

Heuristics for Truck Scheduling at Cross Docking Terminals

Wenying Yan

A Thesis in the

Department of Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements for the Degree of Master of

Applied Science in Industrial Engineering

Concordia University

Montreal, Quebec, Canada

March 2014

¤ Wenying Yan, 2014

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Wenying Yan

Entitled: “Heuristics for Truck Scheduling at Cross Docking Terminals”
and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Industrial Engineering

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 Dr. C.Chen Chair

 Dr. O. Kuzgunkaya Examiner

 Dr. N. Vidyarthi Examiner

 Dr. I. Contreras Supervisor

Approved by

Chair of Department or Graduate Program Director

Dean of Faculty

April 7, 2014

iii

Abstract

Heuristics for Truck Scheduling at Cross Docking Terminals

Wenying Yan

Cross-docking is a logistics management concept that has been gaining global

recognition in less-than-truckload logistics industries and retail firms. In cross-docking

terminals, shipments are unloaded from inbound trucks at strip doors, consolidated

insider cross-docks according to their destinations, and then, loaded into outbound tucks

at stack doors. The goal of cross-docking is to reduce inventory and order picking which

are the two most costly functions of traditional warehousing management. The sequence

in which the inbound and outbound trucks have to be processed at the cross-dock is

crucial for improving the efficiency of cross-docking systems. In this thesis we introduce

an integer programming formulation and apply four heuristic algorithms: a local search, a

simulated annealing, a large neighborhood search and a beam search, to schedule the

trucks in a cross-docking terminal so as to minimize the total operational time.

iv

Acknowledgements

I would like to thank all people who help me to make this work possible. First, and

most importantly, I would like to express my sincere gratitude to my supervisor Dr. Ivan

Contreras for his support, supervision and encouragement throughout this research. I am

very honored to become his student.

I would like to thank all the colleagues in the lab to help me in the thesis. I would

like to express my sincere appreciation to my friends, Doc Livingston, Pierre C. Pepin

and Diane Pepin to help me settle down in Canada.

我要永远感谢我的外公陈恢美, 外婆: 范清秀, 父母: 严良国和陈明英, 妹妹:

严虹, 弟弟: 严文超以及其他所有的亲戚和朋友在我需要帮助的时候总能伸出援助

之手.

v

Table of Content

Chapter 1: Introduction .. 1

Chapter 2: Literature Review ... 5

2.1 Cross-docking .. 5

2.2 Decisions in Cross-docking ... 10

2.2.1 Strategic Decisions: Location of Cross-docks .. 10

2.2.2 Strategic Decisions: Layout of Cross-docking Terminals 11

2.2.3 Tactical Decisions: Network Flow Optimization .. 12

2.2.4 Operational Decisions: Vehicle Routing ... 13

2.2.5 Operational Decisions: Dock Door Assignment ... 14

2.2.6 Operational Decisions: Truck Scheduling .. 15

Chapter 3: The Truck Scheduling Problem ... 22

3.1 Problem Definition ... 22

3.2 Assumptions and Notation ... 24

3.3 Mathematical Programming Formulations .. 25

Chapter 4: Solution Methods .. 29

4.1 Lower Bounds .. 29

4.2 Local Search ... 30

4.3 Simulated Annealing .. 34

4.4 Large Neighborhood Search .. 37

vi

4.5 Beam Search .. 39

Chapter 5: Computational Experiments ... 44

5.1 Instance Generation ... 44

5.1.1 First Set of Instances ... 45

5.1.2 Second Set of Instances .. 47

5.2 Formulations and Three Sets of Instances ... 48

5.3 Evaluation of SA .. 52

5.4 Evaluation of LNS ... 55

5.5 Evaluation of BS .. 59

5.6 Comparison of All Methodologies ... 61

5.6.1 Lower Bound Comparison .. 62

5.6.2 A Comparison of Heuristics with Two Sets of Large Instances 63

Chapter 6: Conclusions and Further Research ... 65

References ... 69

vii

List of Figures

Figure 1. Freight flow in a cross-docking terminal... 6

Figure 2. Suitability of cross-docking (adapted from Apte and Viswannathan [3]) 9

Figure 3. The first iteration and the second iteration for the initiate sequence 33

Figure 4. Destroy and repair example ... 37

Figure 5. The beam search tree ... 41

Figure 6. Results of SA analysis ... 55

Figure 7. Results of LNS analysis... 58

Figure 8. Results of BS analysis ... 61

Figure 9. Results of lower bounds comparison ... 63

Figure 10. Comparisons of methodologies for 1st set of large instances 64

Figure 11. Comparisons of methodologies for 2nd set of large instances 65

file:///C:/Users/Steve/Desktop/Wenying%20Yan%20thesis.docx%23_Toc382890018
file:///C:/Users/Steve/Desktop/Wenying%20Yan%20thesis.docx%23_Toc382890019
file:///C:/Users/Steve/Desktop/Wenying%20Yan%20thesis.docx%23_Toc382890020
file:///C:/Users/Steve/Desktop/Wenying%20Yan%20thesis.docx%23_Toc382890022
file:///C:/Users/Steve/Desktop/Wenying%20Yan%20thesis.docx%23_Toc382890023
file:///C:/Users/Steve/Desktop/Wenying%20Yan%20thesis.docx%23_Toc382890024
file:///C:/Users/Steve/Desktop/Wenying%20Yan%20thesis.docx%23_Toc382890025
file:///C:/Users/Steve/Desktop/Wenying%20Yan%20thesis.docx%23_Toc382890026
file:///C:/Users/Steve/Desktop/Wenying%20Yan%20thesis.docx%23_Toc382890027
file:///C:/Users/Steve/Desktop/Wenying%20Yan%20thesis.docx%23_Toc382890028

viii

List of Tables

Table 1. An example of a randomly generated instance ... 45

Table 2. Parameters for instance generation ... 46

Table 3. An example of a randomly generated instance ... 48

Table 4. Comparison of results of three sets of instance running in CPLEX 50

Table 5. Computational results of large instances solved with CPLEX 51

Table 6. SA cooling parameters .. 52

Table 7. Results of SA with 7 different cooling strategies .. 54

Table 8. Results of LNS with 6 different cooling strategies ... 57

Table 9. Results of LNS with different filtering approaches and beamwidths 60

1

Chapter 1: Introduction

The contribution of the logistics service industry to Canada GDP is reported to increase

47% since 1998. Logistics service providers GDP was predicted to continually increase

by 40% between 2007 and 2015, generating $56 billion dollars [1]. In 2011, truck

transportation shared the largest segment of logistics services and accounted for 31% of

the sectors share of GDP; the air and rail segments represented 12% and 11% respectively

[2]. These numbers illuminate the importance of logistics and related areas (e.g. supply

chain management). However, the synchronization of the distribution of goods with

supply chain partners is an extremely complex strategic issue for decision makers. One

innovative strategy in logistics and supply chain management that has increasingly

attracted industrial practitioners and researchers is cross-docking [3-6].

The main idea of cross-docking is to transfer freights directly from the inbound trucks to

the outbound trucks, without or little storage in between. This leads to reduction of the two

most costly operations (inventory and order picking) in warehouses. In a traditional

warehouse, goods are first received from the suppliers and stored without knowing the

demand. When customers order some products, the workers pick them from the pallet

racks and send them to the customers. For some products that are expensive to be kept in

inventory or that cannot be kept for long time (e.g. perishable food items), the

2

implementation of a cross-docking strategy exerts enormous advantages [7-10]. Another

important goal of cross-docking is to consolidate products from different suppliers to the

same destination carried by full loaded trucks, so that economies of scale in

transportation costs can be achieved [3].

The appropriate coordination of inbound and outbound trucks plays a crucial role in the

efficiency of cross-docking systems as well as that of the total supply chain system.

Truck scheduling operations consider the assignment of inbound trucks to receiving (or

strip) doors where the freight is unloaded, and the assignment of outbound trucks to

shipping (or stack) doors where the freight is loaded. At the beginning of the planning

horizon, inbound trucks arrive at the cross-dock. According to the demands of the

outbound trucks, a certain sequence is planned in such a way that the makespan is

minimized. Products are then unloaded onto receiving docks and moved from strip doors

to stack doors by some material handling systems, such as conveyors or forklifts. If the

unloaded products are not required to be loaded on outbound trucks at the same time they

arrive, the products will be stored temporarily until the outbound trucks, which request of

those products, are assigned to the stack doors. Therefore, two interrelated questions are

raised by decision makers: which docks the trucks should be assigned to and when their

associated products should be loaded or unloaded.

Even though there is an interest for practitioners and researchers in studying optimization

3

problems arising in cross-docking (see [4, 16]), there are few papers addressing truck

scheduling problems. In this thesis, we study a truck scheduling problem recently

introduced by Boysen et al. [11]. Due to the considerable complexity of truck scheduling,

this problem focuses on cross-docks having a single strip and a single stack door to

derive a base model. This is indeed a fundamental problem in cross-docking which helps

to gain insight into the underlying structure of the problem and to provide the starting

point to more complex settings. Unlike McWilliams et al. [12] and Yu and Egbelu [13],

which both study more detailed truck scheduling problems, we deal with the problem on

a more aggregate level. Different amounts of goods and the sequence of the inbound

trucks lead to the different unload handling times. The loaded handling times for

outbound trucks also vary according to the different demands of the customers. What is

more, it is already very complex to determinate the transportation times inside the

cross-dock from doors to doors. Therefore, the average times are barely useful to estimate

the handling times in the detailed truck scheduling model. Under the above analysis,

aggregate models outperform detailed models because the latter may result in more

confusion and even infeasible solutions. As an aggregate view, the time horizon is

distributed to service time slots (represented with unit times such as hours or minutes), on

the assumption that trucks can be completely unloaded or loaded within such a time slot.

Delivery times from the inbound doors to the outbound doors inside the cross-dock can

be defined as a delay (measured by number of slots).

4

The objective of this research is to find inbound and outbound truck sequences so that the

total operational time is minimized. The main contribution of this thesis is to develop

four heuristic algorithms to solve the problem: a local search, a simulated annealing, a

large neighborhood search, and a beam search. We also propose an integer programming

formulation that is different from the one proposed in Boysen et al. [11]. Moreover,

motivated by the flow structure of real applications, we introduce two new sets of

instances to assess the performance of the proposed solution methods. Computational

results obtained on benchmark instances from [11] and two new sets of instances confirm

the efficiency of the proposed algorithms.

The remainder of this thesis is organized as follows. Chapter 2 provides a literature

review of cross-docking. The formal definition of the studied problem and the new

formulation are described in Chapter 3. We then present the four heuristics in Chapter 4.

In Chapter 5 we show the computational analysis to compare the efficiency of

formulations and algorithms. Finally, in Chapter 6 we summarize our conclusions and

point out future research directions.

5

Chapter 2: Literature Review

In today’s globally competitive business environment, more and more innovations focus

on the improvement of the whole supply chain perspective as compared to that of a

company level. Cross-docking is one of these innovative strategies that help supply chain

players synchronize and work together to exert high efficiency and effectiveness. In this

chapter we introduce the definitions of cross-docking and present its applications and

research trends. We then discuss conditions to properly apply cross-docking. After that,

different problems (from a strategical point of view to an operational perspective) raised

when designing and implementing cross-docking systems are described. Given that this

thesis focuses on truck scheduling, the last section is dedicated to introduce some relevant

details related to this topic.

2.1 Cross-docking

There are several definitions of cross-docking. We can summarize cross-docking as the

process of receiving products from several suppliers or manufacturers and consolidating

those products in a cross-dock terminal to be then delivered to common destinations. By

appropriately synchronizing inbound trucking and outbound trucking, the merchandise is

able to immediately transfer from the receiving docks to the shipping docks without

putting it first in storage location [14, 15]. However, many researchers relax the perfect

6

synchronization as it is very difficult to achieve. What is more, in practice, before an

outbound truck can be assigned, temporary storage is necessary because many receiving

shipments from different receiving docks need to be sorted and consolidated. Therefore,

cross-docking can also be described as the process of consolidating freight with the same

destination (but coming from several origins), with minimal handling and with little or no

storage between unloading and loading of the goods [16].

A cross-dock is the terminal dedicated for cross-docking and it consists of several strip

doors where inbound trucks are assigned and the freight is unloaded, and several stack

doors where outbound trucks are assigned and the freight is loaded. Figure 1 gives a

schematic representation of the material handling operations at a long, narrow

rectangle-shaped (or I-shaped: the most common shape) cross-dock with 6 strip docks and

stack doors.

Inbound
trucks

outbound
trucks

Strip
doors

Stack
doors

Figure 1. Freight flow in a cross-docking terminal

7

From the time cross-docking was first used by the US trucking industry during the 1930s

[17] until now, it has been successfully implemented globally. With cross-docking on

hand, Wal-Mart achieved the goal of delivering the requested goods punctually to

customers in different locations [18]. Nowadays, almost all third-party logistics

companies in Hong Kong are applying cross-docking systems [19]. In Germany, the

travel distance was reduced by 37-39% at a parcel sorting center of Deutsche Post World

Net [20] by applying cross-docking. Many other companies have also reported the

successful application of cross-docking (e.g. Eastman Kodak Co. [21], Goodyear GB Ltd.,

Dots, LLC [22] and Toyota [23]). Its successful implementation revealed the advantages

of cross-docking as compared to traditional distribution centers: service level

improvement, cost and cash turnover reduction, etc. These advantages of cross-docking

makes firms more adaptive to nowadays customers various choices and consumption

habits, where smaller volumes of good, faster and more frequently deliveries are required

[21,24].

Unlike the early implementation of cross-docking in the transportation industry, it has

recently attracted more attention of researchers, being more than 85% of the published

papers in cross-docking from 2004 until now. Two review papers have been recently

published in cross-docking. J. Van and Valckeneaers et al. [16] provide an overview of

the cross-docking concept and discuss guidelines to implement cross-docking

8

successfully. The authors also described several characteristics between different

cross-dock types and indicate several opportunities to promote current research. Agustina

and Lee et al. [26] provide a comprehensive review of three different types of models in

cross docking, namely operational, tactical, and strategic models. Of particular interest to

our work, Boysen and Fliedner [4] provide a detailed review to classify deterministic

truck scheduling which helps to point out future research directions.

Given that cross-docking is a complex logistic strategy, there are several important

requirements so as to be implemented successfully. Both software and hardware are

indispensable. With the development of technology, the application of hardware like

material handling devices and sorting systems is more and more common in logistics

networks. However, in terms of software, computational professionals who are able to

design the specific software system to apply different cross-docking configurations are in

severe shortage, which hinders the implementation of cross-docking [13]. The

information flow plays a significant role in cross-docking as compared to the traditional

distribution center. For example, the arriving time of trucks and the amount and type of

products they carry should be known before they arrive at cross-docks in order to be

scheduled to appropriate docks. Information technologies (e.g. electronic data

interchange, shipping container marking, bar-coding and scanning of products using

universal product codes) provide accurate information to ensure the effectiveness of

9

cross-docking [3].

Considering the above conditions, cross-docking is only applicable to a certain kind of

products with specific characteristics. According to Apte and Viswannathan [3], firstly,

the products such as commonly used grocery products, regularly consumed perishable

food, and chilled goods are more suitable for cross-docking. Those products have demand

rates which are more stable and constant, thus the warehousing and transportation

requirement of products are much more predictable and the planning and implementation

of cross-docking become easier. Secondly, the products should have low unit stock-out

cost. Cross-docking reduces the inventory cost. On the other hand, it has higher

probabilities of stock-out due to the nature of cross-docking. However, if the unit

stock-out cost is low, the benefits of reduced inventory cost can outweigh the stock-out

cost. As shown in Figure 2, the products that have stable and constant demand rate and

low unit stock-out cost are more suitable to use in cross-docking. The traditional

warehousing is still preferable for the products with unstable demand and high unit

Figure 2. Suitability of cross-docking (adapted from Apte and Viswannathan [3])

10

stock-out cost. However, cross-docking can still be used in the latter two situations if

there are more precise planning systems.

2.2 Decisions in Cross-docking

The problems faced by cross-docking decision makers range from the longer term

decisions (strategic or tactical) to the short term decisions (operational). This section

reviews each class of problems separately. Strategically, the very first problems are the

location and designing layout of cross-docks as well as the design of the entire

cross-docking network. Once these decisions are taken, decision makers have to make

sure that goods flow fluently through the network. Next comes to operational decisions

like vehicle routing (how vehicles pick up the goods from the suppliers and send them to

cross-docks at minimum cost) and truck scheduling (the assignment of trucks to dock

doors). Other decisions such as how to manage internal resources for the loading and

unloading of goods are also relevant.

2.2.1 Strategic Decisions: Location of Cross-docks

The location of one or more cross-docks plays an important role in the whole supply

chain. Sung and Song [28], Gümüş and Bookbinder [29] are among the first researchers

to study the location of cross-docks. Sung and Song [28] present a path-based integer

programming formulation for the considered problem, which is similar to the formulation

11

provided by Donaldson et al. [30] and Musa et al. [31], based on similar simplifying

assumptions. To solve the problem, the authors proposed a tabu search (TS) algorithm

and use strong valid-inequalities to the proposed formulation. Computational experiments

show that the TS algorithm works very well and valid-inequalities provide strengthened

lower bounds. The previous work is extended by Sung and Yang [32] with an improved

TS algorithm. The authors also develop an exact branch-and-price algorithm based on a

set-partitioning formulation. Gümüş and Bookbinder [29] consider direct shipments and

multiple product types. They solve some small instances with a mixed integer program

using general purpose solvers. The authors conclude from the analysis of the experiments

that the optimal number of cross-docking is an increasing function of the ration between

the truck cost and the facility set up cost.

2.2.2 Strategic Decisions: Layout of Cross-docking Terminals

Another important strategic decision is the design (extern shape and intern layout) of the

cross-dock terminal. As the labor cost is one of the most costly aspects in a cross-docking

terminal, the design of a good layout so that trailers can be assigned to doors smoothly to

improve the efficiency of the workers is very important. In [33], the authors design the

layout of a cross-dock to minimize the labor cost of delivering goods by modeling travel

costs and reducing three types of congestion typically experienced in a cross-dock. By

doing so, they are able to improve the productivity of a cross-dock in Stockton, CA by

12

more than 11%. The same authors extend their work by studying the shape of a

cross-dock [33]. They conclude that, for small to mid-size cross-docks, the most

commonly shape (i.e. narrow rectangle or I-shape) works best and L or U shape should be

avoided due to the possible cost of additional corners. However, for the cross-docks that

have around 150 to 200 docks, the T-shape is the most suitable. An X-shape is preferred

for larger cross-docks (more than 200 docks), for the reason that cross-docks with

X-shape have greater centrality.

2.2.3 Tactical Decisions: Network Flow Optimization

As soon as the location and layout of cross-docks are decided, the cross-docking decision

makers have to deal with the problem of efficiently transshipping goods among cross-

docks and other supply chain participants (e.g. suppliers and customers).

Compared to the traditional transshipment problem, Lim et al. [35] take shipping and

delivery time as well as transportation constraints into consideration and employ

just-in-time objectives in a cross-docking network. The authors provide models to

minimize the cost of inventory and schedules in transshipment networks with

time-constrained supply and demand and transportation schedule constraints. Optimality

conditions are provided for some polynomially solvable cases. For other cases, the

authors prove that the problem is NP-hard. Chen et al. [36] study a similar problem which

they call the multiple cross-dock problem, but unlike Lim et al. [35], they assume that

13

freights specified for a single delivery or pickup are not allowed to be split during the

distribution process. The authors also consider a multi-commodity flow version of the

problem, which is proved to be NP-complete. The authors provide an integer

programming formulation and develop three heuristics, namely simulated annealing, TS

and a hybrid of both to solve the considered problem. Among these heuristics, TS works

better. Compared to the integer programming formulation solved by CPLEX, heuristics

use less than 10% of the CPU time. Using a different approach, Donaldson et al. [30]

consider the shipment of goods as individual transportation units instead of flows to

benefit from consolidation. The authors develop an algorithm which is similar to a branch

and bound algorithm after the latter fails to solve the problem in reasonable CPU times.

Musa et al. [31] tackle the same problem with an ant colony optimization heuristic and

report better results as compared with a branch and bound algorithm solved by LINDO in

terms of CPU time and solution quality.

2.2.4 Operational Decisions: Vehicle Routing

We next discuss cross-docking from an operational point of view. Vehicle routing

problems (VRP) arise when goods come from various locations and end in different

destinations. Even though there is huge number of papers dealing with VRP [25], few of

them deal with cross-docking and vehicle routing together. Probably, Lee et al. [38] is the

first paper to tackle this problem. The authors propose a TS algorithm to find routing

14

schedule for pickup and delivery to minimize the sum of transportation cost and fixed

cost of vehicles. To test the quality of the proposed algorithm, they compare with the

solution obtained with an enumeration procedure and the results show the proposed

algorithm works well with at most a 4% deviation of total cost. Liao et al. [39] work on

the same problem with a new TS algorithm and they report the average improvements are

as high as 10 to 36% for different size of problems as compared with TS algorithm

proposed by Lee et al. [38]. Wen et al. [40] study the Vehicle Routing Problem with

Cross-Docking. A fleet of homogeneous vehicles pick up products from suppliers. The

products are consolidated at the cross-dock and then sent to destinations or customers

immediately by the same set of vehicles, without storing at the cross-dock. The aim is to

minimize the total traveled distance within a time window constraint. The authors present

a mixed integer linear programming formulation which has a large number of variables

and constrains and a TS algorithm. They test the proposed algorithms using real data

from Transvision and computational results show that the algorithm produces good

quality solutions for both small (less than 1% away from the optimum) and large

instances (less than 5% gap with a lower bound) within very small CPU times.

2.2.5 Operational Decisions: Dock Door Assignment

As soon as trailers arrive at a cross-dock, they have to be assigned to doors as well. A

good assignment can reduce dock delay and operational costs (e.g. pickup, delivery and

15

drivers cost). An early study was conducted by Peck [41] who develops a simulation

model to model the assignment of trucks to dock doors. A greedy balance algorithm is

also proposed to minimize the travel time of the shipments. Simulation results show the

decisions made by the heuristic algorithm outperform those based on experience and

intuition. Tsui and Chang [42] propose a bilinear program to determine the assignment of

trucks to dock doors. Due to the fact that up-to-date data is usually difficult to obtain,

their models are unable to provide the optimal solution for specific cases. But the

decision makers can still use their solutions as a good starting point and modify models

(e.g. add more constrains) for specific cases. Bermúdez and Cole [43] modify the model

presented by Tusi and Chang [42] to serve cases that an origin or destination zone needs

more than one door. They develop a genetic algorithm and compare it with pairwise

exchange technique with the data from a less-than-truckload (LTL) logistic provider.

Other works such as Bozer and Carlo [44], Bartholdi and Gue [45], Yu et al. [46] consider

the dock door assignment from a semi-permanent layout point of view.

2.2.6 Operational Decisions: Truck Scheduling

Truck scheduling problems consider that there are not enough dock doors available for

the arrival of incoming trucks. Thus, trucks have to wait in the cross-dock yard until

planners decide when and which doors trucks should be assigned to. Because of the

inherent complexity, researches started to study truck scheduling from simplified cases

16

(one strip dock and one stack dock). In a cross-dock scheduling review paper, Boysen

and Fliedner [4] classify deterministic truck scheduling to structure and promote

scientific progress on the field.

2.4.6.1 Single Strip and Stack Door

Yu [47] is probably one of the first works dealing with truck scheduling problems in

cross-docking. In his Ph.D. dissertation, the author identifies thirty-two different models

based on different cross-docking settings. Among those thirty-two models, three of them

are focused to study the case where only one strip dock and one stack door are considered.

In the first model, temporary storage is allowed and inbound trucks and outbound trucks

cannot leave docks until all products are loaded and unloaded. In the second model,

temporary storage is not permitted so that products have to move from the inbound dock

to outbound dock immediately. However, inbound trucks and outbound trucks can leave

and return to docks during the operations. In the last model, temporary storage is allowed

and inbound trucks and outbound trucks are allowed to move out and in during the

operations too. The goal of the problems is to minimize the makespan. To solve the

considered problems, the author presents different approaches: mixed integer

programming formulations, complete enumeration procedures, heuristic algorithms based

on different dispatching rules, and a branch and bound algorithm. Although the first two

are able to obtain optimal solutions, it is computationally expensive when instances

17

become larger. Therefore, for the large size instances, heuristics perform better in terms

of time without sacrificing much on solution quality. However, the instances are

generated randomly which may be not realistic. Moreover, the largest considered instance

has only 6 inbound and outbound trucks with 9 types of products which is not really a

large instance in today cross-docking systems.

With the same restrictions of the first model presented by Yu [47], Vahdani and Zandieh

[48] propose five metaheuristic algorithms for the same problem: a genetic algorithm, a

TS algorithm, a simulated annealing algorithm, an electromagnetism-like algorithm, and

a variable neighborhood search algorithm. They use solutions from Yu as initializations

for five metaheuristic and results on computational experiments report their improvement.

For the same problem, Arabani et al. [49] also apply five metaheuristic algorithms: a

genetic algorithm, a tabu search algorithm, a particle swarm optimization algorithm, an

ant colony optimization algorithm, and a differential evolution algorithm.

Boysen et al. [11] address a truck scheduling problem which is very similar to the one

studied in [47] with one inbound dock and one outbound dock and storages buffer to hold

items temporarily. However, they handle the problem in a more aggregate view instead of

a detailed scheduling. They propose an integer programming formulation and prove the

problem is strongly NP-hard. A decomposition approach is developed, where the original

problem is solved by decomposing it into two sub-problems. For each sub-problem,

18

either a fixed inbound sequence or a fixed outbound sequence is given and the optimal

sequence of the other is obtained by an exact bounded dynamic programming approach.

A priority rule-based heuristic to start the procedure is also presented. To tackle the

original problem, the two sub-problems are solved iteratively until some stopping criteria

is met. With the optimal solutions obtained by complete enumeration for small size

instances, the performance of the decomposition approach for the overall problem can be

evaluated and computational experiments show the proposed algorithms can provide high

quality solutions with small CPU times. Nevertheless, they do not present any

computational results for the proposed integer programming formulation with a general

purpose solver (such as CPLEX). They use a set of small size instances with a particular

structure to assess the efficiency of their algorithms.

Chen and Lee [19] model the truck scheduling problem as a two-machine flow shop

problem, where two machines can be considered as the inbound dock and the outbound

dock; unloading tasks for incoming goods can be viewed as jobs on the first machine;

loading tasks for outgoing goods can be viewed as jobs on the second machine. They

assume that certain products in some set of inbound trucks have already dedicated to a

specific outbound truck so that an outbound truck cannot leave until all the corresponding

inbound trucks have been unloaded. They prove the problem is strongly NP-hard and

observe some properties that are helpful to solve the problem. Two polynomially solvable

19

special cases are presented. Finally, they propose a branch and bound algorithm to obtain

optimal solutions with up to 60 trucks in reasonable CPU times. However, the authors do

not consider the delivering time inside cross-docks from the inbound dock to the

outbound dock.

Some other papers address similar problems. Forouharfoard and Zandieh [50] aim to

minimize the number of products that pass through temporary storage in a cross-dock.

Vehdani et al. [52] study a similar problem, however, they do not allow temporary storage.

Soltani and Sadjadi [53] develop two metaheuristics, a genetic algorithm and an

electromagnetism-like algorithm, to solve the same problem as Vehdani et al [52]. When

considering the scheduling of outbound trucks, Lardi et al. [54] handle a single strip and a

single stack door cross-dock scheduling problem under three scheduling scenarios

considering that different amount of information is known in advance, e.g. the sequence

and the content of all inbound trucks are known. To solve the first case, an optimal graph

based model is presented and, for the other two cases, some heuristics are developed.

Alpan [55] extends the problem to the case of multiple strip and stack doors and proposes

a graph-based dynamic programming approach to solve the problem optimally.

2.4.6.2 Scheduling of Inbound Trucks

In order to study more realistic cross-docks, some papers deal with the scheduling of the

inbound trucks assuming that the outbound trucks are already assigned to stack doors.

20

Rosales et al. [56] reduce the cost and provide a better workload balance to all workers in

one shift for a large cross-docking in Georgetown by using a mixed integer programming

formulation. Wang and Regan [57] provide two time-based algorithms (processing and

transferring times) for the same problem and perform a simulation study to compare both

algorithms. Computational experiments show the proposed time-based rules can save

large amounts of time. Acar et al. [58] work on a variant of the problem that assumes

truck arrival times are uncertain. They formulate the problem as a mixed integer

quadratic program. Due to the complexity of the formulation, they develop a heuristic

algorithm. McWilliams et al. [12] focus on the minimization of the makespan in a parcel

hub. The authors develop a simulation-based scheduling algorithm to solve the problem

with a significant reduction in the makespan by 4.2% to 35.8%.

2.4.6.3 Scheduling of Inbound and Outbound trucks

Lim et al. [60] consider the scheduling of both inbound and outbound trucks. They

provide an integer programming formulation and propose two metaheuristics to solve the

problem. Lim and Miao et al. [62] extend this work by taking transportation times into

account to minimize operational cost and unfulfilled shipment. Compared with CPLEX,

the proposed metaheuristics outperform in terms of solution quality and running time.

Boysen [63] tackles truck scheduling for a cross-dock without allowing temporary

storage. A dynamic programming and a simulated annealing procedure are presented.

21

Computational experiments report that high quality solutions can be obtained by the

proposed approaches. A recently study conducted by Kuo [64] introduces a problem that

deal with the assignment and sequencing of both inbound and outbound trucks in a

multiple strip and stack docks environment.

22

Chapter 3: The Truck Scheduling Problem

In this chapter the formal definition of the truck scheduling problem (TRSP) in

cross-docks, introduced by Boysen et al. [11], is first presented. The assumptions and

mathematical notation required for formulating the TRSP are then summarized. In the

Section 3.3, two mathematic programming formulations are shown, where the first one is

provided by Boysen et al. [11] and the second one is an alternative formulation

introduced in this thesis.

3.1 Problem Definition

We consider the schedule of a set of I inbound trucks to a single strip door and a set of O

outbound trucks to a single stack door of a cross-dock terminal. To simplify the problem,

all inbound trucks and outbound trucks are assumed to be available at the beginning of

the planning horizon. Units of different products p 𝜖 P are carried by each truck. Let aip

denote the number of units of type p in an i 𝜖 I inbound truck and let bop denote the

number of units of type p 𝜖 P product required by the o 𝜖 O outbound truck. We

assume the requirement meets supply so the total number of products in all inbound

trucks equals to the total number of products required by all outbound trucks. Thus, the

following equation holds: ∑ 𝑎௜௣௜஫ூ = ∑ 𝑏௢௣௢஫ை ∀ p 𝜖 P.

As trailers are usually homogeneous and cross-docking aims at moving only full loads

23

(e.g. mail distribution systems), the handling times for different trailers do not strongly

differ in most cases. Therefore, it is realistic to assume that, in a same service slot (period)

t, all products in an assigned inbound truck (or an assigned outbound truck) are unloaded

(or loaded), where all handling operations (e.g. docking, unloading, undocking) required

to process the truck are completed within this time span.

Once unloaded, the products have to be moved from strip to stack doors going through

several stages inside the cross-dock. These stages include electronic scanning, quality

inspection and coordination. The movement process is assumed to have a fixed

movement time m. However, the actual movement can either start immediately for any

unloading unit (e.g. using conveyer belt systems) or after completely unloading all

products from the inbound truck (e.g. a worker stacks all units behind the receiving door

before moving them). In the first case, the time span becomes t + m. In the second case,

the time span becomes t + m + 1 as 1 represents the unit of time to wait for the inbound

truck to be completely unloaded. Now, no matter m or m+1, the operational time can be

ignored in the model of problem since after obtaining a solution, a proper re-indexing of

slots outbound trucks are assigned to guarantee the exact final decision of the outbound

trucks schedule. Once the movement process is completed, the products may wait in a

temporary storage of enough size until they are loaded to outbound trucks.

The TRSP determines the sequences of inbound and outbound trucks to be assigned to a

24

single trip and a single stack door, respectively, in order to minimize the total completion

time (i.e. makespan). If the sequence of the inbound trucks is fixed and the goal is to only

schedule outbound trucks, the TRSP reduces to the sub-problem OUTBOUND – TRSP.

Similarly, when the sequence of the outbound trucks is fixed and the goal is to only

schedule inbound trucks, the TRSP reduces to the sub-problem INBOUND - TRSP.

3.2 Assumptions and Notation

The summary of the assumptions to model the problem is listed as follows:

1. There are only one receiving door and one shipping door in the cross-dock and

there are located at different places of the terminal (segregated mode of service).

2. The time of processing (i.e. loading or unloading processes) for each truck is the

same.

3. All inbound trucks and outbound trucks are available at the beginning of the time

horizon. There are no predefined restrictions on truck assignments to slots (e.g.

release or due dates)

4. The input data is known in advance and deterministic.

5. The time for delivering products from the receiving door to the shipping door is

constant and therefore can be ignored.

6. The numbers of the product in the inbound trucks are equal to the numbers of

products required by the outbound trucks.

25

7. The size of the temporary stock is unlimited.

8. Any combination of the sequences of the inbound trucks and outbound trucks

represents a feasible solution.

The following notation is used in the mathematical programming formulations:

Input Data:

I: Set of inbound trucks (index i)

O: Set of outbound trucks (index o)

T: (Maximum) number of time slots available for (un-)loading trucks (index t)

P: Set of products (index p)

aip: Quantity of product type p arriving in inbound truck i

bop: Quantity of product type p to be loaded onto outbound truck o

m: Movement time of products across the dock (w.l.o.g., m = 0)

3.3 Mathematical Programming Formulations

With the assumptions and notation at hand, the scheduling of the inbound and outbound

trucks can be easily transformed to the sequence of inbound and outbound trucks. The

objective is to obtain a sequence of trucks such that the makespan is minimized. The

makespan consists of the time span from the time the first inbound truck is assigned to

the time the last outbound truck is assigned. The following sets of decision variables are

26

defined:

xit = ൜
1, if inbound truck 𝑖 is assigned to slot 𝑡
0, otherwise

 yot = ൜
1, if outbound truck 𝑜 is assigned to slot 𝑡
0, otherwise

Using these variables, Boysen et al. [11] formulate the problem as follows (F1):

Minimize 𝐶(𝑋, 𝑌) = 𝐶௠௔௫ (1)

Subject to:

𝐶௠௔௫ ≥ 𝑦௢௧ ∙ 𝑡 ∀ 𝑜 𝜖 𝑂; 𝑡 = 1,… , 𝑇 (2)

∑ 𝑥௜௧்
௧ ୀ ଵ = 1 ∀ 𝑖 𝜖 𝐼 (3)

∑ 𝑥௜௧௜ ఢ ூ ≤ 1 ∀ 𝑡 = 1,… , 𝑇 (4)

∑ 𝑦௢௧்
௧ ୀ ଵ = 1 ∀ 𝑜 𝜖 𝑂 (5)

∑ 𝑦௢௧௢ ఢ ை ≤ 1 ∀ 𝑡 = 1,… , 𝑇 (6)

∑ ∑ 𝑥௜ఛ ∙ 𝑎௜௣௜ ఢ ூ
௧
ఛ ୀ ଵ ≥ ∑ ∑ 𝑦௢ఛ ∙ 𝑏௢௣௢ ఢ ை

௧
ఛ ୀ ଵ ∀ 𝑡 = 1,… , 𝑇; 𝑝 𝜖 𝑃 (7)

𝑥௜௧ 𝜖 {0, 1} ∀ 𝑖 𝜖 𝐼; 𝑡 = 1,… , 𝑇 (8)

𝑦௢௧ 𝜖 {0, 1} ∀ 𝑜 𝜖 𝑂; 𝑡 = 1, … , 𝑇 (9)

The objective function (1) and Eq. (2) compute the makespan, which is the time slot of

the last assigned outbound truck. Eq. (3) ensure that every inbound truck is assigned to

exactly one time slot and constraints (4) enforce that at most one truck can be assigned to

a certain time slot. Analogously, Eq. (5) and (6) state the same idea for the outbound

trucks. Constraints (7) ensure that an outbound truck can be assigned to a slot t only when

all the required demand of that outbound truck can be satisfied by the remaining products

27

in the temporary stock, which is all the products sent by previous inbound trucks except

the products that have already delivered by preceding outbound trucks.

As the goal is to minimize the makespan, the number of required service slots remains

unknown until the solution of the model. Therefore, in order to solve the problem, we

always initialize the number of slots T with some upper bound 𝐶̅ on the makespan: T = 𝐶̅.

As 𝐶̅ dramatically affects the number of variables and constraints, the determination of 𝐶̅

is very important. In light of this, a simple upper bound can be constructed in the case of

the worst scenario when the last scheduled inbound truck carries a product that is required

by the first scheduled outbound truck, i.e. 𝐶̅ = |I| + |O| − 1. Furthermore, the following

property of optimal inbound schedules can be used in order to tighten the formulation

when solved with a general purpose solver.

Left-shift property [11]: Whenever an optimal solution exists, |I| inbound trucks are always

assigned to the first |I| slots, even if the sequence is unknown. With this property, the

number of variables and constraints can be reduced.

We next present an alternative formulation for the problem. We define additional integer

decision variables gitlp, which denotes the number of products of type p coming from

truck i moved from time slot t (receiving door) and shipped by an outbound truck in time

slot l (t <= l). The reason behind adding extra decision variables is mainly to improve its

associated linear programming relaxation bound.

28

The problem can be thus formulated as follows (F2):

Minimize 𝐶(𝑋, 𝑌) = 𝐶௠௔௫ (10)

Subject to:

𝐶௠௔௫ ≥ 𝑦௢௧ ∙ 𝑡 ∀ 𝑜 𝜖 𝑂; 𝑡 = 1,… , 𝑇 (11)

∑ 𝑥௜௧்
௧ ୀ ଵ = 1 ∀ 𝑖 𝜖 𝐼 (12)

∑ 𝑥௜௧௜ ఢ ூ ≤ 1 ∀ 𝑡 = 1,… , 𝑇 (13)

∑ 𝑦௢௧்
௧ ୀ ଵ = 1 ∀ 𝑜 𝜖 𝑂 (14)

∑ 𝑦௢௧௢ ఢ ை ≤ 1 ∀ 𝑡 = 1,… , 𝑇 (15)

∑ 𝑔௜௧௟௣்
௟ ୀ ௧ = 𝑎௜௣𝑥௜௧ ∀ 𝑖 = 𝐼; 𝑝 𝜖 𝑃; 𝑡 𝜖 𝑇 (16)

∑ ∑ 𝑔௜௧௟௣௟
௧ ୀ ଵ௜ ఢ ூ ≥ 𝑏௢௣𝑦௢௟ ∀ 𝑝 𝜖 𝑃; 𝑜 𝜖 𝑂; 𝑙 𝜖 𝑇 (17)

𝑥௜௧ 𝜖 {0, 1} ∀ 𝑖 𝜖 𝐼; 𝑡 = 1,… , 𝑇 (18)

𝑦௢௧ 𝜖 {0, 1} ∀ 𝑜 𝜖 𝑂; 𝑡 = 1, … , 𝑇 (19)

The objective function (10) and constraints (11-15) have the same meaning as in the

previous formulation (F1). Eq. (16) guarantee that all products from any inbound trucks

are delivered to the shipping door. Constraints (17) ensure that at time slot l, there are

enough products for the assigned outbound truck.

29

Chapter 4: Solution Methods

In this chapter we present solution algorithms for the TRSP. The necessity to develop

specialized methods arises not only from the fact that the TRSP is strongly NP-hard [11],

but also because general purpose solvers can only solve (relatively easy) small-size

instances. We first present two lower bounds strategies introduced by Boysen et al. [11].

These can be used to provide an estimation of quality of the solutions obtained with the

proposed heuristic algorithms. We then present four heuristic algorithms to obtain

feasible solutions for the TRSP: a local search (LS), a simulated annealing (SA), a large

neighborhood search (LNS), and a beam search (BS).

4.1 Lower Bounds

Due to the fact that all inbound and outbound trucks have to be scheduled at some time

slot, the first trivial lower bound C1 for the optimal solution value of the TRSP can be

obtained as follows:

C1 = max {|I|; |O|}.

To construct another lower bound C2, the overall problem is divided into |P| sub-problems.

For each product, 𝑝 𝜖 𝑃, inbound and outbound truck sequences are constructed by

considering the following steps:

30

x The set of |I| inbound trucks are sorted in descending order with respect to loads aip of

the considered product p. A sequence vector 𝜋௣ with elements 𝜋௜
௣ (i = 1,…, |I|)

denotes the sorted inbound trucks sequences. Because of the left-shift property, the

first truck is to be scheduled at the time slot t = 1.

x The set of O outbound trucks are sorted in ascending order with respect to loads bop of

the considered product p. A sequence vector 𝜇௣ with elements 𝜇௢
௣ (i = 1,…, |O|)

stores the sorted outbound trucks sequences. The total time slots sop for each product

p can be computed according to the following equations:

𝑠 ௢௣ = minቄ𝑡 = 𝑠 ௢ିଵ ௣ + 1 , … , 𝑇ቚ∑ 𝑎గഓ೛௣
୫୧୬ {|ூ|;௧}
ఛୀଵ ≥ ∑ 𝑏ఓഓ೛௣

௢
ఛୀଵ ቅ ∀ 𝑜 𝜖 𝑂; 𝑝 = 𝑃

To initialize the recursive formulae, a slot 𝜇௢
௣ has to be initialized with slot number 0.

The maximum makespan associated with all products leads to the final lower bound C2:

C2 = 𝑚𝑎𝑥௣ ఢ ௉{𝑠|ை|௣}

4.2 Local Search

LS is first reported to be successfully implemented in combinatorial optimization

problems by Croes in 1958 [61] and has ever since become one of the most frequently

and widely used heuristics in the last 50 years. It starts with a feasible solution and aims

to improve it by generating a new solution that is close to the current solution. For that, a

neighborhood is a set of solutions that are close to a given solution. Then the best

31

solution in the neighborhood is identified and it replaces the current solution and the

procedure is repeated. However, if the solution does not improve, the iteration stops and

the current best solution is said to be local optimal.

To describe the features of a LS algorithm, we define the following notation. Let S be a

solution to the problem, which represents a sequence of inbound trucks and outbound

trucks. Let N(S) denote the set of solutions with elements Si, which are the neighbors of

the solution S, and let 𝑆௜
, be the neighbor that has the minimum makespan. Based on the

current sequence S, the elements in N(S) are constructed by fixing the position of some

trucks and changing the position of other trucks. F(S) is the cost function which is the

makespan of a specific sequence S. A general LS algorithm is depicted in Algorithm 1.

Algorithm 1 Local Search

Let F(S) be the function to minimize, S some initial feasible solution and N(S) the
neighborhood structure.

StopCriterion ← false

While (StopCriterion = false) do

Search for a solution 𝑆௜
, ϵ N(S) with F(𝑆௜

,) < F(S)

If (F(𝑆௜
,) >= F(S),) then

 StopCriterion ← true

Else

 S ← 𝑆௜
,

End if

End while

32

A current solution is represented by S = (a, b), where a: T → I, is the inbound sequence

mapping, i.e., a(t) = i if inbound truck i ϵ I is placed in time slot t ϵ T, and b: T → O,

is the outbound sequence mapping, i.e., b(t) = o if inbound truck o ϵ O is placed in time

slot t ϵ T. In our implementation of the LS, we define two neighborhoods. The first one

is the inbound truck neighborhood:

𝑁ூ(S) = {S’ = (a’, b): ∃! (𝑖ଵ, 𝑖ଶ), a(𝑖ଵ) = a’(𝑖ଶ), a(𝑖ଶ) = a’(𝑖ଵ), 𝑖ଵ ≠ 𝑖ଶ},

which is obtained by swapping two adjacent or nonadjacent inbound trucks in a with

outbound trucks in b fixed. The second one is the outbound truck neighborhood:

𝑁ை(S) = {S’ = (a, b’): ∃! (𝑜ଵ, 𝑜ଶ), b(𝑜ଵ) = b’(𝑜ଶ), b(𝑜ଶ) = b’(𝑜ଵ), 𝑜ଵ ≠ 𝑜ଶ},

which is obtained by swapping two adjacent or nonadjacent outbound trucks in b with

inbound trucks in a fixed.

We implement our LS as follows. We start the algorithm with a sequence of inbound and

outbound trucks generated randomly. Preliminary computational experiments revealed

that the initial sequence has little influence for the solution performance. We first explore

𝑁ூ(S) using a best improvement strategy until no improved solution is found. An example

of the exploration of 𝑁ூ(S) is showed in Figure 3.

33

We then explore 𝑁௢(S) using a best improvement strategy until no improved solution is

found. We keep exploring 𝑁ூ(S) and 𝑁௢(S) iteratively until no improved solution is

found and the LS algorithm is terminated. An outline of the proposed LS algorithm is

depicted in Algorithm 2.

Algorithm 2 Local Search

StopCriterion ← false

While (StopCriterion = false) do

Explore 𝑁ூ

If (Solution not improved in 𝑁ூ) then

 Explore 𝑁ை

 If (Solution has not been updated) then

 StopCriterion ← true

 End if

End if

End while

Figure 3. The first iteration and the second iteration for the initiate sequence

34

4.3 Simulated Annealing

SA, introduced by Černý [27] and Kirkpatrick et al. [34], is based on an analogy to the

process of physical annealing with solids (Metropolis Algorithm), in which a crystalline

solid is heated to a sufficiently high value and then cooled very slowly until all particles

reach their most regular possible crystal lattice state. If the cooling schedule is

sufficiently slow, in the finally state the solid is in a superior structural integrity and the

energy of the system is minimal.

At each iteration of the SA, the cost function generates values for two solutions (the

current solution and a newly selected solution). The incumbent is always replaced by the

new selected solution if it has a better solution value, while a fraction of worse solutions

are accepted in the hope of escaping local optima in search of global optima. The

probability of accepting worse solutions depends on a temperature parameter, which is

typically proportional to the difference in solutions and non-increasing with each iteration

of the algorithm [37].

Simulated annealing starts with an initial solution S. Let 𝑆ᇱ, which is randomly generated,

be a neighbor of solution S. The candidate solution, 𝑆ᇱ, is accepted as the current solution

based on the following acceptance probability:

35

P{Accept 𝑆ᇱ as next solution } = ൝ 𝑒𝑥𝑝 ቂ−
ி൫ௌᇲ൯ିி(ௌ)

்ೖ
ቃ , 𝑖𝑓 𝐹(𝑆ᇱ) − 𝐹(𝑆) > 0

 1, 𝑖𝑓 𝐹(𝑆ᇱ) − 𝐹(𝑆) ≤ 0

Define Tk as the temperature parameter at iteration k, such that

Tk > 0 for all k and 𝑙𝑖𝑚௞→ஶ 𝑇௞ = 0

We implement our SA as follows. It starts with a feasible solution S. Preliminary

computational experiments showed the using a good solution (e.g. a solution obtained

with LS) has almost no impact on the final solution as compared to starting with a

solution randomly generated. For that reason, we decide to use initial solutions randomly

generated. We explore S’ ϵ 𝑁ூ(S), where two inbound trucks are randomly selected and

swapped their positions. The makespans of S and S’ are computed and we replace S with

S’ if w ≥ 𝑒𝑥𝑝 ቂ− ி൫ௌᇲ൯ିி(ௌ)
்ೖ

ቃ, where w is a value randomly generated between [0, 1] with

uniform distribution and Tk is temperature parameter at iteration k; otherwise, we do not

replace S. The above procedure is repeated L times. We then cool down that current

temperature k times according to Tk = rTo, where To is initial temperature and r ϵ (0, 1).

For each temperature Tk, we apply the same procedures described above to explore 𝑁ூ(S)

and the same criteria to accept S’. The best solution in the end of iterations is the best

sequence for a specific sequence of outbound trucks and with that best solution, we then

explore 𝑁௢(S) using the same procedure. We keep exploring 𝑁ூ(S) and 𝑁௢(S) iteratively

until no improved solution is found and the SA is terminated. An outline of the proposed

36

SA algorithm is depicted in Algorithm 3.

Algorithm 3 Simulated Annealing

Choose an initial solution S
While (StopCriterion = false) do
 Set an initial temperature To, a reduction factor 0< r <1, k ← 0, Tk ← To
 While (not yet frozen) do

 Count ← 0
 While (count < L) do
 Pick a random neighbor 𝑆ᇱ ϵ 𝑁ூ(S)
 ∆ = 𝐹(𝑆ᇱ) − 𝐹(𝑆)
 If (∆ ≤ 0) then
 𝑆 ← 𝑆ᇱ
 Else
 Set 𝑆 ← 𝑆ᇱ with probability 𝑒ି∆/்ೖ
 End if
 Count ← Count + 1
 End while

 k ← k-1, Tk ← rTk (reduce the temperature)
 End while
 Set an initial temperature To, a reduction factor 0< r <1, k ← 0, Tk ← To
 While (not yet frozen) do

 Count ← 0
 While (count < L) do
 Pick a random neighbor 𝑆ᇱ ϵ 𝑁ை(S)
 ∆ = 𝐹(𝑆ᇱ) − 𝐹(𝑆)
 If (∆ ≤ 0) then
 𝑆 ← 𝑆ᇱ
 Else
 Set 𝑆 ← 𝑆ᇱ with probability 𝑒ି∆/்ೖ
 End if
 Count ← Count + 1
 End while

 k ← k-1, Tk ← rTk (reduce the temperature)
 End while
End while

37

4.4 Large Neighborhood Search

The LNS metaheuristic was first introduced by Shaw [61]. In LNS the neighborhood of a

current solution is constructed by destroy and repair mechanisms, where part of the

current solution is destroyed by a destroy strategy and then reconstructed by a repair

strategy. To illustrate the destroy and repair strategies, consider the INBOUND – TRSP. A

simple destroy strategy is to randomly remove a proportion of trucks scheduled in a given

position of the sequence of the current solution and a simple repair strategy is to

reconstruct the solution by randomly reassigning the removed trucks into the available

positions of the sequence. The Figure 4 illustrates the destroy and repair mechanisms. The

top figure shows an INBOUND – TRSP solution before the destroy step. The middle

figure shows the solution after a destroy operation that removed eight trucks. The bottom

figure shows the solution after the repair step.

The neighborhood of a destroy solution contains a large amount of solutions which

explains the name of the algorithm. For example, we consider an INBOUND – TRSP

with 32 trucks. If 60% of the trucks are to be removed, there are C(32,20) = 32!/(20! ×

1 2 3 4 5 6 7 8 9 10 11 12 13

1

4

6

9

11

1 10 8 4 13 6 12 5 9 7 11 2 3

Figure 4. Destroy and repair example

38

12!) = 2.25 × 108 possible ways of doing it. To repair the solution, there are A(32,20) =

32!/(20!) = 5.5 × 1026 different ways to do it [37].

To describe the details of the LNS algorithm, several definitions are introduced. Let S

denotes the current solution, Sb the best solution obtained during the search, and St is a

temporary solution. F(S) is the cost function (makespan) of the solution S. The function

D(·) is the destroy strategy, where D(S) returns a partial solution of S. The repair strategy

is represented by the function R(·) and R(D(S)) returns a repaired solution that was partly

destroyed. The LNS starts with a feasible solution. Then, a new solution is obtained

through the destroy and repair strategies. The temporary solution would be accepted in

different criterions. A simply one is only to accept improving solutions. The best solution

Sb would be updated if the cost function of St is smaller.

To design a more flexible algorithm, we borrow the acceptance criteria used in the SA

introduced in the last section, where a temporary solution is always accepted if F(St) <=

F(Sb), and accepted with probability 𝑒𝑥𝑝 ቂ− ி൫ௌ೟൯ିி൫ௌ್൯
்ೖ

ቃ, if the cost function does not

improve. The procedure to apply LNS is similar to the one of SA. Preliminary tests

showed that using a good solution (e.g. a solution obtained with SA) has almost no

impact on the final solution as compared to starting with a solution randomly generated.

For that reason, we decided to use initial solutions generated randomly. The main

difference of LNS is the strategy to choose the neighbor. The number of trucks removed

39

is called the degree of destruction. We apply different degrees of destruction, e.g.

selecting and destroying five trucks and then replacing removed positions with trucks

randomly selected from the removed trucks. An outline of the proposed LNS algorithm is

depicted in Algorithm 4.

Algorithm 4 Large Neighborhood Search

Input: a feasible solution S

Sb ← S

 Repeat

 St ← R(D(S))

 If accept (St, S) then

 S ← St

 End if

 If F(St) <= F(Sb) then

 Sb ← St

 Until stop criterion is met

 Return Sb

4.5 Beam Search

BS was first developed by Lowerre in 1976 [59] for a speech recognition problem, where

the goal was to obtain a solution quickly by searching a number of promising decision

paths in parallel. BS is an adaptation of the well-known branch and bound (B&B)

algorithm commonly used to solve integer programs. However, the requirements of CPU

time and memory associated with B&B increase exponentially as the size of the instances

40

increase. BS, on the other hand, has a running time bounded by a polynomial that

depends on the size of the problems and its parameters. The key idea of BS is to keep

only some promising nodes and to permanently prune other nodes.

BS moves downward on the enumeration tree level by level from the best β promising

nodes without backtracking. The other nodes are permanently discarded. To determine

the best β promising nodes, there are typically two ways of doing it. One way is to apply

an evaluation function which produces an estimation of the cost of a solution obtained

from that partial solution. This evaluation function is called one-step priority evaluation

function, which only considers the next decision to be made (the next job to schedule)

and, thus, has a more local view. Another way is a total evaluation that uses some rules to

construct a complete solution based on the current partial solution to estimate its cost.

This evaluation has a global view of the solution. One can use either one or both

strategies to apply BS. A filtering mechanism can combine both strategies together.

During filtering, some nodes are discarded based on their local evaluation function values

and only the remaining nodes are globally evaluated. The number of these remaining

nodes is called the filter width (α).

We illustrate the main idea of BS through a truck scheduling example. There are five

trucks needed to be sequenced. We schedule one more truck at each level. As shown in

Figure 5, nodes represent partial schedules. There are no trucks scheduled at level 0 and

41

one truck has selected at level 1, and so forth. The total number of nodes that can be

explored at each level is {(|𝐼|!)/(|𝐼| − |𝐾|)!}, where I is the total number of trucks to be

sequenced and K is the level number. A line linking two nodes represents the decision to

add one more truck based on the partial schedule. The circles with dotted line represent

the nodes selected by the local evaluation (the filter width). The solid circles are selected

by the global evaluation to be further explored. The beamwidth in the Figure 5 is two so

that, in the end of the enumeration tree, two feasible solutions are selected with

associated sequences {i1, i2, i3, i5, i4} and {i3, i2, i4, i5, i1}.

In our implementation of BS, we apply only a total cost evaluation by constructing

complete solutions. Two main phases are taken. In the first phase, n best inbound

Figure 5. The beam search tree

42

sequences are selected. The algorithm starts by fixing the positions of inbound trucks

depending on the level, e.g. fixing the first three trucks at level three, and builds the

complete sequence with the same procedure used in the computation of the second lower

bound strategy, i.e. sorting the rest of inbound trucks in descending order with respect to

the load aip of the considered product p. Outbound trucks are sorted in ascending order

with respect to loads bop of the considered product p. For each node, there are |P|

different sequences with |P| lower bounds associated and we pick the sequence that has

the minimum makespan, or has the maximum lower bound value, or has the minimum

difference between the makespan and lower bound, depending on which filtering

approach is used later, to represent the complete sequence of that node. To calculate the

global cost function, there are three different filtering approaches. The first approach is

based on the makespan, the second is based on the lower bound, and the last one is based

on the difference between the makespan and the lower bound. The three approaches

follow the same processes, where we select n nodes with the least makespan (or lower

bound or difference) at each level. If some nodes have the same makespan (or lower

bound or difference), we select randomly some of them. The maximum number of nodes

we can select at the first level equals to the number of inbound trucks |I|. However, when

we move downwards to second level, the maximum number of nodes we can select is

|I|×(|I|-1). Thus, we can define in theory the inbound beamwith to be a number between

1 and |I|×(|I|-1). In the second phase, we select the best m outbound sequences for each

app:ds:filter

43

sequence among those n best inbound sequences. For the outbound trucks at each level,

we start fixing the positions of outbound trucks depending on the level, e.g. fixing the

first 3 trucks at the level 3. We then sequence other outbound trucks in ascending order

with respect to their fraction of total product volumes:

f(o) = ଵ

∑
್೚೛

∑ ್഑೛഑ ച ೀ
೛ ച ು

 (the fraction of total product volume).

For example, there are three outbound trucks carrying three types of products (a, b, c).

The first truck carries 2 units of a, 3 units of b and 4 units of c; the second truck carries 2

units of a, 3 units of b and 5 units of c; the third truck carries 6 units of a, 3 units of b and

5 units of c. The fraction of total product volume of the first truck is

f(1) = ଵ
మ

మశమశలା
య

య శయశయା
ర

రశఱశఱ

There is one complete sequence associated with each node. To calculate the global cost

function, we use the makespan of each node, where we select m nodes with the smallest

makespan at each level. If some nodes have the same makespan, we select among them

randomly. We can define the outbound beamwidth to be a number between 1 and

|O|×(|O|-1). At the last level of the enumeration tree, we have n × m feasible solutions. In

addition, we also generate several feasible solutions during the evaluation of the nodes in

the tree. We compare all these solutions and the sequence with the minimum makespan

gives us the best solution.

44

Chapter 5: Computational Experiments

In the following, a computational study is presented to evaluate the performance of the

formulations and solution methodologies introduced in previous sections. In the first part

of this chapter, besides a set of instances randomly generated using the procedure

presented in Boysen et al. [11], two more realistic sets of instances are generated. In the

second part, the results obtained with the integer programming formulations presented in

Chapter 3 are presented. We then analyze individually the performance of SA, LNS and

BS introduced in Chapter 4. Finally, the results obtained with all proposed algorithms and

CPLEX are compared. All algorithms were coded in C and run on Windows with a

Pentium Dual-Core processor at 2.80 GHz and 4GB of RAM.

5.1 Instance Generation

Preliminary computational experiments showed that the instances generated in Boysen et

al. [11] tend to be rather easy. In particular, all generated instances, containing up to 18

inbound and outbound trucks, can be solved by CPLEX within a few minutes (i.e. always

less than 13 minutes). For that season, following the structure of real applications, we

construct two new sets of instances to better assess the complexity of the TRSP and the

performance of the proposed heuristic algorithms, for obtaining high quality feasible

solutions in reasonable CPU times.

45

5.1.1 First Set of Instances

The first way to generate instances is based on the situation that each inbound truck

carries only one type of product and outbound trucks carry a mixture of products. Table 1

shows an instance with 5 inbound and outbound trucks with 5 types of product (a, b, c, d,

e).

Two sets (i.e. small and large sized) of instances are generated using this approach. The

parameters of numbers of inbound trucks and outbound trucks with their loads are shown

in Table 2. There are 5 different numbers of inbound and outbound trucks for each set of

instances so that 5 × 5 = 25 instances are generated. Each instance is generated as follows

according to the given set of parameters.

 Type of

 Product

Truck

a b c d e

Inbound trucks 1 50 0 0 0 0
2 0 30 0 0 0
3 0 0 40 0 0
4 0 0 0 20 0
5 0 0 0 0 60

Outbound trucks 1 17 13 0 9 18
2 0 0 18 0 14
3 18 0 13 7 13
4 0 17 0 2 15
5 15 0 9 2 0

Total units 50 30 40 20 60

Table 1. An example of a randomly generated instance

46

 Values

Symbol Description Small Large

|I| Number of inbound trucks 14, 16, 18, 20, 22 24, 26, 28, 30, 32

|O| Numbers of outbound truck 14, 16, 18, 20, 22 24, 26, 28, 30, 32

|P| Number of products 14, 16, 18, 20, 22 24, 26, 28, 30, 32

TF total amount of product units in all inbound 1000 - 9000
 and outbound trucks for a family of products.

Table 2. Parameters for instance generation

x Inbound trucks: Assuming that there are several origins (e.g. different product

suppliers). Each origin provides one product and has only one truck carrying that

product. The number of units of each product ranges from 1000 to 9000. The number

of trucks is the same as the number of different types of products we have.

x Outbound trucks: For each product 𝑝 𝜖 𝑃, the following procedure is repeated to

generate the load of outbound trucks. We assume that, for each type of product, at

least half of the outbound trucks carry one unit of it and it is decided by defining an

array UOp. The size of UOp is decided by an equally distributed integer random

number out of the interval [|O|/2, |O|]. The value of the element of UOp is a randomly

unrepeated integer that is chosen according to uniform distribution with the interval

[1, |O|], which means we choose several outbound trucks to place in the array UOp.

Let 𝑇𝐹௣ be the total amount of product units of product p. We assume that each

chosen outbound truck containing at least ቔ ்ி೛
ଶ×|ை|

ቕ units of type p product. Let r𝑒𝑑𝑟௣௢

be an equally distributed integer random number out of the interval [1, ቔ ்ி೛
ଶ×|ை|

ቕ]. The

47

chosen outbound truck may contain more products by adding r𝑒𝑑𝑟௣௢ . To avoid

rounding errors we distinguish between the set UOp, which contains all randomly

chosen trucks, and 𝑈𝑂௣ି, which a copy of UOp missing its last element:

 bop = ൝
ቔ ்ி೛
ଶ×|ை|

ቕ + r𝑒𝑑𝑟௣௢, ∀ 𝑝 𝜖 𝑈𝑂௣ି

𝑇𝐹௣ − ∑ 𝑏௢௣௣ᇲఢ௎ை೛ష , 𝑝 𝜖 𝑈𝑂௣\ 𝑈𝑂௣ି

5.1.2 Second Set of Instances

The second way to generate instances is based on the situation that several groups of

inbound trucks carry several families of products from different origins and outbound

trucks carry a mix of products. Table 3 shows an instance with seven inbound and five

outbound trucks with three families of products (a, b, c).

The parameters of numbers of inbound trucks and outbound trucks are the same as the

first set, though the load is now ranging from 1000 to 5000 for each inbound truck. We

also generate two classes (small and larger) of instances for the second set with 25

instances for each class. Each single instance is generated according to the procedure as

follows.

x Inbound trucks: There are several origins (e.g. different product suppliers). Each

origin provides three to five products and has several trucks carrying units of each

product. The number of units of each product randomly ranges from 1000 to 5000.

48

x Outbound trucks: the way to generate the load of outbound trucks is same as the first

set of instances.

5.2 Formulations and Three Sets of Instances

Preliminary computational experiments showed that the proposed formulation (F2) is

able to improve the linear programming (LP) relaxation bound, but the required CPU

time to solve the problem is much longer than the one required by formulation (F1). It

seems that the improvement on the lower bound does not compensate the increase of the

number of variables and constrains. However, we believe it is still useful to provide our

 Type of

 product

 Truck

a1 a2 b1 b2 b3 c1 c2

Inbound trucks 1 50 10 0 0 0 0 0
2 20 30 0 0 0 0 0
3 0 0 10 30 10 0 0
4 0 0 20 30 20 0 0
5 0 0 40 10 30 0 0
6 0 0 0 0 0 50 10
7 0 0 0 0 0 60 40

Outbound trucks 1 30 0 24 13 18 13 15
2 15 13 0 16 0 26 8
3 0 11 21 17 13 17 0
4 25 0 25 0 15 22 16
5 0 14 0 24 14 32 11

Total units 70 40 70 70 60 110 50

 Table 3. An example of a randomly generated instance

49

formulation (F2) due to the fact that with some decomposition technics (e.g. Lagrangean

relaxation, column generation or bender decomposition) it would be possible to handle it

and to solve the TRSP in reasonable CPU times. However, developing decomposition

technics is not the scope of this thesis, we decide not to include the associated

computational experiments for formulation (F2) and to only use the formulation (F1) to

assess complexity of different structures of instances.

Three sets of instances are generated with the number of inbound trucks and outbound

trucks ranging from 14 to 18, which are the largest size instances used by Boysen et al.

[11]. The way to generate the first two sets is mentioned in Section 5.1 and the third set of

instances is generated by following the procedure presented in Boysen et al. [11]. The

detailed results of the comparison are provided in Table 4. The first and second columns

contain the number of inbound and outbound trucks. The third column contains the

number of different types of product. The last three columns correspond to the required

CPU time in seconds to obtain an optimal solution for the three sets of instances.

The second set of instances require the least time to be solved, most of them in 60

seconds. The third set of instances require more time while the first set requires the most

time. For the last instance of the first set, we cannot even obtain the optimal solution

within 27 hours. Therefore, we conclude that first set of instances is the most difficult and

the second set of instances is the easiest and the third set of instance goes in the middle.

50

It seems the first set is the most sensitive to the truck sequences, where only one inbound

truck carries one type of products and changing the sequence of one truck affects the

sequence of all inbound and outbound trucks. The second and third sets of instances are

relatively easy because there are usually some trucks carrying the same types of products,

where changing the sequence of one truck may not substantially affect the sequence of

many inbound and outbound trucks.

Given that the third set of instances used in Boysen et al. [11] can be solved by CPLEX in

few minutes, we decided to increase the size of instances (i.e. 26 to 30 inbound and

outbound trucks) and to solve them with CPLEX to assess the complexity of the TRSP.

The first three columns of Table 5 are the number of inbound trucks, outbound trucks and

products. The following columns give the information of upper bounds and lower bounds

Truck Information 1st set 2nd set 3rd set

InTruck OutTruck Product OTP Time(s) OTP Time(s) OTP Time(s)

14 14 14 23 90 16 28 15 26
14 16 14 25 60 19 11 17 96
14 18 14 26 195 22 14 18 34
16 14 16 25 7200 18 20 18 192
16 16 16 27 1500 20 25 18 776
16 18 16 29 1149 21 22 19 85
18 14 18 27 27420 19 61 20 95
18 16 18 29 510 20 30 19 402
18 18 18 31-30* 97230 23 34 19 482

Table 4. Comparison of results of three sets of instance running in CPLEX

51

with associated gaps. These instances were run in CPLEX for 24 hours and the remaining

gaps were still very large after that time. The size of trucks arranging from 26 to 30 are

realistic in real life applications, but CPLEX cannot longer solve them to optimality.

Therefore, it is very important to develop algorithms to obtain good quality solution in

reasonable CPU times. We also test the larger instances generated by the second way and

most of the instances can solved by CPLEX within few hours (i.e. three hours). However,

our goal is to solve difficult instances so that we only run our proposed algorithms for the

first and third sets of large instances. To compare the solution quality of all algorithms,

we obtain the best known solutions from either the results of CPLEX for a given time

frame of 3600 seconds or the best solution found with all proposed heuristic algorithms.

Truck Information 1st set 3rd set

InTruck OutTruck Product UB LB Gap(%) Time(h) UB LB Gap(%) Time(h)

26 26 26 46 30 34% 24 36 22 39% 24

26 28 26 47 25 47% 24 40 20 50% 24

26 30 26 50 32 36% 24 45 22 51% 24

28 26 28 48 28 41% 24 40 26 35% 24

28 28 28 49 27 44% 24 49 27 44% 24

28 30 28 52 32 46% 24 39 19 51% 24

30 26 30 49 30 38% 24 49 20 59% 24

30 28 30 52 30 42% 24 49 25 48% 24

30 30 30 52 32 42% 24 35 14 14% 24

Table 5. Computational results of large instances solved with CPLEX

52

5.3 Evaluation of SA

In this section we present the computational results from the implementation of simulated

annealing. Given that the cooling strategy has a big influence on the performances of SA,

we test seven different cooling strategies. Table 6 shows the cooling parameters for

different strategies, where InTo and OutTo denote the initial temperatures for applying SA

to INBOUND – TRSP and OUTBOUND – TRSP respectively, InTf and OutTf are the

final temperatures, the total numbers of temperatures which gradually cool down from

the initial temperature to the final temperate are represented by InK and OutK, InL and

OutL are the total number of iterations for each temperature. From the strategy 1 to the

strategy 7, the speed to cool down the temperature becomes slower and the iterations in

each cooling stage are 37, 111 or 150.

 S1 S2 S3 S4 S5 S6 S7
InTo 1000 1000 1000 1000 1000 1000 1000
InTf 1 1 1 1 1 1 1
InK 37 111 37 111 37 111 37
InL 5 2 10 5 10 10 150

OutTo 1000 1000 1000 1000 1000 1000 1000
OutTf 1 1 1 1 1 1 1
OutK 37 111 37 111 111 111 37
OutL 5 2 10 5 20 10 150

Table 6. SA cooling parameters

53

Table 7 shows the results of SA, where the percent deviation (PD) is measured by

஼(ௌ஺)ି஼(ை௉்)
஼(ௌ஺)

 × 100 %, where C(SA) is the best result from SA and C(OPT) is the best

known solution. We only present the detailed results from a subset of instances, but the

average PD and CPU time are computed by considering all instances.

54

Tr
uc

k
In

fo
rm

at
io

n
SA

1
SA

2
SA

3
SA

4
SA

5
SA

6
SA

7

In

Tr
uc

k

O
ut

Tr

uc
k

Pr
od

uc
t

PD

(%
)

Ti
m

e(
s)

PD

(%

)
Ti

m
e(

s)

PD

(%
)

Ti
m

e(
s)

PD

(%

)
Ti

m
e(

s)

PD

(%
)

Ti
m

e(
s)

PD

(%

)
Ti

m
e(

s)

PD

(%
)

Ti
m

e(
s)

1s
t s

et

30

32

30

3.
45

0.

59

3.
45

0.

81

3.
45

2.

26

3.
45

4.

95

3.
45

13

.4

1.
75

19

.5

1.
75

52

3
32

24

32

5.

66

0.
54

3.

85

0.
75

5.

66

2.
07

1.

96

4.
65

3.

85

12
.3

3.

85

17
.8

1.

96

48
5

32

26

32

3.
70

0.

58

5.
45

0.

77

3.
7

2.
23

3.

7
4.

93

3.
7

13
.3

3.

7
19

.4

1.
89

51

9
32

28

32

3.

57

0.
57

3.

57

0.
81

1.

82

2.
31

3.

57

4.
96

1.

82

13
.2

1.

82

19
.7

0

52
3

32

30

32

5.
08

0.

6
3.

45

0.
85

3.

45

2.
37

3.

45

5.
19

3.

45

14
.1

1.

75

20
.7

0

54
9

32

32

32

34
.4

3
0.

62

33
.3

0.

87

33
.3

2.

44

33
.3

5.

36

33
.3

14

.7

33
.3

21

.4

32
.2

56

7
3r

d
se

t
30

32

30

12

.5

0.
6

18
.6

0.

83

7.
89

2.

42

12
.5

5.

07

18
.6

13

.7

5.
41

20

.4

5.
41

52

8
32

24

32

8.

11

0.
59

10

.5

0.
81

8.

11

2.
36

2.

86

5.
01

8.

11

13
.9

2.

86

20
.1

0

51
7

32

26

32

10
.3

0.

6
10

.3

0.
84

10

.3

2.
43

5.

41

5.
17

5.

41

13
.2

5.

41

21
.1

2.

78

53
5

32

28

32

12
.5

0.

62

10
.3

0.

86

7.
89

2.

46

7.
89

5.

3
5.

41

14
.4

7.

89

21
.2

5.

41

54
1

32

30

32

7.
5

0.
64

11

.9

0.
87

11

.9

2.
47

11

.9

5.
38

7.

5
15

.1

5.
13

21

.5

2.
63

57

0
32

32

32

7.

32

0.
66

13

.6

0.
97

7.

32

2.
66

7.

32

5.
87

5

16

7.
32

23

.2

5
61

3
Av

er
ag

e
7.

57

0.
5

8.
16

0.

7
6.

62

1.
99

6.

14

4.
31

5.

66

11
.7

4.

6
17

.2

2.
77

44

7

Ta
bl

e
7.

 R
es

ul
ts

 o
f S

A
 w

ith
 7

 d
iff

er
en

t c
oo

lin
g

st
ra

te
gi

es

55

As shown in Figure 6, from the strategy 1 to strategy 7, the trend of average CUP times

increases from 0.5 seconds to 446.6 seconds, while the average PD decreases from 7.57%

to 2.77%. From strategy 1 to strategy 2, more time is used, though the solution quality

has decreased. It is because, compared to strategy 1, strategy 2 has less iterations in each

temperature stage. The figure illustrates that if the cooling strategy is slower or there are

more iteration at each temperature, the solution quality improves.

5.4 Evaluation of LNS

In this section we present the computational results from the implementation of LNS.

Within all tested instances, the minimum size contains 14 inbound and outbound trucks.

So degrees of destruction are chosen from 2 to 14 trucks for all instances. Only first 6

Figure 6. Results of SA analysis

0

1

2

3

4

5

6

7

8

9

0.5 0.7 2.0 4.3 11.7 17.2 446.6

SA S1 SA S2 SA S3 SA S4 SA S5 SA S6 SA S7

Av
er

ag
e

De
vi

at
io

n
(%

)

Time (s)

56

cooling strategies in Table 6 are used for LNS because the computational study shows

from strategy 5 to strategy 6 the improvement is minor but CPU time increases a lot.

Table 8 shows the results of LNS, where the PD is measured by ஼(௅ேௌ)ି஼(ை௉்)
஼(௅ேௌ)

 × 100 %,

where C(LNS) is the best result from LNS and C(OPT) is the best known solution.

57

Tr
uc

k
In

fo
rm

at
io

n
LN

S1

LN
S2

LN

S3

LN
S4

LN

S5

LN
S6

In

Tr
uc

k

O
ut

Tr

uc
k

Pr
od

uc
t

PD

(%
)

Ti
m

e(
s)

PD

(%

)
Ti

m
e(

s)

PD

(%
)

Ti
m

e(
s)

PD

(%

)
Ti

m
e(

s)

PD

(%
)

Ti
m

e(
s)

PD

(%

)
Ti

m
e(

s)

1s
t s

et

30

32

30

1.
75

11

3
1.

75

15
6

1.
75

44

7
1.

75

94
9

0
26

06

1.
75

37

63

32

24

32

1.
96

10

1
1.

96

14
0

1.
96

40

1
1.

96

86
7

1.
96

23

53

1.
96

34

71

32

26

32

1.
89

10

5
1.

89

14
6

1.
89

41

9
1.

89

90
5

0
24

54

0
36

13

32

28

32

1.
82

10

9
0

15
1

0
43

5
0

93
3

0
25

37

0
37

62

32

30

32

1.
75

11

3
1.

75

15
6

1.
75

44

7
1.

75

97
1

0
26

28

0
38

79

32

32

32

32
.2

11

7
32

.2

16
1

32
.2

46

2
32

.2

10
02

32

.2

27
05

32

.2

40
03

3r

d
se

t
30

32

30

5.

41

11
2

5.
41

16

1
5.

41

46
6

5.
41

98

7
2.

78

26
74

5.

41

39
15

32

24

32

2.

86

11
0

2.
86

15

2
2.

86

43
6

2.
86

94

7
0

25
71

0

37
74

32

26

32

2.

78

11
3

2.
78

15

6
2.

78

44
7

2.
78

96

7
2.

78

26
23

0

38
63

32

28

32

5.

41

11
5

5.
41

16

0
5.

41

45
8

5.
41

99

3
5.

41

27
21

5.

41

39
35

32

30

32

2.

63

11
8

5.
13

16

2
2.

63

46
7

2.
63

10

12

2.
63

27

47

0
41

02

32

32

32

2.
56

12

7
2.

56

17
6

2.
56

50

5
0

11
13

0

29
77

0

43
47

Av

er
ag

e
3.

52

96

3.
55

13

3
2.

85

38
1

2.
47

82

4
1.

97

22
35

1.

93

32
96

Ta
bl

e
8.

 R
es

ul
ts

 o
f L

N
S

w
ith

 6
 d

iff
er

en
t c

oo
lin

g
st

ra
te

gi
es

58

As shown in Figure 7, from the strategy 1 to strategy 6, the average CUP time increases

from 96 seconds to 3296 seconds, while the average PD decreases from 3.52% to 1.93%.

0
0.5

1
1.5

2
2.5

3
3.5

4

96 133 381 824 2235 3296

LNS S1 LNS S2 LNS S3 LNS S4 LNS S5 LNS S6

Av
er

ag
e

De
vi

at
io

n
(%

)

Time (s)

Figure 7. Results of LNS analysis

59

5.5 Evaluation of BS

In this section we present the computational results from the implementation of BS. As

mentioned in Section 4.5, in the first phase of BS, the maximum number of nodes we can

select at the first level equals to the number of inbound trucks |I| and in the second phase

the maximum number of nodes we can select at the first level equals to the number of

outbound trucks |O|. But when we move downwards to the second level, the maximum

number of nodes we can select is |I|×(|I|-1) and |O|×(|O|-1) for the first phase and the

second phase respectively. To apply BS, depending on the different instances, we select

the number of nodes at the first level to explore as |I| in first phase and |O| in the second

phase. Thus, we then define the inbound beamwidth as 5|I|, 10|I| and outbound

beamwidth as 7|O|, 9|O| and 10|O| to test all instances.

Table 9 shows the results of BS with different filtering approaches and beamwidths. The

first column is the number of inbound trucks and outbound trucks. In the first row, BS U5

9 means the filtering approach is based on the upper bound and inbound beamwidth and

outbound beamwidth are 5|I| and 9|O| respectively. BS L means the filtering approach is

based on the lower bound and BS G means the filtering approach is based on the gap

between lower bound and upper bound.

app:ds:filter

60

Tr
uc

k
In

f
BS

 U
59

BS

 U
10

 7

BS
 U

10
 1

2
BS

 L
5

9
BS

 L
10

 7

BS
 L

10
 1

2
BS

 G
59

BS

 G
10

 7

BS
 G

10
 1

2

In

Tr
uc

k

O
ut

Tr

uc
k

PD

(%
)

T (s
)

PD

(%
)

T (s
)

PD

(%
)

T (s
)

PD

(%
)

T (s
)

PD

(%
)

T (s
)

PD

(%
)

T (s
)

PD

(%
)

T (s
)

PD

(%
)

T (s
)

PD

(%
)

T (s
)

1st
 se

t
30

32

1.

75

40
5

1.
75

64

4
1.

75

11
88

3.

45

38
5

1.
75

58

2
1.

75

99
5

3.
45

39

9
3.

45

63
6

3.
45

10

40

32

24

3.
85

19

6
3.

85

32
3

3.
85

56

8
3.

85

15
8

3.
85

24

7
3.

85

41
8

1.
96

19

3
1.

96

32
2

1.
96

49

0
32

26

3.

7
24

7
3.

7
40

5
3.

7
73

1
0

21
1

0
33

0
0

55
8

3.
7

24
3

3.
7

39
8

3.
7

61
6

32

28

3.
57

31

3
3.

57

50
7

3.
57

95

0
1.

82

27
6

1.
82

42

7
1.

82

72
2

3.
57

31

1
3.

57

50
4

3.
57

79

4
32

30

5.

08

40
0

5.
08

64

2
5.

08

11
89

1.

75

36
5

1.
75

52

9
1.

75

92
9

5.
08

39

8
5.

08

62
5

5.
08

10

25

32

32

33
.3

48

1
33

.3

80
0

33
.3

14

23

33
.3

43

2
33

.3

67
3

32
.2

11

46

33
.3

47

8
33

.3

77
2

33
.3

12

47

3rd
 se

t
30

32

0

40
2

0
66

4
0

10
52

2.

78

38
1

2.
78

57

2
2.

78

97
8

0
40

2
0

64
2

0
10

42

32

24

0
20

0
0

34
3

0
50

6
2.

86

17
0

2.
86

25

9
2.

86

43
3

0
22

1
0

33
1

0
50

3
32

26

2.

78

25
7

2.
78

43

2
2.

78

64
8

5.
41

21

9
5.

41

32
9

5.
41

56

3
2.

78

25
2

2.
78

41

2
2.

78

64
2

32

28

2.
78

31

8
0

53
0

0
80

2
5.

41

27
8

5.
41

42

0
5.

41

71
3

2.
78

30

8
2.

78

50
1

2.
78

88

4
32

30

0

42
3

0
64

7
0

99
7

0
36

0
0

53
9

0
91

7
0

38
3

0
61

8
0

99
3

32

32

0
48

6
0

81
7

0
12

69

2.
56

45

7
2.

56

68
5

2.
56

11

62

0
49

9
0

79
1

0
12

78

Av
er

ag
e

3.
68

21

7
3.

63

23
4

3.
06

23

6
3.

47

32
7

3.
34

37

4
2.

75

38
7

3.
41

55

7
3.

28

61
4

2.
66

64

0

Ta
bl

e
9.

 R
es

ul
ts

 o
f L

N
S

w
ith

 d
iff

er
en

t f
ilt

er
in

g
ap

pr
oa

ch
es

 a
nd

 b
ea

m
w

id
th

s

app:ds:filter

61

As shown in Figure 8, with the same inbound and outbound beamwidths the filtering

approach based on the upper bound performs best in terms of solution quality with little

sacrificing in CPU time (e.g. 2 seconds more than BS G when beamwidths are 5|I| and

9|O|). With the same filtering approach the wider inbound and outbound beamwidths are

the better solution quality would be.

5.6 Comparison of All Methodologies

The first part of this section shows the comparison of lower bounding strategies proposed

by Boysen et al. [11] and the lower bounds obtained from CPLEX. In the second part, all

methodologies are compared together with CPLEX. Since there are several different

strategies for SA, LNS and BS, we select the strategy that provides good solutions within

0

0.5

1

1.5

2

2.5

3

3.5

4

217 234 236 327 374 387 557 614 640

BS L5 9 BS G5 9 BS U5 9 BS L10
7

BS G10
7

BS U10
7

BS L10
12

BS G10
12

BS U10
12

Av
er

ag
e

De
vi

at
io

n
(%

)

Time (s)

Figure 8. Results of BS analysis

62

reasonable time as the best strategy for each algorithm. The computational study shows

that the proposed algorithms perform differently according to different structures of

instances. For that reason, the algorithms are compared based on two set of instances (i.e.

the first set of large instances and the third set of large instances).

5.6.1 Lower Bound Comparison

As proved in Boysen et al. [11], fixing some truck sequences leads to tighter bounds. To

obtain better lower bounds, we use a similar idea as BS but here we branch every node at

each level. Depending on the level, first several positions of trucks are fixed for every

node thus every node at a level provides a lower bound for that partially fixed truck

sequence. The minimum bound of all nodes at a certain level gives the lower bound for

the whole problem. The deeper the level is the tighter the lower bound would be.

However, the number of nodes goes exponentially as the level becomes deeper, e.g. the

number of nodes in the 9th level of an instance of the size 32 inbound trucks is 2.3 × 1014.

Due to the limited memory of our computer, we can only branch nodes to the 4th level for

all instances. Figure 9 shows the comparison of proposed LB and the lower bound

obtained by CPLEX, where the PD is measured by ஼(ை௉்)ି஼(௅஻)
஼(ை௉்)

 × 100 %, where C(LB)

is the LB and C(OPT) is the best known solution. The proposed LB strategies outperform

CPLEX not only in terms of LB quality but also using way much less CPU time.

However, compared to LB one, the LB two does not substantially improve the bounds

63

mainly because we only branch to the 4th level.

5.6.2 A Comparison of Heuristics with Two Sets of Large Instances

The criterion to select the best strategy for each algorithm takes in consideration both the

CPU time and solution quality. The maximum CPU time of 7 strategies of SA is within

several minutes (i.e. strategy 7 uses 7 minutes). With few more minutes, the solution

quality of strategy 7 has obvious improvement as compared to strategy 6 so that the

strategy 7 is selected. However, for LNS, the strategy 6 uses dozen minutes more than

other strategies but the improvement is insignificant. For that reason, we select a strategy

from 1 to 5 depending on the different structures of instances. For BS, CUP times do not

have big difference among different filtering approaches when the beamwith is the same

Figure 9. Results of lower bounds comparison

0

10

20

30

40

50

60

0 16 3600

Proposed LB1 Proposed LB2 CPLEX LB

Time (s)

Av
er

ag
e

De
vi

at
io

n
(%

)

64

so we select the strategy depending on the performance of each filtering approach.

For the first set of large instances, the best strategies for SA, LNS and BS are strategy 7,

strategy 4 and upper bound filtering approach with 5 and 9 inbound and outbound

beamwidths, respectively. As shown in Figure 10, three of our proposed algorithms

perform better than CPLEX in solution quality with less CPU time. Although LS does not

have better solution quality, it uses much less CPU time.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

0.0 244.0 393.7 461.5 3600.0

LS BS U59 LNS S4 SA S7 CPLEX

Av
er

ag
e

De
vi

at
io

n
(%

)

Time (s)

Figure 10. Comparisons of methodologies for 1st set of large instances

65

For the third set of large instances, best strategies for SA, LNS and BS are strategy seven,

strategy 4 and lower bound filtering approach with 5 and 9 inbound and outbound

beamwidth, respectively. As shown in Figure 11, CPLEX performs better in terms of

solution quality with 1.4% average PD. However, our proposed algorithms use less time

with reasonable solution quality, i.e. 3.8% for SA, 4.8% for BS and 4.0% for LNS.

Figure 11. Comparisons of methodologies for 2nd set of large instances

0.0

5.0

10.0

15.0

20.0

25.0

0.0 130.1 223.5 439.2 3600.0

LS LNS S4 BS L5 9 SA S7 CPLEX

Av
er

ag
e

De
vi

at
io

n
(%

)

Time (s)

66

Chapter 6: Conclusions and Further Research

In this thesis, we study a trucking scheduling problem arising in the operation of

cross-docking terminals. As the most important contribution of this thesis, we develop

four heuristic algorithms (local search, simulated annealing, large neighborhood search,

and beam search) to deal with difficult sets of instances associated with flow structures

arising in real applications. We study different strategies of each algorithm and conclude

the best strategy for each one of them. In general, LNS and BS perform the best and,

depending on different structures of instances, the performances of these two algorithms

vary. Compared to the algorithms proposed by Boysen et al. [11], we are able to solve

larger size instances with good solution qualities in reasonable CPU times. Moreover, for

certain instances the proposed algorithms perform better than CPLEX, not only in terms

of solution quality but also in terms of CPU times. We also test lower bound strategies

that obtain tighter bounds with less time than CPLEX. In real applications, decision

makers can choose one of the proposed algorithms, or CPLEX, or the hybrid of proposed

algorithms and CPLEX to solve the problem according to the time constrains.

Another contribution of this thesis is to analyze the complexity of three different

structures of instances. The second set of instances is the easiest and the third set of

instance goes in the middle while the first set of instances is the most difficult. We also

propose an alternative integer programming formulation (F2) for the problem to obtain

67

better linear programming relaxation bounds as compared to the formulation (F1)

proposed by Boysen et al. [11]. Unfortunately, the required CPU times to solve this

formulation is much higher due to the large number of variables and constrains. However,

we believe that, with some decomposition technics, it would be possible to handle our

formulation and to solve the problem efficiently.

We study the problem based on several assumptions and in order to solve more realistic

problems, there are several aspects of this research topic that are worth further

investigating.

1. Use decomposition technics to handle the proposed formulation.

2. Develop an exact algorithm. All the proposed algorithms cannot guarantee the

optimal solution. Although, CPLEX is able to obtain the optimal solution for small

size instances, it fails to do so for large instances. B&B based algorithms are known

to be successful for optimally solving some fundamental machine scheduling

problems (MSPs) [65]. The TRSP has many similarities with MSPs so that an

interesting research direction would be to develop a B&B algorithm for the TRSP.

3. Consider multiple strip and stack doors. Make the original problem more realistic by

taking multiple strip and stack doors into consideration.

4. Take into consideration a dynamic case. In our model, we assume the trucks are

available at the beginning of the planning horizon. However, due to the traffic

68

congestion or other contingencies, inbound trucks may not arrive on time. Similarly,

shipments are usually bound to the due dates negotiated with customers. So the

dynamic approach would make the problem more applicable to the real world.

69

References

[1] State of Logistics. (2014). Retrieved 02/01, 2014, from http://www.ic.gc.ca.

[2] Transport Canada. (2014). Retrieved 02/01, 2014, from http://www.tc.gc.ca.

[3] Apte, U. M., & Viswanathan, S. (2000). Effective cross docking for improving

distribution efficiencies. International Journal of Logistics, 3(3), 291-302.

[4] Boysen, N., & Fliedner, M. (2010). Cross dock scheduling: Classification, literature

review and research agenda. Omega, 38(6), 413-422.

[5] 2008 cross-docking trends report. (2008). Retrieved 02/01, 2014, from

http://www.saddlecrk.com/ Whitepaper.

[6] 2011 cross-docking trends report. (2011). Retrieved 02/01, 2014, from

http://www.saddlecrk.com/ Whitepaper.

[7] Bartholdi, J. J., & Gue, K. R. (2004). The best shape for a cross-dock. Transportation

Science, 38(2), 235-244.

[8] Galbreth, M. R., Hill, J. A., & Handley, S. (2008). An investigation of the value of

cross-docking for supply chain management. Journal of Business Logistics, 29(1),

225-239.

http://www.ic.gc.ca/
http://www.tc.gc.ca/
http://www.saddlecrk.com/
http://www.saddlecrk.com/

70

[9] Li, Y., Lim, A., & Rodrigues, B. (2004). Cross-docking—JIT scheduling with time

windows. Journal of the Operational Research Society, 55(12), 1342-1351.

[10] Schaffer B. (1997). Implementing a successful cross-docking operation. IIE Solutions,

29(10), 34-36.

[11] Boysen, N., Fliedner, M., & Scholl, A. (2010). Scheduling inbound and outbound

trucks at cross docking terminals. OR Spectrum, 32(1), 135-161.

[12] McWilliams, D. L., Stanfield, P. M., & Geiger, C. D. (2005). The parcel hub

scheduling problem: A simulation-based solution approach. Computers & Industrial

Engineering, 49(3), 393-412.

[13] Yu, W., & Egbelu, P. J. (2008). Scheduling of inbound and outbound trucks in cross

docking systems with temporary storage. European Journal of Operational Research,

184(1), 377-396.

[14] Kinnear, E. (1997). Is there any magic in cross-docking? Supply Chain Management:

An International Journal, 2(2), 49-52.

[15] Glossary of the Material Handling Industry of America. (2011). Retrieved 02/01, 2014,

from http://www.mhia.org/learning/glossary.

[16] Van Belle, J., Valckenaers, P., & Cattrysse, D. (2012). Cross-docking: State of the art.

http://www.mhia.org/learning/glossary

71

Omega, 40(6), 827-846.

[17] Arnaout, G., Rodriguez-Velasquez, E., Rabadi, G., & Musa, R. (2010). Modeling

cross-docking operations using discrete event simulation. Proceedings of the 6th

International Workshop on Enterprise & Organizational Modeling and Simulation, pp.

113-120.

[18] Stalk, G., Evans, P., & Sgulman, L. E. (1992). Competing on capabilities: The new

rules of corporate strategy. Harvard Business Review.

[19] Chen, F., & Lee, C. (2009). Minimizing the makespan in a two-machine

cross-docking flow shop problem. European Journal of Operational Research, 193(1),

59-72.

[20] Werners, B., & Wülfing, T. (2010). Robust optimization of internal transports at a

parcel sorting center operated by deutsche post world net. European Journal of

Operational Research, 201(2), 419-426.

[21] Cook, R. L., Gibson, B. J., & MacCurdy, D. (2005). A lean approach to cross docking.

[22] Napolitano, M. (2011). Cross dock fuels growth at dots. Logistics Management

(Highlands Ranch, Colo.: 2002), 50(2).

[23] Witt CE. (1998). Cross-docking: Concepts demand choice. Material Handling

72

Engineering, 53(7), 44-49.

[24] Kreng, V. B., & Chen, F. (2008). The benefits of a cross-docking delivery strategy: A

supply chain collaboration approach. Production Planning and Control, 19(3), 229-241.

[25] Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4),

408-416.

[26] Agustina D, Lee CKM, Piplani R. (2010). A review: Mathematical models for

cross dock planning. International Journal of Engineering Business Management, 2(2),

47-54.

[27] Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An

efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1),

41-51.

[28] Sung, C., & Song, S. (2003). Integrated service network design for a cross-docking

supply chain network. Journal of the Operational Research Society, 54(12), 1283-1295.

[29] Gümüş, M., & Bookbinder, J. H. (2004). Cross-docking and its implications in

location-distribution systems. Journal of Business Logistics, 25(2), 199-228.

[30] Donaldson, H., Johnson, E. L., Ratliff, H. D., & Zhang, M. (1998). Schedule-driven

cross-docking networks. Georgia Tech Tli Report, the Logistics Institute, Georgia Tech.

73

[31] Musa, R., Arnaout, J., & Jung, H. (2010). Ant colony optimization algorithm to solve

for the transportation problem of cross-docking network. Computers & Industrial

Engineering, 59(1), 85-92.

[32] Sung, C., & Yang, W. (2008). An exact algorithm for a cross-docking supply chain

network design problem. Journal of the Operational Research Society, 59(1), 119-136.

[33] Bartholdi III, J. J., & Gue, K. R. (2000). Reducing labor costs in an LTL crossdocking

terminal. Operations Research, 48(6), 823-832.

[34] Kirkpatrick, S., Gelatt, C. D.,Jr, & Vecchi, M. P. (1983). Optimization by simulated

annealing. Science (New York, N.Y.), 220(4598), 671-680.

[35] Lim, A., Miao, Z., Rodrigues, B., & Xu, Z. (2005). Transshipment through crossdocks

with inventory and time windows. Naval Research Logistics (NRL), 52(8), 724-733.

[36] Chen, P., Guo, Y., Lim, A., & Rodrigues, B. (2006). Multiple crossdocks with

inventory and time windows. Computers & Operations Research, 33(1), 43-63.

[37] Glover, F., & Kochenberger, G. A. (2003). Handbook of metaheuristics Springer.

[38] Lee, Y. H., Jung, J. W., & Lee, K. M. (2006). Vehicle routing scheduling for

cross-docking in the supply chain. Computers & Industrial Engineering, 51(2), 247-256.

[39] Liao, C., Lin, Y., & Shih, S. C. (2010). Vehicle routing with cross-docking in the

74

supply chain. Expert Systems with Applications, 37(10), 6868-6873.

[40] Wen, M., Larsen, J., Clausen, J., Cordeau, J., & Laporte, G. (2009). Vehicle routing

with cross-docking. Journal of the Operational Research Society, 60(12), 1708-1718.

[41] Peck, K. E. (1983). Operational Analysis of Freight Terminals Handling Less than

Container Load Shipments, Ph.D. thesis, University of Illinois at Urbana-Champaign.

[42] Tsui, L. Y., & Chang, C. (1990). A microcomputer based decision support tool for

assigning dock doors in freight yards. Computers & Industrial Engineering, 19(1),

309-312.

[43] Bermúdez, R., & Cole, M. H. (2001). A Genetic Algorithm Approach to Door

Assignments in Breakbulk Terminals, Technical report MBTC 1084, Fayettevilee, AR,

USA: Mack-Blackwell Rural Transportation Center, University of Arkansas.

[44] Bozer, Y. A., & Carlo, H. J. (2008). Optimizing inbound and outbound door

assignments in less-than-truckload crossdocks. IIE Transactions, 40(11), 1007-1018.

[45] Bartholdi III, J. J., & Gue, K. R. (2000). Reducing labor costs in an LTL crossdocking

terminal. Operations Research, 48(6), 823-832.

[46] Yu, V. F., Sharma, D., & Murty, K. G. (2008). Door allocations to origins and

destinations at less-than-truckload trucking terminals. Journal of Industrial and Systems

75

Engineering, 2(1), 1-15.

[47] Yu, W. (2002). Operational Strategies for Cross Docking Systems, Iowa State

University, Ph.D. Dissertation

[48] Vahdani, B., & Zandieh, M. (2010). Scheduling trucks in cross-docking systems:

Robust meta-heuristics. Computers & Industrial Engineering, 58(1), 12-24.

[49] Boloori Arabani, A., Fatemi Ghomi, S., & Zandieh, M. (2011). Meta-heuristics

implementation for scheduling of trucks in a cross-docking system with temporary storage.

Expert Systems with Applications, 38(3), 1964-1979.

[50] Forouharfard, S., & Zandieh, M. (2010). An imperialist competitive algorithm to

schedule of receiving and shipping trucks in cross-docking systems. The International

Journal of Advanced Manufacturing Technology, 51(9-12), 1179-1193.

[51] Michiels, W., Aarts, E., & Korst, J. (2007). Theoretical aspects of local search

Springer.

[52] Vahdani, B., Soltani, R., & Zandieh, M. (2010). Scheduling the truck holdover

recurrent dock cross-dock problem using robust meta-heuristics. The International Journal

of Advanced Manufacturing Technology, 46(5-8), 769-783.

[53] Soltani, R., & Sadjadi, S. J. (2010). Scheduling trucks in cross-docking systems: A

76

robust meta-heuristics approach. Transportation Research Part E: Logistics and

Transportation Review, 46(5), 650-666.

[54] Larbi, R., Alpan, G., Baptiste, P., & Penz, B. (2011). Scheduling cross docking

operations under full, partial and no information on inbound arrivals. Computers &

Operations Research, 38(6), 889-900.

[55] Alpan, G., Larbi, R., & Penz, B. (2011). A bounded dynamic programming approach

to schedule operations in a cross docking platform. Computers & Industrial Engineering,

60(3), 385-396.

[56] Rosales, C. R., Fry, M. J., & Radhakrishnan, R. (2009). Transfreight reduces costs and

balances workload at georgetown cross-dock. Interfaces, 39(4), 316-328.

[57] Wang, J., & Regan, A. (2008). Real-time trailer scheduling for crossdock operations.

Transportation Journal, 47(2) , 5-20.

[58] Acar, M. K. (2004). Robust Dock Assignments at Less-than-Truckload Terminals,

Master’s thesis, University of South Florida.

[59] Lowerre, B. T. (1976). The HARPY speech recognition system. Ph.D. thesis,

Carnegie-Mellon University.

[60] Lim, A., Ma, H., & Miao, Z. (2006). Truck dock assignment problem with time

77

windows and capacity constraint in transshipment network through cross-docks.

Computational science and its applications-ICCSA 2006 (pp. 688-697) Springer.

[61] Shaw, P. (1998). Using constraint programming and local search methods to solve

vehicle routing problems. Principles and practice of constraint Programming—CP98 (pp.

417-431) Springer.

[62] Lim, A., Ma, H., & Miao, Z. (2006). Truck dock assignment problem with time

windows and capacity constraint in transshipment network through cross-docks.

Computational science and its applications-ICCSA 2006 (pp. 688-697) Springer.

[63] Boysen, N. (2010). Truck scheduling at zero-inventory cross docking terminals.

Computers & Operations Research, 37(1), 32-41.

[64] Kuo, Y. (2013). Optimizing truck sequencing and truck dock assignment in a cross

docking system. Expert Systems with Applications, 40(14), 5532-5541.

[65] Pinedo, M. (2008). Scheduling (3rd ed.). New York; London: Springer.

