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Abstract

In this thesis, we propose and develop various statistical models to enhance and im-
prove the efficiency of statistical modeling of count data in various applications. The
major emphasis of the work is focused on developing hierarchical models. Various
schemes of hierarchical structures are thus developed and analyzed in this work rang-
ing from purely static hierarchies to dynamic models. The second part of the work
concerns itself with the development of multitopic statistical models. It has been
shown that these models provide more realistic modeling characteristics in compari-
son to mono topic models. We proceed with developing several multitopic models and
we analyze their performance against benchmark models. We show that our proposed
models in the majority of instances improve the modeling efficiency in comparison to
some benchmark models, without drastically increasing the computational demands.
In the last part of the work, we extend our proposed multitopic models to include
online learning capability and again we show the relative superiority of our models in
comparison to the benchmark models. Various real world applications such as object
recognition, scene classification, text classification and action recognition, are used
for analyzing the strengths and weaknesses of our proposed models.

Thesis Supervisor: Nizar Bouguila
Title: Associate Professor
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Chapter 1

Introduction

The emergence of internet has led to an increasingly interconnected world. Everyday

enormous amount of digital data is added to the internet data pool. The introduction

of less-expensive imaging sensors inside digital cameras and cell phones has led to

ever growing size of collected image databases. Facebook claims to be receiving seven

petabytes of new photo content every month. As of 2012, they claimed to have stored

more than 220 billion images in their servers. The same analogy can be said about

huge content of textual data inside the world wide web and countless streams of digital

video data generated by cheap webcams and the subsequent information flowing in

the internet. While dealing with this amount of digital data, one assumes that any

manual processing of these data has to be forfeited. Dealing with simple tasks one

could consider machines that have a mechanical repetitive character. However, when

dealing with data generated, for instance, from images captured from various view

points, suffering from occlusion or affected by clutter and noise one can no longer rely

on mechanical algorithms to offer reliable solutions. Learning machines and artificial

intelligence on the other hand provide us with a solution for the problems mentioned

thus far. One of the recurring problems in machine learning context is proper data

classification. Data classification is defined as the process of assigning data to a set of

predefined or evolving classes. Usually classification is performed with certain amount

of uncertainty. Therefore, it is necessary that we first consider a proper measure for

uncertainty. We use probability theory for describing this uncertainty.

1



1.1 Probability as a measure of uncertainty in data

classification

Data classification in essence is a true or false problem ( i.e. Certain data fit in a

class or not) . What matters however is the uncertainty degree of the decision. To

derive this measure one would consider probability theory [26].

For a discrete random variable (RV) X probability P (X = x) defines the degree

of certainty or the probability that the RV takes the value x. P (x) is defined as a

probability function subject to the following two conditions

P (x) > 0 (1.1)∑
x

P (x) = 1 (1.2)

One defines conditional probability of X with respect to Y as the probability that

X = x provided that Y = y. One also defines the joint probability of X and Y as

P (x, y). The relationship between the conditional and the joint probability is given

as:

P (x|y)P (y) = P (x, y) = P (y|x)P (x) (1.3)

From the above equation we derive the Bayes equation [9]

P (y|x) =
P (x|y)p(y)

p(x)
(1.4)

Bayes theorem allows us to consider priors p(y) that update themselves based on the

observation X = x. As it can be seen from the above equation. One can consider

the posterior belief p(y|x) as the updated version of the prior belief p(y) based on

the observed data X = x. Another concept that needs to be verified beforehand is

the conditional independence. Assuming that we have a joint distribution of vari-

ables X, Y and Z depicted as P (x, y, z). The variable Y is said to be conditionally

2



Figure 1-1: Example of a directed acyclic graph.

independent of Z given X if we have:

P (y|x, z) = P (y|x) (1.5)

The concept of conditional independence leads to the introduction of graphical mod-

els. That in return are used extensively in statistical modeling.

1.2 Graphical Models and Bayesian Networks

A graphical model consists of a set of nodes and edges defining the model graph.

In a probabilistic graphical model the nodes represent the variables and the edges

represent the relationship between the variables.

Bayesian networks are a special form of graphical models in which the structure is

represented by a directed acyclic graph (DAG). DAGs are graphs which have directed

edges between nodes and have no cycles along the directed paths. An example of a

DAG network is depicted in figure 1-1. Bayesian networks make conditional indepen-

dence assumption. The probabilistic character of a node is decided solely by the state

of the nodes directly connected to it regardless of the state of all the other nodes in

the graph. Defining Pai = {Nodes|Nodes leading to i− th node} and considering
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the definition of conditional independence it can be shown that the joint probability

distribution of the graphical model is derived as:

P (X1, . . . , Xn) =
n∏
i=1

P (Xi|Pai) (1.6)

Graphical models mostly deal with special probability distributions called the expo-

nential distributions [72]. Many common probability distributions, such as Gaussian,

binomial, multinomial, Dirichlet etc. belong to this family. Assuming that ~Y shows

the entire nodes leading to ~X the exponential family of distributions take the following

form:

P ( ~X|~Y ) = Zt( ~X)× exp[G(~Y )T × T ( ~X)] (1.7)

where Zt( ~X) is the normalization factor, G(~Y ) is the natural parameter and T ( ~X)

is the sufficient statistics of the distribution.

Another concept that we extensively refer to regarding exponential family of distri-

butions is conjugacy. If P (Y ), the prior distribution, and P (Y |X), the posterior have

the same form, the prior and posterior are called conjugate distributions, and the

prior is called a conjugate prior for the likelihood P (X|Y ). It has been shown that

all exponential family distributions have conjugate priors [34].

Probabilistic models are readily convertible to learning models. The learning process

is accomplished by using the training data. In choosing every probabilistic model two

steps must be considered. Firstly, which model is to be chosen and secondly, how the

data fit to the chosen model.

1.2.1 Model fitting and selection

In this step we assume that we have a model H which we use for fitting our data into.

The model H consists of the model parameter space and the probability distribution

function (PDF) that defines the distribution model. Assuming the observed data to
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be ~X and the model parameters to be θ the Bayes theorem gives:

P (~θ| ~X,H) =
P ( ~X|~θ,H)P (~θ|H)

P ( ~X|H)
(1.8)

In the above equation we call P ( ~X|~θ,H) the data likelihood and P ( ~X|H) the Data

evidence. The model fitting begins with a raw assumption of the value of the prior.

After each observation our belief of the prior is updated and reflected in the posterior

accordingly. In practice the process continues until a form of convergence is reached

by the model.

1.3 Expectation-Maximization algorithm

The expectation-maximization (EM) algorithm is a general method for estimating

the maximum-likelihood parameters of a distribution from a given data set. The

algorithm works in two different instances, when the data available are incomplete or

when there are missing data. The former happens when parts of the data are missing

due to different reasons such as noise or occlusion. The latter case happens when

optimizing the likelihood function is intractable but could further be simplified by

the assumption of the existence of hidden or missing parameters. We assume that

X =
{
~X1 . . . ~XN

}
is the observed data generated from an unknown distribution.

We call X the incomplete data. Next we assume that there is a complete data set

Z = (X ,Y) consisting of the incomplete data and hidden variables Y . The joint

distribution of the complete data is thus:

p(Z|Θ) = p(X ,Y|Θ) = p(Y|X ,Θ)p(X|Θ) (1.9)

Having the new complete joint distribution function, we next proceed with defining

the complete data likelihood function L(Θ|Z) = p(X ,Y|Θ).

The EM algorithm consists of two sequential steps. In the first step, the expec-

tation, the algorithm finds the expected value of the log-likelihood of the complete
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data, in respect to the unknown data space Y :

Q(Θ,Θ(i−1)) = Ey
[
log p(X ,X|Θ)|X ,Θ(i−1)

]
(1.10)

In above Θ(i−1) is our current estimate of the model parameters. The choice of the

logarithm of the likelihood instead of the likelihood offers computation convenience

and it is appropriate since the logarithm function is strictly increasing.

The goal of the second step, the maximization step, is to maximize the expectation

value computed in the E-step:

Θ(i) = arg max
Θ

Q(Θ,Θ(i−1)) (1.11)

The above two steps are repeated until a certain convergence criterion is met. It has

been shown that the algorithm increases the log-likelihood in each step and the model

converges to a local maximum [29].

1.4 Variational Inference

The EM algorithm works fine for tractable graphs. Dealing with complicated graphs

with interdependencies between the nodes, it is no longer possible to use the EM

algorithm for parameter estimation [88]. One of the ways for solving the intractability

problem is using variational inference. Generally speaking, variational approximation

proceeds with approximating the complex model with a simpler tractable model.

The idea is that based on the observed data, we consider the latent variables to be

independent.

The main inference problem in variational learning models is the approximation of

the posterior of the hidden variables with a variational distribution such that:

p(Y | X ) ≈ Q(Y) (1.12)
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The key simplifying aspect of the variation method is that Q(Y) has a simpler form

than the posterior p(Y|X ). The goal is to ensure that the approximating function

be made as similar to the true posterior as possible. The difference between Q and

the true posterior is measured in the form of a dissimilarity function D(Q, p). The

inference algorithm hence is performed in a way so as to minimize this distance. The

dissimilarity distance used in this work is the Kullback-Liebler divergence which will

be explained in the next subsection.

1.4.1 Kullback-Leibler divergence

Kullback-Leibler (KL) divergence is an entropy based measure, defined as [49]:

KL(Q||P ) =

∫
y

Q(y) log
Q(y)

P (y)
dy (1.13)

KL divergence has a srtraight forward definition in a source coding context. The

divergence between Q and P is defined as the number of nats that will be wasted

on average if one tries to code a distribution Q with a perfect encoder optimized for

the source P [47]. Adapting the KL divergence to depict the dissimilarity between

the variational approximation Q(Y ) and the actual posterior P (Y |X) gives us the

following:

KL(Q||P ) =

∫
y

Q(y) log
Q(y)

P (y|x)
dy =

∫
y

Q(y) log
Q(y)

P (y, x)
dy + logP (x) (1.14)

In the above equation log p(x) is independent of Q and therefore minimizing the KL

divergence with respect to Q is reduced to minimizing the first term of the above or

equivalently maximizing the negative of it. We define L(Q) to be the negative of the

first term:

L(Q) =

∫
Y

Q(y) log(P (y, z)dy −
∫
Y

Q(y) logQ(y)dy (1.15)

The essence of the variational models that use KL divergence for their parameter

estimation is about finding proper means for maximizing the above equation so as

7



to minimize the divergence between the actual posterior and the variational distribu-

tions. We will use this concept later in the thesis to estimate our model parameters.

1.5 Multi-topic Models

One of the immediate applications of proper data modeling is classification. It covers

a vast extend of problems such as placement of textual data into appropriate library

entries or classifying objects into their relevant categories. In this context, one of the

most challenging tasks is the classification of natural scenes without going deep inside

their semantics. The challenge behind the former is that natural scenes are generally

composed of a huge number of minute objects. The presence of these recurring objects

makes it extremely complicated to develop useful classifiers based on the semantics

alone. After all one would expect to see roads, trees, sun and the sky recurring in

scenes both taken inside the city or in the suburb. The need to consider the presence

of recurring data singletons, whether words, visual words or visual objects, led to

the so-called topic based models. Latent semantic indexing (LSI) [28] is the first

successful model proposed to extract recurring topics from data. It was proposed

for textual documents modeling using mainly singular value decomposition (SVD).

A generative successful extension of LSI called probabilistic latent semantic indexing

(PLSI) was proposed in [42]. However, PLSI is only generative at the words layer

and does not provide a probabilistic model at the level of documents. Therefore, two

major problems arise with PLSI. Firstly, the number of parameters increases with the

number of documents. Secondly, it is not clear how one can learn a document outside

of the training phase. To overcome these shortcomings, the authors in [12] proposed

the LDA model which has so far proven to be a reliable and versatile approach for

data modeling. LDA has received a particular attention in the literature and several

applications (e.g. natural scene classification [31]) and extensions have been proposed.

Examples of extensions include the hierarchical version of LDA [11], used for instance

in [79] for hierarchical object classification, and the online version proposed in [41].

Despite its success and elegance, the LDA model, as will be shown in the coming
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chapters, has certain deficiencies. A great part of this thesis is therefore dedicated to

dealing with these deficiencies by offering more realistic modeling capabilities based

on the LDA model.

1.6 Hierarchical data classification

While dealing with huge amount of digital data, it is necessary to be able to effi-

ciently classify them to relative categories. This results in ease of data retrieval and

recommendation, and database browsing efficiency [74, 57]. The conventional view to

object classification in machine learning is to recognize the objects inside the scene

and then to categorize the scenes based on the recognized objects [82]. However, it

was shown in [75] that human brain is able to categorize scenes containing objects far

more quickly than the conventional object extraction model. Further, it was shown

in [33] that the cerebral cortex which is responsible for the processing of visual scenes

inside human brain follows a hierarchical processing model for interpreting scenes. To

achieve higher speed and more accuracy, it is therefore desirable to develop models

that follow the brain vision model.

In practice object classification is not an easy task due to many existing challenges

like changes in illumination, scale, orientation or occlusion, each of which can have

negative effect on the classification process [53]. In order to minimize the effects of

these undesired factors, the natural approach is to use models which offer a level of

independence from the above variations. Traditional approach to achieve this goal

is to use global features of the image data such as color and texture as the basis

for classification. However, another approach which has received more popularity

recently is to find low level features inside different image classes and to use them as

class interpreters. Low level local features properly applied can offer an acceptable

level of robustness towards traditional vision challenges such as scaling, changes of

illumination and occlusion [53]. In this thesis we focus on low level local features of

image data.

After the features are extracted from the image, they should be interpreted to be able
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to discriminate different classes and categories. To this aim Csurka et al. proposed

the bag of visual words model [27]. The goal of the bag of visual words model is

to describe an image as a set of predefined visual words. In this perspective bag of

visual words model gives a model conceptually similar to lingual vocabulary. Whilst

in language a predefined set of words exists for describing the language, in bag of

visual words model, a set of basic visual words is defined to describe the image data

space. As shall be shown an optimal choice of the visual words and their number can

greatly improve the model accuracy. Following the introduction of the bag of visual

words model several authors have proposed their improvements to the original model

e.g. [89] [30] [62]. One common point among most of the new models is that, nearly

all of them make use of the existing text classification models and adopt them to the

image data.

In many applications, it is convenient to classify the data in a hierarchical form [1].

This way the more general classes merge together to form the parents to the more

specific ones. One can look at this approach like the book placement strategy inside

a library. Whilst in a flat classification one has to look through every different class

to find what one is looking for, in a correctly arranged library one knows that for in-

stance he can find a circuit analysis book, in the electrical engineering section, which

is in return in the engineering section and so on. One obvious point in developing

hierarchical based models is that the model itself must be hierarchy adaptable. One

of the most referred of these family of models is the latent Dirichlet allocation (LDA)

model [12] and its hierarchical adaptation [10]. Based on the hierarchical LDA model

Fei-Fei et al. proposed their supervised hierarchical model for scene classification [32].

Sivic et al. developed the hierarchical LDA model further to propose an unsupervised

model for finding class hierarchies [79].

Another model that can be used for hierarchical classification is the hierarchical

Dirichlet model recently developed in [86] for document classification. In this thesis

we propose adopting this model, for hierarchical object classification purposes. As it

will be shown, as expected, the hierarchical nature of the model results in consider-

able improvement in image database classification accuracy. The other advantages of
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the method are its ease of implementation and low computation load. As the name

of the above model implies, it considers the Dirichlet distribution, as an integrated

basis. However, as it has been mentioned in previous works like [58], Dirichlet distri-

bution may not be the best choice as a prior in statistical models. Subsequently we

propose a new hierarchical model as a generalization to the model proposed in [86]

and adopted in [2]. In this model we extend the hierarchical Dirichlet model of [86] by

considering the more flexible generalized Dirichlet distribution. It is our assumption

that the more generalized covariance matrix of the generalized Dirichlet distribution

in comparison with Dirichlet distribution, which has a very restrictive negative co-

variance, results in more efficient and realistic data modeling. As an elaboration on

this idea one may think of the text modeling application and the lingual vocabulary.

It is expectable to assume that in the class of philosophy there is a positive correlation

between the occurrences of the words Greece and philosophy, however if we take the

Dirichlet distribution as the basis for our word generation model the model always

unconditionally assumes a negative correlation between the two words which is not

what is expected.

One prior distribution that has recently gained notice in count data modeling is the

Beta-Liouville (BL) distribution [38]. The BL distribution offers comparably better

modeling characteristics without adding much complexity to the models, while avoid-

ing overfitting and high sensitivity observed in previous models [3]. Thus, we also

proceed with the idea of replacing the Dirichlet distribution with BL distribution as

proposed in [16] with the idea of using the hierarchical structure for improving the

classification accuracy in [86] to derive a new hierarchical model which would enhance

the results of [86]. The BL distribution offers a more versatile covariance matrix than

the Dirichlet distribution, as will be shown later, while requiring only slight increase

in computational requirements in comparison to the Dirichlet distribution. This al-

lows the hierarchical model to act as a trade off between the Dirichlet simplicity and

and generalized Dirichlet strong modeling efficiency.

To better understand the concept of hierarchical classification it is helpful to

consider the visual hierarchy in figure 1-2. Notice how by moving down towards the
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lower branches of the database the hierarchy becomes more object oriented.

Figure 1-2: An example of hierarchical object classification. Note how by moving
down the hierarchy each of the nodes become more categorized.

1.7 List of contributions

The several contributions of this thesis were either published or being reviewed in

different high reviewed scientific Journals and conferences as of the time of the prepa-

ration of the thesis. The list of the contributions are as follows:

1. Designing a hierarchical statistical model for object classification using Dirich-

let distribution and showing the relative strength of the model in comparison

to naive Bayes model [2]. Designing a hierarchical statistical framework for

count data modeling using generalized Dirichlet distribution [3]. Designing
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a hierarchical statistical model for count data modeling using Beta-Liouville

distribution[4].

2. Designing a semisupervised online learning hierarchical structures for object

classification and developing three distinct online learning models using Dirich-

let, generalized Dirichlet and Beta-Liouville distributions[5].

3. Designing a variational Bayes model for count data learning and classification

using generalized Dirichlet distribution as an improvement to the LDA model

[8].

4. Designing a latent topic model based on the Beta-Liouville distribution as an

improvement to the LDA model with more computational efficiency in compar-

ison to the previous contribution[6].

5. Designing online learning for the last two latent topic models [7].

1.8 Thesis Structure

The organization of the thesis is as follows. In chapter 2 we introduce the static

hierarchical models and their application in object classification. In chapter 3 we

extend our hierarchical models to include auto learning hierarchal structures. In

chapter 4 we introduce our approach to multi-topic models and their applications

in text, object and scene classification as well as action recognition and we shall

describe our proposed online learning scheme. Finally, in chapter 5 we shall conclude

the thesis.
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Chapter 2

A Hierarchical Statistical Model

For Object Classification

The problem that we address in this chapter is that of learning hierarchical object

categories. Object classification in computer vision can be looked upon from several

different perspectives. From the structural perspective object classification models

can be divided into flat and hierarchical models. Many of the well-known hierarchical

structures proposed so far are based on the Dirichlet distribution. In this chapter,

we present three distinct works. The first one is an adaptation of the hierarchical

Dirichlet model proposed in [86] to work for the object classification and categoriza-

tion application. The results of the adaptation were published in [2]. The second

work presented in this chapter considers the structural model of [86] and adapts the

generalized Dirichlet as the prior assumption. The results of this work were published

in [3]. The third work in this chapter proceeds with finding a means for combining

the simplicity of the first model and the efficiency of the second one through the

introduction of the Beta-Liouville distribution and its adaptation to the hierarchical

model. The results of this adaptation were published in [4].
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2.1 The Hierarchical Dirichlet Model

Let Im = {Im1, ..., ImN} be the set of the images to be categorized. Following

the guidelines of [27], the first step for categorization is to detect low level features

from image data. In this step a proper feature detector is applied on each image

Imn and the desirable features are extracted. In the next step, each of the extracted

descriptors from the last step is assigned to the nearest predetermined visual word. In

this chapter the Euclidean distance is considered as the measure of distance between

vectors. The next step is the bag of visual words construction. In this step a frequency

vector of the assigned descriptors from the last step is constructed. The dimension

of the vector is the same as the number of the visual words in the vocabulary V and

the value of each of the vector elements is equal to the number of times the according

descriptor is observed inside the image. We denote the set of the frequency vectors

constructed as above as I = {I1, ..., IN}, where each Ii is the constructed frequency

vector for the image Imi.

The approach proposed in [27] is based on the naive Bayes model. It considers the

class conditional probabilities of the occurrence of each of the words in different classes

and then uses the multinomial distribution to find the class which gives the highest

posterior probability to the present frequency vector. One serious drawback with the

above model is that it refuses to see any interdependency between the occurrences of

the visual words. The only condition which holds on the probability distribution of

the visual words is
K∑
k=1

P (wi) = 1 (2.1)

where w = (w1, ..., wK) is the vector of the visual words. Yet, one can rightfully

assume that the occurrences of visual words are not totally independent of each

other. However, the above model fails to realize the concept of hierarchical vision,

since in the naive Bayes model the classes are defined separately from each other. In

order to solve the above problems, we propose using the hierarchical Dirichlet model,

instead of the Naive Bayes model, which we describe in the following.The model

proposed in [27] assumes a flat multinomial generative model which works under the
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assumption that the data are generated from a generative model with class parameter

θi = (θi1, ..., θiK).

p(In|θi) ∝
(
∑K

k=1 Ink)!∏K
k=1 Ink !

K∏
k=1

(θik)
Ink (2.2)

where Ink is the number of occurrences of the k-th visual word inside image Imn.

The unknown here is the parameter vector θi, which should be estimated from the

training data. Using the occurrences alone gives generally poor estimates [19]. An

appropriate solution to address this issue is the introduction of a prior information

into the construction of the statistical model. The prior information, for the multi-

nomial assumption, is chosen in general to be given by the Dirichlet distribution

[19, 61]. A better approach has been recently proposed in [86] for the hierarchical

classification of text documents. This approach which, unlike the previous flat model

(equation 2.2), takes into account the notion of hierarchy by selecting a hierarchical

Dirichlet distribution, inside the hierarchy, for the parameter vector θi, meaning:

θi ∼

 D(η, ..., η) if i is the first node in the hierarchy

D(σ × θpa(i)) for the other nodes in the hierarchy
(2.3)

where θpa(i) is the parent node of the ith node andD represents a Dirichlet distribution.

Note that a Dirichlet distribution with parameter vector (αi1, ..., αiK) is defined over

the hyper plane
∑K

k=1 θik = 1, as [67]:

p(θi1, ...θiK) =

∏K
k=1 Γ(αik)

Γ(
∑K

k=1 αik)

K∏
k=1

θ
(αik−1)
ik (2.4)

where Γ is the Gamma function. The hierarchical nature of the model gives the

following useful relationship [86]

E[θi|θpa(i)] = (σ × θpa(i))/(
K∑
k=1

σθpa(i)(k)) = θpa(i) (2.5)

It is noteworthy that generally the hyper parameter η is set to 1. In the above σ is

the hierarchy inheritance parameter. The higher values of σ leads to tighter bound
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between the parent and children nodes. As it will be shown in later sections the

correct choice of this hierarchical bound is an important factor in model efficiency.

In this chapter, we choose the optimum value of σ experimentally, as the value that

maximizes the model classification success rate. A rather more analytical method for

calculating σ is described in [86].

Parameters Estimation

In order to estimate the parameters of the model, we consider that a class based

training data is available. Assuming ni = (ni1, ...niK) be the vector obtained by

adding up all the frequency vectors in class i. Therefore, the value Ni =
∑

j nij is

actually the total number of visual word occurrences inside the training set of class

i. Since ni itself can be considered as a meta image defined by the θi parameters, ni

follows a multinomial distribution defined by θi. An interesting characteristic of the

Dirichlet distribution is its conjugacy to the multinomial distribution. This implies

that:

p(θi|ni) ∝ D(αi1 + ni1, ..., αiK + niK) (2.6)

Considering the conjugacy between the Dirichlet and multinomial distribution it is

easy to show that [19]

θ̂i =
ni + σθ̂pa(i)

Ni + σ
(2.7)

A possible parameters estimation approach is the one proposed in [86] based on linear

minimum mean squared error estimate (LMMSE). LMMSE estimator for the node θi

with m child node is computed as

θi = E[θi] +M−1 ×


θ̂ch(i1) − E[θi]

θ̂ch(i2) − E[θi]

.

θ̂ch(im) − E[θi]

 (2.8)
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where

M =

 Σ(θch(i1)) Σ(θch(i1)θch(i2)) . . . Σ(θch(i1), θch(im))

Σ(θch(i2), θch(i1)) Σ(θch(i2)) . . . Σ(θch(i2), θch(im))

.

.

. . . . . . .

.

.

.

Σ(θch(im)θch(i1)) . . . . . . Σ(θch(im))


and Σθi is the variance of θi. As was shown in [86] the non diagonal elements of the

estimation matrix are all equal to Σθi. This exchangeability of the parameters allows

the above equation to be expressed in a much simpler form:

θ̂i =
σθ̂pa(i) +m(σ + 1)

¯̂
θch(i) + ni

σ +m(σ + 1) +Ni

(2.9)

In the above equation,
¯̂
θch(i) = 1

m

∑
j∈ch(i) θ̂j, is the average of the node children. It’s

interesting to note also that for the leaf nodes the above equation reduces to:

θ̂i =
σθ̂pa(i) + ni
σ +Ni

(2.10)

which is actually a simple update equation. In order to exploit the update equation,

the θ parameters are initialized by hierarchical Dirichlet samples, and the above

iteration equation is calculated until a convergence criterion is met. One problem

that remains, however, is the choice of the value of σ. In our work we use the training

data to optimize the choice of σ. The effect of choosing different values for σ is

brought in the following section.

2.1.1 Experimental Results

In this section we illustrate and discuss the proposed statistical model for an image

database hierarchical classification task.

Image Dataset

We chose the ETH-80 dataset [51] as the basis for our hierarchical classification. The

main reason for this choice is that the dataset is optimized for object classification
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purposes. The dataset contains views and segmentation masks of 80 objects, each

one photographed in more than 40 different poses. In total the database contains

more than 3000 images. The objects are classified in 8 categories cows, dogs, horses,

apples, pears, tomatoes, cups, and cars, from which we choose the 7 first categories

for our hierarchical classification. The reason for choosing the first seven categories

Figure 2-1: Samples of the ETH-80 dataset [51].

is that 6 of them can be classified in 2 unique categories, fruits and animals. As

it will be shown in the results section the visual similarities between the chosen

classes contribute much to the efficiency of the hierarchical classification, since one

may expect quite similar visual words to be extracted from visually similar classes.

Approximately 20 percent of the image database is randomly chosen as the training

database, whilst the remaining images form our test dataset.

Feature Extraction and Visual Words Generation

We use the Scale invariant feature transform (SIFT) descriptors [53] for feature ex-

traction from our images. The choice of SIFT descriptors over the other available

descriptors is due to several factors. The high dimensionality of the SIFT descriptors

and its comparably robustness towards changes in scaling, illumination, occlusion, etc,

compared with other feature descriptors, results in better discrimination between the

extracted descriptors [55] . The next step is the generation of the visual vocabulary

(the set of visual words) from the entire dataset. Assuming for the moment that we

have access to the entire unclassified dataset, we generate our visual vocabulary as
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follows. We derive the entire set of descriptors by running the SIFT algorithm over

the entire dataset. This operation leads to a set of descriptors. In the next step we

apply a clustering algorithm, in this work the K-means algorithm, over the obtained

set to find the descriptors centroides. We assign each derived centroides to a visual

words and call the collection of the visual words the visual vocabulary. One inter-

esting point here is that the number of centroides is actually arbitrary, and as we

show later an optimal choice of K can lead to optimum results. Since the proposed

hierarchical model is in fact the hierarchical generalization of the naive Bayes model,

in the experiments we compare the efficiency of our model against the naive Bayes

model.

Assumed Hierarchical Structure

In order to show the effect of the hierarchical model we propose the hierarchical struc-

ture shown in figure 2-2 for our classification. The choice of the hierarchy structure is

Figure 2-2: The Hierarchical structure chosen for the image database classes. The
choice of the hierarchy elements is based both on visual and conceptual similarities
between the classes.

based on the visual similarities between the classes. However, in order to emphasize
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the importance of visual similarity in our hierarchical classification we also use a vi-

sually irrelevant class, the cups, in our model and we will show that a poor selection

of hierarchies can contribute little if any to the model quality.

Analysis of the Recognition Capability of the Model

In order to analyze the recognition capability of the model, a series of experiments are

performed. For the object recognition purposes the lowest leaves of the tree, which

contain individual objects, are chosen for analysis. As was shown in the previous

section, two parameters directly contribute to the efficiency of the model i.e. the

number of visual words and the value of σ. We define the model success rate as the

ratio between the total number of the correctly classified images in all classes against

the total number of images. Figure 2-3 shows the recognition success rate of the

model as a function of the number of visual words. As it can be seen from this figure,

the model recognition success rate reaches its maximum around 300 visual words.

It must be noted that in figure 2-3 the outcome for number of visual words more

than 500, is subject to over training and the number of multiple recognitions for a

simple object becomes unacceptably high as the number of chosen words increases.

Moreover, the effect of increasing the hierarchy strength can be seen, by increasing

the value of σ, in sub figures. In the top left figure, with a small value of σ, the model

behaves only slightly differently from the naive Bayes model, but as the value of σ

increases the model becomes more hierarchical based and drifts away from the naive

Bayes model. It can also be seen from the figure that compared with the naive Bayes

model the model in general reaches higher success rates.

Figure 2-4 shows the effect of choosing different values of sigma on the model recogni-

tion success rate. It also shows that recognition success rate increases slightly by the

increase of the sigma value from 1 to 100, in the acceptable visual word range of 200

to 500 words, letting us conclude that for our database the recognition is optimized

for σ = 100 and K = 300. One may notice, however, that the model in average has

a 50% success rate in object recognition. This low success rate is, to much extend,

because the hierarchy works in the way that assigns quite similar θ parameters to
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Figure 2-3: The solid line shows the model recognition success rate versus the number
of visual words for different values of sigma. The dashed line shows the success rate
for the naive Bayes model under the same condition.

the lowest nodes which define the individual objects. This can be mathematically

seen from equation 2.10. Thus, the system is unable to discriminate visually similar

objects efficiently. However, as we move up inside the hierarchy and the node param-

eters become not only dependant on the parent nodes but also their children nodes,

as we can see from equation 2.9, the success rate of the model improves. This, in

general, is in accordance with the assumption that the model classification improves

throughout the hierarchy. It will be shown in the next section that the model behaves

as expected as we move upper in the hierarchy.

Analysis of the Categorization Capability of the Model

As it was mentioned in the previous sections the main idea of the model is to act as

an efficient classifier. Should the model behave as we expect, going further up in the
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Figure 2-4: The solid line shows the model recognition success rate versus sigma for
different number of visual words. The dashed line shows the success rate for the naive
Bayes model under the same condition.

hierarchy shall result in better recognition success rate. Figure 2-5 shows the average

success rate for the second tier of the hierarchy versus the number of the visual words

for different values of sigma. The data is generated by averaging the success rate

of the second tier categories. As expected the model shows a considerable jump in

classification accuracy by taking one step up in the hierarchy. Again it can be seen

from the figure that, similar to the case of object recognition, the system reaches its

maximum accuracy at around 300 visual words with sigma value equals to 100.

Figure 2-6 shows the effect of choosing different values of sigma for the second tier cat-

egorization success rate. Again it can be seen from figure 2-6 that the model success

rate improves slightly by the optimum choice of sigma. The obtained improvement

in the second tier is due to the right choice of the hierarchical structure based on

visual word similarities of the objects. One point that needs to emphasized here, is
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Figure 2-5: The solid line shows the model second tier categorization success rate
versus the number of visual words for different values of sigma. The dashed line
shows the success rate for the naive Bayes model under the same condition.
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Figure 2-6: The solid line shows the model second tier categorization success rate
versus sigma for different number of visual words. The dashed line shows the success
rate for the naive Bayes model under the same condition.
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that increasing the number of visual words does not necessarily lead to improved suc-

cess rate. The reason behind this observation is that once one begins to increase the

number of visual words beyond an optimal number, the visual words tend to capture

minute characters of the objects as well as possible clutter. This in return leads to

a total drop in the model accuracy as can be seen from figure 2-6 In order to show

that the wrong choice of elements inside the hierarchy contributes little if any to the

system accuracy, we show the effect of misplaced class of objects, cups, on the system

accuracy.

Table 2.1 shows the confusion matrix generated by optimal choice of system param-

eters. As it can be seem from table 2.1, the correct choice of the hierarchy elements

Table 2.1: Confusion matrix of the model for σ = 100 and 300 visual words.

Class apple cow cup dog horse pear tomato

apple 57.6 0 16.4 1.4 1.4 7.5 19.9
cow 0 21 8.3 6.3 15.6 0 3.1
cup 5.2 0 48.2 1.4 0 1.1 0
dog 0 26.3 5.7 38.1 20.8 0.8 5.7
horse 0.5 51.4 12.1 50.5 60.4 0.8 13.8
pear 27.1 0 6.9 1.4 1.7 88.7 11.2
tomato 9.3 0 2 0.5 0 0.8 45

leads to possible errors that are compensated in the upper tiers, whilst the bad choice

of the elements leads to the errors which propagate into the upper levels of hierarchy.

To better understand this point, one should note the confusion matrix for the class

’cup’. Even though the class is classified as non-animals, it can be readily seen that

the classification errors inside the cup class are not confined to neighboring nodes,

therefore putting ’cup’ under non-animal hierarchy, though conceptually correct, is

visually not a correct choice.

Having shown the merit of using the hierarchical Dirichlet model for object clas-

sification, we proceed with proposing our first improved model using the generalized

Dirichlet distribution. In the next section to follow we thus introduce the hierar-

chical generalized Dirichlet model and we make a thorough comparison between the

hierarchical Dirichlet and the hierarchical generalized Dirichlet model.
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2.2 Hierarchical generalized Dirichlet Model

In the last section we showed the feasibility of adapting hierarchical learning models

for object classification. In this chapter we proceed with offering a new hierarchical

scheme based on the generalized Dirichlet distribution as a replacement for the previ-

ous Dirichlet assumptions. We make a thorough comparison between the two models

and analyze the merits and the drawbacks of the new model.

further to propose an unsupervised model for finding

Generalized Dirichlet as a Prior

If a random vector ~θI = (θI1, . . . , θIK) follows a generalized Dirichlet distribution with

parameters ξ = (αI1, βI1, . . . , αIK , βIK), the joint probability density function (pdf)

is given by:

p(~θI |ξ) =
K∏
i=1

Γ(αIi + βIi)

Γ(αIi)Γ(βIi)
θαIi−1
Ii (1−

i∑
j=1

θIj)
γIi (2.11)

where 0 < θIi and
∑K

i=1 θIi < 1 for i = 1, . . . , K, and γIi = βIi − αI(i+1) − βI(i+1). It

must be noted that when βIi = αI(i+1) + βI(i+1) the generalized Dirichlet distribution

is reduced to Dirichlet distribution. The mean and the variance of the generalized

Dirichlet distribution with the above parameters are as follows:

E(θIi) =
αIi

αIi + βIi

i−1∏
k=1

βIk
αIk + βIk

(2.12)

V ar(θIi) = E(θIi)

(
αIi + 1

αIi + βIi + 1

i−1∏
k=1

βIk + 1

αIk + βIk
+ 1− E(θIi)

)
(2.13)

and the covariance between θIi and θIj is given by:

Cov(θIi, θIj) = E(θIj)×
(

αIi
αIi + βIi + 1

i−1∏
k=1

βIk + 1

αIk + βIk
+ 1− E(θIi)

)
(2.14)
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Other interesting properties and applications of the distribution can be found in

[58, 60, 59, 68]. As it can be seen from equation 2.14, the covariance of the generalized

Dirichlet distribution has a more general form than the Dirichlet distribution and it is

therefore possible for two random variables inside the random vector to be positively

correlated [64, 65]. An interesting character of the generalized Dirichlet distribution is

that, like the Dirichlet distribution, it is a conjugate prior to the multinomial distribu-

tion [66, 63]. The conjugacy between the two distributions implies that if ~θI follows a

generalized Dirichlet distribution with parameters (αI1, . . . , αIK , βI1, . . . , βIK) and ~n,

as defined in the last subsection, follows a multinomial with parameter ~θI , then it can

be shown that the posterior distribution also has a generalized Dirichlet distribution

~θ| ~N ∝ GD(α
′
I1, . . . , α

′
IK , β

′
I1, . . . , β

′
IK) with the following parameters [90, 58]:

α
′

Ii = αIi + ni (2.15)

β
′

Ii = βIi +
K+1∑
l=i+1

nIl (2.16)

We shall use this property of the generalized Dirichlet distribution, for deriving the

parameters estimation, based on the observed training data in the following subsec-

tions.

Hierarchical generalized Dirichlet Model

In our model we follow the same count data generation approach as the hierarchical

Dirichlet model with the exception that the parameter vectors ~θI have generalized

Dirichlet distributions with the following special hierarchical parameters definition:

~θI ∼

 GD(η, . . . , η, ζ, . . . , ζ) if I is the first node

GD((f(~θpa(I)), g(~θpa(I)))) otherwise
(2.17)

where ~θpa(I) indicates the parent of the I − th node. The functions f(~θpa(I)) and

g(~θpa(I)) depend on the parent node and they must be determined in the way that
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holds the following relationship:

E[~θI |~θpa(I)] = ~θpa(I) (2.18)

By defining ~fI and ~gI functions as ~fI = {fI1, . . . , fIK} and ~gI = {gI1, . . . , gIK} and

using equation 2.18, it can be shown by induction that (See Appendix a)

gI(k) =
(1−

∑k
l=1 θpa(I)(l))

θpa(k)
fI(k) (2.19)

One interesting fact that can be derived from equation 2.19 is that, by choosing linear

dependency between ~fI and ~θpa(I), that is ~fI = σ~θpa(I) and by proper replacement in

equation 2.19 one has (see Appendix b):

gI(i) = fI(i+1) + gI(i+1) (2.20)

and therefore, the hierarchical generalized Dirichlet distribution is reduced to hierar-

chical Dirichlet distribution. Thus, our model generalizes the hierarchical model in

[86]. Like the case of the hierarchical Dirichlet model we assume the values of η and

ζ to equal unity.

Following the assumptions of [86] we propose to use a LMMSE estimator for esti-

mating the model parameters. The LMMSE estimation for the parameter ~θI is given

as:

θi = E[θi] +M−1 ×


θ̂ch(i1) − E[θi]

θ̂ch(i2) − E[θi]

.

θ̂ch(im) − E[θi]

 (2.21)

where

M =

 Σ(θch(i1)) Σ(θch(i1)θch(i2)) . . . Σ(θch(i1), θch(im))

Σ(θch(i2), θch(i1)) Σ(θch(i2)) . . . Σ(θch(i2), θch(im))

.

.

. . . . . . .

.

.

.

Σ(θch(im)θch(i1)) . . . . . . Σ(θch(im))
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where Σ(~θch(Ik), ~θch(Ij)) is the correlation matrix between the parameter vectors of the

k − th and j − th children of the I − th node.

As it was shown in [86], assuming equation 2.18 to hold, one can derive the following

relationships between parental and children nodes:

E[~θch(I)] = E[~θI ] (2.22)

Σ(~θI , ~θch(Ij)) = Σ(~θI) (2.23)

Σ(~θch(Ij), ~θch(Ik)) = Σ(~θI) (2.24)

Σ(~θch(Ik)) = Σ~θI + E~θI [Σ(~θIk|~θI)] (2.25)

According to Bayes theory and based on the existing conjugacy between the multino-

mial and generalized Dirichlet distribution, it can easily be shown that the variance

of each of the elements of the θi can be derived as:

var(θIj|~nI) = E[θIj]

(
fIj+nIj+1

fIj+nIj+gIj+
∑K+1
l=j+1 nIl

∏j−1
w=1

gIw+
∑j−1
y=w+1 nIy+1

fIw+nIw+gIw+
∑k+1
y=w+1 nIy

+

1− E[θIj]

)
(2.26)

and the covariance between k − th and j − th element of θI is derived as:

cov(θIk, θIj|~nI) = E[θIj]

(
fIk + nIk + 1

fIk + nIk + gIk +
∑K+1

l=k+1 nIl
k−1∏
w=1

gIw +
∑k−1

y=w+1 nIy + 1

fIw + nIw + gIw +
∑k+1

y=w+1 nIy
+ 1− E[θIk]

)
(2.27)

Having the above equations we derive the covariance matrix of θI as:

∑
~θI |~nI = diag

[
var(~θIj|~nI)

]
+ cov

[
(~θI |~nI)

]
(2.28)

where diag(var(~θIj|~nI)) is the diagonal matrix of the variances of the elements of ~θI

and cov(~θI |~nI) is the covariance matrix of ~θI . The last required equation to be derived
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analytically is the parent conditional expectation of the covariance matrix of the

parameter ~θI . In order to find an analytic equation for this parameter we must make

some simplifying assumptions which we will describe in the following relationships.

Analytically for the parent conditional expectation of variance we have:

E~θpa(i)
[var(θIj)|~θpa(I)] = E~θpa(I)

(
θpa(Ij) × [

fIj + 1

fIj + gIj

j−1∏
w=1

gIw + 1

fIw + gIw
+

1− θpa(Ij)]

)
(2.29)

and the parental conditional expectation of the covariance between k− th and j− th

element of ~θi is derived as:

E~θpa(I)
[cov(θIk, θIj|~θpa(I))] = E~θpa(i)

(
θpa(ij)(

fik + 1

fik + gik

k−1∏
w=1

giw + 1

fiw + giw
+

1− θpa(ik))

)
(2.30)

As it was shown the condition in equation 2.19 guarantees the preservation of the

hierarchical structure. However, as it is shown (See Appendix b) a linear relationship

between ~fI and ~θI results in the reduction of the generalized Dirichlet distribution to

the Dirichlet distribution. In order to retain the more general characters of Dirichlet

distribution we propose using other functional relationships between ~fI and ~θpa(I).

The nature of the chosen functions allows us to have more control over the reflection

of the parent nodes over their children, as an example by choosing a quadratic re-

lationship between ~fI and ~θpa(I) and considering the fact that the elements of ~θpa(I)

are fractions of one, we reduce the reflection character by choosing a quadratic form,

whilst on the other hand by choosing a square root relationship between ~fI and ~θpa(I)

we end up with a tighter relationship between the parent and the children nodes.

Further increase in the parent-children node relationship is theoretically possible by

increasing the order of the roots, however the increasing of the order likewise increases

the model complexity and its sensitivity. In this work we focus on the square root

relationship.
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One problem that arises with a nonlinear choice of parent and child nodes relationship

is that unlike the hierarchical Dirichlet distribution, it is not viable to find an exact

relationship for equations 2.29 and 2.30. We propose a simplifying assumption, that

is justifiable through experimental results. The proposition is as follows:

E[fIj(θpa(I))] ≈ fIj(E(θpa(I))) (2.31)

E[gIj] ≈
(1−

∑j
k=1[E[θpa(I)(k)]])

E[θpa(I)(j)]
E[fIj] (2.32)

The derived equations in this subsection provide us with the necessary means for com-

puting the LMMSE estimation for each of the nodes in the hierarchy. Unlike Dirichlet 

distribution, generalized Dirichlet distribution generated vectors that are not

exchangeable [90]. This lack of exchangeability character prohibits us from using any

further computation simplification as we did with the Dirichlet distribution. In order

to derive a proper estimation, we thus begin with proper ini-tialization of the

parameters. Next we update parameters estimates iteratively until a convergence

criterion is met. In the following section we will show the results of applying our model

on an image database.

2.2.1 Experimental results

In order to show the results of applying the method, we have performed a series of

experiments on a dataset designed for object classification. We have also performed

a success rate comparison with the other existing models in order to show the pros

and cons of the model.

best suited for the classification of mono

Analysis of the Classification Capability of the Hierarchical Generalized

Dirichlet Model

In order to make a fair comparison with the already existing models, a set of experi-

ments has been done on the hierarchical generalized Dirichlet model to analyze both
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its classification and categorization success rate in comparison with the hierarchical

Dirichlet and the Naive Bayes models. In the following experiments we assume a

square root relationship between the parent-children parameters, as explained previ-

ously. Like before we define the model success rate as the ratio between the total

number of the correctly classified images in all classes against the total number of

images. Figure 2-7 shows the recognition success rate of the model as a function of

the number of visual words. The same as it was shown for the hierarchical Dirichlet

Figure 2-7: Comparison of the recognition success rate ( In percent) of the hierarchi-
cal generalized Dirichlet model (Thick solid line) versus hierarchical Dirichlet model
(Thin solid line) and the Naive Bayes model (Dashed line) for different numbers of
visual words.

model in previous work [2], it is expected that the model shows the same consider-

able improvement by stepping higher in the hierarchy. Accordingly Figure 2-7 shows

the second tier categorization success rate of the model versus the number of visual

words. Table 2.2 shows the confusion matrix generated by optimal choice of system

parameters. The same as the case for the hierarchical Dirichlet model it can be seen
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that the existing errors are to a great extend contained within the boundaries of the

hierarchy. This feature, as was shown in figures 2-7, leads to improved categorization

rate of the model as we go upper inside the hierarchy. Same as it observed for the hi-

erarchcial Dirichler model, increasing the number of visual words beyond the optimal

point results in the model beginning to model clutter and noise and therefore. This

in return leads to the drop of the total accuracy of the model.

Table 2.2: Optimal confusion matrix for the hierarchical generalized Dirichlet model.

Class apple cow cup dog horse pear tomato

apple 54.9 2 15.7 4.3 2.6 4.3 26.3
cow 0 25.7 2.3 6.9 15.2 0.2 4.9
cup 4.3 1.7 61.4 8.6 2 1.4 7.7
dog 0.5 26 3.8 43.8 30.1 0.5 1.8
horse 0.5 34.3 5.2 39.8 38 0.2 4.6
pear 38.5 8 10.8 8.3 8.7 94.1 17
tomato 2 2 1.7 2.9 4.3 0 44.7

2.3 Hierarchical Beta-Liouville model

In the last two sections we developed two distinct hierarchical models based on the

Dirichlet and generalized Dirichlet assumption. It was depicted that the generalized

Dirichlet distribution in general offered better modeling capabilities in return for the

need for making the model computationally complex. In order to make a trade off

between the computational simplicity of the Dirichlet assumption and the efficiency of

the generalized Dirichlet, in the following work we used a third prior assumption from

the Liouville family of distributions that is the Beta-Liouville distribution. Having

adapted our model for the Beta-Liouville assumption, we shall compare the three

models to make a thorough analysis of the merits and drawbacks of each of the

models in comparison with the other ones.
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2.3.1 Beta-Liouville Distribution

We say that a vector ~θ = {θ1, ..., θD} follows a Liouville distribution with the param-

eters {α1, ..., αD} and density generator g(.) if the probability distribution function

follows the following:

p(~θ) = g(u)×
D∏
d=1

θαd−1
d

Γ(αd)
(2.33)

In the above equation u =
∑D

d=1 θd < 1 and θd > 0. The mean, variance and the

covariance of the vector are derived respectively as follows:

E(θd) = E(u)
αd∑D
d=1 αd

(2.34)

var(θd) = E(u)2 αd(αd + 1)

(
∑D

m=1 αd)(
∑D

m=1 αm + 1)
− E(θd)

2 α2
d

(
∑D

m=1 αm)2
(2.35)

Cov(θl, θk) =
αlαk∑D
d=1 αd

(
E(U2)∑D
d=1 αd + 1

− E(u)2∑D
d=1 αd

)
(2.36)

U is a random variable defined in the domain U [0, 1] and it follows a density function

f(.) that is related to the density generator function as follows:

g(u) =
Γ(
∑D

d=1 αd)

u
∑D
d=1 αd−1

f(u) (2.37)

As can be seen from equation 2.36, unlike Dirichlet distribution, the vectors are not

necessarily negatively correlated. Therefore, the Liouville family of priors could offer

a more realistic modeling in comparison to the Dirichlet distribution. One suitable

distribution for f(.) is the Beta distribution. Using Beta distribution with parameters

(α, β) leads to the following PDF:

p(~θ|~α, α, β) =
Γ
∑D

d=1 αd)Γ(α + β)

Γ(α)Γ(β)

D∏
d=1

θαd−1
d

Γ(αd)

(
D∑
d=1

θd

)α−
∑D
d=1 αd

(
1−

D∑
d=1

θd

)β−1

(2.38)
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In the above equation ~α = {α1, ..., αD} and it gives the pdf function of the BL

distribution.

For the Beta distribution with parameters (α, β), the mean and the second moment

are as follows:

E(U) =
α

α + β
(2.39)

E(U2) =
α + 1

α + β + 1
E(U) (2.40)

Combining the above with equation 2.36 derive the covariance matrix of the BL

distribution. One of the desirable characters of the BL distribution is its conjugacy

with the multinomial distribution. Therefore assuming that an observed vector ~n =

(n1, ..., nD, nD+1) follows a multinomial distribution, which parameters follow a BL

distribution with parameter space (~α, α, β). The conjugacy between the BL and

multinomial distribution leads to [16].

θ|~n ∼ BL(~α′, α′, β′) (2.41)

where ∼ BL indicates a vector generated by the multinomial Beta-Liouville distribu-

tion and in the above ~α′ = ~α+(n1, ..., nD), α′ = α+
∑d

d=1 nd and β′ = β+nD+1. The

above equations combined with equations 2.34, 2.35 and 2.36 leads to the derivation

of the first and second order statistics of the BL distribution that we will use in our

proposed model. Considering that C =
{
~C1, ..., ~CN

}
is the set of the count vec-

tors that must be classified. The model assumes that the vectors are generated by a

multinomial model with parameter space θI =
{
θI1, ..., θI(D+1)

}
as follows:

p(~Cn|~θI) ∝
(
∑D+1

d=1 Cnd)!∏K
d=1 Cn(D+1)!

D+1∏
d=1

(θId)
Cnd (2.42)

In above D + 1 indicates the number of the elements inside ~Cn and cnd indicates the

dth element of ~Cn.
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In order to maintain the hierarchical structure the following condition must be met:

E[~θI |~θpa(I)] = ~θpa(I) (2.43)

In above, θpa(I) indicates the generative parameter of the parent node of the I − th

node inside the hierarchy. Considering the above equations to hold, it was shown in

[86] that by using the linear minimum mean square error (LMMSE) estimator one

can find a general estimation of ~θI parameter as follows.

θi = E[θi] +M−1 ×


θ̂ch(i1) − E[θi]

θ̂ch(i2) − E[θi]

.

θ̂ch(im) − E[θi]

 (2.44)

where

M =

 Σ(θch(i1)) Σ(θch(i1)θch(i2)) . . . Σ(θch(i1), θch(im))

Σ(θch(i2), θch(i1)) Σ(θch(i2)) . . . Σ(θch(i2), θch(im))

.

.

. . . . . . .

.

.

.

Σ(θch(im)θch(i1)) . . . . . . Σ(θch(im))


In the above equation Σ(~θch(Ik), ~θch(Ij)) is the correlation matrix between the param-

eter vectors of the k − th and j − th children of the I − th node assuming that the

I − th node has m child nodes inside the hierarchy.

It was shown in [86] that provided that the condition in equation 2.43 are met,

the following simplifying relationships hold.

E[~θch(I)] = E[~θI ] (2.45)

Σ(~θI , ~θch(Ij)) = Σ(~θI) (2.46)

Σ(~θch(Ij), ~θch(Ik)) = Σ(~θI) (2.47)

Σ(~θch(Ik)) = Σ~θI + E~θI [Σ(~θch(Ik)|~θI)] (2.48)
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Hierarchical Beta-Liouville Model

In order to preserve the condition in equation 2.43, we propose that we use the

following parent-child relationship inside the hierarchy.

~θI ∼ BL(σ~θpa(I), ξσ

D∑
d=1

θpa(Id), ξσ(1−
D∑
d=1

θpa(Id)))

The proof of the preservation of the hierarchical structure considering equation

2.34 is as follows.

E[~θI |~θpa(I)] =
ξσ
∑D

d=1 θpa(Id)

ξσ
∑D

d=1 θpa(Id) + ξσ(1−
∑D

d=1 θpa(Id))
×

σ~θpa(I)

σ
∑D

d−1 θpa(Id)

= ~θpa(I)(2.49)

In the above equation ξ is a scalar value that defines the shape of the BL distribution.

It is noteworthy to mention that setting the value of ξ to unity reduces the BL

distribution to the Dirichlet distribution as described in [16].

The training data for each of the hierarchy nodes is assumed to be conjured into

a single meta count data of the form ~nI = (nI1, ..., nI(D+1) and NI =
∑D+1

d=1 nId

Considering the conjugacy between BL and multinomial distributions and with direct

replacement we have:

E[~θi| ~nI ] =
αI +

∑D
j=1 nj

αI + βI+I

~αI + ~nI∑D
d=1 αId +

∑D
d=1 nId

(2.50)

where the parameters of BL are taken from equation 2.49. The next step is the

derivation of the conditional covariance matrix of the hierarchical BL distribution. To

that end it is necessary to derive the second moment of the posterior Beta distribution

from equation 2.40. Assuming that
∑D

d=1 nId >> 1 by direct replacement we have:

E(U2
I |~nI) = (

αi +
∑D

j=1 nIj

αi + βi +NI

)2 (2.51)

Inserting the above equation in equation 2.36, while considering equation 2.50 and

simple algebraic simplifications give the following equation for the posterior covariance
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between the elements of vector θI :

Cov(θIl, θIk) ≈ E[θIl|~nI ]E[θIl|~nI ]×
−1

1 + σ
∑D

m=1 θpa(Im) +
∑D

m=1 nIm
(2.52)

The posterior variance of the elements of ~θI is likewise derived through inserting

equations 2.51 and 2.50 into equation 2.35 and certain algebraic simplifications:

var(θId| ~nI) = E[θId| ~nI ]2[1− E[θId| ~nI ]2

(αI +
∑D

d=1 nId)
2 ] (2.53)

The last two equations to be derived are the conditional expectation of the covariance

and variance of the children nodes of the I − th node. They’re derived as follows

accordingly:

E ~θI
[cov(θch(Il), θch(Ik))|~θI ] ≈

−1

1 + σ
∑D

d=1 θId
[θIlθIk] (2.54)

E ~θI
[var(θch(Il))|~θI ] ≈ θ2

Il[1−
θ2
Il

(σ
∑D θId)2

] (2.55)
d=1

For the above approximations to hold it is necessary that for each of the nodes we

have enough training data to satisfy the approximation condition. Through applying

equations and approximations 2.51 to 2.55 in 2.45 to 2.48 a, we derive an iterating

algorithm that estimates the value of ~θI for all the hierarchy nodes.

Inference Algorithm

The inference algorithm is described as follows:

1. Assuming unity value for the parameters of the topmost node, generate a ran-

dom initial vector for each of the nodes by Equation 2.49 Until a convergence

criterion is met.

2. Estimate the posterior mean of the parameters from equation 2.50

3. Estimate the posterior covariance matrix from equations 2.53 and 2.52
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4. Using the current estimation of ~θI to extract the value of equation 2.54

5. Use equation 2.44 to extract the updated value of θ~I for all nodes.

In this work the algorithm converges when the change in the estimated posterior

mean remains below a threshold.

2.3.2 Experimental Results

In this section we compare our model with three other count data models. The Naive

Bayes model [27] as the basis of count data modeling, the hierarchical Dirichlet model

[2] and the hierarchical generalized Dirichlet model [2].

Analysis and Comparison of the Classification and Categorization Success

Rate of the Model

We compared the classification success rate of our model in different tiers with the

Naive Bayes [27], hierarchical Dirichlet [2] and hierarchical generalized Dirichlet mod-

els [3]. Figure 2-8 compares the model first tier classification success rate. As it can

be seen from the figure 2-8.

Figure 2-8: Comparison of the recognition success rate of the different models. The
error bars are set at 90% standard deviation of the relative graphs.
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Figure 2-9: Comparison of the second tier recognition success rate of the different
models. The error bars are set at 90% standard deviation of the relative graphs.

Figure 2-9 shows the second tier classification success rate of the different models.

As it can be seen from the figure again the model shows superiority in comparison with

Naive Bayes model and is in relative parity with hierarchical Dirichlet. Hierarchical

generalized Dirichlet model on the other hand appears to outperform in upper tier

classification. we suggest that this is mainly attributed to the fact that the generalized

Dirichlet assumption offers a more versatile covariance matrix in comparison to the BL

assumption. It must noted that the hierarchical generalized Dirichlet model requires

solving the nonlinear square root equation as mentioned in [2] and its more sensitive

due to twice the number of estimated parameters.

The confusion matrix table of our model is given in table 2.3. As it can be seen

from this table, the hierarchical assumption has led to the classification error to be

confined in the sibling nodes.
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Table 2.3: Optimal confusion matrix for the hierarchical Beta-Liouville model.

Class apple cow cup dog horse pear tomato

apple 49.1 0.8 15.6 3.4 2.3 6.6 16.7
cow 0 21.3 7.2 5.4 15.8 0 3.1
cup 6 0 52 3.7 0 1.7 1.1
dog 0 24.2 3.4 34.9 17.9 1.1 3.7
horse 0.5 50 9.5 48.8 58.9 0.5 12.4
pear 35 2.8 9.6 2.3 3.4 89.5 15
tomato 9 0.2 2.6 1.1 1.4 0.2 47

43



44



Chapter 3

Semisupervised Learning

Hierarchical Structures

In the previous chapter we showed the merits of using hierarchical structures for

improving the classification efficiency. The main problem with the proposed method

was its requirement for the hierarchical structure to be known in advance. Even

though for small datasets the assumption poses little problem, it is a restraining factor

when dealing with huge datasets with numerous branches and layers. This constrain

led us to devising the development of hierarchical models capable of stemming the

hierarchy from primary crude guesses. The outcome of our work resulted in three

distinct semisupervised learning hierarchy models based on the Dirichlet, Generalized

Dirichlet and Beta-Liouville prior assumptions.

One of the main challenges in hierarchical object classification is the derivation

of the correct hierarchical structure. The classic way around the problem is assum-

ing prior knowledge about the hierarchical structure itself. Two major drawbacks

result from the former assumption. Firstly it has been shown that the hierarchies

tend to reduce the differences between adjacent nodes. It has been observed that

this trait of hierarchical models results in a less accurate classification. Secondly the

mere assumption of prior knowledge about the form of the hierarchy requires an ex-

tra amount of information about the dataset that in many real world scenarios may

not be available. In this chapter we address the mentioned problems by introducing
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online learning of hierarchical models. Our models start from a crude guess of the

hierarchy and proceed to figure out the detailed version progressively. We show the

merits of the proposed work via extensive simulations and experiments on a real ob-

jects database. The basic hierarchical model that we have used for developing our

hierarchical semisupervised online learning approach. The model was originally pro-

posed as a special case of the Dirichlet prior used in [86].

3.1 The Model

Looking back at Table 2.3 gives us an overview of the problem that needs to be

dealt with. If one looks, for example, at the row showing the attributions to the

class “horse” one observes that the class has a tendency to absorb a great portion

of the objects which have visual similarity to it. We call it an absorbing class. The

original model uses maximum likelihood (ML) method for classification. Therefore,

it is logical to assume that the absorbing node tends to have the higher likelihood in

comparison to the neighboring nodes. In order to improve the classification process, it

is necessary that one finds a way for penalizing the absorbing ML. To achieve this end

we proceed with defining a saliency factor for each node. One factor to be considered

as a relatively reliable saliency factor is that similar objects in general give somehow

the same number of visual words. The number of features extracted from an object

follows a natural process, therefore it is expectable to assume that it can be modeled

by normal distribution. The histogram of the number of features in each category is

shown in figure 3-1. As the first step we redefine the likelihood of the count vector

~Cn to represent the I − th class as follows:

p(~Cn|~θI ,Θ(I)) ∝ (
∑D+1

d=1 Cnd)!∏D+1
d=1 Cn(d)!

D+1∏
d=1

(θId)
Cnd × p((

D+1∑
d=1

(~Cn)|Θ(I))) (3.1)

In above Θ(I) represents the statistical characteristics of the I − th class. Therefore,

assuming normal distribution for the number of feature occurrences in the I − th
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Figure 3-1: Histogram of the number of features present in each experimented class.

class, Θ(I) would be defined by the mean and the variance of the class histogram. It

should be noted that Θ(I) is independent of ~θI and therefore acts solely as a weighing

factor, penalizing deviations from the established characters of the class.

There is yet another factor that needs to be considered for improving the model. As

it was discussed in the previous section, in the original model we encounter dominant

classes that tend to bias the classification process towards themselves. Mathemat-

ically the bias happens because ~θI of the dominant class, offers a broad histogram

of likelihood with comparably long tails. Therefore, theoretically there are always

dominant classes present inside the model in the form of those classes which have

stronger spreads on the log-likelihood spectrum. The model therefore finds out the

hierarchical structure most efficiently when there is a strong similarity between the

sibling classes and strong dissimilarity between the non related classes. In figure 3-

2 we show the log-likelihood of the dominant classes in our experiments to further

elaborate this fact.
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Unlike the previous case, however, as it can be seen in figure 3-2, the log likelihood

Figure 3-2: Log liklihood of the count data for the dominant classes.

of the count data does not clearly follow a Bell shaped Gaussian distribution and

therefore it is analytically difficult to find a fitting function that covers all different

shapes of the different log likelihoods. However, through observing the log likelihood

of the dominant classes an effective boundary can be assumed where the majority

of the likelihood instances occur. In our experiments we have observed that where

normal fitting is possible the best results appear when the boundary is assumed to

be one standard deviation from the mean of the training data likelihood. In theory

the model accuracy suffers where the normal fitting fails to properly model the log

likelihood. Still experiments show that the assumption is reliable in the majority

of circumstances. By assigning this boundary on the dominant class, we devise an

extra layer of protection against misplaced classification. As follows a new object

is solely assigned to the dominant class when its likelihood falls in the acceptable

boundary. If it doesn’t, even if it shows a higher likelihood than other classes in the
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same branch, it is rejected as an object belonging to the dominant class and the next

highest likelihood is chosen as the assigned class.

Learning Hierarchical Structure

The presence of the dominant classes provides us with yet one more assumption

easement. So far the hierarchical models proposed based on [86] have assumed a

known hierarchical structure a priori. As an example the visual hierarchy used in [2]

is brought in figure 3-3. In this work, however, we propose a learning hierarchical

Figure 3-3: An example of hierarchical object classification.

structure based on the presence of dominant classes.We call our model semisupervised

online learning of hierarchal structures (SOLHS). SOLHS starts from a crude sketch of

the hierarchy, where only the dominant classes are placed in their relative positions

inside the hierarchy. To derive the dominant classes we turn to the naive Bayes
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classification over the training set. The dominant classes tend to give high likelihood

not only to themselves but also to their sibling nodes, therefore they absorb the

sibling entries in the confusion matrix. Theoretically there are always dominant

classes, however the stronger the dominance of the class over its sibling classes gets

the stronger the model efficiency in properly categorizing the data becomes. Here we

need to define the difference between classification and categorization in our context.

We define classification as the ability of the model to correctly identify different classes

while we define categorization as the model ability to identify the concept the class

belongs to. As an example a strong classifier can strongly tell the difference between

a horse and a cow, while a strong categorizer can strongly depict that a horse or a cow

belong to the animal class. As we described in this section the likelihood of the classes

typically falls within a derivable boundary. Assuming that a new class appears which

likelihood does not fall in the acceptable boundary of any of the dominant classes;

SOLHS will decide that a new class of objects has been introduced. However, it is

expectable to assume that the new class will have likelihood boundaries near to that

of one of the dominant classes. In this step SOLHS compares the likelihood of the

object with different dominant classes and decides where exactly the new branch of the

hierarchy the new class must be placed. In this work, the assumption is that the new

objects arrive in unlabeled classes. Totally random data arrival requires count data

clustering as mentioned in the following works [66, 65]. SOLHS waits until enough new

objects have arrived to form an appropriate training set. In the next step it assumes

a new branch added to the hierarchy and it recalculates the model parameters [2, 3, 4]

while including the new class. The process continues in the presence of coming data.

Every time SOLHS decides that a new class has to be formed it adds the appropriate

branch and recalculates the parameters accordingly. The following steps define the

semisupervised online learning of the hierarchical structure phase:

1. From the training dataset extract the dominant classes.

2. From the training dataset extract the saliency and log likelihood of the dominant

classes.
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3. For each new entry find the nearest dominant class based on the maximum

likelihood.

4. If the new entry does not fit within the salient boundaries of the dominant class

flag the entry as belonging to an unidentified sibling node of the dominant class

and repeat the process.

5. Once enough entries for the unidentified nodes is collected, re-estimate the

model parameters with the inclusion of the unidentified nodes.

For the classification part we follow the following steps:

1. Use the ML estimation and if the ML remains within the salient boundaries of

the dominant node with the highest ML select the dominant node as the class.

2. If the saliency fails enter the learning mode and perform the learning algorithm

step 3-5.

Different Considered Priors

In this work, we analyzed three different prior distributions to be used for our model.

The three distributions are: Dirichlet distribution, generalized Dirichlet distribution

and Beta-Liouville distribution. By appropriate considerations, the three distribu-

tions satisfy the conditions in 2.43. Also the three distributions are known to be

conjugate priors to the multinomial distribution, which is the second necessary con-

dition for creating the hierarchical structure of [86].

A random vector ~θi follows a Dirichlet distribution with parameter vector ~αi =

(αi1, . . . , αi(D+1)) over the hyper plane
∑D+1

k=1 θik = 1, if its joint probability density

function (PDF) is defined as follows [67]:

p(~θi|~αi) =

∏D+1
k=1 Γ(αik)

Γ(
∑D+1

k=1 αik)

D+1∏
k=1

θ
(αik−1)
ik (3.2)

where Γ is the Gamma function. Dirichlet distribution satisfies condition 2.43 uncon-

ditionally. Assuming ~ni = (ni1, . . . , ni(D+1)) to be the observed vector, the conjugacy
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with the multinomial distribution is derived as follows:

p(~θi|~ni) ∝ D(αi1 + ni1, . . . , αi(D+1) + ni(D+1)) (3.3)

Defining ~α
′
i = ~αi + ~ni, we obtain [39]:

E(~θi|~ni) =
~α
′
i∣∣~α′i∣∣ (3.4)

The second distribution that we use in our model is the generalized Dirichlet distribu-

tion. Following the same terminology used for Dirichlet distribution a random vector

~θi defined over the hyper plane
∑D

k=1 θik < 1 is said to follow a generalized Dirichlet

distribution with parameter space ~ξi = (αi1, . . . , αiD, βi1, . . . , βiD), if its joint PDF is

as follows:

p(~θi|~ξi) =
D∏
k=1

Γ(αik + βik)

Γ(αik)Γ(βik)
θαik−1
ik (1−

k∑
j=1

θij)
γik (3.5)

Generalized Dirichlet distribution is also a conjugate prior to multinomial distribution

and for ~θi|~ni ∝ GD(α
′
i1, . . . , α

′
iD, β

′
i1, . . . , β

′
iD) , where:

α
′

ik = αik + nik (3.6)

β
′

ik = βik +
D+1∑
l=k+1

nil (3.7)

and therefore we have [24]:

E(θik|~ni) =
α
′

ik

α
′
ik + β

′
ik

k−1∏
j=1

β
′
ij

α
′
ij + β

′
ij

(3.8)

The following derivations provide the necessary conditions for maintaining the hier-

archy:

~θi ∼

 GD(η, . . . , η, ζ, . . . , ζ) if i is the first node

GD((f(~θpa(i)), g(~θpa(i)))) otherwise
(3.9)
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where ~θpa(i) indicates the parent of the i − th node. The functions f(~θpa(i)) and

g(~θpa(i)) depend on the parent node and must be determined in the way that the

condition in Eq. 2.43 holds. By defining ~fi and ~gi functions as ~fi = {fi1, . . . , fiD}

and ~gi = {gi1, . . . , giD}, it was shown in [3] that the following condition preserves the

hierarchical structure:

gi(k) =
(1−

∑k
l=1 θpa(i)(l))

θpa(i)(k)
fi(k) (3.10)

It was shown in [3] that by choosing a linear relationship between ~fI and ~θpa(I) the

hierarchical generalized Dirichlet model is reduced to a simple hierarchical Dirichlet

model. It was thus suggested that a nonlinear relationship between ~fI and ~θpa(I)

should be considered. Based on that assumption a square relationship between the

parameters is considered as follows:

fi(k) ∝ (θpa(i)(k))2 (3.11)

The reason behind the quadratic choice of dependency is that the choice allows a

stricter relationship between θpa(i) and θi The last prior that we consider for our

model is the Beta-Liouville distribution. A random vector ~θi defined over the hyper

plane
∑D

k=1 θik < 1 is said to follow a Beta-Liouville distribution with parameter

space ({α1, . . . , αD} , α, β), if its joint PDF is as follows:

p(~θi|~α, α, β) =
Γ
∑D

d=1 αd)Γ(α + β)

Γ(α)Γ(β)

D∏
d=1

θαd−1
id

Γ(αd)

(
D∑
d=1

θid

)α−
∑D
d=1 αd

(
1−

D∑
d=1

θid

)β−1

(3.12)

The condition for preserving the hierarchical structure with Beta-Liouville assumption

was derived in [4] and is as follows:

~θi ∼ BL(σ~θpa(i), ξσ

D∑
d=1

θpa(id), ξσ(1−
D∑
d=1

θpa(id)))
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Beta-Liouville distribution is also a conjugate prior of the multinomial distribution

and we have:

θ|(~ni, ~α, α, β) ∼ BL(~α′, α′, β′) (3.13)

where ∼ BL indicates a vector generated by the Beta-Liouville distribution and in

the above ~α′ = ~α + (ni1, . . . , niD), α′ = α +
∑D

d=1 nid and β′ = β + niD+1. And we

therefore have [48]:

E[~θi|~ni] =
α +

∑D
j=1 nij

α + β + |~ni|
~αi + ~ni∑D

d=1 αd +
∑D

d=1 nid
(3.14)

In the next section we show the results of applying SOLHS with three different prior

assumptions and we compare its performances against the previously derived models.

3.2 Experimental Results

Image Dataset

To maintain consistency with previous works [2, 3, 4], we have chosen the ETH-80

dataset [51] for our experiments. The dataset is optimized for object classification

purposes. It contains views and segmentation masks of 80 objects, each one pho-

tographed in more than 40 different poses. In total it contains more than 3000

images. There are 8 object classes, from which we choose 7 categories to validate

our work. The choice of classes is based on visual similarities. In general 6 of them

can be classified in 2 unique categories: fruits and animals. It was shown in previous

works that the visual similarities between the chosen classes contribute much to the

efficiency of the hierarchical classification. Approximately 20 percent of the image

database is randomly chosen as the training set, whilst the remaining images form

the test dataset.
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Feature Extraction and Visual Words Generation

We use scale invariant feature transform (SIFT) descriptors [53] to represent our ob-

jects. The high dimensionality of the SIFT descriptors and its comparably robustness

towards changes in scaling, illumination, occlusion, etc, compared with other feature

descriptors, have been shown to result in better classification results [55]. To gener-

ate the visual vocabulary, we extract SIFT descriptors over the entire dataset. Each

SIFT descriptor has a dimension of 128 as described in [53]. In the next step the K-

Means algorithm [39] is used to extract the centroides and then construct the visual

vocabulary that we shall use.

Hierarchical Model Generation

In previous works the optimal hierarchical structure for the dataset was shown to

be the one displayed in figure 2-2. In SOLHS, however, our assumption is that only

a crude structure of the hierarchy in figure 2-2 is known and the model proceeds

with learning the rest of the structure as described in the previous section. The

class “cup” acts as a misplaced class to show the effect of class misplacement in the

system accuracy. We analyze and compare the strengths and the weaknesses of the

model in classification and categorization in comparison with static models proposed

in previous works. It will be shown in the following subsection that the current

model offers a more efficient classification rate in expense of slightly decreasing the

categorization efficiency in comparison with the static hierarchical models.

Analysis of the Recognition Capability of the Model

For recognition purposes the lowest branches of the hierarchy that show the individual

object classes are analyzed. The main factor that affects the accuracy of the model

is the number of chosen visual words. Each of the distributions has its own parent-

children parameters that are extensively analyzed in previous works. In order to

maintain the consistency we proceed with comparing the optimum results for each

model against each other. The model recognition success rate is defined as the ratio
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between the total number of correctly classified images in all classes against the total

number of images. Figure 3-4 compares the recognition success rates of the different

models as a function of the number of visual words. As it can be seen from this figure

SOLHS for all distributions show better classification accuracy in comparison with

its static counterpart. This is mostly due to the fact that through applying the online

learning algorithm we have created a deeper distance between the sibling nodes and

therefore we have improved the classification accuracy.

Figure 3-4: Comparison of the recognition success rates of SOLHS against the static
models for different prior assumptions. The error bars are set at 90% standard devi-
ation of the relative graphs.

Figure 3-5 shows the second tier categorization accuracy of SOLHS in comparison

with the static hierarchical models. As it can be seen from this figure SOLHS in

general acts less accurately when dealing with categorization task. The main reason

behind the degradation of the categorization accuracy is due to the fact that the

model starts from a crude understanding of the hierarchical structure. The static

hierarchical models have the advantage of knowing in advance the parameters for the
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entire nodes inside the hierarchy. On the other hand the learning model is prone

to placement errors while it learns the correct structure. Since we assume that an

object is classified mistakenly once will not be classified again we thus end up with

higher misplacement errors in comparison to static models. This is further visualized

by looking at the relative confusion matrices in tables 3.1, 3.2 and 3.3. As it can

Figure 3-5: Comparison of the categorization success rates of the SOLHS against the
static models for different prior assumptions. The error bars are set at 90% standard
deviation of the relative graphs.

be seen from tables 3.1, 3.2 and 3.3 SOLHS progressively improves its performance

through learning the hierarchical structure.

3.3 Conclusion

In this chapter we proposed a new adaptable general learning hierarchical model

(SOLHS) dedicated to count data. As it was shown in the experimental results,

SOLHS allows substantial improvement in hierarchical classification accuracy as com-
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Table 3.1: Optimal confusion matrix of SOLHS when considering the online hierar-
chical generalized Dirichlet model.

Class cup horse pear dog cow tomato apple

cup 231 13 8 7 1 33 37
horse 40 248 11 90 111 150 42
pear 71 81 323 9 11 41 61
dog 0 0 0 195 0 0 0
cow 0 0 0 0 223 0 0
tomato 0 0 0 0 0 98 0
apple 0 0 0 0 0 0 285

Table 3.2: Optimal confusion matrix of SOLHS when considering the online hierar-
chical Dirichlet model.

Class cup horse pear dog cow tomato apple

cup 243 27 6 72 21 82 44
horse 23 232 0 0 0 58 1
pear 76 83 336 56 67 0 0
dog 0 0 0 173 0 0 0
cow 0 0 0 0 258 0 0
tomato 0 0 0 0 0 182 0
apple 0 0 0 0 0 0 297

Table 3.3: Optimal confusion matrix of SOLHS when considering the online Beta-
Liouville model.

Class cup horse pear dog cow tomato apple

cup 145 6 11 3 4 30 51
horse 123 303 12 91 110 129 13
pear 74 33 319 30 29 39 68
dog 0 0 0 177 0 0 0
cow 0 0 0 0 203 0 0
tomato 0 0 0 0 0 124 0
apple 0 0 0 0 0 0 210

pared to other models that we have described. The improvement is achieved through

applying several saliency factors in SOLHS. In addition to that the learning algorithm

proposed in SOLHS allows it to expand beyond the previously predefined hierarchi-

cal structures. SOLHS improves efficiency while dealing with unknown classes and as

observed in the experiments succeeds in deciding the location of the new class within

the hierarchy quite efficiently. SOLHS achieves this in return for a slight expense in
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its categorization capability. Therefore, an interesting idea for further work on this

model could be the design of learning models that reduce the misplacement of the

data in the early learning phases.
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Chapter 4

Variational Bayes Models for

Count Data Classification

In this chapter we describe our contribution to multi-topic models. The models

described in the previous chapters, though efficient in nature, dealt with single topic

objects. While dealing with real life data most of the times it is necessary to be able

to deal with data generated from multiple topics. As discussed in the introduction

LDA model is known to be an efficient multi-topic generative model. However like

other models based on the Dirichlet assumption the LDA model suffers from the

Dirichlet assumption deficiencies. In this chapter in the beginning we introduce our

adaptation of the LDA model using the generalized Dirichlet distribution as the model

prior. We call this model Latent generalized Dirichlet allocation (LGDA). Afterwards

we make a thorough comparison between the two models and show the merits and

the drawbacks of our model in comparison to LDA. In order to extend the application

framework we introduce natural scene classification and text classification applications

to our framework as well. In the second section of this chapter we shall introduce our

second multi-topic model based on the LDA model with the Beta-Liouville assumption

instead. We call the second model latent Beta-Liouville allocation (LBLA) and we

proceed with applying the model on different applications.
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4.1 Latent generalized Dirichlet allocation

Count data appear in many domains (e.g. data mining, computer vision, machine

learning, pattern recognition, bioinformatics, etc.) and applications. Examples in-

clude textual documents and images modeling and classification where each document

or image can be represented by a vector of frequencies of words [70] or visual words

[27], respectively. The extraction of knowledge hidden in count data is a crucial prob-

lem which has been the topic of extensive research in the past. The naive Bayes as-

sumption, through the consideration of the multinomial distribution, was extensively

used for count data modeling [70]. However, serious deficiencies were observed with

the application of the multinomial distribution as thoroughly discussed in [54, 19].

The most widely used solution to overcome these deficiencies is the consideration of

the Dirichlet distribution as a conjugate prior to the multinomial which generally of-

fers better flexibility, generalization and modeling capabilities [54, 19]. Despite many

favorable features, it has been pointed out that the Dirichlet distribution has some

shortcomings, also. The main disadvantages of the Dirichlet distribution are its very

restrictive negative covariance matrix and the fact that the elements with similar

mean values must have absolutely the same variance which is not always the case in

real-life applications [58]. To overcome those deficiencies, research has been focused

on providing a transition from the Dirichlet assumption to better modeling assump-

tions [15]. The context of this chapter is majorly about this transition as well, where

the ultimate goal is to have more accurate data modeling.

One of the immediate applications of proper data modeling is classification. It covers

a vast extend of problems such as placement of textual data into appropriate library

entries or classifying objects into their relevant categories. In this context, one of

the most challenging tasks is the classification of natural scenes without going deep

inside their semantics. The challenge behind the former is that natural scenes are

generally composed of a huge number of minute objects. The presence of this ever

occurring objects makes it extremely complicated to develop useful classifiers based

on the semantics alone. After all one would expect to see roads, trees, sun and the
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sky recurring in scenes both taken inside the city or in the suburb. The need to con-

sider the presence of recurring data singletons, whether words, visual words or visual

objects, led to the so-called topic based models. Latent semantic indexing (LSI) [28]

is the first successful model proposed to extract recurring topics from data. It was

proposed for textual documents modeling using mainly singular value decomposition

(SVD). A generative successful extension of LSI called probabilistic latent semantic

indexing (PLSI) was proposed in [42]. However, PLSI is only generative at the words

layer and does not provide a probabilistic model at the level of documents. Therefore,

two major problems arise with PLSI. Firstly, the number of parameters increases with

the number of documents. Secondly, it is not clear how one can learn a document

outside of the training phase. To overcome these shortcomings, the authors in [12]

proposed the LDA model which has so far proven to be a reliable and versatile ap-

proach for data modeling. LDA has received a particular attention in the literature

and several applications (e.g. natural scene classification [31]) and extensions have

been proposed. Examples of extensions include the hierarchical version of LDA [11],

used for instance in [79] for hierarchical object classification, and the online version

proposed in [41]. Of course, these extension efforts are useful for several real-life ap-

plications and scenarios, but have ignored an important aspect of LDA namely the

fact that it considers the Dirichlet distribution, and then its drawbacks, for generating

latent topics.

Recently, it has been shown that generalized Dirichlet distribution is a good alter-

native to the Dirichlet when using finite mixture models for count data clustering

[58]. Like the Dirichlet, the generalized Dirichlet distribution is a conjugate prior to

the multinomial distribution which is crucial property in the LDA model. Moreover,

the generalized Dirichlet has a more versatile covariance matrix and also it lifts the

variance limitations facing Dirichlet vectors [58]. The goal of this work is to propose

an extension of LDA based on the generalized Dirichlet distribution. Previously other

researchers tried to develop latent topic models based on the conjugate priors other

than Dirichlet [22]. Their model however is based on Gibbs sampling and Markov

chain Monte Carlo (MCMC) method [23, 69]. The advantage of the MCMC method
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is its relative ease of derivation. However it has been shown that sampling meth-

ods require much more computation time than the deterministic methods such as the

variational Bayes. Therefore where it is possible to derive an analytic form, the deter-

ministic models are more preferable. In this section we shall thus derive the extension

to the LDA model using the generalized Dirichlet assumption using the variational

Bayes method. To maintain consistency with the LDA model we call our model,

latent generalized Dirichlet allocation (LGDA). We shall develop a variational Bayes

estimation approach inspired from the one proposed in [12], yet with the generalized

Dirichlet assumption. The Dirichlet distribution is a special case of the generalized

Dirichlet distribution [24, 18], therefore it is expectable that the LGDA will provide

good modeling capabilities. In the experimental results we shall elaborate the con-

junctions between the two models further. We shall compare the two models via two

challenging applications namely text and natural scene classification.

4.1.1 The Model

Like LDA, LGDA is a fully generative probabilistic model over a corpus. A corpus in

our case is a collection ofM documents (or images) denoted by D = {w1,w2, . . . ,wM}.

Each document wm is a sequence of Nm words wm = (wm1, . . . , wmNm). In what fol-

lows, for sheer convenience, we drop the index m wherever we are not referring to a

specific document. The word wn is a binary vector drawn from a vocabulary of V

words, so that wjn = 1 if the j − th word is chosen and zero otherwise. The model

proceeds with generating every single word (or visual word) of the document (or the

image) through the following steps:

1. Choose N ∝ Poisson(ζ).

2. Choose (θ1, . . . , θd) ∝ GenDir(~ξ).

3. For each of the N words wn:

(a) choose a topic zn ∝Multinomial(~θ).

(b) Choose a word wn from p(wn|zn, βw).
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In above zn is a d + 1 dimensional binary vector of topics defined so that zin = 1

if the i− th topic is chosen and zero otherwise. We define, ~θ = (θ1, . . . , θd+1), where

θd+1 = 1 −
∑d

i=1 θi. A chosen topic is attributed to a multinomial prior βw over

the vocabulary of the words so that βw(ij) = p(wj = 1|zi = 1), from which every

word is randomly drawn. p(wn|zn, βw) is a multinomial probability conditioned on

zn and GenDir(~ξ) is a d-variate generalized Dirichlet distribution with parameters

~ξ = (α1, β1, . . . , αd, βd) and probablity distribution function p:

p(θ1, . . . , θd|~ξ) =
d∏
i=1

Γ(αi + βi)

Γ(αi)Γ(βi)
θαi−1
i (1−

i∑
j=1

θj)
γi (4.1)

where γi = βi−αi+1−βi+1. It is straightforward to show that when βi = α(i+1)+β(i+1),

the generalized Dirichlet distribution is reduced to Dirichlet distribution [18]. With

the above parameters, the mean and the variance matrix of the generalized Dirichlet

elements are as follows [18]:

E(θi) =
αi

αi + βi

i−1∏
k=1

βk
αk + βk

(4.2)

V ar(θi) = E(θi)

(
αi + 1

αi + βi + 1

i−1∏
k=1

βk + 1

αk + βk
+ 1− E(θi)

)
(4.3)

and the covariance between θi and θj is given by:

Cov(θi, θj) = E(θj)×
(

αi
αi + βi + 1

i−1∏
k=1

βk + 1

αk + βk
+ 1− E(θi)

)
(4.4)

It can be seen from equation 4.4, that the covariance matrix of the generalized Dirich-

let distribution is more general than the covariance matrix of the Dirichlet distribution

and unlike Dirichlet distribution it is possible for two elements inside the random vec-

tor to be positively correlated. Also unlike Dirichlet two elements with the same mean

value can have different variances. Generalized Dirichlet distribution, like the Dirich-
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let distribution, belongs to the exponential family of distributions (see Appendix A.5).

This means that the generalized Dirichlet distribution has a conjugate prior that can

be developed in a formal way, which is an important property that we shall use in the

following for the learning of our model. It turns out also that generalized Dirichlet like

Dirichlet is the conjugate prior of the multinomial distribution. This implies that if ~θ

follows a generalized Dirichlet distribution with parameters ~ξ and ~N = (n1, . . . , nd+1),

follows a multinomial with parameter ~θ, then the posterior distribution p(~θ|, ~ξ, ~N) also

follows a generalized Dirichlet distribution with parameters ξ
′

given as follows [58]:

α
′

i = αi + ni (4.5)

β
′

i = βi +
d+1∑
l=i+1

nl (4.6)

Having our generalized Dirichlet prior in hand, we proceed with defining the (d+1)×V

word-topic probability matrix βw which element βwij = p(wj = 1|zi = 1) shows the

probability of drawing the j − th word given that the i − th latent topic is chosen.

Like the LDA case, we proceed with assuming a non-generated βw matrix, but we

will show that this assumption does not have a serious impact and it can be revoked

without bringing harm to the entire model. By assuming conditional independence

of the variables, the same as LDA, one can deduce the following joint distribution:

p(~θ, z,w|~ξ, βw) = p(~θ|~ξ)p(w|z, βw)p(z|~θ) (4.7)

where z is the set of latent topics. Integrating over the ~θ parameters and the topic

space gives

p(w|~ξ, βw) =
d∏
i=1

Γ(αi + βi)

Γ(αi)Γ(βi)

∫
θαi−1
i (1−

i∑
j=1

θj)
γi

×
N∏
n=1

d+1∏
i=1

V∏
j=1

(θiβwij)
wjnd~θ (4.8)

66



Figure 4-1: Graphical representation of LGDA model. The shaded circles show ob-
served nodes. The blank circles are the hidden nodes. From outside to inside is the
corpus space, the document space and the word space.

In the previous equation, ~ξ and βw are the corpus level parameters that are selected

once per each document in the corpus. ~θ is the document level parameter and is

chosen once per document. z and w are word level parameters and are chosen once

per every word inside each document. Thus, we can obtain the probability of the

corpus as follows:

p(D|~ξ, βw) =
M∏
m=1

p(wm|~ξ, βw) (4.9)

LGDA has basically the same probabilistic graphical model as LDA as it is shown in

figure 4-1.

4.1.2 LGDA Inference

The main inference problem of LGDA is estimating the posterior of the hidden vari-

ables, ~θ and z:

p(~θ, z|w, ~ξ, βw) =
p(~θ, z,w|~ξ, βw)

p(w|~ξ, βw)
(4.10)

The above equation is known to be intractable. As proposed in [12], an efficient way to

estimate the parameters in this intractable posterior is to use variational Bayes (VB)

inference. VB inference offers a solution to the intractability problem by determining
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a lower bound on the log likelihood of the observed data which is mainly based on

considering a set of variational distributions on the hidden variables [46]:

q(~θ, z|w, ~ξq,Φw) = q(~θ|~ξq)
N∏
n=1

q(zn|φn) (4.11)

In the above q(~θ|~ξq) can be viewed as a variational generalized Dirichlet distribu-

tion, calculated once per document, q(zn|φn) is a multinomial distribution with pa-

rameter φn extracted once for every single word inside the document, and Φw =

{φ1, φ2, . . . , φN}. Using Jensen’s inequality [46] one can derive the following:

log p(w|~ξ, βw) ≥ Eq[log p(~θ, z,w|~ξ, βw)]− Eq[log q(~θ, z)] (4.12)

Assigning L(~ξq,Φw; ~ξ, βw) to the right-hand side of the above equation it can be shown

that the difference between the left-hand side and the right-hand side of the equation

is the KL divergence between the variational posterior probability and the actual

posterior probability, thus we have:

log p(w|~ξ, βw) = L(~ξq,Φw; ~ξ, βw) +KL
(
q(~θ, z|~ξq,Φw||p(~θ, z)|w, ~ξ, βw)

)
(4.13)

The left hand side of the above equation is constant in relation to variational parame-

ters, therefore to minimize the KL divergence on the right-hand side one can proceed

with maximizing L(~ξq,Φw; ~ξ, βw). Up to here the formulation basically follows the

LDA model. The divergence of the models begins when we proceed with assigning

the generalized Dirichlet distribution as the parameter generator instead of the LDA

Dirichlet assumption. In appendix A.6 we bring the breakdown of L(~ξq,Φw; ~ξ, βw).

Using variational inference to maximize the lower bound L(~ξq,Φw; ~ξ, βw) with respect

to φnl, we derive the following updating equations for the variational multinomial (see
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Appendix A.6)

φnl = βlve
(λn−1)e(Ψ(γl)−Ψ(γl+δl)) (4.14)

φn(d+1) = β(d+1)ve
(λn−1)e(Ψ(δd)−Ψ(γd+δd)) (4.15)

whereΨ is the digamma function, βlv = p(wv = 1|zl = 1) and the weighing constant

eλn−1 is given by:

eλn−1 =
1∑d

l=1 βlve
(Ψ(γl)−Ψ(γl+δl)) + β(d+1)ve(Ψ(δd)−Ψ(γd+δd))

(4.16)

Maximizing the lower bound L with respect to the variational generalized Dirichlet

parameter gives the following updating equations (see Appendix A.6):

γl = αl +
N∑
n=1

φnl, (4.17)

δl = βl +
N∑
n=1

d+1∑
ll=l+1

φn(ll). (4.18)

Comparing the above equations with equations 4.5 and 4.27 shows that the variational

generalized Dirichlet for each document acts as a posterior in the presence of the

variational multinomial parameters. The same conclusion was observed in [12] for the

LDA case. This is a direct result of the conjugacy between the generalized Dirichlet

and the multinomial distribution.

4.1.3 Parameter Estimation

The goal of this subsection is to find the model’s parameters estimates based on the

variational parameters derived in the last subsection. One needs to consider that

the LGDA parameters are corpus parameters and therefore they are estimated by

considering all M documents inside the corpus. In the following, we denote L =∑M
m=1 Lm as the lower bound corresponding to all the corpus, where Lm is the lower

bound corresponding to each document m.
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Maximizing the corpus lower bound L with respect to βw(lj) delivers the following

updating equation (see Appendix A.6)

βw(lj) ∝
M∑
d=1

Nd∑
n=1

φdnlw
j
dn (4.19)

The model’s parameters are the last ones to be derived. Following the work of Minka

[56], it was shown in [12] that in order to derive LDA parameters it was feasible to use

the Newton-Raphson algorithm for parameters estimation. It was also shown that

due to the characteristics of the Dirichlet distribution, it is possible to exchange the

computationally demanding problem of inverting the Hessian matrix of the Lower

bound with a linear operator and therefore reducing the model complexity.

The Hessian matrix of the generalized Dirichlet distribution offers the same useful,

albeit in a different way, simplification. This characteristic was analyzed in [18]. The

nature of the generalized Dirichlet distribution leads the Hessian matrix to take a

2× 2 block-diagonal shape. The inverse matrix of a block-diagonal matrix is another

block-diagonal matrix consisting of the inverses of the blocks of the original matrix.

Therefore the problem of inverting the 2d×2d Hessian matrix is reduced to computing

the inverse of 2 × 2 matrix for d instances. The complete derivation of the model

parameters is brought in Appendix 4.

The last formulation that we need to derive to prepare our model for the classification

task is the likelihood of a document in our model. This can be done by deriving first

the likelihood of a randomly chosen word wn inside the document:

p(wn|~ξ) =
d+1∑
l=1

∫
p(wn|zl)p(zl|~θ)p(~θ|~ξ)d~θ

=
d+1∑
l=1

p(wn|zl)
∫
p(zl|~θ)p(~θ|~ξ)d~θ (4.20)

=
d∑
l=1

βl(v|wvn=1)E[θl] + β(d+1)(v|wvn=1)(1−
d∑
l=1

E[θl])
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Combining Eq. 4.2 with Eq. 4.20 delivers the formulation for the word likelihood as

follows:

(4.21)

The log likelihood of a document w is derived as the sum of the log likelihoods of the

words present inside the document and therefore we have:

logp(wm|~ξ) =
Nm∑
n=1

log p(wn|~ξ) =
V∑
v=1

cntmv log p(wv|~ξ) (4.22)

where for each document w, cntv is the number of times the v − th word is drawn.

4.1.4 Experimental Results

In this chapter we bring the results of applying the LGDA model on two distinct

challenging applications namely text and natural scene classification. The former

was introduced in [12] as the primary application of the LDA model. The later

application was developed and adapted in [31] for LDA as well. In order to keep

consistency with both works, we proceed with using the same datasets used in [12]

and [31] to test our own model.

4.1.5 Text Classification

In text classification, the problem at hand is deciding which distinctive class to assign

a given document to [78]. This problem can be looked upon from two distinct but

related ways. Assuming that the number of the classes is known, from a first per-

spective text classification can be viewed as a binary categorization problem where

the main problem is to decide to which class we should assign the text given two

distinctively chosen classes. The other way to look upon the problem is to decide

how accurately can the model assign the proper class to a document in the presence

of all other classes. We proceed with giving results for each of the two mentioned

scenarios in the following.
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For our simulations, we chose the Reuters-21578 dataset 1. This dataset consists of

21578 documents and in total there are more than 20000 words present inside it. Inde-

pendent works have already classified most of the 21578 documents into superseding

categories. Even though there are many extracted categories thus obtained, not all

of them contain enough documents to be suitable for training and testing purposes.

Thus, we limit ourselves to the top 6 categories extracted from the dataset. They, in

total, comprise more than 9000 documents of the original dataset and nearly all the

words present in the unabridged dataset. Table 4.1 describes the considered classes.

Class name number of documents
’acq’ 2293

’crude’ 579
’earn’ 3939
’grain’ 593

’interest’ 479
’money-fx’ 729

Table 4.1: Extracted classes and number of available documents per each class.

To examine the classification accuracy of the models, in the first step we choose a

certain number of the documents in each of the classes as training documents. Next,

we learn our models for each of the chosen training sets, for different numbers of

latent topics to observe the effect of choosing them on the classification accuracy.

Classification in this first experiment is regarded as a binary process meaning that

the document is presented to two different trained classes and the class that gives

the higher likelihood is chosen as the document class. Selected success rates of the

two models under same training conditions are brought in figure 4-2. An interesting

observation regarding the two models can be deduced from this figure. The Reuters

dataset consists of relatively short documents that are presented as extremely sparse

count vectors over the entire vocabulary set. Both LDA and LGDA use variational

Bayes inference as their core learning method, however the sparsity of the count vec-

tors causes both models to basically provide the same fit over the training set. The

result is that facing classification vectors, the two models roughly offer the same suc-

1http://www.daviddlewis.com/resources/testcollections/reuters21578/
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[a]

[c]

Figure 4-2: Comparison of binary classification success rate of the two models. Red
line: LGDA, blue Line: LDA

cess rate. This can be seen in figure 4-2. There is an exception to this observation.

When the two classes are inheritingly similar to each other, one may expect that the

models fail to separate them as precisely as when the classes are mutually irrelevant.

In these instances the model that offers the better fitting to its training set could
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[a] [b]

Figure 4-3: Comparison of binary classification success rate of the models for ’Money-
fx’ class for [a] 15 extracted latent topics [b] 30 extracted latent topics. Red line:
LGDA, blue Line: LDA

offer better classification. An instance of related classes is ’interest’ and ’money-fx’

the result of classification success rate of the two classes against each other is brought

in figure 4-3. This example shows that when there are similarities between distinct

classes, LGDA offers a more accurate classification than LDA does. In figure 4-2 we

compare the total success rate of the two models again it can be seen that in the

majority of instances LGDA offers either comparable or improved results in compar-

ison to LDA. That again coincides with our expectation that LGDA acts like LDA

under certain circumstances. In figure 4-4 we bring the total classification accuracy

of the two models. We need to emphasize the difference between figures 4-2 and 4-4.

While figure 4-2 shows the class by class comparison of success rates, figure 4-4 shows

the total success rate of the two models. In order to suppress the effects of over

compensation by different classes in derivation of figure 4-4 we limited the number of

documents in each class to 1000. Table 4.2 shows the total confusion matrix of the

LGDA model for the optimal case.

4.1.6 Natural scene classification

The application of the LDA model to natural scene classification was first proposed

by Fei. Fei et al. in [31]. In their work certain adaptation were proposed to make the
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Figure 4-4: Total classification success rate. Red line: LGDA, blue Line: LDA

acq crude earn grain interest money-fx
acq 718 16 171 0 31 8
crude 149 507 130 12 40 61
earn 25 17 445 6 8 20
grain 33 14 81 554 28 25
interest 26 11 80 6 252 238
money-fx 49 14 93 15 120 374

Table 4.2: Confusion matrix of the LGDA model in the optimal case.

acq crude earn grain interest money-fx
acq 720 16 170 2 31 11
crude 150 510 132 12 36 61
earn 26 14 446 6 8 23
grain 30 12 79 554 28 29
interest 26 11 80 5 273 267
money-fx 48 16 93 14 103 335

Table 4.3: Confusion matrix of the LDA model in the optimal case.
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model applicable to scene classification. We assert that our proposed model include

those adaptations without a need for further assumptions. In order to derive the count

vectors they used the Scale invariant feature transform (SIFT) descriptors [53] and

applied it over the training set to extract the training set features. In the next step

they proceeded by extracting different numbers of visual words through clustering

the training feature set using K-means algorithm and assigning the centrodies of

the clusters to the visual words. At the end count data are generated by assigning

each of the training features to the nearest visual word generated in the last step.

This approach for generating count data from extracted visual descriptors was first

mentioned in [27] and is considered as a well established approach.

In our work we proceeded with applying the same method over the same natural scene

database as in [31]. Samples of the dataset are shown in figure 4-5. We, however,

faced a problem that was not addressed in [31]. The authors of [31] started their visual

keywords from as low as 20. This poses a major problem in LDA and concordantly

in LGDA as well. LDA and LGDA models are basically designed as text generation

models. One would expect them to work most efficiently when the analyzed data

resembles that of a text more closely. One quality of the text documents that was the

center of attention in the original work [12] was the assumption that the number of

count data extracted from each document in relation to the available vocabulary was

considerably small and thus resulting in sparse training vectors. Our experiments did

not show the same results for the scene classification work. In fact we proceeded with

applying the standard implementation of the LDA algorithm and our own LGDA

implementation yet both models failed to provide reliable training before the visual

words number was increased to as high as 500. Computation limitations prevented

us from extracting more than 1000 visual words in which extend 6 class out of the 13

class of the dataset in [31] were properly trained for both the standard LDA and the

LGDA models. Regarding the work in [31] we assume that they used a preprocessing,

that we are not aware of, which allowed them to overcome the non sparse nature of

their training data. In this work therefore we shall proceed with showing the results

of applying the two models over the portions of the dataset in [31] which both models
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Figure 4-5: Samples of the natural scene dataset [31].

succeeded in properly learning. Figure 4-15 shows the results of applying the two

models over different numbers of extracted latent topics. Figure 4-14 shows the total

success rate of the model. It is understood that due to the far less sparse nature of the

visual count data vectors in comparison to the text count data ones, the better fitting

nature of the LGDA in comparison to LDA must be more evident. This improvement

is further elaborated in figure 4-14, as it can be seen that LGDA performs clearly

superior to LDA in natural scene classification. Table 4.13 shows the total confusion

matrix of the LGDA model for the optimal case.

Coast Forest Highway Inside of cities Opencountry Streets Tall building Bedroom
Coast 223 0 51 3 50 1 2 1
Forest 1 192 10 12 0 23 0 0
Highway 33 2 104 6 18 8 14 1
Inside of cities 0 25 8 173 0 26 0 0
Open country 76 30 7 13 321 10 18 11
Streets 0 57 41 15 0 173 0 0
Tall building 9 0 3 22 7 3 268 12
Bedroom 16 18 30 59 11 42 51 185

Table 4.4: Optimal confusion matrix of the LGDA model applied for the scenes
classification task.
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Figure 4-6: Comparison of binary classification success rate of the two models for
natural scene classification. Red line: LGDA, blue Line: LDA

Coast Forest Highway Inside of cities Open country Streets Tall building Bedroom
Coast 231 0 59 2 53 1 1 1
Forest 1 187 5 16 0 21 0 0
Highway 55 10 100 21 47 19 62 4
Inside of cities 0 21 6 168 0 22 0 0
Open country 49 27 5 7 289 6 13 7
Streets 1 53 49 16 0 178 0 0
Tall building 5 0 2 13 4 2 219 6
Bedroom 16 28 29 61 15 40 58 192

Table 4.5: Optimal confusion matrix of the LDA model applied for the scenes classi-
fication task.

4.1.7 Comparison of the computational requirements of the

LGDA versus LDA models

An essential concern with proposing new models as replacements for already estab-

lished ones is the trade off between what the model offers and what it requires in

return. LGDA in general is a more computationally demanding model than LDA.

The number of parameters that need to be estimated to derive the variational and

model generalized Dirichlet distributions in LGDA for the same number of latent

topics is twice the numbers needed for LDA. The other parameters remain the same.

One concern is the computation requirements of the model parameter estimation re-
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[a]

[b]

Figure 4-7: Comparison of classification success rate of the models for natural scene
classificaiton dataset.[a] 500 extracted keywords. [b] 1000 extracted keywords. Red
line: LGDA, blue Line: LDA
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[a] [b]

Figure 4-8: Comparison of the computation time needed for training the two models
for different number of training documents. Red line: LGDA, blue Line: LDA

garding the inversing of the Hessian matrix in both models. It was shown in this

chapter that like the case of LDA the computation of the Hessian matrix in LGDA

is a linear process in relation to the number of generalized Dirichlet parameters.

To show the computational requirements of our model in comparison with LDA we

proceed with performing a series of experiments depicting the time it takes for both

models to learn their parameters in different learning conditions. The result of the

experiments is shown in figure 4-8. As it can be seen from 4-8 even though in gen-

eral LGDA is a more computationally demanding model, like LDA, the computation

demand for additional extracted topics, clearly follow a linear curve.

4.2 A Latent Topic Model Based on the Beta-Liouville

Distribution

4.2.1 Introduction

documents are mixtures of topics, where a topic is a probability distribution over

words. PLSA has been applied in a variety of applications (see, for instance, [73, 36]).

Several other topic models have been proposed to generalize PLSA by making slightly

different statistical assumptions [80, 76]. One of the most cited extensions, improving

80



upon PLSA, is the latent Dirichlet allocation (LDA) model proposed in [12]. The

main idea behind LDA is based on the fact that the PLSA model does not make any

assumption about how the mixtures of topics weights are generated and then cannot

assign likelihoods to unseen documents [21]. Thus, to improve the generalization ca-

pabilities of PLSA, the authors in [12] proposed the consideration of Dirichlet priors

on the mixture weights. LDA has been successfully used to tackle problems including

semantic representation [37], natural scenes categorization [31], and text classification

[12].

The goal of this section is to propose an extension of LDA based on exploiting the

interesting properties of the BL distribution. To maintain consistency with the orig-

inal LDA model we call our model latent Beta-Liouville allocation (LBLA). We shall

develop a variational Bayes approach to learn the parameters of the LBLA model.

The adoption of variational Bayes is mainly motivated by the excellent results ob-

tained when using this learning approach in several machine learning problems [45]

in general and in the case of LDA in particular [12]. The Dirichlet distribution is

a special case of the Beta-Liouville [15], therefore it is expectable that the LBLA

will provide good modeling capabilities. Indeed, we shall elaborate the conjunctions

between the two models further through extensive simulations based on challenging

real-world problems.

4.2.2 Latent Beta-Liouville Allocation

The Model

Like LDA, LBLA is a fully generative probabilistic model over a corpus. A corpus in

our case is a collection ofM documents (or images) denoted by M = (w1,w2, . . . ,wM ).

Each document wm is represented as a sequence of Nm words wm = (wm1, . . . , wmNm).

This representation is common in several applications such as text indexing [70, 84,

83]. In what follows, for sheer convenience, we drop the index m wherever we are

not referring to a specific document. The word wn = (w1
n, . . . , w

V
n ) is considered as a
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binary vector drawn from a vocabulary of V words, so that wjn = 1 if the j− th word

is chosen and zero, otherwise. The model proceeds with generating every single word

(or visual word) of the document (or the image) through the following steps:

1. Choose N ∝ Poisson(ζ).

2. Choose (θ1, . . . , θd) ∝ BL(~ξ).

3. For each of the N words wn:

(a) choose a topic zn ∝Multinomial(~θ).

(b) Choose a word wn from p(wn|zn, βw).

In above zn is a D+1 dimensional binary vector of topics defined so that zin = 1 if the

i−th topic is chosen and zero, otherwise. We define, ~θ = (θ1, . . . , θD+1), where θD+1 =

1−
∑D

i=1 θi. A chosen topic is attributed to a multinomial prior βw over the vocabulary

of words so that βw(ij) = p(wj = 1|zi = 1), from which every word is randomly drawn.

p(wn|zn, βw) is a multinomial probability conditioned on zn and BL(~ξ) is a D-variate

Beta-Liouville distribution with parameters ~ξ = (α1, α2, . . . , αD, α, β) and probability

distribution function given by:

P (θ1, . . . , θD|~ξ) =
Γ(
∑D

d=1 αd)Γ(α + β)

Γ(α)Γ(β)

D∏
d=1

θαd−1
d

Γ(αd)

(
D∑
d=1

θd

)α−
∑D
l=1 αl

×

(
1−

D∑
l=1

θl

)β−1

(4.23)

It is straightforward to show that when βd = α(d+1) + β(d+1), the Beta-Liouville

distribution is reduced to Dirichlet distribution [15]. The mean, the variance, and the

covariance in the case of the Beta-Liouville are as follows [15]:

E(θd) =
α

α + β

αd∑D
d=1 αd

(4.24)

var(θd) = (
α

α + β
)2 αd(αd + 1)

(
∑D

m=1 αd)(
∑D

m=1 αm + 1)
− E(θd)

2 α2
d

(
∑D

m=1 αm)2
(4.25)

82



and the covariance between θi and θj is given by:

Cov(θl, θk) =
αlαk∑D
d=1 αd

(
α+1

α+β+1
α

α+β∑D
d=1 αd + 1

−
α

α+β∑D
d=1 αd

)
(4.26)

It can be seen from the previous equation, that the covariance matrix of the Beta-

Liouville distribution is more general than the covariance matrix of the Dirichlet

distribution which is strictly negative. Moreover, unlike Dirichlet, two elements with

the same mean value can have different variances. Beta-Liouville distribution, like

the Dirichlet distribution, belongs to the exponential family of distributions (see Ap-

pendix 1). This means that the Beta-Liouville distribution has a conjugate prior

that can be developed in a formal way, which is an important property that we

shall use in the following for the learning of our model. It turns out also that Beta-

Liouville, like Dirichlet, is a conjugate prior of the multinomial distribution. This

implies that if (θ1, . . . , θD) follows a Beta-Liouville distribution with parameters ~ξ,

and ~N = (n1, . . . , nD+1) follows a multinomial with parameter ~θ, then the posterior

distribution p(~θ|~ξ, ~N) also follows a Beta-Liouville distribution with parameters ξ
′

given as follows [15]:

α
′

d = αd + nd α′ = α +
D∑
d=1

nd β′ = β + nD+1 (4.27)

Having our Beta-Liouville prior in hand, we proceed with defining the (D + 1) × V

word-topic probability matrix βw which element βwij = p(wj = 1|zi = 1) shows the

probability of drawing the j − th word given that the i − th latent topic is chosen.

Like the LDA case, we proceed with assuming a non-generated βw matrix, but we

will show that this assumption does not have a serious impact and it can be revoked

without bringing harm to the entire model. By assuming conditional independence

of the variables, the same as LDA, one can deduce the following joint distribution:

p(~θ, z,w|~ξ, βw) = p(~θ|~ξ)p(o
¯
ldsymbolw|z, βw)p(z|~θ) (4.28)
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Figure 4-9: Graphical representation of LBLA model. The shaded circles show ob-
served nodes. The blank circles are the hidden nodes. From outside to inside is the
corpus space, the document space and the word space.

where z is the set of latent topics. Integrating over the ~θ parameters and the topic

space gives

P (w|~ξ, βw) =

∫ N∏
n=1

Γ(
∑D

d=1 αd)Γ(α + β)

Γ(α)Γ(β)

D∏
d=1

θαd−1
d

Γ(αd)

(
D∑
l=1

θl

)α−
∑D
l=1 αl

×

(
1−

D∑
l=1

θl

)β−1 D+1∏
i=1

V∏
j=1

(θiβWij
)w

j
ndθ (4.29)

In the previous equation, ~ξ and βw are the corpus level parameters that are selected

once per each document in the corpus. ~θ is the document level parameter and is

chosen once per document. z and w are word level parameters and are chosen once

per every word inside each document. Thus, we can obtain the probability of the

corpus as follows:

p(D|~ξ, βw) =
M∏
m=1

p(wm|~ξ, βw) (4.30)

LBLA has basically the same probabilistic graphical model as LDA as it is shown in

figure 4-9.
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LBLA Inference

The main inference problem of LBLA is estimating the posterior of the hidden vari-

ables, ~θ and z:

p(~θ, z|w, ~ξ, βw) =
p(~θ, z,w|~ξ, βw)

p(w|~ξ, βw)
(4.31)

The above equation is known to be intractable. An efficient way to estimate the

parameters in this intractable posterior is to use variational Bayes (VB) inference

[12]. VB inference offers a solution to the intractability problem by determining a

lower bound on the log likelihood of the observed data which is mainly based on

considering a set of variational distributions on the hidden variables [46, 85]:

q(~θ, z|w, ~ξq,Φw) = q(~θ|~ξq)
N∏
n=1

q(zn|φn) (4.32)

In the above q(~θ|~ξq) can be viewed as a variational Beta-Liouville distribution, calcu-

lated once per document, q(zn|φn) is a multinomial distribution with parameter φn

extracted once for every single word inside the document, and Φw = {φ1, φ2, . . . , φN}.

Using Jensen’s inequality [46] one can derive the following:

log p(w|~ξ, βw) ≥ Eq[log p(~θ, z,w|~ξ, βw)]− Eq[log q(~θ, z)] (4.33)

Assigning L(~ξq,Φw; ~ξ, βw) to the right-hand side of the above equation it can be shown

that the difference between the left-hand side and the right-hand side of the equation

is the KL divergence between the variational posterior probability and the actual

posterior probability, thus we have:

log p(w|~ξ, βw) = L(~ξq,Φw; ~ξ, βw) +KL
(
q(~θ, z|~ξq,Φw||p(~θ, z)|w, ~ξ, βw)

)
(4.34)

The left hand side of the above equation is constant in relation to variational parame-

ters, therefore to minimize the KL divergence on the right-hand side one can proceed

with maximizing L(~ξq,Φw; ~ξ, βw). Up to here the formulation basically follows the

LDA model. The divergence of the models begins when we proceed with assigning the
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Beta-Liouville distribution as the parameter generator instead of the LDA Dirichlet

assumption. In appendix 2 we bring the breakdown of L(~ξq,Φw; ~ξ, βw).

Using variational inference to maximize the lower bound L(~ξq,Φw; ~ξ, βw) with respect

to φnl, we derive the following updating equations for the variational multinomial (see

Appendix 2.1)

φnl = βlve
(λn−1)e(Ψ(γi)−Ψ(

∑D
ii=1 γii)) (4.35)

φn(D+1) = β(D+1)ve
(λn−1)e(Ψ(βγ)−Ψ(αγ+βγ)) (4.36)

where Ψ is the digamma function, βlv = p(wv = 1|zl = 1) and the weighing constant

eλn−1 is given by:

eλn−1 =
1

β(D+1)ve(Ψ(βγ)−Ψ(αγ+βγ)) +
∑D

i=1 βive
(Ψ(γd)−Ψ(

∑D
l=1 γl))

(4.37)

Maximizing the lower bound L with respect to the variational Beta-Liouville param-

eters gives the following updating equations (see Appendix 2.2):

γi = α +
N∑
n=1

φni αγ = α +
N∑
n=1

D∑
d=1

φnd βγ = β +
N∑
n=1

φn(D+1) (4.38)

Comparing the above equations with equation 4.27 shows that the variational Beta-

Liouville for each document acts as a posterior in the presence of the variational

multinomial parameters. The same conclusion was observed in [12] for the LDA

case. This is a direct result of the conjugacy between the Beta-Liouville and the

multinomial.

Parameters Estimation

The goal of this subsection is to find the model’s parameters estimates based on the

variational parameters derived in the last subsection. One needs to consider that

the LBLA parameters are corpus parameters and therefore they are estimated by

considering all M documents inside the corpus. In the following, we denote L =
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∑M
m=1 Lm as the lower bound corresponding to all the corpus, where Lm is the lower

bound corresponding to each document m.

Maximizing the corpus lower bound L with respect to βw(lj) delivers the following

updating equation (see Appendix A.6)

βw(lj) ∝
M∑
d=1

Nd∑
n=1

φdnlw
j
dn (4.39)

The model’s parameters are the last ones to be derived. Following the work of Minka

[56], it was shown in [12] that in order to derive LDA parameters it was feasible to use

the Newton-Raphson algorithm for parameters estimation. It was also shown that

due to the characteristics of the Dirichlet distribution, it is possible to exchange the

computationally demanding problem of inverting the Hessian matrix of the Lower

bound with a linear operator and therefore reducing the model complexity.

The Hessian matrix of the Beta-Liouville distribution is derived quite similarly to the

one of the Dirichlet distribution. The main difference is the addition of an extra 2×2

matrix inversion for the derivation of the Beta parameters (α and β). The complete

derivation of the model parameters is brought in apendix 4. The last formulation that

we need to derive to prepare our model for the classification task is the likelihood

of a document in our model. This can be done by deriving first the likelihood of a

randomly chosen word wn inside the document:

p(wn|~ξ) =
D+1∑
l=1

∫
p(wn|zl)p(zl|~θ)p(~θ|~ξ)d~θ

=
D+1∑
l=1

p(wn|zl)
∫
p(zl|~θ)p(~θ|~ξ)d~θ (4.40)

=
D∑
l=1

βl(v|wvn=1)E[θl] + β(D+1)(v|wvn=1)(1−
D∑
l=1

E[θl])

87



By substituting the value of E[θl] (see Eq. 4.24) into Eq. 4.40 we obtain the formu-

lation for the word likelihood as follows:

p(wn|~ξ) =
D∑
l=1

βl(v|wvn=1)(
α

α + β

αD∑D
d=1 αd

) +

β(D+1)(v|wvn=1)(1−
D∑
l=1

(
α

α + β

αd∑D
d=1 αd

)) (4.41)

The log likelihood of a document w is derived as the sum of the log likelihoods of the

words present inside the document and therefore we have:

log p(wm|~ξ) =
Nm∑
n=1

log p(wn|~ξ) =
V∑
v=1

cntmv log p(wv|~ξ) (4.42)

where for each document wm, cntmv is the number of times the v− th word is drawn.

4.2.3 Experimental Results

In this section, we investigate the LBLA model on three distinct challenging applica-

tions namely text and visual scene classification, and action recognition. The main

goal of these three applications is to compare the LBLA and LDA performances.

Text Classification

most approaches can be looked upon from two distinct but related ways. Assuming

that the number of classes is known, from a first perspective text classification can

be viewed as a binary categorization problem where the main task is to decide to

which class we should assign the text given two distinctively chosen classes. The

other way to look upon the problem is to decide how accurately the model can assign

the proper class to a document at the presence of all other classes. We will consider

the two mentioned scenarios in the following.

For our simulations, we again choose the Reuters-21578 dataset 2 [44]. We limit

ourselves to the top 6 categories extracted from the dataset. They, in total, comprise

2http://www.daviddlewis.com/resources/testcollections/reuters21578/
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more than 9000 documents of the original dataset and nearly all the words present in

the unabridged dataset. Table 4.1 describes the considered classes.

To examine the classification accuracy of the models, in the first step we choose a

certain number of the documents in each of the classes as training documents. Next,

we learn our models for each of the chosen training sets, for different numbers of

latent topics to observe the effect of choosing them on the classification accuracy.

Classification in this first experiment is regarded as a binary process meaning that

a given document is presented to two different trained classes and the class that

gives the higher likelihood is chosen as the document class. Selected success rates

of the two models under several training conditions are brought in figure 4-10. An

interesting observation regarding the two models can be deduced from this figure.

The Reuters dataset consists of relatively short documents that are presented as

extremely sparse count vectors over the entire vocabulary set. Both LDA and LBLA

use variational Bayes inference as their core learning method; however the sparsity

of the count vectors causes both models to basically provide the same fit over the

training set. The result is that facing sparse vectors, the two models roughly offer

the same success rate. This can be seen in figure 4-10. There is an exception to

Figure 4-10: Examples of binary classification success rates of the LBLA and LDA
models when applied for text classification. Red line: LBLA, blue line: LDA.

this observation. When the two classes are similar to each other, one may expect

that the models fail to separate them as precisely as when the classes are dissimilar.
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In this case the model that offers the better fitting to its training set could offer

better classification. An instance of related classes is ’interest’ and ’money-fx’; the

classification success rates obtained when using LBLA and LDA, in this case, are

displayed in figure 4-11.

Figure 4-11: Comparison of binary classification success rates of the LBLA and LDA
models for ’Money-fx’ class against ’interest’ class when we consider (a) 15 extracted
latent topics, and (b) 30 extracted latent topics. Red line: LBLA, blue line: LDA.

This example shows that when there are similarities between distinct classes,

LBLA offers a more accurate classification than LDA. Thus, we can conclude, ac-

cording to figures 4-10 and 4-11, that in the majority of cases LBLA offers either

comparable or improved results as compared to LDA. That again coincides with our

expectation that LBLA acts like or better than LDA.

In figure 4-12, we compare the total classification accuracies of the two models. We

need to emphasize the difference between figures 4-10 and 4-12. While figure 4-10

shows the class by class comparison of success rates, figure 4-12 shows the total suc-

cess rate of the two models. In order to suppress the effects of over compensation by

different classes in derivation of figure 4-12 we limited the number of documents in

each class to 1000. Tables 4.6 and 4.7 show the confusion matrices of the LBLA and

LDA models, respectively, for the optimal cases (i.e. corresponding to the maximum

rates in figure 4-12).
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Figure 4-12: Total text classification success rates obtained using LBLA and LDA
models. Red line: LBLA, blue line: LDA.

Table 4.6: Confusion matrix of the LBLA model, in the optimal case, when applied
to text classification.

acq crude earn grain interest money-fx
acq 718 15 167 3 31 9
crude 149 515 130 15 39 61
earn 26 15 452 6 7 22
grain 32 13 79 546 27 25
interest 26 8 81 7 263 246
money-fx 49 13 91 16 112 363

Visual Scenes Classification

Methodology

In this set of experiments, we apply our LBLA model to the challenging task of visual

scenes classification which has attracted a lot of attention recently [27, 31, 52, 50, 20].
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Table 4.7: Confusion matrix of the LDA model, in the optimal case, when applied to
text classification.

acq crude earn grain interest money-fx
acq 720 16 170 2 31 11
crude 150 510 132 12 36 61
earn 26 14 446 6 8 23
grain 30 12 79 554 28 29
interest 26 11 80 5 273 267
money-fx 48 16 93 14 103 335

The main goal is to compare the LBLA to the LDA which was considered for the

same task in [31]. It is noteworthy that some adaptations to the original LDA were

proposed in [31], and the reader is then referred to this paper for more details, to

make it applicable to scenes classification. The very same adaptations were included

in the LBLA without a need for further assumptions. The main idea that we use

here is based on the description of scenes using visual words [27]. This approach has

emerged over the past few years and received strong interest that is mainly motivated

by the fact that many of the techniques previously proposed for text classification

can be adopted for images categorization [27, 87, 77].

For the construction of the visual words vocabulary, we need first to extract local

descriptors from a set of training images. Many descriptors have been proposed in

the past, but scale invariant feature transform (SIFT) descriptor [53], that we consider

here, has dominated the literature. The extracted features are then quantized through

clustering (the K-Means algorithm in our case) and the obtained d clusters centroids

are considered as our visual words. Having the visual vocabulary in hand, each image

can be represented as a d-dimensional vector containing the frequency of each visual

word in that image. In our experiment we take 7 classes from the natural scenes

dataset introduced in [71] and we combine it with one indoor scenes class from [31].

The 7 classes chosen from the data set described in [71] are coast, forest, highway,

inside of cities, open country, street, and tall building, which contain 361, 329, 261,

309, 411, 293, and 356 images, respectively. The class chosen from the data set

proposed in [31] is the bedroom category which contains 217 images. Examples of

92



images from the different considered classes are shown in figure 4-13.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4-13: Sample images from each group. (a) Highway, (b) Inside of cities, (c)
Tall building, (d) Streets, (e) Forest, (f) Coast, (g) Open country, (h) Bedroom.

Results

Figure 4-14: Classification success rates, as a function of the number of extracted
latent topics, of the LBLA and LDA models applied for the visual scenes classification
task. Red line: LBLA, blue Line: LDA.

From each category, in the considered data set, we randomly chose 100 images

for model training. Unlike text classification which usually leads to sparse training

matrices, the abundance of visual descriptors in the images and the relatively lower

number of extracted visual keywords, as compared to the textual vocabulary, lead to

less sparse matrices for scenes classification. In figure 4-14, we compare the success
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rates of the LBLA and LDA models, when varying the number of extracted latent

topics, over the data set. According to this figure it is clear that better categoriza-

tion results are obtained when adopting LBLA. Figure 4-15 shows examples of per

class comparisons between the success rates obtained by both models. It is obvious

that due to the less sparse nature of the count data vectors extracted in the case of

scenes classification task (as compared to the text classification task presented in the

previous section), the better fitting capabilities of the LBLA become more evident.

Tables 4.12 and 4.9 show the optimal confusion matrices of the LBLA and LDA mod-

Figure 4-15: Examples of per class classification success rates, as a function of the
number of extracted latent topics, of the LBLA and LDA models. Red line: LBLA,
blue Line: LDA.

els. According to these tables it is clear again that the LBLA gives significantly a

better classification accuracy (67.0%) than the LDA (62.49%).

Coast Forest Highway Inside of cities Open country Streets Tall building Bedroom
Coast 225 1 20 1 68 3 2 0
Forest 1 191 0 14 0 19 0 0
Highway 48 1 186 9 12 4 27 2
Inside of cities 0 14 0 163 0 27 0 0
Opencountry 56 52 9 13 300 10 23 7
Streets 1 44 0 16 0 174 0 0
Tall building 4 0 8 23 7 1 245 11
Bedroom 21 24 31 64 20 51 56 190

Table 4.8: Optimal confusion matrix of the LBLA model applied for the scenes clas-
sification task.
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Coast Forest Highway Inside of cities Open country Streets Tall building Bedroom
Coast 231 0 59 2 53 1 1 1
Forest 1 187 5 16 0 21 0 0
Highway 55 10 100 21 47 19 62 4
Inside of cities 0 21 6 168 0 22 0 0
Open country 49 27 5 7 289 6 13 7
Streets 1 53 49 16 0 178 0 0
Tall building 5 0 2 13 4 2 219 6
Bedroom 16 28 29 61 15 40 58 192

Table 4.9: Optimal confusion matrix of the LDA model applied for the scenes classi-
fication task.

Figure 4-16: Samples of the actions used in our experiments [35].

Action Recognition

Action recognition has attracted a great deal of attention [14, 81, 35], in part because

of its potential applications. For instance, it could be used in gesture recognition,

video surveillance, and video indexing [25, 13, 40]. In this set of experiments, we

apply the LBLA model to the action recognition problem using the space time actions

dataset of [35] (see figure 4-16). The methodology of the experiments is as follows.

In the first step, we applied the Horn-Schunck algorithm [43] to extract the optical

flow matrix of the subsequent frames. Next, we applied an arbitrary threshold on the

optical flow matrix to extract the strong optical flow responses, we used a mask of

predefined size around the positions with the strong optical flow responses to form

our total vector set. We used the K-means algorithm on a random 10 percent of

the total vector set to extract the action flow words and having extracted them we

proceeded with generating the count data vectors and training the models.

The results of applying both the LBLA and LDA models on the action recognition

dataset is shown in figure 4-17. The confusion matrix for the relevant optimal case
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for the LBLA and LDA models are brought in tables 4.11 and 4.10, respectively.

As it can be seen from the experimental results, LBLA shows slight improvement

(59.38%) in comparison to LDA (59.01%). The reason behind the slightness of the

improvement can again be attributed to the sparse nature of the extracted features.

Figure 4-17: Total action recognition success rates obtained using LBDA and LDA
models. Red line: LBDA, blue line: LDA.

Jump Pjump Run Side Skip Walk
Jump 512 8 35 36 29 20
Pjump 22 196 7 4 2 1
Run 47 3 352 67 55 48
Side 56 0 47 271 71 36
Skip 98 2 81 56 410 141
Walk 129 5 69 163 162 419

Table 4.10: Optimal confusion matrix of the LDA model applied for the action recog-
nition task.

Comparison of the computational requirements of the LBLA versus the

LDA

LBLA in general is a more computationally demanding model than LDA. Indeed, in

dimension D the Dirichlet has D + 1 parameters while the Beta-Liouville has D + 2
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Jump Pjump Run Side Skip Walk
Jump 510 8 31 35 29 21
Pjump 25 196 7 4 2 1
Run 49 3 362 69 54 48
Side 51 0 43 266 69 33
Skip 102 2 83 61 422 144
Walk 127 5 66 162 153 418

Table 4.11: Optimal confusion matrix of the LBLA model applied for the action
recognition task.

parameters. Thus, comparing to the Dirichlet, the Beta-Liouville has only one extra

parameter. The number of the other model parameters remains the same in the two

models. One concern is the computational requirements of the model parameters

estimation regarding the inversion of the Hessian matrix in both models. It was

shown in this paper that like the LDA case the computation of the Hessian matrix in

LBDA is a linearly related to the number of Beta-Liouville parameters. To show the

computational requirements of our model in comparison with LDA we proceed with

performing a series of experiments depicting the time it takes for both models to learn

their parameters in different learning conditions. The result of these experiments are

shown in figure 4-18. From this figure, we can see that although in general LBLA is

a more computationally demanding model, like LDA, the computational demand for

additional extracted topics, clearly follows a linear curve. the derivative of the above

equations in respect to their BL parameter gives:
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(a) (b)

(c)

Figure 4-18: Comparison of the computational time needed for training the LDA
and LBLA models, for different numbers of training documents, as a function of the
number of latent topics. The numbers of considered training documents are: (a) 100,
(b) 200, and (c) 300. Red line: LBLA, blue Line: LDA.

98



4.3 Online Learning For Topic Models

The original LDA model assumes the entire training data corpus to be available at

hand [12]. This assumption poses two serious drawbacks. Firstly it mandates the

need for a huge test dataset to be collected beforehand and secondly it requires huge

computation resources for performing the parameter estimation over the test data.

In a later work [41] Hoffman and Blei proposed an online learning model for overcom-

ing the mentioned constraints. The model proposed in that work was called online

latent Dirichlet allocation. In this chapter we shall apply the same model over our

own latent topic models LGDA and LBLA and compare the two models against the

online LDA model.

4.4 Online LDA model

The variational Bayes model of the LDA model is shown to converges to a local

likelihood of the actual posterior of the hidden parameters of the models. However the

main problem with the original VB model is that it needs to consider the entire corpus

beforehand for parameter estimation. This in return emerges two serious problems.

Firstly the need for the collection of the entire training corpus and secondly the

computational requirements of dealing with a huge corpus. To overcome this problem

Hoffman and Blei [41] offered an online learning model that fixes the mentioned issues.

The solution is such that a time dependent (time defined as the index of the part of

the data given to the model in each iteration) weight is defined as:

ρt = (τ0 + t)−κ, κ ∈ (0.5, 1] (4.43)

The parameter τ0 slows down the effect of early parameter estimations. The online

learning algorithm can easily be extended to cover LGDA and LBLA models as well.

The steps of the algorithm are as follows.

1. In each learning interval the model performs a batch VB over the patch of the
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training set attributed to that interval and assigns a weight value to the patch

according to 4.43.

2. Prior parameter estimation: Perform the Newton-Raphson algorithm over the

entire corpus of patches for t = 0 to ∞ as: ξ ← ξ − ρtα̃(ξt) where α̃(ξt) is the

inverse of the Hessian times the gradient with respect to α of the posterior lower

band.

3. Word dictionary update: β̃w(t + 1) = normalize((1 − ρt)β̃wt + ρtβw(t)) where

β̃w(t) is the available estimation of the Word dictionary at t− th step.

It was shown in [41] that the condition κ ∈ (0.5, 1] is necessary for keeping the

online learning model stable. The only deviation from the original online LDA model

that we have done is to consider a non generative word dictionary rather than the

full generative one proposed in [41]. The deviation is required so as to maintain

consistency with the previous works and it was shown in this chapter that the two

assumptions basically lead to similar models. In the next section we proceed with

offering the experimental results of applying the LGDA and LBLA models against

LDA and comparing the performance of the 3 models against each other.

4.5 Experimental Results

In this section we shall proceed with applying out proposed two models, online LBLA

and LGDA, on the challenging task of natural scene classification and make a com-

parison between the classification success rate offered by the two models versus that of

the online LDA. The main idea that we use here is based on the description of scenes

using visual words. This approach has emerged over the past few years and received

strong interest that is mainly motivated by the fact that many of the techniques

previously proposed for text classification can be adopted for images categorization [87,

77].

We again use the bag of visual words approach for the natural scene classification task.
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4.5.1 Comparison between the performance of LBLA and

LGDA models against LDA

At first the models were given 5 chunks of training images each containing 20 images.

In this set of experiments the effect of the online learning was reduced since the small

number of iterations plus the big chunks of test data quite resembled the Batch LDA

and LGDA models. The results of applying the online LDA and LBLA models are

brought in figure 4-19. Under the same experimental conditions we proceed with

delivering the results for the LGDA model in figure 4-20.

Figure 4-19: Comparison of the success rate of the online LBLA model against online
LDA model for the natural scene classification, for 20 training image per step, for two
different extracted number of topics.

The experiments results over the dataset show a slight advantage for the LBLA

model whilst LGDA appears to stand in par with LDA. However the results become

more distinguishable when we proceed with dividing the training set into yet smaller

chunks. In the second set of experiments we divide the test dataset into chunk of

5 images per iteration. The result of applying the data over the LBLA versus LDA

is brought in figure 4-21 The same set of experiments were performed on the LGDA

model as well and the results are brought in figure 4-22 The optimal confusion matrix

of the online LBLA model is brought in table 4.12. The optimal confusion matrix of

the online LBLA model is brought in 4.13 and The optimal confusion matrix of the

online LDA model is brought in 4.9.
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Figure 4-20: Comparison of the success rate of the online LGDA model against online
LDA model for the natural scene classification, for 20 training image per step, for two
different extracted number of topics.

Figure 4-21: Sample two instances of the progression of the LBLA model success rate
versus the LDA.

Coast Forest Highway Inside of cities Opencountry Streets Tall building
Coast 216 1 86 3 50 3 2
Forest 3 242 15 53 4 51 0
Highway 40 1 69 5 6 3 15
Inside of cities 0 2 4 146 2 12 6
Open country 90 39 23 22 331 14 50
Streets 5 41 60 57 9 203 2
Tall building 6 2 3 22 8 6 281

Table 4.12: Optimal confusion matrix of the online LBLA model applied for the
scenes classification task.
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Figure 4-22: Sample two instances of the progression of the LGDA model success rate
versus the LDA.

Coast Forest Highway Inside of cities Opencountry Streets Tall building
Coast 282 4 130 5 98 7 14
Forest 9 287 24 84 24 167 3
Highway 19 2 55 13 16 6 94
Inside of cities 4 19 23 157 1 58 9
Open country 38 7 19 24 241 19 66
Streets 8 7 8 18 30 32 13
Tall building 0 2 1 7 0 3 157

Table 4.13: Optimal confusion matrix of the online LGDA model applied for the
scenes classification task.
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Chapter 5

Conclusion and future work

In this thesis we proposed several machine learning algorithms for different real world

applications. We thoroughly analyzed the inherent drawbacks of the current models

and proposed adequate theoretical improvements that resulted in new models with

improved total performance.

In chapter 2, we focused a large part of our thesis on developing hierarchical mod-

els that capture the hierarchical nature of the available information more realistically.

For that aim we proposed new hierarchical models based on the Dirichlet, generalized

Dirichlet and Beta-Liouville distributions. Based on the performed experiments on

the models in comparison with the existing hierarchical, our models, show superior

performance. The emphasis of the proposed models is on single topic data classifica-

tion.

In chapter 3, we proposed a new adaptable general learning hierarchical model.

The model is based on the visual words approach. It was shown in the experimental

results that the proposed model shows substantial improvement in hierarchical clas-

sification accuracy in comparison to the static models proposed in chapter 2. The

improvement is achieved through applying several saliency factors in the learning

process. In addition to that the learning algorithm proposed in this chapter allows

our model to expand beyond the static hierarchical structures. The model proves
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efficiency while dealing with unknown classes and as observed in the experiments

succeeds in deciding the location of the new class within the hierarchy quite effi-

ciently.

In chapter 4, we focused our research on multi-topic models. We proposed two

models to improve the accuracy of existing multi-topic models. We considered a

benchmark model LDA [12] and we developed two distinct multi-topic models based

on it. Our first model considered the generalized Dirichlet assumption and the second

was based on the Beta-Liouville assumption. We showed that our two models contain

the LDA model as their special case but offer a more versatile character facing different

data models. We tested the models and compared them with LDA for 3 different

applications, text classication, natural scene classication and action recognition in

video sequences. The models in all applications show similar or improved results

in comparison to the benchmark. Later in chapter 4 we extended our models for

online learning and we again showed the superiority of our models performances in

comparison to the benchmark model.

We believe that the perspective of future work in this field is quite extensive. One

trend that could be followed is developing fully automatic learning hierarchical struc-

tures that can overcome the structural restrictions of our proposed models. Another

research possibility is looking for better priors for data modeling. The multi-topic

models we proposed already are fully capable of being adapted to hierarchical learn-

ing models. One could imagine that the combination of the successful multi-topic

models with hierarchical learning models can lead to successful learning models.

106



Appendix A

Appendixes

A.1 Appendix 1: Relationship between Parent and

children nodes in hierarchical generalized Dirich-

let model

By the definition of the model we know that for all the nodes, except for the root

node, we have:

~θI ∼ GD(f(~θpa(I)), g(~θpa(I))) (A.1)

Also from the hierarchical condition for the model we have:

E[~θI |θpa(I)] = ~θpa(I) (A.2)

Using the formula for the average of the generalized Dirichlet distribution we have:

θpa(I)(1) =
fI(1)

fI(1) + gI(1)
−→

fI(1) =
θpa(I)(1)

1− θpa(I)(1)
gI(1)
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For the second element of the hierarchical generalized Dirichlet vector and using the

above equations we have:

θpa(I)(2) =
fI(2)

fI(2) + gI(2)

1
fI(1)
gI(1)

+ 1
−→

θpa(I)(2) =
fI(2)

fI(2) + gI(2)

1
θpa(I)(1)

1−θpa(I)(1)
+ 1
−→

gI(2) =
1−

∑2
k=1 θpa(k)

θpa(2)
fI(2)

Assuming that the relationship holds for all the parameters until the (k− 1)− th, for

the k − th parameter we have:

θpa(i)(k) =
fi(k)

fi(k) + gi(k)

1
θpa(i)(1)

1−θpa(i)(1)
+ 1

. . .

1
θpa(i)(k−1)

1−
∑k−1
kk=1 θpa(i)(kk)

+ 1
−→

By simple mathematical algebra on each of the mathematical fractions of the above

equation we end up having:

θpa(i)(k) =
fi(k)

fi(k) + gi(k)

1− θpa(i)(1)

1
×

1−
∑2

kk=1 θpa(i)(kk)

1− θpa(i)(1)
. . .

1−
∑k−1

kk=1 θpa(i)(kk)

1−
∑k−2

kk=1 θpa(i)(kk)

As it can be seen in the above equations the nominator of one fraction is cancelled

with the denominator of the next one and so eventually the entire relationship is

reduced to:

θpa(i)(k) =
fi(k)

fi(k) + gi(k)
(1−

k−1∑
kk=1

θpa(i)(kk))
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The same replacement as for the first parameter thus leads to the general parameter

relationship equation:

gpa(i)(k) =
(1−

∑k
kk=1 θpa(i)(kk)

θpa(i)(k)
fpa(i)(K)
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A.2 Appendix 2: Relationship between hierarchi-

cal generalized Dirichlet and hierarchical Dirich-

let models

It can be seen from the probability density function of the generalized Dirichlet dis-

tribution GD(~α, ~β) that under the following condition the generalized Dirichlet dis-

tribution is reduced to the Dirichlet distribution:

β(l) = α(l + 1) + β(l + 1)

for the hierarchical generalized Dirichlet model therefore the reduction conditions will

be:

gI(l) = fI(l + 1) + gI(l + 1)

from the relationship derived in Appendix a, we have:

(1−
∑l

k=1 θpa(I)(k)

θpa(I)(l)
fI(l) = fI(l + 1) +

(1−
∑l+1

k=1 θpa(I)(k)

θpa(I)(l + 1)
fI(l + 1)

Rearranging the above equation leads to the following restrain for preserving the

Dirichlet condition:

fI(l)

θpa(I)(l)

=
fI(l + 1)

θpa(I)(l+1)

The above relationship only holds when the value of the both sides equals a constant

value σ independent of the values of fI(l) and gI(l).

Therefore for the reduction to hierarchical Dirichlet model we have:

fI(l) = σθpa(I)(l)
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A.3 Appendix 3: Exponential Form of the Gener-

alized Dirichlet Distribution

In this Appendix we bring the exponential form of the generalized Dirichlet distri-

bution [17] . The exponential form delivers us certain relationships necessary for

obtaining the variational Bayes formulation.

generalized Dirichlet distribution belongs to the exponential family of distributions

and therefore in general it can be presented as follows:

P (~θ|~ξ) = Zt(~θ)× exp[
2d∑
l=1

Gl(~θ)Tl(~θ)] (A.3)

In above we have:

Zt(~θ) =
d∏
l=1

Γ(αl + βl)

Γ(αl)× Γ(βl)
(A.4)

Gl(~ξ) = αl, l : 1, ..., d (A.5)

Gl(~ξ) = βl−d − αl−d+1 − βl−d+1, l = d+ 1, ..., 2d− 1 (A.6)

G2d(~ξ) = βd (A.7)

Tl(~θ) = log(θl), l = 1, ..., d (A.8)

Tl(~θ) = log(1−
l−d∑
t=1

θt), l = d+ 1, ..., 2d (A.9)

In the above Z(~θ) is the normalization factor, ~G(~θ) is the natural parameter and

~T (~θ) is the sufficient statistics of the distribution. For the exponential family we

know that the derivative of the logarithm of normalization factor with respect to the

natural parameters equals the expected value of the sufficient statistics. Therefore

we have:

E[log(θl)] = Ψ(αl + βl)−Ψ(αl)−Ψ(βl), l = 1, ..., d (A.10)

E[log(1−
l∑

t=1

θt)] = Ψ(βl)−Ψ(αl + βl), l = 1, ..., d (A.11)
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A.4 Appendix 4: Break down of the L parameter

for LGDA

By factoring 4.33 we have:

L(~ξq,Φw; ~ξ, βw) =

Eq[log p(~θ|~ξ)] + Eq[log p(z)] + Eq[log p(w|z, βw)]

−Eq[log q(~θ)]− Eq[log q(z)] (A.12)

We proceed with deriving each of the five factors of the above equation in the follow-

ing.

Eq[log p(~θ|ξ)] =
d∑
l=1

[log Γ(αl + βl)− log Γ(αl)− log Γ(βl)] +

d∑
l=1

[(Ψ(γl)−Ψ(γl + δl))αl +

(Ψ(δl)−Ψ(γl + δl))(βl − αl+1 − βl+1))] (A.13)

Eq(log p(z|~θ)) =
N∑
n=1

d∑
l=1

φnl(Ψ(γl)−Ψ(γl + δl)) +

N∑
n=1

φn(d+1)(Ψ(δd)−Ψ(γd + δd)) (A.14)

Eq[log p(w|z, βw)] =
N∑
n=1

d+1∑
l=1

V∑
j=1

φnlw
j
n log(βw(lj)) (A.15)
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In above βw(lj) = p(wjn = 1|zl = 1).

Eq[log q(~θ)] =
d∑
l=1

(log Γ(γl + δl)− log Γ(γl)− log Γ(δl)) +

d∑
l=1

[(Ψ(γl)−Ψ(γl + δl))γl + (Ψ(δl)−Ψ(γl + δl))(δl − γl+1 − δl+1)] (A.16)

Eq[log q(z)] =
N∑
n=1

d=1∑
l=1

φnl log(φnl) (A.17)

Having the above formulas we proceed with finding parameter estimation.

A.4.1 Variational Multinomial

In order to derive the parameter φnl, the probability that the nth word is generated by

the l-th hidden topic, we proceed with maximizing A.45 with respect to φnl. Firstly

we separate the terms A.45 containing φnl:

L[φnl] = φnl(Ψ(γl)−Ψ(γl + δl)) + φnl log βw(lv) − φnl log φnl + λn(
d+1∑
ll=1

φn(ll) − 1)(A.18)

and

L[φn(d+1)] = φn(d+1)(Ψ(δd)−Ψ(γd + δd)) + φn(d+1) log β(d+1)v − φn(d+1) log φn(d+1) +

λn(
d+1∑
ll=1

φn(ll) − 1)(A.19)

and therefore we have:

∂L

∂φnl
= (Ψ(γl)−Ψ(γl + δl)) + log βlv − log φnl − 1 + λn (A.20)
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and

∂L

∂φn(d+1)

= (Ψ(δd)−Ψ(γd + δd)) + log β(d+1)v − log φn(d+1) − 1 + λn (A.21)

setting the above equation to zero leads to

φnl = βlve
(λn−1)e(Ψ(γl)−Ψ(γl+δl)) (A.22)

φn(d+1) = β(d+1)ve
(λn−1)e(Ψ(δd)−Ψ(γd+δd)) (A.23)

considering that
∑d+1

ll=1 φn(ll) = 1 for the normalization factor we have:

eλn−1 =
1∑d

l=1 βlve
(Ψ(γl)−Ψ(γl+δl)) + β(d+1)ve(Ψ(δd)−Ψ(γd+δd))

(A.24)

A.4.2 Variational generalized Dirichlet

To find the update equations for the variational generalized Dirichlet we again pro-

ceed with separating the terms in A.45 containing the variation generalized Dirichlet

parameters.

L[~ξq] =
d∑
l=1

[(Ψ(γl)−Ψ(γl+δl))αl+(Ψ(δl)−Ψ(γl+δl))×(βl−αl+1−βl+1)]+
N∑
n=1

φnl(Ψ(γl)−Ψ(γl+δl))+

N∑
n=1

φn(d+1)(Ψ(γd)−Ψ(γd+δd))−[
d∑
l=1

(log Γ(γl+δl)−log Γ(γl)−log Γ(δl))+
d∑
l=1

[(Ψ(γl)−Ψ(γl+δl))γl+

(Ψ(δl)−Ψ(γl + δl))(δl − γl+1 − δl+1)]] (A.25)

Setting the derivative of the above equation to zero, leads to the following update

equations:

γl = αl +
N∑
n=1

φnl (A.26)

δl = βl +
N∑
n=1

d+1∑
ll=l+1

φn(ll) (A.27)
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A.4.3 Topic based multinomial

In this appendix we derive the update equations necessary for estimating βw. Maxi-

mizing A.45 with of the βw leads to the same equation set as of LDA and we have:

L[βw] =
M∑
d=1

Ns∑
n=1

k+1∑
l=1

V∑
j=1

φdnlw
j
dn log βw(lj) +

k+1∑
l=1

λl

(
V∑
j=1

βw(ij) − 1

)
(A.28)

Taking the derivative with respect to βw(lj) and setting it to zero gives:

βw(lj) ∝
M∑
d=1

Nd∑
n=1

φdnlw
j
dn (A.29)

A.4.4 Generalized Dirichlet parameters

We choose the terms of equation A.45 containing the generalized Dirichlet parameters

~ξ.

L[~ξ] =
M∑
m=1

(log(Γ(αl + βl))− log(Γ(αl))− log(Γ(βl))) +
M∑
m=1

[(Ψ(γml)−Ψ(γml + δml))αl

+(Ψ(δml)−Ψ(γml + δml))βl](A.30)

The derivative of the above equation in respect to the generalized Dirichlet parameters

gives:

∂L[~ξ]

∂αl
= M(Ψ(αl + βl)−Ψ(αl)) +

M∑
m=1

(Ψ(γml)−Ψ(γml + δml)) (A.31)

and

∂L[~ξ]

∂βl
= M(Ψ(αl + βl)−Ψ(βl)) +

M∑
m=1

(Ψ(δml)−Ψ(γml + δml)) (A.32)

It can be seen from the equations above that the derivative of A.45 with respect to

each of the generalized Dirichlet parameters αl and βl depend not only on their own

values but also on each other. To solve the optimization problem therefore we propose
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using the Newton-Raphson method. In order to solve the Newton Raphson method

we need to have access to the Hessian Matrix of A.45 in respect to the parameter

space. The Hessian matrix of the likelihood however takes a peculiarly interesting

form as follows:

∂2L[~ξ]

∂α2
l

= M(Ψ‘(αl + βl)−Ψ‘(αl)) (A.33)

∂2L[~ξ]

∂β2
l

= M(Ψ‘(αl + βl)−Ψ‘(βl)) (A.34)

∂2L[~ξ]

∂αl∂βl
= M(Ψ‘(αl + βl)) (A.35)

∂2L[~ξ]

∂βl∂αl
= M(Ψ‘(αl + βl)) (A.36)

The other entries of the Hessian Matrix are zero. The above equations give the

Hessian matrix a block diagonal form and therefore the reverse Hessian matrix will

be the reverse of 2× 2 matrix on the diagonal and is easily derived.
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A.5 Appendix 5: Exponential Form of the Beta-

Liouville Distribution

Here, we present the exponential form of the Beta-Liouville distribution. The expo-

nential form delivers us certain relationships necessary for developing the variational

Bayes inference that we shall adopt. It is straightforward to show the Beta-Liouville

can be written in the following exponential form [17]:

P (~θ|~ξ) = exp[
D+2∑
l=1

Gl(~θ)Tl(~θ)− Φ(~ξ)] (A.37)

In above we have:

Gd(~ξ) = αd, d = 1, . . . , D GD+1 = (~ξ) = α GD+2 = β (A.38)

Td(~θ) = log(θd)− log(
D∑
l=1

θl), d = 1, . . . , D TD+1(~θ) = log(
D∑
l=1

θl) TD+2(~θ) = log(1−
D∑
l=1

θl)

(A.39)

−Φ(~ξ) = log(Γ(α)) + log(Γ(β)) +
D∑
l=1

log(Γ(αl))− log(Γ(
D∑
l=1

αl))− log(Γ(α + β))

(A.40)

In the above −Φ(~ξ) is the log normalization factor, ~G(~ξ) = (G1(~ξ), . . . , G2D(~ξ)) is

the natural parameter and ~T (~θ) = (T1(~θ), . . . , T2D(~θ)) is the sufficient statistics of the

distribution. For the exponential family of distributions, we know that the derivative

of the logarithm of normalization factor with respect to the natural parameters equals

the expected value of the sufficient statistics. Therefore, we have:

Eθ[log θd − log(
D∑
l=1

θl)] = Ψ(αd)−Ψ(
D∑
l=1

αl) (A.41)

Eθ[log(
D∑
l=1

θl)] = Ψ(α)−Ψ(α + β) (A.42)

Eθ[log(1−
D∑
l=1

θl)] = Ψ(β)−Ψ(α + β) (A.43)
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from the above equations we have:

Eθ[log θd] = Ψ(αd)−Ψ(
D∑
d=1

αd) + Ψ(α)−Ψ(α + β) (A.44)

The above equations allows us to derive the needed variational equations.

A.6 Break down of the L parameter for LBLA

By factorizing L(~ξq,Φw; ~ξ, βw) in Eq. 4.33, we obtain:

L(~ξq,Φw; ~ξ, βw) = Eq[log p(~θ|~ξ)] + Eq[log p(z)] + Eq[log p(w|z, βw)]− Eq[log q(~θ)]− Eq[log q(z)](A.45)

We proceed with deriving each of the five factors of the above equation in the follow-

ing.

Eq[log p(~θ|ξ)] = log(Γ(
D∑
d=1

αd)) + log(Γ(α + β))− log(Γ(α))

− log(Γ(β))−
D∑
d=1

log Γ(αd) +
D∑
d=1

αd(Ψ(γd)−Ψ(
D∑
l=1

γl))

+α(Ψ(αγ)−Ψ(αγ + βγ)) + β(Ψ(βγ)−Ψ(αγ + βγ)) + β(Ψ(βγ)−Ψ(αγ + βγ))(A.46)

and

Eq(log p(z|~θ)) =
N∑
n=1

D∑
d=1

φnd(Ψ(γd)−Ψ(
D∑
l=1

γl) + Ψ(αγ)−Ψ(αγ + βγ))

+
N∑
n=1

φn(D+1)(Ψ(βγ)−Ψ(αγ + βγ)) (A.47)

Eq[log p(w|z, βw)] =
N∑
n=1

D+1∑
l=1

V∑
j=1

φnlw
j
n log(βw(lj)) (A.48)
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where βw(lj) = p(wjn = 1|zl = 1).

Eq[log q(~θ)] = log(Γ(
D∑
l=1

γl)) + log(Γ(αγ + βγ))− log(Γ(αγ))− log(γ(βγ))−
D∑
l=1

log Γ(γl)

+
D∑
d=1

γd(Ψ(γd)−Ψ(
D∑

dd=1

γdd) + Ψ(αγ)−Ψ(αγ + βγ))

+ αγ(Ψ(αγ)−Ψ(αγ)−Ψ(αγ + βγ)) + βγ(Ψ(βγ)−Ψ(αγ + βγ)) (A.49)

Eq[log q(z)] =
N∑
n=1

D+1∑
l=1

φnl log(φnl) (A.50)

Having the above formulas we proceed with finding the parameters estimates.

Appendix 2.1: Variational Multinomial

In order to derive the parameter φnl, the probability that the nth word is generated by

the l-th hidden topic, we proceed with maximizing A.45 with respect to φnl. Firstly,

we separate the terms A.45 containing φnl:

L[φnl] = φni(Ψ(γi)−Ψ(
D∑
l=1

γl)) + φni log βw(iv) − φni log φni + λn(
D∑
l=1

φn(l) − 1)

and

L[φn(D+1)] = φn(D+1)(Ψ(βγ −Ψ(αγ + βγ)) + φn(D+1) log β(D+1)v − φn(D+1) log φn(D+1)

+λn(
D∑
i=1

φn(i) − 1)(A.51)

and therefore we have:

∂L

∂φnl
= (Ψ(γd)−Ψ(

D∑
l=1

γl)) + log βw(iv) − log φni − 1 + λn (A.52)
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and

∂L

∂φn(D+1)

= (Ψ(βγ)−Ψ(αγ + βγ)) + log β(D+1)v − logφn(D+1) − 1 + λn (A.53)

setting the above equation to zero leads to

φnl = βlve
(λn−1)e(Ψ(γi)−Ψ(

∑D
i=1 γi)) (A.54)

φn(D+1) = β(D+1)ve
(λn−1)e(Ψ(βγ)−Ψ(αγ+βγ)) (A.55)

considering that
∑D+1

d=1 φn(d) = 1 for the normalization factor we have:

eλn−1 =
1

β(D+1)ve(Ψ(βγ)−Ψ(αγ+βγ)) +
∑D

i=1 βive
(Ψ(γd)−Ψ(

∑D
i=1 γi))

(A.56)

Appendix 2.2: Variational Beta-Liouville

To find the update equations for the variational BL we again proceed with separating

the terms in A.45 containing the variation BL parameters.

L[~ξq] = αd(Ψ(γd))−Ψ(
D∑
l=1

γl) + α(Ψ(αγ)−Ψ(αγ + βγ)) + β(Ψ(βγ)−Ψ(αγ + ββ)) +

N∑
n=1

φni(Ψ(γi)− ψ(
D∑
l=1

γl) + Ψ(αγ)−Ψ(αγ + βγ)) +
N∑
n=1

φn(D+1)(Ψ(βγ)−Ψ(αγ + βγ))−

(log(Γ(
D∑
l=1

γl)) + log(γ(αγ + βγ))− log(Γ(αγ))− log(γ(βγ))− log γ(γi)

+ γi(Ψ(γi) + Ψ(αγ)−Ψ(αγ + βγ))−Ψ(
D∑
l=1

γl)
D∑
d=1

γd + αγ(Ψ(αγ)−Ψ(αγ + βγ))

+ βγ(Ψ(βγ)−Ψ(αγ + βγ))) (A.57)
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selecting the terms containing variational BL variables γi, αγ, βγ we have:

l(γi) = αi(Ψ(γi))−Ψ(
D∑
l=1

γl)
D∑
l=1

αl +
N∑
n=1

φni(Ψ(γi)−Ψ(
D∑
l=1

γl)) (A.58)

− (log(Γ(
D∑
l=1

γl))− log Γ(γi) + γi(Ψ(γi))−Ψ(
D∑
l=1

γl)
D∑
d=1

γd)

L[αγ] = α(Ψ(αγ)−Ψ(αγ + βγ)) + β(−Ψ(αγ + βγ)) + (Ψ(αγ)−Ψ(αγ + βγ))
N∑
n=1

D∑
i=1

φni

+
N∑
n=1

φn(D+1)(−Ψ(αγ + βγ))

− (log(αγ + βγ)− log(Γ(αγ)) + αγ(Ψ(αγ)−Ψ(αγ + βγ) + βγ(−Ψ(αγ + βγ)))(A.59)

Taking the derivative of the above equations in respect to their BL parameter gives:

∂L[γi]

∂γi
= αiΨ

′(γi)−Ψ′(
D∑
l=1

γl)
D∑
l=1

αl + Ψ′(γi)
N∑
n=1

φni −DΨ′(
D∑
l=1

γl)
N∑
n=1

φni

− (Ψ(
D∑
l=1

γl) + γiΨ
′(γi)−Ψ′(

D∑
l=1

γl)
D∑
d=1

γd −Ψ(
D∑
l=1

γl)) (A.60)

and

∂L[γi]

∂αγ
= α(Ψ′(αγ)−Ψ′(αγ + βγ)) + β(−Ψ′(αγ + βγ)) + (Ψ′(αγ)−Ψ′(αγ + βγ))

N∑
n=1

D∑
d=1

φnd

+
N∑
n=1

φn(D+1)(−Ψ′(αγ + βγ))− (αγ(Ψ
′(αγ)−Ψ′(αγ + βγ)) + βγ(−Ψ′(αγ + βγ))) (A.61)
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Setting the above equations to zero leads to the variational BL update equations.

γi = α +
N∑
n=1

φni (A.62)

αγ = α +
N∑
n=1

D∑
d=1

φnd (A.63)

βγ = β +
N∑
n=1

φn(D+1) (A.64)

Appendix 2.3: Topic based multinomial

In this appendix we derive the updating equations necessary for estimating βw. Max-

imizing Eq. A.45 with respect to βw leads to the same equation as in the LDA case:

L[βw] =
M∑
d=1

Ns∑
n=1

D+1∑
l=1

V∑
j=1

φdnlw
j
dn log βw(lj) +

D+1∑
l=1

λl(
V∑
j=1

βw(lj) − 1) (A.65)

Taking the derivative with respect to βw(lj) and setting it to zero gives:

βw(lj) ∝
M∑
d=1

Nd∑
n=1

φdnlw
j
dn (A.66)

Appendix 2.4: Beta-Liouville parameters

We choose the terms of A.45 containing the BL parameters ~ξ.

L[~ξ] =
M∑
m=1

(log(Γ(
D∑
l=1

αl)) + log(Γ(α + β))− log Γ(α)− log γ(β)−
D∑
i=1

log Γ(αi)

+
D∑
i=1

αi(Ψ(γmi)−Ψ(
D∑
l=1

γm(l))) + α(Ψ(αmγ)−Ψ(αmγ + βmγ)) + β(Ψ(βmγ)−Ψ(αmγ + βmγ)))
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The derivative of the above equation in respect to the BL parameters gives:

∂L[~ξ]

∂αl
= M(Ψ(

D∑
l=1

αl)−Ψ(αl)) +
M∑
m=1

(Ψ′(γml)−Ψ(
D∑
l=1

γm(l))) (A.67)

∂L[~ξ]

∂α
= M [Ψ(α + β)−Ψ(α)] +

M∑
m=1

(Ψ(αmγ)−Ψ(αmγ + βmγ)) (A.68)

∂L[~ξ]

∂β
= M [Ψ(α + β)−Ψ(β)] +

M∑
m=1

(Ψ(βmγ)−Ψ(αmγ + βmγ)) (A.69)

It can be seen from the equations above that the derivative of A.45 with respect to

each of the BL parameters αl and βl depend not only on their own values but also on

each other. To solve the optimization problem therefore we use the Newton-Raphson

method. In order to solve the Newton Raphson method we need to compute the

Hessian matrix of A.45 with respect to the parameter space as follows:

∂2L[~ξ]

∂αlαj
= M(−δ(i, j)Ψ′(αi) + Ψ′(

D∑
l=1

αl)) (A.70)

∂2L[~ξ]

∂α2
= M(Ψ′(α + β)−Ψ′(α)) (A.71)

∂2L[~ξ]

∂β∂α
= MΨ′(α + β) (A.72)

∂2L[~ξ]

∂β2
= M(Ψ′(α + β)−Ψ′(β)) (A.73)

(A.74)

The above Hessian matrix closely resembles the Hessian matrix of the Dirichlet pa-

rameters in LDA model. In fact, the above matrix can be divided into two completely

separate matrices consisting of αd, α and β parameters. The parameter derivation of

each of the two parts will be identical to the Newton-Raphson model offered in LDA.
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