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ABSTRACT

Direction of Arrival Estimation and Tracking with Sparse Arrays

Jian-Feng Gu, Ph.D.

Concordia University, 2013

Direction of Arrival (DOA) estimation and tracking of a plane wave or multiple plane
waves impinging on an array of sensors from noisy data are two of the most important
tasks in array signal processing, which have attracted tremendous research interest
over the past several decades. It is well-known that the estimation accuracy, angular
resolution, tracking capacity, computational complexity, and hardware implementa-
tion cost of a DOA estimation and/or tracking technique depend largely on the array
geometry. Large arrays with many sensors provide accurate DOA estimation and
perfect target tracking, but they usually suffer from a high cost for hardware imple-
mentation. Sparse arrays can yield similar DOA estimates and tracking performance
with fewer elements for the same-size array aperture as compared to the traditional
uniform arrays. In addition, the signals of interest may have rich temporal informa-
tion that can be exploited to effectively eliminate background noise and significantly
improve the performance and capacity of DOA estimation and tracking, and/or even
dramatically reduce the computational burden of estimation and tracking algorithms.
Therefore, this thesis aims to provide some solutions to improving the DOA estimation
and tracking performance by designing sparse arrays and exploiting prior knowledge
of the incident signals such as AR modeled sources and known waveforms.

First, we design two sparse linear arrays to efficiently extend the array aperture
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and improve the DOA estimation performance. One scheme is called minimum re-
dundancy sparse subarrays (MRSSA), where the subarrays are used to obtain an
extended correlation matrix according to the principle of minimum redundancy linear
array (MRLA). The other linear array is constructed using two sparse ULAs, where
the inter-sensor spacing within the same ULA is much larger than half wavelength.
Moreover, we propose a 2-D DOA estimation method based on sparse L-shaped arrays,
where the signal subspace is selected from the noise-free correlation matrix without
requiring the eigen-decomposition to estimate the elevation angle, while the azimuth
angles are estimated based on the modified total least squares (TLS) technique.

Second, we develop two DOA estimation and tracking methods for autoregressive
(AR) modeled signal source using sparse linear arrays together with Kalman filter
and LS-based techniques. The proposed methods consist of two common stages: in
the first stage, the sources modeled by AR processes are estimated by the celebrated
Kalman filter and in the second stage, the efficient LS or TLS techniques are employed
to estimate the DOAs and AR coefficients simultaneously. The AR-modeled sources
can provide useful temporal information to handle cases such as the ones, where
the number of sources is larger than the number of antennas. In the first method,
we exploit the symmetric array to transfer a complex-valued nonlinear problem to a
real-valued linear one, which can reduce the computational complexity, while in the
second method, we use the ordinary sparse arrays to provide a more accurate DOA
estimation.

Finally, we study the problem of estimating and tracking the direction of arrivals
(DOASs) of multiple moving targets with known signal source waveforms and unknown
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gains in the presence of Gaussian noise using a sparse sensor array. The core idea
is to consider the output of each sensor as a linear regression model, each of whose
coefficients contains a pair of DOAs and gain information corresponding to one tar-
get. These coefficients are determined by solving a linear least squares problem and
then updating recursively, based on a block QR decomposition recursive least squares
(QRD-RLS) technique or a block regularized LS technique. It is shown that the
coefficients from different sensors have the same amplitude, but variable phase infor-
mation for the same signal. Then, simple algebraic manipulations and the well-known
generalized least squares (GLS) are used to obtain an asymptotically-optimal DOA

estimate without requiring a search over a large region of the parameter space.
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Chapter 1

Introduction

1.1 Background and Motivation

Array signal processing (ASP), as an important sub-area of signal processing, has been
widely used in diverse fields of science and engineering such as radar, sonar, seismic
exploration, speech enhancement, deep space communications, navigation and wire-
less communications. [1-4]. In radar and sonar systems, antenna arrays or hydrophone
arrays are often exploited to estimate the source location, range, and velocity of ob-
jects such as aircraft, missile, and submarine [5,6]. Seismic arrays are widely used for
oil exploration and detection of underground nuclear tests [7]. In acoustic and speech
signal processing, microphone arrays are often used to extract some signals of interest
by enhancing the reception in one or multiple directions [8]. Very large antenna arrays
are employed in deep space network (DSN) to compensate for signal-to-noise ratio (S-
NR) of the signal from a receding deep-space spacecraft [9]. Array antenna technique,

also called smart antenna [10,11], has emerged as one of the key features in the third



generation and beyond wireless communication systems such as TD-SCDMA, which
can significantly improve system operating parameters, such as capacity, quality, and
coverage, and reduce the cost for green communications. The most important objec-
tive of ASP is to estimate and/or track the parameters of the source signal or capture
the waveform of the signal itself by fusing temporal and spatial information of the
signal sources impinging onto a set of judiciously placed antenna sensors. Though
the fundamental theories and basic methods of ASP have been extensively studied
over the past four decades, many issues concerning its practical applications remain
to be solved. For example, in many practical applications for estimating and tracking
the direction of arrivals (DOA), the array systems are limited to a light load that
requires limited sensors and accessories due to the cost of hardware and computation-
al complexity. In addition, it is also necessary for these systems to provide higher
accuracy with limited sensors as well as better tracking performance compared with
the traditional array configurations and estimators. Therefore, the aims of this thesis
are to achieve high angular resolution and accurate estimates at a low cost by consid-
ering two strategies, one to design sparse arrays and the other to employ the temporal
information. The performance of an array for both DOA estimation and tracking is
closely related to its array aperture. The larger the array aperture, the more accurate
the angle measurements are. Sparse arrays have fewer elements for the same size
aperture as compared to fully populated arrays. The temporal information is usually
utilized in wireless communications and active sonar/radar to identify the different
users/targets or for other purposes. The temporal information can be used to improve

the estimation accuracy and reject the noise and interference. The subsequent section



reviews the state of the art on sparse array design and waveform-based techniques for

DOA estimation and tracking as well as two dimensional DOA estimators.

1.2 Literature Review

1.2.1 Sparse Arrays for DOA Estimation

DOA estimation, also called spatial spectrum estimation, refers to the estimation of
direction finding signals impinging on antenna arrays. Uniformly spaced linear array
(ULA) is one of the most important arrays due to the natural Fourier relationship
between the beam pattern and the excitation at the array, which allows the DOA
estimation problem to be treated equivalently as spectral estimation. Therefore, most
of the work for DOA estimation with ULA has addressed the issue of disambiguity
according to the spatial sampling theory, i.e., the inter-element spacing must be less
than or equal to half the wavelength of the impinging sources. It is known that the
performance of DOA estimation depends on the size of the arrays aperture [1,12]. A
large array aperture can produce more accurate DOA estimation and higher resolution
for closely spaced sources, inspiring us to improve the performance of DOA estimation
by extending the array aperture. Generally speaking, there are two key aspects to be
considered. One is the special feature or type of the source signal such as non-Gaussian
signal [13], temporally correlated sources [14], noncircular sources [15], cyclostationary
signals [16], AR modeled sources [17,18] and quasi-stationary signals [19]. The other

is the array configuration [20-27]. Recently, researchers have paid more attention to



array pattern design considering that in some practical circumstances there is no a
priori knowledge for the characteristics of the received signal, especially for noncoop-
erative signals. For example, in some instances, there are only a few sensors available
for system implementation, the classical regular arrays such as ULA cannot provide
accurate DOA estimate. This is because the aperture size of ULA is very small due
to the constraint of the spatial sampling theory. This limitation has triggered the de-
velopment of arrays with inter-element space greater than half the signal wavelength.
Further, to mitigate the ambiguous problem in DOA estimation, it is desirable to con-
stitute arrays such as minimum redundancy linear arrays (MRLA) [20]. The MRLA
is designed so that the number of sensor pairs that have the same spatial correlation
lag is as small as possible. The authors of [21] exploited the covariance augmentation
technique to extend the principle of MRLA to planar geometries. However, it is very
difficult to construct a MRLA when the number of sensors is relatively large because
of the involvement of the heuristic search procedure and a NP hard problem in obtain-
ing a perfect array. In order to combat this weakness, Pal and Vaidyanathan recently
presented two simple and closed-form design schemes [22,23] to extend the effective
aperture of arrays. One is named nested array, which is constructed by two or multi-
ple uniform linear subarrays with different inter-element spacing. The other is formed
by two ULAs which satisfy the so-called co-prime relationship in the inter-element
spacing as well as the number of sensors. Unfortunately, these design techniques for
the above mentioned arrays are still constrained by the customary half-wavelength.
Therefore, in order to further extend the array aperture, some researchers have sug-
gested configurations of sparse subarrays [24-27] each of which is constructed by a

4



regular array, while the inter-subarray spacing is much larger than half wavelength
of the signal of interest. In general, this DOA estimation method contains two steps.
The first step is to implement the traditional DOA methods to obtain the rough DOA
estimate without ambiguity and the cyclically ambiguous values of the fine DOA. The
second step is to resolve the cyclic ambiguity by some disambiguation procedure such

as beamforming, MUSIC or MODE-based method.

1.2.2 2-D DOA Estimation Methods

The problem of two-dimensional (2-D) DOA (i.e., azimuth and elevation angles) has
been receiving increasing attention in the recent past. 2-D DOA problem may be
closer to some practical environment than 1-D, for instance, using an airborne or a
spaceborne array to observe ground-based sources. Additionally, in the last three
decades a number of the high-resolution direction finding methods have been studied
in the context of 1-D estimation (e.g., the azimuth angle) of multiple plane waves.
Among them, MUSIC [28] and ESPRIT [29] are two of the most popular algorithms.
Many 2-D DOA methods are based on the two algorithms. Specially, the latter method
has two main advantages over the former. First, the ESPRIT algorithm requires less
computational burden and storage space due to the fact that it does not require to
search over these whole parameter space. Second, independent of the array response,
the ESPRIT algorithm is more robust to array calibration errors. Therefore, the
ESPRIT algorithm and its variations [30,31], which are widely devoted to the problem

of 2-D DOA estimation with planar arrays, have received considerable attention in



the array-processing literature.

Majority of the planar arrays required to implement these techniques can be di-
vided into three types: the triangular array [32,33], the rectangular array [34,35],and
the two-orthogonal ULA or the L-shaped array [36-46]. Although the L-shaped ar-
ray has a simpler configuration compared to the rectangular and triangular ones, it
enjoys higher accuracy among these configurations [36]. Thus the L-shaped array has
received increased attention in dealing with 2-D DOA estimation problems recently.
In [37], Tayem and Kwon presented a computationally simple 2-D DOA estimation
with the propagator method using one or two L-shaped arrays. They showed that
it is possible to decompose the 2-D problem into two independent 1-D problems by
using the L-shaped array for reducing the computational burden significantly. But,
the two independent sets of angles would have to be properly paired together using
some appropriate techniques [38]. Different approaches have been put forward in the
literature for this purpose. For example, Kikuchi et al. [39] have suggested a cross-
correlation technique to obtain the correct parameter pairs by constructing a Toeplitz
matrix. The first column and first row of the Toeplitz matrix are constructed by
the diagonal elements and their conjugate transposes of the cross correlation matrix
(CCM). Then, the one-to-one relationship between the elevation and azimuth angles
is set up. Unfortunately, the Kikuchis approach still suffers from the pair-matching
problem when the difference of the corresponding combinations of the 2-D angles is
small and the signal-to-noise ratio (SNR) is low [40]. Furthermore, it only employs the
CCM to deal with the pair-matching problem such as the pairing algorithm suggested

in [41], but does not exploit its characteristics to improve the estimation performance.



Gu and Wei [40] have proposed a joint singular value decomposition(JSVD) technique
that constructs the extension signal subspace by selecting two submatrices from the
CCM, which is unaffected by the additive noise. By this scheme, we can make use of
the property of the eigendecomposition, i.e.,the eigenvalue and its unique eigenvector,
to achieve automatic pairing and estimate 2-D DOA. Therefore, the JSVD technique
enjoys at least two advantages over the technique suggested in [39]. First, the JSVD
technique needs no additional steps to deal with the pair matching problem. Sec-
ond, the JSVD is superior in estimating the 2-D DOA, especially at low SNR and
with a small number of snapshots. The authors of [43] have presented a generalized
ESPRIT-based technique to deal with the problem of pair-matching. Unfortunately,
the computational burden of this technique is very high due to its requirement for
search over the parameter space of interest and implementation for the eigenvalue
decomposition (EVD) of the array correlation matrix. Therefore, a computationally
efficient method is proposed in [44] based on propagator method, but it still involves
considerable cost in computation (the parameter space searching) to estimate 2-D

DOA estimation and deal with the pair-matching problem.

1.2.3 DOA Estimation with Known Waveform

As is well known, most DOA estimation algorithms, such as beamforming-based

techniques [7,47], subspace-based techniques [48], and sparsity-based techniques [49,



50|, are mainly based on a common assumption that the received signals are non-
cooperative signals, that is, they are either unknown deterministic signals or Gaus-
sian type of stochastic signal sources with unknown covariance. In some applications,
such as active radar, active sonar, and communication systems, the basic waveform of
signal of interest is available to its receiver. This a priori information can be exploited
to effectively eliminate background noises and significantly improve the estimation
accuracy [51,52]. In addition, the capacity of DOA estimation can be larger than the
number of antenna elements [53-59]. Only a few techniques have been developed so
far to handle the DOA estimation problem by making use of the waveforms of signal
sources. Li and Compton [53] are among the very first researchers to improve the
accuracy of DOA estimation with known waveforms. They obtained initial angle esti-
mates using an iterative quadratic maximum likelihood (IQML) algorithm, and then
used the alternating projection (AP) or the expectation maximization (EM) algorith-
m to estimate the DOAs. Later on, a large sample decoupled ML estimator (DEML)
was proposed to estimate the DOAs of incoherent signals with known waveforms [54].
The DEML estimator is computationally efficient, since it decouples the multidimen-
sional minimization problem into a set of 1-D minimization problems. However, this
estimator encounters difficulty when the signals impinging on the array are coherent.
To lift this constraint, Cederval and Moses [55] extended the DEML estimator to
decorrelate the coherency of incident signals and developed the coherent decoupled
maximum likelihood (CDEML) algorithm. Both DEML and CDEML belong to the
family of large sample ML algorithms, which do not work well in difficult scenar-

ios such as when the SNR is low or the number of snapshots is small. To improve



the accuracy and spatial resolution of the DOA estimation for signals with known
waveforms, Li et al. [56] proposed a white decoupled maximum likelihood estimator
(WDEML) under the assumption that the observed noise is spatially white. Recently,
Atallah and Marcos [57] have presented a parallel decomposition (PADEC) algorithm
that yields comparable performance, but with a lower complexity, than that of the
ML-based algorithms. The idea behind the PADEC algorithm is to obtain spatial
signature of the signals using the least-squares (LS) error criterion, and to decorrelate
the coherence of the signals by applying spatial smoothing techniques. However, for
large size subarrays, the computational burden of PADEC may be unacceptably high,
since the eigen-decomposition is required to obtain the orthogonal projector on the
noise subspace or the signal subspace. A computationally simpler and more efficient
DOA estimation technique has been proposed in [58], where the DOA of known signal
waveforms is computed based on the phase shift between two subarrays. This tech-
nique requires that signals from different sources be uncorrelated with one another;
thus, it does not perform well when the signals are partially or completely correlated.
More recently, Gu et al. [59] have suggested a fast linear operator to deal with DOA
estimation of uncorrelated or coherent signal sources based on their waveforms. This
method does not require the reconstruction of orthogonal projector in the noise sub-
space or the signal subspace but its performance approaches to that of the ML-based

methods.



1.2.4 DOA Tracking

Another focus of this thesis is on DOA tracking, which is closely related to DOA
estimation. A number of standard methods exist for such a problem. Eiegnstructure
or so-called subspace tracking techniques [60,61], for example, attempt to track DOA
via repeated implementation of subspace-based DOA estimation techniques such as
MUSIC, ESPRIT [28,29, 48] that rely on recursively updating the eigenstructure or
subspace information obtained from either the singular value decomposition (SVD) of
the array output or the EVD of the covariance matrix estimate of sampled array data.
However, there are two major limitations that are inherited by all subspace tracking
approaches. One is that each updated set of DOAs suffers from the data association
problem [62]. In other words, although subspace tracking techniques can efficiently
estimate and track the whole updated DOA values, they cannot set up a one-to-one
relationship between the estimated DOAs and the targets automatically [63]. The
second main limitation of the subspace tracking techniques lies in that it is difficult
to incorporate a prior knowledge of the signal feature and/or array structure into
the eigendecomposition. It is well known that temporal information of signals and
special array structure can be exploited to effectively eliminate background noise and
significantly improve the performance and capacity of DOA estimation and track-
ing, and/or even dramatically simplify the computational burden of the estimation
and tracking algorithms. Therefore, many approaches to track the DOA of multiple
targets make use of the array structure and/or the covariance matrix of signals to

directly update the DOA or the spatial signature of the respective targets without
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changing the order of DOA estimates [64-75]. By using the structure of the array
manifold, Sword et al. [64] proposed a closed-form LS solution to update the most
recent DOA estimates, thus avoiding the data association problem. Later, Lo and
Li [65] modified the algorithm by implementing the error-correction procedure to re-
duce the effect of the error propagation due to the use of recursive approximations.
The authors of [66] have made use of the inherent dynamical property of the DOA
of moving targets to improve the capability for the case of crossing tracks, where two
DOAs are very close or even overlap. In [67], Sastry et al. used the property of the
Frobenius norm of the covariance error matrix, which is sensitive to permutations in
the columns of the array steering matrix, to update the current DOA estimates of
targets without the data association problem; but, this method can only be used in
the case of different signal powers. Inspired by such a property reported in [67], the
authors of [68] simplified the objective function as the distance between the corre-
sponding elements of the previously estimated and current covariance matrix. Satish
and Kashyap [69] derived a maximum likelihood (ML)-based technique for optimal
determination of the current DOA and range estimates for slowly changing targets
based on the second-order approximation of the inverse of the array covariance ma-
trix. The authors of [70] then introduced a recursive expectation and maximization
algorithm to reduce the computational burden of the traditional ML-based technique.
The ML-based tracking technique suggested in [71] makes use of the target motion
state to improve the tracking performance, where the DOA estimates are updated at
each time frame and refining through Kalman filtering. Zhou et al. [72] obtained the

DOA tracking through updating the information of the target motion state described

11



as the multiple target state (MTS). Recently, the authors of [73] presented a sig-
nal selective DOA tracking technique by using the special features of cyclostationary
sources to improve the tracking performance for wideband multiple moving sources

without combating the association problem.

1.3 Organization and Contributions

The organization of the thesis along with the main contributions of each chapter is
presented as follows.

In Chapter 2, accurate DOA estimation methods for noncooperative signals are
investigated with a special focus on the estimators applicable to sparse linear arrays
(SLA) and sparse L-shaped arrays that are constructed by two linear arrays perpen-
dicular with each other. First, we present a new array geometry named minimum
redundancy sparse subarray (MRSSA) that is considered by uniform linear subarray
(ULS) according to the principle of MRLA, where the inter-subarray spacing is much
larger than the half wavelength, and each ULS is composed of the ULA with inter-
element spacing less than or equal to half of the wavelength. An extended correlation
matrix is constructed from Kronecker Steering Vectors (KSVs) each of which contains
the ambiguous angle and the corresponding unambiguous angle. Subsequently, we
propose a new array geometry named nonuniform linear sparse array(NLSA), that
is composed of uniform linear sparse subarrays with the inter-sensor spacing in the
same subarray much larger than the half wavelength. However, the minimum dis-

tance among sensors must be less than or equal to the half wavelength to avoid the
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multi-value ambiguity. Furthermore, we propose a joint elevation and azimuth DOA
estimation method using the L-shaped array geometry constructed by two linear ar-
rays that are perpendicular to each other. The signal subspace of the elevation angle
can be obtained directly by the property of CCM without the effects of an unknown
noise field. The ESPRIT-like algorithm can be employed to estimate the elevation
angles without finding polynomial roots or searching over parameter space. Next, we
derive a computational efficient modified TLS method to estimate the azimuth angle
by employing the estimated waveforms and elevation angles of the incident signals

In Chapter 3, Kalman filter technique is used to estimate and track the DOA of
AR modeled source signals. First, a novel DOA estimation method for AR modeled
source signals impinging on SLA is proposed. Since each sensor can be considered
as a dynamic model of the time-varying AR sources where each regression coefficient
contains the information of DOA, we employ Kalman filter to obtain the source sig-
nal estimates and then the TLS technique is used to derive an approximate optimal
estimator for the DOA of signal. In addition, we propose a new DOA estimation and
tracking method for AR modeled signals based on symmetric sparse array.

In Chapter 4, we propose a novel DOA estimation method of multiple signals
with known source waveforms and unknown gains based on SLAs. By using linear
regression analysis, the proposed algorithm is presented as an optimal estimator for
simultaneous DOA and complex gain estimation. The output of each sensor of the
antenna array, as a combination of the received signals of interest, is expressed as

a linear regression model where each regression coefficient contains the information
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of DOA and the corresponding complex gain. A new technique for unwrapping am-
biguity by the Chinese remainder theorem (CRT) is then presented to extract the
angle information from the estimated complex coefficients. Further, the well-known
generalized LS technique is used to obtain asymptotically-optimal estimate of DOAs
without requiring heavy computation. Based on the idea of the proposed array ge-
ometry design and DOA estimation method, we also derive two LS-based schemes for
moving targets, to update the coefficient changes of each sensor at successive time
intervals: one is based on the block QRD-RLS technique and the other on the block
regularized LS technique.

Finally, Chapter 5 contains conclusions and provides directions for future work.

14



Chapter 2

Accurate DOA Estimation by

Sparse Arrays

2.1 Introduction

Designing nonuniform linear arrays to obtain the accurate angle estimate is very
popular in radar systems such as airborne surveillance radar, ground based radar
systems, and shipborne radar systems [76] because of low cost and complexity. Most
of these techniques are considered to construct the “no holes” covariance matrix,
which still limits the extension of array aperture [1]. In this chapter, we focus on
the DOA estimation with sparse arrays, where the inter-element spacings can be
much larger than the half-wavelength. In Section 2.2, the first sparse array called
the minimum redundancy sparse subarray is designed to estimate 1-D DOA, where
uniform linear subarrays are employed to construct the whole arrays according to

the principle of MRLA. Kronecker steering vectors (KSVs) are constructed using the
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relationship between the subarrays, and then a modified ESPRIT approach is used to
find all the KSVs. Finally, the accurate DOAs can be obtained by solving a simple
algebraic problem. The proposed method enjoys two advantages in comparison to
some of the existing methods. First, the cyclic ambiguity can be resolved by the
one-to-one mapping between unambiguous and ambiguous angles without requiring
additional algorithms such as MUSIC or MODE. Second, it can deal with the case
of different unambiguous angles with the same ambiguous angle, which might not be
possible to deal with by using the previous schemes [24,25]. However, the proposed
method cannot deal with the cases of correlated sources. Therefore, in Section 2.3,
we propose another sparse linear array and its corresponding method to handle the
shortcoming of the MRSSA. The second sparse linear array is constructed by using
two sparse ULAs, where each sparse ULA is constructed by interleaving sensors. We
first estimate the rough DOA by the generalized ESPRIT method, and then employ
the alternating null-steering technique to estimate the fine DOA. In Section 2.4, a
sparse L-shaped array is designed to estimate 2-D DOA. Here, the ULA along with
the ESPRIT-based method is used to estimate the elevation angle, and then the
signal waveform is obtained by the estimated elevational angle. Since the elevation
angle and the waveform have been obtained, each sensor of the SLA on the x-axis
can be considered as a linear regression model with respect to the phase information
containing the azimuth angle, which can be obtained by exploiting the modified TLS

and GLS techniques.
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2.2 DOA Estimation by Minimum Redundancy S-

parse Subarrays

2.2.1 Proposed MRSSA Pattern

Figure 2.1: Structure of the MRSSA

Let us consider K narrowband signals with the same wavelength, say A, that
impinge on a minimum redundancy sparse subarray (MRSSA), shown in Fig.2.1. The
MRSSA consists of M sensors with M, subarrays placed according to the philosophy
of MRLA [20], where each subarray contains M, = M /M, sensors with the inter-
element spacing being d; < 1, and the smallest intersubarray spacing between the two
consecutive subarray centers is dy > (M, + 1)d;. Note that d; and dy are normalized
distances in terms of the half wavelength. The observed signals in the p (p =

1,---, M;) subarray at time ¢ can be represented by an M, x 1 complex vector as

x,(t) = A,s(t) + ny(t) = A1 B,s(t) + ny(t), (2.1)
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where s = [s1(t), s2(t),- -+ , sk (t)]T is the signal sources from K different directions,
and the elements of n,(t) are the white Guassian random processes with zero-mean

and variance 02 . The matrix A; is the steering matrix of the first subarray

Ay = [ay(0h),a1(0:), -+, a10k)]

1 1 1
e_jdloél e—jdll)@ .. e_jdloéK (22)
= )
e—j(Mu—l)dlal e—j(Mu—l)dulQ . e—j(Mu—l)dulK
where a;(0)) = [1,e77h ... e iaMu=Dar|T with o = 7 sin 6.

The matrix B, in (2.1) is given by

B, = dz’ag(e_jﬁp’l, e—jﬁzﬂ’ e e_jpr,K% (2.3)

with S, = dpap and &, being the spacing between the centre of the p subarray
and the centre of the first subarray. To simplify the problem formulation, we assume
that there are three subarrays, giving 09 = 0,01 = ds, 02 = 3dy. We also assume
that the sources are uncorrelated so that the source correlation matrix is diagonal,
namely, R, = diag([p1, p2,- - , px]), where py is the power of the k' incident signal.

Then the correlation matrices of the subarrays are given by

R,(dy — &) £ Elz;(t)x! ()] = AiB,R,B Al + ¢*I,;,6(i — j) -

= AlBiB]HRSA{{ + 021y, 0(i — 5)(i,5 = 1,2,3)
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2.2.2 DOA Estimation Technique

From (2.4), we can obtain the following correlation matrices

R,(0) = A\RAY + 5°I);, (i =)
R,(dy) = A\ BR,A = R,(—dy)" (i=1,j=2)
: (2.5)
R, (2d;) = A\B’R,AY = R, (—2d,)" (i =2,5=23)
R.(3dy) = A\B*R,AY = R, (-3d,)" (i=1,5=23)

where B = diag([e 7P, e7P2 ... e IPK]) with B = dyay.

Next, let us construct a block Toeplitz matrix R of size (4M/3) x (4M/3) as

follows _ -
R.(0) R.(d)  R.(2d2) R.(3d)
. R,(—d2)  R;(0)  Ry(d) R.(2d)
R.(=2dy) Ry(—d2) R.(0) Ru(dy) (2.6)
R,(—3d2) R.(—2d2) R.(—d2) R,(0)
£ (Bsx A))Ry(B, x A" + 02 I3
where By is given by
B, = [b(0,),b(6,),--- ,b(0g)], with b)) =[1,e % e 2P =38 (2.7)

Further, we define b(6) ® a1(0;)(k = 1,2,--- , K) as the Kronecker steering
vectors, each containing a pair of unambiguous and ambiguous angles. It is worth

noting that our method can detect at most 41 /3 — 1 source signals if we use MUSIC-

like method. In order to reduce the computational cost, next we will introduce a

19



ESPRIT-like method without searching the parameter space. Performing the eigen-

value decomposition for R in (2.6) results in

R=[U, U,)Z[U, U,]", (2.8)
where ¥ = diag([o1, - ,0k,0Kk41, -+ ,0amy3]) With o9 > -+ > 0 > 011 = -+ =
oapmys is the diagonal matrix containing the eigenvalues of R, and U, = [uy, -+ , uk]

of size (4M/3) x K is the signal subspace or signal plus noise subspace,and U, =
[Wki1,- -, Wansys) is the noise subspace. According to the principle of subspace-based

methods, there exists a nonsingular K x K matrix T such that

U, = (B, A))T. (2.9)

In order to obtain the unambiguity angles first, herein we define a permutation
matrix [77]

P=[L®e, LiQe, - IQey, (2.10)

where e; is the i column of Ij;,. We then have

U, 2TU, = (A, = B,)T. (2.11)

Let us partition U, into two 4(M,, — 1) x K submatrices as

U, =U,(1:4(M,—1),:) & (A, * B,)T
(2.12)

Uy =U,(5:4M,,:) = (A, * B,) 9T,
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where Ay is the first (M, — 1) rows of the array response matrix A; and the diagonal
matrix ¥ is of the form ¥ = diag(e 4101 =102 ... e=ihiar) From (2.12), we can
obtain

Uy = (An * B)TT'9T = U, T~ '9T. (2.13)

Therefore, we can establish a one-to-one relation between the rough DOA without
ambiguity and the rotationally invariant counterpart of KSVs by utilizing the eigen-
value decomposition (EVD) for the matrix F £ U;IQUpl = VAV_,, where V denotes
the eigenvectors of F' and the diagonal elements of A = diag([A1, Ao, -+ , Ag]) are the
corresponding eigenvalues and the estimated diagonal matrix W¥. Thus, \; contains
the unambiguous DOA information and then the rough angels 6, can be found by

using the following function as

0y, = arcsin[— arg(\g)/(wd)], k =1,--- | K. (2.14)

Moreover, it is easy to verify [77,78] that V and T satisfy the relationship v =
T 'EP~! , where E is the real diagonal matrix and P is so-called generalized per-
mutation matrix. Therefore, we can obtain an estimate of the 4M, x K KSV matrix
B, x Ay,

D=UVPIr- (2.15)

Herein, we employ the simple arithmetic operation suggested in [77] to obtain the

estimate of (g, i.e.,

B = arg(D((M/3+1) : 4M/3, k)" D(1 : M, k)). (2.16)
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Obviously, if dy > 1, there may exist different angels for the same (; according to
the cyclically ambiguous for sine estimates. To better understand this concept, let
us consider the situation without ambiguity. Assume that the distance between the
sensors is d = 1. Under this condition, there is no ambiguity for —m < o = wsinf < 7.
The v ~ 6 plot is shown in Fig.2.2(a) indicating a one-to-one mapping between « and
0 for the case of d = 1. When d > 1, for example, d = 6, then a = 67 sinf mod 2,
which gives 5 ambiguities as shown in Fig.2.2(b). The relationship between multiple-

ambiguity and the true value can be expressed as

al, = (B +2nl)/dy,  [—da/2 — Bi/(2m)] <1< |do/2 — Bi/(2)]. (2.17)

Therefore, making use of the previously estimated rough angles in (2.14) and (2.17),
the unambiguous accurate estimate for the angle can be obtained as

0), = arcsin(arg min lak — 7 sin 0| /7). (2.18)
Y

Note that the proposed method obtains the accurate estimate by searching for the
closet value to the corresponding rough estimate and therefore, it gives an improved
estimation performance as compared to the previous method [24], where different
rough DOA values correspond to the same fine DOA value. In addition, the proposed
method can also yield a better performance than the traditional methods do due to

the fact that MRLA can extend the effective array aperture.
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Figure 2.2: a ~ 6 plots for (a) d =1 and (b) d=6

2.2.3 Simulation Results for MRSSA

We now present some results from Monte Carlo simulation of the proposed MRSSA.
We assume that there are 15 elements in the array system and in each ULA there are
M,, = 5 sensors, which are apart by d; =1 . A total of 1000 independent realizations
of the received data are adopted. In this first example, the proposed method is
evaluated as compared to the method in [24] for two equal power signals with the
incident directions [6, 0] = [45°,60°] and the SNR varying from —10 to 20 dB. The
smallest inter-subarray spacing is 10 times half-wavelength. The root mean square

error (RMSE) as defined by

1 ) 2
RMSE = | = > (0-0) (2.19)

is used as the objective performance metric, where T is the number of independent

trials. Fig.2.3(a) and 2.3(b) show the RMSE of #; = 45° and 6, = 60° , respectively.
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It is observed that the proposed method delivers more accurate DOA estimates, espe-
cially at low SNR. This is beacuse the proposed method uses the principle of MRLA
to extend the array aperture and implements the rough and fine DOA estimation
without requiring pair matching. At low SNR, the method in [24] may produce the
errors between the rough angle and the accurate one, while our method does not need
pair matching in this case.

In the second example, we demonstrate our method as well as the method suggest-
ed in [24] for different inter-subarray spacing. To have a fair comparison, we assume
that there are two equal-power uncorrelated signals from the DOAs [0y, 65] = [34°, 36°],
the SNR is set to 0dB and 200 snapshots are employed. The RMSE results are shown
in Fig.2.4(a) and 2.4(b). Tt is seen that the estimation performance of the method [24]
may decrease with the increase of array aperture in some situations, while our method
can still increase the estimation performance owing to the improved array aperture
and automatic pair matching, which is not the case for the method suggested in [24].
This is because our method estimates the accurate and rough DOAs simultaneously,

while the method in [24] estimates the rough and accurate angles individually.

2.3 DOA Estimation by Sparse ULAs

2.3.1 Proposed Two Sparse ULAs

Different from the MRSSA mentioned above, here a nonuniform linear sparse array
that consists of 2M + 1 sensors arranged along two sparse ULAs is proposed, as

shown in Fig.2.5. The inter-element spacing for the two ULAs is d; and d, satisfying
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Figure 2.3: DOA estimation performance of MRSSA with three ULAs for two sources

with [0y, 05] = [45°,60°]: (a) RMSE for 6; = 45° (b) RMSE for 65 = 60°. The number
of snapshots is 200.
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Figure 2.4: DOA estimation performance of MRSSA with three ULAs for two sources

with [0y, 02] = [34°,36°]: (a) RMSE for #; = 34° (b) RMSE for 6, = 36°. The SNR is
0dB, and the number of snapshots is 200.

26



1 [ ¢ / ’ ¢ /
/ ’ ' / i ! i
S £ f r r ' i
/ f; ;, !i ;a' rj ;’
/ Sk (t) / / ¢ i ¥ ¥
K ! f £ ¥ s F
’ S £ £ f ! f
7 / / / F ! /
i / ! ! / # /
9 .ﬂf r! r; r; ;; a’f ff
f? ;{ .rf ff !‘r f{ f';
r? rf ,r! .-'! f! f; f‘r
4 [ 4 4 ¥ 4
- dl > d
d2
1 2 (0 (23 1 (2)
0 Sl( ) s 55 £ B Su

Figure 2.5: Structure of two sparse ULAs

dy —dy = d and d; > d. The element placed at the origin is common for the two
ULAs as reference. Let m;(m = 1,---, M,i = 1,2) denote the index of the m* sensor
along the i'" subarray. The observed signals in the i?"(i = 1,2) subarray at time ¢ can

be expressed as an (M + 1) x 1 complex vector

xi(t) = A;is(t) + ni(t) (2.20)

where A; = [a;(61),a;(02), -+ ,a;(0k)] is the steering matrix of the i subarray with
a;(0y) = [1,e 7%k ... e=d(M=Ddiex]T Tn (2.20), n;(t) is additive noise as in MRSSA.

Then, the signal received by the entire array can be written as

x(t) = [ATTL A" s(t) + [ng (DI, my )", (2.21)

where IT = [Oyrx1, Ja]” is an (M + 1) x M matrix with Jy; being the M x M

exchange matrix with ones on its anti-diagonal and zeros elsewhere. To simplify the

27



expressions, by rewriting z(t) as x(t) = As(t)+n(t) with A £ [ATTI, AT], the whole

array steering vectors can be given as

ay = [e_J(M_l)dlak, .. 76—]d1ak’ 1, e—JdQOtk7 .. ,6_J(M_1)d2ak]T. (2.22)

From (2.22), it is easy to verify that there exists some special relationship between
ap(2M —p+2:2M+1) and ax(1 : p), i.e., Jpar(2M —p+2:2M +1) = $lag(1l : p),

where

dza/g(e_](M_l)dak7 PPN 7e_j(M_p)dak) 1 p g M

(M—dog ... ] ... ’ej(P—M)dak) p>M+1

N

diag(e™

is a p X p diagonal matrix. It is worth-noting that we can avoid the phase ambiguity

with DOA information for the diagonal element only if d < 1.

2.3.2 DOA Estimation Technique

Differing from the DOA estimation method for the MRSSA, here the proposed method
can be utilized in the case of correlated sources. Let us consider the auto-covariance

matrix of x(t), namely,

R=Elx(t)x"(t)] = ARA" + 0’ Loy 41. (2.24)
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In a manner similar to that used in obtaining (2.8) and (2.9), we have U, = AT.
According to the array configuration described above, we can get the following two
signal subspaces

U =2U,1:p,:)=A(1:p,))T
(2.25)

Uy, 2U,2M —p+2:2M +1,:) = A2M —p+2:2M +1,:)T
Similar to the generalized ESPRIT algorithm suggested in [79], we can define the

following matrix

JU, — ®,(0)U, = (JAQM —p+2:2M +1,)) — ®,(0)A(1: p, )T  (2.26)

where ®,(6) has the same expression as (2.23). It is easy to prove that both sides of
(2.26) would no longer be a full column rank matrix when 6 = 6,. That is to say, by
left-multiplying J,Us — ®,(6)U; with any K x p full row rank matrix D, we can find
that the matrix D(J,U; — ®,(0)U;) would be singular for § = 6, (k = 1,--- , K),
while nonsingular for other angles.

Therefore, we can implement the following spectral function to find the rough

DOAs without ambiguity

1
[det<D(JpU2 - <I>p(6’)U1))]2

F.(6) = (2.27)

We will employ the generalized ESPRIT method to estimate the rough DOA
based on our proposed array geometry to deal with the problem of the multi-value

ambiguity, which may occur in implementing the traditional ESPRIT for sparse ULAs
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directly. We will then introduce a novel alternating null-steering technique (ANST)
to estimate the accurate DOA based on the estimated rough DOA in (2.27).

Now, let us define the following matrix

B0, 0) = [Aw w(0)], (2.28)

where B(0(y),0) is constructed using A, the array steering matrix including all
the DOAs in (2.27) except for the k* DOA, and the steering vector w(f), where 6
is an arbitrary angle with the k* angle selection set [0 — A8 6, + Af], Af being
dependent on the cyclically ambiguous period; for example, A = 7/12 for the case
in Fig.2.2(b), and w(#) is the corresponding steering vector of 6. Following the idea

of the projection matrix decomposition technique suggested in [80], we can obtain

Prog,0) = Pa, + wp(0)wh (0)/(wf (0)wp(0)), (2.29)

where wp () = Pj(k)'w(Q) is the projection steering vector on the orthogonal subspace
of Py, Note that the goal for implementing such a projection decomposition is to
construct two orthogonal subspaces: one is formed from the previously estimated
DOAs except for the k' DOA and the other is constructed by the updated fine DOA

of the k™" signal source. From (2.29) it is easy to obtain the relationship

PB(O(k)ve)wa) = 'wP(@); (2.30)

which implies that wp(6) belongs to the projection subspace of the steering vectors
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B0, 0).

Theorem 1. Assume that there does nmot exist ambiguities for 0 in the k' an-

gle selection set,that is, wp(0,) # wp(0y),a # b. Then the function L(6y),0) £
H _ . . . . _ .

wp (0)(Iopr+1 — Pu,)wp(0) = 0 have a unique nontrivial solution 6 = O,i.e.,wp(0) #

0, where Uy is the signal subspace of (2.24).

Proof: From (2.9) and (2.24), we can obtain the relationship Uy = AT = B(0), 0i)T.

Therefore,

LBy, 0) = wi (0)(I2p41 — Pu,)wp(6)
(2.31)
(T"B" (04, 0x) B(01), 0,)T) " T" B" (01, 01.) )wp ()

= wp (0) (T 1 — Po(og, 0,)wp(9)

Clearly, when 6 = 6, L(Owk),0;) in (2.31) equals zero. Assume that there exists
another solution for L(0y),0) = 0, say 6,, then exploiting (2.29) and (2.30) we can
obtain the relationship that ||[wp(6;)|*||wp(6,)|> = |[wi(0x)wp(6,)]>. Obviously, the

equation holds only if 6, = 0. O

Note that to avoid a trivial solution, we can get rid of the DOA value in advance
because this DOA can be considered as one of the ambiguous values in the set of 6,

or we can implement the following criterion to avoid this phenomenon

0 = arg ma wh (0) Py, wp(6). (2.32)

X
€0 —A0 0 +A0)
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Therefore, the alternating null-steering technique can be summarized as follows:

1. Implement the generalized ESPRIT technique of (2.27) to estimate rough DOA

estimates of the sources and denote them as [é,go)]szl

2. Find a set of angle selection intervals in which a fine search will be performed:

K

U [9,20) — A0 é,(ﬂo) + Af] and then implement the following iterative steps.
k=1

3. For k = 1 : K, compute the following optimization criterion in the k' angle

selection set of the " iterations:

HA,(:) =arg  min wh (0)(Iaars1 — Pou,)wp(0) (2.33)
o6l —n0 60V A0

or
0) —arg  max wh (0) Py, wp(6) (2.34)
oeldl "V —no 00V A0]
end
. i f(ég)*@(f—”)z
4. Compare [0”]X | with [#'"V]%, by checking if ¢ > B where ¢

is set by user to get the accurate estimates. If the inequality holds, terminate
the iteration and output the final DOA estimates. Otherwise set ¢ =1 4+ 1 and

K »
update the selection set | J [«9,8) — A0, 9,&2) + Af], and go back to step 3.
k=1

2.3.3 Simulation Results for ANST

This subsection presents two examples to illustrate the performance of the proposed
DOA estimation method in comparison with the MUSIC technique in terms of both

accuracy and resolution of the estimated angle. In order to obtain the maximun
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capability of estimating the number of sources, herein, we set d =1 and p = 2M + 1.
We use 9 elements in the array system, i.e., M = 4, for the first example, and 5
elements, i.e., M = 2 for the second example. The two ULAs have elements spaced
by dy = 8 and dy = 7, respectively. Monte Carlo simulations with 800 independent

realizations of the received data are carried out.

—e— Fine DOA
10 @+ Rough DOA i
-—- Rootmusic with 9 sensors |
C T Rootmusic with 32 sensors ||

Standard Deviation (degree)

Figure 2.6: Two sources at the DOAs [10°,20°] impinge on a NULA system with two
ULAs for the larger intersubarray of 8 half wavelength. 200 snapshots used.

In the first example, we evaluate the DOA performance of the proposed and the
MUSIC methods baseds on 9-sensor ULA and 32-sensor ULA with two equal-power
signals whose incident directions are [¢, 03] = [10°,20°] and the SNR varies from -5 to
5dB. It is observed from Fig.2.6 that the proposed method provides a better accuracy

than the traditional RootMUSIC method, using the same sensors. This is perhaps
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because our proposed method makes use of the array pattern to largely extend the
array aperture and implements the estimation of both rough and accurate angles. It
is also found that the estimation accuracy of our proposed method is a little worse
than that of the RootMUSIC with the same array aperture. This is because the latter
exploits more sensors to reduce the additive noise.

In the second example, we demonstrate the resolution of the two DOA estimation
methods. In order to compare them under the same conditions, we assume that there
are two equal power uncorrelated signals from DOAs of [6;, 0] = [8°,10°], and the
SNR and the number of snapshots are set to 15dB and 200, respectively. The results
are shown in Fig.2.7(a) and 2.7(b). From Fig.2.7(a), we see that the ULA using
Root-MUSIC gives only one small peak around two arrival angles of the signals, i.e.,
two peaks merged into one peak, while Fig.2.7(b) shows clearly two peaks without
any ambiguity produced by the proposed method. This means that among most of
trials, the ULA-based root-MUSIC algorithm fails to give an accurate DOA estimation
or resolve two close DOAs. Nevertheless, our proposed method can provide a more
accurate DOA estimate and a higher resolution than the traditional methods such as

MUSIC.

2.4 Joint Elevation and Azimuth Angle Estimation

Based on Sparse L-shaped Array

In this section, we introduce a novel estimator for joint elevation and azimuth angle

estimation based on sparse L-shaped array in the z—z plane as shown in Fig.2.8, which
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DOA Estimation by RootMUSIC from [8 10] Degree
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Figure 2.7: Histogram of two uncorrelated sources with DOAs of 8° and 10°, and the
SNR=15dB, and 200 snapshots (a) ULA by Root-MUSIC, (b) Proposed technique.
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is constructed by one ULA with half-wavelength inter-elements along the z axis and
one SLA along the x axis as shown in Fig.2.9, where dy,ds, - - - , dy, are inter-element
spacings in terms of the half wavelength and at least one of them is less than or equal
to unity to solve the problem of ambiguity. Note that the element placed at the origin
is a reference sensor. The proposed method estimates the elevation angles based on the
signal subspace formed by a linear operation of the matrix from the cross-correlations
between sensor data, and the array geometry and shift invariance property. Then,
the azimuth angles can be estimated on the estimated signal waveforms obtained as a
linear combination of the array outputs in which the weights are computed from the

estimated elevation angles.

2.4.1 Proposed Array Model

Figure 2.8: Array configuration for 2-D DOA estimation
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Figure 2.9: Geometry of sparse linear array

Suppose that there are K narrowband sources with the same wavelength imping-
ing on the array from different azimuth and elevation directions, i.e., [0x &x|5_,.
These sources are assumed to be in the far-field with respect to the sensor location.
The observed signals at the ULA along the z axis and the SLA along the z axis are
given by

2(t) = As(t) + n.(t)
(2.35)

x(t) = A,s(t) + nm(t)

The matrices and vectors in (2.35) have the following definitions. Both of the ob-
served signals z(t) = [20(t), z1(t), -+, zar. ()]F and x(t) = [wo(t), 21 (t), -+, 20, (V)]
are (M,+1) x 1 and (M, +1) x 1 vectors and functions of the snapshot t, respectively.
n.(t) = [nao(t),nan, -y nen ] and n,(t) = [neo(t), nea, -+ N, are i.i.d additive
noise vectors, whose elements have zero mean and variance 0. Note that xo(t) = 2o(t)
and n, o(t) = n,o(t) denote the measurement and noise of the reference sensor, respec-
tively. A, has the same expression as A; in (2.2) except that sinf = cos¢, d; = 1,

and (M, —1) = M,. A, is the (M, 4+ 1) x K array manifold matrix of SLA including
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the reference sensor as given by

A, = lag(th),a.(02), -, a.lk)]

1 1 1
W m i (2.36)
(& ]@1 e .7902 e & JSOK °
= Y
i Mg i Mg . My
e ]‘pl e ‘%02 P e jSOK

where <pl(€m) = > d,(m =1,2,---  M,) with ¢ = 7cosb} is the phase difference
i=1
between the m' sensor of the x axis and the reference sensor for the k%*(1,2,--- | K)

signal.

2.4.2 Elevation Angle Estimation

As is well known, the CCM, a noise-free correlation matrix [40,45,46], can be used

to improve the estimation performance and reduce the computational complexity.

Therefore, we will exploit the CCM to estimate the elevation angles by constructing

the signal subspace without EVD and implementing ESPRIT-like technique. Now
(m)

let us define the correlation vectors 75 ,m = 1,2, -+ , M, between z(t) and the m®"

element x,,(t) by

r™ = Blz(t)2k,(t)] = A.Rb,. (2.37)

where b, = A,(m+1,:) is the (m + 1) row of A. Note that under the assumptions

for the signals and the additive noises above, we can show that the correlation vectors
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in (2.37) are not affected by the additive noises. Also, it can be viewed as a linear
combination of the columns of the array response matrix A, By concatenating the

correlation vectors of 'rg;), we construct the CCM

R™ =[rM)r?, ... rM)) = A.R,B". (2.38)
where B £ [b1,ba, -+ ,by,]. Note that this matrix defines the cross correlation

between the received data for the ULA including the common element and for the
SLA along the z axis. If we assume that B is a row full rank matrix, we can extract
any K columns, say the first K columns, from R%) to compose a new full column
rank matrix named the signal subspace U, with Rank(U,) = Rank(A.). It can be
seen that each column of U, is a combination of rows of A,. Hence, following the
same principle in (2.9), there exists a nonsingular K x K linear transform matrix T'
that satisfies the relation

U, = AT. (2.39)

Since we have assumed that the subarray along z axis is ULA, we can obtain the
elevation angles by employing the ESPRIT-like method instead of the MUSIC-like
method without searching the parameter spaces. Therefore, we can use the same

steps from (2.11) to (2.14) to estimate the elevation angle ¢y, i.e.,

o = arccos|—arg(\. ) /7], k=1,--- K, (2.40)

where A, is the k' eigenvalue of the matrix F £ UJ(1: M,,:)U,(2: M, +1,:).
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2.4.3 Azimuth Angle Estimation

It is well known that under the model represented by (2.35), the estimates of the
signal azimuth angles can be obtained by implementing the same technique as for the
elevation angles above without explicitly estimating the signal waveform. However,
there exist two shortcomings: one is the pair-matching problem and the other is
computational burden. Here, we introduce a simple TLS-based method to estimate
the azimuth angles on the estimated signal waveform from the ULA. Let us denote
the matrix A,, evaluated using the estimated elevation angles of (2.40) by A,. The

estimate of s(t) is then given by

5(t) = arg mlnz | z(t) s()|1?, (2.41)

where N is the number of snapshots. Thus, according to the assumption for the

additive noise, the desired waveform estimate is given by

s(t) = [ATA 1A 2(t). (2.42)

Note that the estimated elevation angles in (2.40) and the estimated signal waveforms
in (2.42) satisfy the one-to-one relationship. Therefore, the choice for constructing the
A, does not affect the generality of the azimuth estimates. For a perfect estimation

of the elevation angles, (2.42) yields

s(t) = [AT A TAT2(t) = s(t) + [AT A AT, () = s(t) +ny(t).  (243)
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where n,(t) with zero mean and covariance matrix C,, = o*[A7 A |71 is the esti-
mation error of signal waveforms due to the effect of the additive noise along z axis.
Now, let us consider the output of each sensor in the x axis as a linear combination

of the signal waveforms in (2.43), that is,
T (t) = 87 ()b, = 8T ()b, + npm(t) t=1,2,--- N. (2.44)

Clearly, when the signal waveforms are known or estimated by noise-free array mea-
surements, i.e., ny(t) = 0, the K-dimensional vector b,, can be obtained as the least

N
squares solution to the minimization problem rrblin ST 8T ()b, — 2, (t)|?, which is iden-
m =1

tical to the maximum-likelihood one [81]. In practice, however, the measurements are

noisy and the estimation of the elevation angles is not perfect, by, , = (S#8) ' S¥x,,,

where S = [§(1),58(2), -+, 8(N)]” and @, = [27 (1), 27 (2),--- , 2L (N)]”, is no longer
optimal from a statistical point of view and it suffers from bias and increased co-
variance due to the accumulation of noise errors [82]. To deal with this problem,
TLS [83,84] solution, that is, by, s = (S7S — 0% Ix) "' S"x,,, where 0%, is the
smallest singular value of [S’ &), can be used to obtain more consistent estimation
by removing the noise in . Obviously, the elements of estimation error n(t) in (2.43)
are not i.i.d and zero mean,b,, ¢ is still a biased estimation. Therefore, we modify
the TLS solution as

~ ~

meTLS = (SHS - NCnS)_lgme (245)

to obtain an unbiased estimate of b,, and its covariance is 0? R; (R, +NC,,)R; ! (see

Appendix A), where R, = S¥S. Note that the order of b is the same as that

MMTLS
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of the estimated signal waveforms and the elevation angles; therefore, our method
can obtain the paired azimuth and elevation angles without additional steps. Since
we have obtained the entire b, (m = 1,2,---, M,), each of which contains a set
of DOAs, we can use any by, to estimate the final DOA. However, there exists the
problem of ambiguity when ildi > 1; herein, we assume d; < 1 to obtain the rough
DOA without ambiguity, and then using (2.17) to obtain @,(Cm), i.e., the estimate of

gp,(cm). Finally, the final 6, can be estimated as

m

M M
0, = arccos(z @,gm)/w Z Z d;). (2.46)
m=1

m=1 i=1

2.4.4 Complexity Analysis

The implementation of the proposed method requires three major steps:

1. Computation of the cross-correlation matrices R%) to form the signal subspace

U, using (2.38) and (2.39).
2. Estimation of the elevation angle ¢y in the way similar to ESPRIT-like method.

3. Estimation of the source waveforms using (2.42) and estimate the azimuth angle

based on TLS method using (4.2) and (2.46).

The number of flops needed to form U, is 2N (M, + 1)K, since it requires approxi-
mately 2N (M, + 1) flops to obtain each r%). The flop is defined as a floating-point
addition/multiplication operation. According to the algorithm suggested in [85], the
computation of F takes about 4M,K? + o(K?) flops. The calculation of §(¢) requires
roughly 2N (M, + 1)K +4(M, + 1) K?* 4+ o( K®) flops and the entire {b,,} takes about
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AN K?+0o(K?)+2N K M, flops, respectively. Thus, the number of flops required by the
proposed algorithm is roughly 2(M,+ M, +1)N K in total when N > M, > M, > K,
which occurs often in practical applications of DOA estimation. In comparison, the
fast 2-D algorithm of PMLA suggested in [37] requires nearly 2(M, + M, + 2)NK
flops and the Kikuchi algorithm requires another (M, + M, +2)N K flops for the pair-
matching process [39]. Obviously, although the SUWME does not need to compute
the decomposition of the array covariance, it has also a very heavy computational

load in finding the roots or searching the parameter spaces.

2.4.5 Simulation Results for 2-D DOA Estimation

In this subsection, simulation results are presented to validate the proposed method
and to illustrate its performance. In the first and second examples, the sensor dis-
placement d between the adjacent elements in each uniform linear array is taken to
be half the wavelength of the signal waveform. The total number of array elements
is 9, i.e., M, = M, = 4. In the third example, an L-shaped array is constructed by
a four-sensor ULA along the z-axis and a two-sensor SLA with the different array
aperture along the x-axis, i.e., M, = 2, M, = 4. The fourth example is to show the
performance with respect to the number of sensors of SLA along the z-axis. For all
the tests, 1000 independent trials are carried out.

Example 1: Performance of 2-D DOA estimation versus SNR

In this example, the L-shaped array is constructed by two ULA each of which
consists of four isotropic antennas spaced by half a wavelength. We consider two un-

correlated signals of 2-D DOA [0, ¢1] = [45° 70°] and [f> ¢o] = [55° 80°] with
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Figure 2.10: Elevation angle estimation performance with respect to SNR using L-
shaped array constructed by two four-sensor ULAs for two sources with [¢y, ¢o] =
[45°,55°]: (a) RMSE for ¢; = 45° (b) RMSE for ¢5 = 55°. The number of snapshots
is 200.
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[70°,80°]: (a) RMSE for 6; = 70° (b) RMSE for 6, = 80°. The number of snapshots
is 200.
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identical powers and white Gaussian additive noises. For performance comparison, we
evaluate the proposed method against PMLA [37], SUMWE [44], ESPRIT, MUSIC,
and the Cramer-Rao bound (CRB) [86]; these are shown in Fig.2.10 and Fig.2.11.
Notice that the proposed method, PMLA, and SUMWE are computationally efficient
algorithms that do not require the eigen-decomposition for the array covariance ma-
trix, but both the PMLA and SUMWE have to deal with the pair-matching problem.
In contrast, our proposed method takes advantage of the estimated elevation angles
to obtain the pair matching information without additional procedures. The results
indicate that the performance of the proposed method is better than that of the PM-
LA and SUMWE algorithms in both the elevation and the azimuth angle estimation,
especially for medium and high levels of SNR. It is also shown that the estimated
elevation angle from the proposed method is almost the same as that of the subspace
methods based on EVD and SVD, which have a heavy computational burden (e.g.,
Root-MUSIC and ESPRIT), and its RMSE curve is also identical to the CRB at high-
er SNR. A possible reason for this is that our method exploits the noise-free CCM to
obtain the signal subspace, and in this way the effect of noise can be reduced without
implementing eigen-decomposition. From the figures, we also see that the RMSEs
curve of the proposed method nearly coincide with the theoretical RMSEs for both
the azimuth and elevation angles.

Example 2: Performance of 2-D DOA estimation versus correlation factor

This example uses a similar data model as in the first example except for the CF
and SNR, herein we set SNR=10dB and the 2-D DOA estimation performance curves

are plotted with respect to the CF from 0 to 0.8. From Fig.2.12 and 2.13, we can
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Figure 2.12: Elevation angle estimation performance with respect to correlation factor
(CF) using L-shaped array constructed by two four-sensor ULAs for two sources with
(1, o] = [45°,55°]: (a) RMSE for ¢y = 45° (b) RMSE for ¢ = 55°. The SNR is set
to 10dB and the number of snapshots is 200.
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Figure 2.13: Azimuth angle estimation performance with respect to correlation factor
(CF) using L-shaped array constructed by two four-sensor ULAs for two sources with
[01,02] = [70°,80°]: (a) RMSE for 6; = 70° (b) RMSE for #5 = 80°. The SNR is set
to 10dB and the number of snapshots is 200.
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find that the proposed method has the best performance among the fast algorithms
at low and media CF while the SUWME has the best estimation results at high CF
due to the spatial smoothing technique. It can also be seen that the spatial smoothing
technique is good for high CF or coherent signal sources but not for uncorrelated or
low CF signal sources. The results shown in Fig.2.13(a) and 2.13(b) told us that the
estimation performance can be improved significantly by reducing the effect of noise.

Example 3: Performance of 2-D DOA estimation versus snapshots based on S-
LA In the third example, we consider two uncorrelated signals with the elevation
angles [¢1, ¢o] = [80°,90°] and azimuth angles [0, 6] = [85°,105°] impinging into
the L-shaped array with three sensors SLA along x-axis. Herein there are five cas-
es with different array apertures, i.e. dy = 1,2,3,4,7, to be compared with respect
to the number of snapshots varying from 20 to 1280 as shown in Fig.2.14(a) and
2.14(b).From the figures, we can find the same estimation performance for the ele-
vation angles with the same number of sensors along x-axis while different azimuth
estimation performances with different array apertures. Obviously, the larger the
array aperture, the better performance is. Therefore, we can improve the azimuth
performance significantly by designing SLA with the same number of sensors without
loss of the elevation estimation performance.

Example 4: Performance of 2-D DOA estimation versus SNR based on SLA

This example shows the 2-D DOA performance with the same array aperture and
different number of sensors along x-axis with respect to SNR ranging from 6dB to
20dB. The 3-sensor SLA with d; = 1,dy = 5, the 4-sensor SLA with d; = d3 =

1,dy = 4, and the 5-sensor SLA with d; = d3 = dy = 1,dy = 4 are adopted in this
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Figure 2.14: 2-D DOA estimation performance with respect to number of snapshots
using L-shaped array constructed by a 4-sensor ULA along z-axis and a 2-sensor SLA
along x-axis for two sources with [0, 6] = [85°,105°] and [¢y, ¢o] = [80°,90°]: (a)
RMSE for ¢o = 90° (b) RMSE for 65 = 105°. The SNR is set to 15dB and the
number of snapshots is from 20 to 1280.
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example. The number of snapshots is 200. Other conditions are the same as those
in Example 3. Notice that we obtain the elevation angles by averaging the multiple
estimation results using different signal subspace cross-correlation. For example, there
are two signals and three sensors along x-axis which can be used to construct two
different signal subspace, one is constructed by the first two sensors and the other
by the last two sensors. The final estimate of the elevation angle is averaged by two
results from different signal subspaces. Obviously, by this way we can enhance the
performance of the elevation angel estimation and ultimately improve the azimuth

estimation performance.

2.5 Conclusion

Two novel schemes to improve the estimation accuracy and the angle resolution for
1-D DOA estimation with sparse sensors have been presented. One is named mini-
mum redundancy sparse subarray (MRSSA), which improves the performance of DOA
estimation by designing multiple subarrays based on the principle of minimum redun-
dancy linear array and eliminates the ambiguity by employing the idea of Kronecker
steering vectors to obtain the one-to-one mapping for the rough angle and the fine
angle. The other provides a new array design strategy for trading off the unambiguity,
rough DOA and fine DOA estimates by designing two sparse uniform linear arrays
with the minimum inter-sensor spacing less than half wavelength. Inspired by the
idea of the generalized ESPRIT, we have obtained the rough DOA without ambigu-
ity, and then designed the alternating null-steering technique (ANST) to select the

true fine value and cancel the ambiguity set in the same angle section. Note that we
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can only carry out our proposed method for uncorrelated sources using the MRSSA
while the second proposed method can be used in the situation of correlated sources.
Furthermore, we have extended the spare array to the case of 2-D DOA estimation for
correlated sources. In this method, we have designed an L-shaped array constructed
by one uniform linear array along the z-axis and a sparse linear array along the z-axis,
and then an efficient and effective total least squares-based algorithm is proposed to
estimate the azimuth and elevation angles without requiring pair-matching. Finally,
simulation results for the MRSSA, ANST and 2-D DOA techniques justifying the
effectiveness of the proposed method in comparison to an existing method have been

presented.
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Chapter 3

DOA Estimation and Tracking for

AR Model-based Signals with

Unknown Waveform

3.1 Introduction

In Chapter 2, we have studied accurate 1-D and 2-D DOA estimation techniques by
meticulously designing sparse arrays. Obviously, these proposed configurations can
be used to obtain excellent estimation results without incorporating temporal infor-
mation. In some applications, such as speech processing and mobile communications,
the signals can be described by autoregressive (AR) models. Hence, in this chap-
ter, we first present a nontraditional approach for estimating and tracking the signal
DOA using an array of sensors. The proposed method consists of two stages: first,

the sources modeled by AR processes are estimated by the celebrated Kalman filter
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and then, the QR-~decomposition-based recursive least square (QRD-RLS) technique
is employed to estimate the DOAs and AR coefficients in each observed time interval.
The AR-modeled sources can provide useful temporal information to handle cases,
where the number of sources is larger than the number of antennas. The symmetric
array enables one to transfer a complex-valued nonlinear problem to a real-valued lin-
ear one, which can reduce the computational complexity. Moreover, we also propose
a DOA estimation method for AR-modeled sources based on general SLA. Simula-
tion results demonstrate the superior performance of the algorithm for estimating and

tracking DOA under different scenarios.

3.2 DOA Estimation and Tracking Based on Sym-

metric Arrays

3.2.1 Signal and System Model
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Figure 3.1: Structure of the symmetric linear array

Suppose that there are K narrowband moving sources with the same wavelength,

which impinge onto a symmetric linear array as shown in Fig.3.1. The whole array is
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assumed to be divided into two subarrays with inter-element spacings dy,ds, - ,dys
in terms of half wavelength. In order to cope with the problem of ambiguity, we also
assume d; < 1, and then the sensor element at the origin is used as reference. We
assume that all the sources are independent order-L; AR processes and the complex

envelope at time t of the £* AR source is

Ly

pr(t) = api(t)pr(t—i)+up(t) (3.1)

=1

where vi(t) (k = 1,2,---,K) is the excitation of the k' AR process, which is a

2

o (), and ay;(t) are real-valued

white Gaussian noise with zero mean and variance o
AR coefficients [18,87]. Here, we have assumed that the AR coefficients are real to
simplify our discussion in sequel. Howvever, it is not difficult to extend this technique

for complex AR coefficients. Eq.(3.1) can be rewritten as the following state-space

representation,

pk(t) = Fk(t)pk(t - 1) + ’Uk<t)7 (32)

I
where Fy(t) = [af(t) [Te 1) Ouxren]”| with au(t) = apa(t) - o, ()], and
v (t) = [ug(t) 01X(Lk_1)}T. By using (3.2), the K AR sources can be written as the
following state equation

pi(t) Fi(t) 0 pi(t—1) v1(t)

pt)=1| : |= : + 1| = FOpi-1)+0(),

P (1) 0 Fx(t) pr(t—1) v (t)

(3.3)

o6



M=

K
(22 Li)x(

L)
where F(t) € R = =

1 is a block diagonal matrix, and p(t¢) and v(t) are

kf:l Lj-dimensional complex vectors. Since vy (t)(k = 1,---, K) are independent, the
covariance matrix of v(t) is a block diagonal matrix, which can be expressed as Q(t) =
diag (Q1(t), - ,Qk(t)). At time t, let 61,0, - 0k denote the DOAs of the K
targets, and 23 (t) denote the complex signals of the m!™ sensor of the (i = 1,2)
subarray with zo(¢) being the data received by the reference element. Then, the

observed output complex signals of the 2M + 1 sensors, denoted as x(t) € C***1 can

be written as

x(t) £ [a] (t)xo(t)xs ()]
= [AT(1) 1 AT()]"s(t) +e(t) (3.4)

2 A(t)s(t) + e(t),

where x;(t) = [xgl) (t),--- ,:1:5\? (t)]"(i = 1,2) is an M-dimensional vector of complex
signals at the " subarray output, s(t) £ [p1(t),pa(t), - - px(t)]T = I'p(t) is a K-

K
dimensional vector of the target sources with I" being a K x > L; dimensional selec-

k=1
k
tion matrix whose entries are 1 on the position (k:, > L,— Ly + 1) and 0 elsewhere,
p=1
and e(t) = [egé)(t), e M), eo(t), eP(t), - ,es\? ()] is a (2M + 1)-dimensional
vector of complex white measurement noises with zero-mean and covariance matrix

R.(t). Finally, A is the (2M — 1) x K array manifold matrix of the whole symmetric

array and A;(t), (i = 1,2) is the M x K array manifold matrix of the 7" subarray as
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given by

e~ (Dduvn(t) o= (=1)'dnta(t) L. o= (=1)'duk (1)

e~ (=1)%idiya (t) e~ (DA L o= (=1 %divk (D)

where ¥ (t) = wsin(t) and the arrangement of d,, in the reverse order of m is for
convenience. It is easy to verify that A;(t) = (Ax(t))*. Therefore, the matrix A(t)

in (3.4) can be rewritten as

A(t) = [AT() 1T, JuAl@)]". (3.6)

It can be seen that each column of the matrix A(t) is conjugate symmetric. Note
that rearranging A(¢) and the array measurements does not affect the results of DOA
estimation. In the following subsection, we will introduce a novel algorithm to estimate
the waveforms of the signals of interest and their AR coefficients by employing the

celebrated Kalman filter technique.

3.2.2 Kalman Filter and AR Coefficient Estimation

Herein we assume that both 6(t) and the AR coefficients are slowly time-varying in

the observed interval [71]. In particular, we assume that over each time interval the

o8



change in both 6(t) and F(t) is small enough so that

0(t) ~ 0(nT), ai(t)~ar(nT),t < ((n—1)T,nT),(n=1,2,---;k=1,--- , K)
(3.7)
It is also assumed that there are N snapshots or signal samples available to process
the received data and estimate the AR coefficients and DOAs over each interval ((n —
1)T,nT]. Consequently, the N snapshots in the n'" time interval can be approximately

expressed as

x(n,i)=A(n)s(n,) + e(n,),(i=1,---,N) (3.8)

Note that (3.8) can be considered as the discrete-time version of (3.4) in the n inter-
val. To simplify the expressions, we use x (1), s(7), and e(j) instead of x(n, 7), s(n, j),
and e(n, j) in the sequel. As mentioned earlier, the proposed algorithm is to explore
the dynamics of the source signals and jointly estimate the DOA and AR parameters
of the source signals. To this end, we shall track the source state vector p(t) using
KF given initial DOAs and then update the DOAs using a regularized QRD-RLS
algorithm. In general, KF is an optimal minimum mean squares state estimator for a
linear state space system [88-90], while the regularized QRD-RLS algorithm has good
numerical stability and low estimation variance [91,92]. The required state space
model at the n'* interval can be obtained from the state dynamical equation in (3.3)

and the sensor measurement equations in (3.8) as follows
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x(i)=A(n)I'p(i) + e(7), (3.10)

where the system matrices F' and A depend only on n and can be considered as
constants in each interval, and v(i) and e(i) are assumed to be uncorrelated, i.e.,
E[v(p)e(q)] = 0, for all p and g. Then, the state of the system can be recursively

estimated using the KF [89] as

p(ifi) =p(ili — 1) + k(i) (2(i) — A(n — D)IP(i|i — 1)) (3.11)

where p(i|i) is the update or posteriori estimate and p(i|i — 1) is the best estimate
prior to assimilating the measurement (i), and k(i) is Kalman gain to be determined

by the following Kalman recursion

P(li—1)=Fn—-1)PG—1li—1)F'(n—-1)+Q(i — 1), (3.12)

k(i) =P@ili— 1ITAY(n — D[A(n — DT P(i|i — H)TTAF(n — 1) + R (4)] 7,
(3.13)

P(ili) = (I — k(i)A(n — 1)) P(i|i — 1) (3.14)

where P(i|i —1) and P(i|i) are the error covariance matrices associated with the
priori estimate p(i|i — 1) and the posteriori estimate p(i|i), respectively. Since all
states of the system have been estimated by (3.11), it is easy to separate the sources,

giving the k" AR source expressed in the linear regression model

pi(i) = pi, (i = Dar(n) + vy(i), (3.15)
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where a;(n) are the AR coefficients for the n'" interval to be estimated. Since ay(n)
is real-valued while py (i) and v (i) are complex valued, we can transform (3.15) to a
real-valued expression to reduce the computational load by separating the real and

imaginary parts, leading to

z,(1) = B} ())ag(n) + wy (i), (3.16)
where
Re[p ()] Re[py; (i—1)] Re [vg(7)]
ai=| | Ba=| C wyli)= - (317)
Im([py. ()] Im[pj; (i—1)] Im [vy,(4)]

We now estimate a(n) by employing the regularized QRD-RLS algorithm described
in Table 3.1. As compared to RLS, QRD-RLS has a better performance, lower com-
putational complexity, as well as better numerical stability in finite word-length im-

plementation. In the next section, we will consider the tracking and estimation of the

DOAs.

3.2.3 DOA Estimation and Tracking

We implement the DOA estimation in the real-valued domain in view of its excellent
accuracy and substantial reduction of the computational burden over conventional
DOA estimation techniques. In particular, we derive a real-valued DOA estimation

and tracking method based also on the regularized QRD-RLS algorithm. First of all,
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Table 3.1: QRD-RLS Algorithm

Initialization:
Fork=1,2--- K

H,(0) =4d1I,, § is a positive constant, say § = 1

U, (0) =0.

end

Recursion:
Forn=1,2,---

For:=1,2,--- ,N
Given Hk(l—l), Uk(Z—l), Zk(l),Bk(Z)

| VBHE(i—1) BU(i—1) Hi (i) Uk(i)
Qi (i) =

Bj (i) 2z (1) 0 ()

where Q. (i) is an unitary Givens rotation matrix of the i'" recursion
for the £ AR modeled source and (3 is the forgetting factor.
end

ai(n) = (Hy(N))"'U(N).

end
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let us introduce an odd unitary transformation defined in [93]

I Onsn 31y
1
Tomir = 7 O V2 Onar |- (3.18)

Ju Ousxa —J3Jdu

By left-multiplying (3.10) with the above unitary transformation, one gets

wr(i) & T, A(n)Tp(i) + Tih,, (i)

2 M (g) 2 M (i Z pe(d), -y @) (1)

Let Ap(n) = T4\, 1 A(n). Tt is easy to show that Ap(n) is a real-valued matrix as

given by ) _
Re[A;(n)]
Arm)=V2| 1, | (320)

i Im[Jy Aq(n)] |

where
cos(datn(n))  cos(dtha(n) -+ cos(durtir(n))
Re[A;(n)] =
I cos(d1t1(n)) cos(diypz(n)) -+ cos(diyk(n)) |
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sin(dy1(n)) sin(diie(n)) -+ sin(divg(n))
Im[JyAq(n)] =

sin(dythi(n))  sin(dytz(n)) -+ sin(dyvk(n))

Using (3.19) and (3.20), we can find that each element of &7 (i) can be described by

a linear regression model as

2 (i) = (Tp(0)) (AF(n)" + e (i), (m=£1, %2, .-, £ M), (3.21)

where A% (n) denotes the m™ row of matrix Ar(n). Note that the auto-covariance
matrix of e7!(7) is the same as those of ™ (i) due to its unitary invariance. Similar to
the estimation of the AR coefficients, we can again employ the QRD-RLS algorithm to
estimate all the row vectors of Ar(n) except for the middle one, namely, A% (n), (m==+

1,£2, ---,+ M), Further, we can combine A}™(n) and A;™(n) as one group, giving

)

sin(d,, 1 (n)) - - - sin(dp g (n))
Group m: : (3.22)

cos(dy,1(n)) -+ cos(dpk(n))
Obviously, one could exploit either the sine or cosine vector of group 1 to obtain the
DOA estimate, but this sine or cosine calculation may fail to obtain the DOA estimate
when the argument of the inverse sine or cosine function is greater than unity. To
overcome this limitation, we can combine the sine and cosine vectors to get a new set

of tangent vector for each group, i.e.,

Group m: {tan(d,,¥1(n))---tan(d,r(n))} . (3.23)
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Note that from (3.21) shows us that the AR modeled sources p(i) and the regression
coefficients A%!(n) satisfy one-to-one relationship, and there is no need to deal with
the pair-matching problem for the different DOAs. From (3.22) and (3.23), we can
find that any group contains the entire information of the angles, implying that we can
achieve DOA estimation by just using any pair of sensors from the different subarrays.
Therefore, our proposed method is also suitable for the case, where the number of
sensors is much less than that of the sources. As is well-known, for d,, > 1, (m =
2,---, M), an ambiguity may happen due to the inability of the tangent function
being able to deal with more than 180 degrees, where the arc-tangent function is to
select the right DOA from |d,,x(n)| > 7/2. Herein, we employ a technique similar
to that suggested in Section 2.2 to handle this ambiguity problem. According to the
assumption d; < 1, we can obtain the rough DOA estimate without ambiguity by
using the first group of data. There exist multiple values for the same tangent value,

ie.,

i:;,k = Y1k + Tl [—(7 + Vi p)din /7] < by < [T — g )di /7] (3.24)

where v, = Wsin(é(l)yk(n)) is estimated by the first group in (3.22). So the unam-

biguous estimate for the k' angle can be obtained as

é(mm(n) = arctan(arg min arcsin(wfgjk/w) - é(m_lm(n) ) (3.25)

m,k
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where é(m),k (n) is the m™ estimated value based on the (m—1)" unambiguous estimate

é(m_l)vk(n). Note that it is also possible to use two subarrays to estimate the DOAs

without requiring the reference element, in which case an even unitary transformation

matrix [93] should be utilized.

3.2.4 Simulation Results for DOA Estimation and Tracking

In this subsection, some simulation results are presented to show the effectiveness of
the proposed DOA estimation and tracking method. Here, we assume that the AR
model order of the source signals is fixed and known. In practical applications, it
can be determined by standard model order estimation techniques. Note that the
reference sensor is not used to carry out DOA estimation in the following simulations
in order to reduce the cost of array system for practical considerations.

Example 1: Performance of joint AR coefficients and DOA estimation

In this example, the sensor array consists of three isotropic antennas spaced by
half a wavelength, i.e., d; = 1/2. The sources are two second-order AR stationary
signals with coefficients a; = [0.872 — 0.550] and ay = [1.096 — 0.870] and each
has a signal to noise ratio (SNR) of 30dB. Here, the SNR of the k" signal is defined
as the ratio of the k' signal power to the average power of noise e(t). The DOAs are
chosen to be 0° and 20°. The other parameters are chosen as follows: the initial guess
for the two DOAs is 5° and 25°, the initial AR coefficients are [0.772 — 0.450] and
[0.96 —0.77], and N=30 snapshots are used. As shown in Fig.3.2 and Fig.3.3, the
proposed method can estimate the DOAs of the two sources and the AR coefficients

very well using only two sensors spaced by half wavelength, which is almost impossible
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Figure 3.2: Histogram of DOA estimates for two AR modeled sources of DOA at
[0°  20°] using two sensors with d; = 1.

for conventional subspace-based method to do. This confirms the effectiveness of the

proposed method in exploiting the dynamic information of the AR modeled sources.

Example 2: Performance of DOA tracking

To assess the DOA tracking performance of the proposed method, we set the
simulation conditions as follows: AR coefficients are the same as those in Example 1
and herein these values are assumed known previously and SNR is set at 10dB. Five
sensors with d; = 1 and dy = 2 are used. Fig.3.4 depicts the DOA tracking result
of the proposed method in comparison with that obtained using the PAST method

in [60] when the DOAs of the two sources are 0° and —20° and N=3. Fig.3.5 shows
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the simulation results of both the proposed and the PAST methods for the DOA that

is governed by

10 — n/400 and 20 —n/100 nell 400]

DOA = 9—1.5(n—400)/40 and 16— 2.5(n —400)/10 n € [401 440

7.5 —2.5(n — 440)/1000 and 6 — 7.5(n — 440)/1000 n € [441 1000]
(3.26)

\

when N=30. Both of the initial DOAs are 2° and 12°. From Fig.3.4, we see that the
subspace-based method using PAST is unable to resolve the closely-spaced angles in
this case, while the proposed method yields satisfactory tracking results. Fig.3.5 shows
that although the PAST can track the separated DOAs, it is hard to track the fast
moving target while our method can handle this situation satisfactorily. T'wo possible
explanations are 1) our method takes advantage of the temporal information and
2) the subspace swap and leakage between the signal and noise subspaces degrades
considerably the performance of the subspace-based methods in the case of closely
spaced DOAs. It is also clear that the more snapshots used, better performance for
fast moving targets can be achieved. Moreover, through a large number of simulations,
we have also found that the tracking performance is not sensitive to the initial guess
of DOA values.

Example 3: Performance of DOA tracking for two moving targets The tracking
performance of the proposed method for two moving targets is now examined. The
simulation conditions are similar to those in Example 2, except that the AR coefficients

of the first source is a non-stationary AR signal with a; = [-0.450 0.772], d; = 1
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and dy = 4, and the DOAs of the two sources are generated according to [—5 +
n/100 5 —n/100],n € [I 1000]. The averaged results by 50 independent trials are
shown in Fig.3.6. Clearly, the proposed method provides a good tracking performance
for two moving targets, with one source being a stationary signal source and the other

a non-stationary signal source.

3.3 DOA Estimation based on General SLA

In this section, we introduce a novel method to estimate AR-modeled source wave-
forms and their DOA using the Kalman filter and TLS techniques based on sparse
linear arrays. The key idea of our method lies in that each sensor of arrays is consid-
ered as a subsystem to obtain the angle information to estimate the DOA, and then
the whole information combined to derive an optimal estimate for the angles. Unlike
the method proposed in the previous section, which assumed that the AR coefficients
are real numbers and the array is symmetric sparse array, herein the proposed method
will be used in more general cases for complex AR coefficients and SLA. Moreover,
in the previous section we exploited the QRD-RLS techniques to estimate the AR
coefficients and DOAs, which however suffer from the effects of the bias due to the er-
rors in estimating the state values [82]. Therefore, this section introduces an unbiased

estimator for AR coefficients and DOAs.
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3.3.1 Initial State Values

In this section, the SLA array shown in Fig.2.9 is used and the data model is the
same as in the previous section except for the real AR coefficients. Note that the
directions have the same definition as in Fig.3.1. It is well-known from the KF theory
that the procedures for estimating the source waveforms in the previous section are
optimal, if we know the accurate model parameters such as p(1), Q, R, F', and A.
However, in some practical applications we have to estimate these parameters only
using the measurements; in the following context, we propose methods to obtain these
parameters.

Now let us show as to how to estimate the the initial p(1) and Q. Consider again
the model of (3.9) and (3.10), which can be rewritten as

x(1)=ATFp(i — 1) + ATv(i — 1) + e()
(3.27)

= ATF"'p(1) + ATv(i — 1) + - - - + ATF"%v(1) + e(i).

Therefore, by collecting the first ¢ equations of (3.27), we may write them compactly

as

(3.28)
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where

AT

ATF

AT Fi!

It is easy to verify that n;

0 e 0
AT 0
£
ATFi—2 AT

v(i —1)

(3.29)

K
is a <Z Lk> -dimensional Gaussian random vector with

k=1

zero-mean and the covariance matrix as follows,

i

ATQ

ATF2Q

0 0
AT 0
ATQ | | ATF2

+ R,

AT

NN
NN

£
Il
-

I

k

M=

1

Ly,

(3.30)

Using the principle of the generalized Least squares [94], we can obtain the optimal

estimate for the j iteration of p(1) as

p9(1) = (B(j_nHC?(ljiq)le(j—l)) —IB(j—l)HCT(ifl)ﬂwi.

(3.31)

It is easy to prove that (3.31) is an unbiased estimator to obtain p/)(1) with the covari-

k

ance Cpi)(1) = (B(jfl)HC’,,(f;_l)_lB(j*l))*1. In this way, we use QY (> L, — Ly, + 1,

k

Yo Ly — L+ 1) = Cpuy (D2

p=1

p=1

k

p=1

1)

p=1

k
L,—Ly+1, % L,— L+ 1) for the next iteration. In



some applications, the covariance of the additive array noise R, can be known a priori
or estimated during the non-signal periods. Thus for the first iteration, there is no
information of @ which can be used to estimate p*)(1); we only employ the first array

sample to estimate s(V)(1) = TpM)(1), that is,

(A"R;'A)'AYR;'®;, for K < (M+1)
s(1) = : (3.32)

Atz; for K> (M+1)

3.3.2 Unbiased Estimation for AR Coefficients Based on Ob-
servations

Using the same philosophy as in (3.21), we can consider each sensor of SLA as a

subsystem

2™(i) = A"Tp(i) + e™(i), (m=0,1,---,M). (3.33)

Recalling (3.1), (3.33) can be rewritten as

2™(i) =) a™(6) (Z af pi(i — l) + vk(i)> +e™(3), (3.34)

I=1

where a™(0,) denotes the m' element of the steering vector of the k' signal. Now,
let us define the autocovariance values of the measurements of the m® sensor and the

source waveforms at lag [ by

it = Ea™@)2™ @ = 1) and = E [p(i)pi(i — 1] (3.35)
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Theorem 2. Assume that the signal waveforms are uncorrelated with each other,
i.e, B pa()pi(5)] =0, a#b, andletly £ max{Ly};_,. Then, T es =128

is immune to additive noise, and the unbiased estimate for the AR coefficients is given

by
T H 1 pHH._m
a1, ay, - ,ak]" = (RS RS) Rgry, (3.36)
AT T 7T Al 1 2 2
where RS - [rl 7Ty 7TS] and ry = [lev1+s—17 o Mrts—t0 Tl ts—10 """ 0 Tlrs—lao
K K T m A [,.m m m T
T its—1 """ 77"lM+s—lK] ,and rg = [T5M+1’7'lM+27“‘ arzM+s] .

Proof: Combining (3.34) and (3.35), we can derive that

s = £ [27(@0)a™ (0 = Iy — s)]

(Z a™(6) (Z ag pr(i — li) + Uk(@) + em(i)>

I=1

(Z a™(Ox)pr(i — Iy — s) + ™ (i — Ly — 3)) ] (3.37)
k=1
- Z < Zrl’CA{"!‘S—lk)

a
k=1 \lx=1
T
=T, [a17a27 : 7a'K] .
A4 7.1 ool 2 e 2 e oK .. K T
where ry = [7"1M+s—1a y Tlagts—i1 Thp+s—15 s Tl ts—lao Tl +s—10 »7“1M+s—zK]

Clearly, the vector 7, is not affected by the additive noise. Therefore, rj! | is also

K
free from additive noise. Then by combining S > Ly, equations of (3.37), the AR
k=1

coefficients can be obtained by using (3.36) based on the LS technique. O

Suppose that there are N snapshots available to estimate the AR coefficients.

7



Then, we replace 7" and rF in (3.35) by their estimates

N N
Am 1 M\ ek ( nk —1 ot (2
m = m;ﬂ; 2" @)™ (= 0] and A = e ;:lk [ ($)pr (i = 1)]

(3.38)
Owing to the estimation errors in {flm, f’l’“}, the matrix equation (3.36) does not hold
exactly in general. Thus, we solve (3.37) for AR coefficients in a TLS sense [95]. Since
each sensor is a subsystem with the same AR coefficients, we can use the mean of all

the estimated values as the final estimate.

3.3.3 DOA Estimation Using TLS

Eq.(3.33) can be rewritten as

2™() = 3 " (O)pu(i) + em(i) = sT()A™ + "), m=0,1,--- .M (3.39)

k=1

where s(i) = [p1(i), p2(4), -, px(i)]" denotes the source waveforms of the i snap-

shot. Then, rewrite the whole N snapshots compactly as
x™ £ §TA™ + (i) = [8(1),8(2), -+, s(N)]TA™ + ™ (4), (3.40)

where ™ = [2™(1),2™(2), - ,2™(N)]” is the N snapshots measured by the m®"
sensor of SLA.
It is well known that when the noise in S is zero and the noise in 2™ is zero

mean Gaussian, the LS solution A7 is identical to the maximum-likelihood one [94].
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Unfortunately, herein S is unknown and obtained using (3.11), which is affected by
the estimation errors and additive noise; therefore, A7y = ((S*ST)_l S*wm>T is no
longer optimal from a statistical point of view and it suffers from bias and increased
covariance due to the accumulation of noise errors in (S*S7) [82]. To cope with this
problem, in the following, we will introduce a TLS-sense method.

From (3.11)-(3.14), we can obtain the estimated value §(i) = I'p(i]¢) which is a
unbiased estimate with the covariance Cs(;) = T'P(i|i)I'. Therefore, we propose the

TLS estimator as

N T
LS = <(S*ST - Z Cg(i))ls'*wm> (3.41)

to obtain an approximately unbiased estimate of A™ and its auto-covariance matrix

N
is Can = R5'(N) (RS(N) + ; Cg(i)> R;"(N)o?,, where Rg(N) £ "% "and the

cross-covariances equal to CAII;}LS”A%JLS £ R.(p,q)Rg'(N) (RS(N) + zé Cg(i)> R;7(N),
p # q (see Appendix B). Note that when the spatial noise is Gaussian white noise, the
covariance matrix R, is a diagonal matrix. Then the cross-covariances are zero, which
is a reasonable assumption in array signal processing, especially for SLA. Therefore,
without loss of generality, we assume R, = diag([o2,0%,--- ,0%;]) in the following
analysis.

Obviously, the order of DOA information of A%, ¢ depends on the arrangement
of the signals on the estimate of source waveform, i.e., the k' element of s(7). There-

fore, we can obtain arrs(0x) = [a%15(0k), atrs(0k), -+, adl o(0;)] as the k' spatial

feature, which does affect the generality of the analysis. Now, we make the following
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partition of arrs(0x) with two vectors as

a5 (0h) £ [agrs(0h), atps(Br). - ayig (60)]"
(3.42)

agr%s(ek) a71.5(0k), aZrs(0k), - - - =G¥Ls(9k)]T

We define the vector

dk = aTLS(Qk) o) aTLS(Gk)* = dk + Adk, (343)
where d;, = [e/T¥k eid2¥k ... eidu¥k]T and Ad, is a Gaussian random vector with
zero mean and the covariance matrix Cy = diag ([07 di,ai PR Lo dy]), where
TAdp = Onam(@y) T Tham-1(g,) A0 0Amegy = [Cag, Jux (see Appendix C). Clear-

ly, the MLE of 6, which is equivalent to the following GLS problem, is found by
minimizing [96]

L(6,) = (dk - dk) c;! <dk . cik> (3.44)

Since SLA is used in this section, there may exist the problem of ambiguity by imple-
menting (3.44) directly. Similar to the method in Section 2.3, we determine the search
range by the unambiguous DOA and unambiguous interval. If we assume that one of
the element-spacings {dm} _, is less than or equal to unity, say d; < 1, which can
be used to estimate the unambiguous angle value QA,(:) , then the unambiguous interval
can be obtained by the largest element-spacing, i.e., d, = max d,,. Hence, the search
range is [é,(:) A é,gl) + A@Y]. Therefore, the final DOA estimation of the k™ signal

can be obtained by computing (3.44) in the searching space of interest.
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3.3.4 Simulation Results for DOA Estimation Bas