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Abstract

A Customized ILP-based Solver for Description Logic

Reasoners

Mina Kazemi Zanjani

Artificial intelligence based systems are known for conveying knowledge through

machines. This knowledge is often represented using logic representation lan-

guages. One of the well-known families of such languages is called Descrip-

tion Logic (DL) which formally reasons and represents knowledge on the

concepts, roles and individuals of an application domain. DL reasoners have

been evolving through the years, however when it comes to handling more

complicated ontologies with big values occurring in number restrictions, the

current reasoners mostly fail to perform efficiently. One of the techniques

used in DL reasoners is the so-called atomic decomposition technique which

combines arithmetic and logical reasoning. This thesis presents a customized

CPLEX-based solver for enhancing DL reasoners through optimizing the

atomic decomposition technique. Furthermore, we provide evidence on how

this method can improve the reasoning performance by optimizing atomic

decomposition. For such purpose, an empirical evaluation of our system for

a set of synthesized benchmarks is demonstrated.
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Chapter 1

1 Introduction

One of the main and old objectives of artificial intelligence based systems

is conveying knowledge through machines. Such knowledge is derived from

information which itself is based on and gathered from data. When the

knowledge is obtained, its representation is often logic-based and passed to

machines so that knowledge can be derived in a more efficient way. A well-

known family of knowledge-based languages is called Description Logic (DL)

which offers more expressive features compared to traditional propositional

logic. The main application of DL systems in the artificial intelligence do-

main is formal reasoning on the concepts of an application domain and repre-

senting knowledge about the individuals and the relationship between them.

These concepts are any kinds of object which are present in a an application

domain. The reasoning process is performed through using a software called

DL reasoner or reasoner engine which is capable of inferring logical conse-

quences. To do so, a set of inference rules is required which is defined by

1



a description language or ontology language. An ontology mainly describes

a particular application domain in terms of concepts, roles (the relationship

between objects) and axioms (statements which formally describe concepts

and roles). These axioms are in fact the logical statements which can be

processed through reasoning. For example, an ontology could describe the

structure of a university by using concepts such as Employee, Professor and

Student. Part of a a university’s hierarchy can be captured by an axiom stat-

ing that Professor is a subconcept of Employee. Such axioms can be used

by the ontology reasoner to perform subsumption reasoning. Subsumption

reasoning means reasoning about the hierarchy of ontology concepts. For

example, concept B subsumes (is more general than) a concept C iff in every

interpretation the set denoted by B is a superset of the set denoted by C.

[20][3]. Semantic reasoners have been evolving and upgrading through the

years, however when it comes to handling more complicated ontologies espe-

cially the ones with big values of number restrictions, the current reasoners

mostly fail to perform the reasoning process and deliver inference outputs

in an acceptable period of time. Number restrictions which are present in

almost all existing systems, allow one determine the number of possible role-

fillers of a particular role. For instance, such a restriction can express that a

2



student may be supervised by least 1 professor, by restricting the number of

role-fillers of the is-supervised-by role to more or equal to 1 [1]. This is why

reasoner optimization is an on-going research topic and is an open domain for

further research. In DL languages, the numerical restrictions on relationships

is expressed through number restrictions.

1.1 Number Restriction in Description Logic

In every DL model or scenario, there are relationships which are defined

between individuals within that model. Through applying number restric-

tions it is possible to assign cardinality constraints on these relationships.

For instance consider a model which describes a medical school admission

requirements. In this model we may use the expressions: Student ≡ (≥

15 hasUndergradCredit) and Student ≡ (≥ 3 passScienceCourse) which

are used to indicate that every student should have at least 15 undergrad

credits and at least pass 3 science courses in order to be admitted in a med-

ical school. Number restrictions enrich DL languages by making the models

more expressive, however the enrichment comes with the price of making the

model more complex and therefore harder to handle in terms of time and

speed during the reasoning process [10].
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1.2 Research Objectives and Contributions

Previously, reasoners faced a big challenge in delivering an efficient perfor-

mance when it came to handling large values of number restrictions as their

approach was mainly based on a trial-and-error approach. This issue was ad-

dressed in [10] and [9] and to conquer this issue, an algorithm was suggested

in [10] which converted the numerical semantics of DL into linear inequali-

ties during a process which is called Atomic Decomposition. Although atomic

decomposition has been proven to be effective in later publications and im-

plementations such as [9], however there are still some complex models which

could not be easily handled within a reasonable amount of time by the cur-

rent reasoners. Moreover, tracing back the source of unsatisfiability is still

not performed as efficiently as it is required. Therefore further improvement

in this area is inevitable. We propose a customized linear inequality solver

which adds more efficiency in terms of time to the current reasoners.

1.2.1 Objectives

In this research we pursue the following objectives:

• Develop a customized CPLEX-based solver which is embedded into

a DL-based reasoner using the atomic decomposition technique. The cus-

4



tomized solver would solve the system of inequalities generated by the atomic

decomposition process with superior efficiency in terms of time. The results

are passed to the reasoner as input for later processing.

• If the system of inequalities is found to be not satisfiable, the source of

unsatisfiability is detected by the customized solver and a minimal explana-

tion is generated and sent back as feedback to the reasoner.

1.2.2 Contributions

We can summarize the contributions of this research as follows:

1. We present a customized CPLEX-based solver which can be integrated

with a DL-based reasoner to optimize its performance.

2. We present a mechanism as part of our customized solver, which finds

the source of detected unsatisfiabilities and provides the reasoner with a

minimal explanation for simplifying the process of tracing back the cause of

unsatifiability inside a model.

3. We present a system which creates a new virtual bridge between two

different systems (CPLEX and DL) for more efficient performance.

4. We analyse the complexity of our proposed system in comparison with

existing approaches.

5



5. We study the practical aspects of implementing such customized sys-

tem with respect to the available CPLEX services which can be applied in

our system.

6. We generate different prototypes of our proposed system and report on

their performance and select the one showing the most efficient behaviour.

7. We study the behaviour of our system while working with the HARD

reasoner [9] and report on its performance.

1.2.3 Thesis Organization

This thesis consists of seven chapters which are organized in the following

order: In Chapter 2, description logic (DL) is defined and explained in detail

and an introduction to the DL ALC and knowledge bases is provided. In

Chapter 3, the atomic decomposition process in DL reasoners is studied and

reviewed. In Chapter 4, we focus on introducing Integer Linear Programming

and providing a detailed description of Simplex as one its most important

solving algorithms. In this chapter some variations of the Simplex algorithm

are discussed and their complexities studied. Moreover one of the best known

simplex-based solvers called CPLEX is introduced and described in the final

sections of Chapter 4. In Chapter 5, the architecture of our customized solver

6



is discussed in more detail and it is compared to other alternative solvers

available, in terms of performance. Chapter 6 discuses different test cases and

illustrates the results of the tests. Chapter 7 as the final chapter concludes

this thesis, points out its achievements based on the theoretical analysis and

empirical evaluation, mentions the system limitations and related future work

which could pertain as an improvement to our research.

7



Chapter 2

2 Description Logics

In this chapter, first we will formally define and introduce Description Logics

(DL) in Section 2.1. In Section 2.2 two basic DL languages called AL and

ALC are discussed and in Section 2.3 a knowledge base is described in detail.

2.1 Introduction to DL systems

As defined in [2], Description Logics is a family of knowledge representation

(KR) formalisms which is applied for representing the knowledge of an appli-

cation domain (the ”world”). For such purpose, at first, any relevant concept

inside this domain is identified or in other words the terminology of the do-

main is defined. Once the terminology is identified, any concept introduced

inside the domain could be employed for determining the properties of objects

and individuals occurring in that specific domain. This could be considered

as the process of describing the world. The basic fundamental features of DL

includes its logic-based semantics along with the reasoning services it offers

through these semantics. Any DL has three basic syntactic building blocks
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or components. These components are atomic concepts (unary predicates),

atomic roles (binary predicates) and individuals (constants).

Definition 1 (Concept). Any subset of a particular domain is defined as a

concept. A concept specifies a set of domain elements with similar charac-

teristics and is represented by using a unary predicate symbol. For example

Family is a domain and Child, Mother or Father are sample concepts in this

domain.

Definition 2 (Role). Roles are defined to describe the binary relationship

between individuals inside a domain. For example hasChild is a role which

defines a binary relationship between the individuals of concepts Father and

Child.

Definition 3 (Individual). Individuals are instances of concepts in a partic-

ular domain. For instance if John is an individual which belongs to concept

Male then we could say John: Male. Furthermore individuals could have re-

lationships with each other. For instance 〈John, Tommy〉 : hasChild states

Johnny is the Father of Tommy.

In Description Logic, classification of concepts provides us with subconcept

and superconcept relationships which are called subsumption and classifica-

tion of individuals distinguishes individuals from each other by determining

9



which concept they belong to. Such subsumption and classification services

enable one to extract implicit knowledge about concepts and individuals from

the knowledge that is declared in the knowledge base. Automatic knowledge

inference is performed using DL languages. One simple example of such in-

ference could be the following: If Father is a Male and has a relationship

called hasChild with a Child and we have an individual John where John :

Male and 〈John, Tommy〉 : hasChild, through KR one could infer that John

: Father. Such simple descriptions from basic concepts and roles are building

components of more complex descriptions. Description Logic is the descen-

dant of so-called ”Structured Inheritance Networks” [15] and was originally

developed and introduced in KR systems in order to minimize and overcome

the ambiguities of the first DL-based KR system called KL-ONE [6] [12].

In the following sections, we will first introduce and describe the DL AL and

then introduce ALC as the simplest propositionally complete subset of De-

scription Logic. In the last section, an introduction to the basic formalism of

Description Logic is provided through terminological (TBox) and assertional

(ABox) formalisms.

10



2.2 DL ALC

In this section, to represent abstract notations, we will use the letters A and

B for atomic concepts, the letter R for atomic roles, and the letters C and

D for concept descriptions. ALC is a simple variation of AL-languages. AL

(=attributive language) language has been introduced in [19] as a minimal

language that is of practical interest. Any other language belonging to this

family is just an extension of AL. To better understand AL language, it is

necessary to know and understand its grammar. Figure 1 shows the grammar

of the AL language:

C,D −→A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬A | (atomic negation concept)
C uD | (conjunction)
∀R.C | (universal restriction)
∃R.> (qualified existential restriction)

Figure 1: Grammar of the AL language

11



ALC is one of the basic and propositionally complete DL languages which

is also an extension of AL. In ALC, the following grammar is used to form

concept descriptions, where> and⊥ are respectively represented by (Ct¬C)

and (C u ¬C). Figure 2 shows the grammar for ALC language:

C,D −→A | (atomic concept)
¬C | (negation concept)
C uD | (conjunction)
C tD | (disjunction)
∀R.C | (universal restriction)
∃R.C (qualified existential restriction)

Figure 2: Grammar of the ALC language

2.3 Knowledge Base

Knowledge bases can be built based on the services provided by DL-based

KR systems. Through DL-based KRs, one can reason and change the con-

tents of any particular knowledge base. A typical knowledge base (KB) has

two building components: TBox and Abox. Figure 3 shows the architecture

of a knowledge representation system and its components based on Descrip-

tion Logic.

Definition 4 (TBox). TBox defines the terminological part of a DL knowl-

edge base. A TBox carries knowledge regarding concepts and roles. If C and

12



Figure 3: The architecture of a knowledge representation system based on Description
Logic

D are concepts, a TBox T is defined as a finite set of axioms in the form

of C v D (General Concept Inclusion Axioms or GCIs), and/or C ≡ D

(placeholder for {C v D,D v C}).

The first basic reasoning facility concerning the TBox is determining if a

concept denotes nothing or in other words if a concept denotes the empty

set in every interpretation. TBox second reasoning facility is computing the

subsumption hierarchy [3].

Definition 5 (ABox). ABox is the assertional part of a DL knowledge base.

An ABox contains facts about individuals. An ABox A stands for a finite set

13



of assertions of the forms a : C, (a, b) : R, where a and b are the individuals

occurring in an ABox A and R is a role.

In other words a TBox introduces the vocabulary of an application domain

whereas an ABox is more focused on providing assertions about named indi-

viduals in terms of the vocabulary [2]. The reasoning facilities which concerns

both TBox and ABox are checking the following:

• Checking whether the represented knowledge is consistent,

• Given an individual of the ABox, the most specific concepts in the TBox

which this individual is instance of, are computed,

• Given a concept, compute all the individuals of the ABox that are instances

of this concept [3].

Figure 4 illustrates an example of a TBox and an ABox.

Now that we have introduced basic DL languages and knowledge bases,

TBox ABox

Female v ¬Male Anne : Human
Anne : Female

Animal ≡ Female t Male Sophie : Woman
Human v Animal Robert : Human
Woman v Human u Female David : Man
Man v Human u ¬Female 〈Sophie,Anne〉:hasChild
Mother ≡ Woman u ∃ hasChild.> 〈Robert,David〉:hasChild
Father ≡ Man u ∃ hasChild.>
transitive(hasChild)

Figure 4: Example of TBox and ABox

14



we will discuss one of the techniques used in DL reasoners called atomic

decomposition in the next chapter.

15



Chapter 3

3 Atomic Decomposition

In this section we introduce Atomic Decomposition through an example of

applying this method in DL reasoning and we explain why and how this

method can be optimized.

3.1 Definition

Based on the definition of atomic decomposition described in [17] the con-

sistency and subsumption problems of some concept formula can be mapped

to equation solving problems. To perform such mapping the atomic decom-

position technique plays an important role. Atomic decomposition was first

introduced in [16] and was defined as a technique which translates cardinality

information about finite sets into simple arithmetic terms. This provides a

system with the ability to reason about such set cardinalities through solv-

ing arithmetic inequality problems. Through this technique, we separate a

collection of sets into mutually disjoint components called atoms in a way

that the cardinality of the sets are the sum of the cardinalities of their atoms.

16



Atomic decomposition not only makes it possible to have languages which

combine arithmetic formula with set terms, but also it enables translating

the formula of this combined logic into pure arithmetical formulas.

3.2 Example

The Venn diagram illustrated in Figure 5 shows the relationship between

three sets s, t and v, where s is the set of soccer players, t is the set of tennis

players and v is the set of volleyball players.

As observed in the Venn diagram in Figure 5, given 3 role filler, 23 = 8

Figure 5: Venn diagram for Tennis,Volleyball and Soccer players

different areas are generated: s,t,v,st,sv,tv and stv. Informally and in simple

terms each of these partitions have the following meanings attached to them:

s = plays only soccer, not volleyball, not tennis.

17



t = plays only tennis, not volleyball, not soccer.

v = plays only volleyball, not soccer, not tennis.

st = plays only soccer and tennis, not volleyball.

sv = plays only soccer and volleyball, not tennis.

tv = plays only volleyball and tennis, not soccer.

stv = plays soccer and volleyball and tennis.

The original sets could be rewritten based on their ‘atomic’ components in

the following way:

plays-soccer = s ∪ sv ∪ st ∪ stv

plays-volleyball = v ∪ sv ∪ tv ∪ stv

plays-tennis = t ∪ st ∪ tv ∪ stv

Since the above decomposition generates partitions (mutually disjoint sets),

the sum of the cardinalities of the above roles are as follows:

|plays-soccer| = |s|+ |sv|+ |st|+ |stv|

|plays-volleyball| = |v|+ |sv|+ |tv|+ |stv|

|plays-tennis| = |t|+ |st|+ |tv|+ |stv|

Having introduced the above cardinality terms, we can formulate inference

problems. For instance if we know that no one plays tennis and at most 2

players play volleyball and at least 3 players play two games, then we can
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conclude that at least 1 player is playing soccer:

|t| ≤ 0 ∧ |v| ≤ 2 ∧ |sv| ≥ 3⇒ |s| ≥ 1

Furthermore, as mentioned before, these sets are mutually disjoint which

makes using cardinality terms rather irrelevant, therefore we could replace

them with non-negative integer valued variables. Therefore we could con-

clude the formula below:

xt ≤ 0 ∧ xv ≤ 2 ∧ xsv ≥ 3⇒ xs ≤ 1

Considering the above example, in atomic decomposition, we start with the

most general decomposition of the sets into their atomic components. Dur-

ing this process cardinality terms are converted to arithmetic terms which

ultimately leads to a pure linear Diophantine equation problem. In the next

step subset, disjointness and exhaustiveness relations between the different

sets are exploited which makes some of the atoms empty, therefore simplifies

the problem. In final step, we end up with a formula which can be submitted

to an arithmetic equation solver [16].

3.3 Atomic Decomposition in Description Logic

Atomic Decomposition was originally introduced by [17] to handle arith-

metic aspects of concept languages and to enrich formal systems which have
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a language with a notion of (existentially quantified) variables such as mathe-

matical programming systems for solving system of equalities or inequalities.

In description logic, this method is useful in the role part and semantically,

the sets which are decomposed and transformed are in fact the set of role

fillers of a particular object. One of the significant merits of using atomic

decomposition in DL systems is transforming complex subsumption and con-

sistency problems into rather simple arithmetic equality problems. However,

it is important to keep in mind that this method could become rather ques-

tionable in particular cases. For instance, the decomposition of a set with

l elements yields 2l, i.e. exponentially many atoms. This means even for

small numbers of l, we can have cases which are unmanageably large. Hence

it is better to exploit every possible way to optimize this technique. There

are already some available optimization techniques for elevating the atomic

decomposition technique, examples of such are Relevancy Principle (factor-

ing out irrelevant boolean variables) and Factoring Principle (reducing the

overall number of syntactic atoms by labelling them) [17]. One simpler way

to improve the performance of atomic decomposition would be solving the

inequality sets with minimum time. For such purpose, we have decided to

perform the inequality solving process of the atomic decomposition proce-
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dure through our customized system which is based on one of the powerful

optimizing systems called CPLEX. More details of the system are presented

in Chapter 5.

As we presented an introduction about DL systems and atomic decomposi-

tion, we now proceed to the next chapter to introduce linear programming

along with one of its well-known algorithms called Simplex and ILOG CPLEX

as a linear programming optimizer.
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Chapter 4

4 Linear Programming (LP)

Linear programming (LP) is a special case of mathematical programming

(optimization) which is defined as a method to gain the best outcome such

as profit or lowest cost. In a typical LP all requirements are represented by

linear relationships. Linear programming is considered as an important tool

for combinatorial search problems. This is due to the fact that not only it

solves efficiently a large class of important problems, but also because it is the

basic block of some fundamental techniques in this area [7]. Most of linear

programs can be practically solved in polynomial time and robust solvers

are now available that solve large scale linear programs. One of the well-

known optimizers which offers such solving service is IBM ILOG CPLEX

optimizer. CPLEX is the first commercial linear optimizer written in the

C language, providing great flexibility, reliability and performance efficiency

for generating better and more efficient optimization algorithms, models and

applications. In this chapter linear programming and its components are

introduced in more detail mostly based on the materials presented in [11].
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The Simplex algorithm has been the basis for the entire field of mathematical

optimization and has served as the first practical method for solving linear

programming problems, therefore we will discuss this algorithm in more detail

in this chapter. Moreover ILOG CPLEX is presented and described as one

of the optimization tools that targets these problems.

4.1 Introduction to LP

The concept behind every linear programming problem can be simply ex-

plained through four basic components. These components include decision

variables, an objective function, constraints, and parameters. Decision vari-

ables are the quantities which are supposed to be determined. Objective

functions determine the way the decision variables affect the optimization

process (minimization or maximization). Constraints represent limits on de-

cision variables. Parameters are responsible for quantifying the correlation

between decision variables and the objective function as well as constraints.

In linear programs, there is a linear relationship between decision variables

in the objective function and the constraints. This feature of linear pro-

grams enables formulating real-world problems and facilitates an analytical

decision-making process. In basic linear optimization problems, the variables
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of the objective function are most often continuous in the mathematical sense,

meaning there are no gaps between real values. However, there are some cases

in which some or all the variables are restricted to be integers, this category

of LPs is referred to as integer linear programming (ILP). LP can be formu-

lated as follows:

Maximize Z = f(x), (1)

Subject to : Ax ≤ b, (2)

and x ≥ 0 (3)

where equality (1) is called an objective function and Z represents the objec-

tive function to be maximized or minimized (in this case to be maximized).

The inequalities (2) and (3) represent the constraints over which the objec-

tive function to be optimized. In these inequalities, x represents the vector of

decision variables which are to be determined, A represents a known matrix

of coefficients and b is a vector of known coefficients.
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4.2 Simplex Algorithm

As stated in [11] in mathematical optimization, Simplex method is a gen-

eral procedure which was originally developed by George Dantzig in 1947 for

solving linear programming problems. Due to its efficiency, this method is

the routine base used by so many applications to solve huge mathematical

programming problems on computers. In the following sections we provide

an introduction to the basics of Simplex and describe its main features.

Simplex method is originally an algebraic procedure based upon geometry.

Before going through the algebraic aspects of Simplex, it is useful to un-

derstand its geometric basis. Therefore for better understanding of the al-

gorithm, we will demonstrate Simplex algorithm through a simple example.

First from a geometric and then from an algebraic point of view. The Linear

Program (LP) model for our example is the following:

Maximize Z = 5x1 + 8x2, (4)

Subject to : x1 + x2 ≤ 6 (5)

5x1 + 9x2 ≤ 45 (6)
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and x1, x2 ≥ 0 (7)

In the above example, equality (4) represents the objective function and

inequality (5), (6) and (7) represent the set of constraints imposed on the

decision variables.

Figure 6: The graph of model (4)-(7)

4.2.1 Simplex Algorithm: geometric point of view

The graph of the model in the previous section is represented in Figure 6.

The graph illustrates the two constraint boundaries and their intersecting

points. Each of the constraint boundaries is represented by a line and the

intersection of these two lines forms a boundary area that corresponds to the
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values that are permitted by the imposed constraints. This area is called the

feasible region and the intersection points are called the corner-point solu-

tions of the problem. In our example, as displayed in Figure 6, there are four

corner-point solutions: (0, 0),(0, 5),(9
4
, 15

4
) and (6, 0). Since these points lie on

the feasible region, they are referred to as the corner-point feasible solutions

(CPF solutions). The other corner point solutions are called the corner-point

infeasible solutions: (i.e. (0, 6) and (9, 0)). As illustrated in the graph, each

CPF solution is connected to two other CPF solution, meaning each CPF

solution is adjacent to another CPF solution through sharing an edge. The

adjacent CPF solutions are important in the optimality test process. The

optimal solution is defined below:

Definition 9 (Optimality Test). For every linear programming problem with

at least one optimal solution, if a CPF solution does not have any better ad-

jacent CPF solutions (in terms of objective function value), then that CPF

solution must be an optimal solution.

Generally Simplex method consists of two major steps in order to solve lin-

ear programming problems, CPF solution selection and the optimality test.

These two steps are repeated during iterations until an optimal solution is

reached. We now explain briefly how Simplex performs from a geometric
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point of view. Using the model presented in Section 4.2, we will have the

following steps:

• CPF solution selection: corner-point (0,0) is chosen as the initial CPF so-

lution.

• Optimality Test: (0,0) is not an optimal solution since (0,5) and (6,0) are

better adjacent CPF solutions compared to (0,0).

• CPF Solution Selection: Moving from (0,0) toward the x2 axis, we choose

(0,5) as the next better CPF solution (since x2 has greater coefficient com-

pared to x1 in the objective function (8 > 5), therefore moving toward the

x2 axis would maximize Z faster than moving toward the x1 axis).

• Optimality Test: (0,5) is not an optimal solution since an adjacent CPF

solutions is better.

• CPF Solution Selection: the next better adjacent CPF solution is located

at the intersection of the two constraints at (9
4
, 15

4
).

• Optimality Test: There is no better adjacent CPF compared to point (9
4
, 15

4
)

which leads us to the optimal solution of Z = 41.25.

Having introduced the geometric aspects of Simplex algorithm, we may

look into its algebraic aspect in the next section.
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4.2.2 Simplex Algorithm: Algebraic point of view

Since Simplex method is mostly run on a computer and computers can only

follow algebraic instructions, it is crucial to translate the geometric version

of Simplex into the algebraic form. To perform such a translation, the in-

equalities inside a particular model are converted to equalities in a general

standard LP model. For the model introduced earlier in Section 4.2 or for

any other maximization problem, slack variables should be introduced. In

optimization problems where the objective function aims for maximization,

a slack variable is defined as a variable which is being added to an inequality

constraint in order to change it to an equality constraint [5]. We can create

slack variable (si) for each constraint i in the above problem. For instance

consider inequality (5) from the above example:

x1 + x2 ≤ 6 (5)

In the above inequality, the left hand side is less than or equal to 6. To

convert the inequality to an equality we may add a non negative value to

the left hand side. This value could be increased till the point where the

left hand side is equal to the right hand side. This positive value is called
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slack variable, meaning it compensates the slack on the left hand side of the

inequality. Labelling this slack variable as x3, the first slack variable could

be defined as below:

x3 = 6− x1 − x2 (8)

following the definition of the slack variable and knowing that they all have

positive values, we can define a slack variable for inequality (6) as well:

x4 = 45− 5x1 − 9x2 (9)

Having introduced slack variables we rewrite the problem into its augmented

form, where the original form of the model has been augmented by the sup-

plementary variables (slack variables):

Maximize Z − 5x1 − 8x2 = 0, (10)

Subject to : x1 + x2 + x3 − 6 = 0 (11)

5x1 + 9x2 + x4 − 45 = 0 (12)

for xi ≥ 0 for i = 1, 2. (13)
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The above model is called the augmented form of the first model as it is aug-

mented with supplementary variables called slack variables. The augmented

form is more useful and convenient when it comes to finding solutions and

that is the reason they are generated through introducing slack variables.

If a slack variable equals 0 in the current solution, then this solution lies

on the constraint boundary for the corresponding functional constraint. A

value greater than 0 means that the solution lies on the feasible side of this

constraint boundary, whereas a value less than 0 means that the solution lies

on the infeasible side of this constraint boundary. The above problem can

have a Basic or a Basic Feasible (BF) Solution. The basic solution is an aug-

mented corner-point (CP) solution and a basic feasible solution is defined as

an augmented CPF solution. In the augmented form of model (4)-(7) there

are 4 variables and 2 equations in overall. The difference between these two

values would be:

Number of variables − Number of equations = 4− 2 = 2

The above equation is interpreted as 2 degrees of freedom in finding a so-

lution to the system, meaning any two variables could be set to arbitrary

values in order to solve the two equations in terms of the remaining two

variables. In Simplex, these values are set to zero and called non-basic vari-
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ables. The other two variables are called basic variables. After introducing

basic and non-basic variables, now we can proceed with Simplex algorithm.

Like the geometric procedure, the algebraic procedure is based on two main

steps: first deciding which variables should be set to zero (non-basic vari-

ables) and then performing the optimality test to decide whether an optimal

solution has been achieved. Like the geometric procedure, these two steps

are repeated in multiple iterations until the point where an optimal solution

is obtained. Considering the augmented model, the following steps are taken

during Simplex algorithm:

• Choosing non-basic variables: We first choose x1 and x2 to be the non-basic

variables and set them to zero. This leads us to the BF solution: (0, 0, 6, 45).

• Optimality Test: The solution is not optimal because increasing either one

of the non-basic variables (x1 or x2) would increase Z.

• Choosing non-basic variables: Since x2 has a higher coefficient in the objec-

tive function and it increases Z faster, it is chosen as the non-basic variable

to be increased. While increasing x2, the other variables values must be ad-

justed to satisfy the system of equalities. When one of the basic variables

drops to zero, we stop increasing the value of x2. In our case for x2 = 5

(basic variable), x4 would be zero (non-basic variable). The new BF solution
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would be: (0, 5, 1, 0). The new system of inequalities would be as follows:

Maximize Z =
5

9
x1 −

8

9
x4 + 40, (14)

Subject to :
4

9
x1 + x3 −

1

9
x4 = 1 (15)

5x1 + 9x2 + x4 = 45 (16)

for xi ≥ 0 for i = 1, 2. (17)

• Optimality Test: The system is still not optimal since increasing the other

non-basic variable x1 increases Z.

• Choosing non-basic variables: x1 and x4 are set as non-basic variables and

their values are zero. The value of x1 is increased until one of the basic

variables x2 or x3 is zero. Variable x3 drops to zero (new non-basic variable)

and x1 is set as new basic variable. The next BF solution is (9
4
, 15

4
, 0, 0).

• Optimality Test: Since increasing either x3 or x4 would decrease Z, (9
4
, 15

4
, 0, 0)

is the optimal solution with Z = 165
4

= 41.25.
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4.3 Simplex Efficiency

Simplex algorithm operates through moving from one basic feasible solution

to another one without returning to a previously visited solution, therefore

the number of iterations in Simplex is at most the number of basic feasible

solutions. This is true for all non-cycling variants of Simplex method. In the

cycling variants of Simplex, the worst case is infinite. With respect to these

facts, linear programming with simplex is proved to have expected O(n3)

time complexity for average cases and O(2n) for the worst case [21] [23]. It

is important to mention that although Simplex efficiency in most practical

average cases is Non-deterministic Polynomial-time hard (NP-hard), how-

ever in some other cases, it has been recorded that worst-case complexity of

simplex method can be exponential time [18].

4.4 Branch-and-Bound Algorithm

Branch-and-Bound algorithm is one of the ILP algorithms which improves

the computational efficiency while complementing algorithms like Simplex.

Branch-and-Bound algorithm is focused on implicitly enumerating feasible

integer solutions [11]. Branch-and-Bound algorithm is done through three

main steps: branching, fathoming and bounding. It is fundamentally based
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on a divide and conquer approach, meaning it breaks very large problems

that are difficult to solve into smaller and easier sub-problems. During the

branching or dividing phase, the whole set of feasible solutions is partitioned

into smaller subsets of feasible solutions. By performing LP relaxation, each

of these smaller sub-problems is assigned a bound on how good its best fea-

sible solution could be. Relaxation of a problem means deleting one set of

constraints that makes the problem difficult to solve. More specifically in

IP problems, relaxation most often refers to deleting integrality constraints.

During fathoming or conquering, the best solution in each subset is bounded

and in cases where the bounds do not allow the subset to contain an optimal

solution for the main problem, that subset is discarded (fathomed). To bet-

ter understand this algorithm, we will first define each of these steps in more

details and then apply it to our earlier example model (4)-(7) from Section

4.2 by adding the integrality condition.

The branch-and-bound algorithm for a maximization problem like model (4)-

(7) could be summarized in the following steps:

•Initialization: In the first step Z∗ should be set to −∞. Z∗ is defined as

the value of Z for the current incumbent solution. The incumbent refers to

the best feasible integer solution found so far.

35



• Branching: Branching starts by selecting the most recently created and un-

fathomed sub-problem (breaking a tie based on the ones with larger bounds).

In the next step, one of the variables with a fractional (non-integer) value,

in the optimal solution for the LP relaxation of the sub-problem is chosen.

Suppose the chosen variable is xj and its value in the optimal solution is

represented by xj
∗. We create two new sub-problems from the node for the

sub-problem by using two constraints where [xj
∗] denotes the largest integer

less than or equal to xj:

j ≤ [xj
∗] and (18)

xj ≥ [xj
∗] + 1 (19)

• Bounding: In this stage, we apply Simplex or Dual Simplex (in case of

re-optimizing) to LP relaxation of each of newly created sub-problems and

use the value of Z in the optimal solution to obtain their upper bounds.

• Fathoming: In this phase, we apply three fathoming tests on each new sub-

problem. If the sub-problem passes any of these three tests, it is fathomed

and could be discarded.

Test 1: Its upper bound is ≤ Z∗.
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Test 2: LP relaxation is infeasible.

Test 3: The LP relaxation results are all integer solutions. In this case if the

solution is better than the incumbent, then the incumbent is updated and

the solution is assigned as the new incumbent. Then finally we would test all

other unfathomed sub-problems which have a new and larger Z∗ using test 1.

Figure 7: Branch-and-Bound Graph for IP model(4)-(7)

At the end of each iteration the optimality test is performed. In case

there are no sub-problems left, we would stop the iteration and choose the

current incumbent as the optimal one. In another scenario where there is no

incumbent solution, then the problem is infeasible.
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Now that we have discussed the algorithm methodology, we may apply it to

our earlier example model (4)-(7) in section 4.2:

Maximize Z = 5x1 + 8x2, (4)

Subject to : x1 + x2 ≤ 6 (5)

5x1 + 9x2 ≤ 45 (6)

and x1, x2 ≥ 0 (7)

Having x∗ = (9
4
, 15

4
) and Z∗ = 41.25 and after performing LP relaxation, we

could conclude that the upper bound is 41.

First Iteration :

Branching: Pick x2 as the variable for branching. Knowing x2 = 15
4

= 3.75

Let x2 ≤ 3, the original problem would be as below:

S1 :

Maximize Z = 5x1 + 8x2, (20)

Subject to : x1 + x2 ≤ 6 (21)

5x1 + 9x2 ≤ 45 (22)
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x2 ≤ 3 (23)

and x1, x2 ≥ 0 (24)

Now let x2 ≥ 4 , the original problem becomes:

S2 :

Maximize Z = 5x1 + 8x2, (25)

Subject to : x1 + x2 ≤ 6 (26)

5x1 + 9x2 ≤ 45 (27)

x2 ≥ 4 (28)

and x1, x2 ≥ 0 (29)

1. Maximize Z = 5x1 + 8x2,

subject to:

2. x1 + x2 ≤ 6

3. 5x1 + 9x2 ≤ 45

4. x2 ≥ 4

and
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5. x1, x2 ≥ 0 and integers

Figure 8: Branch-and-Bound Tree for Model(4)-(7)

Bounding: we would first solve S1 and the optimal solution would be (3,

3) and Z=39. Having an integer solution, we can call this solution as the

current incumbent solution meaning Z is the best lower bound for the IP
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problem. In next step we would solve S2 which results in optimal solution of

(9
5
, 4) and Z = 41. Z = 41 would be selected as the best upper bound.

Fathom: S1 is fathomed since its solution is is an integer. S2 is not fathomed

because further branching from S2 might result in Z > 39 (current incumbent

solution). We would continue the algorithm until the third iteration where

the incumbent solution is (0, 5) and it is the optimal solution to the original

IP problem. Figure 7 and 8 represent a branch-and-bound tree and a graph

which summarise complete branch-and-bound algorithm iterations for the

above example.

4.5 Dual Simplex Algorithm

Simplex method described in Section 4.2 is known as the Primal Simplex

algorithm. In a tableau implementation of the Primal Simplex, all right

hand side elements of each inequality are always non-negative, which results

in feasible basic solutions in every iteration of the algorithm. In an alternative

scenario where some of the right hand side elements have negative values,

primal problem is infeasible. Primal Simplex starts with a feasible basis and

looks for an optimal basis while maintaining feasibility. In an alternative

algorithm known as Dual Simplex, the algorithm starts with an optimal
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basis and looks for a feasible basis while maintaining optimality. In this

kind of Simplex algorithm, in all iterations the basis is initially both primal

infeasible and dual feasible. Dual feasible means neither the coefficients nor

the right hand side of the objective function are negative. The solution at the

final and optimal iteration should be both primal and dual feasible, meaning

during Dual Simplex, the goal is to maintain dual feasibility and obtain

primal feasibility. It is important to note that both Primal and Dual Simplex

algorithms reach the same solution for the same problem, however they reach

such solution through taking different directions. Dual Simplex is mostly

applicable and suited in cases where the problem could easily reach an initial

dual feasible solution. For instance, in cases where adding new constraints

or changing parameters makes the previously optimal solution infeasible,

Dual Simplex is an efficient algorithm for re-optimizing the problem [14].

Both Primal and Dual versions of the same problem share the same set of

parameters except in different locations. The following shows the comparison

between primal and dual versions of the problem more clearly:

•PrimalProblem :

Maximize Z = cx, (30)

Subject to : Ax ≤ b (31)
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and x ≥ 0 (32)

•DualProblem :

Maximize W = by, (33)

Subject to : Ay ≥ c (34)

and x ≥ 0 (35)

4.6 ILOG CPLEX

The IBM ILOG CPLEX optimizer is an executable program which reads a

problem interactively or from files in certain standard formats, solves these

problems and then delivers a solution interactively or in form of text files. In

general CPLEX offers C, C++, Java and .NET libraries which are designed

to solve LP and LP related problems. More specifically, CPLEX solves those

optimization problems which are linearly or quadratically constrained and

their objective functions could be expressed in form of a linear function or

a convex quadric function. These optimization models allow variables with

continuous or integer only values [13]. Originally the IBM ILOG CPLEX

studio combines high-performance ILOG CPLEX optimizer solvers with an

integrated development environment (IDE) and a powerful Optimization Pro-
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gramming Language (OPL). In the following sections, we will discuss CPLEX

components and then briefly introduce different categories of mathematical

problems which are targeted and solved by CPLEX.

4.6.1 CPLEX components

CPLEX is represented in various forms to meet a wide range of users’ needs.

It mainly consists of three components: Interactive Optimizer, Concert Tech-

nology and Callable Library. The CPLEX Interactive Optimizer is the com-

ponent which is in charge of reading and solving the problem and delivering

a relevant solution to that problem. Other important and powerful com-

ponent of the CPLEX Optimizer is Concert Technology, a modelling layer

which provides interfaces to programming languages. ILOG Concert tech-

nology consists of a set of modelling objects shared in common with OPL,

IBM ILOG CPLEX Optimizer and IBM ILOG CPLEX CP Optimizer. There

are three different Concert technology language implementations or class li-

braries: C++, Java and .NET (C# and Microsoft Visual Basic). These

libraries provides us with an API. The API consists of modelling facilities

which enables programmers to embed CPLEX optimizers in C++, Java, or

.NET applications. For this purpose the Concert technology libraries have
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to make use of CPLEX Callable Libraries. CPLEX Callable Library is itself

a C library which allows the programmers to embed CPLEX optimizers in

applications written in C, Visual Basic, FORTRAN, or any other language

that needs to call C functions. CPLEX default settings allows programmers

to call an optimizer that is appropriate for the class of problem being solved.

However, it also provides alternative options to choose a different optimizer

for special purposes. An LP problem can be solved by using Dual Dimplex,

Primal simplex, Barrier, and perhaps also Network optimizer (in cases when

the problem contains an extractable network substructure). It is important

to keep in mind that the choice of optimizer or other parameter settings

might have a strong impact on the solution speed of the particular class of

problem being solved [13].

4.6.2 Types of problems solved by CPLEX

CPLEX is a solving tool designed for a large variety of optimization prob-

lems. Some of the best known categories of problems targeted by CPLEX

are Linear Programming Problems (LP), Quadric Programs (QP), Problems

with Quadratic Constraints (QCP), Mixed Integer Programs which itself con-

tains Mixed Integer Linear Programs (MILP) and Mixed Integer Quadratic
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Programs (MIQP) and Network problems.

LP problems which were introduced in detail in Section 4.1 are the most basic

linear optimization problems which are solved by CPLEX. For LP problems,

CPLEX optimizers are based on both Primal and Dual Simplex algorithms.

QPs are those problems whose objective function is not linear but quadric.

QCPs are similar to QPs, however in QCPs, one or more constraints might

contain quadric terms and the objective functions do not necessarily contain

quadric terms. In MIP problems, both continuous variables (e.g. reals) and

discrete variables (e.g. integers) might be present in the objective functions

and constraints. MIPs with linear objective terms are referred to as MILPs

and MIPs with quadric objective terms are known as MIQPs. Network-flow

problems which are partly or entirely structured as a network and they are

handled by ILOG CPLEX Network optimizer. For those problems which are

largely structured as a network, a Network optimizer for the populated LP

object is applied. If however the entire problem contains network flows, a

network object should be created, populated and then solved by the network

optimizer.
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4.6.3 ILOG Concert Technology for Java Applications

Since our customized CPLEX-based solver was implemented in Java, using

the CPLEX API for Java was inevitable. Thus, we provide a brief abstract

view of CPLEX design in Concert technology for Java applications. Fig-

ure 9 shows the design of Concert technology and its interaction with a

user-application. Concert technology accomplishes this interaction through

defining a set of interfaces for modelling objects. The interfaces defined by

Concert technology do not actually consume memory (for this reason, the

box in the figure has a dotted outline). To create a CPLEX model, any user-

written application needs to create an IloCplex object which is stored in the

ILOG CPLEX database. This object creates the variables, constraints and

the objective function of the model by implementing a Concert technology

modelling interface. The application can access all modelling objects, for in-

stance the variables, through the Concert technology interface. IloCplex and

the modelling interfaces of Concert technology then communicate with ILOG

CPLEX internals (as shown in Figure 9). The computing environment, its

communication channels and any objects of the problem are contained inside

the ILOG CPLEX internal. One important advantage of using the design

shown in Figure 9 is the fact that the code for creating the model through
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Concert technology modelling interface could be used not only with IloCplex

but also with any other classes which create objects. Therefore this feature

allows us to be able to use other ILOG optimization technologies to solve our

model [13].

Figure 9: View of concert technology for Java applications

In the next chapter we will explain the methodology of our implemented

system with respect to the information that was presented in this chapter

and the previous ones.
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Chapter 5

5 Customized API Description

In this chapter, we will explain the architecture of the implemented cus-

tomized CPLEX based solver, which employs IBM CPLEX optimizer (in-

troduced in Chapter 4) in a way that can improve the performance of DL

semantic reasoners through enriching atomic decomposition procedure (pre-

sented in Chapter 3) during DL reasoning. The developed system is imple-

mented in such way which later on can be integrated in forms of libraries in

any DL reasoning engine. In the following sections, first, two main modules

of the developed system and the underlying functions of these modules are

discussed in more detail. In the final section, application of our system to

solve a DL problem is illustrated through an example.

5.1 Architecture

As illustrated in Figure 10, the developed customized system consists of two

main modules: the inequality set handler module and the solver module.

The input of the system is initially generated from atomic decomposition
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Figure 10: The architecture of customized CPLEX based solver

procedure during DL semantic reasoning process and it consists of a set of

inequalities. These inequalities are then fed to the system in terms of number

of roles and individuals associated with them. These values are then passed

to and interpreted by the inequality set handler module. The inequality set is

then passed to the solver module to decide whether the set is solvable or not.

Through this communication between the two modules, the feasibility of the

set is decided and if the set is mathematically feasible, the system provides

‘satisfiable’ as the output plus the solutions of the inequality system. In
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case of infeasibility, the output of the system would be ‘unsatisfiable’ along

with an explanation determining the source of infeasibility. In the following

sections the architecture of the system is explained in more detail.

5.1.1 Inequality Set Handler Module

This module serves as the initiating module which translates the users’ input

to define the problem to be solved by the solver. Based on the values given to

the module (roles and associated individuals), the inequalities are generated

in a sub-module named processor. The generated inequality set is then passed

to the second sub-module. The inequality set handler communicates with the

second module of the system (solver), through translating the inputs into

inequalities which are to be passed to the solver and retrieving the solving

feedback. The communication between the two modules is mainly based on

the feasibility of the system of inequalities. If the system is feasible, the

first module either continues to retrieve more input or it acknowledges the

externals users (or system) that the inequality set is satisfiable. In cases

where an arithmetic infeasibility is detected, arithmetic clashes are sent back

to the handler and later on to the clash strategy sub-module for further

investigation in order to detect the sources of infeasibility. After finding a
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clash an explanation is provided explaining possible causes of the clash. The

communication between the two modules can be done in an incremental or

non-incremental fashion.

5.1.2 Solver Module and IBM CPLEX Optimizer

As mentioned in the previous section, after receiving the input from the

semantic reasoner and creating a set of inequalities, this set is to be tested

for feasibility. This module solves the inequality set through Dual Simplex

algorithm by calling CPLEX API. The feedback is either a mathematical

clash which is to be interpreted by the clash strategy module or it is a non-

negative set of integer solutions.

5.1.3 Clash Strategy Module

As a clash is detected by the solver module and a clash feedback is sent back

to the clash strategy module, CPLEX is invoked to make the inequality set

feasible again. This is done through using one of CPLEX methods called

feasOpt(). The model becomes feasible and more relaxed by removing some

of the inequalities (constraints). These removed inequalities are stored in a

an external database such as a text file. The feasible model along with the
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removed inequalities is passed to the next iteration of the system so it can

be combined with a newly added inequality. This process is repeated every

time an infeasibility is detected. When all the inequalities are added to the

system, based on the number of times each removed inequality is repeated in

the database (a minimum of three times), the clash strategy module decides

which inequalities caused the model to become infeasible. This module is

useful for DL reasoners as it helps us detect the source of unsatisfiability

during the reasoning process which leads to reducing redundancies in the

backtracking process. Figure 11 shows how clashes are handled in the clash

strategy module.
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Figure 11: Clash handling flowchart
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5.2 Free Alternative Solvers

Different optimization software modules can be easily tested and imple-

mented on the same function f, meaning a given optimization software can

be used for different functions f. In our case since the system is generated

in Java, any optimization software which offers an internal library for Java-

based applications can be a replacement to the CPLEX optimizer. In the

following sections we look into two of these available solvers. The perfor-

mance of these solvers may not be as efficient as CPLEX, however not only

they are license-free solvers but also they are open source and hence they

provide the users with the ability to change the implementation details of

the solver operations through modifying its underlying code. Due to these

reasons we suggest these solvers as possible alternatives to CPLEX.

5.2.1 Lpsolve

Lpsolve is a free Mixed Integer Linear Programming (MILP) solver which is

fundamentally based on Simplex and Branch-and-Bound methods. Lpsolve is

considered to have no limit on model size. However, as the size of the models

gets bigger, it gets harder for the solver to handle the problems. It is possible

to use Lpsolve as a library and call it through using different programming
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languages like Java, C, .NET, VB, Delphi and etc. One can pass the data to

the Lpsolve library through its API, input files and IDE. The latest version

of this solver is Lpsolve 5.5.2.0. It is possible to use the Lpsolve API inside an

application in two ways: dynamically or statically. In the dynamic version,

the Lpsolve API is dynamically linked to application code enabling the code

to use the API while the executable has started or the Lpsolve library is

being called. Statically linking the API and the application does not require

extra files because the code is already included in the executable. However,

recompiling the program is needed if there is an update of Lpsolve. Since

Lpsolve API is not object-oriented, to call the API in Java, a wrapper is

provided though which Lpsolve API is available. Currently, the Lpsolve

does not support infeasible constraint detection, therefore it is advised to

anticipate and explicitly model the realistic sources of infeasibility [22].

5.2.2 The Cassowary

Cassowary is a linear arithmetic constraint solving algorithm which is devel-

oped to solve systems of constraints. This solver was originally created to

target linear equality and inequality constraints which arise while specifying

aspects of user interfaces, particularly layout and other geometric relations.
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The cassowary algorithm is based on the Dual Simplex method and since

its main focus is dealing with interactive graphical applications, it supports

incremental and repetitive problem solving during which prior computations

are exploited. The algorithm incrementally adds or deletes new constraints

to the model and performs re-optimization in order to find a better solution.

This algorithm has been implemented in Smalltalk, C++, and Java and its

latest version (v0.60.) is freely available [4].

5.3 Implementation

The proposed system was implemented considering two main scenarios. These

two include non-incremental and incremental implementations. In the fol-

lowing sections each of these scenarios is discussed in more detail.

5.3.1 Non-incremental Implementation

The first implementation scenario is more focused on solving the problem

(system of inequalities) in a non-incremental fashion, meaning all the in-

equalities are added to the system once and then the solver is called to solve

the whole system (Algorithm 1). The solver would try to perform all possible

combinations to reach feasibility and return a satisfiable set of inequalities.
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Once the permutation process is over, in case of infeasibility, a minimal expla-

nation is presented to justify the source of infeasibility. Since in this scenario

all the possible combinations are tested, the run time is expected to be high.

Moreover, as our system is going to be in close collaboration with DL se-

mantic reasoners and the nature of these reasoners is mostly incremental,

(In semantic reasoners, new roles and concepts are frequently introduced to

the system and this gives the system an incremental nature), for the purpose

of consistency, it is more desirable to have a system whose solving process

is performed in a non-incremental fashion. Due to the mentioned points,

we expected a better and more efficient performance from an incremental

implementation and decided to implement the system both incrementally

and non-incrementally. Comparing the performance of these two scenarios

could clarify the correctness of our assumptions. In the following section, the

incremental implementation is discussed in more detail.

5.3.2 Incremental Implementation

In the incremental implementation, the system is implemented in such a

manner that it can process the inequality set with the inequities being added

to the system incrementally. Each time a new role is introduced during
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the reasoning process, new inequalities and variables are introduced by the

atomic decomposition process, therefore, the system needs to be able to

re-check the feasibility of the system of inequalities after each change. If

the changes do not alter the feasibility state of the current system, new

inequalities can still be added. However, once an infeasibility is detected,

the system needs to trace back to the previous feasible state to find the

cause of infeasibility and provide an explanation regarding its source. The

incremental implementation was implemented in two versions. In the first

version, in each iteration once an inequality was added to or removed from the

system, a CPLEX model was created (Algorithm 2). In the second version,

instead of remodelling after each iteration, CPLEX methods were used to

update the existing model (Algorithm 3).
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Algorithm 1 Non-Incremental implementation

for all i = 1 to count, such that count = Number of inequalities do
add each inequality to the model

end for
if model is solvable then

Return the results
else {model is not solvable}

for all inequality i ∈ model do
check the solvability of model without each inequality i through per-
mutation
if model is solvable then

Remove inequality i
Save the removed inequality in database

end if
end for

end if
Determine the cause of infeasibility based on the removed inequalities in
database

Algorithm 2 Incremental Implementation Using Remodelling

Create an array of size count where count = number of inequalities
Initialize every inequality to −1
for all i = 0 to count, where count= number of inequalities do

Add the inequality to the model
Solve the model
if model is not solvable then

Remove the most recent inequality i
Set the most recent inequality i to 0
Remodel for all inequalities i = −1
Save the removed inequality i in database

end if
end for
Determine the cause of infeasibility based on the removed inequalities in
database
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Algorithm 3 Incremental Implementation Using Model Modification

for all i = 0 to count,where count= number of inequalities do
add the inequality to the model
solve the model
if model is not solvable then

Call CPLEX feasOpt method
Save the removed inequality in database
Add the removed inequality to the feasible model
Pass the model to next iteration

end if
end for
Determine the cause of infeasibility based on the removed inequalities in
database

5.4 Solving DL Problems Using the Customized API

Consider the scenario in which we want to design an ontology for a sport

family domain. To formally define the children of such family, one can come

up with the following definition:

Children ≡ (≥ 2 PlaysSoccer) u (≥ 2 PlaysTennis) u (≤ 3 PlaysGame) (36)

Considering the Venn diagram for this scenario in Figure 12 and by using

atomic decomposition, the definition (36) can be rewritten in terms of its

atoms:
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Figure 12: Venn diagram used for atomic decomposition technique

xS + xST ≥ 2 (37)

xT + xST ≥ 2 (38)

xS + xST + xT + xG ≤ 3 (39)

As the above set of inequalities is generated through atomic decomposition,

each one of these inequalities is added to the CPLEX model one by one (in-

cremental implementation). After each addition, the feasibility of the model

is tested. For instance, for the above inequality set, the solver detects the

model to be feasible with the following solution results:
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xS = 1 , xST = 1 , xT = 1 , xG = 0 (40)

If we suppose that no child is allowed to play both soccer and tennis, we will

need to add the following inequality to the model:

xST ≤ 0 (41)

However adding the inequality (41) makes the model infeasible, which ulti-

mately initiates clash handling module. To make the model feasible again,

inequality (41) is removed from the model and is used for further inequality

source detection purposes.

Now that we have explained the methodology of our system, we will present

the evaluation results of our system in the next chapter.
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Chapter 6

6 Evaluation

In this chapter, we are going to present the empirical results of implementing

three different prototypes of our proposed CPLEX-based solver in Chapter 5.

Each of these prototypes is briefly introduced in Section 6.1. In Section 6.2

the benchmarks and the contributing factors affecting the performance of the

system are briefly introduced. The results of test cases implemented on these

prototypes are illustrated through benchmarks in Section 6.3. Moreover the

prototype with the superior performance is evaluated while dealing with real-

world problems generated by the HARD reasoner. HARD is based on the

algebraic tableau reasoning algorithm and was originally created as a test

bed for ReAl DL (Reasoning Algebraically with DL). Given an ontology file,

HARD can determine the consistency of the underlying ontology [8].

6.1 Prototype Description

As mentioned in Chapter 5, we consider incremental and non-incremental

implementations while developing our system. These two scenarios were
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explained in Chapter 5. To fully evaluate the efficiency of each of these

scenarios, we have implemented three prototypes and tested each of them

through different test cases. These prototypes include: Incremental Proto-

type Using Remodelling, Incremental Prototype Using Model Modification

and Non-Incremental Prototype. The first prototype is based on the idea

presented in Section 5.3.2, meaning it solves the system of inequalities in

an incremental fashion. In each loop, as a new constraint is added to the

CPLEX model, the model is solved and in case of any infeasibilities, the

model is modified to become feasible by removing the constraints causing

the infeasibilities. The second prototype works in the same incremental way,

however it does not modify the model to make it feasible, but it creates a

new feasible model which does not contain the constraints generating the in-

feasibilities. The last prototype works in a non-incremental way as described

in section 5.3.1.

6.2 Benchmarking

In order to study the behaviour of our developed system, a set of synthetic

benchmarks has been developed. Since the performance of the system is

mainly dependent on the number of variables and inequalities that are in-
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volved in each run, these two parameters are the permanent participants in

each benchmark. In general, the following parameters can be identified as

the ones contributing to the performance changes:

1. The number of variables

2. The number of inequalities

3. The feasibility or infeasibility of each state of the system

6.3 Evaluation Results

In this section through using benchmarks, we describe each test case and

illustrate the result of each of them on all three prototypes and evaluate,

explain and compare their performances in terms of time and efficiency. The

following experiments were performed using Windows 64 on a standard PC

with dual-core (2.10 GHz) processor and 8 GB of RAM. For achieving a more

accurate and precise result, each experiment was executed in 5 runs.

6.3.1 Test Case 1: Linearly Increasing the Number of Inequalities

In this test case, with a fixed number of variables (=5), we increase the

numbers of inequalities which are fed to the system with a linear growth of

f(x) = 10x. The feasibility of the system changes randomly. The behaviour

66



of each of three prototypes for this test case is illustrated in Figure 13. Based

on the results and as shown in Figure 13, both incremental prototypes per-

form better compared to the non-incremental one. Such result justifies our

earlier assumption in Chapter 5. We predicted that solving the system of

inequalities in an incremental fashion would be much faster compared to a

non-incremental one as we do not have to consider all possible combinations.

However the performance for the non-incremental prototype is mostly con-

Figure 13: Behaviour of the prototypes: Linear growth of Inequalities

sistent. Between the two incremental prototypes, the one which updates the

model rather than creating a new model, has a better performance for large

number of inequalities. This means it is more efficient in this test case to

67



update the model after each iteration to reach a feasible state than creating

a new one which is feasible.

6.3.2 Test Case 2: Exponentially Increasing the Number of In-

equalities

In this test case, the number of variables is fixed (=5), however the number

of inequalities is increased with an exponential growth of x10. The feasibility

of the system changes randomly in each iteration of incremental prototypes.

As illustrated in Figure 14, for the first 100 inequalities, both incremental

Figure 14: Behaviour of the prototypes: Exponential growth of Inequalities

prototypes show a similar behaviour, however the one updating the model,

turns out to be faster as the number of inequalities grows higher. Both
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incremental prototypes outperform the non-incremental one.

6.3.3 Test Case 3: Linearly Increasing the Number of Variables

Test case 3, tests the system while the number of inequalities is fixed (=10)

and the number of variables fed as input to the system increases linearly with

linear growth of f(x) = 10x. The infeasibility of the system changes ran-

domly. Figure 15 shows the results for this test case on all three prototypes.

The performances of two incremental prototypes are similar to each other,

however the non-incremental prototype is almost hundred times slower.

Figure 15: Behaviour of the prototypes: Linear growth of Variables
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6.3.4 Test Case 4: Exponentially Increasing the Number of Vari-

ables

In this test case, the number of variables is increased with an exponential

growth of f(x) = 10n and the number of inequalities is fixed (=10) with a

random feasibility state.

Figure 16: Behaviour of the prototypes: Exponential growth of Variables
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We present the benchmark for the incremental prototypes and compare

their performances. As shown in Figure 16, the execution time is longer for

this test case compared to test case 3. However updating the CPLEX model

still results in more efficient performance.

6.3.5 Test Case 5: Linearly Increasing the Number of Inequalities

Using Feasible States

Test Case 5 is designed in order to monitor the effect of feasibility on the

performance of the system in an incremental implementation. In this test case

the number of variables is fixed, while the number of inequalities increases

with a linear growth of f(x) = 10x. The system remains feasible after

each iteration. As it is illustrated in Figure 17, the performance of both

incremental prototypes for this test case is similar due to the fact that the

state of the system does not change during the execution, therefore there is

no need for remodelling or model modification.
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Figure 17: Behaviour of the prototypes: Linearly growth of Inequalities (Using Feasible
model)

6.3.6 Test Case 6: Linearly Increasing the Number of Inequalities

Using Infeasible States

In this test case, with a fixed number of variables (=5), we test the per-

formance of our system while the number of inequalities increases with the

linear growth of f(x) = 10x and the system remains in an infeasible state

after each iteration. Based on the benchmark of this test case in Figure 18,

we conclude that in infeasible scenarios, updating the current model is more

efficient compared to remodelling the current model.
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Figure 18: Behaviour of the prototypes: Linearly growth of Inequalities (Using Infeasible
States)

6.3.7 Test Case 7: Linearly Increasing the Number of Inequalities

Using Feasible or Infeasible States

The focus of this test case is on the behaviour of incremental prototypes when

the system shifts from a feasible state to an infeasible one. For the same

linear growth function of f(x) = 10x and a fixed number of variables (=5),

the incremental prototypes are tested in a feasible state for 700 iterations.

In the first 350 iterations the state of the system is feasible and for the

next 350 iteration it becomes infeasible. Figure 19 shows the changes made

to the performance of our incremental systems. The benchmark shows the
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Figure 19: Behaviour of the prototypes: Linearly growth of Inequalities (Using Feasible
or Infeasible States)

significant change as the system moves to infeasible state in both prototypes.

6.3.8 Test Case 8: Linearly Increasing the Number of Inequalities

and Variables

This test case is implemented in our incremental prototypes and the number

of variables and inequalities change in each iteration in a linear fashion with

linear growth of f(x) = 10x for the inequalities and linear growth of f(y) =

5y for the variables. Feasibility of the system changes randomly. The results

of this test case are presented in Tables 1 and 2. Based on these results, the

increase in run time is much more tolerable compared to test cases in which

the number of either variables or inequalities was constant.
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Table 1: Effect of linear growth of inequalities and variables
using Incremental Remodelling

Number of variables Number of inequalities Time(s)
5 10 0.2
10 20 0.2
20 30 0.3
30 40 0.3
40 50 0.3
50 60 0.2
60 70 0.3
70 80 0.3
80 90 0.4
90 100 0.4
100 110 0.5
110 120 0.5
120 130 0.6
130 140 0.7
140 150 0.7
150 160 0.8
160 170 0.8
170 180 0.9
180 190 1.0
190 200 1.1
200 210 1.2
210 220 1.3
220 230 1.4
230 240 1.5
240 250 1.6
250 260 1.7
260 270 1.8
270 280 1.9
280 290 2.0
290 300 2.3
300 310 2.3
400 410 3.7
500 510 6.3
600 610 9.5
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Table 2: Effect of linear growth of inequalities and variables
using Incremental Modification

Number of variables Number of inequalities Time(s)
5 10 0.2
10 20 0.2
20 30 0.2
30 40 0.2
40 50 0.2
50 60 0.2
60 70 0.2
70 80 0.2
80 90 0.3
90 100 0.3
100 110 0.3
110 120 0.3
120 130 0.3
130 140 0.3
140 150 0.3
150 160 0.4
160 170 0.4
170 180 0.4
180 190 0.4
190 200 0.4
200 210 0.4
210 220 0.4
220 230 0.5
230 240 0.5
240 250 0.5
250 260 0.5
260 270 0.5
270 280 0.5
280 290 0.6
290 300 0.6
300 310 0.6
400 410 0.8
500 510 1.1
600 610 1.3
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6.4 Solving Time, Updating Time and Remodelling

Time

One useful method to justify the changes observed in the results of our test

cases in Section 6.3 is to monitor and analyse three important procedures

which take place in each of the prototypes. These three procedures include

solving the system of inequalities, updating this system (for instance remov-

ing the constraints imposed to the system) and also remodelling the system

of inequalities to be solved. Observing the time spent to implement each

of the mentioned procedures can provide us with a better vision in order to

justify and analyse the changes to the time needed to process each system

of inequality. In order to do so, a system of inequalities consisting of 100

inequalities and 5 variables was tested. Solving, updating, remodelling and

total time for each run was recorded. Table 3 shows the test results for 5

sample runs. Based on the results, we conclude that remodelling is a slower

process compared to model modification regardless of the feasibility state of

the system.
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Table 3: Performance of the system during
Solving, Updating and Remodelling

Solving
Time(ms)

Updating
Time(ms)

Remodelling
Time(ms)

Total
Time(ms)

1st Run 131 1 16 315
2nd Run 107 7 17 307
3rd Run 103 6 22 292
4th Run 94 3 18 290
5th Run 100 3 18 296

6.5 Testing The System With HARD-generated In-

equalities

In this chapter we will present the results of testing our system on HARD-

generated inequality sets. To perform these tests, HARD’s performance was

tested against some complex test cases that were presented in [8] and the

inequality sets generated by HARD for these test cases were used as input

sets for our system. For each test case we present the evaluation results for

five runs in the following sections. In the tables, the terms SAT and UNSAT

mean test cases with satisfiable and unsatisfiable ontologies.

6.5.1 Test Case 1: BackTracking (UNSAT)

This set of test cases points out the effect of backtracking in unsatisfiable

cases. Table 4 shows the performance of our system for this test case.
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Table 4: Performance of CPLEX-based solver for test case 1: BackTracking (UNSAT)

Test Case
Number of
Variables

Number of
Inequalities

Time(sec)

BT1-1 1 1 0.2
BT1-2 2 2 0.1
BT1-3 3 3 0.1
BT1-4 4 4 0.2
BT1-5 5 5 0.2
BT1-6 6 6 0.2
BT1-7 7 7 0.2
BT1-8 8 8 0.2
BT1-9 9 9 0.3
BT1-10 10 10 0.1
BT1-11 11 11 0.1
BT1-13 13 13 0.2
BT1-14 14 14 0.2
BT1-15 15 15 0.2

6.5.2 Test Case 2: C-lin-ALCQ

This set of test cases shows the effect of increased numbers used in Qualified

Cardinality Restrictions (QCRs) using the concept C and DL ALCQ (a DL

language extending ALC with qualified number restrictions) when the num-

bers are increased linearly. Table 5 shows the performance of our system for

this test case.
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Table 5: Performance of CPLEX-based solver for test case 2: C-lin-ALCQ

Test Case
Number of
Variables

Number of
Inequalities

Time(sec)

C-SAT-lin-ALCQ-1 3 4 0.1
C-SAT-lin-ALCQ-2 4 4 0.1
C-SAT-lin-ALCQ-3 4 4 0.1
C-SAT-lin-ALCQ-4 3 4 0.1
C-SAT-lin-ALCQ-5 3 4 0.1
C-SAT-lin-ALCQ-6 3 4 0.1
C-SAT-lin-ALCQ-7 3 4 0.1
C-SAT-lin-ALCQ-8 3 4 0.1
C-SAT-lin-ALCQ-9 3 4 0.1
C-SAT-lin-ALCQ-10 3 4 0.1
C-UnSAT-lin-ALCQ-1 3 4 0.1
C-UnSAT-lin-ALCQ-2 3 4 0.1
C-UnSAT-lin-ALCQ-3 3 4 0.1
C-UnSAT-lin-ALCQ-4 3 4 0.1
C-UnSAT-lin-ALCQ-5 3 4 0.1
C-UnSAT-lin-ALCQ-6 3 4 0.1
C-UnSAT-lin-ALCQ-7 3 4 0.1
C-UnSAT-lin-ALCQ-8 6 4 0.1
C-UnSAT-lin-ALCQ-9 6 4 0.1
C-UnSAT-lin-ALCQ-10 6 4 0.1

6.5.3 Test Case 3: C-exp-ALCQ

This set of test cases shows the effect of increased numbers used in Qualified

Cardinality Restrictions (QCRs) using the concept C and DL ALCQ when

the numbers are increased exponentially. Table 6 shows the performance of

our system for this test case.
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Table 6: Performance of CPLEX-based solver for test case 3: C-exp-ALCQ

Test Case
Number of
Variables

Number of
Inequalities

Time(sec)

C-SAT-exp-ALCQ-1 3 4 0.2
C-SAT-exp-ALCQ-2 3 4 0.1
C-SAT-exp-ALCQ-3 3 4 0.1
C-SAT-exp-ALCQ-4 3 4 0.1
C-SAT-exp-ALCQ-5 3 4 0.1
C-SAT-exp-ALCQ-6 3 4 0.1
C-UnSAT-exp-ALCQ-1 7 4 0.2
C-UnSAT-exp-ALCQ-2 7 4 0.2
C-UnSAT-exp-ALCQ-3 6 4 0.2
C-UnSAT-exp-ALCQ-4 7 4 0.2
C-UnSAT-exp-ALCQ-5 7 4 0.1
C-UnSAT-exp-ALCQ-6 7 4 0.2

6.5.4 Test Case 4: C-lin-ALCHQ

This set of test cases shows the effect of increased numbers used in Qualified

Cardinality Restrictions (QCRs) using the concept C and DL ALCHQ (a

DL language extending ALCQ with role hierarchies) when the numbers are

increased linearly. Table 7 shows the performance of our system for this test

case.
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Table 7: Performance of CPLEX-based solver for test case 4: C-lin-ALCHQ

Test Case
Number of
Variables

Number of
Inequalities

Time(sec)

C-SAT-lin-ALCHQ-1 3 4 0.2
C-SAT-lin-ALCHQ-2 4 4 0.1
C-SAT-lin-ALCHQ-3 4 4 0.2
C-SAT-lin-ALCHQ-4 3 4 0.1
C-SAT-lin-ALCHQ-5 3 4 0.2
C-SAT-lin-ALCHQ-6 3 4 0.1
C-SAT-lin-ALCHQ-7 3 4 0.1
C-SAT-lin-ALCHQ-8 3 4 0.1
C-SAT-lin-ALCHQ-9 3 4 0.1
C-SAT-lin-ALCHQ-10 7 4 0.1
C-UnSAT-lin-ALCHQ-1 4 3 0.1
C-UnSAT-lin-ALCHQ-2 7 4 0.1
C-UnSAT-lin-ALCHQ-3 7 4 0.1
C-UnSAT-lin-ALCHQ-4 7 4 0.1
C-UnSAT-lin-ALCHQ-5 7 4 0.1
C-UnSAT-lin-ALCHQ-6 7 4 0.1
C-UnSAT-lin-ALCHQ-7 7 4 0.1
C-UnSAT-lin-ALCHQ-8 7 4 0.1
C-UnSAT-lin-ALCHQ-9 7 4 0.1
C-UnSAT-lin-ALCHQ-10 7 4 0.1

6.5.5 Test Case 5: C-exp-ALCHQ

This set of test cases shows the effect of increased numbers used in Qualified

Cardinality Restrictions (QCRs) using DL ALCHQ when the numbers are

increased exponentially. Table 8 shows the performance of our system for

this test case.
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Table 8: Performance of CPLEX-based solver for test case 5: C-exp-ALCHQ

Test Case
Number of
Variables

Number of
Inequalities

Time(sec)

C-SAT-exp-ALCHQ-1 3 4 0.2
C-SAT-exp-ALCHQ-2 3 4 0.2
C-SAT-exp-ALCHQ-3 3 4 0.2
C-SAT-exp-ALCHQ-4 3 4 0.2
C-SAT-exp-ALCHQ-5 3 4 0.2
C-SAT-exp-ALCHQ-6 3 4 0.2
C-UnSAT-exp-ALCHQ-1 7 4 0.2
C-UnSAT-exp-ALCHQ-2 7 4 0.2
C-UnSAT-exp-ALCHQ-3 7 4 0.3
C-UnSAT-exp-ALCHQ-4 7 4 0.2
C-UnSAT-exp-ALCHQ-5 7 4 0.2
C-UnSAT-exp-ALCHQ-6 7 4 0.3

6.5.6 Test Case 6: C-restr-num-ALCHQ

This set of test cases shows the effect of increasing value of number restric-

tions using the concept C and DL ALCHQ when the numbers are increased

linearly. Table 9 shows the performance of our system for this test case.

6.5.7 Conclusion

Based on the evaluation results illustrated in previous sections, we can con-

clude that our system’s performance was trivial while using HARD-generated

inequality sets.
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Table 9: Performance of CPLEX-based solver for test case 6: C-restr-num-ALCHQ

Test Case
Number of
Variables

Number of
Inequalities

Time(sec) Comments

restr-num-1-1 4 4 0.1
restr-num-1-2 2 3 0.1
restr-num-1-3 2 3 0.1
restr-num-1-4 3 6 0.1
restr-num-1-5 7 10 0.1
restr-num-1-6 2 7 0.1 Total value of number

restrictions was initially
12 which led to HARD
crashing. This was re-
solved by reducing the
value of number restric-
tions to 7.

restr-num-1-7 2 9 0.1 Total value of number
restrictions was initially
16 which led to HARD
crashing. This was re-
solved by reducing the
value of number restric-
tions to 9.

restr-num-1-8 2 10 0.1 Total value of number
restrictions was initially
17 which led to HARD
crashing. This was re-
solved by reducing the
value of number restric-
tions to 10.

restr-num-1-9 2 11 0.1 Total value of number
restrictions was initially
18 which led to HARD
crashing. This was re-
solved by reducing the
value of number restric-
tions to 11.
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Chapter 7

7 Conclusion and Future Work

The presented CPLEX-based solver in this thesis can determine the feasibility

of the system of inequalities generated by DL atomic decomposition and

provide useful explanations regarding the sources of infeasibility. Utilizing

ILOG CPLEX and applying its optimization features within a customized

system, provides us with an efficient way to improve the performance of DL

reasoners, especially when it comes to dealing with large values of number

restrictions.

7.1 Conclusion

Our presented system enhances the performance of DL reasoners by speed-

ing up one of the procedures which takes place during DL reasoning called

atomic decomposition. Even for large values of number restrictions, our sys-

tem is proven to be performing efficiently and handling complex scenarios

with hundreds of inequalities or variables. The generated system could be

easily integrated into any semantic DL-based reasoner which is implemented
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in Java. The underlying functions and procedures of the system is consistent

with the incremental nature of DL reasoners, which enables the system to

immediately respond to any changes which are made to the number of vari-

ables or inequalities by the reasoning process. The system is able to respond

to infeasible cases which are detected by CPLEX. As the system of inequal-

ities becomes infeasible in any stage of solving process, the system provides

a minimal explanation describing the cause of infeasibility. This feedback

helps the DL reasoner to perform backtracking faster since it can ignore

that paths which lead again to infeasible states. The system was proven to

perform better when it was implemented incrementally. In an incremental

implementation, modifying the problem model is much more efficient than

re-creating the model. As there is no other system available right now which

is developed and employed for the same purpose as our system, no compari-

son between our system and a similar existing ones was performed. However,

the system was tested while using the input of one of current DL reasoners

called HARD and the results of these tests were satisfactory as predicted.
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7.2 Limitations

The limitations of our system could be summarized in the following points:

• Our system is designed in such way which can only target and optimize

the performance of semantic DL reasoners that apply atomic decomposition

technique in their reasoning process.

• Our system is implemented in Java, therefore it can only be applied in col-

laboration with semantic reasoners which are implemented in Java as well.

• Due to the absence of CPLEX implementation details, a customized uti-

lization of CPLEX services is rather challenging.

• Testing the system is only possible in cases where the reasoner provides

the input in form of a set of inequalities.

• The backtracking and clash handling procedure is mostly based on com-

parison method between different states of the system which can turn to be

time consuming if the difference between the states is not minor in terms of

inequality and variable quantity.

7.3 Future Work

Possible areas to extend and optimize our system can be focused on elimi-

nating any of the system limitations mentioned in Section 7.2. The system
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needs to be enhanced in such way that it can be embedded in other reason-

ers regardless of implementation language boundaries. Moreover, providing

the ability for the system to use other state-of-the-art solvers adds to the

flexibility of the system. Using solvers whose structural details are available

can enhance the features of the system and provide more functionality. The

backtracking and clash handling procedure provided in this thesis can be

enhanced in terms of accuracy and efficiency. An optimized version of our

clash handling module must not merely depend on the comparison method

and it may use some smarter algorithm and also suggest corrective measures.
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