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Abstract

Parallelizing Description Logic Reasoning

Kejia Wu, Ph.D.

Concordia University, 2014

Description Logic has become one of the primary knowledge representation and

reasoning methodologies during the last twenty years. A lot of areas are benefiting

from description logic based technologies. Description logic reasoning algorithms and

a number of optimization techniques for them play an important role and have been

intensively researched.

However, few of them have been systematically investigated in a concurrency

context in spite of multi-processor computing facilities growing up. Meanwhile, se-

mantic web, an application domain of description logic, is producing vast knowledge

data on the Internet, which needs to be dealt with by using scalable solutions. This

situation requires description logic reasoners to be endowed with reasoning scalabil-

ity.

This research introduced concurrent computing in two aspects: classification,

and tableau-based description logic reasoning.

Classification is a core description logic reasoning service. Over more than two

decades many research efforts have been devoted to optimizing classification. Those

classification optimization algorithms have shown their pragmatic effectiveness for
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sequential processing. However, as concurrent computing becomes widely available,

new classification algorithms that are well suited to parallelization need to be devel-

oped. This need is further supported by the observation that most available OWL

reasoners, which are usually based on tableau reasoning, can only utilize a single

processor. Such an inadequacy often leads users working in ontology development

to frustration, especially if their ontologies are complex and require long processing

times.

Classification service finds out all named concept subsumption relationships en-

tailed in a knowledge base. Each subsumption test enrolls two concepts and is inde-

pendent of the others. At most n2 subsumption tests are needed for a knowledge base

which contains n concepts. As the first contribution of this research, we developed

an algorithm and a corresponding architecture showing that reasoning scalability can

be gained by using concurrent computing.

Further, this research investigated how concurrent computing can increase per-

formance of tableau-based description logic reasoning algorithms. Tableau-based de-

scription logic reasoning decides a problem by constructing an AND-OR tree. Before

this research, some research has shown the effectiveness of parallelizing processing

disjunction branches of a tableau expansion tree. Our research has shown how rea-

soning scalability can be gained by processing conjunction branches of a tableau

expansion tree.

In addition, this research developed an algorithm, merge classification, that uses
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a divide and conquer strategy for parallelizing classification. This method applies

concurrent computing to the more efficient classification algorithm, top-search &

bottom-search, which has been adopted as a standard procedure for classification.

Reasoning scalability can be observed in a number of real world cases by using this

algorithm.
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Chapter 1

Introduction

Knowledge Representation and Reasoning (KR) is a key component of Artificial

Intelligence (AI) , and Description Logic (DL) has been one of the most advanced

achievements of KR. Compared with other KR methodologies, DL provides strong

expressivity, acceptable computationality, and logical completeness. By adding con-

strains, DL establishes a reasonable compromise between expressivity and complete-

ness, and so computationality is assured, although DL reasoning is still a hard prob-

lem. Some key reasoning tasks of DL languages having stronger expressivity are

known to be ExpTime-complete [23, 37]. Before modern DL reasoning, such hard

problems were regarded as impractical ones. However, with language formalization

and optimization techniques developed in DL, problems that are hard to be solved

are rarely encountered in the real world. Hence, DL has been largely used today.

Semantic web is an important application area of DL now.1 Originally proposed

by the inventor of the World Wide Web, Tim Berners-Lee, and now maintained by

World Wide Web Consortium (W3C), “The Semantic Web provides a common frame-

work that allows data to be shared and reused across application, enterprise, and

community boundaries.” [6] It endeavors to build a structured information web that

1We do not differentiate between “uppercase semantic web” and “ lowercase semantic web”. The
latter term is used for ad hoc solutions that have limited application domains [37].

1



CHAPTER 1. INTRODUCTION 2

can be automatically processed in a more efficient way than the present web. With

semantic web, information is encoded in some uniformed knowledge representations,

and so can be deduced by machines. Until now, the semantic web community has

proposed a chain of technologies, such as Resource Description Framework (RDF),

Resource Description Framework Schema (RDFS), Web Ontology Language (OWL),

SPARQL Protocol and RDF Query Language (SPARQL), and so forth. These tech-

nologies endow the current information web with formal machine understandable

semantics, the foundation of automatic deduction. With other available semantic

technologies such as DL reasoning, semantic web will make significant changes for

the ways people organize and utilize information.

Meanwhile, semantic web is producing a vast number of automatic-deduction-

friendly information. Both the scale and complexity of the knowledge bases generated

by semantic web are growing rapidly. The increment of the scale and complexity of

semantic web products is challenging the reasoning capability of DL, which is a major

computing principle of semantic web.

So, DL, the underpinning of semantic web, should advance with matched in-

formation processing capability. After many years efforts, DL reasoning techniques

have been capable of processing real-world knowledge bases, which are normally rep-

resented as ontologies with some formalized languages now. These techniques have

been adopted by DL systems to assist to solve practical deductive problems.

In some areas, DL based ontology engineering technology has become a needful

approach that leads to novel findings. In bioinformatics, DL systems help researchers

make a number of new observations, which can hardly be deduced by other means.

For example, some Nortriptyline treatments involving a special homozygous geno-

type can be automatically discovered via DL reasoning [24]. Knowledge produced

by modern science and technology has vastly exceeded the capability of manual ef-

forts. Without an automatic assistant, such as a DL system, a number of interesting

conclusions can almost not be drawn from a great multitude of knowledge.
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However, there are some complicated ontologies taking well-known DL systems

a long time to process, though DL has constrained the computational complexity to

an acceptable range with its own formalism and a number of reasoning optimization

techniques. Such complicated ontologies are growing rapidly.

With the development of semantic web, more large and more complex knowl-

edge bases may appear in the near future. Now DL needs to prepare corresponding

computing kits to welcome semantic web time. Scalable reasoning techniques are

solutions to dealing with complicated ontologies that are growing larger and more

complex.

This research investigated how concurrent computing can be applied to DL rea-

soning in order to gain scalable performance.

1.1 Motivation

Due to the semantic web, a multitude of OWL ontologies are emerging. Quite a few

ontologies are huge and contain hundreds of thousands of concepts. Although some

of these huge ontologies fit into one of OWL’s three tractable profiles, such as the well

known Snomed ontology into the EL profile, there still exist a variety of other OWL

ontologies that make full use of OWL DL and require long processing times, even

when highly optimized OWL reasoners are employed. Moreover, although most of

the huge ontologies are currently restricted to one of the tractable profiles in order to

ensure fast processing, it is foreseeable that some of them will require an expressivity

that is outside of the tractable OWL profiles.

At the same time, concurrent computing facilities, such as multi-processor/core

computers, have become popular, while most well-known DL reasoners can not fully

utilize the computing resources. Hence, concurrent computing solutions that can

both deal with complex ontologies in a scalable way and make use of computing

resources are necessary.
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However, it is very recently that researchers have begun to investigate how to

adopt concurrent computing as an optimization of DL reasoning [16].

Classification, one of the core DL reasoning tasks, is just opening the envelope of

utilizing concurrent computing. Almost all well-known reasoners employ a so-called

top-search & bottom-search algorithm to classify ontologies [56]. This algorithm

makes use of told subsumption relationships to prune a lot of costly subsumption

tests. Concepts are incrementally inserted into a subsumption hierarchy at their

most specific positions. This method works efficiently in practical reasoning, and a

number of variants proposed on the basis of the original version provide optimizations

to some extent [12, 29]. However, only in recent years efforts appeared to investigate

parallelization of top-search & bottom-search in order to gain more scalable perfor-

mance [9]. Some researchers also have begun to optimize DL tableau reasoning with

concurrent computing [55].

The work presented in this research is targeted to provide better OWL reasoning

scalability by making efficient use of modern hardware architectures such as multi-

processor/core computers. This becomes more important in the case of ontologies

that require long processing times although highly optimized OWL reasoners are

already used. We consider our research an important basis for the design of next-

generation OWL reasoners that can efficiently work in a parallel/concurrent or dis-

tributed context using modern hardware. One of the major obstacles that need to be

addressed in the design of corresponding algorithms and architectures is the overhead

introduced by concurrent computing and its impact on scalability.

Shared data in concurrent computing generally needs synchronization to ensure

soundness, and synchronization itself and its maintenance cost always decrease the

performance of concurrent computing. Primary DL reasoning algorithms, which are

widely used in OWL reasoning, work along with monolithic data structures that are

hardly parted. Those algorithms and data have to be conducted as a whole, and

thus can be hardly processed in parallel. Consequently, the efficiency of concur-
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rent reasoning is weakened unless it uses novel algorithms that can process data as

independently as possible.

A divide and conquer algorithm split a problem into sub-problems, deals with the

sub-problems independently, and then combines intermediate solutions into a final

one. During a divide and conquer process, operations on shared data are largely

reduced, and no much communication cost is spent on the sub-problem solving.

Therefore, divide and conquer algorithms are suited to improving the performance

of concurrent reasoning.

We also noted that a number of researchers are investigating ontology partition-

ing, which may degrade the complexity of reasoning about monolithic ontologies.

For example, [30] presented a method of ontology modularization. A collection of

sub-ontologies can be obtained from a complex ontology by the ontology modular-

ization method, as makes it possible to reason over a collection of sub-ontologies in

a concurrent way, and then to assemble a solution for the original ontology from the

deduction results of sub-ontologies. This process can be conducted by the divide and

conquer pattern.

It was necessary to investigate how the divide and conquer strategy can improve

the performance of DL concurrent reasoning, and related investigations, which focus

on DL classification, were conducted in this research.

Besides classification, how concurrent computing can be applied to some aspects

of DL tableau reasoning remains to be investigated. Tableau-based deduction proce-

dures are the primary algorithms used by almost all well-known DL reasoners. Very

limited research has been conducted to apply concurrent computing to general DL

tableau algorithm. How general tableau algorithms can get scalable performance via

concurrent computing is also part of this research.
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1.2 Problem Statement

A DL system provides a set of reasoning services. These tasks include concept satis-

fiability test, TBox consistency test, concepts subsumption test, TBox classification,

and so forth. The TBox classification service is an important one exposed to users

by all DL systems.

The TBox classification computes all subsumption relationships between named

concepts entailed in a terminology of a knowledge base. For a complex knowledge

base using expressive constructors, a number of relationships among concepts are

complicated and can hardly be deduced out. Classification can generate a taxonomy

that completely describes such relationships. Interesting conclusions entailed in the

knowledge base are consequently discovered.

The classification service establishes binary relations, and so needs to compute n2

subsumption tests for a n-concept knowledge base. The majority of the classification

computation lies in testing the subsumption relationship between each pair of con-

cepts. Subsumption tests generally involve satisfiability tests and hence essentially

have an exponential time complexity [23]. So, traditional classification optimizations

always try to avoid such a costly computation.

Instead of a brute force method, the top-search & bottom-search algorithm is

used as the standard classification procedure. This algorithm can practically prune

a lot of subsumption tests by making use of told subsumptions.

As aforementioned, researchers are exploring scalable solutions to deal with more

and more complex DL knowledge bases, and applying concurrent computing to DL

classification is a choice. However, related research has just begun [9].

This research investigated how classification can be performed in a scalable way.

Concurrent computing is a very important option for scalability. So, some work of

our research can also be regarded as how concurrent computing should be used in

DL classification in order to obtain scalable reasoning performance.
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Furthermore, concurrent computing has been partly investigated in general DL

tableau reasoning. Tableau-based DL algorithms always produce expansion trees

during reasoning. Those tableau expansion trees consist of disjunctive branches and

conjunctive branches. Related work mainly focuses on how to adopt concurrent

computing to process disjunctive tableau expansion branches. How concurrent com-

puting can improve reasoning performance by parallelizing processing conjunctive

tableau branches had not been investigated yet and is part of this research.

1.3 Contributions

This research introduced concurrent computing into DL reasoning. Specifically,

shared-memory parallelization is used to optimize DL TBox reasoning. The con-

tributions of this research are reflected in three aspects [85, 86, 87].

The classification computation is a key task of DL reasoning. DL TBox classifi-

cation calculates all concept subsumption relationships entailed in a knowledge base,

and such a subsumption test involves two concepts. In a knowledge base which pos-

sesses n concepts, at most n2 subsumption tests are needed to find out all entailed

subsumption relationships, and each test is independent of the others in a brute-

force method. Therefore, the subsumption tests in a classification computation can

be executed in a parallel way. This research designed an algorithm that can process

DL TBox classification in parallel. A corresponding architecture had been designed

and implemented for the concurrent algorithm. The experiments showed an obvious

reasoning performance improvement.

This research also showed that concurrent computing can improve performance

of general tableau-based reasoning. Tableau-based reasoning techniques have been

widely adopted by most DL reasoners. In order to find a model, or to show that no

models exist, a knowledge base is expanded in terms of a set of tableau deduction

rules. Such a tableau expansion process can be viewed as a procedure of constructing
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a tree consisting of disjunctive branches and conjunction branches.

Before this research, researchers had conducted some exploration of using con-

current computing to process disjunctive branches of tableau expansion trees, and

achieved good performance. One contribution of this research is exploring paralleliz-

ing conjunction branches. Compared with parallelizing disjunctive branches, which

generally needs to get one clash-free branch, parallelizing conjunctive branches nor-

mally needs to explore all branches and so is more suited to concurrent computing.

This research designed an algorithm that processes conjunctive branches of a tableau

expansion tree in a parallel way, and conducted the experiments and analyzed the

performance.

The first achievement of this research utilizes concurrent computing to increase

the performance of the brute-force search based classification algorithm. This re-

search further tackled the more efficient classification algorithm, top-search & bottom-

search, with parallel optimization.

One of the main obstacles impacting improving performance of concurrent com-

puting is the inefficient management of shared resources, among which operations

and data are the most popular shared resources that need to be managed efficiently.

This issue is prominent in concurrent reasoning. Divide and conquer strategy may

efficiently overcome this weakness of concurrent computing.

This research adopted the divide and conquer strategy into DL TBox classifica-

tion. A global knowledge base is divided into subsets that can be classified indepen-

dently, and thus the classification computations can progress in parallel. When the

subset knowledge bases are classified, the results can be merged together, and this

process can also be done in parallel. A concurrent algorithm reflecting the aforemen-

tioned idea had been developed and implemented in this research. The experiments

had shown that reasoning performance could be improved by using this algorithm in

a number of cases.
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1.4 Thesis Overview

This thesis reports the knowledge that we found during exploring the concurrent rea-

soning in DL. Related contents, such as DL and concurrent computing, is mentioned,

too. The rest of this thesis is organized as follows:

• This research is mainly about how concurrent computing can improve the per-

formance of DL reasoning, so the background knowledge on DL, DL reasoning,

semantic web, and concurrent computing is covered in Chapter 2.

• A lot of DL reasoning optimization techniques have been researched in the last

twenty years, and some researchers have begun applying concurrent computing

to DL reasoning recently; without those fundamental achievements and novel

investigations, DL reasoning was unrealistic. Related research is mentioned in

Chapter 3.

• We investigated how tableau-based DL reasoning can make use of concurrent

computing; we present an architecture that is suitable for concurrent DL clas-

sification. This work is addressed in Chapter 4.

• Conjunctive branches of tableau expansion tree can be processed in a parallel

way, and thus we investigated how the performance of DL reasoning can be

improved by parallelizing tableau conjunctive branches. This work is addressed

in Chapter 5.

• Efficient memory maintenance is a key to effectively improve the performance

of DL reasoning by using concurrent computing. We investigated a concurrent

classification algorithm that uses divide and conquer strategy. This work is

addressed in Chapter 6.

• Future work and some conclusive points of this research are summarized in

Chapter 7.



Chapter 2

Preliminaries

The fundamentals on DL, DL reasoning, and optimization techniques are briefly

described in this chapter. DL formalism is addressed. Typical DL reasoning services

are introduced. Basic DL reasoning methods, especially tableau-based ones, are

explained. Essential optimization techniques without which practical DL reasoning is

impossible are reviewed. Non-determinism potentially leads to parallel DL reasoning

techniques, so it is highlighted as a feature of DL in this chapter.

2.1 Description Logic

Our work is essentially about DL reasoning, so some background knowledge is pre-

sented in this section. A more detailed background on DLs, DL reasoning, and

semantic web was referred to [14] and [37].

As a conceptualization KR tool, DL is derived from network-based formalisms,

especially semantic networks [14, 41]. Network-based KR methods present cognitive

structures as node-link networks that describe objects, object attributes, and rela-

tionships between them. Generally, attributes and relationships are inheritable in

those networks [17]. A similar idea was simultaneously developed in frame systems at

the same time, which focused on using frames and relationships among them to de-

10
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scribe knowledge (see [59]). KL-ONE was a milestone in semantic network research

[18]. Based on experience gained from developing KL-ONE, non-logical semantic

network depiction was elaborated with symbolic logic. Later, DL appeared as a

protocol that formalizes with syntax and semantics the principal characteristics of

network-based KR. We quote the sketched definition of DL by [14]:

Description Logics is the most recent name for a family of knowledge

representation (KR) formalisms that represent the knowledge of an ap-

plication domain (the “world”) by first defining the relevant concepts of

the domain (its terminology), and then using these concepts to specify

properties of objects and individuals occurring in the domain (the world

description).

Following its definition, [14] commented on two features of DL: (i) the formal syntax

and model theoretic semantics, and (ii) the emphasis on reasoning as central function.

DL is used to represent knowledge. Concepts and roles are elements constructing

DL expressions. The former conceptualize knowledge domain instances, and the lat-

ter describe binary relations between domain instances. DL axioms are constructed

by associating the two essentials via a set of connectives, concept constructors and

role constructors. For example, the syntax for the language AL is defined as follows

[14]:
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C,D −→A | (* atomic concept *)

> | (* universal concept *)

⊥ | (* bottom concept *)

¬A | (* atomic negation *)

C uD | (* intersection *)

∀R.C | (* value restriction *)

∃R.> | (* limited existential quantification *)

In the productions, A corresponds to a concept name, C or D to either a com-

pound concept or a concept name, and R to a role name.

Generally, a DL language’s semantics is expressed via Taski-style model-theoretical

interpretations [79]. Such an interpretation for ALCN , I = (∆I , ·I), consists of a
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non-empty set of individuals (∆I) and a function (·I) such that:

CI ⊆ ∆I

RI ⊆ ∆I ×∆I

>I = ∆I

⊥I = ∅

(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∀R.C)I = {x ∈ ∆I | ∀y((x, y) ∈ RI =⇒ y ∈ CI)}

(∃R.C)I = {x ∈ ∆I | ∃y((x, y) ∈ RI ∧ y ∈ CI)}

(≥ nR)I = {x ∈ ∆I |
∣

∣{y | (x, y) ∈ RI}
∣

∣ ≥ n, n ∈ Z≥0}

(≤ nR)I = {x ∈ ∆I |
∣

∣{y | (x, y) ∈ RI}
∣

∣ ≤ n, n ∈ Z≥0}

C v D iff CI ⊆ DI

C ≡ D iff C v D ∧D v C

xI ∈ ∆I

C(x) or x : C if xI ∈ CI

(R(x, y))I , (xRy)I , ((x, y) : R)I , or (〈x, y〉 : R)I if 〈xI , yI〉 ∈ RI

x
.
= y if xI = yI

x 6
.
= y if xI 6= yI

An interpretation I satisfies an axiom C v D iff CI ⊆ DI . An axiom C ≡ D is

considered as an abbreviations for the set of axioms {C v D, D v C}. An assertion

C(x) is satisfied by I if xI ∈ CI , (xRy) if 〈xI , yI〉 ∈ RI , x
.
= y if xI = yI , and

x 6
.
= y if xI 6= yI . An overall introduction to DL syntax, semantics, notation, and

extensions can be found in the appendix of [14].
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A modern DL knowledge base (KB) consists of two components: terminological

knowledge, defining axiom vocabularies, and assertional knowledge, specifying an

individual vocabulary. The former is a so-called TBox, and the latter an ABox. The

core of a DL KB is composed by describing concepts and roles. Concepts may be

described as primitive and complete axioms [12]. Primitive axioms indicate only

necessary membership descriptions, and complete axioms indicate necessary and

sufficient membership descriptions. For instance, “A v B” is a primitive axiom, and

“A ≡ B” is a complete one. If the DL expression on the left hand side of an axiom

is not an atomic concept name, the axiom is called a general one. So, a TBox may

hold general axioms to express common descriptions.

Definition 1 A DL axiom has the form of C v D or C ≡ D, with semantics as

mentioned above.

Definition 2 A DL TBox T is a conjunction of DL axioms.

Definition 3 A DL assertion is a description on instance(s) and has the form of

C(x), xRy, x
.
= y, or x 6

.
= y, with semantics as mentioned above, where x and y are

instances, and C and R is a concept and a role expression respectively.

Definition 4 A DL ABox A is a conjunction of DL assertions.

For example, the TBox axiom “coffeettea v beverageu¬∃having_content .alcohol ”

expresses “coffee and tea are soft drinks”. A set of instances, i.e. objects or individu-

als, sharing the same characteristics are grouped as a concept, and binary relations

over objects are specified as roles. Explicit descriptions on some instances can be

expressed with DL assertions. For instance, “hold(PETRA,HAMLET )” may be in-



CHAPTER 2. PRELIMINARIES 15

terpreted as “Petra holds the book Hamlet”, following the semantics of:

PETRAI ∈ ∆I

HAMLET I ∈ bookI

bookI ⊆ ∆I

holdI ⊆ ∆I ×∆I

Similarly, the assertion “cat(GARFIELD)”, combined with the TBox axiom

cat v ¬∃like.dog

expresses “Garfield is a cat, so he does not like any dog”.

More expressive DL languages are composed by using a set of role constructors.

Common role relations are role transitivity (R+), role hierarchy (H), role inver-

sion (I), role composition (R), and so on, which can be built via a set of DL role

constructors with semantics as follows:

(R v S)I = RI ⊆ SI

(¬R)I = ∆I ×∆I \RI

(R u S)I = RI ∩ SI

(R t S)I = RI ∪ SI

(R−)I = {(x, y) ∈ ∆I ×∆I | (y, x) ∈ RI}

(R+)I =
⋃

i≥1

(RI)i, i.e. the transitive closure of RI = (RI)+

(R ◦ S)I = {(x, z) ∈ ∆I ×∆I | ∃y((x, y) ∈ RI ∧ (y, z) ∈ SI)}

Some DL fragments allow instance names to be part of the concept languages, not

only ABox elements. Such an expressivity can be obtained by a nominal constructor
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(O). One-of is a typical nominal constructor, and has the following semantics:

({a1, . . . , an})
I = aI1 t · · · t aIn

Thus, each DL fragment has a distinct expressivity. BesidesALmentioned above,

some interesting DL fragments include ALC (AL with full concept negation and con-

cept disjunction), SHIQ (ALC with role transitivity (ALCR+ or S), role hierarchy

(H), role inversion (I), and qualified number restrictions (Q)), SHOIN (S with

role hierarchy, nominal (O), role inversion, and unqualified number restriction (N )),

SHIF (S with role hierarchy, role inversion, and unqualified number restrictions of

the form ≤ 1R (i.e. functional restrictions, F)), SROIQ (S with role composition

(R), nominal, role inversion, and qualified number restrictions), EL (allowing concept

intersection, and full existential restrictions (E)), and so on. As mentioned above,

reasoning is one of the two main aspects of DL, and computational complexity in

DL reasoning changes with expressivity supported by the DL fragments. At present,

[88] is maintaining an online program that provides a DL fragments complexity query

service.

Reasoning in DL is to search for harmonious interpretations, as indicated by DL

semantics. Similar to other branches of predicate logic, symbols in DL KBs are

expected to be assigned with reasonable interpretations. Sometimes, DL reasoning

endeavors to consistently interpret a KB as a whole despite some specific symbols

in it being uninterpreted; sometimes, given a consistent KB, DL reasoning attempts

the interpretation of some specific symbol in terms of it. After having elementary

language features introduced, the following terminology is cardinal to understand

DL reasoning tasks:

Definition 5 A model of an axiom is an interpretation I iff I satisfies the axiom:

C v D if CI ⊆ DI, or C ≡ D if C v D and D v C. A model of T , a set of

axioms, is an interpretation I iff I satisfies every axiom in T .
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Definition 6 A concept C is satisfiable with respect to T , a set of axioms, if there

exists a model of T such that CI 6= ∅.

Definition 7 A concept C is subsumed by a concept D with respect to T , a set of

axioms, if CI ⊆ DI for every model of T .

Definition 8 Concepts C and D are equivalent with respect to T , a set of axioms,

if CI = DI for every model of T .

Definition 9 Concepts C and D are disjoint with respect to T , a set of axioms, if

CI ∩DI = ∅ for every model of T .

Based on these core formalisms, a DL system offers reasoning services over KBs,

and Section 2.2 addresses them.

2.2 Reasoning Tasks

A set of reasoning services is available in DL. Typical services include: (i) decid-

ing concept satisfiability, (ii) checking concept subsumption, (iii) classifying a ter-

minology, (iv) testing an instance’s concept-membership, (v) testing two instances’

relation-membership, (vi) computing the most specific concept of an instance. These

are known as standard services in modern DL reasoning systems.

Deciding concept satisfiability is to show whether a concept makes sense. This

usually happens when inserting a new concept in a given terminology tree. The

validity of the newly created concept is examined according to axioms of the given

TBox. In logical methods, the examination is made by constructing an interpretation

for the new TBox. If a satisfiable interpretation, i.e. a model, is found, and the new

concept is not empty, then it is satisfiable. This logical examination is a process of

searching for a model, which witnesses the validity of the new concept. This process

can be formalized as AND-OR trees [71], a specific formalism of a tableau graph (see

Definition 10 in Section 2.3.1).
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AND-OR trees are expanded dynamically during the search for a model. AND

trees are branched by clauses in concept description; disjunctions lead to OR tree

branches. An OR tree directly represents a non-deterministic aspect of DL. A con-

cept is satisfiable if and only if, with respect to the AND-OR tree derived by the

TBox, each AND branch does not have a clash, and at least one OR branch has a

model. If one needs to show that a concept is unsatisfiable, normally by refutation

in subsumption testing, one contradiction in any AND branch is sufficient, while

contradictions in all OR branches must be found. AND-OR branching thus results

as a source of complexity (see [14, Section 3.1.1]).

Such computational complexity may be reduced by processing AND-OR tree

branches in parallel. In DL, AND-OR trees are normally processed by tableau-based

algorithms. OR tree branches generated by tableaux are independent from each

other, so parallelizing them is straightforward. Note that an efficiency improvement

may also be gained by processing AND branches in parallel in some cases besides

parallelizing OR branches, and this idea was presented as an open topic by [55].

Deciding concept satisfiability is identified as an essential service on which other

reasoning tasks may depend [14]. A preliminary method of checking concept sub-

sumptions is to reduce the problem to deciding concept satisfiability. Merging mod-

els, an optimization technique in classification, needs to cache and to reuse results of

deciding concept satisfiability. These techniques are going to be addressed in Section

2.3.3.

Checking subsumption is executed on pairs of concepts and decides whether a

concept (i.e. subsumee or child) is subsumed by another (i.e. subsumer or parent).

This decision process may be completed by measuring structural similarity of a pair

of concepts or by logical deduction. The latter has a better computability than the

former with respect to completeness and soundness. Tableau-based subsumption

checking methods are popular logical ones. In tableaux, deduction for subsumption

normally uses refutation. For example, to show C v D, C u¬D should be shown to
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be unsatisfiable. Searching for such refutation is normally reduced to deciding con-

cept satisfiability. [75] showed the reducibility of checking subsumption to deciding

concept satisfiability. The service of checking subsumption in DL systems is provided

to end users as a query function, so all subsumptions entailed from a taxonomy can

be computed in advance and cached whereby a query operation can be performed

efficiently. This cache optimization is usually the result of DL KB classification.

Among those standard DL reasoning tasks, TBox classification plays an impor-

tant role. TBox classification generates hierarchical taxonomies. A TBox classifi-

cation algorithm computes all subsumptions between concept names (A v?B) that

are entailed in a TBox and inserts concepts into a hierarchical structure. A result of

classification can be illustrated by a directed graph with > as the root and ⊥ as the

unique leaf, which represent the most general concept and the most specific concept

respectively. Figure 2.1 shows a TBox classification example. In the graph, each

node subsumes its descendant node(s), and all paths to a node from > contain its

subsumer nodes. Therefore, all information related to concept subsumptions can be

extracted from the classified taxonomy.

T : professor v teacher

book v publication

paper v publication

(a) The TBox given.

>

teacher
publication

professor

book paper

⊥

(b) The classified terminology hierarchy.

Figure 2.1: An example on classification.

However, it is known that TBox classification can be a costly computation. The

naive brute-force classification method executes subsumption tests over all elements

of {〈Ai, Aj〉 | A
I
i ⊆ ∆I , AI

j ⊆ ∆I , 0 ≤ i ≤ n, 0 ≤ j ≤ n}. Although the brute-force
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method needs only n2 subsumption tests for a TBox of n concepts, it is generally very

expensive due to the costly subsumption testing. A smart option for classification is

merely to avoid such expensive computations.

A huge computing expense lies in concept subsumption tests, so the most promi-

nent work on classification optimization focuses on making use of the reflexive tran-

sitive closure of subsumptions in order to avoid costly subsumption tests—instead

of checking subsumption for every pair of concepts in a brute-force way, a large

number of subsumption relationships can be figured out by told subsumptions and

non-subsumptions directly, and the top-search & bottom-search algorithm is the cor-

ner stone for such an optimization [56]. The top-search & bottom-search algorithm

utilizes told subsumption relationships to avoid costly subsumption tests. For exam-

ple, given a TBox and a partially classified terminology hierarchy shown by Figure

2.2, when searching for the most specific parent concept of book, it is unnecessary to

test whether book v? professor if book 6v teacher is already known. Our work shows

that this technique can be extended to work in parallel.

T : professor v teacher

book v publication

paper v publication

(a) The TBox given.

>

teacher
publication

professor

paper

⊥

(b) The partially classified terminology hierarchy.

Figure 2.2: An example on top- and bottom-search based classification.

The reasoning services presented above are key ones in TBox reasoning, which

are essential interfaces of a DL system. If a DL system involves an ABox, reasoning

over assertional knowledge on individuals must be taken into consideration.

Testing an instance’s concept-membership is a basic DL ABox reasoning service.
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This test decides whether an instance belongs to some concept. A preliminary tech-

nique for this reasoning service is to check whether a consistent ABox is still consis-

tent after adding an assertion of an instance’s concept-membership. Other ABox rea-

soning services may depend on it. For example, computing the most specific concept

of an instance may test the instance’s membership of each concept on one path of

a classified TBox. On the other hand, an instance’s concept-membership can be re-

trieved fast from a classified TBox after its most specific concept has been computed.

Algorithms for testing an instance’s concept-membership show that ABox reasoning

has a close relationship with TBox reasoning.

In principle, techniques employed in reasoning tasks on ABoxes are similar to

TBoxes. With tableau-based reasoning algorithms, a TBox concept satisfiability

deciding process searches for a model of this concept. During the search, interme-

diate interpretations are constructed. These interpretations start from describing

the most general concept and are expanded in completion graphs. In ABox reason-

ing the model-searching process constructs interpretations that are consistent with

the assertions in the ABox. Therefore, primary TBox reasoning principles are also

applicable to ABox reasoning. However, in cases where massive instances are con-

cerned, particular reasoning techniques for ABoxes and TBoxes differ widely, but our

research focuses on TBox reasoning.

2.3 Tableau Based Reasoning

2.3.1 Reasoning Methodology

Two types of methodologies have been extensively investigated in DL reasoning so

far: structural and logical ones. Earlier DL reasoners usually adopted structural

algorithms in which set-theoretical calculation dominated inference procedures, es-

pecially subsumption-checking. Structural algorithms perform efficiently over well-
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formed concepts sets. However, those algorithms have no guarantee of completeness

for DL fragments which allow full negation and disjunction [12, 14]. Nevertheless,

structural algorithms still work well as optimizations somewhere.

Structural DL reasoning methodology deals with deduction on KBs with well-

formed syntactic structures. Sophisticated normalization pre-processes were nor-

mally required in structural algorithms [12, 67]. Structural methods (in PTime)

were employed by primitive DL reasoners that did not need full negation and disjunc-

tion expressivity. Checking concept subsumptions for such simple DL languages may

use structural algorithms directly, where whether a concept is subsumed by another

one is inferred by comparing their syntactic definitions. When processing DLs with

full negation and disjunction expressivity, the structural methods lose completeness

[12, 14]. Nevertheless, as an optimization technique, especially in those DL rea-

soning methods that utilize told information, such as top-search and bottom-search

classification, structural algorithms may be used to generate some told information

efficiently. Anyway, structural algorithms are not complete in reasoning for more

expressive DL fragments. More powerful reasoning capability comes from logical

approaches. Among them, tableau-based DL reasoning algorithms are shown to be

both sound and complete [13].

Most modern DL reasoning systems choose tableaux as their primary deduc-

tion techniques. The first tableau-based DL algorithm was introduced by [71], who

described tableaux as “a set of procedures searching models for knowledge declara-

tion”. Although this description characterizes the function of tableau-based methods,

or tableaux, thinking of tableaux as dynamically expanded directed graphs reveals

their principles more.

This method incrementally deduces entailed information by using a set of com-

pletion rules to construct and explore a DL tableau:

Definition 10 A DL tableau T is a set of completion graphs: T = {A0, . . . ,An},

where Ai = 〈V,E〉: V = {x0, x1, . . . , xn}, E = {R0, R1, . . . , Rn}, x
I
i ∈ ∆I , RI

i ⊆
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∆I ×∆I.

Tableaux normally start out on recursively unfolding a concept’s definition. Then,

each completion graph may be expanded deterministically, or new completion graphs

may be added into the tableau as disjunctive stages (i.e. branches), in terms of a set

of logical rules. Table 2.1 lists the tableau expansion rules of ALCN .1

name rule
u-rule (conjunction) If (i) C uD ∈ L(x) and (ii) {C,D} * L(x) ,

then let L(x) = L(x) ∪ {C,D}.
t-rule(disjunction) If (i) C tD ∈ L(x) and (ii) {C,D} ∩ L(x) = ∅ ,

then let L(x) = L(x) ∪ {C} for one stage and L(x) =
L(x) ∪ {D} for another one.

∃-rule (role exists re-
striction)

If (i) ∃R.C ∈ L(x) and (ii) ∀y(xRy =⇒ C /∈ L(y)) ,
then extend L(x) to new node L(y) via new created edge
labeled R and let L(y) = {C}.

∀-rule (role value re-
striction)

If (i) ∀R.C ∈ L(x) and (ii) ∃y(xRy ∧ C /∈ L(y)) ,
then let L(y) = L(y) ∪ {C}.

≥-rule (at-least cardi-
nality restriction)

If (i) ≥ nR ∈ L(x), (ii) no instances, z1, ... , zn, such that
xRzi(1 ≤ i ≤ n), and (iii) {zi 6

.
= zj | 1 ≤ i < j ≤ n} ⊆ A,

then extend L(x) to new nodes, L(y1), ... , L(yn) via new
created edges labeled R respectively and letA = A∪{yi 6

.
=

yj | 1 ≤ i < j ≤ n}.
≤-rule (at-most cardi-
nality restriction)

If (i) ≤ nR ∈ L(x), and (ii) there exist instances, y1, ... ,
yn+1, such that xRyi(1 ≤ i ≤ n+ 1) ,
then, for each pair 〈yi, yj〉(1 ≤ i < j ≤ n + 1) such that
{yi 6

.
= yj} * A, generate a new stage Ai,j by substituting

yi by yj in A.

Table 2.1: Tableau expansion rules for deciding satisfiability of an ALCN concept.

Therefore, a tableau may be viewed as an AND-OR tree. During expansion, the

process searches for logical impossibility (i.e. contradiction) in the tableau. A com-

pletion graph is called closed if it holds a contradiction.

Definition 11 In ALCN , let A be a completion graph: If

(i) {C ∈ L(x),¬C ∈ L(x)} ⊆ A, or

1The more complex tableau rules for SHIQ are shown in Appendix A.
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(ii) {≤ nR ∈ L(x), xRyi, yi 6
.
= yj | ∃y1, . . . , yi, . . . , yj, . . . , yn+1 : 1 ≤ i < j ≤ n+1} ⊆

A,

then there does not exist a model for A, which triggers a contradiction (or clash).

Every completion graph is expanded by applying one deterministic rule each time un-

til: (i) A contradiction is produced on an instance node, or (ii) no rule is applicable. If

a tableau completion graph is expanded without any contradiction, satisfiability is

thus achieved; otherwise, the concept involved is unsatisfiable.
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L(x) = {∃R.C u ∀R.(A t B)}

(a) Initialize the root node x with the given axiom ∃R.C u ∀R.(A tB).

L(x) = {∃R.C, ∀R.(A t B), ∃R.C u ∀R.(A t B)}

(b) Apply u-rule to ∃R.C ˇ̌u ∀R.(A tB) at the node x.

L(x) = {∀R.(A t B), ∃R.C u ∀R.(A t B), ∃R.C}

L(y) = {C}

R

(c) Apply ∃-rule to ˇ̌∃R.C at the node x.

L(x) = {∃R.C u ∀R.(A t B), ∃R.C, ∀R.(A t B)}

L(y) = {A t B,C}

R

(d) Apply ∀-rule to ˇ̌∀R.(A tB) at the node x.

L(x) = {∃R.C u ∀R.(A t B), ∃R.C, ∀R.(A t B)}

L(y) = {C,A t B}

L(y) ← L(y) ∪ {A} L(y) ← L(y) ∪ {B}

R

stage 0 stage 1

(e) Apply t-rule to A ˇ̌tB at the node y.

Figure 2.3: A DL tableau expansion procedure.
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Figure 2.3 demonstrates an example of tableau-based DL reasoning. This example

illustrates how the axiom ∃R.Cu∀R.(AtB) is expanded with the tableau completion

rules mentioned in Table 2.1. Labeled graph notation is used to illustrate a DL

tableau in this proposal (see [14, Section 9.3.2.1]).

By introducing tableaux in a nutshell, we see that non-determinism is a feature

of tableau-based DL reasoning. Obviously, disjunctive branches try to interpret all

possible cases, which leads to an inherent non-deterministic aspect of tableaux [27].

Furthermore, at-most number restrictions introduce non-determinism (see ≤-rule in

Table 2.1). Also, selecting which rule for expansion may lead to non-determinism

sometimes. These non-deterministic aspects of tableau-based DL reasoning lead to

parallelism potential.

2.3.2 Preliminary Techniques of Tableau-based DL Reasoning

Considering that many DL reasoning services are reducible to deciding concept sat-

isfiability, how is concept satisfiability tested with tableau-based DL reasoning algo-

rithms? As for checking subsumption, whether C v D holds is generally reduced to

the problem whether concept E ≡ C u ¬D is unsatisfiable: C v D if and only if

E is unsatisfiable. Tableaux are good at constructing such a refutation proof. For

example, whether ∀R.A u ∀R.B is subsumed by ∀R.(A u B) can be answered by

testing the satisfiability of concept C ≡ (∀R.Au∀R.B)u (¬∀R.(AuB)). Figure 2.4

shows the skeleton of such a tableau expansion procedure.

In this example, disjunction normal form ¬A t ¬B introduces non-deterministic

branches stage 0 and stage 1, so unsatisfiability needs to be deduced by exploring

both branches and by encountering a contradiction on each branch. {¬A,A} ⊆ L(y)

on stage 0 and {¬B,B} ⊆ L(y) on stage 1 syntactically indicate such contradictions.

Therefore, concept C is unsatisfiable, which proves that (∀R.Au∀R.B) v ∀R.(AuB)

holds. Intuitively, stage 0 and stage 1 in this example can be processed in parallel.

In recent research on parallel tableaux, [55] showed the performance improvement
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L(x) : (∀R.A u ∀R.B) u (¬∀R.(A u B)), ∀R.A, ∀R.B, ∃R.(¬A t ¬B)

L(y) : ¬A t ¬B

¬A
A
2

¬B
B
2

R

stage 0 stage 1

Figure 2.4: The tableau expansion for proving (∀R.A u ∀R.B) v ∀R.(A u B).

gained from parallelizing disjunction stages. This example demonstrates the funda-

mental technique to reason DL concepts with tableaux when no TBoxes are involved.

When tableaux reasoning involves a TBox, the expansion rules listed in Table 2.1

must be modified, and U -rule is added (see [40, Section 3.3] and [37]):

U -rule If {T | ∀T (T ∈ T ∧ T /∈ L(x))} 6= ∅,
then let L(x) = L(x) ∪ T ′, where T ′ = internalize(T ).

Note that the U -rule should be applied only on fresh instances. The underlying

principle for the U -rule is apparent: There must be a model witnessing a consistent

knowledge base KB = T ∪ A, and all instances in the model must agree with the

axioms in T . Internalization and other techniques to handle TBox reasoning will be

addressed later in this section.

Applying the tableau rules mentioned above now should define a decision proce-

dure, but not always. TBoxes normally contain general axioms, i.e. axioms that are

generally introduced by general concept inclusion (GCI) axioms (e.g. C v D), where
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GCIs may lead to cyclic TBoxes. Firstly, we introduce the definition on a acyclic

TBox.

Definition 12 Say that C1 directly uses C2 in T if C2 appears on the right hand

side of an axiom where C1 is the only one on the left hand side, and uses is the

transitive closure of the relation directly uses. Then T contains a cycle iff there

exists an atomic concept in T that uses itself. Otherwise, T is called acyclic [14].

If cyclic axioms are involved, this expansion procedure may actually increase

the computational complexity, sometimes even interminably. For example, given

KB = T ∪A = {C v ∃R.C}∪{C(x0)} = {¬C t∃R.C,C(x0)}, Figure 2.5 illustrates

its partial tableau expansion. The first time applying the ∃-rule and the U -rule

results in a new instance L(x1) and sets L(x1) = L(x0). Hereby, the expansion

pattern will go on endlessly.

L(x0) : C,¬C t ∃R.C

¬C
2

∃R.C

L(x1) : C,¬C t ∃R.C
...

stage 0 stage 1

Figure 2.5: Non-termination in applying tableau expansion rules.

Blocking techniques are used to deal with cyclic tableau expansion. Four primary

blocking algorithms have been proposed: (i) subset blocking, (ii) equality blocking,
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(iii) pairwise blocking, and (iv) dynamic blocking [21]. With blocking techniques,

DL tableaux give the guarantee of termination.

How is a DL TBox computed with tableau-based methods? Remember that a DL

TBox comprises a set of axioms, which may include GCIs. There is no an explicit

tableau rule of dealing with TBoxes allowing GCIs, e.g. T = {A u B v C,A v D}.

How are TBox axioms processed by tableaux?

A standard procedure to perform deduction over a DL terminology with tableaux

starts out on internalizing all axioms [11, 70]. Internalization is essential processing

although it may be avoided in some cases. Theoretically, internalization transforms

a TBox into a monolithic concept expression and a universal role, the reflexive-

transitive closure of the union of all roles, if necessary. For instance, following O |=

C ≡ D ⇐⇒ O |= (C v D) u (D v C), the given TBox T = {C0 v D0, . . . , Cn v

Dn} can be internalized as follows:

T ′ = internalize(T )

= {C, ∀U.C}, where C = (¬C0 tD0) u · · · u (¬Cn tDn) and U = (R0 t · · · tRm)
∗

An interpretation I is a model of T , if and only if I is a model of T ′, so tableaux

executed on T ′ generate models consistent with T . For instance, deciding satis-

fiability of concept D with respect to T can be achieved by putting D into T ′:

O |= D ⇐⇒ T ′ ∪ {D} = {D,C, ∀U.C} is satisfiable.

Practical DL tableau reasoning on a KB generally requires a pre-processing phase

in which a sequence of syntax normalization tasks are executed, such as negation

normal form (NNF) transformation, absorption, lexical normalization, and so forth.

These optimizations can usually improve reasoning efficiency. Table 2.2 lists normal-

ization transformation routines used in ALCN tableaux reasoning [37]:
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from to
normalize(C ≡ D) normalize(C v D), normalize(D v C)
normalize(C v D) normalize(¬C tD)
normalize(¬¬C) normalize(C)
normalize(¬C) ¬normalize(C)
normalize(C) C, if C is a concept name
normalize(C tD) normalize(C) t normalize(D)
normalize(C uD) normalize(C) u normalize(D)
normalize(∀R.C) ∀R.normalize(C)
normalize(∃R.C) ∃R.normalize(C)
normalize(¬∀R.C) ∃R.normalize(¬C)
normalize(¬∃R.C) ∀R.normalize(¬C)
normalize(≤ nR.C) ≤ nR.normalize(C)
normalize(≥ nR.C) ≥ nR.normalize(C)
normalize(¬ ≤ nR.C) ≥ (n+ 1)R.normalize(C)
normalize(¬ ≥ (n+ 1)R.C) ≤ nR.normalize(C)
normalize(¬ ≥ 1R.C) ∀R.¬C

Table 2.2: Normalization transformation routines for ALCN .

Example: OS World The following example shows a complete instance checking

reasoning process on a KB, mobile world. Firstly, the TBox defines a description of

a mobile software platform:

T = {∃drive.phone u os v mobile_platform, pc u phone ≡ ⊥}

Then, the ABox asserts some facts on an objectWIN7 : A = {os(WIN7 ), ∀drive.pc(WIN7 )}.

The query to be answered is whetherWIN7 is a mobile platform: ?mobile_platform(WIN7 ).

The reasoning service decides the query by refutation, so it appends the query’s nega-

tion to the ABox:

A = A ∪ {¬mobile_platform(WIN7 )}

= {os(WIN7 ), ∀drive.pc(WIN7 ),¬mobile_platform(WIN7 )}
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Thus,

KB = T ∪ A

= {∃drive.phone u os v mobile_platform, pc u phone ≡ ⊥,

os(WIN7 ), ∀drive.pc(WIN7 ),¬mobile_platform(WIN7 )}

The reasoning starts with normalizing KB; without loss of generality, no particular

optimizations are employed in the reasoning demonstration, and only essential nor-

malization as introduced in Table 2.2 is performed. Firstly, all equality axioms are

eliminated, e.g. pcuphone ≡ ⊥ broken down into pcuphone v ⊥ and⊥ v pcuphone;

then all GCI axioms are resolved:

T = {∃drive.phone u os v mobile_platform, pc u phone ≡ ⊥}

= {∀drive.¬phone t ¬os tmobile_platform,¬pc t ¬phone t ⊥,> t (pc u phone)}

= {∀drive.¬phone t ¬os tmobile_platform,¬pc t ¬phone,>}

Some trivial application of normalization operations in Table 2.2 are omitted here.

Table 2.3 demonstrates the normalized KB:

KB

T
∀drive.¬phone t ¬os tmobile_platform

¬pc t ¬phone
>

A
os(WIN7 )
∀drive.pc(WIN7 )
¬mobile_platform(WIN7 )

Table 2.3: Normalized KB of mobile world.

Now, the tableau rules presented in Table 2.1 as well as the enhancement rule

are applied to search a model for KB. Figure 2.6 shows the expansion in which

two closed but contradiction-free stages (indicated by �) are established. Therefore,
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WIN7 is shown not to be a mobile_platform.

L(WIN7 ) :
os , ∀drive.pc,¬mobile_platform,>,¬pc t ¬phone,
∀drive.¬phone t ¬os tmobile_platform

¬os
2

∀drive.¬phone tmobile_platform

∀drive.¬phone mobile_platform

2

¬pc
�

¬phone
�

Figure 2.6: Tableau expansion of mobile world KB.

This example shows the potential of improving reasoning efficiency by parallelism.

Disjunctive stages are independent of each other. Each stage represents a partial

model of the complement to the goal query. That is to say these sub-questions of

whether a contradiction exists in some stage are independent and so can be answered

in parallel.

2.3.3 Optimization

DL reasoning has successfully been applied to solving practical problems, despite

the hardness of it. One reason for its successful practice is that the severe worst-

case complexity rarely occurs in reality although empirical reasoning performance

may vary largely with ontology constructs [14]. In addition to this, optimization

techniques play a more important role.
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Optimization techniques make workable DL reasoning systems possible. Realistic

performance of DL systems is acceptable, as has been shown by a set of reasoners,

FaCT, HermiT, Pellet, RACER, etc. All these DL reasoners not only have

implemented basic tableaux but also have incorporated a number of optimization

techniques. Without optimization, a tableau-based DL reasoning system is imprac-

ticable.

A preliminary optimization technique is for normalization (see Section 2.3.2),

including NNF and axiom transformation. Lexical normalization optimization makes

use of logical duality in order to detect contradictions as fast as possible. A number

of normalization optimization schemes have been presented. For example, a popular

axiom transformation technique is to normalize every role-existing axiom into role-

value one: ∃R.C ` ¬∀R.¬C. The opposite transformation scheme is also acceptable.

Table 2.4 shows a possible lexical normalization strategy:

from to
C tD ¬(¬C u ¬D)
∃R.C ¬∀R.¬C
≤ nR.C ¬ ≥ (n+ 1)R.C

Table 2.4: A lexical normalization strategy for ALCN .

The lexical normalization optimization should be performed after NNF transforma-

tion since some lexical normalization operations do not agree with NNF. Note that

axiom transformation does not mean to eliminate the original form. These optimiza-

tion schemes make contradiction-detection and subsumption-checking more efficient

[40].

An interesting observation is that traditional lexical normalization techniques

are inclined to reduce non-deterministic tableaux expansion, for example, C t D

is transformed to ¬(¬C u ¬D) [42]. Thus, on the other side, in order to prompt

parallelism, a lexical normalization strategy encouraging non-determinism should

come up with a different normalization as follows:
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from to
C uD ¬(¬C t ¬D)
∃R.C ¬∀R.¬C
≥ nR.C ¬ ≤ (n− 1)R.C

Table 2.5: A lexical normalization strategy encouraging non-determinism for ALCN .

Dramatic reasoning performance increasing comes from the optimization tech-

niques for tableaux. As mentioned in Section 2.3.2, tableau-based DL reasoning

normally starts out on internalization. However, it is shown that reasoning on such

a monolithic internalized concept is inefficient. Disjunction branches contribute much

to DL reasoning complexity while internalizing TBox axioms naively leads to plenty

of disjunction branches:

internalize(T ) = {(¬C0tD0) u (¬C1tD1) · · · u (¬CntDn), ∀(R0 t · · · tRm)
∗.((¬C0tD0)

u (¬C1tD1) · · · u (¬CntDn))}

Note that ∀(R0t· · ·tRm)
∗.((¬C0tD0)u(¬C1tD1) · · ·u(¬CntDn)) restricts (¬C0tD0)u

(¬C1tD1) · · · u (¬CntDn) to interpret every node in tableau expansion trees.

Instead of internalization, lazy-unfolding is used to expand a tableau tree [12].

This technique makes it possible that tableaux expansion involves merely concerned

concepts in most cases, and reduces the expansion space largely. This strategy is

straightforward and sufficient for acyclic terminologies where concept names are de-

fined as unique. However, cyclic definitions exist in realistic ontologies. To tackle

cyclic terminologies, a TBox is divided into two disjoint parts: general and unfoldable

axioms [40]. The division may be achieved via an incremental procedure, absorption.

Then the unfoldable set is used by lazy-unfolding while axioms in the general set are

internalized. Lazy-unfolding may be implemented as a set of tableaux expansion

rules as listed in table 2.6 [14, 40].

A full-fledged tableau expansion procedure can not always be avoided via some



CHAPTER 2. PRELIMINARIES 35

name rule
U1-rule If (i) A ∈ L(x) and (ii) (A ≡ C) ∈ Tu and (iii) C 6∈ L(x) ,

then let L(x) = L(x) ∪ {C}.
U2-rule If (i) ¬A ∈ L(x) and (ii) (A ≡ C) ∈ Tu and (iii) ¬C 6∈ L(x) ,

then let L(x) = L(x) ∪ {¬C}.
U3-rule If (i) A ∈ L(x) and (ii) (A v C) ∈ Tu and (iii) C 6∈ L(x) ,

then let L(x) = L(x) ∪ {C}.

Table 2.6: Tableaux lazy-unfolding rules.

optimizations. Consider the following example:

L(x) = {C0 tD0, C1 tD1, . . . , Cn tDn, A u ¬A}

It is possible that applying t-rule continues before finally encountering clash from

A u ¬A. Maybe, such unnecessary expansion repeats 2(n+1) times. However, these

unnecessary spawned branches may be cut by some pruning techniques in many

cases.

Dependency directed backtracking is proposed to prune those repeated unnec-

essary expansion [40]. This optimization requires each concept and role involved in

expansion to maintain disjunction branching information, which is used to prune

expansion later. It is known that disjunctive branching is a source of DL computa-

tional complexity, so dependency directed backtracking can largely reduce tableau

expansion space and make acceptable DL reasoning possible.

Pseudo model is another important optimization technique. A modern DL rea-

soning system normally provides functionality to detect inconsistent components of

an ontology. Such functionality requires deciding satisfiability of each concept name.

Tableau builds a pseudo model in each satisfiability-deciding pass. Pseudo models

built during deciding satisfiability of concepts can be cached for further DL reasoning

services, such as checking concept subsumptions [35, 40]. Cached pseudo models are

retrieved and merged at some point, which saves dramatically on tableau expansion
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time.

For example, Figure 2.7 shows how pseudo models are used to check O
?

|= A v B,

given that:

A ≡ ∃R.C uD

B ≡ ∀S.¬E

The non-subsumption can be deduced if the merged expansion tree is clash-free un-

der certain conditions. This cache optimization technique is sound but incomplete

in tests for non-subsumption [40].

{A, ∃R.C,D}

{C}

{¬B, ∃S.E}

{E}

{A, ∃R.C,D,¬B, ∃S.E}

{C} {E}

R S

R S

Figure 2.7: Merging models.

According to the report of [44], semantic branching can largely impact the tableau-

based DL reasoning performance. Because the syntactic expansions of tableaux

generate disjunction branches which are not necessarily disjoint, some unsatisfiable

concept may be inferred repeatedly in them. For example, if C is an unsatisfiable

concept expression, the clash resulted from it when deducing {C tD1, C tD2} may

be computed twice. Figure 2.8 (after [40]) shows the situation. Semantic branching,
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{C tD1, C tD2}

{C,C t D2}
2C

{D1, C t D2}

{C,D1}
2C

. . .

t t

t t

Figure 2.8: The tableau expansion of {C tD1, C tD2}.

a DPLL style solution, was presented to deal with this case [40, 44, 82]. This opti-

mization technique makes use of the identification C t D ⇐⇒ C t (¬C u D). In

brief, when a disjunct of a concept expression disjunction leads to a clash, its com-

plement is placed to another disjunct branch of the disjunction. The complement

plays as a trigger to fire a clash early, as it avoids repeated tableau inference.

Other optimization techniques have also intensively been researched, such as

boolean constraint propagation, and heuristic guided searching, and a practical DL

reasoning system can not be achieved without them.

However, almost all of these optimization techniques are investigated in serial

contexts, and large exploration space is left to concurrency [14, 40].

2.4 Semantic Web

DL, as a KR formalism that provides practical reasoning power for computing tech-

nologies, advances greatly with the evolution of the Internet. The Internet has aggre-

gated an enormous amount of human knowledge, while the utilization of the knowl-

edge is mainly confined to lexical retrieval for the moment. Semantic web technology



CHAPTER 2. PRELIMINARIES 38

attempts to make use of contents on the Internet in a more intelligent way.

Semantic web endeavors to logically conceptualize knowledge on the Internet and

to automatically deduce the knowledge. How to model and how to reason about

knowledge on the Internet are the key issues of semantic web technology. As afore-

mentioned, DL is the underpinning of semantic web technology and provides the

theoretical foundation of it. DL reasoning techniques can be used by semantic web

directly. The fact is what semantic web technology is using for automated reason-

ing in real world are those DL reasoning systems that have been developed for long

time before the birth of semantic web. Although deduction techniques are part of

semantic web, the substantial work of automated reasoning has been extensively re-

searched in DL. Consequently, how to represent knowledge is more important than

how to deduce knowledge in semantic web. A collection of semantic web standards

have been presented to address the issue of how the knowledge on the Internet can

be organized and deduced.

2.4.1 Resource Description Framework

RDF is one of the earlier endeavors as semantic web technology [1]. In order to deduce

web information automatically, the first step is to endow web with semantics. From

the point of view of linguistic semantics, the ternary structure of

(subject, predicate, object)

is the essential formalism of describing meaning, and this has also been proven at

work in computer science. RDF makes use of this ternary structure, i.e. RDF triple,

to annotate web with semantics.

An RDF triple consists of three ordered components: subject, predicate (i.e.

property), and object. Any web resource which is encoded as a Uniform Resource

Identifier (URI) can be described with such RDF triples. Therefore, information
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can be organized as RDF graphs: Vertices are web resources, and edges are RDF

predicates, which are a special type of web resources.

For example, this thesis may be described in RDF/XML as Listing 2.1:

100 <?xml version=" 1 .0 "?>

101 <rdf:RDF xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−

ns#"

102 xmlns : the s i s−base=" ht tp : // example . org / rd f / t h e s i s#"

103 xmlns : contact=" ht tp : // example . org / rd f / contact#">

104 <rd f :D e s c r i p t i o n rd f : about=" ht tp : // example . org / rd f / t h e s i s /

ke j i a−t h e s i s ">

105 <the s i s−b a s e : t i t l e>Parallelizing Description Logic
Reasoning</ the s i s−b a s e : t i t l e>

106 <the s i s−base :author r d f : r e s o u r c e=" ht tp : // example . org / rd f /

person#k e j i a "/>

107 <the s i s−ba s e : s c hoo l>Concordia Un ive r s i ty</ the s i s−

ba s e : s c hoo l>

108 </ rd f :D e s c r i p t i o n>

109 <rd f :D e s c r i p t i o n rd f : abou t=" ht tp : // example . org / rd f / person#

k e j i a ">

110 <c o n t a c t : f u l l−name>Kej ia Wu</ c o n t a c t : f u l l−name>

111 <rd f : t y p e r d f : r e s o u r c e=" ht tp : // example . org / rd f /academic#

Ph .D. "/>

112 </ rd f :D e s c r i p t i o n>

113 </rdf:RDF>

Listing 2.1: RDF/XML example: Kejia’s thesis.

This document describes that: the resource http://example.org/rdf/thesis/

kejia-thesis has the type of http://example.org/rdf/thesis#thesis, it has

other properties http://example.org/rdf/thesis#title, http://example.org/





CHAPTER 2. PRELIMINARIES 41

rdf/thesis#author, and http://example.org/rdf/thesis#school, and the cor-

responding resources are linked via the properties. The resource http://example.

org/rdf/person#kejia, which is reached via the property http://example.org/

rdf/thesis#author, is described further. This document defines a set of RDF

triples, basic structures of RDF, which are listed in Table 2.7. These triples form a

graph, and Figure 2.9 demonstrates it.

RDF provides a general facility to encode information, but more specific frame-

work vocabularies are defined via RDFS. Like other XML schema standards, RDFS

is used to define meta semantics for RDF vocabularies. The vocabularies used to

compose an RDF document categorize description features and can be defined with

RDFS. For example, the predicate “title” used in Listing 2.1 can be constrained to a

specific subject and a specific object, as is shown by Listing 2.2. An RDFS document

is also a validate RDF one, so it defines a set of RDF triples and a graph, too, as

are shown by Table 2.8 and Figure 2.10.

100 <?xml version=" 1 .0 "?>

101 <rdf:RDF xmlns : rd f=" ht tp : //www.w3 . org /1999/02/22− rdf−syntax−

ns#"

102 xmlns : rd f s=" ht tp : //www.w3 . org /2000/01/ rdf−schema#">

103 <rd f :P rope r ty rd f : about=" ht tp : // example . org / rd f / t h e s i s#

t i t l e ">

104 <rdfs :domain r d f : r e s o u r c e=" ht tp : // example . org / rd f /

t h e s i s#t h e s i s "/>

105 <rd f s : r a n g e r d f : r e s o u r c e=" ht tp : //www.w3 . org /2001/

XMLSchema#s t r i n g "/>

106 </ rd f :P rope r ty>

107 </rdf:RDF>

Listing 2.2: RDFS/XML example: Kejia’s thesis.
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RDF inference is made over triples graphs with a set of deduction rules. For

example, given the rule (s p o),(p has-domain c)
(s has-type c)

and the RDF graphs shown in Figure

2.9 and 2.10, we can infer http://example.org/rdf/thesis/kejia-thesis must

have a type of http://example.org/rdf/thesis#thesis:

@prefix tb : < http : //example.org/rdf/thesis/ > .

(tb:kejia-thesis tb:title ′′ . . .′′), (tb:title has-domain tb:thesis)

(tb:kejia-thesis has-type tb:thesis)

(2.1)

RDF can describe limited simple relationships between web resources. Although

RDF can express basic class hierarchies, it can not express complex semantics, such

as negation. For example, RDF even can not express ⊥ ≡ ¬>. The core language

constructs of RDF are listed in Table 2.9. More powerful expressivity can be obtained

with OWL, the syntax and semantics of which are established on the basis of RDF.

rdfs:Class rdf:Property rdfs:Resource
rdfs:Literal rdfs:Datatype rdf:XMLLiteral
rdfs:range rdfs:domain rdf:type
rdfs:subClassOf rdfs:subPropertyOf rdf:Statement
rdf:subject rdf:predicate rdf:object

Table 2.9: The core language constructs of RDF.

2.4.2 Web Ontology Language

OWL is becoming increasingly important nowadays and has become an important

semantic web infrastructure [3]. Compared with RDF, OWL provides more powerful

expressivity in order to represent complex knowledge. For example, we know that

a Ph.D. thesis is a type of thesis and must be completed by some Ph.D. This piece
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of knowledge can hardly be described with RDF, but OWL is good at representing

it. Listing 2.3 shows the corresponding OWL/XML snippet. Some interesting OWL

language constructs which is absent from RDF are listed in Table 2.10.

100 <SubClassOf>

101 <Class IRI="#phd−t h e s i s "/>

102 <ObjectSomeValuesFrom>

103 <ObjectProperty IRI="#has−author "/>

104 <Obje c t In t e r s e c t i onOf>

105 <Class IRI="#author "/>

106 <ObjectSomeValuesFrom>

107 <ObjectProperty IRI="#has−academic−degree "/>

108 <Class IRI="#phd"/>

109 </ObjectSomeValuesFrom>

110 </Obj e c t In t e r s e c t i onOf>

111 </ObjectSomeValuesFrom>

112 </SubClassOf>

Listing 2.3: OWL/XML example: Ph.D. thesis.

disjointWith equivalentClass intersectionOf
unionOf complementOf disjointUnionOf
AllDisjointClasses members allValuesFrom
someValuesFrom cardinality minCardinality
maxCardinality TransitiveProperty SymmetricProperty
FunctionalProperty InverseFunctionalProperty inverseOf
AsymmetricProperty ReflexiveProperty IrreflexiveProperty
propertyDisjointWith AllDisjointProperties propertyChainAxiom
maxQualifiedCardinality minQualifiedCardinality qualifiedCardinality

Table 2.10: Partial core language constructs of OWL.
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It is well known that OWL’s theoretical base is DL. It is straightforward to es-

tablish a mapping between both. For example, OWL axioms SubClassOf (C D),

ObjectSomeValuesFrom(R C), and

ObjectIntersectionOf (ObjectComplementOf (C)ObjectAllValuesFrom(RD)) have the

same semantics in DL as C v D, ∃R.C, and ¬C u ∀R.D, respectively.2 The

OWL/XML snippet shown in Listing 2.3 can be translated into the following DL

description:

phd-thesis v ∃has-author.(author u (∃has-academic-degree.phd)) (2.2)

Actually, OWL fragments correspond to DL fragments. Table 2.11 shows the map-

ping [37].3 DL, especially its fragment SHIQ, lays the foundation of OWL [78].

OWL Profile DL Fragment
OWL Full not DL
OWL DL SHOIN (D)
OWL Lite SHIF(D)
OWL 2 Full not DL
OWL 2 DL SROIQ(D)
OWL 2 EL EL++

OWL 2 QL a variant of DL-LiteR (see [19, 68])
OWL 2 RL Description Logic Programs (DLP) (see [33])

Table 2.11: OWL maps to DL.

Thus, OWL is an application of DL, while at the same time OWL promotes devel-

opment of DL.

Modern DL systems now can focus on reasoning over OWL ontologies. In the

past, when an ontology was encoded in several languages, DL reasoners had to deal

with multiple popular ones. This problem has been solved by introducing OWL since

2Here, OWL 2 functional-style syntax is used (see [2]).
3OWL 2 Full exists in semantic web with the most descriptive expressivity, and some reasoning

services, such as deciding TBox consistency, in OWL 2 Full are undecidable (see [60]).
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a multitude of modern computational ontologies are now encoded in OWL. So, DL

research lines up with the semantic web technology, and the mature DL reasoning

techniques can be used for semantic web deductions.

2.4.3 Others

RDF and OWL consist of the core semantics representation facilities of semantic

web technology. With RDF and OWL, automatic deduction becomes possible in

semantic web technology. There are also other significant semantic web standards,

such as SPARQL. SPARQL provides the query functionality mainly for RDF.

SPARQL uses SQL-style syntax, and its typical implementation may utilize a

set of computational operations, SPARQL algebra, and similar systems are generally

used by implementations of SQL [5]. With SPARQL, normal users can retrieve

information via a convenient means, instead of constructing complex RDF graphs.

For example, the SPARQL query illustrated by Listing 2.4 may return the theses

written by a specific author.

100 PREFIX the s i s−bas e : <ht tp : // example . org / rd f / t h e s i s />

101

102 SELECT ? t i t l e

103 WHERE {

104 ? t h e s i s t h e s i s−base :author "Kej ia ␣Wu" .

105 ? t h e s i s t h e s i s−b a s e : t i t l e ? t i t l e

106 }

Listing 2.4: SPARQL example: thesis.

Before the current semantic web proposals become available, there have existed a

number of knowledge representation and automatic inference methodologies, many

of which use first-order logic rule as their reasoning technique, such as datalog,

and how to make use of those existing knowledge modeling technologies is a topic
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of semantic web research. The ongoing Rule Interchange Format (RIF) standard

is an effort in this direction [4]. RIF makes it possible to combine traditional rule-

based technologies with available semantic web facilities, and therefore rule-reasoning

engines may be used for semantic web deduction.

These standards make up the fundamental semantic web facilities. Meanwhile,

semantic web technology produces enormous knowledge bases to which researchers

need to seek for scalable solutions. Concurrent computing may be a candidate

solution and is attracting many DL researchers.

2.5 Concurrent Computing

A number of concurrent computing methodologies are presented in recent years.

Parallel computing and distributed computing are the well-known folklore results

of concurrent computing. However, the distinction between them is obscure, as was

discussed in [28, Section 1.7]. [52, Section 1.5] differentiated shared memory systems

from non-shared memory systems. In our research, the term parallelism mainly

denotes parallel algorithms designed for shared-memory parallel systems, and the

term distributed systems denotes the ones in which shared address space is not

necessarily supported by the underlying architecture.4

Parallelism as an optimization technique is not an easy solution. Many prac-

tical issues on parallelism must be researched. For example, thread-locking is the

preferred method to monitor a critical code section in shared-memory parallel rea-

soning. However, thread-lock model’s intrinsic rejection of shared states diminishes

its better application potential in computing. The serialization degree of deduction

increases while applying thread-locking; adding the expense of controlling threads (ei-

ther recreating or re-using), inappropriately using thread-lock in complex computing,

such as computation of knowledge reasoning systems like DL reasoners, introduces

4The differentiation is not identical to that of [52].
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synchronization-related performance bottlenecks [77]. So, the overhead issue caused

by threading must be taken into account.

Design patterns of parallel algorithms are valuable experience that is used to

avoid common difficulty of parallelism and are valuable in concurrent computing

[54, 80].

Producer/Consumer In real world, some programs process data which is the

computation results of other programs. The programs generating data can be view

as producers, and the data is fed to consumers. A typical scenario is the usage of pipe

operation on UNIX. One producer may mapped to more than one consumer, and one

consumer may get data from more than one producers. When a group of producers

feed data to a group of consumers, parallelization may play a role. Generally, in

such a case, the data processed by the producers are independent, the data used

by consumers are independent among them, and thus the data can be processed in

parallel on the two stages. For example, a video encoding program, which reads in

data, encode it, and compresses it. It normally processes data chunk by chunk. For

each chunk, the program must encode it firstly and then compress it. The encoding

program is a producer, and the compress program is a consumer. A video file can

be divided into a number of chunks, a set of producers can be parallelized, and so

consumers.

Fork/Join This pattern uses divide and conquer strategy to solve a type of prob-

lems that can be divided into sub-problems, and all results of a sub-problems need

to be jointed together for completion of the calculation. The divide operation is

generally recursive. The computation on each fork is normally independent to the

others, so this is a popular pattern employed in concurrent computing.

MapReduce This pattern is popular on cluster-based computing today, and it can

be used in shared memory parallelization. MapReduce uses a manager agent to read
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in a problem, normally a key/value pair.5 The manager agent divides the problem

into sub-problems, which are generally key/value pairs, and dispatches them to a set

of worker agents. This process is map. The manager agent finally needs to collect

the outputs of worker agents and to combine them in terms of keys. This process is

reduce.

Speculation There generally exist more than one strategies to solve a problem

in real world. Similarly, in complex computation, several algorithms can be used

to decide a problem. It is hard to say which algorithm is best to solve a specific

problem. For example, the practical efficiency of sort algorithms depends on specific

data. A universal solution to pick up the best one is trying through all candidates.

Obviously, applying all strategies in a parallel way to a problem may be more efficient

than in a sequential way. This way of picking up strategies is speculation.

Replication It is a pretty common case that multiple computation agents manip-

ulate shared resources in concurrent computing. Locking is the universal solution

to assure synchronization in those cases. However, locking may largely degrade the

concurrency performance in some cases. Replica of shared data may assure both

synchronization and performance by making local copies.

Active Object [53]

When there are a lot of operations, it becomes problematic to manage them in an

efficient way. Active object pattern makes operation request and operation execution

be separated in different threads. The components like proxy and scheduler are used

to manage operations.

Thread Pool In concurrent computing, the cost of creating and destroying pro-

cesses or threads is significant. In real world, the maximum number of computation

5Here, an agent may be a computation node, a process, or a thread.
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resources is constrained. Thread pool pattern is for decreasing the cost of creat-

ing/destroying threads and for re-using threads in shared-memory concurrent com-

puting.

Double-checked Locking Repeated operations should always be avoided. This

issue is solved by locking mechanism. However, the cost of acquiring and releasing a

lock is generally expensive, so acquiring a lock should be avoided as much as possible,

too. The double-checked locking satisfies the requirement. This pattern firstly checks

whether a shared resource has been initialized, and the resource is consumed if it is

available. If the needed resource has not existed, the thread will try to compute it,

and the computation is synchronized by a lock. Listing 2.5 illustrates the scenario.

100 i f ( foo = ∅) {

101 lock {

102 i f ( foo = ∅) {

103 foo ← i n i t i a l i z e_ f o o ( ) ;

104 }

105 }

106 }

Listing 2.5: The double-checked locking pattern.
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Related Work

DL is advancing along with extended expressivity and novel reasoning methods. Al-

though tableau is a sound and complete DL reasoning solution, a gap exists between

theory and practice. A workable DL reasoning system depends on a number of

optimization techniques. A naive DL reasoner without any optimizations has no

guarantee of a practical termination. Besides extensive research in serial contexts,

some parallel DL reasoning techniques seeking for scalable solutions are being pre-

sented. In this chapter, the work on DL formalism, on those cardinal techniques for

workable DL reasoning, and on concurrent DL reasoning is reviewed.

DL consists of a family of languages and is evolving by extended expressivity, as

aforementioned. The overall view on the DL formalism, such as syntax, semantics,

notation, conversion, and extension, is illustrated in [14]. [43] witnesses the latest

major DL language, SROIQ, as well as the preliminary tableau-based reasoning

technique for it. The main extension to achieve SROIQ is via a set of functions

applied to roles, and thus an RBox is mentioned in [43]. SROIQ is known to

be ready for an important OWL fragment, OWL DL 2 (see Table 2.11). Actually,

SROIQ is directly extended from SHOIQ, another weighty DL fragment which

allows for role transitivity, inversion, and subsumption and was formalized with

tableau in [47]. Based on SHOIQ, SROIQ’s expressivity is augmented via a set of

51
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constructors allowing: (i) role disjointness, (ii) role reflexivity, role irreflexivity, and

role anti-symmetry, (iii) negated role assertions, role inclusion axioms of the form

R ◦ S v R and S ◦ R v R, (iv) the universal role, and (v) concepts of the form

∃R.Self to express local reflexivity [43].

Most essential optimization techniques in tableau-based DL reasoning thus far

have been summarized in [14, Chapter 9] and quite a few were originally investigated

by [40]. Those cardinal optimization techniques are able to improve DL reasoning

efficiency dramatically, and so most modern DL reasoning systems adopt them or

some of them. FaCT, the research result of [40], employs and analyzes most of those

optimization techniques, including: (i) lexical normalization, (ii) semantic branch-

ing, (iii) simplification, (iv) dependency-directed backtracking, (v) heuristic guided

search, and (vi) caching [44]. The well known DL reasoner FaCT++ uses these

optimization techniques as well as additional ones, such as lazy unfolding, absorp-

tion, and blocking, to deal with SHOIQ, as is addressed in [82, 83]. Among these

optimization methods, a caching technique, model-merging, can expedite tableau

expansion dramatically and was intensively investigated by [35].

The absorption technique can largely reduce disjunctions, a source of DL reason-

ing complexity, introduced by GCIs, and has been investigated by [40, 41, 47, 48,

81, 84]. Non-determinism introduced by disjunction branches can be totally avoided

in the case of processing axioms which can be translated into Horn clauses. Hyper-

tableau DL reasoning presented by [64] makes use of this observation to decrease

disjunction branches [15, 61, 62, 63, 73]. Furthermore, hypertableau of [64] can also

deal with the inefficiency of the so called and-branching introduced by value exist

rule and at-least cardinality restriction.

A number of classification optimization algorithms have been researched. Top-

search and its duality bottom-search are elementary methods handling classification

and were addressed originally by [56] and were extended by [12]. Reflexive transitive

closure and told subsumption can assist in pruning subsumption tests so as to accel-
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erate classification, as was discussed even early in [12]. [72] presented a method of

exploiting this idea. This algorithm tries to make use of reflexive transitive closure

over told and possible subsumptions so that potential non-subsumptions can be fig-

ured out fast. However, [29] pointed out the method of [72] was actually too naive

to expedite the calculation much, and completed it with more sophisticated mecha-

nism to utilize reflexive transitive closure. Classification research mentioned so far

does not involve concurrency. These optimizations can improve DL reasoning effi-

ciency largely, while few of them have been investigated under a concurrency context.

However, the canonical top-search algorithm, as well as its duality bottom-search,

can be executed in parallel potentially. [8, 9] have worked on parallelizing the dual

procedures, top-search and bottom-search, and the experimental results promise the

feasibility of parallelized DL reasoning.

[55] completed a parallel SHN reasoner. This reasoner achieved processing dis-

junction and at-most cardinality restriction rules in parallel, as well as primary DL

tableaux optimization techniques. The experimental results of the reasoner show no-

ticeable performance improvement in comparison with non-parallel reasoners. How-

ever, the involved test cases are either small or restricted. For example, test case

2 employed in [55] constructed a concept which was the union of eight concepts

excluding any non-determinism.

[16] proposed two hypotheses on parallelized ontology reasoning: independent

ontology modules and a parallel reasoning algorithm. Independent ontology mod-

ules strive for structuring ontologies as modules which can be computed in parallel.

The idea of partitioning ontologies into modules is supported by [32], [30], and [31].

According to the second hypothesis, extensive research on parallelized logic program-

ming does not contribute much to DL reasoning. Furthermore, some DL fragments,

without disjunction and at-most cardinality restriction constructors, do not profit

much by parallelizing non-deterministic branches in tableau expansion.

[58] applied a constraint programming solver, Mozart, to ALC tableau reasoning
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in parallel, and this idea was implemented by [57]. The experimental results show

scalability to some extent.

[49, 74] proposed a consequence-based DL reasoning method, mainly dealing with

Horn ontologies. Based on the consequence-based reasoning and the work of [10],

[50, 51] achieved a substantial reasoner that can classify EL ontologies concurrently.

Compared with TBox, tableau-based ABox reasoning research literature is not

so much. [34] originally presented a tableau calculus to decide the ABox consistency

problem. The work researched ABox reasoning onALCNHR+ . Further investigation

about ABox reasoning on SHIQ was conducted by [46]. For the moment, [25]

has completed research on nominals and qualified cardinality restrictions of DL, in

particular SHOQ.

Recently, some research focuses on how DL reasoning is applied to industrial

standards, such as RDF and OWL, and on issues arising in the process. That trend

leads to the research upsurge of reasoning about massive web ontologies in a scal-

able way. MapReduce [65], ontology mapping [38], ontology partitioning [31], rule

partitioning [76], distributed hash table (DHT) [26], swarm intelligence [20], etc., are

presented for that goal. Some of the researches tried to apply concurrent computing

to DL reasoning, but the efficiency of these methods is not prominent; few of them

were researched under a shared-memory parallelism context, and we believe that the

non-shared memory distributed computing scheme they used is not suitable for DL

reasoning, while shared-memory parallelism can play a role in improving DL rea-

soning efficiency. Therefore, our research was conducted under this premise: using

shared-memory parallelism.



Chapter 4

Parallelizing Tableau-based

Classification

4.1 Introduction

TBox classification is a core inference service of DL reasoners. An intention of using

KR technologies like DL is to construct knowledge taxonomies. A DL TBox taxon-

omy describes whether a concept is subsumed by another one, i.e. a concept sub-

sumption relationship. TBox classification computation figures out all subsumption

relationships entailed in a knowledge base. Such a test of calculating a subsump-

tion relationship between two concepts generally uses tableau-based algorithms and

is expensive. Meanwhile, a concept subsumption relationship test is independent of

the others. Therefore, DL TBox classification can be computed in a concurrent way.

This research applies concurrent computing to tableau-based DL TBox classification.

A parallel classification algorithm and corresponding architecture have been devel-

oped. The experiments showed that scalable reasoning performance can be gained

by the parallel algorithm.

55
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4.2 Architecture

Some distinct features are of concern when developing a parallel reasoner. The design

must assure approachable performance improvement from parallelism. Hereby, some

aspects of a parallel DL reasoner’s architecture are different from sequential ones.

The essential trade-offs for devising Deslog are presented in this section.

4.2.1 Framework

The shared-memory parallel reasonerDeslog consists of three layers: (i) pre-processing

layer, which adapts OWL representation to internal data structures; (ii) reasoning

engine layer, which performs the standard DL services and is composed by two key

components, the service provider and the tableau rule applier; (iii) post-processing

layer, which collects, caches, and saves reasoning results; (iv) infrastructure layer,

which provides core components and utilities, such as structures representing con-

cepts and roles, and the object copy tool. Figure 4.1 shows the overview of the

framework.

OWL ontology data is read into the pre-processing layer first. Typical pre-

processing operations, such as NNF, axiom re-writing, and axiom absorption, are

executed in this layer. The reasoner’s run-time options, such as service, thread num-

ber, and rules application order, are also set up in this layer. We implement this

layer with the OWL API [39]. The pre-processed data is fed to the reasoning engine.

The reasoning engine performs primary inference computation. The first key

component of the reasoning engine is the service provider. As with popular DL

reasoning systems, Deslog provides standard DL reasoning services, such as testing

TBox consistency, concept satisfiability, etc. As we know, these services may depend

on each other. In Deslog, the classification service depends on subsumption, and

the latter depends on the satisfiability service. The service provider uses a set of

tableau-based deduction calculus to complete computing.
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Figure 4.1: The framework of Deslog.
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The reasoner adopts tableaux as the primary reasoning method, which is con-

ducted by another key component of the reasoning engine, the tableau expansion

rule applier. The main function of this component is to execute tableau rules in

some order to build expansion forests. In Deslog, tableau expansion rules are de-

signed as configurable plug-ins, so choosing which rules in what application order can

be specified flexibly. At present, Deslog has implemented the ALC tableau expansion

rules [14].

All the three layers mentioned above use the facilities provided by the infras-

tructure layer. All common purpose utilities reside on this layer. For example, the

threads manager, the global counters, and the globally unique identifier (GUID)

generator. In addition, the key data structures representing DL elements and basic

operations on them are built in this layer, as is addressed in Section 4.2.2.

4.2.2 The Key Data Structures

Different from popular DL reasoning systems, Deslog aims improving reasoning per-

formance by employing parallel computing, while data structures employed by se-

quential DL reasoners are not always suitable for parallelism.

The tree structure has been adopted by many tableau-based reasoners. However,

a naive tree data structure introduces a data race in a shared-memory parallel en-

vironment and can hardly play a role in such a concurrency setting. Therefore, we

need to devise more efficient structures in order to reduce shared data as much as

possible.

The new concurrent data structures must provide support to DL tableaux. One

important function of the trees is to save non-deterministic branches generated during

tableau expansion. Non-deterministic branches are mainly produced by the disjunc-

tion rule and the at-most number restriction rules. To separate non-deterministic

branches into independent data vessels, which are suited to be processed in parallel,

we adopt a list-based structure, stage, to maintain single non-deterministic branches,
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literal operator

∗ left ∗ right

Figure 4.2: Deslog data structure—concept.

and a queue-based structure, stage pool, to buffer all branches in a tableau. Every

stage is composed by the essential elements of a DL ontology, concepts and roles.

As with any DL reasoners, the representation of concepts and roles are funda-

mental design considerations. The core data structure of Deslog is a four-slot list

representing a concept. Literal uniquely identifies a distinct concept. Operator in-

dicates the dominant DL constructor applied to a concept. Available constructors

cover intersection, disjunction, value existing, value restriction, and so on, and this

slot is possibly empty. The remaining two slots hold pointers to extend nested con-

cept definitions, namely left and right. Figure 4.2 illustrates a DL concept encoded

with the Deslog protocol.

Roles in Deslog are handled as a special type of concepts and have a similar

structure as concepts. For instance, the DL expression ∀R.(A u B) is encoded as

demonstrated by Figure 4.3. Further properties needed for describing a role can be

added to the generic structure, e.g. the number restriction quantity. Furthermore,

a role data structure is also backed by a list that records instance-pairs. With this

design, DL concepts can be lined up seamlessly. Instances (i.e. labels in tableau

expansion) are lists holding their typing data, concepts. There are also helper facili-

ties, such as a role pool and an instance pool, which are useful to accelerate indexing

objects.

A notable point on encoding is expressing the complement of an atomic concept
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ltrl0 ∀

∗ ∗

R ∅

∅ ∅

ltrl1 u

∗ ∗

A ∅

∅ ∅

B ∅

∅ ∅

Figure 4.3: Deslog data structure—DL expression ∀R.(A uB).
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A ∅

∅ ∅

Figure 4.4: Atomic concept A

∼ A ¬

∗ ∅
A ∅

∅ ∅

Figure 4.5: Atomic concept ¬A

(i.e. concept name). According to Deslog conversion, an atomic concept’s encoding

is indicated by Figure 4.4 and 4.5.

The principle of Deslog’s design is to model objects and behaviors involved in DL

reasoning as independent abstractions as much as possible in order for concurrent

processing. For instance, branches created during tableau expansion are encapsulated

into standalone objects. Thus, a whole tableau expansion forest is designed as a list of

branch objects. Tableaux expansion rules and even some key optimization techniques

are also designed as independent components. In a concurrent manner, DL reasoning

is achieved by invoking corresponding components on the layers.
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4.2.3 Implementation

As aforementioned, multi-processor computers are becoming main stream, it is re-

quired to maximally utilize all processors of a computer, and shared-memory multi-

threading computing is quite suitable for this purpose. From a converse point of view,

it is multi-processor computers that actually release the power of the shared-memory

multi-threading computing.

One significant aspect of this research is investigating whether some important

DL reasoning optimization technique is suited to be implemented in a parallel rea-

soner and how it should be adapted if plausible. Deslog has practised the following

optimization techniques:

1. Lazy-unfolding This preliminary technique enables a reasoner to unfold a

concept only when necessary, so a number of time is saved on [12].

2. Axioms absorption The disjunctive branches introduced by naively internal-

izing all subsumptions and general axioms declared in a TBox is the primary

source of costly computing. With the axioms absorption technique, a TBox is

separated into two sub-boxes, the general and the unfoldable. Then using in-

ternalization to process the general and using lazy-unfolding to process the

unfoldable can reduce reasoning time dramatically [40, 84].

3. Semantic branching This DPLL style technique can prune some disjunctive

branches so that a number of reasoning time is saved on by avoiding computing

the same problem repeatedly [40].

Other primary optimization techniques, such as dependency directed backtracking

[14, Chapter 9][40] and model merging [35] are being implemented. It is noticeable

that not all significant optimization techniques are suitable for a concurrency envi-

ronment: Some of them can not avoid depending on complex shared data and so may

degrade the performance of a concurrent program a lot. Based on these elemental
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techniques, we completed a suite of standard TBox reasoning services.

The current system implements a parallel ALC TBox classifier. It can con-

currently classify an ALC terminology. The parallelized classification service of

Deslog computes subsumptions in a brutal way [12]. It is obvious that the algorithm

is sound and complete and has order of n2 time complexity for calling subsumption

tests in a sequential context. In order to figure out a terminology hierarchy, the

algorithm calculates the subsumptions of all atomic concepts pairs. A subsumption

relationship only depends on the involved concepts pair, and does not have any con-

nections with the computation order. Therefore, the subsumptions can be computed

in parallel, and the soundness and completeness are retained in a concurrent context.

A difficult issue in implementing a parallel DL reasoner is managing overhead.

This issue is relatively easy for high level parallel reasoning, where multiple threads

mainly execute reading operations on some shared data, so we implemented the

parallel classification service firstly.

Besides the high-level parallelized service, classification, the low level parallelized

processing is being developed. In the architecture of Deslog, the classification service

uses subsumption, and subsumption uses satisfiability. The low level parallel reason-

ing stresses on the parallel satisfiability test. Specifically, low level parallel reasoning

focuses on dealing with the non-deterministic branches, which are represented as

stages in Deslog.

It seems easy to process stages in parallel, but much endeavor is needed to achieve

satisfying scalability via such concurrency.1 The first noticeable fact is that from a

root stage every stage may generate new stages. At present, our strategy is using

one thread to process one stage. That means the stage buffer, the stage pool, is

frequently accessed by multiple threads. That accessing includes both writing and

reading shared data much often. So, designing a high-performance stage buffer and

1In this research, scalability is the ability that the performance of reasoning about the same
problem is improved to some extent with the increase of used processors.
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efficient accessing schemes is the essential condition for the assurance of scalable per-

formance improvement. Otherwise, instead of performance improvement, parallelism

only results in overhead. We had worked on devising efficient low-level parallelized

reasoning.

Although there exist robust shared-memory concurrent libraries available, such

as C++ Boost.Thread library and Java concurrent package, according to our expe-

rience, using these concurrent data structures immoderately degrades performance

much. Therefore, one needs to design sophisticated structures which had better avoid

shared data, or which do not access shared data frequently.

4.3 Evaluation

Deslog is being implemented in Java 6 in conformity with the aforementioned de-

sign. The parallelism of Deslog is based on a multi-threading model and aims at

exploiting symmetric multiprocessing (SMP) coming along with the popularity of

multi-processor computing facilities. The system is implemented in Java 6 for its

relatively mature parallel ecosystem.2 Specifically, the java.util.concurrent package of

Java 6 is utilized. In this research, each Java thread is mapped to a native operating

system thread.

We have conducted some experiments to show that a shared-memory parallel

tableau-based reasoner can gain a scalable performance improvement.

4.3.1 Experiment

The classification service of Deslog can be executed concurrently by multiple threads.

We conducted a group of tests, and they show that Deslog has an obvious scalability.

All tests were conducted on a 16-core computer running Solaris OS and Sun Java

2All components and sources of the system can be obtained at
http://code.google.com/p/deslog/.
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6. Many of the test cases were chosen from OWL Reasoner Evaluation Workshop

2012 (ORE 2012) data sets. We manually degraded some test cases’ expressivity to

ALC so that Deslog could reason about them. The computer used for the experiment

has 16 physical processors, so we conducted the tests that used at most 36 threads

to prove the algorithm’s scalability. Table 4.1 lists the metrics of the test cases. The

results are shown from Figure 4.6 to Figure 4.8.

4.3.2 Discussion

The data collected from testing both trivial and profound ontologies show a scalable

performance improvement. The tests on relatively profound ontologies demonstrate

better scalability than on trivial ones.

Because some trivial ontologies’ single thread configuration computing time T1 is

rather short, normally shorter than ten seconds, the overhead introduced by main-

taining multiple threads can limit the scalability. At the peak values of these trivial

ontologies’ tests, the reasoning times are reduced to several milliseconds, i.e. the

whole work load assigned to a single thread is around several milliseconds in these

settings. According to our empirical knowledge, such work load is significant enough

with respect to the overhead which is produced by manipulating threads as well as

accessing to shared data. Consequently, benefits gained from parallelized processing

cannot counteract the system overhead, and the reasoning performance begins to

declining.

When the algorithm was used to test ontologies of which sizes are generally large

enough, the scalability is linear, sometimes super-linear.3 These bigger ontologies

need a longer single thread configuration computing time, T1. The overhead intro-

duced by maintaining a tolerable number of multiple threads is tiny and becomes

insignificant. A tolerable number, Ni, should always be smaller than or equal to the

3A super-linear speedup is controversial but sometimes observed, and we accept it as the result
of the combined effectiveness of hardware, software, and algorithms [7, 22, 36, 66, 69].
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ontology expressivity concept count axiom count
bfo ALC 36 45
pharmacogenomics_complex ALC 145 259
economy ALCH(D) 339 563
transportation ALCH(D) 445 489
mao ALE+ 167 167
yeast_phenotype AL 281 276
loggerhead_nesting ALE 311 347
spider_anatomy ALE 454 607
pathway ALE 646 767
amphibian_anatomy ALE+ 703 696
flybase_vocab ALE+ 718 726
tick_anatomy ALE+ 631 947
plant_trait ALE 976 1140
evoc AL 1001 990
protein ALE+ 1055 1053

Table 4.1: Metrics of the test cases—Deslog.
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Figure 4.6: The gained scalability—pharmacogenomics_complex, economy, transportation, bfo, mao, yeast_phenotype,
and plant_trait.
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Figure 4.7: The gained scalability—spider_anatomy, pathway, amphibian_anatomy, tick_anatomy, logger-
head_nesting, protein, flybase_vocab, and evoc.



C
H

A
P

T
E

R
4.

P
A

R
A

L
L
E

L
IZ

IN
G

T
A

B
L
E

A
U

-B
A

S
E

D
C

L
A

S
S
IF

IC
A
T

IO
N

69

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

0

20

40

60

80

100

120

140

threads

sp
ee
d
u
p

pharmacogenomics_complex economy
transportation bfo

mao yeast_phenotype
plant_trait spider_anatomy
pathway amphibian_anatomy

tick_anatomy loggerhead_nesting
protein flybase_vocab
evoc

Figure 4.8: The standard deviations of threads’ working time in the tests.
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total number of the processors of a computer. Here, Ni ∈ [1, 16].

In some cases, even though the number of threads exceeds 16, the reasoning

performance keeps stable in a rather long run. Further scalability improvement may

be achieved by adding processors.

Figure 4.8 demonstrates the standard deviation of single thread’s working times

in the series of test configurations (in the unit of millisecond). Overall, the deviations

are limited to an acceptable range, i.e. at most less than 140 milliseconds which is

relatively insignificant with respect to system overhead. This implies that work load

is well balanced among threads. That is to say, all threads are as much busy as

possible. For the most part, when the number of threads is less than the tolerable

number, 16, the deviations are normally close to 0. When threads are added after 16,

the deviations become greater. This is because some processor executes more than

one thread, and hereby the thread context switching produces a lot of overhead.

In our original implementation, we had distributed all subsumption candidates into

independent lists, every of which mapped a thread, but the deviations were sometimes

too large. So, the Deslog classification uses a shared queue to buffer all subsumption

candidates, as it assures making all threads busy.

We had conducted similar experiments on a high-performance computing clus-

ter, and the results are not good enough. The speedup gained on the cluster was

generally less than three while we assigned at least 16 processors for each test. The

most plausible explanation we can give is that the complex hardware and software

environment of the cluster degrades the performance of Deslog. The cluster consists

of three types of computing nodes with respect to the built-in processors: 4-core,

8-core, and 16-core. And the same type of computers may have heterogeneous ar-

chitectures. A job is scheduled on one or more computers randomly. It is normal to

assign a job to more than one computers, and the communication between computers

results in a bottleneck. Another possible reason is that the cluster does not assure

exclusive usage, which means it is possible that more than one jobs are running on
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the same computer at the same time. Therefore, it is necessary to conduct some

basic concurrency benchmark tests before testing Deslog.

We also had investigated the feasibility of accommodating some significant tableaux

optimization techniques to concurrency settings, but not all of the optimization tech-

niques can be easily adapted to concurrent versions.

4.4 Summary

The objective of this research is to explore how parallelism plays a role in tableau-

based DL reasoning. A number of tableau-based DL reasoning optimization tech-

niques have been extensively researched, but most of them are investigated in se-

quential contexts, so adapting these methods to the parallel context is an important

part of this research.

We have partially shown that shared-memory parallel tableau-based DL reasoning

can contribute to scalable solutions. We present our reasoner, Deslog, of which the

architecture is devised specially for shared-memory parallel environment. We present

an aspect of the reasoner’s concurrency performance, and a good scalability is gained

for TBox classification. Deslog is a vehicle for related investigations.

The advantage of the concurrent reasoning method proposed in this research is

that the reasoning performance can be scaled in a near-linear way since its primary

parallelized computing objects, subsumption tests, share few resources. Compared

with canonical DL reasoning techniques, this method can fully make use of com-

puting resources, and its performance may surpass canonical methods as long as

enough number of processors are available, as is possible in many cases. And this

is also the disadvantage of this method: Its performance depends on the computing

resources available. Fortunately, computing resources, especially processor resources,

are provided in a faster and cheaper pace.



Chapter 5

Parallelizing Tableau Conjunctive

Branches

5.1 Introduction

It is well-known that an expansion tree is an and-or tree in tableau-based DL rea-

soning. Disjunctive branches compose the or part of a completion tree, conjunctive

branches do the and part, and generally the two types of branches interlace with

one another. Almost all of the few shared-memory parallelized tableau-based DL

reasoning investigations focus on exploiting disjunctive branches in expansion trees.

5.2 The Role of Conjunctive Branches

Tableau-based algorithms have been the primary choice of DL reasoning for a long

time. The core of a tableau algorithm is a set of rules that are used to construct

completion trees. Whether a clash-free completion tree can be built determines

the satisfiability of a problem domain. In DL languages with sufficient expressive

power, such completion trees are regarded as and-or ones [71]. That is to say, both

conjunctive and disjunctive branches exist in the completion trees.

72



CHAPTER 5. PARALLELIZING TABLEAU CONJUNCTIVE BRANCHES 73

A clash-free completion tree must have at least one disjunctive branch that con-

tains no clashed conjunctive branches. For example, in a skeletal way, a typical

tableau algorithm generates the following completion tree at some point when test-

ing the satisfiability of the concept (∃r1.C1 u ∃r2.C2) t (C3 u ¬C3):

(∃r1.C1 u ∃r2.C2) t (C3 u ¬C3)

∃r1.C1, ∃r2.C2

C1 C2

C3,¬C3
r1 r2

Figure 5.1: The tableau expansion tree of testing the satisfiability of (∃r1.C1 u
∃r2.C2) t (C3 u ¬C3).

The concept (∃r1.C1u∃r2.C2)t(C3u¬C3)must have the disjunctive branches ∃r1.C1u

∃r2.C2 or C3u¬C3 clash-free only if it is satisfiable. In this case, C3u¬C3 ≡ ⊥, so the

satisfiability of (∃r1.C1u∃r2.C2)t(C3u¬C3) is determined by whether ∃r1.C1u∃r2.C2

is satisfiable. That is to say, if the concept (∃r1.C1u∃r2.C2)t(C3u¬C3) is satisfiable,

both the conjunctive branches ∃r1.C1 and ∃r2.C2 must be clash-free. The algorithm

has to explore all conjunctive branches unless an unsatisfiability result is entailed.

Testing satisfiability is an essential function in tableau-based DL reasoning, and

its goal is to search for a model by expanding concepts descriptions to completion

trees, which consist of disjunctive and conjunctive branches. Testing satisfiability

is generally used by other DL reasoning services. As we know an important func-

tionality of modern DL systems is classification, which calculates all subsumption

relationships entailed by a terminology:

∀CI ⊆ ∆I , ∀DI ⊆ ∆I : T
?

|= C v D ⇐⇒ T
?

|= ¬C tD (5.1)

With respect to T , C v D is proven if CI ⊆ DI holds for every model I of T .

This is calculated by testing the satisfiability of the concept C u¬D with respect to
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T . The subsumption computation is reducible to testing satisfiability in such a way.

It is obvious that C 6≡ D is the most common case, and thus the majority of such

subsumption tests find models. That is to say, in order to gain better performance,

a tableau-based DL reasoning algorithm should find models as fast as possible. In

a tableau expansion view, such a model is a disjunctive branch with a bundle of

conjunctive branches, both clash-free. Considering that such a disjunctive branch

exists quite often, faster processing of conjunctive branches in that disjunctive branch

should improve reasoning performance. Although research on parallelizing the pro-

cessing of disjunctive branches is known, parallelizing the processing of conjunctive

branches has not been researched so far, but it should play a role in improving the

performance of tableau-based DL reasoning.

5.3 Parallelism

As mentioned before, there exist a number of approaches that are being investigated

to increase the performance of reasoners, and concurrent computing is an option.

In tableau-based DL reasoning, disjunctive and conjunctive branches have always

been sequentially processed as of now, although there exists the potential benefit of

parallelization.

The search for a model in a disjunctive branch is independent of other disjunctive

branches. The satisfiability of a concept is sufficiently supported by any model found

among disjunctive branches. With a sequential algorithm, if two disjunctive branches

are generated at some point, the second branch is only calculated if the first branch is

not clash-free. With a parallel algorithm, multiple disjunctive branches are processed

at the same time, and the search terminates when one of them is proven as clash-

free. Some research has already been reported on the topic of parallelizing tableau

calculation on disjunctive branches [16, 55, 58, 85].

Computation on a conjunctive branch impacts its siblings in a different way
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than for disjunctive branches. A model is found by a tableau algorithm if and

only if all involved conjunctive branch siblings are clash-free. With a sequential

algorithm, all conjunctive branches on a disjunctive branch must be explored so

that a clash-free and-tree can be built. Parallelizing computation on conjunctive

branches in a satisfiable context should theoretically improve performance. Given

the fact that most satisfiability tests introduced by classification, a key functionality

of a DL reasoning system, return positive results, parallelizing conjunctive branches

in tableau-based reasoning should play an important role. However, conjunctive

branch parallelization has not been researched as much yet.

Parallelizing the processing of conjunctive branches is necessary to maximally

utilize parallel computers. As we discussed in Section 5.2, the majority of com-

putations of tableau-based DL reasoning find clash-free completion trees, each of

which can be considered as a disjunctive branch containing a number of conjunctive

branches. According to our experience, subsumption tests in classification are often

easily satisfiable. Such a satisfiable disjunctive branch is usually the first one being

tested. So, a parallel scheme in that case hardly improves reasoning performance.

On the other hand, all conjunctive branches of a clash-free disjunctive branch must

be explored and determined as clash-free. Therefore, parallelizing the exploration of

potentially clash-free conjunctive branches can improve reasoning performance. Re-

search on parallelizing the processing of conjunctive branches in tableau-based DL

reasoning may even play a more important role than on disjunctive branches.

5.4 Algorithm Design and Implementation

In this section we present a parallel tableau-based DL algorithm. When we use the

word parallel in the following, a modern shared-memory multi-thread architecture

should always be taken into account.

Concurrent algorithms have much more technical features than sequential ones.
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Some solutions require very tricky techniques. For example, in a sequential context,

a DL tableau algorithm terminates the search in a disjunctive branch when a clash

is found in a conjunctive branch. Such a termination problem needs more complex

mechanics to solve in a parallel context. A termination test in a multiple threads

context not only needs to check its own state but also the state of its siblings, i.e.,

it must monitor contradiction detection for all its siblings as the prerequisite for

ensuring both soundness and performance.

The efficient managing of resources is an important trade-off in designing con-

current algorithms, especially in a shared-memory context. A common pitfall in

developing shared-memory parallel algorithms consist of taking unlimited threading

for granted, as usually happens in recursive algorithms. A compensation for this

flaw is the use of shared data to control resources allocated to a parallel program.

However, shared data as well as communication between threads always reduces a

parallel program’s performance.

Our scheme for controlling continuation resources is using a thread pool, which

is normally configured with a fixed size. The members of the pool are reusable,

which largely reduces system overhead. The most notable shared data consists of an

increasing number of sibling conjunctive branches, and we use a concurrent queue to

buffer them. Every threaded reasoning continuation picks a conjunctive branch out

of the shared queue and processes it. Also, every continuation has to monitor and

report its finding, as mentioned before.

The parallelization of processing conjunctive branches is addressed by Algorithms

1, 2, and 3. It consists of two parts: Algorithm 1 as well as Algorithm 2 as the con-

trol (master), and Algorithm 3 as the continuation (slave). Algorithm 1 first applies

tableau expansion rules that are neither a ∃-rule nor a ∀-rule. The function clashed?

returns true if all disjunctive branches (i.e., stages in Deslog [85]) are not clash-free,

otherwise it returns false and cuts away clashed stages. If all disjunctive branches

are not clash-free in this phase, the computation terminates. Otherwise, the model-
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search is continued on the generated disjunctive branches, which are provisionally

clash-free. That is to say, the generating rule produces conjunctive branches which

are kept in a buffer. Then the aforementioned thread pool schedules computation

continuations on the conjunctive branch buffer. The computation continuation ex-

ecuted by the pooled thread is addressed by Algorithm 3, which is executed by

multiple threads simultaneously.

We implemented Algorithms 1, 2, and 3 with our parallelized tableau-based DL

reasoning framework Deslog [85]. The underground parallel mechanics of Deslog is

supported by the java.concurrent package. All working threads processing continua-

tions are activated and pooled in the bootstrap phase. In each subsumption test run,

every thread monitors a volatile flag that indicates whether a clash has been detected

by its siblings and modifies the flag if it finds a clash (Line 2 and 3, Algorithm 3). If

a clash has been detected, all threads and the flag are reset.

A performance bottleneck may result from the low level Java concurrency compo-

nents. For example, we use a concurrent linked queue to buffer immediate conjunctive

branches, and the buffer is accessed by a number of threads concurrently. Also, we

use volatile flags as shared states with the intention of notifying state modification

as fast as possible, and the maintenance of the volatile variables may require extra

processor resources in a shared-memory parallel computing environment. We can

design and construct the high level part of the program, but can hardly control the

low level facilities on which the program depends.

5.5 Experiments

Algorithm 1 is expected to improve the performance of tableau-based DL reasoning

in such a way that conjunctive branches are processed simultaneously. A higher

performance improvement is expected from reasoning about problems where more

conjunctive expansion branches are involved. We designed a series of synthesized
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Algorithm 1: parallelize-traces(tree, rule-queue-without-∃∀, worker-queue)

input :
tree: a tableau expansion tree.
rule-queue-without-∃∀: an ordered set containing tableau expansion

rules except for ∃-rule and ∀-rule.
worker-queue: the pool keeping threads.

output:
some-trace-clashed?: true if clash is found, otherwise false.

1 begin
2 reload(rule-queue-without-∃∀);
3 rule← dequeue(rule-queue-without-∃∀);
4 while rule 6= ∅ ∧ ¬clashed?(tree) do
5 applicable?← apply(rule, tree);
6 if applicable? then
7 reload(rule-queue-without-∃∀);
8 end if
9 rule← dequeue(rule-queue-without-∃∀);

10 end while
11 /* some-trace-clashed? is a global variable. */
12 some-trace-clashed?← clashed?(tree);
13 if ¬some-trace-clashed? then
14 foreach disjunctive-branch ∈ tree do
15 trace-queue← generate-trace-queue(disjunctive-branch, rule-∃);
16 some-trace-clashed?← false;
17 if ¬empty?(trace-queue) then
18 continue?←true ; /* continue? is a global variable. */
19 while continue? do
20 trace← dequeue(trace-queue);
21 process-trace(trace, worker-queue);
22 end while
23 if ¬some-trace-clashed? then
24 break;
25 end if
26 end if
27 end foreach
28 end if
29 return some-trace-clashed?;
30 end
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Algorithm 2: process-trace(trace, worker-queue)

input :
trace: a tableau conjunctive branch.
worker-queue: the pool keeping threads.

output:
some-trace-clashed?: true if clash is found, otherwise false.

1 begin
2 if trace 6= ∅ then
3 worker ← ∅;
4 while worker = ∅ ∧ ¬some-trace-clashed? do
5 worker ← get-idle-worker(worker-queue);
6 end while
7 if some-trace-clashed? then
8 continue?←false ; /* continue? is a global variable. */
9 else

10 do-job(worker, λ(trace, some-trace-clashed?));
11 end if
12 else
13 if some-trace-clashed? ∨ get-busy-worker(worker-queue) = ∅ then
14 continue?←false;
15 end if
16 end if
17 end

Algorithm 3: λ(trace, ∗clashed-flag?∗)

input :
trace: a tableau conjunctive branch.
∗clashed-flag?∗: a pointer argument indicating whether a clash

exists: true if clash is found; otherwise false.
1 begin
2 apply-tableau-rules(trace);
3 ∗clashed-flag?∗ ← ¬clash-free?(trace);
4 end
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tests to prove this assumption.

The test cases consist of a set of OWL benchmarks developed on the basis of the

tea ontology.1 Their size (and complexity) can be scaled by a GCI axiom pattern as

follows:


⊔

i=0

∀R2i+1.(C2i+1 u C2i+2) v

i=0 ∃R2i.(C2i t C2i+1),

CI
i ⊆ ∆I , RI

i ⊆ ∆I ×∆I , i ∈ N,  ∈ N, i ≤  (5.2)

We defined a set of factors to measure the algorithm’s performance. Performance

improvement is directly reflected by thread number and speedup. With the same

thread number, reasoning performance varies with the number of involved conjunc-

tive branches. So, our program records the number of involved conjunctive branches,

µ, in every satisfiability test. Nµ, the total number of the tests in a set of computa-

tions, of which every one processes µ conjunctive branches, is calculated after each

run. We discovered that the most frequently occurring number of the involved con-

junctive branches impacts the final reasoning performance and is the order of the

conjunctive branches involved in a run. We take the mean of the values to calculate

this order, which is noted as τ , where at most k conjunctive branches are involved

in a satisfiability test:

τ =

k
∑

µ=0

Nµ × µ

k
∑

µ=0

Nµ

, k ∈ N, 0 ≤ τ < +∞ (5.3)

For example, we get τ = 5×0+8×1+13×2+21×3
5+8+13+21

= 97
47
, with respect to the sample data

shown in Table 5.1.

We conducted several experiments to evaluate Algorithm 1. According to our

1http://code.google.com/p/deslog/downloads/detail?name=tea.tar.gz
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µ 0 1 2 3
Nµ 5 8 13 21

Table 5.1: A sample data set for Equation 5.3 with k = 3.

knowledge, the hardware environment can have quite an impact on the performance

of a parallel program in a shared-memory context [55, 85]. In this case, a 16-core

computer running Solaris OS and 64-bit Sun Java 6 was employed to test the pro-

gram. The 16 processors are manufactured on 2 integrated circuits, each having 8

processors. At most 64G physical memory is accessible by the JVM. With various

combinations of the number of processing threads and problem sizes, Algorithm 1

demonstrated the capability of being scaled.

The reasoning performance of Algorithm 1 is illustrated by the results shown

in Figures 5.2-5.8. When τ = 2.09, i.e., each test processes only ∼2 conjunctive

branches, parallelizing the processing of conjunctive expansion does not contribute

to a performance improvement. It seems that the overhead introduced by threading

outclasses the benefits. However, according to our experiments performance improve-

ments can be gained when τ ≥ 3.09. Better performance improvements come from

greater τ values.

The scalability of parallelizing the processing of conjunctive branches is summa-

rized in Figure 5.9 by illustrating the speedup trend, which is based on the median

speedup values from our 9-thread tests (Figure 5.2-5.8), given the observed τ values.

Besides synthesized test cases, we also tested a real-world ontology, fly_anatomy.

Figure 5.10 shows the result for fly_anatomy. The maximum speedup value is around

the value of τ , which is in this test case 2.91, and we see that the peak value of the

speedup is greater than 2 and that there exists a linear speedup increase before

reaching the peak value. This test result shows a stable scalability to some degree.

We amend Equation 5.3 to a more general form as indicated by Equation 5.4, in

order to illustrate the program’s impacts on real-world ontologies:
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Figure 5.2: The speedup when  = 2 and τ = 2.09.
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Figure 5.3: The speedup when  = 3 and τ = 3.09.
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Figure 5.4: The speedup when  = 4 and τ = 5.08.
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Figure 5.5: The speedup when  = 7 and τ = 7.13.
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Figure 5.6: The speedup when  = 11 and τ = 12.11.
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Figure 5.7: The speedup when  = 17 and τ = 18.08.
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Figure 5.8: The speedup when  = 28 and τ = 29.06.
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Figure 5.9: The median speedup trend of the variety of τ values.
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Figure 5.10: Test ontology fly_anatomy, τ = 2.91.

τq =

k
∑

µ=q

Nµ × µ

k
∑

µ=q

Nµ

, 0 ≤ q ≤ k, k ∈ N, 0 ≤ τ < +∞ (5.4)

Here, q is a lower bound of a sample space. Namely, tests with conjunctive branches

less than q are bypassed. With Equation 5.4, we can focus on the tests with greater q

value, e.g. q = 3. Figure 5.11 shows the speedups gained by testing some ontologies,

with q = 4.

Scalability is the most interesting point in this research. Optimistically, we expect

to gain linear or even super-linear scalability. In the circumstances of expecting

minimal overheads, we anticipate the ratio, between speed-up and the number of

thread, e ≥ 1 in accordance with e = s
n
, n ≤ τ, n ≤ p, where s is speedup, n is thread

number, and p is the total number of processors. However, e ≤ 1 is the most normal

case in practice. According to our tests, e = 0.8398 is the greatest value, which occurs

when s = 12.5971, n = 15, τ = 29.06, and p = 16 (see Figure 5.8). It is obvious

that a certain system overhead cannot be avoided and must hinder the program from

reaching the normal peak value. Furthermore, most tableau-based satisfiability tests
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Figure 5.11: Test ontologies rex_elpp, fix, and tick_anatomy with τ4 = 4.73, 5.00,
and 4.22 respectively.

for classification find models, as mentioned above, and parallelizing the processing

of conjunctive branches is useful in the case of satisfiable tests. However, negative

tests entailing unsatisfiability predominantly exist in classification, too. If a number

of clashes can be detected before processing a bundle of conjunctive branches, this

parallel algorithm can hardly contribute to a performance gain.

5.6 Summary

The objective of this work is to improve the processing performance of DL tableau

algorithms by utilizing cheap multiprocessor computing resources, which are ubiqui-

tous now. A possible solution is the integration of concurrent computing, or more

specifically, concurrent reasoning, which should make full use of the availability of

multiprocessor computing resources and may improve performance in a scalable way.

Our research proved that such scalability is possible.

We have shown that the computing performance of tableau-based DL reasoning

can be improved by parallelizing the processing of conjunctive branches of expansion
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trees. All of the investigations that explore parallelized tableau-based DL reasoning

make an effort to exploit simultaneous processing of disjunctive branches in tableau

expansion trees. On the other hand, our research is the first one to seriously investi-

gate the parallel processing of conjunctive branches in tableau expansion trees. We

addressed the role of conjunctive branches in tableau expansion trees and noticeable

points of parallelizing the processing of conjunctive branches. We presented a par-

allel algorithm that simultaneously calculates conjunctive branches. We discussed

the key characteristics of implementing the algorithm. We evaluated the program,

and the essential effectiveness of the algorithm was shown by synthesized tests. We

analyzed the scalability of the algorithm based on our proposed τ metric.

The advantage of this work is that scalability of reasoning about some ontolo-

gies, which produce a number of tableau conjunctive branches, can be gained by

increasing the number of processing resources, and thus computing resources can

be fully utilized. The disadvantage is that this method requires processing shared

data. High-performance concurrent data structures and algorithms are necessary to

manage the shared data, in order for achieving a better reasoning performance. This

results in a rather complex implementation.



Chapter 6

Merge Classification

6.1 Introduction

One of the major obstacles that needs to be addressed in the design of corresponding

algorithms and architectures is the overhead introduced by concurrent computing

and its impact on scalability.

Heavily shared data as well as related communication cost always indicates an

inefficient performance in parallel environments. Canonical DL reasoning algorithms,

which form the basis of OWL reasoning, deal with a problem domain as a whole,

which generally produces monolithic data and makes it hard to parallelize employed

algorithms. In order to achieve effective parallelized DL reasoning novel methods

need to be developed that process data as independently as possible.

Traditional divide and conquer algorithms split problems into independent sub-

problems before solving them under the premise that not much communication

among the divisions is needed when independently solving the sub-problems, so

shared data is excluded to a great extent. Therefore, divide and conquer algo-

rithms are in principle suitable for concurrent computing, including shared-memory

parallelization and non-shared-memory distributed systems.

Furthermore, recently research on ontology partitioning has been proposed and

89
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investigated for dealing with monolithic ontologies. Some research results, e.g. ontol-

ogy modularization [30], can be used for decreasing the scale of an ontology-reasoning

problem. Then, reasoning over a set of sub-ontologies can be executed in parallel.

However, there is still a solution needed to reassemble sub-ontologies together. The

algorithms presented in this research can also serve as a solution for this problem.

6.2 A Parallelized Merge Classification Algorithm

In this section, we present an algorithm for classifying DL ontologies. Part of the

algorithm is based on standard top- and bottom-search techniques to incrementally

construct the classification hierarchy (e.g., see [12]). Due to the symmetry between

top-down (>_search) and bottom-up (⊥_search) search, we only present the first

one. In the pseudocode, we use the following notational conventions: ∆i, ∆α, and

∆β designate sub-domains that are divided from ∆; we consider a subsumption

hierarchy as a partial order over ∆, denoted as ≤, a subsumption relationship where

C is subsumed by D (C v D) is expressed by C ≤ D or by 〈C,D〉 ∈ ≤, and ≤i,

≤α, and ≤β are subsumption hierarchies over ∆i, ∆α, and ∆β, respectively; in a

subsumption hierarchy over ∆, C ≺ D designates C v D and there does not exist a

named concept E such that C ≤ E and E ≤ D; ≺i, ≺α and ≺β are similar notations

defined over ∆i, ∆α, and ∆β, respectively.

Our merge-classification algorithm classifies a taxonomy by calculating its di-

vided sub-domains and then by merging the classified sub-taxonomies together. The

algorithm makes use of two facts: (i) If it holds that B ≤ A, then the subsumption

relationships between B’s descendants and A’s ancestors are determined; (ii) if it is

known that B 6≤ A, the subsumption relationships between B’s descendants and A’s

ancestors are undetermined. The canonical DL classification algorithm, top-search

& bottom-search, is modified and integrated into the merge-classification. The al-

gorithm consists of two stages: divide and conquering, and combining. Algorithm
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Algorithm 4: κ(∆i)

input : The sub-domain ∆i

output: The subsumption hierarchy classified over ∆i

1 begin
2 if divided_enough?(∆i) then
3 return classify(∆i);
4 else
5 〈∆α,∆β〉 ← divide(∆i);
6 ≤α← spawn κ(∆α);
7 ≤β← κ(∆β);
8 sync;
9 return µ(≤α,≤β);

10 end if
11 end

4 shows the main part of our parallelized DL classification procedure. The keyword

spawn indicates that its following calculation must be executed in parallel, either

creating a new thread in a shared-memory context or generating a new process or

session in a non-shared-memory context. The keyword sync always follows spawn and

suspends the current calculation procedure until all calculations invoked by spawn

have returned.

The domain ∆ is divided into smaller partitions in the first stage. Then, clas-

sification computations are executed over each sub-domain ∆i. A classified sub-

terminology ≤i is inferred over ∆i. The procedure classify is used by Algorithm 4

and is a general reasoning function that calls Algorithm 5. It is not shown in this

research. This divide and conquering operations can progress in parallel.

Classified sub-terminologies are to be merged in the combining stage. Told sub-

sumption relationships are utilized in the merging process. Algorithm 5 outlines the

master procedure, and the slave procedure is addressed by Algorithms 6, 7, 8, and

9.
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Algorithm 5: µ(≤α,≤β)

input : The master subsumption hierarchy ≤α

The subsumption hierarchy ≤β to be merged into ≤α

output: The subsumption hierarchy resulting from merging ≤α over ≤β

1 begin
2 >α ← select-top(≤α);
3 >β ← select-top(≤β);
4 ⊥α ← select-bottom(≤α);
5 ⊥β ← select-bottom(≤β);
6 ≤α← >_merge(>α,>β,≤α,≤β);
7 ≤i← ⊥_merge(⊥α,⊥β,≤α,≤β);
8 return ≤i;
9 end

6.2.1 Divide and Conquer Phase

The first task is to divide the universe, ∆, into sub-domains. Without loss of gener-

ality, ∆ only focuses on significant concepts, i.e., concept names or atomic concepts,

that are normally declared explicitly in some ontology O, and intermediate concepts,

i.e., non-significant ones, only play a role in subsumption tests. Each sub-domain

is classified independently. The divide operation can be naively implemented as an

even partitioning over ∆, or by more sophisticated clustering techniques such as

heuristic partitioning that may result in a better performance, as presented in Sec-

tion 6.4. The conquering operation can be any standard DL classification method.

We first present the most popular classification methods, top-search (Algorithm 6)

(its duality, bottom-search, is omitted here).

The DL classification procedure determines the most specific super- and the most

general sub-concepts of each significant concept in ∆. The classified concept hier-

archy is a partial order, ≤, over ∆. >_search recursively calculates a concept’s

intermediate predecessors, i.e., intermediate immediate ancestors, as a relation ≺i

over ≤i.
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Algorithm 6: >_search(C,D,≤i)

input : C: the new concept to be classified
D: the current concept with 〈D,>〉 ∈ ≤i

≤i: the subsumption hierarchy
output: The set of parents of C: {p | 〈C, p〉 ∈ ≤i}.

1 begin
2 mark_visited(D);
3 green← ∅;
4 forall the d ∈ {d | 〈d,D〉 ∈≺i} do /* collect all children of D that subsume

C */
5 if ≤?(C, d) then
6 green← green ∪ {d};
7 end if
8 end forall
9 box← ∅;

10 if green = ∅ then
11 box← {D};
12 else
13 forall the g ∈ green do
14 if ¬marked_visited?(g) then
15 box← box ∪ >_search(C, g,≤i) ; /* recursively test whether C

is subsumed by the descendants of g */

16 end if
17 end forall
18 end if
19 return box; /* return the parents of C */

20 end

6.2.2 Combining Phase

The independently classified sub-terminologies must be merged together in the com-

bining phase. The original top-search (Algorithm 6) (and bottom-search) have been

modified to merge two sub-terminologies ≤α and ≤β. The basic idea is to iterate

over ∆β and to use top-search (and bottom-search) to insert each element of ∆β into

≤α, as shown in Algorithm 7.

However, this method does not make use of so-called told subsumption (and

non-subsumption) information contained in the merged sub-terminology ≤β. For



CHAPTER 6. MERGE CLASSIFICATION 94

Algorithm 7: >_merge−(A,B,≤α,≤β)

input : A: the current concept of the master subsumption hierarchy, i.e.
〈A,>〉 ∈≤α

B: the new concept from the merged subsumption hierarchy, i.e.
〈B,>〉 ∈≤β

≤α: the master subsumption hierarchy
≤β: the subsumption hierarchy to be merged into ≤α

output: The merged subsumption hierarchy ≤α over ≤β.
1 begin
2 parents ← >_search(B,A,≤α);
3 forall the a ∈ parents do
4 ≤α←≤α ∪〈B, a〉; /* insert B into ≤α */
5 forall the b ∈ {b | 〈b, B〉 ∈≺β} do /* insert children of B (in ≤β) below

parents of B (in ≤α) */
6 ≤α← >_merge−(a, b,≤α,≤β);
7 end forall
8 end forall
9 return ≤α;

10 end

example, it is unnecessary to test ≤?(B2, A1) with sophisticated reasoning algorithms

when we know B2 ≤ B1 and B1 ≤ A1, given that A1 occurs in ∆α and B1, B2 occur

in ∆β.

Therefore, we designed a novel algorithm in order to utilize the properties ad-

dressed by Propositions 1 to 8. The calculation starts with top-merge (Algorithm 8),

which uses a modified top-search algorithm (Algorithm 9). This pair of procedures

finds the most specific subsumers in the master sub-terminology ≤α for every concept

from the sub-terminology ≤β that is being merged into ≤α.

Proposition 1 When merging sub-terminology ≤β into ≤α, if 〈B,A〉 ∈≺i is found

in top-search, 〈A,>〉 ∈≤α and 〈B,>〉 ∈≤β, then for ∀bj ∈ {b | 〈b, B〉 ∈≤β} and

∀ak ∈ {a | 〈A, a〉 ∈≤α} ∪ {A} it follows that bj ≤ ak.

Figure 6.1 shows the case, where {a1, . . . , am} is the set of parents of A and

{b1, . . . , bn} the set of children of B. It is easy to see that bj ≤ ak due to the
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Algorithm 8: >_merge(A,B,≤α,≤β)

input : A: the current concept of the master subsumption hierarchy, i.e.
〈A,>〉 ∈≤α

B: the new concept of the merged subsumption hierarchy, i.e.
〈B,>〉 ∈≤β

≤α: the master subsumption hierarchy
≤β: the subsumption hierarchy to be merged into ≤α

output: the merged subsumption hierarchy ≤α over ≤β

1 begin
2 parents ← >_search∗(B,A,≤β,≤α);
3 forall the a ∈ parents do
4 ≤α←≤α ∪〈B, a〉;
5 forall the b ∈ {b | 〈b, B〉 ∈≺β} do
6 ≤α← >_merge(a, b,≤α,≤β);
7 end forall
8 end forall
9 return ≤α;

10 end

transitivity of the subsumption relationship. From our premise we know that bj ≤ B,

B ≤ A and A ≤ ak, therefore it holds that bj ≤ ak for all j, k. �

Proposition 2 When merging sub-terminology ≤β into ≤α, if 〈B,A〉 ∈≺i is found

in top-search, 〈A,>〉 ∈≤α and 〈B,>〉 ∈≤β, then for ∀bj ∈ {b | 〈b, B〉 ∈≺β∧ b 6= B}

and ∀ak ∈ {a | 〈a,A〉 ∈≺α∧ aj 6= A} it is still necessary to calculate whether bj ≤ ak.

Figure 6.2 shows the case, where {a1, . . . , am} = {a | 〈a,A〉 ∈≺α ∧ a 6= A} and

{b1, . . . , bn} = {b | 〈b, B〉 ∈≺β∧ b 6= B}. We know that BI ⊆ AI or BI ∩ (¬A)I = ∅

and bIj ⊆ BI leads to bIj ∩ (¬A)
I = ∅ but since (¬ak)I ⊇ (¬A)I it is unknown for all

j, k whether bIj ∩ (¬ak)
I is always empty or always not empty. �

Proposition 3 When merging sub-terminology ≤β into ≤α, if B 6≤ A is found in

top-search, 〈A,>〉 ∈≤α and 〈B,>〉 ∈≤β, then for ∀bj ∈ {b | 〈b, B〉 ∈≤β ∧ b 6= B}

and ∀ak ∈ {a | 〈a,A〉 ∈≤α} ∪ {A} it is necessary to calculate whether bj ≤ ak.
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Algorithm 9: >_search∗(C,D,≤β,≤α)

input : C: the new concept to be inserted into ≤α, and 〈C,>〉 ∈ ≤β

D: the current concept, and 〈D,>〉 ∈ ≤α

≤β: the subsumption hierarchy to be merged into ≤α

≤α: the master subsumption hierarchy
output: The set of parents of C: {p | 〈C, p〉 ∈≤α}

1 begin
2 mark_visited(D);
3 green← ∅; /* subsumers of C that are from ≤α */
4 red← ∅; /* non-subsumers of C that are children of D */
5 forall the d ∈ {d | 〈d,D〉 ∈≺α ∧ 〈d,>〉 6∈≤β} do
6 if ≤?(C, d) then
7 green← green ∪ {d};
8 else
9 red← red ∪ {d};

10 end if
11 end forall
12 box← ∅;
13 if green = ∅ then
14 if ≤?(C,D) then
15 box← {D};
16 else
17 red← {D};
18 end if
19 else
20 forall the g ∈ green do
21 if ¬marked_visited?(g) then
22 box← box ∪ >_search∗(C, g,≤β,≤α);
23 end if
24 end forall
25 end if
26 forall the r ∈ red do
27 forall the c ∈ {c | 〈c, C〉 ∈≺i} do
28 ≤α← >_merge(r, c,≤α,≤β);
29 end forall
30 end forall
31 return box;
32 end
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Figure 6.1: 〈B,A〉 ∈≺i =⇒ bj v ak.

Figure 6.3 shows the case, where {b1, . . . , bn} = {b | 〈b, B〉 ∈≤β ∧ b 6= B} and

{a1, . . . , am} = {a | 〈a,A〉 ∈≤α}. We know that BI * AI or BI ∩ (¬A)I 6= ∅,

bIj ∩ (¬B)I = ∅, AI ∩ (¬ak)
I = ∅. Although BI ∩ (¬A)I 6= ∅ it is unknown whether

bIj ∩ (¬ak)
I is empty or not because bIj ⊆ BI and (¬A)I ⊇ (¬ak)

I and thus neither

bj v ak nor bj 6v ak is enforced for all j, k. �

Proposition 4 When merging sub-terminology ≤β into ≤α, if B 6≤ A is found in

top-search, 〈A,>〉 ∈≤α and 〈B,>〉 ∈≤β, then for ∀bj ∈ {b | 〈B, b〉 ∈≤β}∪{B} and

∀ak ∈ {a | 〈a,A〉 ∈≤α} ∪ {A} it follows that bj 6≤ ak.

Figure 6.4 illustrates the case, where {a1, . . . , am} = {a | 〈a,A〉 ∈≤α} and

{b1, . . . , bn} = {b | 〈B, b〉 ∈≤β}. We prove the contrapositive: bj ≤ ak =⇒ B ≤ A.

This follows due to the transitivity of the subsumption relationship. From the

premise we know that B ≤ bj, bj ≤ ak, ak ≤ A; thus we have B ≤ A. �
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Figure 6.2: 〈B,A〉 ∈≺i: bj v? ak.

Similarly, we present the following propositions for bottom-search. Due to the

symmetry between top-search & bottom-search the proofs for Propositions 5 to 8 are

very similar to the proofs of Propositions 1 to 4 and are omitted.

Proposition 5 When merging sub-terminology ≤β into ≤α, if 〈A,B〉 ∈≺i is found

in bottom-search, 〈⊥, A〉 ∈≤α and 〈⊥, B〉 ∈≤β, then for ∀bj ∈ {b | 〈B, b〉 ∈≤β} and

∀ak ∈ {a | 〈a,A〉 ∈≤α} ∪ {A} it follows that ak ≤ bj.

Proposition 6 When merging sub-terminology ≤β into ≤α, if 〈A,B〉 ∈≺i is found

in bottom-search, 〈⊥, A〉 ∈≤α and 〈⊥, B〉 ∈≤β, then for ∀bj ∈ {b | 〈B, b〉 ∈≺β ∧b 6=

B} and ∀ak ∈ {a | 〈A, a〉 ∈≺α ∧a 6= A} it is necessary to calculate whether ak ≤ bj.

Proposition 7 When merging sub-terminology ≤β into ≤α, if A 6≤ B is found in

bottom-search, 〈⊥, A〉 ∈≤α and 〈⊥, B〉 ∈≤β, then for ∀bj ∈ {b | 〈B, b〉 ∈≤β ∧b 6=

B} and ∀ak ∈ {a | 〈A, a〉 ∈≤α} ∪ {A} it is necessary to calculate whether ak ≤ bj.

Proposition 8 When merging sub-terminology ≤β into ≤α, if A 6≤ B is found in

top-search, 〈⊥, A〉 ∈≤α and 〈⊥, B〉 ∈≤β, then for ∀bj ∈ {b | 〈b, B〉 ∈≤β}∪{B} and

∀ak ∈ {a | 〈A, a〉 ∈≤α} ∪ {A} it follows that ak 6≤ bj.
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Figure 6.3: B 6≤ A : bi v? aj.

When merging a concept B, 〈B,>〉 ∈ ≤β, the top-merge algorithm first finds for

B the most specific position in the master sub-terminology ≤α by means of top-down

search. When such a most specific super-concept is found, this concept and all its

super-concepts are naturally super-concepts of every sub-concept of B in the sub-

terminology ≤β, as is stated by Proposition 1. However, this newly found predecessor

of B may not be necessarily a predecessor of some descendant of B in ≤β. Therefore,

the algorithm continues to find the most specific positions for all sub-concepts of B

in ≤β according to Proposition 2. Algorithm 8 addresses this procedure.

Non-subsumption information can be told in the top-merge phase. Top-down

search employed by top-merge must do subsumption tests somehow. In a canonical

top-search procedure, as indicated by Algorithm 6, the branch search is stopped

at this point. However, the conclusion that a merged concept B, 〈B,>〉 ∈ ≤β, is

not subsumed by a concept A, 〈A,>〉 ∈ ≤α, does not rule out the possibility of
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Figure 6.4: B 6≤ A =⇒ bi 6≤ aj.

bj ≤ A with bj ∈ {b | 〈b, B〉 ∈≺β}, which is not required in traditional top-search

and may be abound in the top-merge procedure, and therefore must be followed by

determining whether bj ≤ A. Otherwise, the algorithm is incomplete. Proposition 3

presents this observation. For this reason, the original top-search algorithm must be

adapted to the new situation. Algorithm 9 is the updated version of the top-search

procedure.

Algorithm 9 not only maintains told subsumption information by the set green,

but also propagates told non-subsumption information by the set red for further
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inference.1 As addressed by Proposition 3, when the position of a merged concept

is determined, the subsumption relationships between its successors and the red set

are calculated. Furthermore, the subsumption relationship for the concept C and

D in Algorithm 9 must be explicitly calculated even when the set green is empty.

In the original top-search procedure (Algorithm 6), C ≺i D is implicitly derived if

the set green is empty, which does not hold in the modified top-search procedure

(Algorithm 9) since it does not always start from > anymore when searching for the

most specific position of a concept.

The pseudocode of Listing B.1 and B.2 in Appendix B illustrates a more concise

description for Algorithm 8 and 9.

6.2.3 Example

We use an example TBox to illustrate the algorithm further. Given an ontology with

a TBox defined by Figure 6.5(a), which only contains simple concept subsumption

axioms, Figure 6.5(b) shows the subsumption hierarchy.

Suppose that the ontology is clustered into two groups in the divide phase: ∆α =

{A2, A3, A5, A7} and ∆β = {A1, A4, A6, A8}. They can be classified independently,

and the corresponding subsumption hierarchies are shown in Figure 6.6.

In the merge phase, the concepts from ≤β are merged into ≤α. For example,

Figure 6.7 shows a possible computation path where A4 ≤ A5 is being determined.2

If we assume a subsumption relationship between two concepts is proven when the

parent is added to the set box (see Line 15, Algorithm 9), Figure 6.8 shows the

subsumption hierarchy after A4 ≤ A5 has been determined.

1Our implementation of Algorithm 9 treats subsumptions cycles as synonyms. For example, if
rat v mouse and mouse v rat , the two concepts are collapsed into one, rat/mouse. For sake of
conciseness we do not show these details in Algorithm 9.

2This process does not show a full calling order of computing A4 ≤ A5 for sake of brevity. For
instance, >_merge(A7, A6,≤α,≤β) is not shown.
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T :

A6 v >

A7 v >

A5 v A6

A1 v A6

A2 v A5

A8 v A5

A4 v A5

A4 v A1

A3 v A7

A3 v A4

⊥ v A2

⊥ v A8

⊥ v A3

(a) The TBox given.

>

A6 A7

A5 A1

A2 A8 A4

A3

⊥

(b) The classified terminology hierarchy.

Figure 6.5: An example ontology.

6.3 Termination, Soundness, and Completeness

Lemma 1 The top-merge algorithm, Algorithm 8, always terminates.

During the process of merging two classified terminologies by using >_merge

from >α and >β, either >_merge or >_search∗ is applied to the successors of one

of the concerned concepts.

First of all, there can not exist a subsumption cycle between a concerned con-

cept and its successors, because the involved concepts are collapsed and treated as

synonyms once such a cycle is detected. Therefore, without an infinite execution

on testing a subsumption cycle between a concerned concept and its successors, a

limited number of successors are explored, the search continues until ⊥ is taken into

account, and then the algorithm terminates. Consequently, Algorithm >_merge

always terminates. �

Similarly, we can establish the following claims:

Lemma 2 The bottom-merge algorithm always terminates.
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>α

A5A7

A2A3

⊥α

(a) The subsumption hierarchy ≤α.

>β

A6

A1 A8

A4

⊥β

(b) The subsumption hierarchy ≤β .

Figure 6.6: The subsumption hierarchy over divisions.

Theorem 1 Algorithm 4 always terminates.

With Lemma 1 and 2, it is easy to prove Theorem 1.

Definition 13 Let S1 = (x0, x1, . . . , xm) and S2 = (y0, y1, . . . , yn) be two paths, and

the concatenation of S1 • S2 = (x0, x1, . . . , xm, y0, y1, . . . , yn). For the empty path λ

and a path S, it holds that S • λ = S, and λ • S = S.

Definition 14 In a classified terminology ≤, a concept C’s upper inheritance U(C)

is a path as follows:

U(C) =











λ C
.
= >,

U(D) • (D) C ≺ D,D 6
.
= >

(6.1)

It is obvious that the following proposition hold:

Proposition 9 For any concept C in a classified terminology, there must exist at

least one upper inheritance U(C).

Similarly, we get the following symmetric claims:
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>_merge(>α,>β,≤α,≤β)

>_search∗(>β,>α,≤β,≤α)

>_merge(A5, A6,≤α,≤β)

>_search∗(A6, A5,≤β,≤α)

>_merge(A5, A1,≤α,≤β)

>_search∗(A1, A5,≤β,≤α)

>_merge(A5, A4,≤α,≤β)

>_search∗(A4, A5,≤β,≤α)

>_merge(A2,⊥β,≤α,≤β)

>_search∗(⊥β, A2,≤β,≤α)

...

{A2}

≤α←≤α ∪{⊥β ≤ A2}

{A5}

≤α←≤α ∪{A4 ≤ A5}

∅

≤α←≤α ∪ ∅

∅

≤α←≤α ∪ ∅

{>α}

Figure 6.7: The computation path of determining A4 ≤i A5.
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>αβ

A7 A5 A6

A3 A2 A1

A4

A8

⊥α ⊥β

Figure 6.8: The subsumption hierarchy after A4 ≤ A5 has been determined.
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>α >β

⊥α ⊥β

...
...

...
...

...
...

A B

A B

Figure 6.9: B ≤ A.

Definition 15 In a classified terminology ≤, a concept C’s lower inheritance L(C)

is a path as follows:

L(C) =











λ C
.
= ⊥,

(D) • L(D) D ≺ C,D 6
.
= ⊥

(6.2)

Proposition 10 For any concept C in a classified terminology, there must exist at

least one lower inheritance L(C).

Proposition 11 The subsumption checking procedure ≤? is correct, i.e., it holds

that O |= C v D ⇔ ≤?(C,D)→ true.
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A

A

a1 ai B

B

...

...
...

...

. . .

...

...

Figure 6.10: B ≤ A is derived.
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Lemma 3 (Soundness of top_merge) When merging ≤β into ≤α, for ∀A : 〈A,>α〉 ∈≤α

and ∀B : 〈B,>β〉 ∈≤β, if the >_merge algorithm starting from >α and >β infers

that B ≤ A, then O |= B v A.

This proof is based on Proposition 11. We prove this lemma by contradiction.

Let us assume that Algorithm 9 derives B ≤ A but O |= B 6v A.

When the >_merge algorithm derives B ≤ A, there must exist L(A) and U(B)

such that, ∃A ∈ (A) •L(A) and ∃B ∈ U(B) • (B), and, as claimed in Propositions 9

and 10, the algorithm determines B ≺ A. This means that B ≤ A must be the result

of calling ≤?(B,A) at line 14 of Algorithm 9. This situation is shown as Figure 6.9.

In the process of determining B ≺ A all children Ai of A are tested whether they

subsume B and the calls of ≤?(B,Ai) must always have returned false, as shown in

line 6 of Algorithm 9 and in Figure 6.10. Therefore, B ≺ A is derived.

We already know ≤?(B,B)→ true and ≤?(A,A)→ true, ≤?(B,A)→ true. So,

due to the correctness of ≤? and the transitivity of the subsumption relationship it

holds that O |= B v A, which contradicts our assumption. �

Similarly, the following corresponding claim can be established.

Lemma 4 (Soundness of bottom_merge) When merging ≤β into ≤α, for ∀A :

〈⊥α, A〉 ∈≤α and ∀B : 〈⊥β, B〉 ∈≤β, if the ⊥_merge algorithm starting from ⊥α

and ⊥β infers that A ≤ B, then O |= A v B.

Following Lemma 3 and 4, as well as Theorem 1, the soundness of the merge

algorithm is established.

Theorem 2 (Soundness of merge algorithm) For a merged terminology ≤ it

holds, if 〈C,D〉 ∈≤, then O |= C v D.

Lemma 5 (Completeness of top_merge) If O |= B v A, then for ∀A ⊆ ∆α

and ∀B ⊆ ∆β, the top-merge algorithm infers B ≤ A, when it merges ≤β into ≤α

starting from >α and >β.
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A

A

A

B

B

B

...

...

...

...

Figure 6.11: O |= B v A.

This proof is based on Proposition 11.

Let P (A) be the set of all paths from > to ⊥ that contain A, i.e. ∀U(A), L(A) :

{U(A) •L(A)} ⊆ P (A). P (A) 6= ∅ by Propositions 9 and 10. Similarly, P (B) 6= ∅ is

the set of all paths from > to ⊥ that contain B. Because O |= B v A, P (A)∩P (B) 6=

∅, i.e. ∃U(A), L(A), U(B), L(B) : U(A) • L(A) = U(B) • L(B). Lemma 5 can be

proved by structural induction: If O |= B v A, then B ≤ A can be derived by

searching on U(A) • L(A) = U(B) • L(B) with Algorithm 9. The proof for the base

cases are trivial, so we just give the induction part.

Let A ≺ A, A ≺ A, B ≺ B, B ≺ B, and B ≺ A. That is to say, A ∈ U(A),

A ∈ L(A), B ∈ U(B), and B ∈ L(B), as is shown by Figure 6.11.

Since O |= B v A, we have ≤?(B,A)→ true: Algorithm 9 puts A into green at

line 7. And then >_search∗ is applied to B and every element of green, including

A, as is shown by line 21 of Algorithm 9. >_search∗(B,A,≤β,≤α) tests the sub-

sumption relationships between B and every child of A, including A, at line 6. This

process recursively continues to test B and A. At this point, all children of A do not

subsume B and thus are put into red, so green = ∅ and box← {A}, as is shown by

line 22 of Algorithm 9 and Figure 6.12.
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A

a1 ai B

B

...

...
...

...

. . .

Figure 6.12: B ≺ A is derived.

Now, Algorithm 9 derives ≤?(B,A)→ true, ≤?(A,A)→ true, and ≤?(B,B)→

true, it will be determined ≤?(B,A)→ true. �

Correspondingly, the completeness of the bottom-merge algorithm is established

by Lemma 6.

Lemma 6 (Completeness of bottom_merge) If O |= A v B, then for ∀A ⊆

∆α and ∀B ⊆ ∆β, the bottom-merge algorithm infers A ≤ B, when it merges ≤β

into ≤α starting from ⊥α and ⊥β.

From Lemma 5 and 6, we can conclude that the merge algorithm is complete.

Theorem 3 (Completeness of merge algorithm) If O |= C v D, the merge

algorithm will infer that C ≤ D.

6.4 Partitioning

Partitioning is an important part of this algorithm. It is the main task in the divid-

ing phase. In contrast to simple problem domains such as sorting integers, where the

merge phase of a standard merge-sort does not require another sorting, DL ontologies
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Algorithm 10: cluster(G)

input : G: the told subsumption graph
output: R: the concept names partitions

1 begin
2 R← ∅;
3 visited ← ∅;
4 N ← get_top_children(>, G);
5 foreach n ∈ N do
6 P ← {n};
7 visited ← visited ∪ {n};
8 R← R ∪ {build_partition(n, visited ,G ,P)};
9 end foreach

10 return R;
11 end

might entail numerous subsumption relationships among concepts. Building a ter-

minology with respect to the entailed subsumption hierarchy is the primary function

of DL classification. We therefore assumed that some heuristic partitioning schemes

that make use of known subsumption relationships may improve reasoning efficiency

by requiring a smaller number of subsumption tests, and this assumption has been

proved by our experiments, which are described in Section 6.5.

So far, we have presented an ontology partitioning algorithm by using only told

subsumption relationships that are directly derived from concept definitions and ax-

iom declarations. Any concept that has at least one told super- and one sub-concept,

can be used to construct a told subsumption hierarchy. Although such a hierarchy is

usually incomplete and many entailed subsumptions are missing, it contains already

known subsumptions indicating the closeness between concepts w.r.t. subsumption.

Such a raw subsumption hierarchy can be represented as a directed graph with only

one root, the> concept. A heuristic partitioning method can be defined by traversing

the graph in a breadth-first way, starting from >, and collecting traversed concepts

into partitions. Algorithm 10 and 11 address this procedure.
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Algorithm 11: build_partition(n, visited ,G ,P)

input : n: an concept name
visited : a list recording visited concept names
G: the told subsumption graph
P : a concept names partition

output: R: a concept names partition
1 begin
2 R← ∅;
3 N ← get_children(n, visited ,G ,P);
4 foreach n′ ∈ N do
5 if n′ 6∈ visited then
6 P ← P ∪ {n′};
7 visited ← visited ∪ {n′};
8 build_partition(n ′, visited ,G ,P);
9 end if

10 end foreach
11 R← P ;
12 return R;
13 end

6.5 Evaluation

Our experimental results clearly show the potential of merge-classification. We could

achieve speedups up to a factor of 4 by using a maximum of 8 parallel workers, de-

pending on the particular benchmark ontology. This speedup is in the range of what

we expected and comparable to other reported approaches, e.g., the experiments

reported for the ELK reasoner [50, 51] also show speedups of up to a factor of 4

when using 8 workers, although a specialized polynomial procedure is used for EL+

reasoning that seems to be more amenable to concurrent processing than standard

tableau methods.

We have designed and implemented a concurrent version of the algorithm so

far. Our program is implemented on the basis of the well-known reasoner JFact,

which is open-source and implemented in Java.34 We modified JFact such that we

3http://github.com/kejia/mc
4http://jfact.sourceforge.net
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Algorithm 12: schedule_merging(q)

input : q: the job queue
output: r: the updated job queue

1 begin
2 got ← false;
3 while ¬got ∧ size(q) > 0 do
4 bolt ← dequeue(q);
5 nut ← dequeue(q);
6 if ¬null?(bolt) ∧ ¬null?(nut) then
7 got ← true;
8 enqueue(q ,merge(bolt , nut);
9 else if ¬null?(bolt) then

10 enqueue(q , bolt);
11 bolt ← null;
12 else if ¬null?(nut) then
13 enqueue(q , nut);
14 nut ← null;
15 end if
16 end while
17 r ← q;
18 return r;
19 end
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can execute a set of JFact reasoning kernels in parallel in order to perform the

merge-classification computation. We try to examine the effectiveness of the merge-

classification algorithm by adapting such a mature DL reasoner.

6.5.1 Experiment

A multi-processor computer, which has 4 octa-core processors and 128G memory

installed, was employed to test the program. The Linux OS and 64-bit OpenJDK 6

were employed in the tests. The JVM was allocated at least 16G memory initially,

given that at most 64G physical memory was accessible. Most of the test cases were

chosen from ORE 2012 data sets. Table 6.1 shows the test cases’ metrics.

Each test case ontology was classified with the same setting except for an in-

creased number of workers. Each worker is mapped to an OS thread, as indicated

by the Java specification. Figures 6.13 and 6.14 show the test results.

In our initial implementation, we used an even-partitioning scheme. That is to

say concept names are randomly assigned to a set of partitions. For the majority of

the above-mentioned test cases we observed a small performance improvement below

a speedup factor of 1.4, for a few an improvement of up to 4, and for others only a

decrease in performance. Much overhead was shown in these test cases.

As mentioned in Section 6.4, we assumed that a heuristic partitioning might

promote a better reasoning performance, e.g., a partitioning scheme considering sub-

sumption axioms. This idea is addressed by Algorithm 10 and 11.

Another issue that happens when partitions are merged in a shared-memory

parallel environment is racing. In the merge-classification case, each worker puts the

classified partition to a shared queue, and then picks two out of it to merge them.

Workers race with each other to get merging pairs. That is to say which and how

many partitions some worker gets is indeterminate. This may become the source of

deadlocks or other concurrency issues. We designed a schedule algorithm to constrain

the race from such concurrency issues. Algorithm 12 ensures that each worker starts



C
H

A
P

T
E

R
6.

M
E

R
G

E
C

L
A

S
S
IF

IC
A

T
IO

N
115

ontology expressivityconcept count axiom count
adult_mouse_anatomy ALE+ 2753 9372
amphibian_gross_anatomy ALE+ 701 2626
c_elegans_phenotype ALEH+ 1935 6170
cereal_plant_trait ALEH 1051 3349
emap ALE 13731 27462
environmental_entity_logical_definitions SH 1779 5803
envo ALEH+ 1231 2660
fly_anatomy ALEI+ 6222 33162
human_developmental_anatomy ALEH 8341 33345
medaka_anatomy_development ALE 4361 9081
mpath ALEH+ 718 4315
nif-cell S 376 3492
sequence_types_and_features SH 1952 6620
teleost_anatomy ALER+ 3036 11827
zfa ALEH+ 2755 33024

Table 6.1: Metrics of the test cases—merge-classification.
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merging if and only if the worker has obtained two partitions.

We implemented Algorithms 10, 11, and 12, and tested our program. Our as-

sumption has been proved by the test: Heuristic partitioning may improve reasoning

performance where blind partitioning can not.

6.5.2 Discussion

Our experiment shows that with a heuristic divide scheme the merge-classification al-

gorithm can increase reasoning performance. However, such performance promotion

is not always tangible. In a few cases, the parallelized merge-classification merely

degrades reasoning performance. The actual divide phase of our algorithm can in-

fluence the performance by creating better or worse partitions.

A heuristic divide scheme may result in a better performance than a blind one.

According to our experience, when the division of the concepts from the domain

is basically random, sometimes divisions contribute to promoting reasoning perfor-

mance, while sometimes they do not. A promising heuristic divide scheme seems to

be in grouping a family of concepts, which have potential subsumption relationships,

into the same partition. Evidently, due to the presence of non-obvious subsumptions,

it is hard to guess how to achieve such a good partitioning. We tried to make use of

obvious subsumptions in axioms to partition closely related concepts into the same

group. The tests demonstrate a clear performance improvement in a number of cases.

While in many cases merge-classification can improve reasoning performance, for

some test cases its practical effectiveness is not yet convincing. We have investigated

the factors that influence the reasoning performance for these cases, but giving a clear

answer in such a complex context as concurrent reasoning is very difficult. The cause

may be the large number of GCI axioms found in some ontologies. Even with a more

refined divide scheme, those GCI axioms can cause inter-dependencies between par-

titions, and may cause in the merge phase an increased number of subsumption tests.
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Figure 6.13: The performance of parallelized merge-classification—I.
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Figure 6.14: The performance of parallelized merge-classification—II.
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Also, the non-determinism of the merging schedule, i.e., the unpredictable order of

merging divides, needs to be effectively solved in the implementation, and racing con-

ditions between merging workers as well as the introduced overhead may decrease

the performance. In addition, the limited performance is caused by the experimen-

tal environment: Compared with a single chip architecture, the 4-chip-distribution

of the 32 processors requires extra computational overhead, and the memory and

thread management of JVM may decrease the performance of our program.

6.6 Summary

The approach presented in this research has been motivated by the observation that:

(i) multi-processor/core hardware is becoming ubiquitously available but standard

OWL reasoners do not yet make use of these available resources; (ii) although most

OWL reasoners have been highly optimized and impressive speed improvements have

been reported for reasoning in the three tractable OWL profiles, there exist a multi-

tude of OWL ontologies that are outside of the three tractable profiles and require

long processing times even for highly optimized OWL reasoners. Concurrent com-

puting has emerged as a possible solution for achieving a better scalability in general

and especially for such difficult ontologies.

One of the most important obstacles in successfully applying concurrent comput-

ing is the management of overhead caused by concurrency. An important factor is

that the load introduced by using concurrent computing in DL reasoning is usually

remarkable. Concurrent algorithms that cause only a small overhead seem to be the

key to successfully apply concurrent computing to DL reasoning.

Our merge-classification algorithm uses a divide and conquer scheme, which is po-

tentially suitable for low overhead concurrent computing since it rarely requires com-

munication among divisions. The empirical tests show that the merge-classification

algorithm can improve reasoning performance in a number of cases. At present our
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work adopts a heuristic partitioning scheme at the divide phase. Different divide

schemes may produce different reasoning performances. Future work may investi-

gate better divide methods.

The advantage of merge-classification method is that reasoning performance can

be effectively improved without a large number of processors involved. The disad-

vantage of merge-classification is that it needs elaborate dividing schemes in some

cases. Furthermore, The implementation of merge-classification algorithm is com-

plex: (i) the canonical classification methods such as top-search & bottom-search can

not be used directly and must be adapted; (ii) merge-classification method needs de-

signing and implementing efficient concurrent algorithms for managing the merging

procedure.
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Conclusion

7.1 Future Work

The objective of this research is to use concurrent computing to get scalability in DL

reasoning. Concurrent computing can hardly play a role in such a sophisticated area

as automated reasoning unless computing components are decoupled elaborately. So,

future work of this research should endeavor to search for easily decoupled computing

components. For example, exploring more effective ways of dividing knowledge bases

for merge-classification algorithm. Such research may even happen on reforming the

fundamental syntax and semantics of DL in order to obtain independent reason-

ing components. Novel logics that are concurrent-computing-oriented may even be

invented—anyway, DL and almost all other computational logics are rooted in math-

ematical logic where such practical factors as concurrency are not emphasized.

Furthermore, instead of tableau-based algorithms, reasoning methods that is more

suitable for concurrent computing may be introduced into DL. So far, tableau-based

algorithms have been shown as the most efficient techniques in DL reasoning. But,

this conclusion is drawn in sequential computing context; maybe, some other rea-

soning techniques will surpass tableau-based ones in concurrent computing context.

After obtaining theoretical methods using concurrent computing, researchers en-

121
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counter the practical engineering issue: How should the methods be effectively im-

plemented?

An obstacle of exploring concurrent computing algorithms is implementation.

Future works of this research should adopt data structures, algorithms, languages,

tools, platforms, libraries, and patterns that are more suitable and more efficient

for concurrent computing. This requires the researchers to be familiar with the

techniques of implementing concurrent computing.

Some implementation technologies may largely increase performance of concur-

rent computing algorithms. This research attempts to obtain scalable DL reasoning

performance by using concurrent computing, which includes much more practical

factors than theoretical ones. Among those practical factors, the most significant

two are efficiently implementing and efficient implementation.

Efficiently implementing such a complex software system as a DL reasoner is a

challenging task. After having implemented the basic tableaux, a number of opti-

mization techniques should be added; otherwise, the reasoner’s performance is unac-

ceptable. What’s more, the functionalities implementing a variety of novel optimiza-

tion techniques and more powerful expressivity need to be added into the reasoner.

It is the software architecture that determines how possible and how easy it is to

add those new functionalities. We rarely agree that a reasoner which can not fur-

ther evolve to reason with a more expressive language is efficiently implemented.

This involves how flexible and extensible implementation architectures are. Future

work may explore reasoner implementation architectures that have a small degree of

component coupling.

On the other hand, given the same algorithm, different implementations have

different performance. An efficient implementation involves a number of details of

organizing and operating data, which are hidden behind algorithm designs. The

implementation details greatly influence the final performance of a reasoner: An

efficient implementation of an algorithm may produce more surprising performance
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improvement than inefficient ones. For future reasoner developers, a good method to

accomplish an efficient implementation is to study those well-known systems’ source

code, besides mastering the general data structure and algorithm knowledge.

Both topics are not easy, and when concurrent computing is involved, the prob-

lematic issues triple. Besides designing an elegant architecture and selecting suitable

design patterns, an efficient weapon that should be taken into account for reducing

the gap between a concurrent algorithm design and its implementation is functional

programming .

Functional programming has been considered to be suitable for concurrent com-

puting. The immutability of functional programming makes state-changing be re-

duced to the minimum, as can largely improve the robustness of concurrent pro-

grams. A number of problems of concurrent programs are generated by concurrent

state-changing, and it is not easy even for experts to find out and to fix this sort

of problems. Functional programming will persist computing objects’ states, and

therefore such bugs can be avoided to a great extent. Furthermore, the immutability

of functional programming is also suited to tableaux, the preliminary method used

by DL reasoning: States of branches can be saved without much extra work. The

advantages of functional programming can help implement more robust and flexible

reasoning systems that adopt concurrent computing. Thus, functional programming

may play a role in concurrent DL reasoning research in the future.

7.2 Summary

DL reasoning is a hard topic. A number of optimization techniques have been ex-

tensively researched. Now, practicable DL reasoning is not feasible unless those

optimization techniques are taken into account. With the progress of semantic web

technology, knowledge bases are becoming more and more complex. It seems that

this tendency will continue. DL reasoners should evolve corresponding reasoning
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abilities, one of which is reasoning scalability. A means to get scalability is using

concurrent computing.

Concurrent computing can not be easily adopted into such a complex area as au-

tomated reasoning. The primary reasoning algorithms and optimization techniques

are not suitable for concurrent processing. A reasoning algorithm generally operates

on data that is difficult to be decoupled, as is an important obstacle hindering per-

formance improvement of concurrent reasoning. Concurrent reasoning can not play

a role unless either reasoning data or reasoning operations are finely decoupled.

This research investigated a collection of algorithms that can reason about DL

knowledge bases in parallel.

DL TBox classification calculates all concept subsumption relationships entailed

in a knowledge base. Each subsumption calculation is independent of the others, and

thus classification can be computed in parallel. Our research worked on this idea, and

has shown that reasoning scalability can be gained by enrolling a growing number

of processors. This optimization combines concurrent computing and tableau-based

TBox classification.

Besides classification, this research investigated how general tableau-based DL

reasoning algorithms can get benefits from concurrent computing. Tableau-based

algorithms have been shown as pretty efficient DL reasoning techniques. Before this

research, there have been researchers who tried to parallelize manipulating disjunc-

tive branches of a tableau expansion tree. This research filled a gap by processing

conjunctive branches of a tableau expansion tree in parallel. Reasoning scalability

can be observed in the corresponding experiments. This research combines concur-

rent computing with general tableau-based DL reasoning algorithms.

This research further investigated a more elaborate concurrent TBox classification

method. Divide and conquer strategy was used to decouple operations and data of

top-search & bottom-search algorithm, which is more efficient and more popularly

used than brute-force testing. In this method, both divide and conquer stages can
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be processed in parallel. It has been shown that scalable performance can be gained

in a number of cases. This work combines concurrent computing with top-search &

bottom-search algorithm by divide and conquer strategy.

DL has progressed for twenty years or so, and is playing a growing important

role in semantic web era. This research is expected to contribute some knowledge

to developing the next generation of reasoners that are endowed with reasoning

scalability.
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Nomenclature

ABox A DL knowledge base component, which contains assertional descriptions on

individuals (i.e. instances).

AI Artificial Intelligence

AL A basic DL language allowing atomic concept negation, concept intersection,

universal restriction, and limited existential quantification (no concept union).

ALC A DL language extending AL with full concept negation, full existential quan-

tification, and concept union.

ALCH(D) A DL language extending ALCH with concrete data type.

ALCH A DL language extending ALC with role hierarchy.

ALCN A DL language extending ALC with unqualified number restriction.

ALE A DL language extending AL with full existential quantification.

ALE+ A DL language extending ALE with role transitivity.

DAG directed acyclic graph

DHT distributed hash table

DL Description Logic
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DLP Description Logic Programs: a knowledge representation that is used for the

inter-operation between rule-based reasoning and DL.

EL ADL language allowing concept intersection and full existential quantification.

EL+ A DL language extending EL with role transitivity.

GCI general concept inclusion axioms of the form C v D in which C is not neces-

sarily an atomic concept name.

GUID globally unique identifier

KB knowledge base

KR Knowledge Representation and Reasoning

NNF negation normal form: Negation occurs only in front of atomic concept names.

ORE OWL Reasoner Evaluation Workshop

OWL Web Ontology Language

RBox A DL knowledge base component, which contains a set of roles (i.e. properties)

descriptions, such as hierarchical or functional descriptions.

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RIF Rule Interchange Format

S An abbreviation for ALC with role transitivity.

SHIF A DL language extending S with role hierarchy, role inverse, and functional

role.
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SHIQ A DL language extending S with role hierarchy, role inverse, and qualified

cardinality restriction.

SHOIN A DL language extending S with role hierarchy, nominal, role inverse, and

unqualified number restriction.

SPARQL SPARQL Protocol and RDF Query Language

SROIQ A DL language extending S with nominal, role inverse, qualified cardinality

restriction, and a set of role descriptions (role intersection, role reflexivity, and

so on).

TBox A DL knowledge base component, which contains terminological descriptions

on concepts (i.e. classes).

URI Uniform Resource Identifier

W3C World Wide Web Consortium
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Appendix A

Tableau

A.1 Rules

Table A.1 lists the tableau rules used in SHIQ [45].

T = (S,L, E) is a tableau for a SHIQ-concept D in NNF, with clos(D) as the

smallest set of concepts that contains D and is closed under sub-concepts and ¬D’s

NNF, R+ a role hierarchy, and RD the set of roles occurring in D and R+ together

with their inverses: S is a set of individuals, L : S → 2clos(D), E : RD → 2S×S,

D ∈ L(s), and s ∈ S.

In Table A.1, given a tableau T = (S,L, E): ./ is a placeholder for ≤ and ≥;

ST (s, C) = {t ∈ S | 〈s, t〉 ∈ E(S) ∧ C ∈ L(t)}.

A node x of a tableau tree for a concept D is labelled with a set L(x) ⊆ clos(D),

an edge 〈x, y〉 is labelled with a set L(〈x, y〉) of roles occurring in clos(D), and explicit

inequalities between nodes are recorded in a symmetric binary relation 6
.
=.

A node y is an R-successor of a node x iff y is a successor of x and S ∈ L(〈x, y〉)

for some S with S v∗ R. A node y is an R-neighbor of x iff y is an R-successor of x,

or if x is an Inv(R)-successor of y.

A node x is blocked iff it is directly or indirectly blocked. A node is directly

blocked iff none of its ancestors are blocked, and it has ancestors x′, y, and y′ such
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name rule
u-rule If (i) C u D ∈ L(x), x is not indirectly blocked, and

(ii) {C,D} * L(x),
then L(x)← L(x) ∪ {C,D}.

t-rule If (i) C t D ∈ L(x), x is not indirectly blocked, and
(ii) {C,D} ∩ L(x) = ∅,
then L(x)← L(x) ∪ {E} for some E ∈ {C,D}.

∃-rule If (i) ∃S.C ∈ L(x), x is not blocked, and (ii) x has no
S-neighbor y with C ∈ L(y),
then create a new node y with L(〈x, y〉) ← {S} and
L(y)← {C}.

∀-rule If (i) ∀S.C ∈ L(x), x is not indirectly blocked, and
(ii) there is an S-neighbor y of x with C 6∈ L(y),
then L(y)← L(y) ∪ {C}.

∀+-rule If (i) ∀S.C ∈ L(x), x is not indirectly blocked, (ii) there
is some R with Trans(R) and R v∗ S, and (iii) there is an
R-neighbor y of x with ∀R.C 6∈ L(y),
then L(y)← L(y) ∪ {∀R.C}.

choose-rule If (i) (./nS.C) ∈ L(x), x is not indirectly blocked, and
(ii) there is an S-neighbor y of x with {C, nnf (¬C)} ∩
L(y) = ∅,
then L(y)← L(y) ∪ E for some E ∈ {C, nnf (¬C)}.

≥-rule If (i) (≥nS.C) ∈ L(x), x is not blocked, and (ii) there
are not n S-neighbors y1, . . ., yn of x with C ∈ L(yi) and
yi 6

.
= yj for 1 ≤ i < j ≤ n,

then create n new nodes y1, . . ., yn with L(〈x, yi〉)← {S},
L(yi)← {C}, and yi 6

.
= yj for 1 ≤ i < j ≤ n.

≤-rule If (i) (≤nS.C) ∈ L(x), x is not indirectly blocked, and
(ii)

∣

∣ST (x, C)
∣

∣> n and there are two S-neighbors y, z of
x with C ∈ L(y), C ∈ L(z), y is not an ancestor of x, and
not y 6

.
= z,

then (i) L(z) ← L(z) ∪ L(y), (ii) if z is an ancestor
of x, then L(〈z, x〉) ← L(〈z, x〉) ∪ Inv(L(〈x, y〉)), else
L(〈x, z〉)← L(〈x, z〉)∪L(〈x, y〉), (iii) L(〈x, y〉)← ∅, and
(iv) set u 6

.
= z for all u with u 6

.
= y.

Table A.1: Tableau expansion rules for deciding satisfiability of an SHIQ concept.



APPENDIX A. TABLEAU 142

that: (i) x is a successor of x′ and y is a successor of y′; (ii) L(x) = L(y) and

L(x′) = L(y′); and (iii) L(〈x′, x〉) = L(〈y′, y〉). A node y is indirectly blocked iff one

of its ancestors is blocked, or it is a successor of a node x and L(〈x, y〉) = ∅.

See [45] and [47] for a full reference on SHIQ tableau expansion rules.
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Pseudocode

B.1 Merge Classification

100 ( define merge-top

101 (λ (C D)

102 ( i f ( subs? D C)

103 ( l et ( [P (merge-top- search C D) ] )

104 ( taxonomy-add C P)

105 ( for -each (λ (E)

106 ( for∗ ( [ c ( get - ch i l d r en C) ]

107 [ e ( get - ch i l d r en E) ] )

108 (merge-top c e ) ) )

109 P) )

110 ( for -each (λ ( c )

111 (merge-top c D) )

112 ( get - ch i l d r en C) ) ) ) )

Listing B.1: Lisp/Scheme/Racket-style pseudocode: merge-top.
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100 ( define merge-top- search

101 (λ (C D)

102 ( l et ( [ box ( f i l t e r (λ (d)

103 ( subs? d C) )

104 ( get - ch i l d r en D) ) ] )

105 ( i f (empty? box )

106 (cons D (quote ( ) ) )

107 (map (λ (d)

108 (merge-top- search C d) )

109 box ) ) ) ) )

Listing B.2: Lisp/Scheme/Racket-style pseudocode: merge-top-search.
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