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Abstract 

Development of an Active Shape Model  

Using the Discrete Cosine Transform 
 

Kotaro Yasuda 
 

 

 Facial recognition systems have been successfully applied in security, law-

enforcement and human identification application, for automatically identifying a human 

in a digital image or a video frame. In a feature-based face recognition system using a set 

of features extracted from each of the prominent facial components, automatic and 

accurate localization of facial features is an essential pre-processing step. The active 

shape model (ASM) is a flexible shape model that was originally proposed to 

automatically locate a set of landmarks representing the facial features. Various improved 

versions of this model for facial landmark annotation have been developed for increasing 

the shape fitting accuracy at the expense of significantly increased computational 

complexity. 

 This thesis is concerned with developing a low-complexity active shape model by 

incorporating the energy compaction property of the discrete cosine transform (DCT). 

Towards this goal, the proposed ASM, which utilizes a 2-D profile based on the DCT of 

the local grey-level gradient pattern around a landmark, is first developed. The ASM is 

then utilized in a scheme of facial landmark annotation for locating facial features of the 

face in an input image. The proposed ASM provides two distinct advantages: (i) the use 

of a smaller number of DCT coefficients in building a compressed DCT profile 
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significantly reduces the computational complexity, and (ii) the process of choosing the 

low-frequency DCT coefficients filters out the noise contained in the image. Simulations 

are performed to demonstrate the superiority of the proposed ASM over other improved 

versions of the original active shape model in terms of the fitting accuracy as well as in 

terms of the computational complexity. It is shown that the use of the proposed model in 

the application of facial landmark annotation significantly reduces the execution time 

without affecting the accuracy of the facial shape fitting. 
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iĝ  at a candidate position d 

 

ig  Mean grey-level intensity gradient profile for the ith landmark 

 

)( idgf  Mahalanobis distance between the mean grey-level intensity gradient 

profile for the ith landmark and a candidate profile at a position d 

 

bestidg  Subset of 
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CHAPTER 1  

Introduction 

 

1.1 Background 

In recent advances in biometrics, facial recognition has been one of the promising 

research areas. The goal of facial recognition is to automatically identify a human in a 

digital image or a video frame using faces stored in a database. Facial recognition has 

been successfully applied in security, law-enforcement and human identification 

applications [1].  

In general, a face recognition system consists of three stages, acquisition, feature 

extraction and classification. In the acquisition stage, a region containing a face is 

detected from an input image, and some pre-processing is performed on the detected 

region. In the feature extraction stage, a set of meaningful features is extracted from the 

detected region. A database of feature set is built in the training phase, using the feature 

sets extracted from a set of training images. In the classification stage, the distance 

between the feature set extracted from a test image and each feature set in the database is 

measured using a distance metric to identify the face in the test image.  

Facial recognition systems can be categorized into classes of systems employing 

holistic approaches [1]-[9] and feature-based approaches [10]-[19]. In the holistic 

approach, the feature set is extracted from the entire face region in an image, whereas in 

the feature-based approach, the feature set is extracted from each of the prominent facial 
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components, such as eyes, nose and mouth. Since these facial components are treated 

separately, the feature-based approach is more robust to positional variations of the face 

in the image compared to the holistic approach [20]. This approach, however, relies 

heavily on an accurate localization of facial features. Thus, automatic and accurate 

localization of facial features is an essential pre-processing step in a feature-based facial 

recognition system.  

Shape models capable of encompassing facial components could be useful for 

localizing facial features. In the literature, various approaches that model shape and shape 

variations have been proposed [21]-[31]. Active shape model (ASM) [31] is a flexible 

model that has widely been utilized in order to automatically locate a set of landmarks 

representing a target object in an image [32]-[38]. In an application of ASM in facial 

landmark localization, the facial features are represented by a set of landmarks, and ASM 

automatically locates these landmarks by fitting its model shape to a facial shape in an 

image.  

 

1.2 A Brief Review of Active Shape Model 

Active shape model (ASM) was first introduced in 1994 in [31], and has been 

successfully employed to various computer vision applications including locating organs 

in medical images, face recognition and hand-written character recognition [31]-[34]. It 

utilizes a point distribution model (PDM) and a local grey-level gradient model (LGGM) 

to iteratively fit the model shape generated by ASM to a target object in an image. The 

point distribution model is used for generating shapes similar to those in the training set, 

and the LGGM is built using 1-D profiles, each of which represents a local grey-level 
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gradient pattern along a line centered at a particular landmark of the model shape. The 

local grey-level gradient pattern is then utilized for searching a new position of each 

landmark along a line centered at the landmark. The model shape is iteratively reformed 

for its better fit to the target object in the image. The classical ASM performs well if the 

landmarks of the initial model shape are placed close to their targets. However, the initial 

model shape could be placed only roughly whereby the landmarks often get placed away 

from their targets. Thus resulting in long search lines and consequently making the target 

search computationally expensive. It could also distract the landmarks by local structures 

in the image.  

In order to overcome the above drawbacks of the classical ASM, a multi-

resolution approach of ASM, known as multi-resolution ASM (MRASM), is proposed in 

[34]. In this scheme, an ASM is first applied to a coarse image to roughly place the model 

shape near the target object, and then applied to finer images to refine the shape fitting. 

An image pyramid containing a set of images with different resolutions is used in order to 

build the LGGM for multiple image resolutions. For each level of the image pyramid, the 

corresponding LGGM is utilized for searching a new position of each landmark. Unlike 

the classical ASM, the multi-resolution approach requires only short search lines; thus 

reducing the risk of distraction of the landmarks by local structures in the image, and 

decreasing the computational complexity [34]. However, the 1-D profile used in the 

classical ASM and MRASM does not sufficiently represent the grey-level intensity 

gradient pattern around each landmark to distinguish the landmarks from one another 

[39]. Consequently, the search can converge to a local minimum and produces poor 

fitting results. 
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For capturing grey-level intensity gradient information around each landmark 

more accurately, 2-D profiles are introduced in [35]. A 2-D profile is built by sampling 

grey-level intensities of a square region around each landmark, and computing their 

intensity gradients in the x and y directions. This profile represents the intensity gradient 

information in a larger region around the landmark compared to that in the 1-D profile. 

Stacked active shape model (STASM), introduced in [35], proposes the use of two ASM 

searches sequentially, a search using the classical ASM with 1-D profiles to roughly 

place the model shape, and then a search using an ASM with 2-D profiles to refine the 

shape fitting. This approach yields relatively more accurate shape fitting results. However, 

the search can still converge to a local minimum [39]. Furthermore, the use of 2-D 

profiles significantly increases the computational complexity of the search. 

 In order to further improve the shape fitting accuracy, a model, referred to as an 

active shape model with a PCA-based LGGM, is proposed in [36]. It employs the 

principal component analysis (PCA) in the LGGM to model the variations of grey-level 

intensity gradients in a square region around each landmark. In this scheme, a candidate 

2-D profile of a particular landmark is mapped onto a PCA subspace to obtain a set of 

projection coefficients, and a new profile is constructed by using this set of coefficients. 

The weighted reconstruction error between the new profile and the candidate profile is 

computed to determine a new position of the landmark [36]. The use of the PCA 

contributes to improving the shape fitting accuracy and to reducing the risk of the search 

converging to a local minimum [39]. However, the computational complexity of ASM 

with a PCA-based LGGM is much larger than that of the techniques using other versions 

of ASM, since the computation of the PCA is expensive. 
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 Several other improved versions of ASM have also been reported in the literature. 

An improved ASM using the edge information is proposed in [37] in order to improve the 

shape fitting of the landmarks on the face contour by building better local texture models 

for the landmarks. The authors in [38] employ the color information to detect the center 

of the mouth and the eyes to improve the shape initialization of ASM. These 

enhancements contribute to slightly improving the shape fitting accuracy with a small 

increase in the computational complexity. However, the shape fitting accuracy is much 

lower than that obtained by the stacked ASM and ASM with a PCA-based LGGM.  

 

1.3 Objective and Scope of the Thesis 

As seen from the review of the active shape model and its modified versions, conducted 

in the previous section, the stacked active shape model as proposed in [35] provides a 

significant improvement in the shape fitting accuracy by using both the 1-D and 2-D 

profiles. The active shape model with a PCA-based LGGM developed in [36] increases 

the accuracy of the shape fitting even further by making use of a subspace offered by the 

PCA technique. However, these improvements are achieved at the expense of a 

substantial increase in the computational complexity.  

This thesis is aimed at developing a low-complexity active shape model by 

incorporating the energy compaction property of the discrete cosine transform (DCT). 

The proposed ASM utilizes a novel 2-D profile of a landmark, which is based on the 

discrete cosine transform, in order to reduce the computational complexity without 

affecting the facial shape fitting accuracy. The development of the proposed model puts 

emphasis on reducing the execution time of a facial shape search while providing a shape 



 

6 

 

 

 

fitting accuracy that is better or the same as that provided by the stacked ASM or ASM 

with a PCA-based LGGM. 

 

1.4 Organization of the Thesis 

This thesis is organized as follows.  

 Chapter 2 presents an overview of the active shape model (ASM) and the discrete 

cosine transform (DCT) as an essential background material for the development of the 

work undertaken in this thesis. Some improved versions of ASM to be used as a basis for 

developing the proposed ASM are also presented.  

 In Chapter 3, a low-complexity ASM, which utilizes a novel 2-D profile 

constructed by making use of the energy compaction property of the DCT, is proposed. 

The 2-D profile consists of a subset of the DCT coefficients of the profile matrix 

representing the local grey-level gradient pattern around a particular landmark of a facial 

shape. It is shown that the size of the new profile is much smaller than that of the 

conventional spatial-domain 2-D profile, since the new profile is built by using only a 

small subset of DCT coefficients. A detailed building process of the novel profile is 

presented along with an illustrative example that demonstrates the building process. A 

theoretical computational complexity analysis of stacked ASM [35] and that of the 

proposed ASM is also presented in this chapter.  

 In Chapter 4, a facial shape search scheme using the proposed ASM for localizing 

a facial shape in an image is presented along with a detailed step-by-step procedure. 

Experiments are then performed in order to examine the effectiveness of the proposed 

ASM in an automatic facial landmark annotation of frontal faces. The performance 
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results of the scheme of the facial landmark annotation, using the proposed and two other 

ASMs, namely, stacked ASM [35] and ASM with a PCA-based LGGM [36], are 

provided and compared in terms of the shape fitting accuracy as well as in terms of the 

computational complexity.   

 Chapter 5 concludes this thesis by summarizing the main contributions made in 

this thesis, and suggesting some future work that can be undertaken along the ideas and 

schemes presented in this thesis. 
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CHAPTER 2  

Background Material 

 

This chapter provides an overview of active shape model (ASM) and discrete cosine 

transform (DCT) which are essential background materials in the discussions of the 

development and solution presented in this thesis. In the next section, the ASM is briefly 

explained to show the essence of the problem addressed in this thesis. Then, an overview 

of the DCT upon which the solution to the problem in this thesis is built is given. Finally, 

a concise summary of this chapter is presented. 

 

2.1 Active Shape Model 

Active shape model is a flexible shape model widely used in automatically locating a set 

of landmarks that forms the shape of any known object in an image. In general, the shape 

generated by the ASM can be freely deformed by adjusting the model parameters to best 

fit the target object in the image. The model parameters are constrained to generate 

shapes that are consistent with the shapes in the training set [33]. The active shape model 

consists of two sub-models called point distribution model and local grey-level gradient 

model. In this section, the shape of human faces is characterized by using the ASM. 
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2.1.1. Point Distribution Model 

Point distribution model (PDM) is a deformable shape model, which is the foundation of 

ASM, and it is built by capturing the shape variations in a given set of shapes. The 

modelling process involves collecting and preparing the training shapes, aligning the 

collected shapes, and capturing the statistics of the aligned shapes. 

 

A. Collecting and Preparing the Training Shapes 

In order to correctly model the shape of human faces, it is first represented by a set of 

landmarks. Each landmark describes a particular part of the face such as the tip of nose 

and the eye pupils as shown in Figure 2.1. A set of training images is prepared to collect a 

range of facial shapes of various individuals. The landmarks are then manually labelled 

for each training image to generate a set of training shapes.  

 

 

Figure 2.1: The landmarks manually labelled on a facial image. 
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B. Aligning the Collected Shapes 

The training shapes previously prepared all differ in size, orientation and position, since 

these shapes come from diverse conditions and individuals. Since the PDM is built by 

analyzing the coordinates of each landmark of the training shapes, corresponding 

landmarks from different shapes must be aligned to one another with respect to a set of 

axes [31]. With this in mind, alignment of the shapes is done by using the generalized 

procrustes analysis (GPA) which scales, rotates and translates each training shape so that 

the corresponding landmarks in the various images of the training set are as close as 

possible [42]. The aligned shapes are then statistically analyzed as described next. 

 

C. Capturing the Statistics of the Aligned Shapes 

Using the aligned shapes, statistical information of the training shapes is obtained. First, 

each shape formed by n landmarks is represented by a shape vector 

],,,[ 2121 nn yyyxxx x         (2.1) 

where 
i

x  and 
i

y  are the x and y coordinates of the ith landmark, and n is the number of 

landmarks. Principal component analysis (PCA) is then performed to analyze the 

variation of the aligned shapes. The mean of the N training shapes is calculated as 





N

iN 1

1

i
xx          (2.2) 

where 
i

x  is the ith shape in the set of the N training images. By subtracting the mean 

shape calculated above from each training shape, the covariance matrix of the deviations 

from the mean is calculated as follows. 
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



N

i

T

N 1

))((
1

x
i

xx
i

x
s

S        (2.3) 

The eigenvectors and eigenvalues of the covariance matrix are subsequently obtained by 

using the equation, 

kks vvS k          (2.4) 

where kv  and k  are, respectively, the kth eigenvector and eigenvalue of sS , and k = 1, 

2,…, 2n. The eigenvectors corresponding to the largest eigenvalues are the principal axes 

in the 2n-dimensional space, and describe the significant variation of the shapes [31]. The 

majority of variations can be described by the eigenvalues corresponding to the t largest 

eigenvalues (t < 2n), since the eigenvectors corresponding to the smaller eigenvalues 

have very small effects on the shape variation. As a result, any shape x  in the training set 

can be approximated by the mean shape x  and a weighted sum of t eigenvectors. This is 

mathematically represented as 

Pbxx           (2.5) 

where ),,( t21 vvvP   is a matrix whose columns are the t eigenvectors corresponding 

to the first t largest eigenvalues, and 
T

tbbb ],,,[ 21 b  is a vector of weights applied to 

the eigenvectors. These weights (bk) are in fact the model parameters which control the 

shape generated by the PDM; thus, new facial shapes can be generated by varying these 

parameters. At the same time, these parameters are constrained in order for the model 

shape to be consistent with those in the training set. Since most of the population lies 

within three standard deviations of the mean, the model parameters are chosen to lie 

within the range given by 

kkk b  33           (2.6) 
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where k  is the eigenvalue that corresponds to the kth eigenvector of the t eigenvectors. 

To illustrate how the PDM works, a small set of training shapes as shown in Figure 2.2 is 

used to build the PDM. Figure 2.3 shows the shape generated by the PDM by varying 

each of the first three modes (the model parameters), b1, b2 and b3, in the range specified 

by (2.6). As seen from this figure, variation of the model parameters results in the model 

shapes that are deviated versions of the mean shape.  

 

 

Figure 2.2: Training shapes used to build the PDM [32]. 

 

The point distribution model given by (2.5) is utilized to approximate a given target 

shape sx  through an appropriate choice of the model parameters b  by minimizing the 

expression 

2
)( Pbxxs T          (2.7) 

where T  is a similarity transform that transforms the model shape from the model space 

to the image space by scaling, rotating and translating the model shape. The model 
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parameters bestb  and the transformation parameters bestyx stt ),,,(   that make the resulting 

model shape to best fit the target shape are found. Thus, an approximation of the target 

shape can be simply represented by these parameters. Local grey-level gradient model 

described next is utilized to move each landmark of the model shape to a new location to 

generate a new shape. 

 

 

Figure 2.3: Generated shapes by varying each of the first three modes (parameters) within 

the three standard deviations of the mean shape [32]. 

 

2.1.2. Local Grey-Level Gradient Model 

As seen previously, the point distribution model can generate a range of facial shapes by 

controlling its model and transformation parameters. Local grey-level gradient model 

(LGGM) describes the grey-level gradient pattern in the vicinity of each landmark in the 

image containing the face in question. Given a model shape generated by the PDM, the 

goal of the LGGM is to determine a new position for each landmark of the model shape 
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to generate a new shape which outlines the face in question better than the model shape. 

To build the LGGM, a grey-level intensity gradient profile ijg  for each landmark i of 

each shape j in the training set containing N shapes is first constructed. The classical 

ASM in [33] employs 1-D profile, which is generated by sampling grey-level intensities 

of m pixels centered at each landmark. The direction of the profile is chosen to be along a 

line orthogonal to the shape boundary at each landmark as shown in Figure 2.4. 

 

 

Figure 2.4: Directions of the 1-D grey-level intensity gradient profile used in [33]. 

 

 In order to construct the profile ijg , each element of the sampled pixel intensities 

is replaced by its intensity gradient, which is the difference between intensities of the 

pixel and its neighbouring pixel. In the construction of the profiles, the gradient values 

rather than the pixel intensities are used for reducing the effect of global intensity 

changes from image to another image in the training set [35]. Each gradient value is 
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subsequently normalized by dividing by the sum of absolute values of the gradients in a 

profile as 





m

k

ijkg
1

ˆ
ij

ij

g
g          (2.8) 

where ijkg  is the kth element in the profile ijg . As a result, the normalized profile is 

robust to uniform scaling and the addition of a constant [31]. Finally, the LGGM for each 

landmark is represented by the mean profile given by 





N

jN 1

ˆ
1

iji gg          (2.9) 

and the covariance matrix given by 





N

j

T

N 1

)ˆ)(ˆ(
1

iijiiji ggggS , ni 1 .     (2.10) 

The local grey-level gradient model is thus used for determining the best position for 

each landmark using its statistical information given by the mean profile and covariance 

matrix for each landmark. A comprehensive procedure of finding a shape in an image 

using the PDM and the LGGM is described next. 

 

2.1.3. Search of a Face in an Image 

Searching a face in an image is equivalent to automatically finding the best location of 

the landmarks in the face. This is done by optimally fitting the landmarks obtained by 

using the PDM and the LGGM described previously onto the given face. This search 

involves an iterative refinement of the model shape by moving each landmark of a 

current model shape to a new position by using the LGGM, and then updating the current 



 

16 

 

 

 

model parameters b  of the PDM and the transformation parameters ),,,( stt yx  in order 

to achieve a better fit of the model shape to the given face. The search method consists of 

four steps described below. 

 

A. Generating an Initial Model Shape 

The search method starts with a detection of the face in the image containing the face. 

Viola et al. in [43] have introduced a fast detection technique in which the face is 

detected by locating a rectangular region containing the face. This technique makes use 

of a set of simple Haar-like features for classifying the various rectangular regions 

containing the face. Evaluation of these features is accelerated by a fast computation and 

making use of a so-called integral image. A learning algorithm, known as AdaBoost, is 

used for selecting a smaller set of important features from the large set of the computed 

Haar-like features in order to build a set of weak classifiers. These weak classifiers are 

combined in cascade so as to quickly discard the non-face regions. 

 The rectangular region is represented by its center point ),( cc yx , width w , and 

height h , and includes most of the facial features as shown in Figure 2.5. In order to 

generate an initial model shape, the model and transformation parameters are determined 

by using the rectangular region containing the face. The mean shape x  of the training set 

is mapped onto the given image with ),( cc yx  as the reference point, as shown by a red 

line in Figure 2.5. The shape is then scaled up or down and rotated by respectively 

assigning a value to the scaling parameter s  and the rotation parameter   depending on 

the value of w  and h  so as to approximately fit it in an appropriate region (say 90%) of 
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the rectangular region, as shown in Figure 2.6 [35]. Therefore, the initial model shape is 

represented by the model parameters 0b0   and the transformation parameters 

0),,,( stt yx  where 
cx xt   and cy yt  , and subsequently used for finding a new shape 

with the LGGM in the search method.  

 

 

Figure 2.5: An example of the rectangular region detected by the face detector, and the 

mean shape mapped onto the image with ) ,( cc yx  as the reference point. 

 

 

B. Refining the Landmark Positions using LGGM 

Given the initial model shape represented by 0b  and 0),,,( stt yx , each landmark of the 

model shape is moved to a suitable position determined by using the LGGM to generate a 

new shape. The grey-level pixel intensities of a pre-specified number (say L > m) of  
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Figure 2.6: An example of the initial model shape approximately fitted in the rectangular 

region. 

 

pixels centered at a particular landmark i of the current model shape are sampled from the 

image. The intensity gradients 
iĝ  are then calculated from the sampled pixel intensities 

as described in Section 2.1.2. A subset idg  of the intensity gradients 
iĝ  of length m pixels 

centered at a candidate position d is normalized using (2.8). The cost of fit of idg  to the 

mean profile ig  for the ith landmark of the LGGM is evaluated using the Mahalanobis 

distance given by  

)()()( iid

1

iiidid ggSggg  Tf       (2.11) 

where iS  is the covariance matrix for the ith landmark. The cost of fit is evaluated at L - 

(m - 1) candidate positions on 
iĝ  using (2.11) including that at the landmark in question 

(i.e. the ith landmark), as shown in Figure 2.7. The position dbest at which the sub-profile 

bestidg  yields the smallest Mahalanobis distance (the minimum cost of fit) is then selected 
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as the new position of the landmark. The above process is repeated for each landmark of 

the model shape to obtain a new shape Sx  formed by the new positions of the landmarks. 

The new model and transformation parameters are calculated using the shape Sx  as 

described next. 

 

 

Figure 2.7: Sampled intensity gradient profile 
iĝ , the subset idg extracted from 

iĝ , the 

mean profile ig  from the LGGM aligned to the subset idg , and the cost of fit )( idgf  [32]. 

 



 

20 

 

 

 

C. Finding a Model Shape by Calculating the Model and Transformation Parameters 

Given the new shape Sx , the model parameters bestb  and the transformation parameters 

bestyx stt ),,,(   are obtained by minimizing the expression given by (2.7) using the 

similarity transform T  and the PDM. An iterative method to minimize the expression is 

comprehensively presented in [32]. Consequently, the shape Sx  is closely approximated 

by the model shape given by )(),,,( bestPbx 
bestyx sttT  , while satisfying the constraints of the 

model parameters defined by (2.6). 

 

D. Updating the Model and Transformation Parameters 

The model parameters b  and the transformation parameters ),,,( stt yx  are then updated 

by assuming the best parameters 
bestb  and ),,,( bestbestybestxbest stt  : 

xbestx tt         (2.12) 

ybesty tt         (2.13) 

best         (2.14) 

bestss         (2.15) 

bestbb         (2.16) 

The updated parameters b  and ),,,( stt yx  represent a model shape that approximates the 

shape Sx  while satisfying the shape constraints imposed by (2.6). The model shape is 

then used as the starting shape in the second iteration of the search method. The steps B, 

C and D described above are repeated until the model shape converges, that is, the 

iterative process satisfies a pre-specified terminating condition. For the reason that the 
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shape generated by the PDM is iteratively modified to fit the target shape, and the 

generated shape is consistent with the shapes found in the training set, the model is called 

the active shape model [33].  

 The iterative shape search method described above for fitting the model shape to 

the face in the image can be summarized in the following algorithm. 

 

Algorithm 1: Classical ASM 

1. Generate the initial model shape by locating a rectangular region containing the 

face in the image using the Viola Jones face detector, mapping the mean shape 

onto the center of the region, and applying scaling and rotation to the shape to 

approximately fit it in the region. 

2. Refine the positions of the landmarks of the model shape using the local grey-

level gradient model to generate a new shape Sx  given by the landmarks, each of 

which is determined by minimizing the Mahalanobis distance given by (2.11). 

3. Find a new set of the model parameters b , and the transformation parameters 

),,,( stt yx  using the point distribution model and the similarity transformation to 

best fit the model shape to the shape Sx , enforcing the limits given by (2.6) on the 

model parameters b  and minimizing the expression given by (2.7). 

4. Update the model and transformation parameters to the new parameters obtained 

in Step 3 (Equations (2.12) – (2.16)). 

5. Repeat Steps 2 to 4 until convergence. 
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2.1.4. Multi-Resolution Active Shape Model 

In [34], the classical ASM has been modified by searching the desired face at different 

levels of resolution using Algorithm 1 described in the previous section. The resulting 

model can be referred to as multi-resolution ASM (MRASM). It utilizes an image 

pyramid to build the LGGM for multiple image resolutions. Here, as shown in Figure 2.8, 

the authors use an image pyramid consisting of a set of images with different resolutions, 

which are created from an original image using Gaussian smoothing and sub-sampling 

[34]. Level 0 (base) of the image pyramid is the original image, level 1 is the image with 

half the number of pixels of the original image in each dimension, and so on. The authors 

in [34] have used five levels of resolutions. In order to build the multi-resolution LGGM, 

a mean profile and a covariance matrix of the LGGM described in Section 2.1.2 are 

calculated for each of the levels of the image pyramid in the training stage. At the testing 

stage, an image pyramid with 5 levels is first created using the test image. The shape 

search given by Algorithm 1 is then conducted using the image from each level of the 

pyramid starting at the coarsest level (level 4) and terminating at the finest level (level 0). 

In the shape search, the LGGM corresponding to each level of the image pyramid 

obtained in the training stage is utilized to find a new position of the landmarks of the 

model shape. As a result, there are large movements of landmarks of the model shape in 

the coarser levels, while smaller movements are made at the finer levels as shown in 

Figure 2.9. The multi-resolution active shape model successfully improves the fitting 

accuracy and the computational speed by using fewer iterations and shorter search lines 

than those used in the classical ASM [34]. Moreover, the MRASM tends not to be stuck 

on local image structures due to search at coarser resolution [34].  
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2.1.5. Active Shape Model with 2-D Profiles 

In order to improve the performance of the shape search using the ASM, the authors in 

[35] have utilized 2-D profiles in addition to 1-D profiles in the LGGM of the classical 

ASM. While the 1-D profile shown in Figure 2.4 captures the grey-level intensity 

 

 

Figure 2.8: Image pyramid with 3 levels and their relationships in terms of the size [32]. 

 

 

 

Figure 2.9: Multi-resolution iterative shape search method [36]. 
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gradient pattern along a line orthogonal to the shape boundary at each landmark, the 2-D 

profile captures more information from a square region around each landmark. Figure 

2.10 shows the 2-D profiles of the same landmarks as those shown in Figure 2.4. 

 

Figure 2.10: The square region around each landmark used to generate the 2-D profile. 

 

In [35], in order to build the 2-D profile, the response of a t x q linear spatial filter ),( jiw  

is calculated for each pixel in a 13 x 13 square region around a particular landmark i, and 

the resulting filter responses are stored in a 13 x 13 profile matrix G  [40]. The filter 

response ),( yxG  at the pixel position ),( yx  is given by the sum of the products of the 

filter coefficients and the corresponding grey-level intensities in the region spanned by 

the filter mask [41] as  

    
 


a

ai

b

bj

jyixijiwyxG ),( ),(),(      (2.17) 

where a = (t - 1) / 2 and b = (q - 1) / 2. The elements of the profile matrix G  are then 

arranged into a vector by concatenating its rows. The resulting vector ig  corresponding 
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to the ith landmark is normalized by dividing each element ijg  by the mean of the 

absolute values of all the elements as  





gn

k

ik

g

ij

ij

g
n

g
g

1

1
      (2.18) 

where ng (= 169) is the number of the elements in ig . Each normalized ijg  is then 

equalized by applying a sigmoid transform as  

cg

g
g

ij

ij

ij



        (2.19) 

where c is the shape constant, which defines the shape of the sigmoid [35]. The resulting 

vector ig   with elements ijg   is used for representing the 2-D intensity gradient pattern 

around a landmark. The use of the so called stacked ASM that uses the 2-D profile in 

addition to the 1-D profile significantly improves the fitting accuracy compared to the 

classical ASM using only 1-D profiles [35]. 

 

2.1.6. Active Shape Model with a PCA-based LGGM 

Seshadri et al. in [36] have developed an active shape model with a PCA-based LGGM 

employing 2-D profiles to further improve its fitting accuracy. It employs the PCA to 

build a subspace which models the variation of pixel appearance in a square region 

around each landmark [36]. The mean profile and the covariance matrix are obtained 

from the 2-D profile obtained by using a 13 x 13 square region around each landmark in 

the same manner as in [35]. Then, the eigenvectors corresponding to the first 97% of the 

eigenvalues of the covariance matrix of each landmark are computed. In the testing stage, 
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the 2-D profile obtained at each candidate position of a 5 x 5 pixel search region around a 

particular landmark i is projected onto the subspace using the eigenvectors to obtain a set 

of projection coefficients. The Mahalanobis distance between the 2-D profile at the 

candidate position and its reconstructed profile obtained by using the projection 

coefficients and the eigenvectors is computed. The optimal position at which the profile 

yields the minimum Mahalanobis distance is determined, and is used as the new position 

for the landmark. This process is repeated for each landmark to generate a new shape. 

Thus, ASM with a PCA-based LGGM utilizes the PCA to determine a new position for 

each landmark instead of using the mean profile and the covariance matrix. The use of 

the PCA subspace contributes to improving the fitting accuracy, and helps to mitigate the 

problem of local minima [39]. 

 

2.2 Discrete Cosine Transform 

The discrete cosine transform (DCT) has a powerful energy compaction property [44]. 

This property of the DCT could be effectively utilized to reduce size of the 2-D profiles 

used in the ASM, and consequently, decrease the computational complexity of ASM 

itself. In this section, the fundamental concepts of the 1-D and 2-D DCTs and their useful 

properties as well as fast methods for their computation are briefly reviewed. 

 

2.2.1. 1-D DCT 

The 1-D DCT of a data sequence )(nx  of length N is defined by 



 

27 

 

 

 













 


1

0 2

)12(
 cos )( )()(

N

n

x
N

kn
nxkkC


      (2.20) 

where k = 0, 1, 2,…, N - 1 and 
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The 1-D inverse DCT of length N is given by 



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where n = 0, 1, 2,…, N - 1. 

 

A. Basis Functions 

As seen in (2.20), the DCT coefficients are represented by a weighted sum of the 

functions 






 

N

kn

2

)12(
 cos


. These functions are called the cosine basis functions, and are 

orthogonal to one another [44]. Similarly, the input sequence )(nx  as given by (2.22) can 

be seen to be a weighted sum of the cosine basis functions. The plot of the cosine basis 

functions for N = 8 is shown in Figure 2.11. The first basis function (k = 0) is represented 

by a zero-frequency constant function, and the DCT coefficient corresponding to k = 0 is 

known as the DC coefficient. Other basis functions (k > 0) are described by a set of 

cosine functions with different frequencies, and the DCT coefficients calculated using 

these functions are called the AC coefficients. The lower (smaller k) and higher (larger k) 

frequency basis functions represent, respectively, smooth and varying parts of the input 

sequence. 
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Figure 2.11: A plot of the cosine basis functions for N = 8. 

 

 

B. Energy Compaction Property 

The discrete cosine transform is well-known for its excellent energy compaction property, 

and it packs most of the signal energy of highly correlated input data in a small set of the 

DCT coefficients [45]. These coefficients represent the lower frequency components of 

the original signal, and contain most of the signal energy. The other coefficients 

corresponding to the higher frequency components can be safely discarded without losing 
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much of the signal energy. Therefore, the original signal can be approximated using only 

the small set of the DCT coefficients with a small reconstruction error. 

 

C. Fast Computation of DCT 

A direct calculation of the N-point DCT requires N multiplications and N-1 additions for 

each of the N coefficients, and the computational complexity of the calculation is given 

by )( 2NO . However, the 1-D DCT is derived from the 1-D Discrete Fourier Transform 

(DFT) and it can be calculated with the computational complexity of )log( NNO  using 

the fast Fourier transform (FFT) [46]. Further acceleration of the calculation is achieved 

by minimizing the number of multiplications and additions required to compute the N-

point DCT. Loeffler et al. in [47] developed a fast DCT algorithm which involves only 11 

multiplications and 29 additions to compute the 8-point DCT. Moreover, Arai et al. [48] 

proposed a scaled DCT algorithm that requires 13 multiplications and 20 additions but 

defers 8 of these multiplications for the final scaling in quantization step to decrease the 

number of multiplications in the computation of the 8-point DCT. Therefore, the DCT 

can be rapidly calculated using these fast DCT implementations. 

 

2.2.2. 2-D DCT 

The 2-D DCT of a 2-D image data ),( 21 nnx  is defined by 
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where k1, k2 = 0, 1, 2,…, N - 1, and )(  is defined in (2.21). 
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 The 2-D inverse DCT of ),( 21 kkCx
 is then given by 
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where n1, n2 = 0, 1, 2,…, N - 1. 

 

A. Basis Images 

The cosine functions 



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 in (2.23) and (2.24) form a set 

of 2-D orthogonal functions called the basis images. The 2-D DCT coefficients are thus 

represented by a weighted sum of the basis images. Similarly, the original image 

),( 21 nnx  is a weighted sum of the basis images, as seen in (2.24). Figure 2.12 is a 

visualization of the basis images for N = 8. As seen in the figure, when u and v are both 

zero (top left), the basis image is a constant 8 x 8 image (DC image) and represents the 

zero frequency components of the image. The basis images with higher values of k1 and 

k2 represent the high frequency components of the image.  

 

B. Row-Column Decomposition 

The direct computation of the 2-D DCT given by (2.23) has a computational complexity 

of )( 4NO . However, the 2-D DCT can be decomposed into a series of 1-D DCTs as 
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Figure 2.12: A plot of the basis images of the 2-D DCT for N = 8 [44]. 
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and k1, k2 = 0, 1, 2,…, N - 1. In the row-column decomposition method, the 1-D DCT of 

the image data ),( 21 nnx  for each row is first calculated, and it is stored in ),( 21 knCx . The 

1-D DCT of ),( 21 knCx  for each column is then computed to obtain the final 2-D DCT 

transform coefficients ),( 21 kkCx  as illustrated in Figure 2.13. As a result, the row-column 

decomposed 2-D DCT computation described above reduces the computational 

complexity from )( 4NO  to )( 3NO . 
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Figure 2.13: Row-Column Decomposition of the 2-D DCT. 

 

C. Fast Computation of 2-D DCT 

As described previously, the 2-D DCT is efficiently calculated in )( 3NO  using the row-

column decomposition method. The computation complexity can be further reduced to 

)log( 2 NNO  by using the fast 1-D DCT based on the FFT described in [46]. Use of the 

fast 1-D DCT computation techniques such as these described in [47] or [48] can 

additionally reduce the number of multiplications and additions to accelerate the 

computation of the 2-D DCT. 

 

2.3 Summary 

In this chapter, some background material necessary for the development of the work 

undertaken in this thesis has been presented. Active shape model (ASM), which is a 

flexible model utilized to iteratively fit the model shape to a target face in an image, has 

been presented in detail. It consists of point distribution model (PDM) that can generate 

any shape similar to the training set of shapes by controlling the model parameters, and 

local grey-level gradient model (LGGM) that describes the grey-level intensity gradient 

pattern around each landmark. In order to search a face in an image, the model shape 

given by the ASM is iteratively reformed in order to better fit the face. Three improved 
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versions of ASM, namely, the multi-resolution ASM, ASM with 2-D profiles and ASM 

with a PCA-based LGGM, have also been discussed. A multi-resolution ASM employs 

an image pyramid consisting of a set of images with different resolutions to accelerate the 

shape fitting. An ASM with 2-D profiles utilizes a 2-D profile obtained from a square 

region around each landmark in order to better represent the grey-level intensity gradient 

pattern around the landmark. An ASM with a PCA-based LGGM makes use of a PCA 

subspace to determine a new position for each landmark. Since the energy compaction 

property of the discrete cosine transform (DCT) can be utilized to reduce the 

computational complexity of ASM, finally in this chapter, this transform, some of its 

properties and a method for its fast computation have been reviewed. 
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CHAPTER 3  

Proposed Active Shape Model Using 

Discrete Cosine Transform 

 

3.1 Introduction 

As described in Chapter 2, the active shape model (ASM) using the 2-D profiles [35] and 

ASM with a PCA-based local grey-level gradient model (LGGM) [36] significantly 

improve the shape fitting accuracy. However, these improvements are achieved at the 

expense of substantially increased computational complexity. It was also pointed out that 

the discrete cosine transform (DCT) has a powerful energy compaction property. As a 

result of this property, the DCT has been successfully utilized in a variety of pattern 

recognition applications for the purpose of dimensionality reduction [49]-[51]. In order to 

reduce the size of the 2-D profiles, and subsequently decrease the computational 

complexity of ASM itself, we propose a low-complexity ASM that utilizes a novel profile 

constructed by making use of the energy compaction property of the DCT [52]. In 

Section 3.2, the process of building the novel profile and its integration into an ASM is 

described in detail. In Section 3.3, an illustrative example of the building process of this 

profile is provided. In Section 3.4, a computational complexity analysis of stacked ASM 

[35] and that of the proposed ASM employing the new profile is carried out.  
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3.2 Proposed Active Shape Model using a DCT-Based Gradient Profile 

In this section, a low-complexity active shape model (ASM) is developed by introducing 

a 2-D profile of a landmark of a facial shape based on the discrete cosine transform 

(DCT) of the local intensity gradients of the pixels around it. Because of the energy 

compaction property of the DCT, the size of the 2-D profile can be made much smaller 

than that of the conventional spatial-domain 2-D profile. The use of the compressed DCT 

profile for the landmark can, therefore, be expected to reduce the computational 

complexity of the resulting ASM. The process of building the compressed profile consists 

of five steps described in the following sub-sections.  

 

3.2.1. Sampling 

Computation of a 2-D profile of a landmark requires information not only on the pixel 

representing the landmark in question but also that on pixels in its neighbourhood. The 

building process of such a profile for a landmark starts with sampling grey-level 

intensities from an m x m square region around a particular landmark. Figure 3.1 

illustrates an 8 x 8 square region around a landmark annotated on the upper lip of an 

image, from which the grey-level intensities are sampled for computing the profile matrix 

of the landmark.  
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Figure 3.1: An illustration of an 8 x 8 square region (shown in yellow color) around a 

landmark (shown as a red dot) annotated on the upper lip of an image, used for 

computing a 2-D profile for the landmark. 

 

3.2.2. Computation of the Profile Matrix 

Using the grey-level intensities sampled from an m x m region around a landmark, a 

profile matrix of the landmark is computed by calculating the response of a t x q linear 

spatial filter ),( jiw  at each pixel of the square region [40]. Figure 3.2 illustrates a 3 x 3 

spatial filter mask utilized for computing the profile matrix of the landmark. The filter 

response ),( yxG  at the pixel position ),( yx  is given by the sum of products of the filter 

coefficients and the corresponding grey-level intensities in the region spanned by the 

filter mask [41], that is,  

    
 


a

ai

b

bj

jyixijiwyxG ),( ),(),(        (3.1) 

where a = (t – 1) / 2 and b = (q – 1) / 2. For example, using a 3 x 3 grey-level intensity 

region centered at the pixel position ),( yx  shown in Figure 3.3, the response of the 3 x 3 

spatial filter at the pixel position ),( yx  of the region is computed as 
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Figure 3.2: An illustration of a 3 x 3 spatial filter mask utilized for computing the profile 

matrix of a landmark. 

 

 

y

i(x-1, y-1) i(x-1, y)

i(x, y-1) i(x, y)

i(x-1, y+1)

i(x, y+1)

i(x+1, y-1) i(x+1, y) i(x+1, y+1)

x
 

Figure 3.3: An illustration of a 3 x 3 grey-level intensity region centered at the pixel 

position (x, y), utilized for computing the response of a 3 x 3 spatial filter. 
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     (3.2) 

Figure 3.4 shows examples of some of the 3 x 3 filter masks that can be utilized for 

computing the profile matrix of a landmark [40]. It is obvious that the use of the mask 

shown in Figure 3.4 (a) does not make use of any neighbourhood information around the 

landmark. The mask shown in Figure 3.4 (b) and (c) utilize the information on the 

forward intensity change only in one direction (i.e. horizontal or vertical). The mask 

shown in Figure 3.4 (d) would capture the forward intensity variations along both the x- 

and y-directions. The mask shown in Figure 3.4 (e) would capture the forward and 

backward intensity variations along the x- and y-directions, whereas the mask of Figure 

3.4 (f) would, in addition, capture the diagonal intensity variations. Suitability of a 

particular mask is application dependent. Choice of a filter mask would be examined in 

Chapter 4 in the context of an application of the proposed scheme in facial landmark 

annotation. 

 In order to compute the filter response at a pixel position, we need the grey-level 

intensity at this position and that at the positions around it. Therefore, the computation of 

the filter response at the pixel positions in the first row (column) and the mth row 

(column) requires the grey-level intensities at the pixel positions outside of the m x m 

region around the landmark. Figure 3.5 illustrates an example of an 8 x 8 region around a 

landmark. It is clear from this figure that in order to compute the filter response at pixel 

positions with x = 0 or x = m - 1 or at pixel positions with y = 0 or y = m - 1, we need the 

grey-level intensities at the pixel positions with x = -1, x = m, y = -1 or y = m. 

Consequently, additional 4m + 4 pixel positions outside of the m x m square region are 
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required in order to compute the m x m array of the spatial filter response. The profile 

matrix G of a landmark is simply an m x m array of the filter response at the pixel 

positions in the m x m region corresponding to the landmark. 
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(d)    (e)    (f) 

Figure 3.4: Examples of some of the 3 x 3 filter masks that can be used for computing the 

profile matrix of a landmark. (a) A mask that does not make use of neighbourhood 

information around the landmark. (b) A mask that utilizes the information on the forward 

intensity change in the x-direction. (c) A mask that utilizes the information on the 

forward intensity change in the y-direction. (d) A mask that captures the forward intensity 

variations along both the x- and y-directions. (e) A mask that captures the forward and 

backward intensity variations along the x- and y-directions. (f) A mask that captures the 

forward and backward intensity variations along the diagonals as well as the x- and y-

directions [40]. 
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Figure 3.5: An illustration of additional pixel intensity values required for the 

computation of an 8 x 8 profile matrix G corresponding to a given landmark.  

 

3.2.3. Computation of the DCT Coefficients 

The profile matrix of the landmark in the spatial domain is transformed to the frequency 

domain by using the 2-D discrete cosine transform (DCT). Specifically, the 2-D DCT is 

applied to the m x m profile matrix G of the landmark to obtain an m x m array of the 2-
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D DCT coefficients. Using the definition of the 2-D DCT described in Section 2.2.2, the 

2-D DCT of the m x m profile matrix G is obtained as  








 







 
 







 m

ky

m

kx
yxGkkkkC

m

x

m

y

G
2

)12(
cos 

2

)12(
cos ),()( )(),( 21

1

0

1

0

2121


      (3.3) 

where 















otherwise   
2

0kfor     
1

)(

m

mk          

and k1, k2 = 0, 1, 2,…, m – 1. The resulting m x m array 
GC  of the DCT coefficients 

CG(k1, k2) consists of a DC coefficient representing the zero frequency component and 

the AC coefficients representing the low- and high-frequency components of the profile 

matrix. Representation of the elements of the profile matrix of the landmark in the 

frequency-domain would allow the DCT coefficients to be arranged in a sequence with a 

decreasing order of their importance, and thus, facilitate the selection of a small subset of 

the DCT coefficients representing the profile matrix. 

 

3.2.4. Selection of the DCT Coefficients  

The 2-D discrete cosine transform efficiently packs most of the energy of the profile 

matrix into a small subset of the DCT coefficients representing the low-frequency 

components [44]. The DCT coefficients representing the high-frequency components can, 

therefore, be safely discarded without losing much information on the profile matrix. 

Making use of this energy compaction property of the DCT, a set of nc significant 

coefficients is selected from the m x m array of the DCT coefficients. The m x m array of 
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the 2-D DCT coefficients are zig-zag scanned in order to select the low-frequency 

coefficients before selecting the high-frequency coefficients [53]. Figure 3.6 illustrates 

the zig-zag scanning of an 8 x 8 array of the DCT coefficients. The scanning process 

starts with the DC coefficient CG(0, 0) representing the average of the elements of the 

profile matrix, and continues with the AC coefficients representing increasingly higher-

frequency components of the profile matrix. The resulting zig-zag sequence of the m x m 

DCT coefficients can be represented by a vector given by 
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The first nc DCT coefficients representing the low-frequency components of the profile 

matrix are selected from the vector 
GCY , giving  

T

nn cc
yyyy ],,,,[ 1210  Y         (3.5) 

 

3.2.5. Normalization and Equalization of the Selected DCT Coefficients 

The nc DCT coefficients are normalized by dividing each coefficient by the mean of the 

absolute values of the DCT coefficients as  
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where yi is the ith element in 
cnY  and stored in 
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Figure 3.6: An illustration of a zig-zag scanning of an 8 x 8 array GC  of the DCT 

coefficients. 

 

As a result of the operation, the normalized DCT coefficients are more robust to 

variations in brightness and contrast over the images in the training set [40]. In order to 

reduce the effect of outliers in the normalized 2-D DCT coefficients, each coefficient is 

then equalized by applying a sigmoid transform as  
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where c is a shape constant [40]. The resulting nc DCT coefficients are finally used as a 

compressed DCT profile of the landmark, denoted by 

T

nnn ccc
yyyyy ],,,,,[ 12210 
 Y        (3.9) 

 

3.3 An Illustrative Example 

In this section, an example is considered in order to illustrate the building process of the 

compressed DCT profile of a landmark. The example utilizes an image shown in Figure 

3.7 for building a compressed DCT profile of a landmark (shown as a red dot) annotated 

on the face contour of the image. Each step of the process of building the compressed 

DCT profile described in Section 3.2 is applied to this landmark, and the results are 

numerically presented. 

 

3.3.1. Sampling 

The first step of building the compressed DCT profile is sampling the grey-level 

intensities from the 10 x 10 region around the landmark in question. The 8 x 8 region is 

shown by a yellow square in Figure 3.7, and the values of the grey-level intensities within 

the 10 x 10 region are given in Figure 3.8. 

 

3.3.2. Computation of the Profile Matrix 

A profile matrix of the landmark is obtained by computing the response of a 3 x 3 linear  

 



 

45 

 

 

 

 

Figure 3.7: An image utilized for building a 2-D profile of a landmark (shown as a red 

dot) annotated on the face contour and the 8 x 8 square (shown in yellow color) around it 

[54]. 

 

spatial filter w3x3(i, j) at each pixel position (x, y) in the 8 x 8 region. In this example, the 

filter mask that captures the forward intensity variations both along the x- and y-

directions, given in Figure 3.4 (d) and reproduced for convenience in Figure 3.9 (a), is 

utilized for computing the filter response. For example, the filter response at the pixel 

position (0, 7) located at the top right corner of the 8 x 8 region in Figure 3.8 is obtained 

by computing the sum of products of the filter coefficients of the spatial filter w3x3(i, j) 

and the grey-level intensities from a 3 x 3 region centered at the pixel position (0, 7).  
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Figure 3.8: An illustration of the grey-level pixel intensity values required for building an 

8 x 8 profile matrix for the landmark shown in Figure 3.7. 

 

Figure 3.9 (b) shows the grey-level pixel intensity values of the 3 x 3 region centered at 

the pixel position (0, 7) in Figure 3.8, utilised for computing the profile matrix of the 

landmark. 
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(a)      (b) 

Figure 3.9: An illustration of (a) a 3 x 3 filter mask that captures the forward intensity 

variations both along the x- and y-directions, and (b) a 3 x 3 grey-level intensity region 

centered at the pixel position (0, 7), utilized for computing the filter response in this 

example. 

 

The filter response at the pixel position (0, 7) is computed by using (3.1) as 
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     (3.9) 

The resulting 8 x 8 array of the filter response (profile matrix) is shown in Figure 3.10.  

 

3.3.3. Computation of the DCT Coefficients 

By using (3.3), the 2-D discrete cosine transform is applied to the 8 x 8 profile matrix of 

the landmark in order to obtain an 8 x 8 array of the 2-D DCT coefficients representing 
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Figure 3.10: The 8 x 8 array of the filter response (profile matrix) of the landmark in the 

image of Figure 3.7. 

 

the profile matrix. Figure 3.11 shows the resulting DCT coefficients representing the 

profile matrix of the landmark. The DC coefficient for example considered can be 

calculated as  
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The entire 2-D array of the computed DCT coefficients corresponding to the profile 

matrix of Figure 3.10 is shown in Figure 3.11. 

 

-8.3750 -25.8623 -27.2813 3.0615 9.3750 -4.1307 -8.0475 1.8760
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Figure 3.11: The array of the DCT coefficients of the profile matrix of Figure 3.10. 
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3.3.4. Selection of the DCT Coefficients 

A set of 25 DCT coefficients representing the low-frequency components of the profile 

matrix is selected from the 8 x 8 array of the 2-D DCT coefficients given in Figure 3.11. 

For this selection, a zig-zag scanning of the DCT coefficients is performed as shown in 

Figure 3.12, since this scanning as explained in Section 3.2.4 takes into account the 

energy compaction property of the DCT coefficients. 

 

 

Figure 3.12: A zig-zag scanning of the 8 x 8 array of the DCT coefficients of the profile 

matrix corresponding to the landmark of Figure 3.7. 
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It is seen from this figure that through the zig-zag scanning, the low-frequency 

components of the profile matrix get, in general, selected before the others. The first 25 

DCT coefficients from the resulting zig-zag scanning of the 2-D array of the DCT 

coefficients are selected and stored in a vector (1-D array) 25Y  given by 

T] 4.2275 1.4535,- 3.9735, 6.3355, 3.5243,- 2.4535, 5.9248, 8.1846,-

 2.2349,- 4.1307,- 9.3750, 21.1504,- 13.8791,- 5.4606,- 6.6250, 1.8384,- 16.9922,-

 24.6278,- 3.0615, 27.2813,- 15.9540, 18.8883,- 36.3147, 25.8623,- 8.3750,- [25Y

 

  (3.11) 

 

3.3.5. Normalization and Equalization of the Selected DCT Coefficients 

The selected 25 DCT coefficients are normalized by using (3.6) and subsequently 

equalized by using (3.8). For example, the first coefficient in 25Y  is divided by the mean 

of the absolute values of the DCT coefficients as given in (3.6) to obtain the normalized 

DCT coefficient as 
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      (3.12) 

The entire array of the normalized DCT coefficients is stored in 25Y  as 

T] 0.3800 0.1306,- 0.3572, 0.5695, 0.3168,- 0.2205, 0.5326, 0.7357,-

0.2009,- 0.3713,- 0.8427, 1.9011,- 1.2475,- 0.4908,- 0.5955, 0.1652,- 1.5274,-

2.2137,- 0.2752, 2.4522,- 1.4341, 1.6978,- 3.2642, 2.3247,- 0.7528,- [
25Y

 

  (3.13) 
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The sigmoid transform of (3.8) with a shape constant of 100 (c = 100) is then applied to 

the normalized DCT coefficient. For instance, the fifth normalized coefficient of 25Y  is 

equalized as 
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      (3.14) 

The entire array of the DCT coefficients after normalization and equalization of each 

element is given by 

 

T] 0.0038 0.0013,- 0.0036, 0.0057, 0.0032,- 0.0022, 0.0053, 0.0073,- 0.0020,-

0.0037,- 0.0084, 0.0187,- 0.0123,- 0.0049,- 0.0059, 0.0016,- 0.0150,-

 0.0217,- 0.0027, 0.0239,- 0.0141, 0.0167,- 0.0316, 0.0227,- 0.0075,- [25Y

 

            (3.15) 

The array 25Y   of the resulting DCT coefficients is used as a compressed DCT profile of 

the landmark on the face contour of the image shown in Figure 3.7. 

 

3.4 Computational Complexity Analysis 

In this section, computational complexity analyses of stacked active shape model (ASM) 

[35] and the proposed ASM using a DCT-based gradient profile are carried out. These 

versions of active shape model are utilized in Algorithm 1 for searching a facial shape in 

an image presented in Chapter 2. The stacked ASM utilizes both the 1-D and 2-D profiles 

while ASM using a DCT-based gradient profile employs the compressed 2-D DCT 

profile for searching a suitable location of a landmark. Thus, difference between the two 
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models arises from the process of building the profile(s) of a landmark used in searching 

a facial shape in an image.  

 As described in Section 2.1, in the stacked ASM, both 1-D and 2-D profiles need 

to be built in the spatial domain. The 1-D profile of a landmark is built by sampling the 

grey-level intensities of m pixels centered at the landmark, computing the intensity 

gradient at each pixel position, and normalizing each intensity gradient. Computation of 

the intensity gradients of the sampled grey-level intensities requires 24m + 35 addition or 

multiplication operations. Normalization of the resulting intensity gradients involves 2m 

+ 2 addition or multiplication operations. The total number of arithmetic operations in 

building the 1-D profile is 26m + 37. Therefore, the complexity of building the 1-D 

profile for a landmark is )(mO . On the other hand, building a 2-D profile of a landmark 

requires sampling the grey-level intensities from an m x m region around the landmark, 

computing an m x m array of the response of a linear spatial filter at each pixel position 

in the region (profile matrix), and normalizing and equalizing each element of the profile 

matrix. In order to compute the profile matrix of the landmark, a 3 x 3 filter mask is 

correlated with the grey-level intensities in a 3 x 3 region centered at each pixel position 

in the m x m region. Each computation of the filter response requires 8 additions and 9 

multiplications, and the computation of the profile matrix thus requires 17m
2
 addition or 

multiplication operations. The normalization and equalization of the profile matrix 

require in total 4m
2
 + 3 addition or multiplication operations. Thus, the total number of 

arithmetic operations in building a 2-D landmark profile for the stacked ASM is 21m
2
 + 3. 

Thus, the complexity of building this 2-D profile is )( 2mO .  
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 The process of building the compressed DCT profile of a landmark consists of 

sampling the grey-level intensities from an m x m region around the landmark, 

computing an m x m profile matrix, computing its DCT coefficients, selecting the nc 

significant DCT coefficients, and normalizing and equalizing each element of the 

selected DCT coefficients. As seen in the process of building the 2-D profile for the 

stacked ASM, computation of the profile matrix requires 17m
2
 addition or multiplication 

operations. The DCT coefficients representing the profile matrix can be computed by 

using a fast 1-D FFT algorithm with row-column decomposition. For example, if we use 

the 1-D FFT algorithm described in [55], then computing the m x m array of the 2-D 

DCT coefficients requires mmmm 22)(log4 2

2

2   addition or multiplication operations. 

The normalization and equalization of a set of nc (<= m
2
) significant coefficients selected 

from the m x m array of the DCT coefficients require 4nc + 3 additions or multiplications. 

Thus, the total number of arithmetic operations in building the compressed 2-D DCT 

profile of a landmark is 34215)(log4 2

2

2  cnmmmm . Therefore, the complexity of 

building the 2-D profile in the proposed active shape model is ) log( 2

2 mmO .  

 Table 3.1 summarizes the number of arithmetic operations of each step as well as 

the total number of operations involved in building the profiles of a landmark for the 

stacked and proposed active shape models. The last row of this table provides the overall 

complexity of building the profiles utilized for the two models. It is seen from this table 

that the overall computational complexity of the proposed scheme in building the profile 

for a landmark is larger than that in the stacked ASM by a factor of log m. However, 

since the value of m is not too large (m = 13 is used for computation of the 2-D profile, 

and m = 8 is used for computation of the compressed DCT profile), the difference 
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between the computational complexities of the profiles of two schemes are not that 

significant. It is also to be noted that, for the proposed ASM, only one compressed DCT 

profile needs to be built, whereas for the stacked ASM, both 1-D and 2-D profiles are 

required. In addition, the size of the compressed DCT profile (i.e. nc) is much smaller 

than m
2
, the size of the 2-D profile of the stacked ASM. Thus, in the proposed scheme, 

the use of only one compressed profile compared to the use of one 1-D profile and 

another larger 2-D profile, can be expected to reduce the total number of operations, and 

therefore the overall computation time for searching a facial shape in an image using the 

proposed ASM.  

 

Table 3.1: Computational complexity of each step of the process of building the profiles 

of a landmark for the stacked and proposed ASMs. 

 

 Number of arithmetic operations 

Steps 
Stacked ASM Compressed 2-D  

DCT Profile  

in the proposed ASM 
1-D Profile 2-D Profile 

Computation of  

intensity gradients 

/profile matrix 

24m+35 17m
2
 17m

2
 

Calculation of  

DCT coefficients 
n/a n/a 4m

2
log2(m)-2m

2
+2m  

Normalization 

/Equalization 
2m+2 4m

2
+3 4nc+3 

Total number of  

arithmetic operations 
21m

2
+26m+40  4m

2
log2(m)+15m

2
+2m + 4nc+3 

Overall  

computational  

complexity 

O(m
2
) O(m

2
log m) 
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3.5 Summary 

In this chapter, we have proposed a low-complexity active shape model (ASM), which 

employs a novel 2-D profile of a landmark of a facial shape based on the discrete cosine 

transform (DCT). The process of building such a profile consists of sampling, computing 

a profile matrix and its DCT coefficients, and selecting, normalizing and equalizing the 

DCT coefficients. The grey-level intensities are first sampled from an m x m region 

around a landmark. A profile matrix of the landmark is obtained next by computing the 

response of a linear spatial filter at each pixel position in the sampled region. The filter 

response is given by the sum of products of the coefficients of a filter mask and the 

corresponding grey-level intensities in the region spanned by the filter mask. Next, a 2-D 

array of the DCT coefficients is obtained by computing 2-D DCT of the profile matrix. A 

subset of the DCT coefficients, representing the low-frequency components of the profile 

matrix, is selected through a zig-zag scanning of the 2-D array of the DCT coefficients. 

The selected DCT coefficients are normalized by dividing each element by the mean of 

the absolute values of the DCT coefficients, which, in turn, are equalized by applying a 

sigmoid transform to each element. The resulting DCT coefficients are finally used as a 

compressed DCT profile representing the landmark. A numerical example has been 

provided in order to illustrate the process of building the compressed DCT profile of a 

landmark by applying each step of the building process to the landmark.  

 A computational complexity analysis of stacked ASM [35] and that of the 

proposed ASM has also been carried out. The difference between the two models results 

from the process of building the profile(s) of a landmark used for searching a facial shape 

in an image. The overall computational complexity of the proposed ASM is theoretically 
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higher than that of the stacked ASM by a factor of log m. However, in practice the 

computation time of searching a face using the proposed ASM can be expected to be 

lower than that using the stacked ASM because of the following reasons. The value of m 

is generally not very large. The proposed ASM requires building only one compressed 

DCT profile in comparison to the stacked ASM, which requires building a 1-D profile as 

well as a full-size 2-D profile.  
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CHAPTER 4  

Experimental Results of Applying the 

Proposed Active Shape Model in a Facial 

Annotation Application 

 

In Chapter 3, we have proposed a low-complexity active shape model (ASM) that utilizes 

a 2-D profile of a landmark of a facial shape based on the discrete cosine transform 

(DCT). Due to the energy compaction property of the DCT, the size of the compressed 

DCT profile could be made much smaller than that of the conventional spatial-domain 2-

D profile. Searching a facial shape in an image using the proposed ASM is thus expected 

to be faster than that using stacked ASM [35]. In this chapter, we study the effectiveness 

of the proposed ASM in an application of automatic facial landmark annotation of frontal 

faces using a facial shape search method introduced in Chapter 2. In order to build the 

point distribution model (PDM) and the local grey-level gradient model (LGGM) parts of 

the proposed ASM and to perform the facial shape search on a variety of images, training 

and test sets of samples are chosen from three databases. The effectiveness of the 

proposed ASM is analyzed by using an evaluation method to determine the fitting 

accuracy of the model shape, as well as by measuring the computation time of the facial 

shape search.  

 In Section 4.1, the facial shape search method, using the proposed ASM, for 

finding the best location of the landmarks of a face in an image is presented. Three 
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databases used for training and test of the proposed ASM in the face annotation 

application are presented in Section 4.2. An evaluation method utilized for computing the 

fitting accuracy of the proposed ASM is described in Section 4.3. In Section 4.4, an 

empirical study is conducted for determining the number of DCT coefficients and for 

selecting a suitable filter mask. The experimental results of an automatic facial landmark 

annotation of frontal faces using the proposed and two other active shape models are 

presented and compared.  

 

4.1 Facial Annotation using the Proposed Active Shape Model 

Active shape model (ASM) can be utilized for searching a facial shape in an image by 

automatically finding the suitable locations of landmarks of a face. It consists of two sub-

models, point distribution model (PDM) and local grey-level gradient model (LGGM). 

The point distribution model can generate any shape similar to the shapes in the training 

set by controlling the model parameters given by a vector b , which is a vector applied to 

the eigenvectors obtained by the principal component analysis of the training shapes. In 

order to transform the shape in the model space to the image space, a similarity transform 

T  is used for translating, scaling, and rotating the shape by setting the transformation 

parameters ),,,( stt yx , where ),( yx tt , s  and   are, respectively, the translation, scaling 

and rotation parameters. The point distribution model along with the similarity transform 

is utilized for approximating a given target shape through an appropriate choice of the 

model parameters b  and the transformation parameters ),,,( stt yx . The local grey-level 

gradient model, which employs a 1-D profile to capture the grey-level intensity gradient 
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information in the vicinity of each landmark, is used for determining a suitable location 

for each landmark of the model shape. In order to closely fit the model shape to a given 

face, the shape search iteratively improves the fit of the model shape to the given face by 

moving each landmark of the current model shape to a new position using the LGGM to 

generate a new shape Sx , and then updating the model parameters b  and the 

transformation parameters ),,,( stt yx  with the new sets of parameters that closely 

approximate Sx . 

 In our scheme of face annotation using ASM, we employ the compressed DCT 

profile for building the LGGM. This 2-D profile captures more information around each 

landmark of the model shape than the 1-D profile, and the size of the 2-D profile is much 

smaller than that of the conventional spatial-domain 2-D profile. The shape search 

method using the proposed ASM is thus expected to be faster than that using the stacked 

ASM [35]. A detailed description of various steps of the shape search method employing 

the proposed ASM is given in the following sub-sections.  

 

4.1.1. Generating an Initial Model Shape 

The search method begins with localizing a rectangular region in a given image 

containing a face using the Viola Jones face detector [43]. The rectangular region, 

specified by its center point ),( cc yx , width w , and height h , is used for determining the 

model parameters b  and the transformation parameters ),,,( stt yx  to generate an initial 

model shape. The mean shape x  of the training set is mapped onto the image using the 

center of the region ),( cc yx  as the reference point. The resulting shape is then scaled and 
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rotated by assigning a value to the scaling parameter s  and the rotation parameter   

depending on the value of w  and h , so as to approximately fit it in the rectangular region. 

The initial model shape represented by the model parameter 0b0   and the 

transformation parameters 0),,,( stt yx  is utilized as an initial shape in LGGM for 

generating a refined shape.  

 

4.1.2. Refining the Landmark Positions using LGGM 

Each landmark of the shape, represented by the model parameters b  and the 

transformation parameters ),,,( stt yx , is moved to a suitable position determined by 

using the local grey-level gradient model (LGGM) for the landmark. A new shape Sx , 

which describes the facial shape in the image better than the current model shape does, is 

formed by new positions of the landmarks.  

 In the proposed ASM, the LGGM is built by using the compressed DCT profile 

described in Section 3.2. The process of building the profile for the ith landmark starts 

with sampling the grey-level intensities from an 8 x 8 region around the landmark. A 

profile matrix iG  of the landmark is obtained by computing the response of a linear 

spatial filter, which captures the forward intensity variations along both in the x- and y-

directions, corresponding to the pixels in a 3 x 3 mask, at each pixel position in the 

square region. A 2-D array of the DCT coefficients 
iGC  is obtained by computing 2-D 

DCT of iG  using a fast 1-D FFT algorithm given in [47] with row-column 

decomposition. A subset of nc DCT coefficients representing the low-frequency 

components of iG  is selected by using the zig-zag scanning of 
iGC  and stored in an array 
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inc
Y  for each landmark i. The coefficients in inc

Y  are normalized by dividing each 

element by the mean of the absolute values of the DCT coefficients contained in inc
Y . 

These coefficients are then equalized by applying a sigmoid transform to each element. 

An array of the resulting DCT coefficients iY   is used as the compressed DCT profile of 

the ith landmark. In order to determine a suitable position for the ith landmark, the cost of 

fit of iY   to the mean profile iY   of the LGGM is evaluated at each candidate position in 

a 5 x 5 region around the landmark using the Mahalanobis distance given by  

)()()( ii

1

iiii YYSYYY  Tf         (4.1) 

where iS  is the covariance matrix for the ith landmark. The position dbest at which the 

profile iY   yields the smallest Mahalanobis distance (the minimum cost of fit) is then 

selected as the new position of the landmark. The process is repeated for each landmark 

of the model shape in order to obtain a new shape Sx .  

 

4.1.3. Finding a Model Shape by Calculating the Model and Transformation 

Parameters 

The model parameters bestb  and the transformation parameters ),,,( bestbestybestxbest stt   that 

best approximate the new shape Sx  obtained in the previous sub-section are determined 

by minimizing the expression given by (2.7) using the similarity transform T  and the 

point distribution model. In order for the model shape to be consistent with those in the 

training set, the model parameters bestb  are constrained according to (2.6). 



 

63 

 

 

 

4.1.4. Updating the Model and Transformation Parameters  

The model parameters b  and the transformation parameters ),,,( stt yx  are then updated 

to the previously determined model and transformation parameters 
bestb  and 

),,,( bestbestybestxbest stt   which closely approximate the new shape Sx  as 

xbestx tt           (4.2) 

ybesty tt           (4.3) 

best           (4.4) 

bestss           (4.5) 

bestbb           (4.6) 

The updated model shape is then used as the starting shape in the second iteration of the 

shape search method. The steps of sub-sections 4.1.2, 4.1.3, 4.1.4 described above are 

repeated until the iterative process satisfies a pre-specified terminating condition. 

 

4.2 Databases 

In order to perform the facial annotation using the scheme described in the previous 

section, we need a training set and a test set of images and landmarks of the facial shapes. 

The fitting error between the landmarks of the model shape and the manually labelled 

landmarks from the test set is computed for evaluating the effectiveness of the proposed 

ASM. In order to build the training and test sets, various samples are chosen from three 

databases, namely, the Milborrow / University of Cape Town (MUCT) database, the 
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BioID database and the IMM database, containing both images and the landmarks of the 

corresponding facial shapes.  

 The Milborrow / University of Cape Town (MUCT) database presented in [54] 

contains 3755 samples of 276 different individuals, each of which consists of a facial 

image with 480 x 640 pixels and 76 manually labelled landmarks. Figure 4.1 shows a few 

examples of the samples from this database consisting of a facial image and the 76 

landmarks representing different parts of the face in an image. 

 

   

Figure 4.1: Examples of the samples from the MUCT database consisting of a facial 

image and 76 manually annotated landmarks representing particular parts of a face in the 

image [54]. 

 

In order to generate the samples, each individual is photographed from five different 

positions of the camera, as shown in Figure 4.2. Since we are interested in an application 

of automatic facial landmark annotation of frontal faces, only the images photographed 

from the frontal camera positions (the camera positions a, d and e) are utilized. Figure 4.3 

shows examples of the images photographed from the camera positions a, d and e. Each 

individual is also photographed under three lighting conditions, q, r and s. Figure 4.4 
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shows examples of the images photographed under the lighting conditions q, r and s from 

the fontal position a.   

 

  

Figure 4.2: The five different positions of the camera [54]. 

 

   

(a)    (b)    (c) 

Figure 4.3: Examples of the images of an individual photographed from the frontal 

camera positions under the same lighting condition [54]. (a) An image photographed 

from the camera position a. (b) An image photographed from the camera position d. (c) 

An image photographed from the camera position e. 
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(a)    (b)    (c) 

Figure 4.4: Examples of the images of an individual photographed under three different 

lighting conditions [54]. (a) An image photographed under the lighting condition q. (b) 

An image photographed under the lighting condition r. (c) An image photographed under 

the lighting condition s. 

 

 The BioID database introduced in [55] consists of 1521 samples of 23 different 

individuals, each of which contains a facial image with 384 x 286 pixels and 20 manually 

annotated landmarks. Figure 4.5 shows a few examples of the samples from this database. 

 

    

Figure 4.5: Some examples of the samples from the BioID database consisting of a facial 

image and 20 manually annotated landmarks [56]. 
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 The informatics and mathematical modelling (IMM) database presented in [57] 

contains 240 samples of 40 different individuals, each of which consists of a facial image 

with 640 x 480 pixels and 58 manually annotated landmarks. A few examples of the 

samples from this database are shown in Figure 4.6.  

 

   

Figure 4.6: Some examples of the samples from the IMM database consisting of a facial 

image and 58 manually annotated landmarks [57]. 

 

 In order to double the number of samples in each database, a set of mirrored 

samples is obtained by horizontally flipping each image in a database using the photo 

editing software, and by negating the x-coordinate of each landmark and changing the 

order of the landmarks of each shape in the samples. Figure 4.7 shows an example of the 

mirrored pairs of the samples from the MUCT database. As a result of generating the 

mirrored samples, the number of samples in the MUCT, BioID and IMM databases are, 

respectively, increased to 7510, 1521 and 480 samples. Table 4.1 summarizes the 

characteristics of the three databases used in our experiment. 
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(a)      (b) 

Figure 4.7: An example of the mirrored pairs of the samples from the MUCT database 

[54]. (a) The image of a sample from the MUCT database. (b) The mirrored image of the 

same sample. 

 

Table 4.1: Summary of the three databases used for building the PDM and LGGM parts 

of the proposed ASM and performing the facial shape search using the ASM. 

 

 
Total Number of 

Samples 

Number of 

Landmarks 

Number of 

Individuals 

Image Size 

(Pixels) 

MUCT 

Database  
7510 76 276 480 x 640 

BioID 

Database 
3042 20 23 284 x 286 

IMM 

Database 
480 58 40 640 x 480 

 

4.3 Evaluation Method 

In order to measure the effectiveness of the proposed ASM in fitting the landmarks of the 

model shape onto a target facial shape in an image, the fitting accuracy is computed by 

determining the distance between each landmark in the target shape and its corresponding 
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landmark in the model shape. The distance between the two points in the spatial domain 

is computed by using the Euclidean distance given by 

)b(a)b(a ii

T

ii id         (4.7) 

where ia  is a vector containing the x- and y-coordinates of the ith landmark of the model 

shape, and ib is a vector containing the x- and y-coordinates of the ith landmark of the 

target shape. Since facial shapes come from diverse conditions and individuals, an 

evaluation method, namely, the average normalized fitting error, which takes the 

difference in facial shape size into account, is utilized for computing the fitting accuracy.  

 The normalized fitting error is obtained by taking the average of the Euclidean 

distance between the manually annotated landmarks from a target facial shape and the 

corresponding landmarks from the model shape, and normalizing the result by a factor 

that ensures that s , the distance between two landmarks representing the extreme points 

on the left and right eyes, as shown in Figure 4.8, is equal to 50 pixels [36]. These two 

landmarks are selected, since they are sufficiently far apart to represent the width of a 

facial shape, and all three databases used in our experiment consist of these landmarks, as 

seen from Figures 4.1, 4.5, and 4.6. As a result of normalization of the distance, the 

fitting accuracy obtained by using shapes with different scales can be directly compared. 

In order to compute the overall fitting accuracy of the proposed ASM, the average 

normalized fitting error is computed by taking the mean of the normalized fitting error 

over all the samples from the test set as   
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where testN  is the number of samples from the test set, and n  is the number of landmarks 

in a sample.  

 

 

Figure 4.8: Two landmarks representing the extreme points on the left and right eyes, and 

the distance s between the two landmarks. 

 

4.4 Experimental Results 

In order to study the effectiveness of the proposed ASM in the application of an 

automatic facial landmark annotation of frontal faces, the facial annotation using the 

scheme described in Section 4.1 is performed on various facial images. In this section, we 

conduct an experiment using two groups of training and test sets of images and 

landmarks of the facial shapes. The effectiveness of the ASM is evaluated by computing 

the average normalized fitting error, and by measuring the execution time of the facial 

shape search. An empirical study is conducted in order to select the optimal number of 

DCT coefficients and to choose a suitable filter mask, which are used for building the 
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compressed DCT profile of the ASM. We also present and compare the experimental 

results of an automatic facial landmark annotation of frontal faces using the proposed and 

various other active shape models, namely, stacked ASM [35] and ASM with a PCA-

based LGGM [36]. 

 

4.4.1. Experimental Settings 

In order to examine the performance of the proposed ASM experimentally, two groups of 

training and test sets of images and landmarks of the facial shapes are selected from the 

three databases presented in Section 4.2. The first group of samples consists of a training 

set of 3000 samples from the MUCT database and a test set of 1471 samples from the 

BioID database. As seen from Table 4.1, the number of landmarks in each sample of the 

MUCT database and that in the BioID database are, respectively, 76 landmarks and 20 

landmarks. Although the number of landmarks in the former is larger than that in the 

latter, 17 of these landmarks, as shown in Figure 4.9, are common in each of samples in 

the two databases. Thus, these 17 landmarks (n = 17) are utilized for computing the 

average normalized fitting error in the experiments using this group of samples. The 

second group of samples consists of a training set of 240 samples of the first 20 

individuals of the IMM database and a test set of 240 samples of the other 20 individual 

of the same database. Since both the training and test sets of samples are chosen from the 

same database, all the landmarks of a facial shape (n = 58) are used for computing the 

average normalized fitting error in the experiments using this group of samples. Table 4.2 

summarizes the two groups of training and test sets of images and landmarks of the facial 

shapes belonging to the three databases. 
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Figure 4.9: The 17 landmarks internal to the face utilized for computing the average 

normalized fitting error in the experiment with the first group of samples [59].  

 

Table 4.2: Summary of the number of training and test sets in the two groups of the 

images chosen from the three databases and the number of landmarks in each facial shape. 

 

 
Group 1 Group 2 

Training Set Test Set Training Set Test Set 

Database MUCT BioID IMM 

Number of Samples 3000 1471 240 240 

Number of Landmarks 76 20 58 

  

 Publicly available STASM software [59] is modified and utilized to produce the 

experimental results for the proposed and various other active shape models under the 

same experimental condition. The active shape models used in the experiments are all 

implemented by using Microsoft Visual Studio 2012 and the C++ programming language. 

The experiments are performed on a 2.6 GHz Intel Core i7 CPU with 6-GB RAM and 

Windows 7 operating system.  

 The execution time of a facial landmark annotation of the frontal face in an image 

is given by the sum of the execution time for locating the face in the image and the 

execution time for conducting the facial shape search in the image. In order to conduct 
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the experiments under the same condition for all the ASMs, the location of a rectangular 

region containing the face in each test image is pre-computed using the Viola-Jones face 

detector [43]. Thus, the execution time for locating the face in the image is a constant 

time for loading the pre-computed location of the region containing the face. The average 

execution time is computed by taking the average of the execution time over all the test 

samples after the first 50, since the initialization of the ASM may have an effect on the 

computation time for some samples at the beginning of the execution. 

 

4.4.2. Results and Analysis of the Proposed Active Shape Model 

As described in Chapter 3, the proposed ASM employs a compressed DCT profile of a 

landmark of a facial shape. In order to build the compressed DCT profile of the ith 

landmark, the profile matrix iG  is obtained by calculating the response of a spatial filter 

mask at each pixel position of an m x m region around the landmark. A 2-D array 
iGC  of 

DCT coefficients is obtained by computing 2-D DCT of iG , and a subset of nc DCT 

coefficients is selected through a zig-zag scanning of 
iGC . The selected DCT coefficients 

are normalized by dividing each element by the mean of the absolute values of the 

selected DCT coefficients, which are subsequently equalized by applying a sigmoid 

transform to each element. The resulting DCT coefficients are finally used as the 

compressed DCT profile of the landmark. The number of DCT coefficients nc and the 

filter mask used in building the profile are important choices for the proposed ASM, 

since they have an effect on the fitting accuracy and the computational complexity. 

 The proposed ASM is utilized in an automatic facial annotation system that 
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automatically locates facial features of the face in an input image. The facial annotation 

system maps the initial model shape onto the input image using a rectangular region 

containing a face, reforms the model shape iteratively, and finally yields the model shape 

that fits closely to the face in the image. An example of the initial and final model shapes 

of the automatic facial annotation system is shown in Figure 4.10. In our experiments, the 

proposed ASM is first built by using a training set of samples, and the facial annotation is 

performed on each image in a test set of samples using different combinations of the 

number of DCT coefficients and a filter mask. Three different filter masks, given in 

Figure 3.4 (d), (e) and (f), are used for generating the profile matrix. The number of DCT 

coefficients utilized for building the compressed DCT profile is varied from 10 to 35 with 

increments of 5. The fitting accuracy of the model shape to the face in the image is also 

computed by using the normalized fitting error presented in Section 4.3. In order to study 

the performance of the facial annotation using the proposed ASM, we run an experiment 

using the two groups specified in Table 4.2 of training and test sets of images and 

landmarks of the facial shapes specified in Section 4.4.1, and the average normalized 

fitting error is computed in each experiment.  

 Table 4.3 lists the average normalized fitting error obtained from the experiment 

using the training and test sets of Group 1. It is seen from this table that the lowest 

average normalized fitting error results from using 25 DCT coefficients for each of the 

three filter masks. It is also observed that when the number of the DCT coefficients is 

made smaller or larger, the error in facial annotation becomes progressively larger. The 

overall lowest average normalized fitting error of 1.5071 is obtained by using the 4-

Laplacian filter mask with 25 DCT coefficients. 
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(a)      (b) 

Figure 4.10: An example of the initial and final model shapes of the automatic facial 

annotation system. (a) The initial model shape (shown in red color) mapped onto an input 

image using a rectangle region containing a face (shown in yellow color). (b) The final 

model shape (shown in red color) that fits closely to the face. 

 

Table 4.3: Average normalized fitting error obtained from the experiment with Group 1 

of samples by using different combinations of the number of DCT coefficients and a filter 

mask. 

 

Number of DCT Coefficients 

Average Normalized Fitting Error (pixels) 

Type of Filter Masks 

Gradient 

(Figure 3.4 (d)) 

4-Laplacian 

(Figure 3.4(e)) 

8-Laplacian 

(Figure 3.4 (f)) 

10 2.0000 1.8738 1.8838 

15 1.6868 1.6408 1.6284 

20 1.5738 1.5492 1.5595 

25 1.5221 1.5071 
 

1.5273 

30 1.5611 1.5222 1.5341 

35 1.5685 1.5323 1.5452 

 

 Table 4.4 gives the average normalized fitting error obtained from the experiment 

using the training and test sets of Group 2. It is seen from this table that the lowest 

average normalized fitting error is obtained by using 30 DCT coefficients for the gradient 
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and 4-Laplacian filter masks, and that by using 20 DCT coefficients for the 8-Laplacian 

filter mask. The overall lowest average normalized fitting error of 3.0520 is obtained by 

using the gradient filter mask with 30 DCT coefficients.  

 

Table 4.4: Average normalized fitting error obtained from the experiment with Group 2 

of samples by using different combinations of the number of DCT coefficients and a filter 

mask. 

 

Number of DCT Coefficients 

Average Normalized Fitting Error (pixels) 

Type of Filter Masks 

Gradient 

(Figure 3.4(d)) 

4-Laplacian 

(Figure 3.4 (e)) 

8-Laplacian 

(Figure 3.4 (f)) 

10 3.2982 3.4735 3.3901 

15 3.1746 3.2606 3.2117 

20 3.1287 3.1902 3.1401 

25 3.0652 3.2298 3.2110 

30 3.0520 
 

3.1895 3.1767 

35 3.0706 3.2071 3.1454 

  

 It should be noted that choice of the filter mask used for building the compressed 

DCT profile has an effect not only on the average normalized fitting error but also on the 

computational complexity. As seen from Figures 3.4 (d), (e) and (f), each computation of 

the filter response using the gradient filter mask requires three multiplications and two 

additions, while that using the 4-Laplacian filter mask requires 5 multiplications and 4 

additions and that using the 8-Laplacian filter mask requires 9 multiplications and 8 

additions. Thus, from the view point of the number of arithmetic operations involved 

with the filter masks, one would tend to select the gradient filter mask provided that the 

fitting error using this mask is acceptable. Hence, we need to examine as to how this 

choice of the gradient filter mask will impact the achievement of the lowest average 

normalized fitting error. In the experiment using Group 1 samples, it is seen from Table 
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4.3 that although the lowest average normalized fitting error is obtained by using the 4-

Laplacian filter mask with 25 DCT coefficients, the error changes only insignificantly 

when the mask is changed to a gradient filter mask with the same number of DCT 

coefficients, i.e., nc = 25. On the other hand, in the experiment using Group 2 samples, it 

is seen from Table 4.4 that the lowest average normalized fitting error happens to be 

achieved by using the gradient filter mask but with 30 DCT coefficients. If we reduce the 

number of coefficients from 30 to 25 using this mask, the error does not change 

significantly. Thus, a change of the number of DCT coefficients to nc = 25 will make the 

choice of the mask and the number of DCT coefficients for the Group 2 samples in line 

with that for the Group 1 samples with only negligible loss in the value of the lowest 

average normalized fitting error. Therefore, from the results of the experiments, one can 

conclude that the use of the gradient filter mask with 25 DCT coefficients used for 

building the compressed DCT profile provides good performance as well as 

computational efficiency for either group of the training and test samples. 

 

4.4.3. Comparison of the Facial Annotation Performance using the Proposed and 

Other Active Shape Models  

In order to examine the comparative effectiveness of the proposed ASM, we apply this 

and other ASMs to the problem of facial annotation and compare the performance in 

terms of the average normalized fitting errors and the average execution times. We 

conduct experiments using the proposed ASM, stacked ASM [35], and ASM with a PCA-

based LGGM [36]. Table 4.5 summarizes the parameters utilized for a facial landmark 

annotation using the three ASMs. 
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Table 4.5: Summary of the parameters utilized for a facial landmark annotation using the 

stacked ASM, ASM with a PCA-based LGGM and the proposed ASM. 

 

Parameter 
Description of 

Parameter 

Stacked 

ASM 

ASM with a PCA-

based LGGM 

Proposed 

ASM 

m 1D profile size 17 - - 

m x m 2D profile size 169 169 25 

nc 
Number of DCT 

coefficients 
- - 25 

ns 1D search length 7 - - 

ns x ns 2D search region 5x5 5x5 5x5 

c 
Shape constant for 

sigmoid transform 
100 100 100 

3√λk Shape coefficients bound 
1.8 (1D), 

1.4 (2D) 
1.4 1.4 

Nmax 

Maximum number of 

iterations per pyramid 

level 

 

4 

 

4 4 

Nlevel 
Number of levels for 

multi-resolution search 
4 4 4 

 

 As in the previous section, the two groups of training and test sets of images and 

landmarks of the facial shapes described in Section 4.4.1 are utilized for conducting 

experiments for the various ASMs. The facial landmark annotation is conducted 10 times 

for each ASM using the Group 1 samples and then using the Group 2 samples, and the 

mean values of the average normalized fitting errors and the average execution times are 

obtained and compared. The execution time of a facial landmark annotation corresponds 

to the time required for fitting the landmarks of the model shape onto a target facial shape 

in an image. The average execution time is computed by taking the mean of the complete 

execution time over all samples from the test set.  

 Table 4.6 gives the mean values of the average normalized fitting error and the 

average execution time obtained from the experiments using the training and test sets of 

Group 1. It is observed from this table that the lowest average normalized fitting error is 
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obtained by using the proposed ASM. It is also to be noted that the average execution 

time obtained by using the proposed ASM is much smaller than that obtained by using 

the stacked ASM and ASM with a PCA-based LGGM.  

 

Table 4.6: Mean values of average normalized fitting error and average execution time 

obtained by using the proposed and two other active shape models from the experiment 

using the training and test sets of Group 1 (the MUCT and BioID databases). 

 

Method 

Average Normalized 

Fitting Error 

(pixels) 

Average Execution Time 

per Facial Image 

(seconds) 

Stacked ASM [35] 1.5807 0.1251 

ASM with a PCA-based LGGM [36] 1.8033 2.8076 

Proposed ASM 1.5220 0.0675 

 

 Table 4.7 presents the mean values of the average normalized fitting error and the 

average execution time obtained from the experiments using the training and test sets of 

Group 2. It is seen from this table that the lowest average normalized fitting error is 

obtained by using the proposed ASM. It is also to be noted that the average execution 

time obtained again by using the proposed ASM is much smaller than that obtained by 

using the other two ASMs used for comparison. 

 

Table 4.7: Mean values of average normalized fitting error and average execution time 

obtained by using the proposed and two other active shape models from the experiment 

using the training and test sets of Group 2 (the IMM database). 

 

Method 

Average Normalized 

Fitting Error 

(pixels) 

Average Execution Time 

per Facial Image 

(seconds) 

Stacked ASM [35] 3.4666 0.1406 

ASM with a PCA-based LGGM [36] 3.2164 2.1565 

Proposed ASM 3.0652 0.0784 

 



 

80 

 

 

 

 The block size of 8 x 8 pixels around a landmark used in the proposed ASM is 

sufficient to capture all the necessary features of the landmark, and the use of larger-size 

block only increases the computational complexity without improving the fitting 

accuracy. This is supported by the accuracy of the results using the 8 x 8 block of pixels 

around the landmark. 

 It is also seen from Tables 4.6 and 4.7 that the use of a smaller number of DCT 

coefficients significantly reduces the computational complexity, and, in turn, the average 

execution time. Specifically, the average execution time obtained by using the proposed 

ASM for the two groups of samples is 45.07% lower than that using the stacked ASM 

and 97.06% lower than that using ASM with a PCA-based LGGM. Since the reduced set 

of DCT coefficients chosen by performing a zig-zag scanning of the 2-D array of the 

DCT coefficients contains most of the pertinent information about the 8 x 8 region 

around a landmark, the reduction in the computational complexity resulting from the use 

of this reduced set is achieved without compromising on the fitting accuracy.  

 The noise is generally associated with the high-frequency components of the DCT 

coefficients of an image. Thus, in the proposed method, the process of choosing the low-

frequency DCT coefficients filters out the noise contained in the image. In conclusion, 

the use of the proposed ASM in a facial landmark annotation significantly reduces the 

execution time without compromising on the shape fitting accuracy. 

 

4.5 Summary 

In this chapter, we have examined the effectiveness of the proposed active shape model 

(ASM) presented in Chapter 3 in an application of automatic facial landmark annotation 
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of frontal faces. The proposed ASM is utilized in a facial shape search method described 

in Chapter 2 for localizing a facial shape in an image. The steps of such a method consist 

of generating an initial model shape, refining the landmark positions using the local grey-

level gradient model (LGGM), finding a model shape by calculating the model and 

transformation parameters, and finally, updating the model and transformation 

parameters. The initial model shape is generated by roughly fitting a shape, which is 

given by the model and transformation parameters, to a rectangular region containing the 

face in an input image. The shape search method iteratively improves the fitting of the 

model shape to the face in the image by moving each landmark of the model shape to a 

new position using LGGM for generating a new shape, and by updating the model and 

transformation parameters for closely approximating the new shape.  

 In order to perform the facial annotation using the proposed ASM, two groups of 

training and test sets of images and landmarks of the facial shapes are created from the 

samples of three databases, namely, the MUCT, BioID and IMM databases. The accuracy 

in fitting the landmarks of the model shape onto a target facial shape in an image is 

measured by using the normalized fitting error. The average normalized fitting error over 

all the samples from the test set is computed for measuring the overall fitting accuracy of 

the proposed ASM.  

 For measuring the effectiveness of the proposed ASM quantitatively, we have run 

experiments with the two groups of training and test sets of images and landmarks of the 

facial shapes using different combinations of the number of DCT coefficients and a filter 

mask. From the results of the experiments, we have concluded that the gradient filter 

mask with 25 DCT coefficients for building the compressed 2-D DCT profile for the 
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proposed ASM provides good performance in terms of the fitting accuracy as well as in 

terms of the computational efficiency. We have also compared the average normalized 

fitting error and the average execution time obtained by using the proposed and two other 

ASMs, namely, stacked ASM and ASM with a PCA-based LGGM. The experimental 

results have shown that the lowest average normalized fitting error is obtained by using 

the proposed ASM, and the average execution time obtained by using the proposed ASM 

is much smaller than that obtained by using the other two ASMs.  

 The block size of 8 x 8 pixels around a landmark is sufficient to capture all the 

necessary features of the landmark. Hence, the use of larger-size block (for example, 13 x 

13 block of pixels used in the other two methods) would only increase the computational 

complexity without improving the fitting accuracy. The proposed compressed 2-D DCT 

profile has provided two distinct advantages: (i) The use of a smaller number of DCT 

coefficients significantly reduces the computational complexity. This is achieved without 

sacrificing the fitting accuracy, since the reduced set of the DCT coefficients is chosen in 

such a way that they contain most of the pertinent information about the 8 x 8 region 

around a landmark. (ii) The process of choosing the low-frequency DCT coefficients 

filters out the noise contained in the image, since the noise is generally associated with 

the high-frequency components of the DCT coefficients, which are discarded in the 

proposed scheme. Hence, the use of compressed DCT profile has, in fact, reduced the 

fitting error as well. Hence, it can be concluded that the proposed active shape model is 

an attractive and viable alternative to the existing ASMs. 
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CHAPTER 5  

Conclusion and Future Work 

 

5.1 Concluding Remarks 

Facial recognition systems, which automatically identify a human in a digital 

image or a video frame using faces stored in a database, have been successfully applied in 

security, law-enforcement and human identification applications. In a feature-based facial 

recognition system, which employs a set of features extracted from each of the prominent 

facial components, an automatic and accurate localization of facial features is an essential 

pre-processing step. A flexible shape model, referred to as active shape model (ASM), 

was originally proposed to automatically locate a set of landmarks representing the facial 

features. Various improved versions of ASM for facial landmark annotation have been 

developed in order to increase the shape fitting accuracy. However, these improvements 

have been achieved at the expense of a substantial increase in the computational 

complexity.  

In this thesis, a low-complexity ASM has been developed by incorporating the 

energy compaction property of the discrete cosine transform (DCT). The proposed ASM 

utilizes a novel 2-D profile of a landmark, which is based on the DCT, in order to reduce 

the computational complexity without affecting the facial shape fitting accuracy. The 

development of the proposed ASM has been aimed at reducing the execution time of a 
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facial shape search while keeping the shape fitting accuracy of the ASM comparable to 

that of other improved versions of ASM. 

The proposed ASM has been developed by introducing a compressed DCT profile 

of a landmark, which is a 2-D profile based on the DCT of the local grey-level gradient 

pattern around the landmark. In order to build the profile of the landmark, a profile 

matrix of the landmark is first obtained by computing the response of a spatial filter mask 

at each pixel position of an m x m region around the landmark. A 2-D array of the DCT 

coefficients is obtained by computing 2-D DCT of the profile matrix, and then a subset of 

these coefficients is chosen by performing a zig-zag scanning of the 2-D array of the 

DCT coefficients. The selected DCT coefficients are normalized by dividing each 

element by the average of the absolute values of the selected DCT coefficients, which are, 

in turn, equalized by applying a sigmoid transform to each element. The resulting DCT 

coefficients are finally utilized as a compressed DCT profile representing the landmark.  

 The proposed ASM has been employed in a scheme of facial landmark annotation 

for locating facial features of the face in an input image. This scheme first maps the 

initial model shape onto the input image using a rectangular region containing a face, 

refines the model shape iteratively, and, finally yields a model shape that fits closely to 

the face in the image. In order to perform the facial annotation using this scheme, two 

groups of training and test sets of images and landmarks of the facial shapes have been 

created from the samples of three databases, namely, the MUCT, BioID, and IMM 

databases. Experiments with the two groups of training and test sets of samples have been 

conducted using different combinations of the number of DCT coefficients and a filter 

mask. It has been concluded from the experimental results that the gradient filter mask 
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with 25 DCT coefficients provides good performance in terms of the fitting accuracy as 

well as in regard to the computational efficiency. The average normalized fitting error 

and the average execution time obtained by using the proposed and two other ASMs, 

namely, stacked ASM and ASM with a PCA-based LGGM, have also been compared in 

order to examine the comparative effectiveness of the proposed ASM. The experimental 

results have shown that the lowest average normalized fitting error is obtained by using 

the proposed ASM, and the average execution time obtained by using the proposed ASM 

is significantly lower than that obtained by using the other two ASMs. It has been noted 

from the experimental results that the use of a smaller number of DCT coefficients in 

building the compressed DCT profile significantly reduces the computational complexity, 

and the process of choosing the low-frequency DCT coefficients filters out the noise 

contained in the image, which is associated with the high-frequency coefficients. 

 In conclusion, this study has shown that the use of the proposed ASM in an 

automatic facial landmark annotation of frontal faces has significantly reduced the 

computational complexity without losing the shape fitting accuracy. 

 

5.2 Future Work 

 In this study, a fixed-size window has been used for generating the profile matrix. 

One could also undertake a study in which the size of the window is varied depending on 

the location of a landmark within the face from the view point of improving the fitting 

accuracy further. For the development of the proposed ASM, an exhaustive search in a 

fixed region has been used for finding a new position of each landmark of the model 

shape. One could use non-exhaustive search techniques in order to reduce the search time. 
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Effectiveness of the proposed ASM based on a compressed DCT profile has been 

examined through its application in facial annotation problems. Other applications, such 

as object segmentation in medical images, can also be considered to examine whether 

their performance could possibly be improved from using the proposed ASM.  
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