
 Multi-agent System Models for Distributed Services Scheduling

by

 Farnaz Dargahi

A Thesis

in

The Department of Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements

for the Degree of Doctor of Philosophy at

Concordia University

Montreal, Quebec, Canada

April 2014

©Farnaz Dargahi, 2014

CONCORDIA UNIVERSITY

 SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Farnaz Dargahi

Entitled: Multi-agent System Models for Distributed Services Scheduling

and submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (Electrical & Computer Engineering)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 Dr. Adam Krzyzak Chair

 Dr. Jean-Marc Frayret External Examiner

 Dr. Onur Kuzgunkaya External to Program

 Dr. Shahin Hashtrudi Zad Examiner

 Dr. Wei-Ping Zhu Examiner

 Dr. Chun Wang Thesis Co-Supervisor

 Thesis Co-Supervisor

Approved by

Chair of Department or Graduate Program Director

April, 2014

iii

Abstract

Multi-agent System Models for Distributed Services Scheduling
Farnaz Dargahi, Ph.D.

Concordia University, 2014

This thesis investigates the computational and modeling issues involved with

developing solutions for distributed service scheduling problems. Compared with

traditional manufacturing scheduling, service scheduling poses additional challenges due

to the significant customer involvement in service processes. The first challenge is that the

service scheduling environment is a distributed environment in which scheduling-related

information is scattered among individual identities, such as service providers and

customers. The second challenge is that the service scheduling environment is a dynamic

environment. Uncertainty in customer demand, customer cancellations and no-shows make

the scheduling of services a complex dynamic process. Service scheduling has to be robust

and prepared to accommodate any contingencies caused by customer involvement in

service production. The third challenge concerns customers’ private information. To

compute optimal schedules, ideally, the scheduler should know the complete customer

availability and preference information within the scheduling horizon. However, customers

may act strategically to protect their private information. Therefore, service scheduling

systems should be designed so that they are able to elicit enough of a customer’s private

information that will make it possible to compute high quality schedules. The fourth

challenge is that in a service scheduling environment, the objectives are complicated and

they may even be in opposition. The distributed service scheduling environment enables

each agent to have their own scheduling objectives. The objectives of these agents can vary

from one to another. In addition to multiple objectives, since agents are self-interested, they

are likely to behave strategically to achieve their own objectives without considering the

global objectives of the system. Existing approaches usually deal with only a part of the

challenges in a specific service domain. There is a need for general problem formulations

and solutions that address service scheduling challenges in a comprehensive framework.

iv

In this thesis, I propose an integrated service scheduling framework for the general

service scheduling problem. The proposed framework uses iterative auction as the base

mechanism to tackle service scheduling challenges in distributed and dynamic

environments. It accommodates customer’s private information by providing appropriate

incentives to customers and it has the potential to accommodate dynamic events. This

framework integrates customers’ preferences with the allocation of a provider’s capacity

through multilateral negotiation between the provider and its customers. The framework

can accommodate both price-based commercial settings and non-commercial service

settings. Theoretical and experimental results are developed to verify the effectiveness of

the proposed framework. The application of the framework to the mass customization of

services and to appointment scheduling are developed to demonstrate the applicability of

the general framework to specific service domains. A web-based prototype is designed and

implemented to evaluate the scalability of the approach in a distributed environment.

v

Acknowledgement

It is indeed a great pleasure for me to express my sincere appreciation and thanks to my

respectable supervisor Dr. Chun Wang. I would like to thank him from the bottom of my

heart for all his generous support. He has supported me not only by providing a research

assistantship over almost four years, but also academically and emotionally through the

rough road to finish this thesis. Thank you for all your contributions, remarkable/practical

ideas, and encouragement.

I would also like to thank the members of my defence committee, Dr. Frayret, Dr.

Hashtrudi Zad, Dr. Kuzgunkaya, and Dr. Zhu, for taking their valuable time to examine

my thesis.

I owe my deepest gratitude to my husband Majid for his continuous support, his kind

guidance and encouragement. Thank you for providing valuable input to my work and all

your support.

My parents, Reza and Shahin, receive my deepest gratitude and love for their unconditional

support through my entire life. This thesis is dedicated to them. I would like to thank my

brothers Ali Reza and Hamid Reza for always supporting me during the various stages of

my life.

vi

Table of Content

Table of Content ...vi

List of Figures .. x

List of Tables ... xii

Chapter 1 Introduction and Motivation .. 1

1.1 Example application domains ... 1

1.1.1 Transportation service scheduling .. 2

1.1.2 Appointment scheduling in healthcare .. 2

1.1.3 Scientific facility scheduling ... 3

1.1.4 Cloud computing services ... 4

1.2 Unified Services Theory ... 5

1.3 Challenges of Service Scheduling .. 6

1.4 Scope and Approach ... 12

1.5 Thesis Organization .. 13

Chapter 2 Literature Review .. 14

2.1 Definitions of the scheduling problem .. 14

2.2 Centralized Service Scheduling Approaches .. 15

2.2.1 Genetic algorithms .. 16

2.2.2 Simulated annealing ... 16

2.2.3 Tabu search .. 17

2.2.4 Constraint logic programming ... 18

2.2.5 Approaches considering customer preferences and dynamic environments 18

2.3 Agent-based Scheduling ... 19

2.4 Agent-Based Service Scheduling ... 23

2.4.1 Meeting scheduling ... 24

2.4.2 Healthcare .. 26

2.4.3 Transportation .. 27

2.4.4 Computing ... 29

2.5 System Design Issues ... 32

2.5.1 System structures .. 32

2.5.2 Negotiation mechanisms ... 33

vii

2.6 Research opportunities ... 35

2.7 Summary... 37

Chapter 3 The Service Scheduling Problem ... 38

3.1 Properties of a DSSP .. 38

3.2 Centralized Formulation ... 40

3.3 Game theoretic modelling and VCG auction construction ... 42

3.4 Summary... 45

Chapter 4 Iterative Bidding Framework for Distributed Service Scheduling 46

4.1 The IbSCHF .. 47

4.1.1 Iterative Bidding Protocol .. 47

4.1.2 Initialization .. 48

4.1.3 Price Updating and Bidding ... 48

4.1.4 Bid Screening and Termination .. 50

4.1.5 Winner Determination .. 50

4.1.6 Implementation considerations ... 51

4.2 Simulation results ... 52

4.2.1 Metrics .. 52

4.2.2 Problem Sets ... 53

4.2.3 Computational Results .. 54

4.2.4 The effect of bid increments .. 56

4.2.5 The effect of final bid repeating .. 58

4.3 Accommodating Dynamic Changes ... 59

4.3.1 When to revise? ... 59

4.3.2 How to respond? ... 60

4.3.3 Periodic repair approach in service scheduling environment .. 60

4.3.4 A Worked example .. 63

4.3.5 Efficiency Analysis .. 65

4.4 Summary... 66

Chapter 5 Scheduling Non-Commercial Services ... 67

5.1 Introduction .. 67

5.2 Non-commercial services scheduling and customers’ private information .. 67

5.2.1 The implication of customers’ private information on efficiency .. 68

5.3 Formulation of service provider’s and customers’ decision problems ... 69

5.3.1 Service provider’s decision problem ... 69

viii

5.3.2 Customers’ decision problem ... 71

5.4 The iterative bidding framework .. 72

5.4.1 Iterative bidding .. 73

5.4.2 Bid screening and termination checking ... 75

5.4.3 Winner determination ... 76

5.5 Properties of the iterative bidding framework .. 76

5.6 Iterative bidding with partial allocation during each round .. 78

5.7 Simulation results: information revelation and efficiency analysis .. 79

5.8 Summary... 82

Chapter 6 Applications ... 84

6.1 Applying framework ... 84

6.2 Service mass customization under capacity constraints ... 84

6.2.1 Centralized problem formulation .. 87

6.2.2 Service mass customization under capacity constraints using IbSCHF 89

6.2.3 A worked example ... 90

6.2.4 Incentive Issues ... 93

6.2.5 Value and revenue performance under various product customizability 95

6.2.6 Design of the testing data ... 95

6.2.7 Simulation results ... 96

6.3 Appointment scheduling in the health care system ... 98

6.3.1 The environment ... 100

6.3.2 Formulation of diagnostic service and patient agent decision problem 101

6.3.3 Appointment scheduling using the proposed framework .. 104

6.3.4 Summary ... 104

Chapter 7 Design Specification and Implementation ... 106

7.1 Functional requirements ... 106

7.1.1 Customer Agents ... 106

7.1.2 Service Provider Agent ... 107

7.1.3 Scheduling System ... 108

7.2 User Case Diagrams ... 109

7.3 Non-Functional requirements ... 113

7.4 System Architecture ... 113

7.4.1 The overall system architecture .. 113

7.4.2 Software architecture .. 115

7.4.3 Graphic user interfaces... 117

ix

7.4.4 Class Diagram .. 119

7.4.5 Sequence Diagram .. 121

7.5 Simulation Result ... 124

7.5.1 Metrics .. 124

7.6 Summary... 126

Chapter 8 Conclusion and Future Work ... 127

8.1 Conclusion .. 127

8.2 Directions for Future Research ... 129

x

List of Figures

Figure 2-1 Four-element structure of scheduling problems (Wang, 2007).. 15

Figure 4-1 Efficiency of the FIFO and of the IbSCHF over ten groups .. 55

Figure 4-2 Information revelation of the VCG and of the IbSCHF as the problem difficulty is increased ... 55

Figure 4-3 Efficiency performance of the VCG and of the IbSCHF as the problem difficulty is increased . 56

Figure 4-4 Information revelation performance of the IbSCHF over 10 groups with different bid increments

 ... 56

Figure 4-5 Run time of the IbSCHF over10 groups with different bid increments 57

Figure 4-6 Number of Iterations of the IbSCHF over10 groups with different bid increments 57

Figure 4-7 The effect of final bid repeating on efficiency ... 58

Figure 4-8 The effect of final bid repeating on run time ... 59

Figure 4-9 Example of a problem solved using the periodic repair scheduling approach 63

Figure 5-1 Flow chart of the iterative bidding procedure for NCSS problems .. 74

Figure 5-2 Agents’ myopic bidding strategy at a specific round ... 75

Figure 5-3 Efficiency increment during iterative bidding ... 80

Figure 5-4 information revelation increment during iterative bidding .. 80

Figure 5-5 Trade-off between efficiency and information revelation ... 81

Figure 6-1 A multi-agent systems architecture for the appointment scheduling problem 101

Figure 6-2 The patient agent interface ... 103

Figure 7-1 Use case diagram for a customer agent.. 109

Figure 7-2 Use Case diagram for a service provider agent.. 110

Figure 7-3 Use Case diagram for a scheduling system .. 110

Figure 7-4 The service scheduling system’s overall system architecture .. 114

Figure 7-5 State diagram of the scheduling system ... 115

Figure 7-6 Software architecture of the service scheduling system .. 116

xi

Figure 7-7 Customer login interface .. 117

Figure 7-8 Customer registration interface .. 117

Figure 7-9 Customer agent interface ... 118

Figure 7-10 Provider agent user interface for adding a new service .. 119

Figure 7-11 Provider agent user interface for editing service information .. 119

Figure 7-12 Class diagram for service scheduling system .. 121

Figure 7-13 Sequence diagram for service provider functionalities .. 121

Figure 7-14 Sequence diagram for bidding process .. 122

Figure 7-15 Sequence diagram for dynamic change management .. 123

Figure 7-16 Response time and communication cost when the problem complexity increases 126

xii

List of Tables

Table 2-1 Agent-based scheduling approaches that address service scheduling challenges 31

Table 4-1 Configuration of testing problems .. 54

Table 4-2 Problem parameters of example .. 64

Table 4-3 Configuration of testing problems and computational results ... 65

Table 6-1 Summary of service capacity .. 91

Table 6-2 Customers’ feasible packages and corresponding reservation prices and value 92

Table 6-3 Submitted bids, provisional allocation, provider’s revenue, and customer’s value at each round of

bidding ... 92

Table 6-4 Customer value and provider revenue generated at different levels of package customizability .. 97

Table 7-1 Configuration of testing problems .. 125

Table 7-2 Computational results ... 125

1

Chapter 1 Introduction and Motivation

Service scheduling is a decision-making process which allocates limited service

resources to service activities over time while satisfying certain constraints and optimizing

one or more objectives. Service scheduling problems are common to many domains such

as healthcare, transportation and computing. Compared to scheduling problems in

manufacturing, service scheduling problems have unique characteristics. In manufacturing

an activity usually transforms a physical component and adds value to it; resources are

typically referred to as machines and the configuration of machines; objectives are

typically a function of the completion times, due dates, and the deadlines of jobs (Pinedo,

2009). In service settings, an activity usually involves people. Examples include a meeting

that has to be attended by certain individuals, a flight that transports passengers, an

operation that has to be done by a surgeon on a given day. Services usually require both

physical and human resources. In contrast to most manufacturing scheduling models, in

service settings, additional factors such as personnel costs, customer waiting costs and

customer preferences are often considered in the objective function.

The differences between manufacturing and service scheduling are mainly derived

from the fundamental characteristic that defines service processes. A service significantly

involves customer inputs (Sampson & Froehle, 2006). In other words, in order for a service

to be produced, a customer has to personally be present, or he/she has to present his/her

belongings or information. Compared to classical manufacturing scheduling models, this

significant involvement of customer inputs presents additional challenges, including

distributed and dynamic scheduling environments, the presence of customers’ private

information (e.g. the value they place on various scheduling alternatives and their

availability), and often considerably more complicated scheduling objectives.

1.1 Example application domains

To motivate this research from a practical perspective, here are some examples of

service scheduling:

2

1.1.1 Transportation service scheduling

The transportation industry comprises a variety of service scheduling problems, such

as the routing and scheduling of airplanes, timetabling of trains and carrier scheduling. The

carrier scheduling problem, which determines what shipping orders should be assigned to

which carriers in a transportation network, is addressed in this work. Each order that has to

be transported is characterized by its weight, load port, delivery port, and the time

constraints on the loading and delivery times. The carriers and the orders usually belong to

different organizations and economic entities, and the customers most likely do not want

to reveal information about the highest shipping prices they are willing to pay. Therefore,

carriers’ schedules should be generated in a distributed environment where the information

about carriers and the order information is scattered among multiple independent

organizations. For a carrier, a schedule defines the sequence of ports that should be visited

within the scheduling window, the time of entry at each port and the orders loaded or

delivered at each port. The uncertainty of travel time affects the pickup/delivery times for

carriers on congested urban roads, and so the generated schedule should be robust in

dynamic environments.

The objective of carrier scheduling typically is to minimize the total cost of transporting

all orders. This total cost consists of a number of elements, namely the carrier’s operating

costs, the fuel costs, and the port charges.

1.1.2 Appointment scheduling in healthcare

There are a variety of problems involved with healthcare systems’ scheduling, such as

patient scheduling, laboratory and bed allocation scheduling, ambulances and emergency

room scheduling and hospital personnel (doctors, nurses, technicians) scheduling. Here the

appointment scheduling of high-volume specialized diagnostic services, such as magnetic

resonance imaging (MRI) scanning and computed tomography (CT) scanning is used as an

example, as it interacts with the services’ customers, deals directly with demand

uncertainty and has a large influence on many other departments. In such an environment,

the capacity of diagnostic resources is limited, is expensive to expand, the demand is highly

unpredictable and the waiting lists are already substantial. Healthcare managers and

3

policymakers are therefore under considerable political and community pressure to better

manage healthcare resources in order to provide patients with high quality care. To this

end, appointment scheduling plays a key role.

Typically there are three objectives in the appointment scheduling problems. The first

is to maximize the utilization of the service resource given the patients’ availabilities. The

second one is to maximize the sum of the of the scheduled patients’ priority levels. The

third objective is to accommodate patients’ preferences. Accommodating patients’

preferences in appointment scheduling is important because matching patients with their

preferred service provider and offering them a convenient appointment time can decrease

the number of no-shows and thereby increase operational efficiency (Barron 1980).

However, accommodating scheduling preferences across a large number of patients is

particularly challenging due to three areas of complexities: collection complexity,

allocation complexity and elicitation complexity. Collection complexity refers to the

efforts needed to collect preferences information from patients, which is not an easy task.

The vast majority of appointment-booking systems are not automated. They have to rely

on human schedulers to collect preferences information, which incurs high administrative

costs to the healthcare system. Allocation complexity refers to the computation needed to

compute high-quality service time allocations. Accommodating preferences can easily

make mathematical models of the appointment booking process intractable, which is

perhaps one reason why the majority of mathematical models do not include preferences

(Gupta and Denton 2008). These issues are further complicated by the fact that patients are

reluctant to reveal their availability. They are actually motivated to protect their private

information because revealing too much availability increases the patient’s possibility of

being assigned an undesirable time slot.

1.1.3 Scientific facility scheduling

The facilities at national science research laboratories are accessible to scientists and

researchers so that they can perform their experiments. Researchers’ proposals for using

these facilities are evaluated each year. The research laboratories normally start by

4

scheduling those experiments with higher priority, and try to schedule as many experiments

as possible.

Canadian Light Sources (CLS: http://www.lightsource.ca/), is a national science

research laboratory for the production of high-intensity synchrotron light from the infrared,

visible, and ultraviolet to X-ray region of the electromagnetic spectrum, and is accessible

to scientists and researchers from the academic, government and private sectors. Currently,

CLS has about 3000 researchers in Canada and other parts of the world as its user

community. CLS send out two calls for proposals each year, resulting in a six-month

scheduling cycle. Proposals are evaluated by a scientific committee composed of

researchers from universities and industries across the country. Each application is

assigned a weight based on its potential contribution to the advancement of knowledge and

impact on the scientific community. Approved proposals by the peer review procedure

need to be scheduled in the next scheduling cycle. CLS needs to improve the utilization of

its valuable synchrotron resources and, at the same time, maximize the overall scientific

contributions of the experiments. CLS knows the weight (scientific contribution value) of

each application. However, they do not have direct access to researchers’/customers’

availability information, and customers are actually motivated not to reveal their

availability because revealing too much availability increases the possibility of being

assigned an undesirable time slot. The lack of complete availability information can be a

major constraint that limits the quality of the schedules. High-quality schedules may be

determined to be impossible, given the partial availability of customer information. The

service providers are faced with a decentralized scheduling problem, in the sense that the

true availability of the customers is their own private information and may not be known

to the service provider.

1.1.4 Cloud computing services

“Cloud computing refers to both the applications delivered as services over the Internet

and the hardware and systems software in the data centers that provide those services”

(Armbrust et al. 2009). With the growth of the cloud computing market, more and more

companies start to provide their software and hardware products as services to their

5

customers. Service resource management systems need to provide mechanisms and tools

that allow resource consumers (end users) to express their requirements and their time

constraints. For any request, a customer has preferences over its completion time and is

willing to pay a premium to have it completed during the preferred time windows. Given

time constraints of service requests, to maximize profits, the provider has to prioritize

service requests based on their profitability and, at the same time, schedule as many

profitable requests as possible. The customer’s value of a schedule (i.e. the price that she

is willing to pay for the request to be completed at a specific time) is her private

information. Each customer is motivated to maximize her own payoff, not the system wide

optimality. In this context, the scheduling problem is a distributed optimization problem in

a strategic setting, which calls for game theoretic solutions.

In the next section, I first describe the Unified Services Theory (Sampson, 2001), which

categorically defines services, and then analyze the challenges in service scheduling in

light of that theory.

1.2 Unified Services Theory

Services have been commonly defined as intangible products (Pearce, 1981, p. 390;

Bannock et al., 1982, p. 372; Harvey, 1998, p. 596). In other words, a service typically

does not result in the ownership of anything (Kotler, 2006, p. 402). Intangibility is an

important characteristic of services. However, as stated in Sampson and Froehle (2006), it

does not serve as a sufficient condition which defines a production process as a service.

For example, software development results in a product that is intangible (computer code),

but the output can indeed be inventoried and used or sold later. Unified Services Theory,

on the other hand, identifies a single commonality that comprises all services. It defines

what services are and what they are not. To facilitate the analysis of service implications

to scheduling, it is useful to first introduce the Unified Service Theory.

The Unified Services Theory (UST) is formally stated as follows (Sampson, 2001, p.

16):

“With service processes, the customer provides significant inputs into the production process. With

manufacturing processes, groups of customers may contribute ideas to the design of the product,

6

but individual customers’ only participation is to select and consume the output. All managerial

themes unique to services are founded in this distinction.”

The most important component in UST is customer inputs, which distinguish services

from manufacturing processes and are the root cause of the unique issues and challenges

of services management. The literature has typically identified three general types of

customer inputs (Wemmerlov, 1990): the customer’s self, his belongings or other tangible

objects, and information. Customer-self inputs are common in services involving co-

production (i.e., the employment of customer labor in the process) and in services involving

the physical presence of the customer. Typical examples are health care clinics, buffet

restaurants and taxi services. These service providers can prepare for production, but they

cannot execute the actual service process until necessary customer-self inputs are present.

Tangible belongings (or property) and physical objects make up another type of input a

customer can provide to the service process. One’s car is an essential input into the

automobile repair service process and one’s clothing is a necessary input to the dry cleaning

service process. Providing tangible inputs often allows the service process to proceed even

without the customer being physically present. Customer-provided information is a third

type of input to the service process. For example, the tax return preparation process requires

that customers provide financial information as the process inputs. The service production

process cannot begin without the input of that information.

The UST reveals principles that are common to the wide range of services and provides

a unifying foundation for various theories and models of service operations. As

demonstrated in Sampson and Froehle (2006), the UST has significant operational

corollaries pertaining to the services management process. Among them, capacity

management and demand management significantly rely on the scheduling of service

resources. The challenges in designing service scheduling systems are presented in the rest

of this section.

1.3 Challenges of Service Scheduling

Scheduling plays an important role in service management due to the perishable nature

of service provider’s capacity. A service provider has to pay scheduled workers even

though there are no customers currently needing services. In other words, the service

7

provider’s capacity to produce the service is time-sensitive and cannot be inventorized by

producing to stock. This high “operating leverage” implies that many service operations

will be much more cost-competitive if the service providers effectively manage variable

demand (Hur et al., 2004; Jack & Powers, 2004), which gives them higher utilization levels

(Sampson, 2001, p. 240) or, alternately, manage capacity, which increase their volumes.

The management of demand and capacity involves the allocation of service orders and

resources over time, which is essentially a scheduling activity. On the demand management

side, reservation systems schedule customer inputs into the production process such that

waiting times are minimized. On the capacity management side, service managers schedule

full- and part-time personnel to meet the expected workload for a future day. When the day

of service arrives, if a significant gap is present between the experienced workload so far

and the scheduled staff capacity, service managers will attempt to make an immediate

adjustment to the staff schedule by changing station assignment, shifting breaks, or calling

in additional workers (Hur et al., 2004). Compared with classical manufacturing

scheduling, service scheduling presents different challenges attributable to significant

customer inputs in service production processes. Three important service scheduling

challenges, namely distributed and dynamic environments, complicated objectives and

customers’ private information are described below.

Distributed and dynamic environment: The customer input requirement in services

leads to a distributed and dynamic scheduling environment. First, the information needed

for computing schedules, e.g. customers’ availability and preference information, is

scattered among possibly a large number of customers. Collecting the information and

keeping it up to date can be challenging tasks. For example, consider the appointment

scheduling problem. As mentioned before, considering patients’ preferences and their

availability are both important because patients need to be present themselves as an input

to the service process. However, information about patient’s preferences is distributed

among patients themselves, and patient’s preferences may change over time because of

changes in work schedule or marital status. Therefore, appointment scheduling problems

should be generated in a distributed and dynamic environment.

8

Transportation scheduling is another example of a distributed environment in service

scheduling. Transportation companies have to carry out transportation orders. These orders

are customer inputs which are distributed geographically. Each order should be picked up

from a location and delivered to a destination. Transportation companies are

geographically distributed and have a set of trucks at their local disposal. Each company

makes decisions about its local scheduling according to the local trucks and the actual

solution to the global order scheduling emerges from the local decision-making of these

companies. Modeling the companies as independent and autonomous units seems the only

acceptable way to proceed, because the task of centrally maintaining knowledge about all

of the shipping companies, their vehicles and their policies is very complex. Moreover, this

information is often not even centrally available (real-life companies are not willing to

share all their local information with other companies) (Fischer et al. 1995).

In addition to the complexity arising from the distributed environment, service

scheduling has to be robust in accommodating the contingencies caused by customer

involvement in service production. Uncertainties regarding customer demand, resource

availability, service times, customer cancellations and no-shows make the scheduling of

services a complex dynamic process. For example, in the appointment scheduling problem,

patients who make an appointment and fail to keep it can lead to poor resource utilization

and longer patient waiting times. Service durations are also subject to change in

appointment scheduling. Patient attributes such as age, degree of disease progression,

cultural background and language fluency (need for an interpreter) can affect service

durations (Gupta & Denton 2008). Longer than expected service duration results in late

starts for the rest of the services that day. Late starts leads to costs associated with overtime

staffing.

Service organizations also face uncertainty in the numbers of consumers and their

resource demand. Examples include mail processing facilities, airline reservation desks,

hospitals, telephone operators, and so on. In each of these dynamic environments,

personnel scheduling is a challenging problem, and the goal is to assign personnel with

different skills to each shift in order to cover the predicted demand.

9

In a service setting, customers may be requested to include additional, unanticipated

tasks, or to adapt to changes to several tasks, or to neglect certain tasks. For example,

consider the appointment scheduling problem. Medical treatments in a primary care clinic

are often not completely pre-determined before an examination. The examination results

may invoke additional activities and/or make other medical actions unnecessary (Paulussen

et al. 2003). The beginning time and the processing time of a task are also subject to

variations. A task can take more or less time than anticipated, and the customer inputs can

arrive early or late. An optimal schedule, generated after considerable effort, may rapidly

become unacceptable because of unforeseen dynamic situations. Since service capacity

cannot be inventoried by producing goods, customers that fail to present their inputs

according to the schedule can contribute to poor resource utilization, lower revenues and

longer waiting times. The time-sensitive nature of service capacities signifies the need for

more robust dynamic scheduling approaches. In addition, unlike manufacturing

environments where the amount of resources (which are typically machines) is usually

fixed (at least for the short term), in services, the number of resources (e.g. people, rooms,

and trucks) may vary over time. Certain resources may become unavailable, and additional

resources may need to be introduced. This variable can even be a part of the objective

function (Pinedo, 2009).

As an example of a dynamic service scheduling environment consider a transportation

scheduling problem in which orders have to be picked up and delivered at specific customer

locations by a limited number of trucks. The main challenge is that the orders are not all

known in advance. New orders can be received and then must be incorporated into the

scheduling process. Truck availability adds further dynamicity. Trucks may be delayed or

temporarily unavailable due to traffic or other unforeseen problems. In addition, the actual

sizes of orders are subject to change (Davidsson et al, 2005).

In another dynamic service scheduling example, consider service computing where the

amount of resources varies over time. In this environment, resources need to be

dynamically (re-)configured and bundled via virtualization to provide different service

profiles for dynamic demands (Sim, 2012).

10

The service scheduling process is further complicated by the fact that customers’ needs

for services have varying degrees of urgency, and some decisions about non-urgent

requests must be made before the complete information about urgent and emergency

demands is known. Take the example of appointment scheduling in diagnostic services;

the low-priority demand (outpatients) must be booked (often several weeks in advance)

before knowing the highly unpredictable high-priority demand (inpatients). To

accommodate the demand imposed by the highly dynamic high-priority inpatients, the

hospital is forced to reserve a significant portion of the total capacity for this unknown

high-priority demand, leaving little room for outpatients. This results in unused capacity

on days when inpatient demand is lower than expected and thus longer waiting times for

outpatients than there would if this unused capacity could be utilized. Moreover, a patient’s

priority may change along the treatment process.

Complicated objectives: Planning and scheduling objectives in service industries are

often considerably more complicated than those in manufacturing. Scheduling objectives

in manufacturing are typically a function of the completion times, the due dates, and the

deadlines of the jobs. Objectives in services often have additional dimensions. In contrast

to manufacturing, the number of resources in a service environment may be variable (e.g.

the number of full-time and part-time people employed). Given this situation, there may

very well be a different type of objective – one that minimizes the number of resources

used and/or minimizes the cost associated with the use of these resources (Pinedo, 2009).

This minimization is a typical objective of capacity management.

Customer preferences regarding the timing of delivering their inputs should also be

considered in service scheduling, as they represent the value that customers attribute to a

schedule. For example, in healthcare services, patients want more personalized care, which

includes their involvement in selecting appointment times. Some patients prefer an

appointment on same day they call, or soon thereafter, and the day of the week or the time

of the appointment is not particularly important to them. Others prefer a particular day of

the week and a convenient time. These patients do not mind waiting for convenience. In

both private and public healthcare systems, healthcare managers are motivated to achieve

high scores on patient satisfaction surveys. In addition, offering patients a convenient

11

appointment time can decrease the number of no-shows and thereby increase operational

efficiency (Wang and Gupta, 2011).

Transportation service scheduling is another example of complicated objectives in

service scheduling. The objective typically is to minimize the total cost of transporting all

orders. This total cost consists of a number of elements, namely the ships’ operating cost,

fuel costs and the port charges. There are two kinds of ships operating in this realm. One

type is company-owned and the other type is chartered. The operating costs of a company-

owned ship are different from those of a charter. Companies make decisions about using

their own resources or using chartered ships in a way that minimize their total cost (Pinedo,

2009).

Customers’ private information: Service processes involve significant customer

inputs, which, in many cases, require that services are produced and consumed

simultaneously. Scheduling systems are used to synchronize the timing of the use of the

different types of resources and the presence of customer inputs. To compute optimal

schedules, ideally the scheduler should know the complete customer availability

information within the scheduling horizon. However, collecting availability information

across a large number of customers requires a significant amount of communication

between the scheduler and the customers. This amount of communication can incur high

administrative costs if the collecting procedure is not automated, which is the case of most

existing service scheduling systems. The issue is further complicated by the fact that

customers are reluctant to reveal their complete availability because their personal schedule

is their private information and revealing too much availability increases the possibility

that a customer will be assigned an undesirable time slot.

 Consider the scientific facility scheduling environment. The CLS has two calls for

proposals each year resulting in a scheduling cycle of 6 months. Bob needs to conduct his

experiment in the facility. He can be available anytime from January to August. However,

he prefers the experiment to be scheduled as early as possible because there is a possibility

that he may go on vacation sometime during the summer. Based on his previous experience

and his knowledge of the profile of the current year’s applications, he believes that

experiments with similar weights to his are likely to be offered a service time slot two

12

months after the originally requested dates. Therefore, statistically, if he reports January to

April as his available time window, he will have a much higher chance of being assigned

time June or even sometime earlier. Therefore, based on his calculation and his knowledge

base, Bob may indicate only January to April, which is not his complete availability.

For another example, consider meeting scheduling in which participants’ calendars are

usually considered private objects and so their information as confidential. There are

situations when participants do not want to make their available time public. For example,

people usually will not hire a consultant or schedule an appointment with a dentist who

indicates that he/she has plenty of free time. Because of the social attribution of “

importance ” to people with little free time, many people may not be willing to publish

their actual availability (Wainer et al. 2007).

Cloud computing systems that allow users to acquire computing resources and pay for

it on a short-term basis are another example of service scheduling where customers have

private information. From the economics literature (Zaman and Grosu 2011), it is evident

that a fixed-price mechanism cannot support efficient resource allocation and cannot

guarantee that the user who values an item the most will get it. Achieving economic

efficiency in resource allocation should thus be based on the perceived values of the users.

User value is the user’s private value; it is the highest price they are willing to pay for a

given service. In many cases, users are reluctant to reveal their values and may fear that

the provider will take advantage of their information and use it to charge higher prices for

their required services.

For multiple reasons, customers are motivated to protect their private information.

Therefore, service scheduling systems should be designed so that they are able to elicit the

necessary customer’s private information required to compute high-quality schedules. The

computation spent on eliciting customers’ availability information is referred to as a

system’s elicitation complexity.

1.4 Scope and Approach

 The objective of this research is to develop theories and approaches to service

scheduling problems. Economic-based models (auction-based in particular) are used as the

13

anchor from which to tackle the challenges in commercial service scheduling and non-

commercial service scheduling problems. The contributions can be summarized as follows:

(1) presenting an integrated framework that addresses the scheduling challenges in general

service scheduling problems, (2) developing economic-based approaches for both

commercial and non-commercial service environments, (3) showing the effectiveness of

the framework through its application to various application domains, and (4) designing

and implementing a prototype to validate the computational properties of the proposed

framework.

1.5 Thesis Organization

The rest of the thesis is structured as follows. Chapter 2 provides a brief overview of

traditional scheduling approaches to service scheduling and reviews the literature on agent-

based service scheduling. Chapter 3 describes the general service scheduling problem

studied in this thesis. An iterative bidding framework for services scheduling is presented

in chapter 4, followed by that same framework adapted for scheduling non-commercial

services in chapter 5. In chapter 6 I demonstrate the applicability of the proposed

framework in two different application domains. The design and implementation of a

prototype of the proposed approach and the simulation results are presented in Chapter 7

and finally, chapter 8 summarizes the thesis.

14

Chapter 2 Literature Review

This chapter presents a review of service scheduling models. General scheduling

problem definitions are introduced first, followed by an overview of traditional centralized

service scheduling approaches. The focus is then narrowed to the literature on agent-based

service scheduling. Finally, the related literature is summarized, with an emphasis on how

each work addresses the challenges in service scheduling and identifying the presented

research position in relation to the big picture of existing approaches.

2.1 Definitions of the scheduling problem

Scheduling is a decision-making process which deals with the allocation of resources

to tasks over given time periods under imposed constraints; its goal is to optimize one or

more objectives. Bowman (Bowman, 1959) presented a simple definition from operations

research field perspective: The scheduling problem in its most simple form consists of a

number of jobs to be done on a number of machines, each job having a number of

operations to be performed by the various machines in a specified sequence; what feasible

schedule covers the least total time?

Pinedo (2008) and Brucker (2004) provide more complete description of various

scheduling problem models. Although there are a variety of definitions, most of the

scheduling problems can fit into a four element: resources, jobs, constraints, and

objectives. Figure 2-1 presents the relationships of these elements: resources are assigned

to jobs over time, this assignment process is restricted by the constraints and guided by the

objectives. Note that, in the context of scheduling, indicating that a resource is assigned to

a job does not mean that that resource is dedicated to that job. A more accurate

interpretation would refer to a period of processing time from a resource is assigned to a

job. In Figure 2-1, the dotted arrow pointing from the Processing Times to the “Assigned”

action reflects this interpretation (Wang, 2007).

15

Figure 2-1 Four-element structure of scheduling problems (Wang, 2007)

In general, resources and jobs can take many forms. The resources may be a machine,

operating room, airport gate, processing units in a computing environment, and so on. The

jobs may be transporting a cargo, take-offs and landings at an airport, surgery, executions

of computer programs, etc. Constraints are a set of conditions that must be satisfied, e.g.

precedence constraints, time window constraints on release time, deadlines, or resource

capacity constraints. Objectives may be the minimization of makespan, or of total cost,

maximization of the resource utilization, or of the throughput. A solution to a scheduling

problem is called feasible schedule if it satisfies all constraints of the problem. Otherwise,

it is called an infeasible schedule.

2.2 Centralized Service Scheduling Approaches

Traditional service scheduling approaches usually assume a centralized environment in

which a scheduler has all the information needed to compute the schedule. Various service

scheduling models have been proposed, implemented, and evaluated, some for several

decades. Generally speaking, the solution methods form two distinct classes: exact methods

and heuristic methods. Exact methods are guaranteed to find a solution if it exists, and

typically provide some indication if no solution can be found. However, given the NP-hard

nature of service scheduling models, exact methods are not practical for non-trivial

problem instances. Heuristic methods do not guarantee optimization, but typically assure,

experimentally or analytically, some degree of optimality in their solutions. They are

usually rapid and practical ways of solving larger-sized scheduling problems. In this

16

section, we briefly review some general heuristic methods and their application to service

scheduling problem.

2.2.1 Genetic algorithms

Genetic Algorithms (GAs) are a set of global search and optimization methods for

solving complex optimization problems with a large search space. With the objective of

reaching the “best” solution, GAs systematically evolve a population of candidate solutions

by using evolutionary computational processes inspired by genetic variation and natural

selection. One of the earliest GAs for scheduling was proposed by Davis (1985). Davis

suggested an indirect representation which can be decoded to form the actual schedule of

the scheduling problem. GAs have been applied to many service scheduling problems. For

example, Ghaemi et al. (2007) proposed a co-evaluation algorithm for university

timetabling problems. Paechter et al. (1995, 1996) apply a memetic algorithm for course

timetabling. The memetic algorithm explores the neighbourhood of the solution obtained

by GA and navigates the search towards the local optima. Graph colouring heuristics were

used by Burke et al. (1995, 1996, & 1998) to improve and accelerate the search process in

timetabling. Burke et al. (1995) also developed a hybrid GA to ensure that the most

fundamental constraints are never violated in timetabling problem. They showed that the

algorithm is guaranteed to produce a feasible solution by hard coding the constraints and

using a hybrid crossover operator. In addition to timetabling, GAs have also been used to

solve scheduling problems in healthcare, such as patient scheduling and nurse scheduling

(Petrovic & Morshed, 2011; Aickelin & Dowsland, 2001).

2.2.2 Simulated annealing

Simulated Annealing (SA), is a neighbourhood search method. Rather than always

choosing the direction of the best improvement, which gives the steepest-ascent, SA

initially chooses random or semi-random directions, but over time comes to prefer the

direction of the best improvement. The direction selection process is controlled by a sort

of temporal parameter, which is usually called the ‘temperature’ by analogy with real

annealing. SA approaches require a schedule representation as well as a neighbourhood

17

operator for moving from the current solution to a candidate solution. Annealing methods

allow jumps to worse solutions and thus often avoid local sub-optimal solutions

(Kirkpatrick et al., 1983). The quality of solutions produced by an SA implementation

depends on the correct choice of solution space and neighbourhood, as well as of the

parameters that govern the cooling schedule. SA has been applied to service scheduling for

several years. Gunawan et al. (2007) used a hybrid algorithm which consists of an integer

programming, a greedy heuristic and a modified SA algorithm for solving large-scale

timetabling problems. Bailey et al. (1997) solved a nurse scheduling problem using SA and

compared its performance with integer programming and with a GA. They found that, for

a given quality, their algorithm was faster than the GA and integer programming for the

set of nurse scheduling testing problems.

2.2.3 Tabu search

Tabu search (TS) is similar to SA in that it also moves from one schedule to another,

with the next schedule being possibly worse than the one before it. The difference is in the

mechanism by which the moves to new schedules are accepted. A TS maintains a list of

tabu moves, representing schedules which, having been visited recently, are forbidden in

order to diversify the directions in which search proceeds. TS has been proposed to

compute high-complexity large-sized health care service scheduling. Dowsland (1998)

used tabu search with strategic oscillation for nurse scheduling. The objective is to ensure

an adequate number of nurses are on duty at all times while incorporating individual

preferences and requests for days off in a way that is seen to be fair to all nurses. The

method uses a variant of TS which oscillates between solutions with feasible nurse

coverage and then applies nurses’ preferences to improve the solution. Demeester et al.

(2010) proposed a hybrid TS algorithm for patient admission scheduling. It automatically

assigns patients to beds in the appropriate departments by considering patients’ medical

needs as well as their preferences, while keeping the number of patients in the different

departments balanced. The method uses a TS algorithm hybridized with a token-ring and

a variable neighbourhood-descent algorithm. TS has also been applied to university course

timetabling problems (Hertz, 1991; Hertz, 1992).

18

2.2.4 Constraint logic programming

Many service scheduling problems can be modelled as constraint satisfaction problems

(CSP). In a CSP, values which satisfy a set of constraints must be found for a set of discrete

variables with finite domains. Constraint satisfaction is a search procedure that operates in

the space of constraint sets rather than in that of solution sets. Constraint Logic

Programming (CLP) provides the ability to declare variables and their domains for CSPs.

Examples of applying CLP to service scheduling problems can be found in Gueret et al.

(1995), Henz and Wurtz (1995), and Abdennadher and Schlenker (1999).

2.2.5 Approaches considering customer preferences and dynamic environments

Due to the computational complexity involved in creating schedules that

simultaneously consider customer preferences and scheduling objectives, there has been

limited research in centralized service scheduling that considers customer preferences.

Wang and Gupta (2011) proposed a heuristic approach for patient scheduling which

captures customer preferences. Their method has two components. The first one

dynamically learns a patient’s preferences and updates estimates of acceptance

probabilities. The second one uses the acceptance probability information to make booking

decisions. Jaumard et al. (1998) proposed an integer programming model accommodating

nurses’ work preferences. The problem was solved using Dantzig-Wolfe decomposition.

The objective was to minimize salary costs and maximize the nurses’ preferences. Azaiez

and Sharif (2005) developed a 0-1 linear goal programming model for nurse scheduling.

They obtained the nurses’ preferences for shift times from a survey consisting of 15

multiple choice questions. The nurses’ preferences were combined with hospital

constraints to develop their linear goal programming model.

Centralized service scheduling usually deals with dynamic environments by using

simulation-based approaches. A simulation is the imitation of the operation of a real-world

process or system over time (Groothuis & Merode, 2001). An advantage of simulation

studies over heuristic approaches is the ability to model complex systems and represent

environmental variables. Hancock and Walter (1984) conducted a simulation study based

on historical data of patient arrivals. The simulation was used to determine the number of

19

procedures that would be performed each day of the week. Groothuis and Merode (2001)

applied the discrete event simulation technique to optimize the use of catheterization

capacity in a hospital. Ho and Lau (1999) proposed a simulation-based method for

evaluating the impact of different combinations of dynamic environmental factors such as

no-shows, service times, and the number of customers per service session on the quality of

service schedules.

The above-mentioned traditional scheduling methods encounter great difficulties when

they are applied to real-world situations, as they use simplified theoretical models and are

essentially centralized in the sense that all computations are carried out in a central

computing unit. The intelligent agent technologies, on the other hand, suggest an

innovative, lightweight approach to scheduling problems. The main characteristic of

intelligent agents is their autonomy. Each agent makes its own decisions, based on its

internal state and on the information it receives from its environment; thus, each agent can

keep its independency from the rest of system. In other words, each agent, according to its

own private information, may use a different policy independently from the rest of the

system. Agent-based systems are inherently distributed and robust in dynamic

environments. Agents can retrieve information from different resources, analyze it, filter

redundant information, select and then present the data by means of an interface that is

attractive to users. Another feature of agents is their sociability; agents can communicate

with each other and exchange any kind of information. This sociability, makes it possible

for them to overcome any inconsistency among their local schedules and resolve errors and

collaborate in the process of scheduling. Based on the properties of agent-based systems,

an agent-based approach should be a good candidate for service scheduling problem.

2.3 Agent-based Scheduling

Agent-based scheduling can be defined as an approach in which scheduling problem

are decomposed among local decision makers who may have conflicting objectives but

who coordinate with each other through certain communication mechanism to achieve

overall system objectives. Local decision makers are called agents (Sycara et al. 1991,

Kouiss et al. 1997, Shen 2001). Agents’ properties include autonomy, so they can operate

20

without human interaction, a social ability to communicate with other agents, pro-

activeness, which allows them to take on an initiative role, and reactivity, to respond to

changes in the system (Rahimifard and Newman 1998).

Agent-based scheduling has received considerable attention in manufacturing areas

(Burke and Prosser 1991, Chung et al. 1996, Maturana and Norrie 1996), and it has also

been applied to other application domains such as network power scheduling and packet

scheduling (Chiussi and Francini 2000, Hohlt et al. 2004, Vaidya et al. 2005). Supply chain

optimisation is also another important application area for agent-based scheduling. (Tsay

et al.2000, Lau et al. 2005a, 2005b, Frayret 2009).

Several papers provide reviews of the literature on agent-based scheduling (Sen 1997,

Tharumarajah 2001, Shen 2002, Caridi and Cavalieri 2004, Giret and Botti 2004, Shen et

al. 2006). Tharumarajah (2001) provides a classification for the literature based on the

following attributes: problem decomposition, problem-solving organisation, coordination

and control. Problem decomposition describes how the global scheduling problem is

decomposed between multiple decision makers (i.e. agents). Problem decomposition

approaches are categorized based on three views: resource view, task view and hybrid

view. The other two attributes focus on how agents communicate and cooperate with each

other in order to achieve improved global performance. Shen (2002) classifieds the

reviewed papers in terms of four issues in agent-based manufacturing scheduling. Shen et

al. (2006) extended that work to include studies on agent-based approaches to

manufacturing process planning. The issues are identified as agent encapsulation,

coordination and negotiation protocols, system architectures and decision schemes for

individual agents. Caridi and Cavalieri (2004) propose a taxonomy that includes

application domain, agent, control, organisation and communication for classifying multi-

agent systems. .

This section provides a brief literature review and classifies the papers based on three

attributes: information flow structure, communication mechanism and schedule generation.

With respect to information flow structure, the literature can further be classified into two

main groups: mediated structure and autonomous structure. In a mediated structure there

is a coordinator agent that other agents communicate through. Each agent makes its own

21

local schedule considering its goals, and then communicates that schedule to the

coordinator agent. The coordinator agent evaluates the local schedules with respect to the

overall system objectives, resolves potential conflicts, and finalizes the scheduling

decisions. The scheduling system proposed by Lau et al. (2005) has a mediated structure.

Their supply chain is modelled as a multi-agent system, with three types of agent: project

agent, contractor agent and middle agent. Companies aim at completing a project, which

consists of a network of operations that act as project agents, and contractor agents offer

their bids for performing those operations. A middle agent facilitates and coordinates the

scheduling process between project agents and contractor agents. Babayan and He (2004)

use a mediated structure for scheduling jobs in a flexible flow shop. In this system, local

agents correspond to the jobs, while a manager agent decides whether rescheduling should

be performed at any point and sets the rules of the game. Cooperative game theory is used

to regulate the competition among the agents for scheduling their jobs. The game consists

of two steps. The first step determines the agents that are eligible to schedule their jobs,

and the second step enables competition among the agents by allowing them to schedule

their jobs. Wang et al. (2009) solve the job shop scheduling problem by using auction

theory. Their proposed system consists of two types of agents: job agents and resource

agents. Job agents are associated with each job and they participate in the auction to process

their jobs. Each bid includes a latest completion time and the price for completing a job

before a specified time. A resource agent is associated with all of the resources in a job

shop; it is considered as a mediator agent that can determine the resource allocation to the

job agents that maximizes the sum of bidder prices.

In an autonomous structure, agents communicate directly with each other, and the

interactions between agents are not coordinated by mediator agents. Duffie and Prabhu

(1994) use an autonomous structure for manufacturing systems. Each resource is assigned

to an agent. The information regarding a new job is passed to resource agents when a job

arrives. The resource agents affected by the arrival of this job develop alternative

scheduling plans. Scheduling plans may conflict because resource agents act

independently. One or more agents discover the conflicts and send a feedback report to the

local agents. With this feedback, local agents develop alternative local plans. In a study by

22

Sycara et al. (1991), each local agent determines its overall demand in time for each

resource and presents this data to the resource agents. After receiving all the demands from

the local agents, each resource agent starts to schedule the most critical operations. The

peak of the aggregate demand determines the critical operations. The critical operations are

scheduled based on the survivability measure. After scheduling each operation, local agents

update their demand information. Information exchange between local agents and resource

agents continues iteratively until a feasible schedule has been achieved.

With respect to the second classification attribute, communication mechanism, the

literature can be broken into three main groups: Contract-Net protocol, economic models,

and iterative refinement. In the communication mechanism based on Contract-Net

protocol, a new job broadcasts its arrival and requests bids for its processing. The agents

(cells or machines) prepare bids. The best bid is selected by a manager agent according to

some criteria. Smith (1980), Smith and Davis (1981), Parunak (1987), Shaw and Whinston

(1988) and Lima et al. (2006) are examples of studies that apply the Contract-Net protocol

to the communication mechanism between agents.

Several economic models that support distributed rational decision making were

studied in Sandholm (1999); among them, auction is the most relevant to scheduling.

Auctions assume game-theoretic agent behavior. The equilibrium state is defined by the

condition that agents play a best-response strategy to each other and cannot benefit from a

unilateral deviation to an alternative strategy. In Kutanoglu and Wu (1999), iterative

auctions are applied to the job shop scheduling problem. The focus is to investigate the

links between combinatorial auctions and Lagrangean relaxation, and then to design

auctions based on Lagrangean-based decomposition. In MacKie-Mason et al., (2004) and

Wellman et al., (2003), price prediction and bidding strategies for simultaneous auctions

are studied in the setting of market-based scheduling. Simultaneous auctions sell multiple

goods in separate markets simultaneously. Agents have to interact with simultaneous but

distinct markets in order to obtain a combination of resources sufficient to accomplish their

task. These auctions fail when agents bid cautiously to avoid purchasing an incomplete

bundle.

23

The third communication mechanism is iterative refinement. In this mechanism,

scheduling information is exchanged between agents to eliminate conflicts and to revise an

existing schedule to achieve better system performance (Sycara et al., 1991, Liu and

Sycara, 1993). In Liu and Sycara (1993), the resource agents generate initial schedules

using the earliest due date rule. Since resource agents act independently, any generated

schedule may violate precedence constraints. A coordinator agent extract the information

about the operation of each job and send it to the local agent. Next, the local agent identifies

and eliminates any precedence violations. The procedure continues in an iterative manner

until a feasible schedule is generated. In later studies, the same authors propose

mechanisms for loop prevention (Sycara and Liu 1994, 1995).

The third attribute applied to classify the literature, schedule generation, describes how

the sub-problems are solved by the agents. Bid preparation (Yang et al. 1993), dispatching

rules (Kouiss et al. 1997, Hadavi et al. 1992), heuristic methods (Sycara et al. 1991,

Trentesaux et al. 1998), constraint-based branch and bound (Wang et al. 2009) and mixed

integer programming (Babayan and He 2004) are some of the methods found in the

literature.

 It is important to emphasise that, although there are several review papers on agent-

based scheduling, there is no survey of the literature covering agent-based service

scheduling. The next section provides that review of agent based service scheduling.

2.4 Agent-Based Service Scheduling

Agent-based service scheduling is essentially a distributed approach that is flexible,

efficient, and adaptable to real-world dynamic environments. By applying agent-based

service scheduling architecture, the distributed nature of service scheduling can be

modelled naturally. In addition, each agent can be assigned different objectives. In this

way, the complicated multiple objectives in service scheduling can be decomposed to

individual agents. This decomposition significantly simplifies the modelling of the

objectives. Agent-based scheduling systems have been proposed for several important

service sectors. However, there is a lack of general problem formulations, classifications,

solution frameworks, and test beds in service scheduling. Therefore a domain-specific

24

approach is applied here. Several representative application domains are reviewed through

the lens of how agent-based scheduling addresses service scheduling challenges. Since the

challenges of distributed scheduling information and complicated multiple objectives have

been naturally modelled in agent-oriented design paradigms, in this section, the focus is on

how agent-based scheduling addresses the challenges of dynamic environments and users'

private information.

2.4.1 Meeting scheduling

A meeting scheduling problem signifies a decision-making process affecting several

users, in which it is necessary to decide “when” and “where” one or more meetings should

be scheduled (Hassine et al., 2004). Since it usually involves inputs from multiple users,

meeting scheduling can be classified as a service scheduling problem. Agent-based

meeting scheduling approaches have been proposed in the literature. Some of them are

distributed implementations of constraint-satisfaction algorithms in the multi-agent

systems environment. In the multi-agent meeting scheduling system developed by Franzin

et al. (2002), agents communicate over several proposal phases. Whenever agents

communicate during the proposal phases, the information they exchange can be used to

build an approximation of the constraint set(s) of the other agents. In other words, each

agent in the proposal phase is able to elicit other agents’ availabilities. To deal with the

challenge of a dynamic environment, Hassine et al. (2004) formalize meeting scheduling

as a dynamic valued-constraint satisfaction problem. Agents negotiate with each other to

achieve a schedule that maximizes global utility. In the negotiation process, a host agent

proposes a set of time slots as a solution to the other agents who will participate in the

meeting. Each participant agent that has received this message ranks the obtained time slots

according to its preferences and constraints and returns them to the proposer/host agent.

The host/proposer agent tries to find the best solution, one which maximizes its utility,

from the received time slots. The same process continues until an agreement is reached

among all of the agents. Course timetabling at universities, which can be seen as a type of

meeting scheduling problem, is modelled as a constraint satisfaction problem by Meisels

25

et al. (2003). An inter-agent negotiation protocol is used to overcome inconsistencies

among local schedules.

The presence of users’ private information is also addressed in agent-based meeting

scheduling. Wainer et al. (2007) defined four levels of privacy protocol (or modes of

agents’ interaction) to model users’ private information, namely, full information,

approval, voting and the suggestion protocol. These modes of interaction are defined based

on whether the participants are comfortable sharing their private information during the

negotiation process with the host or not. In Modi et al. (2005), the agents’ private

information is modelled as their utilities. Each agent makes a decision about accepting a

meeting time based on how the decision will impact its own utility. The utility of a time

slot is calculated based on the difference between the value of a meeting scheduled in the

time slot and the predicted cost of continued negotiating with other agents.

Crawford et al. (2004) designed a mechanism for meeting scheduling which is

incentive-compatible. A mechanism is incentive-compatible if it is every agent’s dominant

strategy to reveal their private utility values truthfully. The mechanism motivates agents to

reveal their valuation for each of the feasible schedules. The schedule that maximizes the

social welfare is selected. Each agent’s payments are VCG auction payments, which

justifies the incentive compatibility of the mechanism. Iterative auction are also used in

agent-based meeting scheduling. In a course timetabling system proposed by Sönmez and

Ünver (2007), students are assigned a certain amount of bid endowments which they use

to bid for different schedules of courses. Students are modelled as price-takers under a

belief system. In other words, students’ bids are based on their guess about the market-

clearing price they will face. Krishna and Ünver (2007) also proposed a course bidding

system and conducted a field test in the spring 2004 semester at the Ross School of

Business, University of Michigan. In their bidding system, student bids are used to infer

students’ preferences for courses and to determine their course priorities. In addition to

handling users' private information, the challenge of dynamic environments is addressed

in agent-based meeting scheduling (Sönmez and Ünver 2007).

26

2.4.2 Healthcare

The agent-based approach, in which patients and hospital resources are modelled as

autonomous agents with their own goals, reflects the decentralized structures of the health

care environment. Most of the agent-based healthcare scheduling literature focuses on the

challenge of the distributed and dynamic environment of healthcare management. In a

recent study of operation room scheduling, Zhiming (2011) developed a two-stage

approach which addresses the challenges of dynamic scheduling. Mixed integer

programming is used in the first stage for assigning surgical operations to each operation

room. The second stage utilizes a dynamic rescheduling approach, in which agents

reallocate tasks using the contract net protocol in a way that minimizes the cost of the

operation rooms.

Agent-based approaches have also been proposed for patient scheduling. Hannebauer

et al. (2001) formulated patient scheduling as a distributed constraint optimization problem.

They proposed a Multi-phase Agreement Finding (MPAF) algorithm for coordinating the

agents and covering the constraints. The MPAF consists of two phases, the proposal phase

and the assignment phase. In the proposal phase, a diagnostic unit agent selects a set of

feasible appointment time slots based on its optimization criteria and proposes these to the

patient agent. In the assignment phase, the patient agent decides whether to accept the

proposed time slots. This decision is made based on the agent’s scheduling constraints and

its scheduling objective, which is to minimize the waiting time between appointments.

Other agent-based patient scheduling approaches model the scheduling environment as a

market. Given the distributed and dynamic nature of patient scheduling, markets can

efficiently distribute scarce resources among patients. Paulussen et al. (2003) developed a

bidding mechanism for patient scheduling, in which patient agents communicate their

(private) utility for certain time slots of a resource via a price mechanism. The price that

patient agents are willing to pay is the difference between the cost-value of the current

allocation and the cost-value for the desired appointment. Resources are assigned to the

patients that are willing to pay the highest price (to the patients who gain the highest health

sate improvement). The scheduling objective is to maximize resource utilization and

minimize patient’s hospital time. For patients who need to schedule several related

27

appointments, a multi-round auction mechanism is proposed by Hosseini et al. (2011). In

this approach, patients calculate the value of obtaining each resource by solving their

Markov decision problem. In each auction round, agents submit their bids; the auctioneer

determines the winner and then moves to the next step. The objective of winner

determination is to minimize the global regret values of patients. A patient’s regret value

on a resource is defined as the difference in value between getting the resource and not

getting the resource, given a patient’s current health state.

Agent-based approaches have also been proposed for nurse timetabling. Grano et al.

(2009) proposed an auction-based nurse scheduling approach that considers both nurse

preferences and hospital requirements. In the auction, nurses bid for their work shifts and

rest days using points instead of money values. The nurses’ private information, which

consists of their availability and preferences for specific days and shifts, are thereby

obtained in the bidding stage. Winners are selected using an optimization model which

seeks to award shifts to the highest bidders while simultaneously meeting hospital

requirements.

2.4.3 Transportation

An agent-based approach have been adopted in transportation planning and scheduling

research for more than two decades. Fischer et al. (1995) pointed out that transportation

planning and scheduling are inherently distributed, complex tasks. Geographically, trucks

and jobs are distributed and maintain some level of autonomy. To implement traditional

methods, a scheduler must gather a large amount of information to a central place where

the solution can be computed. However, using an agent-based approach, an agent only

requires local information. In their review on multi-agent systems in logistics, Lang et al.

(2008) concluded that transportation planning and scheduling problems have specifications

that comply with the particular capabilities of agent systems. Specifically, these systems

are able to deal with inter-organizational and event-driven scheduling settings that meet a

supply chain’s planning and execution requirements. Davidsson et al. (2005) also identified

a number of the positive aspects of the agent-based approaches to logistics. Existing

surveys (Lang et al., 2008; Davidsson et al., 2005) mainly focus on research addressing the

28

distributed and dynamic aspects of transportation services. The rest of this section provides

a review of papers focusing on the challenge of the presence of customers’ private

information, which is mainly tackled by the design of the various auction systems in the

context of multi-agent systems.

Auction mechanisms, especially combinatorial auctions, have been adopted by a large

number of shippers and 3PL (third-party logistic) providers. Leading companies such as

Wal-Mart, Procter & Gamble and Sears have used combinatorial auctions to reduce their

logistic costs (Sheffi, 2004). Song et al. (2003) proposed an auction-based mechanism, the

Collaborative Carrier Network, for carriers to exchange their excess capacities in a TL

(truckload) spot-market. Through this network, carriers can buy and sell transportation

capacities. The network is structured as a group of auctions launched by carriers. Each

carrier can be both a contractor and a sub-contractor in different auctions. A carrier will

launch, at most, one auction at a time, and if new loads come in during the previous auction

round, they will be simply held and until the next round. The network attempts to ease the

exchange of information, lower transaction costs and make it possible for both carriers and

shippers to access larger markets.

Kwon et al. (2005) proposed an iterative auction mechanism for TL transportation

procurement. Each agent (carrier) bids for a package of lanes. A descending multi-round

format is used to allocate the lane packages to agents. Agents compute their preferred

packages based on their cost structures and submit them to the auctioneer. The auctioneer

then performs a provisional allocation of lanes to the agents by solving a winner

determination (WD) problem with the objective of minimizing the payments. Simulation

results have indicated that both carriers and shippers reduced their cost through a better

collaboration.

For the LTL (less than truckload) setting, Krajewska et al. (2006) proposed an auction

model for the collaboration among individual freight forwarding entities. Cooperating

forwarders exchange their orders through a combinatorial auction. The auction is

individually rational, which means each individual partner increases their profit by

participating in the coalition.

29

Effective collaboration among agents in a distributed system leads to a better utilization

of resources and, thus, greater efficiency and profit for the whole system. However, before

entering into the partnership, agents have to agree upon how to share the profit that results

from the collaboration. In a collaborative environment where, for example, carrier

companies belong to a common holding organization, profit sharing may not require

incentive-compatible mechanisms. Gujo et al. (2009) proposed an exchange mechanism,

called ComEx, for inter-enterprise logistic services. In ComEx, transportation capacity in

each division is managed by a profit centre which can exchange delivery orders with other

profit centres based on the geographical zones and time windows of the orders. The profit

gained is shared proportionally among the profit centres based on the cost savings of each

centre that participated in the exchange. A profit precondition for this type of sharing is

that ComEx has access to the cost saving data of the profit centres. ComEx works well in

a collaborative setting. However it is not suitable for game theoretic settings where profit

centres do not belong to a common holding organization and so they may be reluctant to

share their cost savings data. In this case, a profit distribution mechanism based on game

theory and combinatorial auction should be applied (Krajewska et al., 2006; Gomber et al.,

1997). Other agent-based models in transportation services distribute the benefits of

collaboration from a loss-sharing rather than a profit-sharing perspective (Schönberger,

2005; Schönsleben et al., 2004). Krajewska et al. (2006) presents an overview of these

benefit sharing models.

2.4.4 Computing

Modern computing services aggregate a large number of independent computing and

communication resources and data stores. They are built onto the bases of distributed

computing, grid computing and virtualization. A computing service environment is

inherently complex, heterogeneous and dynamic. Service resource management systems

need to provide mechanisms and tools that allow resource consumers (end users) and

providers (resource owners) to express their requirements and facilitate the realization of

their goals. This objective necessitates seamless scheduling of providers’ resources to

support the dynamic scaling of user activities across multiple domains. Scheduling

30

computing services under varying loads, diverse application requirements and

heterogeneous systems is a challenging problem. An agent-based approach can be an

effective way to realize information sharing, given the unpredictable dynamism and

increasing heterogeneity in computing service scheduling.

With the aim of tackling the challenge of dynamic environments in computing services,

An et al. (2010) proposed a distributed negotiation mechanism for dynamic and uncertain

resource demand and supply in computing as a service (cloud computing) platforms. The

mechanism is an extension to the alternating offers protocol with the added feature of

allowing agents to decommit from contracts at a cost. The mechanism facilitates the agents’

negotiation over both a contract price and a decommitment penalty. They evaluated their

approach experimentally using representative scenarios and workloads, which showed that

their model achieves a higher level of social welfare compared to both combinatorial

auctions and the fixed-price model used by Amazon’s EC2.

Scheduling mechanisms for computing services typically deal with the dynamics of

both resource and service markets. Sim (2012) proposed a concurrent negotiation

mechanism for agents to negotiate in multiple interrelated e-Markets. He developed an

agent-based test bed consisting of provider agents and consumer agents acting on behalf of

resource providers and consumers, respectively, along with a set of broker agents. The

mechanism consists of: (1) a bargaining-position-estimation strategy for the multilateral

negotiations between consumer and broker agents in a service market, and (2) a regression-

based coordination strategy for concurrent negotiations between broker and provider

agents in resource markets. The negotiation outcomes between broker and provider agents

in a resource market can potentially influence the negotiation outcomes between broker

and consumer agents in a service market. Using this mechanism, the broker agent accepts

service requests from consumer agents, and purchases resources from provider agents. The

collection of resources that satisfy consumer agents' requirements is composed

dynamically. Mobile agents are also designed in this way, providing scalability in cloud

computing. In Singh and Malhotra (2012), a mobile agent is capable of transporting its

state from one environment to another with its data intact and able to perform appropriately

31

in its new environment. The agents are supported with algorithms to search for another

cloud with better response time when the most-approachable cloud becomes overloaded.

To deal with the challenge of customer’s private information, game-theoretic based

methods have been proposed to solve the resource allocation problem in network systems.

Gagliano et al. (1995) presented an auction allocation of computing resources. In their

proposed auction, computing tasks are provided sufficient intelligence to acquire resources

by offering, bidding and exchanging them for funds. Wolski et al. (2001) compared

commodities markets and auctions in grids in terms of price stability and market

equilibrium. Zaman and Grosu (2011) studied and implemented combinatorial auction-

based mechanisms for efficient provisioning and allocation of computing services (VM

instances) in cloud computing environments, with the objectives of maximizing the

revenue of the service provider and providing an efficient allocation of resources. A recent

survey on market-oriented resource management and scheduling in computing services can

be found in Garg and Buyya (2011).

Table 2-1 summarizes the agent-based scheduling approaches aimed at addressing service

scheduling challenges.

Table 2-1 Agent-based scheduling approaches that address service scheduling challenges

Agent-based service

scheduling approaches

Dynamic environment objective

Private information

Franzin et al., (2002), P.

Modi et al., (2005),

Crawford et al., (2004),

Krishna and Ünver (2004),

Grano et al., (2009)

Not addressed

Maximize the social welfare by

maximizing the customer’s

satisfaction

Addressed

Hassine et al., (2004),

T.Sönmez and M.Ünver

(2006),

Addressed Maximizing the global utility and

ensuring near fulfillment of

customers’ preferences

Not Addressed

Zhiming(2011) Addressed Minimize the cost of the

operation rooms including the

overtime cost

Not Addressed

Wainer et al., (2007) Not Addressed Minimize the cost of the

operation rooms including the

overtime cost

Addressed

32

Muller et al., (2001),

Hosseini et al., (2011)

Not addressed Maximize patient satisfaction by

considering patient preferences

and minimize patient waiting

time between appointments

Addressed

Paulussen et al., (2003)

Addressed

Maximize the resource utilization

and minimize patient’s hospital

stay time

Not addressed

Meisels et al. (2003),

Hannebauer et al. (2001)

Not addressed Minimize the patients’ waiting

time between appointments

Not addressed

Kwon et al., (2005),

Krajewska et al. (2006),

Sheffi, 2004, Song et al.

(2003)

Not addressed Minimize the total shipping cost Addressed

An et al. (2010), Sim (2012) Addressed Maximize the social welfare Not addressed

Gagliano et al. (1995),

Zaman and Grosu (2011),

Wolski et al. (2001)

Not addressed Maximizing the revenue of the

service provider as well as

providing an efficient allocation

of resources.

Addressed

2.5 System Design Issues

Adopting the agent-based approach has made it possible to model the challenges of a

distributed environment and complicated multiple objectives in service scheduling

naturally in the agent-oriented architecture. The main design issue is how to design agent-

based scheduling systems such that they can effectively address the challenges of a

dynamic scheduling environment and the presence of customers’ private information. The

previous section reviewed typical agent-based scheduling approaches aimed at addressing

these challenges from a domain-specific perspective. This section presents a summary of

the existing agent-based service scheduling approaches from the system design perspective

and identifies some promising research opportunities.

2.5.1 System structures

Most of the available agent-based service scheduling system designs adopt the physical

decomposition approach for agent encapsulation. Service providers who control the service

resources are modelled as provider agents, and users who request services are modelled as

33

customer agents. In some cases, such as carrier collaboration in transportation services, a

service provider can also request services from other providers. In this situation, a service

provider will play the role of provider agent as well as that of customer agent. Given the

agent encapsulation scheme, agent system architectures provide the organizing framework

within which agents interact with each other. In the context of agent-based service

scheduling, two types of system structures are usually adopted, namely mediated structure

and autonomous structure. A mediated structure utilizes a mediator to coordinate the

allocation of resources to users. A service provider agent often assumes the role of

mediator. For example, in healthcare scheduling, provider (resource) agents usually take

the role of mediator and coordinate the resource allocation among patients (Paulussen et

al., 2003; Hannebauer and Muller, 2001; Hosseini et al., 2001).

Autonomous structure appears in the settings, where a service provider also requires

services from other providers, that is, an agent is both a provider and a customer. In

autonomous structure, interactions between agents are not coordinated by mediator agents.

Instead, agents optimize their schedules by exchanging their resources (Krajewska and

Kopfer, 2006, Gujo et al., 2009). In some service scheduling settings, such as meeting

scheduling or workforce scheduling, there are no explicit resource times to be allocated.

Instead, the main issue is to find a meeting time or work schedule which is agreeable to all

participants. For example, in Becker and Hans (2006), agents representing operation room

staffs negotiate with each other, based on the Nash bargaining solution, to schedule their

work shifts. Autonomous structure is also often used in agent-based meeting scheduling

applications (Hassine et al., 2004, Modi et al., 2004, and Franzin et al., 2002).

2.5.2 Negotiation mechanisms

Given its inherently decentralized nature, agent-based service scheduling must

coordinate agents’ behaviour using some type of negotiation protocol. The most commonly

used protocols are the Contract Net protocol (CNP) and economic based models, such as

auctions. CNP is essentially a general tendering procedure. However, unlike auctions, the

awarding decision may not be related to price or cost factors. To summarize, in the CNP,

each agent (manager) with work to subcontract broadcasts a call for bidding messages and

34

waits for other agents (contractors) to send back their bids. After receiving bids from all

the agents or waiting for a certain time period, the manager evaluates the bids received

based on the evaluation criteria and awards its contracts to one or more contractors, which

then process the subtask. CNP coordinates task allocation, providing dynamic allocation

and natural load balancing. Unlike general equilibrium market mechanisms or auctions,

which usually require a mediator, contract nets are purely distributed models, in which any

agent can act as a manager and subcontract tasks to other agents. CNP can easily be

embedded into the autonomous system structure and is suitable for distributed dynamic

scheduling. For example, in Zhiming (2011), CNP is used to dynamically reallocate tasks

among agents in an operation room scheduling setting. The drawback of CNP is that there

is no built-in mechanism to motivate agents to reveal their private information. Therefore,

it is not sufficient in service scheduling settings where customers’ private information is

present.

Auctions can accommodate customers’ preferences to minimally reveal their private

information by providing appropriate incentives to customers. There is a wealth of

literature on auction design. Different auction formats such as sequential auctions,

simultaneous auctions and combinatorial auctions have been studied extensively.

Agent-based service scheduling usually uses combinatorial auctions (also called bundle

auctions), because scheduling is, in its essence, a combinatorial optimization problem.

Typical examples include various implementations of VCG auctions (Crawford & Veloso,

2004; Sheffi, 2004; Berger and Bierwirth, 2010). However, due to high computational

complexity, VCG is not practical for large-scale problems, especially in dynamic

environments. To provide better responsiveness, sequential auctions, simultaneous

auctions and iterative implementations of combinatorial auctions have also been adopted

in service scheduling (Paulussen et al., 2003; Song and Regan, 2003; Sönmez & Ünver,

2007; Kwon et al., 2005; Gujo et al. 2009). These auction models are compared and their

applicability to agent-based service scheduling is analysed in the following subsection.

35

2.6 Research opportunities

This chapter provides a survey on system design for service process scheduling,

covering several representative service domains. The approaches reviewed here focus on

either dynamic scheduling environments or customers’ private information. These

approaches may not be sufficient for many real world service scheduling applications, as

they usually deal with only part of the challenges. Based on this survey, as well as on first-

hand research and development experience in this area, I believe that further research on

an integrated approach that tackles service scheduling challenges concurrently is very

much needed. While there is no built-in mechanism in CNP to address customers’ private

information, a logical step to the integrated approach is to design auctions which can

accommodate dynamic changes and handle bundles of resource requirements in service

scheduling. The key issue is how to deal with the enormous computational complexities of

combinatorial auctions in dynamic environments.

 In general auction terms, combinatorial auctions (CA) allow bidders to place bids on

bundles of items. It addresses bundle preferences explicitly. However, the computations

required to solve difficult valuation problems and winner-determination problems can be

prohibitive. In general, CAs are likely to be practical for smaller-sized problems. In

addition, CAs require that a complete valuation on alternative schedules be revealed to the

auctioneer. In service scheduling, customers are often reluctant to make a complete

revelation to prevent any information from leaking out and adversely affecting other

decisions or negotiations. Lack of transparency is another practical concern in CAs. It can

be difficult to explain to customers why a certain schedule has been selected.

Iterative bundle auctions are iterative implementations of CAs. This class of auction

has practical significance because it addresses the computational and informational

complexities of CAs by allowing bidders to reveal their preference information only as

necessary as the auction proceeds, and bidders are not required to submit (and compute)

complete and exact information about their private valuations. In many cases, iterative

auctions present better computational and privacy properties than those of CAs. In addition,

iterative auctions have the potential to accommodate dynamic events, which is an important

requirement in service scheduling applications. With a careful design of the structure and

36

its components, iterative bundle auctions have the potential to significantly reduce

computational costs while accommodating the dynamic environment and users’ private

information in service scheduling.

Differently from how CAs and their iterative implementations price bundles, sequential

and simultaneous auctions price bundles as the sum price of the individual items. However,

they do not allow bidders to bid on bundles of items. Sequential auctions suppose that the

set of items is auctioned in sequence. Bidders bid for items in a specific known order and

can choose how much (and whether) to bid for an item depending on past successes,

failures, prices and so on. Sequential auctions are particularly useful in situations where

setting up combinatorial or simultaneous auctions is not feasible. Simultaneous auctions

sell multiple items simultaneously in separate markets. Bidders have to interact with

simultaneous but distinct markets in order to obtain a combination of items sufficient to

accomplish their task. Real-world markets quite typically operate separately and

concurrently despite significant interactions in their preferences. Sequential and

simultaneous auctions tackle the complementarities over resources in the spirit of general

equilibrium theory. These auctions fail when there are no prices that support an efficient

solution (the existence problem) and when agents bid cautiously to avoid purchasing an

incomplete bundle (the exposure problem). However, given that these auctions are more

practical in terms of computation, they are important models worthy of further study.

In addition to the design of core negotiation mechanisms, other research needs remain

to be addressed in agent-based service scheduling. For example, there is a lack of

systematic analysis and comparison on how system design factors affect computational

time in agent-based service scheduling systems. To adequately test and evaluate various

approaches, benchmark problems are also needed. Furthermore, the systems must be

designed to integrate a wide range of real-time information and uncertain parameters into

the dynamic service scheduling process. Unlike the auction designs found in the literature,

dynamic pricing cannot be applied to some services, such as healthcare and government

services. These settings require bidding-based service scheduling systems without dynamic

pricing. This would also be an interesting research topic for auction design in general.

37

2.7 Summary

Service scheduling systems are inherently distributed and dynamic. The presence of

customers’ private information imposes additional challenges in finding high quality

solutions. Agent-based systems can be an appropriate approach to service scheduling due

to their distributed and autonomous nature. This chapter reviewed agent-based scheduling

approaches in representative service domains through the lens of how they address the

challenges of service scheduling. Despite the many domain-specific design applications in

agent-based service scheduling, there is a lack of general problem formulations,

classifications and solution frameworks. Constructing these general models for service

scheduling will greatly facilitate the collaboration of researchers in this area and guide the

effective development of integrated service scheduling systems. Moreover, the

applicability of a service scheduling approach to industrial settings will largely depend on

how it copes with distributed and dynamic environments and on how it computes high-

quality solutions despite the presence of customers’ private information.

The position taken in this thesis is to develop service scheduling approaches based on

an iterative implementation of VCG auction. Since agents are not required to submit (and

compute) complete and exact information about their private valuations, in many cases,

iterative auctions present improved computational and privacy properties. In addition,

iterative auctions have the potential to support dynamic scheduling, a common requirement

in service scheduling. By carefully investigating the features of iterative combinatorial

auctions and the nature of service scheduling problems, an effective and practical auction-

based service scheduling approach can be developed. Compared to the existing agent-based

scheduling literature, this work is focused on an integrated framework that simultaneously

addresses a dynamic distributed environment and customers’ private information. In

addition, the framework can accommodate complicated objective functions into the service

scheduling process.

38

Chapter 3 The Service Scheduling Problem

Compared with traditional manufacturing scheduling, service scheduling poses

additional challenges attributable to the significant customer involvement in service

processes. Service scheduling should be generated in a distributed environment where the

scheduling knowledge is distributed among customers and service providers.

 Customers have jobs that need to be processed. In order to have their jobs processed,

customers need to consume the processing time of the service providers’ resources. The

price that customers are willing to pay to a service provider and their preferences regarding

the allocated service time slot can be their private information and they may be reluctant

to fully reveal that information to a provider. Customers may behave strategically to protect

their private information attributed to the different objectives of service providers and

customers. With the advances in information technology, service scheduling has become a

common requirement in many real-world automated trading systems. Clarifying the

theoretical underpinnings and practical solutions to the problem would both be very much

appreciated in this field.

This chapter describes the general service scheduling model studied in this thesis. The

properties of a general Distributed Service Scheduling Problem (DSSP) are described, and

the DSSP is then modeled as a game. A Vickrey-Clarke-Groves (VCG) auction that solves

the game is constructed, and the computational challenges of applying this VCG auction

to the DSSP are discussed.

3.1 Properties of a DSSP

The first property of a DSSP is that it is a distributed scheduling environment. In the

context of this thesis, the distributed environment is specified using a description from

Ghenniwa (1996): a distributed environment is constructed from entities that are able to

perform some functions independently and exercise some degree of authority in sharing

such capabilities. Such entities are put to work in the same spatial-time domain to achieve

either a common goal or separate goals. As mentioned earlier, to recognize the independent

39

and autonomous nature of the entities, they are treated as agents. In a distributed

environment, there are situations where knowledge about a scheduling problem, e.g.

customers’ availability and preference information, is distributed among agents and the

overall problem knowledge does not reside in a single agent.

[Definition 3.1 Distributed Scheduling Environment] A distributed scheduling

environment is an environment where the knowledge of a problem is distributed among

agents and no single agent has a global view of the problem (distribution of knowledge).

The second property of a DSSP is that it is a dynamic environment. Customers’

involvement in service production may cause knowledge about scheduling problem may

change over time. Uncertainty in customer demand, uncertainty in service time duration,

customer cancelation and no-shows, and changes in customer preferences are some

examples of dynamic changes in a service scheduling environment.

[Definition 3.2 Dynamic Scheduling Environment] A dynamic scheduling environment

is an environment where the knowledge of the scheduling problem may change over time.

The third property of a DSSP is the presence of customer’s private information. As

mentioned earlier, in order for a service to be produced, a customer has to be present

personally or he/she must present his/her property or information. Service scheduling

should therefore be generated by considering that a customer’s inputs are available for the

service process. Customers’ preferences regarding the timing of delivering their inputs

would then be considered in service scheduling. However, a customers’ availability may

very well be their private information and they could behave strategically to protect that

private information. In addition to a customers’ availability, which is (almost always) their

private information, the price that a customer is willing to pay to a service provider for a

given service time slot is also their private information. Customers are motivated to not

reveal the highest price they are willing to pay to the service provider, and in most cases,

these prices are considered to be very sensitive private information that they are reluctant

to reveal.

[Definition 3.3 Customer’s private information] In a DSSP, customers may not want to

reveal some information (e.g. the value that customers give to different scheduling

40

alternatives, a customer’s full availability). They may act strategically to protect their

private information.

The fourth property of a DSSP is that there are complicated, perhaps conflicting

objectives. The distributed service scheduling environment enables each agent to have their

own scheduling objectives. The objectives of these agents can vary from one to another. In

addition to multiple objectives, since agents are self-interested, they are likely to behave

strategically to achieve their own objectives without considering the global objectives of

the system.

[Definition 3.4 Complicated objectives] The objective in a service scheduling problem is

a combination of multiple objectives, each from an individual agent. These may be in

conflict with each other, and each agent may behave strategically to advance their own

objective. This characteristic derives from the self-interested nature of agents in this

environment.

3.2 Centralized Formulation

In a DSSP, customers have private information: their actual valuations of different

scheduling alternatives, such as completion times, are part of their private information,

which is not known to the provider. However, to clearly demonstrate the combinatorial

optimization nature of the problem, one can first assume a centralized environment, i.e.,

where customers’ valuations are known to the provider. With this assumption, the problem

can be conveniently modeled as a mixed integer program. The decentralized characteristic

of the problem will be considered during the development of the game’s theoretic

modeling.

Consider a set of customers and a service provider. The service provider can provide a

set of different services, with a limited capacity for each time slot. A customer has a request

which can be a combination of different services. The customers compete with each other

to schedule their own requests according to their respective objectives. Each customer’s

value of a schedule (i.e., the price that she is willing to pay for the request to be completed

at a specific time) is their private information. Each customer is motivated by their own

objectives and is not controlled by other customers or by a system-wide authority. The

41

service scheduling problem involves the allocation of service time slots to the customer’s

requests, such that a provider’s capacity constraints are satisfied and the sum of customers’

values is maximized.

Formally, the DSSP problem consists of a set of 𝑛 customers and a service provider

that can provide a set of 𝑚 services. Within the scheduling horizon, each service 𝑖(𝑖 =

1, … 𝑚) has a sequence of service time slots 𝑙𝑖,𝑘(𝑘 = 1, … , 𝑚𝑖) available for processing

customers’ service requests. Let 𝐿 be the set of all available time slots 𝐿 = ∑ ∑ 𝑙𝑖,𝑘
𝑚𝑖
𝑘=1

𝑚
𝑖=1 .

For each service time slot 𝑙𝑖,𝑘 ∈ 𝐿, its capacity is limited by 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖, 𝑘), which means

that no more than 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖, 𝑘) number of customers can be served within 𝑙𝑖,𝑘. Each

customer 𝑗(𝑗 = 1, … 𝑛) has a request, which is a combination of different services provided

by the provider. A customer may need a bundle of time slots to process their request.

For a bundle 𝐵 ⊆ 𝐿 that contains an allocation of the provider’s service time slots to a

customer’s request, that customer will have a valuation on 𝐵. Let 𝑣𝑗(𝐵) be the value

customer 𝑗 attaches to the time slot bundle 𝐵. This thesis follows the private value model

introduced by Vickrey (1961). Therefore, a customer has a value for each 𝐵 ⊆ 𝐿, and these

values do not depend on the private information of the other customers. Each customer

knows his or her own values, but not the values of others.

Let 𝑥𝑗(𝐵) = 1 if 𝐵is allocated to customer 𝑗 , and be equal to zero otherwise. The DSSP

problem involves the selection of a set of time slot bundles for customers such that the

service provider’s capacity constraints are respected and, at the same time, the sum of

customer value (social welfare, in terms of microeconomics) derived from the selected

bundles is maximized. The problem can be formulated as the following integer

programming.

𝑚𝑎𝑥 ∑ ∑ 𝑥𝑗(𝐵)𝑣𝑗(𝐵)𝐵∈𝐿
𝑛
𝑗=1

Subject to

∑ 𝑥𝑗(𝐵) ≤ 1, 𝑗 = 1, … , 𝑛𝐵∈𝐿 (1)

∑ ∑ 𝑥𝑗(𝐵) ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖, 𝑘),𝑛
𝑗=1𝐵∋𝑙𝑖,𝑘

 𝑖 = 1 … 𝑚; 𝑘 = 1 … 𝑚𝑖 (2)

𝑥𝑗(𝐵) = {0,1}, 𝐵 ∈ 𝐿, 𝑗 = 1, … , 𝑛 (3)

42

Constraints (1) ensure that a customer can only obtain one bundle of time slots.

Constraints (2) ensure that the allocation of a time slot to customers does not exceed the

capacity limit of the service time slot. Constraints (3) are a set of integer constraints. The

centralized formulation of the DSSP problem is NP-hard, as stated in the following

theorem.

Theorem 1: The centralized formulation of the DSSP problem is NP-hard.

Proof: To show that the centralized formulation of DSSP is NP-hard, consider a special

case in which 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖, 𝑘) = 1, for all 𝑖 = 1 … 𝑚; 𝑘 = 1 … 𝑚𝑖. In this case, the special

case is a set packing problem, which is NP-complete (Karp, 1972). It follows that, as a

general case, the centralized formulation of DSSP problem is NP-hard∎.

3.3 Game theoretic modelling and VCG auction construction

Centralized formulation in the previous section was created by assuming that

customers’ valuations are known to the service provider. This assumption should be

removed in the game theory modeling. Since customer’s valuations are their private

information they may behave strategically to maximize their own benefits.

The solution to this challenge is to design mechanisms that will induce agents to behave

so that a certain outcome prevails. In other words, to provide incentives to the agents in the

system such that they behave in a way that is prescribed by the system.

As the computational complexities inherited from the combinatorial nature of the

scheduling problem are not related to the game theoretical modeling, the scheduling details

can be ignored to focus only on strategic interactions. The DSSP is first modeled as a game,

and then a Vickrey-Clarke-Groves (VCG) auction that solves the game with an

economically efficient outcome is constructed.

Let 𝑁 be the set of 𝑛 customer agents. Each agent has a service request from a service

provider. Service requests need to be scheduled on the service provider’s resources. Let Ω

be the set of all feasible schedules. Each feasible schedule determines the allocations of the

time slots of service resources to the customers’ request. For each schedule 𝑆𝜖Ω, each agent

𝑗 has a monetary value 𝑉𝑗(𝑆). A value is the maximum price that an agent is willing to pay

to process its service request as scheduled in 𝑆. 𝑃𝑗(𝑆) is the price the agent 𝑗, needs to pay

43

to the service provider in exchange for processing its request. It is payoff on schedule 𝑆 is

 𝑣𝑗(𝑆)−𝑝𝑗(𝑆) . Agents’ objective is to maximize their payoffs and service provider

objective is to maximize market efficiency. The goal here is to design a mechanism that

select a schedule which maximize the sum of agent’s valuations. A VCG auction is

constructed here for the service scheduling problem.

Let 𝑉∗ be the maximum of the total values of all agents that can be obtained by a

schedule in Ω and Ṽ be the maximum of the total values of agents when 𝑗 is excluded from

the schedule.

V∗ = 𝑚𝑎𝑥𝑆∈Ω ∑ 𝑉𝑗(𝑆)
𝑗=𝑛

𝑗=1

 Ṽ = 𝑚𝑎𝑥𝑆∈Ω ∑ 𝑉𝑗(𝑆)
𝑗∈𝑁\𝑗

When the auction starts, agents submit their values for all feasible schedules Ω. If an

agent’s request was not included in a schedule, the agent’s valuation on the schedule will

be zero. After receiving agents’ value, the service provider (auctioneer) chooses the final

schedule 𝑆∗ from Ω in a way that it solves 𝑉∗. Service provider also generate a schedule for

each agent, in a way that the schedule solves Ṽ . After the schedules are computed, the

amount that agent 𝑗 pays for final schedule 𝑆∗ is 𝑝𝑗(𝑆∗) = Ṽ − [V∗ − Vj(𝑆∗)] and agent

j’s payoff from participating in the auction is

𝑉𝑗(𝑆∗) − 𝑝𝑗(𝑆∗) = 𝑉𝑗(𝑆∗) − (Ṽ − [V∗ − 𝑉𝑗(𝑆∗)]) = V∗ − Ṽ . It is clear that V∗ ≥ Ṽ, which

means agents always get non negative payoff when they participate in the auction. In

addition to motivate agents to participate, the designed auction is also incentive-

compatible. A mechanism is incentive-compatible if it is every agent’s dominant strategy

to reveal their private values truthfully.

Theorem 2: Given the auction constructed for the game theoretic model of DSSP, for all

customers, submitting truth valuations to the auctioneer is a dominant strategy.

Proof: Suppose agent j reports wj as its value instead of vj, wj ≠ vj. Service provider then

chooses S̃ ∈ Ω as a final schedule by solving 𝑚𝑎𝑥𝑆∈Ω[∑ vi(S)i≠j + wj(S)].

Agent j’s payoff then becomes

44

Vj(S̃) − Pj(S̃) = Vj(S̃) − [Ṽ − ∑ vi(S̃)]i≠j = ∑ vi(S̃)i≠j + Vj(S̃) − Ṽ ≤ V∗ − Ṽ.

From the above formula it is obvious that agents will not get benefit by misreporting their

valuations.

By using centralized formulation of service scheduling problem the set of all feasible

schedules Ω can be obtained and by using constructed VCG auction the optimal schedule

in Ω can be found. It appears that everything needed to solve the DSSP have been found.

However in reality there are several implementation limitations in applying VCG auction

to DSSP. The limitations can be described from three different perspectives; service

provider (auctioneer), customer agents, and system requirements.

From the customer agents’ side, there is a valuation complexity. For each agent

valuation complexity refers to the effort needs to determine its values over an exponential

number of schedules in Ω.

Form service provider’ side, there is a high computational complexity. In the VCG

auction, service provider needs to find the solution of V∗ and Ṽ for all the agents, which

means n+1 NP-hard optimization problems. It is obvious that if the VCG auction applied

to non-trivial sized problems the computation cost can be prohibitively expensive. More

importantly, service provider needs each customer’s complete valuation on the alternative

schedules. In service scheduling environment, customers are reluctant to reveal their

complete valuations. They fear that their information could leak out and adversely affect

the service provider decisions.

From system requirement’s side, there is a high communication complexity. VCG

auction requires a large number of schedules communicated between service provider and

agents. In addition, VCG auction does not support the dynamic changes (e.g. changes in

the number of customers and their valuations on different schedules) that occur during an

auction. Once an auction starts, customers should be ready to submit their complete

valuations on alternative schedules. In many service scheduling environments it is not

practical to ask all customers to be prepared to start the auction at a predefined time. The

VCG auction does not have the potential to accommodate a customer arriving during an

45

auction. In the following chapter, we propose an iterative bidding framework aimed at

addressing the limitations arising in the application of the VCG auction to a DSSP.

3.4 Summary

This chapter defines the properties of the general DSSP and it provides the centralized

formulation of a general service scheduling problem. In a DSSP, the knowledge of a

scheduling problem is distributed among agents, and the strategies of agents cannot be

controlled by outside parties, such as other agents in the environment. In this situation,

agents can be assumed to perform strategically in service of their own objectives. The

solution to this challenge is to design mechanisms to induce agents to behave such that a

certain outcome prevails. For this purpose, I first modeled the service scheduling problem

as a game and then constructed a VCG auction as a mechanism design that solves the game

with an economically efficient outcome. However, the VCG auction’s limitations, in terms

of implementation, restrict its application to DSSPs. The next chapter shows how the

computational and communication complexity issues derived from applying VCG auctions

to DSSPs are addressed by proposing an iterative bidding framework.

46

Chapter 4 Iterative Bidding Framework for

Distributed Service Scheduling

This chapter presents a solution framework for DSSP. Chapter 3 showed how applying

VCG auction directly to DSSP requires every agent to reveal its valuation of all of the

feasible schedules, and the auctioneer need to solve a sequence of NP-hard optimization

problem to determine the outcome, which is computationally expensive requirement. In

addition, VCG is a one-shot auction that does not accommodate dynamic changes during

the bidding processes. The Iterative Bidding Scheduling Framework (IbSCHF) proposed

in this chapter addresses the inherent limitations that arise when applying VCG to DSSP.

IbSCHF is an iterative combinatorial auction-based approach to the DSSP. Iterative

combinatorial auctions are indirect implementations of VCG auction and it addresses the

computational and informational complexity of VCG. In this class of auction agents are

not required to submit (and compute) complete and exact information about their private

values. Agents are allowed to reveal their preference information as it becomes necessary,

as the auction proceeds. Typical examples of iterative combinatorial auction include Parkes

and Ungar, 2000, Parkes and Kalagnanam, (2005), Bikhchandani and Ostroy, (2006).

Parkes and Ungar (2000) proposed iBundle, an iterative combinatorial auction for the

combinatorial allocation problem. iBundle computes the efficient resource allocation when

agents follow a myopic best-response bidding strategy, bidding for the items that maximize

their surplus taking the current price as being fixed. Their approach solves the

combinatorial allocation problem without requiring complete information revelation from

agents. A comprehensive survey for combinatorial auctions can be found in Vries and

Vohra (2003).

The above-mentioned combinatorial auctions are not designed for scheduling problem

they are designed for general combinatorial allocation problem. However they can be

applied to scheduling problem by exploring the specific problem characteristics derived

from the scheduling domain.

47

In the literature there are few combinatorial auctions that designed specifically for

scheduling problems. Combinatorial auction for job shop scheduling problem is applied by

Kutanoglu and Wu, (1999) with the focus on investigating the links between combinatorial

auctions and Lagrangean relaxation. The properties of several auction protocols are

investigated in the context of decentralized scheduling by Wellman et al., (2001).

An iterative combinatorial auction-based framework for a particular type of scheduling

problem, DSSP, is presented in this chapter. In addition to addressing the computational

complexities of applying VCG auction to DSSP, the framework has the potential of

accommodating dynamic changes in the scheduling environment. The chapter is organized

as follows. Section 4.1 describes the IbSCHF. Section 4.2 validates the effectiveness of

this framework through a computational study. Section 4.3 explains how the proposed

framework can be applied to accommodate dynamic changes, and section 4.4 summarizes

the chapter.

4.1 The IbSCHF

A key challenge in the development of solutions to DSSP is the design of a mechanism

that allocates limited service capacities to customers, such that the overall value of

customers is maximized despite the self-interest of individual agents. Auctions have long

been considered an effective way of allocating limited resources to competing users and to

discover market prices for products and services. In recent years, the pervasive inter-

connectivity provided by the Internet has made auctions a popular mechanism that directly

links the capacities of service providers with end customers. In this chapter, we present an

auction-based framework for DSSP. The auction is implemented using an iterative bidding

protocol, which can be seen as a collaborative negotiation procedure between the provider

and customers. This iterative bidding protocol is described below.

4.1.1 Iterative Bidding Protocol

The iterative bidding protocol is a price mechanism in which a service provider

balances the request requirements among customers by adjusting the prices of time slot

bundles. The protocol adopts the non-anonymous bundle price structure, under which a

customer’s bid is represented as a tuple 〈𝑏𝑢𝑛𝑑𝑙𝑒, 𝑏𝑖𝑑𝑑𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒〉, where 𝑏𝑢𝑛𝑑𝑙𝑒 is the

48

set of time slots that the customer wants, and the 𝑏𝑖𝑑𝑑𝑖𝑛𝑔 𝑝𝑟𝑖𝑐𝑒 is the price that the

customer is willing to pay for the services to be delivered during those specified time slots.

The bidding price is customer-dependent. There is no common public price for a bundle.

A non-anonymous price structure allows providers to price the same bundle differently for

different customers, which is a common practice in many service industries. The bidding

procedure consists of four components: initialization, price update and bidding, termination

checking, and winner determination.

4.1.2 Initialization

Before the bidding starts, the service provider first presents the set of available services

and available time slots for each service to the customers. For each service time

slot 𝑙𝑖,𝑘(𝑘 = 1, … , 𝑚𝑖), the provider sets up a base cost. Customers then compute their

respective sets of feasible bundles. For each feasible bundle, a customer computes the value

attached to it based on the utility derived from that bundle. The initial bidding price of a

bundle is the cost of the bundle, which is calculated by adding up the base costs of the

service time slots included in the bundle. Knowing the values and initial bidding prices of

bundles, a customer computes the payoff of each bundle. I assume a private value model

(Vickrey, 1961) for all customers. Under this model, each customer has a value for their

bundles. A customer’s payoff for a bundle is the difference between their value for a bundle

and its bidding price. To maintain a positive payoff, the customer is willing to pay up to

their value to get the bundle. After obtaining the payoffs for their feasible bundles, the

customer selects the bundle with the highest payoff (breaking ties randomly) as their first

bundle to bid on.

4.1.3 Price Updating and Bidding

At the beginning of round 𝑡 (𝑡 > 1), customer agents must update their bidding prices

for the bundles they submitted in round 𝑡 − 1. Customer agents update their bidding prices

based on the provisional allocation that resulted from the winner determination at

round 𝑡 − 1. Customer agents have three price updating option at round 𝑡 if their bid was

not awarded in the provisional allocation at round 𝑡 − 1: (1) they can increase their bidding

49

prices by ε on the bundle they bid for at round 𝑡 − 1 or rounds before 𝑡 − 1. Here ε is the

minimum price increment imposed by the service provider. In general customer agents do

not increase their bids more than ε, because they are rational in maximizing their utilities.

However, they are allowed to increase their bid with higher value than ε ; (2) they can take

an ε discount and keep the bidding prices unchanged. If a customer agent takes this ε

discount, the service provider will consider that the customer has entered into final bid

status. A customer agent with final bid status is forbidden from increasing the bidding

prices on any of their bundles in future rounds; and (3) they can, of course, withdraw from

the bidding process.

A customer agent can keep its bidding price unchanged at round 𝑡, if it is included in

the provisional allocation at round 𝑡 − 1.

After updating their bidding prices, a customer agent needs to compute their set of

utility-maximizing bundles. In computing such a set, customer agent 𝑗 solves a

maximization problem 𝑚𝑎𝑥 𝐵∈𝐸𝑗
[𝑣𝑗(𝐵) − 𝑝𝑗

𝑡(𝐵)] and obtains the set of bundles that

equally maximizes their utility, where 𝑝𝑗
𝑡(𝐵) is the bidding price for 𝐵 at round 𝑡. That is,

for any two bundles 𝐵 and 𝐵′ in the utility-maximizing set, 𝑣𝑗(𝐵) − 𝑝𝑗
𝑡(𝐵)=𝑣𝑗(𝐵′) −

𝑝𝑗
𝑡(𝐵′). After obtaining the set of utility-maximizing bundles, the customer randomly picks

one and submits it to the provider with the updated bidding price.

If a customer agent has entered into final bid status, it is not allowed to increase its

bidding price anymore. However the service provider can allow customer agents to repeat

their final bid in future rounds until termination. Final bid repeating can enhance efficiency

and increase service provider’s revenue. The reason is that, in each bidding iteration it is

possible that provisional allocation changes due to newly received bids with higher values.

Such changes in provisional allocations may allow the space for allocation of previously

submitted bids that have been temporarily excluded. In the absence of final bid repeating,

a customer agent will not acquire its required resources even if the future bids make the

capacities available for acceptance of its final bid.

50

4.1.4 Bid Screening and Termination

After XOR-Bids have been received from the customer agents, the service provider

first screens out invalid bids; a bid is considered as invalid when: (1) it includes increased

price form a customer agent who has already declared his final bidding status in previous

rounds; or (2) it includes bidding price for a bundle that is below the highest bidding price

for that bundle received in previous rounds. Invalid bids will not be considered in the

following winner determination procedure.

On this stage, the service provider determines if the termination condition is satisfied

based on the valid bids in this round. Termination condition examines if all the customers

have repeated their bids in the last round, i.e. the price of none of the valid bids are updates

from the last round. If termination condition is not satisfied, the winner determination

model should be solved with the valid bids as input. Otherwise, the customers will be

informed about the final allocation and they will be charged based on their bidding prices.

4.1.5 Winner Determination

The service provider needs to compute a new provisional allocation in each round as

long as the bidding is not terminated. The winner determination model selects a subset of

the bids submitted by the customers such that the overall bidding price of the provisional

allocation is maximized and the capacity constraints of the provider are not violated. Let

𝑁𝑡 be the set of customers that submitted their bids at round 𝑡 , and 𝑝𝑗
𝑡(𝐵𝑗

𝑡) be the bidding

price of customer 𝑗 at round 𝑡, 𝑗 ∈ 𝑁𝑡, where 𝐵𝑗
𝑡 is the bundle submitted by customer 𝑗 at

round 𝑡. Let 𝑍𝑗 = 1 if customer 𝑗 wins and 𝑍𝑗 = 0 otherwise. The winner determination

model can be expressed using the following integer programming.

𝑚𝑎𝑥 ∑ 𝑍𝑗𝑝𝑗
𝑡(𝐵𝑗

𝑡)𝑗∈𝑁𝑡

Subject to

∑ 𝑍𝑗𝑗∈𝑁𝑡

𝐵𝑗
𝑡∋𝑙𝑖,𝑘

≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖, 𝑘), 𝑖 = 1 … 𝑚; 𝑘 = 1 … 𝑚𝑖 (1)

𝑍𝑗 = {0,1}, 𝑗 ∈ 𝑁𝑡 (2)

51

Constraints (1) ensure that the bids awarded in a provisional allocation do not violate

the provider’s capacity constraints. Constraint (2) is a set of integer constraints.

The winner determination problem is a general form of the set packing problem, which

is NP-hard. The commercial optimization package ILOG CPLEX 12.0 is used to solve the

winner determination problem. Although winner determination problems in combinatorial

auctions are generally NP-hard, many of them can be solved quickly by modern

optimization algorithms, up to fairly large sizes. Anderson et al. (2000) report that CPLEX

6.5 performs very well in terms of running time for many of the common winner

determination problem benchmark distributions. The solving speed is comparable to the

special-purpose winner determination algorithms, such as those in Fujishima et al. (1999)

and Sandholm (2002). Sandholm et al. (2005) show that some winner determination

distributions, with thousands of bids, can be solved by CPLEX 8.0 within a couple of

seconds.

4.1.6 Implementation considerations

The efficiency of auctions largely depends on the level of competition among

customers. The Internet provides pervasive accessibility to virtually any electronic market;

customers may come at quite varied times. To aggregate demand and facilitate competition,

Internet auctions usually span a couple of days or even longer. Customers can enter the

auction and place bids at any time before the auction ends. To spare customers the task of

continuously monitoring the bidding process and repeatedly placing their bids, Internet

auctions allow bidders to provide direct value information to an automated bidding agent,

called a proxy agent, which bids on behalf of the customer.

In the IbSCHF for DSSP, a proxy agent can be designed to manage a set of feasible

bundles for the customer, and decides which bundle to submit, at which round, and at what

price. The customer should therefore inform the agent regarding the value it places on each

of the feasible bundles. Meanwhile, the agent should be equipped with the algorithm used

to update bidding prices and select the payoff maximization bundle along the bidding

process. If the customer prefers, the agent can also inform the customer regarding the

bidding status and allow the customer to update the values before the auction ends. For

52

easy access, customers may install the proxy agent on a personal computer, a smart phone,

or other mobile devices.

Many online auctions provide a “buy it now” option to accommodate those buyers who

cannot wait until the auction ends. A buyer can purchase an item immediately by paying

the buy-it-now price. However, the buy-it-now price is usually a regular retail price which

can be much higher than the final auction price. For the purpose of this model, buy-it-now

should not be considered as part of the auction design.

4.2 Simulation results

This section evaluates the IbSCHF through computational analysis. The assessing

metrics are those commonly found in the literature.

4.2.1 Metrics

Efficiency and Information Revelation are used as the performance measures in the

evaluation. Parkes (2001) developed these metrics for testing the performance of iBundle,

an iterative combinatorial auction for general combinatorial allocation problems. These

metrics are redefined in the context of service scheduling as follows:

Efficiency of Scheduling: 𝑒𝑓𝑓(𝑆), is measured as the ratio of sum of the values in final

schedule 𝑆 to the sum of the values in optimal schedule 𝑆∗ that maximizes total value across

the agents:

𝑒𝑓𝑓(𝑆) =
∑ 𝑉𝑗(𝑆)𝑗∈𝑁

∑ 𝑉𝑗(𝑆∗) 𝑗∈𝑁

where 𝑉𝑗(𝑆) is agent 𝑗’s valuation on a schedule 𝑆, 𝑉𝑗(𝑆∗) is agent 𝑗’s valuation on the

optimal schedule 𝑆∗, and 𝑁 is the set of all agents.

Information Revelation: 𝑖𝑛𝑓 𝑅𝑒𝑣(𝑗), is measured for agent 𝑗 as the sum of the final price

bid for all bundles that agent 𝑗 has placed bids on, as a fraction of the sum of the values for

all feasible bundles.

𝑖𝑛𝑓 𝑅𝑒𝑣(𝑗) =
∑ 𝑃𝑗

∗(𝐵)𝐵∈𝐵𝑖𝑑𝑗

∑ 𝑉𝑗(𝐵)𝐵∈𝐸𝑗

53

where 𝑃𝑗
∗(𝐵) is the maximum bidding price of agent 𝑗 for bundle 𝐵 during the auction;

𝐵𝑖𝑑𝑗 is the set of bundles that agent 𝑗 has placed bids on; and 𝐸𝑗 is the set of feasible

bundles for agent 𝑗. The average information revelation over all agents is considered as

overall information revelation (𝑖𝑛𝑓).

Bidding process often terminates before agents have revealed the complete information

about their values for service time slot bundles. The information revelation metric measures

the extent to which an agent has revealed its value for each service time slot bundle to the

provider during the auction.

The DSSP model is coded in ILOG Optimization Programming Languages

(http://www-01.ibm.com/software/websphere/products/optimization/) and the ten groups

of problem instances are solved using ILOG CPLEX. The flow control of the iterative

bidding process is coded in the OPL (Optimization Programming Languages) script

language. A desktop PC with 2.4G Intel CPU and 8 GB memory was used to run the

experiments.

4.2.2 Problem Sets

Ten problem groups are generated, with the customer number ranging from100 to

1,000. For each group, ten instances are randomly generated. Service time slots’ capacity

are allocated in proportion to the number of customers such that, for most of the instances,

around 80–90 % of the customers will be awarded a feasible bundle. The configuration of

the test problem sets are summarized in Table 4-1.

In the design of the testing data, it is assumed that there is a regular retail price for

each of the available service time slots, and the retail price for a bundle is the sum of the

retail prices of the service time slots included in the bundle. The reservation price for a

bundle is set to be 40% of its retail price, since it is common practice in online service

auctions that the termination price can be as low as a 60% discount from the regular retail

price. It is assumed that customers who enter the auction expect some discount. They are

not interested in purchasing the bundle at a price higher than the regular retail price.

Customers’ values on a bundle are randomly drawn from a uniform probability distribution

between reservation price and its regular retail price.

54

Table 4-1 Configuration of testing problems

Problem Number

of agents

of service

time slots

of feasible

bundles per agent

Number of

Instance
Name

1 Group 1 100 20 Random(5,10) 10

2 Group 2 200 30 Random(5,10) 10

3 Group 3 300 40 Random(5,10) 10

4 Group 4 400 50 Random(5,15) 10

5 Group 5 500 60 Random(5,15) 10

6 Group 6 600 70 Random(5,15) 10

7 Group 7 700 80 Random(5,15) 10

8 Group 8 800 90 Random(5,20) 10

9 Group 9 900 100 Random(5,20) 10

10 Group 10 1000 110 Random(5,20) 10

4.2.3 Computational Results

The IbSCHF is compared against the commonly used first-come-first-served capacity

allocation policy. This approach is easy to implement and performs reasonably well in

terms of enhancing revenue when capacity supply and demand are balanced. However,

when demand exhibits strong seasonality, an auction-based policy performs better. To

compare the performance of an auction-based policy against that of a first-come first-

served capacity allocation policy, each policy is applied to the ten groups of testing

problems. In the first-come first-served policy scenario, customers in an instance are first

randomly ordered. Capacity is allocated according to their position in the sequence until

no more customers can be satisfied. Figure 4-1 shows the efficiency of the first-come-first-

served policy and of the proposed approach over the ten test problems. It is observed that

the first-come-first-served policy achieves on average 75 % of the efficiency obtained by

the proposed approach.

55

Figure 4-1 Efficiency of the FIFO and of the IbSCHF over ten groups

The IbSCHF is also compared against the VCG auction. In the VCG auction, all agents

report their complete valuations over all service time slot bundles at the beginning of the

auction. Figure 4-2 plots the information revelation performance of the IbSCHF. Compared

to the VCG, which requires 100% information revelation, IbSCHF requires a less than 50%

information revelation with bid increment ɛ =5, which comes with the cost of losing only

1%-2% of the efficiency, as shown in Figure 4-3.

The comparison results presented in Figure 4-2 and Figure 4-3 reflect the difference

between the iterative bidding structure (in IbSCHF) and the one-shot bidding structure (in

the VCG auction) in the context of distributed service scheduling.

Figure 4-2 Information revelation of the VCG and of the IbSCHF as the problem difficulty is

G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 G10

IbSCHF 99.55 99.05 99.85 99.75 99.7 99.65 98.85 99 99.085 99.745

FIFO 76.67 74.96 73.88 75.25 73.97 76.15 73.43 76.22 75.17 75.36

60

65

70

75

80

85

90

95

100

Ef
fi

cc
en

cy
 (

%
)

Groups

G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 G10

IbSCHF 45.6 35.9 46.5 45.3 41.8 43.7 40.4 48.1 41.04 45.53

VCG 100 100 100 100 100 100 100 100 100 100

0

20

40

60

80

100

In
fo

rm
at

io
n

 R
ev

el
at

io
n

 (
%

)

Groups
IbSCHF VCG

56

increased

Figure 4-3 Efficiency performance of the VCG and of the IbSCHF as the problem difficulty is

increased

4.2.4 The effect of bid increments

Figure 4-4 plots the information revelation performance of the IbSCHF over different

bid increments. Bigger bid increment leads to more information revelation. The reason is

that bigger bid increment values may overcome some low price equilibrium point that

smaller increments could find.

Figure 4-4 Information revelation performance of the IbSCHF over 10 groups with different bid

increments

G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 G10

IbSCHF 99.5 98.8 99.9 99.7 99.6 99.5 98.7 99.8 98.67 99.79

VCG 100 100 100 100 100 100 100 100 100 100

98
98.2
98.4
98.6
98.8

99
99.2
99.4
99.6
99.8
100

Ef
fi

ci
en

cy
 (

%
)

Groups

IbSCHF VCG

G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 G10

ɛ = 5 45.6 35.9 46.5 45.3 41.8 43.7 40.4 48.1 41.04 45.53

ɛ = 10 49.7 37.9 49.36 43.04 43.5 47.3 42.1 50.2 42.2 46.04

ɛ = 20 49.9 41.14 52.3 50.4 47.1 50.51 45.2 53.8 45.63 49

0

10

20

30

40

50

60

In
fo

rm
at

io
n

 r
e

ve
la

ti
o

n
 (

%
)

Groups

57

Figure 4-5 Run time of the IbSCHF over10 groups with different bid increments

Figure 4-6 Number of Iterations of the IbSCHF over10 groups with different bid increments

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

ε = 5 65.177 279.7315 302.1815 307.9175 359.751 374.915 398.869 415.413 449.9275 587.1065

ε =10 98.0535 158.5755 204.167 208.826 263.061 280.0885 299.661 354.16 413.059 490.591

ε =20 4.2305 8.828 17.447 26.8275 32.1855 41.3305 45.268 47.245 50.6345 53.532

0

100

200

300

400

500

600

700

R
u

n
 T

im
e

(S
)

Groups

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

ε = 5 582 908 963.5 1102.5 1104.5 1160.5 1413 1426.5 1513.5 1580

ε =10 515 634.5 883.5 889 930.5 991 1054.5 1086.5 1321 1469

ε =20 147.5 225 228.5 251 268.5 286 299.5 302.5 323.5 382.5

0

200

400

600

800

1000

1200

1400

1600

1800

N
u

m
b

e
r

o
f

It
e

ra
ti

o
n

s

Groups

58

Figure 4-5 plots the run time of the IbSCHF for different bid increments. The results

show that bigger increment values requires less time for the auction to terminate. This

makes sense, because bigger increments lead to a lower number of iterations (Figure 4-6),

and many agents quickly drop out as the prices get too high. Figure 4-5 also illustrates that

when the number of agents increases the level of completion increases, and it takes more

time to compute the solution.

4.2.5 The effect of final bid repeating

The reason for considering final bid repeating rule in IbSCHF is to boost efficiency and

service provider’s revenue. As shown in Figure 4-7 efficiency will be increased by

considering final bid repeating rule. However considering final bid repeating rule will

increases the level of completion, and consequently increases the run time (Figure 4-8).

Figure 4-7 The effect of final bid repeating on efficiency

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

 With FinalBid-Rep 99.55 98.8 99.9 99.7 99.6 99.5 98.7 99.8 98.67 99.79

Without FinalBid-Rep 99.12 98.52 98.97 98.3 99.6 98.8 98.54 99.2 98.14 99.8

97

97.5

98

98.5

99

99.5

100

100.5

Ef
fi

ci
en

cy
(%

)

 With FinalBid-Rep Without FinalBid-Rep

59

Figure 4-8 The effect of final bid repeating on run time

The next section explains how IbSCHF can be applied to accommodate dynamic

changes in the service scheduling environment.

4.3 Accommodating Dynamic Changes

Generated schedules in a dynamic service environment cannot be used for a long time

because of unexpected events. Therefore revising the schedules at some point in time is

necessary to accommodate dynamic changes. Two main question will arise for revising the

schedules: when to revise and how to respond?

4.3.1 When to revise?

There are several ways to decide on timing for revising the scheduling decisions. The

first approach is called periodic rescheduling policy in which generated schedules are

revised periodically. In this approach revisions are made at the beginning of each time

interval by taking into account new information gathered from the scheduling environment.

Determining the period length depends on the application domain. Muhlemann et al.

(1982), Ovacik and Uzsoy (1994), and Sabuncuoglu and Karabuk (1999) investigated the

effects of different rescheduling frequency in manufacturing environments. The second

approach is called event driven policy in which revisions are made in response to an

unexpected event that change the system states. Church and Uzsoy (1992) provide a

comparison of periodic and event driven policies for dynamic shops. A comparison

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

 With FinalBid-Rep 65.177 279.73 302.18 307.92 359.75 374.92 398.87 415.41 449.93 587.11

Without FinalBid-Rep 12.525 46.794 82.984 83.281 156 189.22 198.28 217.07 220.7 259.63

0

100

200

300

400

500

600

700

R
u

n
 T

im
e

(S
)

60

between the performance of periodic policy and the performance of event driven policy in

a single machine environment is also presented by Vieira et al. (2000). Hybrid policy is

another method in which rescheduling is triggered when an unexpected event occurs and

at the end of each time interval (Yamamoto and Nof 1985).

4.3.2 How to respond?

In general there are two main strategies: 1) completely regenerate a new up-to-date

schedule for all remaining jobs and 2) repair the existing schedule to take into account of

the current state of the system. The first strategy may in principle be capable of maintaining

optimal solutions, however computation times are likely to be prohibitive and production

may be significantly delayed while the schedule is regenerated. Furthermore, completely

regenerate a schedule is not applicable in a service environment because generating new

schedules for customers is not possible without their permission. In the second strategy

several techniques such as heuristics, knowledge-based systems, fuzzy logic, neural

networks, and hybrid techniques can be used to repair a schedule. Ouelhadj et al. 2009

provide a review of the state of the art of research on dynamic scheduling techniques and

compare their relative merits.

In a service environment, the repair strategy is the most appropriate approach; when

dynamic changes happen, generating a completely new schedule may find customers

unsatisfied with their new schedules. A repair strategy that tends to minimize the

perturbation to the original schedule would be more appropriate to apply in service

scheduling environments.

A periodic repair approach by using IbSCHF for dealing with dynamic changes in

service environments with the objectives of automation and optimization is described in

the next section.

4.3.3 Periodic repair approach in service scheduling environment

The automated repair scheduling approach for accommodating dynamic changes is

proposed here, along with how to effectively allocate the newly-available service time slots

created by customer cancellations. To fill newly available service time slots some service

61

providers keep an on-call list of customers who could be available and interested to fill

those newly time slots. However, calling the customers on the on-call list incur high

administrative costs to the service provider and is a multiple-round rescheduling process

because, once a customer is allocating to a newly-available time slot, its original time slot

(if he/she had already been assigned one) becomes available and will have to be reallocated.

This process of reallocating time slots can go multiple rounds until all the available

time slots have been filled or there is not any customer willing to be rescheduled. Manually

conducting multiple round of rescheduling process will significantly increase the

administrative workload. In addition, constructing a high quality schedule is an

optimization problem that requires computing-based decision making tools, so manually-

created schedules is not an appropriate approach for generating high quality schedule.

Thus, to improve the current practice of dynamic service scheduling, two challenges

need to be addressed. The first one is automate the process of rescheduling to reduce the

administrative workload and enhance the efficiency of the process; the second one is

optimization, to systematically optimize the quality of the rescheduling solutions. To

address both these challenges, the approach proposed here is periodic repair scheduling in

response to dynamic changes.

The periodic repair scheduling algorithm can be described as follows:

𝑆𝑡𝑒𝑝 0 ∶ 𝑆𝑒𝑡 𝑖 = 1;

𝑆𝑡𝑒𝑝 1 ∶

 𝐴𝑇𝑆 = 𝑎𝑙𝑙 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑇𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (𝑖 − 1)𝑇 𝑎𝑛𝑑 𝑖𝑇;

 𝑆𝐶𝐴 = 𝑎𝑙𝑙 𝑆𝑡𝑎𝑛𝑑𝑏𝑦 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐴𝑔𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝐴𝑇𝑆

 𝑊ℎ𝑖𝑙𝑒 (𝐴𝑇𝑆 ≠ ∅ & 𝑆𝐶𝐴 ≠ ∅)

 { 𝑅𝑒𝑠𝑢𝑙𝑡 ← I𝑏SCHF (𝐴𝑇𝑆, 𝑆𝐶𝐴);

 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑎𝑔𝑒𝑛𝑡 𝑗 ∈ 𝑅𝑒𝑠𝑢𝑙𝑡

{ 𝑆𝐶𝐴 ← 𝑆𝐶𝐴 − 𝑗 ;

 𝐴𝑇𝑆 ← 𝐴𝑇𝑆 − {𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠 𝑎𝑤𝑎𝑟𝑑𝑒𝑑 𝑡𝑜 𝑗} ;

62

 𝑖𝑓 𝑎𝑔𝑒𝑛𝑡 𝑗 𝑤𝑎𝑠 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑎 𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛

 (𝑖 − 1)𝑇 & 𝑖𝑇 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑖𝑠 𝑛𝑒𝑤 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

 {

 𝐴𝑇𝑆 ← 𝐴𝑇𝑆 ∪ { 𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑙𝑦 ℎ𝑒𝑙𝑑 𝑏𝑦 𝑗}

 }

 } }

𝑆𝑡𝑒𝑝 2: 𝑆𝑒𝑡 𝑖 = 𝑖 + 1; 𝑎𝑛𝑑 𝑔𝑜 𝑡𝑜 𝑠𝑡𝑒𝑝 1;

In step 0, the service provider agent identifies the set of newly-available time slots

along the scheduling time horizon between (𝑖 − 1)𝑇 𝑎𝑛𝑑 𝑖𝑇. It then determines which

customer agent has registered as a standby status for available time slots between (𝑖 −

1)𝑇 & 𝑖𝑇. Next, the service provider agent starts the I𝑏SCHF by sending out a message

containing the set of available service time slots to the customer agents with the standby

status. Those standby customer agents who are interested in that set of available time slots

participate in the auction. When I𝑏SCHF terminates and new time slot allocations are

determined, the service provider agent will update the existing schedule and notify the

participating customer agents with the results. The customer agents that gained their

requested time slots will update their status levels from standby to reserved.

Since each customer agent can only have one time bundle, if a customer agent changes

its status from standby to reserved and is assigned to new bundle, the time slots it

previously held become available. If this newly-available time slot is between

(𝑖 − 1)𝑇 & 𝑖𝑇 it will be added to the 𝐴𝑇𝑆 . Therefore, additional round of I𝑏SCHF need to

be conducted until either no customer agents are interested in the available time slots or no

time slots are available between(𝑖 − 1)𝑇 & 𝑖𝑇. This process is called subsequent repair

scheduling.

63

4.3.4 A Worked example

An example of a service scheduling solution using the periodic repair scheduling

approach is shown in Figure 4-9, which represents the allocation of ten time slots

(𝑇1 𝑡𝑜 𝑇10). In this example, 𝑇 are taken for the following two work days. For the sake of

simplicity, in this illustrative example it is assumed that, only one time slot is allocated to

each customer. However, in the I𝑏SCHF, the winner determination model does not have

this restriction.

Figure 4-9 Example of a problem solved using the periodic repair scheduling approach

The service repair scheduling problem parameters which include the list of customers

willing to be rescheduled, their preferred service time(s) and their value, are shown in Table

4-2.

At the beginning of time window T, 𝐴𝑇𝑆 = 𝑇3 𝑎𝑛𝑑 𝑇5. 𝑇3 𝑎𝑛𝑑 𝑇5 become available as

two customers cancel their allocated service time slots. The repair scheduling process starts

at the beginning of time window T with the set of 𝐴𝑇𝑆.

64

Table 4-2 Problem parameters of example

Customer Agent Code Service provider time slot Value($)

𝐶6 𝑇3

𝑇6

𝑇9

11

10

5

𝐶8 𝑇8

𝑇5

5

6

𝐶10 𝑇10

𝑇6

10

8

𝐶11 𝑇11

𝑇5

𝑇8

6

4

4

𝐶12 𝑇10

𝑇12

𝑇3

𝑇8

8

8

8

3

The service provider agent starts the I𝑏SCHF at the beginning of time period T. From

Table 4-2 we can see that customers 𝐶6 𝑎𝑛𝑑 𝐶12 are interested in available time slot 𝑇3, and

customer agents 𝐶8 𝑎𝑛𝑑 𝐶11 are interested in available time slot 𝑇5. Their customer agents

will participate in the auction. After the I𝑏SCHF termination, time slot 𝑇3 has been awarded

to 𝐶6 and time slot 𝑇5 has been awarded to 𝐶8 , because they have higher values for time

slots 𝑇3 𝑎𝑛𝑑 𝑇5 . Consequently, now that 𝐶6 and 𝐶8 have been rescheduled, the time slots

𝑇6 𝑎𝑛𝑑 𝑇8 which originally belonged to those customers are now available. Another auction

by using I𝑏SCHF will be started to allocate these newly-available time slots to interested

customers. In this example, customer agent 𝐶10 participates in the second auction for time

slot 𝑇6 and agents 𝐶11 and 𝐶12 for 𝑇8. The result of this second auction is that time slot 𝑇6

has been awarded to 𝐶10 and time slot 𝑇8 has been awarded to 𝐶11 . In this case, since 𝐶11

was outside of time window T, the only available time slot for the next auction will be 𝑇10,

which belonged to customer 𝐶10 in the previous round. The third auction begins, this one

for time slot 𝑇10 and with the participation of customer agent 𝐶12. The third auction

instantly awards 𝑇10 to customer 𝐶12, the only customer that participated. At this point, all

the openings in the time window T have been allocated and no further auctions are required.

65

4.3.5 Efficiency Analysis

The proposed periodic repair scheduling system provides the potential for successful

automated service scheduling. It is reasonable to assume that a substantial number of

customers would be willing to participate in this program. In order for such a system to be

functional, the customer agent will register itself with standby status for certain unavailable

service time slots in the service provider internet portal and then automatically participate

in the rescheduling process when any of those time slots become available.

To evaluate the responsiveness of the system, we have randomly generated nine groups

of problem instances of different sizes and structures. The configuration of the test problem

sets and the corresponding solving times by means of CPLEX are summarized in Table 4-

3. The flow control of the repair scheduling is coded in OPL (Optimization Programming

Languages) script language. A desktop PC with a 2.4G Intel CPU and 8 GB of memory

was used to run the experiments.

Table 4-3 Configuration of testing problems and computational results

Group # of Customer

agents

Window length

(# of time slots)

of Available

time slots (𝐴𝑇𝑆)

Running time

(seconds)

of Auctions

1 100 8 2 7.4062 1

2 200 16 3 24.008 2

3 300 24 4 39.648 2

4 400 32 5 54.254 2

5 500 40 6 92.898 3

6 600 48 7 112.878 3

7 700 56 8 126.806 3

8 800 64 9 141.596 3

9 900 72 10 194.584 4

10 1000 80 11 237.154 4

In these problem instances, the maximum number of time slots required for all service

requests has been limited to two. For each group, CPLEX can find optimal solutions to

66

instances with 1000 customer agents within less than 4 minutes, which is satisfactory for

the responsiveness requirement of our repair scheduling system.

4.4 Summary

This chapter presents the I𝑏SCHF for the distributed service scheduling problem. The

approach is incentive-compatible in the sense that customers will follow the myopic best-

response bidding strategy prescribed by the auction protocol. The simulation results

indicate that the proposed framework requires lower information revelation with the cost

of losing only 1%-2% of efficiency, compared to the one-shot VCG auction. By applying

the I𝑏SCHF in a multi-agent environment the three main service scheduling challenges of

service scheduling problem namely, distributed environment, the presence of customers’

private information and complicated objectives can be overcome. This framework can also

be applied to effectively allocate the newly available service time slots created by dynamic

events.

67

Chapter 5 Scheduling Non-Commercial

Services

5.1 Introduction

An iterative bidding framework for DSSP was proposed and detailed in chapter 4. In

this proposed framework, a price mechanism is used to allocate service time slots to

customers. However, in non-commercial service scheduling environments, such as

scientific facility service scheduling, government service scheduling and healthcare

service scheduling, for social economic and political reasons service providers cannot

use a price mechanism to schedule customers along the service timelines. Therefore, novel

mechanism design models need to be developed for scheduling non-commercial services

without using a price system or payment transfers.

In this chapter, I study the scheduling aspect of non-commercial services. I am

especially interested in learning how to design effective mechanisms for non-

commercial service scheduling, and how customers’ private information and efficiency

interplay under such mechanisms. I have designed an auction-based (with iterative bidding)

scheduling framework under two constraints (1) service providers are restrained from using

any price mechanisms to allocate service time slots to customers and (2) customers are

reluctant to share their complete availability information. The next section introduces the

non-commercial services scheduling problem and customers’ private information

implication.

5.2 Non-commercial services scheduling and customers’ private information

The Non-Commercial Service Scheduling (NCSS) problem concerns the allocation

of limited resources to the service activities at specific times. This allocation must obey a

set of rules or constraints that reflect the temporal relationships between activities and the

capacity limitations of a set of shared service resources.

68

5.2.1 The implication of customers’ private information on efficiency

NCSS can be modelled as an optimization problem in which customers’ private

availability information constrains the solution space.

According to the definition of service presented in chapter 1, a service relies

significantly on customer inputs (Sampson & Froehle, 2006). In other words, in order for

a service to be produced, a customer has to present personally or he/she has to present

his/her belongings or information. By considering customers’ available time for their

required service, the number of no-shows can be decreased and customer satisfaction

increased. For example, in health care services, it has been shown that matching patients

with their preferred provider and offering them a convenient appointment time can

decrease the number of no-shows and thereby increase operational efficiency (Barron

1980). If all customers report their full availability, the service provider can obtain an

optimal schedule by solving the optimization problem. However, if customers only reveal

partial availability to the service provider, the quality of the solution will be compromised.

High-quality schedules could be deemed infeasible due to the partial availability of

customer information. The scheduling problem facing service providers is a distributed

scheduling problem in the sense that the customers’ true availability is their private

information and may not be fully known to the service provider. Customers are reluctant

to reveal their complete availability because a complete revelation increases the possibility

of being assigned an undesirable time slot. Generating high quality schedules and, at the

same time, accommodating customers’ preferences is a challenge. In addition to dealing

with strategic behaviours from customers, the administrative workload of collecting

customers’ availability information and negotiating with them for possible changes can

be very difficult due to a large number of customers and a manually managed process.

The proposed approach makes it possible to automate the NCSS procedure and improve

the quality of schedules. In the next section, I formulate the service provider’s and

customers’ decision problems in NCSS.

69

5.3 Formulation of service provider’s and customers’ decision problems

Service scheduling is a multilateral decision making problem with the service provider

and customers as independent decision makers. The service provider needs to decide how

to schedule service requests to achieve its objectives and, at the same time, respect

the customer’s availability constraints. The decision facing a customer is how much

availability information she needs to reveal in order to maximize her benefit.

5.3.1 Service provider’s decision problem

Consider an NCSS problem consisting of a service provider and a group of

customers. The provider receives a set of service requests from customers. Each request

is assigned a weight which reflects its contribution to the provider’s objective. The provider

has a limited service capacity and knows the time required for processing each request. The

provider’s objective is to maximize the sum of the weights of a schedule. An important

type of constraints of NCSS is customers’ availability. Since customers need to be present

for the service, the provider cannot schedule a customer for a time slot when she is not

available. I describe a customer’s availability by a set of available time intervals along the

scheduling timeline. As I will later develop an iterative bidding framework for NCSS

problems, I represent an available time interval as a bid from a customer using the

bundle bidding language (Nisan ,2006) developed for combinatorial auctions. To apply

the language, I need to first discretize the provider’s service timeline into fixed-size time

slots. In this way, without loss of generality, an available time interval can be defined by

a bundle of adjacent time slots contained in the interval. Unlike general combinatorial

auctions, customers do not attach prices to their bids in NCSS. In our case, bids are used

by the customers to indicate their availabilities. If a customer submits a bid (their available

time interval), she informs the provider that she is available to be scheduled during that

interval.

The set of intervals that contains a customer’s complete availability is referred

to as the customer’s set of Feasible Time Intervals (FTIs).

Let 𝐸𝑗 be the set of availability intervals revealed by customer. It is clear that 𝐸𝑗 is a

subset of customer𝑗’s FTIs. The service provider will not schedule customer 𝑗 ’s request

70

outside her 𝐸𝑗. Let 𝑤𝑗 be the weight scale of customer 𝑗 assigned by the service provider

and 𝑝𝑗 the processing time of customer 𝑗’s request. Let 𝛺 be the set of time slot available

for allocation and 𝐽 the set of customers who have service requests to be scheduled;

let 𝑥𝑗(𝐵) = 1 if the time slot bundle 𝐵 ⊆ 𝛺 is allocated to customer j and zero

otherwise. The provider’s decision problem is to determine the allocation of limited

service time to the requests in a way that the sum of the weights of the awarded

requests is maximized. The problem can be formulated as the following integer

programming.

𝑚𝑎𝑥 ∑ ∑ 𝑥𝑗(𝐵)
𝑗⊆𝐽

𝑤𝑗

𝐵⊆𝛺

Subject to

∑ 𝑥𝑗(𝐵) ≤ 1, ∀𝑗 ∈ 𝐽𝐵⊆𝛺 (1)

∑ ∑ 𝑥𝑗(𝐵) ≤ 1, ∀𝑖𝑛
𝑗=1𝐵∋𝑖 ∈ 𝛺 (2)

∑ 𝑥𝑗(𝐵) = ∑ 𝑥𝑗(𝐵), 𝐵⊆𝐸𝑗
∀𝑗 ∈ 𝐽, ∀𝐵 ∈ 𝛺𝐵⊆𝛺 (3)

|𝐵| + 𝐻𝑥𝑗 (𝐵) ≤ 𝑝𝑗 + 𝐻, ∀𝑗 ∈ 𝐽, ∀𝐵 ∈ 𝛺 (4)

|𝐵| + 𝐻 ≥ 𝑝𝑗 + 𝐻𝑥𝑗 (𝐵), ∀𝑗 ∈ 𝐽, ∀𝐵 ∈ 𝛺 (5)

𝑥𝑗(𝐵) = {0,1}, ∀𝐵 ⊆ 𝛺, ∀𝑗 ∈ 𝐽 (6)

The set of constraints (1) ensures that any customer can only obtain one bundle of time

slots. The set of constraints (2) ensures that a time slot is not included in two bundles that

have been assigned to customers. The set of constraints (3) ensures that if a bundle is

assigned to a customer, it must belong to the set of available intervals submitted by

that customer. These constraints prevent a service provider from assigning customers’

time bundles which they are not willing to accept. Constraints (4) and (5) ensure that if a

bundle is assigned to a customer, the length of the bundle is equal to the processing

time of the customer’s request, where H is a large positive constant that is used for

the linearization of the logical constraint “if.” The minimum value of 𝐻 depends on the

problem instance. In general, a value of 𝐻 that is greater than the number of available time

slots of the service provider is large enough to enforce the logical “if” constraint.

71

Constraints (6) are integer constraints. The provider’s decision problem is NP-hard, as

stated in the following theorem.

Theorem 1 The service provider’s decision problem in NCSS is NP-hard.

Proof: Consider a special case of the provider’s decision problem, in which a set

of service requests from customers needs to be scheduled. A request may be scheduled

on one of the 𝑙 intervals on a discrete time scale on a single resource. The decision version

of this special case of provider’s decision problem is identical to the job interval selection

problem, which is NP-complete (Keil, 1992). Therefore, the decision version of provider’s

decision problem is NP-complete. It follows that the provider’s decision problem is NP-

hard.

5.3.2 Customers’ decision problem

To model the customers’ decision problem, I first introduce their preference structure

over the time intervals in their FTIs. A customer’s FTI list is her private information, and

is not known to the service provider. She may behave strategically, for example, may

hide a portion of her FTIs, to maximize her benefits. To reflect this self-interested

property of customers, I call them agents. I assume that an agent prefers some time intervals

over others within its FTIs and that the preferences can be quantified by associating a

preference violation cost to each time interval. The preference violation cost reflects the

level of the preference violations to an agent. It is essentially a subjective measure adopted

by an agent. For example, it can be a function of the number and severity of preference

violations that a time interval may cause to the agent. In many cases, it is reasonable to

assume that an agent can order the time intervals in its FTIs according to the increasing

order of their preference violation costs. That is, given an ordered FTI,

c1 < c2 < c3 < ⋯ ck … < c|FTI| < c0 is known to the agent, where ck denotes the

preference violation cost of the kth time interval in an FTI and c0 denotes the preference

violation cost of not being allocated any time intervals. Note that an agent may have

identical preference violation costs for more than one time interval. In an FTI, the highest

72

preference violation cost is that of not being awarded anything in the service

schedule.

An agent would prefer to be assigned a time interval with their lowest preference

violation cost. However, the final schedule is computed based on the time intervals

submitted from all agents. Because of the potential time conflicts among agents’ requests,

it is difficult for them to decide how much availability information should be revealed in

order to obtain a preferred assignment. If an agent only submits a few low -cost time

intervals, it can control the upper bound of its preference violation cost as the

awarded bundle must be within the set of submitted intervals. However, by doing

so, it runs the risk of not being allocated anything if the submitted time intervals

are also demanded by other agents with higher weights. On the other hand, if an agent

submits its complete FTI list, it maximizes its probability of getting an assignment.

However, reporting complete FTIs increases the possibility of ending up with an

interval with high preference violation cost. In fact, there is not a clear strategy for

agents to minimize their expected preference violation costs. The effectiveness of an

agent’s bidding strategy depends on how heavy the competition is for its desired time

intervals and on other agents’ bidding strategies. This uncertainty leads to speculation

during bidding, which will increase agents’ computation cost and may render a final

schedule that is arbitrary and far from optimal. The goal, therefore, is to design a

mechanism which systematically evolves the solution towards an optimal one given

the constraint that agents try to avoid high cost assignments by not revealing their

complete availability. Since no payment is allowed in the NCSS setting, the

possibility of applying standard one-shot VCG mechanisms (Clarke, 1971 ; Groves, 1973;

Vickrey,1961) and even its iterative implementations (Parkes,2006) is eliminated. In the

following section, I propose a non-price bidding approach to the NCSS problem and

evaluate its performance.

5.4 The iterative bidding framework

The iterative bidding framework proposed here is an auction-based approach to the

NCSS problem. The framework contains two major components: an iterative bidding

73

procedure and an integer programming model for winner determination. The winner

determination model computes provisional schedules which maximize the sum of the

weights of the winning bids at each round. The iterative bidding procedure provides a

structure through which the agents and the service provider (auctioneer) can interact in a

systematic way and eventually evolve provisional solutions towards an optimal one.

Iterative bidding also reduces the level of agents’ information revelation and adds the

potential of accommodating dynamic changes during the bidding process. The iterative

bidding framework is a single-attribute auction that allows negotiation over a non-price

attribute: the level of availability of agents revealed to the auctioneer. The framework

requires agents to reveal their availability only on a necessary basis.

5.4.1 Iterative bidding

The iterative bidding procedure is depicted as a flow chart in Figure 5-1. There are

mainly four components of the bidding procedure: initialization, availability update and

bidding, termination checking and winner determination.

5.4.1.1 Initialization

Initially, an agent has a service request and provides a set of time slots during which

the request can be processed. The agent constructs its initial bid by selecting the time slot

with the lowest preference violation cost and sends it to the auctioneer.

5.4.1.2 Availability Update and Bidding

Agents update their availability by sending new feasible time slots to the auctioneer.

At the beginning of round 𝑡 (𝑡 > 1), an agent needs to decide whether it submits additional

time slots to the auctioneer at round 𝑡. This decision is made based on the provisional

schedule which resulted from the winner determination at round 𝑡 − 1. If an agent was not

awarded in the provisional schedule at round 𝑡 − 1, it has two availability update options

at round 𝑡: (1) it can submit additional time slots, or, (2) it can keep the set of submitted

time slots unchanged by submitting an empty bid (a bid without time slots). However, if an

agent submits an empty bid, the auctioneer will consider that the agent has entered into

final bid status and so will be forbidden from updating its availability in future rounds.

Given these options, I will show in the next section that, since agents are assumed to be

rational in minimizing their preference violation costs, they will always follow the myopic

74

bidding strategy. Figure 5-2 depicts the agent’s myopic bidding strategy in the format of a

flow chart. After receiving the winner determination results from round 𝑡 − 1, the agent

will submit an empty bid at round 𝑡 if it won at round 𝑡 − 1. However, if the agent lost, it

will check whether all its FTIs have been submitted. If yes, the agent will still submit an

empty bid because there are no more available time slots to be added; if no, the agent will

select the one with the lowest cost from its remaining FTIs and submit it to the auctioneer.

Initialization:
FTls are ordered according to agents preference

violation costs. Agents select the intervals with he
lowest cost as final bids.

Availability update and bidding:
Agents decide their availability update strategies,
construct their bids at the current round and bid.

Termination checking:
Auctioneer checks termination condition based on

the bids collected in the current round.

Termination
condition satisfied?

Winner determination:
Auctioneer computes a new

provisional schedule and
informs agents whether they
win or lose in current round

No

Yes

End

Figure 5-1 Flow chart of the iterative bidding procedure for NCSS problems

75

Figure 5-2 Agents’ myopic bidding strategy at a specific round

5.4.2 Bid screening and termination checking

Once bids are received from the agents, the auctioneer first screens out all the invalid

bids. Those bids will not be considered in the subsequent winner determination procedure.

Invalid bids are defined as having (1) any time slots that were submitted in previous rounds;

or (2) new time slots from agents who have already declared their final bidding status in a

previous round.

The auctioneer then checks the termination condition against the valid bids. The auction

terminates if there are no new availability updates for all the valid bids in this round. That

is, each agent that bid in the last round has either submitted an empty bid or withdrawn

from the bidding process. After the auction terminates, the auctioneer implements the final

schedule. If the termination condition is not satisfied, the auctioneer will update its agents’

available time slot pool by adding the newly submitted time slots to those already submitted

in previous rounds and solve the winner determination model using the updated availability

information as input.

Agent receives winner determination
result from Auctioneer

Did Agent win?

All intervals in FTIs
submitted?

Send an empty bid to
Auctioneer

Select the intervals with lowest
cost and send them to Auctioneer

Terminate

NO

Yes

No
Yes

76

5.4.3 Winner determination

The auctioneer needs to compute a new provisional schedule in each round until the

auction has terminated. At round 𝑡, the new provisional schedule 𝑆𝑡 solves the provider’s

decision problem model with updated availability from all bidding agents at round 𝑡 as

input. It is possible that multiple schedules could have the same optimal overall weight.

Which optimal schedule the auctioneer will find first is determined by a combination of

multiple factors, such as the design and configuration of the winner determination

algorithm and the organization pattern of the input data. After winner determination, the

auctioneer will inform all the bidding agents with the results as to whether they win or lose

in round 𝑡. After receiving the results, the agents will decide their strategy on availability

updating and start a new round of bidding. It is important to note that the winner

determination model here is different from that of many other combinatorial auctions, in

which the losing bids will not be considered in future rounds (Vries & Vohra, 2003). In our

model, the bid from an agent is just a new addition to its already submitted availability.

When computing the provisional schedule, the winner determination algorithm will

consider all the time slots submitted from an agent during the current and previous rounds.

In addition, the provisional schedule is determined by the updated availability at the current

round. It is not affected by the bidding sequence(s) in previous rounds.

5.5 Properties of the iterative bidding framework

In the design of the iterative bidding framework, agents bid according to the myopic

bidding strategy described in Figure 5-2. As I have assumed that agents are self-interested,

a question arises naturally: will the agents really follow the myopic strategy? I now study

the iterative bidding framework from the incentive compatibility perspective. I prove that

the myopic bidding strategy I have designed is the dominant strategy for agents, as stated

in the following proposition.

Proposition 1 Given the proposed iterative bidding mechanism, myopic bidding is the

dominant strategy for agents.

Proof: It is clear that if an agent has already been awarded in the previous round, there

is no reason for it to add new time slots in the current round because more availability will

77

increase the upper bound of its preference violation cost. Therefore, it will follow the

myopic strategy by reporting an empty bid. Next, consider the situation where an agent is

not awarded in the previous round. Assume that the agent has reported its first 𝑘 − 1 time

slots in its FTI during the previous rounds. If the agent follows the myopic strategy, it

should add the 𝑘th time slot at the current round and update its availability to the first 𝑘

time slots. To compare with the myopic strategy, I present here an alternative strategy for

the agent, in which it reports first (𝑘 + 1) time slots. In the following I will prove that the

myopic strategy weakly dominates the alternative strategy. Consider three cases:

Case#1: The agent is not awarded in the current round, no matter it submits its first 𝑘 or

 𝑘 + 1 time slots. In this case, both its first 𝑘 and first 𝑘 + 1 time slots end up with the

same preference violation cost, which is 𝑐0. There is no difference between the myopic

and the alternative strategies.

Case#2: The agent is awarded by submitting its first 𝑘 time slots. In this case, the agent

must be awarded by reporting its first 𝑘 + 1 time slots because its first 𝑘 is a subset of

first 𝑘 + 1. Since the awarded time slot can fall into any one of the submitted time slots,

I compare the expected preference violation cost of the myopic strategy and that of the

alternative strategy. Let 𝑎𝑘 denotes the number of time slots, which costs 𝑐𝑘 , that the

agent can possibly be allocated to. Since 𝑐1 ≤ 𝑐2 ≤ 𝑐3 ≤ ⋯ ≤ 𝑐𝑘 ≤ 𝑐𝑘+1,

then 𝑐𝑘+1 ∑ 𝑎𝑖
𝑘
𝑖=1 ≥ ∑ 𝑎𝑖𝑐𝑖

𝑘
𝑖=1 . Since 𝑎𝑘+1 > 0, it follows that 𝑎𝑘+1𝑐𝑘+1 ∑ 𝑎𝑖

𝑘
𝑖=1 ≥

𝑎𝑘+1 ∑ 𝑎𝑖𝑐𝑖
𝑘
𝑖=1 . Adding ∑ 𝑎𝑖

𝑘
𝑖=1 ∑ 𝑎𝑖𝑐𝑖

𝑘
𝑖=1 to both sides of the inequality

yields ∑ 𝑎𝑖
𝑘
𝑖=1 ∑ 𝑎𝑖𝑐𝑖

𝑘
𝑖=1 + 𝑎𝑘+1𝑐𝑘+1 ∑ 𝑎𝑖

𝑘
𝑖=1 ≥ ∑ 𝑎𝑖

𝑘
𝑖=1 ∑ 𝑎𝑖𝑐𝑖

𝑘
𝑖=1 + 𝑎𝑘+1 ∑ 𝑎𝑖𝑐𝑖

𝑘
𝑖=1 , that

is, ∑ 𝑎𝑖
𝑘
𝑖=1 ∑ 𝑎𝑖𝑐𝑖

𝑘+1
𝑖=1 ≥ ∑ 𝑎𝑖

𝑘+1
𝑖=1 ∑ 𝑎𝑖𝑐𝑖

𝑘
𝑖=1 which is equivalent to ∑ 𝑎𝑖𝑐𝑖

𝑘+1
𝑖=1 ∑ 𝑎𝑖

𝑘+1
𝑖=1⁄ ≥

 ∑ 𝑎𝑖𝑐𝑖
𝑘
𝑖=1 ∑ 𝑎𝑖

𝑘
𝑖=1⁄ .

Since adding the time slot 𝑘 + 1 will increase the feasible schedule space of the winner

determination, the value of 𝑎1, 𝑎2, … , 𝑎𝑘 will not be changed. The left-hand side of the

last inequality can be interpreted as the expected cost of reporting the first 𝑘 + 1 time

slots and the right-hand side can be interpreted as the expected cost of reporting only the

first 𝑘 time slots. It is clear that since the agent can be awarded by just reporting its first

𝑘 time slots, the myopic strategy will always lead to the lowest expected preference

violation cost.

78

Case#3: The agent is not awarded by reporting its first 𝑘 time slots, but is awarded by

reporting its first 𝑘 + 1 time slots. In this case, although by the myopic strategy, the agent

is not awarded at the current round, it always has the option of reporting its first 𝑘 + 1

by repeatedly applying the myopic strategy in the next round. Given that the bidding

sequence does not affect the winner-determination result, that is, the same set of time slot

availability will result in the same provisional schedule, the agent will not lose any

opportunity by adopting the myopic strategy.

It follows that the myopic strategy weakly dominates the alternative strategy with the first

𝑘 + 1 time slots. This conclusion also applies to initial round of bidding. Since the

provisional schedule before the initial round is empty, which can be interpreted as no agent

is allocated a bundle. Therefore the best strategy for agents’ initial round bidding is myopic

strategy. That is, at the first round, an agent should bid with its lowest cost time intervals

in its FTIs. By mathematical induction, it follows that, myopic bidding is the dominant

strategy for agent given the proposed iterative bidding mechanism. ∎

5.6 Iterative bidding with partial allocation during each round

The iterative bidding procedure I have proposed computes provisional allocation

during each round. It does not permanently award time slots to customers until the

termination condition has been reached. The procedure may reach higher quality solutions

since it collects more agents’ availability along the process of bidding. However, as the

bidding proceeds, the size of the winner determination problem will increase continuously.

Since I have shown that the winner determination problem is NP-hard, it follows that for a

service scheduling problem with a large number of customers, winner determination will

be slowed down considerably as more availability information is added. As a variant of the

proposed iterative bidding procedure, it is possible to award the provisional allocation to

customers during each round. In the subsequent round, those awarded time slots will be

removed from the service provider’s service time inventory, the awarded customers will

withdraw from the bidding process, and the customers who were not awarded in the current

round will construct their bids based on the updated inventory. The service provider will

solve the winner determination problem formulated by the updated inventory and the bids

79

submitted in the current round. This process allows the size of the winner determination

problem to decrease along the iterations, as both the size of the provider’s inventory and

the number of bidding agents decrease. The bidding terminates in fewer rounds than the

original procedure.

5.7 Simulation results: information revelation and efficiency analysis

By designing an iterative bidding framework, agents only need to reveal their

availability information when it is necessary. In addition, the higher system transparency

makes adoption of the framework easier. However, these benefits are gained at the cost of

efficiency. If at the termination of bidding all the agents have revealed their full availability,

the winner determination algorithm will compute an optimal schedule which maximizes

the sum of the weights of awarded agents. However, when bidding terminates before all

feasibility information has become known to the diagnostic service agent, the optimality

of the solution is not guaranteed. In this section, I evaluate the information

revelation/efficiency performance of the proposed approach through a computational

study.

Given a solution schedule, the measure of its efficiency is defined as the ratio between

its overall weight and that of an optimal solution for the same problem instance. The

measure of information revelation is the ratio of the revealed availability of all agents when

the solution is reached and to their complete availability. Intuitively, submitting more

availability incurs higher information revelation, which increases the expected preference

violation cost.

I used ILOG CPLEX 12.1 as optimization engine for solving the winner determination

model, with the set of bids from agents as the input. The iterative bidding control logic is

coded using the OPL Script language (Van and Michel, 2000). The control module and the

optimization engine were integrated using the ILOG OPL environment (http://www. 01.

ibm.com/software/integration/optimization/cplex-optimization-studio).All experiments

were conducted on a PC with a 2.4 GHz CPU and 4 GB of memory.

80

Figure 5-3 Efficiency increment during iterative bidding

Figure 5-4 information revelation increment during iterative bidding

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12

Ef
fi

ci
e

n
cy

Number of rounds

with partial allocation

without partial allocation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3 4 5 6 7 8 9 10 11 12

In
fo

rm
at

io
n

 R
e

ve
la

ti
o

n

Number of rounds

with partial allocation

without partial allocation

81

Figure 5-5 Trade-off between efficiency and information revelation

I generated a set of test problem instances by fixing the service provider’s time slot

inventory at 20 and the number of customers at 50. Customers’ weights were drawn from

a uniform distribution ranging from 1 to 3. The processing times for agents’ requests are

identical and restricted to one time slot. For each agent, I randomly selected a set of time

intervals from the service provider’s available time inventory to form its FTI. The sizes of

the agents’ FTIs were drawn from a uniform distribution in the range of 8 to 16 with a

mean of 12.The length of the time intervals in FTIs is restricted to one. The time intervals

in the FTIs were randomly ordered.

I solved the set of problem instances using the proposed iterative bidding framework

and computed the average efficiency and information revelation at each round of bidding.

The bidding processes without partial allocation usually terminated within 12 rounds,

which is the mean of the size of the FTIs. The bidding processes with partial allocation

usually terminated within 6 rounds, which is, as expected, much faster than the bidding

without partial allocation.

Figures 5-3 and 5-4 show the efficiency and information revelation increment during

the bidding process. At round 6, the modified bidding procedure with partial allocation

achieves on average of 84% efficiency, whereas the original bidding procedure without

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
0

%

1
5

%

2
0

%

2
5

%

3
0

%

3
5

%

4
0

%

4
5

%

5
0

%

5
5

%

6
0

%

6
5

%

7
0

%

7
5

%

8
0

%

8
5

%

9
0

%

9
5

%

1
0

0
%

Ef
fi

ci
e

n
cy

Information Revelation

with partial allocation

without partial allocation

82

partial allocation achieves on average 93% efficiency at round 12. The bidding procedure

with partial allocation is essentially a ‘greedy’ distributed search algorithm which can find

a solution quickly. However, its solution quality can be compromised. The bidding

procedure without partial allocation involves backtracking. However, it normally reaches

a higher quality solution with additional bidding rounds. From Figure 5-4, it is clear that

the information revelation of bidding with partial allocation is always lower than that of

bidding without partial allocation, and that this difference increases along the bidding

process. Compared to bidding without partial allocation, it appears that bidding with partial

allocation can achieve a reasonably good solution with much less computation costs and

information revelation. Figure 5-5 shows the trade-off between efficiency and information

revelation; as expected, high efficiency demands more information revelation. The results

confirm that increasing information revelation has a diminishing return in efficiency.

Bidding with partial allocation can reach 84% efficiency with only 34% information

revelation, whereas bidding without partial allocation needs to double the information

revelation (70%) in order to reach the same efficiency level. For bidding without partial

allocation, a solution with 93% efficiency demands information revelation of 79%. Since

it is the agents that decide when to stop submitting more availability information to the

auctioneer, the bidding procedure actually provides them with the option of setting their

respective information revelation limits based on their own calculation of the costs caused

by information revelation. In this experiment, I did not consider the situation where agents

have information revelation limits. However, Figure 5-5 gives an indication of the

efficiency that can be reached given various levels of information revelation.

5.8 Summary

In recent years, the economy has evolved from manufacturing to services. Service

supply chain management has become an important research area with significant practical

implications. Scheduling non-commercial services for self-interested customers who

behave strategically to protect their private information is a challenging problem to resolve

in accordance with the different objectives of service provider and customers. In non-

commercial service scheduling environments, no payment transfers are allowed, which

83

eliminates the possibility of designing price- or payment-based mechanisms to balance the

supply and demand. I have proposed a bidding framework for scheduling non-commercial

services and evaluate its efficiency and information revelation performance through

theoretical analysis and computational experiments. I show that, under the proposed

auction mechanism, myopic bidding is the dominant strategy for customers. In terms of the

efficiency and information revelation performance, the computational study shows that

bidding with partial allocation can find a reasonably good solution with much less

computation costs and information revelation. For both cases of bidding, with and without

partial allocation, increasing information revelation has a diminishing return in efficiency.

84

Chapter 6 Applications

This chapter presents the application of the IbSCHF to two problem domains: service

mass customization under capacity constraints and appointment scheduling in a health care

system. The objective is to demonstrate the applicability of IbSCHF to both commercial

and non-commercial service scheduling domains, rather than providing complete solutions

to these problems.

6.1 Applying framework

The IbSCHF can be applied to various service scheduling domains in which customers

compete to schedule their service activities to make their best use of resources. To apply

the framework in a problem domain, the first step is identifying customers and modeling

them as agents. To carry out this step, an agent’s job, their constraints, and their valuations

over different schedules need to be specified. The second step is the configuration of the

bidding process, which includes modeling the winner determination problem, specifying

the bid structure and the bid update rules.

The rest of this chapter demonstrates how the two-step procedure is used to configure

the IbSCHF to solve two different problems.

6.2 Service mass customization under capacity constraints

Mass customization aims at producing what customers need with near mass production

efficiency. It can be seen as a collaborative optimization process between a company and

its customers, with the goal of finding the best match between the company’s capabilities

and their customers’ needs. A company’s core capabilities are the basis of its product

families and their successive platforms (Meyer and Utterback1993). These capabilities are

reflected in the people and assets applied to the development of new products. A company’s

capabilities can be represented by its product family architecture (PFA) (Tseng and Jiao

1996; Jiao and Tseng 1999) which consists of a common base, a differentiation enabler,

and a configuration mechanism. While a PFA can serve as a systematic protocol that

85

customers can use to navigate through a company’s capabilities and define their own

requirements, capabilities can also be organized and presented using scalable product

family design (Simpson et al. 2001) and configurational product family design (Du et al.

2001; Ulrich1995). In scalable product family design, a variety of customer needs are

satisfied through the configuration of scaling variables which are used to “stretch” or

“shrink” the product platform in one or more dimensions. Configurational product family

design, on the other hand, aims at developing a modular product platform on which product

family members are derived by adding, substituting, and/or removing one or more

functional modules. The search for a better match between a company’s capabilities and

their customer’s needs has been the central theme in mass customization literature for more

than a decade (Jiao et al.2007; Simpson 2004; Da Silveira et al. 2001). In this chapter, a

different perspective is taken to examine the impact of a company’s capacity on product

customizability and customer value. Here the term capacity is defined as a company’s

ability to produce customized products for a group of customers within a predefined time

schedule.

It is imperative to consider a company’s capacity constraints in customization decision

making when production schedules are important to customers. This is particularly true in

service customization. Unlike product manufacturing, service production usually involves

customer’s labour in the process (i.e., co-production), or it requires the physical presence

of the customer. Common examples can be seen in health care offices, buffet restaurants,

and travel services. For service customers, it is desirable to have convenient production

schedules because they need to be physically present during service production. In

addition, the service provider’s capacity is perishable, as service operations cannot rely on

inventories to adjust to demand fluctuations. Perishability alludes to the time-sensitive

nature of a service provider’s capacity to produce a service (Sampson 2001). In service

customization, capacity constraints directly affect customers’ satisfaction, as well as

provider’s profitability. Therefore, capacity constraints should be integrated into service

customization decision making.

To motivate the research from a practical perspective, consider the case of the mass

customization of travel packages. Major online travel brands such as Expedia Inc.

86

(Expedia.com), Opodo (Opodo.com), and Orbitz Worldwide (Orbitz.com) are giving their

customers the tools to customize their own adventures in the form of “build your own

package”. Compared to pre-packaged vacations, customized packages are more attractive

to customers because everyone’s travel experience is unique and personal. A customized

vacation package usually includes one or more of the following components: flight

reservation, hotel reservation, car rental, and tickets to entertainment events. For a specific

destination and a specific time window, the capacity limits of these components restrict

customers’ options and affect the customizability of travel products. This is particularly the

case during high seasons, when the capacities of service providers are stretched to their

limits. Similar situations occur in manufacturing mass customization. For example, in

configurational product family design, a customer customizes its individual product by

adding a group of functional modules to a base product. If a particular module takes

excessively longer time to be delivered due to the manufacture’s capacity constraints, the

customer may switch to an alternative module or even cancel the order.

This chapter addresses the capacity aspect of mass customization. Specifically, it

answers the question: Given limited capacity, how can a company maximize the value

provided to its customers by coordinating customers’ customization requirements? The

main objective of the proposed approach is to maximize value across a large group of

customers, which is, in economics terms, to maximize the social welfare (Mas-Colell et al.

1995). To facilitate clear formulation of the problem and meaningful presentation of the

solution, the scope of the chapter is restricted to service customization settings. However,

the proposed model could be applied to manufacturing customization. In this chapter,

Service Customization under Capacity Constraints (SCCC) is modeled as an optimization

problem. The contribution to the literature is two-fold. First, customers’ customization

decision making is integrated with a company’s capacity constraints, which is of particular

relevance in service customization settings where a provider’s capacity is perishable and

often expensive to expand. Second, at the system level, the overall value provided to

customers is maximized by coordinating customers’ customization requirements through

auction-based multilateral negotiations. It is assumed that a company’s objective is to

maximize overall customer value. This objective is desirable because, in the long run, a

87

company can improve its profit only by providing customers with high value-added

products and services.

6.2.1 Centralized problem formulation

This section provides a centralized formulation of the SCCC problem, which consists

of a group of customers and a service provider. The customers want to customize the

service products. To provide a common design domain, the provider is assumed to adopt a

configurational product family design approach (Du et al. 2001; Ulrich 1995) such that it

can present its capabilities in the form of a set of building blocks (services). Customers can

customize the product by choosing a base product (a pre-defined group of services) and

adding optional services according to their preferences. A customized product is a package

of services chosen by a customer. For example, a vacation package can include

transportation services, accommodation services, and additional entertainment activities.

For a provider, a service has a capacity limit which is defined as the number of customers

the service can accommodate during a specified time window. The customer attaches a

value to each package of services.

Formally, the SCCC problem consists of a set of n customers and a set of m services.

A customer can configure its service package by selecting a group of services. A service

package has to include a pre-configured set of services, that is, the base configuration,

denoted 𝑆̅. For service 𝑖, its capacity is limited by capacity (𝑖). Let 𝐸𝑗 be the set of service

packages which are acceptable by customer 𝑗 (i.e., feasible packages) and 𝐸 be the union

of the sets of acceptable service packages from all customers, so that 𝐸 = ⋃ 𝐸𝑗𝑗=1…𝑛 Let

𝑣𝑗(𝐵) be the value of customer j attached to the service package ∈ 𝐸 .𝑣𝑗(𝐵) > 0 if 𝐵 ∈ 𝐸𝑗;

𝑣𝑗(𝐵) = 0 otherwise. Let 𝑥𝑗(𝐵) = 1

if the bundle 𝐵 ∈ 𝐸 is allocated to customer j and zero

otherwise.The SCCC problem involves the selection of a set of service packages for

customers such that the service provider’s capacity constraints are respected and, at the

same time, the sum of the customer value (social welfare, in terms of microeconomics)

derived from the selected packages is maximized. The problem can be formulated as the

following integer programming.

88

𝑚𝑎𝑥 ∑ ∑ 𝑥𝑗(𝐵)𝑣𝑗(𝐵)𝐵∈𝐸
𝑛
𝑗=1

subject to

∑ 𝑥𝑗(𝐵) ≤ 1, 𝑗 = 1, … , 𝑛𝐵∈𝐸 (1)

∑ ∑ 𝑥𝑗(𝐵) ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖),𝑛
𝑗=1𝐵∋𝑖 𝑖 = 1 … 𝑚 (2)

∑ 𝑥𝑗(𝐵)𝐵∈𝐸 = ∑ 𝑥𝑗(𝐵), 𝐵∈𝐸𝑗
𝑗 = 1, … , 𝑛 (3)

∑ 𝑥𝑗(𝐵)𝐵∈𝐸 = ∑ 𝑥𝑗(𝐵), 𝐵⊇𝑆̅ 𝑗 = 1, … , 𝑛 (4)

𝑥𝑗(𝐵) = {0,1}, 𝐵 ∈ 𝐸, 𝑗 = 1, … , 𝑛 (5)

Constraints (1) ensure that a customer can only obtain one service package. Constraints

(2) ensure that the allocation of a service to customers does not exceed the capacity limit

of the service provider. The set of constraints (3) ensure that if a package is assigned to a

customer, it must belong to the set of product configurations that are acceptable to that

customer. These constraints prevent the provider from assigning customers packages

which they are not willing to accept. Constraints (4) enforce the selection of the base

configuration in each awarded package. Constraints (5) are a set of integer constraints.

Theorem 1: The problem of service customization under capacity constraints (SCCC) is

NP-hard.

Proof: To show that SCCC is NP-hard, consider a special case in which 𝐸𝑗 = 𝐸 for all

𝑗 = 1, … 𝑛 and 𝑆̅ = 𝜙. In this case, constraints (3) and constraints (4) always hold. The

relaxed model is a set-packing problem, which is NP-complete (Karp, 1972). It follows

that, as a general case, SCCC problem is NP-hard∎.

The SCCC is an integer programming model which takes customer value as input. The

key question to be asked here is how the values that each customer assigns to the packages

can be obtained. Computing value from product configurations can be customer-specific.

One approach, suggested by Tseng and Du (1998), is to use methods designed to measure

consumer preferences in marketing research, such as conjoint analysis (IntelliQuest 1990).

Conjoint analysis assumes that a product could be described as vectors of attributes, and

each attribute can include several discrete levels.

89

To apply conjoint analysis to the SSCC, each service is modelled as an attribute and

the discrete levels of attributes are restricted to 1 (service included) and 0 (service not

included). As the SCCC requires customers’ complete valuation on all feasible packages,

computing a value for each and every configuration may become impractical when the

range of feasible packages becomes large. Although customers can determine the value of

feasible packages, they may be reluctant to report the value back to the service provider

because, by the definition of the private value model, value is the highest price that a

customer is willing to pay for a given package. In many cases, these prices are sensitive

private information. The proposed iterative bidding framework in chapter 4 computes high

quality solutions to SCCC problem without requiring valuations from customers. The

proposed auction is a price mechanism in which a provider coordinates the customization

requirements among its customers by adjusting the prices of service packages.

6.2.2 Service mass customization under capacity constraints using IbSCHF

Bidding

Each agent has a valuation function expressing its values on different service packages.

An agent’s valuation can be expressed as an XOR-bid. For example < 𝑃𝑎𝑐𝑘𝑎𝑔𝑒, 𝑝𝑟𝑖𝑐𝑒 >

 expresses the agent’s willingness to pay the price for the services included in the Package.

We also assume that the reserve prices are common knowledge. For the first round of

bidding, agents use the reserve prices as the asking prices. At the beginning of round 𝑡, a

customer agent 𝑔 selects a feasible package that maximizes its utility function given the

asking prices, and generate the bid.

Bids screening and termination

After receiving bids from the agents, the service provider agent first screens out any

invalid bids. Invalid bids are defined as those with (1) any bidding price for a package

which is below the highest bidding price that same package received in previous rounds,

(2) higher prices from customers who have already declared their final bidding status in a

previous round, and (3) packages which do not contain the base configuration or that

violate other configuration rules.

90

Winner determination

The winner determination model designed is to select a subset of the bids submitted by

the customers such that the overall bidding price of the provisional allocation is maximized

and the capacity constraints of the provider are not violated. Let 𝑁𝑡 be the set of customers

that submitted their bids at round 𝑡 and 𝑝𝑗
𝑡(𝐵𝑗

𝑡) be the bidding price of customer 𝑗 at round

𝑡, 𝑗 ∈ 𝑁𝑡, where 𝐵𝑗
𝑡 is the package submitted by customer 𝑗 at round 𝑡. Let 𝑍𝑗 = 1 if

customer 𝑗 wins and 𝑍𝑗 = 0 otherwise. The winner determination model can be expressed

using the following integer programming.

𝑚𝑎𝑥 ∑ 𝑍𝑗𝑝𝑗
𝑡(𝐵𝑗

𝑡)𝑗∈𝑁𝑡

subject to

∑ 𝑍𝑗𝑗∈𝑁𝑡

𝐵𝑗
𝑡∋𝑖

≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑖), 𝑖 = 1 … 𝑚 (6)

𝑍𝑗 = {0,1}, 𝑗 ∈ 𝑁𝑡 (7)

Constraints (6) ensure that the bids awarded in a provisional allocation do not violate

the provider’s capacity constraints. Constraint (7) is a set of integer constraints.

Price Update

In the bidding procedure for the service mass customization problem, the prices are

updated according to the price update rules in the IbSCHF.

A worked example is presented next, to demonstrate the application of the IbSCHF to

travel package customization.

6.2.3 A worked example

This subsection presents a worked example to demonstrate the bidding process of

applying the IbSCHF to the travel package customization problem. Suppose a travel agency

offers a “build your own package” tool to its customers so they can customize their vacation

packages for a 7-day holiday at a popular destination. Customers should travel to the

destination on Day 1 and return on Day 7. The agency offers a list of travel components

including flight reservations, hotel reservations, car rental, and tickets to entertainment

91

events. There are multiple services for each of the components to accommodate various

customer preferences. For example, a Departure Ticket (DT) can be scheduled in the

morning (DT-1), afternoon (DT-2), or evening (DT-3). For illustrative purposes, an

example of an unrealistically small number of customers (five customers) is set up. The

available services and their respective capacities are summarized in Table 6-1. Table 6-2

shows the customers’ feasible packages and their valuations of them, where B(a, b)

represents feasible package b from customer a. The base configuration includes one and

only one service of each of the components DT, RT, and HL. Customers can have one to

five services from the component ET. To limit the number of rounds of bidding, high

reservation prices are set for the packages (see Table 6-2). Submitted bids, provisional

allocation, provider’s revenue, and customer’s value at each round of bidding are

summarized in Table 6-3. ε is set to be five. The auction terminates at round 12 with overall

customer value at 7370. Compared to the optimal value of 7790, the auction reaches 95%

efficiency in this example. The sum of the prices paid by the customers (i.e., the provider’s

revenue) is 7240, which is close to the overall solution value due to competition among

customers. The provisional allocations along the bidding process manifest the heuristic

search guided by the changing package bidding prices.

Table 6-1 Summary of service capacity

Service ID Service Description Capacity

DT-1 Departure Ticket in the morning of Day 1 3

DT-2 Departure Ticket in the afternoon of Day 1 2

DT-3 Departure Ticket in the evening of Day 1 2

RT-1 Return Ticket in the morning of Day 7 2

RT-2 Return Ticket in the afternoon of Day 7 2

RT-3 Return Ticket in the evening of Day 7 3

HL-1 First-class hotel 1

HL-2 Second-class hotel 3

HL-3 Motel 2

ET-1 Sporting event ticket 2

ET-2 Performing arts ticket 2

92

ET-3 Museum ticket 3

ET-4 Cruise trip ticket 3

ET-5 Fine dining ticket 2

Table 6-2 Customers’ feasible packages and corresponding reservation prices and value

Customer Feasible Packages Reservation Price ($) Value ($)

Cus#1

B (1,1) = {"DT3" "RT3" "HL3" "ET2" "ET3"} 1410 1445

B (1,2) = {"DT2" "RT1" "HL1" "ET1""ET3" "ET4"

"ET5" }

2200 2250

B (1,3) = {"DT3" "RT2" "HL2" "ET4"} 1830 1870

Cus#2

B (2,1) = {"DT1" "RT3" "HL1" "ET1" "ET2"} 2120 2145

B (2,2) = {"DT1" "RT1" "HL1" "ET1" "ET4" "ET5"} 2320 2360

B (2,3) = {"DT3" "RT3" "HL2" "ET1" "ET3""ET4"} 2060 2085

Cus#3
B (3,1) = {"DT3" "RT3" "HL1" "ET1" "ET2" "ET3"

"ET5"}

2210 2235

B (3,2) = {"DT1" "RT2" "HL1" "ET1" "ET3""ET4"} 2360 2370

Cus#4
B (4,1) = {"DT2" "RT1" "HL3" "ET1""ET2" "ET3"

"ET4"}

1660 1695

B (4,2) = {"DT2" "RT1" "HL2" "ET1" "ET3"} 1730 1740

Cus#5

B (5,1) = {"DT3" "RT3" "HL2" "ET5"} 1610 1660

B (5,2) = {"DT1" "RT3" "HL1" "ET1" "ET3" "ET4"

"ET5"}

2360 2375

B (5,3) = {"DT2" "RT2" "HL1" "ET2""ET4" "ET5"} 2130 2135

B (5,4) = {"DT3" "RT3" "HL3" "ET3" "ET5"} 1290 1295

B (5,5) = {"DT1" "RT3" "HL2" "ET3""ET4"} 1910 1945

Table 6-3 Submitted bids, provisional allocation, provider’s revenue, and customer’s value at

each round of bidding

Round # Submitted Bids Provisional Allocation
Provider

Revenue

Customer

Value ($)

1 B (1,2) , B (2,2) , B (3,1) , B (4,1) , B (5,1) B (2,2), B (4,1) , B (5,1) 5590 5715

2 B (1,2) , B (2,2) , B (3,1) , B (4,1) , B (5,1) B (2,2), B (4,1) , B (5,1) 5590 5715

3 B (1,2) , B (2,2) , B (3,1) , B (4,1) , B (5,1) B (2,2), B (4,1) , B (5,1) 5590 5715

4 B (1,3) , B (2,2) , B (3,1) , B (4,1) , B (5,1) B (1,3), B (2,2), B (5,1) 5760 5890

93

5 B (1,3) , B (2,2) , B (3,2) , B (4,1) , B (5,1) B (1,3), B (3,2), B (5,1) 5800 5900

6 B (1,3) , B (2,2) , B (3,2) , B (4,1) , B (5,1) B (1,3), B (3,2), B (5,1) 5800 5900

7 B (1,3) , B (2,2) , B (3,2) , B (4,1) , B (5,1) B (1,3), B (3,2), B (5,1) 5800 5900

8 B (1,3) , B (2,1) , B (3,2), B (4,1) , B (5,1) B (1,3) , B (2,1), B (4,1) , B (5,1) 7240 7370

9 B (1,3) , B (2,1) , B (3,1), B (4,1) , B (5,1) B (1,3) , B (2,1), B (4,1) , B (5,1) 7240 7370

10 B (1,3) , B (2,1) ,B (3,2) , B (4,1) , B (5,1) B (1,3) , B (2,1), B (4,1) , B (5,1) 7240 7370

11 B (1,3) , B (2,1) , B (3,1) , B (4,1) , B (5,1) B (1,3) , B (2,1), B (4,1) , B (5,1) 7240 7370

12 B (1,3) , B (2,1) , B (3,1) , B (4,1) , B (5,1) B (1,3) , B (2,1), B (4,1) , B (5,1) 7240 7370

6.2.4 Incentive Issues

Given the assumed customers’ private value model, no customer bids above their

valuation. In all cases, customers will not get negative payoffs, which encourages them to

participate in the auction. However, understanding the incentives that a company has for

setting up and conducting the proposed auction requires some explanation of the

company’s objectives for auction design. In auction design there are two common

objectives an auctioneer may have. The first is economic efficiency, and the second is

revenue maximization (de Vries and Vohra, 2003). An auction is economically efficient if

the allocation of objects to bidders chosen by the auctioneer maximizes the overall values

of the bidders. Economic efficiency is supported by well-developed auction theories. A

typical example is the canonical Vickrey-Clarke-Groves (VCG) mechanism (Vickrey

1961; Clark 1971; Groves 1973) which simultaneously achieves incentive compatibility

and efficiency and has guided the design of many auctions. As a result, the majority of the

auction literature takes economic efficiency as their design objective.

It is argued in Parkes and Kalagnanam (2005) that the goal of economic efficiency is

well suited for the design of stable long-term markets that will form the basis for repeated

trading. They expect that efficient markets will come to dominate the electronic market

landscape based on their experience with procurement auctions deployed with a large

chocolate manufacturer (Hohner et al., 2003). In the context of mass customization,

economic efficiency is also desirable for a company seeking to build long-term business

94

relationships with their customers. It is agreed in mass customization literature that one of

the major objectives of mass customization is to improve customer value. In the long run,

a company can only improve its profit by providing customers with high value-added

products and services. The long term benefits brought by efficient auction design provide

an incentive for companies to adopt economic efficiency as their auction design objective.

The objective of revenue maximization (optimal auction design), on the other hand,

maximizes the auctioneer’s revenue. Optimal auctions maximize the seller’s revenue at

every transaction, which are perhaps more appropriate for a one-shot procurement problem,

and in a settings where the buyer has considerable market power (Parkes and Kalagnanam,

2005). However, even if a company only cares about short term benefits and wants to get

the most out of every transaction, an efficient auction design may still be the more

reasonable choice, especially when iterative bidding is used as an implementation structure.

This is because there are no known optimal (i.e. revenue-maximizing) general-purpose

combinatorial auctions, iterative or otherwise (Parkes, 2006). In fact, the dynamic

exchange of value information between bidders that is enabled within iterative

combinatorial auctions is known to enhance revenue and efficiency in single-item auctions

with correlated values (Milgrom and Weber, 1982). One should expect efficient iterative

combinatorial auctions to retain this benefit over their sealed-bid counterparts (Parkes,

2006). Therefore, from both long-term and short-term perspectives, a company has clear

incentives to deploy an efficient combinatorial auction.

The IbSCHF is an efficient auction design which is implemented using an iterative

bidding process. The bidding process is guided by a price mechanism. The revenue that the

auctioneer collects is the sum of the bidding prices from the awarded customers at winner

determination. Given the design of the bidding procedure, the company’s revenue is

guaranteed to increase along the bidding process and reach its highest at termination.

Despite the formulation of the economic efficiency objective of the SCCC, the iterative

bidding structure itself achieves high seller revenue in the same spirit of many real-world

iterative auction applications, which supports our claim that the proposed model provides

incentives to the seller. The performance gained by applying the IbSCHF on general SCCC

problems is evaluated through a computational study in the next section.

95

6.2.5 Value and revenue performance under various product customizability

Products with a higher level of customizability will likely meet individual customer

needs better. However, a higher level of customizability often leads to higher costs. To

manage the customization costs and improve operational efficiency, service providers

usually restrict customers’ choices in choosing service combinations by imposing

configuration rules. The proposed customization model allows providers to adjust the

customizability of packages by defining different base configurations. When customizing

a package, a customer is required to incorporate the services defined in the base

configuration into the package. In terms of platform-based product development, the base

configuration serves as a base product on which customers build their customized products.

In this section, the value and revenue performance of applying the IbSCHF to SCCC

problems is validated under various levels of product customizability imposed by the

service provider. The proposed framework is also compared with the commonly used first-

come-first-served capacity allocation approach in terms of solution values. The design of

the set of testing data used for the experiments is described as follows.

6.2.6 Design of the testing data

The customization environment in which the computational study is conducted is the

one described in the worked example. However, to demonstrate the practical relevance of

the experiments, the number of customers and the capacity of services are now increased

to a realistic scale. Customer value is generated from common pricing schemes found in

online travel auctions. In travel auction websites, such as eBay Travel

(http://www.ebay.com), Luxury Link (http://www.luxurylink.com), and Sky Auction

(http://www.skyauction.com), a package to be sold has a “buy it now” price which is

usually its regular retail price. A customer can purchase the package immediately at the

regular retail price if unwilling to wait until the termination of the auctions. However, if

the customer wants a bargain, they must participate in the auction.

The final auction price is determined by the market competition at the termination of

the auction. A package also has a reservation price. The reservation price is often unknown

to the customers. In the design of the testing data, it is assumed that there is a regular retail

96

price for each of the available services, and the retail price for a package is the sum of the

retail prices of the services included in the package. The reservation price for a package is

set to be 40% of its retail price, since it is common in the online travel auctions that the

termination price can be as low as 60% below the regular retail price. It is assumed that

customers who enter the auction expect some discount. They are not interested in

purchasing the package at a price higher than the regular retail price. Customer values for

a package are randomly drawn from a uniform probability distribution between reservation

price and its regular retail price. Ten SCCC problem groups are generated, with the

customer number ranging from 100 to 1,000. For each group, ten instances are randomly

generated. Service capacity is also allocated in proportion to the number of customers such

that, for most of the instances, around 80–90% of the customers will be awarded a feasible

package. For all instances, a customer’s feasible package must contain one DT, one RT,

and one HL.

6.2.7 Simulation results

In this section the value and revenue performance of applying the IbSCHF to an SCCC

problem is validated under various levels of product customizability imposed by the service

provider. For the computational study, three levels of product customizability are

considered. The three levels are defined by different base configurations: Config#1 = {one

of DT, one of RT, one of HL}, Config#2 = {one of DT, one of RT, one of HL, one of ET},

Config#3 = {one of DT, one of RT, one of HL, three of ET}. The numbers of services

contained in the three configurations are 3, 4, and 6, respectively. The solutions computed

under Config#1 are used as the baseline for comparison. For each group of problem

instances, the optimal solution value under Config#1 is computed by solving the SCCC

integer programming model presented in section 6.2.1 “Centralized problem formulation”.

The SCCC model is coded in ILOG Optimization Programming Language (http://www-

01.ibm.com/software/websphere/products/optimization/) and the ten groups of problem

instances are solved using ILOG CPLEX.

97

The flow control of the iterative bidding is coded in the OPL (Optimization

Programming Languages) script language. A desktop PC with a 2.4G Intel CPU and 8 GB

of memory is used to run the experiments.

Table 6-4 Customer value and provider revenue generated at different levels of package

customizability

Group Base-Config#1 Base-Config#2 Base-Config#3

(1)

Optimal

value

(2)

Auction

value

(3)

Auction

revenue

(4)

First-come-

first-served

Value

(5)

Auction

value

(6)

Auction

revenue

(7)

Auction

value

(8)

Auction

revenue

1 $211,705 $210,535 $174,380 $166,420 $110,080 $96,585 $73,085 $57,890

2 $421,970 $418,100 $333,470 $326,270 $221,990 $197,225 $129,240 $102,740

3 $633,215 $618,880 $482,370 $493,610 $336,620 $294,485 $173,650 $137,970

4 $848,365 $846,295 $691,550 $662,700 $448,860 $397,790 $211,955 $166,980

5 $1,055,680 $1,039,410 $814,790 $816,505 $563,895 $503,075 $279,435 $219,160

6 $1,269,615 $1,245,415 $963,130 $954,235 $676,915 $599,330 $333,085 $259,360

7 $1,473,780 $1,453,190 $1,130,300 $1,128,480 $787,980 $696,880 $390,545 $303,210

8 $1,688,120 $1,680,505 $1,354,670 $1,294,280 $900,455 $802,365 $453,520 $353,030

9 $1,907,200 $1,889,915 $1,476,390 $1,497,350 $1,014,995 $899,630 $515,165 $402,940

10 $2,114,810 $2,101,835 $1,681,890 $1,655,410 $1,126,325 $994,805 $568,815 $443,030

The solutions computed by applying the IbSCHF are compared to the optimal ones

computed by ILOG CPLEX. The first column of Table 6-4 shows the average optimal

solution values for the ten groups of testing problems. The second and the third columns

show the solution value and revenues computed by applying the IbSCHF, respectively. All

customers are assumed to adopt final-bid-repeating and ε = 20 for all bidding. It is observed

that the solution computed by applying the IbSCHF can achieve, on average, 98% of the

optimal value across the ten groups of problem instances. The average revenue computed

is approximately 78% of the optimal value.

98

To evaluate the impacts of package customizability on customer value, the testing

problems are solved again with Config#2 and Config#3. When conducting the iterative

bidding, all bidding packages which do not satisfy Config#2’s and Config#3’s

configuration requirements are excluded at the bid screening stage. Columns five and six

of Table 4 show the solution values and the revenues, respectively, with Config#2. It is

observed that, on average, the solution value decreases to 53% of that of Config#1, and

revenues decrease to 59% of those achieved with Config#1. If Config#3 is applied, the

solution value will decrease to 27% of Config#1’s value, and revenues will decrease to

28% of those achieved with Config#1. It is evident from the simulation results that reducing

product customizability can significantly decrease both customers’ overall value and

provider’s revenue.

The proposed customization approach is also compared to the commonly used first-

come-first-served capacity allocation policy. For example, “build your own package”

applications in the travel industry usually allocate a provider’s capacity on a first-come-

first-served basis combined with dynamic pricing strategies. Again, take travel package

customization as an example. To compare the performance of an auction-based policy

against that of a first-come-first-served capacity allocation policy, each policy is applied to

the ten groups of SCCC testing problems. Column 4 of Table 6-4 shows the solution value

of the first-come-first-served policy compared to the testing problems under Config#1. It

is clear that the first-come-first-served policy achieves on average 78% of the value

obtained by the auction-based approach.

6.3 Appointment scheduling in the health care system

Today’s healthcare systems face increasing demands in both the number of patients

and the services that patients require, which often stretches limited resources beyond

capacity. More and more patients must be treated with the same limited resources and

budget. Nevertheless, the quality of service cannot be compromised. In addition to the

perceived quality of medical services that they receive, patients’ satisfaction with their

healthcare providers is also affected by their appointment booking experiences. Patients

99

want more personalized care, which includes involvement in selecting appointment times

with their preferred doctors.

Most of the government policies and researchers focus on improving the speed of

access to the health care system and decreasing waiting time, but for non-urgent care,

patients place a value on seeing the doctor of their choice, and on doing so at a convenient

time. Using the discrete choice experiment method among 1153 patients, G. Rubin et al

(2006) found that the waiting time to make an appointment was only important if the

appointment was for a child or when it was for a new health problem. In that survey,

participants were asked to make their choices in a questionnaire that offered three

categories: speed of access (time to appointment), choice of doctor and choice of time (they

could choose their preferred time for an appointment). For responders who were employed,

choice of time was six times more important than shorter waiting time. Older patients,

women and those with long-standing physical illnesses preferred to see their own doctor

for their appointment and they were willing to wait longer to do so. Gerard, K et al (2008)

used discrete choice experiments to determine the important factors that influence patient

choice in the booking an appointment. From their overall responses, the factors influencing

patient choice in booking appointments were, in order of importance: seeing a doctor of

their choice; booking at a convenient time of day; seeing any available doctor; and having

an appointment sooner rather than later. These findings clearly demonstrate that the current

focus of policy makers on speed of access is oversimplified. In addition, evidence shows

that when patients were matched and scheduled according to their preferred provider,

quality of care is improved (O’Hare and Corlett 2004); also, matching patients with their

preferred provider and offering them a convenient appointment time can decrease the

number of no-shows and thereby increase operational efficiency (Barron 1980).

In 2005, survey results indicated that patients complain about their difficulty in obtaining

an appointment at a convenient time. (Healthcare Commission 2005).In another survey,

one in four (25%) said they had been put off from going to their GP practice because the

opening hours were inconvenient (National Survey of Local Health Services 2006).

However, accommodating scheduling preferences across a large number of patients is

particularly challenging due to three areas of complexities, namely collection complexity,

100

allocation complexity and elicitation complexity. Collection complexity refers to the

efforts needed to collect preferences information from patients. However, collecting

complete preference information from a large number of patients is not an easy task

because a patient’s preference is usually not binary. Instead, it is a continuous variable that

spans the spectrum from highly like to highly dislike. Moreover, a patient’s preferences

may change over time for the same patient. Some examples of factors that change

preferences are changes in work schedule or in marital status; this fluidity is one of the

reasons why the vast majority of appointment booking systems are not automated. They

have to rely on human schedulers to negotiate with patients to collect preferences

information, a practice which incurs high administrative costs to the healthcare system.

Allocation complexity refers to the computation needed to compute high-quality service

time allocations. Accommodating dynamic preferences can easily make mathematical

models of the appointment booking process intractable (Gupta and Denton 2008). These

issues are further complicated by the fact that patients are reluctant to reveal all their

availability.

The proposed Iterative bidding framework for non-commercial services presented in

chapter 5 can be properly applied to appointment scheduling problem. The next section

demonstrates the multi-agent systems architectural for healthcare scheduling problem that

can be used to apply the proposed framework.

6.3.1 The environment

Multi-agent systems architecture for appointment scheduling can be modelled as shown

in Figure. 6-1. In this architecture, there are three types of agents that work collaboratively

to achieve the overall scheduling functions of the system. The Patient agent represents the

personal assistant of a patient. This agent has a user interface through which patients

directly input their preferences and availability. A patient can program her preferences and

availability into the agent and the agent can act on behalf of the patient to automatically

interact with the hospital scheduler. This agent should also be equipped with optimization

algorithms to compute the best strategy that it should take given the current scheduling

situation and the patient’s preferences and availability constraints. The Diagnostic Services

101

(DS) agent represents the hospital scheduler or the secretary of the hospital. Registration

and lookup services for other agents are provided by the Director Facilitator (DF) agent. In

this architecture, patient schedules are computed through the negotiation of agents. Patient

agents and DS agent need to make their local decisions based on their objectives during

the negotiation process. The patient agents’ and DS agent’s decision problem is formulated

in the following section.

Patient
Agent

Patient
Agent

Patient
Agent

Patient
Agent

Directory
 Facilitator

Diagnostic Service Agent

Figure 6-1 A multi-agent systems architecture for the appointment scheduling problem

6.3.2 Formulation of diagnostic service and patient agent decision problem

Patient scheduling is a multilateral decision making problem with the diagnostic service

and patient agents as independent decision makers. The diagnostic service agent needs to

decide how to schedule service requests to achieve its objectives and, at the same time,

respect the patients’ availability and their preferred doctor constraints. The decision facing

a patient agent is how much preference information needs to be revealed in order to

maximize the benefit for the patient.

102

A. Diagnostic service agent’s local decision making problem

The diagnostic service agent receives a set of requests from patients’ agents. Each

request consists of a patient’s preferences regarding her preferred time slot and preferred

doctors. The model assumes the durations of all diagnose services are deterministic. A

patient is assigned a weight scale by the diagnostic service agent, denoted as wj. Given

the requests from patients and the available service time slots, the provider needs to solve

an optimization problem: determining the allocation of limited service time slots to the

requests so that the sum of the weights of the awarded requests is maximized. The

diagnostic service agent will not assign patient p a time slot and a doctor outside her

preferences.

Formally, let T be the set of time slots available at the time of scheduling; P be the set

of patients who have diagnostic requests to be processed; D be the set of doctors; and wp

be the priority level assigned to patient p. Let Adt = 1 if doctor d is available at time slot t;

let Rpdt = 1 if patient p requests doctor d in time slot t; let Xpdt = 1 if doctor d at time

slot t is assigned to patient p. The patient scheduling problem for diagnostic services can

then be formulated as follows.

𝑀𝑎𝑥 ∑ ∑ ∑ 𝑋𝑝𝑑𝑡

𝑡∈𝑇𝑑∈𝐷 𝑝∈𝑃

 𝑊𝑝

subject to

∑ ∑ 𝑋𝑝𝑑𝑡 ≤ 1 , ∀

𝑡∈𝑇𝑑∈𝐷

𝑝 ∈ 𝑃 (1)

∑ 𝑋𝑝𝑑𝑡 ≤ 1 , ∀𝑑 ∈ 𝐷, ∀ 𝑡 ∈ 𝑇

𝑝∈𝑃

 (2)

∑ 𝑋𝑝𝑑𝑡 ≤ 𝐴𝑑𝑡 , ∀𝑑 ∈ 𝐷, ∀ 𝑡 ∈ 𝑇 (3)

𝑝∈𝑃

∑ ∑ 𝑋𝑝𝑑𝑡 = ∑ ∑ 𝑅𝑝𝑑𝑡 𝑋𝑝𝑑𝑡

𝑡∈𝑇𝑑∈𝐷

 , ∀

𝑡∈𝑇𝑑∈𝐷

𝑝 ∈ 𝑃 (4)

103

The set of constraints (1) ensures that any patient can only obtain one time slot. The set

of constraints (2) ensures that a doctor’s time slot can only be assigned to one patient. The

set of constraints (3) ensures that if a doctor’s time slot is assigned to a patient, that assigned

time slot should belong to the doctor’s working time slots. The set of constraints (4) ensures

that a doctor’s time slot should assigned be within a patient’s requests.

B. Patient agents’ Decision Problem

Each patient indicates its preferred time slot(s) and preferred doctor(s) in his agent

interface, as depicted in Figure 6-2.

9 -9:30

10 -10:30

10:30 -11

11:30 -12

9:30-10

Doctor 1

Doctor 2

Doctor 3

Doctor 4

Doctor 5

Preferred time Preferred doctor

Submit

Figure 6-2 The patient agent interface

Each patients’ preferences are their private information and are not known to the

diagnostic service agent. We assume that a patient agent prefers some combination of time

slot and doctor over others. The preferences can be quantified by associating a preference

violation cost to each combination of time slot and doctor. We assume that a patient agent

orders Preferred Combinations (PCs) according to the increasing order of their preference

violation costs. That is, given an ordered PC, c1 < c2 < c3 < ⋯ ck … < c|PC| < c0 is

known to the patient agent, where ck denotes the preference violation cost of the kth

combination in set of PCs, and c0 denotes the preference violation cost of not being

allocated any time slot. Patient agents try to avoid high cost assignments by not revealing

their complete preferences. Since no payment is allowed in the patient scheduling setting,

the possibility of applying the standard one-shot VCG mechanism (Clarke 1971, Groves

1973, and Vickrey 1961) or even its iterative implementations (Parkes 2006) is eliminated.

The proposed iterative bidding framework for non-commercial services systematically

104

evolves the solution towards an optimal one given the constraint that patient agents try to

avoid high cost assignments by not revealing their complete preferred combinations.

6.3.3 Appointment scheduling using the proposed framework

If patients are modelled as agents and the hospital as the auctioneer, the appointment

scheduling problem is mapped to a distributed non-commercial service scheduling

problem. The agent modeling and bidding process configuration for an appointment

scheduling problem are similar to those detailed in Chapter 5. We briefly describe the

bidding process in the context of the appointment scheduling problem as follows.

 The DS agent (auctioneer) first collects the availability information of the hospital’s

resources and the doctors within the time window to be scheduled. Then, it sends

messages to all its patient agents who have been registered by DF agent, indicating

that the hospital is now ready to receive requests. The bidding process follows an

iterative pattern.

 At the beginning of each round, a patient agent needs to decide whether it will

submit additional preferences or not.

 Based on the bids and the available time slots, and on the availability of the doctors,

DS agent computes a provisional schedule which includes the winning bids.

 The losing customers can bid in the subsequent rounds by adjusting their bids, i.e.

they can select a combination of time slot and doctor with the lowest cost from the

unrevealed part of their PCs and submit it to the DS agent.

 If a provisional schedule includes all the patients, or if there is no update of the bids

from the losing patient agents, the bidding terminates and the current provisional

schedule is implemented.

6.3.4 Summary

This chapter describes the application of the IbSCHF to two problem domains: service

customization under capacity constraints and appointment scheduling in a health care

system. Since service customization is a type of distributed service scheduling problem,

105

the proposed iterative bidding framework becomes a natural solution. For the appointment

scheduling problem, applying the IbSCHE is a novel way to unify the exploration of

customers’ preferences and the integration of hospital decisions within an auction structure.

106

Chapter 7 Design Specification and

Implementation

This chapter presents the design and implementation of a prototype environment for

the IbSCHF proposed in chapter 4. The main objective of developing such a prototype is

twofold: 1) to test the feasibility of implementing the proposed distributed service

scheduling system in a more realistic multi-agent environment; and 2) to evaluate the

proposed system in terms of its communication costs and system responsiveness. In

particular, the main tasks for the development of such a prototype include:

 Understanding the functional and non-functional requirements to develop the

prototype in a distributed environment ;

 Designing a .NET-based iterative bidding system which integrates with the

winner determination model implemented using ILOG OPL environment;

 Providing bidding interfaces for customers and an interface for the service

provider for service definition;

 Developing a web service which enables customer agents to interact with the

scheduling system;

 Evaluating the scalability of IbSCHF through the use of the developed prototype

7.1 Functional requirements

This section defines and describes the functional requirements that must be met in order

to apply IbSCHF in a real distributed environment. Functionalities are defined from three

different perspectives: the customer agents’, the service provider agent’s and the

scheduling system’s.

7.1.1 Customer Agents

a) Customer interactions require the following functionalities:

- Login: Allows customer agents to login to the scheduling system;

107

- Edit feasible bundles: Provides customers with the ability to edit bundles

submitted to their agents if the bundle of time slots has not been executed in the

schedule by the time a change has been requested;

- Set status as standby: Makes it possible for customers to set their status as

standby for their preferred time slots; and

- Cancel schedule: Gives customers the ability to cancel their schedules.

b) Scheduling system interactions

 The customer agent provides five fundamental functionalities on behalf of a customer:

submit a bid, receive the winner determination result in each round, update a bid based on

the received result, and provide the final result to the customer. In general, customers can

achieve their business objectives and reflect their dynamic changes through the use of their

agents. The following is the list of the required functionalities:

- Retrieve available service time slots: Allows customer agents, to retrieve the

available service time slots and their properties’ information from a web service

in the scheduling system.

- Submit bid: Provides customer agents with the ability to submit bids to the

scheduling system on behalf of customers.

- Update bid: Allows customer agents to update the parameters of a previously

submitted bid based on the received result.

- Receive result of winner determination: Makes it possible for customer

agents to receive the results of the winner determination problem in each

iteration.

- Get final result of schedule: Allows customers to get the final schedule results

from their customer agents when the auction terminates.

7.1.2 Service Provider Agent

The following is the list of functional requirements for a service provider agent.

- Edit available services: The service provider can add or remove a service.

He/she can also add or remove a time slot for each service, as well as change

108

the properties of individual service time slots, such as reservation price or

capacity.

- Start auction: Utilized to initiate the auction; the service provider agent

submits all the information about available services, available time slots for

each service, and their properties to the scheduling system.

7.1.3 Scheduling System

The following is the list of the functional requirements for a scheduling system.

- Receive and store available service information: The scheduling system

needs to receive and store the updated information about the available service

time slots and their properties, acquired from the service provider agent.

- Receive bids: The scheduling system must be able to receive bids from

customer agents after they submit them. After bids have been received, the

scheduling system screens out invalid bids.

- Compute provisional allocation: The scheduling system needs to compute a

new provisional allocation in each round until the auction is terminated.

- Update OPL-WDM input: Upon receiving the customer agents’ bids, the

scheduling system needs to transform the received data into an OPL- Winner

Determination Model (WDM) input. OPL-WDM input will be used by ILOG

to solve the winner determination problem.

- Invoke CPLEX engine: Upon creating the OPL data source, the scheduling

system invokes and then sends the data source to the CPLEX engine. CPLEX

engine determines the winning bids during iterations.

- Terminate auction: This functionality provides the scheduling system with the

ability to check the termination condition, and, when the condition is satisfied,

to terminate the auction.

- Send provisional and final allocation results: The scheduling system needs

to send the result of the provisional allocation in each round and the final

allocation results at the end of auction to the customer agents.

109

7.2 User Case Diagrams

Figures 7-1, 7-2, and 7-3 present the designed use case diagrams that address the

presented required functionalities. Due to similarities between the requirements and the use

cases, we only describe some of the more important use cases.

Customer

Login/Register

View Avilable services

Submit all prefrences

Edit Prefrences

Get final result of
 schedule

Set status as standby

Cancel schedule

Figure 7-1 Use case diagram for a customer agent

110

Service Provider

Login

Submit available services

Update available services

Start auction

Figure 7-2 Use Case diagram for a service provider agent

Customer Agent

Service Provider Agent

 Submit available
 service information

Submit bid

Update bid

Receive result

Login

Login Update OPL-WDM input

Invoke CPLEX engine

Compute provisional allocation

<<include>>

<<include>>

Terminate auction

Termination
condition checking

Finalize allocations

<<include>> <<include>>

Bid screening

<<include>>

Figure 7-3 Use Case diagram for a scheduling system

Use case: Edit customer’s preferences

Brief Description

111

 Customers follow these steps to edit their set of feasible bundles.

Actors: Customer

Preconditions:

1. The customer has logged in to the customer agent.

2. The feasible bundle(s) to be edited has not yet been used as a bid by the

time of submitting the bundle.

Main flow of events:

1. Customer agent shows all previously submitted bundles.

2. Customer adds, removes or edits any of the feasible bundle.

Use case: Get the final schedule results

Brief Description

Customers need this process to get the results of the final schedule.

Actors: Customer

Preconditions:

1. The customer has logged in to the customer agent.

2. The auction has terminated and the final schedule has been computed.

Main flow of events:

1. The scheduling system notifies the customer agent about the final

schedule result.

2. The customer agent notifies the customer with the result of schedule.

Use case: Update bids

Brief Description

This use case is utilized by a customer agent to update the parameters of

previously-submitted bids.

112

Actors: Customer agent

Preconditions:

1. The customer agent has received the result of the previous round’s

provisional allocation.

Main flow of events:

1. The customer agent receives the result of the provisional allocation of

the previous round. If the latest bid has been accepted, the customer

agent will keep the bidding price unchanged; otherwise, it has three

price updating options: increase the bidding price, keep the bidding

price unchanged, and withdraw from bidding process.

2. The customer agent selects the bundle with the highest payoff

3. The customer agent submit its bid.

Use case: Compute provisional allocation

Brief Description

The scheduling system utilizes this use case to compute a new provisional

allocation based on the updated bids received from the agents.

Actors: The scheduling system

Preconditions:

1. The scheduling system has received updated bids from the customer

agents.

Main flow of events:

1. After receiving the bids from the customer agents, the scheduling

system screens out any invalid bids.

2. The scheduling system verifies the termination condition.

3. If the termination condition has not been satisfied, the system generates

the OPL_WDM input.

113

4. CPLEX engine will be invoked by sending it the OPL_WDM input.

5. CPLEX engine solves the winner determination problem.

6. The winner determination result is transformed into a format that can

be sent to the customer agents.

4. The scheduling system notifies the customer agents of the scheduling

result.

7.3 Non-Functional requirements

Reliability: The system is a prototype built for research purposes; its reliability is not a

major concern. However, the system should be able to function correctly with pre-tested

problem sets and scenarios.

Scalability: The system should be scalable in terms of increasing the number of customers.

It should be capable of dealing with service scheduling problems at realistic scales.

7.4 System Architecture

This section provides the overall system architecture and software architecture of the

service scheduling system.

7.4.1 The overall system architecture

We use a distributed environment as the context for the design of this service

scheduling system. As shown in Figure 7-4, in this architecture, the Customer agent

functions as the personal assistant of a customer, keeping the customer updated about their

preferred service time slot bundles and informing its customer(s) about the results of their

requests. Scheduling system in this architecture has eight states. These states can be

modeled as a state chart, as shown in Figure 7-5. After Initialization, the scheduling system

will be in the state of receiving bids. Each new time period can trigger the transition

from the receiving bids state to the bid screening state, where invalid bids are screened

out. Each round, the scheduling system must verify if the termination condition has been

satisfied.

114

Figure 7-4 The service scheduling system’s overall system architecture

If the termination condition is not satisfied, the scheduling system updates the OPL-

winner determination model input in the update OPL-WDM input state. At the computing

state, the system computes the new winner, incorporating the updated list of bids. During

this computing state, the system blocks its bidder interface so they cannot submit new bids.

Once a new winner determination has been computed, the system state changes to the

announcing results state, in which the system announces the result of the new provisional

allocation to the customer agents.

Customer CustomerCustomer

Customer AgentCustomer Agent Customer Agent

Service Provider Agent

Scheduling System

Service Provider

115

Initialization

Receiving bids

Yes

New time period

Announcing final allocations

Bid screening

Update OPL-WDM input
No

Computing

Announcing result

Termination
 checking

Terminated?

Figure 7-5 State diagram of the scheduling system

7.4.2 Software architecture

In this section we elaborate the software architecture of the service scheduling system.

116

Service Provider Agent
Web Application

Customer Agent
Web Application

Service Management
Web service

Auction Control
Web Service Bid

Results

Retrieve Service Inf.

Available Services Inf.

Update Service Inf.

Final Allocation Results

DataBase

Retrieve Service Inf.

Allocation Results

CPLEX Engine

OPL WDM

Input
WD Result

Authenticator
Web ServiceAuthentication

Authentication

Figure 7-6 Software architecture of the service scheduling system

Figure 7-6 shows how the software components of the system interact with each other.

As can be seen from the diagram, the Scheduling System consists of four major

components: Authenticator web service, Service Management web service, Auction

Control web service, and CPLEX Engine. Authenticator web service is responsible for

registering new customers and authenticating registered customers when they login to the

scheduling system. The Auction Control component provides two interfaces for interaction

with customer agents and the Service Management component. The Service Management

web service component is responsible for updating the list of available services. It also

provide a web service interface for customer agents so that they can invoke the web service

and view the available services and their properties. The Auction Control component also

provides a web service interface for customer agents to receive their bids. The CPLEX

engine component computes the winners of each round; to accomplish this task, CPLEX

117

requires the updated list of bids from the customer agents. The Auction Control component

provides an interface for a winner determination component to receive the updated list of

bids in the OPL- WDM input format.

7.4.3 Graphic user interfaces

The prototype has two types of user interfaces: customer agent and provider agent. The

provider agent interface implements the functionalities of the service provider agent. The

customer agent interface implements the functionalities of customer agents and displays

the scheduling results. For the demonstration, when the system is initialized, the login

interface (Figure 7-7) is presented to the customer. If the customer is a new customer,

registration is required (Figure 7-8).

Figure 7-7 Customer login interface

Figure 7-8 Customer registration interface

After login has been completed, the customer agent user interface (Figure 7-9) will be

presented to the customer.

118

Figure 7-9 Customer agent interface

Customers can view the list of available service time slots by clicking on the Available

Services Information button. Service types and available time slots for each service are

retrieved from the Service Management web service and loaded to the dropdown lists.

After loading the current available service time slots, customers can select their preferred

services and their preferred time slots and add them to their Feasible Bundles. The customer

agent starts its negotiation with the Auction control web service when the customer clicks

the start bidding button. Once the bids are received, at each specific time period the Auction

Control component will generate a new WD-OPLM input and invoke the CPLEX engine

to solve the winner determination model, and the result of the winner determination will

be announced to the customer agents. Upon receiving the results, the customer agents

should make their decisions about updating their bids. This procedure repeats until the

Auction terminates. Customers can be informed about the final schedule by clicking the

Get Result button.

119

Figure 7-10 Provider agent user interface for adding a new service

Figure 7-11 Provider agent user interface for editing service information

Service providers can submit their available service time slots and their properties to

the service management web service by using the service provider agent interface (Figure

7-10). Service providers can also edit or remove a service by using the editing interface

shown above (Figure 7-11).

7.4.4 Class Diagram

120

FeasibleBundle Customer

- userId

N 1

CustomerAgent

- addFeasibleBundle(FeasibleBundle b)

- login(sting userName, string password)

- removeFeasibleBundle(FeasibleBundle b)

AuctionControl

- receiveBid(Bid b)

- cancelAssignedBid(Bid b)

<<uses>>

IlogScheduler

ServiceManagement

- addService (Service s)

- editServiceTimeSlots(Service s)

<<Interface>>

IScheduler

- schedule (Bid[] bids)

- mapBidsToWDMInput (Bid[] bid)

<<uses>>- receiveResult()

- addToWaitingList()

- cancelAssignedBid()

1

1

- valueForCustomer

- removeFromWaitingList()

- addToWaitingList(customerId)

- removeFromWaitingList(customerId)

<<Interface>>

SchedulingSystemSOAPInterface

- sendBid(int customerId, Bid b)

- getAvailableServices()

- cancelAssignedBid(int customerId, Bid b)

- addToWaitingList(customerId)

- removeFromWaitingList(customerId)

- checkForTerminationCondition()

- startAuction()

<<uses>>

- removeService (Service s)

<<Interface>>

AuctionControlSOAPInterface

- startAuction()

<<Interface>>

ServiceManagementSOAPInterface

- addService(Service s)

- editServiceTimeSlots(Service s)

- removeService(Service s)

- login(String userName , String password)

AuthenticationManager

- customerLogin(string username, string
passowrd)

- serviceProviderLogin(string username,
string passowrd)

- customerLogout()

- serviceProviderLogout()

- login(string username, string password)

<<uses>>

- receiveResult()

- receiveResult()

- runCplexScheduler (WDMInput input)

<<uses>>

<<uses>>

<<Interface>>

ServiceProviderAgent

- login(string username, string password)

- receiveResult()

- startAuction()

- receiveResult()

<<uses>>

<<uses>>

<<uses>>

- addService(Service s)

- editServiceTimeSlots(Service s)

- removeService(Service s)

<<uses>>

<<uses>>

- startBidding()

- updateBid()

- getAvailableServices()

- newAvailableServiceNotification()

- newAvailableServiceNotification()

121

ServiceTimeSlot

-startTime

-endTime

Bid

- price

1..* 1

-reservationPrice
- isAssigned

- customerId

-capacity

Service

-serviceId

-description

0..*1

Figure 7-12 Class diagram for service scheduling system

Figure 7-12 shows the class diagram for the prototype system. The prototype system is

divided into four packages: customer agent, scheduling system, common and service

provider. Each package represents a specific part of the system.

7.4.5 Sequence Diagram

AuthenticationControl ServiceManagementServiceProviderAgent
ServiceManagement

SOAP Interface
Auction Control SOAP

Interface

2.serviceProviderLogin

3.Accept

4.Accept

5.add/edit/removeServive

6.add/edit/removeServive

7.Approve

8.Approve

9.startAuction

10.startAuction

1.login

11.receiveResult

12.receiveResult

13.Final Result

14.Final Result

Auction
Process

Figure 7-13 Sequence diagram for service provider functionalities

122

Figure 7-13 shows the message passing sequence for the service provider agent

functionalities.

a) The service provider agent logs into the scheduling system (Steps1-4).

b) The service provider agent adds to and/or edits the available services and their

properties and adds them to the scheduling system (Steps 5-8).

c) The service provider starts the auction (Steps 9-10).

d) The service provider agent requests the result of the final allocations (Steps 11-14).

CustomerAgent
SchedulingSystem

SOAPInterface
Authentication

Manager
Service

Management

4. login

5. customerLogin

6. Accept

7. Accept

10. getAvailableServices

12.Avaialble Services

3. login

Customer

9. startBidding

11. getAvailableServices

13.Avaialble Services

1. add/removeFeasibleBundle

2. Approve

14.sendBid

15.receiveBid

21.Scheduling Result

22.receiveResult

24.sendBid

AuctionControl IlogScheduler

17.mapBidsToWDMInput

18.WDMInput

19.runCplexScheduler

20.Results

25.receiveBid

Wait for
Updated Bids

27.Final Results

23.updateBid

28.receiveResult

8. Accept

Store the received
bid and retrieve all
the previous bids

16.Check For Termination
Condition

26.Check ForTermination
Condition

29.Final Result

Store the
received bid and
retrieve all the
previous bids

Figure 7-14 Sequence diagram for bidding process

123

Figure 7-14 shows the messages as they flow during the service scheduling system’s

bidding process.

a) The customer submits his/her feasible bundles to the customer agent (Steps1- 2).

b) The customer agent logs into the scheduling system (Steps 3-8).

c) The customer agent retrieves the available service information (Steps10-13).

d) The customer agent submits its bid to the SOPA Service Provider Interface (Step

14).

e) The Auction control receives the bids and updates its current bid list (Step 15).

f) Updated bids are sent to ILOG scheduler Interface (Steps 16-17).

g) CPLEX Solver computes the solution and returns it to the SOPA Service Provider

Interface (Steps 20-21).

h) The SOPA Service Provider Interface sends the scheduling result to the customer

agents (Step 22).

Figure 7-15 shows the messages for dynamic change management in service scheduling

system as a sequence diagram.

CustomerAgent A
Scheduling System
SOAP Interface A

Customer A AuctionControl

1.addToWaitingList

2.addToWaitingList

3.addToWaitingList

4.OK

5.OK

6.OK

12.newAvailableServiceNotification

CustomerAgent B
SchedulingSystem
SOAP Interface B

Customer B

11.newAvailableServiceNotification

7.cancelAssignedBid

8.cancelAssignedBid

9.cancelAssignedBid

10.OK

11.OK

12.OK

13.sendBid

14.receiveBid

Figure 7-15 Sequence diagram for dynamic change management

124

7.5 Simulation Result

In this section we have used the developed prototype to evaluate our approach in terms

of its scalability. The simulation platform is based on a client-server architecture. The

auctioneer web services are hosted in a web server and the agents use SOAP to access those

web services. The auctioneer web server runs on a desktop PC with 2.4GHz Intel CPU and

8 GB memory. All the agents are equally distributed over two laptop systems, each of

which has an Intel 2GHz CPU and 4 GB of memory. Every agent generates a random set

of feasible bundles and their values. When an auction starts, each agent will use the

generated feasible bundles to bid on. The agent web application and the auctioneer web

services are implemented using a Visual Studio 2013. Module to generate random problem

sets, coded in Visual Studio 2013.

7.5.1 Metrics

Communication Cost and Response Time, are used as the scalability measures in the

evaluation.

Communication Cost is the number and the size of messages sent between agents and the

auctioneer during an auction, expressed as:

𝐿𝑜𝑎𝑑 𝑡 = ∑ (|𝑅𝑒𝑞𝑔| + |𝑅𝑒𝑠𝑝𝑔|)

𝑔 ∈𝑁𝑡

 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = ∑ 𝐿𝑜𝑎𝑑 𝑡𝑡 ∈𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

where 𝑙𝑜𝑎𝑑 𝑡 is the load of communication in round 𝑡, 𝑁𝑡 is the set of customers submitted

their bids at round 𝑡, |𝑅𝑒𝑞𝑔| is the size of requested message by agent , and |𝑅𝑒𝑠𝑝𝑔| is the

size of respond message from auctioneer to agent 𝑔.

Response Time , is considered to be a measure of the computational complexity of the

proposed approach. The Response Time (in seconds) is the sum of the time required for

the winner-determinations, price-updates and communication over all if the auction

rounds; in other words, the total time it takes for all agents to receive the final schedule

from the moment an auction starts.

125

To evaluate the scalability, ten groups of problem instances are randomly generated with

different sizes and structures. The configuration of the test problem sets and their

corresponding response times, communication costs and memory usage are summarized in

Table 7-1 and Table 7-2.

Table 7-1 Configuration of testing problems

Problem Number

of agents

of service

time slots

of feasible

bundles per agent

Number of

Instance
Name

1 Group 1 200 30 Random(5,10) 10

2 Group 2 400 50 Random(5,10) 10

3 Group 3 600 70 Random(6,11) 10

4 Group 4 800 90 Random(6,11) 10

5 Group 5 1000 100 Random(6,15) 10

6 Group 6 1200 100 Random(6,15) 10

7 Group 7 1400 110 Random(6,15) 10

8 Group 8 1600 120 Random(7,20) 10

9 Group 9 1800 125 Random(7,20) 10

10 Group 10 2000 130 Random(8,25) 10

Table 7-2 Computational results

Groups Response

Time(S)

Communication Cost

(KB)

Memory Usage (MB)

Group 1 284.1725 64.99 482.31

Group 2 363.4935 277.36 701.91

Group 3 494.61 290.33 937.97

Group 4 530.189 336.47 1074.42

Group 5 728.514 376.97 1780.03

Group 6 782.2695 389.86 1866.46

Group 7 906.3825 495.19 1929.51

126

Group 8 1141.7535 570.33 2486.09

Group 9 1220.89 603.002 2732.97

Group 10 1513.5115 684.37 2944.76

Figure 7-16 Response time and communication cost when the problem complexity increases

It can be seen from Figure 7-16 that the response time curve is sub-linear on the value axis

as the problem complexity increases, indicating polynomial run times, and so it is clear that

the IbSCHF can be applied to large-scale DSSPs.

7.6 Summary

This chapter presents the design and implementation of a prototype environment for

the IbSCHF proposed in chapter 4. The first step was defining the requirements, followed

by a detailed illustration of the system architecture and of how the software components

communicate with each other. The developed prototype was evaluated in terms of its

communication costs and system responsiveness.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Response Time(S) Communication Cost (KB)

127

Chapter 8 Conclusion and Future Work

8.1 Conclusion

This thesis investigates modeling and computational issues in developing solution

approaches to the Distributed Service Scheduling Problem (DSSP). Compared to

traditional manufacturing scheduling, service scheduling poses additional challenges due

to the significant customer involvement in service processes. The first challenge is that

service scheduling should be conducted in a distributed environment. The second challenge

is that service scheduling has to be robust at accommodating contingencies caused by the

customer involvement in service production. Uncertainty in customer demand, customer

cancelations and no-shows make the service scheduling a complex dynamic process. The

third challenge is the customer’s private information. To compute optimal schedules,

ideally, the scheduler should know the complete customer availability and preference

information within the scheduling horizon. However, customers often act strategically to

protect their private information. Therefore, service scheduling systems should be designed

so that they are able to elicit the customer’s private information required to compute high

quality schedules. The fourth challenge is that the objectives in a service scheduling

environment are complicated and may conflict each other. The distributed service

scheduling environment enables each agent to have their own scheduling objectives. In

addition to multiple objectives, since agents are self-interested, they are expected to behave

strategically to achieve their own objectives without considering the global objectives of

the system.

Our objective is to design a framework capable of addressing the challenges in the

DSSP. An iterative bidding scheduling framework (IbSCHF) that can address the

challenges of DSSPs concurrently is proposed. IbSCHF uses the price mechanism for

service scheduling, which may not be applicable for non-commercial services. An adapted

IbSCHF is also proposed for scheduling non-commercial services without using a price

system or payment transfers. Our main contributions can be summarized as follows.

128

IbSCHF for DSSPs

By applying IbSCHF in an agent-based architecture, the challenges of DSSPs can be

addressed effectively. IbSCHF provides a structure for the agents and the service provider

to interact in a systematic way and eventually evolve the provisional solutions towards an

optimal one. In IbSCHF, agents are not required to reveal all their private information; they

reveal their private information only as it becomes necessary. It also has the potential of

accommodating dynamic changes. IbSCHF can be applied to efficiently allocate the newly-

available service time slots created by dynamic events.

The framework has been evaluated experimentally. The results indicate that, compared

with the one-shot VCG auction system, the IbSCHF requires less information revelation,

improves on the computational properties, and its computed solutions are very close to

optimal. As a demonstration of the applicability of the framework, it was applied to the

Service Customization under Capacity Constraints (SCCC) problem. By applying the

IbSCHF to the SCCC problem, customer’s customization decision making are integrated

with the allocation of the service provider’s capacity through multilateral negotiations

between the service provider and its customers.

Adapted IbSCHF for non-commercial service scheduling problems

The IbSCHF uses price mechanism to allocate service time slots to customers.

However, in non-commercial service scheduling environments, service providers cannot

use a price mechanism to schedule customers along the service timelines. Therefore,

IbSCHF has been adapted for non-commercial service scheduling problems. The service

provider needs customers’ availability information to improve resource utilization. On the

other hand, customers may be of “two minds” about communicating their private

information. While communicating certain amount of availability might be necessary in

order to obtain their preferred schedules, too much communication implies a potential cost.

To address this challenge, an adapted IbSCHF has been developed, designed to generate

high-quality schedules while protecting customers’ private information. The efficiency and

information revelation performance of this adapted framework is evaluated through

theoretical analysis and computational experiments. It was shown that, under the proposed

mechanism, myopic bidding is the dominant strategy for customers. The privacy and

129

efficiency performance of this proposed adapted mechanism was also evaluated, through a

computational study. As a demonstration of the realistic applicability of this framework, it

was applied to the appointment scheduling problem in health care system.

Design and implementation of a web-based service scheduling prototype

A web-based service scheduling prototype is designed and implemented using .Net

technology and web services. The purpose of developing the prototype is first, to

demonstrate how to implement the IbSCHF in a real-world environment, and second, to

evaluate the scalability of the approach in a real environment. Scalability is measured in

terms of response time, communication cost, and memory usage.

8.2 Directions for Future Research

Three directions can be outlined in terms of expanding the current work from the

perspective of improving its applicability to real-world scale applications.

First, to continue improving the IbSCHF to accommodate more and more dynamic

changes. The current framework supports customer’s cancelations and uncertainty in

customers’ arrival time. Other reasons for dynamic changes could be incorporated, for

example, service durations may be subject to change, and/or certain resources can become

unavailable.

Second, the winner determination model could be extended to different application

domains. The current winner determination model is a general model that can be applied

to different service application domains. Each application domain has its own constraints

that will need to be considered.

At the current stage, I have considered the situation where customer agents have a

service request from one service provider. However, in some application domains, agents

may be prefer to receive different services from multiple service providers. In the situation

where each service provider uses the IbSCHF, exploring agents’ bidding policies in order

to coordinate separate scheduling system, would be another step towards practical

approaches to real world distributed service scheduling applications.

130

References

Abdennadher, S., & Schlenker, H. (1999). INTERDIP-an interactive constraint based nurse

scheduler. Proceedings of the Eleventh Conference on Innovative Applications of Artificial

Intelligence, Menlo Park, CA, 838-843

Aickelin, U., & Dowsland, K. A. (2001). Exploiting problem structure in a genetic algorithm

approach to a nurse rostering problem. Journal of Scheduling 3(3), 139-153

An, B., Lesser, V., Irwin, D., & Zink, M. (2010). Automated negotiation with decommitment for

dynamic resource allocation in cloud computing. Proceedings of the 9th International

Conference on Autonomous Agents and Multiagent Systems, 981–988

Anderson, A., Tenhunen, M., & Ygge, F. (2000). Integer programming for combinatorial auction

winner determination. In Proceedings of the Fourth Internal Conference on Multi-Agent

Systems (ICMAS) Boston, MA: IEEE computer society, 39–46

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson,

D.A., Rabkin, A., Stoica, I., Zaharia, M. (2009) , Above the Clouds: A Berkeley View of cloud

computing, University of California at Berkeley

Azaiez, M. N., & Sharif, S. (2005). A 0-1 goal programming model for nurses cheduling.

Computers and Operations Research 32(3), 491-507

Babayan, A. and He, D., (2004). Solving the n-job 3-stage flexible flowshop scheduling problem

using an agent-based approach. International Journal of Production Research, 42 (4), 777–

799

Bailey, R. N., Garner, K. M., & Hobbs, M. F. (1997). Using Simulated Annealing and Genetic

Algorithms to Solve Staff Scheduling Problems. Asia-Pacific Journal of Operational

Research 14(2), 27-43

Bannock, G., Baxter, R. E., & Reese, R. (1982). The Penguin Dictionary of Economics. Penguin

Books, Ltd., Harmondsworth, Middlesex England

Barron, W. M. (1980). Failed appointments Who misses them, why they are missed, and what

can be done Primary Care 7(4) 563–574

Becker, M., & Hans, C. (2006). Artificial Software Agents as Representatives of Their Human

Principals in Operating-Room-Team-Forming. Multi-agnet Engineering International

Handbooks on Information Systems, 221-237

Berger, S., & Bierwirth, C. (2010). Solutions to the request reassignment problem in collaborative

carrier networks. Transportation research Part E,Volume 46,No.5, 627-638

Bikhchandani, S. and Ostroy, J. M.(2006). Ascending price Vickrey auctions, Games and

Economic Behavior, vol. 55, No. 2, 215-241

Bowman, E. H. (1959).The Schedule Sequencing Problem, Operations Research, vol.7, No.5, 621-

624

Brucker, P. (2004). Scheduling Algorithms (4th ed). Springer, Berlin

Burke, E. K., Elliman, D. G., & Weare, R. F. (1995). A hybrid genetic algorithm for highly

constrained timetabling problems. Proceedings of the 6th International Conference on Genetic

Algorithms, Pittsburgh, USA,Morgan Kaufmann, Los Altos, CA, 605-610

131

Burke, E. K., Newall, J. P., & Weare, R. F. (1996). A memetic algorithm for University exam

timetabling. Burke and Ross, 241-250

Burke, E. K., Newall, J. P., & Weare, R. F. (1998). Initialisation strategies and diversity in

evolutionary timetabling. Evolutionary Computation 6 (1), 81-103 (special issue on

Scheduling)

Burke, P. and Prosser, P., (1991). A distributed asynchronous system for predictive and reactive

scheduling. International Journal for Artificial Intelligence in Engineering, 6 (3), 106–124

Caridi, M. and Cavalieri, S., (2004). Multi-agent systems in production planning and control: an

overview. Production Planning and Control, 15 (2), 106–118

Chiussi, F.M. and Francini, A., (2000). A distributed scheduling architecture for scalable packet

switches. IEEE Journal on Selected Areas in Communication, 18 (12), 2665–2683

Chung, D., Chankwon P., Sukho K., Jinwoo P., (1996) Developing a shop floor scheduling and

control software for an FMS. Computers and Industrial Engineering, 30 (3), 557–568

Church, L. K., & Uzsoy, R. (1992). Analysis of periodic and eventdriven rescheduling policies in

dynamic shops. International Journal of Computer Integrated Manufacturing, 5(3), 153–163

Clarke, E. H. (1971), Multipart pricing of public goods, Public Choice, 11(1),17-33

Crawford, E., & Veloso, M. (2004). Mechanism Design for Multi-Agent Meeting Scheduling

Including Time Preferences, Availability, and Value of Presence. Proceedings of the

IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT)

Da Silveira, G., Borenstein, D., & Fogliatto, F. S. (2001). Mass customization: Literature review

and research directions. International Journal of Production Economics, 72(1), 1–13

Dargahi,F., Wang, C., Bhuiyan, M. F. H., and Mehrizi, H. (2012). Agent-Based Design for Service

Process Scheduling: Challenges, Approaches and Opportunities. Transactions of the

SDPS:Journal of Integrated Design and Process Science

Davidsson, P., Henesey, L., Ramstedt, L., T¨ornquist, J., & Wernstedt, F. (2005). An analysis of

agent-based approaches to transport logistics. Transportation Research, Part C, 13, 255–271

Davis, L. (1985). Job shop scheduling with genetic algorithms. Proc. 1st int. Conf. on Genetic

algorithms and their Applications, Pittsburgh, PA, 130-140

Demeester, P., Souffriau, W., De Causmaecker, P., & Vanden Berghe, G. (2010). A hybrid tabu

search algorithm for automatically assigning patients to beds. Artif. Intell. Med. 48(1), 61–70

Dowsland, K. (1998). Nurse scheduling with tabu search andstrategic oscillation. European

Journal of Operational Research 106 (2–3), 393–407

Du, X., Jiao, J., & Tseng, M. M. (2001). Architecture of product family: Fundamentals and

methodology. Concurrent Engineering: Research and Application, 9(4), 309–325

Duffie, N.A. and Prabhu, V.V., (1994). Real-time distributed scheduling of heterarchical

manufacturing systems. Journal of Manufacturing Systems, 13 (2), 94–107.

Fischer, K., Müller J. P. and Pischel, M. (1995). Cooperative transportation scheduling: an

application domain for DAI. Journal of Applied Artificial Intelligence

Franzin, M. S., Freuder, E. C., & Rossi, F. (2002). Multi-agent meeting scheduling with

preferences: efficiency, privacy loss, and solution quality. American Association for Artificial

Intelligence AAAI

Frayret, J. M. (2009). A Multidisciplinary Review of Collaborative Supply Chain Planning.

Conference Proceedings IEEE International Conference on Systems, Man and Cybernetics

,San Antonio, TX, 4414–4421

132

Fujishima, Y., Leyton-Brown, K., & Shoham, Y. (1999). Taming the computational complexity of

combinatorial auctions: Optimal and approximate approaches. In 16th International joint

conference on artificial intelligence (IJCAI), 548–553

Gagliano, R. A., Fraser, M. D., & Schaefer, M. E. (1995). Auction allocation of computing

resources. Communications of the ACM, 38 (6), 88–102

Garg, S., and Buyya, R. (2011). Market-Oriented Resource Management and Scheduling: A

Taxonomy and Survey, Cooperative Networking 277-306, M. S. Obaidat and S. Misra (eds),

ISBN: 978-0-470-74915-9, Wiley Press, New York, USA

Ghaemi, M.,Vakili, M., & Aghagolzadeh, A. (2007). Using a genetic algorithm optimizer tool to

solve university timetable scheduling problem. 9th international symposium on signal

processing and its Application

Ghenniwa, H., 1996. Coordination in Cooperative Distributed Systems. Ph.D. dissertation,

University of Waterloo

Giret, A., and Botti, V., (2004). Holons and agents. Journal of Intelligent Manufacturing, 15 (5),

645–659.

Gomber, P., Schmidt, C., Weinhardt, C. (1997). Elektronische Märkte für die dezentrale

Transportplanung, Wirschaftsinformatik 39(2),137-145

Grano, M., Medeiros, D. J., & Eitel, D. (2009). Accommodating individual preferences in nurse

scheduling via auctions and optimization. Health Care Manage Science, Volume 12,228-242

Groothuis, S., & Merode, G. (2001). Simulation as decision tool for capacity planning. Journal of

Computer Methods and Programs in Biomedicine 66 , 139–151

Groves, T. (1973), Incentives in Teams, Econometrica, 41(4):617-631

Gueret, C., Jussien, N., Boizumault, P., & Prins, C. (1995). Building University Timetables Using

Constraint Logic Programming. Proc. of the 1st Int. Conf. on the Practice and Theory of

Automated Timetabling, 393- 408

Gujo, O., Schwind, M., & Vykoukal, J. (2009). A combinatorial intra-enterprise exchange for

logistics services. Information systems and e-business management,Volume 7,No 4,447-471

Gunawan, A., Ming, K., & Poh, K. (2007). Solving the teacher assignment-course scheduling

problem by hybrid Algorithm. International journal of Computer, information and system

science and engineering, 1(2),139-141

Gupta, D., B. Denton. 2008. Appointment scheduling in health care: Challenges and opportunities.

IIE Trans. 40: 800–819

Hadavi, K., Hsu, L., Chen, T., Lee, C.N. (1992). An architecture for real time distributed

scheduling. In: Famili A, Nau DS, Kim SH (eds) Artificial intelligence applications in

manufacturing. Cambridge USA: AAAI Press, 215–234

Hancock, W.M., & Walter, P. F. (1984). The use of admissions simulation to stabilize ancillary

workloads. Simulation journals, 88-94

Hannebauer, M., & Muller, S. (2001). Distributed Constraint Optimization for Medical

Appointment Scheduling. Proceedings of the fifth international conference on autonomous

agents,139 -140

Harvey, J. (1998). Service quality: A tutotial. Journal of Operations Management 16(5), 583-597

Hassine, A. B., Defago, X., & Ho, T. B. (2004). Agent-Based Approach to Dynamic Meeting

Scheduling Problems. Proceedings of the Third International Joint Conference on

Autonomous Agents and Multiagent Systems,Volume 3, 1132 -1139

133

Healthcare Commission (2005) Primary care trusts: survey of patients. London: Commission for

Healthcare Audit and Inspection

Henz, M., & Wurtz, J. (1995). Using Oz for college timetabling. Proceedings of the 1st Int.

Conference on the Practice and Theory of Automated Timetabling, 283- 296

Hertz, A. (1991). Tabu Search for Large Scale Timetabling Problems. European Journal of

Operational Research 54, 39-47

Hertz, A. (1992). Finding a Feasible Course Schedule Using Tabu Search. Discrete Applied

Mathematics 35(3), 255-270

Ho, Ch., & Lau, H. (1999). Evaluating the impact of operating conditions on the performance of

appointment scheduling rules in service systems. European Journal of Operational Research

112 ,542-553

Hohlt, B., Doherty, L., and Brewer, E., (2004). Flexible power scheduling for sensor networks. In

Proceedings of the IEEE and ACM International Symposium on Information Processing in

Sensor Networks, 205–214

Hohner, G., Rich, J., Ng, E., Reid, G., Davenport, A. J.,&Kalagnanam, J. R., et al. (2003).

Combinatorial and quantity-discount procurement auctions benefit Mars, incorporated and its

suppliers. Interfaces, 33(1), 23–35

Hosseini, H., Hoey, J., & Cohen, R. (2011). Multi-Agent Patient Scheduling Through Auctioned

Decentralized MDPs. Proceedings of the 6th InformsWorkshop on Data Mining and Health

Informatics

Hur, D., Mabert, V. A., & Bretthauer, K. M.(2004). Real-time work schedule adjustment decisions:

An investigation and evaluation. Production and Operations Management 13(4), 322

IntelliQuest, (1990), Conjoint Analysis: A Guide for Designing and Integrating Conjoint Studies,

Marketing Research Technique Series Studies, American Marketing Association, Market

Research Division, TX

Jack, E. P., & Powers, T. L. (2004). Volume flexible strategies in health services: A research

framework. Production and Operations Management 13(3), 230

Jaumard, B., Semet, F., & Vovor, T. (1998). A generalized linear programming model for nurse

scheduling. European Journal of Operational Research 107(1),1-18

Jiao, J., & Tseng, M. M. (1999). A methodology of developing product family architecture for mass

customization. Journal of Intelligent Manufacturing, 10(1), 3–20

Jiao, J., Simpson, T., & Siddique, Z. (2007). Product family design and platform-based product

development: A state-of-the-art review. Journal of Intelligent Manufacturing, 18(1), 5–29

Keil, J. M. (1992), On the complexity of scheduling tasks with discrete starting times, Operations

Research Letters, vol. 12, 293-295

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing.

American Association for the Advancement of Science New Series, Vol. 220, No. 4598., 671-

680

Kotler, P., & Keller, K. (2006). Marketing management, Twelfth edition. Prentice-Hall, Upper

Saddle River, New Jersey

Kouiss, K., Pierreval, H., and Mebarki, N., 1997. Using multi-agent architecture in FMS for

dynamic scheduling. Journal of Intelligent Manufacturing, 8 (1), 41–47

Krajewska, M. A., & Kopfer, H. (2006). Collaborating freight forwarding enterprises, request

allocation and profit sharing. OR spectrum, Volume 28, No2, 301-317

134

Krishna, A., & Ünver, M. U. (2007). Improving the Efficiency of Course Bidding at Business

Schools: An Experimental Study. Marketing Science, forthcoming

Kutanoglu, E., Wu, S. D.(1999). On combinatorial auction and Lagrangean relaxation for

distributed resource scheduling, IIE Trans. vol. 31, 813-826

Kwon, R. H., Lee, C., & Ma, Z. (2005). An integrated combinatorial auction mechanism for

truckload transportation procurement. Technical Report, Mechanical and Industrial

Engineering, the University of Toronto, Ontario, Canada

Lang, N., Moonen, H. M., Srour, F. J., & Zuidwijk, R. A. (2008). Multi Agent Systems in Logistics:

A Literature and State-of-the art Review. ERIM Report Series, Reference No. ERS-2008-043-

LIS

Lau, J.S.K., Huang, G.Q, Mak, K.L., Liang, L. (2005a). Distributed project scheduling with

information sharing in supply chains: part I– an agent-based negotiation model. International

Journal of Production Research, 22 (15), 4813–4838.

Lau, J.S.K., Huang, G.Q, Mak, K.L., Liang, L. (2005b). Distributed project scheduling with

information sharing in supply chains: part II- theoretical analysis and computational study.

International Journal of Production Research, 23 (1), 4899–4927

Lima, R.M., Sousa, R.M., and Martins, P.J., (2006). Distributed production planning and control

agent-based system. International Journal of Production Research, 44 (18–19), 3693–3709

Liu, J. and Sycara, K.P., (1993). Distributed constraint satisfaction through constraint partition and

coordinated reaction. Proceedings of the 12th International Workshop on Distributed

Artificial Intelligence, May, Hidden Valley, PA

Liu, J. and Sycara, K.P., (1994). Distributed problem solving through coordination in a society of

agents. Proceedings of the 13th International Workshop on Distributed Artificial Intelligence,

July, Seattle, WA.

Liu, J. and Sycara, K.P., (1995). Exploiting problem structure for distributed constraint

optimization. Proceedings of the First International Conference on Multiagent Systems, June,

San Francisco, California.

MacKie-Mason, J. K., Osepayshvili, A., Reeves, D. M., and Wellman, M. P.,(2004). Price

prediction strategies for market-based scheduling, Fourteenth International Conference on

Automated Planning and Scheduling, Whistler, BC, 244-252

Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomics. Oxford: Oxford

University Press

Maturana, F.P., and Norrie, D.H. (1996). Multi-agent mediator architecture for distributed

manufacturing. Journal of Intelligent Manufacturing, 7, 257–270

Meisels, A., & Kaplansky, E. (2003). Scheduling Agents – Distributed Timetabling Problems.

Lecture Notes in Computer Science, Practice and Theory of automated timetabling IV,Volume

2740/2003, 166-177

Meyer, M. H., & Utterback, J. M. (1993). The product family and the dynamics of core capability.

Sloan Management Review, 34(3), 29–47

Milgrom, P. R., & Weber, R. J. (1982). A theory of auctions and competitive bidding.

Econometrica: Journal of the Econometric Society, 50, 1089–1122.

Modi, P.,Veloso, M., Smith, S. F., & Oh, J. (2004). CMRadar: A Personal Assistant Agent for

Calendar Management. Lecture Notes in Computer Science, LNCS 3508,169–181

Muhlemann, A. P., Lockett, G.,& Farn, C. K. (1982). Job shop scheduling heuristics and frequency

of scheduling. International Journal of Production Research, 20(2), 227–241

http://www.springerlink.com/content/0302-9743/

135

National Survey of Local health Services (2006). The quality of patient engagement and

involvement in primary care. Picker Institute

Nisan, N.(2006), Bidding languages for combinatorial auctions in Combinatorial Auctions,

Cramton, Shoham, and Steinberg, Eds.: MIT Press

O’Hare, C. D., & Corlett, J. (2004). The outcomes of open-access scheduling. Family Practice

Management, 11(2), 35–38

Ovacik, I. M., & Uzsoy, R. (1994). Rolling horizon algorithms for a single-machine dynamic

scheduling problem with sequencedependent set-up times. International Journal of

Production Research, 32(6), 1243–1263

Paechter, B., Cumming, A., & Luchian, H., (1995). The use of local search suggestion lists for

improving the solution of timetabling problems with evolutionary algorithms. Proceedings of

the AISB Workshop on Evolutionary Computing, Sheffield, England

Paechter, B., Cumming, A., Norman, M. G., & Luchian, H. (1996). Extensions to a memetic

timetabling system. The Practice and Theory of Automated Timetabling, volume 1153 of

Lecture Notes in Computer Science. Springer Verlag, 251–265

Parkes, D. C. (2001). Iterative combinatorial auctions: Achieving economic and computational

effciency, Ph.D. dissertation, Department of Computer and Information Science, University of

Pennsylvania

Parkes, D. C. (2006). Iterative combinatorial auctions. In Peter Cramton, Yoav Shoham, and

Richard Steinberg, editors, Combinatorial Auctions. MIT Press

Parkes, D. C. and Ungar, L.(2000). Iterative Combinatorial Auctions: Theory and Practice, In

Proceedings 17th National Conference on Artificial Intelligence, Austin, TX, 74-81

Parkes, D. C., and Kalagnanam, J.(2005). Models for Iterative Multi-attribute Procurement

Auctions, Management Science, vol.51, no.3, 435-451

Parunak, H.V.D., (1987). Manufacturing experience with the contract Net, In: M.N. Huhns, ed.

Distributed Artificial Intelligence. Vol. I, Los Altos, CA: Morgan Kaufmann, 285–310

Paulussen, T. O., Jennings, N. R., Decker, K. S., & Heinzl, A. (2003). Distributed patient

scheduling in Hospital. Coordination and Agent Technology in Value Networks, GITO

Pearce, D. W. (1981). The dictionary of modern economics. The MIT Press, Cambridge,

Massachusetts

Petrovic, D., Morshed, M., & Petrovic, S. (2011). Multi-objective genetic algorithms for scheduling

of radiotherapy treatments for categorized cancer patients. Journal of Expert Systems with

Applications,38(6), 6994-7002

Pinedo, M.L. (2008). Scheduling Theory, Algorithms, and Systems (3th ed).Springer ISBN: 978-0-

387-78934-7

Pinedo, M.L. (2009). Planning and scheduling in manufacturing and services (2nd ed.). Springer,

New York. doi: 10.1007/978-1-4419-0910-7

Rahimifard, S. and Newman, S.T., (1998). Reference architectures for team based distributed

production planning and control. Eureka–Factory: Project No 1629

Rubin, G., Bate, A., George, A., Shackley, P. and Hall, N. (2006) Preferences for access to the GP:

a discrete choice experiment. British Journal of General Practice

Sabuncuoglu, I., & Karabuk, S. (1999). Rescheduling frequency in an FMS with uncertain

processing times and unreliable machines. Journal of Manufacturing Systems, 18(4), 268 283.

Sampson, S. E. & Froehle, C. M. (2006). Foundations and implications of a proposed unified

services theory. Production and Operations Management, 329-343

136

Sampson, S. E. (2001). Understanding service businesses: Applying principles of the unified

services theory (2nd ed.) New York: Wiley

Sandholm, T. (1999). Distributed Rational Decision Making, In Multiagent Systems: A Modern

Introduction to Distributed Artificial Intelligence, G. Weiss, Ed., MIT Press, 201-258, 19

Sandholm, T. (2002). Algorithm for optimal winner determination in combinatorial auctions.

Artificial Intelligence, 135(1–2),1–54

Sandholm, T., Suri, S., Gilpin, A., & Levine, D. (2005). CABOB: A fast optimal algorithm for

winner determination in combinatorial auctions. Management Science, 51(3), 374–390

Schönberger, J. (2005). Operational Freight Carrieer Planning. Springer, Berlin

Schönsleben P., Hieber R. (2004). Gestaltung von effizienten Wertschöpfungspartnerschaften im

Supply Chain Management. Busch A., Dangelmaier W., Integriertes Supply Chain

Management, Wiesbaden.

Sen, S., (1997). Multiagent systems: milestones and new horizons. Trends in Cognitive Sciences, 1

(9), 334–340

Shaw, M.J. and Whinston, A.B., (1988). A distributed knowledge-based approach to flexible

automation: the Contract Net framework. International Journal of Flexible Manufacturing

Systems, 1 (1), 85–104

Sheffi, Y. (2004). Combinatorial Auctions in the Procurement of Transportation services.

Interfaces,Volume.34 , 245-252

Shen, W., (2001). Agent-based cooperative manufacturing scheduling: an overview. COVE

Newsletter, Available online at: http://www.uninova.pt/~cove/newsletter.htm/2/Shen.pdf

Shen, W., (2002). Distributed manufacturing scheduling using intelligent agents. IEEE Intelligent

Systems, 17 (1), 88–94

Shen, W., Wang, L., & Hao, Q. (2006). Agent-based distributed manufacturing process planning

and scheduling : a state-of-the-art survey. IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews 36(4), 563-577

Sim, K. M. (2012). Complex and Concurrent Negotiations for Multiple Interrelated e-Markets.

IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, PP(99), DOI:

10.1109/TSMCB.2012.2204742, 1-16

Simpson, T. W. (2004). Product platform design and customization: Status and promise. AIEDAM,

18(1), 3–20

Simpson, T. W., Maier, J. R. A., & Mistree, F. (2001). Product platform design: Method and

application. Research in Engineering Design, 13(1), 2–22

Singh, A., & Malhotra, M. (2012). Agent Based Framework for Scalability in Cloud Computing.

International Journal of Computer Science & Engineering Technology (IJCSET), 3(4), 41-45

Smith, R.G., (1980). The Contract Net protocol: high-level communication and control in a

distributed problem solver. IEEE Transactions on Computers, C-29 (12), 1040–1113

Smith, R.G. and Davis, R., (1981). Frameworks for cooperation in distributed problem solving.

IEEE Transactions on Systems, Man, and Cybernetics, SMC-11 (1), 61–70

Song, J., & Regan, A. C. (2003). An Auction Based Collaborative Carrier Network.Technical

report: UCI-ITS-WP-03-6, Institute of Transportation Studies, University of California, Irvine

Sönmez, T., & Ünver, U. (2007). Course Bidding at Business Schools. Retrieved from

http://ssrn.com/abstract=1079525 2007

137

Sycara, K. P., Roth, S. F., Sadeh, N., and Fox, M. S., (1991), Resource allocation in distributed

factory scheduling. IEEE Expert, 29- 40

Tharumarajah, A., (2001). Survey of resource allocation methods for distributed manufacturing

systems. Production Planning and Control, 12 (1), 58–68.

Trentesaux, D., Tahon, C., and Ladet, P., (1998), Hybrid production control approach for JIT

scheduling. Artificial Intelligence in Engineering, 12, 49-67

Tsay, A., Nahmias, S., and Agrawal, N., (2000). Modeling supply chain contracts: a review, In: S.

Tayur, R. Ganeshan and M. Magazine, eds. Quantitative Models For Supply Chain

Management. Norwell, MA: Kluwer Academic Publishers, 299–330

Tseng, M. M., & Du, X. (1998). Design by Customers for Mass Customization Products. CIRP

Annals - Manufacturing Technology, 47(1), 103-106

Tseng, M. M., & Jiao, J. (1996). Design for mass customization. Annals of the CIRP, 45(1), 153–

156

Ulrich, K. (1995). The role of product architecture in the manufacturing firm. Research Policy,

24(3), 419–440.

Vaidya, N., Dugar, A., Gupta, S., and Bahl, P., (2005). Distributed fair scheduling in a wireless

LAN. IEEE Transactions on Mobile Computing, 4 (6), 616–629

Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. The Journal of

finance, 16(1), 8-37

Vieira, G. E., Herrmann, J. W., & Lin, E. (2000). Analytical models to predict the performance of

a single machine system under periodic and event-driven rescheduling strategies.

International Journal of Production Research, 38(8), 1899–1915.

Vries , S. and Vohra, R. V.,(2003). Combinatorial auctions: a survey, INFORMS Journal on

Computing, vol. 15, 284-309

Wainer, J., Ferreira, P., & Constantino, E. R. (2007). Scheduling meetings through multi-agent

negotiations. Decision Support Systems 44, 285–297

Wang, C., Dargahi, F., Bhuiyan, M. F. H. (2012). On the Tradeoff between Privacy and Efficiency:

A Bidding Mechanism for Scheduling Non-Commercial Services. Computers in Industry,

DOI:10.1016/j.compind.2012.01.012

Wang, C., Dargahi, F. (2012). Service Customization under Capacity Constraints: An Auction-

Based Model. Journal of Intelligent Manufacturing, DOI: 10.1007/s10845-012-0689-7

Wang, C., Ghenniwa, H. H., & Shen, W. (2009). Constraint-based winner determination for

auction-based scheduling. IEEE Transactions on Systems, Man and Cybernetics, Part A:

Systems and Humans, 39(3), 609–618.

Wang, W., & Gupta, D. (2011). Adaptive Appointment Systems with Patient Preferences.

Manufacturing and Service Operations Management 13(3), 373-389

Wang,C.(2007). Economic Models for Decentralized Scheduling , Ph.D. dissertation. The

University of Western Ontario, Canada

Wang, C., Ghenniwa, H., and Shen, W., (2009). Constraint-based winner determination for auction

based scheduling. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and

Humans, 39 (3), 609–618

Wellman, M. P., Walsh, E., Wurman, P. R. and MacKie-Mason, J. K., (2001). Auction Protocols

for Decentralized Scheduling, Games and Economic Behavior, vol.35, No.1-2, 271-303

138

Wellman, M. P., MacKie-Mason, J.K., Reeves, D.M., and Swaminathan, S., (2003). Exploring

bidding strategies for market-based scheduling, Proceedings of the 4th ACM conference on

Electronic commerce, San Diego, CA, USA,115 – 124

Wemmerlov, U. (1990). A taxonomy for service processes and its implications for system design.

International Journal of Service Industry Management 1(3), 13–27

Wolski, R., Plank, J. S., Brevik, J., & Bryan, T. (2001). Analyzing market-based resource allocation

strategies for the computational grid. International Journal of High Performance Computing

Applications, 15 (3), 258-281

Yamamoto, M., & Nof, S. Y. (1985). Scheduling/rescheduling in the manufacturing operating

system environment. International Journal of Production Research, 23(4), 705–722.

Yang, E.H., Barash, M.M., and Upton, D.M., (1993). Accommodation of priority parts in a

distributed computer-controlled manufacturing system with aggregate bidding schemes.

Proceedings of the 2nd Industrial Engineering Research Conference Proceedings, 827–831

Zaman, S., & Grosu, D. (2011). Combinatorial Auction-Based Dynamic VM Provisioning and

Allocation in Clouds. IEEE Third International Conference on Cloud Computing Technology

and Science (CloudCom),107-114

Zhiming, Z. (2011). A Two-stage Scheduling Approach of Operation Rooms Considering

Uncertain Operation Time. International Conference on Information Science and

Technology,Nanjing, Jiangsu, China 250. DOI: 10.1115/DETC2011-48263

