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Abstract 

Multi-agent System Models for Distributed Services Scheduling 
Farnaz Dargahi, Ph.D. 

Concordia University, 2014 

 

This thesis investigates the computational and modeling issues involved with 

developing solutions for distributed service scheduling problems. Compared with 

traditional manufacturing scheduling, service scheduling poses additional challenges due 

to the significant customer involvement in service processes. The first challenge is that the 

service scheduling environment is a distributed environment in which scheduling-related 

information is scattered among individual identities, such as service providers and 

customers. The second challenge is that the service scheduling environment is a dynamic 

environment. Uncertainty in customer demand, customer cancellations and no-shows make 

the scheduling of services a complex dynamic process. Service scheduling has to be robust 

and prepared to accommodate any contingencies caused by customer involvement in 

service production. The third challenge concerns customers’ private information. To 

compute optimal schedules, ideally, the scheduler should know the complete customer 

availability and preference information within the scheduling horizon. However, customers 

may act strategically to protect their private information. Therefore, service scheduling 

systems should be designed so that they are able to elicit enough of a customer’s private 

information that will make it possible to compute high quality schedules. The fourth 

challenge is that in a service scheduling environment, the objectives are complicated and 

they may even be in opposition. The distributed service scheduling environment enables 

each agent to have their own scheduling objectives. The objectives of these agents can vary 

from one to another. In addition to multiple objectives, since agents are self-interested, they 

are likely to behave strategically to achieve their own objectives without considering the 

global objectives of the system. Existing approaches usually deal with only a part of the 

challenges in a specific service domain. There is a need for general problem formulations 

and solutions that address service scheduling challenges in a comprehensive framework.  
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In this thesis, I propose an integrated service scheduling framework for the general 

service scheduling problem. The proposed framework uses iterative auction as the base 

mechanism to tackle service scheduling challenges in distributed and dynamic 

environments. It accommodates customer’s private information by providing appropriate 

incentives to customers and it has the potential to accommodate dynamic events. This 

framework integrates customers’ preferences with the allocation of a provider’s capacity 

through multilateral negotiation between the provider and its customers. The framework 

can accommodate both price-based commercial settings and non-commercial service 

settings. Theoretical and experimental results are developed to verify the effectiveness of 

the proposed framework. The application of the framework to the mass customization of 

services and to appointment scheduling are developed to demonstrate the applicability of 

the general framework to specific service domains. A web-based prototype is designed and 

implemented to evaluate the scalability of the approach in a distributed environment. 
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Chapter 1 Introduction and Motivation 

Service scheduling is a decision-making process which allocates limited service 

resources to service activities over time while satisfying certain constraints and optimizing 

one or more objectives. Service scheduling problems are common to many domains such 

as healthcare, transportation and computing. Compared to scheduling problems in 

manufacturing, service scheduling problems have unique characteristics. In manufacturing 

an activity usually transforms a physical component and adds value to it; resources are 

typically referred to as machines and the configuration of machines; objectives are 

typically a function of the completion times, due dates, and the deadlines of jobs (Pinedo, 

2009). In service settings, an activity usually involves people. Examples include a meeting 

that has to be attended by certain individuals, a flight that transports passengers, an 

operation that has to be done by a surgeon on a given day. Services usually require both 

physical and human resources.  In contrast to most manufacturing scheduling models, in 

service settings, additional factors such as personnel costs, customer waiting costs and 

customer preferences are often considered in the objective function.  

The differences between manufacturing and service scheduling are mainly derived 

from the fundamental characteristic that defines service processes. A service significantly 

involves customer inputs (Sampson & Froehle, 2006). In other words, in order for a service 

to be produced, a customer has to personally be present, or he/she has to present his/her 

belongings or information. Compared to classical manufacturing scheduling models, this 

significant involvement of customer inputs presents additional challenges, including 

distributed and dynamic scheduling environments, the presence of customers’ private 

information (e.g. the value they place on various scheduling alternatives and their 

availability), and often considerably more complicated scheduling objectives.  

1.1 Example application domains 

To motivate this research from a practical perspective, here are some examples of 

service scheduling:  
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1.1.1 Transportation service scheduling 

The transportation industry comprises a variety of service scheduling problems, such 

as the routing and scheduling of airplanes, timetabling of trains and carrier scheduling. The 

carrier scheduling problem, which determines what shipping orders should be assigned to 

which carriers in a transportation network, is addressed in this work. Each order that has to 

be transported is characterized by its weight, load port, delivery port, and the time 

constraints on the loading and delivery times. The carriers and the orders usually belong to 

different organizations and economic entities, and the customers most likely do not want 

to reveal information about the highest shipping prices they are willing to pay. Therefore, 

carriers’ schedules should be generated in a distributed environment where the information 

about carriers and the order information is scattered among multiple independent 

organizations. For a carrier, a schedule defines the sequence of ports that should be visited 

within the scheduling window, the time of entry at each port and the orders loaded or 

delivered at each port. The uncertainty of travel time affects the pickup/delivery times for 

carriers on congested urban roads, and so the generated schedule should be robust in 

dynamic environments.  

The objective of carrier scheduling typically is to minimize the total cost of transporting 

all orders. This total cost consists of a number of elements, namely the carrier’s operating 

costs, the fuel costs, and the port charges. 

1.1.2 Appointment scheduling in healthcare 

There are a variety of problems involved with healthcare systems’ scheduling, such as 

patient scheduling, laboratory and bed allocation scheduling, ambulances and emergency 

room scheduling and hospital personnel (doctors, nurses, technicians) scheduling. Here the 

appointment scheduling of high-volume specialized diagnostic services, such as magnetic 

resonance imaging (MRI) scanning and computed tomography (CT) scanning is used as an 

example, as it interacts with the services’ customers, deals directly with demand 

uncertainty and has a large influence on many other departments. In such an environment, 

the capacity of diagnostic resources is limited, is expensive to expand, the demand is highly 

unpredictable and the waiting lists are already substantial. Healthcare managers and 
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policymakers are therefore under considerable political and community pressure to better 

manage healthcare resources in order to provide patients with high quality care. To this 

end, appointment scheduling plays a key role.  

Typically there are three objectives in the appointment scheduling problems. The first 

is to maximize the utilization of the service resource given the patients’ availabilities. The 

second one is to maximize the sum of the of the scheduled patients’ priority levels. The 

third objective is to accommodate patients’ preferences. Accommodating patients’ 

preferences in appointment scheduling is important because matching patients with their 

preferred service provider and offering them a convenient appointment time can decrease 

the number of no-shows and thereby increase operational efficiency (Barron 1980). 

However, accommodating scheduling preferences across a large number of patients is 

particularly challenging due to three areas of complexities: collection complexity, 

allocation complexity and elicitation complexity. Collection complexity refers to the 

efforts needed to collect preferences information from patients, which is not an easy task. 

The vast majority of appointment-booking systems are not automated. They have to rely 

on human schedulers to collect preferences information, which incurs high administrative 

costs to the healthcare system. Allocation complexity refers to the computation needed to 

compute high-quality service time allocations. Accommodating preferences can easily 

make mathematical models of the appointment booking process intractable, which is 

perhaps one reason why the majority of mathematical models do not include preferences 

(Gupta and Denton 2008). These issues are further complicated by the fact that patients are 

reluctant to reveal their availability. They are actually motivated to protect their private 

information because revealing too much availability increases the patient’s possibility of 

being assigned an undesirable time slot. 

1.1.3 Scientific facility scheduling 

The facilities at national science research laboratories are accessible to scientists and 

researchers so that they can perform their experiments. Researchers’ proposals for using 

these facilities are evaluated each year. The research laboratories normally start by 
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scheduling those experiments with higher priority, and try to schedule as many experiments 

as possible.  

Canadian Light Sources (CLS: http://www.lightsource.ca/), is a national science 

research laboratory for the production of high-intensity synchrotron light from the infrared, 

visible, and ultraviolet to X-ray region of the electromagnetic spectrum, and is accessible 

to scientists and researchers from the academic, government and private sectors. Currently, 

CLS has about 3000 researchers in Canada and other parts of the world as its user 

community. CLS send out two calls for proposals each year, resulting in a six-month 

scheduling cycle. Proposals are evaluated by a scientific committee composed of 

researchers from universities and industries across the country. Each application is 

assigned a weight based on its potential contribution to the advancement of knowledge and 

impact on the scientific community. Approved proposals by the peer review procedure 

need to be scheduled in the next scheduling cycle. CLS needs to improve the utilization of 

its valuable synchrotron resources and, at the same time, maximize the overall scientific 

contributions of the experiments. CLS knows the weight (scientific contribution value) of 

each application. However, they do not have direct access to researchers’/customers’ 

availability information, and customers are actually motivated not to reveal their 

availability because revealing too much availability increases the possibility of being 

assigned an undesirable time slot. The lack of complete availability information can be a 

major constraint that limits the quality of the schedules. High-quality schedules may be 

determined to be impossible, given the partial availability of customer information. The 

service providers are faced with a decentralized scheduling problem, in the sense that the 

true availability of the customers is their own private information and may not be known 

to the service provider. 

1.1.4 Cloud computing services 

“Cloud computing refers to both the applications delivered as services over the Internet 

and the hardware and systems software in the data centers that provide those services” 

(Armbrust et al. 2009). With the growth of the cloud computing market, more and more 

companies start to provide their software and hardware products as services to their 
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customers. Service resource management systems need to provide mechanisms and tools 

that allow resource consumers (end users) to express their requirements and their time 

constraints. For any request, a customer has preferences over its completion time and is 

willing to pay a premium to have it completed during the preferred time windows. Given 

time constraints of service requests, to maximize profits, the provider has to prioritize 

service requests based on their profitability and, at the same time, schedule as many 

profitable requests as possible. The customer’s value of a schedule (i.e. the price that she 

is willing to pay for the request to be completed at a specific time) is her private 

information. Each customer is motivated to maximize her own payoff, not the system wide 

optimality. In this context, the scheduling problem is a distributed optimization problem in 

a strategic setting, which calls for game theoretic solutions. 

In the next section, I first describe the Unified Services Theory (Sampson, 2001), which 

categorically defines services, and then analyze the challenges in service scheduling in 

light of that theory. 

1.2 Unified Services Theory  

Services have been commonly defined as intangible products (Pearce, 1981, p. 390; 

Bannock et al., 1982, p. 372; Harvey, 1998, p. 596). In other words, a service typically 

does not result in the ownership of anything (Kotler, 2006, p. 402). Intangibility is an 

important characteristic of services. However, as stated in Sampson and Froehle (2006), it 

does not serve as a sufficient condition which defines a production process as a service. 

For example, software development results in a product that is intangible (computer code), 

but the output can indeed be inventoried and used or sold later. Unified Services Theory, 

on the other hand, identifies a single commonality that comprises all services. It defines 

what services are and what they are not. To facilitate the analysis of service implications 

to scheduling, it is useful to first introduce the Unified Service Theory. 

The Unified Services Theory (UST) is formally stated as follows (Sampson, 2001, p. 

16):  

“With service processes, the customer provides significant inputs into the production process. With 

manufacturing processes, groups of customers may contribute ideas to the design of the product, 
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but individual customers’ only participation is to select and consume the output. All managerial 

themes unique to services are founded in this distinction.” 

The most important component in UST is customer inputs, which distinguish services 

from manufacturing processes and are the root cause of the unique issues and challenges 

of services management. The literature has typically identified three general types of 

customer inputs (Wemmerlov, 1990): the customer’s self, his belongings or other tangible 

objects, and information. Customer-self inputs are common in services involving co-

production (i.e., the employment of customer labor in the process) and in services involving 

the physical presence of the customer. Typical examples are health care clinics, buffet 

restaurants and taxi services. These service providers can prepare for production, but they 

cannot execute the actual service process until necessary customer-self inputs are present. 

Tangible belongings (or property) and physical objects make up another type of input a 

customer can provide to the service process. One’s car is an essential input into the 

automobile repair service process and one’s clothing is a necessary input to the dry cleaning 

service process. Providing tangible inputs often allows the service process to proceed even 

without the customer being physically present. Customer-provided information is a third 

type of input to the service process. For example, the tax return preparation process requires 

that customers provide financial information as the process inputs. The service production 

process cannot begin without the input of that information. 

The UST reveals principles that are common to the wide range of services and provides 

a unifying foundation for various theories and models of service operations. As 

demonstrated in Sampson and Froehle (2006), the UST has significant operational 

corollaries pertaining to the services management process. Among them, capacity 

management and demand management significantly rely on the scheduling of service 

resources. The challenges in designing service scheduling systems are presented in the rest 

of this section. 

1.3 Challenges of Service Scheduling 

Scheduling plays an important role in service management due to the perishable nature 

of service provider’s capacity. A service provider has to pay scheduled workers even 

though there are no customers currently needing services. In other words, the service 
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provider’s capacity to produce the service is time-sensitive and cannot be inventorized by 

producing to stock. This high “operating leverage” implies that many service operations 

will be much more cost-competitive if the service providers effectively manage variable 

demand (Hur et al., 2004; Jack & Powers, 2004), which gives them higher utilization levels 

(Sampson, 2001, p. 240) or, alternately, manage capacity, which increase their volumes.  

The management of demand and capacity involves the allocation of service orders and 

resources over time, which is essentially a scheduling activity. On the demand management 

side, reservation systems schedule customer inputs into the production process such that 

waiting times are minimized. On the capacity management side, service managers schedule 

full- and part-time personnel to meet the expected workload for a future day. When the day 

of service arrives, if a significant gap is present between the experienced workload so far 

and the scheduled staff capacity, service managers will attempt to make an immediate 

adjustment to the staff schedule by changing station assignment, shifting breaks, or calling 

in additional workers (Hur et al., 2004). Compared with classical manufacturing 

scheduling, service scheduling presents different challenges attributable to significant 

customer inputs in service production processes. Three important service scheduling 

challenges, namely distributed and dynamic environments, complicated objectives and 

customers’ private information are described below. 

Distributed and dynamic environment: The customer input requirement in services 

leads to a distributed and dynamic scheduling environment. First, the information needed 

for computing schedules, e.g. customers’ availability and preference information, is 

scattered among possibly a large number of customers. Collecting the information and 

keeping it up to date can be challenging tasks. For example, consider the appointment 

scheduling problem.  As mentioned before, considering patients’ preferences and their 

availability are both important because patients need to be present themselves as an input 

to the service process. However, information about patient’s preferences is distributed 

among patients themselves, and patient’s preferences may change over time because of 

changes in work schedule or marital status. Therefore, appointment scheduling problems 

should be generated in a distributed and dynamic environment.   
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Transportation scheduling is another example of a distributed environment in service 

scheduling. Transportation companies have to carry out transportation orders. These orders 

are customer inputs which are distributed geographically. Each order should be picked up 

from a location and delivered to a destination. Transportation companies are 

geographically distributed and have a set of trucks at their local disposal. Each company 

makes decisions about its local scheduling according to the local trucks and the actual 

solution to the global order scheduling emerges from the local decision-making of these 

companies. Modeling the companies as independent and autonomous units seems the only 

acceptable way to proceed, because the task of centrally maintaining knowledge about all 

of the shipping companies, their vehicles and their policies is very complex. Moreover, this 

information is often not even centrally available (real-life companies are not willing to 

share all their local information with other companies) (Fischer et al. 1995). 

In addition to the complexity arising from the distributed environment, service 

scheduling has to be robust in accommodating the contingencies caused by customer 

involvement in service production. Uncertainties regarding   customer demand, resource 

availability, service times, customer cancellations and no-shows make the scheduling of 

services a complex dynamic process. For example, in the appointment scheduling problem, 

patients who make an appointment and fail to keep it can lead to poor resource utilization 

and longer patient waiting times. Service durations are also subject to change in 

appointment scheduling. Patient attributes such as age, degree of disease progression, 

cultural background and language fluency (need for an interpreter) can affect service 

durations (Gupta & Denton 2008). Longer than expected service duration results in late 

starts for the rest of the services that day. Late starts leads to costs associated with overtime 

staffing. 

Service organizations also face uncertainty in the numbers of consumers and their 

resource demand. Examples include mail processing facilities, airline reservation desks, 

hospitals, telephone operators, and so on. In each of these dynamic environments, 

personnel scheduling is a challenging problem, and the goal is to assign personnel with 

different skills to each shift in order to cover the predicted demand.  
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In a service setting, customers may be requested to include additional, unanticipated 

tasks, or to adapt to changes to several tasks, or to neglect certain tasks. For example, 

consider the appointment scheduling problem. Medical treatments in a primary care clinic 

are often not completely pre-determined before an examination. The examination results 

may invoke additional activities and/or make other medical actions unnecessary (Paulussen 

et al. 2003).  The beginning time and the processing time of a task are also subject to 

variations. A task can take more or less time than anticipated, and the customer inputs can 

arrive early or late. An optimal schedule, generated after considerable effort, may rapidly 

become unacceptable because of unforeseen dynamic situations. Since service capacity 

cannot be inventoried by producing goods, customers that fail to present their inputs 

according to the schedule can contribute to poor resource utilization, lower revenues and 

longer waiting times. The time-sensitive nature of service capacities signifies the need for 

more robust dynamic scheduling approaches. In addition, unlike manufacturing 

environments where the amount of resources (which are typically machines) is usually 

fixed (at least for the short term), in services, the number of resources (e.g. people, rooms, 

and trucks) may vary over time. Certain resources may become unavailable, and additional 

resources may need to be introduced. This variable can even be a part of the objective 

function (Pinedo, 2009).  

As an example of a dynamic service scheduling environment consider a transportation 

scheduling problem in which orders have to be picked up and delivered at specific customer 

locations by a limited number of trucks. The main challenge is that the orders are not all 

known in advance. New orders can be received and then must be incorporated into the 

scheduling process. Truck availability adds further dynamicity. Trucks may be delayed or 

temporarily unavailable due to traffic or other unforeseen problems. In addition, the actual 

sizes of orders are subject to change (Davidsson et al, 2005). 

In another dynamic service scheduling example, consider service computing where the 

amount of resources varies over time. In this environment, resources need to  be  

dynamically  (re-)configured  and  bundled  via  virtualization  to  provide  different  service  

profiles  for  dynamic demands (Sim, 2012). 



 

10 

 

The service scheduling process is further complicated by the fact that customers’ needs 

for services have varying degrees of urgency, and some decisions about non-urgent 

requests must be made before the complete information about urgent and emergency 

demands is known. Take the example of appointment scheduling in diagnostic services; 

the low-priority demand (outpatients) must be booked (often several weeks in advance) 

before knowing the highly unpredictable high-priority demand (inpatients). To 

accommodate the demand imposed by the highly dynamic high-priority inpatients, the 

hospital is forced to reserve a significant portion of the total capacity for this unknown 

high-priority demand, leaving little room for outpatients. This results in unused capacity 

on days when inpatient demand is lower than expected and thus longer waiting times for 

outpatients than there would if this unused capacity could be utilized. Moreover, a patient’s 

priority may change along the treatment process.    

Complicated objectives: Planning and scheduling objectives in service industries are 

often considerably more complicated than those in manufacturing. Scheduling objectives 

in manufacturing are typically a function of the completion times, the due dates, and the 

deadlines of the jobs. Objectives in services often have additional dimensions. In contrast 

to manufacturing, the number of resources in a service environment may be variable (e.g. 

the number of full-time and part-time people employed). Given this situation, there may 

very well be a different type of objective – one that minimizes the number of resources 

used and/or minimizes the cost associated with the use of these resources (Pinedo, 2009). 

This minimization is a typical objective of capacity management.  

Customer preferences regarding the timing of delivering their inputs should also be 

considered in service scheduling, as they represent the value that customers attribute to a 

schedule.  For example, in healthcare services, patients want more personalized care, which 

includes their involvement in selecting appointment times. Some patients prefer an 

appointment on same day they call, or soon thereafter, and the day of the week or the time 

of the appointment is not particularly important to them. Others prefer a particular day of 

the week and a convenient time. These patients do not mind waiting for convenience. In 

both private and public healthcare systems, healthcare managers are motivated to achieve 

high scores on patient satisfaction surveys. In addition, offering patients a convenient 
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appointment time can decrease the number of no-shows and thereby increase operational 

efficiency (Wang and Gupta, 2011).  

Transportation service scheduling is another example of complicated objectives in 

service scheduling. The objective typically is to minimize the total cost of transporting all 

orders. This total cost consists of a number of elements, namely the ships’ operating cost, 

fuel costs and the port charges. There are two kinds of ships operating in this realm. One 

type is company-owned and the other type is chartered. The operating costs of a company-

owned ship are different from those of a charter. Companies make decisions about using 

their own resources or using chartered ships in a way that minimize their total cost (Pinedo, 

2009). 

Customers’ private information: Service processes involve significant customer 

inputs, which, in many cases, require that services are produced and consumed 

simultaneously. Scheduling systems are used to synchronize the timing of the use of the 

different types of resources and the presence of customer inputs. To compute optimal 

schedules, ideally the scheduler should know the complete customer availability 

information within the scheduling horizon. However, collecting availability information 

across a large number of customers requires a significant amount of communication 

between the scheduler and the customers. This amount of communication can incur high 

administrative costs if the collecting procedure is not automated, which is the case of most 

existing service scheduling systems. The issue is further complicated by the fact that 

customers are reluctant to reveal their complete availability because their personal schedule 

is their private information and revealing too much availability increases the possibility 

that a customer will be assigned an undesirable time slot. 

 Consider the scientific facility scheduling environment. The CLS has two calls for 

proposals each year resulting in a scheduling cycle of 6 months. Bob needs to conduct his 

experiment in the facility. He can be available anytime from January to August. However, 

he prefers the experiment to be scheduled as early as possible because there is a possibility 

that he may go on vacation sometime during the summer. Based on his previous experience 

and his knowledge of the profile of the current year’s applications, he believes that 

experiments with similar weights to his are likely to be offered a service time slot two 
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months after the originally requested dates. Therefore, statistically, if he reports January to 

April as his available time window, he will have a much higher chance of being assigned 

time June or even sometime earlier. Therefore, based on his calculation and his knowledge 

base, Bob may indicate only January to April, which is not his complete availability. 

For another example, consider meeting scheduling in which participants’ calendars are 

usually considered private objects and so their information as confidential. There are 

situations when participants do not want to make their available time public. For example, 

people usually will not hire a consultant or schedule an appointment with a dentist who 

indicates that he/she has plenty of free time. Because  of  the  social attribution  of “ 

importance ” to  people  with  little  free time, many people may not be willing to publish 

their actual  availability (Wainer et al. 2007).   

Cloud computing systems that allow users to acquire computing resources and pay for 

it on a short-term basis are another example of service scheduling where customers have 

private information. From the economics literature (Zaman and Grosu 2011), it is evident 

that a fixed-price mechanism cannot support efficient resource allocation and cannot 

guarantee that the user who values an item the most will get it. Achieving economic 

efficiency in resource allocation should thus be based on the perceived values of the users. 

User value is the user’s private value; it is the highest price they are willing to pay for a 

given service. In many cases, users are reluctant to reveal their values and may fear that 

the provider will take advantage of their information and use it to charge higher prices for 

their required services. 

For multiple reasons, customers are motivated to protect their private information. 

Therefore, service scheduling systems should be designed so that they are able to elicit the 

necessary customer’s private information required to compute high-quality schedules. The 

computation spent on eliciting customers’ availability information is referred to as a 

system’s elicitation complexity.  

1.4 Scope and Approach 

  The objective of this research is to develop theories and approaches to service 

scheduling problems. Economic-based models (auction-based in particular) are used as the 
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anchor from which to tackle the challenges in commercial service scheduling and non-

commercial service scheduling problems. The contributions can be summarized as follows: 

(1) presenting an integrated framework that addresses the scheduling challenges in general 

service scheduling problems, (2) developing economic-based approaches for both 

commercial and non-commercial service environments, (3) showing the effectiveness of 

the framework through its application to various application domains, and (4) designing 

and implementing a prototype to validate the computational properties of the proposed 

framework. 

1.5 Thesis Organization 

The rest of the thesis is structured as follows. Chapter 2 provides a brief overview of 

traditional scheduling approaches to service scheduling and reviews the literature on agent-

based service scheduling. Chapter 3 describes the general service scheduling problem 

studied in this thesis. An iterative bidding framework for services scheduling is presented 

in chapter 4, followed by that same framework adapted for scheduling non-commercial 

services in chapter 5. In chapter 6 I demonstrate the applicability of the proposed 

framework in two different application domains. The design and implementation of a 

prototype of the proposed approach and the simulation results are presented in Chapter 7 

and finally, chapter 8 summarizes the thesis. 
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Chapter 2 Literature Review 

This chapter presents a review of service scheduling models. General scheduling 

problem definitions are introduced first, followed by an overview of traditional centralized 

service scheduling approaches. The focus is then narrowed to the literature on agent-based 

service scheduling. Finally, the related literature is summarized, with an emphasis on how 

each work addresses the challenges in service scheduling and identifying the presented 

research position in relation to the big picture of existing approaches.  

2.1 Definitions of the scheduling problem 

Scheduling is a decision-making process which deals with the allocation of resources 

to tasks over given time periods under imposed constraints; its goal is to optimize one or 

more objectives. Bowman (Bowman, 1959) presented a simple definition from operations 

research field perspective: The scheduling problem in its most simple form consists of a 

number of jobs to be done on a number of machines, each job having a number of 

operations to be performed by the various machines in a specified sequence; what feasible 

schedule covers the least total time? 

Pinedo (2008) and Brucker (2004) provide more complete description of various 

scheduling problem models. Although there are a variety of definitions, most of the 

scheduling problems can fit into a four element: resources, jobs, constraints, and 

objectives. Figure 2-1 presents the relationships of these elements: resources are assigned 

to jobs over time, this assignment process is restricted by the constraints and guided by the 

objectives. Note that, in the context of scheduling, indicating that a resource is assigned to 

a job does not mean that that resource is dedicated to that job. A more accurate 

interpretation would refer to a period of processing time from a resource is assigned to a 

job.  In Figure 2-1, the dotted arrow pointing from the Processing Times to the “Assigned” 

action reflects this interpretation (Wang, 2007). 
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Figure 2-1 Four-element structure of scheduling problems (Wang, 2007) 

In general, resources and jobs can take many forms. The resources may be a machine, 

operating room, airport gate, processing units in a computing environment, and so on. The 

jobs may be transporting a cargo, take-offs and landings at an airport, surgery, executions 

of computer programs, etc. Constraints are a set of conditions that must be satisfied, e.g. 

precedence constraints, time window constraints on release time, deadlines, or resource 

capacity constraints. Objectives may be the minimization of makespan, or of total cost, 

maximization of the resource utilization, or of the throughput. A solution to a scheduling 

problem is called feasible schedule if it satisfies all constraints of the problem. Otherwise, 

it is called an infeasible schedule. 

2.2 Centralized Service Scheduling Approaches 

Traditional service scheduling approaches usually assume a centralized environment in 

which a scheduler has all the information needed to compute the schedule. Various service 

scheduling models have been proposed, implemented, and evaluated, some for several 

decades. Generally speaking, the solution methods form two distinct classes: exact methods 

and heuristic methods. Exact methods are guaranteed to find a solution if it exists, and 

typically provide some indication if no solution can be found. However, given the NP-hard 

nature of service scheduling models, exact methods are not practical for non-trivial 

problem instances. Heuristic methods do not guarantee optimization, but typically assure, 

experimentally or analytically, some degree of optimality in their solutions. They are 

usually rapid and practical ways of solving larger-sized scheduling problems. In this 
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section, we briefly review some general heuristic methods and their application to service 

scheduling problem. 

2.2.1  Genetic algorithms 

Genetic Algorithms (GAs) are a set of global search and optimization methods for 

solving complex optimization problems with a large search space. With the objective of 

reaching the “best” solution, GAs systematically evolve a population of candidate solutions 

by using evolutionary computational processes inspired by genetic variation and natural 

selection. One of the earliest GAs for scheduling was proposed by Davis (1985). Davis 

suggested an indirect representation which can be decoded to form the actual schedule of 

the scheduling problem. GAs have been applied to many service scheduling problems. For 

example, Ghaemi et al. (2007) proposed a co-evaluation algorithm for university 

timetabling problems. Paechter et al. (1995, 1996) apply a memetic algorithm for course 

timetabling. The memetic algorithm explores the neighbourhood of the solution obtained 

by GA and navigates the search towards the local optima. Graph colouring heuristics were 

used by Burke et al. (1995, 1996, & 1998) to improve and accelerate the search process in 

timetabling. Burke et al. (1995) also developed a hybrid GA to ensure that the most 

fundamental constraints are never violated in timetabling problem. They showed that the 

algorithm is guaranteed to produce a feasible solution by hard coding the constraints and 

using a hybrid crossover operator. In addition to timetabling, GAs have also been used to 

solve scheduling problems in healthcare, such as patient scheduling and nurse scheduling 

(Petrovic & Morshed, 2011; Aickelin & Dowsland, 2001). 

2.2.2 Simulated annealing 

Simulated Annealing (SA), is a neighbourhood search method. Rather than always 

choosing the direction of the best improvement, which gives the steepest-ascent, SA 

initially chooses random or semi-random directions, but over time comes to prefer the 

direction of the best improvement. The direction selection process is controlled by a sort 

of temporal parameter, which is usually called the ‘temperature’ by analogy with real 

annealing. SA approaches require a schedule representation as well as a neighbourhood 
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operator for moving from the current solution to a candidate solution. Annealing methods 

allow jumps to worse solutions and thus often avoid local sub-optimal solutions 

(Kirkpatrick et al., 1983). The quality of solutions produced by an SA implementation 

depends on the correct choice of solution space and neighbourhood, as well as of the 

parameters that govern the cooling schedule. SA has been applied to service scheduling for 

several years. Gunawan et al. (2007) used a hybrid algorithm which consists of an integer 

programming, a greedy heuristic and a modified SA algorithm for solving large-scale 

timetabling problems. Bailey et al. (1997) solved a nurse scheduling problem using SA and 

compared its performance with integer programming and with a GA. They found that, for 

a given quality, their algorithm was faster than the GA and integer programming for the 

set of nurse scheduling testing problems. 

2.2.3 Tabu search 

Tabu search (TS) is similar to SA in that it also moves from one schedule to another, 

with the next schedule being possibly worse than the one before it. The difference is in the 

mechanism by which the moves to new schedules are accepted. A TS maintains a list of 

tabu moves, representing schedules which, having been visited recently, are forbidden in 

order to diversify the directions in which search proceeds. TS has been proposed to 

compute high-complexity large-sized health care service scheduling. Dowsland (1998) 

used tabu search with strategic oscillation for nurse scheduling. The objective is to ensure 

an adequate number of nurses are on duty at all times while incorporating individual 

preferences and requests for days off in a way that is seen to be fair to all nurses. The 

method uses a variant of TS which oscillates between solutions with feasible nurse 

coverage and then applies nurses’ preferences to improve the solution. Demeester et al. 

(2010) proposed a hybrid TS algorithm for patient admission scheduling. It automatically 

assigns patients to beds in the appropriate departments by considering patients’ medical 

needs as well as their preferences, while keeping the number of patients in the different 

departments balanced. The method uses a TS algorithm hybridized with a token-ring and 

a variable neighbourhood-descent algorithm. TS has also been applied to university course 

timetabling problems (Hertz, 1991; Hertz, 1992). 
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2.2.4 Constraint logic programming 

Many service scheduling problems can be modelled as constraint satisfaction problems 

(CSP). In a CSP, values which satisfy a set of constraints must be found for a set of discrete 

variables with finite domains. Constraint satisfaction is a search procedure that operates in 

the space of constraint sets rather than in that of solution sets.  Constraint Logic 

Programming (CLP) provides the ability to declare variables and their domains for CSPs. 

Examples of applying CLP to service scheduling problems can be found in Gueret et al. 

(1995), Henz and Wurtz (1995), and Abdennadher and Schlenker (1999). 

2.2.5 Approaches considering customer preferences and dynamic environments 

Due to the computational complexity involved in creating schedules that 

simultaneously consider customer preferences and scheduling objectives, there has been 

limited research in centralized service scheduling that considers customer preferences. 

Wang and Gupta (2011) proposed a heuristic approach for patient scheduling which 

captures customer preferences. Their method has two components. The first one 

dynamically learns a patient’s preferences and updates estimates of acceptance 

probabilities. The second one uses the acceptance probability information to make booking 

decisions. Jaumard et al. (1998) proposed an integer programming model accommodating 

nurses’ work preferences. The problem was solved using Dantzig-Wolfe decomposition. 

The objective was to minimize salary costs and maximize the nurses’ preferences. Azaiez 

and Sharif (2005) developed a 0-1 linear goal programming model for nurse scheduling. 

They obtained the nurses’ preferences for shift times from a survey consisting of 15 

multiple choice questions. The nurses’ preferences were combined with hospital 

constraints to develop their linear goal programming model.  

Centralized service scheduling usually deals with dynamic environments by using 

simulation-based approaches. A simulation is the imitation of the operation of a real-world 

process or system over time (Groothuis & Merode, 2001). An advantage of simulation 

studies over heuristic approaches is the ability to model complex systems and represent 

environmental variables. Hancock and Walter (1984) conducted a simulation study based 

on historical data of patient arrivals. The simulation was used to determine the number of 
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procedures that would be performed each day of the week. Groothuis and Merode (2001) 

applied the discrete event simulation technique to optimize the use of catheterization 

capacity in a hospital. Ho and Lau (1999) proposed a simulation-based method for 

evaluating the impact of different combinations of dynamic environmental factors such as 

no-shows, service times, and the number of customers per service session on the quality of 

service schedules. 

The above-mentioned traditional scheduling methods encounter great difficulties when 

they are applied to real-world situations, as   they use simplified theoretical models and are 

essentially centralized in the sense that all computations are carried out in a central 

computing unit. The intelligent agent technologies, on the other hand, suggest an 

innovative, lightweight approach to scheduling problems. The main characteristic of 

intelligent agents is their autonomy. Each agent makes its own decisions, based on its 

internal state and on the information it receives from its environment; thus, each agent can 

keep its independency from the rest of system. In other words, each agent, according to its 

own private information, may use a different policy independently from the rest of the 

system. Agent-based systems are inherently distributed and robust in dynamic 

environments. Agents can retrieve information from different resources, analyze it, filter 

redundant information, select and then present the data by means of an interface that is 

attractive to users. Another feature of agents is their sociability; agents can communicate 

with each other and exchange any kind of information. This sociability, makes it possible 

for them to overcome any inconsistency among their local schedules and resolve errors and 

collaborate in the process of scheduling. Based on the properties of agent-based systems, 

an agent-based approach should be a good candidate for service scheduling problem. 

2.3 Agent-based Scheduling 

Agent-based scheduling can be defined as an approach in which scheduling problem 

are decomposed among local decision makers who may have conflicting objectives but 

who coordinate with each other through certain communication mechanism to achieve 

overall system objectives. Local decision makers are called agents (Sycara et al. 1991, 

Kouiss et al. 1997, Shen 2001). Agents’ properties include autonomy, so they can operate 
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without human interaction, a social ability to communicate with other agents, pro-

activeness, which allows them to take on an initiative role, and reactivity, to respond to 

changes in the system (Rahimifard and Newman 1998). 

Agent-based scheduling has received considerable attention in manufacturing areas 

(Burke and Prosser 1991, Chung et al. 1996, Maturana and Norrie 1996), and it has also 

been applied to other application domains such as network power scheduling and packet 

scheduling (Chiussi and Francini 2000, Hohlt et al. 2004, Vaidya et al. 2005). Supply chain 

optimisation is also another important application area for agent-based scheduling. (Tsay 

et al.2000, Lau et al. 2005a, 2005b, Frayret 2009).  

Several papers provide reviews of the literature on agent-based scheduling (Sen 1997, 

Tharumarajah 2001, Shen 2002, Caridi and Cavalieri 2004, Giret and Botti 2004, Shen et 

al. 2006). Tharumarajah (2001) provides a classification for the literature based on the 

following attributes: problem decomposition, problem-solving organisation, coordination 

and control. Problem decomposition describes how the global scheduling problem is 

decomposed between multiple decision makers (i.e. agents). Problem decomposition 

approaches are categorized based on three views: resource view, task view and hybrid 

view. The other two attributes focus on how agents communicate and cooperate with each 

other in order to achieve improved global performance. Shen (2002) classifieds the 

reviewed papers in terms of four issues in agent-based manufacturing scheduling. Shen et 

al. (2006) extended that work to include studies on agent-based approaches to 

manufacturing process planning. The issues are identified as agent encapsulation, 

coordination and negotiation protocols, system architectures and decision schemes for 

individual agents. Caridi and Cavalieri (2004) propose a taxonomy that includes 

application domain, agent, control, organisation and communication for classifying multi-

agent systems. .  

This section provides a brief literature review and classifies the papers based on three 

attributes: information flow structure, communication mechanism and schedule generation. 

With respect to information flow structure, the literature can further be classified into two 

main groups: mediated structure and autonomous structure. In a mediated structure there 

is a coordinator agent that other agents communicate through. Each agent makes its own 
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local schedule considering its goals, and then communicates that schedule to the 

coordinator agent. The coordinator agent evaluates the local schedules with respect to the 

overall system objectives, resolves potential conflicts, and finalizes the scheduling 

decisions. The scheduling system proposed by Lau et al. (2005) has a mediated structure. 

Their supply chain is modelled as a multi-agent system, with three types of agent: project 

agent, contractor agent and middle agent. Companies aim at completing a project, which 

consists of a network of operations that act as project agents, and contractor agents offer 

their bids for performing those operations. A middle agent facilitates and coordinates the 

scheduling process between project agents and contractor agents. Babayan and He (2004) 

use a mediated structure for scheduling jobs in a flexible flow shop. In this system, local 

agents correspond to the jobs, while a manager agent decides whether rescheduling should 

be performed at any point and sets the rules of the game. Cooperative game theory is used 

to regulate the competition among the agents for scheduling their jobs. The game consists 

of two steps. The first step determines the agents that are eligible to schedule their jobs, 

and the second step enables competition among the agents by allowing them to schedule 

their jobs. Wang et al. (2009) solve the job shop scheduling problem by using auction 

theory. Their proposed system consists of two types of agents: job agents and resource 

agents. Job agents are associated with each job and they participate in the auction to process 

their jobs. Each bid includes a latest completion time and the price for completing a job 

before a specified time. A resource agent is associated with all of the resources in a job 

shop; it is considered as a mediator agent that can determine the resource   allocation to the 

job agents that maximizes the sum of bidder prices.   

In an autonomous structure, agents communicate directly with each other, and the 

interactions between agents are not coordinated by mediator agents. Duffie and Prabhu 

(1994) use an autonomous structure for manufacturing systems. Each resource is assigned 

to an agent. The information regarding a new job is passed to resource agents when a job 

arrives. The resource agents affected by the arrival of this job develop alternative 

scheduling plans. Scheduling plans may conflict because resource agents act 

independently. One or more agents discover the conflicts and send a feedback report to the 

local agents. With this feedback, local agents develop alternative local plans. In a study by 
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Sycara et al. (1991), each local agent determines its overall demand in time for each 

resource and presents this data to the resource agents. After receiving all the demands from 

the local agents, each resource agent starts to schedule the most critical operations. The 

peak of the aggregate demand determines the critical operations. The critical operations are 

scheduled based on the survivability measure. After scheduling each operation, local agents 

update their demand information. Information exchange between local agents and resource 

agents continues iteratively until a feasible schedule has been achieved.   

With respect to the second classification attribute, communication mechanism, the 

literature can be broken into three main groups: Contract-Net protocol, economic models, 

and iterative refinement. In the communication mechanism based on Contract-Net 

protocol, a new job broadcasts its arrival and requests bids for its processing. The agents 

(cells or machines) prepare bids. The best bid is selected by a manager agent according to 

some criteria. Smith (1980), Smith and Davis (1981), Parunak (1987), Shaw and Whinston 

(1988) and Lima et al. (2006) are examples of studies that apply the Contract-Net protocol 

to the communication mechanism between agents.  

Several economic models that support distributed rational decision making were 

studied in Sandholm (1999); among them, auction is the most relevant to scheduling. 

Auctions assume game-theoretic agent behavior. The equilibrium state is defined by the 

condition that agents play a best-response strategy to each other and cannot benefit from a 

unilateral deviation to an alternative strategy. In Kutanoglu and Wu (1999), iterative 

auctions are applied to the job shop scheduling problem. The focus is to investigate the 

links between combinatorial auctions and Lagrangean relaxation, and then to design 

auctions based on Lagrangean-based decomposition. In MacKie-Mason et al., (2004) and 

Wellman et al., (2003), price prediction and bidding strategies for simultaneous auctions 

are studied in the setting of market-based scheduling. Simultaneous auctions sell multiple 

goods in separate markets simultaneously. Agents have to interact with simultaneous but 

distinct markets in order to obtain a combination of resources sufficient to accomplish their 

task. These auctions fail when agents bid cautiously to avoid purchasing an incomplete 

bundle. 
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The third communication mechanism is iterative refinement. In this mechanism, 

scheduling information is exchanged between agents to eliminate conflicts and to revise an 

existing schedule to achieve better system performance (Sycara et al., 1991, Liu and 

Sycara, 1993). In Liu and Sycara (1993), the resource agents generate initial schedules 

using the earliest due date rule. Since resource agents act independently, any generated 

schedule may violate precedence constraints. A coordinator agent extract the information 

about the operation of each job and send it to the local agent. Next, the local agent identifies 

and eliminates any precedence violations. The procedure continues in an iterative manner 

until a feasible schedule is generated. In later studies, the same authors propose 

mechanisms for loop prevention (Sycara and Liu 1994, 1995).   

The third attribute applied to classify the literature, schedule generation, describes how 

the sub-problems are solved by the agents. Bid preparation (Yang et al. 1993), dispatching 

rules (Kouiss et al. 1997, Hadavi et al. 1992), heuristic methods (Sycara et al. 1991, 

Trentesaux et al. 1998), constraint-based branch and bound (Wang et al. 2009) and mixed 

integer programming (Babayan and He 2004) are some of the methods found in the 

literature. 

  It is important to emphasise that, although there are several review papers on agent-

based scheduling, there is no survey of the literature covering agent-based service 

scheduling. The next section provides that review of agent based service scheduling. 

2.4 Agent-Based Service Scheduling  

Agent-based service scheduling is essentially a distributed approach that is flexible, 

efficient, and adaptable to real-world dynamic environments. By applying agent-based 

service scheduling architecture, the distributed nature of service scheduling can be 

modelled naturally. In addition, each agent can be assigned different objectives. In this 

way, the complicated multiple objectives in service scheduling can be decomposed to 

individual agents. This decomposition significantly simplifies the modelling of the 

objectives. Agent-based scheduling systems have been proposed for several important 

service sectors. However, there is a lack of general problem formulations, classifications, 

solution frameworks, and test beds in service scheduling. Therefore a domain-specific 
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approach is applied here. Several representative application domains are reviewed through 

the lens of how agent-based scheduling addresses service scheduling challenges. Since the 

challenges of distributed scheduling information and complicated multiple objectives have 

been naturally modelled in agent-oriented design paradigms, in this section, the focus is on 

how agent-based scheduling addresses the challenges of dynamic environments and users' 

private information. 

2.4.1 Meeting scheduling 

A meeting scheduling problem signifies a decision-making process affecting several 

users, in which it is necessary to decide “when” and “where” one or more meetings should 

be scheduled (Hassine et al., 2004). Since it usually involves inputs from multiple users, 

meeting scheduling can be classified as a service scheduling problem. Agent-based 

meeting scheduling approaches have been proposed in the literature. Some of them are 

distributed implementations of constraint-satisfaction algorithms in the multi-agent 

systems environment. In the multi-agent meeting scheduling system developed by Franzin 

et al. (2002), agents communicate over several proposal phases. Whenever agents 

communicate during the proposal phases, the information they exchange can be used to 

build an approximation of the constraint set(s) of the other agents. In other words, each 

agent in the proposal phase is able to elicit other agents’ availabilities. To deal with the 

challenge of a dynamic environment, Hassine et al. (2004) formalize meeting scheduling 

as a dynamic valued-constraint satisfaction problem. Agents negotiate with each other to 

achieve a schedule that maximizes global utility. In the negotiation process, a host agent 

proposes a set of time slots as a solution to the other agents who will participate in the 

meeting. Each participant agent that has received this message ranks the obtained time slots 

according to its preferences and constraints and returns them to the proposer/host agent. 

The host/proposer agent tries to find the best solution, one which maximizes its utility, 

from the received time slots. The same process continues until an agreement is reached 

among all of the agents. Course timetabling at universities, which can be seen as a type of 

meeting scheduling problem, is modelled as a constraint satisfaction problem by Meisels 
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et al. (2003). An inter-agent negotiation protocol is used to overcome inconsistencies 

among local schedules.  

The presence of users’ private information is also addressed in agent-based meeting 

scheduling. Wainer et al. (2007) defined four levels of privacy protocol (or modes of 

agents’ interaction) to model users’ private information, namely, full information, 

approval, voting and the suggestion protocol. These modes of interaction are defined based 

on whether the participants are comfortable sharing their private information during the 

negotiation process with the host or not. In Modi et al. (2005), the agents’ private 

information is modelled as their utilities. Each agent makes a decision about accepting a 

meeting time based on how the decision will impact its own utility. The utility of a time 

slot is calculated based on the difference between the value of a meeting scheduled in the 

time slot and the predicted cost of continued negotiating with other agents.  

Crawford et al. (2004) designed a mechanism for meeting scheduling which is 

incentive-compatible. A mechanism is incentive-compatible if it is every agent’s dominant 

strategy to reveal their private utility values truthfully. The mechanism motivates agents to 

reveal their valuation for each of the feasible schedules. The schedule that maximizes the 

social welfare is selected. Each agent’s payments are VCG auction payments, which 

justifies the incentive compatibility of the mechanism. Iterative auction are also used in 

agent-based meeting scheduling.  In a course timetabling system proposed by Sönmez and 

Ünver (2007), students are assigned a certain amount of bid endowments which they use 

to bid for different schedules of courses. Students are modelled as price-takers under a 

belief system. In other words, students’ bids are based on their guess about the market-

clearing price they will face. Krishna and Ünver (2007) also proposed a course bidding 

system and conducted a field test in the spring 2004 semester at the Ross School of 

Business, University of Michigan. In their bidding system, student bids are used to infer 

students’ preferences for courses and to determine their course priorities. In addition to 

handling users' private information, the challenge of dynamic environments is addressed 

in agent-based meeting scheduling (Sönmez and Ünver 2007). 
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2.4.2 Healthcare 

The agent-based approach, in which patients and hospital resources are modelled as 

autonomous agents with their own goals, reflects the decentralized structures of the health 

care environment. Most of the agent-based healthcare scheduling literature focuses on the 

challenge of the distributed and dynamic environment of healthcare management. In a 

recent study of operation room scheduling, Zhiming (2011) developed a two-stage 

approach which addresses the challenges of dynamic scheduling. Mixed integer 

programming is used in the first stage for assigning surgical operations to each operation 

room. The second stage utilizes a dynamic rescheduling approach, in which agents 

reallocate tasks using the contract net protocol in a way that minimizes the cost of the 

operation rooms.  

Agent-based approaches have also been proposed for patient scheduling. Hannebauer 

et al. (2001) formulated patient scheduling as a distributed constraint optimization problem. 

They proposed a Multi-phase Agreement Finding (MPAF) algorithm for coordinating the 

agents and covering the constraints. The MPAF consists of two phases, the proposal phase 

and the assignment phase. In the proposal phase, a diagnostic unit agent selects a set of 

feasible appointment time slots based on its optimization criteria and proposes these to the 

patient agent. In the assignment phase, the patient agent decides whether to accept the 

proposed time slots. This decision is made based on the agent’s scheduling constraints and 

its scheduling objective, which is to minimize the waiting time between appointments. 

Other agent-based patient scheduling approaches model the scheduling environment as a 

market. Given the distributed and dynamic nature of patient scheduling, markets can 

efficiently distribute scarce resources among patients. Paulussen et al. (2003) developed a 

bidding mechanism for patient scheduling, in which patient agents communicate their 

(private) utility for certain time slots of a resource via a price mechanism. The price that 

patient agents are willing to pay is the difference between the cost-value of the current 

allocation and the cost-value for the desired appointment. Resources are assigned to the 

patients that are willing to pay the highest price (to the patients who gain the highest health 

sate improvement). The scheduling objective is to maximize resource utilization and 

minimize patient’s hospital time. For patients who need to schedule several related 
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appointments, a multi-round auction mechanism is proposed by Hosseini et al. (2011). In 

this approach, patients calculate the value of obtaining each resource by solving their 

Markov decision problem. In each auction round, agents submit their bids; the auctioneer 

determines the winner and then moves to the next step. The objective of winner 

determination is to minimize the global regret values of patients. A patient’s regret value 

on a resource is defined as the difference in value between getting the resource and not 

getting the resource, given a patient’s current health state.  

Agent-based approaches have also been proposed for nurse timetabling. Grano et al. 

(2009) proposed an auction-based nurse scheduling approach that considers both nurse 

preferences and hospital requirements. In the auction, nurses bid for their work shifts and 

rest days using points instead of money values. The nurses’ private information, which 

consists of their availability and preferences for specific days and shifts, are thereby 

obtained in the bidding stage. Winners are selected using an optimization model which 

seeks to award shifts to the highest bidders while simultaneously meeting hospital 

requirements. 

2.4.3 Transportation 

An agent-based approach have been adopted in transportation planning and scheduling 

research for more than two decades. Fischer et al. (1995) pointed out that transportation 

planning and scheduling are inherently distributed, complex tasks. Geographically, trucks 

and jobs are distributed and maintain some level of autonomy. To implement traditional 

methods, a scheduler must gather a large amount of information to a central place where 

the solution can be computed. However, using an agent-based approach, an agent only 

requires local information. In their review on multi-agent systems in logistics, Lang et al. 

(2008) concluded that transportation planning and scheduling problems have specifications 

that comply with the particular capabilities of agent systems. Specifically, these systems 

are able to deal with inter-organizational and event-driven scheduling settings that meet a 

supply chain’s planning and execution requirements. Davidsson et al. (2005) also identified 

a number of the positive aspects of the agent-based approaches to logistics. Existing 

surveys (Lang et al., 2008; Davidsson et al., 2005) mainly focus on research addressing the 
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distributed and dynamic aspects of transportation services.  The rest of this section provides 

a review of papers focusing on the challenge of the presence of customers’ private 

information, which is mainly tackled by the design of the various auction systems in the 

context of multi-agent systems.  

Auction mechanisms, especially combinatorial auctions, have been adopted by a large 

number of shippers and 3PL (third-party logistic) providers. Leading companies such as 

Wal-Mart, Procter & Gamble and Sears have used combinatorial auctions to reduce their 

logistic costs (Sheffi, 2004). Song et al. (2003) proposed an auction-based mechanism, the 

Collaborative Carrier Network, for carriers to exchange their excess capacities in a TL 

(truckload) spot-market. Through this network, carriers can buy and sell transportation 

capacities. The network is structured as a group of auctions launched by carriers. Each 

carrier can be both a contractor and a sub-contractor in different auctions. A carrier will 

launch, at most, one auction at a time, and if new loads come in during the previous auction 

round, they will be simply held and until the next round. The network attempts to ease the 

exchange of information, lower transaction costs and make it possible for both carriers and 

shippers to access larger markets.  

Kwon et al. (2005) proposed an iterative auction mechanism for TL transportation 

procurement. Each agent (carrier) bids for a package of lanes. A descending multi-round 

format is used to allocate the lane packages to agents. Agents compute their preferred 

packages based on their cost structures and submit them to the auctioneer. The auctioneer 

then performs a provisional allocation of lanes to the agents by solving a winner 

determination (WD) problem with the objective of minimizing the payments. Simulation 

results have indicated that both carriers and shippers reduced their cost through a better 

collaboration.  

For the LTL (less than truckload) setting, Krajewska et al. (2006) proposed an auction 

model for the collaboration among individual freight forwarding entities. Cooperating 

forwarders exchange their orders through a combinatorial auction. The auction is 

individually rational, which means each individual partner increases their profit by 

participating in the coalition. 
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Effective collaboration among agents in a distributed system leads to a better utilization 

of resources and, thus, greater efficiency and profit for the whole system. However, before 

entering into the partnership, agents have to agree upon how to share the profit that results 

from the collaboration. In a collaborative environment where, for example, carrier 

companies belong to a common holding organization, profit sharing may not require 

incentive-compatible mechanisms. Gujo et al. (2009) proposed an exchange mechanism, 

called ComEx, for inter-enterprise logistic services. In ComEx, transportation capacity in 

each division is managed by a profit centre which can exchange delivery orders with other 

profit centres based on the geographical zones and time windows of the orders. The profit 

gained is shared proportionally among the profit centres based on the cost savings of each 

centre that participated in the exchange. A profit precondition for this type of sharing is 

that ComEx has access to the cost saving data of the profit centres. ComEx works well in 

a collaborative setting. However it is not suitable for game theoretic settings where profit 

centres do not belong to a common holding organization and so they may be reluctant to 

share their cost savings data. In this case, a profit distribution mechanism based on game 

theory and combinatorial auction should be applied (Krajewska et al., 2006; Gomber et al., 

1997).  Other agent-based models in transportation services distribute the benefits of 

collaboration from a loss-sharing rather than a profit-sharing perspective (Schönberger, 

2005; Schönsleben et al., 2004). Krajewska et al. (2006) presents an overview of these 

benefit sharing models. 

2.4.4 Computing 

Modern computing services aggregate a large number of independent computing and 

communication resources and data stores. They are built onto the bases of distributed 

computing, grid computing and virtualization. A computing service environment is 

inherently complex, heterogeneous and dynamic. Service resource management systems 

need to provide mechanisms and tools that allow resource consumers (end users) and 

providers (resource owners) to express their requirements and facilitate the realization of 

their goals. This objective necessitates seamless scheduling of providers’ resources to 

support the dynamic scaling of user activities across multiple domains. Scheduling 
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computing services under varying loads, diverse application requirements and 

heterogeneous systems is a challenging problem. An agent-based approach can be an 

effective way to realize information sharing, given the unpredictable dynamism and 

increasing heterogeneity in computing service scheduling.  

With the aim of tackling the challenge of dynamic environments in computing services, 

An et al. (2010) proposed a distributed negotiation mechanism for dynamic and uncertain 

resource demand and supply in computing as a service (cloud computing) platforms. The 

mechanism is an extension to the alternating offers protocol with the added feature of 

allowing agents to decommit from contracts at a cost. The mechanism facilitates the agents’ 

negotiation over both a contract price and a decommitment penalty. They evaluated their 

approach experimentally using representative scenarios and workloads, which showed that 

their model achieves a higher level of social welfare compared to both combinatorial 

auctions and the fixed-price model used by Amazon’s EC2.  

Scheduling mechanisms for computing services typically deal with the dynamics of 

both resource and service markets. Sim (2012) proposed a concurrent negotiation 

mechanism for agents to negotiate in multiple interrelated e-Markets.  He developed an 

agent-based test bed consisting of provider agents and consumer agents acting on behalf of 

resource providers and consumers, respectively, along with a set of broker agents. The 

mechanism consists of: (1) a bargaining-position-estimation strategy for the multilateral 

negotiations between consumer and broker agents in a service market, and (2) a regression-

based coordination strategy for concurrent negotiations between broker and provider 

agents in resource markets. The negotiation outcomes between broker and provider agents 

in a resource market can potentially influence the negotiation outcomes between broker 

and consumer agents in a service market. Using this mechanism, the broker agent accepts 

service requests from consumer agents, and purchases resources from provider agents. The 

collection of resources that satisfy consumer agents' requirements is composed 

dynamically. Mobile agents are also designed in this way, providing scalability in cloud 

computing. In Singh and Malhotra (2012), a mobile agent is capable of transporting its 

state from one environment to another with its data intact and able to perform appropriately 
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in its new environment. The agents are supported with algorithms to search for another 

cloud with better response time when the most-approachable cloud becomes overloaded.  

To deal with the challenge of customer’s private information, game-theoretic based 

methods have been proposed to solve the resource allocation problem in network systems. 

Gagliano et al. (1995) presented an auction allocation of computing resources. In their 

proposed auction, computing tasks are provided sufficient intelligence to acquire resources 

by offering, bidding and exchanging them for funds.  Wolski et al. (2001) compared 

commodities markets and auctions in grids in terms of price stability and market 

equilibrium. Zaman and Grosu (2011) studied and implemented combinatorial auction-

based mechanisms for efficient provisioning and allocation of computing services (VM 

instances) in cloud computing environments, with the objectives of maximizing the 

revenue of the service provider and providing an efficient allocation of resources. A recent 

survey on market-oriented resource management and scheduling in computing services can 

be found in Garg and Buyya (2011). 

Table 2-1 summarizes the agent-based scheduling approaches aimed at addressing service 

scheduling challenges. 

Table 2-1 Agent-based scheduling approaches that address service scheduling challenges 

Agent-based service 

scheduling approaches 

Dynamic environment objective 

 

Private information 

Franzin et al., (2002), P. 

Modi et al., (2005), 

Crawford et al., (2004), 

Krishna and Ünver (2004), 

Grano et al., (2009) 

 

 

Not addressed 

 

Maximize the social welfare by 

maximizing the customer’s 

satisfaction 

 

 

Addressed 

Hassine et al., (2004), 

T.Sönmez and M.Ünver 

(2006), 

Addressed Maximizing the global utility and 

ensuring near fulfillment of 

customers’ preferences 

Not Addressed 

Zhiming(2011) Addressed Minimize the cost of the 

operation rooms including the 

overtime cost  

Not Addressed 

Wainer et al., (2007) Not Addressed Minimize the cost of the 

operation rooms including the 

overtime cost 

Addressed 
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Muller et al., (2001), 

Hosseini et al., (2011) 

Not addressed Maximize patient satisfaction by 

considering patient preferences 

and minimize patient waiting 

time between appointments 

Addressed 

Paulussen et al., (2003)  

Addressed 

Maximize the resource utilization 

and minimize patient’s hospital 

stay time  

 

Not addressed 

Meisels et al. (2003), 

Hannebauer et al. (2001) 

Not addressed Minimize the patients’ waiting 

time between appointments 

Not addressed 

Kwon et al., (2005), 

Krajewska et al. (2006), 

Sheffi, 2004, Song et al. 

(2003) 

Not addressed Minimize the total shipping cost Addressed 

An et al. (2010), Sim (2012) Addressed Maximize the social welfare Not addressed 

Gagliano et al. (1995), 

Zaman and Grosu (2011), 

Wolski et al. (2001) 

Not addressed Maximizing the revenue of the 

service provider as well as 

providing an efficient allocation 

of resources. 

Addressed 

 

2.5 System Design Issues  

Adopting the agent-based approach has made it possible to model the challenges of a 

distributed environment and complicated multiple objectives in service scheduling 

naturally in the agent-oriented architecture. The main design issue is how to design agent-

based scheduling systems such that they can effectively address the challenges of a 

dynamic scheduling environment and the presence of customers’ private information. The 

previous section reviewed typical agent-based scheduling approaches aimed at addressing 

these challenges from a domain-specific perspective. This section presents a summary of 

the existing agent-based service scheduling approaches from the system design perspective 

and identifies some promising research opportunities. 

2.5.1  System structures  

Most of the available agent-based service scheduling system designs adopt the physical 

decomposition approach for agent encapsulation. Service providers who control the service 

resources are modelled as provider agents, and users who request services are modelled as 
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customer agents. In some cases, such as carrier collaboration in transportation services, a 

service provider can also request services from other providers. In this situation, a service 

provider will play the role of provider agent as well as that of customer agent. Given the 

agent encapsulation scheme, agent system architectures provide the organizing framework 

within which agents interact with each other. In the context of agent-based service 

scheduling, two types of system structures are usually adopted, namely mediated structure 

and autonomous structure. A mediated structure utilizes a mediator to coordinate the 

allocation of resources to users. A service provider agent often assumes the role of 

mediator. For example, in healthcare scheduling, provider (resource) agents usually take 

the role of mediator and coordinate the resource allocation among patients (Paulussen et 

al., 2003; Hannebauer and Muller, 2001; Hosseini et al., 2001).  

Autonomous structure appears in the settings, where a service provider also requires 

services from other providers, that is, an agent is both a provider and a customer. In 

autonomous structure, interactions between agents are not coordinated by mediator agents. 

Instead, agents optimize their schedules by exchanging their resources (Krajewska and 

Kopfer, 2006, Gujo et al., 2009). In some service scheduling settings, such as meeting 

scheduling or workforce scheduling, there are no explicit resource times to be allocated. 

Instead, the main issue is to find a meeting time or work schedule which is agreeable to all 

participants. For example, in Becker and Hans (2006), agents representing operation room 

staffs negotiate with each other, based on the Nash bargaining solution, to schedule their 

work shifts. Autonomous structure is also often used in agent-based meeting scheduling 

applications (Hassine et al., 2004, Modi et  al., 2004, and Franzin et al., 2002). 

2.5.2  Negotiation mechanisms  

Given its inherently decentralized nature, agent-based service scheduling must 

coordinate agents’ behaviour using some type of negotiation protocol. The most commonly 

used protocols are the Contract Net protocol (CNP) and economic based models, such as 

auctions. CNP is essentially a general tendering procedure. However, unlike auctions, the 

awarding decision may not be related to price or cost factors. To summarize, in the CNP, 

each agent (manager) with work to subcontract broadcasts a call for bidding messages and 



 

34 

 

waits for other agents (contractors) to send back their bids. After receiving bids from all 

the agents or waiting for a certain time period, the manager evaluates the bids received 

based on the evaluation criteria and awards its contracts to one or more contractors, which 

then process the subtask. CNP coordinates task allocation, providing dynamic allocation 

and natural load balancing. Unlike general equilibrium market mechanisms or auctions, 

which usually require a mediator, contract nets are purely distributed models, in which any 

agent can act as a manager and subcontract tasks to other agents. CNP can easily be 

embedded into the autonomous system structure and is suitable for distributed dynamic 

scheduling. For example, in Zhiming (2011), CNP is used to dynamically reallocate tasks 

among agents in an operation room scheduling setting. The drawback of CNP is that there 

is no built-in mechanism to motivate agents to reveal their private information. Therefore, 

it is not sufficient in service scheduling settings where customers’ private information is 

present.  

Auctions can accommodate customers’ preferences to minimally reveal their private 

information by providing appropriate incentives to customers. There is a wealth of 

literature on auction design. Different auction formats such as sequential auctions, 

simultaneous auctions and combinatorial auctions have been studied extensively.  

Agent-based service scheduling usually uses combinatorial auctions (also called bundle 

auctions), because scheduling is, in its essence, a combinatorial optimization problem. 

Typical examples include various implementations of VCG auctions (Crawford & Veloso, 

2004; Sheffi, 2004; Berger and Bierwirth, 2010). However, due to high computational 

complexity, VCG is not practical for large-scale problems, especially in dynamic 

environments. To provide better responsiveness, sequential auctions, simultaneous 

auctions and iterative implementations of combinatorial auctions have also been adopted 

in service scheduling (Paulussen et al., 2003; Song and Regan, 2003; Sönmez & Ünver, 

2007; Kwon et al., 2005; Gujo et al. 2009). These auction models are compared and their 

applicability to agent-based service scheduling is analysed in the following subsection.  
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2.6 Research opportunities  

This chapter provides a survey on system design for service process scheduling,   

covering several representative service domains. The approaches reviewed here focus on 

either dynamic scheduling environments or customers’ private information. These 

approaches may not be sufficient for many real world service scheduling applications, as 

they usually deal with only part of the challenges. Based on this survey, as well as on first-

hand research and development experience in this area, I believe that further research on 

an integrated approach that tackles service scheduling challenges concurrently is very 

much needed. While there is no built-in mechanism in CNP to address customers’ private 

information, a logical step to the integrated approach is to design auctions which can 

accommodate dynamic changes and handle bundles of resource requirements in service 

scheduling. The key issue is how to deal with the enormous computational complexities of 

combinatorial auctions in dynamic environments. 

 In general auction terms, combinatorial auctions (CA) allow bidders to place bids on 

bundles of items. It addresses bundle preferences explicitly. However, the computations 

required to solve difficult valuation problems and winner-determination problems can be 

prohibitive. In general, CAs are likely to be practical for smaller-sized problems. In 

addition, CAs require that a complete valuation on alternative schedules be revealed to the 

auctioneer. In service scheduling, customers are often reluctant to make a complete 

revelation to prevent any information from leaking out and adversely affecting other 

decisions or negotiations. Lack of transparency is another practical concern in CAs. It can 

be difficult to explain to customers why a certain schedule has been selected. 

Iterative bundle auctions are iterative implementations of CAs. This class of auction 

has practical significance because it addresses the computational and informational 

complexities of CAs by allowing bidders to reveal their preference information only as 

necessary as the auction proceeds, and bidders are not required to submit (and compute) 

complete and exact information about their private valuations. In many cases, iterative 

auctions present better computational and privacy properties than those of CAs. In addition, 

iterative auctions have the potential to accommodate dynamic events, which is an important 

requirement in service scheduling applications. With a careful design of the structure and 



 

36 

 

its components, iterative bundle auctions have the potential to significantly reduce 

computational costs while accommodating the dynamic environment and users’ private 

information in service scheduling.  

Differently from how CAs and their iterative implementations price bundles, sequential 

and simultaneous auctions price bundles as the sum price of the individual items. However, 

they do not allow bidders to bid on bundles of items. Sequential auctions suppose that the 

set of items is auctioned in sequence. Bidders bid for items in a specific known order and 

can choose how much (and whether) to bid for an item depending on past successes, 

failures, prices and so on. Sequential auctions are particularly useful in situations where 

setting up combinatorial or simultaneous auctions is not feasible. Simultaneous auctions 

sell multiple items simultaneously in separate markets. Bidders have to interact with 

simultaneous but distinct markets in order to obtain a combination of items sufficient to 

accomplish their task. Real-world markets quite typically operate separately and 

concurrently despite significant interactions in their preferences. Sequential and 

simultaneous auctions tackle the complementarities over resources in the spirit of general 

equilibrium theory. These auctions fail when there are no prices that support an efficient 

solution (the existence problem) and when agents bid cautiously to avoid purchasing an 

incomplete bundle (the exposure problem). However, given that these auctions are more 

practical in terms of computation, they are important models worthy of further study.  

In addition to the design of core negotiation mechanisms, other research needs remain 

to be addressed in agent-based service scheduling. For example, there is a lack of 

systematic analysis and comparison on how system design factors affect computational 

time in agent-based service scheduling systems. To adequately test and evaluate various 

approaches, benchmark problems are also needed. Furthermore, the systems must be 

designed to integrate a wide range of real-time information and uncertain parameters into 

the dynamic service scheduling process. Unlike the auction designs found in the literature, 

dynamic pricing cannot be applied to some services, such as healthcare and government 

services. These settings require bidding-based service scheduling systems without dynamic 

pricing. This would also be an interesting research topic for auction design in general.  
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2.7 Summary 

Service scheduling systems are inherently distributed and dynamic. The presence of 

customers’ private information imposes additional challenges in finding high quality 

solutions. Agent-based systems can be an appropriate approach to service scheduling due 

to their distributed and autonomous nature. This chapter reviewed agent-based scheduling 

approaches in representative service domains through the lens of how they address the 

challenges of service scheduling. Despite the many domain-specific design applications in 

agent-based service scheduling, there is a lack of general problem formulations, 

classifications and solution frameworks. Constructing these general models for service 

scheduling will greatly facilitate the collaboration of researchers in this area and guide the 

effective development of integrated service scheduling systems. Moreover, the 

applicability of a service scheduling approach to industrial settings will largely depend on 

how it copes with distributed and dynamic environments and on how it computes high-

quality solutions despite the presence of customers’ private information. 

The position taken in this thesis is to develop service scheduling approaches based on 

an iterative implementation of VCG auction. Since agents are not required to submit (and 

compute) complete and exact information about their private valuations, in many cases, 

iterative auctions present improved computational and privacy properties. In addition, 

iterative auctions have the potential to support dynamic scheduling, a common requirement 

in service scheduling. By carefully investigating the features of iterative combinatorial 

auctions and the nature of service scheduling problems, an effective and practical auction-

based service scheduling approach can be developed. Compared to the existing agent-based 

scheduling literature, this work is focused on an integrated framework that simultaneously 

addresses a dynamic distributed environment and customers’ private information. In 

addition, the framework can accommodate complicated objective functions into the service 

scheduling process. 
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Chapter 3 The Service Scheduling Problem  

Compared with traditional manufacturing scheduling, service scheduling poses 

additional challenges attributable to the significant customer involvement in service 

processes.  Service scheduling should be generated in a distributed environment where the 

scheduling knowledge is distributed among customers and service providers. 

 Customers have jobs that need to be processed. In order to have their jobs processed, 

customers need to consume the processing time of the service providers’ resources. The 

price that customers are willing to pay to a service provider and their preferences regarding 

the allocated service time slot can be their private information and they may be reluctant 

to fully reveal that information to a provider. Customers may behave strategically to protect 

their private information attributed to the different objectives of service providers and 

customers. With the advances in information technology, service scheduling has become a 

common requirement in many real-world automated trading systems. Clarifying the 

theoretical underpinnings and practical solutions to the problem would both be very much 

appreciated in this field. 

This chapter describes the general service scheduling model studied in this thesis.  The 

properties of a general Distributed Service Scheduling Problem (DSSP) are described, and 

the DSSP is then modeled as a game. A Vickrey-Clarke-Groves (VCG) auction that solves 

the game is constructed, and the computational challenges of applying this VCG auction 

to the DSSP are discussed.  

3.1 Properties of a DSSP 

The first property of a DSSP is that it is a distributed scheduling environment. In the 

context of this thesis, the distributed environment is specified using a description from 

Ghenniwa (1996): a distributed environment is constructed from entities that are able to 

perform some functions independently and exercise some degree of authority in sharing 

such capabilities. Such entities are put to work in the same spatial-time domain to achieve 

either a common goal or separate goals. As mentioned earlier, to recognize the independent 
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and autonomous nature of the entities, they are treated as agents. In a distributed 

environment, there are situations where knowledge about a scheduling problem, e.g. 

customers’ availability and preference information, is distributed among agents and the 

overall problem knowledge does not reside in a single agent.  

[Definition 3.1 Distributed Scheduling Environment] A distributed scheduling 

environment is an environment where the knowledge of a problem is distributed among 

agents and no single agent has a global view of the problem (distribution of knowledge).   

The second property of a DSSP is that it is a dynamic environment. Customers’ 

involvement in service production may cause knowledge about scheduling problem may 

change over time. Uncertainty in customer demand, uncertainty in service time duration, 

customer cancelation and no-shows, and changes in customer preferences are some 

examples of dynamic changes in a service scheduling environment. 

[Definition 3.2 Dynamic Scheduling Environment] A dynamic scheduling environment 

is an environment where the knowledge of the scheduling problem may change over time. 

The third property of a DSSP is the presence of customer’s private information. As 

mentioned earlier, in order for a service to be produced, a customer has to be present 

personally or he/she must present his/her property or information. Service scheduling 

should therefore be generated by considering that a customer’s inputs are available for the 

service process. Customers’ preferences regarding the timing of delivering their inputs 

would then be considered in service scheduling. However, a customers’ availability may 

very well be their private information and they could behave strategically to protect that 

private information. In addition to a customers’ availability, which is (almost always) their 

private information, the price that a customer is willing to pay to a service provider for a 

given service time slot is also their private information. Customers are motivated to not 

reveal the highest price they are willing to pay to the service provider, and in most cases, 

these prices are considered to be very sensitive private information that they are reluctant 

to reveal. 

[Definition 3.3 Customer’s private information] In a DSSP, customers may not want to 

reveal some information (e.g. the value that customers give to different scheduling 
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alternatives, a customer’s full availability). They may act strategically to protect their 

private information.  

The fourth property of a DSSP is that there are complicated, perhaps conflicting 

objectives. The distributed service scheduling environment enables each agent to have their 

own scheduling objectives. The objectives of these agents can vary from one to another. In 

addition to multiple objectives, since agents are self-interested, they are likely to behave 

strategically to achieve their own objectives without considering the global objectives of 

the system.  

[Definition 3.4 Complicated objectives] The objective in a service scheduling problem is 

a combination of multiple objectives, each from an individual agent. These may be in 

conflict with each other, and each agent may behave strategically to advance their own 

objective. This characteristic derives from the self-interested nature of agents in this 

environment. 

3.2 Centralized Formulation 

In a DSSP, customers have private information: their actual valuations of different 

scheduling alternatives, such as completion times, are part of their private information, 

which is not known to the provider. However, to clearly demonstrate the combinatorial 

optimization nature of the problem, one can first assume a centralized environment, i.e., 

where customers’ valuations are known to the provider. With this assumption, the problem 

can be conveniently modeled as a mixed integer program. The decentralized characteristic 

of the problem will be considered during the development of the game’s theoretic 

modeling. 

Consider a set of customers and a service provider. The service provider can provide a 

set of different services, with a limited capacity for each time slot. A customer has a request 

which can be a combination of different services. The customers compete with each other 

to schedule their own requests according to their respective objectives. Each customer’s 

value of a schedule (i.e., the price that she is willing to pay for the request to be completed 

at a specific time) is their private information. Each customer is motivated by their own 

objectives and is not controlled by other customers or by a system-wide authority. The 
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service scheduling problem involves the allocation of service time slots to the customer’s 

requests, such that a provider’s capacity constraints are satisfied and the sum of customers’ 

values is maximized. 

Formally, the DSSP problem consists of a set of 𝑛 customers and a service provider 

that can provide a set of 𝑚 services. Within the scheduling horizon, each service 𝑖(𝑖 =

1, … 𝑚) has a sequence of service time slots 𝑙𝑖,𝑘(𝑘 = 1, … , 𝑚𝑖) available for processing 

customers’ service requests. Let 𝐿 be the set of all available time slots 𝐿 = ∑ ∑ 𝑙𝑖,𝑘
𝑚𝑖
𝑘=1

𝑚
𝑖=1 . 

For each service time slot 𝑙𝑖,𝑘 ∈ 𝐿, its capacity is limited by 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖, 𝑘), which means 

that no more than 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖, 𝑘) number of customers can be served within 𝑙𝑖,𝑘. Each 

customer 𝑗(𝑗 = 1, … 𝑛) has a request, which is a combination of different services provided 

by the provider. A customer may need a bundle of time slots to process their request.   

For a bundle 𝐵 ⊆ 𝐿 that contains an allocation of the provider’s service time slots to a 

customer’s request, that customer will have a valuation on 𝐵. Let 𝑣𝑗(𝐵) be the value 

customer 𝑗 attaches to the time slot bundle 𝐵. This thesis follows the private value model 

introduced by Vickrey (1961). Therefore, a customer has a value for each 𝐵 ⊆ 𝐿, and these 

values do not depend on the private information of the other customers. Each customer 

knows his or her own values, but not the values of others. 

Let 𝑥𝑗(𝐵) = 1 if 𝐵is allocated to customer 𝑗 , and be equal to zero otherwise. The DSSP 

problem involves the selection of a set of time slot bundles for customers such that the 

service provider’s capacity constraints are respected and, at the same time, the sum of 

customer value (social welfare, in terms of microeconomics) derived from the selected 

bundles is maximized. The problem can be formulated as the following integer 

programming. 

𝑚𝑎𝑥 ∑ ∑ 𝑥𝑗(𝐵)𝑣𝑗(𝐵)𝐵∈𝐿
𝑛
𝑗=1           

Subject to 

∑ 𝑥𝑗(𝐵) ≤ 1,      𝑗 = 1, … , 𝑛𝐵∈𝐿       (1)   

∑ ∑ 𝑥𝑗(𝐵) ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖, 𝑘),𝑛
𝑗=1𝐵∋𝑙𝑖,𝑘

 𝑖 = 1 … 𝑚;  𝑘 = 1 … 𝑚𝑖   (2) 

𝑥𝑗(𝐵) = {0,1},   𝐵 ∈ 𝐿,    𝑗 = 1, … , 𝑛     (3)  
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Constraints (1) ensure that a customer can only obtain one bundle of time slots. 

Constraints (2) ensure that the allocation of a time slot to customers does not exceed the 

capacity limit of the service time slot. Constraints (3) are a set of integer constraints. The 

centralized formulation of the DSSP problem is NP-hard, as stated in the following 

theorem.  

Theorem 1: The centralized formulation of the DSSP problem is NP-hard.  

Proof: To show that the centralized formulation of DSSP is NP-hard, consider a special 

case in which 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖, 𝑘) = 1, for all 𝑖 = 1 … 𝑚;  𝑘 = 1 … 𝑚𝑖. In this case, the special 

case is a set packing problem, which is NP-complete (Karp, 1972). It follows that, as a 

general case, the centralized formulation of DSSP problem is NP-hard∎. 

3.3 Game theoretic modelling and VCG auction construction  

Centralized formulation in the previous section was created by assuming that 

customers’ valuations are known to the service provider. This assumption should be 

removed in the game theory modeling. Since customer’s valuations are their private 

information they may behave strategically to maximize their own benefits.  

The solution to this challenge is to design mechanisms that will induce agents to behave 

so that a certain outcome prevails. In other words, to provide incentives to the agents in the 

system such that they behave in a way that is prescribed by the system.  

As the computational complexities inherited from the combinatorial nature of the 

scheduling problem are not related to the game theoretical modeling, the scheduling details 

can be ignored to focus only on strategic interactions. The DSSP is first modeled as a game, 

and then a Vickrey-Clarke-Groves (VCG) auction that solves the game with an 

economically efficient outcome is constructed. 

Let 𝑁 be the set of 𝑛 customer agents. Each agent has a service request from a service 

provider. Service requests need to be scheduled on the service provider’s resources. Let Ω 

be the set of all feasible schedules. Each feasible schedule determines the allocations of the 

time slots of service resources to the customers’ request. For each schedule 𝑆𝜖Ω, each agent 

𝑗 has a monetary value 𝑉𝑗(𝑆). A value is the maximum price that an agent is willing to pay 

to process its service request as scheduled in 𝑆. 𝑃𝑗(𝑆) is the price the agent 𝑗, needs to pay 
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to the service provider in exchange for processing its request. It is payoff on schedule 𝑆 is 

 𝑣𝑗(𝑆)−𝑝𝑗(𝑆) . Agents’ objective is to maximize their payoffs and service provider 

objective is to maximize market efficiency. The goal here is to design a mechanism that 

select a schedule which maximize the sum of agent’s valuations. A VCG auction is 

constructed here for the service scheduling problem.  

Let 𝑉∗ be the maximum of the total values of all agents that can be obtained by a 

schedule in Ω and  Ṽ be the maximum of the total values of agents when 𝑗 is excluded from 

the schedule.  

V∗ = 𝑚𝑎𝑥𝑆∈Ω ∑ 𝑉𝑗(𝑆)
𝑗=𝑛

𝑗=1
 

 Ṽ = 𝑚𝑎𝑥𝑆∈Ω ∑ 𝑉𝑗(𝑆)
𝑗∈𝑁\𝑗

 

When the auction starts, agents submit their values for all feasible schedules Ω. If an 

agent’s request was not included in a schedule, the agent’s valuation on the schedule will 

be zero.  After receiving agents’ value, the service provider (auctioneer) chooses the final 

schedule 𝑆∗ from Ω in a way that it solves 𝑉∗. Service provider also generate a schedule for 

each agent, in a way that the schedule solves Ṽ . After the schedules are computed, the 

amount that agent 𝑗 pays for final schedule 𝑆∗ is  𝑝𝑗(𝑆∗) =  Ṽ − [V∗ − Vj(𝑆∗)] and agent 

j’s payoff from participating in the auction is  

𝑉𝑗(𝑆∗) −  𝑝𝑗(𝑆∗) =  𝑉𝑗(𝑆∗) − ( Ṽ − [V∗ − 𝑉𝑗(𝑆∗)]) = V∗ −  Ṽ . It is clear that V∗ ≥  Ṽ, which 

means agents always get non negative payoff when they participate in the auction. In 

addition to motivate agents to participate, the designed auction is also incentive-

compatible. A mechanism is incentive-compatible if it is every agent’s dominant strategy 

to reveal their private values truthfully.  

Theorem 2: Given the auction constructed for the game theoretic model of DSSP, for all 

customers, submitting truth valuations to the auctioneer is a dominant strategy. 

Proof: Suppose agent j reports wj as its value instead of vj, wj ≠ vj. Service provider then 

chooses  S̃ ∈ Ω as a final schedule by solving 𝑚𝑎𝑥𝑆∈Ω[∑ vi(S)i≠j + wj(S)]. 

Agent j’s payoff then becomes 
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Vj(S̃) − Pj(S̃) = Vj(S̃) − [ Ṽ −  ∑ vi(S̃)]i≠j  = ∑ vi(S̃)i≠j  + Vj(S̃) −  Ṽ ≤ V∗ −  Ṽ. 

From the above formula it is obvious that agents will not get benefit by misreporting their 

valuations. 

By using centralized formulation of service scheduling problem the set of all feasible 

schedules Ω can be obtained and by using constructed VCG auction the optimal schedule 

in Ω  can be found. It appears that everything needed to solve the DSSP have been found. 

However in reality there are several implementation limitations in applying VCG auction 

to DSSP. The limitations can be described from three different perspectives; service 

provider (auctioneer), customer agents, and system requirements. 

From the customer agents’ side, there is a valuation complexity. For each agent 

valuation complexity refers to the effort needs to determine its values over an exponential 

number of schedules in Ω.  

Form service provider’ side, there is a high computational complexity. In the VCG 

auction, service provider needs to find the solution of V∗ and Ṽ for all the agents, which 

means n+1 NP-hard optimization problems. It is obvious that if the VCG auction applied 

to non-trivial sized problems the computation cost can be prohibitively expensive. More 

importantly, service provider needs each customer’s complete valuation on the alternative 

schedules. In service scheduling environment, customers are reluctant to reveal their 

complete valuations. They fear that their information could leak out and adversely affect 

the service provider decisions. 

From system requirement’s side, there is a high communication complexity. VCG 

auction requires a large number of schedules communicated between service provider and 

agents. In addition, VCG auction does not support the dynamic changes (e.g. changes in 

the number of customers and their valuations on different schedules) that occur during an 

auction. Once an auction starts, customers should be ready to submit their complete 

valuations on alternative schedules. In many service scheduling environments it is not 

practical to ask all customers to be prepared to start the auction at a predefined time. The 

VCG auction does not have the potential to accommodate a customer arriving during an 
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auction. In the following chapter, we propose an iterative bidding framework aimed at 

addressing the limitations arising in the application of the VCG auction to a DSSP. 

3.4 Summary 

This chapter defines the properties of the general DSSP and it provides the centralized 

formulation of a general service scheduling problem. In a DSSP, the knowledge of a 

scheduling problem is distributed among agents, and the strategies of agents cannot be 

controlled by outside parties, such as other agents in the environment. In this situation, 

agents can be assumed to perform strategically in service of their own objectives. The 

solution to this challenge is to design mechanisms to induce agents to behave such that a 

certain outcome prevails. For this purpose, I first modeled the service scheduling problem 

as a game and then constructed a VCG auction as a mechanism design that solves the game 

with an economically efficient outcome. However, the VCG auction’s limitations, in terms 

of implementation, restrict its application to DSSPs. The next chapter shows how the 

computational and communication complexity issues derived from applying VCG auctions 

to DSSPs are addressed by proposing an iterative bidding framework. 
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Chapter 4 Iterative Bidding Framework for 

Distributed Service Scheduling 

This chapter presents a solution framework for DSSP. Chapter 3 showed how applying 

VCG auction directly to DSSP requires every agent to reveal its valuation of all of the 

feasible schedules, and the auctioneer need to solve a sequence of NP-hard optimization 

problem to determine the outcome, which is computationally expensive requirement. In 

addition, VCG is a one-shot auction that does not accommodate dynamic changes during 

the bidding processes. The Iterative Bidding Scheduling Framework (IbSCHF) proposed 

in this chapter addresses the inherent limitations that arise when applying VCG to DSSP. 

IbSCHF is an iterative combinatorial auction-based approach to the DSSP. Iterative 

combinatorial auctions are indirect implementations of VCG auction and it addresses the 

computational and informational complexity of VCG. In this class of auction agents are 

not required to submit (and compute) complete and exact information about their private 

values. Agents are allowed to reveal their preference information as it becomes necessary, 

as the auction proceeds. Typical examples of iterative combinatorial auction include Parkes 

and Ungar, 2000, Parkes and Kalagnanam, (2005), Bikhchandani and Ostroy, (2006). 

Parkes and Ungar (2000) proposed iBundle, an iterative combinatorial auction for the 

combinatorial allocation problem. iBundle computes the efficient resource allocation when 

agents follow a myopic best-response bidding strategy, bidding for the items that maximize 

their surplus taking the current price as being fixed. Their approach solves the 

combinatorial allocation problem without requiring complete information revelation from 

agents. A comprehensive survey for combinatorial auctions can be found in Vries and 

Vohra (2003). 

The above-mentioned combinatorial auctions are not designed for scheduling problem 

they are designed for general combinatorial allocation problem. However they can be 

applied to scheduling problem by exploring the specific problem characteristics derived 

from the scheduling domain.  
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In the literature there are few combinatorial auctions that designed specifically for 

scheduling problems. Combinatorial auction for job shop scheduling problem is applied by 

Kutanoglu and Wu, (1999) with the focus on investigating the links between combinatorial 

auctions and Lagrangean relaxation. The properties of several auction protocols are 

investigated in the context of decentralized scheduling by Wellman et al., (2001). 

An iterative combinatorial auction-based framework for a particular type of scheduling 

problem, DSSP, is presented in this chapter. In addition to addressing the computational 

complexities of applying VCG auction to DSSP, the framework has the potential of 

accommodating dynamic changes in the scheduling environment. The chapter is organized 

as follows. Section 4.1 describes the IbSCHF. Section 4.2 validates the effectiveness of 

this framework through a computational study. Section 4.3 explains how the proposed 

framework can be applied to accommodate dynamic changes, and section 4.4 summarizes 

the chapter. 

4.1 The IbSCHF 

A key challenge in the development of solutions to DSSP is the design of a mechanism 

that allocates limited service capacities to customers, such that the overall value of 

customers is maximized despite the self-interest of individual agents. Auctions have long 

been considered an effective way of allocating limited resources to competing users and to 

discover market prices for products and services. In recent years, the pervasive inter-

connectivity provided by the Internet has made auctions a popular mechanism that directly 

links the capacities of service providers with end customers. In this chapter, we present an 

auction-based framework for DSSP. The auction is implemented using an iterative bidding 

protocol, which can be seen as a collaborative negotiation procedure between the provider 

and customers. This iterative bidding protocol is described below. 

4.1.1 Iterative Bidding Protocol 

The iterative bidding protocol is a price mechanism in which a service provider 

balances the request requirements among customers by adjusting the prices of time slot 

bundles. The protocol adopts the non-anonymous bundle price structure, under which a 

customer’s bid is represented as a tuple 〈𝑏𝑢𝑛𝑑𝑙𝑒, 𝑏𝑖𝑑𝑑𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒〉, where 𝑏𝑢𝑛𝑑𝑙𝑒 is the 
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set of time slots that the customer wants, and the 𝑏𝑖𝑑𝑑𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 is the price that the 

customer is willing to pay for the services to be delivered during those specified time slots. 

The bidding price is customer-dependent. There is no common public price for a bundle. 

A non-anonymous price structure allows providers to price the same bundle differently for 

different customers, which is a common practice in many service industries. The bidding 

procedure consists of four components: initialization, price update and bidding, termination 

checking, and winner determination.   

4.1.2 Initialization 

Before the bidding starts, the service provider first presents the set of available services 

and available time slots for each service to the customers. For each service time 

slot 𝑙𝑖,𝑘(𝑘 = 1, … , 𝑚𝑖), the provider sets up a base cost. Customers then compute their 

respective sets of feasible bundles. For each feasible bundle, a customer computes the value 

attached to it based on the utility derived from that bundle. The initial bidding price of a 

bundle is the cost of the bundle, which is calculated by adding up the base costs of the 

service time slots included in the bundle. Knowing the values and initial bidding prices of 

bundles, a customer computes the payoff of each bundle. I assume a private value model 

(Vickrey, 1961) for all customers. Under this model, each customer has a value for their 

bundles. A customer’s payoff for a bundle is the difference between their value for a bundle 

and its bidding price. To maintain a positive payoff, the customer is willing to pay up to 

their value to get the bundle.  After obtaining the payoffs for their feasible bundles, the 

customer selects the bundle with the highest payoff (breaking ties randomly) as their first 

bundle to bid on. 

4.1.3 Price Updating and Bidding 

At the beginning of round 𝑡 (𝑡 > 1), customer agents must update their bidding prices 

for the bundles they submitted in round 𝑡 − 1. Customer agents update their bidding prices 

based on the provisional allocation that resulted from the winner determination at 

round 𝑡 − 1. Customer agents have three price updating option at round 𝑡 if their bid was 

not awarded in the provisional allocation at round 𝑡 − 1: (1) they can increase their bidding 
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prices by ε  on the bundle they bid for at round 𝑡 − 1 or rounds before 𝑡 − 1. Here ε is the 

minimum price increment imposed by the service provider. In general customer agents do 

not increase their bids more than ε, because they are rational in maximizing their utilities. 

However, they are allowed to increase their bid with higher value than ε ; (2) they can take 

an ε discount and keep the bidding prices unchanged. If a customer agent takes this ε 

discount, the service provider will consider that the customer has entered into final bid 

status. A customer agent with final bid status is forbidden from increasing the bidding 

prices on any of their bundles in future rounds; and (3) they can, of course, withdraw from 

the bidding process.  

A customer agent can keep its bidding price unchanged at round 𝑡, if it is included in 

the provisional allocation at round 𝑡 − 1.  

After updating their bidding prices, a customer agent needs to compute their set of 

utility-maximizing bundles. In computing such a set, customer agent 𝑗 solves a 

maximization problem 𝑚𝑎𝑥 𝐵∈𝐸𝑗
[𝑣𝑗(𝐵) − 𝑝𝑗

𝑡(𝐵)] and obtains the set of bundles that 

equally maximizes their utility, where 𝑝𝑗
𝑡(𝐵) is the bidding price for 𝐵 at round 𝑡. That is, 

for any two bundles 𝐵 and 𝐵′ in the utility-maximizing set, 𝑣𝑗(𝐵) − 𝑝𝑗
𝑡(𝐵)=𝑣𝑗(𝐵′) −

𝑝𝑗
𝑡(𝐵′). After obtaining the set of utility-maximizing bundles, the customer randomly picks 

one and submits it to the provider with the updated bidding price.  

If a customer agent has entered into final bid status, it is not allowed to increase its 

bidding price anymore. However the service provider can allow customer agents to repeat 

their final bid in future rounds until termination. Final bid repeating can enhance efficiency 

and increase service provider’s revenue. The reason is that, in each bidding iteration it is 

possible that provisional allocation changes due to newly received bids with higher values. 

Such changes in provisional allocations may allow the space for allocation of previously 

submitted bids that have been temporarily excluded. In the absence of final bid repeating, 

a customer agent will not acquire its required resources even if the future bids make the 

capacities available for acceptance of its final bid.  
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4.1.4 Bid Screening and Termination 

After XOR-Bids have been received from the customer agents, the service provider 

first screens out invalid bids; a bid is considered as invalid when: (1) it includes increased 

price form a customer agent who has already declared his final bidding status in previous 

rounds; or (2) it includes bidding price for a bundle that is below the highest bidding price 

for that bundle received in previous rounds. Invalid bids will not be considered in the 

following winner determination procedure.  

On this stage, the service provider determines if the termination condition is satisfied 

based on the valid bids in this round. Termination condition examines if all the customers 

have repeated their bids in the last round, i.e. the price of none of the valid bids are updates 

from the last round. If termination condition is not satisfied, the winner determination 

model should be solved with the valid bids as input. Otherwise, the customers will be 

informed about the final allocation and they will be charged based on their bidding prices.  

4.1.5 Winner Determination 

The service provider needs to compute a new provisional allocation in each round as 

long as the bidding is not terminated. The winner determination model selects a subset of 

the bids submitted by the customers such that the overall bidding price of the provisional 

allocation is maximized and the capacity constraints of the provider are not violated. Let 

𝑁𝑡 be the set of customers that submitted their bids at round 𝑡 , and 𝑝𝑗
𝑡(𝐵𝑗

𝑡) be the bidding 

price of customer 𝑗 at round 𝑡, 𝑗 ∈ 𝑁𝑡, where 𝐵𝑗
𝑡 is the bundle submitted by customer 𝑗 at 

round 𝑡. Let 𝑍𝑗 = 1 if customer 𝑗 wins and 𝑍𝑗 = 0 otherwise. The winner determination 

model can be expressed using the following integer programming. 

𝑚𝑎𝑥 ∑ 𝑍𝑗𝑝𝑗
𝑡(𝐵𝑗

𝑡)𝑗∈𝑁𝑡           

Subject to 

∑ 𝑍𝑗𝑗∈𝑁𝑡

𝐵𝑗
𝑡∋𝑙𝑖,𝑘

≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖, 𝑘), 𝑖 = 1 … 𝑚;  𝑘 = 1 … 𝑚𝑖   (1) 

𝑍𝑗 = {0,1},    𝑗 ∈ 𝑁𝑡                   (2) 
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Constraints (1) ensure that the bids awarded in a provisional allocation do not violate 

the provider’s capacity constraints. Constraint (2) is a set of integer constraints. 

The winner determination problem is a general form of the set packing problem, which 

is NP-hard. The commercial optimization package ILOG CPLEX 12.0 is used to solve the 

winner determination problem. Although winner determination problems in combinatorial 

auctions are generally NP-hard, many of them can be solved quickly by modern 

optimization algorithms, up to fairly large sizes. Anderson et al. (2000) report that CPLEX 

6.5 performs very well in terms of running time for many of the common winner 

determination problem benchmark distributions. The solving speed is comparable to the 

special-purpose winner determination algorithms, such as those in Fujishima et al. (1999) 

and Sandholm (2002). Sandholm et al. (2005) show that some winner determination 

distributions, with thousands of bids, can be solved by CPLEX 8.0 within a couple of 

seconds.  

4.1.6 Implementation considerations 

The efficiency of auctions largely depends on the level of competition among 

customers. The Internet provides pervasive accessibility to virtually any electronic market; 

customers may come at quite varied times. To aggregate demand and facilitate competition, 

Internet auctions usually span a couple of days or even longer. Customers can enter the 

auction and place bids at any time before the auction ends. To spare customers the task of 

continuously monitoring the bidding process and repeatedly placing their bids, Internet 

auctions allow bidders to provide direct value information to an automated bidding agent, 

called a proxy agent, which bids on behalf of the customer. 

In the IbSCHF for DSSP, a proxy agent can be designed to manage a set of feasible 

bundles for the customer, and decides which bundle to submit, at which round, and at what 

price. The customer should therefore inform the agent regarding the value it places on each 

of the feasible bundles. Meanwhile, the agent should be equipped with the algorithm used 

to update bidding prices and select the payoff maximization bundle along the bidding 

process. If the customer prefers, the agent can also inform the customer regarding the 

bidding status and allow the customer to update the values before the auction ends. For 
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easy access, customers may install the proxy agent on a personal computer, a smart phone, 

or other mobile devices. 

Many online auctions provide a “buy it now” option to accommodate those buyers who 

cannot wait until the auction ends. A buyer can purchase an item immediately by paying 

the buy-it-now price. However, the buy-it-now price is usually a regular retail price which 

can be much higher than the final auction price. For the purpose of this model, buy-it-now 

should not be considered as part of the auction design.  

4.2 Simulation results 

This section evaluates the IbSCHF through computational analysis. The assessing 

metrics are those commonly found in the literature.  

4.2.1 Metrics 

Efficiency and Information Revelation are used as the performance measures in the 

evaluation. Parkes (2001) developed these metrics for testing the performance of iBundle, 

an iterative combinatorial auction for general combinatorial allocation problems. These 

metrics are redefined in the context of service scheduling as follows: 

Efficiency of Scheduling: 𝑒𝑓𝑓(𝑆), is measured as the ratio of sum of the values in final 

schedule 𝑆 to the sum of the values in optimal schedule 𝑆∗ that maximizes total value across 

the agents: 

𝑒𝑓𝑓(𝑆) =  
∑ 𝑉𝑗(𝑆)𝑗∈𝑁

∑ 𝑉𝑗(𝑆∗) 𝑗∈𝑁
 

where 𝑉𝑗(𝑆) is agent 𝑗’s valuation on a schedule 𝑆, 𝑉𝑗(𝑆∗) is agent 𝑗’s valuation on the 

optimal schedule 𝑆∗, and 𝑁 is the set of all agents.  

Information Revelation: 𝑖𝑛𝑓 𝑅𝑒𝑣(𝑗), is measured for agent 𝑗 as the sum of the final price 

bid for all bundles that agent 𝑗 has placed bids on, as a fraction of the sum of the values for 

all feasible bundles. 

𝑖𝑛𝑓 𝑅𝑒𝑣(𝑗) =  
∑ 𝑃𝑗

∗(𝐵)𝐵∈𝐵𝑖𝑑𝑗 

∑  𝑉𝑗(𝐵)𝐵∈𝐸𝑗
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where 𝑃𝑗
∗(𝐵) is the maximum bidding price of agent 𝑗 for bundle 𝐵 during the auction; 

𝐵𝑖𝑑𝑗  is the set of bundles that agent 𝑗 has placed bids on; and 𝐸𝑗 is the set of feasible 

bundles for agent 𝑗. The average information revelation over all agents is considered as 

overall information revelation (𝑖𝑛𝑓). 

Bidding process often terminates before agents have revealed the complete information 

about their values for service time slot bundles. The information revelation metric measures 

the extent to which an agent has revealed its value for each service time slot bundle to the 

provider during the auction. 

The DSSP model is coded in ILOG Optimization Programming Languages 

(http://www-01.ibm.com/software/websphere/products/optimization/) and the ten groups 

of problem instances are solved using ILOG CPLEX. The flow control of the iterative 

bidding process is coded in the OPL (Optimization Programming Languages) script 

language. A desktop PC with 2.4G Intel CPU and 8 GB memory was used to run the 

experiments.  

4.2.2 Problem Sets 

Ten problem groups are generated, with the customer number ranging from100 to 

1,000. For each group, ten instances are randomly generated. Service time slots’ capacity 

are allocated in proportion to the number of customers such that, for most of the instances, 

around 80–90 % of the customers will be awarded a feasible bundle. The configuration of 

the test problem sets are summarized in Table 4-1.  

In the design of the testing data, it is assumed that there is a regular retail price for 

each of the available service time slots, and the retail price for a bundle is the sum of the 

retail prices of the service time slots included in the bundle. The reservation price for a 

bundle is set to be 40% of its retail price, since it is common practice in online service 

auctions that the termination price can be as low as a 60% discount from the regular retail 

price. It is assumed that customers who enter the auction expect some discount. They are 

not interested in purchasing the bundle at a price higher than the regular retail price. 

Customers’ values on a bundle are randomly drawn from a uniform probability distribution 

between reservation price and its regular retail price. 
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Table 4-1 Configuration of testing problems 

Problem Number 

of agents 

# of service 

time slots 

# of feasible 

bundles per agent 

Number of 

Instance 
# Name 

1 Group 1 100 20 Random(5,10) 10 

2 Group 2 200 30 Random(5,10) 10 

3 Group 3 300 40 Random(5,10) 10 

4 Group 4 400 50 Random(5,15) 10 

5 Group 5 500 60 Random(5,15) 10 

6 Group 6 600 70 Random(5,15) 10 

7 Group 7 700 80 Random(5,15) 10 

8 Group 8 800 90 Random(5,20) 10 

9 Group 9 900 100 Random(5,20) 10 

10 Group 10 1000 110 Random(5,20) 10 

 

4.2.3 Computational Results 

The IbSCHF is compared against the commonly used first-come-first-served capacity 

allocation policy. This approach is easy to implement and performs reasonably well in 

terms of enhancing revenue when capacity supply and demand are balanced. However, 

when demand exhibits strong seasonality, an auction-based policy performs better. To 

compare the performance of an auction-based policy against that of a first-come first-

served capacity allocation policy, each policy is applied to the ten groups of testing 

problems. In the first-come first-served policy scenario, customers in an instance are first 

randomly ordered. Capacity is allocated according to their position in the sequence until 

no more customers can be satisfied. Figure 4-1 shows the efficiency of the first-come-first-

served policy and of the proposed approach over the ten test problems. It is observed that 

the first-come-first-served policy achieves on average 75 % of the efficiency obtained by 

the proposed approach. 
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Figure 4-1 Efficiency of the FIFO and of the IbSCHF over ten groups 

 

The IbSCHF is also compared against the VCG auction. In the VCG auction, all agents 

report their complete valuations over all service time slot bundles at the beginning of the 

auction. Figure 4-2 plots the information revelation performance of the IbSCHF. Compared 

to the VCG, which requires 100% information revelation, IbSCHF requires a less than 50% 

information revelation with bid increment ɛ =5, which comes with the cost of losing only 

1%-2% of the efficiency, as shown in Figure 4-3. 

The comparison results presented in Figure 4-2 and Figure 4-3 reflect the difference 

between the iterative bidding structure (in IbSCHF) and the one-shot bidding structure (in 

the VCG auction) in the context of distributed service scheduling.  

 

Figure 4-2 Information revelation of the VCG and of the IbSCHF as the problem difficulty is 

G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 G10

IbSCHF 99.55 99.05 99.85 99.75 99.7 99.65 98.85 99 99.085 99.745

FIFO 76.67 74.96 73.88 75.25 73.97 76.15 73.43 76.22 75.17 75.36
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increased 

 

Figure 4-3 Efficiency performance of the VCG and of the IbSCHF as the problem difficulty is 

increased 

4.2.4 The effect of bid increments 

Figure 4-4 plots the information revelation performance of the IbSCHF over different 

bid increments. Bigger bid increment leads to more information revelation. The reason is 

that bigger bid increment values may overcome some low price equilibrium point that 

smaller increments could find.   

 
Figure 4-4 Information revelation performance of the IbSCHF over 10 groups with different bid 

increments  

G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 G10
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Figure 4-5 Run time of the IbSCHF over10 groups with different bid increments  

 

 

 

Figure 4-6 Number of Iterations of the IbSCHF over10 groups with different bid increments  
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Figure 4-5 plots the run time of the IbSCHF for different bid increments. The results 

show that bigger increment values requires less time for the auction to terminate. This 

makes sense, because bigger increments lead to a lower number of iterations (Figure 4-6), 

and many agents quickly drop out as the prices get too high. Figure 4-5 also illustrates that 

when the number of agents increases the level of completion increases, and it takes more 

time to compute the solution. 

4.2.5 The effect of final bid repeating 

The reason for considering final bid repeating rule in IbSCHF is to boost efficiency and 

service provider’s revenue. As shown in Figure 4-7 efficiency will be increased by 

considering final bid repeating rule. However considering final bid repeating rule will 

increases the level of completion, and consequently increases the run time (Figure 4-8). 

 

Figure 4-7 The effect of final bid repeating on efficiency 

 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
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Figure 4-8 The effect of final bid repeating on run time 

The next section explains how IbSCHF can be applied to accommodate dynamic 

changes in the service scheduling environment. 

4.3 Accommodating Dynamic Changes 

Generated schedules in a dynamic service environment cannot be used for a long time 

because of unexpected events. Therefore revising the schedules at some point in time is 

necessary to accommodate dynamic changes. Two main question will arise for revising the 

schedules: when to revise and how to respond? 

4.3.1 When to revise? 

There are several ways to decide on timing for revising the scheduling decisions. The 

first approach is called periodic rescheduling policy in which generated schedules are 

revised periodically. In this approach revisions are made at the beginning of each time 

interval by taking into account new information gathered from the scheduling environment. 

Determining the period length depends on the application domain. Muhlemann et al. 

(1982), Ovacik and Uzsoy (1994), and Sabuncuoglu and Karabuk (1999) investigated the 

effects of different rescheduling frequency in manufacturing environments. The second 

approach is called event driven policy in which revisions are made in response to an 

unexpected event that change the system states. Church and Uzsoy (1992) provide a 

comparison of periodic and event driven policies for dynamic shops. A comparison 
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between the performance of periodic policy and the performance of event driven policy in 

a single machine environment is also presented by Vieira et al. (2000). Hybrid policy is 

another method in which rescheduling is triggered when an unexpected event occurs and 

at the end of each time interval (Yamamoto and Nof 1985). 

4.3.2 How to respond? 

In general there are two main strategies: 1) completely regenerate a new up-to-date 

schedule for all remaining jobs and 2) repair the existing schedule to take into account of 

the current state of the system. The first strategy may in principle be capable of maintaining 

optimal solutions, however computation times are likely to be prohibitive and production 

may be significantly delayed while the schedule is regenerated. Furthermore, completely 

regenerate a schedule is not applicable in a service environment because generating new 

schedules for customers is not possible without their permission. In the second strategy 

several techniques such as heuristics, knowledge-based systems, fuzzy logic, neural 

networks, and hybrid techniques can be used to repair a schedule. Ouelhadj et al. 2009 

provide a review of the state of the art of research on dynamic scheduling techniques and 

compare their relative merits. 

In a service environment, the repair strategy is the most appropriate approach; when 

dynamic changes happen, generating a completely new schedule may find customers 

unsatisfied with their new schedules. A repair strategy that tends to minimize the 

perturbation to the original schedule would be more appropriate to apply in service 

scheduling environments.  

A periodic repair approach by using IbSCHF for dealing with dynamic changes in 

service environments with the objectives of automation and optimization is described in 

the next section. 

4.3.3  Periodic repair approach in service scheduling environment  

The automated repair scheduling approach for accommodating dynamic changes is 

proposed here, along with how to effectively allocate the newly-available service time slots 

created by customer cancellations. To fill newly available service time slots some service 
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providers keep an on-call list of customers who could be available and interested to fill 

those newly time slots. However, calling the customers on the on-call list incur high 

administrative costs to the service provider and is a multiple-round rescheduling process 

because, once a customer is allocating to a newly-available time slot, its original time slot 

(if he/she had already been assigned one) becomes available and will have to be reallocated.  

This process of reallocating time slots can go multiple rounds until all the available 

time slots have been filled or there is not any customer willing to be rescheduled. Manually 

conducting multiple round of rescheduling process will significantly increase the 

administrative workload. In addition, constructing a high quality schedule is an 

optimization problem that requires computing-based decision making tools, so manually-

created schedules is not an appropriate approach for generating high quality schedule.  

Thus, to improve the current practice of dynamic service scheduling, two challenges 

need to be addressed. The first one is automate the process of rescheduling to reduce the 

administrative workload and enhance the efficiency of the process; the second one is 

optimization, to systematically optimize the quality of the rescheduling solutions. To 

address both these challenges, the approach proposed here is periodic repair scheduling in 

response to dynamic changes. 

The periodic repair scheduling algorithm can be described as follows: 

𝑆𝑡𝑒𝑝 0 ∶ 𝑆𝑒𝑡 𝑖 = 1; 

𝑆𝑡𝑒𝑝 1 ∶ 

           𝐴𝑇𝑆 = 𝑎𝑙𝑙 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (𝑖 − 1)𝑇 𝑎𝑛𝑑 𝑖𝑇; 

           𝑆𝐶𝐴 = 𝑎𝑙𝑙 𝑆𝑡𝑎𝑛𝑑𝑏𝑦 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐴𝑔𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝐴𝑇𝑆 

     𝑊ℎ𝑖𝑙𝑒 ( 𝐴𝑇𝑆 ≠  ∅  &  𝑆𝐶𝐴 ≠  ∅ )  

               {    𝑅𝑒𝑠𝑢𝑙𝑡 ← I𝑏SCHF  (𝐴𝑇𝑆, 𝑆𝐶𝐴); 

                        𝑓𝑜𝑟 𝑎𝑛𝑦 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑎𝑔𝑒𝑛𝑡 𝑗 ∈ 𝑅𝑒𝑠𝑢𝑙𝑡  

{                    𝑆𝐶𝐴 ← 𝑆𝐶𝐴 − 𝑗 ; 

                                            𝐴𝑇𝑆 ← 𝐴𝑇𝑆 − {𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠 𝑎𝑤𝑎𝑟𝑑𝑒𝑑 𝑡𝑜 𝑗} ; 
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                   𝑖𝑓 𝑎𝑔𝑒𝑛𝑡 𝑗 𝑤𝑎𝑠 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑎 𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 

                 (𝑖 − 1)𝑇 & 𝑖𝑇  𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑖𝑠 𝑛𝑒𝑤 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

           { 

                                  𝐴𝑇𝑆 ← 𝐴𝑇𝑆 ∪ { 𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑙𝑦 ℎ𝑒𝑙𝑑 𝑏𝑦 𝑗} 

        } 

     }                } 

𝑆𝑡𝑒𝑝 2:   𝑆𝑒𝑡 𝑖 = 𝑖 + 1; 𝑎𝑛𝑑 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 1; 

 

In step 0, the service provider agent identifies the set of newly-available time slots 

along the scheduling time horizon between (𝑖 − 1)𝑇  𝑎𝑛𝑑 𝑖𝑇. It then determines which 

customer agent has registered as a standby status for available time slots between (𝑖 −

1)𝑇 & 𝑖𝑇. Next, the service provider agent starts the I𝑏SCHF by sending out a message 

containing the set of available service time slots to the customer agents with the standby 

status. Those standby customer agents who are interested in that set of available time slots 

participate in the auction. When  I𝑏SCHF terminates and new time slot allocations are 

determined, the service provider agent will update the existing schedule and notify the 

participating customer agents with the results. The customer agents that gained their 

requested time slots will update their status levels from standby to reserved.  

Since each customer agent can only have one time bundle, if a customer agent changes 

its status from standby to reserved and is assigned to new bundle, the time slots it 

previously held become available. If this newly-available time slot is between  

(𝑖 − 1)𝑇 & 𝑖𝑇 it will be added to the  𝐴𝑇𝑆 . Therefore, additional round of I𝑏SCHF need to 

be conducted until either no customer agents are interested in the available time slots or no 

time slots are available between(𝑖 − 1)𝑇 & 𝑖𝑇. This process is called subsequent repair 

scheduling. 
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4.3.4  A Worked example  

An example of a service scheduling solution using the periodic repair scheduling 

approach is shown in Figure 4-9, which represents the allocation of ten time slots 

(𝑇1 𝑡𝑜 𝑇10). In this example, 𝑇 are taken for the following two work days. For the sake of 

simplicity, in this illustrative example it is assumed that, only one time slot is allocated to 

each customer. However, in the I𝑏SCHF, the winner determination model does not have 

this restriction.  

 

Figure 4-9 Example of a problem solved using the periodic repair scheduling approach 

The service repair scheduling problem parameters which include the list of customers 

willing to be rescheduled, their preferred service time(s) and their value, are shown in Table 

4-2. 

At the beginning of time window T, 𝐴𝑇𝑆 = 𝑇3 𝑎𝑛𝑑 𝑇5.  𝑇3 𝑎𝑛𝑑 𝑇5 become available as 

two customers cancel their allocated service time slots. The repair scheduling process starts 

at the beginning of time window T with the set of 𝐴𝑇𝑆. 
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Table 4-2 Problem parameters of example 

Customer Agent Code Service provider time slot Value($) 

𝐶6 𝑇3 

𝑇6 

𝑇9 

11 

10 

5 

𝐶8 𝑇8 

𝑇5 

5 

6 

𝐶10 𝑇10 

𝑇6 

10 

8 

𝐶11 𝑇11 

𝑇5 

𝑇8 

6 

4 

4 

𝐶12 𝑇10 

𝑇12 

𝑇3 

𝑇8 

8 

8 

8 

3 

 

The service provider agent starts the I𝑏SCHF at the beginning of time period T. From 

Table 4-2 we can see that customers 𝐶6  𝑎𝑛𝑑 𝐶12  are interested in available time slot 𝑇3,  and 

customer agents 𝐶8  𝑎𝑛𝑑 𝐶11 are interested in available time slot 𝑇5. Their customer agents 

will participate in the auction. After the I𝑏SCHF termination, time slot  𝑇3 has been awarded 

to 𝐶6  and time slot   𝑇5 has been awarded to 𝐶8 , because they have higher values for time 

slots  𝑇3 𝑎𝑛𝑑 𝑇5 . Consequently, now that 𝐶6  and  𝐶8 have been rescheduled, the time slots 

𝑇6 𝑎𝑛𝑑 𝑇8 which originally belonged to those customers are now available. Another auction 

by using I𝑏SCHF will be started to allocate these newly-available time slots to interested 

customers. In this example, customer agent  𝐶10  participates in the second auction for time 

slot  𝑇6 and agents 𝐶11  and  𝐶12 for 𝑇8. The result of this second auction is that time slot  𝑇6 

has been awarded to 𝐶10  and time slot  𝑇8 has been awarded to 𝐶11 . In this case, since   𝐶11 

was outside of time window T, the only available time slot for the next auction will be  𝑇10, 

which belonged to customer 𝐶10  in the previous round. The third auction begins, this one 

for time slot  𝑇10 and with the participation of customer agent 𝐶12. The third auction 

instantly awards 𝑇10 to customer 𝐶12, the only customer that participated. At this point, all 

the openings in the time window T have been allocated and no further auctions are required.  
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4.3.5 Efficiency Analysis  

The proposed periodic repair scheduling system provides the potential for successful 

automated service scheduling. It is reasonable to assume that a substantial number of 

customers would be willing to participate in this program. In order for such a system to be 

functional, the customer agent will register itself with standby status for certain unavailable 

service time slots in the service provider internet portal and then automatically participate 

in the rescheduling process when any of those time slots become available.  

To evaluate the responsiveness of the system, we have randomly generated nine groups 

of problem instances of different sizes and structures. The configuration of the test problem 

sets and the corresponding solving times by means of CPLEX are summarized in Table 4-

3. The flow control of the repair scheduling is coded in OPL (Optimization Programming 

Languages) script language. A desktop PC with a 2.4G Intel CPU and 8 GB of memory 

was used to run the experiments. 

 

Table 4-3 Configuration of testing problems and computational results 

Group # of Customer 

agents 

Window length 

(# of time slots) 

# of Available 

time slots (𝐴𝑇𝑆) 

Running time 

(seconds) 

# of Auctions 

1 100 8 2 7.4062 1 

2 200 16 3 24.008 2 

3 300 24 4 39.648 2 

4 400 32 5 54.254 2 

5 500 40 6 92.898 3 

6 600 48 7 112.878 3 

7 700 56 8 126.806 3 

8 800 64 9 141.596 3 

9 900 72 10 194.584 4 

10 1000 80 11 237.154 4 

In these problem instances, the maximum number of time slots required for all service 

requests has been limited to two. For each group, CPLEX can find optimal solutions to 
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instances with 1000 customer agents within less than 4 minutes, which is satisfactory for 

the responsiveness requirement of our repair scheduling system.  

4.4 Summary 

This chapter presents the I𝑏SCHF for the distributed service scheduling problem. The 

approach is incentive-compatible in the sense that customers will follow the myopic best-

response bidding strategy prescribed by the auction protocol. The simulation results 

indicate that the proposed framework requires lower information revelation with the cost 

of losing only 1%-2% of efficiency, compared to the one-shot VCG auction. By applying 

the I𝑏SCHF in a multi-agent environment the three main service scheduling challenges of 

service scheduling problem namely, distributed environment, the presence of customers’ 

private information and complicated objectives can be overcome. This framework can also 

be applied to effectively allocate the newly available service time slots created by dynamic 

events. 
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Chapter 5 Scheduling Non-Commercial 

Services 

5.1 Introduction 

An iterative bidding framework for DSSP was proposed and detailed in chapter 4. In 

this proposed framework, a price mechanism is used to allocate service time slots to 

customers. However, in non-commercial service scheduling environments, such  as  

scientific  facility  service scheduling,  government  service scheduling  and  healthcare  

service scheduling,  for  social economic  and  political  reasons  service  providers  cannot  

use a price mechanism to schedule  customers along the service timelines. Therefore, novel 

mechanism design models need to be developed for scheduling non-commercial services 

without using a price system or payment transfers. 

In this chapter, I study the scheduling aspect of non-commercial services. I am 

especially interested in learning how  to  design  effective  mechanisms  for  non-

commercial service  scheduling,  and  how  customers’ private information  and  efficiency 

interplay under such mechanisms. I have designed an auction-based (with iterative bidding) 

scheduling framework under two constraints (1) service providers are restrained from using 

any price mechanisms to allocate service time slots to customers and (2) customers are 

reluctant to share their complete availability information. The next section introduces the 

non-commercial services scheduling problem and customers’ private information 

implication. 

5.2 Non-commercial services scheduling and customers’ private information 

The  Non-Commercial  Service  Scheduling  (NCSS)  problem  concerns  the  allocation  

of  limited resources to the service  activities at specific times. This allocation must obey a 

set of rules or constraints that reflect the temporal relationships between activities and the 

capacity limitations of a set of shared service resources.  
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5.2.1 The implication of customers’ private information on efficiency 

NCSS can be modelled as an optimization problem in which customers’ private 

availability information constrains the solution space. 

According to the definition of service presented in chapter 1, a service relies 

significantly on customer inputs (Sampson & Froehle, 2006). In other words, in order for 

a service to be produced, a customer has to present personally or he/she has to present 

his/her belongings or information. By considering customers’ available time for their 

required service, the number of no-shows can be decreased and customer satisfaction 

increased. For example, in health care services, it has been shown that matching patients 

with their preferred provider and offering them a convenient appointment time can 

decrease the number of no-shows and thereby increase operational efficiency (Barron 

1980). If all customers report their full availability, the service provider can obtain an 

optimal schedule by solving the optimization problem.  However, if customers only reveal 

partial availability to the service provider, the quality of the solution will be compromised.  

High-quality schedules could be deemed infeasible due to the partial availability of 

customer information. The scheduling problem facing service providers is a distributed 

scheduling problem in the sense that the customers’ true availability is their private 

information and may not be fully known to the service provider. Customers are reluctant 

to reveal their complete availability because a complete revelation increases the possibility 

of being assigned an undesirable time slot. Generating high quality schedules and, at the 

same time, accommodating customers’ preferences is a challenge. In addition to dealing 

with strategic behaviours from customers, the administrative workload of collecting 

customers’ availability information and  negotiating  with  them  for  possible  changes  can  

be  very  difficult due  to  a large  number  of customers and a manually managed process.  

The proposed approach makes it possible to automate the NCSS procedure and improve 

the quality of schedules. In the next section, I formulate the service provider’s and 

customers’ decision problems in NCSS. 



 

69 

 

5.3 Formulation of service provider’s and customers’ decision problems  

Service scheduling is a multilateral decision making problem with the service provider 

and customers as independent decision makers. The service provider needs to decide how 

to schedule service requests  to  achieve  its  objectives  and,  at  the  same  time,  respect  

the  customer’s  availability constraints. The decision facing a customer is how much 

availability information she needs to reveal in order to maximize her benefit.  

5.3.1 Service provider’s decision problem  

Consider  an  NCSS  problem  consisting  of  a  service  provider  and  a  group  of  

customers.  The provider receives a set of   service requests from customers. Each request 

is assigned a weight which reflects its contribution to the provider’s objective. The provider 

has a limited service capacity and knows the time required for processing each request. The 

provider’s objective is to maximize the sum of the weights of a schedule. An important 

type of constraints of NCSS is customers’ availability. Since customers need to be present 

for the service, the provider cannot schedule a customer for a time slot when she is not 

available. I describe a customer’s availability by a set of available time intervals along the 

scheduling timeline. As I will later develop an iterative bidding framework for NCSS 

problems, I represent an available time interval as a bid  from  a  customer  using  the  

bundle  bidding  language  (Nisan ,2006)  developed  for  combinatorial auctions.  To apply 

the language, I need to first discretize the provider’s service timeline into fixed-size time 

slots.  In this way, without loss of generality, an available time interval can be defined by 

a bundle of adjacent time slots contained in the interval. Unlike general combinatorial 

auctions, customers do not attach prices to their bids in NCSS. In our case, bids are used 

by the customers to indicate their availabilities. If a customer submits a bid (their available 

time interval), she informs the provider that she is available to be scheduled during that 

interval.  

The  set  of  intervals  that  contains  a  customer’s  complete  availability  is  referred  

to  as  the customer’s set of Feasible Time Intervals (FTIs).   

Let  𝐸𝑗  be the set of availability intervals revealed by customer. It is clear that  𝐸𝑗 is a 

subset of customer𝑗’s FTIs. The service provider will not schedule customer 𝑗 ’s request 
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outside her 𝐸𝑗. Let 𝑤𝑗 be the weight scale of customer  𝑗  assigned by the service provider 

and 𝑝𝑗 the processing time of customer 𝑗’s request. Let 𝛺 be the set of time slot available 

for allocation and  𝐽  the set of customers  who  have  service  requests  to  be  scheduled;  

let 𝑥𝑗(𝐵) = 1  if  the  time  slot  bundle 𝐵 ⊆ 𝛺  is  allocated  to  customer  j   and  zero  

otherwise.  The provider’s decision problem is to determine  the  allocation  of  limited  

service  time  to  the  requests  in  a  way  that  the  sum  of  the weights of the awarded 

requests is maximized. The problem can be formulated as the following integer 

programming.  

𝑚𝑎𝑥 ∑ ∑ 𝑥𝑗(𝐵)
𝑗⊆𝐽

𝑤𝑗

𝐵⊆𝛺

 

Subject to 

∑ 𝑥𝑗(𝐵) ≤ 1,      ∀𝑗 ∈ 𝐽𝐵⊆𝛺        (1) 

∑ ∑ 𝑥𝑗(𝐵) ≤ 1,     ∀𝑖𝑛
𝑗=1𝐵∋𝑖 ∈ 𝛺       (2) 

∑ 𝑥𝑗(𝐵) = ∑ 𝑥𝑗(𝐵),   𝐵⊆𝐸𝑗
∀𝑗 ∈ 𝐽, ∀𝐵 ∈ 𝛺𝐵⊆𝛺      (3) 

|𝐵| + 𝐻𝑥𝑗 (𝐵) ≤ 𝑝𝑗 + 𝐻,         ∀𝑗 ∈ 𝐽, ∀𝐵 ∈ 𝛺            (4) 

|𝐵| + 𝐻 ≥ 𝑝𝑗 + 𝐻𝑥𝑗 (𝐵),         ∀𝑗 ∈ 𝐽, ∀𝐵 ∈ 𝛺            (5)  

𝑥𝑗(𝐵) = {0,1},   ∀𝐵 ⊆ 𝛺,   ∀𝑗 ∈ 𝐽      (6)                                 

 

The set of constraints (1) ensures that any customer can only obtain one bundle of time 

slots. The set of constraints (2) ensures that a time slot is not included in two bundles that 

have been assigned to customers. The set of constraints (3) ensures that if a bundle is 

assigned to a customer,  it  must  belong  to  the  set  of  available  intervals  submitted  by  

that  customer.  These constraints prevent a service provider from assigning customers’ 

time bundles which they are not willing to accept. Constraints (4) and (5) ensure that if a 

bundle is assigned to a customer, the length of  the  bundle  is  equal  to  the  processing  

time  of  the  customer’s  request,  where  H is  a  large positive constant that is used for 

the linearization of the logical constraint “if.” The minimum value of 𝐻   depends on the 

problem instance. In general, a value of  𝐻 that is greater than the number of available time 

slots of the service provider is large enough to enforce the logical “if” constraint. 
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Constraints (6) are integer constraints. The provider’s decision problem is NP-hard, as 

stated in the following theorem. 

      

Theorem 1 The service provider’s decision problem in NCSS is NP-hard.  

 

Proof:  Consider  a  special  case  of  the  provider’s  decision  problem,  in  which  a  set  

of service requests  from  customers needs  to  be  scheduled.  A request may be scheduled 

on one of the 𝑙 intervals on a discrete time scale on a single resource.  The decision version 

of this special case of provider’s decision problem is identical to the job interval selection 

problem, which is NP-complete (Keil, 1992). Therefore, the decision version of provider’s 

decision problem is NP-complete. It follows that the provider’s decision problem is NP-

hard. 

5.3.2 Customers’ decision problem  

To model the customers’ decision problem, I first introduce their preference structure 

over the time intervals in their FTIs. A customer’s FTI list is her private information, and 

is not known to the service provider.  She  may  behave  strategically,  for  example, may  

hide  a portion  of  her  FTIs,  to  maximize  her benefits. To reflect this self-interested 

property of customers, I call them agents. I assume that an agent prefers some time intervals 

over others within its FTIs and that the preferences can be quantified by associating a 

preference violation cost to each time interval. The preference violation cost reflects the 

level of the preference violations to an agent.  It is essentially a subjective measure adopted 

by an agent. For example, it can be a function of the number and severity of preference 

violations that a time interval may cause to the agent. In many cases, it is reasonable to 

assume that an agent can order the time intervals in its FTIs according to the increasing 

order of their preference violation costs. That is, given an ordered FTI, 

c1 < c2 < c3 < ⋯ ck … < c|FTI| < c0  is known to the agent, where ck  denotes the 

preference violation cost of the  kth time interval  in  an FTI  and  c0  denotes  the  preference  

violation  cost  of  not  being  allocated  any  time intervals. Note that an agent may have 

identical preference violation costs for more than one time interval. In an FTI, the  highest  
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preference  violation  cost  is  that  of  not  being  awarded  anything in  the  service  

schedule.  

An  agent  would  prefer  to  be  assigned  a  time  interval  with  their lowest  preference  

violation  cost. However, the final schedule is computed based on the time intervals 

submitted from all agents. Because of the potential time conflicts among agents’ requests, 

it is difficult for them to decide how much availability information should be revealed in 

order to obtain a preferred assignment. If an  agent  only  submits  a  few  low -cost  time  

intervals,  it  can  control  the  upper  bound  of  its preference  violation  cost  as  the  

awarded  bundle  must  be  within  the  set  of  submitted  intervals. However,  by  doing  

so,  it  runs  the  risk  of  not  being  allocated  anything  if  the  submitted  time intervals 

are also demanded by other agents with higher weights.  On the other hand, if an agent 

submits  its  complete  FTI list,  it  maximizes  its  probability  of  getting  an  assignment.  

However, reporting  complete  FTIs  increases  the  possibility  of  ending  up  with  an  

interval  with  high preference  violation  cost.  In  fact,  there  is  not  a  clear  strategy  for  

agents  to  minimize  their expected preference violation costs.  The effectiveness of an 

agent’s bidding strategy depends on how heavy the competition is for its desired time 

intervals and on other agents’ bidding strategies. This  uncertainty  leads  to  speculation  

during  bidding,  which  will  increase  agents’  computation cost and may render a final 

schedule that is arbitrary and far from optimal. The goal, therefore, is to design a 

mechanism  which  systematically  evolves  the  solution  towards  an  optimal  one  given  

the constraint  that  agents  try  to  avoid  high  cost  assignments  by  not  revealing  their  

complete availability.  Since  no  payment  is  allowed  in  the  NCSS  setting,  the  

possibility  of  applying standard one-shot VCG mechanisms (Clarke, 1971 ; Groves, 1973; 

Vickrey,1961) and even its iterative implementations (Parkes,2006) is eliminated. In the 

following section, I propose a non-price bidding approach to the NCSS problem and 

evaluate its performance. 

5.4 The iterative bidding framework 

The iterative bidding framework proposed here is an auction-based approach to the 

NCSS problem. The framework contains two major components: an iterative bidding 
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procedure and an integer programming model for winner determination. The winner 

determination model computes provisional schedules which maximize the sum of the 

weights of the winning bids at each round. The iterative bidding procedure provides a 

structure through which the agents and the service provider (auctioneer) can interact in a 

systematic way and eventually evolve provisional solutions towards an optimal one. 

Iterative bidding also reduces the level of agents’ information revelation and adds the 

potential of accommodating dynamic changes during the bidding process.  The iterative 

bidding framework is a single-attribute auction that allows negotiation over a non-price 

attribute: the level of availability of agents revealed to the auctioneer. The framework 

requires agents to reveal their availability only on a necessary basis.  

5.4.1 Iterative bidding 

The iterative bidding procedure is depicted as a flow chart in Figure 5-1.  There are 

mainly four components of the bidding procedure: initialization, availability update and 

bidding, termination checking and winner determination. 

5.4.1.1 Initialization 

Initially, an agent has a service request and provides a set of time slots during which 

the request can be processed. The agent constructs its initial bid by selecting the time slot 

with the lowest preference violation cost and sends it to the auctioneer.  

5.4.1.2 Availability Update and Bidding  

Agents update their availability by sending new feasible time slots to the auctioneer. 

At the beginning of round 𝑡 (𝑡 > 1), an agent needs to decide whether it submits additional 

time slots to the auctioneer at round 𝑡.  This decision is made based on the provisional 

schedule which resulted from the winner determination at round 𝑡 − 1. If an agent was not 

awarded in the provisional schedule at round 𝑡 − 1, it has two availability update options 

at round 𝑡: (1) it can submit additional time slots, or, (2) it can keep the set of submitted 

time slots unchanged by submitting an empty bid (a bid without time slots). However, if an 

agent submits an empty bid, the auctioneer will consider that the agent has entered into 

final bid status and so will be forbidden from updating its availability in future rounds.  

Given these options, I will show in the next section that, since agents are assumed to be 

rational in minimizing their preference violation costs, they will always follow the myopic 
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bidding strategy. Figure 5-2 depicts the agent’s myopic bidding strategy in the format of a 

flow chart.  After receiving the winner determination results from round 𝑡 − 1, the agent 

will submit an empty bid at round 𝑡 if it won at round 𝑡 − 1. However, if the agent lost, it 

will check whether all its FTIs have been submitted. If yes, the agent will still submit an 

empty bid because there are no more available time slots to be added; if no, the agent will 

select the one with the lowest cost from its remaining FTIs and submit it to the auctioneer.  

 

 

Initialization:
FTls are ordered according to agents  preference 

violation costs. Agents select the intervals with he 
lowest cost as final bids.

Availability update and bidding:
Agents decide their availability update strategies, 
construct their bids at the current round and bid.

Termination checking:
Auctioneer checks termination condition based on 

the bids collected in the current round.

Termination 
condition satisfied?

Winner determination:
Auctioneer computes a new 

provisional schedule and 
informs agents whether they 
win or lose in current round

No

Yes

End
 

Figure 5-1 Flow chart of the iterative bidding procedure for NCSS problems 
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Figure 5-2 Agents’ myopic bidding strategy at a specific round 

 

5.4.2 Bid screening and termination checking 

Once bids are received from the agents, the auctioneer first screens out all the invalid 

bids. Those bids will not be considered in the subsequent winner determination procedure. 

Invalid bids are defined as having (1) any time slots that were submitted in previous rounds; 

or (2) new time slots from agents who have already declared their final bidding status in a 

previous round. 

The auctioneer then checks the termination condition against the valid bids. The auction 

terminates if there are no new availability updates for all the valid bids in this round. That 

is, each agent that bid in the last round has either submitted an empty bid or withdrawn 

from the bidding process. After the auction terminates, the auctioneer implements the final 

schedule.  If the termination condition is not satisfied, the auctioneer will update its agents’ 

available time slot pool by adding the newly submitted time slots to those already submitted 

in previous rounds and solve the winner determination model using the updated availability 

information as input.  

Agent receives winner determination 
result from Auctioneer

Did Agent win?

All intervals in FTIs 
submitted?

Send an empty bid to
Auctioneer 

Select the intervals with lowest 
cost and send them to Auctioneer

Terminate

NO

Yes

No
Yes
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5.4.3 Winner determination 

The auctioneer needs to compute a new provisional schedule in each round until the 

auction has terminated. At round 𝑡, the new provisional schedule 𝑆𝑡 solves the provider’s 

decision problem model with updated availability from all bidding agents at round 𝑡 as 

input.  It is possible that multiple schedules could have the same optimal overall weight.  

Which optimal schedule the auctioneer will find first is determined by a combination of 

multiple factors, such as the design and configuration of the winner determination 

algorithm and the organization pattern of the input data. After winner determination, the 

auctioneer will inform all the bidding agents with the results as to whether they win or lose 

in round 𝑡. After receiving the results, the agents will decide their strategy on availability 

updating and start a new round of bidding. It is important to note that the winner 

determination model here is different from that of many other combinatorial auctions, in 

which the losing bids will not be considered in future rounds (Vries & Vohra, 2003). In our 

model, the bid from an agent is just a new addition to its already submitted availability. 

When computing the provisional schedule, the winner determination algorithm will 

consider all the time slots submitted from an agent during the current and previous rounds. 

In addition, the provisional schedule is determined by the updated availability at the current 

round. It is not affected by the bidding sequence(s) in previous rounds.  

5.5 Properties of the iterative bidding framework 

In the design of the iterative bidding framework, agents bid according to the myopic 

bidding strategy described in Figure 5-2. As I have assumed that agents are self-interested, 

a question arises naturally: will the agents really follow the myopic strategy? I now study 

the iterative bidding framework from the incentive compatibility perspective. I prove that 

the myopic bidding strategy I have designed is the dominant strategy for agents, as stated 

in the following proposition. 

Proposition 1 Given the proposed iterative bidding mechanism, myopic bidding is the 

dominant strategy for agents.  

Proof: It is clear that if an agent has already been awarded in the previous round, there 

is no reason for it to add new time slots in the current round because more availability will 
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increase the upper bound of its preference violation cost. Therefore, it will follow the 

myopic strategy by reporting an empty bid. Next, consider the situation where an agent is 

not awarded in the previous round. Assume that the agent has reported its first 𝑘 − 1 time 

slots in its FTI during the previous rounds. If the agent follows the myopic strategy, it 

should add the 𝑘th time slot at the current round and update its availability to the first 𝑘 

time slots. To compare with the myopic strategy, I present here an alternative strategy for 

the agent, in which it reports first (𝑘 + 1) time slots. In the following I will prove that the 

myopic strategy weakly dominates the alternative strategy. Consider three cases: 

Case#1: The agent is not awarded in the current round, no matter it submits its first 𝑘 or 

 𝑘 + 1 time slots. In this case, both its first 𝑘 and first 𝑘 + 1 time slots end up with the 

same preference violation cost, which is 𝑐0. There is no difference between the myopic 

and the alternative strategies. 

Case#2: The agent is awarded by submitting its first 𝑘 time slots. In this case, the agent 

must be awarded by reporting its first 𝑘 + 1 time slots because its first 𝑘 is a subset of 

first 𝑘 + 1. Since the awarded time slot can fall into any one of the submitted time slots, 

I compare the expected preference violation cost of the myopic strategy and that of the 

alternative strategy. Let 𝑎𝑘 denotes the number of time slots, which costs 𝑐𝑘 , that the 

agent can possibly be allocated to. Since 𝑐1 ≤ 𝑐2 ≤ 𝑐3 ≤ ⋯ ≤ 𝑐𝑘 ≤ 𝑐𝑘+1, 

then 𝑐𝑘+1 ∑ 𝑎𝑖
𝑘
𝑖=1 ≥ ∑ 𝑎𝑖𝑐𝑖

𝑘
𝑖=1 . Since 𝑎𝑘+1 > 0, it follows that 𝑎𝑘+1𝑐𝑘+1 ∑ 𝑎𝑖

𝑘
𝑖=1 ≥

𝑎𝑘+1 ∑ 𝑎𝑖𝑐𝑖
𝑘
𝑖=1 .  Adding ∑ 𝑎𝑖

𝑘
𝑖=1 ∑ 𝑎𝑖𝑐𝑖

𝑘
𝑖=1  to both sides of the inequality 

yields ∑ 𝑎𝑖
𝑘
𝑖=1 ∑ 𝑎𝑖𝑐𝑖

𝑘
𝑖=1 + 𝑎𝑘+1𝑐𝑘+1 ∑ 𝑎𝑖

𝑘
𝑖=1 ≥  ∑ 𝑎𝑖

𝑘
𝑖=1 ∑ 𝑎𝑖𝑐𝑖

𝑘
𝑖=1 + 𝑎𝑘+1 ∑ 𝑎𝑖𝑐𝑖

𝑘
𝑖=1  , that 

is, ∑ 𝑎𝑖
𝑘
𝑖=1 ∑ 𝑎𝑖𝑐𝑖

𝑘+1
𝑖=1 ≥ ∑ 𝑎𝑖

𝑘+1
𝑖=1 ∑ 𝑎𝑖𝑐𝑖

𝑘
𝑖=1  which is equivalent to ∑ 𝑎𝑖𝑐𝑖

𝑘+1
𝑖=1 ∑ 𝑎𝑖

𝑘+1
𝑖=1⁄ ≥

 ∑ 𝑎𝑖𝑐𝑖
𝑘
𝑖=1 ∑ 𝑎𝑖

𝑘
𝑖=1⁄  .  

Since adding the time slot 𝑘 + 1 will increase the feasible schedule space of the winner 

determination, the value of 𝑎1, 𝑎2, … , 𝑎𝑘 will not be changed. The left-hand side of the 

last inequality can be interpreted as the expected cost of reporting the first 𝑘 + 1 time 

slots and the right-hand side can be interpreted as the expected cost of reporting only the 

first 𝑘 time slots. It is clear that since the agent can be awarded by just reporting its first 

𝑘 time slots, the myopic strategy will always lead to the lowest expected preference 

violation cost.  
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Case#3: The agent is not awarded by reporting its first 𝑘 time slots, but is awarded by 

reporting its first 𝑘 + 1 time slots. In this case, although by the myopic strategy, the agent 

is not awarded at the current round, it always has the option of reporting its first 𝑘 + 1 

by repeatedly applying the myopic strategy in the next round. Given that the bidding 

sequence does not affect the winner-determination result, that is, the same set of time slot 

availability will result in the same provisional schedule, the agent will not lose any 

opportunity by adopting the myopic strategy. 

It follows that the myopic strategy weakly dominates the alternative strategy with the first 

𝑘 + 1 time slots. This conclusion also applies to initial round of bidding. Since the 

provisional schedule before the initial round is empty, which can be interpreted as no agent 

is allocated a bundle. Therefore the best strategy for agents’ initial round bidding is myopic 

strategy. That is, at the first round, an agent should bid with its lowest cost time intervals 

in its FTIs. By mathematical induction, it follows that, myopic bidding is the dominant 

strategy for agent given the proposed iterative bidding mechanism. ∎  

5.6 Iterative bidding with partial allocation during each round 

The iterative bidding procedure I have proposed computes provisional allocation 

during each round. It does not permanently award time slots to customers until the 

termination condition has been reached. The procedure may reach higher quality solutions 

since it collects more agents’ availability along the process of bidding.  However, as the 

bidding proceeds, the size of the winner determination problem will increase continuously. 

Since I have shown that the winner determination problem is NP-hard, it follows that for a 

service scheduling problem with a large number of customers, winner determination will 

be slowed down considerably as more availability information is added. As a variant of the 

proposed iterative bidding procedure, it is possible to award the provisional allocation to 

customers during each round. In the subsequent round, those awarded time slots will be 

removed from the service provider’s service time inventory, the awarded customers will 

withdraw from the bidding process, and the customers who were not awarded in the current 

round will construct their bids based on the updated inventory. The service provider will 

solve the winner determination problem formulated by the updated inventory and the bids 
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submitted in the current round.  This process allows the size of the winner determination 

problem to decrease along the iterations, as both the size of the provider’s inventory and 

the number of bidding agents decrease. The bidding terminates in fewer rounds than the 

original procedure.  

5.7 Simulation results: information revelation and efficiency analysis 

By designing an iterative bidding framework, agents only need to reveal their 

availability information when it is necessary. In addition, the higher system transparency 

makes adoption of the framework easier. However, these benefits are gained at the cost of 

efficiency. If at the termination of bidding all the agents have revealed their full availability, 

the winner determination algorithm will compute an optimal schedule which maximizes 

the sum of the weights of awarded agents. However, when bidding terminates before all 

feasibility information has become known to the diagnostic service agent, the optimality 

of the solution is not guaranteed. In this section, I evaluate the information 

revelation/efficiency performance of the proposed approach through a computational 

study.  

Given a solution schedule, the measure of its efficiency is defined as the ratio between 

its overall weight and that of an optimal solution for the same problem instance. The 

measure of information revelation is the ratio of the revealed availability of all agents when 

the solution is reached and to their complete availability. Intuitively, submitting more 

availability incurs higher information revelation, which increases the expected preference 

violation cost. 

I used ILOG CPLEX 12.1 as optimization engine for solving the winner determination 

model, with the set of bids from agents as the input. The iterative bidding control logic is 

coded using the OPL Script language (Van and Michel, 2000). The control module and the 

optimization engine were integrated using the ILOG OPL environment (http://www. 01. 

ibm.com/software/integration/optimization/cplex-optimization-studio).All experiments 

were conducted on a PC with a 2.4 GHz CPU and 4 GB of memory. 
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Figure 5-3 Efficiency increment during iterative bidding 

 

 

Figure 5-4 information revelation increment during iterative bidding 
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Figure 5-5 Trade-off between efficiency and information revelation 

                     

I generated a set of test problem instances by fixing the service provider’s time slot 

inventory at 20 and the number of customers at 50. Customers’ weights were drawn from 

a uniform distribution ranging from 1 to 3. The processing times for agents’ requests are 

identical and restricted to one time slot. For each agent, I randomly selected a set of time 

intervals from the service provider’s available time inventory to form its FTI. The sizes of 

the agents’ FTIs were drawn from a uniform distribution in the range of 8 to 16 with a 

mean of 12.The length of the time intervals in FTIs is restricted to one. The time intervals 

in the FTIs were randomly ordered.  

I solved the set of problem instances using the proposed iterative bidding framework 

and computed the average efficiency and information revelation at each round of bidding. 

The bidding processes without partial allocation usually terminated within 12 rounds, 

which is the mean of the size of the FTIs. The bidding processes with partial allocation 

usually terminated within 6 rounds, which is, as expected, much faster than the bidding 

without partial allocation.  

Figures 5-3 and 5-4 show the efficiency and information revelation increment during 
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partial allocation achieves on average 93% efficiency at round 12. The bidding procedure 

with partial allocation is essentially a ‘greedy’ distributed search algorithm which can find 

a solution quickly. However, its solution quality can be compromised. The bidding 

procedure without partial allocation involves backtracking. However, it normally reaches 

a higher quality solution with additional bidding rounds. From Figure 5-4, it is clear that 

the information revelation of bidding with partial allocation is always lower than that of 

bidding without partial allocation, and that this difference increases along the bidding 

process. Compared to bidding without partial allocation, it appears that bidding with partial 

allocation can achieve a reasonably good solution with much less computation costs and 

information revelation. Figure 5-5 shows the trade-off between efficiency and information 

revelation; as expected, high efficiency demands more information revelation. The results 

confirm that increasing information revelation has a diminishing return in efficiency.  

Bidding with partial allocation can reach 84% efficiency with only 34% information 

revelation, whereas bidding without partial allocation needs to double the information 

revelation (70%) in order to reach the same efficiency level. For bidding without partial 

allocation, a solution with 93% efficiency demands information revelation of 79%. Since 

it is the agents that decide when to stop submitting more availability information to the 

auctioneer, the bidding procedure actually provides them with the option of setting their 

respective information revelation limits based on their own calculation of the costs caused 

by information revelation. In this experiment, I did not consider the situation where agents 

have information revelation limits. However, Figure 5-5 gives an indication of the 

efficiency that can be reached given various levels of information revelation.  

5.8 Summary 

In recent years, the economy has evolved from manufacturing to services. Service 

supply chain management has become an important research area with significant practical 

implications. Scheduling non-commercial services for self-interested customers who 

behave strategically to protect their private information is a challenging problem to resolve 

in accordance with the different objectives of service provider and customers. In non-

commercial service scheduling environments, no payment transfers are allowed, which 
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eliminates the possibility of designing price- or payment-based mechanisms to balance the 

supply and demand. I have proposed a bidding framework for scheduling non-commercial 

services and evaluate its efficiency and information revelation performance through 

theoretical analysis and computational experiments. I show that, under the proposed 

auction mechanism, myopic bidding is the dominant strategy for customers. In terms of the 

efficiency and information revelation performance, the computational study shows that 

bidding with partial allocation can find a reasonably good solution with much less 

computation costs and information revelation. For both cases of bidding, with and without 

partial allocation, increasing information revelation has a diminishing return in efficiency. 
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Chapter 6  Applications 

This chapter presents the application of the IbSCHF to two problem domains: service 

mass customization under capacity constraints and appointment scheduling in a health care 

system. The objective is to demonstrate the applicability of IbSCHF to both commercial 

and non-commercial service scheduling domains, rather than providing complete solutions 

to these problems. 

6.1 Applying framework 

The IbSCHF can be applied to various service scheduling domains in which customers 

compete to schedule their service activities to make their best use of resources. To apply 

the framework in a problem domain, the first step is identifying customers and modeling 

them as agents. To carry out this step, an agent’s job, their constraints, and their valuations 

over different schedules need to be specified. The second step is the configuration of the 

bidding process, which includes modeling the winner determination problem, specifying 

the bid structure and the bid update rules. 

The rest of this chapter demonstrates how the two-step procedure is used to configure 

the IbSCHF to solve two different problems. 

6.2 Service mass customization under capacity constraints 

Mass customization aims at producing what customers need with near mass production 

efficiency. It can be seen as a collaborative optimization process between a company and 

its customers, with the goal of finding the best match between the company’s capabilities 

and their customers’ needs. A company’s core capabilities are the basis of its product 

families and their successive platforms (Meyer and Utterback1993). These capabilities are 

reflected in the people and assets applied to the development of new products. A company’s 

capabilities can be represented by its product family architecture (PFA) (Tseng and Jiao 

1996; Jiao and Tseng 1999) which consists of a common base, a differentiation enabler, 

and a configuration mechanism. While a PFA can serve as a systematic protocol that 
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customers can use to navigate through a company’s capabilities and define their own 

requirements, capabilities can also be organized and presented using scalable product 

family design (Simpson et al. 2001) and configurational product family design (Du et al. 

2001; Ulrich1995). In scalable product family design, a variety of customer needs are 

satisfied through the configuration of scaling variables which are used to “stretch” or 

“shrink” the product platform in one or more dimensions. Configurational product family 

design, on the other hand, aims at developing a modular product platform on which product 

family members are derived by adding, substituting, and/or removing one or more 

functional modules. The search for a better match between a company’s capabilities and 

their customer’s needs has been the central theme in mass customization literature for more 

than a decade (Jiao et al.2007; Simpson 2004; Da Silveira et al. 2001). In this chapter, a 

different perspective is taken to examine the impact of a company’s capacity on product 

customizability and customer value. Here the term capacity is defined as a company’s 

ability to produce customized products for a group of customers within a predefined time 

schedule. 

It is imperative to consider a company’s capacity constraints in customization decision 

making when production schedules are important to customers. This is particularly true in 

service customization. Unlike product manufacturing, service production usually involves 

customer’s labour in the process (i.e., co-production), or it requires the physical presence 

of the customer. Common examples can be seen in health care offices, buffet restaurants, 

and travel services. For service customers, it is desirable to have convenient production 

schedules because they need to be physically present during service production. In 

addition, the service provider’s capacity is perishable, as service operations cannot rely on 

inventories to adjust to demand fluctuations. Perishability alludes to the time-sensitive 

nature of a service provider’s capacity to produce a service (Sampson 2001). In service 

customization, capacity constraints directly affect customers’ satisfaction, as well as 

provider’s profitability. Therefore, capacity constraints should be integrated into service 

customization decision making. 

To motivate the research from a practical perspective, consider the case of the mass 

customization of travel packages. Major online travel brands such as Expedia Inc. 
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(Expedia.com), Opodo (Opodo.com), and Orbitz Worldwide (Orbitz.com) are giving their 

customers the tools to customize their own adventures in the form of “build your own 

package”. Compared to pre-packaged vacations, customized packages are more attractive 

to customers because everyone’s travel experience is unique and personal. A customized 

vacation package usually includes one or more of the following components: flight 

reservation, hotel reservation, car rental, and tickets to entertainment events. For a specific 

destination and a specific time window, the capacity limits of these components restrict 

customers’ options and affect the customizability of travel products. This is particularly the 

case during high seasons, when the capacities of service providers are stretched to their 

limits. Similar situations occur in manufacturing mass customization. For example, in 

configurational product family design, a customer customizes its individual product by 

adding a group of functional modules to a base product. If a particular module takes 

excessively longer time to be delivered due to the manufacture’s capacity constraints, the 

customer may switch to an alternative module or even cancel the order. 

This chapter addresses the capacity aspect of mass customization. Specifically, it 

answers the question: Given limited capacity, how can a company maximize the value 

provided to its customers by coordinating customers’ customization requirements? The 

main objective of the proposed approach is to maximize value across a large group of 

customers, which is, in economics terms, to maximize the social welfare (Mas-Colell et al. 

1995). To facilitate clear formulation of the problem and meaningful presentation of the 

solution, the scope of the chapter is restricted to service customization settings. However, 

the proposed model could be applied to manufacturing customization. In this chapter, 

Service Customization under Capacity Constraints (SCCC) is modeled as an optimization 

problem. The contribution to the literature is two-fold. First, customers’ customization 

decision making is integrated with a company’s capacity constraints, which is of particular 

relevance in service customization settings where a provider’s capacity is perishable and 

often expensive to expand. Second, at the system level, the overall value provided to 

customers is maximized by coordinating customers’ customization requirements through 

auction-based multilateral negotiations. It is assumed that a company’s objective is to 

maximize overall customer value. This objective is desirable because, in the long run, a 
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company can improve its profit only by providing customers with high value-added 

products and services.  

6.2.1 Centralized problem formulation 

This section provides a centralized formulation of the SCCC problem, which consists 

of a group of customers and a service provider. The customers want to customize the 

service products. To provide a common design domain, the provider is assumed to adopt a 

configurational product family design approach (Du et al. 2001; Ulrich 1995) such that it 

can present its capabilities in the form of a set of building blocks (services). Customers can 

customize the product by choosing a base product (a pre-defined group of services) and 

adding optional services according to their preferences. A customized product is a package 

of services chosen by a customer. For example, a vacation package can include 

transportation services, accommodation services, and additional entertainment activities. 

For a provider, a service has a capacity limit which is defined as the number of customers 

the service can accommodate during a specified time window. The customer attaches a 

value to each package of services. 

Formally, the SCCC problem consists of a set of n customers and a set of m services. 

A customer can configure its service package by selecting a group of services. A service 

package has to include a pre-configured set of services, that is, the base configuration, 

denoted 𝑆̅. For service 𝑖, its capacity is limited by capacity (𝑖). Let 𝐸𝑗 be the set of service 

packages which are acceptable by customer 𝑗 (i.e., feasible packages) and 𝐸 be the union 

of the sets of acceptable service packages from all customers, so that  𝐸 = ⋃ 𝐸𝑗𝑗=1…𝑛  Let 

𝑣𝑗(𝐵) be the value of customer j attached to the service package ∈ 𝐸 .𝑣𝑗(𝐵) > 0 if 𝐵 ∈ 𝐸𝑗; 

𝑣𝑗(𝐵) = 0 otherwise. Let 𝑥𝑗(𝐵) = 1
 
if the bundle 𝐵 ∈ 𝐸 is allocated to customer j and zero 

otherwise.The SCCC problem involves the selection of a set of service packages for 

customers such that the service provider’s capacity constraints are respected and, at the 

same time, the sum of the customer value (social welfare, in terms of microeconomics) 

derived from the selected packages is maximized. The problem can be formulated as the 

following integer programming. 

 



 

88 

 

𝑚𝑎𝑥 ∑ ∑ 𝑥𝑗(𝐵)𝑣𝑗(𝐵)𝐵∈𝐸
𝑛
𝑗=1           

subject to 

∑ 𝑥𝑗(𝐵) ≤ 1,      𝑗 = 1, … , 𝑛𝐵∈𝐸       (1)   

∑ ∑ 𝑥𝑗(𝐵) ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖),𝑛
𝑗=1𝐵∋𝑖  𝑖 = 1 … 𝑚     (2) 

∑ 𝑥𝑗(𝐵)𝐵∈𝐸 = ∑ 𝑥𝑗(𝐵),   𝐵∈𝐸𝑗
𝑗 = 1, … , 𝑛     (3) 

∑ 𝑥𝑗(𝐵)𝐵∈𝐸 = ∑ 𝑥𝑗(𝐵),   𝐵⊇𝑆̅ 𝑗 = 1, … , 𝑛     (4) 

𝑥𝑗(𝐵) = {0,1},   𝐵 ∈ 𝐸,    𝑗 = 1, … , 𝑛     (5)   

 

Constraints (1) ensure that a customer can only obtain one service package. Constraints 

(2) ensure that the allocation of a service to customers does not exceed the capacity limit 

of the service provider. The set of constraints (3) ensure that if a package is assigned to a 

customer, it must belong to the set of product configurations that are acceptable to that 

customer. These constraints prevent the provider from assigning customers packages 

which they are not willing to accept. Constraints (4) enforce the selection of the base 

configuration in each awarded package. Constraints (5) are a set of integer constraints. 

Theorem 1: The problem of service customization under capacity constraints (SCCC) is 

NP-hard.  

Proof: To show that SCCC is NP-hard, consider a special case in which 𝐸𝑗 = 𝐸 for all 

𝑗 = 1, … 𝑛 and 𝑆̅  = 𝜙. In this case, constraints (3) and constraints (4) always hold. The 

relaxed model is a set-packing problem, which is NP-complete (Karp, 1972). It follows 

that, as a general case, SCCC problem is NP-hard∎.  

The SCCC is an integer programming model which takes customer value as input. The 

key question to be asked here is how the values that each customer assigns to the packages 

can be obtained. Computing value from product configurations can be customer-specific. 

One approach, suggested by Tseng and Du (1998), is to use methods designed to measure 

consumer preferences in marketing research, such as conjoint analysis (IntelliQuest 1990). 

Conjoint analysis assumes that a product could be described as vectors of attributes, and 

each attribute can include several discrete levels. 
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To apply conjoint analysis to the SSCC, each service is modelled as an attribute and 

the discrete levels of attributes are restricted to 1 (service included) and 0 (service not 

included). As the SCCC requires customers’ complete valuation on all feasible packages, 

computing a value for each and every configuration may become impractical when the 

range of feasible packages becomes large. Although customers can determine the value of 

feasible packages, they may be reluctant to report the value back to the service provider 

because, by the definition of the private value model, value is the highest price that a 

customer is willing to pay for a given package. In many cases, these prices are sensitive 

private information. The proposed iterative bidding framework in chapter 4 computes high 

quality solutions to SCCC problem without requiring valuations from customers. The 

proposed auction is a price mechanism in which a provider coordinates the customization 

requirements among its customers by adjusting the prices of service packages. 

6.2.2 Service mass customization under capacity constraints using IbSCHF 

Bidding 

Each agent has a valuation function expressing its values on different service packages. 

An agent’s valuation can be expressed as an XOR-bid. For example <  𝑃𝑎𝑐𝑘𝑎𝑔𝑒, 𝑝𝑟𝑖𝑐𝑒 >

 expresses the agent’s willingness to pay the price for the services included in the Package. 

We also assume that the reserve prices are common knowledge. For the first round of 

bidding, agents use the reserve prices as the asking prices. At the beginning of round 𝑡, a 

customer agent 𝑔 selects a feasible package that maximizes its utility function given the 

asking prices, and generate the bid. 

Bids screening and termination 

After receiving bids from the agents, the service provider agent first screens out any 

invalid bids. Invalid bids are defined as those with (1) any bidding price for a package 

which is below the highest bidding price that same package received in previous rounds, 

(2) higher prices from customers who have already declared their final bidding status in a 

previous round, and (3) packages which do not contain the base configuration or that 

violate other configuration rules. 
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Winner determination  

The winner determination model designed is to select a subset of the bids submitted by 

the customers such that the overall bidding price of the provisional allocation is maximized 

and the capacity constraints of the provider are not violated. Let 𝑁𝑡 be the set of customers 

that submitted their bids at round 𝑡 and 𝑝𝑗
𝑡(𝐵𝑗

𝑡) be the bidding price of customer 𝑗 at round 

𝑡, 𝑗 ∈ 𝑁𝑡, where 𝐵𝑗
𝑡 is the package submitted by customer 𝑗 at round 𝑡. Let 𝑍𝑗 = 1 if 

customer 𝑗 wins and 𝑍𝑗 = 0 otherwise. The winner determination model can be expressed 

using the following integer programming. 

𝑚𝑎𝑥 ∑ 𝑍𝑗𝑝𝑗
𝑡(𝐵𝑗

𝑡)𝑗∈𝑁𝑡           

subject to 

∑ 𝑍𝑗𝑗∈𝑁𝑡

𝐵𝑗
𝑡∋𝑖

≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖), 𝑖 = 1 … 𝑚     (6) 

𝑍𝑗 = {0,1},    𝑗 ∈ 𝑁𝑡       (7) 

    

Constraints (6) ensure that the bids awarded in a provisional allocation do not violate 

the provider’s capacity constraints. Constraint (7) is a set of integer constraints. 

Price Update  

In the bidding procedure for the service mass customization problem, the prices are 

updated according to the price update rules in the IbSCHF. 

A worked example is presented next, to demonstrate the application of the IbSCHF to 

travel package customization. 

6.2.3 A worked example 

This subsection presents a worked example to demonstrate the bidding process of 

applying the IbSCHF to the travel package customization problem. Suppose a travel agency 

offers a “build your own package” tool to its customers so they can customize their vacation 

packages for a 7-day holiday at a popular destination. Customers should travel to the 

destination on Day 1 and return on Day 7. The agency offers a list of travel components 

including flight reservations, hotel reservations, car rental, and tickets to entertainment 
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events. There are multiple services for each of the components to accommodate various 

customer preferences. For example, a Departure Ticket (DT) can be scheduled in the 

morning (DT-1), afternoon (DT-2), or evening (DT-3). For illustrative purposes, an 

example of an unrealistically small number of customers (five customers) is set up. The 

available services and their respective capacities are summarized in Table 6-1. Table 6-2 

shows the customers’ feasible packages and their valuations of them, where B(a, b) 

represents feasible package b from customer a. The base configuration includes one and 

only one service of each of the components DT, RT, and HL. Customers can have one to 

five services from the component ET. To limit the number of rounds of bidding, high 

reservation prices are set for the packages (see Table 6-2). Submitted bids, provisional 

allocation, provider’s revenue, and customer’s value at each round of bidding are 

summarized in Table 6-3. ε is set to be five. The auction terminates at round 12 with overall 

customer value at 7370. Compared to the optimal value of 7790, the auction reaches 95% 

efficiency in this example. The sum of the prices paid by the customers (i.e., the provider’s 

revenue) is 7240, which is close to the overall solution value due to competition among 

customers. The provisional allocations along the bidding process manifest the heuristic 

search guided by the changing package bidding prices. 

 

Table 6-1 Summary of service capacity 

Service ID Service Description Capacity 

DT-1 Departure Ticket in the morning of Day 1 3 

DT-2 Departure Ticket in the afternoon of Day 1 2 

DT-3 Departure Ticket in the evening of Day 1 2 

RT-1 Return Ticket in the morning of Day 7 2 

RT-2 Return Ticket in the afternoon of Day 7 2 

RT-3 Return Ticket in the evening of Day 7 3 

HL-1 First-class hotel 1 

HL-2 Second-class hotel 3 

HL-3 Motel 2 

ET-1 Sporting event ticket  2 

ET-2 Performing arts ticket 2 
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ET-3 Museum ticket 3 

ET-4 Cruise trip ticket 3 

ET-5 Fine dining ticket 2 

 

 

Table 6-2 Customers’ feasible packages and corresponding reservation prices and value 

Customer Feasible Packages Reservation Price  ($) Value ($) 

Cus#1 

B (1,1) = {"DT3" "RT3" "HL3" "ET2" "ET3"} 1410 1445 

B (1,2) = {"DT2" "RT1" "HL1" "ET1""ET3" "ET4" 

"ET5" } 

2200 2250 

B (1,3) = {"DT3" "RT2" "HL2" "ET4"} 1830 1870 

Cus#2 

B (2,1) = {"DT1" "RT3" "HL1" "ET1" "ET2"} 2120 2145 

B (2,2) = {"DT1" "RT1" "HL1"  "ET1" "ET4" "ET5"} 2320 2360 

B (2,3) = {"DT3" "RT3" "HL2" "ET1" "ET3""ET4"} 2060 2085 

Cus#3 
B (3,1) = {"DT3" "RT3" "HL1" "ET1" "ET2" "ET3"  

"ET5"} 

2210 2235 

B (3,2) = {"DT1" "RT2" "HL1" "ET1" "ET3""ET4"} 2360 2370 

Cus#4 
B (4,1) = {"DT2" "RT1" "HL3" "ET1""ET2"  "ET3"  

"ET4"} 

1660 1695 

B (4,2) = {"DT2" "RT1" "HL2" "ET1" "ET3"} 1730 1740 

Cus#5 

B (5,1) = {"DT3" "RT3" "HL2" "ET5"} 1610 1660 

B (5,2) = {"DT1" "RT3" "HL1"  "ET1" "ET3" "ET4" 

"ET5"} 

2360 2375 

B (5,3) = {"DT2" "RT2" "HL1" "ET2""ET4" "ET5"} 2130 2135 

B (5,4) = {"DT3" "RT3" "HL3" "ET3" "ET5"} 1290 1295 

B (5,5) = {"DT1" "RT3" "HL2"  "ET3""ET4"} 1910 1945 

  

Table 6-3 Submitted bids, provisional allocation, provider’s revenue, and customer’s value at 

each round of bidding 

Round # Submitted Bids Provisional Allocation 
Provider  

Revenue 

Customer 

Value ($) 

1 B (1,2) , B (2,2) , B (3,1) , B (4,1) , B (5,1) B (2,2), B (4,1) , B (5,1) 5590 5715 

2 B (1,2) , B (2,2) , B (3,1) , B (4,1) , B (5,1) B (2,2), B (4,1) , B (5,1) 5590 5715 

3 B (1,2) , B (2,2) , B (3,1) , B (4,1) , B (5,1) B (2,2), B (4,1) , B (5,1) 5590 5715 

4 B (1,3) , B (2,2) , B (3,1) , B (4,1) , B (5,1) B (1,3), B (2,2), B (5,1) 5760 5890 
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5 B (1,3) , B (2,2) , B (3,2) , B (4,1) , B (5,1) B (1,3), B (3,2), B (5,1) 5800 5900 

6 B (1,3) , B (2,2) , B (3,2) , B (4,1) , B (5,1) B (1,3), B (3,2), B (5,1) 5800 5900 

7 B (1,3) , B (2,2) , B (3,2) , B (4,1) , B (5,1) B (1,3), B (3,2), B (5,1) 5800 5900 

8 B (1,3) , B (2,1) , B (3,2), B (4,1) , B (5,1) B (1,3) , B (2,1), B (4,1) , B (5,1) 7240 7370 

9 B (1,3) , B (2,1) , B (3,1), B (4,1) , B (5,1) B (1,3) , B (2,1), B (4,1) , B (5,1) 7240 7370 

10 B (1,3) , B (2,1) ,B (3,2)  , B (4,1) , B (5,1) B (1,3) , B (2,1), B (4,1) , B (5,1) 7240 7370 

11 B (1,3) , B (2,1) , B (3,1)  , B (4,1) , B (5,1) B (1,3) , B (2,1), B (4,1) , B (5,1) 7240 7370 

12 B (1,3) , B (2,1) , B (3,1)  , B (4,1) , B (5,1) B (1,3) , B (2,1), B (4,1) , B (5,1) 7240 7370 

 

6.2.4  Incentive Issues 

Given the assumed customers’ private value model, no customer bids above their 

valuation. In all cases, customers will not get negative payoffs, which encourages them to 

participate in the auction.  However, understanding the incentives that a company has for 

setting up and conducting the proposed auction requires some explanation of the 

company’s objectives for auction design. In auction design there are two common 

objectives an auctioneer may have. The first is economic efficiency, and the second is 

revenue maximization (de Vries and Vohra, 2003). An auction is economically efficient if 

the allocation of objects to bidders chosen by the auctioneer maximizes the overall values 

of the bidders. Economic efficiency is supported by well-developed auction theories. A 

typical example is the canonical Vickrey-Clarke-Groves (VCG) mechanism (Vickrey 

1961; Clark 1971; Groves 1973) which simultaneously achieves incentive compatibility 

and efficiency and has guided the design of many auctions. As a result, the majority of the 

auction literature takes economic efficiency as their design objective.  

It is argued in Parkes and Kalagnanam (2005) that the goal of economic efficiency is 

well suited for the design of stable long-term markets that will form the basis for repeated 

trading. They expect that efficient markets will come to dominate the electronic market 

landscape based on their experience with procurement auctions deployed with a large 

chocolate manufacturer (Hohner et al., 2003). In the context of mass customization, 

economic efficiency is also desirable for a company seeking to build long-term business 
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relationships with their customers. It is agreed in mass customization literature that one of 

the major objectives of mass customization is to improve customer value. In the long run, 

a company can only improve its profit by providing customers with high value-added 

products and services. The long term benefits brought by efficient auction design provide 

an incentive for companies to adopt economic efficiency as their auction design objective.  

The objective of revenue maximization (optimal auction design), on the other hand, 

maximizes the auctioneer’s revenue. Optimal auctions maximize the seller’s revenue at 

every transaction, which are perhaps more appropriate for a one-shot procurement problem, 

and in a settings where the buyer has considerable market power (Parkes and Kalagnanam, 

2005). However, even if a company only cares about short term benefits and wants to get 

the most out of every transaction, an efficient auction design may still be the more 

reasonable choice, especially when iterative bidding is used as an implementation structure. 

This is because there are no known optimal (i.e. revenue-maximizing) general-purpose 

combinatorial auctions, iterative or otherwise (Parkes, 2006). In fact, the dynamic 

exchange of value information between bidders that is enabled within iterative 

combinatorial auctions is known to enhance revenue and efficiency in single-item auctions 

with correlated values (Milgrom and Weber, 1982). One should expect efficient iterative 

combinatorial auctions to retain this benefit over their sealed-bid counterparts (Parkes, 

2006). Therefore, from both long-term and short-term perspectives, a company has clear 

incentives to deploy an efficient combinatorial auction.  

The IbSCHF is an efficient auction design which is implemented using an iterative 

bidding process. The bidding process is guided by a price mechanism. The revenue that the 

auctioneer collects is the sum of the bidding prices from the awarded customers at winner 

determination. Given the design of the bidding procedure, the company’s revenue is 

guaranteed to increase along the bidding process and reach its highest at termination.  

Despite the formulation of the economic efficiency objective of the SCCC, the iterative 

bidding structure itself achieves high seller revenue in the same spirit of many real-world 

iterative auction applications, which supports our claim that the proposed model provides 

incentives to the seller. The performance gained by applying the IbSCHF on general SCCC 

problems is evaluated through a computational study in the next section. 
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6.2.5 Value and revenue performance under various product customizability  

Products with a higher level of customizability will likely meet individual customer 

needs better. However, a higher level of customizability often leads to higher costs. To 

manage the customization costs and improve operational efficiency, service providers 

usually restrict customers’ choices in choosing service combinations by imposing 

configuration rules. The proposed customization model allows providers to adjust the 

customizability of packages by defining different base configurations. When customizing 

a package, a customer is required to incorporate the services defined in the base 

configuration into the package. In terms of platform-based product development, the base 

configuration serves as a base product on which customers build their customized products. 

In this section, the value and revenue performance of applying the IbSCHF to SCCC 

problems is validated under various levels of product customizability imposed by the 

service provider. The proposed framework is also compared with the commonly used first-

come-first-served capacity allocation approach in terms of solution values. The design of 

the set of testing data used for the experiments is described as follows. 

6.2.6 Design of the testing data 

The customization environment in which the computational study is conducted is the 

one described in the worked example. However, to demonstrate the practical relevance of 

the experiments, the number of customers and the capacity of services are now increased 

to a realistic scale. Customer value is generated from common pricing schemes found in 

online travel auctions. In travel auction websites, such as eBay Travel 

(http://www.ebay.com), Luxury Link (http://www.luxurylink.com), and Sky Auction 

(http://www.skyauction.com), a package to be sold has a “buy it now” price which is 

usually its regular retail price. A customer can purchase the package immediately at the 

regular retail price if unwilling to wait until the termination of the auctions. However, if 

the customer wants a bargain, they must participate in the auction. 

The final auction price is determined by the market competition at the termination of 

the auction. A package also has a reservation price. The reservation price is often unknown 

to the customers. In the design of the testing data, it is assumed that there is a regular retail 
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price for each of the available services, and the retail price for a package is the sum of the 

retail prices of the services included in the package. The reservation price for a package is 

set to be 40% of its retail price, since it is common in the online travel auctions that the 

termination price can be as low as 60% below the regular retail price. It is assumed that 

customers who enter the auction expect some discount. They are not interested in 

purchasing the package at a price higher than the regular retail price. Customer values for 

a package are randomly drawn from a uniform probability distribution between reservation 

price and its regular retail price. Ten SCCC problem groups are generated, with the 

customer number ranging from 100 to 1,000. For each group, ten instances are randomly 

generated. Service capacity is also allocated in proportion to the number of customers such 

that, for most of the instances, around 80–90% of the customers will be awarded a feasible 

package. For all instances, a customer’s feasible package must contain one DT, one RT, 

and one HL. 

6.2.7 Simulation results 

In this section the value and revenue performance of applying the IbSCHF to an SCCC 

problem is validated under various levels of product customizability imposed by the service 

provider. For the computational study, three levels of product customizability are 

considered. The three levels are defined by different base configurations: Config#1 = {one 

of DT, one of RT, one of HL}, Config#2 = {one of DT, one of RT, one of HL, one of ET}, 

Config#3 = {one of DT, one of RT, one of HL, three of ET}. The numbers of services 

contained in the three configurations are 3, 4, and 6, respectively. The solutions computed 

under Config#1 are used as the baseline for comparison. For each group of problem 

instances, the optimal solution value under Config#1 is computed by solving the SCCC 

integer programming model presented in section 6.2.1 “Centralized problem formulation”. 

The SCCC model is coded in ILOG Optimization Programming Language (http://www-

01.ibm.com/software/websphere/products/optimization/) and the ten groups of problem 

instances are solved using ILOG CPLEX. 
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The flow control of the iterative bidding is coded in the OPL (Optimization 

Programming Languages) script language. A desktop PC with a 2.4G Intel CPU and 8 GB 

of memory is used to run the experiments. 

Table 6-4 Customer value and provider revenue generated at different levels of package 

customizability 

Group  Base-Config#1 Base-Config#2 Base-Config#3 

(1)  

Optimal 

value 

(2)  

Auction 

value 

(3) 

Auction 

revenue 

(4)  

First-come-

first-served 

Value 

(5)  

Auction 

value 

(6)  

Auction 

revenue 

(7)  

Auction 

value 

(8)  

Auction 

revenue 

1 $211,705 $210,535 $174,380 $166,420 $110,080 $96,585 $73,085 $57,890 

2 $421,970 $418,100 $333,470 $326,270 $221,990 $197,225 $129,240 $102,740 

3 $633,215 $618,880 $482,370 $493,610 $336,620 $294,485 $173,650 $137,970 

4 $848,365 $846,295 $691,550 $662,700 $448,860 $397,790 $211,955 $166,980 

5 $1,055,680 $1,039,410 $814,790 $816,505 $563,895 $503,075 $279,435 $219,160 

6 $1,269,615 $1,245,415 $963,130 $954,235 $676,915 $599,330 $333,085 $259,360 

7 $1,473,780 $1,453,190 $1,130,300 $1,128,480 $787,980 $696,880 $390,545 $303,210 

8 $1,688,120 $1,680,505 $1,354,670 $1,294,280 $900,455 $802,365 $453,520 $353,030 

9 $1,907,200 $1,889,915 $1,476,390 $1,497,350 $1,014,995 $899,630 $515,165 $402,940 

10 $2,114,810 $2,101,835 $1,681,890 $1,655,410 $1,126,325 $994,805 $568,815 $443,030 

 

The solutions computed by applying the IbSCHF are compared to the optimal ones 

computed by ILOG CPLEX. The first column of Table 6-4 shows the average optimal 

solution values for the ten groups of testing problems. The second and the third columns 

show the solution value and revenues computed by applying the IbSCHF, respectively. All 

customers are assumed to adopt final-bid-repeating and ε = 20 for all bidding. It is observed 

that the solution computed by applying the IbSCHF can achieve, on average, 98% of the 

optimal value across the ten groups of problem instances. The average revenue computed 

is approximately 78% of the optimal value. 
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To evaluate the impacts of package customizability on customer value, the testing 

problems are solved again with Config#2 and Config#3. When conducting the iterative 

bidding, all bidding packages which do not satisfy Config#2’s and Config#3’s 

configuration requirements are excluded at the bid screening stage. Columns five and six 

of Table 4 show the solution values and the revenues, respectively, with Config#2. It is 

observed that, on average, the solution value decreases to 53% of that of Config#1, and 

revenues decrease to 59% of those achieved with Config#1. If Config#3 is applied, the 

solution value will decrease to 27% of Config#1’s value, and revenues will decrease to 

28% of those achieved with Config#1. It is evident from the simulation results that reducing 

product customizability can significantly decrease both customers’ overall value and 

provider’s revenue. 

The proposed customization approach is also compared to the commonly used first-

come-first-served capacity allocation policy. For example, “build your own package” 

applications in the travel industry usually allocate a provider’s capacity on a first-come-

first-served basis combined with dynamic pricing strategies. Again, take travel package 

customization as an example. To compare the performance of an auction-based policy 

against that of a first-come-first-served capacity allocation policy, each policy is applied to 

the ten groups of SCCC testing problems. Column 4 of Table 6-4 shows the solution value 

of the first-come-first-served policy compared to the testing problems under Config#1. It 

is clear that the first-come-first-served policy achieves on average 78% of the value 

obtained by the auction-based approach.  

6.3 Appointment scheduling in the health care system 

Today’s healthcare systems face increasing demands in both the number of patients 

and the services that patients require, which often stretches limited resources beyond 

capacity. More and more patients must be treated with the same limited resources and 

budget. Nevertheless, the quality of service cannot be compromised. In addition to the 

perceived quality of medical services that they receive, patients’ satisfaction with their 

healthcare providers is also affected by their appointment booking experiences. Patients 
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want more personalized care, which includes involvement in selecting appointment times 

with their preferred doctors.  

Most of the government policies and researchers focus on improving the speed of 

access to the health care system and decreasing waiting time, but for non-urgent care, 

patients place a value on seeing the doctor of their choice, and on doing so  at a convenient 

time. Using the discrete choice experiment method among 1153 patients, G. Rubin et al 

(2006) found that the waiting time to make an appointment was only important if the 

appointment was for a child or when it was for a new health problem. In that survey, 

participants were asked to make their choices in a questionnaire that offered three 

categories: speed of access (time to appointment), choice of doctor and choice of time (they 

could choose their preferred time for an appointment). For responders who were employed, 

choice of time was six times more important than shorter waiting time. Older patients, 

women and those with long-standing physical illnesses preferred to see their own doctor 

for their appointment and they were willing to wait longer to do so. Gerard, K et al (2008) 

used discrete choice experiments to determine the important factors that influence patient 

choice in the booking an appointment. From their overall responses, the factors influencing 

patient choice in booking appointments were, in order of importance: seeing a doctor of 

their choice; booking at a convenient time of day; seeing any available doctor; and having 

an appointment sooner rather than later. These findings clearly demonstrate that the current 

focus of policy makers on speed of access is oversimplified. In addition, evidence shows 

that when patients were matched and scheduled according to their preferred provider, 

quality of care is  improved (O’Hare and Corlett 2004); also, matching patients with their 

preferred provider and offering them a convenient appointment time can decrease the 

number of no-shows and thereby increase operational efficiency (Barron 1980).  

In 2005, survey results indicated that patients complain about their difficulty in obtaining 

an appointment at a convenient time. (Healthcare Commission 2005).In another survey, 

one in four (25%) said they had been put off from going to their GP practice because the 

opening hours were inconvenient (National Survey of Local Health Services 2006).  

However, accommodating scheduling preferences across a large number of patients is 

particularly challenging due to three areas of complexities, namely collection complexity, 
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allocation complexity and elicitation complexity. Collection complexity refers to the 

efforts needed to collect preferences information from patients. However, collecting 

complete preference information from a large number of patients is not an easy task 

because a patient’s preference is usually not binary. Instead, it is a continuous variable that 

spans the spectrum from highly like to highly dislike. Moreover, a patient’s preferences 

may change over time for the same patient. Some examples of factors that change 

preferences are changes in work schedule or in marital status; this fluidity is one of the 

reasons why the vast majority of appointment booking systems are not automated. They 

have to rely on human schedulers to negotiate with patients to collect preferences 

information, a practice which incurs high administrative costs to the healthcare system. 

Allocation complexity refers to the computation needed to compute high-quality service 

time allocations. Accommodating dynamic preferences can easily make mathematical 

models of the appointment booking process intractable (Gupta and Denton 2008). These 

issues are further complicated by the fact that patients are reluctant to reveal all their 

availability. 

The proposed Iterative bidding framework for non-commercial services presented in 

chapter 5 can be properly applied to appointment scheduling problem. The next section 

demonstrates the multi-agent systems architectural for healthcare scheduling problem that 

can be used to apply the proposed framework. 

6.3.1 The environment 

Multi-agent systems architecture for appointment scheduling can be modelled as shown 

in Figure. 6-1. In this architecture, there are three types of agents that work collaboratively 

to achieve the overall scheduling functions of the system. The Patient agent represents the 

personal assistant of a patient. This agent has a user interface through which patients 

directly input their preferences and availability. A patient can program her preferences and 

availability into the agent and the agent can act on behalf of the patient to automatically 

interact with the hospital scheduler. This agent should also be equipped with optimization 

algorithms to compute the best strategy that it should take given the current scheduling 

situation and the patient’s preferences and availability constraints. The Diagnostic Services 
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(DS) agent represents the hospital scheduler or the secretary of the hospital. Registration 

and lookup services for other agents are provided by the Director Facilitator (DF) agent. In 

this architecture, patient schedules are computed through the negotiation of agents. Patient 

agents and DS agent need to make their local decisions based on their objectives during 

the negotiation process. The patient agents’ and DS agent’s decision problem is formulated 

in the following section. 

Patient 
Agent

Patient 
Agent

Patient 
Agent

Patient 
Agent

Directory
 Facilitator

Diagnostic Service Agent
 

Figure 6-1 A multi-agent systems architecture for the appointment scheduling problem 

       

6.3.2 Formulation of diagnostic service and patient agent decision problem 

Patient scheduling is a multilateral decision making problem with the diagnostic service 

and patient agents as independent decision makers. The diagnostic service agent needs to 

decide how to schedule service requests to achieve its objectives and, at the same time, 

respect the patients’ availability and their preferred doctor constraints. The decision facing 

a patient agent is how much preference information needs to be revealed in order to 

maximize the benefit for the patient.  
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A. Diagnostic service agent’s local decision making problem 

The diagnostic service agent receives a set of requests from patients’ agents. Each 

request consists of a patient’s preferences regarding her preferred time slot and preferred 

doctors. The model assumes the durations of all diagnose services are deterministic. A 

patient is assigned a weight scale by the diagnostic service agent, denoted as   wj. Given 

the requests from patients and the available service time slots, the provider needs to solve 

an optimization problem: determining the allocation of limited service time slots to the 

requests so that the sum of the weights of the awarded requests is maximized. The 

diagnostic service agent will not assign patient p a time slot and a doctor outside her 

preferences. 

Formally, let T be the set of time slots available at the time of scheduling; P be the set 

of patients who have diagnostic requests to be processed; D be the set of doctors; and wp 

be the priority level assigned to patient p. Let Adt = 1 if doctor d is available at time slot t; 

let Rpdt = 1 if patient p requests doctor d in time slot t; let Xpdt  = 1 if doctor d at time 

slot t is assigned to patient p. The patient scheduling problem for diagnostic services can 

then be formulated as follows. 

 

𝑀𝑎𝑥 ∑    ∑  ∑ 𝑋𝑝𝑑𝑡

𝑡∈𝑇𝑑∈𝐷 𝑝∈𝑃

 𝑊𝑝 

subject to 

∑ ∑ 𝑋𝑝𝑑𝑡  ≤ 1 ,                                ∀

𝑡∈𝑇𝑑∈𝐷

𝑝 ∈ 𝑃                             (1) 

∑ 𝑋𝑝𝑑𝑡  ≤ 1 ,                                   ∀𝑑 ∈ 𝐷, ∀ 𝑡 ∈ 𝑇

𝑝∈𝑃

                  (2) 

∑ 𝑋𝑝𝑑𝑡  ≤ 𝐴𝑑𝑡 ,                                 ∀𝑑 ∈ 𝐷, ∀ 𝑡 ∈ 𝑇                 (3)

𝑝∈𝑃

 

∑ ∑ 𝑋𝑝𝑑𝑡  = ∑ ∑   𝑅𝑝𝑑𝑡    𝑋𝑝𝑑𝑡

𝑡∈𝑇𝑑∈𝐷

 ,       ∀

𝑡∈𝑇𝑑∈𝐷

𝑝 ∈ 𝑃                     (4)       
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The set of constraints (1) ensures that any patient can only obtain one time slot. The set 

of constraints (2) ensures that a doctor’s time slot can only be assigned to one patient. The 

set of constraints (3) ensures that if a doctor’s time slot is assigned to a patient, that assigned 

time slot should belong to the doctor’s working time slots. The set of constraints (4) ensures 

that a doctor’s time slot should assigned be within a patient’s requests. 

B. Patient agents’ Decision Problem 

Each patient indicates its preferred time slot(s) and preferred doctor(s) in his agent 

interface, as depicted in Figure 6-2. 

9 -9:30

10 -10:30

10:30 -11

11:30 -12

9:30-10

Doctor 1

Doctor  2

Doctor 3

Doctor 4

Doctor 5

Preferred time Preferred doctor

Submit

 

Figure 6-2 The patient agent interface 

 

Each patients’ preferences are their private information and are not known to the 

diagnostic service agent. We assume that a patient agent prefers some combination of time 

slot and doctor over others. The preferences can be quantified by associating a preference 

violation cost to each combination of time slot and doctor. We assume that a patient agent 

orders Preferred Combinations (PCs) according to the increasing order of their preference 

violation costs. That is, given an ordered PC,  c1 < c2 < c3 < ⋯ ck … < c|PC| < c0 is 

known to the patient agent, where ck denotes the preference violation cost of the kth 

combination in set of PCs, and c0 denotes the preference violation cost of not being 

allocated any time slot. Patient agents try to avoid high cost assignments by not revealing 

their complete preferences. Since no payment is allowed in the patient scheduling setting, 

the possibility of applying the standard one-shot VCG mechanism (Clarke 1971, Groves 

1973, and Vickrey 1961) or even its iterative implementations (Parkes 2006) is eliminated. 

The proposed iterative bidding framework for non-commercial services systematically 
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evolves the solution towards an optimal one given the constraint that patient agents try to 

avoid high cost assignments by not revealing their complete preferred combinations.  

6.3.3 Appointment scheduling using the proposed framework 

If patients are modelled as agents and the hospital as the auctioneer, the appointment 

scheduling problem is mapped to a distributed non-commercial service scheduling 

problem. The agent modeling and bidding process configuration for an appointment 

scheduling problem are similar to those detailed in Chapter 5. We briefly describe the 

bidding process in the context of the appointment scheduling problem as follows. 

 The DS agent (auctioneer) first collects the availability information of the hospital’s 

resources and the doctors within the time window to be scheduled. Then, it sends 

messages to all its patient agents who have been registered by DF agent, indicating 

that the hospital is now ready to receive requests. The bidding process follows an 

iterative pattern. 

 At the beginning of each round, a patient agent needs to decide whether it will 

submit additional preferences or not. 

 Based on the bids and the available time slots, and on the availability of the doctors, 

DS agent computes a provisional schedule which includes the winning bids.  

 The losing customers can bid in the subsequent rounds by adjusting their bids, i.e. 

they can select a combination of time slot and doctor with the lowest cost from the 

unrevealed part of their PCs and submit it to the DS agent. 

 If a provisional schedule includes all the patients, or if there is no update of the bids 

from the losing patient agents, the bidding terminates and the current provisional 

schedule is implemented. 

6.3.4  Summary 

This chapter describes the application of the IbSCHF to two problem domains: service 

customization under capacity constraints and appointment scheduling in a health care 

system. Since service customization is a type of distributed service scheduling problem, 
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the proposed iterative bidding framework becomes a natural solution. For the appointment 

scheduling problem, applying the IbSCHE is a novel way to unify the exploration of 

customers’ preferences and the integration of hospital decisions within an auction structure.  
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Chapter 7 Design Specification and 

Implementation  

This chapter presents the design and implementation of a prototype environment for 

the IbSCHF proposed in chapter 4. The main objective of developing such a prototype is 

twofold: 1) to test the feasibility of implementing the proposed distributed service 

scheduling system in a more realistic multi-agent environment; and 2) to evaluate the 

proposed system in terms of its communication costs and system responsiveness. In 

particular, the main tasks for the development of such a prototype include:  

 Understanding the functional and non-functional requirements to develop the 

prototype in a distributed environment ; 

 Designing  a  .NET-based  iterative  bidding  system which  integrates with the 

winner determination model implemented using ILOG OPL environment; 

 Providing  bidding  interfaces  for  customers and an interface for the service 

provider for service definition; 

 Developing a web service which enables customer agents to interact with the 

scheduling system; 

 Evaluating the scalability of IbSCHF through the use of the developed prototype  

7.1 Functional requirements 

This section defines and describes the functional requirements that must be met in order 

to apply IbSCHF in a real distributed environment. Functionalities are defined from three 

different perspectives: the customer agents’, the service provider agent’s and the 

scheduling system’s. 

7.1.1 Customer Agents 

a) Customer interactions require the following functionalities: 

- Login: Allows customer agents to login to the scheduling system; 
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- Edit feasible bundles: Provides customers with the ability to edit bundles 

submitted to their agents if the bundle of time slots has not been executed in the 

schedule by the time a change has been requested; 

- Set status as standby: Makes it possible for customers to  set their status as 

standby for their preferred time slots; and  

- Cancel schedule: Gives customers the ability to cancel their schedules. 

 

b) Scheduling system interactions 

 The customer agent provides five fundamental functionalities on behalf of a customer: 

submit a bid, receive the winner determination result in each round, update a bid based on 

the received result, and provide the final result to the customer. In general, customers can 

achieve their business objectives and reflect their dynamic changes through the use of their 

agents. The following is the list of the required functionalities: 

- Retrieve available service time slots: Allows customer agents, to retrieve the 

available service time slots and their properties’ information from a web service 

in the scheduling system. 

- Submit bid: Provides customer agents with the ability to submit bids to the 

scheduling system on behalf of customers. 

- Update bid: Allows customer agents to update the parameters of a previously 

submitted bid based on the received result. 

- Receive result of winner determination: Makes it possible for customer 

agents to receive the results of the winner determination problem in each 

iteration. 

- Get final result of schedule: Allows customers to get the final schedule results 

from their customer agents when the auction terminates. 

7.1.2 Service Provider Agent 

The following is the list of functional requirements for a service provider agent. 

- Edit available services: The service provider can add or remove a service. 

He/she can also add or remove a time slot for each service, as well as change 
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the properties of individual service time slots, such as reservation price or 

capacity.  

- Start auction: Utilized to initiate the auction; the service provider agent 

submits all the information about available services, available time slots for 

each service, and their properties to the scheduling system. 

7.1.3 Scheduling System 

The following is the list of the functional requirements for a scheduling system. 

- Receive and store available service information: The scheduling system 

needs to receive and store the updated information about the available service 

time slots and their properties, acquired from the service provider agent. 

- Receive bids: The scheduling system must be able to receive bids from 

customer agents after they submit them. After bids have been received, the 

scheduling system screens out invalid bids. 

- Compute provisional allocation: The scheduling system needs to compute a 

new provisional allocation in each round until the auction is terminated. 

- Update OPL-WDM input: Upon receiving the customer agents’ bids, the 

scheduling system needs to transform the received data into an OPL- Winner 

Determination Model (WDM) input. OPL-WDM input will be used by ILOG 

to solve the winner determination problem. 

- Invoke CPLEX engine: Upon creating the OPL data source, the scheduling 

system invokes and then sends the data source to the CPLEX engine. CPLEX 

engine determines the winning bids during iterations. 

- Terminate auction: This functionality provides the scheduling system with the 

ability to check the termination condition, and, when the condition is satisfied, 

to terminate the auction.  

- Send provisional and final allocation results: The scheduling system needs 

to send the result of the provisional allocation in each round and the final 

allocation results at the end of auction to the customer agents. 
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7.2 User Case Diagrams 

Figures 7-1, 7-2, and 7-3 present the designed use case diagrams that address the 

presented required functionalities. Due to similarities between the requirements and the use 

cases, we only describe some of the more important use cases. 

 

Customer

Login/Register

View Avilable services

Submit all prefrences

Edit Prefrences

Get final result of
 schedule

Set status as standby

Cancel schedule

 

Figure 7-1 Use case diagram for a customer agent 
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Service Provider

Login

Submit available services

Update available services

Start auction

 

Figure 7-2 Use Case diagram for a service provider agent 

 

Customer Agent

Service Provider Agent

 Submit available
 service information

Submit bid

Update bid

Receive result

Login

Login  Update OPL-WDM input

Invoke CPLEX engine

Compute provisional allocation

<<include>>

<<include>>

Terminate auction

Termination 
condition checking

Finalize allocations

<<include>> <<include>>

Bid screening

<<include>>

 

Figure 7-3 Use Case diagram for a scheduling system 

 

Use case: Edit customer’s preferences 

Brief Description 
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 Customers follow these steps to edit their set of feasible bundles. 

Actors: Customer 

Preconditions: 

1. The customer has logged in to the customer agent. 

2. The feasible bundle(s) to be edited has not yet been used as a bid by the 

time of submitting the bundle. 

Main flow of events: 

1. Customer agent shows all previously submitted bundles. 

2. Customer adds, removes or edits any of the feasible bundle. 

 

Use case: Get the final schedule results 

Brief Description 

Customers need this process to get the results of the final schedule. 

Actors: Customer 

Preconditions: 

1. The customer has logged in to the customer agent. 

2. The auction has terminated and the final schedule has been computed. 

Main flow of events: 

1. The scheduling system notifies the customer agent about the final 

schedule result. 

2. The customer agent notifies the customer with the result of schedule. 

 

Use case: Update bids 

Brief Description 

This use case is utilized by a customer agent to update the parameters of 

previously-submitted bids. 
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Actors: Customer agent 

Preconditions: 

1. The customer agent has received the result of the previous round’s 

provisional allocation. 

Main flow of events: 

1. The customer agent receives the result of the provisional allocation of 

the previous round. If the latest bid has been accepted, the customer 

agent will keep the bidding price unchanged; otherwise, it has three 

price updating options: increase the bidding price, keep the bidding 

price unchanged, and withdraw from bidding process. 

2. The customer agent selects the bundle with the highest payoff  

3. The customer agent submit its bid. 

 

Use case: Compute provisional allocation 

Brief Description 

The scheduling system utilizes this use case to compute a new provisional 

allocation based on the updated bids received from the agents. 

Actors: The scheduling system 

Preconditions: 

1. The scheduling system has received updated bids from the customer 

agents. 

Main flow of events: 

1. After receiving the bids from the customer agents, the scheduling 

system screens out any invalid bids. 

2. The scheduling system verifies the termination condition.   

3. If the termination condition has not been satisfied, the system generates 

the OPL_WDM input. 
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4. CPLEX engine will be invoked by sending it the OPL_WDM input. 

5. CPLEX engine solves the winner determination problem. 

6. The winner determination result is transformed into a format that  can 

be sent to the customer agents.  

4. The scheduling system notifies the customer agents of the scheduling 

result. 

7.3 Non-Functional requirements 

Reliability: The system is a prototype built for research purposes; its reliability is not a 

major concern. However, the system should be able to function correctly with pre-tested 

problem sets and scenarios. 

Scalability: The system should be scalable in terms of increasing the number of customers. 

It should be capable of dealing with service scheduling problems at realistic scales. 

7.4 System Architecture 

This section provides the overall system architecture and software architecture of the 

service scheduling system. 

7.4.1 The overall system architecture 

We use a distributed environment as the context for the design of this service 

scheduling system. As shown in Figure 7-4, in this architecture, the Customer agent 

functions as the personal assistant of a customer, keeping the customer updated about their 

preferred service time slot bundles and informing its customer(s) about the results of their 

requests. Scheduling system in this architecture has eight states. These states can be 

modeled as a state chart, as shown in Figure 7-5. After Initialization, the scheduling system 

will be in the state of receiving bids.  Each new time period  can  trigger  the  transition  

from the  receiving bids  state  to the  bid screening state, where  invalid bids are screened 

out. Each round, the scheduling system must verify if the termination condition has been 

satisfied. 
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Figure 7-4 The service scheduling system’s overall system architecture 

   

If the termination condition is not satisfied, the scheduling system updates the OPL-

winner determination model input in the update OPL-WDM input state. At the computing 

state, the system computes the new winner, incorporating the updated list of bids. During 

this computing state, the system blocks its bidder interface so they cannot submit new bids. 

Once a new winner determination has been computed, the system state changes to the 

announcing results state, in which the system announces the result of the new provisional 

allocation to the customer agents. 

 

Customer CustomerCustomer

Customer AgentCustomer Agent Customer Agent

Service Provider Agent

Scheduling System

Service Provider 
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Terminated?

 

Figure 7-5 State diagram of the scheduling system 

 

7.4.2 Software architecture 

In this section we elaborate the software architecture of the service scheduling system.  
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Figure 7-6 Software architecture of the service scheduling system 

 

Figure 7-6 shows how the software components of the system interact with each other. 

As can be seen from the diagram, the Scheduling System consists of four major 

components: Authenticator web service, Service Management web service, Auction 

Control web service, and CPLEX Engine. Authenticator web service is responsible for 

registering new customers and authenticating registered customers when they login to the 

scheduling system. The Auction Control component provides two interfaces for interaction 

with customer agents and the Service Management component. The Service Management 

web service component is responsible for updating the list of available services. It also 

provide a web service interface for customer agents so that they can invoke the web service 

and view the available services and their properties. The Auction Control component also 

provides a web service interface for customer agents to receive their bids. The CPLEX 

engine component computes the winners of each round; to accomplish this task, CPLEX 
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requires the updated list of bids from the customer agents. The Auction Control component 

provides an interface for a winner determination component to receive the updated list of 

bids in the OPL- WDM input format.  

7.4.3 Graphic user interfaces  

The prototype has two types of user interfaces: customer agent and provider agent. The 

provider agent interface implements the functionalities of the service provider agent. The 

customer agent interface implements the functionalities of customer agents and displays 

the scheduling results. For the demonstration, when the system is initialized, the login 

interface (Figure 7-7) is presented to the customer. If the customer is a new customer, 

registration is required (Figure 7-8). 

 

 

Figure 7-7 Customer login interface 

 

 

Figure 7-8 Customer registration interface 

 

After login has been completed, the customer agent user interface (Figure 7-9) will be 

presented to the customer. 
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Figure 7-9 Customer agent interface 

 

Customers can view the list of available service time slots by clicking on the Available 

Services Information button. Service types and available time slots for each service are 

retrieved from the Service Management web service and loaded to the dropdown lists. 

After loading the current available service time slots, customers can select their preferred 

services and their preferred time slots and add them to their Feasible Bundles. The customer 

agent starts its negotiation with the Auction control web service when the customer clicks 

the start bidding button. Once the bids are received, at each specific time period the Auction 

Control component will generate a new WD-OPLM input and invoke the CPLEX engine 

to solve the winner determination model, and the result of the winner determination will 

be announced to the customer agents. Upon receiving the results, the customer agents 

should make their decisions about updating their bids. This procedure repeats until the 

Auction terminates. Customers can be informed about the final schedule by clicking the 

Get Result button. 
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Figure 7-10  Provider agent user interface for adding a new service 

 

Figure 7-11 Provider agent user interface for editing service information 

 

Service providers can submit their available service time slots and their properties to 

the service management web service by using the service provider agent interface (Figure 

7-10). Service providers can also edit or remove a service by using the editing interface 

shown above (Figure 7-11). 

7.4.4 Class Diagram 
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Figure 7-12 Class diagram for service scheduling system 

 

 

Figure 7-12 shows the class diagram for the prototype system. The prototype system is 

divided into four packages: customer agent, scheduling system, common and service 

provider. Each package represents a specific part of the system. 

7.4.5 Sequence Diagram 

AuthenticationControl ServiceManagementServiceProviderAgent
ServiceManagement

SOAP Interface
Auction Control SOAP

Interface

2.serviceProviderLogin

3.Accept

4.Accept

5.add/edit/removeServive

6.add/edit/removeServive

7.Approve

8.Approve

9.startAuction

10.startAuction

1.login

11.receiveResult

12.receiveResult

13.Final Result

14.Final Result

Auction 
Process

 

Figure 7-13 Sequence diagram for service provider functionalities 
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Figure 7-13 shows the message passing sequence for the service provider agent 

functionalities. 

 

a) The service provider agent logs into the scheduling system (Steps1-4). 

b) The service provider agent adds to and/or edits the available services and their 

properties and adds them to the scheduling system (Steps 5-8). 

c)  The service provider starts the auction (Steps 9-10). 

d) The service provider agent requests the result of the final allocations (Steps 11-14). 

 

CustomerAgent
SchedulingSystem

SOAPInterface
Authentication

Manager
Service

Management

4. login

5. customerLogin

6. Accept

7. Accept

10. getAvailableServices

12.Avaialble Services

3. login

Customer

9. startBidding
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1. add/removeFeasibleBundle

2. Approve

14.sendBid

15.receiveBid

21.Scheduling Result
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AuctionControl IlogScheduler

17.mapBidsToWDMInput 

18.WDMInput
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20.Results
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Updated Bids
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8. Accept
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16.Check For Termination
Condition
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29.Final Result

Store the 
received bid and 
retrieve all the 
previous bids

 
Figure 7-14 Sequence diagram for bidding process 



 

123 

 

 

Figure 7-14 shows the messages as they flow during the service scheduling system’s 

bidding process. 

a) The customer submits his/her feasible bundles to the customer agent (Steps1- 2). 

b) The customer agent logs into the scheduling system (Steps 3-8). 

c) The customer agent retrieves the available service information (Steps10-13). 

d) The customer agent submits its bid to the SOPA Service Provider Interface (Step 

14).  

e) The Auction control receives the bids and updates its current bid list (Step 15). 

f) Updated bids are sent to ILOG scheduler Interface (Steps 16-17). 

g) CPLEX Solver computes the solution and returns it to the SOPA Service Provider 

Interface (Steps 20-21). 

h) The SOPA Service Provider Interface sends the scheduling result to the customer 

agents (Step 22). 

 

Figure 7-15 shows the messages for dynamic change management in service scheduling 

system as a sequence diagram. 

 

CustomerAgent A
Scheduling System
SOAP Interface A

Customer A AuctionControl

1.addToWaitingList

2.addToWaitingList

3.addToWaitingList

4.OK

5.OK

6.OK

12.newAvailableServiceNotification

CustomerAgent B
SchedulingSystem
SOAP Interface B

Customer B

11.newAvailableServiceNotification

7.cancelAssignedBid

8.cancelAssignedBid

9.cancelAssignedBid

10.OK

11.OK

12.OK

13.sendBid

14.receiveBid

 

Figure 7-15 Sequence diagram for dynamic change management 
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7.5 Simulation Result 

In this section we have used the developed prototype to evaluate our approach in terms 

of its scalability. The simulation platform is based on a client-server architecture. The 

auctioneer web services are hosted in a web server and the agents use SOAP to access those 

web services. The auctioneer web server runs on a desktop PC with 2.4GHz Intel CPU and 

8 GB memory. All the agents are equally distributed over two laptop systems, each of 

which has an Intel 2GHz CPU and 4 GB of memory. Every agent generates a random set 

of feasible bundles and their values. When an auction starts, each agent will use the 

generated feasible bundles to bid on. The agent web application and the auctioneer web 

services are implemented using a Visual Studio 2013. Module to generate random problem 

sets, coded in Visual Studio 2013. 

7.5.1 Metrics 

Communication Cost and Response Time, are used as the scalability measures in the 

evaluation. 

Communication Cost is the number and the size of messages sent between agents and the 

auctioneer during an auction, expressed as: 

𝐿𝑜𝑎𝑑 𝑡 =  ∑ (|𝑅𝑒𝑞𝑔| + |𝑅𝑒𝑠𝑝𝑔|)

𝑔 ∈𝑁𝑡

  

  𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = ∑ 𝐿𝑜𝑎𝑑 𝑡𝑡 ∈𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  

where 𝑙𝑜𝑎𝑑 𝑡 is the load of communication in round 𝑡, 𝑁𝑡 is the set of customers submitted 

their bids at round 𝑡, |𝑅𝑒𝑞𝑔| is the size of requested message by agent  , and |𝑅𝑒𝑠𝑝𝑔| is the 

size of respond  message from auctioneer to agent 𝑔. 

Response Time , is considered to be a measure of the computational complexity of the 

proposed approach. The Response Time (in seconds) is the sum of the time required for 

the  winner-determinations, price-updates and communication over all if the auction 

rounds; in other words, the total time it takes for all agents to receive the final schedule 

from the moment an auction starts. 
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To evaluate the scalability, ten groups of problem instances are randomly generated with 

different sizes and structures. The configuration of the test problem sets and their 

corresponding response times, communication costs and memory usage are summarized in 

Table 7-1 and Table 7-2. 

Table 7-1 Configuration of testing problems 

Problem Number 

of agents 

# of service 

time slots 

# of feasible 

bundles per agent 

Number of 

Instance 
# Name 

1 Group 1 200 30 Random(5,10) 10 

2 Group 2 400 50 Random(5,10) 10 

3 Group 3 600 70 Random(6,11) 10 

4 Group 4 800 90 Random(6,11) 10 

5 Group 5 1000 100 Random(6,15) 10 

6 Group 6 1200 100 Random(6,15) 10 

7 Group 7 1400 110 Random(6,15) 10 

8 Group 8 1600 120 Random(7,20) 10 

9 Group 9 1800 125 Random(7,20) 10 

10 Group 10 2000 130 Random(8,25) 10 

  

Table 7-2 Computational results 

Groups Response 

Time(S) 

Communication Cost 

(KB) 

Memory Usage (MB) 

Group 1 284.1725 64.99 482.31 

Group 2 363.4935 277.36 701.91 

Group 3 494.61 290.33 937.97 

Group 4 530.189 336.47 1074.42 

Group 5 728.514 376.97 1780.03 

Group 6 782.2695 389.86 1866.46 

Group 7 906.3825 495.19 1929.51 
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Group 8 1141.7535 570.33 2486.09 

Group 9 1220.89 603.002 2732.97 

Group 10 1513.5115 684.37 2944.76 

 

 

 

Figure 7-16 Response time and communication cost when the problem complexity increases 

 

It can be seen from Figure 7-16 that the response time curve is sub-linear on the value axis 

as the problem complexity increases, indicating polynomial run times, and so it is clear that 

the IbSCHF can be applied to large-scale DSSPs. 

7.6 Summary 

This chapter presents the design and implementation of a prototype environment for 

the IbSCHF proposed in chapter 4. The first step was defining the requirements, followed 

by a detailed illustration of the system architecture and of how the software components 

communicate with each other.  The developed prototype was evaluated in terms of its 

communication costs and system responsiveness. 
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Chapter 8  Conclusion and Future Work 

8.1 Conclusion 

This thesis investigates modeling and computational issues in developing solution 

approaches to the Distributed Service Scheduling Problem (DSSP). Compared to 

traditional manufacturing scheduling, service scheduling poses additional challenges due 

to the significant customer involvement in service processes. The first challenge is that 

service scheduling should be conducted in a distributed environment. The second challenge 

is that service scheduling has to be robust at accommodating contingencies caused by the 

customer involvement in service production. Uncertainty in customer demand, customer 

cancelations and no-shows make the service scheduling a complex dynamic process. The 

third challenge is the customer’s private information. To compute optimal schedules, 

ideally, the scheduler should know the complete customer availability and preference 

information within the scheduling horizon. However, customers often act strategically to 

protect their private information. Therefore, service scheduling systems should be designed 

so that they are able to elicit the customer’s private information required to compute high 

quality schedules. The fourth challenge is that the objectives in a service scheduling 

environment are complicated and may conflict each other. The distributed service 

scheduling environment enables each agent to have their own scheduling objectives. In 

addition to multiple objectives, since agents are self-interested, they are expected to behave 

strategically to achieve their own objectives without considering the global objectives of 

the system. 

Our objective is to design a framework capable of addressing the challenges in the 

DSSP. An iterative bidding scheduling framework (IbSCHF) that can address the 

challenges of DSSPs concurrently is proposed. IbSCHF uses the price mechanism for 

service scheduling, which may not be applicable for non-commercial services. An adapted 

IbSCHF is also proposed for scheduling non-commercial services without using a price 

system or payment transfers. Our main contributions can be summarized as follows. 
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IbSCHF for DSSPs 

By applying IbSCHF in an agent-based architecture, the challenges of DSSPs can be 

addressed effectively. IbSCHF provides a structure for the agents and the service provider 

to interact in a systematic way and eventually evolve the provisional solutions towards an 

optimal one. In IbSCHF, agents are not required to reveal all their private information; they 

reveal their private information only as it becomes necessary. It also has the potential of 

accommodating dynamic changes. IbSCHF can be applied to efficiently allocate the newly-

available service time slots created by dynamic events. 

The framework has been evaluated experimentally. The results indicate that, compared 

with the one-shot VCG auction system, the IbSCHF requires less information revelation, 

improves on the computational properties, and its computed solutions are very close to 

optimal. As a demonstration of the applicability of the framework, it was applied to the 

Service Customization under Capacity Constraints (SCCC) problem. By applying the 

IbSCHF to the SCCC problem, customer’s customization decision making are integrated 

with the allocation of the service provider’s capacity through multilateral negotiations 

between the service provider and its customers.   

Adapted IbSCHF for non-commercial service scheduling problems 

The IbSCHF uses price mechanism to allocate service time slots to customers. 

However, in non-commercial service scheduling environments, service providers cannot 

use a price mechanism to schedule customers along the service timelines. Therefore, 

IbSCHF has been adapted for non-commercial service scheduling problems. The service 

provider needs customers’ availability information to improve resource utilization. On the 

other hand, customers may be of “two minds” about communicating their private 

information. While communicating certain amount of availability might be necessary in 

order to obtain their preferred schedules, too much communication implies a potential cost. 

To address this challenge, an adapted IbSCHF has been developed, designed to generate 

high-quality schedules while protecting customers’ private information. The efficiency and 

information revelation performance of this adapted framework is evaluated through 

theoretical analysis and computational experiments. It was shown that, under the proposed 

mechanism, myopic bidding is the dominant strategy for customers. The privacy and 
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efficiency performance of this proposed adapted mechanism was also evaluated, through a 

computational study. As a demonstration of the realistic applicability of this framework, it 

was applied to the appointment scheduling problem in health care system. 

Design and implementation of a web-based service scheduling prototype  

A web-based service scheduling prototype is designed and implemented using .Net 

technology and web services. The purpose of developing the prototype is first, to 

demonstrate how to implement the IbSCHF in a real-world environment, and second, to 

evaluate the scalability of the approach in a real environment. Scalability is measured in 

terms of response time, communication cost, and memory usage.  

8.2 Directions for Future Research 

Three directions can be outlined in terms of expanding the current work from the 

perspective of improving its applicability to real-world scale applications. 

First, to continue improving the IbSCHF to accommodate more and more dynamic 

changes. The current framework supports customer’s cancelations and uncertainty in 

customers’ arrival time. Other reasons for dynamic changes could be incorporated, for 

example, service durations may be subject to change, and/or certain resources can become 

unavailable.  

Second, the winner determination model could be extended to different application 

domains. The current winner determination model is a general model that can be applied 

to different service application domains. Each application domain has its own constraints 

that will need to be considered. 

At the current stage, I have considered the situation where customer agents have a 

service request from one service provider. However, in some application domains, agents 

may be prefer to receive different services from multiple service providers. In the situation 

where each service provider uses the IbSCHF, exploring agents’ bidding policies in order 

to coordinate separate scheduling system, would be another step towards practical 

approaches to real world distributed service scheduling applications.  
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