., adding a

special character or digit). There are also major differences between the checkers in

terms of policy choices. For example, some checkers promote the use of passphrases,

while others may discourage or even disallow such passwords. Some meters also do not

mandate any minimum score requirement (i.e., passwords with weak scores can still

be used). In fact, some meters are so weak and incoherent (e.g., Yahoo!) that one may

wonder what purpose they may serve. Taking into consideration that some of these

meters are deployed by highly popular websites, we anticipate inconsistencies in these

meters would confuse users, and eventually make the meters a far less effective tool.

1.2 Thesis Statement

The primary objective of this thesis is to assess the relevance of currently deployed

password-strength meters by systematically characterizing their assumptions and

rules against a selected corpus of about 4 million passwords. As part of this goal, we

explore the following research questions:

Question 1. Can we characterize password meters through empirical studies?

Question 2. Do widely-deployed password meters consistently and correctly rate

passwords?
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Question 3. Can we identify the ideal or expected features of a password meter

by analyzing existing high-impact meters?

1.3 Contributions

1. Meter characterization. We systematically characterize the password

meters of 14 prominent web service providers, ranging from financial, email,

cloud storage to messaging services; we also analyze meters from four leading

password management software tools. Our target meters include: Google, Pay-

Pal, eBay, Skype, Tencent QQ, Twitter, Apple, Microsoft, Dropbox, Yahoo!,

12306.cn, LastPass, KeePass, 1Password, RoboForm, Intel, Drupal and FedEx.

For Microsoft, we test three versions of their checker, two of which are not

used anymore. For LastPass also, we test the two versions offered by the tool.

This characterization is particularly important for checkers with a server-side

component or compiled software component, which appears as a black-box; no

vendors in our study provide any information on their design choices. Even for

client-side/open-source checkers, no analysis or justification is provided (except

Dropbox).

2. Empirical evaluation of meters. For each of the 21 meters, we used nearly

four million unique passwords from several password dictionaries (a total of at

least 85 million test instances, approximately). Each checker is represented

by its response profile to our dictionaries. This is the largest such study on

password meters to the best of our knowledge. To understand these checkers,

we extract and analyze JavaScript code (with some obfuscated sections) for

13 services and browser extensions involving local/in-browser processing. We

further analyze the C# code for a password manager and reverse-engineer, to

some extent, the five services involving server-side processing that appear as a

black-box along with the two closed-source password managers.
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Then, for each meter, we take the relevant parts from the source code (when

available) and plug them into a custom dictionary-attack algorithm written in

JavaScript and/or PHP. We then analyze how the meter behaves when presented

with passwords from publicly available dictionaries that are more likely to be

used by attackers and users alike. Some dictionaries come from historical real-

life passwords leaks. For each meter, we test nearly four million passwords from

11 dictionaries (including a special leet dictionary we created). We also optimize

our large-scale automated tests in a server-friendly way to avoid unnecessary

connections, and repeated evaluation of the same password. At the end, we

provide a close-approximation of each meter’s scoring algorithm, weaknesses

and strengths of the algorithm, and a summary of scores as received by our test

dictionaries against the meter.

3. Meter weaknesses. Weaknesses exposed by our tests include: (a) Sev-

eral meters label many common passwords as of decent quality—varying their

strengths from medium to very strong ; (b) Strength outcomes widely differ be-

tween meters, e.g., a password labeled as weak by one meter, may be labeled

as perfect by another meter; and (c) Many passwords that are labeled as weak

can be trivially modified to bypass password requirements, and even to achieve

perfect scores. These weaknesses may cause confusion and mislead users about

the true strength of their passwords. Compared to past studies, our analysis

reveals the extent of these weaknesses.

4. Test tools. We have implemented a web-based tool to check results from dif-

ferent vendors for a given password. In addition to making the inconsistencies

of different meters instantly evident, this tool can also help users choose a pass-

word that may be rated as strong or better by all the sites (from our web-based

test set), and thus increasing the possibility of that password being effectively

strong. Test tools and password dictionaries as used in our evaluation are also

available for further studies.
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1.4 Related Publication

Conference Paper. The work discussed in this dissertation has been peer-reviewed

and published in the following article:

From Very Weak to Very Strong: Analyzing Password-Strength Meters. X. de

Carné de Carnavalet and M. Mannan. Network and Distributed System Security

Symposium (NDSS’14), Feb 23-26, 2014, San Diego, CA, USA.

1.5 Outline

The rest of this thesis is organized as follows. Chapter 2 covers some necessary back-

ground and literature related to this dissertation. In Chapter 3, we first explain some

common requirements and features of the studied password checkers; then discuss

issues related to our automated testing of a large number of passwords against these

meters; and detail the dictionaries used in this study, including their origin, char-

acteristics, and some common modifications we performed on them. We present the

tested web services and password managers, and their respective results in Chapter 4.

In Chapter 5, we further analyze our results and list some insights as gained from this

study. Chapter 6 discusses more general concerns related to our analysis. Chapter 7

concludes.
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Chapter 2

Background and Related Work

This chapter covers some necessary background and literature related to this disser-

tation.

2.1 Background

In this section, we present common problems related to passwords and focus on

commonly used solutions for the particular problem of user-chosen weak passwords.

2.1.1 Problems of Password

Passwords suffer from several problems that have been studied and documented for

the past decades. We discuss seven common ones below.

2.1.1.1 Strength vs. Memorability Dilemma

As pointed by Morris [46] back in 1979, users tend to choose simple passwords that

they can remember. It is indeed a dilemma: passwords are either easy to remember

but easily guessable, or difficult to guess but also hard to remember [28, 75, 1, 37].

The main culprit is the limitation of human memory. As reported by Johnson [35] and

Miller [44], human memory is limited in time and can remember only about seven plus

or minus two items that should sound already familiar to the person. Yan et al. [72]
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show by a study on 400 first-year university students that random passwords—which

yield better security, are more difficult to memorize. They suggest mnemonic-based

passwords as being easier to memorize while presenting good strength. Adams and

Sasse [1] also report that four or five passwords are the most users are expected to

handle regularly. Users also forget their passwords, which tend to be a painful process

to go through in organizations depending on their way of solving this issue [32].

2.1.1.2 Small Effective Search-Space

Users tend to choose the weakest1 password they are allowed to select [24], resulting in

the rise of simple common patterns. Veras et al. [63] analyze the semantic of revealed

websites’ passwords and find that most are related to love, sexual terms, profanity,

animals, alcohol and money. In an experiment with mnemonic-based passwords, Kuo

et al. [40] show that the sentences chosen by the participants are primarily based on

music lyrics, movies, literature, or television shows. These studies demonstrate that

a trained attacker can narrow his search to common topics and terms in order to

maximize password cracking efficiency.

Furthermore, due to policy enforcements, users are known to adapt their simple

passwords to make them compatible with the new policies [62]. Several past stud-

ies (e.g., [66, 38, 19]) and cracking tools (e.g., [50]) reveal the patterns commonly

followed by users, including appending digits and/or special characters at the end of

a password, combining two simple words, inserting digits in front of the password,

uppercasing the first letter, etc. While these transformations ensure compliance with

the most stringent composition policies, the resulting strength is often not increased

by much.

1We refer to weak/bad passwords as ones that provide little security against an attacker trying to
guess them by state-of-the-art techniques, typically in the order of a million trials without targeted
means.
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2.1.1.3 Lack of User Education

Users are generally incompetent to judge what constitutes a secure password [1, 6].

Adams et al. [1] mention that, despite users being overall security-conscious, their

“knowledge of what constitutes secure password content (the character content of the

password) was inadequate.” More accurately, Vidyaraman et al. [64] agree on the

fact that “users are never motivated to behave in a secure manner” [1] but they are

“generally careless and unmotivated when it comes to system security”. Bishop et

al. [6] also points that users think nobody will guess the permutation they used inside

their password, which often turns wrong as mentioned in the previous paragraph.

2.1.1.4 Reuse

In contrast to the number of passwords users can effectively handle, the number of

passwords an active web user manages daily is reported to be from 8 (2007 [24])

to 15 (2001 [33]). This is not accounting for less frequently visited websites. In

total, Florêncio et al. [24] report that an average user has about of 25 password-

protected accounts. As a consequence, users reuse their passwords. Das et al. [19]

study password reuse across various database leaks and phishing campaigns and show

that users tend to reuse passwords directly 43% of the time, or base new ones on

previous ones 19% of the time by inserting or deleting few characters, mostly towards

the end of a password (88%). Their survey of university students and staff shows

that users modify their password mostly to fulfill password constraints on the newer

website. Their results also provide confirmation of mangling and leet transformations

habits. Ives et al. [33] point to the dangers of password reuse turning the security

of many services dependent on the weakest of them. Their point is further detailed

by Haque et al. [27] on a laboratory experiment with 80 participants that shows the

risk associated with the compromise of low-level account passwords against high-level

accounts such as banking accounts.
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2.1.1.5 Database Leaks

So far, several websites have been attacked one way or another and their users

database including passwords has been leaked, revealing passwords of millions of

users [45]. Examples include phpBB [52] (2009, 255 thousand users), RockYou [60]

(2009, 32 million users), Gawker [49] (2010, 1.3 million users), YouPorn [47] (2012,

1.6 million users), LinkedIn [74] (2012, 6.5 million users), Yahoo [7] (2012, 450 thou-

sand users), Twitter (2013, 250 thousand users), Adobe [39] (2013, between 38 to

150 million users depending on the source) and Forbes [18] (2014, 1 million users).

Some databases contained passwords in cleartext, leaving accounts instantly vulner-

able. On the one hand, such leaks grant attackers with more powerful understanding

of how users choose passwords, which they can try to reuse at different websites due

to the trend of reusing passwords explained above. These many database leaks also

tell us that in reality, passwords may also be obtained from offline password cracking

following a security breach rather than simple online guessing, which opens the door

for attackers to try a virtually unlimited number of passwords. On the other hand,

researchers also gain insights from the public leaks, which led to various insights and

contributions (see Section 2.2).

2.1.1.6 Theft by Keylogging or Phishing

Another problem faced by users is that they should keep their passwords secret, and

it is not always clear if they are handing them in the right hands. Shoulder surfing

is the most basic issue in which another person watches the user while she is typing

her password. More advanced techniques consist of malware or hardware recording

keystrokes [24, 25, 42] when the user types her password, and sending it stealthily to

the attacker. Users may not notice their computer is infected by such malware or is

equipped with a hardware keylogger, and attackers can gain access to various kind of

accounts protected by even difficult passwords with constant effort [24]. This issue

is relatively new compared to others, and unveils new design failures of password

schemes [25]. Another technique is phishing through which a user is tricked into
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willingly providing her password to a malicious website impersonating the original

one. Users do not realize the setup and think they are logging in the right place.

Meanwhile, attackers benefit from real fresh passwords. A historical example which

results became public is the MySpace phishing attack [56].

2.1.1.7 Internationalization issues

Bonneau et al. [12] study various problems related to password encoding and sup-

port for non-English characters on websites. They report low support for foreign

passwords, including length miscalculation, misevaluation, misencoding (sometimes

browser-dependent), foreign characters deletion or truncation leading to reduction of

strength, and ban of foreign characters altogether. They also study English, Chinese,

Hebrew and Spanish speakers behaviors and highlight that such users rarely choose

their original languages for passwords, rather they use transliteration to ASCII. Also,

Chinese and Hebrew users choose numbers a lot (simple ASCII-compliant alternative).

2.1.2 Common Solutions to Weak Passwords

2.1.2.1 Password Policies

Password policies have been used as a way to prevent users from choosing weak pass-

words. These policies often enforce a minimum number of characters, require various

types of characters to be included (e.g., lowercase/uppercase letters, digits, symbols),

forbid certain patterns (e.g., the use of user-related information, keyboard sequences,

passwords derived from simple dictionary words) [37, 26]. Although the complexity

of valid passwords appears higher, such composition policies come with several draw-

backs. Studies report that it is more difficult to create a password under stringent

policies [38], and get users frustrated from being unable to comply with them eas-

ily [32], along with various memorability and usability issues [38, 32]. Mazurek [41]

also reveals by evaluating the guessability of passwords and surveying users reaction

10



of an entire university, that annoying password policies may actually be counterpro-

ductive. Also, because users tend to react in a predictable manner to these policies

(adapting their old passwords with simple transformations), policies do not really

solve the issue of weak passwords.

2.1.2.2 Proactive Password Checking

Another way to obtain stronger passwords from users is to prevent the creation of bad

ones by evaluating the strength of a candidate password and returning feedbacks to

the user in real-time during password creation. These evaluators are called proactive

password checkers or meters and have been around for decades; for some earlier ref-

erences, see e.g., Morris and Thompson [46], Spafford [59], and Bishop and Klein [6].

Recently, password checkers are being deployed as password-strength meters on many

websites to encourage users to choose strong passwords. Password meters are gen-

erally represented as a colored bar, indicating e.g., a weak password by a short red

bar or a strong password by a long green bar. They are also often accompanied by

a word qualifying password strength (e.g., weak, medium, strong), or sometimes the

qualifying word is found alone. We use the terms password-strength meters, checkers,

and meters interchangeably in this dissertation.

Since users are reported to be security-conscious [1, 32] but fail to act appropriately

because of their lack of knowledge or because of various policy inconsistencies, this

solution appears as a step forward in the right direction. It indeed provides a mean

for communication between the system and the user, which bridges an important gap

identified by Adams et al. [1].

Two encouraging studies by Ur et al. [61] and Egelman et al. [23] (see Section 2.2)

report a positive impact on the strength of user-chosen passwords while they are

presented with a meter during password creation. Our work is based on these findings

and serves to understand the extent to which we can hope for the usefulness of

currently deployed meters.
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2.2 Related Work

Below we discuss related work from early research on password security, password

meters, password policies, user reactions, strength checking and password cracking

techniques.

2.2.1 Password Meters and Password Security Evaluations

In a recent user study, Ur et al. [61] tested the effects of 14 visually-different password

meters on user-chosen password creation. They first look at existing password meters

in Alexa’s 100 most visited websites and list characteristics of the graphical part of the

meters along with some information about the algorithm used when readily available.

Compared to this part of their work, we systematically focus on the algorithms behind

several currently deployed meters, even if presented as a black-box, and identify weak-

nesses that may negatively impact regular users. Then, they recruit 2,931 subjects

through Amazon’s Mechanical Turk crowdsourcing service who are asked to imagine

that they need to create a new password to access their emails because of a change

in their email provider’s policy. They were required to come back two days later and

use the password they created. Next, after collecting subjects’ passwords, the authors

evaluate their strength against 3 types of attackers involving Weir’s state-of-the-art

cracking algorithm [68] trained on a dictionary of 14 million strings gathered from

the OpenWall Mangled Wordlist,2 the RockYou and MySpace leaked passwords along

with strings coming from the Google Web Corpus.3 Finally, participants are asked to

complete a survey about their sentiment towards the task of creating the password.

They found that meters indeed positively influence user behavior and lead to better

password quality in general. Any meter lead to longer passwords and most lead to

more digits and symbols being included. Users tend to reconsider their entire pass-

word when a stringent evaluation is given, rather than trying to bypass the checker.

2http://www.openwall.com/wordlists/
3http://googleresearch.blogspot.ca/2006/08/all-our-n-gram-are-belong-to-you.

html
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Passwords created under such strict evaluation were significantly more resistant to

guessing attacks. More precisely, a weak adversary allowed 500 million guesses could

crack 21.0% of the passwords created without meter but only 5.8% and 4.7% in the

presence of meters ranking passwords with coefficients 1/2 and 1/3, respectively. A

medium adversary allowed 50 billion guesses could crack 35.4% of the passwords in

the first condition but only 19.5% and 16.8% in presence of the stringent meters,

respectively. Finally, a strong adversary allowed 5 trillion guesses could crack 46.7%

of the passwords compared to 26.3% and 27.9% in presence of the stringent meters,

respectively.

However, meters with too strict policies generally annoyed users and made them

put less emphasis on satisfying the meters. Authors identify two types of users: ones

who aim at filling the meter’s bar (or reaching a green color), and ones who content

themselves of a password that is considered not to be poor (not a red bar).

In another user study, Egelman et al. [23] also reported positive influence of pass-

word meters. They also considered context-dependent variations in the effectiveness

of meters, and found that passwords for unimportant accounts are not much influ-

enced by the presence of a meter. In the first part of the experiment involving 50

participants recruited with flyers distributed around the university campus, subjects

were asked to change their Single-Sign-On passwords. Results draw similar conclu-

sions regarding the length and complexity of chosen passwords compared to the study

by Ur et al. In the second part, 200 subjects were recruited from Amazon Mechanical

Turk to participate in an unrelated study about beta-testing an Android application.

They were contacted two weeks later to login again to see whether they qualified for

the unrelated testing. Finally, they were invited one month later to complete a survey.

For such unimportant account, the presence of meters led to no noticeable effects. In

the study, authors also test a peer-pressure meter design, in which a user is given

feedback on the strength of her password compared to all other users of a particular

service. The effect of such type of meter was no different than an ordinary meter.

Bishop [5] surveys five proactive password checkers for Unix in 1992, analyzes
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their design and compare them with a list of expectations. The latter include black-

listing common passwords through comprehensive dictionary, per-user and per-site

discrimination (because of user- and site-specific information), preventing reuse in

short period of time (aging), and other implementation-related details. Weaknesses

are identified in most of them, e.g., passwords failing tests are still accepted, lack of

per-user or per-site customizations, addition of a character bypasses the tests, aging

is not taken into account, dictionaries are insufficient, and lack of flexibility in the im-

plementations. Two checkers in particular were recommended for their completeness.

Bonneau et al. [11] evaluate 150 websites to point out the various failures surround-

ing password security as currently implemented. They report that a low number of

websites give advices to users while choosing passwords, despite that giving advice is

recognized as a good practice [1]; some websites send an email with the user’s pass-

word in cleartext; newspaper sites enforce email verification by sending a validation

link whereas they appear to have little concern about such verification which leads

the authors to think it is primarily intended at collecting email addresses for market-

ing purposes. Evaluated websites are mostly shown to enforce a minimum password

length and 6 characters is the most popular threshold, however very few of them im-

pose restrictions that involve running the password against a simple dictionary check

or enforcing particular composition. 24% of the websites send the original password by

email when the user forgets it and the majority (84%) allowed up to at least 100 login

attempts with no restriction including Amazon, eBay and WordPress, the remaining

websites allowed between 3 to 6 trials on average with few exceptions (Yahoo!’s limit

of 25). 86% reveals membership of a username through the password reset function

where as low as 19% provide a generic error for login with an invalid username and

about a half only allows a site-specific username compared to identification by the

user’s email address. 27% have a broken implementation of TLS, preventing some

pages such as enrollment, password update, or login forms to be covered. Overall,

they evaluate that the field of password security is undermined by inconsistencies and
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implementation issues. Bigger, leader or payment-related websites have better secu-

rity practices and identity providers protects against weak passwords and guessing

attacks, while content websites implement the poorest practices and endanger the

whole system by being easily targeted by attackers who can reuse collected passwords

at higher-importance websites. Too many websites actually require passwords for no

real benefit which stresses even more the limited users’ mental storage. Finally, au-

thors suggest that low-security websites may require separate weak passwords while

high-security website require strong passwords only in order to separate and limit

password reuse. Standardization of implementations could bring additional security

and prove beneficial to users, and could even be branded. The study concludes that

current password security implemented in practice is flawed with technical, market

and psychological failures.

Dashlane [43] examined US, French and UK e-commerce websites based on 26

criteria, including minimum password length, acceptance of the 10 most common

passwords and whether they sent back users’ password in plaintext by emails. Results

show poor practices in general. UK e-commerce websites are slightly better in terms

of password security compared to the two other countries studied. However, 63% of

UK websites did not implement an explicit policy, 66% still accept trivial passwords

such as password and 123456, 60% do not provide any advice on choosing strong

passwords, and 25% of them send passwords in plaintext via email. We did not include

Dashlane’s password manager in our evaluation because of difficulties in automating

tests against their meter.

2.2.2 Evaluation of Password Policies

Yan et al. [73] divide a class of 400 first-year university students into 3 groups which

are given different policies for creating a password. Results show that random pass-

words are difficult to remember, but mnemonic-based ones are as easy as usual ones.

Also, mnemonic-based passwords are harder to guess for an attacker. However, the

need for policy enforcement to prevent non-compliance is highlighted.
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Komanduri et al. [38] focus on the effect of password-composition policies on

users and report that long passwords with no other restrictions result in stronger

passwords while being more user-friendly compared to shorter ones created under

more restrictive policies. Evidences of common patterns chosen under restrictive

policies are also established.

Kelley et al. [36] studied password composition rules by analyzing 12,000 user-

chosen passwords under seven different policies, and reported that imposing only a

longer length requirement yields better entropy than enforcing charset complexity

on smaller passwords. Memorability and usability effects of composition policies are

discussed in a separate study [38]. Studied users tend to end a password with several

digits and a possible symbol, correlating with the observations from past studies

(e.g., Burr et al. [15] and Weir [66]). Such known user behaviors validate the use of

mangling rules in password cracking.

Furnell [26] analyzed password guidelines and policies of 10 major web services.

The study primarily relied on stated guidelines/policies, and used selective passwords

to test their implementation and enforcement. Several inconsistencies were found, in-

cluding: differences in meters/policies between account creation and password reset

pages; the vagueness of recommendations given to users for password strengthen-

ing; and the disconnect between stated password guidelines and effective password

evaluation and enforcement. We provide a more comprehensive analysis, by system-

atically testing widely-deployed password meters against millions of passwords, and

uncovering several previously unknown weaknesses.

2.2.3 Strength Evaluation

Spafford [59] presents OPUS which solves the issue of storing a large dictionary—at

the time of the study (1992), on a system that performs proactive dictionary checks

against candidate passwords. OPUS is based on a Bloom filter, which is a probabilistic

membership checker. It provides easy addition of new blacklisted passwords and low

memory consumption.
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Later solutions to improve performance of dictionary checks involve decision trees

by Bergadano et al. [4], reducing a 27.18MiB dictionary to a 23.6KiB decision tree

classifier, and Minimum Description Length Principle-based decision trees in Hyp-

pocrates by Blundo et al. [9].

Markov chains are leveraged by Davies et al. [20] to achieve the same goal in

BApasswd. A dictionary is converted to a Markov model representation at a pre-

processing stage, representing the probabilities of transition in the model. During

password checking, BApasswd checks whether a given password belongs to a partic-

ular Markov chain with a log-likelihood function. The system aims at representing

the original dictionary as close as possible, rather than generalizing the knowledge of

the dictionary as it is the case in later work [16].

Yan [71] shows the limitations of dictionary checks in proactive password checkers

and proposes an alternative based on entropy for 7-character passwords. It is easy to

compute the search-space associated with each possible combinations of letters and

digits in such password and take into account character repetitions. This way, small

search-spaces are identified and associated with low entropy. Passwords falling into

these categories should be discarded.

Bishop and Klein [6] mention in 1995 that users are not educated as to what are

wise choices of passwords. They provide an extensive list of patterns to ban in pass-

words including dictionary checks taking into account an exact match, reversed word

and various transformations (mangling, leet, misspelling); also enforcing minimum

length, preventing inclusion of user-related information and various patterns such

as social security numbers, license plates, keyboard sequences, and concatenation of

words. The implementation proposed targets Unix systems.

Blundo et al. [8] train a perceptron to recognize whether a password is weak

or strong based on a training set that considers strong passwords as containing a

symbol or being random. Features provided to the perceptron are the number of

charsets, number of “strong” characters, the upper-lowercase distribution, and types

of diagrams.
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Ciaramella et al. [17] improve on Blundo, study various neural-network construc-

tions for password checkers, stick to a multilayer perceptron and train it to distinguish

weak and strong passwords. They evaluate the performance against Hyppocrates [9]

and CrackLib. The solution dramatically reduces storage space requirements, as dic-

tionaries are no longer needed after training. The system is capable of fitting in very

limited environments such as smart cards.

Jamuna et al. [34] introduce the use of SVM as a classifier for the problem of

weak/strong passwords. Training their algorithm on a 10,000-word dictionary of

various categories, they yield a prediction accuracy of about 99% for a 10-fold cross

validation using an RBF kernel, feeding the SVM with metrics such as the number

of characters in each charset and presence of various patterns.

Dell’Amico et al. [21] condemns usual naive metrics for password checking and

propose a checker based on dictionaries, probabilistic context-free grammars, and

Markov chains, which represented the state-of-the-art in terms of password cracking

at the time of the writing. They point out that it is impossible to infer resilience

against advanced password-cracking techniques from bit-strength only, and hence

limit themselves to express whether a given password is known to be crackable by these

known techniques only. The complementarity of the techniques is highlighted, rather

than finding one prevalent over the others. They evaluate the various techniques

against 3 datasets.

By analyzing 70 million passwords from Yahoo! users, Bonneau [10] develops

new metrics for guessing difficulty, considering that an attacker may be interested in

compromising as much accounts as possible, instead of targeting a particular user.

New measurements include the expected number of guesses per account to achieve

a certain success rate, given that an attacker will guess passwords in an optimal

way by testing them in a decreasing order of probability. By transforming guessing

difficulty into bits of entropy/security, Bonneau found that the evaluated passwords

provide between 10 bits of entropy against an optimal online attacker wishing to

test 10 common passwords, to 20 bits against an optimal offline attacker wishing
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to crack half of the accounts. Interesting results regarding password characteristics

are also reported; e.g., users who changed their account password, or forgotten and

reset it five times or more in the account’s lifespan, are a little more likely to have

stronger passwords.

Castelluccia et al. [16] leverage the use of Markov models to create an adaptive

password-strength meter (APSM) for improved strength accuracy. Markov models

have been introduced for password checking by Davies [20] in 1993, however with

a different perspective. Strength is estimated by computing the probability of oc-

currence of the n-grams that compose a given password. The APSM design also

addresses situations where the n-gram database of a given service is leaked. APSMs

generate site-dependent strength outcomes, instead of relying on a global metric. The

n-gram database is also updated with passwords from new users. To achieve good

strength accuracy, APSMs should be used at websites with a large user base (e.g.,

at least 10,000).

A password checker and modifier based on a context-free grammar was proposed

by Houshmand [31], which suggests calculating after how many trials the candidate

password will be guessed if the attacker follows an optimal plan with context-free

grammars-based cracking algorithm trained on publicly accessible password database

leaks. Calculation of the rank is a constant-time operation, and is then mapped to a

strength. Also, the algorithm modifies the structure of the password if it is too weak,

and proposes a similar password which passes the strength threshold. Modifications

follow a set of predefined rules picked at random, which may allow an attacker to

determine how users strengthened their weak password, which can in turn be taken

into account in the cracking process.

2.2.4 Cracking Efforts

Klein [37] gathers password files from colleagues at different places in US and UK,

summing up to 13,797 Unix accounts, and tries to crack the passwords with many

rules. He then proposes a password checker based on dictionary check and a list of
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blacklisted patterns.

In its community-enhanced version, John the Ripper [50] offers a Markov cracking

mode where statistics computed over a given dictionary are used to guide a simple

brute-force attack; only the most probable passwords are tested. This mode is based

on the assumption that “people can remember their passwords because there is a

hidden Markov model in the way they are generated” [50]. In fact, this mode is an

implementation of a 2005 proposal from Narayanan and Shmatikov [48], which pre-

dicts the most probable character to appear at a certain position, given the previous

characters of a password. The Markov mode in John the Ripper is more suitable

for offline password cracking than generating a dictionary for online checkers as it

produces a very large number of candidate passwords (e.g., in the range of billions).

Therefore, we did not consider using such dictionaries in our tests.

Dürmuth et al. [22] extend the work of Narayanan and Shmatikov [48] to improve

cracking performance. They also explore the inclusion of users’ personal information

(e.g., username, birthday, list of friends, education, work, siblings, first name, last

name, and location) in the cracking algorithm, and found that such personal attributes

further enhanced the cracker’s performance.

Weir et al. [68] propose an algorithm for extracting password structures from a

given training dictionary (e.g., of leaked passwords), so as to infer which ones are

the most common. Base structures are in the form of a sequence of charsets with

associated lengths, e.g., L3D1 for 3 letters followed by 1 digit. In their proposed

cracking algorithm, letter-only parts are filled by searching for a word of the required

size in a dictionary, and other sets are filled in a decreasing order of probability based

on the derived statistics from training dictionaries.

Concurrent to our work, Veras et al. [63] leverage Natural Language Processing

(NLP) algorithms to analyze semantic patterns in leaked passwords. They found

that most passwords in the RockYou dataset are semantically meaningful, contain-

ing terminologies related to love, sex, profanity, animals, alcohol and money. Their

semantic-aware cracking technique shows significantly better results than existing
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techniques, and may also be used as a password-strength checker.

Also concurrent to our work, Das et al. [19] study password reuse across vari-

ous database leaks and phishing campaigns and build a cross-site password guessing

algorithm based on rules extracted from the study, including deletion/insertion, cap-

italization, reversing, leet transformations, substring movement and subword modifi-

cation. They are able to guess successfully 30% of password pairs based on substrings

by 10 guesses, and 80% by 100 guesses.

21



Chapter 3

Meters Characterization

3.1 Overview

Password-strength meters are usually embedded in a registration or password update

page. In password managers, they are used during the creation of a master pass-

word or to give hints to every forms a user fills out. During password creation, the

meters instantly evaluate changes made to the password field or wait until the user

finishes typing it completely, and output the strength of the given password. Below

we discuss different aspects of these meters as reported in our test websites and pass-

word managers. Some common requirements and features of different meters are also

summarized in Table 1.

(a) Charset and length requirements. By default, some checkers classify a given pass-

word as invalid or too short, until a minimum length requirement is met; most me-

ters also enforce a maximum length. Some checkers require certain character sets

(charsets) to be included. Commonly distinguished charsets include: lowercase let-

ters, uppercase letters, digits, and symbols (also called special characters). Although

symbols are not always considered in the same way by all checkers (e.g., only selected

symbols are checked), we define symbols as being any printable characters other than

the first three charsets. One particular symbol, the space character, may be disal-

lowed altogether, allowed as external characters (at the start or end of a password),
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or as internal characters. Some checkers also disallow identical consecutive characters

(e.g., 3 or 4 characters for Apple and FedEx respectively).

(b) Strength scales and labels. Strength scales and labels used by different checkers

also vary. For example, both Skype and PayPal have only 3 possible qualifications for

the strength of a password (Weak-Fair-Strong and Poor-Medium-Good respectively),

while Twitter has 6 (Too short-Obvious-Not secure enough-Could be more secure-

Okay-Perfect). At the extreme side, LastPass has only a continuous progress bar

without labels.

(c) User information. Some checkers take into account environment parameters re-

lated to the user, such as her real/account name or email address. We let these

parameters remain blank during our automated tests, but manually checked different

services by completing their registration forms with user-specific information. Ideally,

a password that contains such information should be regarded as weak (or at least

be penalized in the score calculation). However, password checkers we studied vary

significantly on how they react to user information in a given password; more detail

is provided in Chapter 4.

(d) Types. Based on where the evaluation is performed, we distinguish three main

types of password checkers for web-based meters as follows. Client-side: the checker is

fully loaded when the website is visited and checking is done locally only (e.g., Drop-

box, Drupal, FedEx, Intel, Microsoft, QQ, Twitter, Yahoo! and 12306.cn); server-

side: the checker is fully implemented on server-side (e.g., eBay, Google and Skype);

and hybrid : a combination of both (e.g., Apple and PayPal). Password managers

can have a variety of implementations but all operate on the user-end, either as a

white- or black-box. We decided to group these managers together in terms of types.

This distinction of four meter types leads us to different approaches to automate our

testing, as explained in Section 3.2.

(e) Diversity. None of the 14 web services and 4 password managers we evaluated

use a common meter. Instead, each service and software tool provides their own
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meter, without any explanation of how the meter works, or how the strength pa-

rameters are assigned. For client-side and open-source checkers, we can learn about

their design from code review, yet we still do not know how different parameters are

chosen. Dropbox is the only exception, which has developed an apparently carefully-

engineered algorithm called zxcvbn [69]. Dropbox also provides details of this meter

and open-sourced it to encourage further development.

(f) Entropy estimation and blacklists. Every checker’s implicit goal is to determine

whether a given password can be easily found by an attacker. To this end, most

employ a custom “entropy” calculator, either explicitly or not, based on the perceived

complexity and length of the password. As discussed in Chapter 5, the notion of en-

tropy as used by different checkers is far from being uniform, and certainly unrelated

to Shannon entropy. Thus, we employ the term entropy in an informal manner, as

interpreted by different meters. Password features generally considered for entropy-

/score calculation by different checkers include: length, charsets used, and known

patterns. Some checkers also compare a given password with a dictionary of com-

mon passwords (as a blacklist), and severely reduce their scoring if the password is

blacklisted.

3.2 Test Automation

For our evaluation, we tested nearly four million of passwords against each of the 21

checkers. In this section, we discuss how we performed such large-scale automated

tests.

3.2.1 Web-Based Client-Side Evaluators

For client-side checkers, we extract the relevant JavaScript functions from the source

code of a registration page, and query them to get the strength for each dictionary

password with a dictionary-attack-based algorithm: a dictionary is taken as input
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and each password is checked against the evaluation function that returns a score

(e.g., “weak”, “strong”). Outputs are then stored for later analysis. To identify the

sometimes obfuscated part of the code responsible for checking the password, we use

the built-in debugger in Google Chrome. In particular, we set breakpoints on DOM

changes, i.e., when the password meter’s bar or qualification word changes, allowing

us to look at the stack at that time of the execution and identify relevant functions

and set further breakpoints on the code. Such obfuscation may be the result of code

minification, which involves the removal of unnecessary data in a source code such

as comments, extra spaces, optional writings, along with the shrinking of variable

names in hope to make the code shorter and faster to be transmitted on the network.

It has the side effect of obfuscating the original source. Fortunately, strength meters

generally involve simple logic, and remain understandable with some effort after such

optimization. The use of various APIs for developing the client-side code can also

result in complex code. Also, as some part of the checkers are event-driven (e.g.,

invoked by key-press events), the use of a debugger is even more relevant as it is

possible to land directly on the evaluation function without reading all the client-

side code and analyzing all possible events. We tested our dictionaries using Mozilla

Firefox, as it was capable of handling bigger dictionaries without crashing (unlike

Google Chrome). Speed of testing varies from 7ms for a 500-word dictionary against

a simple meter (FedEx), to nearly 10min for a 2-million dictionary against the most

complex meter (Dropbox).

3.2.2 Web-Based Server-Side Evaluators

Server-side checkers directly send the password to a server-side script by an AJAX

request without checking them locally (except for minimum length). We test server-

side checkers using a PHP script with the cURL library4 for handling HTTPS requests

to the server-side checker. The chercker’s URL is obtained from the JavaScript code

and/or a network capture. We use Google Chrome to set breakpoints on AJAX calls

4http://curl.haxx.se
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to be pointed to the send()5 call before its execution. This way, it is possible for

us to inspect the stack and deduce how the call parameters are marshaled. We then

prepare our password test requests as such and send them in batches.

To reduce the impact of our large volume of requests to the server-side checkers

(both in terms of bandwidth and processing), we leverage keep-alive connections,

where requests are pipelined through the same established connection for as long

as the server supports it. Typically, we tested more than 4 million passwords for

each service (the small overlap between dictionaries was not stripped), and we could

request up to about 1000 password through one connection with Skype, 1500 with

eBay and as much as we wanted with Google; as a result, the number of connections

dropped significantly. We did not parallelize the requests to keep a low profile from

the servers’ perspective. However, the obvious price we paid is that our tests took

longer to finish. On average, we tested our dictionaries at a speed of 5 passwords per

second against Skype, 10 against eBay and 64 against Google (2.5 against PayPal

and 8 against Apple for the server-side part of their checkers), generating a maximum

traffic of 5KiB/s of upload and 10KiB/s of download per web service. To our surprise,

we did not face any blocking mechanisms during our tests.

3.2.3 Web-Based Hybrid Evaluators

Hybrid checkers first perform a local check, and then resort to a server-side checker

(i.e., a dynamic blacklist of passwords and associated rules). We combine above men-

tioned techniques to identify client-side and server-side parts of the checker. Our test

script runs as a local webpage, invoking the extracted client-side JavaScript checker.

When the checker wants to launch a request to a remote host, which inherently comes

from a different origin, we face restrictions imposed by the same origin policy.6.

To allow client-side cross-origin requests, the cross-origin resource sharing mecha-

nism (CORS [70]) has been introduced and is currently implemented in most browsers.

5http://www.w3.org/TR/XMLHttpRequest/#the-send()-method
6http://www.w3.org/Security/wiki/Same_Origin_Policy
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CORS offers new request/response headers that may be used by a server to specify

additional origins that are allowed to access resources from the server. As the original

servers are not supposed to be requested for their service by another origin than the

original website itself, no cross-domain policies are provided. Thus, the JavaScript

checker is prohibited from receiving the response when it wants to perform such a

request. To allow our local script as a valid origin, we implemented a simple proxy to

insert the required CORS header, Access-Control-Allow-Origin [70], in the server’s

response.

Our local proxy is problematic for keep-alive connections, as it breaks the direct

connection between the JavaScript code and the remote server. Technically, the

client-side code launches a request to our proxy, which then forwards the request

to the remote server. Sharing a keep-alive remote connection across multiple client-

side calls is more challenging. Indeed, if the proxy is implemented as a PHP script

running under an independent HTTP server, we would not be able to easily reuse

the server connection; in this case, each AJAX call to our script would trigger a new

instance of the script, which in turns would create a new server connection. Instead,

we implemented a simple HTTP server within the PHP script of the proxy that allows

server connection reuse across multiple client requests. The HTTP server part waits

for incoming connections and reads requests on which only basic parsing occurs. We

also chose to reuse the XMLHttpRequest object to pipeline requests to our proxy from

the browser. In this configuration, we use a single connection between the JavaScript

code and the proxy, and we use the same pipelining mechanism as for the server-side

checkers between the proxy and the remote server. Finally, because we faced browser

crashing for large dictionaries tested against hybrid checkers, we needed to split these

dictionaries into smaller parts and to test them again separately. To prevent duplicate

blacklist checks against the server-side checker (as we restart the test after a browser

crash), we implement a cache in our proxy which also speeds up the resume process.
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3.2.4 Application-Based Evaluators

To cope with a multitude of passwords, password manager applications are also used

widely. Some of these managers implement a meter; similar to web-service meters,

these meters also vary significantly in their design. We choose four popular password

managers that implement strength meters as part of a closed- or open-source software

tool and/or as JavaScript browser extension.

Open-source meters. Open-source password managers in our evaluation are offered

as a C# application (KeePass) or JavaScript-based browser extensions (LastPass and

one of 1Password’s meters). In both cases, analyzing the algorithm and automating

the test of our dictionaries are straightforward. We modify KeePass to process an

entire dictionary instead of a typed password and evaluate our 11 dictionaries within

two minutes. Tests against the JavaScript-based browser extensions’ checkers are

similar to the ones for web-based client-side checkers, and yield comparable speed.

Closed-source meters. We tested two closed-sourced software-based meters (1Pass-

word and RoboForm). We evaluate the Windows versions of these checkers. Two

choices are available for us to analyze them.

Simulating human typing. The first method consists in automating the evaluation of

our dictionaries by simulating a user who types passwords and collecting back the

results for further analysis. We leverage AutoIt7 to automate such tests. AutoIt is

a free software interpreter with a custom scripting language designed for automating

the Windows GUI. The overall algorithm to automate our tests against closed-source

meters is presented in Algorithm 1. 1Password meter consists of a continuous progress

bar showing a score rounded to the nearest integer. As it is using a default Windows

progress bar, AutoIt is able to retrieve the score directly. However, in the case of

RoboForm, the meter has only five possible positions and involves a custom graphical

meter, which cannot be processed directly by AutoIt to extract values. We are able to

retrieve the color of selected pixels on the screen with AutoIt at five different locations

7http://www.autoitscript.com/site/autoit/
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on the meter so as to collect and reconstitute the meter’s output. As the meter is

colored from red to green on a gray background, we know that if a pixel located at

the ith position is not gray, the meter is filled at least up to this position. By checking

the five points, we can identify up to which position the meter is filled. The method,

although ad-hoc and slower than a direct access to the meter’s value, proves to be

effective. We run the tests in a virtual machine so that the password manager window

can stay open in front for the whole duration of the tests without interference with

our use of the computer. We also wait 5 milliseconds for RoboForm to compute and

display the result before capturing pixels color on the meter bar. We verified that

this duration is long enough for RoboForm to complete the evaluation, while keeping

our evaluation time under a week. Tests are performed at a speed of 90 passwords

per second against 1Password and 8.5 against RoboForm. Finally, the analysis of

the output for 1Password is discussed in Section 4.4. RoboForm’s algorithm is too

complex to understand from its output only, hence we rely on the second solution for

characterizing this meter.

Reverse-engineering. We can leverage a debugger attached to the application to read

through the program’s low-level instructions and infer its high-level behavior. We

must capture a trace of the execution, or follow step-by-step the execution when the

application is actively ranking a given password. Unfortunately, such a method is

cumbersome as the variety of operations performed increases the length and com-

plexity of the instructions to analyze. In our initial exploration of this solution, we

faced difficulties capturing the trace of execution using IDA8 because of software ex-

ceptions that make the debugger loose control over the application. After several

unsuccessful attempts breaking the execution of RoboForm, we were successful at

attaching Immunity Debugger9 to it and setting a breakpoint on any access to the

memory location that contains the user password to be ranked. Once the algorithm

reads this memory location, we can follow the algorithm and understand how the

8https://www.hex-rays.com/products/ida/
9http://debugger.immunityinc.com/

30

https://www.hex-rays.com/products/ida/
http://debugger.immunityinc.com/


Algorithm 1 AutoIt high-level test automation algorithm

Input: Window title of the meter, input dictionary
Output: Output of the meter against each word in the input dictionary
1: hPassword← handle of the input caption where to enter the password
2: hLabel ← handle of the caption showing a word qualifying the strength of the

password
3: hMeter ← handle of the progress bar showing the strength of the password
4:

5: for each password ∈ dictionary do
6: Insert password into hPassword
7: Wait for processing (0 or 5ms depending on the checker tested)
8: score← progress bar status of hMeter
9: strength← word in hLabel

10: Write password, score, strength as output
11: end for

score is calculated. Details of this analysis are given in Section 4.4.4.

3.3 Tested Dictionaries

Below, we provide details of the password dictionaries used in our evaluation.

Overview and notes. Table 2 lists the 11 dictionaries we used, including their sizes,

and maximum, average and standard deviation of their password length. Dictionary

sources include: password cracking tools (John the Ripper and Cain & Abel), a list

of 500 most commonly used passwords (Top500), an embedded dictionary in the

Conficker worm, and leaked databases of plaintext or hashed passwords (RockYou

and phpBB). We mostly chose simple and well-known dictionaries (as opposed to

more complex ones, see e.g., [2, 3]), to evaluate checkers against passwords that are

reportedly used by many users. We expected passwords from these non-targeted

dictionaries would be mostly rejected (or rated as weak) by the meters.

We trimmed passwords used from the leaked databases by removing leading and

trailing spaces, as several checkers disallow such external spaces (see Table 1); how-

ever, we kept internal spaces. Four additional dictionaries are derived by using well-

known password mangling rules. As we noticed that our main dictionaries did not
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Dictionary name Size (# words)
Password length

Max Average Std dev.

Top500 499 8 6.00 1.10

Cfkr 181 13 6.79 1.47

JtR 3,545 13 6.22 1.40

C&A 306,706 24 9.27 2.77

RY5 562,987 49 7.41 1.64

phpBB 184,389 32 7.54 1.75

Top500+M 22,520 12 7.18 1.47

Cfkr+M 4,696 16 7.88 1.78

JtR+M 145,820 16 7.30 1.66

RY5+M 2,173,963 39 8.23 1.98

Leet 648,116 20 9.09 1.81

Table 2: Dictionaries used against password checkers; +M represents mangled version of a
dictionary; the “Leet” dictionary is custom-built by us.

specifically consider leet transformations, we built a special leet dictionary using the

main dictionaries.

As a side note, many passwords in the source dictionaries are related to insults, love

and sex, as reported by a semantic analysis by Veras [63]. We avoid mentioning such

words as example passwords. We also noticed poor internationalization of dictionary

passwords in general, where most of them originate from English. One exception is

the RockYou dictionary, which contains some Spanish words (possibly due to some

RockYou users being originated from Spanish-speaking countries). Finally, some

leaked passwords contained UTF-8-encoded words that were generally not handled

properly by the checkers (also some are malformed UTF-8 strings) [12]. Given their

small number in our reduced version of RockYou dictionary, we chose to ignore them.

Dictionaries sometimes overlap, especially when considering the inclusion of trivial

lists and cracking tools default dictionaries among leaked passwords, see Table 3.

More comments are provided in Section 5.1.
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3.3.1 Cracking Tool Dictionaries

Top500. This dictionary was released in 2005 as the “Top 500 Worst Passwords of All

Time” [13], and later revised as Top 10000 [14] passwords in 2011. We use the 500-

word version as a very basic dictionary. Passwords such as 123456, password, qwerty

and master can be found in it. Actually, a “0” is duplicated in this list, making it

have only 499 unique passwords. Password composition: 91% lowercase letters only,

7% digits only, and 2% lowercase letters and digits.

Cfkr. The dictionary embedded in Conficker worm was used to try to access other

machines in the local network and spread the infection. Simple words and numeric

sequences are mostly used; example passwords include: computer, 123123, and my-

password.10 Password composition: 52.5% lowercase letters only, 29.8% digits only,

15.5% lowercase letters and digits, and 2.2% mixed-case letters.

JtR. John the Ripper [50] is a very common password cracker that comes with a

dictionary of 3,546 passwords, from which we removed an empty one. Simple words

can be found in this dictionary too; however, they are little more complex than

those in Top500, e.g., trustno1. Password composition: 82.79% lowercase letters only,

8.12% lowercase letters and digits, 4.4% mixed-case letters, and few other charset

combinations.

C&A. Another password cracking tool, Cain & Abel [51] comes with a 306,706-word

dictionary that primarily consists of long lowercase words (e.g., constantness, psy-

chotechnological). The composition of passwords is quite unique: 99.84% lowercase

letters only. The rest is shared among lowercase letters and symbols (0.09%), low-

ercase letters and digits (0.05%), few digits only, symbols only, and lowercase letters

with digits and symbols.

10http://www.f-secure.com/v-descs/worm_w32_downadup_al.shtml
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3.3.2 Real Password Database Leaks

RY5. RockYou.com is a gaming website that was subject to an SQL injection attack

in 2009, resulting in the leak of 32.6 million cleartext user passwords. This constitutes

one of the largest real user-chosen password databases as of today. There are only

14.3 million unique passwords, which is still quite large for our tests. We kept only

the passwords that were used at least 5 times, removed space-only passwords (7) and

duplicates arising from trimming (5). The resulting dictionary has 562,987 words, of

which 39.96% are lowercase letters only, 36.39% lowercase letters and digits, 17.11%

digits only, 1.93% uppercase letters only, and the rest consists of several charset

combinations.

phpBB. The phpBB.com forum was compromised in 2009 due to an old vulnerable

third-party application, and the database containing the hashed passwords was leaked

and mostly cracked afterwards. Due to the technical background of users registered on

this website, passwords tend to be a little more sophisticated than trivial dictionaries.

Password composition: 41.24% lowercase letters only, 35.7% lowercase letters and

digits, 11.24% digits only, 4.82% mixed-cased letters and digits, 2.68% mixed-case

letters, and the rest is made of different charset combinations.

3.3.3 Mangled Dictionaries

Users tend to modify a simple word by adding a digit or symbol (often at the end), or

changing a letter to uppercase (often the first one), sometimes due to policy restric-

tions [16, 38, 15]; for details on this wide-spread behavior, see e.g., Weir [66]. Password

crackers accommodate such user behavior through the use of mangling rules. These

rules apply different transformations such as capitalizing a word, prefixing and suf-

fixing with digits or symbols, reversing the word, and some combinations of them.

For example, password can be transformed into Password, Password1, passwords and

even Drowssap. John the Ripper comes with several mangling rules (25 in the wordlist

mode), which can produce up to about 50 passwords from a single one.
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We applied John the Ripper’s default ruleset (in the wordlist mode) on Top500,

Cfkr, and JtR dictionaries, generating an average of 45, 26 and 41 passwords from

each password in these dictionaries, respectively. Derived dictionaries are called

Top500+M, Cfkr+M, JtR+M respectively. Original passwords with digits or sym-

bols are excluded by most rules, unless otherwise specified. We chose not to test

the mangled version of C&A as it consists of 14.7 million passwords (too large for

our tests). Given that the original size of RY5 is already half a million passwords,

mangling it with the full ruleset would be similarly impractical. For this dictionary,

we applied only the 10 most common rules, as ordered in the ruleset and simplified

them to avoid redundancy. For example, instead of adding all possible leading digits,

we restricted this variation to adding only “1”. We did the same for symbols. The

resulting dictionary is called RY5+M. The rules applied for RY5 mangling are the

following:

1. lowercase passwords that are not;

2. capitalize;

3. pluralize;

4. suffix with “1”;

5. combine (a) and (d);

6. duplicate short words (6 characters or less);

7. reverse the word;

8. prefix with “1”;

9. uppercase alphanumerical passwords; and

10. suffix with “!”.

Note that although these rules are close to real users’ behavior, they are compiled

mostly in an ad-hoc manner (see e.g., Weir [66]). For example, reversing a word is

not common in practice, based on Weir’s analysis of leaked password databases. At

least, John the Ripper’s rules represent what an average attacker is empowered with.
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3.3.4 Leet Transformations

Leet is an alphabet based on visual equivalence between letters and digits (or sym-

bols). For example, the letter E is close to a reversed 3, and S is close to a 5 or $.

Such transformations allow users to continue using simple words as passwords, yet

covering more charsets and easily bypass policy restrictions [55]. Leet transformations

are not covered in our main dictionaries, apart from few exceptions; thus, we built

our own leet transformed dictionary to test the effect of such transformations.

Our Leet dictionary is based on the passwords from Top500, Cfkr, JtR, C&A,

phpBB, the full RockYou dictionary, along with the Top 10000 dictionary, and a

37,141-word version of the leaked MySpace password dictionary,11 obtaining 1,007,749

unique passwords. For each of them, we first strip the leading and trailing digits and

symbols, and then convert it to lowercase (e.g., 1PassWord$0 becomes password).

Passwords that still contain digits or symbols are then dropped (e.g., here4you), so

as to keep letter-only passwords. Passwords that are less than 6-character long are

also dropped, while 6-character long ones are suffixed with a digit and a symbol

chosen at random, and 7-character passwords are only suffixed with either a digit

or a symbol. At this point, all passwords are at least 8-character long, allowing us

to pass all minimum length requirements. Those longer than 20 characters are also

discarded. The dictionary was reduced to 648,116 words.

We then apply leet transformations starting from the end of each password to

mimic known user behaviors of selecting digits and symbols towards the end of a

password (see e.g., [66, 29]). For these transformations, we also use a translation map

that combines leet rules from Dropbox and Microsoft checkers. Password characters

are transformed using this map (if possible), by choosing at random when multiple

variations exist for the same character, and up to three transformations per password.

Thus, one leet password is generated from each password, and only single character

equivalents are considered (e.g., we do not consider more complex transformations

such as V becoming double slashes: \/). The resulting Leet dictionary is composed of

11Collected from: http://www.skullsecurity.org/wiki/index.php/Passwords
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77.56% 4-charset passwords, 18.66% mixed-case letters and digits, 3.72% mixed-case

letters and symbols, and the rest of mixed-case letters only. Arguably, this dictionary

is not exhaustive; however, our goal is to check how meters react against simple leet

transformations. The near-zero overlap between this dictionary and the leaked ones

(as in Table 3) can be explained by the simple password policies as used by RockYou

and phpBB at the time of the leaks. RockYou required only a 5-character password

and even disallowed symbol characters [29], while phpBB’s 9th most popular password

is 1234, clearly indicating a lax password policy. Thus, users did not need to come

up with strategies such as mangling and leet transformations.
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Chapter 4

Empirical Evaluation

For each password-strength meter evaluated, we present their general behavior and

response profile against our set of dictionaries, analyze the way they operate and dis-

cuss their strengths and weaknesses. Most of our tests of web-based meters have been

performed between the months of June and July, 2013. The rest of web-based and

application-based meters tests have been performed between February and March,

2014.

4.1 Web-Based Password Meters (Client-Side)

4.1.1 Dropbox

Dropbox has developed a client-side password strength checker called zxcvbn [69],

and open-sourced it to encourage others to use and improve the checker. Figure 1

summarizes our results for Dropbox.

4.1.1.1 Algorithm

Zxcvbn decomposes a given password into patterns with possible overlaps, and then

assigns each pattern an estimated “entropy”. The final password entropy is calculated

as the sum of its constituent patterns’ entropy estimates. The algorithm detects
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Figure 1: Dropbox checker password strength distribution

multiple ways of decomposing a password, but keeps only the lowest of all possible

entropy summations as an underestimate. An interesting aspect of this algorithm

is the process of assigning entropy estimates to a pattern. The following patterns

are considered: spatial combinations on a keyboard (e.g., qwerty, zxcvbn, qazxsw);

repeated and common semantic patterns (e.g., dates, years); and natural character

sequences (e.g., 123, gfedcba). These patterns are considered weak altogether, and

given a low entropy count.

To restrict common passwords, a candidate password is checked against five em-

bedded, frequency-ordered dictionaries: 7141 passwords from the Top 10000 password

dictionary [14]; 32545 English words from the Wikitionary project;12 1004 male, 3815

female names and 40583 surnames from the 2000 US Census. The presence of a sub-

part of the password in a dictionary is not forbidden or directly penalized in contrast

to other password checkers involving a blacklist in our test. Such a subpart is assigned

an entropy value based on the average number of trials that an attacker would have

to perform, considering the rank of the subpart in its dictionary.

If no pattern is found for a given subpart of the password, it is considered a

12http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists
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random string. The entropy of such string is computed based on a simple brute-

force attack. For example, MySuperP4$$w0Rd is decomposed as my (5.3 bits of

entropy based on a dictionary attack), super (9.4 bits), and a transformed password

(about 5 bits; 1.58 for the leet transformation and 3.45 for the uppercase), which are

all found quickly in the dictionaries; hence this password gets a “very weak” score

(entropy of 19.8 bits). On the contrary, the partially randomly generated password

P4$$w0RdTBuK9Ye6MZkdyx decomposes as a transformed password and something

that does not match a dictionary word or pattern; hence, the latter part is considered

to be found only by a brute-force attack (92 bits of entropy), granting the password

a score labeled “great”.

Finally, the entropy is matched to a score by supposing that a guess would take

0.01 second, and that an attacker can distribute the load on 100 computers. Then,

the average time needed (in seconds) is computed as: 2entropy−1 ·0.01/100. Thresholds

are applied to map the average cracking time to a strength in the following way: very

weak if less than 102 seconds, weak if less than 104, so-so if less than 106, good if less

than 108, and great otherwise.

4.1.1.2 User information

The first and last names and the email address of a registering user are added to

a new dictionary in the algorithm to weaken the strength of a password containing

these user-specific registration items. The part of the password that matches any

registration item, even if transformed, is assigned a very low entropy. It is given 1 bit

if it matches the first name, 1.58 for the last name, and 2 for the email address (because

of the rank in the dictionary). Additional bits are assigned for transformations and

uppercased letters. Overall, a password reusing a registration item will be significantly

weakened. However, there is a programming error that allows most users to bypass

this filter, even unknowingly. If an item contains an uppercase letter (a probable case

for the names), it will not be detected as a pattern, and thus a password with such

items will not be weakened accordingly. Even though this bug has been reported and
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fixed one year ago on zxcvbn GitHub project,13 the change has not been propagated

to DropBox’s registration page.

4.1.1.3 Strengths

Zxcvbn considers the composition of a password more thoroughly than all other check-

ers in our test, resulting into a more realistic evaluation of the complexity of a given

password. In this regard, it is probably the best checker. Zxcvbn also assigns good

scores to a password composed of multiple words, based on the assumption that hav-

ing several words together, even when taken from a known dictionary, generally yields

stronger passwords than (transformed) single-word passwords.

4.1.1.4 Weaknesses

The simple transformation of reversing the character order in a word (as found in John

the Ripper’s default mangling rules), often generates “Great!” passwords out of very

simple dictionary words. For instance, ehcsroP (the reverse of Porsche) or retupmoC

(the reverse of Computer) mangled from words found in the Top500 dictionary are

qualified as great. In addition, zxcvbn dictionaries include only English words, and

thus are unable to catch commonly used words in other languages; e.g., Motdepasse

is the French equivalent of Password and is considered as great, and contraseñas

(Spanish equivalent in lowercase) is good. As for the keyboard combinations, some

design limitations fail to catch patterns such as 1a2s3d4f5g, tagged as great.

As zxcvbn promotes the use of passwords consisting of a combination of com-

mon words such as correcthorsebatterystaple,14 many words from C&A are considered

as good (9.4%), or even great (5.5%), as they mostly consist of long words (often

a combination of simple words). Zxcvbn, however, fails for some trivial passwords

that are not listed in its internal dictionary, e.g. from RY5, evanescence, SEPUL-

TURA (an American rock band and a Brazilian heavy metal band, respectively) and

13https://github.com/lowe/zxcvbn/commit/a9fa79e62adcf171f5f981d2f64801df1ebdd990
14https://www.xkcd.com/936/
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dolce&gabana (an Italian luxury industry fashion house) are considered great. This

highlights an important limitation of fixed embedded dictionaries, common to all me-

ters we evaluated. Finally, it is interesting to note that even though Dropbox made

an effort to build a better-than-average password-strength meter, they do not en-

force a minimum strength during the registration process, letting users register with

a possibly very weak password.

4.1.2 Drupal

Drupal is an open-source framework for building content management systems (CMS).

It is the third mostly used CMS,15 behind Joomla and WordPress [65] (as of Dec.

6, 2013). Drupal version 7.x uses a simple client-side checker based on a decreasing

scoring system (Joomla and WordPress currently do not use a checker). Figure 2

summarizes our results.
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Figure 2: Drupal checker password strength distribution

15Example sites using Drupal include: usenix.org, whitehouse.gov.
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4.1.2.1 Algorithm

First, passwords below six characters suffer a significant linear penalty with respect to

the number of missing characters. A 6-character password passes the minimum length

requirement and is at least considered fair. Then, the score non-linearly decreases for

each charset that has no member in the given password. Starting from an initial value

of 100, missing one charset reduces the score by 12.5, two by 25, three and four by

40. Thresholds are applied on the score to yield one of the four strength categories:

under 60 is weak, 60–69 is fair, 70–79 is good, and above 80 is strong. The penalizing

mechanism for passwords shorter than six characters prevents them from reaching

a score higher than fair, even if they are composed of all charsets. Covering two

charsets with a password of at least six characters ensures a good strength, while

covering three charsets ensures a strong strength. Examples include: Aa1+ is fair,

passw1 is good, Passw1 and AAaa1+ are strong. The beta version 8 (as of Nov.

28, 2013) introduces an additional check to prevent a user from choosing a password

that is the same as the username. This restriction was actually implemented but

commented out in version 7.x.

4.1.2.2 Weaknesses

No further checks are done such as searching for repetitive patterns, weak or common

words, nor is any reward given to the length beyond six characters. A password such as

correcthorsebatterystaple is thus just fair. Given the simplistic design of this checker,

it is unsurprising to see that most common dictionary words are at least considered

fair; C&A words, are also mostly considered as fair; and mangled dictionary words

reach good and strong ratings fairly easily.

4.1.3 FedEx

FedEx allows its users to register an online account to facilitate simple services such

as shipment handling and tracking. Interestingly, FedEx’s password checker is quite
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stringent even though FedEx hosts arguably far less sensitive information compared

to other services in our evaluation; see Figure 3 for summary results.
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Figure 3: FedEx checker password strength distribution

4.1.3.1 Algorithm

The client-side checker is a simple 130-line JavaScript program with an embedded

566-word dictionary. Passwords matching any dictionary word are labeled as weak.

The checker is aware of leet transformations, and normalizes a given password by

reversing the transformation (if found). The password is also converted to lowercase

before comparing it against the dictionary. These rules significantly weaken many

passwords such as P@$5W0rD. Each strength level has specific rules to be matched.

A password is very weak until it passes the basic requirements: 8 characters in length,

the use of characters from three charsets (lowercase, uppercase and digit), and no

three identical consecutive characters. The password can reach a medium strength if

it has at least 4 unique characters and is not in the dictionary. The password becomes

strong when it has 9 characters or more, in addition to at least 6 unique characters.

Very strong passwords must be at least 10 characters long and have at least 6 unique
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characters; or 9 characters long, 6 unique characters and have at least one symbol.

Only the characters !@#$%ˆ&*?,~ are considered in the symbols set (remaining other

characters do not influence the strength but are counted in the password length). In

contrast to other checkers tested, the password strength is not shown as a text label

but only as a colored meter.

4.1.3.2 Strengths

The apparently simple algorithm can actually catch the majority of dictionary pass-

words in our test. Only a few passwords from leaked dictionaries are rated as

medium or higher (0.42% for RY5 and 3.4% for phpBB). However, this achieve-

ment is mostly due to stringent requirements such as charset diversity covering the 3

expected charsets and length of 8, which may encourage users to turn to simple yet

effective leet/mangling transformations (see also Section 4.1.3.4).

4.1.3.3 Weaknesses

Currently implemented leet transformations exclude some common conversions (e.g.,

a ↔ 4 ). Also, adding an extra character anywhere in the password defeats the dictio-

nary check, as the algorithm expects an exact match only (equality test on lowercased

strings). Hence, P@$5W0rD! is very strong, but P@$5W0rD is weak. Most entries

from the blacklist dictionary are also never used, as a blacklist check is performed

only on passwords that meet the minimum length requirement (8 characters), but 383

(68%) of the dictionary words are less than 8 characters long. Among the remaining

183 blacklisted words, three of them contain digits that are leet de-transformed from

the candidate password prior to checking against the dictionary; e.g., the password

1234Qwer (found in the blacklist in lowercase) is first converted to lze4qwer, which in

turn is not found in the dictionary and assigned a medium score (instead of weak as

possibly intended). The resulting 180-word blacklist is only able to catch 210 pass-

words (0.03%) of our leet dictionary (rated as weak). Even the password policy is

more efficient against this dictionary as 3.8% of it are rejected and tagged as very
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weak (lack of digits).

Also, a password not meeting the basic requirements (e.g., including characters

from multiple charsets) cannot be better than very weak, implying that long memo-

rable passwords (single-case passphrases) are denied in favor of more complex ones.

This effectively bans all non-mangled cracking dictionaries. Among the mangled ones,

although there is one rule that includes a first letter uppercase and a leading digit,

few passwords are long enough to be considered strong or very strong.

4.1.3.4 Targeted dictionary for FedEx

From the results in Figure 3, it may appear that FedEx’s meter is nearly optimal

in detecting the most common passwords. However, such results may be misleading

as our dictionaries are selected to uncover only the general weaknesses of widely-

used meters. A more targeted dictionary may reveal specific weaknesses of a given

meter. To evaluate this hypothesis, we built a combined dictionary using words from

Top500, JtR and Cfkr. We then applied slightly more refined mangling rules that

are consistent with [66, 29], namely: (a) capitalize and append a digit and a symbol;

(b) capitalize and append a symbol and a digit; (c) capitalize and append a symbol

and two digits; and (d) capitalize, append a symbol and a digit and prefix with a

digit. We then removed the passwords below 8 characters, resulting in a dictionary

of 121,792 words (only 4 symbols and 4 digits are covered for simplicity). 60.9% of

this dictionary is now very-strong, 9.0% is strong, 29.7% is medium, and the rest is

very-weak (due to repetitions of the same character). Thus, the FedEx checker is

particularly prone to qualify easy-to-crack mangled passwords as of decent strength,

as it cannot detect the core word anymore. One evident weak point in the algorithm

is the way a password is searched in the dictionary, which checks for equality with

the entire password, rather than searching for dictionary words as a substring of the

password.
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4.1.4 Intel

Intel provides an independent checker entitled “Are you hackable or uncrackable?”,

which aims at educating people about weak passwords by providing a simple binary

answer along with an estimated time it would take for an attacker to crack the eval-

uated password.
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Figure 4: Intel checker password strength distribution

4.1.4.1 Algorithm

This checker is based on a simple logic. It first replaces parts of the password that are

included in its 9986-word dictionary with the letter “a”, considering a blacklisted word

as good as a single letter. Then, it counts the number of lowercase, uppercase, digits

and special characters included in the password. Special characters are considered

as all non-letter and non-digit characters. An “entropy” value is then calculated as

follows, although it is actually a search-space size:

size =
lowercase26 · uppercase26 · digit10 · special32

2
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Note that special32 means that it restricts the set of special characters to the

symbols found on a US keyboard only, not including the space. Also, this calculation

of the entropy assumes an attacker who already knows the type of charset used at

each position.

Next, the search-space size is mapped to a time representing the effort needed

to crack the password. The mapping is done by assuming an attacker can try 2 ·

233 passwords per hour. It is unclear to us why this coefficient is not written as

234 in the source code, nor what does the corresponding 4,772,186 passwords for

second represent. Finally, labels are assigned by checking whether the time to crack

a password is greater than 24 · 365 · 1000 seconds, in which case the user receives

congratulations for the strength of her password. Once again, it is unclear what this

threshold means. It appears to aim at representing the number of seconds in a year;

however this formula is certainly not the correct way to calculate the seconds in a

year; the threshold is equivalent only to 101 days (3.3 months).

4.1.4.2 Strengths

For very simple words, the checker is able to assign a low score because of the dic-

tionary check, which contains almost all Top500, 70.72% of Cfkr and 75.68% of JtR.

Since words found in the dictionary are shortened to a single “a” letter, mangling

rules are useless to cope with the shortage in password length. For example, pass-

word123 is reduced to a123, which is included in a search-space of size 26,000, which

is further covered by the modeled attack within a second. The capitalized version of

this password is also caught because the word assword is included in the dictionary,

reducing the password to Pa123.

4.1.4.3 Weaknesses

It is more interesting to notice what happens to our leet dictionary. Pa$$w0rd is es-

timated to resist for 3.5 hours. Although this time is certainly too short to rank this

password as a good one, it is also unrealistic for an attacker to spend this much time
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on such a simple password. Typically, this transformation will be checked within

few minutes. Also, ILoveFacebook is only reduced to ILoveFacea, which is said to

resist 5 months and is tagged as non-weak. The checker becomes highly unrealistic

as password grow in length, because of the explosion of the search-space, which ac-

counts only for simple brute-force attack. Another example is ~!@#$%ˆ&*()_+, the

sequence of symbols on the top of a US keyboard, which is said to take 122,573 years

to be cracked.

4.1.5 Microsoft

Microsoft’s password checker is available as a separate webpage for users to evaluate

any password, similar to Intel. The JavaScript source of the client-side checker also

had a commented old version. During our study of this meter (June–July, 2013),

the checker was updated to a newer algorithm. We evaluate all three versions here.

All algorithms are based on predefined strict rules as explained below. Figure 5

summarizes our results.

4.1.5.1 Algorithm version 1

This version first classifies passwords as weak, and then as medium when the candidate

password is at least 8 characters long, spans on a minimum of 2 charsets and is not

included in the 2254-word embedded dictionary. To be classified as strong, a password

must be at least 8 characters long, span on 3 charsets, and must not be a dictionary

word, or some transformations of the dictionary words (e.g., leet transformations).

Finally, the best score needs 14 characters covering 3 charsets, and shares the same

constrains about the dictionary check and transformations as for the medium score.

This version considers only the special characters of a US keyboard as part of the

symbols charset (except “\”, apparently due to a programming mistake).
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Figure 5: Microsoft checkers (v1, v2 and v3) password strength distribution
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4.1.5.2 Algorithm version 2

The new algorithm, which became obsolete during our study, is based on some custom

entropy calculation, and considers only mixing different charsets (lowercase, upper-

case, digits, symbols) to assign better scores. The best score can be reached by either

28 lower or uppercase characters only, 23 lower-upper mixed characters only, 39 digits

only, 32 symbols only, or 20 characters combined (all charsets). Due to these sim-

plistic rules, passwords with repetitive characters, e.g., 14 and 28 “a”s are rated as

strong and best, respectively. Also, this version distinguishes between symbols found

on the upper part of an US keyboard and other characters. However it considers the

“other” charset size to be the number of characters between ASCII code 0x20 and

0x7F (hence a size of 95), which is limited to the 7-bit ASCII table and does not

account for the extended 8-bit version used to accommodate various international

symbols. This leads to an overestimate of the intended entropy as all other special

and international characters are considered to be found in a set of 95 elements only.

Compared to version 1, this algorithm is more stringent in terms of mandating

longer and/or more complex passwords to return a strength better than weak. How-

ever, it also allows strong passwords from long lowercase words only (e.g., concate-

nation of common words). C&A demonstrates this behavior by being the dictionary

with the most non-weak passwords (19.5% of the dictionary). The few passwords

that are rated best by this version, are actually outliers in the leaked dictionaries.

For example, 7 out of 12 phpBB’s best rated passwords are email addresses, 2 of them

are apparently MD5 hashes (32 characters in hexadecimal representation), and one

simply consists of 32 stars (*). For RY5, best rated passwords are email addresses,

long unique-character passwords, URLs, or what seem to be generic text messages.

Finally, 48 passwords from RY5+M that are just alphabet sequences, long keyboard

combinations or repetitive unique characters, are also categorized as best passwords.
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4.1.5.3 Algorithm version 3

On July 11, 2013, Microsoft deployed another version of their checker, which is appar-

ently simpler than earlier versions. A password is first rated based on its length alone:

weak for under 8 characters, medium between 8–13, and strong for 14 characters or

more. Strong passwords are rated “BEST” if they consist of characters from all 4

charsets. This latest change in the algorithm has a greater impact on the scoring of

our dictionaries, compared to version 2. This version is the only checker that labels

no passwords from our dictionaries as strong for an obvious reason: a 14-character

password covering 4 charsets should be quite rare in a password dictionary. Version

3 also considers symbols as any special character found on a US keyboard.

4.1.5.4 Strengths

Although version 1 did not consider passphrases as strong, and required a minimum

charset complexity, version 3 has reversed such logic by allowing better ratings for

single-charset passwords. This leads to a jump from 0.04% (Version 1) to 74.5% (Ver-

sion 3) of passwords in C&A ranked as medium or better. As version 3 considers the

length of a password more favorably than its charset complexity, our leet dictionary

is rated mostly as medium in version 3 (rather than strong in version 1).

4.1.5.5 Weaknesses

Microsoft dropped their embedded blacklist dictionary in version 2, and adopted a

simpler algorithm that could be easily bypassed by repeating a character several

times, e.g., padding a simple password with a unique symbol. At least, in version

3, a 32-star password is rated as strong and cannot become best unless it has also a

lower and upper-case letter and a digit; however, any 14-character repeated password,

e.g., 11111111111111 is rated as strong. The length requirement is also apparently

too restrictive and makes randomly generated passwords such as C7ef*1Y6#A being

only medium in versions 2 and 3, and 9Exe3Yz@SGErq being medium in version 3;

in fact, any random 13-character password is rated as medium in version 3.
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4.1.6 Tencent QQ

QQ is an instant messaging software service developed by the Chinese company Ten-

cent and mostly targets Asian countries. It is reported to have at least 800 million

users as of March 2013.16 Figure 6 summarizes our results for QQ.
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Figure 6: Tencent QQ checker password strength distribution

4.1.6.1 Algorithm

Once located, the part of the code responsible for evaluating the strength on the

registration web page is only 12 simple lines of code, plus the mapping of the output

numbers (1, 2, 3) to their respective label. It is also very simple in the design and

proceeds as follows. No strength is returned and a warning is displayed if the password

is less than 6-character long, or is composed of only 8 digits or less. We categorize

such passwords as invalid in Figure 6. Passwords are not ranked better than weak

unless they reach 8 characters in length. The number of charsets (from the 4 common

ones) included in the password are counted and mapped as a strength as follows: the

16http://www.prnewswire.com/news-releases/tencent-announces-2012-fourth-quarter-and-
annual-results-199130711.html
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use of 1 charset is weak, 2 is moderate, 3 and 4 are strong. Note that QQ (along with

Intel) does not constantly evaluate a password as it is typed by the user but rather

ranks it once the user switches to another field of the form after finishing typing it.

4.1.6.2 Weaknesses

Similar to Drupal, QQ’s checker is sensitive only to the number of charsets after

crossing the minimum length threshold, which leads to a low ranking of passphrases

and inconsistencies such as Password1 being rated as strong.

4.1.6.3 Interesting features

During the exploration of the code and unrelated to the scope of our analysis, we

noted two interesting features on the registration page. First, the total time spent

creating the password in milliseconds (time focused on the password field) along with

the number of keys pressed inside the field (tentative characters to create a password)

are recorded and sent to the server once submitting the form. Second, the password

is encrypted using a 1024-bit RSA key prior to being sent to the server, most likely

because the form is not submitted through a secure connection (HTTPS) but simply

sent by an HTTP request.

4.1.7 Twitter

Twitter’s checker is fully client-side, and has the most diverse strength scale with 6

categories.

4.1.7.1 Algorithm

The algorithm is based on an increasing score, which considers the password length

and presence of the following features: at least three digits; at least two symbols;

both lower and upper-case letters; letters and digits; a mix of symbols and digits; and

a mix of symbols and letters. The algorithm carries an optional check which is not
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Figure 7: Twitter checker password strength distribution

performed that would enforce the presence of the four charsets in a password for it

not to be considered as “too weak” (treated as too short afterwards). This check is

also intended to enforce a length of 10 characters, however it would not be sensitive

to the length because of a programming error. A range of thresholds then maps the

score to a strength label. An embedded 401-word blacklist is used, and passwords

matching the blacklist are labeled as obvious. The strength label “not secure enough”

(NSE) is rare (in our tests) and is apparently only meant for passwords that “could

be more secure” (CMS) but are getting weakened by the negative coefficient for rep-

etitions (e.g., aaaaaaa, deedee, annnna). The blacklist covers a large portion of the

Top500 dictionary, hence the obvious scoring of that dictionary. Most passwords in

our test are considered “Could be more secure” (CMS) and “Okay,” while there are

very few perfect passwords. A perfect strength can be reached with a short password

covering all 4 charsets, e.g., Tw1$er, P@ssw0rd, or longer 3-charset passwords (e.g.,

Password123456 ), or even longer 2-charset passwords (e.g.. Impossibleisnothing), or

a combination of lowercase words (e.g., theologicoastronomical).
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4.1.7.2 User information

If a password directly matches the username, it is considered obvious and disallowed.

However, such restriction can be easily bypassed, by adding extra characters to the

password. In addition, the password is not checked against the email address and full

name.

4.1.7.3 Weaknesses

The blacklist check is quite simplistic; e.g., mustang is in the blacklist, but mustang1

is considered “okay” (a category right below “perfect” in the strength scale). Only

the case is made independent for the validation by converting the password to low-

ercase. The mangling rule that makes the first letter uppercase and adds a trailing

digit in a given word, performs very well in deriving okay passwords. Hence, Qw-

ert0, Magic1, Hello2 are okay. Also, a special character is good enough to replace

both uppercase and digit, e.g., super!, lucky!, naked? are okay. The length can also

replace the need for a digit or uppercase letter; e.g., Mypassword, Anythings, and

interneting are considered okay. However, in order to be considered perfect, a pass-

word needs a longer length, or more digits and special characters; examples include

passw0rd!, p@ssw0rd, troubl#3, e=mc**2, anatomicophysiological. However, repeated

simple (even blacklisted) words can easily yield okay (passwordpassword) and perfect

(passwordpasswordpassword) passwords.

4.1.8 Yahoo!

Yahoo! relies on a client-side checker with four main strength categories. The addi-

tional invalid category is used for passwords matching the provided user information,

or if the password is password. We omit this category in Figure 8, which summarizes

our results for Yahoo!.
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Figure 8: Yahoo! checker password strength distribution

4.1.8.1 Algorithm

This algorithm mostly checks for multiple charsets in the candidate password. How-

ever, a lowercase password with a single uppercase, digit or symbol is already consid-

ered strong; hence, many mangled passwords (derived from simple words) are rated

as strong. C&A is largely limited in the weak category as most of its passwords are

lowercase-only. In the source code, a single-charset password passing the 6-character

requirement is supposed to get a “mediocre” score. However, when mapping internal

qualification to user-readable feedback, this score is translated to “weak”. For Yahoo!,

the symbols charset includes only !@#$%ˆ&*?_,~.

4.1.8.2 User information

Yahoo! takes into account the user’s name and email address to weaken the strength

of a candidate password. User information is detected in a password if it is included

in it (compared to simple equality check).
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4.1.8.3 Weaknesses

A password is strong if it has at least 2 charsets, e.g., Abcdef. Reaching the very strong

level, where a password must have a lower-uppercase combination and a symbol or

digit, is quite trivial; e.g., Abcde0. Also, no blacklists or checks for patterns are used.

4.1.9 12306.cn

China Railway provides a ticket reservation system hosted at www.12306.cn. It is

the government’s official website for train tickets and generally visited by millions of

customers. Figure 9 summarizes our results for 12306.cn.
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Figure 9: 12306.cn checker password strength distribution

4.1.9.1 Algorithm

A password is considered dangerous (translated from the Chinese word found on the

website) if its length is less than or equal to 6 characters, if it is only composed of

letters (lower and uppercase), if it is only composed of digits, or –surprisingly– if it is

only composed of an underscore character. If none are true, the password is labeled
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as average. It can reach the label “secure” if it contains mixed-case letters, digits and

at least an underscore character.

4.1.9.2 Weaknesses

Similarly to QQ, 12306.cn is only sensitive to the password composition after a min-

imal length of 6 characters and hence receives the same comments in this regard.

One interesting finding is the promotion of the underscore character which is the only

special character considered. It is unclear to us why such choice has been made. How-

ever, it clearly demonstrates inconsistencies when a 20-character long random pass-

word covering all charsets but omits an underscore (e.g., SFh*#6ˆZ44CwhKB73@x3 )

is only rated as average. We wish users could choose such passwords on average. Con-

sequently, the meter appears extremely stringent to users wishing to reach a secure

score, until they find the magic character.

4.2 Web-Based Password Meters (Server-Side)

4.2.1 eBay

eBay employs a fully server-side checker. Once the minimum requirement of 6 char-

acters is met, an AJAX query to the server-side checker is made. The username

and email address are sent to the checker and the response provides the password’s

strength along with different messages for the user. Figure 10 summarizes our results

for eBay.

4.2.1.1 Algorithm

A password is considered as invalid and is not sent to the server-side checker before

it matches the length requirement. (In July 2013, eBay introduced a “Too short”

feedback to replace the term invalid for short passwords.) The checker requires pass-

words to cover any two charsets; thus, many words from Top500, C&A and JtR are
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Figure 10: eBay checker password strength distribution

considered invalid. As a side-effect, concatenation of simple words always leads to

weak passwords (in contrast to Dropbox).

Based on our tests, it seems that the server-side algorithm is fairly simple but quite

stringent on the number of charsets used: a single-charset password is invalid, two is

weak, three is medium and four is strong. The password length becomes irrelevant,

once passed the minimum requirement (similar to Drupal, see in appendix). To

validate our observations, we compared the results with a checker we built specifically

to apply the above policy only. We found that the results are very similar. By

examining the differences, we noticed that eBay’s checker considers only ~!@#$ˆ&*-+

as symbols and the remaining special characters do not influence the strength. The

server-side functionality is apparently equivalent to our 20-line JavaScript code. Also,

passwords fully composed of unrecognized symbols do not receive any strength score

(e.g., for %()_{}, the checker returns an empty value).
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4.2.1.2 User information

eBay prevents a user from choosing a password similar to her user ID, taking into

account case changes and few leet transformations as found in our test. For example,

having leettest as the user ID, the passwords LeetTest, L3ettest and LEETTEST are

invalid; L33ttest and lEEtt3st are medium; and LeetT3st+ is strong. In Table 1, we

rate eBay’s checker as taking registration items into account, even though it excludes

the user’s real name from the check.

4.2.1.3 Weaknesses

eBay does not consider any password as strong from our test dictionaries except few

passwords from phpBB and RY5, in which we can find few relatively simple passwords

being labeled as strong, e.g., P@ssw0rd, 0b1W@n, sp3ciaL**, phpBB2! and p0pm@iL

(found in the phpBB dictionary). These are simple leet transformations of common

words with possibly leading special characters. Also, several common passwords are

categorized as of medium strength, including, Lucky1, Abc123 and Password1. Simply

covering all four charsets is also enough by design to get a strong score, e.g., AAaa1+,

resulting high scores for our leet dictionary.

4.2.2 Google

Google also uses a server-side checker. Unlike eBay, the username and email address

are not sent to the checker. The response provides the password’s strength. Figure 11

summarizes our results for Google.

4.2.2.1 Algorithm

Google’s checker is difficult to reverse-engineer because of its inconsistent output at

times. Consider the following examples: testtest is weak and testtest0 is strong, but

testtest1 is fair, testtest2 is good and testtest3 is strong again. It is no surprise that

a simple repetitive string, such as testtest, followed by a digit is considered weak, but
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Figure 11: Google checker password strength distribution

generating such a variety of scores for so minor changes is difficult to comprehend.

In addition, we found that test1234 and Test1234 are weak, while TesT1234 is fair,

TeSt1234 is good, and TEst1234 and tEst1234 are strong. From these results, one

can approximate that a first letter uppercase is not as rewarding as another letter

being uppercased, and that a pattern of first and last letter uppercase is labeled

as intermediate. If this approximation is true, then many commonly used patterns

would be penalized. However, Google’s checker is ranked first and fifth in terms of

yielding “strong” passwords from our base and mangled dictionaries, respectively (see

Chapter 5 for more comparison).

As we can find examples such as huntings being rated as strong and rainbows

as weak, it appears that a blacklist check is run, although it is unclear whether any

widely known dictionaries are included in the list. Simple dictionaries such as Top500,

JtR and Cfkr are too weak to pass the 8-character requirement; however, mangled

versions of these dictionaries yield many strong passwords. We also noticed some

jumps between weak and strong strength scores by the addition of a simple character,

e.g., password0 and password0+. This may be due to an exact blacklist check that

fails to recognize the latter as a common word because of the extra character (+).
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We also found that strength scores significantly vary with time. When performing

our tests (between June–July 2013), we waited two weeks before testing the dictio-

naries again. Overlapping passwords between dictionaries tested before and after

the two-week period, were qualified differently. A total of 1700 common passwords

between JtR+M, RY5 and phpBB are evaluated differently. Usually, the difference

remains limited to one strength level (better or worse). For example, overkill went

from weak to fair, canadacanada from fair to good, and anythings from good to

strong, while startrek4 went from strong to good, Iloveyou5 from good to fair, and

baseball! from fair to weak. We again tested the dictionaries 5 weeks later, and found

that some of the passwords, which had their scores changed in the second test, were

reverted back to their original ones (first test).

In another run of our experiments in November 2013, we found that repeated tests

of a password, e.g., a dozen times in the same minute, can lead to different outcomes.

These fluctuations may indicate the use of a dynamic or adaptive password checker.

Irrespective of the nature of the checker, users can barely make any sense of such

fluctuations. Finally, Google explicitly rejects any complex symbols or international

characters by mentioning that only “common punctuation” is allowed (the candidate

password’s strength drops down to too short otherwise).

4.2.2.2 Weaknesses

Simple dictionary passwords can easily reach a good or strong strength. Examples

include: access14 in Top500 (good) or Access14 when mangled (strong), slideshow

and sample123 (good), and morecats (strong). Only a few passwords in our tests fall

between weak and strong, and it is fairly easy to slightly change a weak password

to make it strong, e.g., by simply changing one letter to uppercase and/or adding a

leading digit or symbol. A typical example is database, which is weak, but Database,

database0 and database+ are strong. However, for the weak password internet, In-

ternet remains weak, internet0 is fair and internet+ is strong.
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4.2.2.3 Problems

Google’s registration form suffers from a hysteresis phenomenon. When a password

reaches 8 characters, it gets evaluated for the first time (other than too short). Then,

if the user deletes the 8th character, the strength returns to too short. However, if

the user re-enters the same character again, the strength doesn’t change and stays

as too short. Hence, the same 8-character password can be categorized as too short

or strong depending on how it is typed, e.g., typing R4m51sWd then removing and

adding back the last “d”.

4.2.3 Skype

Skype is now a Microsoft-owned VoIP service provider that relies solely on a server-

side validator, independent of the Microsoft checker. Similar to Google, no user

information is sent to the server during password evaluation, allowing a user to register

with a password close to her username.
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Figure 12: Skype checker password strength distribution
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4.2.3.1 Algorithm

Skype has one of the simplest strength scale: a password is either poor, medium or

good. The results of our tests are also straightforward. All lowercase or single-charset

passwords are poor (preventing the use of long user-memorable passwords), and 2-

charset passwords are medium, e.g., Tennis, sleep0. No mangling rules in our tests

could generate a strong password (even a randomly selected 20-character password,

2eppf5N58J5z8yt2h52T, is considered medium). We found that for a password to

be “good”, it must be composed of at least 2 symbols along with at least 6 other

characters. This rule makes soccer++ and pa$$word good. Apparently, there is very

little check against slightly-modified common words, even though an extra warning

is displayed for very simple words (“Password is too easy to guess”). This warning

appears for Password and MySkype for example, but not for p4ssword. Among the

cracking dictionaries, only 9 C&A passwords reached a good level. These passwords

all contain double underscores to separate words, e.g., mot_de_passe, which is the

3-word French equivalent of password. Finally, only phpBB and RY5 were successful

at reaching a good strength more often with passwords such as hockey!!, bl@hbl@h or

][please.

4.2.3.2 Weaknesses

The checker is very simple, does not consider repetitive patterns, common words

(other than trivial ones), and password length beyond 6 characters.

4.2.3.3 Problems

Some leaked dictionary passwords start with a < character (e.g. <?php ?>, <3love)

and do not receive any score. Also, one of the passwords in phpBB dictionary was

a compilation command (gcc -O2) and generated a systematic internal server error

during our tests at the end of June 2013. These passwords may interfere with an

intrusion prevention system that prevents the server-side program from receiving

these apparently dangerous inputs.
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4.3 Web-Based Password Meters (Hybrid)

4.3.1 Apple

The client-side/in-browser part of Apple’s hybrid meter first checks if a password

meets the policy requirements: 8-character long, has one lowercase, one uppercase,

one digit, and does not include more than two identical consecutive characters. The

password is then checked against a server-side blacklist. Blacklisted passwords are

disallowed, irrespective of their strength as measured by the client-side checker. Fig-

ure 13 summarizes our results for Apple. Note that we have created an extra category

to group blacklisted passwords, even if they are categorized as moderate or strong.
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Figure 13: Apple checker password strength distribution

4.3.1.1 Client-side algorithm

The client-side part of the algorithm is based on an increasing-only score, adjusted

by some rules with associated weights. The score is higher if a password contains

more characters (by ranges of 6-7, 8-15 and 16+ characters). Having the following

features also cumulatively contributes to higher scores: at least an uppercase letter;
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one or two digits; three digits or more; at least a symbol; symbols separated by other

characters (thus, encouraging symbols inside a password rather than at the ends);

lower and uppercase letters; alpha-numerical characters; and alpha-numerical-symbol

characters. This algorithm clearly encourages charset complexity. Similar to FedEx

and eBay’s checkers, Apple’s considers only !@#$%ˆ&*?_,~ as symbols (remaining

special characters do not influence the strength but are counted in the password

length). Once a password passes all requirements, it is at least tagged as “moderate”,

hence we report this strength in the enforcement column for Apple in Table 1 (even

though a password can be rated as “strong” while not passing all requirements).

4.3.1.2 Blacklist check

Apple does not provide any information about the blacklist checker. However, it is

apparent from our results in Figure 13 that the blacklist contains Top500, JtR and

C&A, albeit modified versions, which may explain the small percentage of dictionary

words that still passes the blacklist check. This is also supported by some example

passwords from these dictionaries; e.g., a rather unusual password, Protransubstan-

tiation1, taken and mangled from C&A, is blacklisted. It appears that digits are

removed from the dictionaries and only core words are kept in the blacklist. Pass-

words that do not pass the requirements during the client-side check, can still reach

a moderate or strong strength; such passwords when modified to comply with the

requirements, may then be blacklisted. For example, Password1 and A1b2c3d4 pass

the client-side check, as they are long enough and satisfy charsets requirements, but

fail the blacklist test (although they are labeled as moderate).

Many simple mangled passwords with the first letter uppercase and a terminal

digit are caught by the server-side checker. For a given password, e.g., Franklin123,

apparently the following steps are performed: the password is stripped from trailing

digits, giving Franklin, and is then checked against a blacklist, disregarding its letter-

case. For some base words such as Franklin, up to three trailing digits are stripped

during the blacklist check, but only one digit is removed for words such as Adorable.
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This behavior seems to originate from non-trivial rules that we cannot explain from

our tests. However, adding extra terminating digits, and/or starting digits, easily

bypasses the blacklist check.

4.3.1.3 Strengths

Apple’s blacklist is the most comprehensive one among our tested checkers, with

known common password dictionaries included in it. Also, while Apple imposes strin-

gent requirements for passwords to be accepted, all passwords receive an evaluation

score while being typed; thus, a user is guided towards a better choice of characters

from the beginning of the password composition. (On the contrary, FedEx waits for

the requirements to be met first, before evaluating a password.)

4.3.1.4 Weaknesses

Apple’s policy requires that passwords should “not contain identical consecutive char-

acters.”17 However, in practice, this restriction is too weak to catch repetitive patterns

in some cases; e.g., P4ssw0rd is blacklisted but P4ssw0rdP4ssw0rd is labeled as strong.

We also noticed that the blacklist check response times vary significantly—ranging

from less than a second up to more than a minute. Very few dictionary passwords

are considered strong, even when mangled. However, examples of strong passwords

also include: P@ssw0rd!, P@55w0rd and Robot123! (mangled versions of simple pass-

words). Finally, a strong password can be blacklisted as it is the case for Pa$$w0rd,

which is a unique state among other checkers.

4.3.2 PayPal

PayPal is a global online money transfer service and a subsidiary of eBay Inc. Al-

though PayPal and eBay portals belong to the same company, they use different

password checkers on their respective websites.

17https://appleid.apple.com/cgi-bin/WebObjects/MyAppleId.woa/wa/createAppleId
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Figure 14: PayPal checker password strength distribution

4.3.2.1 Algorithm

PayPal’s checker is hybrid in nature. It first involves a client-side process to check

that a given password is at least better than weak, which requires spanning on more

than two charsets, considering letters as one charset, independent of their case. Then

it checks against an online checker for blacklisted words. Strength is directly linked to

the number of charsets the password spans onto. However, repetitions (4 characters

or more), sequences (4 or more successive digits or contiguous keys of the same row

of a keyboard), or the use of account information (email address or username) in the

password, make it weak altogether. Sequences include qwerty-like combinations that

are supposed to be localized for the country selected by a user. We tested the French

version of the website and found it still checks only for an US layout (arguably, there

are only few changes between the layouts). The German PayPal website also behaves

similarly, except that some series of accented letters found on a German keyboard

are also checked for spatial combinations. In this case, sequences of 4 characters

or more are searched in: ertzuiopüyxcvjklöäölkjvcxyüpoiuztre. Based on the

source code variables name, a localized check only for German seems to exist. When
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passwords are less than 8 characters, they are considered lame, which accounts for

a majority of the dictionaries, expect C&A. The checker requires at least a digit or

symbol for better scores; hence, passwords from C&A are mostly considered as weak.

The symbol charset considers only the following characters: ~!@#$%ˆ&*(),+=.

4.3.2.2 Weaknesses

More than 1.5 million passwords were checked against the online blacklist; however,

only 619 of them were effectively blacklisted. Thus, most passwords are categorized

solely by the client-side checker, and only these 619 passwords were rated by a server-

side action. Among the blacklisted passwords, 573 had the word password in them.

The remaining had trust, access, football, superman, and few other words, as part of

the password. Thus, we can conclude that the blacklist check is mostly useless and

could be improved to catch more trivial passwords such as Password0 (even though

password0 is caught).

4.4 Application-Based Password Meters

4.4.1 1Password

1Password is a password manager that protects various passwords and other forms

of identity information in a password-encrypted vault stored on a user’s device (com-

puter or smartphone) or optionally in the cloud. The master password creation is

guided with a password meter. This meter shows both a continuous progress bar and a

label. However, as this application is a closed-source software, we treat this algorithm

as a black-box. We later noticed that the browser extension that comes along with the

software application, is also equipped with a password-strength meter, which is signif-

icantly different than the one implemented in the main stand-alone application. We

were not expecting this application to implement two different meters, so we stopped

at the first one we encountered and conducted its analysis before accessing the second
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meter that is only available after the creation of a password vault protected by the

master password. This second meter generates and evaluates random passwords in

the browser, however the user can further modify or rewrite them completely and see

the resulting strength. We first present an extensive analysis of the black-box meter,

as it demonstrates the possibility to analyze closed-source compiled implementations.

Figure 15 summarizes our results for the master password evaluation in 1Password

version 1.0.9.340 (as of March 25, 2014) while Figure 19 summarizes our results for

the JavaScript-based strength meter in its Firefox extension.
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Figure 15: 1Password checker (software-based) password strength distribution

4.4.1.1 Algorithms

Master password strength meter. For our analysis, we started with the meter

that is used during the creation of a master password; users must generate the master

password before a password vault is created. Our method for uncovering the algo-

rithm behind this black-box is to identify the features involved in the algorithm and

understand their implication. We can extract fine-grained strength output from this
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meter as it uses a continuous progress bar whose value is rounded to the nearest inte-

ger. The thresholds for the label assignment are therefore straightforward to deduce

at the end.

The first parameter of interest is the length. We treat passwords as UTF-8 encoded

when measuring their length since our dictionaries are encoded as such. We found a

very high correlation coefficient of 0.9853 between the length and the score based on

the output for Top500. However, Top500 contains a rather limited subset of possible

passwords and do not include many charsets. We further compute a correlation

coefficient of 0.8944 on phpBB, which covers a greater variety of passwords. The

latter correlation indicates that the length is not the only parameter to influence the

scoring. Furthermore, we found an interesting pattern on the graphs representing the

output scores with respect to the length of passwords for Top500 and phpBB (see

Figure 16).

We can approximately identify that the scores from Top500 form two straight

lines, and those from phpBB form four straight lines (capped at 100). Reconsidering

the composition of these dictionaries (one and two charsets in Top500 and from one

to four charsets in phpBB), we hypothesize that the number of charsets is another

feature taken into account in the algorithm. Figures 16a and 16b represent the output

scores with respect to the length of passwords for Top500 and phpBB respectively,

according to the number of charsets identified.

Based on these graphs, there seems to be other factors influencing the evaluation

since some passwords with equal length and number of charsets are assigned differ-

ent scores, and some scores are visually aligned with ones that belong to a group

with a different number of charsets. By investigating these discrepancies, we found

that passwords with non-ASCII are getting unexpected results. We further infer that

non-ASCII characters are not handled correctly by the software and the length of

the password is measured in terms of bytes, hence such characters can be counted

as 2 to 4 characters in length. Also, these characters do not seem to be counted as

part of a symbols or “others” charset. We adjust our measurement of the length and
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Figure 16: 1Password: Score versus password length identified as the number of charac-
ters and grouped by the number of charsets they span onto for (a) Top500 and (b) phpBB.
Charsets are identified as lowercase letters, uppercase letters, digits, and all remaining char-
acters. Note: (b) shows some overlapping scores with different number of charsets

identification of charsets with respect to this observation, and are able to produce

Figures 17a and 17b that seem more straightforward to explain. For charsets identi-

fication, we restrict the symbol charset to match only special characters found on an

English keyboard. Remaining characters are not counted as part of any charset.

Furthermore, we are able to infer the rule separating the lines belonging to each

number of charsets. For passwords sharing the same length, we observe that scores

are linked together by a single coefficient, e.g., for 1–4 charsets and a length of 13,

scores equal 47, 56, 67 and 81 respectively. Once rounded to the nearest integer, we

observe that this equation holds: 47 · 1.23 ≃ 56 · 1.22 ≃ 67 · 1.21 ≃ 81. We infer

that the algorithm fits the following model between 0 and 100. We denote by ‖.‖ the

nearest integer of a given value.







score =
∥
∥α ·

(
length · β#charsets−1

)
+ γ

∥
∥

α, γ ∈ R, β = 1.2

Next, we compute four linear regressions on the score of passwords in phpBB,

categorized by the number of charsets they include. We consider lowercase letters,
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Figure 17: 1Password: Score versus password length identified as the number of bytes and
grouped by the number of charsets they span onto for (a) Top500 and (b) phpBB. Charsets
are identified as lowercase letters, uppercase letters, digits, and symbols found on a US
keyboard only.

uppercase letters, digits, and symbols on a US keyboard as the four charsets; and also

remove passwords with scores of 100, since the original score may have been higher

than the maximum of 100. To get an equation that depends only on the length, we

normalize each line with respect to the number of charsets. For each line identified

by the number of charsets c, we use MATLAB18 to estimate the coefficients α̂c and

γ̂c of a one-degree polynomial for the nc passwords with distinct scores that belong

to the line c, given their lengths lengthc,i∈[1,nc] and a normalized score of score
1.2c−1 . In a

mathematical form, MATLAB tries to find α̂c and γ̂c such that:

∀i ∈ [1, nc],
score

1.2c−1
≃ α̂c · lengthc,i + γ̂c

Then, we compute the coefficients of determination for exact and rounded values

of the modeled scores, R2
c,exact and R2

c,round respectively, according to the formulas

shown in Figure 18. We denote scorec as the mean of the observed scores scorec,i for

the line identified by c charsets, and ŝcorec,i being the modeled scores for that line.

Results of the regressions are summarized in Table 4.

18http://www.mathworks.com/products/matlab/
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scorec =
1

nc

nc∑

i=1

scorec,i (mean of scores for line c)

ŝcorec,i = α̂c ·
(
lengthi · 1.2

c−1
)
+ γ̂c (modeled scores for line c)

SSc,tot =
nc∑

i=1

(scorec,i − scorec)
2 (total sum of squares)

SSc,res,exact =
nc∑

i=1

(
scorec,i − ŝcorec,i

)2
(residual sum of squares for exact values)

SSc,res,round =
nc∑

i=1

(
scorec,i −

∥
∥ŝcorec,i

∥
∥
)2

(residual sum of squares for rounded values)

R2
c,exact = 1−

SSc,res,exact

SSc,tot

(R2 for exact values of modeled scores)

R2
c,round = 1−

SSc,res,round

SSc,tot

(R2 for rounded values of modeled scores)

Figure 18: Equations used to compute the coefficients of determination R2
c,exact and

R2
c,round, for exact values of modeled scores and rounded values, respectively

Number of charsets c

per line
α̂c γ̂c R2

c,exact R2

c,round

1 3.6000 0.0190 0.9998 1

2 3.5874 0.1572 0.9999 1

3 3.5846 0.1532 0.9999 0.9999

4 3.6073 −0.0579 0.9997 0.9996

Table 4: Estimated coefficients of the one-degree polynomial for each line identified by its
number of charsets c included in the passwords with coefficients of determination for exact
and rounded values of modeled scores.
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The coefficients of determinations are very close or equal to 1, which means that

the estimated coefficients α̂c and γ̂c are accurate. However, since these coefficients are

based on rounded observed scores, they may not be very precise, which accounts for

their relative variation. Also, given the fact that there is no justification for providing

non-zero score to a zero-length password, we round the estimated value for γ to 0.

Finally, we believe the coefficient α is derived from a simple expression because of

the apparent simplicity of this meter. Also, because the four candidate values for α

oscillate around 3.6, we choose to set α = 3.6.

Our model becomes the following:

score =
∥
∥3.6 · length · 1.2#charsets−1

∥
∥

At last, we need to infer the mapping from scores to labels. Thresholds between

each of the six possible categories are as follow: Terrible (0–10), Weak (11-20), Fair

(21-40), Good (41-60), Excellent (61-90), or Fantastic (91-100).

The fully reversed-engineered algorithm is presented in Algorithm 2. Note that

to accommodate the observed scores for passwords containing a space and only non-

recognized characters, we add lines 15 to 17 to our model in the algorithm. Our

algorithm yields zero error when evaluated against the remaining of our dictionaries,

which may mean that we found the exact formula behind the score calculation.

Browser extension strength meter. Surprisingly, 1Password uses a different pass-

word meter in its browser extension. This meter evaluates randomly generated strong

passwords, however the user is allowed to modify a generated password as she wishes

and the meter reacts to the changes. Adapting a randomly generated password before

accepting it for the creation of a new account is a documented behavior in the user

guide.19

This meter, written in JavaScript, differs from the one ranking the master pass-

word in the stand-alone application in three ways. First, it is aware of some leet

19http://help.agilebits.com/1Password3/3_minute_expert.html
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Algorithm 2 1Password master password’s checking algorithm

Input: Candidate password
Output: Score in percentage and label related to the strength of the password
1: length← number of bytes taken by the password
2: charset← 0
3: if password contains lowercase letters then
4: charset← charset+ 1
5: end if
6: if password contains uppercase letters then
7: charset← charset+ 1
8: end if
9: if password contains digits then

10: charset← charset+ 1
11: end if
12: if password contains characters in !"#$%&’()*+,-./:;<=>?@[\]ˆ_‘{|}~ then
13: charset← charset+ 1
14: end if
15: if password contains spaces and charset = 0 and length > 0 then
16: charset← 1
17: end if
18:

19: score←
∥
∥3.6 · length · 1.2charset−1

∥
∥

20: if score > 100 then
21: score← 100
22: end if
23:

24: if score ≤ 10 then
25: label ← Terrible
26: else if score ≤ 20 then
27: label ← Weak
28: else if score ≤ 40 then
29: label ← Fair
30: else if score ≤ 60 then
31: label ← Good
32: else if score ≤ 90 then
33: label ← Excellent
34: else
35: label ← Fantastic
36: end if
37:

38: return score, label
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Figure 19: 1Password checker (JavaScript-based) password strength distribution

transformations, then it performs a blacklist check against a 228,268-word dictio-

nary, and finally it differs in the way of identifying groups of characters. The code is

abstracted in Algorithm 3.

Label assignment is performed identically to the software meter’s label assignment,

however the label is only used to color the meter’s bar accordingly and is not displayed

to the user. We noticed that a coefficient of 1.2 is repeated several times throughout

the algorithm to reward the presence of various groups of characters, same as the one

we identified in the software version of the meter.

4.4.1.2 Weaknesses

We think it is a bad design choice to implement two meters running different algo-

rithms, as a user may not understand the reasons for the differences in ranking. In

addition, the master password that protects all secrets is guided by the worst of both

meters. This meter is only dependent on the length and number of charsets used

in a password, and lacks any further checks such as blacklisting, pattern matching,

transformations, etc. Thus, it is unable to catch many weak passwords. Moreover,
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Algorithm 3 1Password Firefox extension’s checking algorithm

Input: Candidate password
Output: Score in percentage related to the strength of the password
1: length← number of characters in the password
2: if length = 0 then
3: return 0
4: else if length < 3 then
5: return 2
6: else
7: score← 3 · (length− 3)
8: end if
9:

10: coreword← password in lowercase
11: Replace 4, 1, 3, 7, 5, 0 by a, l, e, t, s, o in coreword
12: Remove non-letter characters in coreword
13: if coreword is included in one of the dictionary words then
14: score← score− 3 · (number of characters in coreword)
15: end if
16: if score < 0 then
17: score← 0
18: end if
19: if password contains lowercase letters then
20: score← 1.2 · score
21: end if
22: if password contains uppercase letters then
23: score← 1.2 · score
24: end if
25: if password contains a space followed by a tab then
26: score← 1.2 · score
27: end if
28: if password contains characters in $+<=>ˆ‘|~ then
29: score← 1.2 · score
30: end if
31: if password contains characters in !"%’(),-./:;?][\{} then
32: score← 1.2 · score
33: end if
34: if password contains digits then
35: score← 1.2 · score
36: end if
37: if score > 100 then
38: score← 100
39: end if
40: score← ⌊score⌋
41: return score
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due to the way labels are assigned, most passwords fall under the “fair” category

including most of Top500 dictionary, even though the meter possesses two labels for

inferior strengths. Examples of weak passwords labeled as good include password123,

princess12 and 123456789a. Excellent passwords include 123456789123456789 and

1q2w3e4r5t6y7u8i9o0p. Finally, abcdefghijklmnopqrstuvwxyz is fantastic.

4.4.1.3 Strengths

The browser extension performs better than its stand-alone application counterpart.

It is able to assign scores between “terrible” and “fair” in a sound way, i.e., the most

simple dictionaries (Top500, Cfkr and JtR) are mostly assigned terrible and weak

scores, while their mangled versions only achieve a fair score. The algorithm is able

to detect some leet transformations and blacklist a password found in its dictionary

even with 3 additional non-letter characters placed at the beginning and/or the end

of the password, which accounts for many of our mangling rules.

4.4.2 LastPass

LastPass is a password manager extension for browsers. Users create a LastPass ac-

count using a master password that is evaluated by a meter. The password further

encrypts the password vault, stored online. The service handles identity information

for the user and helps with the creation of new web service accounts with a dedicated

dialog box that is prefilled with a random passwords that the user can further modify

(as with 1Password browser extension). The meter does not come with a label asso-

ciated with the evaluated strength, and provides only a score between 0 and 100. We

report strengths categorized by range in Figure 20 for LastPass 3.1.1 for Firefox (as

of March 25, 2014).
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Figure 20: LastPass checker password strength distribution. Scores represent a percentage
and are grouped into five equal ranges.

4.4.2.1 Algorithm

LastPass is a simple browser extension written in JavaScript and is hence relatively

easy to understand. The strength measurement algorithm is 28 lines of code and per-

forms various checks as follows. If the password is exactly equal to the email address

of the user (while creating a LastPass account), the password receives a score of 1. If

the password is contained in the email address, the strength is penalized by 15 (that

is, the strength starts at −15 instead of zero). Conversely, if the email address is con-

tained in the password, the strength is penalized by a percentage equal to the length

of the email address. If the password contains only one unique character (despite

repetitions), the score is 2. The password length is then added to the strength and

numerous patterns are checked sequentially. Patterns are listed in Table 5. Finally,

the strength is doubled and truncated between 0 and 100.
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Pattern Reward

0 < length ≤ 4 +length

5 < length ≤ 7 +6

8 < length ≤ 15 +12

15 < length +18

Lowercase letters +1

Uppercase letters +5

Digits +5

At least 3 digits +5

Symbols (taken from !@#$%ˆ&*?,_~) +5

At least 2 symbols +5

Both lowercase and uppercase +2

Lowercase, uppercase and digits together +2

Lowercase, uppercase, digits and symbols together +2

Table 5: LastPass patterns rewarding rules. The reward value is added to the strength
score if the password matches the corresponding pattern.

4.4.2.2 User information

The password is verified against the email address by more than a simple equality

check, accounting for one included in the other. However, it is questionable whether

the full email address will be included in the password (although we find examples of

this in our dictionaries). For the case where only the username part may be reused in

the password, the check is bypassed by adding an extra character, e.g., email address

john.doe@email.com and password john.doe1 are allowed.

4.4.2.3 Weaknesses

The password password already ranks 42%, although it is arguably not the answer

to the Ultimate Question of Life, the Universe, and Everything.20 Password1 also

ranks 72% because of the number of charsets included in it and the relatively long

length. Clearly, this checker focuses on rewarding a password rather than appropri-

ately reducing its strength by additional checks of simple patterns. Rules are mostly

sensitive to the password composition, ignoring other patterns or common passwords.

Leet transformations are also not taken into account.

20The Hitchhiker’s Guide to the Galaxy, Douglas Adams
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4.4.3 KeePass

KeePass password meter appears during the creation of a new password-encrypted

vault and creation of a new entry in a vault, and represents the strength of a given

password as both an entropy score in bits and a progress bar filled at 128 bits. We

analyze KeePass version 2.25 for Windows (as of March 25, 2014). KeePass is an open-

source software whose algorithm is briefly described on the corresponding KeePass

Help Center’s webpage.21 The translation to labels provided on this webpage suggests

the following mapping: very weak (0–64), weak (64–80), moderate (80–112), strong

(112–128), very strong (128+); however, we report strengths grouped by uniform

ranges as users are not provided with this non-linear label assignment. Moreover,

this label mapping is apparently unrealistic since a password would be considered

very weak until it reaches 50% of the meter and weak until 63% (which is already in

a green area). Figure 21 summarizes our results.

4.4.3.1 Algorithm

KeePass runs a complex algorithm against passwords to be ranked, which detect sev-

eral patterns in way similar to Dropbox checker. This algorithm checks any repeated

substrings of length 3 or more in a password (e.g., as in passwordpassword or win-

ter14winter), identify groups of 3 digits or more, identify sequences of 3 characters or

more whose UTF-8 code values are separated by a regular interval (e.g., abcdef and

123456 with a distance of 1, acegi and 86420 with a distance or 2 and -2, respectively),

and performs a leet-aware dictionary check against a list of 10,183 words.

KeePass distinguishes between lowercase (L)/uppercase (U) letters, digits (D),

symbols from a US keyboard (S), along with an extended set of international letters

and symbols (H) from code points 0xA1 to 0xFF (upper part of the extended ASCII),

and denotes other characters in set X; characters in X are ignored in the rest of the

algorithm. Patterns are further classified as R for repetitions, W for words in the

dictionary, C for sequences of characters and N for groups of digits. The password

21http://keepass.info/help/kb/pw_quality_est.html
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Figure 21: KeePass checker password strength distribution

is decomposed into all possible (with likely overlapping) patterns, each having an

entropy computed based on the type of pattern. The pattern detection algorithm is

abstracted in Algorithm 4. Note that when detecting patterns of a certain type (R, X,

C or N), the longest ones are matched first, from left to right, and a detected pattern

cannot overlap with another one of the same type. E.g., in Password123, Password1

is detected as a dictionary word (pattern W), however, Password alone will be ignored

to reduce the number of pattern combinations that would overestimate the strength

of the password. The representation of Password123 becomes the following:

W
︷ ︸︸ ︷

P
︸︷︷︸

U

a
︸︷︷︸

L

s
︸︷︷︸

L

s
︸︷︷︸

L

w
︸︷︷︸

L

o
︸︷︷︸

L

r
︸︷︷︸

L

d
︸︷︷︸

L

1
︸︷︷︸

D

2
︸︷︷︸

D

3
︸︷︷︸

D
︸ ︷︷ ︸

N
︸ ︷︷ ︸

C

The overall entropy for each combination of patterns is calculated, where simple

characters that are not part of further detected patterns are treated as a single-

character pattern belonging to the group of characters previously identified (L, U,

85



D, S, or H). In the example above, all combinations include ULLLLLLLDDD, ULL-

LLLLLN, ULLLLLLLC and WDD. In contrast to Dropbox, which simply combines

entropies together by addition, KeePass relies on a “optimal static entropy encoder”

(as mentioned on KeePass Help Center webpage). This encoder computes the en-

tropy of each pattern considering the size of the group it belongs to if not already

assigned an entropy by the pattern detection algorithm, and takes into account the

distribution of characters inside each group and adjusts the calculation for repeated

individual characters. The score is assigned with the entropy of the combination of

patterns that yields the minimum value. Compared to Dropbox’s algorithm, KeePass

yields overall a slightly stronger combined entropy.

4.4.3.2 Strengths

A special extended symbol charset takes into account international symbols in a

different way than symbols on a US keyboard. This is one of the rare attempts to

consider internationalized passwords. The translation table for leet transformations

is the most comprehensive one among the meters we tested, including more than a

hundred transformations which also take into account the simplification of accented

letters (e.g., é→ e). This algorithm decently rejects our simple dictionaries and their

mangled and leet-transformed versions without involving a stringer policy. In fact,

no policies are enforced on password ranking. Such behavior is remarkable since its

response profiles is likely to be realistic in a real-world usage, contrary to other profile

showing good results with too simple checks.

4.4.3.3 Weaknesses

Although extensive checks are performed to rate a password, specially for sequences,

the algorithm doesn’t include checks for spacial combinations on a keyboard, such

as a1s2d3f4g5h6j7k8, which is ranked 81 bits (63%). Also, regarding passphrases,

KeePass is still primarily intended for traditional passwords that contain random

characters or one or two core words. No special consideration is given to multiple
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Algorithm 4 KeePass password checker pattern detection algorithm

Input: Password
Output: Entropy of the password
1: Decompose the password onto the 6 sets of characters (L, U, D, S, H, X)
2: for each repetitive patterns in password do
3: Consider identified substring as pattern R
4: Assign repetitive occurrences with entropy of log2(pattern offset ×

pattern length) ⊲ Offset count starts at 1
5: end for
6:

7: for each number of 3 digits or more do
8: Consider identified substring as pattern N
9: Assign number an entropy of log2(number)

10: if number has leading zeros then
11: Add log2(number of leading zeros + 1) to the entropy assigned
12: end if
13: end for
14:

15: for each Sequence of 3 characters or more whose code points are distanced by a
constant do

16: Consider identified substring as pattern C
17: Assign pattern an entropy of log2(charset size matching the first character ×

(sequence length− 1))
18: end for
19:

20: for each substring of password do
21: size← number of words of same length in dictionary
22: if substring included in lowercase in dictionary then
23: Consider identified substring as pattern W
24: distance← number of differences between substring and word in dictionary
25: Assign substring an entropy of log2(size ·

(
n

distance

)
)

26: else if unleeted substring included in lowercase in dictionary then
27: Consider identified substring as pattern W
28: distance← number of differences between substring and word in dictionary
29: Assign substring an entropy of 1.5 · distance+ log2(size ·

(
n

distance

)
)

30: end if
31: end for
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words; e.g., love is in the air ranks 76 bits (59%). This example is as good as the

13-character random password !X>g$r6ˆG+MX (75 bits), which also highlights the

stringency of this meter. In fact, only carefully-chosen 20-character long random

passwords can successfully fill the meter, e.g., &bˆp6Mvm97Hc#$1Oa*S5 (129 bits),

which makes KeePass as the most stringent meter we analyzed.

4.4.4 RoboForm

RoboForm is a password manager that comes as a software tool and a browser ex-

tension. Unfortunately, the browser extension calls functions implemented in the

software through a Dynamic-Link Library for Windows and hence the code for eval-

uating passwords is not written in JavaScript. Based on the evaluation of previous

meters, the profile of this checker shown in Figure 22 doesn’t seem to follow a sim-

ple logic. We tried to infer its logic by applying the same technique as used with

1Password without success, as no pattern emerged from various representations of

password scores. To understand how the algorithm treats passwords, we reverse-

engineer identities.exe from RoboForm version 7.9.5.7 for Windows (as of March

25, 2014), which handles the creation of a master password with the help of a meter,

and understand the types of checks the meter performs.

4.4.4.1 Algorithm

The step-by-step execution of the program reveals several checks run against a can-

didate password. We could identify four simple functions for detecting if a given

character is a lowercase or uppercase letter, a non-letter, a digit, or a symbol (only

special characters found on a US keyboard are taken into account). This gives in-

sights as to the types of checks involved in the algorithm, which are mainly focused

on password composition. For each detected pattern, a penalty or reward is added

to the overall score. To the best of our understanding, checks include the presence

of digits only, count of non-lowercase characters, count of non-letter characters, pres-

ence of both digits and symbols, count of repetitions. More advanced patterns are
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Figure 22: RoboForm checker password strength distribution

searched such as the succession of two characters that are typed from the same key

on a US keyboard (e.g., “a” and “A”, or “5” and “%”) or from adjacent keys, along with

simple keyboard sequences (e.g., q1w2e3r4t5y). A blacklist check is also performed

against an embedded dictionary of 29,080 words and keyboard sequences. We did not

cover all the checks run by RoboForm, nor did we write a full-fledge equivalent al-

gorithm since we gained enough insights to understand its strengths and weaknesses

illustrated in its response profile. Also, understanding all the details of the algo-

rithm from reverse-engineering the binary file is a time-consuming task. To illustrate

this, we present Figure 23, which represents the part of the assembly instructions

responsible for counting all identical consecutive characters and penalizing the score

accordingly. These 53 lines of x86 assembly are semantically identical to the few-line

algorithm presented in Algorithm 5. This example highlights the complexity of simple

tasks when written in assembly and the difficulty to infer the high-level idea of the

algorithm by such analysis.

89



548 FEBD0 MOV EDX ,[DWORD SS:EBP -64] ;load i from EBP -64 in EDX

548 FEBD3 ADD EDX ,1 ;increment i in EDX

548 FEBD6 MOV [DWORD SS:EBP -64],EDX ;store back i (i=i+1)

548 FEBD9 MOV EAX ,[DWORD SS:EBP+8] ;load address of a pointer to password in EAX

548 FEBDC MOV ECX ,[DWORD DS:EAX] ;load address of password in ECX

548 FEBDE MOV EDX ,[DWORD DS:ECX -14] ;load password length in EDX

548 FEBE1 MOV [DWORD SS:EBP -130],EDX ;save password length at EBP -130

548 FEBE7 MOV EAX ,[DWORD SS:EBP -130] ;load password length in EAX

548 FEBED SUB EAX ,1 ;decrement length of password in EAX

548 FEBF0 CMP [DWORD SS:EBP -64],EAX ;compare (password length -1) and i

548 FEBF3 JGE RoboForm.548FECB9 ;if i > length -1, finished scanning password

548 FEBF9 CMP [DWORD SS:EBP -64],0 ;compare i and 0

548 FEBFD JL SHORT RoboForm.548FEC18 ;if i < 0, error , go to error1

548 FEBFF MOV ECX ,[DWORD SS:EBP+8] ;load address of a pointer to password in ECX

548 FEC02 MOV EDX ,[DWORD DS:ECX] ;load address of password in EDX

548 FEC04 MOV EAX ,[DWORD DS:EDX -14] ;load password length in EAX

548 FEC07 MOV [DWORD SS:EBP -134],EAX ;save password length at EBP -134

548 FEC0D MOV ECX ,[DWORD SS:EBP -64] ;load i from EBP -64 in ECX

548 FEC10 CMP ECX ,[DWORD SS:EBP -134] ;compare i with password length

548 FEC16 JLE SHORT RoboForm.548FEC2F ;if i <= password length , jump after error1

error1: [...]

548 FEC2F MOV EDX ,[DWORD SS:EBP+8] ;load address of a pointer to password in EDX

548 FEC32 MOV EAX ,[DWORD DS:EDX] ;load address of password in EAX

548 FEC34 MOV ECX ,[DWORD SS:EBP -64] ;load i from EBP -64 in ECX

548 FEC37 MOV DX ,[WORD DS:EAX+ECX*2] ;load character i from the password

548 FEC3B MOV [WORD SS:EBP -136],DX ;save character i at EBP -136

548 FEC42 MOV EAX ,[DWORD SS:EBP -64] ;load i from EBP -64 in EAX

548 FEC45 ADD EAX ,1 ;increment i in EAX

548 FEC48 MOV [DWORD SS:EBP -140],EAX ;save resulting (i+1) at EBP -140

548 FEC4E JS SHORT RoboForm.548FEC6C ;if (i+1) becomes negative , go to error2

548 FEC50 MOV ECX ,[DWORD SS:EBP+8] ;load address of a pointer to password in ECX

548 FEC53 MOV EDX ,[DWORD DS:ECX] ;load address of password address in EDX

548 FEC55 MOV EAX ,[DWORD DS:EDX -14] ;load password length in EAX

548 FEC58 MOV [DWORD SS:EBP -13C],EAX ;save password length in EBP -13C

548 FEC5E MOV ECX ,[DWORD SS:EBP -140] ;load (i+1) in ECX

548 FEC64 CMP ECX ,[DWORD SS:EBP -13C] ;compare i and password length

548 FEC6A JLE SHORT RoboForm.548FEC83 ;if i <= password length , jump after error2

error2: [...]

548 FEC83 MOV EDX ,[DWORD SS:EBP+8] ;load address of a pointer to password in EDX

548 FEC86 MOV EAX ,[DWORD DS:EDX] ;load address of password in EAX

548 FEC88 MOV ECX ,[DWORD SS:EBP -140] ;load (i+1) in ECX

548 FEC8E MOV DX ,[WORD DS:EAX+ECX*2] ;load character i+1 from the password

548 FEC92 MOV [WORD SS:EBP -142],DX ;save character i+1 at EBP -142

548 FEC99 MOVZX EAX ,[WORD SS:EBP -136] ;load character i in EAX

548 FECA0 MOVZX ECX ,[WORD SS:EBP -142] ;load character i+1 in ECX

548 FECA7 CMP EAX ,ECX ;is character i = character i+1?

548 FECA9 JNZ SHORT RoboForm.548FECB4 ;if not , go check next pair of characters

548 FECAB MOV EDX ,[DWORD SS:EBP -10] ;else , load number of repetition

548 FECAE ADD EDX ,1 ;increment it

548 FECB1 MOV [DWORD SS:EBP -10],EDX ;store it back

548 FECB4 JMP RoboForm.548FEBD0 ;go check next pair of characters

548 FECB9 MOV EAX ,[DWORD SS:EBP -10] ;load number of repetitions

548 FECBC IMUL EAX ,EAX ,-1 ;tmp = -(number of repetitions)

548 FECBF IMUL EAX ,EAX ,3 ;tmp = tmp*3

548 FECC2 ADD EAX ,[DWORD SS:EBP -28] ;score = score+tmp

Figure 23: RoboForm disassembled instructions for checking identical consecutive charac-
ters
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Algorithm 5 Algorithm for RoboForm’s identical consecutive characters check

Input: Password, currently evaluated score
Output: Penalized score according to the number of identical consecutive characters
1: repetition← 0
2: for i = 0 to password length− 1 do
3: if password[i] = password[i+ 1] then
4: repetitions← repetitions+ 1
5: end if
6: end for
7: score← score− 3× repetitions

4.4.4.2 Strengths

The algorithm checks for several patterns with a particular emphasis given to key-

board sequences. RoboForm is the only algorithm that embed a list of sequences in

its dictionary, in addition to the ones that are simple to check programatically. It

also catches the most simple dictionaries (Top500, Cfkr and JtR) and assigns them a

score below good.

4.4.4.3 Weaknesses

RoboForm however fails at detecting many mangled passwords and does not consider

of leet transformations. A fair amount of our dictionaries are ranked better than

good and even excellent. Among such good passwords, we find Password1 ranked 4/5

(between good and excellent), Basketball and A1b2c3d4. The latter is surprising given

the many keyboard patterns the meter checks. These three examples are taken from

Top500+M that includes variations of the most simple dictionary. The dictionary

check is able to penalize words that are included in one of the blacklisted words

irrespective of the case, however, any additional characters bypass this check resulting

in score jumps, e.g., password is weak (1/5) while password1 is ranked 4/5.
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Chapter 5

Results Analysis

Below, we further analyze our results from Chapter 4, list several common features and

weaknesses, and compare the meters. We also discuss a web-based password multi-

checker tool that we implemented for testing any password across all the web-based

meters we evaluated. Beyond the generic dictionaries as discussed in Section 3.3.

5.1 Results Summary

Most checkers we evaluated heavily rely on the presence of characters included into the

four main charsets (lowercase/uppercase letters, digits and symbols); hence we name

their category as LUDS. LUDS checkers, specially if combined with a dictionary check,

mainly reward random-looking passwords and push users to select such passwords (or

to bypass the check, as discussed in Section 5.6), and tend to disregard passphrase-

looking passwords that include only lowercase letters. Among the 18 LUDS checkers

we evaluated, 12 of them combine the charset information with the password length.

Only 8 of the LUDS checkers involve a dictionary check, for which only 4 involve a

smarter check that takes into account mangling and leet transformations. Also, 6

of them perform further checks for patterns, of which only 4 search for patterns to

increase the score given to a password. Among the remaining 3 non-LUDS checkers, 2

of them (Dropbox and KeePass) are mainly based on more advanced patterns such as
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sequences, repetitions, dictionary words with mangling and leet-awareness, keyboard

patterns, human-readable patterns (e.g., dates), combined with a conservative entropy

calculation. These two checkers yield sound response profiles to our test dictionaries,

i.e., they rank the base dictionaries as weak and the mangled and leet ones only slightly

better. The last checker, Google, remains a mystery to us because of its black-box

nature and inconsistent output. Section 5.7 provides some possible explanation of

Google’s algorithm. Table 6 summarizes the types and capabilities of the evaluated

meters.

As expected, embedded dictionaries of the meters involving a blacklist check over-

lap with parts of our dictionaries. This overlap is detailed in Table 3. We note that

the majority of these embedded dictionaries contain a significant portion of the base

dictionaries (Top500, Cfkt and JtR); however, they never include any of them com-

pletely. There is a significant similarity between 1Password and C&A dictionaries,

with 99.58% of the former included in the latter, and 74.11% of C&A included in

1Password dictionary. Similarly, Top500 and Twitter dictionaries are close to each

other, with 93.77% of Twitter being included in Top500, and 75.35% of Top500 be-

ing included in Twitter dictionary. Apart these two exceptions, no other dictionaries

share a significant part of their content. Also, Dropbox dictionary is a superset of

Intel, KeePass and Twitter, with only few exceptions not included in Dropbox. Man-

gled versions of our dictionaries do not include and are not included into any other

dictionaries by more than few percents. This observation seems logical since checks

against dictionaries should be sanitized from possible transformations before being

checked. From these results, we wonder how meters construct their embedded dictio-

naries and why do they not include obvious dictionaries such as Top500 and JtR in

their entirety.
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Name Type Length Patterns
Dictionary and variations

Basic Leet Mangling Multiple

Dropbox
Advanced
patterns

X ↑↓ ↓ X X X

Drupal LUDS × × × – – –

FedEx LUDS X × × – – –

Intel LUDS X × ⇓ × X X

MS v1 LUDS X × ⇓ X × ×

MS v2 LUDS X × × – – –

MS v3 LUDS1 X × × – – –

QQ LUDS × × × – – –

Twitter LUDS X ↑ ⇓ × × ×

Yahoo! LUDS × × × – – –

12306.cn LUDS × × × – – –

eBay LUDS × × × – – –

Google ? X ? ↓ × × X

Skype LUDS X2 × × – – –

Apple LUDS X ↑ ⇓ × × ×

PayPal LUDS × ↓ ⇓ × X ×

1Password
(software)

LUDS X × × – – –

1Password
(browser)

LUDS X ↑ ↓ X X ×

LastPass LUDS X ↑ × – – –

KeePass
Advanced
patterns

X ↑↓ ↓ X X X

RoboForm LUDS X ↑↓ ↓ × × ×
1 Charsets check is only taken into account for the strongest label
2 Length check is only taken into account for the strongest label

Table 6: Summary of the types of meters and their capabilities. Notation used under
“Type”: LUDS (Lowercase/Uppercase/Digit/Symbol) is a type of meter that is mainly sen-
sitive to the number of charsets, “?” means we are unsure. “Length”: whether the meter
includes the password length in its calculation beyond a minimum requirement. “Patterns”:
↑ denotes checks for rewarding patterns, ↓ denotes checks for penalizing patterns, “?” means
we are unsure. “Dictionary and variations”: The column “Basic” denotes whether at least a
simple dictionary check is performed; ↓ means the strength is only partially impacted by a
positive match, ⇓ means the strength goes down to the minimum by a positive check. “Man-
gling” represents whether a dictionary check prevents bypassing by addition of few other
characters before or after the detected word. “Multiple” represents whether the meter is
able to detect multiple dictionary words inside the password. In the case dictionary checks
are not performed, “Leet”, “Mangling” and “Multiple” are not applicable (noted with a “–”).
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5.2 Meters Heterogeneity and Inconsistencies

In general, each meter reacts differently to our dictionaries, and strength results vary

widely from one to another. For example, Microsoft v2 and v3 checkers assign their

best score to only a very small fraction of our passwords, while Google assigns its

best score to almost 2.2 million of them (about 56%). For individual checkers, some

simple dictionaries score significantly higher than others, e.g., Top500 and JtR when

tested against Twitter. 75% of Top500 words are considered obvious and the rest

are too short; however, 58% of JtR words are considered “Could be More Secure” (2

or 3 steps up from Top500). As for individual passwords, probably one of the most

stunning result is Password1 that receives the widest panel of possible scores, ranging

from very weak for Dropbox to very strong for Yahoo!. It also receives three different

scores by Microsoft checkers (i.e., strong, weak and medium chronologically). While

our leet dictionary is mostly considered strong by Microsoft v1, it becomes mainly

weak in v2, and finally medium in v3. Such inconsistent jumps demonstrate the

relativity of password strength even by the same vendor at different times.

Some inconsistencies are particularly evident when a password passes the min-

imum requirements. For example, password$1 is correctly assigned very-weak by

FedEx, but the score jumps to very-strong when the first letter is uppercased. Such

modifications are normally considered very early in a cracking algorithm; hence such

a jump is unlikely to match reality. Similarly, qwerty is tagged as weak by Yahoo!,

while qwerty1 jumps to strong; password0 as weak and password0+ as strong by

Google. Finally, as expected, a random password +ˆv16#5{]( is rated as strong by

most checkers (or at least medium by Microsoft v3 and eBay); surprisingly, FedEx

considers it as very-weak. These problems can be mostly attributed to the stringent

minimum requirements.

One possible consequence of these heterogeneous behaviors is the confusion of users

with regard to the security of their passwords. When opposite strength values are

given for the same password by different services, users may not understand the reason
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behind it, which may decrease their trust and willingness to comply with password

policies. It may also encourage them to search for easy tricks to bypass stringent

restrictions rather than reconsidering their password. Also, permissive meters may

drive users to falsely assume their weak password as strong, and provide only a false

sense of security (cf. Heijningen [29]), which in turn may encourage users to reuse

such weak passwords for other more sensitive accounts. However, the real effects of

wrong/incoherent meter outcomes on users may be demonstrated only by a large-scale

user study.

We combine the functionalities of all tested checkers in a web-based password

multichecker that computes the strength of a given password against all checkers

in realtime; see Figure 24 for a screenshot of the tool. Inconsistencies (if exist)

in password rating become instantly evident from the output of a given password.

This tool can also be used to choose a password that is considered strong by all

meters, increasing the chances of that password being effectively strong. Finding

such passwords may also help users select few strong passwords to reuse, but note

that although password reuse is a common practice, it is generally considered bad for

security. The tool is available at: https://madiba.encs.concordia.ca/software/

passwordchecker/index.php.

5.3 Comparison

In Chapter 4, we provide results of individual meter evaluation. Here, we compare

the meters against each other. As strength scales vary significantly in terms of labels

and the number of steps in each scale (see Table 1), we simplified the scales for our

comparison. Figures 25a and 25b show the percentage of the dictionaries that are

tagged with an above-average score by the different web services, sorted by decreasing

cumulative percentages. To be conservative, we choose to count only the scores labeled

at least “Good”, “Strong” or “Perfect”. For KeePass, we count scores greater than 64

bits of entropy (meter’s bar goes to 128). For LastPass, we count scores greater
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Figure 24: Password multi-checker output for password$1. A strength score of “2/3”
denotes the relative position (2) in a given strength scale (3).
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than 50%. Clearly, such scores should not be given to most of our test set (possible

exceptions could be the complex passwords from leaked dictionaries).

In reality, Google, RoboForm, Drupal, Yahoo! and LastPass assign decent scores

to passwords from our base dictionaries; see Figure 25a. Significant percentages of

Top500, Cfkr and JtR are qualified as good by Drupal and Yahoo!, which are about

1.6%, 15.5%, and about 12% respectively for both checkers. Also, roughly 40% of RY5

and 45% of phpBB passwords are tagged as good by both Drupal and Yahoo!. This

similarity in the results possibly originates from the simple design of their meters,

which perform similar checks. Google assigns good scores to 71.2% of C&A, 28.6%

of RY5 and 44.5% of phpBB. Other checkers mostly categorize our base dictionaries

as weak.

The mangled and leet dictionaries trigger more distinctive behaviors. Drupal,

Yahoo!, RoboForm, LastPass and Google still provide high scores with a minimum of

25.6% given to Top500+M and up to 100% to Leet. Google also rates 100% of Leet

as good or better. Leet also completely bypasses Microsoft v1 and PayPal. Overall, it

also scores significantly higher than other dictionaries against FedEx, eBay, Twitter,

KeePass, Dropbox, Skype, Intel, 1Password, Microsoft v2 and Apple. Only Microsoft

v3 is able to catch up to 98.9% of this dictionary (due to the use of a very stringent

policy).

Our comparison graphs are not a competitive ranking of the meters. Although the

ones that evaluate many of our dictionaries as good certainly have design deficiencies,

it does not mean the remaining meters have a correct design. For example, 12306.cn

seems to be the “best” checker based on Figure 25b as it does not classify any of

our passwords as good. However, it achieves this performance only by making the

presence of the underscore character “_” mandatory (along with digits and mixed-

case letters) for a password to be ranked as good. Clearly, this particular requirement

doesn’t reflect a good design. Hence, Figures 25a and 25b alone should be treated

mostly as the number of false positives for each meters, i.e., the number of weak

passwords misclassified as good, but does not claim anything about the true positives

98



T
op

50
0

C
fk

r
J
tR

C
&

A
R
Y

5
p
h
p
B

B

020406080

G
o
o
gl

e
R

ob
oF

o
rm

D
ru

p
al

Y
ah

o
o!

L
as

tP
as

s
In

te
l

D
ro

p
b
ox

M
ic

ro
so

ft
Q

Q
P
ay

P
al

1P
as

sw
or

d
K

ee
P
as

s
F
ed

E
x

T
w

it
te

r
S
k
y
p
e

eB
ay

12
30

6.
cn

A
p
p
le

0.2%
1.7%
0.5%

71.2%
28.6%

44.5%

0%
6.6%

5.2%
57.6%

31.3%
41.6%

1.6%
15.5%

11.9%
0.1%

40.5%
45.3%

1.6%
15.5%

11.8%
0.1%

39.8%
44.9%

0.8%
8.3%

3.3%
12.6%

27%
34.3%

0%
0%
0.1%

27.2%
1.5%
2.2%

0%
0%
0%

14.9%
1.3%

10.6%

0%
0%
0%

7.6%
0.5%
0.5%

0%
0%
0%
0%
0.6%

4.6%

0%
0%
0%
0%
0.5%

4.3%

0%
0%
0%
0.1%
0.4%
0.8%

0%
0%
0%
1.2%
0%
0.1%

0%
0%
0%
0%
0.2%
1%

0%
0%
0%
0%
0.1%
0.6%

0%
0%
0%
0%
0.1%
0.3%

0%
0%
0%
0%
0%
0.2%

0%
0%
0%
0%
0%
0.1%

0%
0%
0%
0%
0%
0.1%

(a
)

C
om

p
ar

is
on

b
as

ed
on

ou
r

b
as

e
d
ic

ti
on

ar
ie

s

T
op

50
0+

M
C

fk
r+

M
J
tR

+
M

R
Y

5+
M

L
ee

t

020406080100

D
ru

p
al

Y
ah

o
o!

R
ob

o
F
or

m
L
as

tP
as

s
G

o
og

le
Q

Q
P
ay

P
al

F
ed

E
x

eB
ay

T
w

it
te

r
D

ro
p
b
ox

S
k
y
p
e

In
te

l
1P

as
sw

or
d

A
p
p
le

K
ee

P
as

s
M

ic
ro

so
ft

12
30

6.
cn

77.3%
85.4%

76.5%
65.3%

100%

75.4%
83.4%

74.7%
65.3%

100%

40.6%
51.4%

46%
57.1%

100%

42.1%
54.1%

45.9%
49.6%

100%

25.6%
43.5%

34.8%
56.9%

100%

7.5%
12.5%

9.7%
10.5%

99.9%

6.1%
10.1%

8.2%
10.4%

99.7%

1.7%
5.8%

3.5%
6.3%

37.6%

0%
0%
0%
0%

54.8%

0%
0%
0%
0.2%

50.3%

0.7%
1.6%
1.5%

7.1%
26.8%

0%
0%
0%
0%

37.2%

1.3%
2.7%
2%

8.5%
14.9%

0%
1.9%

0.3%
3.2%

21.1%

0%
0%
0%
0%

19.6%

0%
0%
0%
0.2%

6.6%

0%
0.9%
0%
1.3%
1.1%

0%
0%
0%
0%
0%

(b
)

C
om

p
ar

is
on

b
as

ed
on

ou
r

m
an

gl
ed

an
d

le
et

d
ic

ti
on

ar
ie

s

F
ig

u
r
e

2
5
:

C
om

p
ar

is
on

b
et

w
ee

n
se

rv
ic

es
as

si
gn

in
g

d
ec

en
t

sc
or

es
to

(a
)

ou
r

b
as

e
d
ic

ti
on

ar
ie

s,
(b

)
ou

r
m

an
gl

ed
an

d
le

et
d
ic

ti
on

ar
ie

s.
M

ic
ro

so
ft

is
re

p
re

se
n
te

d
b
y

it
s

la
te

st
ch

ec
ke

r
an

d
1P

as
sw

or
d

is
re

p
re

se
n
te

d
b
y

it
s

b
ro

w
se

r
ex

te
n
si

on
’s

ch
ec

ke
r.

99



(real strong passwords detected as such), the false negatives (strong passwords labeled

as weak) and true negatives (weak passwords labeled as such).

5.4 International Characters

We have not tested passwords with international characters due to the lack of dic-

tionaries with a considerable number of such passwords. International characters are

also usually not properly handled for web passwords (see e.g., Bonneau and Xu [12]).

We briefly discuss how such characters are taken into account for strength calculation

by different checkers.

International characters, when allowed, are generally considered as part of the

symbols charset (or “others” by Microsoft v2). However, this charset is limited to

specific symbols for 12306.cn, 1Password, Apple, eBay, FedEx, Google, LastPass,

Microsoft, PayPal, RoboForm, Skype, Tencent QQ, Twitter, and Yahoo! (that is, all

except Dropbox, Drupal, Intel and KeePass). Google prevents the use of international

characters altogether, while Apple allows some of them below ASCII code 193 but

does not count them in any charset.

As for character encoding, passwords in the tested server-side and hybrid checkers

are always encoded in UTF-8 prior to submission. This is because the registra-

tion pages are rendered in UTF-8, and browsers usually reuse the same encoding

for form inputs by default [12]. Passwords are also correctly escaped with percent-

age as part of the URI encoding by Apple, eBay, Google and Skype. However,

PayPal shows an interesting behavior in our tests: it sends the HTTP Content-

Type header application/x-www-form-urlencoded; charset=UTF-8, meaning that a

properly URI encoded string is expected as POST data. However, no encoding

is performed and characters that require escaping are sent in a raw format, e.g.,

search_str=myspace1&PQne)!(4, where the password is myspace1&PQne)!(4. The

character & interferes with the parsing of search_str argument and the remaining

of the password (PQne)!(4) is dropped from the check. Then, because myspace1 is
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blacklisted, the entire password is blacklisted. However, removing the ampersand

makes the entire password being evaluated, which in turn is not blacklisted, and

even tagged as strong. UTF-8 characters are also sent in a raw format (the proper

Content-Type should be multipart/formdata in this case [12]). To get the same out-

put as the PayPal website, we carefully implemented this buggy behavior in our tests

and multichecker tool.

5.5 Implications of Design Choices

Client-side checkers as tested in our study can perform either very stringently (e.g.,

FedEx, Microsoft v2), or very loosely (e.g., Drupal). Server-side checkers may also

behave similarly (e.g., Skype vs. Google). Finally, hybrid checkers behave mostly the

same as client-side checkers with an additional (albeit primitive) server-side blacklist

mechanism. Apparently, no specific checker type, web- or application-based, out-

performs others. Nevertheless, server-side checkers inherently obscure their design

(although it is unclear how these checkers are benefited by such a choice). Along

with hybrid checkers, a blacklist can be updated more easily than if it is hard-coded

in a JavaScript code. Most checkers in our study are also quite simplistic: they

do not perform extended computation, but rather apply simple rules with regard

to password length and charset complexity, and sometimes detect common password

patterns. This remark also stands for server-side checkers that would eventually man-

date a server’s computation power. Dropbox is the only exception, which uses a rather

complex algorithm to analyze a given password by decomposing it into distinguished

patterns. It is also the only checker able to rate our leet dictionary most effectively,

without depending on stringent policy requirements (as opposed to Microsoft v2 and

v3 checkers).
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5.6 Stringency Bypass

Users may adopt simple mangling rules to bypass password requirements and improve

their password strength score [58]. However, most checkers (except Dropbox, Intel,

KeePass, PayPal and 1Password for Firefox), apparently disregard password man-

gling. Even trivial dictionaries when mangled, easily yield better ranked passwords.

For example, Skype considers 10.5% of passwords as medium or better, when we

combine (Top500, C&A, Cfkr and JtR) dictionaries; for the mangled version of the

combined dictionary, the same rating is resulted for 78% of passwords. This gap is

even more pronounced with Google, where only five passwords from the combined dic-

tionary are rated strong (0.002%), while tens of thousands from the mangled version

(26.8%) get the same score. Our mangled dictionaries are built using only simple rules

(e.g., do not result in 4-charset passwords). Our leet-transformed dictionary, which

contains 4-charset passwords, appears to be highly effective in bypassing password

requirements and resulting high-score passwords; see Figure 25b.

5.7 Google Checker Hypothesis

Based on our test results, it is difficult to model Google’s server-side checker. We

explained discrepancies in Section 4.2.2 by providing strange examples, where for a

given charset structure, a leading digit not only has an importance for the charset

diversity, but the value of the digit itself also appears to be significant. We showed

that testtest0 is strong, while testtest1 is only fair. We also noticed that strength

scores fluctuate in time for no apparent reason. We speculate that Google’s scoring

algorithm might be based on a dynamic mechanism (cf. password popularity [55]),

which may explain the change of strength for some passwords with time, and why

the particular value of digits is of importance in a password.
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5.8 Password Policies

Some password policies are explicitly stated (e.g., Apple and FedEx), and others can

be deduced from their algorithms or outputs. However, policies as used for measuring

strength remain mostly unexplained to users. Differences in policies are also the

primary reason for the heterogeneity in strength outcomes. Some checkers are very

stringent, and assign scores only when a given password covers at least 3 charsets (e.g.,

FedEx), or disallow the password to be submitted for blacklist check unless it covers

the required charsets and other possible requirements (e.g., Apple, PayPal), while

other checkers apparently promote the use of single-charset passphrases. Policies also

widely vary even between similar web services. Interestingly, email providers such as

Google and Yahoo! that deal with a lot of personal information, apply a more lenient

policy than FedEx, which arguably hosts far less sensitive one.
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Chapter 6

Discussion

In this section, we discuss some challenges in designing a reliable meter, share some

insights as gained from our analysis, and provide few suggestions on improving current

meters.

6.1 Implications of Online vs. Offline Attacks

The strength of a password should represent the amount of effort an adversary must

employ to break the password (see e.g., [16]). When mapping entropy or guessability

to a strength score, in effect, we estimate the time needed by an attacker for guessing

a particular password. However, such an estimate will be very different depending on

the type of password guessing attack considered, i.e., online vs. offline (see e.g., [32]).

Few passwords per second may be guessed in an online attack (before being rate-

limited and/or facing CAPTCHA challenges), while billions per second may be tested

in an offline attack. While it may be reasonable for web services to consider only online

attacks, history proved us time and again that (hashed) password databases leak more

frequently than we may anticipate (cf. [45]), and millions of hashed passwords may be

subjected to offline cracking. Thus, the large difference in efficiency between online

and offline attacks complicates assigning password strengths. Web services should at

least explain to users what the assigned strength of a given password may mean.
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6.2 Password Leaks

Real-world password leaks22 complicate the design of a reliable meter. A strong leaked

password used by a significant proportion of users, will most likely be integrated into

a general attack dictionary, and thus should be disallowed, or at least be assigned

a lower score. For checker designers, tracking and incorporating all leaked password

databases may be infeasible in practice. Users also may be confused to discover

that their perfect password not even being allowed after a while. Thus, considering

password leaks, and the increasing number of users creating new passwords, adaptive

and time-variant checkers (e.g., [16, 31]) may provide more reliable strength outcome.

6.3 Passphrases

Passphrases can offer decent entropy while being easier to memorize for users [40, 57],

as long as they do not follow simple grammatical structures [54]. However, the ma-

jority of web-based checkers (except Dropbox, Twitter, and Intel to some extent),

would rank passphrases at the lower-end in the strength scale. Checkers basing their

score on charset complexity (Apple, Drupal, FedEx, Microsoft v1, PayPal, Tencent

QQ, Yahoo!, 12306.cn) always assign low scores to passphrases. Other checkers (Ap-

ple, Microsoft v2 and v3) do not grant their best scores unless more charsets are

used. Finally, we found that application-based checkers are generally more friendly

to passphrases.

6.4 Relative Performance of our Dictionaries

As discussed in Section 3.3.3 and 3.3.4, the mangling rules and leet transformations

employed in our tests are not carefully optimized or targeted as they would be by

a determined attacker (cf. [2, 3]). A better designed targeted dictionary may prove

22For an example collection of leaked password databases, see: http://ThePasswordProject.

com/leaked_password_lists_and_dictionaries
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significantly more effective against the meters, as evident from our test against FedEx

(see Section 4.1.3). We believe that even if our base/mangled dictionaries are disal-

lowed or assigned reduced scores, users will try to creatively bypass such restrictions

with other simple patterns (cf. [38, 66]). In this regard, our analysis is an underesti-

mate as for how real user-chosen passwords are evaluated by meters.

6.5 Directions for Better Checkers

Several factors may influence the design of an ideal password checker, including:

inherent patterns in user choice, dictionaries used in cracking tools, exposure of large

password databases, and user-adaptation against password policies. Designing such

a checker would apparently require significant efforts. In terms of password creation,

one may wonder what choices would remain for a regular user, if a checker prevents

most logical sequences and common/leaked passwords.

Checkers must analyze the structure of given passwords to uncover common pat-

terns, and thereby, more accurately estimate resistance against cracking. Simple

checkers that rely solely on charset complexity with stringent length requirements,

may mislead users about their password strength. Full-charset random passwords

are still the best way to satisfy all the checkers, but that is a non-solution for most

users due to obvious usability/memorability issues. On the positive side, as evident

from our analysis, Dropbox’s rather simple checker is quite effective in analyzing

passwords, and is possibly a step towards the right direction (KeePass also adopts a

similar algorithm).

If popular web services were to change their password-strength meter to a commonly-

shared algorithm, part of the confusion would be addressed. At least, new web services

that wish to implement a meter, should not start the development of yet another al-

gorithm, but rather consider using or extending zxcvbn [69] (under a very short and

permissive license). Meters embedded in software such as password managers should

also consider KeePass’ open-source implementation (under GNU GPLv2).
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As discussed, current password meters must address several non-trivial challenges,

including finding patterns, coping with popular local cultural references, and deal-

ing with leaked passwords. Considering these challenges, with no proven academic

solution to follow, it is possibly too demanding to expect a correct answer to: is a

given password “perfect”? We believe password meters can simplify such challenges

by limiting their primary goal only to detecting weak passwords, instead of trying to

distinguish a good, very good, or great password (this approach has been taken by In-

tel, although with a poor implementation). Meters can easily improve their detection

of weak passwords by leveraging known cracking techniques and common password

dictionaries. In contrast, labeling user-chosen passwords as perfect may often lead to

errors (seemingly random passwords, e.g., qeadzcwrsfxv1331 or Ph’nglui mglw’nafh

Cthulhu R’lyeh wgah’nagl fhtagn1 may not be as strong as they may appear [2, 3]).
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Chapter 7

Conclusion

Passwords are not going to disappear anytime soon and users are likely to continue to

choose weak ones because of many factors, including the lack of motivation/feasibility

to choose stronger passwords (cf. [30]). Users may be forced to choose stronger

passwords by imposing stringent policies, at the risk of user resentment. An apparent

better approach is to provide appropriate feedback to users on the quality of their

chosen passwords, with the hope that such feedback will influence choosing a better

password, willingly. For this approach, password-strength meters play a key role in

providing feedback and should do so in a consistent manner to avoid possible user

confusion. In our large-scale empirical analysis, it is evident that the commonly-used

meters are highly inconsistent, fail to provide coherent feedback on user choices, and

sometimes provide strength measurements that are blatantly misleading.

We highlighted several weaknesses in currently deployed meters, some of which are

rather difficult to address (e.g., how to deal with leaked passwords). Designing an ideal

meter may require more time and effort; the number of academic proposals in this area

is also quite limited. However, most meters in our study, which includes meters from

several high-profile web services (e.g., Google, Yahoo!, PayPal) are quite simplistic in

nature and apparently designed in an ad-hoc manner, and bear no indication of any

serious efforts from these service providers. At least, the current meters should avoid

providing misleading strength outcomes, especially for weak passwords. We hope
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that our results may influence popular web services to rethink their meter design,

and encourage industry and academic researchers to join forces to make these meters

an effective tool against weak passwords.
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