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Abstract 

Heuristics for Truck Scheduling at Cross Docking Terminals  

Wenying Yan 

Cross-docking is a logistics management concept that has been gaining global 

recognition in less-than-truckload logistics industries and retail firms. In cross-docking 

terminals, shipments are unloaded from inbound trucks at strip doors, consolidated 

insider cross-docks according to their destinations, and then, loaded into outbound tucks 

at stack doors. The goal of cross-docking is to reduce inventory and order picking which 

are the two most costly functions of traditional warehousing management. The sequence 

in which the inbound and outbound trucks have to be processed at the cross-dock is 

crucial for improving the efficiency of cross-docking systems. In this thesis we introduce 

an integer programming formulation and apply four heuristic algorithms: a local search, a 

simulated annealing, a large neighborhood search and a beam search, to schedule the 

trucks in a cross-docking terminal so as to minimize the total operational time.  
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Chapter 1: Introduction 

The contribution of the logistics service industry to Canada GDP is reported to increase 

47% since 1998. Logistics service providers GDP was predicted to continually increase 

by 40% between 2007 and 2015, generating $56 billion dollars [1]. In 2011, truck 

transportation shared the largest segment of logistics services and accounted for 31% of 

the sectors share of GDP; the air and rail segments represented 12% and 11% respectively 

[2]. These numbers illuminate the importance of logistics and related areas (e.g. supply 

chain management). However, the synchronization of the distribution of goods with 

supply chain partners is an extremely complex strategic issue for decision makers. One 

innovative strategy in logistics and supply chain management that has increasingly 

attracted industrial practitioners and researchers is cross-docking [3-6].  

The main idea of cross-docking is to transfer freights directly from the inbound trucks to 

the outbound trucks, without or little storage in between. This leads to reduction of the two 

most costly operations (inventory and order picking) in warehouses. In a traditional 

warehouse, goods are first received from the suppliers and stored without knowing the 

demand. When customers order some products, the workers pick them from the pallet 

racks and send them to the customers. For some products that are expensive to be kept in 

inventory or that cannot be kept for long time (e.g. perishable food items), the 
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implementation of a cross-docking strategy exerts enormous advantages [7-10]. Another 

important goal of cross-docking is to consolidate products from different suppliers to the 

same destination carried by full loaded trucks, so that economies of scale in 

transportation costs can be achieved [3]. 

The appropriate coordination of inbound and outbound trucks plays a crucial role in the 

efficiency of cross-docking systems as well as that of the total supply chain system. 

Truck scheduling operations consider the assignment of inbound trucks to receiving (or 

strip) doors where the freight is unloaded, and the assignment of outbound trucks to 

shipping (or stack) doors where the freight is loaded. At the beginning of the planning 

horizon, inbound trucks arrive at the cross-dock. According to the demands of the 

outbound trucks, a certain sequence is planned in such a way that the makespan is 

minimized. Products are then unloaded onto receiving docks and moved from strip doors 

to stack doors by some material handling systems, such as conveyors or forklifts. If the 

unloaded products are not required to be loaded on outbound trucks at the same time they 

arrive, the products will be stored temporarily until the outbound trucks, which request of 

those products, are assigned to the stack doors. Therefore, two interrelated questions are 

raised by decision makers: which docks the trucks should be assigned to and when their 

associated products should be loaded or unloaded.  

Even though there is an interest for practitioners and researchers in studying optimization 
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problems arising in cross-docking (see [4, 16]), there are few papers addressing truck 

scheduling problems. In this thesis, we study a truck scheduling problem recently 

introduced by Boysen et al. [11]. Due to the considerable complexity of truck scheduling, 

this problem focuses on cross-docks having a single strip and a single stack door to 

derive a base model. This is indeed a fundamental problem in cross-docking which helps 

to gain insight into the underlying structure of the problem and to provide the starting 

point to more complex settings. Unlike McWilliams et al. [12] and Yu and Egbelu [13], 

which both study more detailed truck scheduling problems, we deal with the problem on 

a more aggregate level. Different amounts of goods and the sequence of the inbound 

trucks lead to the different unload handling times. The loaded handling times for 

outbound trucks also vary according to the different demands of the customers. What is 

more, it is already very complex to determinate the transportation times inside the 

cross-dock from doors to doors. Therefore, the average times are barely useful to estimate 

the handling times in the detailed truck scheduling model. Under the above analysis, 

aggregate models outperform detailed models because the latter may result in more 

confusion and even infeasible solutions. As an aggregate view, the time horizon is 

distributed to service time slots (represented with unit times such as hours or minutes), on 

the assumption that trucks can be completely unloaded or loaded within such a time slot. 

Delivery times from the inbound doors to the outbound doors inside the cross-dock can 

be defined as a delay (measured by number of slots). 
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The objective of this research is to find inbound and outbound truck sequences so that the 

total operational time is minimized. The main contribution of this thesis is to develop 

four heuristic algorithms to solve the problem: a local search, a simulated annealing, a 

large neighborhood search, and a beam search. We also propose an integer programming 

formulation that is different from the one proposed in Boysen et al. [11]. Moreover, 

motivated by the flow structure of real applications, we introduce two new sets of 

instances to assess the performance of the proposed solution methods. Computational 

results obtained on benchmark instances from [11] and two new sets of instances confirm 

the efficiency of the proposed algorithms.     

The remainder of this thesis is organized as follows. Chapter 2 provides a literature 

review of cross-docking. The formal definition of the studied problem and the new 

formulation are described in Chapter 3. We then present the four heuristics in Chapter 4. 

In Chapter 5 we show the computational analysis to compare the efficiency of 

formulations and algorithms. Finally, in Chapter 6 we summarize our conclusions and 

point out future research directions. 
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Chapter 2: Literature Review   

In today’s globally competitive business environment, more and more innovations focus 

on the improvement of the whole supply chain perspective as compared to that of a 

company level. Cross-docking is one of these innovative strategies that help supply chain 

players synchronize and work together to exert high efficiency and effectiveness. In this 

chapter we introduce the definitions of cross-docking and present its applications and 

research trends. We then discuss conditions to properly apply cross-docking. After that, 

different problems (from a strategical point of view to an operational perspective) raised 

when designing and implementing cross-docking systems are described. Given that this 

thesis focuses on truck scheduling, the last section is dedicated to introduce some relevant 

details related to this topic.  

2.1 Cross-docking 

There are several definitions of cross-docking. We can summarize cross-docking as the 

process of receiving products from several suppliers or manufacturers and consolidating 

those products in a cross-dock terminal to be then delivered to common destinations. By 

appropriately synchronizing inbound trucking and outbound trucking, the merchandise is 

able to immediately transfer from the receiving docks to the shipping docks without 

putting it first in storage location [14, 15]. However, many researchers relax the perfect 
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synchronization as it is very difficult to achieve. What is more, in practice, before an 

outbound truck can be assigned, temporary storage is necessary because many receiving 

shipments from different receiving docks need to be sorted and consolidated. Therefore, 

cross-docking can also be described as the process of consolidating freight with the same 

destination (but coming from several origins), with minimal handling and with little or no 

storage between unloading and loading of the goods [16].  

A cross-dock is the terminal dedicated for cross-docking and it consists of several strip 

doors where inbound trucks are assigned and the freight is unloaded, and several stack 

doors where outbound trucks are assigned and the freight is loaded. Figure 1 gives a 

schematic representation of the material handling operations at a long, narrow 

rectangle-shaped (or I-shaped: the most common shape) cross-dock with 6 strip docks and 

stack doors.  

 

 

 

 

 

Inbound
trucks

outbound
trucks

Strip
doors

Stack
doors

Figure 1. Freight flow in a cross-docking terminal  
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From the time cross-docking was first used by the US trucking industry during the 1930s 

[17] until now, it has been successfully implemented globally. With cross-docking on 

hand, Wal-Mart achieved the goal of delivering the requested goods punctually to 

customers in different locations [18]. Nowadays, almost all third-party logistics 

companies in Hong Kong are applying cross-docking systems [19]. In Germany, the 

travel distance was reduced by 37-39% at a parcel sorting center of Deutsche Post World 

Net [20] by applying cross-docking. Many other companies have also reported the 

successful application of cross-docking (e.g. Eastman Kodak Co. [21], Goodyear GB Ltd., 

Dots, LLC [22] and Toyota [23]). Its successful implementation revealed the advantages 

of cross-docking as compared to traditional distribution centers: service level 

improvement, cost and cash turnover reduction, etc. These advantages of cross-docking 

makes firms more adaptive to nowadays customers various choices and consumption 

habits, where smaller volumes of good, faster and more frequently deliveries are required 

[21,24].    

Unlike the early implementation of cross-docking in the transportation industry, it has 

recently attracted more attention of researchers, being more than 85% of the published 

papers in cross-docking from 2004 until now. Two review papers have been recently 

published in cross-docking. J. Van and Valckeneaers et al. [16] provide an overview of 

the cross-docking concept and discuss guidelines to implement cross-docking 
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successfully. The authors also described several characteristics between different 

cross-dock types and indicate several opportunities to promote current research. Agustina 

and Lee et al. [26] provide a comprehensive review of three different types of models in 

cross docking, namely operational, tactical, and strategic models. Of particular interest to 

our work, Boysen and Fliedner [4] provide a detailed review to classify deterministic 

truck scheduling which helps to point out future research directions.  

Given that cross-docking is a complex logistic strategy, there are several important 

requirements so as to be implemented successfully. Both software and hardware are 

indispensable. With the development of technology, the application of hardware like 

material handling devices and sorting systems is more and more common in logistics 

networks. However, in terms of software, computational professionals who are able to 

design the specific software system to apply different cross-docking configurations are in 

severe shortage, which hinders the implementation of cross-docking [13]. The 

information flow plays a significant role in cross-docking as compared to the traditional 

distribution center. For example, the arriving time of trucks and the amount and type of 

products they carry should be known before they arrive at cross-docks in order to be 

scheduled to appropriate docks. Information technologies (e.g. electronic data 

interchange, shipping container marking, bar-coding and scanning of products using 

universal product codes) provide accurate information to ensure the effectiveness of 
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cross-docking [3].  

Considering the above conditions, cross-docking is only applicable to a certain kind of 

products with specific characteristics. According to Apte and Viswannathan [3], firstly, 

the products such as commonly used grocery products, regularly consumed perishable 

food, and chilled goods are more suitable for cross-docking. Those products have demand 

rates which are more stable and constant, thus the warehousing and transportation 

requirement of products are much more predictable and the planning and implementation 

of cross-docking become easier. Secondly, the products should have low unit stock-out 

cost. Cross-docking reduces the inventory cost. On the other hand, it has higher 

probabilities of stock-out due to the nature of cross-docking. However, if the unit 

stock-out cost is low, the benefits of reduced inventory cost can outweigh the stock-out 

cost. As shown in Figure 2, the products that have stable and constant demand rate and 

low unit stock-out cost are more suitable to use in cross-docking. The traditional 

warehousing is still preferable for the products with unstable demand and high unit 

Figure 2. Suitability of cross-docking (adapted from Apte and Viswannathan [3]) 
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stock-out cost. However, cross-docking can still be used in the latter two situations if 

there are more precise planning systems. 

2.2 Decisions in Cross-docking 

The problems faced by cross-docking decision makers range from the longer term 

decisions (strategic or tactical) to the short term decisions (operational). This section 

reviews each class of problems separately. Strategically, the very first problems are the 

location and designing layout of cross-docks as well as the design of the entire 

cross-docking network. Once these decisions are taken, decision makers have to make 

sure that goods flow fluently through the network. Next comes to operational decisions 

like vehicle routing (how vehicles pick up the goods from the suppliers and send them to 

cross-docks at minimum cost) and truck scheduling (the assignment of trucks to dock 

doors). Other decisions such as how to manage internal resources for the loading and 

unloading of goods are also relevant.  

2.2.1 Strategic Decisions: Location of Cross-docks 

The location of one or more cross-docks plays an important role in the whole supply 

chain. Sung and Song [28], Gümüş and Bookbinder [29] are among the first researchers 

to study the location of cross-docks. Sung and Song [28] present a path-based integer 

programming formulation for the considered problem, which is similar to the formulation 
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provided by Donaldson et al. [30] and Musa et al. [31], based on similar simplifying 

assumptions. To solve the problem, the authors proposed a tabu search (TS) algorithm 

and use strong valid-inequalities to the proposed formulation. Computational experiments 

show that the TS algorithm works very well and valid-inequalities provide strengthened 

lower bounds. The previous work is extended by Sung and Yang [32] with an improved 

TS algorithm. The authors also develop an exact branch-and-price algorithm based on a 

set-partitioning formulation. Gümüş and Bookbinder [29] consider direct shipments and 

multiple product types. They solve some small instances with a mixed integer program 

using general purpose solvers. The authors conclude from the analysis of the experiments 

that the optimal number of cross-docking is an increasing function of the ration between 

the truck cost and the facility set up cost. 

2.2.2 Strategic Decisions: Layout of Cross-docking Terminals 

Another important strategic decision is the design (extern shape and intern layout) of the 

cross-dock terminal. As the labor cost is one of the most costly aspects in a cross-docking 

terminal, the design of a good layout so that trailers can be assigned to doors smoothly to 

improve the efficiency of the workers is very important. In [33], the authors design the 

layout of a cross-dock to minimize the labor cost of delivering goods by modeling travel 

costs and reducing three types of congestion typically experienced in a cross-dock. By 

doing so, they are able to improve the productivity of a cross-dock in Stockton, CA by 
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more than 11%. The same authors extend their work by studying the shape of a 

cross-dock [33]. They conclude that, for small to mid-size cross-docks, the most 

commonly shape (i.e. narrow rectangle or I-shape) works best and L or U shape should be 

avoided due to the possible cost of additional corners. However, for the cross-docks that 

have around 150 to 200 docks, the T-shape is the most suitable. An X-shape is preferred 

for larger cross-docks (more than 200 docks), for the reason that cross-docks with 

X-shape have greater centrality.  

2.2.3 Tactical Decisions: Network Flow Optimization 

As soon as the location and layout of cross-docks are decided, the cross-docking decision 

makers have to deal with the problem of efficiently transshipping goods among cross- 

docks and other supply chain participants (e.g. suppliers and customers). 

Compared to the traditional transshipment problem, Lim et al. [35] take shipping and 

delivery time as well as transportation constraints into consideration and employ 

just-in-time objectives in a cross-docking network. The authors provide models to 

minimize the cost of inventory and schedules in transshipment networks with 

time-constrained supply and demand and transportation schedule constraints. Optimality 

conditions are provided for some polynomially solvable cases. For other cases, the 

authors prove that the problem is NP-hard. Chen et al. [36] study a similar problem which 

they call the multiple cross-dock problem, but unlike Lim et al. [35], they assume that 
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freights specified for a single delivery or pickup are not allowed to be split during the 

distribution process. The authors also consider a multi-commodity flow version of the 

problem, which is proved to be NP-complete. The authors provide an integer 

programming formulation and develop three heuristics, namely simulated annealing, TS 

and a hybrid of both to solve the considered problem. Among these heuristics, TS works 

better. Compared to the integer programming formulation solved by CPLEX, heuristics 

use less than 10% of the CPU time. Using a different approach, Donaldson et al. [30] 

consider the shipment of goods as individual transportation units instead of flows to 

benefit from consolidation. The authors develop an algorithm which is similar to a branch 

and bound algorithm after the latter fails to solve the problem in reasonable CPU times. 

Musa et al. [31] tackle the same problem with an ant colony optimization heuristic and 

report better results as compared with a branch and bound algorithm solved by LINDO in 

terms of CPU time and solution quality.  

2.2.4 Operational Decisions: Vehicle Routing 

We next discuss cross-docking from an operational point of view. Vehicle routing 

problems (VRP) arise when goods come from various locations and end in different 

destinations. Even though there is huge number of papers dealing with VRP [25], few of 

them deal with cross-docking and vehicle routing together. Probably, Lee et al. [38] is the 

first paper to tackle this problem. The authors propose a TS algorithm to find routing 
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schedule for pickup and delivery to minimize the sum of transportation cost and fixed 

cost of vehicles. To test the quality of the proposed algorithm, they compare with the 

solution obtained with an enumeration procedure and the results show the proposed 

algorithm works well with at most a 4% deviation of total cost. Liao et al. [39] work on 

the same problem with a new TS algorithm and they report the average improvements are 

as high as 10 to 36% for different size of problems as compared with TS algorithm 

proposed by Lee et al. [38]. Wen et al. [40] study the Vehicle Routing Problem with 

Cross-Docking. A fleet of homogeneous vehicles pick up products from suppliers. The 

products are consolidated at the cross-dock and then sent to destinations or customers 

immediately by the same set of vehicles, without storing at the cross-dock. The aim is to 

minimize the total traveled distance within a time window constraint. The authors present 

a mixed integer linear programming formulation which has a large number of variables 

and constrains and a TS algorithm. They test the proposed algorithms using real data 

from Transvision and computational results show that the algorithm produces good 

quality solutions for both small (less than 1% away from the optimum) and large 

instances (less than 5% gap with a lower bound) within very small CPU times. 

2.2.5 Operational Decisions: Dock Door Assignment  

As soon as trailers arrive at a cross-dock, they have to be assigned to doors as well. A 

good assignment can reduce dock delay and operational costs (e.g. pickup, delivery and 



15 
 

drivers cost). An early study was conducted by Peck [41] who develops a simulation 

model to model the assignment of trucks to dock doors. A greedy balance algorithm is 

also proposed to minimize the travel time of the shipments. Simulation results show the 

decisions made by the heuristic algorithm outperform those based on experience and 

intuition. Tsui and Chang [42] propose a bilinear program to determine the assignment of 

trucks to dock doors. Due to the fact that up-to-date data is usually difficult to obtain, 

their models are unable to provide the optimal solution for specific cases. But the 

decision makers can still use their solutions as a good starting point and modify models 

(e.g. add more constrains) for specific cases. Bermúdez and Cole [43] modify the model 

presented by Tusi and Chang [42] to serve cases that an origin or destination zone needs 

more than one door. They develop a genetic algorithm and compare it with pairwise 

exchange technique with the data from a less-than-truckload (LTL) logistic provider. 

Other works such as Bozer and Carlo [44], Bartholdi and Gue [45], Yu et al. [46] consider 

the dock door assignment from a semi-permanent layout point of view. 

2.2.6 Operational Decisions: Truck Scheduling 

Truck scheduling problems consider that there are not enough dock doors available for 

the arrival of incoming trucks. Thus, trucks have to wait in the cross-dock yard until 

planners decide when and which doors trucks should be assigned to. Because of the 

inherent complexity, researches started to study truck scheduling from simplified cases 
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(one strip dock and one stack dock). In a cross-dock scheduling review paper, Boysen 

and Fliedner [4] classify deterministic truck scheduling to structure and promote 

scientific progress on the field.  

2.4.6.1 Single Strip and Stack Door 

Yu [47] is probably one of the first works dealing with truck scheduling problems in 

cross-docking. In his Ph.D. dissertation, the author identifies thirty-two different models 

based on different cross-docking settings. Among those thirty-two models, three of them 

are focused to study the case where only one strip dock and one stack door are considered. 

In the first model, temporary storage is allowed and inbound trucks and outbound trucks 

cannot leave docks until all products are loaded and unloaded. In the second model, 

temporary storage is not permitted so that products have to move from the inbound dock 

to outbound dock immediately. However, inbound trucks and outbound trucks can leave 

and return to docks during the operations. In the last model, temporary storage is allowed 

and inbound trucks and outbound trucks are allowed to move out and in during the 

operations too. The goal of the problems is to minimize the makespan. To solve the 

considered problems, the author presents different approaches: mixed integer 

programming formulations, complete enumeration procedures, heuristic algorithms based 

on different dispatching rules, and a branch and bound algorithm. Although the first two 

are able to obtain optimal solutions, it is computationally expensive when instances 



17 
 

become larger. Therefore, for the large size instances, heuristics perform better in terms 

of time without sacrificing much on solution quality. However, the instances are 

generated randomly which may be not realistic. Moreover, the largest considered instance 

has only 6 inbound and outbound trucks with 9 types of products which is not really a 

large instance in today cross-docking systems. 

With the same restrictions of the first model presented by Yu [47], Vahdani and Zandieh 

[48] propose five metaheuristic algorithms for the same problem: a genetic algorithm, a 

TS algorithm, a simulated annealing algorithm, an electromagnetism-like algorithm, and 

a variable neighborhood search algorithm. They use solutions from Yu as initializations 

for five metaheuristic and results on computational experiments report their improvement. 

For the same problem, Arabani et al. [49] also apply five metaheuristic algorithms: a 

genetic algorithm, a tabu search algorithm, a particle swarm optimization algorithm, an 

ant colony optimization algorithm, and a differential evolution algorithm. 

Boysen et al. [11] address a truck scheduling problem which is very similar to the one 

studied in [47] with one inbound dock and one outbound dock and storages buffer to hold 

items temporarily. However, they handle the problem in a more aggregate view instead of 

a detailed scheduling. They propose an integer programming formulation and prove the 

problem is strongly NP-hard. A decomposition approach is developed, where the original 

problem is solved by decomposing it into two sub-problems. For each sub-problem, 
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either a fixed inbound sequence or a fixed outbound sequence is given and the optimal 

sequence of the other is obtained by an exact bounded dynamic programming approach. 

A priority rule-based heuristic to start the procedure is also presented. To tackle the 

original problem, the two sub-problems are solved iteratively until some stopping criteria 

is met. With the optimal solutions obtained by complete enumeration for small size 

instances, the performance of the decomposition approach for the overall problem can be 

evaluated and computational experiments show the proposed algorithms can provide high 

quality solutions with small CPU times. Nevertheless, they do not present any 

computational results for the proposed integer programming formulation with a general 

purpose solver (such as CPLEX). They use a set of small size instances with a particular 

structure to assess the efficiency of their algorithms.      

Chen and Lee [19] model the truck scheduling problem as a two-machine flow shop 

problem, where two machines can be considered as the inbound dock and the outbound 

dock; unloading tasks for incoming goods can be viewed as jobs on the first machine; 

loading tasks for outgoing goods can be viewed as jobs on the second machine. They 

assume that certain products in some set of inbound trucks have already dedicated to a 

specific outbound truck so that an outbound truck cannot leave until all the corresponding 

inbound trucks have been unloaded. They prove the problem is strongly NP-hard and 

observe some properties that are helpful to solve the problem. Two polynomially solvable 
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special cases are presented. Finally, they propose a branch and bound algorithm to obtain 

optimal solutions with up to 60 trucks in reasonable CPU times. However, the authors do 

not consider the delivering time inside cross-docks from the inbound dock to the 

outbound dock.     

Some other papers address similar problems. Forouharfoard and Zandieh [50] aim to 

minimize the number of products that pass through temporary storage in a cross-dock. 

Vehdani et al. [52] study a similar problem, however, they do not allow temporary storage. 

Soltani and Sadjadi [53] develop two metaheuristics, a genetic algorithm and an 

electromagnetism-like algorithm, to solve the same problem as Vehdani et al [52]. When 

considering the scheduling of outbound trucks, Lardi et al. [54] handle a single strip and a 

single stack door cross-dock scheduling problem under three scheduling scenarios 

considering that different amount of information is known in advance, e.g. the sequence 

and the content of all inbound trucks are known. To solve the first case, an optimal graph 

based model is presented and, for the other two cases, some heuristics are developed. 

Alpan [55] extends the problem to the case of multiple strip and stack doors and proposes 

a graph-based dynamic programming approach to solve the problem optimally.   

2.4.6.2 Scheduling of Inbound Trucks 

In order to study more realistic cross-docks, some papers deal with the scheduling of the 

inbound trucks assuming that the outbound trucks are already assigned to stack doors. 
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Rosales et al. [56] reduce the cost and provide a better workload balance to all workers in 

one shift for a large cross-docking in Georgetown by using a mixed integer programming 

formulation. Wang and Regan [57] provide two time-based algorithms (processing and 

transferring times) for the same problem and perform a simulation study to compare both 

algorithms. Computational experiments show the proposed time-based rules can save 

large amounts of time. Acar et al. [58] work on a variant of the problem that assumes 

truck arrival times are uncertain. They formulate the problem as a mixed integer 

quadratic program. Due to the complexity of the formulation, they develop a heuristic 

algorithm. McWilliams et al. [12] focus on the minimization of the makespan in a parcel 

hub. The authors develop a simulation-based scheduling algorithm to solve the problem 

with a significant reduction in the makespan by 4.2% to 35.8%.   

2.4.6.3 Scheduling of Inbound and Outbound trucks 

Lim et al. [60] consider the scheduling of both inbound and outbound trucks. They 

provide an integer programming formulation and propose two metaheuristics to solve the 

problem. Lim and Miao et al. [62] extend this work by taking transportation times into 

account to minimize operational cost and unfulfilled shipment. Compared with CPLEX, 

the proposed metaheuristics outperform in terms of solution quality and running time. 

Boysen [63] tackles truck scheduling for a cross-dock without allowing temporary 

storage. A dynamic programming and a simulated annealing procedure are presented. 
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Computational experiments report that high quality solutions can be obtained by the 

proposed approaches. A recently study conducted by Kuo [64] introduces a problem that 

deal with the assignment and sequencing of both inbound and outbound trucks in a 

multiple strip and stack docks environment.  
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Chapter 3: The Truck Scheduling Problem 

In this chapter the formal definition of the truck scheduling problem (TRSP) in 

cross-docks, introduced by Boysen et al. [11], is first presented. The assumptions and 

mathematical notation required for formulating the TRSP are then summarized. In the 

Section 3.3, two mathematic programming formulations are shown, where the first one is 

provided by Boysen et al. [11] and the second one is an alternative formulation 

introduced in this thesis.    

3.1 Problem Definition 

We consider the schedule of a set of I inbound trucks to a single strip door and a set of O 

outbound trucks to a single stack door of a cross-dock terminal. To simplify the problem, 

all inbound trucks and outbound trucks are assumed to be available at the beginning of 

the planning horizon. Units of different products p 𝜖 P are carried by each truck. Let aip 

denote the number of units of type p in an i 𝜖 I inbound truck and let bop denote the 

number of units of type p 𝜖 P product required by the o 𝜖 O outbound truck. We 

assume the requirement meets supply so the total number of products in all inbound 

trucks equals to the total number of products required by all outbound trucks. Thus, the 

following equation holds:  ∑ 𝑎௜௣௜஫ூ  = ∑ 𝑏௢௣௢஫ை  ∀ p 𝜖 P. 

As trailers are usually homogeneous and cross-docking aims at moving only full loads 
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(e.g. mail distribution systems), the handling times for different trailers do not strongly 

differ in most cases. Therefore, it is realistic to assume that, in a same service slot (period) 

t, all products in an assigned inbound truck (or an assigned outbound truck) are unloaded 

(or loaded), where all handling operations (e.g. docking, unloading, undocking) required 

to process the truck are completed within this time span.  

Once unloaded, the products have to be moved from strip to stack doors going through 

several stages inside the cross-dock. These stages include electronic scanning, quality 

inspection and coordination. The movement process is assumed to have a fixed 

movement time m. However, the actual movement can either start immediately for any 

unloading unit (e.g. using conveyer belt systems) or after completely unloading all 

products from the inbound truck (e.g. a worker stacks all units behind the receiving door 

before moving them). In the first case, the time span becomes t + m. In the second case, 

the time span becomes t + m + 1 as 1 represents the unit of time to wait for the inbound 

truck to be completely unloaded. Now, no matter m or m+1, the operational time can be 

ignored in the model of problem since after obtaining a solution, a proper re-indexing of 

slots outbound trucks are assigned to guarantee the exact final decision of the outbound 

trucks schedule. Once the movement process is completed, the products may wait in a 

temporary storage of enough size until they are loaded to outbound trucks.  

The TRSP determines the sequences of inbound and outbound trucks to be assigned to a 
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single trip and a single stack door, respectively, in order to minimize the total completion 

time (i.e. makespan). If the sequence of the inbound trucks is fixed and the goal is to only 

schedule outbound trucks, the TRSP reduces to the sub-problem OUTBOUND – TRSP. 

Similarly, when the sequence of the outbound trucks is fixed and the goal is to only 

schedule inbound trucks, the TRSP reduces to the sub-problem INBOUND - TRSP. 

3.2 Assumptions and Notation 

The summary of the assumptions to model the problem is listed as follows: 

1. There are only one receiving door and one shipping door in the cross-dock and       

there are located at different places of the terminal (segregated mode of service). 

2. The time of processing (i.e. loading or unloading processes) for each truck is the 

same.  

3. All inbound trucks and outbound trucks are available at the beginning of the time 

horizon. There are no predefined restrictions on truck assignments to slots (e.g. 

release or due dates)   

4. The input data is known in advance and deterministic. 

5. The time for delivering products from the receiving door to the shipping door is 

constant and therefore can be ignored. 

6. The numbers of the product in the inbound trucks are equal to the numbers of 

products required by the outbound trucks. 



25 
 

7. The size of the temporary stock is unlimited. 

8. Any combination of the sequences of the inbound trucks and outbound trucks 

represents a feasible solution.    

The following notation is used in the mathematical programming formulations: 

Input Data: 

I:   Set of inbound trucks (index i) 

O:  Set of outbound trucks (index o) 

T:  (Maximum) number of time slots available for (un-)loading trucks (index t) 

P:  Set of products (index p) 

aip:  Quantity of product type p arriving in inbound truck i 

bop:  Quantity of product type p to be loaded onto outbound truck o 

m:  Movement time of products across the dock (w.l.o.g., m = 0) 

3.3 Mathematical Programming Formulations 

With the assumptions and notation at hand, the scheduling of the inbound and outbound 

trucks can be easily transformed to the sequence of inbound and outbound trucks. The 

objective is to obtain a sequence of trucks such that the makespan is minimized. The 

makespan consists of the time span from the time the first inbound truck is assigned to 

the time the last outbound truck is assigned. The following sets of decision variables are 
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defined:  

xit =  ൜
1, if  inbound  truck  𝑖  is  assigned  to  slot  𝑡    
0, otherwise                                                                                                             

 yot =  ൜
1, if  outbound  truck  𝑜  is  assigned  to  slot  𝑡  
0, otherwise                                                                                                                   

Using these variables, Boysen et al. [11] formulate the problem as follows (F1): 

Minimize  𝐶(𝑋, 𝑌) = 𝐶௠௔௫                                                                                                                                                                                  (1)  

Subject to: 

𝐶௠௔௫   ≥   𝑦௢௧    ∙ 𝑡                                                                                                                                    ∀  𝑜  𝜖  𝑂;   𝑡 = 1,… , 𝑇                (2)     

∑ 𝑥௜௧்
௧  ୀ  ଵ = 1                                                                                                                                                                                                ∀  𝑖  𝜖  𝐼                  (3)      

∑ 𝑥௜௧௜  ఢ  ூ ≤ 1                                                                                                                                                                        ∀  𝑡   = 1,… , 𝑇                (4)      

∑ 𝑦௢௧்
௧  ୀ  ଵ = 1                                                                                                                                                                                            ∀  𝑜  𝜖  𝑂                (5)      

∑ 𝑦௢௧௢  ఢ  ை ≤ 1                                                                                                                                                                    ∀  𝑡   = 1,… , 𝑇                (6)      

∑ ∑ 𝑥௜ఛ    ∙   𝑎௜௣௜  ఢ  ூ
௧
ఛ  ୀ  ଵ   ≥   ∑ ∑ 𝑦௢ఛ    ∙   𝑏௢௣௢  ఢ  ை

௧
ఛ  ୀ  ଵ                     ∀  𝑡   = 1,… , 𝑇; 𝑝  𝜖  𝑃                (7)      

𝑥௜௧  𝜖  {0, 1}                                                                                                                                                            ∀  𝑖  𝜖  𝐼;   𝑡   = 1,… , 𝑇                (8)      

𝑦௢௧  𝜖  {0, 1}                                                                                                                                                      ∀  𝑜  𝜖  𝑂;   𝑡   = 1, … , 𝑇                (9)      

The objective function (1) and Eq. (2) compute the makespan, which is the time slot of 

the last assigned outbound truck. Eq. (3) ensure that every inbound truck is assigned to 

exactly one time slot and constraints (4) enforce that at most one truck can be assigned to 

a certain time slot. Analogously, Eq. (5) and (6) state the same idea for the outbound 

trucks. Constraints (7) ensure that an outbound truck can be assigned to a slot t only when 

all the required demand of that outbound truck can be satisfied by the remaining products 
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in the temporary stock, which is all the products sent by previous inbound trucks except 

the products that have already delivered by preceding outbound trucks. 

As the goal is to minimize the makespan, the number of required service slots remains 

unknown until the solution of the model. Therefore, in order to solve the problem, we 

always initialize the number of slots T with some upper bound 𝐶̅ on the makespan: T = 𝐶̅. 

As 𝐶̅ dramatically affects the number of variables and constraints, the determination of 𝐶̅ 

is very important. In light of this, a simple upper bound can be constructed in the case of 

the worst scenario when the last scheduled inbound truck carries a product that is required 

by the first scheduled outbound truck, i.e. 𝐶̅ = |I| + |O| −  1. Furthermore, the following 

property of optimal inbound schedules can be used in order to tighten the formulation 

when solved with a general purpose solver. 

Left-shift property [11]: Whenever an optimal solution exists, |I| inbound trucks are always 

assigned to the first |I| slots, even if the sequence is unknown. With this property, the 

number of variables and constraints can be reduced. 

We next present an alternative formulation for the problem. We define additional integer 

decision variables gitlp, which denotes the number of products of type p coming from 

truck i moved from time slot t (receiving door) and shipped by an outbound truck in time 

slot l (t <= l). The reason behind adding extra decision variables is mainly to improve its 

associated linear programming relaxation bound. 
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The problem can be thus formulated as follows (F2): 

Minimize 𝐶(𝑋, 𝑌) = 𝐶௠௔௫                                                                                                                                                                                  (10)  

Subject to: 

𝐶௠௔௫   ≥   𝑦௢௧    ∙ 𝑡                                                                                                                                  ∀    𝑜  𝜖  𝑂;   𝑡 = 1,… , 𝑇            (11) 

∑ 𝑥௜௧்
௧  ୀ  ଵ = 1                                                                                                                                                                                            ∀  𝑖  𝜖  𝐼                  (12)  

∑ 𝑥௜௧௜  ఢ  ூ ≤ 1                                                                                                                                                                      ∀  𝑡   = 1,… , 𝑇                (13)      

∑ 𝑦௢௧்
௧  ୀ  ଵ = 1                                                                                                                                                                                          ∀  𝑜  𝜖  𝑂                (14)      

∑ 𝑦௢௧௢  ఢ  ை ≤ 1                                                                                                                                                                  ∀  𝑡   = 1,… , 𝑇                (15)    

∑ 𝑔௜௧௟௣்
௟  ୀ  ௧ =    𝑎௜௣𝑥௜௧                                                                                                                  ∀  𝑖   = 𝐼;   𝑝  𝜖  𝑃;   𝑡  𝜖  𝑇                (16)      

∑ ∑ 𝑔௜௧௟௣௟
௧  ୀ  ଵ௜  ఢ  ூ   ≥    𝑏௢௣𝑦௢௟                                                                                          ∀  𝑝  𝜖  𝑃;   𝑜  𝜖  𝑂; 𝑙  𝜖  𝑇                  (17)   

𝑥௜௧  𝜖  {0, 1}                                                                                                                                                          ∀  𝑖  𝜖  𝐼;   𝑡   = 1,… , 𝑇                (18)      

𝑦௢௧  𝜖  {0, 1}                                                                                                                                                      ∀  𝑜  𝜖  𝑂;   𝑡   = 1, … , 𝑇              (19)      

The objective function (10) and constraints (11-15) have the same meaning as in the 

previous formulation (F1). Eq. (16) guarantee that all products from any inbound trucks 

are delivered to the shipping door. Constraints (17) ensure that at time slot l, there are 

enough products for the assigned outbound truck.  
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Chapter 4: Solution Methods  

In this chapter we present solution algorithms for the TRSP. The necessity to develop 

specialized methods arises not only from the fact that the TRSP is strongly NP-hard [11], 

but also because general purpose solvers can only solve (relatively easy) small-size 

instances. We first present two lower bounds strategies introduced by Boysen et al. [11]. 

These can be used to provide an estimation of quality of the solutions obtained with the 

proposed heuristic algorithms. We then present four heuristic algorithms to obtain 

feasible solutions for the TRSP: a local search (LS), a simulated annealing (SA), a large 

neighborhood search (LNS), and a beam search (BS). 

4.1 Lower Bounds 

Due to the fact that all inbound and outbound trucks have to be scheduled at some time 

slot, the first trivial lower bound C1 for the optimal solution value of the TRSP can be 

obtained as follows: 

C1 = max {|I|; |O|}. 

To construct another lower bound C2, the overall problem is divided into |P| sub-problems. 

For each product, 𝑝  𝜖  𝑃, inbound and outbound truck sequences are constructed by 

considering the following steps: 
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x The set of |I| inbound trucks are sorted in descending order with respect to loads aip of 

the considered product p. A sequence vector 𝜋௣ with elements 𝜋௜
௣ (i = 1,…, |I|) 

denotes the sorted inbound trucks sequences. Because of the left-shift property, the 

first truck is to be scheduled at the time slot t = 1. 

x The set of O outbound trucks are sorted in ascending order with respect to loads bop of 

the considered product p. A sequence vector 𝜇௣ with elements 𝜇௢
௣ (i =   1,…, |O|) 

stores the sorted outbound trucks sequences. The total time slots sop for each product 

p can be computed according to the following equations: 

𝑠  ௢௣ = minቄ𝑡 =    𝑠  ௢ିଵ  ௣ + 1  , … , 𝑇ቚ∑ 𝑎గഓ೛௣
୫୧୬  {|ூ|;௧}
ఛୀଵ   ≥   ∑ 𝑏ఓഓ೛௣

௢
ఛୀଵ   ቅ  ∀  𝑜  𝜖  𝑂;   𝑝 = 𝑃 

To initialize the recursive formulae, a slot 𝜇௢
௣ has to be initialized with slot number 0. 

The maximum makespan associated with all products leads to the final lower bound C2: 

C2 = 𝑚𝑎𝑥௣  ఢ  ௉{𝑠|ை|௣} 

4.2 Local Search 

LS is first reported to be successfully implemented in combinatorial optimization 

problems by Croes in 1958 [61] and has ever since become one of the most frequently 

and widely used heuristics in the last 50 years. It starts with a feasible solution and aims 

to improve it by generating a new solution that is close to the current solution. For that, a 

neighborhood is a set of solutions that are close to a given solution. Then the best 
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solution in the neighborhood is identified and it replaces the current solution and the 

procedure is repeated. However, if the solution does not improve, the iteration stops and 

the current best solution is said to be local optimal.  

To describe the features of a LS algorithm, we define the following notation. Let S be a 

solution to the problem, which represents a sequence of inbound trucks and outbound 

trucks. Let N(S) denote the set of solutions with elements Si, which are the neighbors of 

the solution S, and let 𝑆௜
, be the neighbor that has the minimum makespan. Based on the 

current sequence S, the elements in N(S) are constructed by fixing the position of some 

trucks and changing the position of other trucks. F(S) is the cost function which is the 

makespan of a specific sequence S. A general LS algorithm is depicted in Algorithm 1. 

Algorithm 1 Local Search 

Let F(S) be the function to minimize, S some initial feasible solution and N(S) the 
neighborhood structure. 

StopCriterion  ← false 

While (StopCriterion = false) do 

Search for a solution 𝑆௜
, ϵ N(S) with F(𝑆௜

,) < F(S) 

If (F(𝑆௜
,) >= F(S),) then 

   StopCriterion ←  true 

Else 

   S ← 𝑆௜
, 

End if 

End while 
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A current solution is represented by S = (a, b), where a: T → I, is the inbound sequence 

mapping, i.e., a(t) = i if inbound truck i ϵ I is placed in time slot t ϵ T, and b: T → O, 

is the outbound sequence mapping, i.e., b(t) = o if inbound truck o ϵ O is placed in time 

slot t ϵ T. In our implementation of the LS, we define two neighborhoods. The first one 

is the inbound truck neighborhood: 

𝑁ூ(S) = {S’ = (a’, b): ∃! (𝑖ଵ, 𝑖ଶ), a(𝑖ଵ) = a’(𝑖ଶ), a(𝑖ଶ) = a’(𝑖ଵ), 𝑖ଵ ≠ 𝑖ଶ}, 

which is obtained by swapping two adjacent or nonadjacent inbound trucks in a with 

outbound trucks in b fixed. The second one is the outbound truck neighborhood: 

𝑁ை(S) = {S’ = (a, b’): ∃! (𝑜ଵ, 𝑜ଶ), b(𝑜ଵ) = b’(𝑜ଶ), b(𝑜ଶ) = b’(𝑜ଵ), 𝑜ଵ ≠ 𝑜ଶ}, 

which is obtained by swapping two adjacent or nonadjacent outbound trucks in b with 

inbound trucks in a fixed. 

We implement our LS as follows. We start the algorithm with a sequence of inbound and 

outbound trucks generated randomly. Preliminary computational experiments revealed 

that the initial sequence has little influence for the solution performance. We first explore 

𝑁ூ(S) using a best improvement strategy until no improved solution is found. An example 

of the exploration of 𝑁ூ(S) is showed in Figure 3.  
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We then explore 𝑁௢(S) using a best improvement strategy until no improved solution is 

found. We keep exploring 𝑁ூ(S) and 𝑁௢(S) iteratively until no improved solution is 

found and the LS algorithm is terminated. An outline of the proposed LS algorithm is 

depicted in Algorithm 2. 

Algorithm 2 Local Search 

StopCriterion  ← false 

While (StopCriterion = false) do 

Explore 𝑁ூ 

If (Solution not improved in 𝑁ூ) then 

   Explore 𝑁ை 

   If (Solution has not been updated) then 

       StopCriterion  ← true  

   End if 

End if 

End while 

Figure 3. The first iteration and the second iteration for the initiate sequence 
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4.3 Simulated Annealing  

SA, introduced by Černý [27] and Kirkpatrick et al. [34], is based on an analogy to the 

process of physical annealing with solids (Metropolis Algorithm), in which a crystalline 

solid is heated to a sufficiently high value and then cooled very slowly until all particles 

reach their most regular possible crystal lattice state. If the cooling schedule is 

sufficiently slow, in the finally state the solid is in a superior structural integrity and the 

energy of the system is minimal.  

At each iteration of the SA, the cost function generates values for two solutions (the 

current solution and a newly selected solution). The incumbent is always replaced by the 

new selected solution if it has a better solution value, while a fraction of worse solutions 

are accepted in the hope of escaping local optima in search of global optima. The 

probability of accepting worse solutions depends on a temperature parameter, which is 

typically proportional to the difference in solutions and non-increasing with each iteration 

of the algorithm [37]. 

Simulated annealing starts with an initial solution S. Let 𝑆ᇱ, which is randomly generated, 

be a neighbor of solution S. The candidate solution, 𝑆ᇱ, is accepted as the current solution 

based on the following acceptance probability: 
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P{Accept 𝑆ᇱ as next solution } = ൝  𝑒𝑥𝑝 ቂ−
ி൫ௌᇲ൯ିி(ௌ)

்ೖ
ቃ ,                         𝑖𝑓  𝐹(𝑆ᇱ) − 𝐹(𝑆) > 0  

  1,                                                                                      𝑖𝑓  𝐹(𝑆ᇱ) − 𝐹(𝑆) ≤ 0
 

Define Tk as the temperature parameter at iteration k, such that 

Tk > 0    for all k and 𝑙𝑖𝑚௞→ஶ 𝑇௞ = 0 

We implement our SA as follows. It starts with a feasible solution S. Preliminary 

computational experiments showed the using a good solution (e.g. a solution obtained 

with LS) has almost no impact on the final solution as compared to starting with a 

solution randomly generated. For that reason, we decide to use initial solutions randomly 

generated. We explore S’  ϵ 𝑁ூ(S), where two inbound trucks are randomly selected and 

swapped their positions. The makespans of S and S’ are computed and we replace S with 

S’ if w ≥   𝑒𝑥𝑝 ቂ− ி൫ௌᇲ൯ିி(ௌ)
்ೖ

ቃ, where w is a value randomly generated between [0, 1] with 

uniform distribution and Tk  is temperature parameter at iteration k; otherwise, we do not 

replace S. The above procedure is repeated L times. We then cool down that current 

temperature k times according to Tk = rTo, where To is initial temperature and r ϵ (0, 1). 

For each temperature Tk, we apply the same procedures described above to explore 𝑁ூ(S) 

and the same criteria to accept S’. The best solution in the end of iterations is the best 

sequence for a specific sequence of outbound trucks and with that best solution, we then 

explore 𝑁௢(S) using the same procedure. We keep exploring 𝑁ூ(S) and 𝑁௢(S) iteratively 

until no improved solution is found and the SA is terminated. An outline of the proposed 
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SA algorithm is depicted in Algorithm 3. 

Algorithm 3 Simulated Annealing 

Choose an initial solution S 
While (StopCriterion = false) do  
   Set an initial temperature To, a reduction factor 0< r <1, k ← 0, Tk ← To   
   While (not yet frozen) do 

   Count ← 0 
      While (count < L) do 
          Pick a random neighbor 𝑆ᇱ ϵ 𝑁ூ(S)  
          ∆ = 𝐹(𝑆ᇱ) − 𝐹(𝑆) 
          If (∆    ≤ 0) then 
              𝑆 ← 𝑆ᇱ    
          Else 
               Set  𝑆 ← 𝑆ᇱ  with probability 𝑒ି∆/்ೖ  
          End if  
          Count ←  Count + 1 
       End while 

        k ← k-1, Tk ← rTk (reduce the temperature)       
   End while 
   Set an initial temperature To, a reduction factor 0< r <1, k ← 0, Tk ← To 
   While (not yet frozen) do 

     Count ← 0 
        While (count < L) do 
            Pick a random neighbor 𝑆ᇱ ϵ 𝑁ை(S) 
            ∆ = 𝐹(𝑆ᇱ) − 𝐹(𝑆) 
            If (∆    ≤ 0) then 
                𝑆 ← 𝑆ᇱ    
            Else 
                 Set  𝑆 ← 𝑆ᇱ  with probability 𝑒ି∆/்ೖ  
            End if  
            Count ←  Count + 1 
         End while 

          k ← k-1, Tk ← rTk (reduce the temperature)       
    End while 
End while 
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4.4 Large Neighborhood Search 

The LNS metaheuristic was first introduced by Shaw [61]. In LNS the neighborhood of a 

current solution is constructed by destroy and repair mechanisms, where part of the 

current solution is destroyed by a destroy strategy and then reconstructed by a repair 

strategy. To illustrate the destroy and repair strategies, consider the INBOUND – TRSP. A 

simple destroy strategy is to randomly remove a proportion of trucks scheduled in a given 

position of the sequence of the current solution and a simple repair strategy is to 

reconstruct the solution by randomly reassigning the removed trucks into the available 

positions of the sequence. The Figure 4 illustrates the destroy and repair mechanisms. The 

top figure shows an INBOUND – TRSP solution before the destroy step. The middle 

figure shows the solution after a destroy operation that removed eight trucks. The bottom 

figure shows the solution after the repair step.  

 

 

                

The neighborhood of a destroy solution contains a large amount of solutions which 

explains the name of the algorithm. For example, we consider an INBOUND – TRSP 

with 32 trucks. If 60% of the trucks are to be removed, there are C(32,20) = 32!/(20! × 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 
  

4 
 

6 
  

9 
 

11 
  

 

1 10 8 4 13 6 12 5 9 7 11 2 3 

Figure 4. Destroy and repair example 
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12!) = 2.25 × 108 possible ways of doing it. To repair the solution, there are A(32,20) = 

32!/(20!) = 5.5 × 1026 different ways to do it [37]. 

To describe the details of the LNS algorithm, several definitions are introduced. Let S 

denotes the current solution, Sb the best solution obtained during the search, and St is a 

temporary solution. F(S) is the cost function (makespan) of the solution S. The function 

D(·) is the destroy strategy, where D(S) returns a partial solution of S. The repair strategy 

is represented by the function R(·) and R(D(S)) returns a repaired solution that was partly 

destroyed. The LNS starts with a feasible solution. Then, a new solution is obtained 

through the destroy and repair strategies. The temporary solution would be accepted in 

different criterions. A simply one is only to accept improving solutions. The best solution 

Sb would be updated if the cost function of St is smaller.  

To design a more flexible algorithm, we borrow the acceptance criteria used in the SA 

introduced in the last section, where a temporary solution is always accepted if F(St) <= 

F(Sb), and accepted with probability   𝑒𝑥𝑝 ቂ− ி൫ௌ೟൯ିி൫ௌ್൯
்ೖ

ቃ, if the cost function does not 

improve. The procedure to apply LNS is similar to the one of SA. Preliminary tests 

showed that using a good solution (e.g. a solution obtained with SA) has almost no 

impact on the final solution as compared to starting with a solution randomly generated. 

For that reason, we decided to use initial solutions generated randomly. The main 

difference of LNS is the strategy to choose the neighbor. The number of trucks removed 
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is called the degree of destruction. We apply different degrees of destruction, e.g. 

selecting and destroying five trucks and then replacing removed positions with trucks 

randomly selected from the removed trucks. An outline of the proposed LNS algorithm is 

depicted in Algorithm 4. 

Algorithm 4 Large Neighborhood Search 

Input: a feasible solution S 

Sb ← S 

 Repeat  

       St ← R(D(S)) 

       If accept (St, S) then 

           S ← St 

       End if 

       If F(St) <= F(Sb) then 

         Sb ← St 

 Until stop criterion is met 

 Return Sb 

4.5 Beam Search 

BS was first developed by Lowerre in 1976 [59] for a speech recognition problem, where 

the goal was to obtain a solution quickly by searching a number of promising decision 

paths in parallel. BS is an adaptation of the well-known branch and bound (B&B) 

algorithm commonly used to solve integer programs. However, the requirements of CPU 

time and memory associated with B&B increase exponentially as the size of the instances 
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increase. BS, on the other hand, has a running time bounded by a polynomial that 

depends on the size of the problems and its parameters. The key idea of BS is to keep 

only some promising nodes and to permanently prune other nodes. 

BS moves downward on the enumeration tree level by level from the best β promising 

nodes without backtracking. The other nodes are permanently discarded. To determine 

the best β promising nodes, there are typically two ways of doing it. One way is to apply 

an evaluation function which produces an estimation of the cost of a solution obtained 

from that partial solution. This evaluation function is called one-step priority evaluation 

function, which only considers the next decision to be made (the next job to schedule) 

and, thus, has a more local view. Another way is a total evaluation that uses some rules to 

construct a complete solution based on the current partial solution to estimate its cost. 

This evaluation has a global view of the solution. One can use either one or both 

strategies to apply BS. A filtering mechanism can combine both strategies together. 

During filtering, some nodes are discarded based on their local evaluation function values 

and only the remaining nodes are globally evaluated. The number of these remaining 

nodes is called the filter width (α). 

We illustrate the main idea of BS through a truck scheduling example. There are five 

trucks needed to be sequenced. We schedule one more truck at each level. As shown in 

Figure 5, nodes represent partial schedules. There are no trucks scheduled at level 0 and 
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one truck has selected at level 1, and so forth. The total number of nodes that can be 

explored at each level is {(|𝐼|!)/(|𝐼|   − |𝐾|)!}, where I is the total number of trucks to be 

sequenced and K is the level number. A line linking two nodes represents the decision to 

add one more truck based on the partial schedule. The circles with dotted line represent 

the nodes selected by the local evaluation (the filter width). The solid circles are selected 

by the global evaluation to be further explored. The beamwidth in the Figure 5 is two so 

that, in the end of the enumeration tree, two feasible solutions are selected with 

associated sequences {i1, i2, i3, i5, i4} and {i3, i2, i4, i5, i1}. 

In our implementation of BS, we apply only a total cost evaluation by constructing 

complete solutions. Two main phases are taken. In the first phase, n best inbound 

Figure 5. The beam search tree 
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sequences are selected. The algorithm starts by fixing the positions of inbound trucks 

depending on the level, e.g. fixing the first three trucks at level three, and builds the 

complete sequence with the same procedure used in the computation of the second lower 

bound strategy, i.e. sorting the rest of inbound trucks in descending order with respect to 

the load aip of the considered product p. Outbound trucks are sorted in ascending order 

with respect to loads bop of the considered product p. For each node, there are |P| 

different sequences with |P| lower bounds associated and we pick the sequence that has 

the minimum makespan, or has the maximum lower bound value, or has the minimum 

difference between the makespan and lower bound, depending on which filtering 

approach is used later, to represent the complete sequence of that node. To calculate the 

global cost function, there are three different filtering approaches. The first approach is 

based on the makespan, the second is based on the lower bound, and the last one is based 

on the difference between the makespan and the lower bound. The three approaches 

follow the same processes, where we select n nodes with the least makespan (or lower 

bound or difference) at each level. If some nodes have the same makespan (or lower 

bound or difference), we select randomly some of them. The maximum number of nodes 

we can select at the first level equals to the number of inbound trucks |I|. However, when 

we move downwards to second level, the maximum number of nodes we can select is 

|I|×(|I|-1). Thus, we can define in theory the inbound beamwith to be a number between 

1 and |I|×(|I|-1). In the second phase, we select the best m outbound sequences for each 

app:ds:filter
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sequence among those n best inbound sequences. For the outbound trucks at each level, 

we start fixing the positions of outbound trucks depending on the level, e.g. fixing the 

first 3 trucks at the level 3. We then sequence other outbound trucks in ascending order 

with respect to their fraction of total product volumes:  

f(o) = ଵ

∑
್೚೛

∑ ್഑೛഑  ച  ೀ
೛  ച  ು  

 (the fraction of total product volume). 

For example, there are three outbound trucks carrying three types of products (a, b, c). 

The first truck carries 2 units of a, 3 units of b and 4 units of c; the second truck carries 2 

units of a, 3 units of b and 5 units of c; the third truck carries 6 units of a, 3 units of b and 

5 units of c. The fraction of total product volume of the first truck is  

f(1) = ଵ
మ

మశమశలା  
య

య  శయశయା  
ర

రశఱశఱ
 

There is one complete sequence associated with each node. To calculate the global cost 

function, we use the makespan of each node, where we select m nodes with the smallest 

makespan at each level. If some nodes have the same makespan, we select among them 

randomly. We can define the outbound beamwidth to be a number between 1 and 

|O|×(|O|-1). At the last level of the enumeration tree, we have n × m feasible solutions. In 

addition, we also generate several feasible solutions during the evaluation of the nodes in 

the tree. We compare all these solutions and the sequence with the minimum makespan 

gives us the best solution.  
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Chapter 5: Computational Experiments 

In the following, a computational study is presented to evaluate the performance of the 

formulations and solution methodologies introduced in previous sections. In the first part 

of this chapter, besides a set of instances randomly generated using the procedure 

presented in Boysen et al. [11], two more realistic sets of instances are generated. In the 

second part, the results obtained with the integer programming formulations presented in 

Chapter 3 are presented. We then analyze individually the performance of SA, LNS and 

BS introduced in Chapter 4. Finally, the results obtained with all proposed algorithms and 

CPLEX are compared. All algorithms were coded in C and run on Windows with a 

Pentium Dual-Core processor at 2.80 GHz and 4GB of RAM.   

5.1 Instance Generation 

Preliminary computational experiments showed that the instances generated in Boysen et 

al. [11] tend to be rather easy. In particular, all generated instances, containing up to 18 

inbound and outbound trucks, can be solved by CPLEX within a few minutes (i.e. always 

less than 13 minutes). For that season, following the structure of real applications, we 

construct two new sets of instances to better assess the complexity of the TRSP and the 

performance of the proposed heuristic algorithms, for obtaining high quality feasible 

solutions in reasonable CPU times. 
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5.1.1 First Set of Instances 

The first way to generate instances is based on the situation that each inbound truck 

carries only one type of product and outbound trucks carry a mixture of products. Table 1 

shows an instance with 5 inbound and outbound trucks with 5 types of product (a, b, c, d, 

e).                               

 

    

 

 

 

 

Two sets (i.e. small and large sized) of instances are generated using this approach. The 

parameters of numbers of inbound trucks and outbound trucks with their loads are shown 

in Table 2. There are 5 different numbers of inbound and outbound trucks for each set of 

instances so that 5 × 5 = 25 instances are generated. Each instance is generated as follows 

according to the given set of parameters. 

 

        Type of  

              Product 

Truck 

a b c d e 

Inbound trucks 1 50 0 0 0 0 
2 0 30 0 0 0 
3 0 0 40 0 0 
4 0 0 0 20 0 
5 0 0 0 0 60 

Outbound trucks 1 17 13 0 9 18 
2 0 0 18 0 14 
3 18 0 13 7 13 
4 0 17 0 2 15 
5 15 0 9 2 0 

Total units 50 30 40 20 60 

Table 1. An example of a randomly generated instance  
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                                                        Values 

Symbol         Description                               Small            Large 

|I|           Number of inbound trucks                14, 16, 18, 20, 22      24, 26, 28, 30, 32  

|O|          Numbers of outbound truck               14, 16, 18, 20, 22      24, 26, 28, 30, 32    

|P|          Number of products                     14, 16, 18, 20, 22      24, 26, 28, 30, 32    

TF         total amount of product units in all inbound                 1000 - 9000                           
           and outbound trucks for a family of products.                                                                                                                                                                                                                                             

Table 2. Parameters for instance generation 

x Inbound trucks: Assuming that there are several origins (e.g. different product 

suppliers). Each origin provides one product and has only one truck carrying that 

product. The number of units of each product ranges from 1000 to 9000. The number 

of trucks is the same as the number of different types of products we have. 

x Outbound trucks: For each product 𝑝  𝜖  𝑃, the following procedure is repeated to 

generate the load of outbound trucks. We assume that, for each type of product, at 

least half of the outbound trucks carry one unit of it and it is decided by defining an 

array UOp. The size of UOp is decided by an equally distributed integer random 

number out of the interval [|O|/2, |O|]. The value of the element of UOp is a randomly 

unrepeated integer that is chosen according to uniform distribution with the interval 

[1, |O|], which means we choose several outbound trucks to place in the array UOp. 

Let 𝑇𝐹௣ be the total amount of product units of product p. We assume that each 

chosen outbound truck containing at least ቔ ்ி೛  
ଶ×|ை|

ቕ units of type p product. Let r𝑒𝑑𝑟௣௢ 

be an equally distributed integer random number out of the interval [1,  ቔ ்ி೛  
ଶ×|ை|

ቕ]. The 
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chosen outbound truck may contain more products by adding r𝑒𝑑𝑟௣௢ . To avoid 

rounding errors we distinguish between the set UOp, which contains all randomly 

chosen trucks, and 𝑈𝑂௣ି, which a copy of UOp missing its last element: 

  bop = ൝
ቔ ்ி೛  
ଶ×|ை|

ቕ + r𝑒𝑑𝑟௣௢,                                                          ∀  𝑝  𝜖  𝑈𝑂௣ି

𝑇𝐹௣   − ∑ 𝑏௢௣௣ᇲఢ௎ை೛ష ,                        𝑝  𝜖  𝑈𝑂௣\  𝑈𝑂௣ି  
 

5.1.2 Second Set of Instances 

The second way to generate instances is based on the situation that several groups of 

inbound trucks carry several families of products from different origins and outbound 

trucks carry a mix of products. Table 3 shows an instance with seven inbound and five 

outbound trucks with three families of products (a, b, c). 

The parameters of numbers of inbound trucks and outbound trucks are the same as the 

first set, though the load is now ranging from 1000 to 5000 for each inbound truck. We 

also generate two classes (small and larger) of instances for the second set with 25 

instances for each class. Each single instance is generated according to the procedure as 

follows. 

x Inbound trucks: There are several origins (e.g. different product suppliers). Each 

origin provides three to five products and has several trucks carrying units of each 

product. The number of units of each product randomly ranges from 1000 to 5000. 
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x Outbound trucks: the way to generate the load of outbound trucks is same as the first 

set of instances. 

 

 

 

 

 

 

5.2 Formulations and Three Sets of Instances 

Preliminary computational experiments showed that the proposed formulation (F2) is 

able to improve the linear programming (LP) relaxation bound, but the required CPU 

time to solve the problem is much longer than the one required by formulation (F1). It 

seems that the improvement on the lower bound does not compensate the increase of the 

number of variables and constrains. However, we believe it is still useful to provide our 

            Type of                                                     

             product 

   Truck                 

a1 a2 b1 b2 b3 c1 c2 

Inbound trucks 1 50 10 0 0 0 0 0 
2 20 30 0 0 0 0 0 
3 0 0 10 30 10 0 0 
4 0 0 20 30 20 0 0 
5 0 0 40 10 30 0 0 
6 0 0 0 0 0 50 10 
7 0 0 0 0 0 60 40 

Outbound trucks 1 30 0 24 13 18 13 15 
2 15 13 0 16 0 26 8 
3 0 11 21 17 13 17 0 
4 25 0 25 0 15 22 16 
5 0 14 0 24 14 32 11 

Total units 70 40 70 70 60 110 50 

 Table 3. An example of a randomly generated instance 
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formulation (F2) due to the fact that with some decomposition technics (e.g. Lagrangean 

relaxation, column generation or bender decomposition) it would be possible to handle it 

and to solve the TRSP in reasonable CPU times. However, developing decomposition 

technics is not the scope of this thesis, we decide not to include the associated 

computational experiments for formulation (F2) and to only use the formulation (F1) to 

assess complexity of different structures of instances.    

Three sets of instances are generated with the number of inbound trucks and outbound 

trucks ranging from 14 to 18, which are the largest size instances used by Boysen et al. 

[11]. The way to generate the first two sets is mentioned in Section 5.1 and the third set of 

instances is generated by following the procedure presented in Boysen et al. [11]. The 

detailed results of the comparison are provided in Table 4. The first and second columns 

contain the number of inbound and outbound trucks. The third column contains the 

number of different types of product. The last three columns correspond to the required 

CPU time in seconds to obtain an optimal solution for the three sets of instances.  

The second set of instances require the least time to be solved, most of them in 60 

seconds. The third set of instances require more time while the first set requires the most 

time. For the last instance of the first set, we cannot even obtain the optimal solution 

within 27 hours. Therefore, we conclude that first set of instances is the most difficult and 

the second set of instances is the easiest and the third set of instance goes in the middle.  
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It seems the first set is the most sensitive to the truck sequences, where only one inbound 

truck carries one type of products and changing the sequence of one truck affects the 

sequence of all inbound and outbound trucks. The second and third sets of instances are 

relatively easy because there are usually some trucks carrying the same types of products, 

where changing the sequence of one truck may not substantially affect the sequence of 

many inbound and outbound trucks.  

Given that the third set of instances used in Boysen et al. [11] can be solved by CPLEX in 

few minutes, we decided to increase the size of instances (i.e. 26 to 30 inbound and 

outbound trucks) and to solve them with CPLEX to assess the complexity of the TRSP.   

The first three columns of Table 5 are the number of inbound trucks, outbound trucks and 

products. The following columns give the information of upper bounds and lower bounds 

Truck Information 1st set  2nd set  3rd set 

InTruck  OutTruck Product OTP Time(s) OTP Time(s) OTP Time(s) 

14 14 14 23 90 16 28 15 26 
14 16 14 25 60 19 11 17 96 
14 18 14 26 195 22 14 18 34 
16 14 16 25 7200 18 20 18 192 
16 16 16 27 1500 20 25 18 776 
16 18 16 29 1149 21 22 19 85 
18 14 18 27 27420 19 61 20 95 
18 16 18 29 510 20 30 19 402 
18 18 18 31-30* 97230 23 34 19 482 

Table 4. Comparison of results of three sets of instance running in CPLEX 
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with associated gaps. These instances were run in CPLEX for 24 hours and the remaining 

gaps were still very large after that time. The size of trucks arranging from 26 to 30 are 

realistic in real life applications, but CPLEX cannot longer solve them to optimality. 

Therefore, it is very important to develop algorithms to obtain good quality solution in 

reasonable CPU times. We also test the larger instances generated by the second way and 

most of the instances can solved by CPLEX within few hours (i.e. three hours). However, 

our goal is to solve difficult instances so that we only run our proposed algorithms for the 

first and third sets of large instances. To compare the solution quality of all algorithms, 

we obtain the best known solutions from either the results of CPLEX for a given time 

frame of 3600 seconds or the best solution found with all proposed heuristic algorithms.  

 

Truck Information  1st set  3rd set  

InTruck OutTruck Product UB  LB Gap(%) Time(h) UB  LB Gap(%) Time(h) 

26 26 26 46  30 34% 24 36  22 39% 24 

26 28 26 47  25 47% 24 40  20 50% 24 

26 30 26 50  32 36% 24 45  22 51% 24 

28 26 28 48  28 41% 24 40  26 35% 24 

28 28 28 49  27 44% 24 49  27 44% 24 

28 30 28 52  32 46% 24 39  19 51% 24 

30 26 30 49  30 38% 24 49  20 59% 24 

30 28 30 52  30 42% 24 49  25 48% 24 

30 30 30 52  32 42% 24 35  14 14% 24 

Table 5. Computational results of large instances solved with CPLEX 



52 
 

5.3 Evaluation of SA 

In this section we present the computational results from the implementation of simulated 

annealing. Given that the cooling strategy has a big influence on the performances of SA, 

we test seven different cooling strategies. Table 6 shows the cooling parameters for 

different strategies, where InTo and OutTo denote the initial temperatures for applying SA 

to INBOUND – TRSP and OUTBOUND – TRSP respectively, InTf and OutTf are the 

final temperatures, the total numbers of temperatures which gradually cool down from 

the initial temperature to the final temperate are represented by InK and OutK, InL and 

OutL are the total number of iterations for each temperature. From the strategy 1 to the 

strategy 7, the speed to cool down the temperature becomes slower and the iterations in 

each cooling stage are 37, 111 or 150.  

 

 

  S1 S2 S3 S4 S5 S6 S7 
InTo 1000 1000 1000 1000 1000 1000 1000 
InTf 1 1 1 1 1 1 1 
InK 37 111 37 111 37 111 37 
InL 5 2 10 5 10 10 150 

OutTo 1000 1000 1000 1000 1000 1000 1000 
OutTf 1 1 1 1 1 1 1 
OutK 37 111 37 111 111 111 37 
OutL 5 2 10 5 20 10 150 

Table 6. SA cooling parameters  
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Table 7 shows the results of SA, where the percent deviation (PD) is measured by 

஼(ௌ஺)ି஼(ை௉்)  
஼(ௌ஺)

  × 100  %, where C(SA) is the best result from SA and C(OPT) is the best 

known solution. We only present the detailed results from a subset of instances, but the 

average PD and CPU time are computed by considering all instances.  
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As shown in Figure 6, from the strategy 1 to strategy 7, the trend of average CUP times 

increases from 0.5 seconds to 446.6 seconds, while the average PD decreases from 7.57% 

to 2.77%. From strategy 1 to strategy 2, more time is used, though the solution quality 

has decreased. It is because, compared to strategy 1, strategy 2 has less iterations in each 

temperature stage. The figure illustrates that if the cooling strategy is slower or there are 

more iteration at each temperature, the solution quality improves. 

  

5.4 Evaluation of LNS 

In this section we present the computational results from the implementation of LNS. 

Within all tested instances, the minimum size contains 14 inbound and outbound trucks. 

So degrees of destruction are chosen from 2 to 14 trucks for all instances. Only first 6 

Figure 6. Results of SA analysis 
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cooling strategies in Table 6 are used for LNS because the computational study shows 

from strategy 5 to strategy 6 the improvement is minor but CPU time increases a lot.  

Table 8 shows the results of LNS, where the PD is measured by ஼(௅ேௌ)ି஼(ை௉்)  
஼(௅ேௌ)

  × 100  %, 

where C(LNS) is the best result from LNS and C(OPT) is the best known solution.  
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As shown in Figure 7, from the strategy 1 to strategy 6, the average CUP time increases 

from 96 seconds to 3296 seconds, while the average PD decreases from 3.52% to 1.93%.              
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Figure 7. Results of LNS analysis 
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5.5 Evaluation of BS 

In this section we present the computational results from the implementation of BS. As 

mentioned in Section 4.5, in the first phase of BS, the maximum number of nodes we can 

select at the first level equals to the number of inbound trucks |I| and in the second phase 

the maximum number of nodes we can select at the first level equals to the number of 

outbound trucks |O|. But when we move downwards to the second level, the maximum 

number of nodes we can select is |I|×(|I|-1) and |O|×(|O|-1) for the first phase and the 

second phase respectively. To apply BS, depending on the different instances, we select 

the number of nodes at the first level to explore as |I| in first phase and |O| in the second 

phase. Thus, we then define the inbound beamwidth as 5|I|, 10|I| and outbound 

beamwidth as 7|O|, 9|O| and 10|O| to test all instances. 

Table 9 shows the results of BS with different filtering approaches and beamwidths. The 

first column is the number of inbound trucks and outbound trucks. In the first row, BS U5 

9 means the filtering approach is based on the upper bound and inbound beamwidth and 

outbound beamwidth are 5|I| and 9|O| respectively. BS L means the filtering approach is 

based on the lower bound and BS G means the filtering approach is based on the gap 

between lower bound and upper bound.  
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As shown in Figure 8, with the same inbound and outbound beamwidths the filtering 

approach based on the upper bound performs best in terms of solution quality with little 

sacrificing in CPU time (e.g. 2 seconds more than BS G when beamwidths are 5|I| and 

9|O|). With the same filtering approach the wider inbound and outbound beamwidths are 

the better solution quality would be.  

 

5.6 Comparison of All Methodologies  

The first part of this section shows the comparison of lower bounding strategies proposed 

by Boysen et al. [11] and the lower bounds obtained from CPLEX. In the second part, all 

methodologies are compared together with CPLEX. Since there are several different 

strategies for SA, LNS and BS, we select the strategy that provides good solutions within 
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Figure 8. Results of BS analysis 
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reasonable time as the best strategy for each algorithm. The computational study shows 

that the proposed algorithms perform differently according to different structures of 

instances. For that reason, the algorithms are compared based on two set of instances (i.e. 

the first set of large instances and the third set of large instances). 

5.6.1 Lower Bound Comparison  

As proved in Boysen et al. [11], fixing some truck sequences leads to tighter bounds. To 

obtain better lower bounds, we use a similar idea as BS but here we branch every node at 

each level. Depending on the level, first several positions of trucks are fixed for every 

node thus every node at a level provides a lower bound for that partially fixed truck 

sequence. The minimum bound of all nodes at a certain level gives the lower bound for 

the whole problem. The deeper the level is the tighter the lower bound would be. 

However, the number of nodes goes exponentially as the level becomes deeper, e.g. the 

number of nodes in the 9th level of an instance of the size 32 inbound trucks is 2.3 × 1014. 

Due to the limited memory of our computer, we can only branch nodes to the 4th level for 

all instances. Figure 9 shows the comparison of proposed LB and the lower bound 

obtained by CPLEX, where the PD is measured by ஼(ை௉்)ି஼(௅஻)  
஼(ை௉்)

  × 100  %, where C(LB) 

is the LB and C(OPT) is the best known solution. The proposed LB strategies outperform 

CPLEX not only in terms of LB quality but also using way much less CPU time. 

However, compared to LB one, the LB two does not substantially improve the bounds 
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mainly because we only branch to the 4th level. 

5.6.2 A Comparison of Heuristics with Two Sets of Large Instances  

The criterion to select the best strategy for each algorithm takes in consideration both the 

CPU time and solution quality. The maximum CPU time of 7 strategies of SA is within 

several minutes (i.e. strategy 7 uses 7 minutes). With few more minutes, the solution 

quality of strategy 7 has obvious improvement as compared to strategy 6 so that the 

strategy 7 is selected. However, for LNS, the strategy 6 uses dozen minutes more than 

other strategies but the improvement is insignificant. For that reason, we select a strategy 

from 1 to 5 depending on the different structures of instances. For BS, CUP times do not 

have big difference among different filtering approaches when the beamwith is the same 

Figure 9. Results of lower bounds comparison  
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so we select the strategy depending on the performance of each filtering approach.           

For the first set of large instances, the best strategies for SA, LNS and BS are strategy 7, 

strategy 4 and upper bound filtering approach with 5 and 9 inbound and outbound 

beamwidths, respectively. As shown in Figure 10, three of our proposed algorithms 

perform better than CPLEX in solution quality with less CPU time. Although LS does not 

have better solution quality, it uses much less CPU time. 
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Figure 10. Comparisons of methodologies for 1st set of large instances 



 

65 
 

For the third set of large instances, best strategies for SA, LNS and BS are strategy seven, 

strategy 4 and lower bound filtering approach with 5 and 9 inbound and outbound 

beamwidth, respectively. As shown in Figure 11, CPLEX performs better in terms of 

solution quality with 1.4% average PD. However, our proposed algorithms use less time 

with reasonable solution quality, i.e. 3.8% for SA, 4.8% for BS and 4.0% for LNS. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Comparisons of methodologies for 2nd set of large instances 
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Chapter 6: Conclusions and Further Research 

In this thesis, we study a trucking scheduling problem arising in the operation of 

cross-docking terminals. As the most important contribution of this thesis, we develop 

four heuristic algorithms (local search, simulated annealing, large neighborhood search, 

and beam search) to deal with difficult sets of instances associated with flow structures 

arising in real applications. We study different strategies of each algorithm and conclude 

the best strategy for each one of them. In general, LNS and BS perform the best and, 

depending on different structures of instances, the performances of these two algorithms 

vary. Compared to the algorithms proposed by Boysen et al. [11], we are able to solve 

larger size instances with good solution qualities in reasonable CPU times. Moreover, for 

certain instances the proposed algorithms perform better than CPLEX, not only in terms 

of solution quality but also in terms of CPU times. We also test lower bound strategies 

that obtain tighter bounds with less time than CPLEX. In real applications, decision 

makers can choose one of the proposed algorithms, or CPLEX, or the hybrid of proposed 

algorithms and CPLEX to solve the problem according to the time constrains. 

Another contribution of this thesis is to analyze the complexity of three different 

structures of instances. The second set of instances is the easiest and the third set of 

instance goes in the middle while the first set of instances is the most difficult. We also 

propose an alternative integer programming formulation (F2) for the problem to obtain 
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better linear programming relaxation bounds as compared to the formulation (F1) 

proposed by Boysen et al. [11]. Unfortunately, the required CPU times to solve this 

formulation is much higher due to the large number of variables and constrains. However, 

we believe that, with some decomposition technics, it would be possible to handle our 

formulation and to solve the problem efficiently.     

We study the problem based on several assumptions and in order to solve more realistic 

problems, there are several aspects of this research topic that are worth further 

investigating. 

1. Use decomposition technics to handle the proposed formulation.  

2. Develop an exact algorithm. All the proposed algorithms cannot guarantee the 

optimal solution. Although, CPLEX is able to obtain the optimal solution for small 

size instances, it fails to do so for large instances. B&B based algorithms are known 

to be successful for optimally solving some fundamental machine scheduling 

problems (MSPs) [65]. The TRSP has many similarities with MSPs so that an 

interesting research direction would be to develop a B&B algorithm for the TRSP. 

3. Consider multiple strip and stack doors. Make the original problem more realistic by 

taking multiple strip and stack doors into consideration.  

4. Take into consideration a dynamic case. In our model, we assume the trucks are 

available at the beginning of the planning horizon. However, due to the traffic 
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congestion or other contingencies, inbound trucks may not arrive on time. Similarly, 

shipments are usually bound to the due dates negotiated with customers. So the 

dynamic approach would make the problem more applicable to the real world. 
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