
GIT-REVIEWED: A DISTRIBUTED PEER REVIEW

TOOL & USER STUDY

Murtuza I. Mukadam

A thesis

in

The Department

of

Computer Science

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

April 2014

c© Murtuza I. Mukadam, 2014

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Murtuza I. Mukadam

Entitled: git-reviewed: A Distributed Peer Review Tool & User

Study

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Dr. H. Harutyunyan

Examiner

Dr. N. Tsantalis

Examiner

Dr. R. Witte

Supervisor

Dr. P. Rigby

Approved
Chair of Department or Graduate Program Director

20

Christopher Trueman, Ph.D., MEng, BEng, Interim Dean

Faculty of Engineering and Computer Science

Abstract

git-reviewed: A Distributed Peer Review Tool & User Study

Murtuza I. Mukadam

Software peer review has been considered the basis of an effective procedure

for examining software artifacts, identifying defects and increasing the efficiency of

software firms for decades. The process of peer reviewing allows reviewers to check

their co-worker’s work, which helps in determining if a standard for a system has been

maintained or achieved by the person whose work is being reviewed. The result of this

process is a high quality working product that will likely reduce further maintenance

effort. There is a large number of code review tools available in the market as of today,

which assist in the reviewing task. All these tools are centralized, with the reviews and

discussions being stored either on a mailing list or a server. In contrast, the code that

makes up a software system is increasingly being stored in a distributed version control

system (e.g. Git). In an effort to determine if distributed peer review is a tenable idea,

we develop a peer review tool, git-reviewed, which replicates the working model of Git

by incorporating reviews into the current Git architecture. git-reviewed is a lightweight

and a truly distributed peer review tool, which eliminates a centralized server or a

mailing list to store the review discussions. We model our use case based on the Linux

kernel, which is a large open source project. git-reviewed has been designed to keep the

current development and reviewing practices followed by the Linux kernel developers

within the open source environment intact. We also provide better traceability by

linking the review discussions on the mailing lists and the changes made in the Git

repository. git-reviewed was evaluated by software developers working on large open

source projects, (e.g. Linux, PostgreSQL, Git), whose feedback helped us improve our

tool and determine if distributed reviewing works in practice.

iii

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Dr. Peter C. Rigby

who has been actively involved in mentoring me and keeping me well aligned with my

goals, throughout the course of this thesis. His consistent guidance and motivation

has been instrumental in bringing the best out in me. He has not only taught me a lot

about the best research practices, but has also inspired me to achieve great heights

in life. This thesis would not have been possible without Dr. Rigby’s expertise and

sound research insights in the field of Software Engineering.

I would also like to thank Dr. Daniel German for collaborating with me and

providing me with the much needed assistance for this work.

A special mention to Tavish Armstrong, a friend and a colleague. I am particularly

indebted to him for his selfless help and some crucial contributions to this work.

I am extremely thankful to all the members of the Concordia Empirical Software

Engineering Laboratory (CESEL) for making my work environment so lively. Research

would have never been so enjoyable without them.

Last but not the least, I wish to express my love to my parents, brother and my

lovely fiancée. No words can justify their importance in my life. I would have never

made it so far without their constant support. I owe every smallest achievement to

them.

iv

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Context and Motivation 4

2.1 Relevant Linux Kernel Background 4

2.2 Peer Reviewing on Linux Kernel Mailing List 5

2.3 Need for Better Traceability . 9

2.4 Need for Distributed Review . 10

2.5 Advantages and Disadvantages of Distributed Development Tools . . 10

2.5.1 Elimination of a Central Point of Failure 11

2.5.2 Collaboration . 11

2.5.3 Commit Policies . 12

2.5.4 Release Engineering . 12

2.5.5 Trusting Your Data . 13

3 Background 14

3.1 Evolution of Peer Reviewing Practices 14

3.2 Summary of Existing Tools . 17

3.2.1 CodeCollaborator . 18

3.2.2 Crucible . 19

3.2.3 Review Board . 19

3.2.4 Rietveld . 19

3.2.5 Gerrit . 20

v

3.2.6 Bugzilla Based Review . 20

3.3 GitHub Pull Requests . 21

3.4 Email Based Code Review . 21

4 Architecture, Implementation, and Features of git-reviewed 23

4.1 High-level Features for git-reviewed 24

4.2 Git Architecture . 25

4.2.1 Branching . 27

4.2.2 git-reviewed Integration with Git 28

4.3 Initial Architecture of git-reviewed 28

4.3.1 Initial Architecture of git-reviewed 28

4.3.2 Current Architecture of git-reviewed 30

4.4 Implementation of git-reviewed . 33

4.4.1 git-reviewed Option Parser . 34

4.4.2 Communication with Remote Repository 34

4.4.3 Creating and Deleting Reviews 34

4.4.4 Creating and Sending Emails from git-reviewed 34

4.4.5 Developing Log History of Reviews 35

4.5 Features and Functionality . 35

4.5.1 Viewing a List of all Reviews 35

4.5.2 Log of Reviews . 37

4.5.3 Viewing Each Review . 37

4.5.4 Viewing Reviews Related to a Particular Reviewer 37

4.5.5 Creating a Review . 37

4.5.6 Importing Reviews from a Mailing List 37

4.5.7 GitHub Compatibility . 42

4.6 Need of Linux Reviewers and Features of git-reviewed 44

4.7 Linking Patches to Commits . 46

4.7.1 Comparing Linking Results for Linux, Git and PostgreSQL . . 49

4.8 Comparing Linux Reviewing Process and git-reviewed Reviewing Process 50

5 Evaluation 52

5.1 Distributed Review . 53

vi

5.2 Traceability . 53

5.2.1 git-reviewed Tracker . 54

5.2.2 Comparison with Trackgit . 55

6 Conclusion and Future Work 57

6.1 Conclusion . 57

6.2 Future Work . 58

Bibliography 59

A Email Invites 64

A.1 Recruitment Email . 64

A.2 Discussion with Takashi Iwai . 65

B git-reviewed User Manual 66

B.1 Installation . 66

B.2 Man Page . 66

vii

List of Figures

1 LKML message-Id 20140113235650.GA23380@kroah.com 7

2 Chain of trust hierarchy in Linux kernel development process 8

3 Git Architecture, modified from [34] 26

4 Initial architecture of git-reviewed . 29

5 Invalid object error in Git . 30

6 Architectural diagram of git-reviewed 31

7 An instance of git-reviewed . 32

8 git-reviewed displaying the list of reviews 36

9 git-reviewed displaying the log of reviews 38

10 Viewing each review on git-reviewed 39

11 Viewing reviews for a particular reviewer on git-reviewed 40

12 Creating a review on git-reviewed . 41

13 Commits reviewed on GitHub . 43

14 Reviews for a specific commit on GitHub 44

15 Review on GitHub . 45

16 Uploading a review to the mailing list git-reviewed 48

17 Track reviews online . 55

viii

List of Tables

1 Comparison of modern code review tools 18

2 Git commands compared to git-reviewed commands 47

3 Comparing Linux reviewing process with git-reviewed reviewing process 51

ix

Chapter 1

Introduction

For over three decades, software engineers have worked tirelessly to develop methods

and tools to improve the quality of software artifacts and ensure that a bug free

software product is delivered in the least possible time. Over the years, a number of

software firms have adopted code review tools depending on the requirements and

the features these tools have to offer. A common theme amongst all the code review

systems present today is that all of them are centralized. This means that the reviews

and discussions are stored on a central server (e.g. Gerrit) or a mailing list (e.g. Linux

Kernel Mailing List).

Moreover, in recent years, many software projects are stored in distributed version

control systems (e.g. Git), which allow users to fully mirror the repository on to their

local machines. This also enables users to be independent of a centralized server and

to decide which code they will permit into their own repositories. Further, even if

the server hosting a Git repository crashes, any of the developers can copy back their

local repository to the server and restore it [6]. Torvalds, the chief architect of the

Linux kernel, explains the advantages of working in a distributed environment [45].

From backing up projects to commit access issues, distributed development proves to

be an ideal way to work on an open-source software (OSS).

The reviewing practices that have been adopted by the Linux kernel developers

have worked well for over 20 years. However, there is lack of traceability and there is

need to provide better and simpler ways to link review discussions on the mailing lists

to the respective commits in the Git repository [41].

Additionally, Shawn Pearce, the creator for Gerrit code review tool mentioned the

1

advantages of having a distributed code review. Distributed review would allow an

individual to decide and store only the reviews which are interesting and to make

reviews in an offline manner. In not making Gerrit distributed, Pearce regrets the lost

opportunity to combine a distributed version control system Git, with a distributed

reviewing system [43].

This thesis has two research goals. First, is distributed peer review tenable in

practice? Second, can we add better traceability to the current Linux reviewing

practices? In order to determine this, we developed and implemented a distributed

peer review tool, git-reviewed, that minimally modifies Git and incorporates reviews

seamlessly into the current Git architecture. We model our use cases on the Linux

kernel in order to encourage the adoption of our tool. git-reviewed is distributed

with no central review server. This means that users can review patches without

visiting any website or subscribing to a mailing list. Like the source code and its

history, reviews are stored locally, so developers can perform them without an internet

connection and keep only those reviews that are of interest to them. We also add

traceability to the current Linux kernel reviewing practices.

We evaluate our tool by sending out email invites to the developers working on

different projects which use Git as their version control system. Their suggestions and

feedback was taken into account which led to improvements in our tool and achieve

our research goals.

Our research follows the following steps and this thesis is divided into different

chapters:

Analysis of peer reviewing processes: We analysed the tool supported review-

ing practices adopted by developers. Two motivations emerged from this analysis:

better traceability in the current Linux kernel reviewing practices and allow reviewers

to perform distributed reviews. The need for distributed review and better traceability

in the current Linux kernel reviewing practices is described in detail in Chapter 2. We

also describe the features that must be present in git-reviewed to make it amenable to

the Linux and other OSS developers.

Survey of modern peer review tools: We conducted a survey of how modern

peer review tools allow developers to perform reviews. We found that none of the

tools currently present in the market support distributed review. A study on how

2

peer reviewing practices evolved and a comparison of the current peer review tools

helped us in realizing some disadvantages of having centralized peer review tools, and

so, the purpose of having a distributed peer review tool became even more justified.

Chapter 3 provides the differences between the modern peer review tools and an

overview of the evolution of peer reviewing practices.

Develop and implement a distributed peer review tool: Subsequently, we

designed and developed a distributed peer review tool, which minimally modified the

Git architecture. We were able to incorporate review into Git, which would allow

developers to perform reviews in an offline manner as well. Chapter 4 looks at the

design decisions made while building git-reviewed. We also demonstrate that the

git-reviewed tool functions in the same way as reviews are performed on the Linux

kernel mailing list.

Evaluation: We contacted developers working on Linux, Git and PostgreSql

projects in order to gather feedback regarding the use of our tool. We use an interview

methodology to gather feedback. Our goal was to address our research question from

the developer’s point of view. In Chapter 5, we provide the results of our evaluation.

We ascertain the effect of git-reviewed on the Linux community and other OSS projects

and determine if distributed review is a good fit into the current Linux reviewing

practices. our tool.

Modifications based on feedback: The feedback we received from the devel-

opers helped us make modifications and provided with the much needed answers to

our research question. We conclude this thesis in Chapter 6 and discuss possible

improvements and additional features that can be added to git-reviewed.

3

Chapter 2

Context and Motivation

The goal of this work is to design, develop, and implement a truly distributed peer

review tool in order to determine if distributed peer review is a tenable idea. Since the

most widely used distributed version control system, Git [22], was designed for and

created by the Linux kernel community, we decided to target our git-reviewed tool to

the same audience. In this chapter, we give a background on the Linux kernel, describe

the advances to version control systems that were introduced by Git, and provide the

motivations behind developing git-reviewed which would also add traceability to the

current Linux kernel reviewing practices.

2.1 Relevant Linux Kernel Background

The Linux kernel project was initiated by Linus Torvalds in 1991 as a part of his

personal project while studying at the University of Helsinki in Finland. It was

supposed to be an alternative to the already present operating systems like Windows,

Mac OS, MS-DOS and others. Torvalds’ main motive behind building Linux was

to deliver an operating system to the users which would be open to comments and

suggestions, unlike the version of Unix operating system called ‘Minix’, whose creators

would not entertain any requests for improvements [42]. Linux although built on the

basic concepts of Unix, it is highly user-friendly and easier to install as compared to

Unix.

The Linux kernel is one of the largest open source projects. It is highly efficient

and robust. It has over 8 million lines of code and thousands of contributors working

4

for over 100 different companies contributing to the Linux kernel project.

The Linux source code can be modified or distributed under the GNU General

Public License. This means that there are many Linux distributions available in the

market, most of them include the Linux kernel and have supporting utilities built on

top of it.

There is a large number of versions and forks of the Linux project. However, the

‘mainline kernel’, which is maintained by Linus Torvalds is used as the basis and trusted

by the many Linux distributors. There are tremendous advantages of contributing

and working with the mainline kernel as it is available to all Linux users. It is often

improved over time and is constantly reviewed by various developers worldwide.

Almost all of the reviewing that takes place happens on electronic mailing lists. An

asynchronous reviewing process is followed. There are many such mailing lists where

discussions, announcements and reviewing take place [8].

Until 2002, the Linux kernel project was maintained and managed solely with the

help of patches and tarballs. Any changes to the system was done with the help of

files. There was no version control system to maintain Linux. In 2002, a proprietary

distributed version control system, BitKeeper, took over the task of maintaining of

Linux [6].

Git, a distributed version control system was developed in 2005 after the proprietors

of BitKeeper and the community which developed Linux kernel parted ways after a

disagreement. Torvalds and a few other contributors began creating Git in April 2005.

Git was particularly targeted to withstand the corruption of files. It was also designed

in a way to handle extremely large projects like the Linux kernel itself [45][46].

git-reviewed is built on top of Git, extensively using the Git API in order to make

the best use of the advantages the distributed version control system has to provide.

2.2 Peer Reviewing on Linux Kernel Mailing List

Asynchronous, electronic code review is a natural way for OSS developers, who rarely

meet in person, to ensure that the community agrees on what constitutes a good code

contribution. Most large, successful OSS projects see code review as one of their most

important quality assurance practices [40, 31, 17]. Rigby [41] describes the reviewing

5

process which takes place on OSS projects. A patch, which is a set of changes are

created by a developer if he is interested in making significant contributions to the

project. The following steps explain the reviewing process:

• The author submits a contribution by emailing it to the developer mailing list or

posting to the bug or review tracking system.

• One or more people review the contribution.

• It is modified until it reaches the standards of the community.

• It is committed to the code base. Many contributions are ignored or rejected and

never make it into the code base [21].

Similarly, the Linux kernel developers have adopted a highly asynchronous email

based reviewing practice. There is a large number of mailing lists, where developers

upload changes and review discussions take place. The most fundamental communica-

tion channel is the Linux Kernel Mailing List (LKML) which is the hub for all the

major announcements and discussions for the Linux kernel. The Linux kernel mailing

list is an extremely busy mailing list with over 400 messages being sent on it per day

[9].

The example in Figure 1 illustrates a review on the LKML. 1

Since each message on the mailing list is given a unique message-id, it is easy to

distinguish it from the other. The diff is uploaded and there are comments made by

the reviewer (Greg Kroah-Hartman).

We try to implement a tool, which will not change the working practices of the

Linux developers, thereby, making it easy for them to adopt the tool. We study the

needs of the Linux reviewers and try to make use of them in our tool. The features

implemented in git-reviewed are described in Chapter 4 followed by their comparison

to the needs of the Linux developers.

6

Figure 1: LKML message-Id 20140113235650.GA23380@kroah.com

7

Figure 2: Chain of trust hierarchy in Linux kernel development process

8

2.3 Need for Better Traceability

Figure 2 shows the chain of trust hierarchical model in the Linux development. There

are thousands of contributors uploading patches on the Linux kernel mailing list

everyday, which get reviewed over a period of time [9]. This means that a lot of

care needs to be taken when any change is made to the system as the chances of

bugs creeping in multiplies. Patches uploaded by any contributor do not directly get

merged into the main system. It undergoes a rigorous process of reviewing in order to

maintain the quality of the system. A developer first sends a request for reviewing

to a kernel’s subsystem mailing list in order to have other peer developers look at

their work. Patchsets are posted to one of the relevant mailing lists. This allows the

other developers to review the patch and give their feedback and comments. This

first step towards the final merge is called the ‘early review’. The developer needs

to incorporate the feedback and re-submit the patch in order to get it through the

reviewing stage. The developer has to convince the subsystem maintainer that the

patch will make an impact without breaking the system. This process is known as

the ‘wider review’. After getting a positive response from all the reviewers especially

the maintainer of the subsystem, the successful patch is finally merged into the main

repository managed by Linus Torvalds which would appear in the next official Linux

kernel release [8]. Process of reviewing lasts anywhere between a couple of days to

years [9].

Since there are so many discussions taking place on the Linux kernel mailing list,

and minimal or no information provided in each message regarding the commit or

which part of the system is being discussed, it becomes extremely difficult to find

which review is associated to which commit.

Our goal is to add traceability by providing ways to determine the review discussions

revolving around a particular commit without using a search engine or searching

extensively in the archives.

1https://lkml.org/lkml/2014/1/13/906

9

https://lkml.org/lkml/2014/1/13/906

2.4 Need for Distributed Review

The major difference between a distributed version control and a central repository is

that in distributed version control, the developer is in complete control of what makes

into the final repository. Rigby et al. [37] found out that a majority of developers

preferred to work with local copies of the projects on their machines in order to trace

the version history, make branches and perform commits, but eventually push them

all on to a central repository which has the most updated code. In effect, it is not

truly distributed. However, the Linux project has no central copy. There is however,

only a large number of different versions of Linux apart from the ‘mainline kernel’

which has only one true committer: Linus Torvalds. The Linux project is authentically

distributed with over 600 repositories owned by various developers [8].

We aim to include the various review discussions which are related to the changes

made in these repositories along with the changes itself. We intend to distribute the

reviews along with the contents of these repositories. In order to do so, we incorporate

reviews into the current Git architecture and also make the best use of the advantages

of distributed version control systems.

Pearce, the Gerrit code review tool’s primary designer, laments not making Gerrit

distributed [43]. He admits that by making Gerrit a distributed tool, he would make

it easier for the remote teams to collaborate with each other. Carrying reviews around

would be just be like carrying the Git history anywhere.

Distributed review will also allow developers to perform reviews in an offline manner

as all the reviews will be present locally. It would also provide the developer the

freedom to store only reviews which are important to him.

Some of the other advantages of distributed development tools and how git-reviewed

makes use of it is explained in the next section.

2.5 Advantages and Disadvantages of Distributed

Development Tools

Torvalds [45], describes how it was very important according to him to make a version

control system distributed. He briefly talks about the advantages and disadvantages

10

of working with a distributed version control. Below, we take this commentary and

apply it to the design of git-reviewed.

2.5.1 Elimination of a Central Point of Failure

The distributed version control systems eliminates the centralized server and so, the

risk of a central point of failure is eliminated too. Everyone has their own copy of

the data and so the risk of losing the history due to corruption or other failures is

minimal. This is considered to be one of the most important features of a distributed

version control system. If the server fails, restoration is easy as any user’s local copy

of the repository can be copied back to the server. Through compression and other

techniques the storage is made efficient [34]. For example, the history of the entire

Linux repository currently repacks itself into a 175MB pack for 63428 commits [33].

Like Git, git-reviewed allows the users to have all the reviews present locally on

their machines and it also completely reduces the risk of losing the reviews due to

a centralized server failure. One issue with distribution is that each developer has a

duplicate copy of the entire history of the system. We assess the level of duplication

in git-reviewed.

2.5.2 Collaboration

A developer can either choose to work on the most recent commit (head) or on a

release or tag. “Working off the Head”, instead of using branches, allows developers

to work with the latest code and avoid merging issues. But, it also heightens the

possibilities of having an unstable and buggy code as the developer’s attention could be

diverted as they would be constantly switching between integration and development

changes. Torvalds strongly suggested that the developers should work off stable tags

or releases as developers can remain isolated from any unrelated changes.

Branches affecting the main repository can be a real cause of problems. Since Git

allows users to carry the version control history anywhere and continue working and

check all logs, commits, it also means that everybody who can commit effectively on

their own would in a way have their own branch resulting in a lot more branching.

When working on a centralized repository, merging a branch can be messy or time

11

consuming. And so, Git was designed to give its user the flexibility to have as many

branches as required and hence, allowing the user to have some branches dedicated

strictly to some experimental work. The user can work on a separate branch without

worrying about the changes being made on the master branch.

git-reviewed has been designed keeping in mind this feature which Git provides.

git-reviewed has its own ‘review’ branch where all the reviews are stored and it does

not interfere with the master branch. Users can now work and make reviews without

disturbing other co-reviewers. This also makes sure that the risk to the Git repository

is minimal because git-reviewed only modifies the ‘review’ branch that it creates to

store reviews related to the commits in the repository. git-reviewed does not modify

Git and just runs standard Git commands. To remove git-reviewed, one simply has to

remove the ‘review’ branch from the Git repository.

2.5.3 Commit Policies

Determining who should be allowed to commit to a repository is eliminated with

distribution. Each developer who has a copy of the system can choose which commits

he or she will include. The problem of commit access can be eliminated. It thereby,

results in the reduction of the politics involved in granting access. git-reviewed also

allows the developers to save only the reviews which he or she is most interested in.

A developer can maintain the reviews on the review branch and can delete all the

reviews for any other reviewer by running one command. This can also help with

any storage problems allow users to remove unrelated reviews thereby solving the

duplication issue.

2.5.4 Release Engineering

The process of release engineering is often described as the integration of various

processes like tracking changes, automated tests and source code delivery to obtain a

finished and efficient software artifact [20]. Distributed systems can help in a good

release process. One can have a verification team, and they can pull in modifications

from the developing team and verify it. After verification they pass on the modified

product to a release team, thereby making the release process simpler and more

12

efficient.

git-reviewed provides traceability between commits and reviews. As a result, release

engineers can check if each commit has been reviewed before release. The lack of

traceability in email based review, means that checking if all commits have been

reviewed is practically impossible (e.g. Linux has thousands of new changes in each

release [8]).

2.5.5 Trusting Your Data

With previous version control systems, corruption of a file on the system could go

unnoticed. However, with Git, every file, commit, etc. has its own SHA-1 hash code.

Git quickly detects corruption by comparing the content of a commit or file with

the SHA-1 hash. Since each review has its own hash code, a similar check can be

performed.

We will now move on to the evolution of peer reviewing practices over the years.

We also compare the modern peer review tools on various parameters in the next

chapter.

13

Chapter 3

Background

In this chapter, we will give a brief introduction of the evolution of code reviewing

practices right from the time when Michael Fagan introduced software inspections.

We discuss the various peer reviewing tools like CodeCollaborator, Crucible, Review

Board, Rietveld, Bugzilla, Gerrit along with email based reviews and the GitHub pull

requests to understand how software peer reviewing is conducted today. We closely

examine these tools and techniques and note that all of them are centralized. In order

to make a distributed peer review tool, we studied how tool supported reviewing is

done on a centralized server along with its advantages and disadvantages and finally

designed and implemented git-reviewed, which does not need a central server and

reviewing can be performed in a distributed manner.

3.1 Evolution of Peer Reviewing Practices

Fagan introduced software inspects as a technique to increase the quality of software

systems [26]. His idea of conducting ‘software inspections’ proved to be highly effective

and adopted by many. This was the beginning of a legacy which till date has been

useful in the development of high quality software. Fagan believed that examining

software design and code in an organized manner not only played a critical role in

reducing user reported defects, but it also increased the overall productivity drastically.

“The Fagan Inspection Process is as relevant and important today as it was thirty years

ago, perhaps even more so” [27].

Inspections used the following processes. The agenda was set in advance with the

14

participants actively trying to find bugs. The code along with the relevant material

was circulated well before the meeting. The meeting would include an author, a

number of software engineers who would study the code, a meeting chair and a person

who recorded the discussion. Fagan’s inspection process was characterized by an entry

and exit criteria where the output of each operation was compared to the exit criteria

in order to keep track of the number of bugs found in the process. Fagan was among

the first ones to provide empirical evidence that it was cheaper to fix the bug as early

as possible than to wait for software testing or customer reported failures [26].

Brothers et al. modernized Fagan’s ideas to the 1990’s by creating a software

system called the ICICLE (Intelligent Code Inspection Environment in a C Language

Environment). This tool computerized the inspection process by eliminating paper

and easing the methods of reporting defects [23]. Its target was to solve the issues

faced during the process of code inspection which included the inability of a single

developer to understand the code written by another developer in the given time

constraints and the poor efficiency of some code inspection meetings. ICICLE provided

an efficient solution to the code inspectors by creating a computer aided environment

to check basic programming errors, standard code violations and browse through

manual pages and library function specifications. The human interface was the most

critical component of this software system. ICICLE also reduced the effort put in

by the team of inspectors discussing a problem by providing support for paperless

communication between them during a code inspection meeting. Brothers’ solution to

some of the flaws in the old technique of manual inspections resulted in an overall

increase in the number of inspections in lesser time in spite of keeping the roles of the

participants and the basic structure of the meetings intact [29].

Although Fagan’s idea of inspection process was repeatedly shown to be effective

at finding defects [27], its efficiency was questioned. Votta [47] argued the need of

having inspection processes. An analysis of inspection meetings that took place from

May 1991 to December 1991, showed that the cost of these meetings was actually

higher than what it was thought to be. It was found that 20% of the inspection

interval was related to scheduling conflicts [30]. Thus, “Does every inspection need

a meeting?”, became the most arguable query in the history of code reviewing [24].

Votta [47] provided several alternatives to the manual inspections. He suggested

15

having a three person meeting which included an author, a moderator and a reviewer

to gather the findings and comments. He also suggested that exchange of ideas or

information between an author and reviewer could also be possible without them

actually meeting. Verbal, handwritten or electronic forms of communication were

advised. Some problems associated with the inspection process more often than not

overshadowed the effectiveness of the formal meeting based reviewing process. There

were cases of reviewers not preparing themselves enough before the meeting. Not all

problems could be discussed in a meeting due to the time constraints. Perry studied

that asynchronous meetings found as many defects as co-located meetings [32]. These

various factors paved way for the asynchronous type of reviewing.

Wiegers [48] studied the effects of asynchronous reviews. It was believed to target

at the deficiencies of conventional peer reviews. Asynchronous meetings disallowed

the participants from detouring on different and vague topics while in a meeting. It

also broke the geographic barriers where reviewers could participate according to their

own convenience. Asynchronous reviews worked best for the distributed teams.

Rigby et al. [39] studied the differences between the OSS peer reviewing process

to the traditional inspection process and provided solutions which could make the

development process of proprietary software efficient. They suggested the usage of

lightweight peer reviewing tools which would provide more traceability and track

changes. The overly formal process was replaced by lightweight review that relied on

experts.

Peer reviewing was not just restricted to finding defects. Bachhelli et al. [18]

performed a study on diverse teams at Microsoft and realized that software code

review also allows knowledge transfer and team awareness as reviewers could share

their different viewpoints with other reviewers and provide different solutions to a

problem.

The evolution of the process of code reviewing in the past 30 years has been

remarkable. It has been pivotal in the success of many open source projects.

We will discuss the working of some of the major peer code review tools in the rest

of this chapter.

16

3.2 Summary of Existing Tools

The formal process introduced by Fagan [26] has been replaced by practitioners with

a lightweight tool supported review process [38]. These lightweight tools continued to

evolve and quickly became the hub for collecting the files, reviewing code, and finding

defects. In this section, we examine the current peer review tools that are used in

industry.

We contrast the tools based on the following (Table 1 provides a summary of this

comparison):

• Branching: This feature allows the developers to upload patch sets, files on a

mailing list or server in order to be reviewed by the other co-developers.

• Traceability: We compare the peer reviewing tools based on how well the tool

offers linking between the review discussions and the commits or the changes

made in a repository. This is an important feature which is taken into account by

most peer reviewing tool developers as with the increasing number of commits and

discussions, it can become extremely cumbersome to find discussions revolving

around a problematic commit.

• Integration with Version Control: Most of the tools are integrated with

version control systems (e.g. Git, SVN, Mercurial). The users of peer review

tools prefer the version control systems to handle various processes like merging,

committing [43]. This integration also reduces the adoption overhead as majority

of the software system source code is already hosted on the version control systems.

Almost all the peer review tools allow integration with more than one version

control systems.

• Web Interface: A web interface with these tools allow better navigation through

the review discussions over the Internet. This allows the tools to achieve a greater

level of interoperability with isolated desktop systems.

• Cost: While most of the tools are freely available, there are high costs associated

with some of these tools.

• Distributed: This is the most important feature targeted in this thesis. While

17

all the tools are bound to a centralized server, git-reviewed is the only truly

distributed peer reviewing tool.

Table 1 compares the above discussed code review tools on the basis of different

features and parameters.

Tools Branching Traceability Integration

with V.C

Web

Interface

Cost Distributed

Email Patchsets Low No No Free No

Gerrit Patches High Yes Yes Free No

GitHub Pull

Requests

High Yes Yes Free No

Rietveld Patches High Yes Yes Free No

Code

Collaborator

Files,

Change

Lists

High Yes Yes High No

Crucible Files High Yes Yes High No

Review

Board

Patches High Yes Yes Free No

git-reviewed Review

Branch

and

Patches 4.3

High 4.7 Yes 4.2.2 Yes 5.2.1 Free Yes 4.1

Table 1: Comparison of modern code review tools

3.2.1 CodeCollaborator

Cohen [24] explains how reviews are conducted at Cisco using the CodeCollaborator’s

web based user interface. Authors decide who will participate in the review and accord-

ingly email invites are sent to the potential participants using the tool. Ratcliffe [35]

describes that the reason for choosing the CodeCollaborator for their implementation

of lightweight peer code reviews was the positive impact it has on the Advanced Micro

18

Devices (AMD) as CodeCollaborator allows their internationally distributed teams to

perform reviews in an accurate manner. CodeCollaborator is integrated with issue

tracking and version control tools in order to enhance its efficiency when working with

larger organizations. Its developers take pride in CodeCollaborator’s unique ability to

review user stories, test plans and user documentation along with code review. It also

provides a real time chat interface. However, a short demonstration on the usage of

the tool reveals that it is a centralized peer review tool which means that there is no

way any one can perform reviews without the Internet [44].

3.2.2 Crucible

Crucible is another tool which facilitates code review. The advantages lie in the ability

of sending notifications as soon as a reviewer makes changes to the code [25]. JIRA,

a project tracker is integrated with Crucible to provide more flexibility to the tool.

Crucible is considered to be an user friendly tool which allows generation of reports

for code metrics, commit graphs and the amount of code reviewed. It is known to

have over 3500 customers, including established organizations like Twitter, Adobe etc.

[4]. Crucible also has a web based architecture and requires its users to be connected

to the Internet while performing reviews.

3.2.3 Review Board

Review Board, a free and open source tool, provides its users with a powerful web

based interface and command line tools for managing and simplifying the reviewing

process and the review request submission. The general life cycle of performing reviews

using the Review Board tool remains the same as the other tools. Review Board

makes use of a tool called Django Evolution for handling any changes being made to

the database. This allows updating values into the database without being bound to

a database platform [13].

3.2.4 Rietveld

Rietveld is a code review tool which has been hosted on the Google App Engine. It is

an open source version of the tool used internally by Google. Over the years, a lot of

19

companies and organizations have been using Rietveld. Rietveld supports Subversion

development. It is used by firms like Shopif and StreamBase Systems for their internal

code reviewing processes [15].

3.2.5 Gerrit

Gerrit, a fork of Rietveld [14], was developed by the Google software engineers who

were working on Android. Gerrit has a very strong integration with Git. Pearce,

the leader of the Gerrit project talks about the design decisions made while building

Gerrit [43]. Unlike Git, Gerrit performs all the reviewing on a central server. People

who wish to perform reviews need to go on the Gerrit website. He states that in spite

of Gerrit being built on a distributed version control system Git, it allows peer to

peer operation but one cannot take all the Gerrit code review data around and use

it anywhere. The comments, voting information and the metadata used by Gerrit is

stored in an SQL database. They would store their data in Git and let Git handle the

merging.

Gerrit has a command line tool named git-review1. This tool merely allows users to

download a patch and and submit a change to Gerrit. However, it does not allow the

users to actually perform reviews. They would still need to go to the Gerrit website.

3.2.6 Bugzilla Based Review

Bugzilla is bug tracking system developed by the Mozilla project and is mainly used to

keep a record of the bugs found in the project, allowing developers to work efficiently.

It allows communications between the developers using Bugzilla [2]. Since it was first

developed in 1998, it has been modified and different releases have ensured that it

remains a user friendly tool. Bugzilla gives a lot of importance to the review process.

Each patch uploaded is reviewed and comments and ratings are given by the reviewer

[3]. The original purpose of Bugzilla was to report and discuss bugs, and the peer

review feature was added as an afterthought.

1git-reviewed was initially named git-review. To avoid confusion and conflicts, we changed our

tool’s name to git-reviewed

20

We realize that none of the above tools are distributed in nature. All tools require

reviews and discussions to be made and stored centrally.

Each tool differs from the other by having some or the other advantages, but the

basic architecture of being centralized however remains the same.

3.3 GitHub Pull Requests

As the popularity of distributed version control systems particularly Git increased,

a new dimension for distributed software development in the form of pull-based

development emerged. GitHub, one of the many code hosting sites which was launched

in April 2008, provided a way to perform code reviews in the form of pull requests.

Pull requests are a set of commits and allow a user to let the others know about the

changes pushed to a GitHub repository. After the request is sent, it is reviewed by

interested parties and comments and review discussions follow. At the end of the

reviewing phase, the pull request is either merged into the main repository or rejected.

GitHub provides a nice way to link the code to a review and all the information about

the project is stored in the GitHub repository, where people can go and browse it

[16]. As of today, GitHub has over 10 million repositories, some of them owned by

major software firms like Amazon, Facebook and Google [1]. Danjou [12] talks about

a few problems associated with the GitHub pull-request model. This method of peer

reviewing too falls into the centralized form of reviewing. All the requests are stored

on a central server.

3.4 Email Based Code Review

Another form of lightweight code review is the email based code reviews. This type

of code reviewing is preferred by most of the open source projects including Linux.

The Linux kernel developer’s mailing list is the most important mailbox for the Linux

developers. Each day an average of 400 messages are sent on the mailing list [9].

Reviewers check the patches uploaded, comment on issues and the discussions between

the author and reviewer take place via email threads.

Cohen [24] describes the advantages of an email based review. It breaks the barrier

between people and anyone is free to review a code uploaded by the author. This

21

also gives the reviewers enough time to review any patch they want. Archives of the

emails are maintained and so emails can stay around for a long time. It is very easy

to implement in spite of the several disadvantages associated with the email based

reviews.

Rigby et al. [41] explored how broadcast based reviews work on open source projects.

Many patches on the mailing list are never reviewed. There are chances of biased

reviewing where the patches uploaded by the renowned authors are more often reviewed.

Possibilities of giving extra importance to minor issues when there is a large number

of opinions floating around in a discussion are high. There is no confirmation if the

patches uploaded have been reviewed with the correct solution provided. There is also

no fixed amount of time for each review to complete.

Traceability is an important feature missing from the email based reviews. With

tens of thousands of emails sent on the mailing list per month, it becomes extremely

difficult to keep a track of so many emails. Thus, our main motive for developing

git-reviewed is to keep a track of all the reviews for a particular commit. We add

traceability to the process of reviewing and make it easier for the developers to go

through reviews related to a commit.

22

Chapter 4

Architecture, Implementation, and

Features of git-reviewed

In the previous chapter, we reviewed the literature and history of software peer review

and examined the existing tools. We found that although asynchronous reviews are as

effective as co-located reviews, no tool supports distributed peer review.

The requirements, description of the architecture, and the implementation of git-

reviewed form the core of this chapter. We first describe the architecture of Git as

git-reviewed is fully integrated with Git. We then describe git-reviewed’s architecture

as well as some initial failed architectural decisions. Our final architecture is drastically

more elegant than our initial architecture. It consists of a single review branch (which

will not affect the other branches in Git, so will not cause damage) and set of scripts

that use the underlying Git API. Some of the many features provided by git-reviewed

are:

• Display log history of all reviews.

• Create and send reviews as an email.

• Display interleaved history of the changes along with reviewer comments.

• Import reviews.

Furthermore, since git-reviewed does not modify Git directly, it can be seamlessly

displayed in other environments that developers might be familiar with, such as

GitHub.

23

4.1 High-level Features for git-reviewed

git-reviewed was built keeping in mind the design goals we intended to achieve. We

wanted to develop a tool which was highly distributed, lightweight and efficient. We

describe our design goals below:

Lightweight

Almost all of the modern code review tools today are lightweight. They provide an

environment where many developers can work together. Lightweight review tools

also allow extensive knowledge sharing. git-reviewed facilitates lightweight project

development methodologies. Reviews can be transferred from one developer personal

repository to another developer’s repository, allowing them to work simultaneously,

yet in a distributed manner. Moreover, git-reviewed has no dependencies on any

external systems. It does not rely on storing the reviews in any particular database.

git-reviewed is highly robust and has an ability to store over 100K reviews as already

present for the main repository of Linux. There are no extra system requirements and

it is a very stable tool.

Distributed

git-reviewed is distributed in nature and it does not rely on any centralized server.

No code review tool which is distributed is available. git-reviewed maximizes the

advantages a distributed version control system provides. It means that traceability

can be added to the process of reviewing without going on any centralized server to

view your reviews and discussions. Everything is present locally.

Usability

git-reviewed is targeted to be as simple as possible. Our goal was to not change the

current reviewing ethics of the developers and simultaneously add more functionality

to it. The current developers using code review tools especially the Linux developers

were our target audience.

24

Efficiency

git-reviewed is efficient and quickly returns results to the users, thereby, encouraging

the adoption of the tool. The tool provides accurate information and allows users to

make reviews and push them to a separate branch dedicated only to store reviews

efficiently in no time. git-reviewed stores all the reviews on the ‘review’ branch ordered

by date. This makes it easy for the users to go through the most recent reviews first.

Since all the reviews are stored on a separate branch, there are no chances of them

getting lost.

4.2 Git Architecture

git-reviewed is built on top of Git and extensively uses the Git API. Therefore, it is

important to explain the internal details and the architecture of Git. Git was fully

distributed and had support for non-linear development which was facilitated by the

branching feature. Git could efficiently handle a large project in terms of speed and

data size [6]. Git stores its data as a series of snapshots of the project and uses a

checksum mechanism which stores everything as an object which can be addressed by

a SHA-1 hash value of its contents.

Once any Git repository is initialized, the objects directory is automatically created

which stores all the contents as a single file named with the SHA-1 hash value of its

content and header.

Git has four different types of objects and every type of content in the Git repository

is one of these objects. Figure 3 shows the four types of objects of the Git architecture.

Blob

A blob represents a single file stored in the repository. A blob is a collection of bytes

which can either be a text file or a binary file etc. Whenever a file is added to the

Git repository, a hash value is computed and it is stored in the .git directory. Since

SHA-1 hash is statistically, globally independent, the contents stored in the file will

be unique. Any other file with the same contents will not be allowed to be stored as

the same hash value will be computed and Git stores only one copy of the file.

25

Figure 3: Git Architecture, modified from [34]

26

Tree

A tree object acts like a directory which stores the information about the file names

and also helps us to group a collection of files. A single tree object can store one or

more trees or a blob object with its associated mode, type, and file name. Git also

allows us to create our own trees.

Commit

A commit object stores a snapshot of the contents of the repository at the time they

were committed. A commit object points to the top level tree and the parent commit.

It saves all the information and hash values of all the objects need not be remembered.

Tag

A tag object stores a name and it points to the commit object for the time the tag

object represents. It is normally used to give a commit a name. If no particular

commit is specified, by default Git tags the most recent commit.

4.2.1 Branching

Git’s branching model is the most important feature which sets it apart from most

of the version control systems. It is extremely lightweight and makes Git a powerful

tool. The branching and merging mechanism allows a developer to diverge from the

current module he is working on by creating a new branch, make changes on it and

when satisfied, the work can be merged to the original work. A branch allows a line of

development to be isolated, so that changes made to the current working model don’t

affect it and vice versa.

Barr et al. [19] conducted a study which found answers to the popularity of the

distributed version control systems. Through their interviews and the analysis with

the project leaders of the open source projects, they found out that the main reason

for developers to adopt the distributed version control systems was the ability of the

branching mechanism from protecting the developers from any kind of interruptions

by providing isolation. They also found out that branches were more cohesive than

the background commit sequences.

27

4.2.2 git-reviewed Integration with Git

git-reviewed is fully integrated with Git and uses the standard Git commands. git-

reviewed allows users to see all the reviews relevant to each commit on the Git

repository. Users can perform reviews for a commit on a Git repository by following

the steps given below:

1. Clone the Git repository.

2. Install git-reviewed.

3. A review branch gets created as soon as you start reviewing.

4. Perform reviews, make comments.

5. Push the changes from the local repository onto the origin.

4.3 Initial Architecture of git-reviewed

We explain the architecture of git-reviewed in this section. There have been several

changes to the architecture since we started designing git-reviewed. The initial

architecture failed due to the restrictions imposed by Git and so we had to design

a new architecture which did not break the way Git worked and also allowed us

to implement a completely distributed tool. The design trade-off, failures of the

initial architecture and the current architecture are discussed in detail in the following

subsections.

4.3.1 Initial Architecture of git-reviewed

In order to meet with our design goals, a lot of research went into incorporating the

distributed peer reviewing tool into the current Git architecture. We had to make sure

that minimal changes had to be made as it had to maintain the reviewing practices of

the current developers.

Review Objects

We initially decided to create customized review objects. These review objects would

in turn contain information of any reviews created in response to them. It would

28

Figure 4: Initial architecture of git-reviewed

29

also have the information about the comment objects that were specifically created

for these review objects. When any commit was reviewed using git-reviewed, a new

review object would be created which would consist information about the commit

being reviewed.

Comment Objects

When any comment was made on the review object, a comment object would get

created. This comment object would consist of the actual comments made by the

user, line number on which the comment was made and information about any other

comment objects created for that review.

This proposed architecture as shown in Figure 4 failed as Git did not allow users

to create customized Git objects. Figure 5 shows how the current Git architecture

could not recognize custom objects, a review object in this case. An object could only

be one of the types as explained in Section 4.2. We had to implement git-reviewed in

a way such that reviews, comments would all be stored in the Git repository and the

underlying architectural design of Git was not violated. It would have been possible

to modify Git, but then the users would have to install our modified version of Git.

Figure 5: Invalid object error in Git

4.3.2 Current Architecture of git-reviewed

Figure 6 shows the architectural diagram of git-reviewed. We store all the reviews

on a branch named the ‘review’ branch. This branch does not share a root node

with the master branch and is a free standing branch which points to the last review

committed. The advantage of having all reviews stored on a separate branch is that

reviews do not interfere with the developer’s view of the system history. Figure 7

shows an instance of the architectural diagram. We can see how the commit folders

30

Figure 6: Architectural diagram of git-reviewed

31

Figure 7: An instance of git-reviewed

32

and the review objects are organized on the local machine.

Review Branch

git-reviewed takes advantages of the branching model of Git. It stores all reviews on

a separate detached branch called the ‘review’ branch. As soon as the user installs

git-reviewed and creates the first review, this branch gets automatically created. The

risk with this branch is minimal as it does not interfere with the master branch or the

other branches present on the Git repository.

Reviews

All the reviews are stored on the dedicated ‘review’ branch as blob objects. The review

object like every other object in the repository is identified by a unique SHA-1 hash.

Since the reviews are just blobs stored on the branch like any other blob, it has an

access mode and is stored in the tree. All the comments made by users for the commit

would be stored in these review blob objects.

Commit Folders

All the review blobs are stored in the tree. We name this tree after the commit-hash

on the master branch for which the review has been made. This helps us in storing all

the reviews for that particular commit in one tree. We can have multiple reviews per

commit and we can also maintain a commit-review index. As soon as a new review is

made, all the reviews are committed and the commit refers to the old commit as its

parent. The main advantage of having this architecture as we can transmit reviews

between repositories, most importantly allowing us to merge reviews.

4.4 Implementation of git-reviewed

git-reviewed is developed using a set of Ruby and Perl scripts consisting of over 2000

lines of code. These scripts make use of the current Git API, which help in creating

and storing reviews and discussions. git-reviewed also provides functionalities, which

assist users in dealing and working with reviews.

33

The different modules of this tool get executed depending on the type of command

entered the user. There are a total of 21 functions currently which is performed by

git-reviewed. A detailed list of all the functions can be found in Appendix B.2.

We separately explain the different modules of git-reviewed in order to easily

understand the overall implementation details of our tool.

4.4.1 git-reviewed Option Parser

This is the first module which is executed as soon as a user types in a command in

git-reviewed. Using Ruby’s command line option parser, we determine which call to

make in order to execute the function requested by the user. This also determines if a

new review has to be created or a review is a threaded response to another review.

4.4.2 Communication with Remote Repository

This module of git-reviewed takes care of all the communication that takes place

between the local repository and the remote repository. Reviews are pulled and pushed

using this module and it also plays an important role in the initial set up required to

use git-reviewed on the local machine efficiently.

4.4.3 Creating and Deleting Reviews

Creating and deleting reviews is handled by a separate part of our tool, which makes

sure that reviews are stored in the correct commit folder. It also checks if a review has

been previously created and does not allow duplicate reviews to be stored. It also is

designed to handle various merge conflicts which may arise while performing reviews.

4.4.4 Creating and Sending Emails from git-reviewed

git-reviewed creates a patch file from the commit or a set of commits just like Git.

One can import or export emails to the Linux kernel mailing list directly from the

tool.

34

4.4.5 Developing Log History of Reviews

This module allows users to view the log history of the reviews stored on the repository.

It also allows users to view the log of reviews for a particular commit or view reviews

made by a particular reviewer.

In the next section, we show the different features and the functionalities git-

reviewed has to provide.

4.5 Features and Functionality

In the previous section, we described how our architecture allows us to implement the

following features:

• Allow storage of multiple reviews per commit

• Maintain a commit-review index

• Allow merging of reviews

• Allow transfer of reviews through various repositories.

In each of the following subsections, we give an example of how the feature is used,

relate it to our architecture, and to the needs of the Linux community.

In order to make git-reviewed more usable, we had to add more features and

functionality apart from just creating reviews and making comments in each review.

We studied the functionalities Git provides and tried to implement it in our tool.

git-reviewed user commands included ways to locate each review on the review branch

and add more traceability.

Some of the features of git-reviewed are described below:

4.5.1 Viewing a List of all Reviews

git-reviewed allows displaying a list of all reviews which are currently stored on the

‘review’ branch of a repository. git review - -list command shows the number of reviews,

the review hash as well as the commit reviewed. Figure 8 shows the command line

interface and how reviews will be listed on git-reviewed.

35

Figure 8: git-reviewed displaying the list of reviews

36

4.5.2 Log of Reviews

git-reviewed also shows log of all the reviews which keep a track of time, reviewer

details and the commit details for each review. Figure 9 shows how the log of all

reviews ordered by date are displayed on git-reviewed.

4.5.3 Viewing Each Review

All the email discussions that take place on the mailing list is converted into a review.

Each review consists of the comments and the messages that were sent on the mailing

list. The content of each review is stored exactly how the message is stored on the

mailing list. Figure 10 shows the details of each review.

4.5.4 Viewing Reviews Related to a Particular Reviewer

git-reviewed allows a user to view the reviews related to a particular reviewer. This

is useful when there are a large number of reviews and only interesting reviews are

needed to be displayed. Figure 11 shows the reviews only for a particular reviewer.

4.5.5 Creating a Review

git-reviewed allows users to create their own reviews on each commit and uploading

the patch on the mailing list. Figure 12 shows how a text editor pops up which

contains the commit details and allows the reviewer to review the commit.

4.5.6 Importing Reviews from a Mailing List

To ensure a smooth transition for the developers from the current process of reviewing

to performing reviews using git-reviewed, we made sure that git-reviewed allows

developers to import reviews from the mailing list and also provided them their own

public repositories that already consisted of recent reviews they had been working on.

When we sent out links to the GitHub repositories to the OSS developers to perform

an evaluation of our tool (see Section 5), we had over 200K reviews stored on the

review branches of these repositories from January 2012 onwards.

37

Figure 9: git-reviewed displaying the log of reviews

38

Figure 10: Viewing each review on git-reviewed

39

Figure 11: Viewing reviews for a particular reviewer on git-reviewed

40

Figure 12: Creating a review on git-reviewed

In order to gather maximum feedback for our tool, we started looking into other

potential projects which git-reviewed could track reviews for. We realized that the

reviewing practices followed by teams for other OSS projects (e.g. PostgreSQL and

Git) were the same (email based code reviewing), and so, we started tracking the

reviews from the PostgreSQL and Git mailing lists respectively.

PostgreSQL is an open source object-relational database and has been a leading

database system in the market for the past 15 years. It runs on all major platforms

and gives a lot emphasis on extensibility and standards-compliance [11].

The development of the distributed version control system, Git, is similar to the

Linux kernel development as it was built by the same community of developers. Git is

now maintained by Junio Hamano. Git has its own mailing list and since git-reviewed

is extensively embedded into Git, we wanted to allow the Git developers to use

git-reviewed while performing their reviewing tasks.

We subscribed to the mailing lists for Linux, Git and PostgresSQL, and continued

to collect the mails sent on these lists on a daily basis. A script which pulled

41

these messages from the subscribed email account and stored it into mbox files was

implemented. Using the git-review-update command we could create reviews from

the messages stored in these mbox files and store them on the ‘review’ branch on the

respective Git repository for each project. This feature would not restrict the users

of git-reviewed to work with the reviews created and hosted by us on a daily basis.

They could also create reviews using their own mbox files using the same command.

4.5.7 GitHub Compatibility

Viewing reviews on GitHub is easy as each review is stored in a folder named as the

commit for which the review has been made. This organizes the reviews very well and

provides a good graphical user interface for the reviews as shown below. You can see

how reviews are organized on the review branch.

Figure 13 shows the list of commit folders for the commits which have been reviewed

at least once. Figure 14 and 15 show the list of reviews made in each commit on

GitHub and the contents of the review respectively.

Repositories on GitHub

The reviews are extracted from the Linux kernel, Git and the PostgresSQL mailing

lists daily. The reviews are hosted on the following GitHub repositories which are

available for browsing. We have matched the commits and reviews from the year 2012

onwards for the Linux, Git and the PostgreSQL projects as well as personalized Linux

subsystem maintainer’s repositories.

1. https://github.com/mmukadam/linux.git

2. https://github.com/mmukadam/linux-review-v3.12.git

3. https://github.com/mmukadam/kernel-git-davem-net.git

4. https://github.com/mmukadam/kernel-git-gregkh-usb.git

5. https://github.com/mmukadam/kernel-git-tiwai-sound.git

6. https://github.com/mmukadam/kernel-git-tj-libata.git

42

Figure 13: Commits reviewed on GitHub

43

Figure 14: Reviews for a specific commit on GitHub

7. https://github.com/mmukadam/kernel-git-rafael-linux-pm.git

8. https://github.com/mmukadam/postgres.git

9. https://github.com/mmukadam/git.git

4.6 Need of Linux Reviewers and Features of git-

reviewed

The reviewers on the Linux kernel have been performing reviews for more than a

decade. They have adopted the mailing list and perform over 400 reviews per month

[36]. Our task was to implement features into git-reviewed which would make sure

that the developers do not really have to change their reviewing habits in order to

use git-reviewed. We have made the following contributions in making our tool very

similar to the developers’ needs:

Store Reviews in Email Quoted Manner

The format of the reviews created from the messages on the mailing list is kept intact.

We also make sure that the new reviews created by developers are all formatted in an

email quoted manner. This makes it easier for the developers as they can continue

reviewing just the way they have been for the past decade.

44

Figure 15: Review on GitHub

45

Threading of Reviews

git-reviewed allows threading of reviews. All the review responses are stored in the

same commit folder and they consist information about the thread header. This

features allows a review thread to be generated just the way developers are used to

while reviewing on the mailing list.

Import of Emails

git-reviewed allows import of emails. As explained in Section 4.5.6, git-reviewed’s

feature of importing emails encourages adoption of the tool.

Commands Similar to Git

We tried to keep the commands for git-reviewed very similar to the Git commands. A

comparison of Git and git-reviewed commands are shown in Table 2.

Sending Emails Directly from git-reviewed

git-reviewed allows developers to directly prepare a review for email submission and

send it to the mailing list. Figure 16 shows how reviews are formatted and made ready

to be sent to the mailing list.

4.7 Linking Patches to Commits

We explained above in Section 4.5.6 how we can create reviews on a particular commit

from the messages stored on the mailing list. To make sure that a review created from

the message on the mailing list is stored in the correct commit tree on the ‘review

branch’, we had to first determine the mapping between a message on the mailing list

and the commit in the project’s Git repository.

In the past, Jiang et al. [28] performed an evaluation to see which patches uploaded

on the Linux kernel mailing list were eventually implemented in Torvalds’ main

repository. They determined which patches on the mailing list were associated with a

commit in Torvalds’ Git repository. They performed a checksum matching technique.

46

Comparing Git and git-reviewed Commands

git init: Creates an empty Git reposi-

tory or reinitializes an existing one.

git reviewed - -init: Initializes git-review

in order to start reviewing.

git log: Shows commit logs for the

repository.

git reviewed - -log: Shows list of reviews

made on commits.

git log - -author=“torvalds”: Shows the

commits made by a particular author.

git reviewed - -log-reviewer: Shows the

log history of the reviews made by the

reviewer.

git show: Shows various types of objects.

For blobs, plain content is shown.

git reviewed - -view: Shows the details

of the reviews along with the comments

made by the reviewers.

git commit - -amend: Amends a

commit.

git reviewed - -amend: Amends the last

review made.

git format-patch: Prepares a patch for

an email submission.

git reviewed - -format: Prepares a re-

view for an email submission.

git push: Pushes local changes to the

origin server.

git reviewed - -push: Allows users to

push local reviews to the origin server.

git pull: Allows fetching and merg-

ing with another repository or a local

branch.

git reviewed - -pull: Allows fetching and

merging the reviews from the origin.

git rm: Remove files from the working

tree.

git reviewed - -rm: Removes the reviews

from the ‘review’ branch.

Table 2: Git commands compared to git-reviewed commands

47

Figure 16: Uploading a review to the mailing list git-reviewed

48

They merged all the lines which had been changed from the patch, appended it to the

file name and calculated the MD5 checksum of that line. After performing the same

procedure for Git commits and calculating its relevant checksum, they matched the

two to find a link between the patches in the emails and the Git commits.

We used German’s implementation based on a similar idea and applied heuristics

to do the linking as explained below:

1. We compared each line from the messages in the mbox file with the lines changed

in each commit.

2. After getting relevant matches, we computed the most number of matches between

the lines changed in each commit and the lines in the messages.

3. The commit which corresponded to the maximum line matches was stored along

with the id of the review discussion on the mailing list. This mapping is used by

our online website explained in Section 5.2.1.

4. Eventually a review is created out of the messages in the mbox files and committed

in the corresponding commit tree on the ‘review’ branch.

We performed an evaluation on randomly selected messages which consisted of at

least a single patch to see how well we were able to link the discussion on the mailing

list to a particular commit in the Git repository. The result of the evaluation is given

below:

4.7.1 Comparing Linking Results for Linux, Git and Post-

greSQL

We evaluated 30 randomly selected messages on the Linux kernel, Git and the Post-

greSQL mailing lists to see if they are matched to a commit. We found that there

were correct matches, incorrect matches and no matches. We realized that even a

manual search could not find an associated commit as not every commit is reviewed

or accepted [28]. We discuss the results in the following subsections:

49

Linux Kernel Mailing List Linking Evaluation

Our evaluation on 30 randomly selected messages on Linux kernel mailing list gave

us good results. We found that our technique linked 26 out of 30 messages to their

respective commits with no incorrect matches, while the others remained no matches.

Git Mailing List Linking Evaluation

The messages on Git had similar results when they were linked to a commit. We

found that 22 of the messages had correct mapping, 1 was mapped incorrectly and

the rest were not mapped.

PostgreSQL Mailing List Linking Evaluation

For the messages on the PostgreSQL mailing list, our technique linked 17 messages

correctly to their respective commits, while 2 of them were incorrectly linked and the

rest were no matches.

We see that our technique worked best for messages on the Linux kernel mailing List

as it linked most of the messages to its respective Git commit on Torvald’s repository.

A possible reason for our technique to give average results for the PostgreSQL project

was that the messages on the PostgreSQL mailing list contain multiple patchsets in a

single email thread, thereby resulting in a message to be linked with multiple commits

and in such cases the best commit hash cannot be determined.

We invited software developers working on various OSS projects to evaluate our

tool. A detailed description of the evaluation and their feedback is given in the next

chapter.

4.8 Comparing Linux Reviewing Process and git-

reviewed Reviewing Process

We designed our tool in a way that would not change the reviewing ethics of the

developers of Linux project as they have been used to it for many years. Below we

explain how the reviewing process for git-reviewed is similar to the reviewing process

for the Linux project:

50

Linux Reviewing Process git-reviewed Reviewing Process

A reviewer subscribes to the mailing list

in order to receive notifications for all

the email discussions that take place on

the mailing list.

A reviewer will install the tool locally

and will use git-reviewed commands to

pull in all the reviews from the remote

repository onto the local machine.

A potential reviewer decides which part

of the system or which changes are inter-

esting to him and searches for the review

discussions around it using a search en-

gine or other methods.

A potential reviewer will search the re-

view discussions around an interesting

commit and view the list of reviews for

a particular commit using git-reviewed

list commands.

A developer will make the required

changes in the local repository and with

the help of Git or other methods, broad-

cast the patch onto the mailing list.

This step is not required as with git-

reviewed, discussions travel along with

the commits. One can simply make the

changes in the repository which can be

pulled by other reviewers.

A reviewer receives the patch on the

mailing list and performs review.

An interested reviewer will view the re-

view commit by using the git-reviewed

command to create reviews which will

load a text editor with the contents of

the commit. This review gets stored on

the review branch.

The reviewer sends a review response

in the email thread back to the mailing

list.

The review gets created and stored in

a threaded manner and the reviewer

pushes these reviews onto the remote

repository.

Table 3: Comparing Linux reviewing process with git-reviewed reviewing process

51

Chapter 5

Evaluation

Our evaluation of git-reviewed was done by professional developers who have experience

with peer review. We did not choose students to evaluate this tool as students are

not trained to perform basic reviewing, let alone the style of massively distributed

review that is seen on OSS projects as described by Rigby [36]. It was not easy to

get developers to try out a tool which they are not familiar with as they are busy

with their own work dealing with over 100 reviewing requests on a daily basis [36].

We tried to keep the installation of git-reviewed simple and also made sure that the

risk associated with the tool was minimal. We did not alter Git or the developer’s

data and the tool adds a detached review branch. To remove git-reviewed one simply

delete this branch and the associated git-reviewed binary. We created reviews from all

the mails on the Linux, Git and PostgreSQL mailing lists from the year 2012 onwards.

We sent out personalized requests via email to the Linux developers to try out

the tool and to provide feedback. We also sent out general requests to the entire

Linux, Git and PostgreSQL developers’ community. Six developers provided their

responses. We provide an overview of the feedback we received, what we learnt from

the discussions with the developers and how it changed our tool. The positive and

negative feedback made by each developer is provided in the subsequent sections.

The evaluation of this tool and the feedback received is discuss in the following

sections:

• Distributed Review

• Traceability

52

5.1 Distributed Review

In terms of the responses we received from the developers, we realized that in most

cases, developers prefer using a centralized review practice. They are not willing to

switch to a distributed style of reviewing. Iwai, a subsystem maintainer for Linux and

King, a Git developer, liked how reviews were embedded into the Git repository and

provided support for the existing Git tools. Kroah-Hartman, a core developer at Linux,

however, preferred creating reviews in a central place where he could discuss problems.

On these projects, this place remains the developers’ mailing list. He stated:

“My email client handles reviews just fine, I don’t want to have to commit a

patch before I can comment on it. Git is at the ”end” of the workflow for subsystem

maintainers.”

While development in the Linux kernel remains a distributed process where develop-

ers make changes to the source code, create branches, track back through the version

history, however, the reviewing needs to be more centralized. After interviewing

developers we realized that they still need a centralized place where discussions take

place as opposed to the distributed reviewing methods suggested by us.

5.2 Traceability

While reviews need to be done in concert with other developers (i.e. in a centralized

manner), the need to lookup which parts of the system have been reviewed, remains

important for many developers.

Iwai was positive about the tool, but wanted a better interface for viewing the

review discussion:

“It’s nice command line things that are aligned well with the existing git tools.

Direct view with github isn’t too bad, but a better GUI would be definitely helpful, so

that you can surf reviews more easily by pointing a commit id”.

On the other hand, Kroah-Hartman indicated that the current practice was more

than adequate and other techniques for linking were unnecessary. The current practice

of linking reviews to a problematic commits is to use a search engine to search for

the subject line in the commit log (e.g. “[PATCH] finish tmp packfile():use strbuf for

pathname construction”) has worked well for over 20 years.

53

On the Git developer mailing list, some developers did not want the entire review

discussion included with the commit and just wanted a link to the mailing list discussion

(i.e. the message id).

The PostgreSql developers too just wanted a simple way of viewing discussions

around a commit. We realized that in spite of distributed review not being a good fit

into the current reviewing processes, traceability still is an important aspect missing

for the reviewing techniques. Based on the feedback, we created a simple website

where a developer can type in a commit and get redirected to one of the following links

to the review discussion of that commit: the message id, a redirect to the archived

discussion of the review, or a redirect to the git-reviewed review hosted on GitHub.

5.2.1 git-reviewed Tracker

The GitHub interface for viewing reviews linked to particular commits was not user-

friendly when it came to handling about 100K reviews for large projects like Linux.

In order to make it easier for users of git-reviewed to find the review discussions

associated to a particular commit, we created a web page which is shown in Figure 17.

This web page is created using PHP, HTML and JavaScript commands which allows

a user to enter the commit hash for which he or she wishes to view discussions

for. We created a SQLite database which consisted of all the message ids mapped

to their respective commit id and would extract the relevant message ids when

the user inserted the commit id on the web page. This web page is hosted on

http://cesel.encs.concordia.ca/git-reviewed-tracker.php.

54

http://cesel.encs.concordia.ca/git-reviewed-tracker.php

Figure 17: Track reviews online

This feature may not solve the purpose of being truly distributed as users would

need to go to the website in order to find discussions related to a commit, but this

definitely solved as a good alternative to pulling in all the reviews locally for a

particular repository which are huge in size and require a lot of memory space.

5.2.2 Comparison with Trackgit

Rast, a developer for the Git project, created a ‘backward patch tracker’ which tracked

the commits to the review discussions on the Git mailing list [5]. This tool allows

the storage of an email message-id as a note on each commit. This tool initially used

a patch id heuristic to match the commits to the email discussions but later added

support for the author and date heuristic.

When an evaluation on 30 randomly selected messages was performed on Rasts’

commit-message linking technique [5] we found similar accuracy rates as compared to

ours as explained in Section 4.7.1. When Rast’s technique was applied to messages on

the Linux kernel mailing list, we found that 26 out of 30 messages matched correctly

to a commit in the Git repository. For the Git mailing list, 23 messages matched

correctly and none of the messages were incorrectly linked. With messages on the

PostgreSQL mailing list, we found that 15 messages were linked with their correct

commit-id, 4 were not linked correctly and the rest were not matched at all.

Rast mentions the inability of the tool to cope with patch series that are not in

the Git repository appearing out of sequence to the mail reader.

He makes use of a Git feature called git-notes in the tool that he created. Git

55

allows users to add, remove or read notes attached to the various objects without

changing the object by making use of the standard command git-notes [7]. This makes

it easier for the users to add data to any object without actually changing the SHA-1.

When a user wishes to add notes to a specific commit, the default editor opens up

where the notes are entered. Git also integrates notes with the git-log command. This

allows users to go through all the notes made on each commit which are automatically

appended in the log output.

This newly added feature may work well in adding some comments to a commit

without changing the SHA-1 of the commit, but it cannot be used to actually per-

forming distributed peer reviewing in an efficient way. We compared the tool with

git-reviewed to find out the reasons why git-notes would not be a good fit for this

kind of implementation:

Merging git-notes: Collaboration using git-notes is very difficult. If one tries to

pull and edit someone else’s notes, then pushing these edited notes back to the origin

leads to a merge conflict. This has to be done by checking out the notes first and

then merge it. This prevents people to use git-notes locally without pushing them

to the origin and so peer reviewing is not facilitated [10]. With git-reviewed there is

never an issue with merging. It means that whenever a review is pulled locally and

edited, a new review blob object is created. This prevents any merging conflicts and

so collaboration using git-reviewed becomes easy.

One Note per Commit: Git allows only one note per commit. However, it has

a way of having multiple name spaces for notes but it may sometimes get confusing

for the users. git-reviewed on the other hand allows you to have as many comments

per review. All reviews for that commit are stored in a single tree and so traceability

is high.

Email Notes to the Mailing List: There is no way a user can directly send the

notes to the mailing list. git-reviewed allows you to prepare a review for an email

submission. This is an added advantage of git-reviewed over git-notes.

After receiving an overwhelming response from the developers, we made changes

to our tool as per their requirements. We now move on to the next chapter where we

provide concluding remarks to our thesis and also discuss avenues for future work.

56

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work we examined how tool supported review is conducted and provided an

overview of how peer reviewing is performed on the Linux kernel mailing list along

with the advantages of working in a distributed environment (Chapter 3, 2). Pearce

wanted a better way of distribution with his tool Gerrit [43] and Iwai pointed out the

lack of good linking and traceability between the commits and review discussions on

the Linux kernel mailing list [36]. Keeping these developer requirements in mind, we

designed and implemented a lightweight distributed peer review tool git-reviewed, and

described the underlying architectural details (Chapter 4).

We linked patches reviewed in the mailing list to the correct commit on the project’s

Git repository. We found out that in spite of the complex techniques used in the past

to link patches to the commits, our simple heuristics resulted in better accuracy rates.

We performed an evaluation of our tool by inviting leading developers of various

OSS projects. We gathered their feedback and made some modifications to our tool

(Chapter 5). The way git-reviewed was embedded into Git with minimal modifications

was liked by developers. We also realized that some of the developers who have been

using centralized peer reviewing techniques for many years were reluctant in adopting

a new form of reviewing practice overnight, given that distributed peer reviewing is

still in its initial stages.

We conjecture that unlike distributed version control systems where developers

work independently and then share changes, reviewing needs a centralization point

57

where discussions can occur. However, traceability is still useful in finding review

discussions around a particular commit. Thus, we created an online webpage to allow

the developers to look up discussions by entering the commit hash.

We discuss the prospects for future work in the next section.

6.2 Future Work

git-reviewed allows users to view the discussions related to a single commit on the

mailing lists. However, viewing review discussions around multi-commit branches

would add an interesting dimension to this work. We would also like to know how

much review has been performed on each subsystem of the project by providing a

graphical visualization of the parts of the system that have changed.

Moreover, right now we track reviews from three OSS projects which follow email

based code reviews. We intend to pull in reviews from Gerrit which is a centralized

code review tool, and try to fit them into the distributed code review environment

such as git-reviewed. We wish to maintain reviews for more projects in the near future.

58

Bibliography

[1] 10 million repositories [online].

https://github.com/blog/1724-10-million-repositories.

[2] Bugzilla [online]. http://www.bugzilla.org/about/.

[3] Bugzilla: Review [online]. https://wiki.mozilla.org/Bugzilla:Review.

[4] Crucible customers [online]. https:

//www.atlassian.com/company/customers/customer-list?tab=crucible.

[5] Fun things with

git-notes, or: patch tracking backwards. http://git.661346.n2.nabble.com/

RFC-RFH-Fun-things-with-git-notes-or-patch-tracking-backwards-td2297330.

html.

[6] Git documentation. http://git-scm.com/doc/.

[7] git-notes manual page [online]. https://www.kernel.org/pub/software/scm/

git/docs/git-notes.html.

[8] How the development process works [online]. https://www.kernel.org/doc/

Documentation/development-process/2.Process.

[9] The linux-kernel mailing list faq. http://www.tux.org/lkml/#s3-7.

[10] Note to self [online]. http://git-scm.com/blog/2010/08/25/notes.html.

[11] Postgresql documentation [online]. http://www.postgresql.org/about/.

[12] Rant about github pull-request workflow implementation.

[13] Review board [online]. http://www.reviewboard.org/docs/.

59

https://github.com/blog/1724-10-million-repositories
http://www.bugzilla.org/about/
https://wiki.mozilla.org/Bugzilla:Review
https://www.atlassian.com/company/customers/customer-list?tab=crucible
https://www.atlassian.com/company/customers/customer-list?tab=crucible
http://git.661346.n2.nabble.com/RFC-RFH-Fun-things-with-git-notes-or-patch-tracking-backwards-td2297330.html
http://git.661346.n2.nabble.com/RFC-RFH-Fun-things-with-git-notes-or-patch-tracking-backwards-td2297330.html
http://git.661346.n2.nabble.com/RFC-RFH-Fun-things-with-git-notes-or-patch-tracking-backwards-td2297330.html
http://git-scm.com/doc/
https://www.kernel.org/pub/software/scm/git/docs/git-notes.html
https://www.kernel.org/pub/software/scm/git/docs/git-notes.html
https://www.kernel.org/doc/Documentation/development-process/2.Process
https://www.kernel.org/doc/Documentation/development-process/2.Process
http://www.tux.org/lkml/#s3-7
http://git-scm.com/blog/2010/08/25/notes.html
http://www.postgresql.org/about/
http://www.reviewboard.org/docs/

[14] Rietveld code review, hosted on google app engine [online]. http://code.google.

com/p/rietveld/wiki/CodeReviewHelp.

[15] Rietveld users: Who uses rietveld? https://code.google.com/p/rietveld/

wiki/RietveldUsers.

[16] Using pull requests [online].

https://help.github.com/articles/using-pull-requests.

[17] Jai Asundi and Rajiv Jayant. Patch review processes in open source software

development communities: A comparative case study. In HICSS: Proceedings of

the 40th Annual Hawaii International Conference on System Sciences, page 10,

2007.

[18] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges

of modern code review. In Proceedings of the 35th International Conference on

Software Engineering, 2013.

[19] Earl T. Barr, Christian Bird, Peter C. Rigby, Abram Hindle, Daniel M. German,

and Premkumar Devanbu. Cohesive and isolated development with branches.

[20] Michael E. Bays. Software Release Methodology. 1999.

[21] C. Bird, A. Gourley, and P. Devanbu. Detecting patch submission and acceptance

in oss projects. In MSR: Proceedings of the Fourth International Workshop on

Mining Software Repositories, page 4. IEEE Computer Society, 2007.

[22] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M.

German, and Prem Devanbu. The promises and perils of mining git. In MSR ’09:

Proceedings of the 2009 6th IEEE International Working Conference on Mining

Software Repositories, page 10, Washington, DC, USA, 2009. IEEE Computer

Society.

[23] L. Brothers, V. Sembugamoorthy, and M. Muller. ICICLE: groupware for code

inspection. In Proceedings of the 1990 ACM conference on Computer-supported

cooperative work, pages 169–181. ACM Press, 1990.

[24] Jason Cohen. Best Kept Secrets of Peer Code Review. Smart Bear Inc., 2006.

60

http://code.google.com/p/rietveld/wiki/CodeReviewHelp
http://code.google.com/p/rietveld/wiki/CodeReviewHelp
https://code.google.com/p/rietveld/wiki/RietveldUsers
https://code.google.com/p/rietveld/wiki/RietveldUsers
https://help.github.com/articles/using-pull-requests

[25] E.Schindler. Doing spot-on

code reviews with remote teams [online]. http://www.networkworld.com/news/

2008/122308-doing-spot-on-code-reviews-with.html?page=1.

[26] Michael Fagan. Design and Code Inspections to Reduce Errors in Program

Development. IBM Systems Journal, 15(3):182–211, 1976.

[27] Michael Fagan. A history of software inspections. Software pioneers: contributions

to software engineering, Springer-Verlag, Inc., pages 562–573, 2002.

[28] Yujuan Jiang, Bram Adams, and Daniel M. German. Will my patch make it?

and how fast?: case study on the linux kernel. In Proceedings of the 10th Working

Conference on Mining Software Repositories, MSR ’13, pages 101–110, Piscataway,

NJ, USA, 2013. IEEE Press.

[29] Velusamy Sembugamoorthy Laurence R. Brothers and Bellcore Adam E. Ir-

gon. Knowledge-based code inspection with icicle. IAAI-92 Proceedings, AAAI

(www.aaai.org).

[30] M.G.Bradac, D.E.Perry, and L.G.Votta. Prototyping a process experiment. In

Fifteenth International Conference on Software Engineering, 1993.

[31] Mehrdad Nurolahzade, Seyed Mehdi Nasehi, Shahedul Huq Khandkar, and Shreya

Rawal. The role of patch review in software evolution: an analysis of the mozilla

firefox. In International Workshop on Principles of Software Evolution, pages

9–18, 2009.

[32] DE Perry, A. Porter, MW Wade, LG Votta, and J. Perpich. Reducing inspec-

tion interval in large-scale software development. Software Engineering, IEEE

Transactions on, 28(7):695–705, 2002.

[33] Nicolas Pitre. Re: Figured out how to get mozilla into git. http://permalink.

gmane.org/gmane.comp.version-control.git/21531.

[34] Susan Potter. Git, the architecture of open source applications. http://www.

aosabook.org/en/git.html.

[35] Julian Ratcliffe. Moving software quality upstream: The positive impact of

lightweight peer code review. In Moving Quality Forward, 2009.

61

http://www.networkworld.com/news/2008/122308-doing-spot-on-code-reviews-with.html?page=1
http://www.networkworld.com/news/2008/122308-doing-spot-on-code-reviews-with.html?page=1
http://permalink.gmane.org/gmane.comp.version-control.git/21531
http://permalink.gmane.org/gmane.comp.version-control.git/21531
http://www.aosabook.org/en/git.html
http://www.aosabook.org/en/git.html

[36] Peter C. Rigby. Understanding Open Source Software Peer Review: Review Pro-

cesses, Parameters and Statistical Models, and Underlying Behaviours and Mech-

anisms. thechiselgroup.org/rigby-dissertation.pdf, Dissertation, 2011.

[37] Peter C. Rigby, Earl T. Barr, Christian Bird, Premkumar Devanbu, and Daniel M.

German. What Effect does Distributed Version Control have on OSS Project Or-

ganization. In Proceedings of the International Workshop on Release Engineering.

IEEE, 2013.

[38] Peter C. Rigby and Christian Bird. Convergent software peer review practices.

In Proceedings of the the joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The Foundations of Software

Engineering (ESEC/FSE), 2013.

[39] Peter C. Rigby, Brendan Cleary, Frederic Painchaud, Margaret Anne Storey, and

Daniel German. Contemporary peer review in action: Lessons from open source

development. In IEEE Software, pages 56–61. IEEE, Nov-Dec 2012.

[40] Peter C. Rigby, Daniel M German, Laura Cowen, and Margaret-Anne Storey.

Peer Review on Open Source Software Projects: Parameters, Statistical Models,

and Theory. To appear in the ACM Transactions on Software Engineering and

Methodology, page 34, August 2014.

[41] Peter C. Rigby and Margaret Anne Storey. Understanding broadcast based peer

review on open source software projects. In Proceeding of the 33rd international

conference on Software engineering, ICSE ’11, pages 541–550, New York, NY,

USA, 2011. ACM.

[42] Rob. Beginners level course: What is linux?

[43] Randal Schwartz. Interview with Shawn Pearce, Google Engineer, on FLOSS

Weekly. http://www.youtube.com/watch?v=C3MvAQMhC_M.

[44] Smart Bear Software. Collaborator short demo [online]. http://www.youtube.

com/watch?v=1MBb21DgRYg&feature=youtu.be/.

[45] Linus Torvalds. Linus Torvalds on Git . http://www.youtube.com/watch?v=

4XpnKHJAok8.

62

thechiselgroup.org/rigby-dissertation.pdf
http://www.youtube.com/watch?v=C3MvAQMhC_M
http://www.youtube.com/watch?v=1MBb21DgRYg&feature=youtu.be/
http://www.youtube.com/watch?v=1MBb21DgRYg&feature=youtu.be/
http://www.youtube.com/watch?v=4XpnKHJAok8
http://www.youtube.com/watch?v=4XpnKHJAok8

[46] Linus Torvalds. Re: fatal: serious inflate inconsistency. git Mailing List.

[47] Lawrence G. Votta. Does every inspection need a meeting? SIGSOFT Softw.

Eng. Notes, 18(5):107–114, 1993.

[48] Karl E Wiegers. Peer Reviews in Software: A Practical Guide. Addison-Wesley

Information Technology Series. Addison-Wesley, 2001.

63

Appendix A

Email Invites

This appendix contains the email invite message we sent out to OSS developers as

well as a sample of a discussion that we had with Iwai. Public discussion that we had

with the Git and PostgreSQL developers available at Git and PostgreSQL mailing

lists, respectively. We had detailed discussions with developers who responded to the

message.

A.1 Recruitment Email

An email was sent out in order to invite participants who would be investing their

time in evaluating the git-reviewed tool and providing their suggestions and feedback.

Hi [insert developer name],

We have integrated peer reviewing on [insert mailing list] with git to create a

distributed peer review tool. We have linked all the reviews you are involved to each

commit in [insert repository name].

You can view the reviews ordered by date on GitHub on [insert link].

The GitHub interface is not intended for this purpose, so if you want to view them

locally inside your git repository you can install git-review and a ’review’ branch will

be created.

Please let us know what you think about this tool as it will help us in improving it.

If you’d like us to extract the reviews for a different repository, please let us know.

Regards,

Murtuza & Peter

64

http://comments.gmane.org/gmane.comp.version-control.git/242266
http://www.postgresql.org/message-id/CANx4bCAaBiYZxGb_KWCJXHvbMHGahmf+8bwsm0=oVWrprO-4KQ@mail.gmail.com

A.2 Discussion with Takashi Iwai

The following is an email discussion with Linux’s subsystem maintainer, Takashi Iwai.

This conversation took place after he tried out git-reviewed.

Hi Murtuza,

sorry for my late response, as I’ve been really too busy to play with your shiny

scripts. Now finally I could find minutes to try out. Here are some comments after a

short try:

- It’s nice command line things that are aligned well with the existing git tools.

- Direct view with github isn’t too bad, but a better GUI would be definitely

helpful, so that you can surf reviews more easily by pointing a commit id.

- Can this work like git-notes? That is, showing reviews via git log with an option?

- The installation could be a bit improved. It’s easy, but the provided script works

only for Debian & co.

- A command git-review already exists (for Gerrit), so this name might be confusing

for some people.

- I couldn’t see any information, though, about how to gather the reviews and put

into the repo. Is it a part of project? Majority of patches are floating rather in each

subsystem ML, not in LKML, so each tree may need a different setup.

thanks,

Takashi

65

Appendix B

git-reviewed User Manual

B.1 Installation

git-reviewed runs a bunch of Perl and Ruby scripts. In order to install git-reviewed,

you need to clone the repository:

git@github.com:mmukadam/git-reviewed.git or

https://github.com/mmukadam/git-reviewed.git

Run the following commands:

1. Run sudo bash install

2. Clone the repository you wish to review

3. Run git-reviewed - -init inorder to initialize the tool to be able to review.

4. Start reviewing

5. Use git-reviewed - -pull inorder to pull all the reviews made in a repository

6. Use git-reviewed - -push to push the reviews onto the repository

B.2 Man Page

NAME

git-reviewed- Creates a review on a commit

66

SYNOPSIS

git-reviewed [options] [path]

DESCRIPTION

Allows the user to make a review on a given commit-hash

OPTIONS

- -init

Initializes git-reviewed in order to start reviewing.

- -re-init

Re-initializes git-reviewed in case of an error.

- -pull

Fetches reviews from remote repositories.

- -push

Updates remote repositories by adding reviews.

- -log

Shows the log history of the reviews made along with the reviewer details.

- -log commit-hash

Shows the log history of the reviews made along with the reviewer details for a

particular commit.

- -log-show

Shows the log history of the reviews made along with raw review content.

- -log-show commit-hash

Shows the log history of the reviews made along with raw review content for a partic-

ular commit.

67

- -log-reviewer reviewer-name

Shows the log history of the reviews made by the reviewer.

- -log-limit value

Shows the log history of the reviews made by the author limited to the value specified.

- -list

Lists all the reviews present on the review branch.

- -list commit-hash

Lists all the reviews present on the review branch for the given commit.

- -filter-reviewer reviewer-name

Deletes all the reviews on the review branch except the reviews made by the reviewer.

- -amend

Allows reviewer to make any change to the last review.

- -view review-hash

Shows the contents of the review.

- -format review-hash

Prepares the review for an email submission.

- -respond review-hash

Allows reviewer to respond to any review

- -display review-hash

Displays the interleaved history in a window.

- -rm review-hash

68

Deletes the review.

- -rm-before date

Deletes the review before the specified date.

- -rm-after date

Deletes the review after the specified date.

EXAMPLES

$ git-reviewed commit-hash

... Creating a review object on a particular commit

Creating Review Object

5c1b78028dca1b7424b5d6a0c888fa829236cda2

$ git-reviewed- -log

...shows the log history of the reviews made

Review b88a0c3b2c8a5924acefdb99fb50bff3a2dfe7ff

Commit Reviewed 02f8efec7e50c925924bbe3a6160de0a82e8b724

Author: Murtuza Mukadam

AuthorDate: Fri Jun 21 23:50:50 2013 -0400

Reviewer: Murtuza Mukadam

ReviewDate: Sat Oct 12 20:27:29 2013 -0400

$ git-reviewed- -amend

... allows to make a change to the review

Amending Review Object 838a2d22de4d0bb393f2874bc92734a073757fea

$ git-reviewed- -view review-hash

... shows the raw content of the review object

Commit Reviewed: 02f8efec7e50c925924bbe3a6160de0a82e8b724

Reviewer: Murtuza Mukadam

Review Date: Wed Jun 19 18:40:38 2013 -0400

69

content

$ git-reviewed- -respond review-hash

... allows reviewer to respond to a review

Creating Response Review Object b3a3becba4b947a381c53a8444ac239b57acd6b0

$ git-reviewed- -list

... lists all the reviews present on the review branch.

Total Number of Reviews: 152

Review: 188aa11a5c2dbeaec05491a73f94ba931248db65

Commit Reviewed: add7ad68fe46a9a71bbcfb348f75dfa85f758163

Review: 2f538aa6cdf4d53ffb7846dbcfd5020ce7aad8bf

Commit Reviewed: add7ad68fe46a9a71bbcfb348f75dfa85f758163

70

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Relevant Linux Kernel Background
	Peer Reviewing on Linux Kernel Mailing List
	Need for Better Traceability
	Need for Distributed Review
	Advantages and Disadvantages of Distributed Development Tools
	Elimination of a Central Point of Failure
	Collaboration
	Commit Policies
	Release Engineering
	Trusting Your Data

	Background
	Evolution of Peer Reviewing Practices
	Summary of Existing Tools
	CodeCollaborator
	Crucible
	Review Board
	Rietveld
	Gerrit
	Bugzilla Based Review

	GitHub Pull Requests
	Email Based Code Review

	Architecture, Implementation, and Features of git-reviewed
	High-level Features for git-reviewed
	Git Architecture
	Branching
	git-reviewed Integration with Git

	Initial Architecture of git-reviewed
	Initial Architecture of git-reviewed
	Current Architecture of git-reviewed

	Implementation of git-reviewed
	git-reviewed Option Parser
	Communication with Remote Repository
	Creating and Deleting Reviews
	Creating and Sending Emails from git-reviewed
	Developing Log History of Reviews

	Features and Functionality
	Viewing a List of all Reviews
	Log of Reviews
	Viewing Each Review
	Viewing Reviews Related to a Particular Reviewer
	Creating a Review
	Importing Reviews from a Mailing List
	GitHub Compatibility

	Need of Linux Reviewers and Features of git-reviewed
	Linking Patches to Commits
	Comparing Linking Results for Linux, Git and PostgreSQL

	Comparing Linux Reviewing Process and git-reviewed Reviewing Process

	Evaluation
	Distributed Review
	Traceability
	git-reviewed Tracker
	Comparison with Trackgit

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Email Invites
	Recruitment Email
	Discussion with Takashi Iwai

	git-reviewed User Manual
	Installation
	Man Page

