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ABSTRACT

Direction of Arrival Estimation and Tracking with Sparse Arrays

Jian-Feng Gu, Ph.D.

Concordia University, 2013

Direction of Arrival (DOA) estimation and tracking of a plane wave or multiple plane

waves impinging on an array of sensors from noisy data are two of the most important

tasks in array signal processing, which have attracted tremendous research interest

over the past several decades. It is well-known that the estimation accuracy, angular

resolution, tracking capacity, computational complexity, and hardware implementa-

tion cost of a DOA estimation and/or tracking technique depend largely on the array

geometry. Large arrays with many sensors provide accurate DOA estimation and

perfect target tracking, but they usually suffer from a high cost for hardware imple-

mentation. Sparse arrays can yield similar DOA estimates and tracking performance

with fewer elements for the same-size array aperture as compared to the traditional

uniform arrays. In addition, the signals of interest may have rich temporal informa-

tion that can be exploited to effectively eliminate background noise and significantly

improve the performance and capacity of DOA estimation and tracking, and/or even

dramatically reduce the computational burden of estimation and tracking algorithms.

Therefore, this thesis aims to provide some solutions to improving the DOA estimation

and tracking performance by designing sparse arrays and exploiting prior knowledge

of the incident signals such as AR modeled sources and known waveforms.

First, we design two sparse linear arrays to efficiently extend the array aperture
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and improve the DOA estimation performance. One scheme is called minimum re-

dundancy sparse subarrays (MRSSA), where the subarrays are used to obtain an

extended correlation matrix according to the principle of minimum redundancy linear

array (MRLA). The other linear array is constructed using two sparse ULAs, where

the inter-sensor spacing within the same ULA is much larger than half wavelength.

Moreover, we propose a 2-D DOA estimation method based on sparse L-shaped arrays,

where the signal subspace is selected from the noise-free correlation matrix without

requiring the eigen-decomposition to estimate the elevation angle, while the azimuth

angles are estimated based on the modified total least squares (TLS) technique.

Second, we develop two DOA estimation and tracking methods for autoregressive

(AR) modeled signal source using sparse linear arrays together with Kalman filter

and LS-based techniques. The proposed methods consist of two common stages: in

the first stage, the sources modeled by AR processes are estimated by the celebrated

Kalman filter and in the second stage, the efficient LS or TLS techniques are employed

to estimate the DOAs and AR coefficients simultaneously. The AR-modeled sources

can provide useful temporal information to handle cases such as the ones, where

the number of sources is larger than the number of antennas. In the first method,

we exploit the symmetric array to transfer a complex-valued nonlinear problem to a

real-valued linear one, which can reduce the computational complexity, while in the

second method, we use the ordinary sparse arrays to provide a more accurate DOA

estimation.

Finally, we study the problem of estimating and tracking the direction of arrivals

(DOAs) of multiple moving targets with known signal source waveforms and unknown
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gains in the presence of Gaussian noise using a sparse sensor array. The core idea

is to consider the output of each sensor as a linear regression model, each of whose

coefficients contains a pair of DOAs and gain information corresponding to one tar-

get. These coefficients are determined by solving a linear least squares problem and

then updating recursively, based on a block QR decomposition recursive least squares

(QRD-RLS) technique or a block regularized LS technique. It is shown that the

coefficients from different sensors have the same amplitude, but variable phase infor-

mation for the same signal. Then, simple algebraic manipulations and the well-known

generalized least squares (GLS) are used to obtain an asymptotically-optimal DOA

estimate without requiring a search over a large region of the parameter space.
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Chapter 1

Introduction

1.1 Background and Motivation

Array signal processing (ASP), as an important sub-area of signal processing, has been

widely used in diverse fields of science and engineering such as radar, sonar, seismic

exploration, speech enhancement, deep space communications, navigation and wire-

less communications. [1–4]. In radar and sonar systems, antenna arrays or hydrophone

arrays are often exploited to estimate the source location, range, and velocity of ob-

jects such as aircraft, missile, and submarine [5,6]. Seismic arrays are widely used for

oil exploration and detection of underground nuclear tests [7]. In acoustic and speech

signal processing, microphone arrays are often used to extract some signals of interest

by enhancing the reception in one or multiple directions [8]. Very large antenna arrays

are employed in deep space network (DSN) to compensate for signal-to-noise ratio (S-

NR) of the signal from a receding deep-space spacecraft [9]. Array antenna technique,

also called smart antenna [10,11], has emerged as one of the key features in the third
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generation and beyond wireless communication systems such as TD-SCDMA, which

can significantly improve system operating parameters, such as capacity, quality, and

coverage, and reduce the cost for green communications. The most important objec-

tive of ASP is to estimate and/or track the parameters of the source signal or capture

the waveform of the signal itself by fusing temporal and spatial information of the

signal sources impinging onto a set of judiciously placed antenna sensors. Though

the fundamental theories and basic methods of ASP have been extensively studied

over the past four decades, many issues concerning its practical applications remain

to be solved. For example, in many practical applications for estimating and tracking

the direction of arrivals (DOA), the array systems are limited to a light load that

requires limited sensors and accessories due to the cost of hardware and computation-

al complexity. In addition, it is also necessary for these systems to provide higher

accuracy with limited sensors as well as better tracking performance compared with

the traditional array configurations and estimators. Therefore, the aims of this thesis

are to achieve high angular resolution and accurate estimates at a low cost by consid-

ering two strategies, one to design sparse arrays and the other to employ the temporal

information. The performance of an array for both DOA estimation and tracking is

closely related to its array aperture. The larger the array aperture, the more accurate

the angle measurements are. Sparse arrays have fewer elements for the same size

aperture as compared to fully populated arrays. The temporal information is usually

utilized in wireless communications and active sonar/radar to identify the different

users/targets or for other purposes. The temporal information can be used to improve

the estimation accuracy and reject the noise and interference. The subsequent section
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reviews the state of the art on sparse array design and waveform-based techniques for

DOA estimation and tracking as well as two dimensional DOA estimators.

1.2 Literature Review

1.2.1 Sparse Arrays for DOA Estimation

DOA estimation, also called spatial spectrum estimation, refers to the estimation of

direction finding signals impinging on antenna arrays. Uniformly spaced linear array

(ULA) is one of the most important arrays due to the natural Fourier relationship

between the beam pattern and the excitation at the array, which allows the DOA

estimation problem to be treated equivalently as spectral estimation. Therefore, most

of the work for DOA estimation with ULA has addressed the issue of disambiguity

according to the spatial sampling theory, i.e., the inter-element spacing must be less

than or equal to half the wavelength of the impinging sources. It is known that the

performance of DOA estimation depends on the size of the arrays aperture [1,12]. A

large array aperture can produce more accurate DOA estimation and higher resolution

for closely spaced sources, inspiring us to improve the performance of DOA estimation

by extending the array aperture. Generally speaking, there are two key aspects to be

considered. One is the special feature or type of the source signal such as non-Gaussian

signal [13], temporally correlated sources [14], noncircular sources [15], cyclostationary

signals [16], AR modeled sources [17,18] and quasi-stationary signals [19]. The other

is the array configuration [20–27]. Recently, researchers have paid more attention to
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array pattern design considering that in some practical circumstances there is no a

priori knowledge for the characteristics of the received signal, especially for noncoop-

erative signals. For example, in some instances, there are only a few sensors available

for system implementation, the classical regular arrays such as ULA cannot provide

accurate DOA estimate. This is because the aperture size of ULA is very small due

to the constraint of the spatial sampling theory. This limitation has triggered the de-

velopment of arrays with inter-element space greater than half the signal wavelength.

Further, to mitigate the ambiguous problem in DOA estimation, it is desirable to con-

stitute arrays such as minimum redundancy linear arrays (MRLA) [20]. The MRLA

is designed so that the number of sensor pairs that have the same spatial correlation

lag is as small as possible. The authors of [21] exploited the covariance augmentation

technique to extend the principle of MRLA to planar geometries. However, it is very

difficult to construct a MRLA when the number of sensors is relatively large because

of the involvement of the heuristic search procedure and a NP hard problem in obtain-

ing a perfect array. In order to combat this weakness, Pal and Vaidyanathan recently

presented two simple and closed-form design schemes [22, 23] to extend the effective

aperture of arrays. One is named nested array, which is constructed by two or multi-

ple uniform linear subarrays with different inter-element spacing. The other is formed

by two ULAs which satisfy the so-called co-prime relationship in the inter-element

spacing as well as the number of sensors. Unfortunately, these design techniques for

the above mentioned arrays are still constrained by the customary half-wavelength.

Therefore, in order to further extend the array aperture, some researchers have sug-

gested configurations of sparse subarrays [24–27] each of which is constructed by a
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regular array, while the inter-subarray spacing is much larger than half wavelength

of the signal of interest. In general, this DOA estimation method contains two steps.

The first step is to implement the traditional DOA methods to obtain the rough DOA

estimate without ambiguity and the cyclically ambiguous values of the fine DOA. The

second step is to resolve the cyclic ambiguity by some disambiguation procedure such

as beamforming, MUSIC or MODE-based method.

1.2.2 2-D DOA Estimation Methods

The problem of two-dimensional (2-D) DOA (i.e., azimuth and elevation angles) has

been receiving increasing attention in the recent past. 2-D DOA problem may be

closer to some practical environment than 1-D, for instance, using an airborne or a

spaceborne array to observe ground-based sources. Additionally, in the last three

decades a number of the high-resolution direction finding methods have been studied

in the context of 1-D estimation (e.g., the azimuth angle) of multiple plane waves.

Among them, MUSIC [28] and ESPRIT [29] are two of the most popular algorithms.

Many 2-D DOA methods are based on the two algorithms. Specially, the latter method

has two main advantages over the former. First, the ESPRIT algorithm requires less

computational burden and storage space due to the fact that it does not require to

search over these whole parameter space. Second, independent of the array response,

the ESPRIT algorithm is more robust to array calibration errors. Therefore, the

ESPRIT algorithm and its variations [30,31], which are widely devoted to the problem

of 2-D DOA estimation with planar arrays, have received considerable attention in
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the array-processing literature.

Majority of the planar arrays required to implement these techniques can be di-

vided into three types: the triangular array [32,33], the rectangular array [34,35],and

the two-orthogonal ULA or the L-shaped array [36–46]. Although the L-shaped ar-

ray has a simpler configuration compared to the rectangular and triangular ones, it

enjoys higher accuracy among these configurations [36]. Thus the L-shaped array has

received increased attention in dealing with 2-D DOA estimation problems recently.

In [37], Tayem and Kwon presented a computationally simple 2-D DOA estimation

with the propagator method using one or two L-shaped arrays. They showed that

it is possible to decompose the 2-D problem into two independent 1-D problems by

using the L-shaped array for reducing the computational burden significantly. But,

the two independent sets of angles would have to be properly paired together using

some appropriate techniques [38]. Different approaches have been put forward in the

literature for this purpose. For example, Kikuchi et al. [39] have suggested a cross-

correlation technique to obtain the correct parameter pairs by constructing a Toeplitz

matrix. The first column and first row of the Toeplitz matrix are constructed by

the diagonal elements and their conjugate transposes of the cross correlation matrix

(CCM). Then, the one-to-one relationship between the elevation and azimuth angles

is set up. Unfortunately, the Kikuchis approach still suffers from the pair-matching

problem when the difference of the corresponding combinations of the 2-D angles is

small and the signal-to-noise ratio (SNR) is low [40]. Furthermore, it only employs the

CCM to deal with the pair-matching problem such as the pairing algorithm suggested

in [41], but does not exploit its characteristics to improve the estimation performance.
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Gu and Wei [40] have proposed a joint singular value decomposition(JSVD) technique

that constructs the extension signal subspace by selecting two submatrices from the

CCM, which is unaffected by the additive noise. By this scheme, we can make use of

the property of the eigendecomposition, i.e.,the eigenvalue and its unique eigenvector,

to achieve automatic pairing and estimate 2-D DOA. Therefore, the JSVD technique

enjoys at least two advantages over the technique suggested in [39]. First, the JSVD

technique needs no additional steps to deal with the pair matching problem. Sec-

ond, the JSVD is superior in estimating the 2-D DOA, especially at low SNR and

with a small number of snapshots. The authors of [43] have presented a generalized

ESPRIT-based technique to deal with the problem of pair-matching. Unfortunately,

the computational burden of this technique is very high due to its requirement for

search over the parameter space of interest and implementation for the eigenvalue

decomposition (EVD) of the array correlation matrix. Therefore, a computationally

efficient method is proposed in [44] based on propagator method, but it still involves

considerable cost in computation (the parameter space searching) to estimate 2-D

DOA estimation and deal with the pair-matching problem.

1.2.3 DOA Estimation with Known Waveform

As is well known, most DOA estimation algorithms, such as beamforming-based

techniques [7, 47], subspace-based techniques [48], and sparsity-based techniques [49,

7



50], are mainly based on a common assumption that the received signals are non-

cooperative signals, that is, they are either unknown deterministic signals or Gaus-

sian type of stochastic signal sources with unknown covariance. In some applications,

such as active radar, active sonar, and communication systems, the basic waveform of

signal of interest is available to its receiver. This a priori information can be exploited

to effectively eliminate background noises and significantly improve the estimation

accuracy [51,52]. In addition, the capacity of DOA estimation can be larger than the

number of antenna elements [53–59]. Only a few techniques have been developed so

far to handle the DOA estimation problem by making use of the waveforms of signal

sources. Li and Compton [53] are among the very first researchers to improve the

accuracy of DOA estimation with known waveforms. They obtained initial angle esti-

mates using an iterative quadratic maximum likelihood (IQML) algorithm, and then

used the alternating projection (AP) or the expectation maximization (EM) algorith-

m to estimate the DOAs. Later on, a large sample decoupled ML estimator (DEML)

was proposed to estimate the DOAs of incoherent signals with known waveforms [54].

The DEML estimator is computationally efficient, since it decouples the multidimen-

sional minimization problem into a set of 1-D minimization problems. However, this

estimator encounters difficulty when the signals impinging on the array are coherent.

To lift this constraint, Cederval and Moses [55] extended the DEML estimator to

decorrelate the coherency of incident signals and developed the coherent decoupled

maximum likelihood (CDEML) algorithm. Both DEML and CDEML belong to the

family of large sample ML algorithms, which do not work well in difficult scenar-

ios such as when the SNR is low or the number of snapshots is small. To improve
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the accuracy and spatial resolution of the DOA estimation for signals with known

waveforms, Li et al. [56] proposed a white decoupled maximum likelihood estimator

(WDEML) under the assumption that the observed noise is spatially white. Recently,

Atallah and Marcos [57] have presented a parallel decomposition (PADEC) algorithm

that yields comparable performance, but with a lower complexity, than that of the

ML-based algorithms. The idea behind the PADEC algorithm is to obtain spatial

signature of the signals using the least-squares (LS) error criterion, and to decorrelate

the coherence of the signals by applying spatial smoothing techniques. However, for

large size subarrays, the computational burden of PADEC may be unacceptably high,

since the eigen-decomposition is required to obtain the orthogonal projector on the

noise subspace or the signal subspace. A computationally simpler and more efficient

DOA estimation technique has been proposed in [58], where the DOA of known signal

waveforms is computed based on the phase shift between two subarrays. This tech-

nique requires that signals from different sources be uncorrelated with one another;

thus, it does not perform well when the signals are partially or completely correlated.

More recently, Gu et al. [59] have suggested a fast linear operator to deal with DOA

estimation of uncorrelated or coherent signal sources based on their waveforms. This

method does not require the reconstruction of orthogonal projector in the noise sub-

space or the signal subspace but its performance approaches to that of the ML-based

methods.
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1.2.4 DOA Tracking

Another focus of this thesis is on DOA tracking, which is closely related to DOA

estimation. A number of standard methods exist for such a problem. Eiegnstructure

or so-called subspace tracking techniques [60,61], for example, attempt to track DOA

via repeated implementation of subspace-based DOA estimation techniques such as

MUSIC, ESPRIT [28, 29, 48] that rely on recursively updating the eigenstructure or

subspace information obtained from either the singular value decomposition (SVD) of

the array output or the EVD of the covariance matrix estimate of sampled array data.

However, there are two major limitations that are inherited by all subspace tracking

approaches. One is that each updated set of DOAs suffers from the data association

problem [62]. In other words, although subspace tracking techniques can efficiently

estimate and track the whole updated DOA values, they cannot set up a one-to-one

relationship between the estimated DOAs and the targets automatically [63]. The

second main limitation of the subspace tracking techniques lies in that it is difficult

to incorporate a prior knowledge of the signal feature and/or array structure into

the eigendecomposition. It is well known that temporal information of signals and

special array structure can be exploited to effectively eliminate background noise and

significantly improve the performance and capacity of DOA estimation and track-

ing, and/or even dramatically simplify the computational burden of the estimation

and tracking algorithms. Therefore, many approaches to track the DOA of multiple

targets make use of the array structure and/or the covariance matrix of signals to

directly update the DOA or the spatial signature of the respective targets without
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changing the order of DOA estimates [64–75]. By using the structure of the array

manifold, Sword et al. [64] proposed a closed-form LS solution to update the most

recent DOA estimates, thus avoiding the data association problem. Later, Lo and

Li [65] modified the algorithm by implementing the error-correction procedure to re-

duce the effect of the error propagation due to the use of recursive approximations.

The authors of [66] have made use of the inherent dynamical property of the DOA

of moving targets to improve the capability for the case of crossing tracks, where two

DOAs are very close or even overlap. In [67], Sastry et al. used the property of the

Frobenius norm of the covariance error matrix, which is sensitive to permutations in

the columns of the array steering matrix, to update the current DOA estimates of

targets without the data association problem; but, this method can only be used in

the case of different signal powers. Inspired by such a property reported in [67], the

authors of [68] simplified the objective function as the distance between the corre-

sponding elements of the previously estimated and current covariance matrix. Satish

and Kashyap [69] derived a maximum likelihood (ML)-based technique for optimal

determination of the current DOA and range estimates for slowly changing targets

based on the second-order approximation of the inverse of the array covariance ma-

trix. The authors of [70] then introduced a recursive expectation and maximization

algorithm to reduce the computational burden of the traditional ML-based technique.

The ML-based tracking technique suggested in [71] makes use of the target motion

state to improve the tracking performance, where the DOA estimates are updated at

each time frame and refining through Kalman filtering. Zhou et al. [72] obtained the

DOA tracking through updating the information of the target motion state described
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as the multiple target state (MTS). Recently, the authors of [73] presented a sig-

nal selective DOA tracking technique by using the special features of cyclostationary

sources to improve the tracking performance for wideband multiple moving sources

without combating the association problem.

1.3 Organization and Contributions

The organization of the thesis along with the main contributions of each chapter is

presented as follows.

In Chapter 2, accurate DOA estimation methods for noncooperative signals are

investigated with a special focus on the estimators applicable to sparse linear arrays

(SLA) and sparse L-shaped arrays that are constructed by two linear arrays perpen-

dicular with each other. First, we present a new array geometry named minimum

redundancy sparse subarray (MRSSA) that is considered by uniform linear subarray

(ULS) according to the principle of MRLA, where the inter-subarray spacing is much

larger than the half wavelength, and each ULS is composed of the ULA with inter-

element spacing less than or equal to half of the wavelength. An extended correlation

matrix is constructed from Kronecker Steering Vectors (KSVs) each of which contains

the ambiguous angle and the corresponding unambiguous angle. Subsequently, we

propose a new array geometry named nonuniform linear sparse array(NLSA), that

is composed of uniform linear sparse subarrays with the inter-sensor spacing in the

same subarray much larger than the half wavelength. However, the minimum dis-

tance among sensors must be less than or equal to the half wavelength to avoid the
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multi-value ambiguity. Furthermore, we propose a joint elevation and azimuth DOA

estimation method using the L-shaped array geometry constructed by two linear ar-

rays that are perpendicular to each other. The signal subspace of the elevation angle

can be obtained directly by the property of CCM without the effects of an unknown

noise field. The ESPRIT-like algorithm can be employed to estimate the elevation

angles without finding polynomial roots or searching over parameter space. Next, we

derive a computational efficient modified TLS method to estimate the azimuth angle

by employing the estimated waveforms and elevation angles of the incident signals

In Chapter 3, Kalman filter technique is used to estimate and track the DOA of

AR modeled source signals. First, a novel DOA estimation method for AR modeled

source signals impinging on SLA is proposed. Since each sensor can be considered

as a dynamic model of the time-varying AR sources where each regression coefficient

contains the information of DOA, we employ Kalman filter to obtain the source sig-

nal estimates and then the TLS technique is used to derive an approximate optimal

estimator for the DOA of signal. In addition, we propose a new DOA estimation and

tracking method for AR modeled signals based on symmetric sparse array.

In Chapter 4, we propose a novel DOA estimation method of multiple signals

with known source waveforms and unknown gains based on SLAs. By using linear

regression analysis, the proposed algorithm is presented as an optimal estimator for

simultaneous DOA and complex gain estimation. The output of each sensor of the

antenna array, as a combination of the received signals of interest, is expressed as

a linear regression model where each regression coefficient contains the information
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of DOA and the corresponding complex gain. A new technique for unwrapping am-

biguity by the Chinese remainder theorem (CRT) is then presented to extract the

angle information from the estimated complex coefficients. Further, the well-known

generalized LS technique is used to obtain asymptotically-optimal estimate of DOAs

without requiring heavy computation. Based on the idea of the proposed array ge-

ometry design and DOA estimation method, we also derive two LS-based schemes for

moving targets, to update the coefficient changes of each sensor at successive time

intervals: one is based on the block QRD-RLS technique and the other on the block

regularized LS technique.

Finally, Chapter 5 contains conclusions and provides directions for future work.
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Chapter 2

Accurate DOA Estimation by

Sparse Arrays

2.1 Introduction

Designing nonuniform linear arrays to obtain the accurate angle estimate is very

popular in radar systems such as airborne surveillance radar, ground based radar

systems, and shipborne radar systems [76] because of low cost and complexity. Most

of these techniques are considered to construct the “no holes” covariance matrix,

which still limits the extension of array aperture [1]. In this chapter, we focus on

the DOA estimation with sparse arrays, where the inter-element spacings can be

much larger than the half-wavelength. In Section 2.2, the first sparse array called

the minimum redundancy sparse subarray is designed to estimate 1-D DOA, where

uniform linear subarrays are employed to construct the whole arrays according to

the principle of MRLA. Kronecker steering vectors (KSVs) are constructed using the
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relationship between the subarrays, and then a modified ESPRIT approach is used to

find all the KSVs. Finally, the accurate DOAs can be obtained by solving a simple

algebraic problem. The proposed method enjoys two advantages in comparison to

some of the existing methods. First, the cyclic ambiguity can be resolved by the

one-to-one mapping between unambiguous and ambiguous angles without requiring

additional algorithms such as MUSIC or MODE. Second, it can deal with the case

of different unambiguous angles with the same ambiguous angle, which might not be

possible to deal with by using the previous schemes [24, 25]. However, the proposed

method cannot deal with the cases of correlated sources. Therefore, in Section 2.3,

we propose another sparse linear array and its corresponding method to handle the

shortcoming of the MRSSA. The second sparse linear array is constructed by using

two sparse ULAs, where each sparse ULA is constructed by interleaving sensors. We

first estimate the rough DOA by the generalized ESPRIT method, and then employ

the alternating null-steering technique to estimate the fine DOA. In Section 2.4, a

sparse L-shaped array is designed to estimate 2-D DOA. Here, the ULA along with

the ESPRIT-based method is used to estimate the elevation angle, and then the

signal waveform is obtained by the estimated elevational angle. Since the elevation

angle and the waveform have been obtained, each sensor of the SLA on the x-axis

can be considered as a linear regression model with respect to the phase information

containing the azimuth angle, which can be obtained by exploiting the modified TLS

and GLS techniques.
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2.2 DOA Estimation by Minimum Redundancy S-

parse Subarrays

2.2.1 Proposed MRSSA Pattern

Figure 2.1: Structure of the MRSSA

Let us consider K narrowband signals with the same wavelength, say λ, that

impinge on a minimum redundancy sparse subarray (MRSSA), shown in Fig.2.1. The

MRSSA consists of M sensors with Ms subarrays placed according to the philosophy

of MRLA [20], where each subarray contains Mu = M/Ms sensors with the inter-

element spacing being d1 ≤ 1, and the smallest intersubarray spacing between the two

consecutive subarray centers is d2 > (Mu + 1)d1. Note that d1 and d2 are normalized

distances in terms of the half wavelength. The observed signals in the pth (p =

1, · · · ,Ms) subarray at time t can be represented by an Mu × 1 complex vector as

xp(t) = Aps(t) + np(t) = A1Bps(t) + np(t), (2.1)
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where s = [s1(t), s2(t), · · · , sK(t)]T is the signal sources from K different directions,

and the elements of np(t) are the white Guassian random processes with zero-mean

and variance σ2 . The matrix A1 is the steering matrix of the first subarray

A1 = [a1(θ1),a1(θ2), · · · ,a1θK)]

=



1 1 · · · 1

e−jd1α1 e−jd1α2 · · · e−jd1αK

...
...

. . .
...

e−j(Mu−1)d1α1 e−j(Mu−1)d1α2 · · · e−j(Mu−1)d1αK


,

(2.2)

where a1(θk) = [1, e−jd1αk , · · · , e−jd1(Mu−1)αk ]T with αk = π sin θk.

The matrix Bp in (2.1) is given by

Bp = diag(e−jβp,1 , e−jβp,2 , · · · , e−jβp,K ), (2.3)

with βp,k = δpαk and δp being the spacing between the centre of the pth subarray

and the centre of the first subarray. To simplify the problem formulation, we assume

that there are three subarrays, giving δ0 = 0, δ1 = d2, δ2 = 3d2. We also assume

that the sources are uncorrelated so that the source correlation matrix is diagonal,

namely,Rs = diag([ρ1, ρ2, · · · , ρK ]), where ρk is the power of the kth incident signal.

Then the correlation matrices of the subarrays are given by

Rx(d
i
2 − d

j
2) , E[xi(t)x

H
j (t)] = A1BiRsB

H
j A

H
1 + σ2IMuδ(i− j)

= A1BiB
H
j RsA

H
1 + σ2IMuδ(i− j)(i, j = 1, 2, 3)

. (2.4)
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2.2.2 DOA Estimation Technique

From (2.4), we can obtain the following correlation matrices

Rx(0) = A1RsA
H
1 + σ2IMu (i = j)

Rx(d2) = A1BRsA
H
1 = Rx(−d2)H (i = 1, j = 2)

Rx(2d2) = A1B
2RsA

H
1 = Rx(−2d2)H (i = 2, j = 3)

Rx(3d2) = A1B
3RsA

H
1 = Rx(−3d2)H (i = 1, j = 3)

, (2.5)

where B = diag([e−jβ1 , e−jβ2 , · · · , e−jβK ]) with βk = d2αk.

Next, let us construct a block Toeplitz matrix R of size (4M/3) × (4M/3) as

follows

R =



Rx(0) Rx(d2) Rx(2d2) Rx(3d2)

Rx(−d2) Rx(0) Rx(d2) Rx(2d2)

Rx(−2d2) Rx(−d2) Rx(0) Rx(d2)

Rx(−3d2) Rx(−2d2) Rx(−d2) Rx(0)


, (Bs ∗A1)Rs(Bs ∗A1)H + σ2I4M/3

, (2.6)

where Bs is given by

Bs = [b(θ1), b(θ2), · · · , b(θK)], with b(θk) = [1, e−jβk , e−2jβk , e−3jβk ]. (2.7)

Further, we define b(θk) ⊗ a1(θk)(k = 1, 2, · · · , K) as the Kronecker steering

vectors, each containing a pair of unambiguous and ambiguous angles. It is worth

noting that our method can detect at most 4M/3−1 source signals if we use MUSIC-

like method. In order to reduce the computational cost, next we will introduce a
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ESPRIT-like method without searching the parameter space. Performing the eigen-

value decomposition for R in (2.6) results in

R = [Us Un]Σ[Us Un]H , (2.8)

where Σ = diag([σ1, · · · , σK , σK+1, · · · , σ4M/3]) with σ1 ≥ · · · ≥ σK ≥ σK+1 = · · · =

σ4M/3 is the diagonal matrix containing the eigenvalues of R, and Us = [u1, · · · ,uK ]

of size (4M/3) × K is the signal subspace or signal plus noise subspace,and Un =

[uK+1, · · · ,u4M/3] is the noise subspace. According to the principle of subspace-based

methods, there exists a nonsingular K ×K matrix T such that

Us = (Bs ∗A1)T . (2.9)

In order to obtain the unambiguity angles first, herein we define a permutation

matrix [77]

Γ = [I4 ⊗ e1, I4 ⊗ e2, · · · , I4 ⊗ eM ], (2.10)

where ei is the ith column of IMu . We then have

Up , ΓUs = (A1 ∗Bs)T . (2.11)

Let us partition Up into two 4(Mu − 1)×K submatrices as

Up1 = Up(1 : 4(Mu − 1), :) , (A11 ∗Bs)T

Up2 = Up(5 : 4Mu, :) , (A11 ∗Bs)ΨT ,

(2.12)

20



where A11 is the first (Mu−1) rows of the array response matrix A1 and the diagonal

matrix Ψ is of the form Ψ = diag(e−jd1α1 , e−jd1α2 , · · · , e−jd1αK ) . From (2.12), we can

obtain

Up2 = (A11 ∗Bs)TT
−1ΨT = Up1T

−1ΨT . (2.13)

Therefore, we can establish a one-to-one relation between the rough DOA without

ambiguity and the rotationally invariant counterpart of KSVs by utilizing the eigen-

value decomposition (EVD) for the matrix F , U †p2Up1 = V ΛV−1, where V denotes

the eigenvectors of F and the diagonal elements of Λ = diag([λ1, λ2, · · · , λK ]) are the

corresponding eigenvalues and the estimated diagonal matrix Ψ. Thus, λk contains

the unambiguous DOA information and then the rough angels θk can be found by

using the following function as

θ̂k = arcsin[− arg(λk)/(πd1)], k = 1, · · · , K. (2.14)

Moreover, it is easy to verify [77, 78] that V and T satisfy the relationship v =

T−1EP−1 , where E is the real diagonal matrix and P is so-called generalized per-

mutation matrix. Therefore, we can obtain an estimate of the 4Mu ×K KSV matrix

Bs ∗A1,

D̂ = UsV PΓ−1. (2.15)

Herein, we employ the simple arithmetic operation suggested in [77] to obtain the

estimate of βk, i.e.,

β̂k = arg(D̂((M/3 + 1) : 4M/3, k)HD̂(1 : M,k)). (2.16)
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Obviously, if d2 � 1, there may exist different angels for the same βk according to

the cyclically ambiguous for sine estimates. To better understand this concept, let

us consider the situation without ambiguity. Assume that the distance between the

sensors is d = 1. Under this condition, there is no ambiguity for −π ≤ α = π sin θ ≤ π.

The α ∼ θ plot is shown in Fig.2.2(a) indicating a one-to-one mapping between α and

θ for the case of d = 1. When d > 1, for example, d = 6, then α = 6π sin θ mod 2π,

which gives 5 ambiguities as shown in Fig.2.2(b). The relationship between multiple-

ambiguity and the true value can be expressed as

αlk = (βk + 2πl)/d2, d−d2/2− βk/(2π)e ≤ l ≤ bd2/2− βk/(2π)c. (2.17)

Therefore, making use of the previously estimated rough angles in (2.14) and (2.17),

the unambiguous accurate estimate for the angle can be obtained as

ˆ̂
θk = arcsin(arg min

αl
k

|αlk − π sin θ̂k|/π). (2.18)

Note that the proposed method obtains the accurate estimate by searching for the

closet value to the corresponding rough estimate and therefore, it gives an improved

estimation performance as compared to the previous method [24], where different

rough DOA values correspond to the same fine DOA value. In addition, the proposed

method can also yield a better performance than the traditional methods do due to

the fact that MRLA can extend the effective array aperture.
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(a) (b)

Figure 2.2: α ∼ θ plots for (a) d = 1 and (b) d = 6

2.2.3 Simulation Results for MRSSA

We now present some results from Monte Carlo simulation of the proposed MRSSA.

We assume that there are 15 elements in the array system and in each ULA there are

Mu = 5 sensors, which are apart by d1 = 1 . A total of 1000 independent realizations

of the received data are adopted. In this first example, the proposed method is

evaluated as compared to the method in [24] for two equal power signals with the

incident directions [θ1, θ2] = [45◦, 60◦] and the SNR varying from −10 to 20 dB. The

smallest inter-subarray spacing is 10 times half-wavelength. The root mean square

error (RMSE) as defined by

RMSE =

√√√√ 1

T

T∑
t=1

(
ˆ̂
θ − θ)2 (2.19)

is used as the objective performance metric, where T is the number of independent

trials. Fig.2.3(a) and 2.3(b) show the RMSE of θ1 = 45◦ and θ2 = 60◦ , respectively.

23



It is observed that the proposed method delivers more accurate DOA estimates, espe-

cially at low SNR. This is beacuse the proposed method uses the principle of MRLA

to extend the array aperture and implements the rough and fine DOA estimation

without requiring pair matching. At low SNR, the method in [24] may produce the

errors between the rough angle and the accurate one, while our method does not need

pair matching in this case.

In the second example, we demonstrate our method as well as the method suggest-

ed in [24] for different inter-subarray spacing. To have a fair comparison, we assume

that there are two equal-power uncorrelated signals from the DOAs [θ1, θ2] = [34◦, 36◦],

the SNR is set to 0dB and 200 snapshots are employed. The RMSE results are shown

in Fig.2.4(a) and 2.4(b). It is seen that the estimation performance of the method [24]

may decrease with the increase of array aperture in some situations, while our method

can still increase the estimation performance owing to the improved array aperture

and automatic pair matching, which is not the case for the method suggested in [24].

This is because our method estimates the accurate and rough DOAs simultaneously,

while the method in [24] estimates the rough and accurate angles individually.

2.3 DOA Estimation by Sparse ULAs

2.3.1 Proposed Two Sparse ULAs

Different from the MRSSA mentioned above, here a nonuniform linear sparse array

that consists of 2M + 1 sensors arranged along two sparse ULAs is proposed, as

shown in Fig.2.5. The inter-element spacing for the two ULAs is d1 and d2 satisfying
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Figure 2.3: DOA estimation performance of MRSSA with three ULAs for two sources
with [θ1, θ2] = [45◦, 60◦]: (a) RMSE for θ1 = 45◦ (b) RMSE for θ2 = 60◦. The number
of snapshots is 200.
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Figure 2.4: DOA estimation performance of MRSSA with three ULAs for two sources
with [θ1, θ2] = [34◦, 36◦]: (a) RMSE for θ1 = 34◦ (b) RMSE for θ2 = 36◦. The SNR is
0dB, and the number of snapshots is 200.
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Figure 2.5: Structure of two sparse ULAs

d2 − d1 = d and d1 � d. The element placed at the origin is common for the two

ULAs as reference. Let mi(m = 1, · · · ,M, i = 1, 2) denote the index of the mth sensor

along the ith subarray. The observed signals in the ith(i = 1, 2) subarray at time t can

be expressed as an (M + 1)× 1 complex vector

xi(t) = Ais(t) + ni(t) (2.20)

where Ai = [ai(θ1),ai(θ2), · · · ,ai(θK)] is the steering matrix of the ith subarray with

ai(θk) = [1, e−jdiαk , · · · , e−j(M−1)diαk ]T . In (2.20), ni(t) is additive noise as in MRSSA.

Then, the signal received by the entire array can be written as

x(t) = [AT
1 Π,AT

2 ]Ts(t) + [nT1 (t)Π,nT2 ]T , (2.21)

where Π = [0M×1,JM ]T is an (M + 1) × M matrix with JM being the M × M

exchange matrix with ones on its anti-diagonal and zeros elsewhere. To simplify the
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expressions, by rewriting x(t) as x(t) = As(t)+n(t) with A , [AT
1 Π,AT

2 ], the whole

array steering vectors can be given as

ak = [e−j(M−1)d1αk , · · · , e−jd1αk , 1, e−jd2αk , · · · , e−j(M−1)d2αk ]T . (2.22)

From (2.22), it is easy to verify that there exists some special relationship between

ak(2M −p+2 : 2M +1) and ak(1 : p), i.e., Jpak(2M −p+2 : 2M +1) = Ψp
kak(1 : p),

where

Ψp
k =


diag(e−j(M−1)dαk , · · · , e−j(M−p)dαk) 1 6 p 6M

diag(e−j(M−1)dαk , · · · , 1, · · · , ej(p−M)dαk) p ≥M + 1

(2.23)

is a p× p diagonal matrix. It is worth-noting that we can avoid the phase ambiguity

with DOA information for the diagonal element only if d ≤ 1.

2.3.2 DOA Estimation Technique

Differing from the DOA estimation method for the MRSSA, here the proposed method

can be utilized in the case of correlated sources. Let us consider the auto-covariance

matrix of x(t), namely,

R = E[x(t)xH(t)] = ARsA
H + σ2I2M+1. (2.24)
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In a manner similar to that used in obtaining (2.8) and (2.9), we have Us = AT .

According to the array configuration described above, we can get the following two

signal subspaces

U1 , Us(1 : p, :) = A(1 : p, :)T

U2 , Us(2M − p+ 2 : 2M + 1, :) = A(2M − p+ 2 : 2M + 1, :)T

. (2.25)

Similar to the generalized ESPRIT algorithm suggested in [79], we can define the

following matrix

JpU2 −Φp(θ)U1 = (JA(2M − p+ 2 : 2M + 1, :)−Φp(θ)A(1 : p, :))T (2.26)

where Φp(θ) has the same expression as (2.23). It is easy to prove that both sides of

(2.26) would no longer be a full column rank matrix when θ = θk. That is to say, by

left-multiplying JpU2−Φp(θ)U1 with any K × p full row rank matrix D, we can find

that the matrix D(JpU2 − Φp(θ)U1) would be singular for θ = θk, (k = 1, · · · , K),

while nonsingular for other angles.

Therefore, we can implement the following spectral function to find the rough

DOAs without ambiguity

Fr(θ) =
1

[det(D(JpU2 −Φp(θ)U1))]2
(2.27)

We will employ the generalized ESPRIT method to estimate the rough DOA

based on our proposed array geometry to deal with the problem of the multi-value

ambiguity, which may occur in implementing the traditional ESPRIT for sparse ULAs
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directly. We will then introduce a novel alternating null-steering technique (ANST)

to estimate the accurate DOA based on the estimated rough DOA in (2.27).

Now, let us define the following matrix

B(θ(k), θ) = [A(k) w(θ)], (2.28)

where B(θ(k), θ) is constructed using A(k), the array steering matrix including all

the DOAs in (2.27) except for the kth DOA, and the steering vector w(θ), where θ

is an arbitrary angle with the kth angle selection set [θk − ∆θ θk + ∆θ], ∆θ being

dependent on the cyclically ambiguous period; for example, ∆θ = π/12 for the case

in Fig.2.2(b), and w(θ) is the corresponding steering vector of θ. Following the idea

of the projection matrix decomposition technique suggested in [80], we can obtain

PB(θ(k),θ) = PA(k)
+wP (θ)wH

P (θ)/(wH
P (θ)wP (θ)), (2.29)

where wP (θ) , P⊥A(k)
w(θ) is the projection steering vector on the orthogonal subspace

of PA(k)
. Note that the goal for implementing such a projection decomposition is to

construct two orthogonal subspaces: one is formed from the previously estimated

DOAs except for the kth DOA and the other is constructed by the updated fine DOA

of the kth signal source. From (2.29) it is easy to obtain the relationship

PB(θ(k),θ)wP (θ) = wP (θ), (2.30)

which implies that wP (θ) belongs to the projection subspace of the steering vectors
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B(θ(k), θ).

Theorem 1. Assume that there does not exist ambiguities for θk in the kth an-

gle selection set,that is, wP (θa) 6= wP (θb), a 6= b. Then the function L(θ(k), θ) ,

wH
P (θ)(I2M+1−PUs)wP (θ) = 0 have a unique nontrivial solution θ = θk,i.e.,wP (θ) 6=

0, where Us is the signal subspace of (2.24).

Proof : From (2.9) and (2.24), we can obtain the relationshipUs = AT = B(θ(k), θk)T .

Therefore,

L(θ(k), θ) , w
H
P (θ)(I2M+1 − PUs)wP (θ)

= wH
P (θ)(I2M+1 −B(θ(k), θk)T

(THBH(θ(k), θk)B(θ(k), θk)T )−1THBH(θ(k), θk))wP (θ)

= wH
P (θ)(I2M+1 − PB(θ(k),θk))wP (θ)

. (2.31)

Clearly, when θ = θk, L(θ(k), θk) in (2.31) equals zero. Assume that there exists

another solution for L(θ(k), θ) = 0, say θx, then exploiting (2.29) and (2.30) we can

obtain the relationship that ‖wP (θk)‖2‖wP (θx)‖2 = |wH
P (θk)wP (θx)|2. Obviously, the

equation holds only if θx = θk.

Note that to avoid a trivial solution, we can get rid of the DOA value in advance

because this DOA can be considered as one of the ambiguous values in the set of θ(k)

or we can implement the following criterion to avoid this phenomenon

θk = arg max
θ∈[θk−∆θ θk+∆θ]

wH
P (θ)PUswP (θ). (2.32)
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Therefore, the alternating null-steering technique can be summarized as follows:

1. Implement the generalized ESPRIT technique of (2.27) to estimate rough DOA

estimates of the sources and denote them as [θ̂
(0)
k ]Kk=1

2. Find a set of angle selection intervals in which a fine search will be performed:

K⋃
k=1

[θ̂
(0)
k −∆θ θ̂

(0)
k + ∆θ] and then implement the following iterative steps.

3. For k = 1 : K, compute the following optimization criterion in the kth angle

selection set of the ith iterations:

θ̂
(i)
k = arg min

θ∈[θ̂
(i−1)
k −∆θ θ̂

(i−1)
k +∆θ]

wH
P (θ)(I2M+1 − PUs)wP (θ) (2.33)

or

θ̂
(i)
k = arg max

θ∈[θ̂
(i−1)
k −∆θ θ̂

(i−1)
k +∆θ]

wH
P (θ)PUswP (θ) (2.34)

end

4. Compare [θ̂
(i)
k ]Kk=1 with [θ̂

(i−1)
k ]Kk=1 by checking if ε ≥

√
K∑

k=1
(θ̂

(i)
k −θ̂

(i−1)
k )2

K
, where ε

is set by user to get the accurate estimates. If the inequality holds, terminate

the iteration and output the final DOA estimates. Otherwise set i = 1 + 1 and

update the selection set
K⋃
k=1

[θ̂
(i)
k −∆θ, θ̂

(i)
k + ∆θ], and go back to step 3.

2.3.3 Simulation Results for ANST

This subsection presents two examples to illustrate the performance of the proposed

DOA estimation method in comparison with the MUSIC technique in terms of both

accuracy and resolution of the estimated angle. In order to obtain the maximun

32



capability of estimating the number of sources, herein, we set d = 1 and p = 2M + 1.

We use 9 elements in the array system, i.e., M = 4, for the first example, and 5

elements, i.e., M = 2 for the second example. The two ULAs have elements spaced

by d2 = 8 and d1 = 7, respectively. Monte Carlo simulations with 800 independent

realizations of the received data are carried out.

Figure 2.6: Two sources at the DOAs [10◦, 20◦] impinge on a NULA system with two
ULAs for the larger intersubarray of 8 half wavelength. 200 snapshots used.

In the first example, we evaluate the DOA performance of the proposed and the

MUSIC methods baseds on 9-sensor ULA and 32-sensor ULA with two equal-power

signals whose incident directions are [θ1, θ2] = [10◦, 20◦] and the SNR varies from -5 to

5dB. It is observed from Fig.2.6 that the proposed method provides a better accuracy

than the traditional RootMUSIC method, using the same sensors. This is perhaps
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because our proposed method makes use of the array pattern to largely extend the

array aperture and implements the estimation of both rough and accurate angles. It

is also found that the estimation accuracy of our proposed method is a little worse

than that of the RootMUSIC with the same array aperture. This is because the latter

exploits more sensors to reduce the additive noise.

In the second example, we demonstrate the resolution of the two DOA estimation

methods. In order to compare them under the same conditions, we assume that there

are two equal power uncorrelated signals from DOAs of [θ1, θ2] = [8◦, 10◦], and the

SNR and the number of snapshots are set to 15dB and 200, respectively. The results

are shown in Fig.2.7(a) and 2.7(b). From Fig.2.7(a), we see that the ULA using

Root-MUSIC gives only one small peak around two arrival angles of the signals, i.e.,

two peaks merged into one peak, while Fig.2.7(b) shows clearly two peaks without

any ambiguity produced by the proposed method. This means that among most of

trials, the ULA-based root-MUSIC algorithm fails to give an accurate DOA estimation

or resolve two close DOAs. Nevertheless, our proposed method can provide a more

accurate DOA estimate and a higher resolution than the traditional methods such as

MUSIC.

2.4 Joint Elevation and Azimuth Angle Estimation

Based on Sparse L-shaped Array

In this section, we introduce a novel estimator for joint elevation and azimuth angle

estimation based on sparse L-shaped array in the x−z plane as shown in Fig.2.8, which
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(a)

(b)

Figure 2.7: Histogram of two uncorrelated sources with DOAs of 8◦ and 10◦, and the
SNR=15dB, and 200 snapshots (a) ULA by Root-MUSIC, (b) Proposed technique.
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is constructed by one ULA with half-wavelength inter-elements along the z axis and

one SLA along the x axis as shown in Fig.2.9, where d1, d2, · · · , dMx are inter-element

spacings in terms of the half wavelength and at least one of them is less than or equal

to unity to solve the problem of ambiguity. Note that the element placed at the origin

is a reference sensor. The proposed method estimates the elevation angles based on the

signal subspace formed by a linear operation of the matrix from the cross-correlations

between sensor data, and the array geometry and shift invariance property. Then,

the azimuth angles can be estimated on the estimated signal waveforms obtained as a

linear combination of the array outputs in which the weights are computed from the

estimated elevation angles.

2.4.1 Proposed Array Model

Figure 2.8: Array configuration for 2-D DOA estimation
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Figure 2.9: Geometry of sparse linear array

Suppose that there are K narrowband sources with the same wavelength imping-

ing on the array from different azimuth and elevation directions, i.e., [θk φk]
K
k=1.

These sources are assumed to be in the far-field with respect to the sensor location.

The observed signals at the ULA along the z axis and the SLA along the x axis are

given by

z(t) = Azs(t) + nz(t)

x(t) = Axs(t) + nx(t)

. (2.35)

The matrices and vectors in (2.35) have the following definitions. Both of the ob-

served signals z(t) = [z0(t), z1(t), · · · , zMz(t)]
T and x(t) = [x0(t), x1(t), · · · , xMx(t)]T

are (Mz+1)×1 and (Mx+1)×1 vectors and functions of the snapshot t, respectively.

nz(t) = [nz,0(t), nz,1, · · · , nz,Mz ] and nx(t) = [nx,0(t), nx,1, · · · , nx,Mx ] are i.i.d additive

noise vectors, whose elements have zero mean and variance σ2. Note that x0(t) = z0(t)

and nx,0(t) = nz,0(t) denote the measurement and noise of the reference sensor, respec-

tively. Az has the same expression as A1 in (2.2) except that sin θ = cosφ, d1 = 1,

and (Mu− 1) = Mz. Ax is the (Mx + 1)×K array manifold matrix of SLA including
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the reference sensor as given by

Ax = [ax(θ1),ax(θ2), · · · ,axθK)]

=



1 1 · · · 1

e−jϕ
(1)
1 e−jϕ

(1)
2 · · · e−jϕ

(1)
K

...
...

. . .
...

e−jϕ
Mx
1 e−jϕ

Mx
2 · · · e−jϕ

Mx
K


,

(2.36)

where ϕ
(m)
k =

m∑
i=1

diψk, (m = 1, 2, · · · ,Mx) with ψk = π cos θk is the phase difference

between the mth sensor of the x axis and the reference sensor for the kth(1, 2, · · · , K)

signal.

2.4.2 Elevation Angle Estimation

As is well known, the CCM, a noise-free correlation matrix [40, 45, 46], can be used

to improve the estimation performance and reduce the computational complexity.

Therefore, we will exploit the CCM to estimate the elevation angles by constructing

the signal subspace without EVD and implementing ESPRIT-like technique. Now

let us define the correlation vectors r
(m)
z,x ,m = 1, 2, · · · ,Mx between z(t) and the mth

element xm(t) by

r(m)
z,x = E[z(t)x∗m(t)] = AzRsb

∗
m. (2.37)

where bm , Ax(m+ 1, :) is the (m+ 1)th row of A. Note that under the assumptions

for the signals and the additive noises above, we can show that the correlation vectors
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in (2.37) are not affected by the additive noises. Also, it can be viewed as a linear

combination of the columns of the array response matrix Az, By concatenating the

correlation vectors of r
(m)
z,x , we construct the CCM

R(m)
z,x = [r(1)

z,xr
(2)
z,x, · · · , r(Mx)

z,x ] = AzRsB
∗. (2.38)

where B , [b1, b2, · · · , bMx ]. Note that this matrix defines the cross correlation

between the received data for the ULA including the common element and for the

SLA along the x axis. If we assume that B is a row full rank matrix, we can extract

any K columns, say the first K columns, from R
(m)
z,x to compose a new full column

rank matrix named the signal subspace Uz with Rank(Uz) = Rank(Az). It can be

seen that each column of Uz is a combination of rows of Az. Hence, following the

same principle in (2.9), there exists a nonsingular K ×K linear transform matrix T

that satisfies the relation

Uz = AzT . (2.39)

Since we have assumed that the subarray along z axis is ULA, we can obtain the

elevation angles by employing the ESPRIT-like method instead of the MUSIC-like

method without searching the parameter spaces. Therefore, we can use the same

steps from (2.11) to (2.14) to estimate the elevation angle φk, i.e.,

φ̂k = arccos[− arg(λz,k)/π], k = 1, · · · , K, (2.40)

where λz,k is the kth eigenvalue of the matrix F , U †z (1 : Mz, :)Uz(2 : Mz + 1, :).
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2.4.3 Azimuth Angle Estimation

It is well known that under the model represented by (2.35), the estimates of the

signal azimuth angles can be obtained by implementing the same technique as for the

elevation angles above without explicitly estimating the signal waveform. However,

there exist two shortcomings: one is the pair-matching problem and the other is

computational burden. Here, we introduce a simple TLS-based method to estimate

the azimuth angles on the estimated signal waveform from the ULA. Let us denote

the matrix Az, evaluated using the estimated elevation angles of (2.40) by Âz. The

estimate of s(t) is then given by

ŝ(t) = arg min
s(t)

N∑
t=1

‖z(t)− Âzs(t)‖2, (2.41)

where N is the number of snapshots. Thus, according to the assumption for the

additive noise, the desired waveform estimate is given by

ŝ(t) = [ÂH
z Âz]

−1ÂH
z z(t). (2.42)

Note that the estimated elevation angles in (2.40) and the estimated signal waveforms

in (2.42) satisfy the one-to-one relationship. Therefore, the choice for constructing the

Az does not affect the generality of the azimuth estimates. For a perfect estimation

of the elevation angles, (2.42) yields

ŝ(t) = [AH
z Az]

−1AH
z z(t) = s(t) + [AH

z Az]
−1AH

z nz(t) = s(t) + ns(t). (2.43)
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where ns(t) with zero mean and covariance matrix Cns = σ2[AH
z Az]

−1 is the esti-

mation error of signal waveforms due to the effect of the additive noise along z axis.

Now, let us consider the output of each sensor in the x axis as a linear combination

of the signal waveforms in (2.43), that is,

xm(t) = ŝT (t)bm = sT (t)bm + nx,m(t) t = 1, 2, · · · , N. (2.44)

Clearly, when the signal waveforms are known or estimated by noise-free array mea-

surements, i.e., ns(t) = 0, the K-dimensional vector bm can be obtained as the least

squares solution to the minimization problem min
bm

N∑
t=1

|sT (t)bm−xm(t)|2, which is iden-

tical to the maximum-likelihood one [81]. In practice, however, the measurements are

noisy and the estimation of the elevation angles is not perfect, bmLS
= (ŜHŜ)−1ŜHxm,

where Ŝ = [ŝ(1), ŝ(2), · · · , ŝ(N)]T and xm = [xTm(1), xTm(2), · · · , xTm(N)]T , is no longer

optimal from a statistical point of view and it suffers from bias and increased co-

variance due to the accumulation of noise errors [82]. To deal with this problem,

TLS [83, 84] solution, that is, bmTLS
= (ŜHŜ − σ2

K+1IK)−1ŜHxm, where σ2
K+1 is the

smallest singular value of [Ŝ xm], can be used to obtain more consistent estimation

by removing the noise in Ŝ. Obviously, the elements of estimation error ns(t) in (2.43)

are not i.i.d and zero mean,bmTLS
is still a biased estimation. Therefore, we modify

the TLS solution as

bmMTLS
= (ŜHŜ −NCns)

−1ŜHxm (2.45)

to obtain an unbiased estimate of bm and its covariance is σ2R−1
s (Rs+NCns)R

−H
s (see

Appendix A), where Rs , SHS. Note that the order of bmMTLS
is the same as that
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of the estimated signal waveforms and the elevation angles; therefore, our method

can obtain the paired azimuth and elevation angles without additional steps. Since

we have obtained the entire b∗m, (m = 1, 2, · · · ,Mx), each of which contains a set

of DOAs, we can use any b∗m to estimate the final DOA. However, there exists the

problem of ambiguity when
m∑
i=1

di > 1; herein, we assume d1 ≤ 1 to obtain the rough

DOA without ambiguity, and then using (2.17) to obtain ϕ̂
(m)
k , i.e., the estimate of

ϕ
(m)
k . Finally, the final θk can be estimated as

θ̂k = arccos(
M∑
m=1

ϕ̂
(m)
k

/
π

M∑
m=1

m∑
i=1

di). (2.46)

2.4.4 Complexity Analysis

The implementation of the proposed method requires three major steps:

1. Computation of the cross-correlation matrices R
(m)
z,x to form the signal subspace

Uz using (2.38) and (2.39).

2. Estimation of the elevation angle φk in the way similar to ESPRIT-like method.

3. Estimation of the source waveforms using (2.42) and estimate the azimuth angle

based on TLS method using (4.2) and (2.46).

The number of flops needed to form Uz is 2N(Mz + 1)K, since it requires approxi-

mately 2N(Mz + 1) flops to obtain each r
(m)
z,x . The flop is defined as a floating-point

addition/multiplication operation. According to the algorithm suggested in [85], the

computation of F takes about 4MzK
2 + o(K3) flops. The calculation of ŝ(t) requires

roughly 2N(Mz + 1)K + 4(Mz + 1)K2 + o(K3) flops and the entire {bm} takes about
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4NK2+o(K3)+2NKMx flops, respectively. Thus, the number of flops required by the

proposed algorithm is roughly 2(Mx+Mz+1)NK in total when N �Mz ≥Mx � K,

which occurs often in practical applications of DOA estimation. In comparison, the

fast 2-D algorithm of PMLA suggested in [37] requires nearly 2(Mx + Mz + 2)NK

flops and the Kikuchi algorithm requires another (Mx+Mz +2)NK flops for the pair-

matching process [39]. Obviously, although the SUWME does not need to compute

the decomposition of the array covariance, it has also a very heavy computational

load in finding the roots or searching the parameter spaces.

2.4.5 Simulation Results for 2-D DOA Estimation

In this subsection, simulation results are presented to validate the proposed method

and to illustrate its performance. In the first and second examples, the sensor dis-

placement d between the adjacent elements in each uniform linear array is taken to

be half the wavelength of the signal waveform. The total number of array elements

is 9, i.e., Mx = Mz = 4. In the third example, an L-shaped array is constructed by

a four-sensor ULA along the z-axis and a two-sensor SLA with the different array

aperture along the x-axis, i.e., Mx = 2,Mz = 4. The fourth example is to show the

performance with respect to the number of sensors of SLA along the x-axis. For all

the tests, 1000 independent trials are carried out.

Example 1 : Performance of 2-D DOA estimation versus SNR

In this example, the L-shaped array is constructed by two ULA each of which

consists of four isotropic antennas spaced by half a wavelength. We consider two un-

correlated signals of 2-D DOA [θ1 φ1] = [45◦ 70◦] and [θ2 φ2] = [55◦ 80◦] with
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(a)

(b)

Figure 2.10: Elevation angle estimation performance with respect to SNR using L-
shaped array constructed by two four-sensor ULAs for two sources with [φ1, φ2] =
[45◦, 55◦]: (a) RMSE for φ1 = 45◦ (b) RMSE for φ2 = 55◦. The number of snapshots
is 200.
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(a)

(b)

Figure 2.11: Azimuth angle estimation performance with respect to SNR using L-
shaped array constructed by two four-sensor ULAs for two sources with [θ1, θ2] =
[70◦, 80◦]: (a) RMSE for θ1 = 70◦ (b) RMSE for θ2 = 80◦. The number of snapshots
is 200.
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identical powers and white Gaussian additive noises. For performance comparison, we

evaluate the proposed method against PMLA [37], SUMWE [44], ESPRIT, MUSIC,

and the Cramer-Rao bound (CRB) [86]; these are shown in Fig.2.10 and Fig.2.11.

Notice that the proposed method, PMLA, and SUMWE are computationally efficient

algorithms that do not require the eigen-decomposition for the array covariance ma-

trix, but both the PMLA and SUMWE have to deal with the pair-matching problem.

In contrast, our proposed method takes advantage of the estimated elevation angles

to obtain the pair matching information without additional procedures. The results

indicate that the performance of the proposed method is better than that of the PM-

LA and SUMWE algorithms in both the elevation and the azimuth angle estimation,

especially for medium and high levels of SNR. It is also shown that the estimated

elevation angle from the proposed method is almost the same as that of the subspace

methods based on EVD and SVD, which have a heavy computational burden (e.g.,

Root-MUSIC and ESPRIT), and its RMSE curve is also identical to the CRB at high-

er SNR. A possible reason for this is that our method exploits the noise-free CCM to

obtain the signal subspace, and in this way the effect of noise can be reduced without

implementing eigen-decomposition. From the figures, we also see that the RMSEs

curve of the proposed method nearly coincide with the theoretical RMSEs for both

the azimuth and elevation angles.

Example 2 : Performance of 2-D DOA estimation versus correlation factor

This example uses a similar data model as in the first example except for the CF

and SNR, herein we set SNR=10dB and the 2-D DOA estimation performance curves

are plotted with respect to the CF from 0 to 0.8. From Fig.2.12 and 2.13, we can
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(a)

(b)

Figure 2.12: Elevation angle estimation performance with respect to correlation factor
(CF) using L-shaped array constructed by two four-sensor ULAs for two sources with
[φ1, φ2] = [45◦, 55◦]: (a) RMSE for φ1 = 45◦ (b) RMSE for φ2 = 55◦. The SNR is set
to 10dB and the number of snapshots is 200.
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(a)

(b)

Figure 2.13: Azimuth angle estimation performance with respect to correlation factor
(CF) using L-shaped array constructed by two four-sensor ULAs for two sources with
[θ1, θ2] = [70◦, 80◦]: (a) RMSE for θ1 = 70◦ (b) RMSE for θ2 = 80◦. The SNR is set
to 10dB and the number of snapshots is 200.
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find that the proposed method has the best performance among the fast algorithms

at low and media CF while the SUWME has the best estimation results at high CF

due to the spatial smoothing technique. It can also be seen that the spatial smoothing

technique is good for high CF or coherent signal sources but not for uncorrelated or

low CF signal sources. The results shown in Fig.2.13(a) and 2.13(b) told us that the

estimation performance can be improved significantly by reducing the effect of noise.

Example 3 : Performance of 2-D DOA estimation versus snapshots based on S-

LA In the third example, we consider two uncorrelated signals with the elevation

angles [φ1, φ2] = [80◦, 90◦] and azimuth angles [θ1, θ2] = [85◦, 105◦] impinging into

the L-shaped array with three sensors SLA along x-axis. Herein there are five cas-

es with different array apertures, i.e. d2 = 1, 2, 3, 4, 7, to be compared with respect

to the number of snapshots varying from 20 to 1280 as shown in Fig.2.14(a) and

2.14(b).From the figures, we can find the same estimation performance for the ele-

vation angles with the same number of sensors along x-axis while different azimuth

estimation performances with different array apertures. Obviously, the larger the

array aperture, the better performance is. Therefore, we can improve the azimuth

performance significantly by designing SLA with the same number of sensors without

loss of the elevation estimation performance.

Example 4 : Performance of 2-D DOA estimation versus SNR based on SLA

This example shows the 2-D DOA performance with the same array aperture and

different number of sensors along x-axis with respect to SNR ranging from 6dB to

20dB. The 3-sensor SLA with d1 = 1, d2 = 5, the 4-sensor SLA with d1 = d3 =

1, d2 = 4, and the 5-sensor SLA with d1 = d3 = d4 = 1, d2 = 4 are adopted in this
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(a)

(b)

Figure 2.14: 2-D DOA estimation performance with respect to number of snapshots
using L-shaped array constructed by a 4-sensor ULA along z-axis and a 2-sensor SLA
along x-axis for two sources with [θ1, θ2] = [85◦, 105◦] and [φ1, φ2] = [80◦, 90◦]: (a)
RMSE for φ2 = 90◦ (b) RMSE for θ2 = 105◦. The SNR is set to 15dB and the
number of snapshots is from 20 to 1280.
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(a)

(b)

Figure 2.15: 2-D DOA estimation performance with respect to SNR using L-shaped
array constructed by a 4-sensor ULA along z-axis and a SLA with 2 to 4 sensors along
x-axis for two sources with [θ1, θ2] = [85◦, 105◦] and [φ1, φ2] = [80◦, 90◦]: (a) RMSE
for φ2 = 90◦ (b) RMSE for θ2 = 105◦. The SNR is from 6dB to 20dB and the number
of snapshots is 200.
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example. The number of snapshots is 200. Other conditions are the same as those

in Example 3. Notice that we obtain the elevation angles by averaging the multiple

estimation results using different signal subspace cross-correlation. For example, there

are two signals and three sensors along x-axis which can be used to construct two

different signal subspace, one is constructed by the first two sensors and the other

by the last two sensors. The final estimate of the elevation angle is averaged by two

results from different signal subspaces. Obviously, by this way we can enhance the

performance of the elevation angel estimation and ultimately improve the azimuth

estimation performance.

2.5 Conclusion

Two novel schemes to improve the estimation accuracy and the angle resolution for

1-D DOA estimation with sparse sensors have been presented. One is named mini-

mum redundancy sparse subarray (MRSSA), which improves the performance of DOA

estimation by designing multiple subarrays based on the principle of minimum redun-

dancy linear array and eliminates the ambiguity by employing the idea of Kronecker

steering vectors to obtain the one-to-one mapping for the rough angle and the fine

angle. The other provides a new array design strategy for trading off the unambiguity,

rough DOA and fine DOA estimates by designing two sparse uniform linear arrays

with the minimum inter-sensor spacing less than half wavelength. Inspired by the

idea of the generalized ESPRIT, we have obtained the rough DOA without ambigu-

ity, and then designed the alternating null-steering technique (ANST) to select the

true fine value and cancel the ambiguity set in the same angle section. Note that we
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can only carry out our proposed method for uncorrelated sources using the MRSSA

while the second proposed method can be used in the situation of correlated sources.

Furthermore, we have extended the spare array to the case of 2-D DOA estimation for

correlated sources. In this method, we have designed an L-shaped array constructed

by one uniform linear array along the z-axis and a sparse linear array along the x-axis,

and then an efficient and effective total least squares-based algorithm is proposed to

estimate the azimuth and elevation angles without requiring pair-matching. Finally,

simulation results for the MRSSA, ANST and 2-D DOA techniques justifying the

effectiveness of the proposed method in comparison to an existing method have been

presented.
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Chapter 3

DOA Estimation and Tracking for

AR Model-based Signals with

Unknown Waveform

3.1 Introduction

In Chapter 2, we have studied accurate 1-D and 2-D DOA estimation techniques by

meticulously designing sparse arrays. Obviously, these proposed configurations can

be used to obtain excellent estimation results without incorporating temporal infor-

mation. In some applications, such as speech processing and mobile communications,

the signals can be described by autoregressive (AR) models. Hence, in this chap-

ter, we first present a nontraditional approach for estimating and tracking the signal

DOA using an array of sensors. The proposed method consists of two stages: first,

the sources modeled by AR processes are estimated by the celebrated Kalman filter
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and then, the QR-decomposition-based recursive least square (QRD-RLS) technique

is employed to estimate the DOAs and AR coefficients in each observed time interval.

The AR-modeled sources can provide useful temporal information to handle cases,

where the number of sources is larger than the number of antennas. The symmetric

array enables one to transfer a complex-valued nonlinear problem to a real-valued lin-

ear one, which can reduce the computational complexity. Moreover, we also propose

a DOA estimation method for AR-modeled sources based on general SLA. Simula-

tion results demonstrate the superior performance of the algorithm for estimating and

tracking DOA under different scenarios.

3.2 DOA Estimation and Tracking Based on Sym-

metric Arrays

3.2.1 Signal and System Model

Figure 3.1: Structure of the symmetric linear array

Suppose that there are K narrowband moving sources with the same wavelength,

which impinge onto a symmetric linear array as shown in Fig.3.1. The whole array is
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assumed to be divided into two subarrays with inter-element spacings d1, d2, · · · , dM

in terms of half wavelength. In order to cope with the problem of ambiguity, we also

assume d1 ≤ 1, and then the sensor element at the origin is used as reference. We

assume that all the sources are independent order-Lk AR processes and the complex

envelope at time t of the kth AR source is

pk(t) =

Lk∑
i=1

ak,i(t)pk(t−i)+vk(t) (3.1)

where vk(t) (k = 1, 2, · · · , K) is the excitation of the kth AR process, which is a

white Gaussian noise with zero mean and variance σ2
vk

(t), and ak,i(t) are real-valued

AR coefficients [18, 87]. Here, we have assumed that the AR coefficients are real to

simplify our discussion in sequel. Howvever, it is not difficult to extend this technique

for complex AR coefficients. Eq.(3.1) can be rewritten as the following state-space

representation,

pk(t) = Fk(t)pk(t− 1) + vk(t), (3.2)

where Fk(t) =
[
aTk (t)

[
I(Lk−1) 01×(Lk−1)

]T]T
with ak(t) = [ak,1(t) · · · ak,Lk

(t)], and

vk(t) =
[
vk(t) 01×(Lk−1)

]T
. By using (3.2), the K AR sources can be written as the

following state equation

p(t) =


p1(t)

...

pK(t)

 =


F1(t) 0

. . .

0 FK(t)




p1(t− 1)

...

pK(t− 1)

+


v1(t)

...

vK(t)

 = F (t)p(t−1)+v(t),

(3.3)
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where F (t) ∈ R
(

K∑
k=1

Lk)×(
K∑

k=1
Lk)

is a block diagonal matrix, and p(t) and v(t) are

K∑
k=1

Lk-dimensional complex vectors. Since vk(t)(k = 1, · · · , K) are independent, the

covariance matrix of v(t) is a block diagonal matrix, which can be expressed asQ(t) =

diag (Q1(t), · · · ,QK(t)). At time t, let θ1, θ2, · · · , θK denote the DOAs of the K

targets, and x
(i)
m (t) denote the complex signals of the mth sensor of the ith(i = 1, 2)

subarray with x0(t) being the data received by the reference element. Then, the

observed output complex signals of the 2M +1 sensors, denoted as x(t) ∈ C2M+1, can

be written as

x(t) , [xT1 (t)x0(t)xT2 (t)]T

=
[
AT

1 (t) 1 AT
2 (t)

]T
s(t) + e(t)

, A(t)s(t) + e(t),

(3.4)

where xi(t) = [x
(i)
1 (t), · · · , x(i)

M (t)]T (i = 1, 2) is an M -dimensional vector of complex

signals at the ith subarray output, s(t) , [p1(t), p2(t), · · · ,pK(t)]T = Γp(t) is a K-

dimensional vector of the target sources with Γ being a K×
K∑
k=1

Lk dimensional selec-

tion matrix whose entries are 1 on the position

(
k,

k∑
p=1

Lp − Lk + 1

)
and 0 elsewhere,

and e(t) = [e
(1)
M (t), · · · ,e(1)

1 (t), e0(t), e
(2)
1 (t), · · · , e(2)

M (t)]T is a (2M + 1)-dimensional

vector of complex white measurement noises with zero-mean and covariance matrix

Re(t). Finally, A is the (2M − 1)×K array manifold matrix of the whole symmetric

array and Ai(t), (i = 1, 2) is the M ×K array manifold matrix of the ith subarray as
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given by

Ai(t) =


e−(−1)ijdMψ1(t) e−(−1)ijdMψ2(t) · · · e−(−1)ijdMψK(t)

...
...

. . .
...

e−(−1)ijd1ψ1(t) e−(−1)ijd1ψ2(t) · · · e−(−1)ijd1ψK(t)

 (3.5)

where ψk(t) = π sin θk(t) and the arrangement of dm in the reverse order of m is for

convenience. It is easy to verify that A1(t) = (A2(t))∗. Therefore, the matrix A(t)

in (3.4) can be rewritten as

A(t) =
[
AT

1 (t) 1T1×M JMA
H
1 (t)

]T
. (3.6)

It can be seen that each column of the matrix A(t) is conjugate symmetric. Note

that rearranging A(t) and the array measurements does not affect the results of DOA

estimation. In the following subsection, we will introduce a novel algorithm to estimate

the waveforms of the signals of interest and their AR coefficients by employing the

celebrated Kalman filter technique.

3.2.2 Kalman Filter and AR Coefficient Estimation

Herein we assume that both θ(t) and the AR coefficients are slowly time-varying in

the observed interval [71]. In particular, we assume that over each time interval the
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change in both θ(t) and F (t) is small enough so that

θ(t) ≈ θ(nT ), ak(t) ≈ ak(nT ), t ∈ ((n−1)T, nT ] , (n = 1, 2, · · · ; k = 1, · · · , K)

(3.7)

It is also assumed that there are N snapshots or signal samples available to process

the received data and estimate the AR coefficients and DOAs over each interval ((n−

1)T, nT ]. Consequently, the N snapshots in the nth time interval can be approximately

expressed as

x(n,i)=A(n)s(n,i) + e(n,i), (i = 1, · · · , N) (3.8)

Note that (3.8) can be considered as the discrete-time version of (3.4) in the nth inter-

val. To simplify the expressions, we use x(i), s(i), and e(j) instead of x(n, j), s(n, j),

and e(n, j) in the sequel. As mentioned earlier, the proposed algorithm is to explore

the dynamics of the source signals and jointly estimate the DOA and AR parameters

of the source signals. To this end, we shall track the source state vector p(t) using

KF given initial DOAs and then update the DOAs using a regularized QRD-RLS

algorithm. In general, KF is an optimal minimum mean squares state estimator for a

linear state space system [88–90], while the regularized QRD-RLS algorithm has good

numerical stability and low estimation variance [91, 92]. The required state space

model at the nth interval can be obtained from the state dynamical equation in (3.3)

and the sensor measurement equations in (3.8) as follows

p(i)=F (n)p(i− 1) + v(i), (3.9)
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x(i)=A(n)Γp(i) + e(i), (3.10)

where the system matrices F and A depend only on n and can be considered as

constants in each interval, and v(i) and e(i) are assumed to be uncorrelated, i.e.,

E[v(p)eT (q)] = 0, for all p and q. Then, the state of the system can be recursively

estimated using the KF [89] as

p̂(i |i) = p̂(i |i − 1) + κ(i)(x(i)−A(n− 1)Γp̂(i |i − 1)) (3.11)

where p̂(i |i) is the update or posteriori estimate and p̂(i |i − 1) is the best estimate

prior to assimilating the measurement x(i), and κ(i) is Kalman gain to be determined

by the following Kalman recursion

P (i |i− 1) = F (n− 1)P (i− 1 |i− 1)F T (n− 1) +Q(i− 1), (3.12)

κ(i) = P (i |i− 1)ΓTAH(n− 1)[A(n− 1)ΓP (i |i− 1)ΓTAH(n− 1) +Re(i)]
−1,

(3.13)

P (i |i) = (I − κ(i)A(n− 1)Γ)P (i |i − 1) (3.14)

where P (i |i− 1) and P (i |i) are the error covariance matrices associated with the

priori estimate p̂(i |i − 1) and the posteriori estimate p̂(i |i), respectively. Since all

states of the system have been estimated by (3.11), it is easy to separate the sources,

giving the kth AR source expressed in the linear regression model

pk(i) = pTk (i− 1)ak(n) + vk(i), (3.15)
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where ak(n) are the AR coefficients for the nth interval to be estimated. Since ak(n)

is real-valued while pk(i) and vk(i) are complex valued, we can transform (3.15) to a

real-valued expression to reduce the computational load by separating the real and

imaginary parts, leading to

zk(i) = BT
k (i)ak(n) +wk(i), (3.16)

where

zk(i)=

 Re[pk(i)]

Im[pk(i)]

 , Bk(i)=

 Re[pTk (i−1)]

Im[pTk (i−1)]


T

, wk(i)=

 Re [vk(i)]

Im [vk(i)]

 . (3.17)

We now estimate ak(n) by employing the regularized QRD-RLS algorithm described

in Table 3.1. As compared to RLS, QRD-RLS has a better performance, lower com-

putational complexity, as well as better numerical stability in finite word-length im-

plementation. In the next section, we will consider the tracking and estimation of the

DOAs.

3.2.3 DOA Estimation and Tracking

We implement the DOA estimation in the real-valued domain in view of its excellent

accuracy and substantial reduction of the computational burden over conventional

DOA estimation techniques. In particular, we derive a real-valued DOA estimation

and tracking method based also on the regularized QRD-RLS algorithm. First of all,
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Table 3.1: QRD-RLS Algorithm

Initialization:

For k = 1, 2, · · · , K

Hk(0) = δI, , δ is a positive constant, say δ = 1

Uk(0) = 0.

end

Recursion:

For n = 1, 2, · · ·

For i = 1, 2, · · · , N

Given Hk(i−1),Uk(i−1), zk(i),Bk(i)

Qk(i)


√
βHk(i−1)

√
βUk(i−1)

BT
k (i) zk(i)

 =

 Hk(i) Uk(i)

0 δ̃k(i)


where Qk(i) is an unitary Givens rotation matrix of the ith recursion

for the kth AR modeled source and β is the forgetting factor.

end

ak(n) = (Hk(N))−1Uk(N).

end
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let us introduce an odd unitary transformation defined in [93]

T2M+1 =
1√
2


IM 0M×1 jIM

01×M
√

2 01×M

JM 0M×1 −jJM

 . (3.18)

By left-multiplying (3.10) with the above unitary transformation, one gets

xT (i) , TH
2M+1A(n)Γp(i) + TH

2M+1e(i)

, [x−MT (i),x−M+1
T (i), · · · ,

K∑
k=1

pk(i), · · · ,xM−1
T (i),xMT (i)]T

(3.19)

Let AT (n) , TH
2M+1A(n). It is easy to show that AT (n) is a real-valued matrix as

given by

AT (n) =
√

2


Re[A1(n)]

11×M

Im[JMA1(n)]

 , (3.20)

where

Re[A1(n)] =


cos(dMψ1(n)) cos(dMψ2(n)) · · · cos(dMψK(n))

...
...

. . .
...

cos(d1ψ1(n)) cos(d1ψ2(n)) · · · cos(d1ψK(n))
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Im[JMA1(n)] =


sin(d1ψ1(n)) sin(d1ψ2(n)) · · · sin(d1ψK(n))

...
...

. . .
...

sin(dMψ1(n)) sin(dMψ2(n)) · · · sin(dMψK(n))


Using (3.19) and (3.20), we can find that each element of xT (i) can be described by

a linear regression model as

xmT (i) = (Γp(i))T (Am
T (n))T + emT (i), (m=± 1,± 2, · · · ,±M), (3.21)

where Am
T (n) denotes the mth row of matrix AT (n). Note that the auto-covariance

matrix of emT (i) is the same as those of em(i) due to its unitary invariance. Similar to

the estimation of the AR coefficients, we can again employ the QRD-RLS algorithm to

estimate all the row vectors ofAT (n) except for the middle one, namely,Am
T (n), (m=±

1,± 2, · · · ,±M), Further, we can combine A+m
T (n) and A−mT (n) as one group, giving

Group m :


sin(dmψ1(n)) · · · sin(dmψK(n))

cos(dmψ1(n)) · · · cos(dmψK(n))

 . (3.22)

Obviously, one could exploit either the sine or cosine vector of group 1 to obtain the

DOA estimate, but this sine or cosine calculation may fail to obtain the DOA estimate

when the argument of the inverse sine or cosine function is greater than unity. To

overcome this limitation, we can combine the sine and cosine vectors to get a new set

of tangent vector for each group, i.e.,

Group m : {tan(dmψ1(n)) · · · tan(dmψK(n))} . (3.23)
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Note that from (3.21) shows us that the AR modeled sources p(i) and the regression

coefficients Am
T (n) satisfy one-to-one relationship, and there is no need to deal with

the pair-matching problem for the different DOAs. From (3.22) and (3.23), we can

find that any group contains the entire information of the angles, implying that we can

achieve DOA estimation by just using any pair of sensors from the different subarrays.

Therefore, our proposed method is also suitable for the case, where the number of

sensors is much less than that of the sources. As is well-known, for dm > 1, (m =

2, · · · ,M), an ambiguity may happen due to the inability of the tangent function

being able to deal with more than 180 degrees, where the arc-tangent function is to

select the right DOA from |dmψk(n)| > π/2. Herein, we employ a technique similar

to that suggested in Section 2.2 to handle this ambiguity problem. According to the

assumption d1 ≤ 1, we can obtain the rough DOA estimate without ambiguity by

using the first group of data. There exist multiple values for the same tangent value,

i.e.,

ψlmm,k = ψ1,k + πlmdm d−(π + ψm,k)dm/πe ≤ lm ≤ b(π − ψm,k)dm/πc , (3.24)

where ψ1,k , π sin(θ̂(1),k(n)) is estimated by the first group in (3.22). So the unam-

biguous estimate for the kth angle can be obtained as

θ̂(m),k(n) = arctan(arg min
ψlm
m,k

∣∣∣arcsin(ψlmm,k/π)− θ̂(m−1),k(n)
∣∣∣) (3.25)

65



where θ̂(m),k(n) is themth estimated value based on the (m−1)th unambiguous estimate

θ̂(m−1),k(n). Note that it is also possible to use two subarrays to estimate the DOAs

without requiring the reference element, in which case an even unitary transformation

matrix [93] should be utilized.

3.2.4 Simulation Results for DOA Estimation and Tracking

In this subsection, some simulation results are presented to show the effectiveness of

the proposed DOA estimation and tracking method. Here, we assume that the AR

model order of the source signals is fixed and known. In practical applications, it

can be determined by standard model order estimation techniques. Note that the

reference sensor is not used to carry out DOA estimation in the following simulations

in order to reduce the cost of array system for practical considerations.

Example 1 : Performance of joint AR coefficients and DOA estimation

In this example, the sensor array consists of three isotropic antennas spaced by

half a wavelength, i.e., d1 = 1/2. The sources are two second-order AR stationary

signals with coefficients a1 = [0.872 − 0.550] and a2 = [1.096 − 0.870] and each

has a signal to noise ratio (SNR) of 30dB. Here, the SNR of the kth signal is defined

as the ratio of the kth signal power to the average power of noise e(t). The DOAs are

chosen to be 0◦ and 20◦. The other parameters are chosen as follows: the initial guess

for the two DOAs is 5◦ and 25◦, the initial AR coefficients are [0.772 − 0.450] and

[0.96 − 0.77], and N=30 snapshots are used. As shown in Fig.3.2 and Fig.3.3, the

proposed method can estimate the DOAs of the two sources and the AR coefficients

very well using only two sensors spaced by half wavelength, which is almost impossible
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Figure 3.2: Histogram of DOA estimates for two AR modeled sources of DOA at
[0◦ 20◦] using two sensors with d1 = 1.

for conventional subspace-based method to do. This confirms the effectiveness of the

proposed method in exploiting the dynamic information of the AR modeled sources.

Example 2 : Performance of DOA tracking

To assess the DOA tracking performance of the proposed method, we set the

simulation conditions as follows: AR coefficients are the same as those in Example 1

and herein these values are assumed known previously and SNR is set at 10dB. Five

sensors with d1 = 1 and d2 = 2 are used. Fig.3.4 depicts the DOA tracking result

of the proposed method in comparison with that obtained using the PAST method

in [60] when the DOAs of the two sources are 0◦ and −20◦ and N=3. Fig.3.5 shows
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(a)

(b)

Figure 3.3: Histogram of AR coefficients estimation for two AR sources with DOA at
[0◦ 20◦] and AR coefficients [0.872 − 550] and [1.096 − 0.870] using two sensors
with d1 = 1/2.
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(a)

(b)

Figure 3.4: Tracking two sources: one fixed DOA of 00 and the other moving from
10◦ to 6.1◦ with N=3 for each interval. (a) PAST and (b) proposed method.
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(a)

(b)

Figure 3.5: Tracking two sources: one fixed DOA of -200and the other moving from
20◦ to 1.8◦ with N=30 for each interval. (a) PAST, and (b) proposed method.

70



(a)

(b)

Figure 3.6: Tracking two sources via five sensors with d1 = 1 and d2 = 4 by the
proposed method (a) group 1, i.e., d1 = 1, and (b) group 2, i.e., d2 = 4.
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the simulation results of both the proposed and the PAST methods for the DOA that

is governed by

DOA =


10− n/400 and 20− n/100 n ∈ [1 400]

9− 1.5(n− 400)/40 and 16− 2.5(n− 400)/10 n ∈ [401 440]

7.5− 2.5(n− 440)/1000 and 6− 7.5(n− 440)/1000 n ∈ [441 1000]

(3.26)

when N=30. Both of the initial DOAs are 2◦ and 12◦. From Fig.3.4, we see that the

subspace-based method using PAST is unable to resolve the closely-spaced angles in

this case, while the proposed method yields satisfactory tracking results. Fig.3.5 shows

that although the PAST can track the separated DOAs, it is hard to track the fast

moving target while our method can handle this situation satisfactorily. Two possible

explanations are 1) our method takes advantage of the temporal information and

2) the subspace swap and leakage between the signal and noise subspaces degrades

considerably the performance of the subspace-based methods in the case of closely

spaced DOAs. It is also clear that the more snapshots used, better performance for

fast moving targets can be achieved. Moreover, through a large number of simulations,

we have also found that the tracking performance is not sensitive to the initial guess

of DOA values.

Example 3 : Performance of DOA tracking for two moving targets The tracking

performance of the proposed method for two moving targets is now examined. The

simulation conditions are similar to those in Example 2, except that the AR coefficients

of the first source is a non-stationary AR signal with a1 = [−0.450 0.772], d1 = 1
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and d2 = 4, and the DOAs of the two sources are generated according to [−5 +

n/100 5− n/100], n ∈ [1 1000]. The averaged results by 50 independent trials are

shown in Fig.3.6. Clearly, the proposed method provides a good tracking performance

for two moving targets, with one source being a stationary signal source and the other

a non-stationary signal source.

3.3 DOA Estimation based on General SLA

In this section, we introduce a novel method to estimate AR-modeled source wave-

forms and their DOA using the Kalman filter and TLS techniques based on sparse

linear arrays. The key idea of our method lies in that each sensor of arrays is consid-

ered as a subsystem to obtain the angle information to estimate the DOA, and then

the whole information combined to derive an optimal estimate for the angles. Unlike

the method proposed in the previous section, which assumed that the AR coefficients

are real numbers and the array is symmetric sparse array, herein the proposed method

will be used in more general cases for complex AR coefficients and SLA. Moreover,

in the previous section we exploited the QRD-RLS techniques to estimate the AR

coefficients and DOAs, which however suffer from the effects of the bias due to the er-

rors in estimating the state values [82]. Therefore, this section introduces an unbiased

estimator for AR coefficients and DOAs.
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3.3.1 Initial State Values

In this section, the SLA array shown in Fig.2.9 is used and the data model is the

same as in the previous section except for the real AR coefficients. Note that the

directions have the same definition as in Fig.3.1. It is well-known from the KF theory

that the procedures for estimating the source waveforms in the previous section are

optimal, if we know the accurate model parameters such as p(1), Q, Re, F , and A.

However, in some practical applications we have to estimate these parameters only

using the measurements; in the following context, we propose methods to obtain these

parameters.

Now let us show as to how to estimate the the initial p(1) and Q. Consider again

the model of (3.9) and (3.10), which can be rewritten as

x(i)=AΓFp(i− 1) +AΓv(i− 1) + e(i)

= AΓF i−1p(1) +AΓv(i− 1) + · · ·+AΓF i−2v(1) + e(i).

(3.27)

Therefore, by collecting the first i equations of (3.27), we may write them compactly

as

xi ,
[
xT (1),xT (2), · · · ,xT (i)

]T
= Bp(1) + ni,

(3.28)
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where

B ,



AΓ

AΓF

...

AΓF i−1


, ni ,



0 · · · 0

AΓ 0 · · ·

...
. . .

...

AΓF i−2 · · · AΓ





v(1)

v(2)

...

v(i− 1)


+



e(1)

e(2)

...

e(i)


.

(3.29)

It is easy to verify that ni is a

(
K∑
k=1

Lk

)
-dimensional Gaussian random vector with

zero-mean and the covariance matrix as follows,

Cni
,



0 · · · 0

AΓQ 0 · · ·

...
. . .

...

AΓF i−2Q · · · AΓQ





0 · · · 0

AΓ 0 · · ·

...
. . .

...

AΓF i−2 · · · AΓ



H

+Re



I K∑
k=1

Lk

I K∑
k=1

Lk

...

I K∑
k=1

Lk


.

(3.30)

Using the principle of the generalized Least squares [94], we can obtain the optimal

estimate for the jth iteration of p(1) as

p(j)(1) =
(
B(j−1)HC(j−1)−1

ni
B(j−1)

)−1

B(j−1)HC(j−1)−1
ni

xi. (3.31)

It is easy to prove that (3.31) is an unbiased estimator to obtain p(j)(1) with the covari-

ance Cp(j)(1) = (B(j−1)HC
(j−1)−1
ni B(j−1))−1. In this way, we use Q(j)(

k∑
p=1

Lp − Lk + 1,

k∑
p=1

Lp − Lk + 1) = Cp(j)(1)(
k∑
p=1

Lp − Lk + 1,
k∑
p=1

Lp − Lk + 1) for the next iteration. In
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some applications, the covariance of the additive array noise Re can be known a priori

or estimated during the non-signal periods. Thus for the first iteration, there is no

information of Q which can be used to estimate p(1)(1); we only employ the first array

sample to estimate s(1)(1) = Γp(1)(1), that is,

s(1)(1) =


(
AHR−1

e A
)−1
AHR−1

e xi for K ≤ (M + 1)

A†xi for K > (M + 1)

. (3.32)

3.3.2 Unbiased Estimation for AR Coefficients Based on Ob-

servations

Using the same philosophy as in (3.21), we can consider each sensor of SLA as a

subsystem

xm(i) = AmΓp(i) + em(i), (m = 0, 1, · · · ,M). (3.33)

Recalling (3.1), (3.33) can be rewritten as

xm(i) =
K∑
k=1

am(θk)

(
Lk∑
lk=1

aklkpk(i− lk) + vk(i)

)
+ em(i), (3.34)

where am(θk) denotes the mth element of the steering vector of the kth signal. Now,

let us define the autocovariance values of the measurements of the mth sensor and the

source waveforms at lag l by

rml = E [xm(i)xm∗(i− l)] and rkl = E [pk(i)p
∗
k(i− l)] . (3.35)
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Theorem 2. Assume that the signal waveforms are uncorrelated with each other,

i.e.,E [pa(i)p
∗
b(j)] = 0, a 6= b, and let lM , max {Lk}Kk=1. Then, rmlM+s, s = 1, 2, · · · , S

is immune to additive noise, and the unbiased estimate for the AR coefficients is given

by

[a1,a2, · · · ,aK ]T =
(
RH
SRS

)−1
RH
S r

m
S , (3.36)

where RS , [rT1 , r
T
2 , · · · , rTS ]T and rs , [r1

lM+s−1, · · · , r1
lM+s−l1 , r

2
lM+s−1, · · · , r2

lM+s−l2 ,

· · · , rKlM+s−1, · · · , rKlM+s−lK ]T , and rmS , [rmlM+1, r
m
lM+2, · · · , rmlM+S]T .

Proof : Combining (3.34) and (3.35), we can derive that

rmlM+s = E [xm(i)xm∗(i− lM − s)]

= E

[(
K∑
k=1

am(θk)

(
Lk∑
lk=1

aklkpk(i− lk) + vk(i)

)
+ em(i)

)
(

K∑
k=1

am(θk)pk(i− lM − s) + em(i− lM − s)

)∗]

=
K∑
k=1

(
Lk∑
lk=1

aklkr
k
lM+s−lk

)

, rTs [a1,a2, · · · ,aK ]T .

(3.37)

where rs , [r1
lM+s−1, · · · , r1

lM+s−l1 , r
2
lM+s−1, · · · , r2

lM+s−l2 , · · · , r
K
lM+s−1, · · · , rKlM+s−lK ]T .

Clearly, the vector rs is not affected by the additive noise. Therefore, rmlM+s is also

free from additive noise. Then by combining S >
K∑
k=1

Lk equations of (3.37), the AR

coefficients can be obtained by using (3.36) based on the LS technique.

Suppose that there are N snapshots available to estimate the AR coefficients.
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Then, we replace rml and rkl in (3.35) by their estimates

r̂ml =
1

N − lM + 1

N∑
i=lM

[xm(i)xm∗(i− l)] and r̂kl =
1

N − lk + 1

N∑
i=lk

[pk(i)p
∗
k(i− l)]

(3.38)

Owing to the estimation errors in
{
r̂ml , r̂

k
l

}
, the matrix equation (3.36) does not hold

exactly in general. Thus, we solve (3.37) for AR coefficients in a TLS sense [95]. Since

each sensor is a subsystem with the same AR coefficients, we can use the mean of all

the estimated values as the final estimate.

3.3.3 DOA Estimation Using TLS

Eq.(3.33) can be rewritten as

xm(i) =
K∑
k=1

am(θk)pk(i) + em(i) = sT (i)AmT + em(i), m = 0, 1, · · · ,M (3.39)

where s(i) , [p1(i), p2(i), · · · , pK(i)]T denotes the source waveforms of the ith snap-

shot. Then, rewrite the whole N snapshots compactly as

xm , STAmT + em(i) = [s(1), s(2), · · · , s(N)]TAmT + em(i), (3.40)

where xm , [xm(1), xm(2), · · · , xm(N)]T is the N snapshots measured by the mth

sensor of SLA.

It is well known that when the noise in S is zero and the noise in xm is zero

mean Gaussian, the LS solution Am
LS is identical to the maximum-likelihood one [94].
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Unfortunately, herein S is unknown and obtained using (3.11), which is affected by

the estimation errors and additive noise; therefore, Am
LS =

((
S∗ST

)−1
S∗xm

)T
is no

longer optimal from a statistical point of view and it suffers from bias and increased

covariance due to the accumulation of noise errors in (S∗ST ) [82]. To cope with this

problem, in the following, we will introduce a TLS-sense method.

From (3.11)-(3.14), we can obtain the estimated value ŝ(i) = Γp̂(i|i) which is a

unbiased estimate with the covariance Cŝ(i) , ΓP (i|i)ΓT . Therefore, we propose the

TLS estimator as

Am
TLS =

(
(Ŝ∗ŜT −

N∑
i=1

Cŝ(i))
−1Ŝ∗xm

)T

(3.41)

to obtain an approximately unbiased estimate of Am and its auto-covariance matrix

isCAm
TLS

, R−1
S (N)

(
RS(N) +

N∑
i=1

Cŝ(i)

)
R−HS (N)σ2

m, whereRS(N) , S∗ST

N
, and the

cross-covariances equal toCApT
TLS ,A

qT
TLS

, Re(p, q)R
−1
S (N)

(
RS(N) +

N∑
i=1

Cŝ(i)

)
R−HS (N),

p 6= q (see Appendix B). Note that when the spatial noise is Gaussian white noise, the

covariance matrix Re is a diagonal matrix. Then the cross-covariances are zero, which

is a reasonable assumption in array signal processing, especially for SLA. Therefore,

without loss of generality, we assume Re = diag([σ2
0, σ

2
1, · · · , σ2

M ]) in the following

analysis.

Obviously, the order of DOA information of Am
TLS depends on the arrangement

of the signals on the estimate of source waveform, i.e., the kth element of s(i). There-

fore, we can obtain aTLS(θk) = [a0
TLS(θk), a

1
TLS(θk), · · · , aMTLS(θk)]

T as the kth spatial

feature, which does affect the generality of the analysis. Now, we make the following
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partition of aTLS(θk) with two vectors as

a
(1)
TLS(θk) , [a0

TLS(θk), a
1
TLS(θk), · · · , aM−1

TLS (θk)]
T

a
(2)
TLS(θk) , [a1

TLS(θk), a
2
TLS(θk), · · · , aMTLS(θk)]

T

. (3.42)

We define the vector

d̂k , a
(1)
TLS(θk) ◦ a(1)

TLS(θk)
∗ , dk +4dk, (3.43)

where dk , [ejd1ψk , ejd2ψk , · · · , ejdMψk ]T and 4dk is a Gaussian random vector with

zero mean and the covariance matrix Cd̂k = diag ([σ2
4d1k

, σ2
4d2k

, · · · , σ2
4dMk

]) , where

σ2
4dmk

, σ2
4am(θk) + σ2

4am−1(θk) and σ2
4am(θk) = [CAm

TLS
]k,k (see Appendix C). Clear-

ly, the MLE of θk, which is equivalent to the following GLS problem, is found by

minimizing [96]

L(θk) =
(
dk − d̂k

)T
C−1

d̂k

(
dk − d̂k

)
(3.44)

Since SLA is used in this section, there may exist the problem of ambiguity by imple-

menting (3.44) directly. Similar to the method in Section 2.3, we determine the search

range by the unambiguous DOA and unambiguous interval. If we assume that one of

the element-spacings {dm}Mm=1 is less than or equal to unity, say d1 ≤ 1, which can

be used to estimate the unambiguous angle value θ̂
(1)
k , then the unambiguous interval

can be obtained by the largest element-spacing, i.e., dp = max
m

dm. Hence, the search

range is [θ̂
(1)
k −4θ

p
k θ̂

(1)
k +4θpk]. Therefore, the final DOA estimation of the kth signal

can be obtained by computing (3.44) in the searching space of interest.

80



3.3.4 Simulation Results for DOA Estimation Based on Kalman

Filter and TLS Techniques

In this section, simulation results are presented to validate the proposed method and

illustrate its performance. In the first two examples, three sensors will be used to

estimate the DOA of two AR modeled signals, where three SLA have the same value

of d1 = 1 and the different values of d2, i.e., d2 = 1, 2, and 3. In the third example, we

consider the case, where three-sensor SLA is exploited to estimate three AR modeled

sources. For all tests, 1000 independent trials are carried out.

Example 1 : Performance of DOA estimation versus SNR

In the first example, a three-sensor SLA system is used to estimate the DOA of two

AR modeled sources with coefficients a1 = [0.872 −0.550] and a2 = [1.096 −0.870]

incident from [θ1 θ2] = [−5◦ 5◦] with identical powers and white Gaussian additive

noises. For performance comparison, we evaluate the proposed method with respect

to SNR from 0dB to 24dB for three SLA cases, that is, d2 = 1, 2 and 3 with the same

d1 = 1, and the Cramer-Rao bound (CRB) [86] for a 3-sensor ULA shown in Fig.3.7.

Notice that the proposed method is implemented on LS and TLS based techniques. We

find that the estimation performance of the proposed TLS-based method is superior

to that of the LS-based one, especially at low and medium SNR. The possible reason

for this phenomenon lies in the fact that there exists estimated error and noise in the

estimated AR source waveform producing a bias when LS-based method is exploited,

while TLS-based method can reduce the effects of the error and noise. It is also seen

that the RMSE of our proposed method is much smaller than the CRB due to the
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(a)

(b)

Figure 3.7: RMSE of DOA estimation for two AR modeled sources versus SNR at
(a)θ1 = −5◦ and (b)θ2 = 5◦ with 100 snapshots.
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fact that our proposed method makes use of the temporal information to improve the

performance of DOA estimation significantly.

Figure 3.8: RMSE of DOA estimation for two AR modeled sources versus snapshots
at θ1 = −5◦ with SNR=10dB.

Example 2 : Performance of DOA estimation versus the number of snapshots

In this example, the same array system as in the first example is used except that

the number of snapshots is varied and SNR is fixed in 10dB. The plots are shown

in Fig.3.8, from which we can see that the RMSE of DOA estimation decreases with

increasing number of snapshots. We also see that the larger the array aperture, the

better the estimation performance.

Example 3 : Performance of DOA estimation for the same number of sensors and

signals
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Figure 3.9: Histogram of DOA estimation for three AR modeled sources

In this example, we employ a three-sensor SLA with d1 = 1 and d2 = 3 to esti-

mate the DOA of three AR modeled sources with coefficients a1 = [0.872 − 0.550],

a2 = [1.096 − 0.870] and a3 = [0.570 − 0.222] incident from [θ1 θ2 θ3] =

[−10◦ 0◦ 10◦] with identical powers and white Gaussian additive noises. The his-

togram plot shown in Fig.3.9 indicates that our proposed method can estimate more

signal sources than traditional subspace-based methods can do due to the use of the

temporal information.
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3.4 Conclusion

In this chapter, we have proposed an efficient DOA estimation and tracking method

based on Kalman filtering and the QRD-RLS algorithm. Thanks to the state infor-

mation described by the AR model, we have been able to exploit the elegant Kalman

filter to obtain the temporal information and then the efficient QRD-RLS to estimate

the DOA and AR coefficients. A unitary transformation is also used to implement

DOA estimation in the real-valued domain, where M real-valued vector groups are

calculated for estimating the DOAs. In addition, we have also proposed a DOA es-

timation method based on Kalman filter and TLS. Differing from the first method,

herein the symmetric array has been generalized to SLA. In this way, it is more effi-

cient to exploit limited array elements to improve the DOA estimation performance.

It is worth noting that since each sensor can be considered as a linear subsystem, the

proposed estimator can be used in any array configurations proposed in Chapter 2.
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Chapter 4

DOA Estimation and Tracking for

Signals with Known Waveform

4.1 Introduction

In the previous chapters, we have developed DOA techniques by exploiting sparse ar-

rays and/or AR modeled sources to significantly improve the estimation accuracy and

angular resolution without using the source waveforms. In some applications such as

active radar, active sonar, communication systems, and many other multisensor ap-

plications, the source waveforms of the signals of interest are possibly a priori known.

Therefore, in this chapter we develop a novel DOA estimation method for signals with

known waveforms based on the SLA. Unlike some previous methods, which estimate

the DOA based on spatial signatures of the signals with known waveforms, the pro-

posed method makes use of known waveforms to transform the maximum likelihood

problem into multiple linear regression models, each of which contains a pair of DOA

86



and gain information. In this way, the proposed method can be implemented with

a more general noise model than the commonly used uniform one. Here, regression

analysis is performed to estimate the coefficients of each linear regression model, and

the well-known generalized least squares is used to perform asymptotically optimal

estimation of the angles and gains of targets without requiring a search over a large

region of the parameter space. The effect of correlated sources on the performance of

parameter estimation is also studied. In addition, a new phase unwrapped technique is

proposed to deal with the problem of ambiguity. As the targets move, we propose two

block RLS-based techniques to update the estimated target angles recursively, one is

based on a block QR decomposition recursive least squares (QRD-RLS) technique and

the other on a block regularized LS technique. Unlike the usual RLS-based techniques,

where the linear regression coefficients are updated at every snapshot, we perform the

update on the basis of time intervals. We use the block QRD-based technique to

obtain current Cholesky factors from the previous Cholesky factors along with the re-

ceived data of the time interval. Subsequently, we derive the second tracking method

based on the regularized LS technique in view of the fact that the optimal weighting

factor or regularization term can be derived by regression analysis [97, 98], and the

previously estimated coefficients can be considered as a constrained vector to deal

with some “bad” cases such as small snapshots in a time interval or highly correlated

sources. Finally, simulation results that demonstrate the estimation performance of

the proposed method are given, showing that the proposed DOA tracking techniques

can be efficiently applied to a sparse antenna array and can provide a better tracking

performance than some of the existing methods do.
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4.2 DOA Estimation based on ML and GLS Tech-

nique

4.2.1 System Model

Suppose that there are K narrowband signal sources from directions θ1, θ2, · · · , θK

with the same wavelength, which impinge onto a linear array with inter-element spac-

ings d1, d2, · · · , dM normalized in terms of the half wavelength, as shown in Fig.2.9,

where the sensor element at the origin is used as the reference. Notice that the DOA

is now defined as the direction relative to the broadside of array for convenience of

description. At time t, xm(t), (m = 0, 1, · · · ,M) denotes the complex signal at the

mth sensor of the linear array with x0(t) being the data received by the reference

element. Then, the complex signals observed at the outputs of the M + 1 sensors

x(t) ∈ C(M+1) can be written as

x(t) = [x0(t), x1(t), · · · , xM(t)]T , As(t) + e(t), (4.1)

where s(t) = Ξp(t) ∈ CK is the source signals with p(t) = [p1(t), p2(t), · · · , pK(t)]T

denoting K known signal waveforms and Ξ = diag([ε1, ε2, · · · , εK ]) denoting the

unknown complex gains of the K signals, and e is an (M + 1)-dimensional vector

representing the complex white Gaussian measurement noise with zero mean and

unknown covariance matrix Ce , E[e(t)eH(t)] = diag([σ2
0, σ

2
1, · · · , σ2

M ]) [99]. Note

that the real part Re(e(t)) and the imaginary part Im(e(t)) are two real Gaussian

random vectors of the same distribution N(0, Ce

2
). A has the same expression as Ax
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in (2.36). Since the waveforms of the signals are known, we can describe the output

of each element of the antenna array xm(t) by the following linear regression model

xm(t) =
K∑
k=1

pk(t)εk e
−jϕ(m)

k + em(t) = (Ξp(t))Tbm + em(t) , pT (t)gm + em(t), (4.2)

where gm , Ξbm contains the entire information of directions and complex gains of

all the K signals. Thus, using (4.2), (4.1) can be rewritten as

x(t) = (IM+1 ⊗ pT (t))vec(G) + e(t), (4.3)

whereG , [g0, g1, · · · , gM ]. It is important to stress that in the conventional methods,

the spatial signatures are exploited to estimate the DOAs, while herein we pay special

attention to the coefficients gm, (m = 0, 1, · · · ,M) of the linear regression model. In

the following subsection, a maximum likelihood estimator for gm is derived based on

the signal model obtained above.

4.2.2 Maximum Likelihood Estimator

Suppose the received array signals during the time period T are sampled as

x(nTs) = (IM+1 ⊗ pT (nTs))vec(G) + e(nTs), 1 6 n 6 N (4.4)

where Ts = T/N is the sampling interval and e(n) represents the samples of the noise

e(t). The sampled version of the received data is often called “snapshots”. Note

that for moving targets in Section 4.3, each time period can be considered as a time
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interval, that is, each time interval has N snapshots. By omitting Ts for convenience

in the sequel, (4.5) can be rewritten as

x(n) = (IM+1 ⊗ pT (n))vec(G) + e(n), 1 6 n 6 N (4.5)

Since the signals are assumed to have known waveforms with unknown complex gains

and e(n) is zero-mean i.i.d Gaussian, each snapshot has a complex Gaussian prob-

ability density function (pdf) with a different mean but the same covariance, i.e.,

x(n) ∼ CN((IM+1 ⊗ pT (n))vec(G),Cn). The joint pdf of the independent snapshots

x(n), n = 1, 2, · · · , N , can be written as

f(X;G,Ce) =
N∏
n=1

e(−eH(n)C−1
e e(n))

πM+1 det(Ce)
, (4.6)

whereX = [x(1),x(2), · · · ,x(N)] is an (M+1)×N measurement matrix of the whole

array. By taking the logarithm of (4.6), noting that Ce = diag([σ2
0, σ

2
1, · · · , σ2

M ]) and

neglecting the constant terms, the log-likelihood function L(G,Ce) can be expressed

as

L(G,Ce) = −N log det(Ce) +
N∑
n=1

(−eH(n)C−1
e e(n))

= −N
M∑
m=0

log σ2
m −

N∑
n=1

M∑
m=0

σ−2
m |em(n)|2,

(4.7)

where em(n) = xm(n)−pT (t)gm is the mth element of the (M + 1) dimensional vector

e(n). The ML methodology is to maximize the likelihood or log-likelihood criterion

with respect to the unknown parameters by using the given data. Thus, the problem
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here is to maximize (4.7) with respect to G and Ce. For a fixed B, (4.7) can be

maximized with respect to σ2
m (m = 0, 1, · · · ,M) by setting to zero the partial

derivative,

∂L(G,Ce)

∂σ2
m

= −Nσ−2
m +

N∑
n=1

(σ2
m)−2|em(n)|2 = σ−2

m (σ−2
m

N∑
n=1

|em(n)|2 −N), (4.8)

leading to an estimate of σ2
m

σ̂2
m =

N∑
n=1

|em(n)|2

N
=
xm − P Tgm

N
, (4.9)

where the received data of the mth sensor xm = [xm(1), xm(2), · · · , xm(N)] is the N×1

vector corresponding to the mth row of the matrix Y and P = [p(1),p(2), · · · ,p(N)]

is the K × N matrix according to the known waveform. Using (4.9) into (4.7), we

have

L̄(G) = −N
∑

log

N∑
n=1

|em(n)|2

N
−

N∑
n=1

M∑
m=0

N |em(n)|2
N∑
n=1

|em(n)|2

= −N
M∑
m=0

log
xm − P Tgm

N
− (M + 1)N,

(4.10)

By ignoring the constant term in the above equation, the ML estimate of G can be

described as

Ĝ = arg max
G

(−N
M∑
m=0

log
‖xm − P Tgm‖2

N
). (4.11)
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Since the logarithm is a monotonic function, the above maximization problem is

equivalent to the following minimization problem:

Ĝ = arg min
G

(
M∑
m=0

‖xm − P Tgm‖2). (4.12)

It is of interest to note that with known waveforms of the signals, the ML estimate

for G in (4.13) can be represented by M + 1 LS individual solutions for the (M + 1)

linear regression models of order K, namely,

ĝm = arg min
gm
‖xm − P Tgm‖2, (m = 0, 1, · · · ,M). (4.13)

If the signals are not coherent and there are sufficient snapshots for each interval such

that matrix P ∗P T is nonsingular, the solution to (4.13) is then given by

ĝm = R−1
ppR

(m)
px , (4.14)

where

Rpp ,

N∑
n=1

[p∗(n)pT (n)]

N
=
P ∗P T

N
(4.15)

and

R(m)
px ,

N∑
n=1

[p∗(n)x(n)]

N
=
P ∗xm
N

. (4.16)

Note that when the signals are highly correlated with one another or fewer snapshots

are available, Rpp would be singular or nearly singular. Then, some modified methods
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such as in [100] can be adopted to deal with this problem. It is also noted that the

previous methods [53–57, 59] have made use of the known waveforms to obtain the

spatial signatures for the estimation of parameters such as DOAs and complex gains

with the traditional subspace techniques such as the ML, MUSIC and ESPRIT. In

this chapter, however, we make use of the LS-based technique, which employs the

orthogonal projection matrix of the known waveforms to obtain the coefficients in each

sensor, which contains the entire information of DOAs and complex gains. Therefore,

the next subsection is devoted to the regression analysis of these coefficients.

4.2.3 Regression Analysis

Using (4.2) and setting gm , ĝm−4gm, where 4gm = [4bm1 ,4bm2 , · · · ,4bmK ]T is the

estimation error vector of the coefficients gm, we get

xm = P T ĝm − P T4gm + em = P T ĝm + δm = x̂m + δm, (4.17)

where em = [em(1), em(2), · · · , em(N)]T is the N -dimensional white Gaussian noise

vector of the mth sensor, δm = −P T4gm+em = [δm(1), δm(2), · · · , δm(N)]T is defined

as the LS residuals, and x̂ = P T ĝm is the estimate of xm. From (4.17), we obtain

4gm = (P ∗P T )−1P ∗(em − δm). (4.18)

On the other hand, from (4.14) and (4.17), we obtain

δm = xm − P TR−1
ppR

(m)
px = (IN − P T (P ∗P T )−1P ∗)xm , (IN − PP T )em. (4.19)
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Then, substituting (4.19) into (4.18) and recalling that e(n) = [e0(n), e1(n), · · · , eM(n)]T

has zero mean, the mean of the estimation error 4gm is easily obtained as

E[4gm] = (P ∗P T )−1P ∗E[em − (IN − PP T )em] = (P ∗P T )−1P ∗E[em] = 0, (4.20)

implying that the estimate ĝm is unbiased. It is easy to show that the covariance

matrix of the estimate ĝm is given by

Cĝm = E[4gm4gHm ] = (P ∗P T )−1P ∗E[eme
H
m]P T (P ∗P T )−1 = σ2

m(P ∗P T )−1. (4.21)

In obtaining (4.22), we have used the fact that E[eme
H
m] = σ2

mIN . By using (4.14),

the above equation can be rewritten as

Cĝm =
σ2
mR

−1
pp

N
. (4.22)

Clearly, from (4.22), the covariance matrixCĝm is inversely proportional to the number

of snapshots. When N approaches infinity, Cĝm approaches zero. Note that when

the incident signals are uncorrelated with one another in the time period, i.e., the

elements in (4.15) satisfy
N∑
n=1

p∗i (n)pj(n) = 0, for i 6= j, and i, j ∈ [1, 2, · · · , K], we

have Rpp = diag([ρ1, ρ2, · · · , ρK ]), where ρk, (k = 1, 2, · · · , K) is the power of the

kth known waveform, since the estimation error 4b(m)
k of b

(m)
k has a zero-mean white

Gaussian distribution with variance V ar(4g(m)
k ) = 1

N ·WNR
(m)
k

,WNR
(m)
k = ρk

σ2
m

being

the waveform to noise ratio (WNR) of the kth signal on the mth sensor. It is also

clear from (4.22) that when the incident signals are coherent, the covariance matrix
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Cĝm becomes singular and thus, we cannot obtain an accurate estimate of gm and

need some modifications to recover the full rank of Rpp. When the signals are partly

correlated with one another, the estimation error 4g(m)
k of g

(m)
k has a zero-mean white

Gaussian distribution with variance V ar(4g(m)
k ) =

σ2
m[R−1

pp ]kk
N

. As the variance of b̂
(m)
k

depends on the unknown noise variance σ2
m of the mth sensor, we show below how to

get an estimate of σ2
m. Using (4.19), the square sum of the LS residuals δm is given

by

δHmδm = eHm(IN − PP T )(e)m = Tr(P⊥P Teme
H
m). (4.23)

Thus, the expectation of (4.23) is derived as

E[δHmδm] = E[Tr(P⊥P Teme
H
m)] = (N −K)σ2

m. (4.24)

where we have used the property of an idempotent matrix [101] that the trace equal

to the rank of the matrix, namely, Tr(Tr(P⊥P T ) = Rank(IN) − Rank(PP T ). Finally,

we can obtain an unbiased ML estimate of σ2
m from

σ̂2
m =

‖xm − P T
ĝm + P T4gm‖2

N
=

N∑
n=1

δm(n)δm ∗ (n)

N −K
, (4.25)

where the number N −K is called the degree of freedom (DOF), which is the number

of snapshots minus the number of source signals. Note that when the number of

snapshots is much larger than the number of source signals, which is quite common in

array signal processing, the ML estimate of σ2
m approaches the average of the squared

sum of the residuals (errors) δm(n), n = 1, 2, · · · , N . Thus far, we have employed the
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regression analysis to obtain the distribution of the coefficients gm, which contain the

whole information of the DOA and complex gain. In the next subsection, we will

present an optimal estimator for the DOA and complex gain.

4.2.4 DOA and Complex Gain Estimation

Recalling that gm , Ξbm = ĝm −4bm, we have

ĝ
(m)
k = εke

−jϕ(m)
k +4g(m)

k , (m = 1, 2, · · · ,M), (4.26)

ĝ
(0)
k = εk +4g(0)

k , (4.27)

where 4g(m)
k , Re(4g(m)

k ) + jIm(4g(m)
k ) is the estimation error, which is described

by a complex Gaussian process with zero mean and variance of
σ2
m[R

(−1)
pp ]k,k
N

. Note that

Re(4g(m)
k ) and Im(4g(m)

k ) are uncorrelated with each other, each having zero mean

and a variance
σ2
m[R

(−1)
pp ]k,k
2N

(see Appendix D for proof). When both sides of (4.26) are

multiplied by the complex conjugate of (4.27) and then divided by the complex gain

power |εk|2, we get

â
(m)
k

4
=
ĝ

(m)
k ĝ

(0)∗
k

|εk|2
= e−jϕ

(m)
k +4a(m)

k , (4.28)

which can be considered as the estimated value of the mth element of the kth s-

teering vector a(θk), where 4a(m)
k is the estimation error with zero mean, variance

Var
(
4a(m)

k

)
=

(σ2
m+σ2

0)[R−1
pp ]

k,k

N |εk|2
and covariance Cov(4a(p)

k ,4a(q)
k ) =

σ2
0[R

−1
pp ]

k,k

N |εk|2
, p 6=

q ∈ [1, · · · ,M ] (see Appendix E for detail). Note that the unknown power gain

|εk|2 has no effect on the estimation of DOA due to the fact that only the phase
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of â
(m)
k is used to obtain the DOA. As a result, the estimated error vector 4âk =[

4â(1)
k ,4â(2)

k , · · · ,4â(M)
k

]T
, (k = 1, · · · , K), has a distribution CN(0,Ωk) with

Ωk = η
(0)
k



η
(1)
k 1TM−1

11 η
(2)
k 1TM−2

· · · · · · · · ·

1TM−1 η
(M)
k


, (4.29)

and η
(0)
k

4
=

σ2
0[R

−1
pp ]

k,k

N |εk|2
and η

(m)
k = σ2

m

σ2
0

+ 1, (m = 1, 2, · · · ,M), and 1m denotes a m-

dimensional column vector whose elements are all unity. If each sensor has the uni-

form additive noise distribution with the same variance, which is often assumed in

conventional methods, (4.29) can be simplified as

Ωk = η
(0)
k



2 1TM−1

11 2 1TM−2

· · · · · · · · ·

1TM−1 2


. (4.30)

Next, let us introduce M -dimensional vectors,

Φk =
[
ϕ

(1)
k , ϕ

(2)
k , . . . , ϕ

(M)
k

]T
. (4.31)

Although each element in (4.31) can be estimated from (4.28) by calculating the

phase of a
(m)
k , when d1 > 1, ambiguity may arise due to its inability to deal with the

97



2π ambiguity, i.e., ϕ
(m)
k = −∠

(
a

(m)
k

)
,
∣∣∣ϕ(m)

k

∣∣∣ > π, where the sign ∠x denotes the

real phase of x . If the assumption d1 ≤ 1 is made, there is no ambiguity for ϕ
(m)
k ,

i.e.,
∣∣∣ϕ(1)

k

∣∣∣=d1π |sinθk| ≤ π. Therefore, we can use ϕ
(m)
k as a reference to deal with

potential ambiguities for
m∑
i=2

di ≥ 1,m = 2, · · · ,M by exploiting the disambiguity

method proposed in Chapter 2 of this thesis. Herein, we introduce a new method to

solve the problem of ambiguity for the case d1 > 1. Let us write the measured value

of the kth element of Φk as

mod (ϕ
(m)
k ) = ϕ

(m)
k − 2πl

(m)
k , (4.32)

where l
(m)
k (m = 1, 2, · · · ,M) are unknown integers. Now from (4.32), it can be readily

shown that

mod(∇( mod(ϕ
(m)
k ))) = mod((ϕ

(m+1)
k − 2πl

(m+1)
k )− (ϕ

(m)
k − 2πl

(m)
k ))

= ∇(ϕ
(m)
k ) + 2π(τ

(m)
k −∇(l

(m)
k )),

(4.33)

where the operator∇ is defined as∇(x
(m)
k ) =x

(m+1)
k −x(m)

k . Also, if−π ≤ ∇(ϕ
(m)
k ) <π,

τ
(m)
k satisfies the relationship τ

(m)
k =∇(l

(m)
k ). Hence, from (4.33) we get

ϕ
(m+1)
k =ϕ

(m)
k +mod(∇(mod(ϕ

(m)
k ))) (4.34)

or

ϕ
(m+1)
k =ϕ

(1)
k +

m∑
i=2

mod(∇(mod(ϕ
(m)
k ))) (4.35)
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Equation (4.35) states that the measured value of ϕ
(m+1)
k can be obtained using the

first phase difference ϕ
(1)
k and some simple operations. If d1>1, however, we cannot

get an unique estimate for ϕ
(1)
k . Now we show how to get the actual value of ϕ

(1)
k .

From (4.32), we obtain

ϕ
(1)
k =2πl

(1)
k +mod(ϕ

(1)
k ) =(2πl

(2)
k +mod(ϕ

(2)
k ))d1

/
d2,
∣∣∣l(1)
k

∣∣∣ ≤ fix(d1/2)and
∣∣∣l(2)
k

∣∣∣ ≤ fix(d2/2)

(4.36)

where fix(x) rounds x to the nearest integer towards zero. To choose the correct l
(1)
k

and l
(2)
k , we use the principle suggested in [102] to minimize the following cost function

when d1 and d2 are co-prime numbers.

F= min
l
(1)
k ,l

(2)
k

∣∣∣2π(d2l
(1)
k −d1l

(2)
k ) + (d2mod(ϕ

(1)
k )− d1mod(ϕ

(2)
k ))

∣∣∣ (4.37)

After obtaining the actual l
(1)
k , it is easy to get ϕ

(1)
k and ϕ

(2)
k using (4.36), then using

(4.35) to obtain ϕ
(m)
k ,m = 3, · · · ,M . From the above discussions, the unbiased esti-

mate Φ̂k of Φk is a Gaussian random vector with the covariance matrix as given by

(See the proof in Appendix F)

Σk , Cov
(
Φ̂k

)
≈ Ωk/2. (4.38)

Therefore, the MLE of the parameter ψk = π cos θ is equivalent to the minimum

variance unbiased estimator (MVUE) [103] of the vector Φk in (4.31) when the esti-

mated error has a Gaussian distribution, which can be estimated by the method of

generalized LS [104]. The parameter ψk can be obtained by minimizing the square
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error

ψ̂k = arg min
ψ

Υk(ψ),Υk(ψ) =
(
Φ̂k − ψd

)T
Σ−1
k

(
Φ̂k − ψd

)
, (4.39)

where d =

[
d1,

2∑
i=1

di, · · · ,
M∑
i=1

di

]T
. The solution to the above problem is given by

ψ̂k =
dTΣ−1

k Φ̂k

dTΣ−1
k d

. (4.40)

Also, it is easy to get the variance of this estimate as

Var
(
ψ̂k

)
=
dTΣ−1

k Cov
(
Φ̂k

)
Σ−1
k d

dTΣ−1
k d

=
1

dTΣ−1
k d

. (4.41)

Note that ψ̂k is an unbiased estimate with a Gaussian distribution, since4Φk , Φk−

Φ̂k is a Gaussian random vector with zero mean. From the expression ψk = π sin θk,

we can get the estimated DOA θ̂k = arcsin(ψ̂k/π). Also the variance of θ̂k can be

obtained as

Var
(
θ̂k

)
= Var

(
ψ̂k

)/
(π cos θk)

2 (4.42)

We now present an estimator for the complex gain. Obviously, we could estimate the

complex gain using (4.27) directly, but it is not optimal estimator. Here, we make

use of the estimated DOA to obtain the optimal estimator for the complex gain. We

define

Ξ̂k =
[
ε̂

(1)
k , ε̂

(2)
k , · · · , ε̂(M)

k

]T
(4.43)
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where ε̂
(m)
k = ĝ

(m)
k ejϕ̂

(m)
k

4
= ε

(m)
k +4ε(m)

k , (m= 1, 2, · · · ,M) and 4ε(m)
k are zero mean

Gaussian random variables with the covariance matrixHk (see Appendix G for deriva-

tion). In a manner similar to deriving (4.39)-(4.41), the optimal estimator for εk can

be obtained as

ε̂k = 1TMH−1
k Ξ̂k

/
1TMH−1

k 1M . (4.44)

Also, it is easy to get the variance of this estimator as

Var (ε̂k) = 1
/
1TMH−1

k 1M . (4.45)

Before the end of this section, we would like to consider a special case where

the source signals are uncorrelated with equal-power, and the uniform linear array

(ULA) is of half wavelength inter-element spacing, i.e., d = [1, 2, . . . ,M ]T . Note that

the additive noises at the ULA are i.i.d Gaussian random processes with SNR =

ρ
σ2 |εk|2 = WNR|εk|2, the covariance matrix is then given by

[Σk]p,q =


1

N ·SNR 1 ≤ p = q ≤M

1
2N ·SNR otherwises,

(4.46)

which can be rewritten in the matrix form as

Σk =
Λ

2N · SNR
, (4.47)
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where Λ = IM + 1M1TM . By using the Sherman-Morrison formula [105], we have

Λ−1 = IM −
1M1TM
1 +M

. (4.48)

Thus

Σ−1
k = 2N · SNR

(
IM −

1M1TM
1 +M

)
(4.49)

and

dTΣ−1
k d =

(M2 +M)(M + 2)

6
N · SNR (4.50)

Hence, the variance of θ̂k with known noise covariance matrix can be calculated from

(4.41), (4.51) and (4.50) as

Var
(
θ̂k

)
KNOWN

=
6

(M2 +M)(M + 2)N · SNR

[
1

π cos θk

]2

. (4.51)

Interestingly, using the Cramer-Rao bound (CRB) expression in [53, 54], we can find

that (4.51) is identical to CRB, i.e., CRB(θk) = Var
(
θ̂k

)
KNOWN

.Therefore, our esti-

mator is a MVUE estimator when the additive noise has i.i.d Gaussian distribution.

On the other hand, when the noise covariance matrix is unknown, we can also get the

variance by the result of (4.25), namely,

Var
(
θ̂k

)
UNKNOWN

=
6

(M2 +M)(M + 2)(N −K)SNR

[
1

π cos θk

]2

. (4.52)
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The CRB to variance ratio is then found from (4.51) and (4.52) as

Var
(
θ̂k

)
KNOWN

Var
(
θ̂k

)
UNKNOWN

= 1− K

N
. (4.53)

Usually, the number of snapshots is much larger than the number of signals, i.e.,

N � K, and therefore (4.53) implies that the performance of our method is almost

identical to CRB.

4.2.5 Simulation Results for DOA Estimation

In this subsection, simulation results are presented to show the performance of the

proposed DOA estimation techniques as compared to some of the existing methods.

In the first two examples, two signals of equal power with angles θ1 = −5◦ and θ2 = 5◦

impinge onto the sparse linear array (SLA) with 3 sensors separated by d1 = 1 and

d2 = 2. A 3-sensor ULA with a half wavelength antenna spacing is also considered

for the performance study of the proposed method. The additive noise is uniform

white noise, i.e., R = σ2
0IM+1, and the complex gains are set to Ξ = diag(ejπ/4, ejπ/4)

and the SNR is defined as the ratio of the power of the source signal to that of

the additive noise at each sensor, i.e., SNR = ρ/σ2
0. Each example contains 1000

independent trials to obtain the root mean square error (RMSE). The LP method [59]

and the DEML [54] along with the theoretical RMSE and CRB [53, 54] are plotted

for performance comparison. In the last three examples, we evaluate the performance

of our method for various angles of the source signals as well as for different numbers

of sources and sensors.
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(a)

(b)

Figure 4.1: RMSE of DOA estimation for two uncorrelated sources versus snapshots
from 10 to 150 at (a)θ1 = −5◦ and (b)θ2 = 5◦ with SNR=5dB.
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(a)

(b)

Figure 4.2: RMSE of complex gain estimation for two uncorrelated sources versus
snapshots from 10 to 150 at (a)θ1 = −5◦ and (b)θ2 = 5◦ with SNR=5dB.
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Example 1 : Performance of DOA and complex gain estimation with respect to

number of snapshots

The performance of the proposed DOA estimation method versus the number of

snapshots is now assessed for two uncorrelated signals. The number of snapshots is

varied from N = 10 to N = 150, and the SNR is set at 5dB. Both theoretical and

simulated RMSEs of the estimated angles are plotted in Fig.4.1, along with the CRBs

for ULA and SLA. We see that when the ULA is used, the proposed method yields

an estimation performance similar to that of the LP and DEML methods, and the

three methods are consistent with the theoretical RMSE and the CRBs, especially

at a large number of snapshots. More importantly, the performance of the proposd

method with SLA is much better than that of ULA due to the larger aperture of the

array of SLA. Furthermore, we note that the simulated RMSEs of our method agree

very well with the theoretical RMSEs in (4.51) and CRBs, which decrease almost

linearly with the number of snapshots for both ULA and SLA. Note that in these

figures, “DEMLSLA”,“SimulatedSLA”, “TheoreticalSLA”, and “CRBSLA” denote the

RMSE of the DEML, the simulated RMSE, and the theoretical RMSE of the proposed

method and the CRB for the sparse linear array, while “DEMLULA”, “SimulatedULA”,

“TheoreticalULA”, and “CRBULA” denote the corresponding results for the uniform

linear array. In addition, the estimation performance of our method for complex gain

is also compared with the DEML method shown in Fig.4.2, along with the theoretical

performance for ULA. From the figures, we see that the RMSE curve of our method

is identical to that of the DEML method and the theoretical results.

Example 2 : DOA estimation performance for correlated signals
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(a)

(b)

Figure 4.3: RMSE of DOA estimation for two sources versus correlation factor (CF)
from 0 to 0.9 at (a)θ1 = −5◦ and (b)θ2 = 5◦ with 10dB SNR and 200 snapshots.
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We study the performance of the proposed method against the correlation be-

tween two incident signals. The correlation factor (CF) between the two signals is

varied from 0 to 0.9 with SNR=10dB and the number of snapshots is 200. Both sim-

ulated and theoretical RMSEs of the estimated angles against the CF are shown in

Fig.4.3, together with the CRB. The performances of the LP method degrade severely

at medium and strong correlation of the signals, while the RMSEs of the proposed

method and the DEML is very close to the theoretical value and that of CRB, espe-

cially for weak and moderately correlated signals. The reason for this phenomenon

lies in the fact that the spatial signatures of the LP method are obtained by the cor-

relation matrix between the received data and the known waveforms, the orthogonal

property among the different waveforms is destroyed and hence we cannot obtain the

pure spatial signature corresponding to the waveform when the signals have medium

to high correlation; while the regression coefficients of our method is obtained by

making use of the LS-based technique in which the orthogonal projection matrix of

the known waveforms and the spatial signatures of the DEML is based on the ML

principle. Therefore, like the DEML method, our method is also very suitable for

source signals with medium or high correlation with very less computational cost.

Example 3 : Performance of DOA estimation with respect to various angles

In this example, we examine the performance of the proposed method against

angles varying from −6◦ to 10◦ for different CFs, namely, CF=0, 0.5 and 0.9. The

incident directions of the two sources are θ1 = −6◦ and θ2 changing from −6◦ to 10◦

with SNR=5dB and snapshots=100. As shown in Fig.4.4, when CF is equal to zero,

the proposed method and DEML have the same performance, being identical to the
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CRB. In addition, the performance curves of both the DEML and proposed method

are the same as that of the theoretical results.

Example 4 : Performance of DOA estimation with respect to the number of sensors

Now, the performance of the proposed method versus the number of sensors with

the same array aperture is assessed. The assumptions for source signals and DOAs

are similar to those in Example 1, and the number of snapshots is fixed at 100 and

the SNR ranges from 0dB to 12dB. The configurations of SLA are set at 3 (d1 = 1,

d2 = 4), 4 (d1 = 1, d2 = 3, d3 = 1), 5 (d1 = 1, d2 = 2, d3 = 1, d4 = 1), and 6

(d1 = 1, d2 = 1, d3 = 1, d4 = 1, d5 = 1). The simulated RMSEs of the estimated

DOAs using the proposed method are plotted in Fig.4.5. It is clear that for the same

array aperture, the more sensors used, the better performance can be obtained by

our method. Note that here we also provide the theoretical result and CRB for the

6-sensor ULA.

Example 5 : Performance of DOA estimation with respect to the number of sources

In the previous examples, the performance of the proposed method in estimat-

ing the directions of two sources based on three sensors (d1 = 1, d2 = 5) is test-

ed. Here, we evaluate its estimation performance in terms of multiple uncorre-

lated sources: two sources (the same as in the previous examples), three sources(
DOAs = [−5◦ 5◦ 10◦],Ξ = diag(e−jπ/4, ejπ/4, 1)

)
, four sources (DOAs = [−5◦ 5◦

10◦ 15◦], Ξ = diag(e−jπ/4, ejπ/4, 1,−1)) and five sources (DOAs = [−5◦ 5◦ 10◦ 15◦

20◦],Ξ = diag(ejπ/4, e−jπ/4, 1,−1, ejπ/6)). Fig.4.6 shows the performance of the pro-

posed method as a function of the SNR for multiple sources at DOA = −5◦ and

DOA =5◦, respectively. We note that the proposed method is robust to the number
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(a)

(b)

Figure 4.4: RMSE of DOA estimation for two sources with one DOA fixed at −10◦

and the other DOA varying from −6◦ to −10◦ at (a) −10◦ and (b) various angles
with 5dB SNR and 100 snapshots, and CF =0, 0.5 and 0.9. Note that +, >,−− and
− stand for the DEML method, the proposed method, the theoretical result and the
CRB, respectively.
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(a)

(b)

Figure 4.5: RMSE of DOA estimation for two sources using multiple sensors versus
SNR from 0 to 12dB at (a)θ1 = −5◦ and (b)θ2 = 5◦ with 100 snapshots.
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(a)

(b)

Figure 4.6: RMSE of DOA estimation for multiple sources versus SNR from 0 to 12dB
at (a)θ1 = −5◦ and (b)θ2 = 5◦ with 100 snapshots.

112



of sources, even when the number of sources is more than the number of sensors,

where most of the subspace-based methods with unknown waveforms do not work.

Note that we also plot the curves of the theoretical results and CRB of the two-source

situation for comparison.

4.3 DOA Tracking based on block RLS Techniques

In the previous section, we discussed the problem of DOA estimation for steady tar-

gets. As the targets move, their motion is tracked through a recursive algorithm which

updates the estimate of target angles by using the data provided by the most recent

output of the sensor array. We know that LS method is often used as a statistical

procedure to fit the linear regression model. This is because when the noise is a

Gaussian random process and the target is time-invariant, the LS method gives an

estimation performance similar to that of the ML method, which is the best linear

unbiased estimator (BLUE) for linear regression model. Herein, we derive two block-

based LS algorithms to update the estimate over the time intervals based on the first

time interval angles estimated by the method discussed in the previous section. In

particular, one tracking method will be derived by using the block QRD-RLS tech-

nique, which operates directly on the data matrix through unitary transformations

rather than on the corresponding covariance matrix, thus making the method supe-

rior to the traditional method with regard to numerical stability and computational

complexity [91]. Unlike the usual RLS-based techniques, where the linear regression

coefficients are updated at every snapshot, we perform the update on the basis of time
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intervals. We use the block QRD-based technique to obtain current Cholesky factors

from the previous Cholesky factors along with the received data of the time inter-

val. Subsequently, we derive the second tracking method based on the regularized LS

technique in view of the fact that the optimal weighting factor or regularization term

can be derived by regression analysis [97,98], and the previously estimated coefficients

can be considered as a constrained vector to deal with some “bad” cases such as small

snapshots in a time interval or highly correlated sources.

4.3.1 Data Model

In this section, we still use the array system suggested in Section 4.2 except that we

assume both θ(t) and the corresponding gain Ξ(t) are varying with time. We also

assume that over each time interval the changes for θ(t) and Ξ(t) are small enough [71]

so that

θ(t) ≈ θ(nT ), Ξ(t) ≈ Ξ(nT ), t ∈ ((n−1)T, nT ] , (n = 1, 2, · · · ) (4.54)

where each time interval T has N snapshots. Consequently, using the knowledge of

the previous section, the mth, (m = 0, 1, 2, · · · ,M) element of (4.5) for the nth time

interval can be expressed as

xm(n)=P (n)gm(n)+em(n), n = 1, 2, · · · , (4.55)
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where xm(n) = [xm(n, 1), xm(n, 2), · · · , xm(n,N)]T is a N×1 vector, P (n) = [p(n, 1),

p(n, 2), · · · ,p(n,N)]T is a N × K matrix according to the known waveforms of the

nth time interval, and em(n) = [em(n, 1), em(n, 2), · · · , em(n,N)]T is a N × 1 vector of

multivariate normal distribution with zero mean and covariance matrix σ2
m(n)IN .

4.3.2 Block QRD-RLS technique

We now derive a block QRD-RLS technique to track the moving targets over time

intervals. Let us denote the nN ×K known waveform matrix as

Pn ,
[
P T (1),P T (2), · · · ,P T (n)

]T
=

 Pn−1

P (n)

 , (4.56)

and the nN × 1 received data vector of the mth sensor as

x(m)
n ,

[
xTm(1),xTm(2), . . . ,xTm(n)

]T
=

 x
(m)
n−1

xm(n)

 . (4.57)

Further, we define an nN × 1 LS residual vector as

e(m)
n ,

[
eTm(1), eTm(2), . . . , eTm(n)

]T
=

 e
(m)
n−1

em(n)

 , (4.58)

and an nN × nN block-diagonal weighted matrix as

M2
n , diag

[
µN−1β, µN−2β, · · · ,β

]
, (4.59)
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where µ < 1 is the forgetting factor for the time intervals and β , diag[βN−1, βN−2, · · · , 1]

with β > µ being the forgetting factor for snapshots. Since the targets are steady or

slowly changing in the same time interval, β is very close to unity. Thus, the opti-

mal estimator for the coefficients g
(m)
n , (m= 0, 1, · · · ,M) is found by minimizing the

following function

min
g
(m)
n

Υ
(m)

n =Υm(n) + Υ
(m)

n−1 = ‖βem(n)‖2+
n−1∑
i=1

µn−iΥm(i) =
n∑
i=1

‖M(i)em(i)‖2, (4.60)

where M(i) = µ
n−i
2 β

1
2 , and Υm(i) is the weighted LS of Υm(i), e.g., Υm(i) =∥∥∥β 1

2 nm(i)
∥∥∥2

= Υm(i) for β = IN . Obviously, the general RLS-based techniques [106,

107] can be used to estimate and update the coefficients from snapshot to snapshot,

but here we consider the case where the update takes place for each time interval, i.e.,

every time interval with multiple snapshots. Different from the idea suggested in [108],

wherein the estimates of the coefficients are updated for block processing based on

the QRD algorithm by implementing the so-called block Householder transformation,

we, herein, propose a new block QRD RLS technique to update the estimates of the

coefficients for each interval. First of all, let us consider the QRD for the known

waveform data of the nth time interval as

β
1
2P (n) = Q(n)

 R(n)

0(N−K)×K

 , n = 1, 2, · · · (4.61)
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and the QRD for the known waveform data of the first n− 1 time intervals as

Mn−1Pn−1 = Qn−1

 Rn−1

0(nN−K−N)×K

 , (4.62)

where both R(n) and Rn−1 are unique upper triangular matrices with positive di-

agonal elements and Q(n) and Qn−1 are unitary matrices. As such, we can get

Mn−1x
(m)
n−1 = Qn−1

[
pTn−1 δ

(m)T

n−1

]T
where pn−1 is the Cholesky factor of Mn−1x

(m)
n−1

and δm(n− 1) is the LS residual from which the estimated noise power σ̂2
m(n− 1) can

easily be computed.

Next, we give two lemmas to derive the proposed block QRD RLS technique.

Lemma 1. Let Z ,
[
XH Y H

]H
with both X = QX

[
AT 0K×(m−K)

]T
and Y =

QY

[
BT 0K×(n−K)

]T
being full column rank matrices, where QX and QY are u-

nitary matrices. Then computing the QRD of the (m+ n) × K block data matrix

Z =
[
XT Y T

]T
is equivalent to implementing the QRD of the 2K × K matrix[

AT BT
]T

. (See Appendix H for the proof)

Lemma 2. Let T ,
[
AT BT

]T
, where A is a K × K nonsingular matrix and

B is an arbitrary matrix of dimension m × K. Then, there exists an (K + m) ×

(K + m) unitary matrix Q
(
QHQ = I(K+m)

)
such that QHT =

[
(DA)T 0K×m

]T
,

where D is the unique upper triangular matrix of the Cholesky decomposition of

A−H
(
AHA+BHB

)
A−1. (See Appendix I for the proof).

By using the Cholesky factors Rn−1 and pn−1 obtained through the QRD of

Mn−1Pn−1 and Mn−1x
(m)
n−1 along with the new incoming data {P (n),xm(n)} at time

117



interval n, we can obtain the current Cholesky factors Rn and pn, as stated in the

following theorem.

Theorem 3. There exists a unitary matrix Qn such that

 µ
1
2Rn−1 µ

1
2pn−1

βP (n) βxm(n)

 = Qn

 Rn pn

0N×K δm(n)

 (4.63)

where Rn = µ
1
2D1(n)Rn−1, pn = µ

1
2D−H1 (n)

[
pn−1 + µ4R

−H
n−1P

H(n)βxm(n)
]

and

δm(n) = D−H2 (n)β
1
2

[
xm(n)− P (n)R

−1

n−1pn−1

]
. Here, the matrices D1(n) and D2(n)

are the unique upper triangular matrices of the Cholesky decomposition of R
−H
n−1(

R
H

n−1Rn−1 + µ2R
H

(n)R(n)
)
R
−1

n−1 and

(
µ4R(n)

(
R
H

n−1Rn−1

)−1

R
H

(n) + IN

)
, re-

spectively.

Proof : By constructing a unitary matrix

Q̂(n) =

 IK×K 0K×N

0N×K Q(n)

 (4.64)

and using (4.61), we obtain

 µ
1
2Rn−1

βP (n)

 = Q̂(n)
[
µ

1
2R

H

n−1 R
H

(n) 0K×(N−K)

]H
(4.65)

According to Lemma 1, the QRD of the matrix
[
µ

1
2R

T

n−1 βPT (n)
]T

is equivalent

to the QRD of the matrix
[
µ

1
2R

T

n−1 R
T

(n)
]T

; therefore, using Lemma 2, one can
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construct a 2K × 2K unitary matrix Q̂n such that

 µ
1
2Rn−1

R(n)

 = Q̂n

 Rn

0K×K

 (4.66)

where Q̂n =

 D−1
1 (n)− µ2R

−H
n−1R

H
(n)D−1

2 (n)

µ2R(n)R
−1

n−1 D−1
1 (n) D−1

2 (n)

 and Rn = µ
1
2D1(n)Rn−1, and

D1(n) andD2(n) are the unique upper triangular matrices of the Cholesky decomposi-

tion ofR
−H
n−1

(
R
H

n−1Rn−1 + µ2R
H

(n)R(n)
)
R
−1

n−1 and µ4R(n)
(
R
H

n−1Rn−1

)−1

R
H

(n) + IN .

Herein we have used the properties of the upper triangular matrix. Next, we construct

a unitary Qn to satisfy (4.63) by using (4.64) and (4.66), giving

Qn =

 IK×K 0K×N

0N×K Q(n)



D−1

1 (n) −µ2R
−H
n−1R

H
(n)D−1

2 (n) 0K×(N−K)

µ2R(n)R
−1

n−1D
−1
1 (n) D−1

2 (n) 0K×(N−K)

0(N−K)×K 0(N−K)×K I(N−K)×(N−K)

 .
(4.67)

Therefore,

 pn
δm(n)

 = QH
n

 µ
1
2pn−1

β
1
2xm(n)



=


µ

1
2D−H1 (n)pn−1 + µ2D−H1 (n)R

−H
n−1R

H
(n)x̃

(n)
m (1 : K)

−D−H2 (n)R(n)R
−1

n−1pn−1 +D−H2 (n)x̃
(n)
m (1 : K)

x̃
(n)
m (K + 1 : N)

 ,
(4.68)

where x̃
(n)
m , QH(n)βxm(n). Using (4.61), we can get the relationship R

H
(n)x̃

(n)
m
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(1 : K) = PH(n)βxm(n). With the results given by (4.66) and (4.68), the theorem is

proven.

Since our goal is to estimate the updating coefficients from the updated Cholesky

factors Rn and pn, g
(m)
n can be estimated as per Theorem 3 as

ĝ(m)
n = R

−1

n pn = R
−1

n−1D
(1)−1
n (D(1)−H

n pn−1 + µ4D(1)−H
n R

−H
n−1P

H(n)βxm(n))

= R
−1

n−1D
(1)−1
n D(1)−H

n D(1)H
n (D(1)−H

n pn−1 + µ4D(1)−H
n R

−H
n−1P

H(n)βxm(n))

= R
−1

n−1

(
D(1)H

n D(1)
n

)−1
(pn−1 + µ4R

−H
n−1P

H(n)βxm(n))

=
(
R
H

n−1Rn−1 + µ4R
H

(n)R(n)
)−1

(R
H

n−1pn−1 + µ4PH(n)βxm(n)).

(4.69)

By paying special attention to the first time interval, i.e.,n = 1,R0 = IK ,p0 = 0K×1,

then ĝ
(m)
1 =

(
R
H

(n)R(n) + µ−4IK

)−1

PH(n)βxm(n), where, compared with (4.14),

we find that interestingly ĝ
(m)
1 can be considered as a ridge regression estimate [109]

with a fixed ridge parameter instead of the LS one. In addition, the mean and covari-

ance matrix of the estimation g
(m)
n can be calculated below,

E
[
ĝ(m)
n

]
=
(
R
H

n−1Rn−1 + µ4R
H

(n)R(n)
)−1

(R
H

n−1E
[
pn−1

]
+ µ4R

H
(n)R(n)g(m)

n )

= g(m)
n + (R

H

n−1Rn−1 + µ4R
H

(n)R(n))−1

(R
H

n−1Rn−1E[ĝ
(m)
n−1]−RH

n−1Rn−1g
(m)
n )

= g(m)
n +

(
IK + µ4R

−1

n−1R
−H
n−1R

H
(n)R(n)

)−1 (
E
[
ĝ

(m)
n−1

]
− g(m)

n

)
(4.70)
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and

C
ĝ
(m)
n

= E
[(
ĝ(m)
n − E

(
ĝ(m)
n

)) (
ĝ(m)
n − E

(
ĝ(m)
n

))H]
=
(
R
H

n−1Rn−1 + µ4R
H

(n)R(n)
)−1 [

µ8PH(n)β
1
2Cem(n)β

1
2P (n)

+R
H

n−1Rn−1Cĝ(m)
n−1
R
−1

n−1R
−H
n−1

] (
R
H

n−1Rn−1 + µ4R
H

(n)R(n)
)−1

=
(
R
H

n−1Rn−1 + µ4R
H

(n)R(n)
)−1 [

µ8σ2
m(n)R

H
(n)R(n)

+R
H

n−1Rn−1Cĝ(m)
n−1
R
−1

n−1R
−H
n−1

] (
R
H

n−1Rn−1 + µ4R
H

(n)R(n)
)−1

.

(4.71)

If we set g
(m)
n , ĝ(m)

n −∆g
(m)
n and use (4.70), the bias of ∆g

(m)
n can be obtained as

E
[
∆g(m)

n

]
= E

[
ĝ(m)
n

]
−g(m)

n =
(
IK + µ4R

−1

n−1R
−H
n−1R

H
(n)R(n)

)−1 (
E
[
ĝ

(m)
n−1

]
− g(m)

n

)
,

(4.72)

where we have used the relationship g
(m)
n = gm(n). Note that if the targets are

steady over the time intervals, then (4.72) approaches zero, so the method yields an

asymptotic unbiased estimator for the steady targets. Otherwise,(4.72) can be used

to compensate the bias for moving targets.

4.3.3 Regularized Block Least Squares

In the previous subsection, we proposed a method to update the coefficients based

on the block QRD-RLS technique, in which constant forgetting factors are employed.

In this subsection we present another method to update the coefficients by using
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regularized block least squares. Let us consider the following cost function

min
g
(m)
n

Υ
(m)

n =
∥∥∥β 1

2em(n)
∥∥∥2

+µ(n)
∥∥∥g(m)

n − ĝ(m)
n−1

∥∥∥2

=
[
xm(n)−P (n)g(m)

n

]H
β
[
xm(n)−P (n)g(m)

n

]
+µ(n)

(
g(m)
n − ĝ(m)

n−1

)H (
g(m)
n − ĝ(m)

n−1

)
.

(4.73)

Compared with (4.60), we have replaced Υ
(m)

n−1 with the regularization term
∥∥∥g(m)

n − ĝ(m)
n−1

∥∥∥2

µ(n), where µ(n) is a non-negative time varying factor to obtain the optimal estimate

for g
(m)
n , and ĝ

(m)
n−1 is the previous optimal estimate for the coefficients. Now, from

complex function theory, we can get the derivative of Υ
(m)

n with respect with g
(m)∗
n as

∂Υ
(m)

n

∂g∗m(n)
= −PH(n)β(xm(n)−P (n)g(m)

n )+µ(n)
(
g(m)
n −ĝ

(m)
n−1

)
. (4.74)

Setting the RHS of (4.74) to zero, the regularized LS estimate for g
(m)
n is obtained as

ĝ(m)
n =

(
PH(n)βP (n) + µ(n)IK

)−1
(
PH(n)βxm(n)+µ(n)ĝ

(m)
n−1

)
. (4.75)

Interestingly, when µ(1) = µ−4 and ĝ
(m)
0 = 0, (4.75) gives the same expression as

(4.69). In this method, we would like to obtain the optimal estimate of g
(m)
n by

choosing the regularization term µ(n). Herein, our measure of goodness is the mean

square error (MSE), i.e., the trace of MSE
ĝ
(m)
n

, E

[(
ĝ

(m)
n − g(m)

n

)(
ĝ

(m)
n − g(m)

n

)H]
.
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The mean and covariance matrix of the estimate ĝ
(m)
n can be found as

E
[
ĝ(m)
n

]
=
(
PH(n)β2P (n) + µ(n)IK

)−1
(
PH(n)β2P (n)g(m)

n +µ(n)E
[
ĝ

(m)
n−1

])
= g(m)

n − µ(n)
(
PH(n)β2P (n) + µ(n)IK

)−1
(
E
[
ĝ

(m)
n−1

]
− g(m)

n

)
,

(4.76)

and

C
ĝ
(m)
n

, E
[(
ĝ(m)
n − E

[
ĝ(m)
n

]) (
ĝ(m)
n − E

[
ĝ(m)
n

])H]
=
(
PH(n)β2P (n) + µ(n)IK

)−1 (
PH(n)β2P (n)Cĝm(n)PH(n)β2P (n)

+µ2(n)C
ĝ
(m)
n−1

) (
PH(n)β2P (n) + µ(n)IK

)−1

=
(
PH(n)β2P (n) + µ(n)IK

)−1 (
σ2
m(n)PH(n)β2P (n)

+µ2(n)C
ĝ
(m)
n−1

) (
PH(n)β2P (n) + µ(n)IK

)−1
.

(4.77)

The bias of the estimated ĝ
(m)
n is

E
[
∆g(m)

n

]
= E

[
ĝ(m)
n

]
− g(m)

n

= µ(n)
(
PH(n)β2P (n) + µ(n)IK

)−1
(
g(m)
n − E

[
ĝ

(m)
n−1

])
.

(4.78)

Note that when we employ (4.14) to estimate the coefficients for the first time interval

as the initial vector and assume that the targets are stationary over the time intervals,

i.e., g
(m)
n = E

[
ĝ

(m)
n−1

]
, the estimator is also an unbiased estimator.
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Therefore by (4.76) and (4.77) we can get

MSE
ĝ
(m)
n

, E
[(
ĝ(m)
n − g(m)

n

) (
ĝ(m)
n − g(m)

n

)H]
=C

ĝ
(m)
N

+
(
E
[
ĝ(m)
n

]
− g(m)

n

) (
E
[
ĝ(m)
n

]
− g(m)

n

)H
=
(
PH(n)β2P (n) + µ(n)IK

)−1
(
σ2
m(n)PH(n)β2P (n)+µ2(n)

((
E
[
ĝ

(m)
n−1

]
− g(m)

n

)
(
E
[
ĝ

(m)
n−1

]
− g(m)

n

)H
+C

ĝ
(m)
n−1

))(
XH(N)β2X(N) + µ(N)IK

)−1

=

(
PH(n)β2P (n)

µ(n)
+ IK

)−1(
σ2
m(n)PH(n)β2P(n)

µ2(n)
+ MSE

ĝ
(m)
n−1

)
(
PH(n)β2P(n)

µ(n)
+ IK

)−1

,

(4.79)

where MSE
ĝ
(m)
n−1

,
(
E
[
ĝ

(m)
n−1

]
− g(m)

n

)(
E
[
ĝ

(m)
n−1

]
− g(m)

n

)H
+C

ĝ
(m)
n−1

. Implementing

eigendecomposition for the matrices MSE
ĝ
(m)
n−1

and PH(n)β2P (n) in (4.78) results

in

MSE
ĝ
(m)
n−1

=
K∑
k=1

λ
(k)

ĝ
(m)
n−1

u
(k)

ĝ
(m)
n−1

u
(k)H

ĝ
(m)
n−1

and PH(n)β2P (n) =
K∑
k=1

λ
(k)
P (n)u

(k)
P (n)u

(k)H
P (n),

(4.80)

where u
(k)

ĝ
(m)
n−1

and u
(k)
P (n) denote the kth eigenvector of MSE

ĝ
(m)
n−1

and PH(n)β2P (n),

respectively, and λ
(k)

ĝ
(m)
n−1

and λ
(k)
P (n) are the corresponding real eigenvalues. Then, the
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trace of MSE
ĝ
(m)
n

can be derived as

TMSE
ĝ
(m)
n

, Tr
{

MSE
ĝ
(m)
n

}
= Tr

{(
PH(n)β2P (n)

µ(n)
+ IK

)−2(
σ2
m(n)PH(n)β2P (n)

µ2(n)
+ MSE

ĝ
(m)
n−1

)}

= σ2
m(n)

K∑
k=1

λ
(k)
P (n)

(µ(n) + λ
(k)
P (n))

2 + µ2(n)
K∑
k=1

λ
(k)

ĝ
(m)
n−1

(µ(n) + λ
(k)
P (n))

2

=
K∑
k=1

µ2(n)λ
(k)

ĝ
(m)
n−1

+ σ2
m(n)λ

(k)
P (n)

(µ(n) + λ
(k)
P (n))

2 .

(4.81)

Note that TMSE
ĝ
(m)
n

=
K∑
k=1

σ2
m(n)

λ
(k)
P (n)

when µ(n) = 0, which means ĝ
(m)
n = ĝm(n). Mean-

while TMSE
ĝ
(m)
n

=
K∑
k=1

λ
(k)

ĝ
(m)
n−1

when µ(n) = +∞, implying that ĝ
(m)
n = ĝ

(m)
n−1. Other

values of µ(n) ∈ (0,+∞) may give an effective compromise between ĝm(n), an unsta-

ble BLUE based on the snapshots of the nth time interval only, and ĝ
(m)
n−1 as a stable

estimate obtained by using the previous n− 1 time intervals. Therefore, we now use

the first derivative with respect to µ(n) of (4.81) to obtain the optimal estimator for

g
(m)
n . The derivative is

dTMSE
ĝ
(m)
n

dµ(n)
=

2λ
(k)
P (n)

(µ(n) + λ
(k)
P (n))

3

K∑
k=1

(
µ(n)λ

(k)

ĝ
(m)
n−1

− σ2
m(n)

)
. (4.82)

For any µ(n) > 0 we have (µ(n) + λ
(k)
P (n))

3 > 0. By setting the RHS of (46) to zero, we

obtain the best regularized value, µ(n) = Kσ2
m(n)

/
K∑
k=1

λ
(k)

ĝ
(m)
n−1

which gives the optimal

estimate ĝ
(m)
n .
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4.3.4 Simulation Results for DOA Tracking

In this subsection, simulation results are presented to validate the proposed DOA

estimation and tracking techniques. In the first example, we consider two steady

signals from angles θ1 = −5◦ and θ2 = 5◦ with equal power impinging onto an array

with 3 sensors. The parameters for the array system are the same in the first example

of Section 4.2. Each experiment contains 1000 independent trials to compute the

root mean square error (RMSE). The proposed block QRD-RLS and the regularized

LS methods are compared with the LP method [59], the DEML method [54] as well

as the CRB [53, 54]. The second example shows the tracking performance of the

QRD-RLS method for different numbers of snapshots in each time interval, where the

coefficients are constant, along with that of the DEML method for one steady target

and one moving target using ULA with four sensors. In the third one, we will show the

tracking performance of our QRD-RLS method using SLA with different forgetting

factors, as well as their bias compensation results. The tracking performance for two

crossing moving targets is shown in the fourth example, where both the proposed

QRD-RLS and regularized LS methods are evaluated using the same SLA as in the

third example. Finally, the tracking performance for multiple moving sources with

the regularized LS is presented in the fifth example.

Example 1 : Estimation performance of steady targets with respect to SNR

We evaluate the DOA estimation performance of the proposed block QRD-RLS

and regularized LS methods against the SNR. The SNR of the two uncorrelated signals

is varied from -4 to 6 dB. The number of snapshots is P=100. The simulated RMSE
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Figure 4.7: RMSE of DOA estimation for two uncorrelated sources versus SNR from
-4 to 6dB at (a)θ1 = −5◦ and (b)θ2 = 5◦ with 100 snapshots.
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of the DOA estimate is shown in Fig.4.7, together with the CRBs for ULA and SLA.

It is seen that the simulated RMSEs of the proposed method for ULA and SLA are

almost identical to their respective CRBs. It is also seen that the simulated RMSEs

of the proposed method decreases monotonically with increasing SNR. In addition,

although the LP and DEML methods exhibit the same performance as our proposed

method in the case of using ULA, yet our methods can make use of SLA to improve

the estimation performance significantly.

Example 2 : Tracking performance for one steady and one moving targets

This example studies the tracking performances of the proposed block QRD-RLS

method with µ = 0.98 and the DEML method using a four-sensor ULA. Two equal

power uncorrelated signals with SNR=10dB impinge on ULA, where the first angle is

0◦ and the other one is governed by

DOA =


10− n/100 n ∈ [1 400]

6− 2.5(n− 400)/10 n ∈ [401 440]

−4− 7.5(n− 440)/1000 n ∈ [441 1000]

(4.83)

Here, we assume that each time interval has N snapshots, and we employ N = 5

and N = 10 snapshots for DEML and N = 2 and N = 10 snapshots for our QRD-

RLS method, respectively, to update and track the DOAs. The results are shown in

Fig.4.8(a) and 4.8(b). Note that the DEML method is unable to track angles when

N = 5, while the proposed method yields satisfactory tracking results even when

N = 2. The possible explanation is that the recursion-based technique is employed

in our method, while DEML is a batch based technique. From Fig.4.8(b), we also
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Figure 4.8: Tracking of two sources with a four-sensor ULA: one DOA fixed at 0◦ and
one moving from 10◦ to −8◦ using(a) DEML method, and (b) proposed QRD-RLS
method.
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observe that the more the snapshots used in the same time interval, the better the

performance in terms of the variance.

Example 3 : Tracking performance for different forgetting factors with the bias

compensation

The tracking performance of the proposed block QRD-RLS method with µ = 0.98

and µ = 0.90 as well as their bias compensation results is presented in Fig.4.9. The

simulation conditions are as follows: N = 10, SNR=10dB, d1 = 1, d2 = 5, one steady

target fixed at 0◦ and the other moving target generated according to

DOA =


20− n/100 n ∈ [1 400]

16− 2.5(n− 400)/10 n ∈ [401 440]

6− 7.5(n− 440)/1000 n ∈ [441 1000]

(4.84)

It can be seen from Fig.4.9(a) that the larger the forgetting factor, the better the

tracking performance for the fast moving target at the cost of a larger variance.

Fig.4.9(a) indicates that we can improve the tracking performance for the fast moving

target by exploiting the bias compensation term in (4.78).

Example 4 : Tracking errors for two crossing moving targets

Here, we present the tracking errors between the estimated DOA and the true

DOA of two crossing moving targets according to 10 × cos(π × n/2000) and 10 ×

sin(π × n/2000), where the array system model is the same as in the third example.

From Fig.4.10, we see that the regularized LS has the best tracking performance for

the fast moving targets in terms of the bias; however, it has the largest variance.

Example 5 : Performance of DOA tracking for multiple moving targets
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Figure 4.9: Tracking performance for (a)different forgetting factors and (b) their
corrsponding bias compensation results with SNR=10dB and N=10
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Figure 4.10: Tracking errors between the estimated DOA and the true DOA of the
crossing moving targets changing at (a)10 × cos(π × n/2000) and (b) 10 × sin(π ×
n/2000) via SLA with d1 = 1 and d2 = 5, where SNR=10dB and N=10.
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Figure 4.11: Tracking multiple sources with one steady target plus (a) two moving
targets via ULA, or (b) three moving targets via SLA with d1 = 1 and d2 = 5,
where SNR=10dB and N=10.
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The tracking performance of the proposed regularized LS method for multiple

targets is studied. Here we consider both the 3-source and 4-source scenarios. In

the case of 2 moving targets with one steady target fixed in 0◦, the two moving

tracks of the DOA are described by 10× cos(π × n/2000) and 10× sin(π × n/2000),

respectively, with the complex gains given by Ξ(n) = diag(ejπ/4, e−jπ/4, 1). In the

case of 4 targets, three targets have the same tracks as in the 3-source case and the

other one is expressed by (4.84), and the gains are Ξ(n) = diag(ejπ/4, e−jπ/4, 1,−1).

Other simulation conditions are the same as in Example 3. It can be seen from

Fig.4.11 that the proposed method provides a good tracking performance for multiple

moving targets and the estimated tracks are almost identical to the true values even

when the number of targets is larger than or equal to the number of sensors, which is

unobtainable from the traditional methods without using the temporal information.

4.4 Conclusion

In this chapter, we have proposed a very efficient DOA estimation method for signals

with known waveforms based on sparse linear array. Different from the traditional

methods used to estimate DOA with known waveforms, our method splits the LS

problem into several linear regression expressions, wherein each coefficient of the lin-

ear regression model includes a pair of angle and gain. The optimal estimator for the

DOA and gain has been derived along with its statistical performance analysis. When

DOAs of the targets are varying with the time interval, we have proposed two efficien-

t DOA estimation and tracking methods based on a linear regression model, termed
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the block QRD-RLS technique and the block regularized LS. Thanks to the temporal

information of the incident signals, we have been able to employ linear regression

analysis to exploit the spatial information of the signals impinging on each sensor,

and develop efficient QRD-RLS and regularized LS methods to update the changing

regression coefficents. Simulation results have shown that our proposed method can

provide a better DOA estimation and tracking performance than the previous meth-

ods, such as the LP and the DEML do. In addition, it is confirmed that the larger the

array aperture, the better the estimation and tracking performance, making it possi-

ble to achieve the desired performance via a sparse array without having to handle

the ambiguity. It is also worth noting that the proposed DOA estimation/tracking

techniques are based on the assumption that each sensor can be considered as a linear

regression model, therefore, these techniques can be used for arbitrary arrays includ-

ing the special arrays proposed in Chapters 2 and 3 along with some phase unwrapped

techniques.
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Chapter 5

Summary and Further Research

Directions

5.1 Concluding Remarks

In this thesis, the problem of DOA estimation and tracking using sparse array systems

has been thoroughly studied. By meticulously designing sparse array geometries,

several approaches have been developed to estimate and track the DOAs of different

types of source signals including those with known or unknown waveforms or modelled

by autoregressive (AR) signals.

First, two nonuniform sparse linear arrays (SLAs) have been designed to improve

the accuracy of conventional DOA estimation methods. One is based on the principle

of the minimum redundancy linear array (MRLA) and the interferometer sensing for

estimating 1-D DOA of uncorrelated sources, and constructs an extended correlation

matrix by using the Kronecker steering vectors (KSVs) each containing a pair of
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ambiguous and unambiguous angles. The other is constructed by two sparse uniform

linear arrays (ULAs) for estimating 1-D DOA of correlated sources, where the inter-

element spacing of each sparse ULA is much large than half wavelength, while the

minimal inter-element spacing of the whole sparse linear array is less than or equal

to half wavelength. By this scheme, a new array design strategy to improve the DOA

estimate accuracy significantly is proposed with the addition of the appropriate DOA

estimation algorithms. Inspired by the idea of the generalized ESPRIT, we have

obtained the rough DOA without ambiguity, and then designed the alternating null-

steering technique to select the true fine DOA in the interval around the rough DOA.

We have also proposed a computationally efficient 2-D DOA estimation method based

on sparse L-shaped array for estimating 2-D DOA of correlated sources, where one

ULA is arranged along the z-axis and one SLA on the x-axis. In this method, the

elevation angle is estimated by the cross-correlation matrix that is free of the effect

of additional noise, and then the source waveform is estimated using the estimated

elevation angle. By taking advantage of the estimated source waveform and elevation

angle, a total least squares-like technique is exploited to estimate the spatial signatures

in terms of the azimuth angle of the incident signals. This method has avoided the pair

matching problem due to the one-to-one relationship between the source waveform and

the corresponding incident angle.

Second, the DOA estimation of AR-modeled source signals has been investigated.

Using the properties of these signals and the symmetrical sparse array structures we

have proposed two Kalman fiter-based DOA estimation methods. The first method via

symmetrical sparse array consists of two main steps: (i) to obtain the source waveform

137



of the AR modeled source signal by the celebrated Kalman filter; and (ii) to estimate

the DOAs and AR coefficients by exploiting the efficient QR-decomposition-based

recursive least square (QRD-RLS) technique. There are two advantages with this

method over the traditional methods. One is that the AR-modeled sources can provide

useful temporal information to handle cases such as the number of sources being larger

than the number of antennas. The other is that the QRD-RLS is exploited to estimate

the slowly changing targets during the same time interval. In addition, the symmetric

array enables one to transfer a complex-valued nonlinear problem to a real-valued

linear one, thus reducing the computational complexity. Although this technique can

provide a good DOA estimation and tracking performance with small computational

burden, there are still some restrictions such as symmetric sparse array and real-valued

AR coefficients. Therefore, to overcome these weaknesses, we have proposed another

DOA estimation technique for AR-modeled sources based on SLA. Each sensor of

the array is considered as a subsystem to obtain the angle information for the DOA

estimation, and then an asymptotic optimal unbiased estimator is developed to obtain

the final DOAs based on total least squares-like technique. In addition, our proposed

estimator can be used in the array configurations proposed in Chapter 2.

Third, we have considered the DOA estimation of signals with known waveform.

In this regard, we have introduced a very efficient DOA estimation method based on

sparse linear array. Different from the traditional methods used to estimate DOA with

known waveforms, our method splits the LS problem into several linear regression ex-

pressions, wherein each coefficient of the linear regression model includes a pair of

angle and gain. The optimal estimator for the DOA and gain has been derived along
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with a study of its statistical performance. Furthermore, for the moving targets, we

have proposed two efficient DOA estimation and tracking methods based on linear

regression models, one is called the block QRD-RLS technique and the other is the

block regularized LS. Thanks to the temporal information in the incident signals, we

can employ the linear regression models to deal with the spatial information of signals

impinging on each sensor, and then employ the efficient QRD-RLS and regularized

least squares methods to handle the linear regression models. Therefore, our pro-

posed techniques can be utilized in general sparse arrays including those proposed in

Chapters 2 and 3 with the help of some disambiguity methods.

5.2 Suggestions for Further Research

During my four years of study for DOA estimation and tracking based on sparse array

systems, some original ideas have been proposed on designing sparse array systems and

developing efficient algorithms for estimating and tracking DOAs of incident targets.

There are still some issues that require further investigations.

• The proposed 2-D DOA estimation method using sparse L-shaped array and

total least squares techniques can be generalized to the arbitrary planar or cubic

sparse array to implement the accurate 2-D DOA estimation.

• Although the new total least squares-based 2-D DOA estimation proposed in

Chapter 2 is computationally efficient with good performance, it is still a batch

processing algorithm. In many applications, such as target tracking, the covari-

ance matrix changes on a snapshot-by-snapshot or time interval-by-time interval
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basis. Batch processing definitely becomes worse in such a scenario. Efficient

and effective ways of updating the DOA will be more attractive for real-time

applications. To the best of our knowledge, there is no such tracking technique

that exploits the special array structure along with signal spatial signatures to

track the signal’s DOA. Also, its sensitivity analysis is worth-studying.

• The proposed total least squares-based 2-D DOA estimation algorithm is based

on the assumption that the elevation angle is perfectly estimated. In practice,

the measurements are noisy and the estimation of the elevation angle is not

perfect. The use of (2.42) to estimate the source waveform may suffer from the

bias due to the estimation error of the elevation angle. Therefore, it is necessary

derive a more effective and robust total least squares-based method to minimize

the error influence from the estimated elevation angle.

• The proposed DOA estimation method using Kalman filter and total least

squares techniques can be extended to the situation where the noise is character-

ized by heavier tails and generating high-intensity distribution, named outliers.

Robust statistical procedures would be desired to cope with the outlying data

points and reduce the influence of the outliers [110–113].

• The least squares-based method for estimating and tracking the DOA of signals

with known waveform could be extended to the case where the source waveform

of interest is affected by random errors which may cause uncertainties about

the source waveforms. As shown in Chapter 4, the least squares-based method

can be implemented very well to estimate DOA due to the fact that the source
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waveform of interest is completely known or perfectly estimated. Unfortunately,

the source waveform of interest in many applications are contaminated by noise

and thus must be estimated from noisy measurements. In such a case, the LS

method suffers from bias and increased covariance due to the accumulation of

noise errors in Rpp of (4.15). Therefore, a total least square-like method should

be developed to alleviate the effect of the noise or the estimate error from the

estimated waveforms.
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Appendix A

Derivation of the Mean and

Covariance of bmMTLS in Eq.(2.45)

Using the results in (2.43), we can write the matrix ŜHŜ as

ŜHŜ = [S +Ns]
H [S +Ns] = SHS +NH

s S + SHNs +NH
s Ns

(A.1)

where Ns = [ns(1),ns(2), · · · ,ns(N)]T . Following the same idea as in [82], we can

express ŜHŜ −NCns as

ŜHŜ −NCns = SHS + (NH
s S + SHNs +NH

s Ns −NCns)

, Rs +4Rs

. (A.2)

It is easy to verify that

E[4Rs] = E[NH
s S + SHNs +NH

s Ns −NCns ] = 0. (A.3)
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Assuming that the eigenvalues of R−1
s 4Rs are less than unity [82], the first-order

expansion of (ŜHŜ −NCns)
−1 in terms of 4Rs can be expressed as

(ŜHŜ −NCns)
−1 = (Rs +4Rs)

−1 ' R−1
s −R−1

s 4RsR
−1
s . (A.4)

Therefore, bmMTLS
can be rewritten as

bmMTLS
' (R−1

s −R−1
s 4RsR

−1
s )(S +Ns)

Hxm

= (R−1
s −R−1

s 4RsR
−1
s )(S +Ns)

H(Sbm + nx,m)

= (R−1
s −R−1

s 4RsR
−1
s )(Rsbm +NH

s nx,m +NH
s Sbm + SHnx,m)

= bm + (R−1
s N

H
s S −R−1

s 4Rs −R−1
s 4RsR

−1
s N

H
s S)bm

+ (R−1
s −R−1

s 4RsR
−1
s )(NH

s nx,m + SHnx,m)

. (A.5)

Obviously, if the number of snapshots is large enough, we can obtain lim
N→∞

4Rs

N
w 0,

and then bmMTLS
' bm +R−1

s Ŝ
Hnx,m. As such, it is easy to show that the mean of

bmMTLS
equals bm and its covariance can be obtained as

CbMTLS
= E[(bmMTLS

− bm)(bmMTLS
− bm)H ]

= R−1
s E[ŜHnx,mn

H
x,mŜ]R−Hs

= σ2R−1
s (Rs +NCns)R

−H
s

. (A.6)
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Appendix B

Derivation of the Mean and

Covariance of Am
TLS in Eq.(3.41)

Let us define ŝ(i) , s(i) + s̃(i) = [p̂1(i|i), p̂2(i|i), · · · , p̂K(i|i)]T , where s̃(i) is a K

dimensional random Gaussian vector with zero mean and the covariance Cs̃(i) =

Cŝ(i) = ΓP (i|i)ΓT . Thus, we can obtain

Ŝ∗ŜT = [S + S̃]∗[S + S̃]T = S∗ST + S̃∗ST + S∗S̃T + S̃∗S̃T (B.1)

It can easily be verified that the covariance

E[Ŝ∗ŜT ] = E[S∗ST ] +
N∑
i=1

Cŝ(i). (B.2)

In a manner similar to the derivation in Appendix A, we denote

(Ŝ∗ŜT )−
N∑
i=1

Cŝ(i) , RS(N) +4RS(N), (B.3)

where RS(N) , S∗ST and 4RS(N) , S̃∗ST + S∗S̃T + S̃∗S̃T −
N∑
i=1

Cŝ(i). Recalling

(B.2), wean obtain

E[4RS(N)] = 0. (B.4)
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Similar to the result of (A.4), the first-order expansion of RS(N) +4RS(N) in terms

of 4RS(N) can be expressed as

(RS(N) +4RS(N))−1 ' R−1
S (N)−R−1

S (N)4RS(N)R−1
S (N). (B.5)

Thus, the TLS estimate for AmT can be given by

AmT
TLS ' (R−1

S (N)−R−1
S (N)4RS(N)R−1

S (N))Ŝ∗xm

'
(
IK +R−1

S (N)4RS(N)
)
AmT

+
(
R−1
S (N)−R−1

S (N)4RS(N)R−1
S (N)

)
Ŝ∗em,

(B.6)

and its mean is

E[AmT
TLS] '

(
IK +R−1

S (N)E[4RS(N)]
)
AmT

+
(
R−1
S (N)−R−1

S (N)E[4RS(N)]R−1
S (N)

)
S∗E[em]

= AmT ,

(B.7)

and its auto-covariance is

CAmT
TLS

, E[(Am
TLS −Am)T (Am

TLS −Am)∗]

= R−1
S (N)E

[
Ŝ∗eme

H
mŜ
]
R−HS (N)

= σ2
mR

−1
S (N)

(
RS(N) +

N∑
i=1

Cŝ(i)

)
R−HS (N),

(B.8)

where we have made use of the fact that lim
N→∞

4RS(N) ' 0. Similarly, the cross-

covariance is given by

CApT
TLS ,A

qT
TLS

, E[(Ap
TLS −A

p)T (Aq
TLS −A

q)∗]

= R−1
S (N)E

[
Ŝ∗epe

H
q Ŝ
]
R−HS (N)

= Re(p, q)R
−1
S (N)

(
RS(N) +

N∑
i=1

Cŝ(i)

)
R−HS (N), p 6= q.

(B.9)
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Appendix C

Derivation of the Mean and

Covariance of 4dk in Eq.(3.43)

Using the result in Appendix B, we can get the asymptotic estimate of AmT

ÂmT , lim
N→∞

AmT
TLS ' AmT +R−1

S (N)Ŝ∗em , AmT +4AmT , (C.1)

where 4AmT , [4am(θ1),4am(θ2), · · · ,4am(θK)] denotes the error vector of the

estimated ÂmT . Using (B.8) and (B.9) and omitting the second noise term, it is easy to

show that4am(θk) is a zero mean Gaussian random variable with variance σ2
4am(θk) =

[CAm
TLS

]k,k. As we assume that the array noise is uncorrelated or i.i.d Gaussian noise,

the covariance of 4am(θk) equals zero, i.e., σ4ap(θk),4aq(θk) , E[4ap(θk)4aq∗(θk)] =

0, p 6= q. Let us define

d̂mk , âm−1(θk)â
m∗(θk) ' ejdmψk +4am−1(θk)e

jϕm
k +4am∗(θk)e−jϕ

m−1
k , (C.2)
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where 4dmk , 4am−1(θk)e
jϕm

k + 4am∗(θk)e−jϕ
m−1
k denotes the estimation error of

dmk , ejdmψk . From (C.1) and (C.2), we can easily verify that d̂mk is a random Gaussian

variable. Therefore, its mean equals E[d̂mk ] = ejdmψk and its variance is given by

σ2
4dmk

= E[4dmk 4dm∗k ] = σ2
4am(θk) + σ2

4am−1(θk). (C.3)

Similarly, the covariance of d̂mk is

σ4dpk,4d
q
k

= E[4dpk4d
q∗
k ]

= E[4ap−1(θk)4a(q−1)∗(θk)]e
jϕp

ke−jϕ
q
k

+ E[4ap∗(θk)4aq(θk)]e−jϕ
p−1
k ejϕ

q−1
k

= 0, p 6= q.

(C.4)
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Appendix D

Statistics of Re(4g(m)
k ) and

Im(4g(m)
k ) in Eq.(4.26)

From (4.18) and (4.19), we have the estimation error vector4gm = [4g(m)
1 ,4g(m)

2 , · · · ,

4g(m)
K ]T = Πnm, where Π , (P ∗P T )−1P ∗ is a deterministic complex matrix and gm

is a zero-mean complex Gaussian random vector with covariance
σ2
m[R

(−1)
pp ]k,k
N

. We can

rewrite the estimation error 4g(m)
k as

4g(m)
k = Re(4g(m)

k ) + jIm(4g(m)
k )

= [Re(Π(k, :)) + jIm(Π(k, :))][Re(nm) + jIm(nm)]

=

 Re
(
ΠT (k, :)

)
Im
(
ΠT (k, :)

)

T  Re (nm)

−Im (nm)

+ j

 Re
(
ΠT (k, :)

)
Im
(
ΠT (k, :)

)

T  Im (nm)

Re (nm)


.

(D.1)

Since nm is i.i.d. complex Gaussian noise, it is easy to verify that 4g(m)
k , as a

linear combination of nm, is a complex Gaussian random variable. Hence, the real

part Re
(
4g(m)

k

)
=


 Re

(
ΠT (k, :)

)
Im
(
ΠT (k, :)

)

T  Re (nm)

−Im (nm)


 is also Gaussian and its
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expectation can be obtained as

E
[
Re
(
4g(m)

k

)]
= [Re (Π(k, :)) Im (Π(k, :))]E

 Re (nm)

−Im (nm)

=0 (D.2)

where we have used the assumptions E [Re (nm)] = 0 and E [Im (nm)] = 0. The

variance of Re
(
4b(m)

k

)
can then be computed as

Var
(

Re
(
4g(m)

k

))
4
= E

[(
Re
(
4g(m)

k

))2
]

=

 Re
(
ΠT (k, :)

)
Im
(
ΠT (k, :)

)

T

E


 Re (nm)

−Im (nm)


 Re (nm)

−Im (nm)


T
 Re

(
ΠT (k, :)

)
Im
(
ΠT (k, :)

)


=σ2
m

2

 Re
(
ΠT (k, :)

)
Im
(
ΠT (k, :)

)

T  Re

(
ΠT (k, :)

)
Im
(
ΠT (k, :)

)


=σ2
m

2

(
Π(k, :)ΠH(k, :)

)
= σ2

m

2N

[
R−1
pp

]
k,k
.

(D.3)

Similarly, we can obtain E
[
Im
(
4g(m)

k

)]
= 0 and Var

(
Im
(
4g(m)

k

))
= σ2

m

2N

[
R−1
pp

]
k,k

.

Therefore, with the estimated noise variance σ̂2
m in (4.25), the statistics of the real

and imaginary parts of 4g(m)
k have been obtained. Finally, we show that Re(4g(m)

k )

and Im(4g(m)
k ) are uncorrelated, namely,

Cov
(

Re
(
4g(m)

k

)
, Im

(
4g(m)

k

))
4
= E

[
Re
(
4g(m)

k

)
Im
(
4g(m)

k

)]
=

 Re
(
ΠT (k, :)

)
Im
(
ΠT (k, :)

)

T

E


 Re (nm)

−Im (nm)


 Im (nm)

Re (nm)


T
 Re

(
ΠT (k, :)

)
Im
(
ΠT (k, :)

)


=σ2
m

2

 Re
(
ΠT (k, :)

)
Im
(
ΠT (k, :)

)

T  0 IN

−IN 0


 Re

(
ΠT (k, :)

)
Im
(
ΠT (k, :)

)
=σ2

m

2
0 = 0.

(D.4)
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Appendix E

Statistics of 4a(m)
k in Eq.(4.28)

From (4.26)-(4.28), we get

â
(m)
k ,

ĝ
(m)
k ĝ

(0)∗
k

|εk|2

=
(εke

−jϕ(m)
k +4g(m)

k )(εk +4g(0)∗
k )

|εk|2

=
|εk|2e−jϕ

(m)
k +4g(m)

k ε∗k + εke
−jϕ(m)

k 4g(0)∗
k +4g(m)

k 4g
(0)∗
k

|εk|2

≈ e−jϕ
(m)
k +

4g(m)
k ε∗k + εke

−jϕ(m)
k 4g(0)∗

k

|εk|2

, e−jϕ
(m)
k +4a(m0)

k +4a(0m)
k ,

(E.1)

where 4a(0m)
k , 4g(m)

k ε∗k
|εk|2

and 4a(m0)
k , εke

−jϕ
(m)
k 4g(0)∗k

|εk|2
are the first-order estimation

errors. In obtaining (E.1), the second-order estimation error term has been ignored

due to the fact that
4g(m)

k 4g(0)∗k

|εk|2
is too small relative to â

(m)
k to affect the estimation

result. By using the results of 4g(m)
k in Appendix D, it can easily be verified that

both 4a(0m)
k and 4a(m0)

k are complex Gaussian random variables. Their expectations

are, respectively, given by

E
[
4a(0m)

k

]
=
E
[
4g(m)

k

]
εk

= 0
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and

E
{
4a(m0)

k

}
=
E
[
4g(0)∗

k

]
e−jϕ

(m)
k

ε∗k
= 0

and thus, the expected value of 4a(k)
m = 4a(0m)

k +4a(m0)
k is also zero. Moreover, the

variances of 4a(0m)
k and 4a(m0)

k are given by

Var(4a(0m)
k ) = E

[
4a(0m)

k 4a(0m)∗
k

]
=
E
[
4g(m)

k 4g
(m)∗
k

]
|εk|2

Var(4a(m0)
k ) = E

[
4a(m0)

k 4a(m0)∗
k

]
=
E
[
4g(0)

k 4g
(0)∗
k

]
|εk|2

Therefore, the variance and covariance of 4a(m)
k can be obtained as follows.

Var(4a(m)
k ) = E

[(
4a(0m)

k +4a(m0)
k

)(
4a(0m)

k +4a(m0)
k

)∗]
= Var(4a(0m)

k ) + Var(4a(m0)
k )

=

(
Var

(
4g(m)

k

)
+ Var

(
4g(0)

k

))
|εk|2

=
(σ2

m + σ2
0)
[
R−1
pp

]
k,k

N |εk|2
,

(E.2)

and

Cov(4a(p)
k ,4a(q)

k ) , E[(4a(0p)
k +4a(p0)

k )(4a(0q)
k +4a(q0)

k )∗]

= E
[
∆a

(0p)
k ∆a

(0q)∗
k

]
+ E

[
∆a

(p0)
k ∆a

(0q)∗
k

]
+ E

[
∆a

(p0)
k ∆a

(q0)∗
k

]
+E

[
∆a

(0p)
k ∆a

(q0)∗
k

]
=
E
[
∆b

(q)
k ∆b

(p)∗
k

]
+ e−jϕ

(m)
k E

[
∆b

(q)
k ∆b

(0)∗
k

]
|εk|2

+
ejϕ

(m)
k E

[
∆b

(0)
k ∆b

(p)∗
k

]
+ E

[
∆b

(0)
k ∆b

(0)∗
k

]
|εk|2

=
Var

(
∆g

(0)
k

)
|εk|2

=
σ2

0

[
R−1
pp

]
k,k

N |εk|2
, p 6= q ∈ [1, 2, · · · ,M ].

(E.3)
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Appendix F

Derivation of Eq.(4.38)

Since the ambiguities are solved by (4.32)-(4.37), the estimated value of Φk can be

obtained as

Φ̂k =
[
ϕ̂

(1)
k , ϕ̂

(2)
k , · · · , ϕ̂(M)

k

]T
(F.1)

where ϕ̂
(m)
k = −∠

(
â

(m)
k

)
+ 2πl

(m)
k = −∠

(
a

(m)
k

)
+ 2πl

(m)
k + 4ϕ(m)

k and 4ϕ(m)
k ,

ϕ̂
(m)
k − ϕ(m)

k . Using the first-order Taylor series expansion, we have

e−jϕ̂
(m)
k ≈ e−jϕ

(m)
k − j4ϕ(m)

k e−jϕ
(m)
k = e−jϕ

(m)
k +4a(m)

k , (F.2)

where 4ϕ(m)
k = j4a(m)

k ejϕ
(m)
k . Considering that the estimation error 4ϕ(m)

k is a real

quantity, we let

4ϕ(m)
k = Re

[
j4a(m)

k ejϕ
(m)
k

]
= −Re

[
4a(m)

k

]
sin(ϕ

(m)
k )− Im

[
4a(m)

k

]
cos(ϕ

(m)
k ). (F.3)
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From Appendices D and E, it is easy to prove that both Re
[
4a(m)

k

]
and Im

[
4a(m)

k

]
have an identical distribution N(0, 1

2
Ωk). Therefore, 4ϕ(m)

k as a linear combination

of Re
[
4a(m)

k

]
and Im

[
4a(m)

k

]
is a real-valued Gaussian random variable, and its

expectation is

E
[
4ϕ(m)

k

]
= E

[
−Re

(
4a(m)

k

)
sin(ϕ

(m)
k )− Im

(
4a(m)

k

)
cos(ϕ

(m)
k )

]
= −E

[
Re
(
4a(m)

k

)]
sin(ϕ

(m)
k )− E

[
Im
(
4a(m)

k

)]
cos(φ

(m)
k )

= 0.

(F.4)

The covariance of 4ϕ(m)
k can be calculated as

Cov
(
4ϕ(p)

k ,4ϕ(q)
k

)
, E

[
4ϕ(p)

k 4ϕ
(q)
k

]
=E

[
Re
(
4a(p)

k

)
Re
(
4a(q)

k

)]
sin(ϕ

(p)
k ) sin(ϕ

(q)
k )

+ E
[
Im
(
4a(p)

k

)
Im
(
4a(q)

k

)]
cos(ϕ

(p)
k ) cos(ϕ

(q)
k )

=
1

2
Cov

(
4a(p)

k ,4a(q)
k

)
.

(F.5)

where we have used the fact that sin(ϕ
(p)
k ) = sin(ϕ

(q)
k ) and cos(ϕ

(p)
k ) = cos(ϕ

(q)
k ) .

Clearly, the variance of4ϕ(m)
k is given by Var

(
4ϕ(m)

k

)
, E

[(
4ϕ(m)

k

)2
]

=1
2
Var

(
4a(m)

k

)
.
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Appendix G

Statistics of ε̂
(m)
k in Eq.(4.43)

We rewrite (4.40) as

ψ̂k , ψk +4ψk =
dTΣ−1

k Φ̂k

dTΣ−1
k d

,
dTΣ−1

k Φk

dTΣ−1
k d

+
dTΣ−1

k 4Φk

dTΣ−1
k d

. (G.1)

where ∆Φk
∆
=
[
∆ϕ

(1)
k ,∆ϕ

(2)
k , . . . ,∆ϕ

(M)
k

]T
, and ∆ψk =

M∑
m=1

ωm∆ϕ
(m)
k with ωm =(

dT Σ−1
k

dT Σ−1
k d

)
1,m

being the mth element of
dT Σ−1

k

dT Σ−1
k d

. From Appendix E and (F.5), we can

obtain

e
j

m∑
i=1

di(ψk+4ψk)
≈ e

j
m∑
i=1

diψk

+ j

m∑
i=1

di4ψke
j

m∑
i=1

diψk

= e
j

m∑
i=1

diψk

+ j
m∑
i=1

die
j

m∑
i=1

diψk

M∑
m=1

ωmj∆a
(m)
k
e
j

m∑
i=1

diψk

= e
j

m∑
i=1

diψk −
m∑
i=1

di

M∑
m=1

ωm4a(m)
k e

j
m∑
i=1

(di+dm)ψk

(G.2)

such that
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ε̂
(m)
k = ĝ

(m)
k e

jψ̂k

m∑
i=1

di

= (εke
−jψk

m∑
i=1

di
+4g(m)

k )(e
j

m∑
i=1

diψk −
m∑
i=1

di

M∑
m=1

ωm4a(m)
k e

j
m∑
i=1

(di+dm)ψk

)

= εk + εk

m∑
i=1

di

M∑
m=1

ωm4a(m)
k e

jψk

m∑
i=1

di
+4g(m)

k e
jψk

m∑
i=1

di

= εk +

εk
m∑
i=1

di

|εk|2
M∑
m=1

ωm(∆g
(m)
k ε∗k + εk∆g

(0)∗
k e

−jψk

m∑
i=1

di
)e
jψk

m∑
i=1

di

+ ∆g
(m)
k e

jψk

m∑
i=1

di

= εk + (
m∑
i=1

diωm + 1)∆g
(m)
k e

jψk

m∑
i=1

di
+

m∑
i=1

di

M∑
i6=m

ωi4g(i)
k e

jψk

m∑
i=1

di

+

εk
m∑
i=1

di

ε∗k
4g(0)∗

k

M∑
i=1

ωi

, εk +4ε(m)
k

(G.3)

where the second or higher order estimation errors are omitted. (G.3) shows that

4ε(m)
k is a zero-mean Gaussian random variable, whereby one can obtain its covariance
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as follows.

[Hk]p,q , E
{

∆ε
(p)
k ∆ε

(q)
k

}
p 6= q

=

p∑
i=1

di

q∑
i=1

diE
{

∆g
(0)
k ∆g

(0)∗
k

}( M∑
i=1

ωi

)2

+ (

p∑
i=1

diωp + 1)

q∑
i=1

diE
{

∆b
(p)
k ∆b

(p)∗
k

}
+ (dqωq + 1)dpE

{
∆g

(q)
k ∆g

(q)∗
k

}
+

p∑
i=1

di

q∑
i=1

di

M∑
i6=p,q

ω2
iE
{

∆g
(i)
k ∆g

(i)∗
k

}

= Var
(

∆g
(0)
k

)( M∑
i=1

ωi

)2 p∑
i=1

di

q∑
i=1

di + Var
(

∆g
(p)
k

)
(

p∑
i=1

diωp + 1)

p∑
i=1

di

+Var
(

∆g
(q)
k

)
(

q∑
i=1

diωq + 1)

q∑
i=1

di +

p∑
i=1

di

q∑
i=1

di

M∑
i6=p,q

ω2
i Var

(
∆g

(i)
k

)
(G.4)

Obviously, the variance of ∆ε
(m)
k is given by

[Hk]m,m , Var
(
4ε(m)

k

)
= E

{
∆ε

(m)
k 4ε

(m)∗
k

}
= (

m∑
i=1

diωm + 1)2E
{
4g(m)

k 4g
(m)∗
k

}
+

(
m∑
i=1

di

)2 M∑
i6=m

ω2
iE
{
4g(i)

k 4g
(i)∗
k

}

+ E
{
4g(0)

k 4g
(0)∗
k

}( m∑
i=1

di

M∑
i=1

ωi

)2

=

(
m∑
i=1

di

)2 M∑
i=1

ω2
i Var

(
4g(i)

k

)
+

(
m∑
i=1

di

M∑
i=1

ωi

)2

Var
(
4g(0)

k

)
+ (2

m∑
i=1

diωm + 1)Var
(
4g(m)

k

)
.

(G.5)
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Appendix H

Proof of Lemma 1 in Section 4.3

Let us consider the following partitioned (m+ n)×K matrix,

Z =
[
XT Y T

]T
, (H.1)

both X and Y being full column rank matrices with the dimensions of m ×K and

m×K, respectively, such that we can implement the QRD for X and Y as

X = QX

[
AT 0T(m−K)×K

]T
and Y = QY

[
BT 0T(n−K)×K

]T
, (H.2)

where QX and QY are unitary matrices, and A and B are the corresponding unique

upper triangular matrices of full rank. Next, constructing an unitary matrix as

QZ ,

 QX 0m×n

0n×m QY

 (H.3)
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and using (H.2), we have

QH
z Z =

[
AT 0T(m−K)×K BT 0T(n−K)×K

]T
. (H.4)

Since the null submatrices in (H.4) have no effect on the construction of matrix QZ

based on the QRD technique, the construction of QZ is equivalent to finding a unitary

matrix for evaluating the QRD of
[
AT BT

]T
. End of the proof.
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Appendix I

Proof of Lemma 2 in Section 4.3

Let us consider the following two block matrices

G =

 IK S

−SH Im

 and T =
[
AT BT

]T
, (I.1)

where A is an invertible matrix of order K, B is an m×K matrix and S is a K ×m

matrix. From (I.1), we can get

GT =

 IK S

−SH Im

 [AT BT
]T

=

 A+ SB

−SHA +B

 . (I.2)

Obviously, by setting −SHA + B = 0, we can obtain a solution for S, namely,

S = A−HBH , which is a (m + K) × (m + K) nonsingular lower triangular matrix.
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Let us consider another (m+K)× (m+K) block diagonal matrix

Σ =

 C1 0K×m

0m×K C2

 , (I.3)

where C1 is a K×K invertible matrix and C2 is a m×m invertible matrix. By using

(I.1) and (I.3), we can obtain

ΣG(ΣG)H =

 C1 0K×m

0m×K C2


 IK S

−SH Im


 IK −S

SH Im


 CH

1 0K×m

0m×K CH
2



=

 C1 0K×m

0m×K C2


 IK+SSH 0K×m

0m×K Im+SHS


 CH

1 0K×m

0m×K CH
2

 .
(I.4)

It is easy to verify that the RHS of (I.4) is an identity matrix if we set C1

(
IK + SSH

)
CH

1 = IK andC2

(
Im + SSH

)
CH

2 = Im. Then, the matrix ΣG is unitary. Therefore,

we get

C−1
1 C−H1 =

(
IK + SSH

)
and C−1

2 C−H2 =
(
Im + SHS

)
. (I.5)

Since the two symmetric nonnegative definite matrices in (I.5) can be rewritten as(
IK + SSH

)
, DH

1 D1 and
(
IP + SHS

)
, DH

2 D2, where D1 , C−H1 and D2 ,

C−H2 are the corresponding Cholesky factors, by substituting S = A−HBH in (I.4) we

have thatD1 andD2 are the unique upper triangular matrices ofA−H
(
AHA+BHB

)
A−1 and

(
B
(
AHA

)−1
BH + Im

)
. Thus, there exists a unitary matrix such that
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QH =

 C1 C1A
−HBH

−C2BA
−1 C2

 =

 D−H1 D−H1 A−HBH

−D−H2 BA−1 D−H2

 to annihilate the matrix B

and produce a new matrix, that is,

QHT =

 D−H1 D−H1 A−HBH

−D−H2 BA−1 D−H2

 [AT BT
]T

=

 D−H1 (A+A−HBHB)

0m×K

 =

 D1A

0m×K

 .
(I.6)

This ends the proof.
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