
A Cloud Infrastructure for Multimedia

Conferencing Applications

Flora Taheri

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

May 2014

© Flora Taheri, 2014

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis is prepared

By: Flora Taheri

Entitled: A Cloud Infrastructure for Multimedia Conferencing Applications

And submitted in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

Complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final Examining Committee:

__________ _________________ Chair

 Dr. G. Grahne

_______________________________ Examiner

 Dr. J. Rilling

_______________________________ Examiner

 Dr. D. Goswami

__________________________ _____ Supervisor

 Dr. R. Glitho

Approved by: ___________________ ______________________

 Chair of Department or Graduate Program Director

 ______2014 ______________________

 Dean of Faculty

iii

ABSTRACT

A Cloud Infrastructure for

Multimedia Conferencing Applications

Flora Taheri

 Conferencing enables the conversational exchange of media between several parties.

Conferencing applications are among important enterprise applications nowadays.

However, fine grained scalability and elasticity remain quite elusive for multimedia

conferencing applications, although they are key to efficiency in the resource usage.

 Cloud computing is an emerging paradigm for provisioning network, storage, and

computing resources on demand using a pay-per-use model. Cloud-based conferencing

services can inherent several benefits such as resource usage efficiency, scalability and

easy introduction of different types of conferences.

 This thesis relies on a recently proposed business model for cloud-based conferencing.

The model has the following roles: conferencing substrate provider, conferencing

infrastructure provider, conferencing platform provider, conferencing service provider,

and broker. Conferencing substrates are generally atomic and served as elementary

building blocks (e.g. signalling, mixing) of conferencing applications. They can be

virtualized and shared among several conferencing applications for resource efficiency

purposes. Multiple conferencing substrates provided by different conferencing substrate

iv

providers can be combined to build a conferencing service (e.g. a dial-out signalling

substrate and an audio mixer substrate can be composed to build a dial-out audio

conference service).

 This thesis focuses on the conferencing infrastructure provider and conferencing

substrate provider roles. It proposes a virtualized cloud infrastructure for multimedia

conferencing applications. This infrastructure relies on fine grained conferencing

substrates (e.g. dial-out signalling, dial-in signalling, audio mixer, video mixer, floor

control, etc.) and offers several advantages in addition to fine grained scalability and

elasticity (e.g. assembling substrates on the fly to build new conferencing applications).

An architecture is proposed to realize the roles of conferencing infrastructure provider,

conferencing substrate provider and their interactions. A resource allocation mechanism

for conferencing substrates is also proposed. We have also built a prototype with Xen as

the virtualization platform and validated the architecture. Performance has also been

evaluated.

v

Acknowledgements

First I would like to express my deepest gratitude to my supervisor Dr. Roch Glitho for

all his support, assistance and guidance throughout my thesis. This work would not have

been possible without his encouragement, advices and countless drafts reviewed. It was a

great opportunity working with him and learning from him during my research. I would

also like to thank Dr. Belqasmi and Dr. Kara for their support, ideas and comments

throughout my work.

I’m grateful to Dr. Rilling and Dr. Goswami for serving as members of my thesis

committee and for their valuable feedbacks. I am also grateful to Dr. Grahne for chairing

the thesis defense session.

I would like to take the opportunity to thank my colleagues from the Telecommunication

Service Engineering lab for all their advices, ideas, and helps.

I am thankful to Dr. Roch Glitho and Concordia University for their financial support.

Lastly but not least, special thanks to my dearest family and friends who supported me

during the completion of my degree.

vi

Table of Contents

1 Introduction ... 1

1.1 Definitions .. 1

1.1.1 Conferencing ... 1

1.1.2 Cloud Computing .. 2

1.1.3 Cloud Conferencing Business Model ... 2

1.1.4 Virtualization .. 3

1.2 Research Domain .. 3

1.3 Motivations and Problem Statement .. 4

1.4 Thesis Contributions .. 5

1.5 Thesis Organization.. 5

2 Background ... 7

2.1 Multimedia Conferencing .. 7

2.1.1 An Introduction to Conferencing .. 7

2.1.2 Architectural Components of Conference .. 8

2.1.3 Different Types of Conferences .. 9

2.2 Cloud Computing ... 10

2.2.1 Definition of Cloud Computing .. 10

vii

2.2.2 Key Benefits of Cloud Computing ... 10

2.2.3 Facets of Cloud Computing .. 12

2.2.3.1 Infrastructure as a Service (IaaS) ... 13

2.2.3.2 Platform as a Service (PaaS) ... 13

2.2.3.3 Software as a Service (SaaS) .. 13

2.3 Cloud-based Conferencing Business Model .. 14

2.4 Virtualization .. 15

2.4.2 Hypervisor.. 18

2.4.3 Virtualization Techniques .. 19

2.4.3.1 Full Virtualization ... 19

2.4.3.2 Paravirtualization (OS assisted virtualization) ... 20

2.4.3.3 Hardware Assisted Virtualization ... 21

2.4.5 Benefits of Virtualization ... 21

2.4.6 Critix Xen Server ... 22

2.5 Chapter Summary ... 23

3 Scenarios, Requirements and State of the Art Evaluation .. 25

3.1 Scenarios ... 25

3.2 Requirements .. 29

3.3 State of the Art Evaluation ... 31

3.3.1 Standard Conferencing Frameworks ... 31

viii

3.3.2 Existing Cloud-based Conferencing Services .. 35

3.3.3 Description, Publication and Discovery of Cloud Conferencing Services . 42

3.4 Chapter Summary ... 46

4 Proposed Architecture ... 47

4.1 Overall Architecture ... 47

4.1.1 Architectural Components ... 49

4.1.1.1 Broker ... 49

4.1.1.2 IaaS Layer Components .. 51

4.1.1.3 SubaaS Layer Components... 52

4.1.2 Communication Interfaces ... 53

4.2 Illustrative Scenario .. 61

4.2.1 Service Creation ... 61

4.2.2 Service Activation .. 62

4.2.3 Service Execution .. 63

4.2.3.1 Create Conference Execution Process ... 64

4.2.3.2 Add Participant to the Conference Execution Process .. 65

4.3 How the Requirements are Met by the Architecture .. 67

4.4 Chapter Summary ... 68

5 Resource Allocation Mechanism .. 70

5.1 Problem Statement .. 70

ix

5.2 Existing Scaling Approaches .. 72

5.2.1 Static Resource Allocation ... 72

5.2.2 VM-level Elasticity .. 73

5.2.3 Fine Grained Resource-level Elasticity ... 74

5.3 Proposed Scaling Mechanism ... 79

5.3.1 Discussion on a Scaling Approach for Cloud Conferencing Applications 80

5.3.2 Description of the Proposed Scaling Mechanism .. 80

5.3.2.1 Assumptions ... 83

5.3.2.2 Scaling Mechanism Step by Step ... 85

5.4 Chapter Summary ... 89

6 Validation: Prototype and Evaluation ... 91

6.1 Software Architecture ... 91

6.1.1 Overall Software Architecture ... 91

6.1.1.1 IaaS Layer Software Components ... 92

6.1.1.2 SubaaS Layer Software Components ... 94

6.1.1.3 Operatinal Procedures ... 96

6.1.1.4 Communication Interfaces ... 97

6.2 Prototype Design and Architecture .. 98

6.2.1 Implemented Scenario .. 99

6.2.2 Prototype High Level Description ... 106

x

6.2.2.1 Scope .. 106

6.2.2.2 Assumptions ... 107

6.2.2.3 Design Decisions .. 108

6.2.3 Prototype Architecture ... 110

6.2.3.1 Implementation scope of prototype .. 110

6.2.3.2 Detailed Prototype Architecture .. 111

6.2.3.3 Software Tools ... 113

6.2.3.3.1 Java.. 114

6.2.3.3.2 NetBeans ... 114

6.2.3.3.3 Jersey .. 114

6.2.3.3.4 Xen Server ... 114

6.2.3.3.5 Medooze Multi Conference Server ... 115

6.2.3.3.6 Medooze Media Mixer .. 116

6.2.3.3.7 Glassfish Application Server .. 116

6.2.3.3.8 SailFin Application Server ... 116

6.2.3.3.9 MySQL Server .. 117

6.2.3.3.10 X-Lite ... 117

6.2.3.4 Procedures ... 117

6.2.3.5 Environmental Setting ... 120

6.3 Performance Evaluation ... 121

6.3.1 Performance Metrics .. 121

6.3.1.1 Substrate Activation Measurements ... 121

6.3.1.2 Create Conference Request Measurements .. 122

6.3.1.3 Add Participant Request Measurements ... 125

xi

6.4 Chapter Summary ... 127

7 Conclusion and Future Work .. 128

7.1 Contribution Summary ... 128

7.2 Future Work ... 129

xii

List of Figures

Figure 2-1. Conference Architecture ... 8

Figure 2-2. Cloud Computing Service Levels .. 12

Figure 2-3. Cloud Conference Business Model .. 14

Figure 2-4. Different Server Models ... 17

Figure 2-5. Different types of Hypervisors ... 18

Figure 2-6. Virtualization Architectures .. 19

Figure 3-1. Illustrative Scenario Showing Usage of Cloud Conferencing IaaS 27

Figure 3-2. Conference Server .. 32

Figure 3-3. Conferencing System Logical Decomposition ... 33

Figure 3-4. High level Architecture of WebEx ... 36

Figure 3-5. Conference Manager Architecture ... 39

Figure 3-6. Cloud conferencing model ... 40

Figure 3-7. SOA Layers of Cloud Conferencing .. 42

Figure 3-8. General Broker Architecture for Publication and Discovery 43

xiii

Figure 4-1. Architecture of Cloud-based Conferencing IaaS ... 48

Figure 4-2. End-To-End Publication and Discovery Steps .. 51

Figure 4-3 .Service Activation Sequence .. 63

Figure 4-4. Create Conference Execution Sequence .. 65

Figure 4-5. Add Participant Execution Sequence ... 66

Figure 5-1. Resource Allocation Procedure for scaling .. 88

Figure 6-1. Software Architecture .. 91

Figure 6-2. Service Activation Procedure ... 96

Figure 6-3. Service ExecutionPprocedure (creating a conference) 97

Figure 6-4. Service Creation GUI by PaaS ... 100

Figure 6-5. Service Activation GUI by PaaS .. 101

Figure 6-6. Conference Application GUI- Initial Screen .. 103

Figure 6-7. Conference Application GUI- View Registered End Users 104

Figure 6-8. Conference Application GUI- Create Conference 105

Figure 6-9. Conference Application GUI- Add Participant .. 106

xiv

Figure 6-10. A SIP client (X-Lite softphone) .. 109

Figure 6-11. Prototype Architecture ... 113

Figure 6-12 . Procedure of Activation of Dial-out Audio Conference Application 118

Figure 6-13. Create Conference Execution Procedure ... 119

Figure 6-14. Add participant Execution Procedure .. 119

Figure 6-15. Non-cloud Distributed Conferencing Model ... 123

Figure 6-16. Create conference Delay in Cloud and Non-cloud Distributed Models 125

Figure 6-17. Add Participant Delay in Cloud and Non-cloud Distributed Models 126

xv

List of Tables

Table 3-1.State of the Art Evaluation ... 45

Table 4-1. RESTful Pi interface for Dial-out Audio Conference 57

Table 4-2. RESTful Si interface of a Dial-out signaling (Substrate Provider A) 59

Table 4-3. RESTful Si interface of an Audio Mixer (Substrate Provider B) 60

Table 6-1. Substrate Activation Time Delay .. 122

Table 6-2. Measurement Result of Create Conference Request 124

xvi

List of Acronyms and Abbreviations

NIST National Institute of Standards and Technology

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

SIP Session Initiation Protocol

QoS Quality of Service

SLA Service Level Agreement

OS Operating System

EC2 Elastic Compute Cloud

VMM Virtual Machine Monitor

SIPPING Session Initiation Proposal Investigation

APIs Application Programming Interfaces

IMS IP Multimedia Subsystem

MCU Multipoint Conferencing Unit

SOA Service Oriented Architecture

REST Representational State Transfer

VM Virtual Machine

PM Physical Machine

OCDA Open Data Center Alliance

SLO Service Level Objectives

GUI Graphical User Interface

xvii

RTP Real-time Transport Protocol

SDP Session Description Protocol

IDE Integrated Development Environment

IETF Internet Engineering Task Force

UDP User Datagram Protocol

VOIP Voice over IP

RPC Remote Procedure Call

NIC Network Interface Card

LSU Lightweight Scaling Up

JSON JavaScript Object Notation

LSD Lightweight Scaling Down

XML Extensible Markup Language

1

Chapter 1

1 Introduction

In this chapter, first we provide definitions for the key concepts related to our research

and then we define the research domain. Then, we discuss the motivation, the problem

statement, and the contributions of this thesis. Finally, we describe how this thesis is

organized.

1.1 Definitions

There are four key concepts related to our research on a virtualized infrastructure for

multimedia conferencing applications: conferencing, cloud computing, cloud

conferencing business model and virtualization. We discuss these concepts in this

section before explaining the research domain in the next section.

1.1.1 Conferencing

Conferencing is the real-time exchange of media (voice, video, and text) which

enables collaboration between multiple conference participants [1]. Conferencing is

the basis of a plethora of multimedia applications (e.g. audio/video conference,

multiparty games and distance learning applications). These applications still face

challenges such as scalability and elasticity, although they are ubiquitous nowadays.

2

1.1.2 Cloud Computing

Clouds are a large pool of virtualized resources which can be dynamically

reconfigured to adjust to a variable load (scale), allowing optimum resource

utilization [2]. According to National Institute of Standards and Technology (NIST)

[3] cloud computing is an emerging and transformational paradigm for provisioning

of network, storage, and computing on demand as a commodity using a pay-per-use

model. According to one of the widely-accepted definitions of cloud computing [1], it

encompasses three key facets: Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS). IaaS provides the infrastructure for

computing, storage and networking using virtualized hardware resources. PaaS

provides the software environments to design, develop and deploy applications.

Service providers use platforms offered as PaaS by platform providers to develop and

manage applications. The applications are provisioned to end-users (or other

applications) as SaaS on a pay-per-use basis. Cloud platforms add levels of

abstraction to the infrastructures offered as IaaS by infrastructure providers. PaaS

eases the application development and management. IaaS is the actual dynamic pool

of virtualized resources used by applications and ensures scalability, elasticity and

efficiency in resource usage.

1.1.3 Cloud Conferencing Business Model

Despite the benefits that cloud computing may bring to the conferencing applications,

to the best of our knowledge, there are currently no full-fledged environments that

allow the development, deployment and management of cloud-based conferencing

applications [1]. A business model was proposed for cloud-based conferencing [1].

3

The following are the roles in the proposed business model: connectivity provider,

broker, conferencing substrate provider, conferencing infrastructure provider,

conferencing platform provider, and conferencing service provider. Conference

substrates (e.g. dial-out signaling, audio mixing) are sharable fine-grained building

blocks of conferencing provided by the conference substrate provider that can be

virtualized and shared between conferencing applications for resource efficiency

purposes. These virtualized conference substrates can be composed to create full-

fledged conferencing applications (e.g. dial-out audio conference).

1.1.4 Virtualization

Virtualization is the basic technology of clouds with characteristics such as dynamic

assignment of resources and resources sharing [2, 4]. It brings key benefits such as

resource efficiency through sharing of physical resources. Virtualization provides

virtual resources instead of providing the actual ones [4]. By virtualization several

operating systems can exist on the same hard ware server and several applications can

coexist on the same operating system. Various virtualization platforms s are available

such as Xen [5], VMware [6], etc. Virtalization technology can be used to virtualize

conferencing substrates as building blocks of conferencing applications for resource

efficiency, flexibility and scalability purposes.

1.2 Research Domain

Conferencing is the basis of a plethora of several enterprise applications (e.g.

multimedia conferencing applications, multiparty games and distance learning).

Various types of conferencing applications with different features can be offered.

4

Some examples are: dial-out audio signalling conference, dial-out video signalling

conference, dial-in video conference service with floor control. These conferences can

be built from composing several fine-grained conferencing substrates.

In this thesis we focus on a virtualized infrastructure which offers an on-demand

dynamic provisioning of the conferencing substrates. The infrastructure relies on

fined grained conferencing substrates. Conferencing substrate examples are dial-out

signaling, dial-in signaling, audio mixer and video mixer, floor control, transcoder,

etc. Infrastructure may offer atomic fine-grained substrates; also it may assemble

several conferencing substrates on the fly to build conferencing services.

Infrastructure provider relies on the conferencing substrates offered by third party

substrate providers. Infrastructure provider may also offer its own conferencing

substrates. Such an infrastructure will scale in fined grained manner to the demand of

the users by generating multiple instances from conferencing substrates and running

them simultaneously. Infrastructure will also be elastic in a fined grained manner.

1.3 Motivations and Problem Statement

Cloud-based conferencing services inherent significant benefits of cloud computing

such as resource efficiency, scalability and easy introduction of different types of

services. Several conferencing applications are offered today in cloud settings.

However, to the best of our knowledge, there is still no cloud conferencing

environment available that enables management and offering of a wide range of

conferencing resources to deploy conferencing applications on this infrastructure [1].

Providing a virtualized conferencing infrastructure is critical for the realization of

cloud-based conferencing. An architecture for this infrastructure needs to be designed

5

which offers fine grained conferencing substrates. The fine grained conferencing

substrates can be hosted by infrastructure provider or offered by third party conference

substrate providers. An infrastructure which has the capability to assemble these

substrates on the fly to build a conferencing service, scale to the user demand and

manage the conferencing resources in an elastic resource efficient way.

1.4 Thesis Contributions

The thesis contributions are as follows:

 Requirements for a virtualized infrastructure for multimedia conferencing

applications based on the proposed cloud conferencing business model.

 Analysis of the state of the art with an evaluation summary based on our

requirements.

 An overall architecture for a virtualized infrastructure for multimedia

conferencing.

 Proposing a fine-grained scaling mechanism for conferencing substrates

 Implementation architecture, a proof of concept prototype, and performance

evaluation.

1.5 Thesis Organization

The rest of this thesis is organized in 6 following chapters:

Chapter 2 presents the background concepts and definitions related to our research

domain.

6

Chapter 3 presents the requirements for a cloud-based conferencing infrastructure and

evaluates the state of the art based on the requirements.

Chapter 4 presents the proposed architecture for a virtualized infrastructure in cloud-

based conferencing. It describes the architectural components, as well as the

interactions between different cloud layers while enabling a conferencing service.

Chapter 5 reviews different scaling approaches and proposes a fine-grained scaling

mechanism for conferencing substrates.

Chapter 6 describes the software architecture, the implemented prototype as the proof-

of-concept. Also, it discusses the performance measurements collected to evaluate the

architecture.

Chapter 7 concludes the thesis by giving a summary of the overall contributions, and

future research directions.

7

Chapter 2

2 Background

This chapter describes background concepts related to the research domain. The

following concepts are explained: multimedia conferencing, cloud computing, cloud-

based conferencing business model, and also virtualization, which is the technology we

use to provide the conferencing infrastructure and to ensure efficiency in resource

usage. The cloud-based conferencing business business model is introduced because

our proposed architecture relies on it. At the end, we summarise the chapter.

2.1 Multimedia Conferencing

In this section, we give an introduction to multimedia conferencing, architectural

components of a conference, and different types of conferences.

2.1.1 An Introduction to Conferencing

Conferencing is the real-time multi-party exchange of media (voice, video, and text)

which enables real-time collaboration among the participants of the conference.

Conferencing plays a key role in several enterprise applications like conferencing

application, gaming applications, distance learning applications, and social

networking applications. Conference services are real-time resource-intensive services

which may have huge number of users involved.

8

2.1.2 Architectural Components of Conference

Architectural components of a typical conference are shown in Figure 2-1. Conference

Architecture [1] : Signalling, media handling and conference control.

Figure‎2-1. Conference Architecture

 Signaling: This component handles signalling operations such as session set-

up, session establishment, and session tear down using a signaling protocol

(e.g. Session Initiation Protocol (SIP)).

 Media Handling: This component handles media aspects such as receiving,

mixing, transmitting and transcoding of media. The mixer role is to receive

and combine multiple input audio/video streams to output streams. The mixer

should generate the output streams in a way that each participant in a

conference will be receiving the mix of all streams from all participants

excluding the participant itself. Transcoding is encoding and decoding the

media between different media formats.

 Conference Control: Conference control gives additional functionalities to

conferences such as floor control and policy control [1].

 Policy Control: This component handles conference policy aspects

such as access and admission control.

9

 Floor Control: This component allows users of multimedia

applications to utilize and share resources such as continuous media

(video and audio) without access conflicts. Floors are temporary

permissions given to users dynamically in order to mitigate race

conditions and guarantee mutually exclusive resource usage [18].

Signaling and media handling are necessary components for any conferencing

application and conference control is an optional component for additional control

and capabilities.

2.1.3 Different Types of Conferences

There are three major types of conferencing based on standard specifications [19]:

 Tightly-coupled Conference: A conference is an association of conference

participants with a central point (i.e., a conference focus), where the focus

has direct peer-wise relationships with all participants by maintaining a

separate dialog with each of them [20].

 Loosely-coupled Conference: In the loosely coupled model, there is no

coordinated signaling relationship amongst participants of the conference (no

central point of control or a conference server).

 Fully-distributed Conference: In this model, each participant maintains a

signaling relationship with other participants of the conference.

10

2.2 Cloud Computing

In this section we define what is cloud computing, what are the key benefits of cloud

computing and what are its main facets.

2.2.1 Definition of Cloud Computing

Different definitions are available for clouds [7]. Vaquero et al. has proposed an

integrative definition for cloud computing based on the study done on more than 20

previous definitions. The definition is that “clouds are a large pool of easily usable

and accessible virtualized resources (such as hardware, development platforms and/or

services). These resources can be dynamically reconfigured to adjust to a variable

load (scale), allowing also for an optimum resource utilization. This pool of resources

is typically exploited by a pay-per-use model in which guarantees are offered by the

Infrastructure Provider by means of customized Service Level Agreements (SLAs)”

[8: 51]. Although this definition includes main characteristics of cloud computing;

resource pooling, rapid elasticity and measured services, but it fails to mention two

other characteristic of cloud computing which are on-demand self-service (computing

resources could be used at any time without any human interaction with infrastructure

service provider) and broad network access network (having access to computing

resources over network). NIST (US National Institute of Standards and Technology)

definition of cloud computing covers all of these five characteristics [9].

2.2.2 Key Benefits of Cloud Computing

Cloud computing has several benefits. Some of its key benefits include:

11

 Scalability: Cloud provider's massive capacity offers an unlimited scalability

[10]. “When you are tied into a cloud computing system, you have the power

of the entire cloud at your disposal” [7:26]. Cloud computing manages your

needs (storage, computing, networking) and scales on demand.

 Elasticity: is the degree to which a system is able to adapt to workload

changes by provisioning and deprovisioning resources in an autonomic

manner [57].

 Resource efficiency: is scaling in such a way that at each point of time the

available resources match the current demand as closely as possible [7].

 Reliability: when users move to cloud, they have a certain level of

expectations about the Quality of Service (QoS) in clouds, including

availability, performance and fault tolerance. To address user’s concerns,

cloud service providers offer a warranty by SLAs with customers. In these

agreements, details of the service to be provided and also the penalty for

violations are specified [11].

 Resource pooling: is ability of cloud to serve multiple customers by assigning

and reassigning the virtualized and physical resources dynamically according

to demand. It is actually the sharing of resources which leads to optimum

resource utilization and cost [7].

 Easier management and maintenance: as the service is hosted somewhere

else, there is no need to maintenance or support [7]. Cloud services are web

based and users do not need to upgrade, as the software is not locally saved on

their systems.

 Cost and pricing: cloud customers pay on a pay-per-use model which

decreases the total cost efficiently.

12

2.2.3 Facets of Cloud Computing

Cloud Computing consists of three main facets [4]:

 Infrastructure as a Service (IaaS): delivering cloud computing

infrastructure: servers, storage, network and operating.

 Platform as a Service (PaaS): providing software environments and tools to

create, develop and deploy applications and services.

 Software as a Service (SaaS): providing users the access to software

applications and services, priced on a pay-per-use basis.

 Figure 2-2 shows the cloud computing architecture

with three facets.

 Figure ‎2-2. Cloud Computing Service Levels [12]

In the following sections we will describe each of these facets in more detail.

13

2.2.3.1 Infrastructure as a Service (IaaS)

Infrastructure as a service is provisioning of computing recourses such as processors,

storages and networks. Despite the traditional resource provisioning scenario,

enterprises do not need to manage and maintain the resources which are located

somewhere else on the cloud. Using virtualization technologies, IaaS enables co-

existence of several heterogeneous resources on the same hardware system. By

sharing resources, it provides resource and cost efficiency. Some known samples of

cloud infrastructures are Amazon’s Elastic Compute Cloud (EC2) and Google

Compute Engine.

2.2.3.2 Platform as a Service (PaaS)

Platform as a Service adds a layer of abstraction to the cloud infrastructure and

provides platforms and Application Programming Interfaces (APIs) in cloud settings

for use of service providers and developers to implement and deploy the applications

and services [13]. PaaS examples are Google App Engine and Windows Azure App

Fabric.

2.2.3.3 Software as a Service (SaaS)

By SaaS, service providers provide applications for the access of end users or other

third party applications (via APIs). There is no need to buy, install and run the

software on your computer. End users just need a browser and an internet connection

to use the cloud based software on a pay-per-use basis [13]. Examples of SaaS are

Salesforce.com and Google docs.

14

2.3 Cloud-based Conferencing Business Model

There is a cloud-based conferencing business model recently proposed for

provisioning conference applications in the cloud setting [1]. This model brings

benefit of cloud computing such as easy introduction of different types of

conferences, resource efficiency and scalability to the conferencing. We use this

model as the basis for our architecture. Figure 2-3 shows this business model.

Figure ‎2-3. Cloud Conference Business Model

The key actors in this business model are Broker, Connectivity Provider, Conference

End User, Conference Service Provider, Conference Platform Provider, Conference

Infrastructure Provider and Conference Substrate Provider.

 Connectivity Provider: The connectivity provider is the communication

channel for interactions between the different actors.

 Broker: The broker provides a publication and discovery mechanism for

substrates and conference applications in different levels of cloud.

 Conference Substrate Provider: The substrate provider provides virtualized

fine-grained conference substrates which are considered the main building

blocks of conference applications.

15

 Conference Infrastructure Provider: The infrastructure provider may also

provide conference substrates like conference substrate provider.

Infrastructure provider discovers the substrates published by the substrate

provider from the broker. And then publishes the substrates again to be

discovered by the conference platform provider. It may publish the atomic

conference substrates as they are or it may alternatively, compose them and

then publish the composed substrate to the broker.

 Conference Platform Provider: The platform provider provides a set of tools

for service providers to create conference applications. They are software

frameworks for creation, composition and execution of conference

applications. Conference platform provider discovers the substrates published

by the infrastructure provider from the broker.

 Conference Service Provider: The service provider uses the platform tools

provided by the platform provider to create conference applications. After

creation of the conference application, publishes it to the broker to be

discoverable by conference end users.

 Conference End User: The conference end user is who discovers the

conference application from the broker and uses it on a pay-per-use model.

2.4 Virtualization

Virtualization in the main enabling technology for cloud computing. In this section,

first we give a brief introduction of virtualization, and then we explain what a

hypervisor in a virtualized environment is. After that, we discuss different

virtualization techniques. Then, we mention the benefits of the virtualization and

16

finally we discuss one of the virtualization technologies (Xen) which is used in our

prototype.

2.4.1 Definition of Virtualization

The term virtualization describes the separation of a resource from the underlying

physical delivery of that service [26]. For example, By hardware virtualization, you

can create a virtual machine that acts like a real computer with an Operating System

(OS) which is separated from the underlying hardware resources, or with virtual

memory computer software gains access to more memory than is physically installed

[26]. The actual machine that virtualization takes place on, is the host and the virtual

machine is the guest. The software which creates a virtual machine on the host

machine is called a hypervisor or Virtual Machine Monitor. Several guest machines

may co-exist on the same hardware server [21]. The concept of virtualization is very

broad and can be applied to other IT infrastructure layers including devices, servers,

networks, storage, hardware, operating systems and applications [23].

In a traditional physical computer, one instance of the operating system supports one

or more application programs. In a virtualization environment, a single physical

computer runs multiple virtual computers. Each of virtual machines may be running a

different operating system from all of the other virtual machines on the physical

machine (Figure 2-4).

http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Hypervisor

17

Figure ‎2-4. Different Server Models [23]

There are key differences between virtual and traditional server models [26]. In the

traditional server model:

 There is single OS image per machine.

 Software and hardware are tightly coupled.

 Running multiple applications on same machine often creates conflict.

 Resources are underutilized.

 The infrastructure is inflexible and costly.

And in the virtual server model:

 Hardware is independent of operating system and the applications.

 Virtual machines can be provisioned to any system.

 It can manage OS and application as a single unit by encapsulating them into

virtual machines.

18

Examples of virtualization technologies are Critix Xen Server, VMware Workstation,

VirtualBox, etc.

2.4.2 Hypervisor

Hypervisor or Virtual Machine Monitor (VMM) is a piece of software, firmware or

hardware that creates, runs and controls the virtual machines. Hypervisor runs on the

host machine and manages the execution of guest operating systems. Guest machines

share the virtualized hardware resources.

 There are two types of hypervisors [22] which are depicted in Figure 2-5:

 Type 1 hypervisors or native (bare metal) hypervisors: they run directly on

the host's hardware to control the hardware and guest operating systems. Guest

operating systems run above the hypervisor in another level. Examples for this

type of hypervisors are Citrix Xen Server and VMware ESX.

 Type 2 hypervisors or hosted hypervisors: They are within a distinct second

software level, and the guest operating systems run at the third level above the

hardware. Examples for this type of hypervisors are VMware Workstation

(Figure 2-6) and VirtualBox.

Figure ‎2-5. Different types of Hypervisors [32]

http://en.wikipedia.org/wiki/File:Hyperviseur.png

19

Figure ‎2-6. Virtualization Architectures [26]

2.4.3 Virtualization Techniques

There are three alternatives to provide a certain kind of virtual machine environment

[27]. They are as follows:

 Full virtualization

 OS assisted virtualization or paravirtualization

 Hardware assisted virtualization

We explain each of these techniques in the following sub-sections.

2.4.3.1 Full Virtualization

In this technique, each virtual machine is provided with all the service of the physical

system and the complete underlying hardware is simulated. In a full virtualized

environment, any software capable of execution on the raw hardware can be run in the

20

virtual machine or the operating system. In full Virtualization the guest OS is fully

abstracted (completely decoupled) from the underlying hardware by the virtualization

layer [27]. Operating systems and the applications run on the same architecture as the

underlying physical machine. It is also called native virtualization [33]. The guest OS

is not aware of being virtualized and does not require any modification. It requires no

hardware assist to virtualize the instructions [27].

Full virtualization has the best isolation and security for virtual machines. It simplifies

the migration and portability because the same guest OS instance can run virtualized

or on native hardware. Examples of full virtualization products are VMware’s

virtualization products and Microsoft Virtual Server [27].

2.4.3.2 Paravirtualization (OS assisted virtualization)

“Para-“ is an English affix of Greek origin that means "beside”. Paravirtualization

means “alongside virtualization” which refers to communication between the guest

OS and the hypervisor to improve performance and efficiency. In paravirtualization

the OS kernel is modified to replace nonvirtualizable instructions with hypercalls. It

also provides hypercall interfaces for other critical kernel operations such as memory

management and interrupt handling [27].

In paravirtualization, the hypervisor exports a modified version of the underlying

hardware and usually small changes are required in the guest operating system [33].

The performance advantage of paravirtualization over full virtualization varies

depending on the workload. The compatibility and portability of paravirtualization is

poor because it cannot support unmodified operating systems (e.g. Windows XP).

21

Paravirtualization may cause maintainability issues as it needs deep OS kernel

modifications. The open source Xen project (using a modified Linux kernel) is an

example for paravirtualization [27].

 Major advantages of paravirtualization are improved performance, scalability and

manageability [33].

2.4.3.3 Hardware Assisted Virtualization

In hardware-assisted virtualization, the virtual machine simulates the hardware needed

to run unmodified guest operating systems for completely different hardware

architectures and the operating systems are executed unmodified [33]. It enables

efficient full virtualization. It is also known as accelerated virtualization. By using

hardware capabilities, privileged and sensitive calls are set to automatically trap to the

hypervisor which removes the need for either binary translation or paravirtualization.

The guest state is stored in Virtual Machine Control Structures or Virtual Machine

Control Blocks. Processors with these hardware assist features (Intel VT and AMD-

V) became available in 2006 and only newer systems contain these features [27].

2.4.5 Benefits of Virtualization

Virtualization has many common uses and benefits. They include:

 By virtualization, it is possible to run multiple virtual machines on a single

physical hardware simultaneously. It maximizes the utilization by decoupling

the physical hardware from the operating system [23].

22

 It promises flexible resource provisioning and management, and also cost

effective outsourcing of applications, platforms and hardware resources [23].

Hardware is fully utilized when multiple operating systems coexist on a single

physical machine [33].

 It enables creation of dynamic virtual infrastructures on demand, performance

isolation and fast deployment of services (developing a standard virtual server

that can be easily duplicated to speed up server deployment).

 It has the ability to perform a recovery of virtual machines by taking snapshot

from a stable guest image [33]. In case any virtual machine crashes, all of the

other virtual machines will be left unaffected [23]. To recover a virtual

machine from an attack, it can be simply rolled back to the trusted saved point

[33].

 Virtual machine monitors provide a uniform interface to hardware which

shields the guest systems from the lower level physical computing resources.

So it provides portability and guest systems can be moved from one physical

machine to another without interruption [33].

 Hypervisors ease the work for developers. They no longer need to restart

physical machines to switch between different operating systems [33].

 It has the benefit of decreased power consumption and cooling infrastructure

by making more efficient use of power [33].

2.4.6 Critix Xen Server

Xen Server is an open source virtualization solution for managing cloud server and

desktop virtual infrastructures. Xen Server includes a Xen Hypervisor and APIs for

23

the control and integrations. It provides built-in support and templates for Windows

and Linux guest operating systems. It provides management functionalities for control

of Virtual Machines (VMs): creation, starting, taking snapshot, shutting down,

resizing, networking setting, deletion, etc. during their lifecycle [24]. Xen Server

automates management processes, increases IT flexibility and agility and lowers the

costs [24].

Xen hypervisor is between the guest domains and the physical hardware. It allocates

the resources to the guest domains and provides protection and isolation among them.

It is above the physical hardware and gives a virtual hardware interface to each guest

domain. It gives a portion of underlying physical hardware to each guest domain and

shares the resources. It allocates a limited amount of memory and a share of CPU

[24].

A privileged domain called Domain0 serves the administrative interface role for the

Xen. It actually implements some logical functions of the hypervisor to administrate

the guest domains. When the system boots, this is the first domain that gets lunched

and is used to create and configure the other guest domains. If there are domains that

are previously created, domain0 can start them automatically by consulting the

configuration files [24].

2.5 Chapter Summary

In this chapter we discussed the background concepts that are related to this thesis.

First, we introduced the concept of multimedia conferencing, its key technical

components and typical types of conference applications. Then we explained cloud

24

computing, its benefits and its key facets. Then we explained a cloud-based

conferencing business model recently proposed for cloud-based multimedia

conferencing which we have used as the basis of our architecture.

We followed by discussing the virtualization concept explaining Virtual Machine

Monitor, different virtualization techniques and the benefits of the virtualization. At

the end, we discussed Xen which is the virtualization technology that we have used in

our prototype.

25

Chapter 3

3 Scenarios, Requirements and State of the Art Evaluation

This chapter includes three sections. First, we present the scenarios that illustrate the

use of conferencing infrastructure in a cloud-based conference setting. These

scenarios are based on the cloud conferencing business model [1] we discussed in

chapter 2. Then, based on the scenarios we derive the requirements for such cloud-

based conferencing infrastructure. Next, we evaluate the state of the art based on the

requirements and finally, we summarize the chapter.

3.1 Scenarios

In this section we present the scenarios based on the interacting roles in the cloud-

based conferencing business model. We describe a scenario which illustrates the

usage of cloud conferencing infrastructure based on cloud conferencing business

model. There are different actors in the cloud-based conferencing scenario: Conference

Application /Service Provider, Conference End Users, Conference Platform Provider,

Conference Infrastructure Provider and Conference Substrate Providers.

Let us assume that there is a cloud conferencing infrastructure provided by a

conferencing infrastructure provider and there are three conferencing

application/service providers which use the same cloud conferencing infrastructure:

 An audio/video conference application/service provider A,

 A multiparty game application/service provider B,

 A distance learning application/service provider C

26

Let us also assume that there is a conferencing platform provider which offers

Conferencing PaaS.

The application/service providers use the conferencing PaaS to create their services/

applications (i.e. audio/video conferencing applications, multiparty games, distance

learning applications) or to include conferencing capabilities in their

applications/services. Let us now assume that application/service provider A has

created and offers a dial-out audio conference application, application/service

provider B has created and offers a multiparty game application with dial-in audio

conference with floor control capability, and application/service provider C has

created and offers a distance learning application with dial-in video conferencing

capability. These applications may have some constraints (e.g. QoS requirements

such as performance and availability, number of conference end-users supported, cost

of service, etc.). These service providers may also offer other type of

applications/services. The number of these applications/services may also vary over

time.

In our envisioned architecture all these applications rely on sharable substrates (fined

grained building blocks) offered by the conferencing IaaS provider. This IaaS may

also rely on third party substrate providers as stipulated in reference [1]. Figure 3-1

depicts the scenario described and illustrates the usage of cloud conferencing

infrastructure.

27

Figure ‎3-1. Illustrative Scenario Showing Usage of Cloud Conferencing IaaS

Service Providers use conferencing PaaS to create conference applications/services.

They specify the type of conference application to be created (e.g. dial-out audio

signaling conference) along with the constraints that need to be taken into account

(e.g. QoS requirements, number of users supported, cost of service, etc.).

Later, service providers use the conferencing PaaS to activate the conference

application/ service created (creation and activation of a service may have different

timings). Conferencing PaaS has access to the conferencing IaaS and asks

28

conferencing IaaS (which has access to the actual pool of conferencing resources) for

the activation of the conferencing substrates involved in the conference

application/service created, giving the information of the substrates required and the

constraints. For example, to have a dial-out audio signaling conference application

which supports up to 100 users, a dial-out signaling substrate and an audio mixer

substrate with the capacity of minimum 100 users are required. Or to have a

multiparty game application which supports up to 200 users, a dial-in signaling

substrate, an audio mixer substrate and a floor control substrate with the capacity of

minimum 200 users are required.

Now assume that for activation of the dial-out audio conference application requested

by service provider A, IaaS searches into a substrate broker (which has the substrate

information) and discovers that a substrate provider A (a third party substrate

provider) is offering a dial-out signaling substrate and a substrate provider B is

offering an audio mixer substrate which are capable to meet the constraints specified.

Thus, infrastructure provider will ask these substrate providers to instantiate and

activate the required substrates for the conference application. Assume that substrate

providers activate the substrates and send back the activation result to the

conferencing infrastructure provider and then conferencing infrastructure provider

sends back the activation result to the conferencing platform provider. After a

successful service activation process, conferencing platform provider deploys the

conference application. The conference application offered by service provider A is

now ready to be used by conference end users. Number of end users may change

dynamically over time. New end users may join to the conferences or current end

users may leave the conferences.

29

3.2 Requirements

In this section, we draw out the requirements for provisioning a cloud-based

conferencing infrastructure based on the scenario we described in the previous section

and the cloud-based conferencing business model.

There are 5 different actors involved in the scenario described in the previous section.

The 5 roles include Conferencing Application/Service Provider, Conferencing End

User, Conferencing Platform Provider, Conferencing Infrastructure Provider and

Conferencing Substrate Provider.

Requirement #1 is that the interfaces between conferencing infrastructure provider

and other actors should rely on standard technologies in order to ease interoperability

and usage of available standard tools and technologies.

Requirement #2 is that third party substrate providers should be able to make their

substrates known to the conferencing infrastructure provider by publishing them to a

broker. Conferencing substrate providers publish the conferencing substrate to a

broker, providing the information of substrate (e.g. functional features of substrate,

QOS parameters, substrate constraints like the number of users supported, cost of

substrate usage, etc.). This requirement later enables discovery of published substrates

by conferencing infrastructure provider. On the other hand, conference infrastructure

provider will publish the discovered substrates to another broker (a different broker

level from the level that substrate providers publish their substrates) in order to make

them known to conferencing platform provider. This enables their discovery by the

platform provider. Infrastructure provider might alter some of the information

provided in the substrate descriptions (e.g. provider information, cost) before

30

publishing them. If infrastructure provider itself has also any substrates to offer, they

will be published to this broker as well. Conferencing infrastructure provider may

publish the conferencing substrates as they are as atomic substrates or it may compose

several substrates and publish the resulted composite substrate, depending on the

capabilities the substrates provide. Conferencing infrastructure provider edits the

information of substrates which are from third party substrate providers, deletes the

substrate provider information and replaces them with the information of

infrastructure provider (information like the address of infrastructure provider or the

cost model).

Requirement #3 is that conferencing infrastructure provider should be able to

perform an expressive discovery and search for the substrates by criteria. E.g. an

advances search option by functional features of substrate, QoS requirements, cost,

etc. This way infrastructure provider will be able to discover the substrates which fit

the best to capabilities and features desired.

Requirement #4 is scalability of conferencing IaaS in terms of number of

conferencing end users which use a conferencing applications/service provided by an

application/service provider and in terms of the number of applications that can be

created by application/service providers. Number of end users may change

dynamically over time and conferencing infrastructure should scale to the demand

while the number of users are increasing and be responsive to the requests (it is

assumed that the scalability requirement is discussed in the SLAs between providers

and the requesters of the service).

Requirement #5 is elasticity of conferencing IaaS based on the user demand for

resource efficiency purposes. For example, a substrate provider may decide to release

some of the resources allocated to a conferencing substrate instance that has a

31

decreasing demand (e.g. when some end users leave the conference) and allocate the

released resources to another substrate instance which has an increasing demand (e.g.

when new end users are joining to the conference).

3.3 State of the Art Evaluation

In this section, we discuss the state of the art for conferencing frameworks. We

categorize the state of art and review them in 3 sections: existing standard

conferencing frameworks which are not cloud-based, existing cloud-based

conferencing services and description, publication and discovery of cloud

conferencing services.

3.3.1 Standard Conferencing Frameworks

Conferencing has been extensively studied by standard bodies. SIPPING (Session

Initiation Proposal Investigation), XCON (centralized conferencing), and DCON

(Distributed conferencing) Internet Engineering Task Force (IETF) working groups

research on multimedia conferencing frameworks. IETF also defines a floor control

protocol [15], and a data model for conferencing [16].

SIPPING defines a centralized coupled model for centralized conferencing. It

defines a centralized conferencing framework with Session Initiation Protocol (SIP)

[19]. The Session Initiation Protocol (SIP) supports the initiation, modification, and

termination of media sessions between user agents by SIP dialogs (which represent a

SIP relationship between a pair of user agents). There is a central point of control in

which each participant connects to this central point. It follows a tightly coupled

32

model for centralized conferencing which all the functional parts are integrated in a

single conference server.

 This conferencing framework is not based on a cloud conferencing model with

several different actors of different cloud layers. It is not based on the concept of

sharable virtualized substrates as elementary building blocks for conferencing

applications.

 As our 2
nd

 and 3
rd

 requirements, it does not provide any publication and

discovery mechanism for the conferencing service.

 There is only a single physical conference server which implements the focus,

the conference policy server, and the mixer (Figure 3-2). It does not satisfy

the scalability and the elasticity requirements which are our 4
th

 and 5
th

requirements and cannot scale when the number of conference participants

keeps increasing [25].

 Figure ‎3-2. Conference Server [19]

33

XCON defines a complete architecture for centralized conferencing framework [14].

The framework allows participants using various call signaling protocols (e.g. SIP,

H.323, Jabber) and exchange media in a centralized unicast conference. The state of a

conference is represented by a conference object which has the conference

information. The framework also outlines a set of conferencing protocols as

complement to the call signaling protocols, for building advanced conferencing

applications. This framework binds all the components together for the benefit of

builders of conferencing systems in one central focus [14]. Figure 3-3 shows the

logical decomposition of this conferencing system.

Figure ‎3-3. Conferencing System Logical Decomposition [14]

34

Like SIIPING, this conferencing framework is not based on a cloud conferencing

model with several different actors as providers of different cloud layers. It is not

based on the concept of sharable virtualized substrates as elementary building blocks

for conferencing applications.

 As our 2
nd

 and 3
rd

 requirements, it does not provide any publication and

discovery mechanism for the conferencing service.

 As our 4
th

 requirement, there is only a single physical conference server and it

is not scalable.

 As our 5
th

 requirement, there is also no elasticity mechanism provided.

DCON is a distributed conferencing framework defined by IETF which is inspired

from XCON conferencing framework [28]. It implements an overly network from

centralized conferencing nodes. A DCON constructs a distributed conferencing

system as a federation of centralized conferencing components. Again this

conferencing framework is not a cloud based conferencing model with several

different actors of different cloud layers. It is not based on the concept of sharable

virtualized substrates as elementary building blocks for conferencing applications.

 As our 2
nd

 and 3
rd

 requirements, it does not provide any publication and

discovery mechanism for the conferencing service.

 As our 4
th

 requirement, it has improved the scalability in comparison with

XCON by orchestrating of a number of XCON frameworks but still it is not

totally scalable [28].

 It does not satisfy our elasticity requirement (5
th

 requirement).

35

3GPP defines a specification for IP Multimedia Subsystem (IMS), providing

multimedia services to end users in 3G Networks. The specification provides a

centralized architecture [17] and APIs [29] for multimedia conferencing. Centralized

architecture uses Multipoint Conferencing Unit (MCU), so as the number of

participants increases there is a lack of scalability as MCU acts as a single point of

recipient for each participant.

 IMS conferencing framework is not also a cloud-based conferencing model with

several different actors. It is not based on the concept of sharable virtualized

substrates as elementary building blocks for conferencing applications. It does not

provide any publication and discovery mechanism for the conferencing service. The

resource allocation is static and there is no elastic scaling mechanism provided.

3.3.2 Existing Cloud-based Conferencing Services

 There are also some cloud based distributed conferencing products in the market,

remarkably Cisco’s WebEx and BlueJeans. A few embryonic architectures also have

been put forward for conferencing in the cloud [25, 36, 37, 38].

WebEx provides a conferencing service as SaaS [30] which is not based on the cloud

conferencing model with different actors e.g. Infrastructure provider. WebEx is only a

service provider which offers conferencing as SaaS. It follows a coarse-grained

approach and do not provide an infrastructure with fine-grained substrates that can be

published, discovered and shared with other applications. It does not meet our 2
nd

 and

3
rd

 requirements.

36

 As there is no service as Conferencing IaaS to check whether if the interfaces

toward IaaS are standard-based or not, our 1
st
 requirement is not applicable.

 It supports a great number of users (up to 3000 participants which maximum

of 500 participants only can see live, shared video of presenters or panelists, in

video-enabled events [30]). WebEx is not totally scalable [25] and does not

meet the scalability requirement which is the 4
th

 requirement. It only supports

up to 100 users per conference.

 Information about Webex elasticity features not available..

High level architecture of Cisco’s webEx is shown in Figure 3-4.

Figure ‎3-4. High level Architecture of WebEx [30]

BlueJeans is another cloud based conferencing service which supports limited

number of participants per meeting.

37

 As there is no service as Conferencing IaaS offered, our 1
st
 requirement is not

applicable.

 BlueJeans is a conferencing service given as SaaS and it is not based on our

cloud model. It follows a coarse-grained approach and do not provide an

infrastructure with fine-grained substrates that can be published, discovered

and shared with other applications. It does not meet our 2
nd

 and 3
rd

requirements.

 BlueJeans supports up to 25 users per conference meeting [31] and it is not

totally scalable and does not satisfy our 4
th

 requirement.

 Blue Jeans provides elasticity and satisfies our 5
th

 requirement. It allows

customers to set a right size and then grow, rather than over size and waste.

 Reference [37] proposes an audio/video conference application as SaaS called Nuve.

It comes along with the virtualized infrastructure. It also allows third party

applications take advantage of the conferencing resources. It provides a clouds service

to access to a collaborative environment including audio, video and shared

applications. It offers videoconference as a Representational State Transfer (REST)

web service over an interface which can be used by third parties to enrich their

application with the standard HTTP operations.

 It follows a coarse-grained approach which depends on one virtual full-blown

conferencing server, and does not propose an infrastructure with fine-grained

substrates that can be published, discovered and also shared with other

applications. It does not satisfy our 2
nd

 and 3
rd

 requirements.

38

 The architecture is flexible and scales depending on the number of users, it

meets our 4
th

 requirement.

 Elasticity feature is not discussed in the paper [37].

Reference [36] proposes deploying video conferencing applications as SaaS to a

hybrid cloud (including OpenNebula, VMWare, Amazon EC2) instead of a single

cloud to benefit from resource and cost efficiency in the cloud platform. They reuse

an existing video conferencing framework (Isabel) for their validation. It is based on

monolithic conferencing servers with tightly coupled structure (they only specify

logical boundaries between functional components).

 It does not offer any conferencing IaaS and our 1
st
 requirement on standard

interface toward IaaS is irrelevant and not applicable.

 It is not based on fine-grained conferencing substrates which can be published

and discovered, so it is not satisfying our 2
nd

 and 3
rd

 requirement.

 The conference applications are only deployed and scaled horizontally as a

single unit. It allows a great number of users, but is not totally scalable. It does

not satisfy our 4
th

 requirement on scalability.

 Elasticity feature as our 5
th

 requirement is not discussed in the paper [36].

Figure 3-5 shows the general architecture of this proposal. 3 components of the

architecture are [36]:

1) API: This is the interface between the scheduler and third party services.

2) Scheduler: responsible for scheduling all the conference events so they are

executed in order. It also decides which cloud provider will execute the

39

conference. Before responding to a new create conference request, it checks if

there are enough resources available throughout the duration of conference.

3) Executor: This component executes the jobs which are scheduled (it is the core

video conference server of the system).

Figure ‎3-5. Conference Manager Architecture [36]

Reference [25] also offers audio/video conferencing as a service on cloud. This cloud

conferencing relies on the Service Oriented Architecture (SOA) and has a loosely

coupled structure. They proposed cloud conferencing system is depicted in Figure 3-

6. They have divided the architecture into 4 layers from bottom to top; physics layer,

virtualization layer, platform layer and application layer.

40

Figure ‎3-6. Cloud conferencing model [25]

Infrastructure includes both physics and virtualization layer which delivers storage,

computing and networking resources. The platform layer is divided into two sub

layers. One is the computing frameworks for managing the transactions and task

scheduling. The other sub layer is application capability layer has the tools for

building applications. This layer delivers a computing platform which consumes

cloud infrastructure to facilitate deployment of applications. The application layer is

the top layer of this layer (SaaS layer) which delivers the conferencing application as

a service over the Internet.

They develop cloud conferencing at the application layer. This layer includes the

atomic and composite conferencing services and their business process model.

Atomic services include services like audio service, video service, and floor control

service (it is eextensible and new service components may be added). The composite

services are composed from atomic services. At the service creation time, customers

41

can get the information of a conference model which describes a conference setting

supported by the system. They are actually templates which specify the service

process to build a conference service [25]. Figure 3-7 shows how the cloud layers

defined in this architecture. Their infrastructure just delivers the physical recourses

(storage, computing and networking resources) and virtualization. This architecture

does not provide an infrastructure with fine-grained conferencing substrates.

 As our first requirement interfaces toward infrastructure are not discussed in

particular but it is mentioned that this system is compatible with IETF

standards.

 As our 2
nd

 and 3
rd

 requirements, they mention the architecture is based on

SOA with publication and discovery mechanisms, but detailed information is

not provided about if there is any expressive discovery enable or not.

 It provides scalability characteristic as our 4
th

 and 5
th

 requirements. New

conferencing resources can be added into cloud when required. When

participant number increases it gets resources from the resource pool and

when participants leave, the resources will be returned to the pool.

 As our 5
th

 requirement, is not discussed if any elasticity feature is provided.

42

Figure ‎3-7. SOA Layers of Cloud Conferencing [25]

3.3.3 Description, Publication and Discovery of Cloud Conferencing Services

 Regard the challenges related to description, publication and discovery of

conferencing services, a student working in our lab (TSE lab) has recently proposed a

semantic-oriented description framework and a broker architecture for publication and

discovery of cloud based conferencing [38]. This architecture enables the description

of virtualized conferencing substrates which captures both technical and business

aspects of the substrates. It enables publication and discovery of conferencing

substrate to a broker using rich and expressive criteria. A ranking and selection

mechanism is also provided for an efficient discovery of conferencing substrates to

43

enable finding the substrates which fit the best to the user requirements. Figure 3-8

depicts this architecture. The providers interact with the broker via a REST APIs.

Broker uses a semantic data store to keep the descriptions of conferencing substrates

and the cloud conference ontology (The cloud conference ontology is as reference

ontology designed and used for the validation of substrate description documents at

the substrate publication). Lower level providers (e.g. conferencing substrate

provider) publish to the broker and the higher level providers (e.g. conferencing

infrastructure provider) discover from the broker.

Figure ‎3-8. General Broker Architecture for Publication and Discovery [38]

 This work satisfies our 2
nd

 and 3
rd

 requirements by providing a mechanism for

publication and discovery of conferencing substrates.

44

 Our 1
st
 requirement on stand-based interfaces toward conferencing

infrastructure can be satisfied by this work as the publication and discovery

interfaces are RESTful standard interfaces.

 Our 4
th

 and 5
th

are irrelevant to this work.

This work is the most relevant work in the state of the art to what we need and can be

integrated to our proposed architecture to provide the broker and the substrate

publication and discovery functionalities.

Table 1 summarises our evaluation on the state of the art.

45

Related work

Req. 1

Req. 2

Req. 3

Req. 4

Req. 5

St
an

d
ar

d

n
o

n
-c

lo
u

d

co
n

fe
re

n
ci

n
g

fr
am

e
w

o
rk

s

IETF SIPPING
Not applicable Not Satisfied Not Satisfied Not Satisfied Not Satisfied

IETF XCON
Not applicable Not Satisfied Not Satisfied Not Satisfied Not Satisfied

IETF DCON
Not applicable Not Satisfied Not Satisfied Not Satisfied Not Satisfied

3GPP IMS Not applicable Not Satisfied Not Satisfied Not Satisfied Not Satisfied

 C
lo

u
d

 b
as

e
d

 c
o

n
fe

re
n

ci
n

g
fr

am
e

w
o

rk
s

WebEx Not applicable Not Satisfied Not Satisfied Not satisfied Information not

available

BlueJeans Not applicable Not Satisfied Not Satisfied Not Satisfied Satisfied

Isabel [36] Not applicable Not Satisfied Not Satisfied Not Satisfied Not discussed

Nuve [37] Not applicable Not discussed Not discussed Satisfied Not discussed

Service oriented

cloud

conferencing [25]

Satisfied Satisfied Information not

available

Satisfied Not discussed

D
is

co
ve

r
an

d
 p

u
b

lic
at

io
n

 o
f

cl
o

u
d

 c
o

n
fe

re
n

ci
n

g
se

rv
ic

e
s Broker for

publication and

discovery of

conferencing

applications [38]

Satisfied Satisfied Satisfied Not applicable Not

applicable

Table ‎3-1.State of the Art Evaluation

 Requirements

Related Work

46

3.4 Chapter Summary

In this chapter we presented a scenario that illustrates the usage of cloud-based

conferencing infrastructure in the cloud conferencing business model. Then we

extracted the requirements based on the scenario and explained what is expected from

the cloud-based conferencing infrastructure.

Finally, we presented the state of the art. We categorized the related work based on

the link they had with our work and reviewed them in 3 different sections.

Based on our studies, there is no full-fledge cloud conferencing infrastructure which

can meet all of our requirements completely.

We specified a previous work on publication and discovery of conferencing substrates

which satisfies our requirements for publication and discovery and can be reused in

our proposed architecture which we will present in the next chapter.

47

Chapter 4

4 Proposed Architecture

In the previous chapter, we derived our requirements for a virtualized infrastructure

for cloud-based multimedia conferencing applications. Accordingly, in this chapter

we discuss the proposed architecture for a virtualized cloud infrastructure for

multimedia conferencing application which is based on the requirements.

 We start by explaining the overall architecture. We explain the functionalities of each

architectural component and the communication interfaces. Then, we describe an

illustrative scenario for a specific type of conferencing applications, showing the

sequences which take place during service creation, activation and execution. Then

we explain how the requirements are met by the architecture. And finally, we

summarize this chapter.

4.1 Overall Architecture

The focus of this thesis is on the conferencing infrastructure provider and substrates

provider roles. Figure 4-1 depicts the overall architecture. There are two layers shown

in the figure: Conferencing IaaS (Infrastructure as a Service) and Conferencing

SubaaS (Substrate as a Service) layers. Conferencing SubaaS is a term we use for the

conferencing substrates that can be offered by substrate providers as service. A

substrate provider may offer one or more conferencing substrates. Based on the cloud

conferencing business model [1], an Infrastructure provider can interact with several

substrate providers. The SubaaS layer will encompass all the Conferencing SubaaSes

given by different substrate providers.

48

Figure ‎4-1. Architecture of Cloud-based Conferencing IaaS

The Conferencing IaaS layer contains the functional components that realize the

conferencing infrastructure provider role and the SubaaS layer contains the functional

components that realize the conferencing substrate provider role. There is also a

broker that enables the interactions between infrastructure provider and the substrate

providers. A conferencing infrastructure provider may interact with several

conferencing substrate providers. Also, a conferencing substrate provider may interact

with several conferencing infrastructure providers. For the sake of simplicity, we

assume that there is only one conferencing infrastructure provider. Later the

architecture may extend to include more than one infrastructure provider.

49

Conferencing substrate providers offer different type of conferencing substrates (e.g.

dial-out signaling, dial-in signaling, audio mixer, video mixer, floor control server,

etc.). Each conferencing substrate provider may offer one or several conferencing

substrates. For simplicity, we just have shown 2 third party conferencing substrate

providers in figure 4-1 (Substrate provider A and substrate provider B). However, the

set of substrate providers will not be limited to them and any other substrate providers

will belong to the SubaaS layer as well. We assume that substrate provider A is

offering dial-out signaling substrate and substrate provider B is offering audio mixer

substrate.

In the following subsections, we will explain the architectural components and the

communication interfaces shown in the general architecture (figure 4-1).

4.1.1 Architectural Components

We divide the architectural components of the general architecture into three

categories of broker, components of the IaaS Layer and components of the SubaaS

layer, and will explain them in 3 different sub-sections.

4.1.1.1 Broker

The broker contains the information of substrates and supports the interactions

between the infrastructure and substrate providers. Substrate providers publish the

substrates through this broker and infrastructure provider discovers substrates from

this broker.

The broker used in this architecture, is rooted in a previous work done by another

student from our lab [38] which proposes a semantic-oriented description framework

and a general architecture for broker for publication and discovery of cloud-based

50

conferencing substrates and services [38]. In chapter 3, we reviewed this work and

stated that this broker satisfies our requirements for publication and discovery of

conferencing substrates. So we integrate this broker in our architecture. It captures

both technical and business aspects of conferencing substrates. Provisioning of

business aspects in the substrate descriptions will enable a richer and more expressive

discovery. The technical aspects include the functional features of a conferencing

substrate, e.g. Create Conference, Call participant, Delete participant, Delete

Conference functions in a dial-out signalling substrate. The business aspects include

the non-functional information of the substrate such as the provider’s information,

cost of using substrate and the pricing model, QoS the substrate offers, etc. The

broker provides RESTful based interfaces for publication and discovery of substrates.

This broker considers 3 different levels based on the publishers and the requesters of a

broker level. The information provided in the substrate descriptions in different levels

may differ. There are 3 broker levels with different publishers/requesters. We describe

an end to end publication and discovery operations based on cloud conferencing

business model. We explain it in seven steps which are shown in figure 3. Steps 1, 3,

and 6 denote publication by the substrate providers, infrastructure providers, and

service providers, respectively. Steps 2, 5, and 7 denote discovery by the

infrastructure provider, platform provider, and end-users, respectively. During

publication at each broker level, the providers will alter information in the description

before publishing the description to the higher level broker. This publication flow

provides flexibility for the providers to add or manipulate functionality or constraints.

For example, after discovery from the level 1 broker, the infrastructure provider will

alter the substrate provider related information with infrastructure provider

information or it may change the cost model of substrate usage in the substrate

51

description before publishing it to the level 2 broker. For more details please refer to

[38].

Figure ‎4-2. End-To-End Publication and Discovery Steps [38]

4.1.1.2 IaaS Layer Components

 Based on the cloud conferencing business model [1], conferencing IaaS is the layer

between conferencing PaaS and conferencing SubaaS layers Conferencing IaaS has

two main responsibilities of: 1) provisioning conferencing resources for conferencing

PaaS by identifying appropriate substrate resources which can be provided by

different substrate providers, and 2) coordinating the execution of conference services

by redirecting the execution request from PaaS to the substrates which serve the

conference service. In this section we explain each one of the architectural

components of conferencing IaaS layer shown in figure 4-1.

 IaaS Management Engine: The key functional component of the

conferencing IaaS layer is the IaaS Management Engine. This component

accepts the substrate activation requests for a conferencing service from

52

Conferencing PaaS, searches the broker to find the proper substrates to be

activated and then sends activation requests to the target SubaaS for

provisioning the required substrates. Later, it may also request for deactivation

of the substrates upon a deactivation request from conferencing PaaS. It also

redirects execution related requests coming from PaaS to the target SubaaS.

 Substrate Mapping Repository: Conferencing IaaS uses this internal

repository to save the substrate mapping information. It has the information of

substrate instances provided by different substrate providers for different

conference services during the service activation phase. This information later

will be used during the service execution phase to address a certain substrate

instance.

 Constraint/ Policy Repository: Conferencing IaaS has another internal

repository which saves the constraints of the substrates requested by the

conferencing PaaS (e.g. QoS requirements, cost, etc.) and also any internal

policies (e.g. cost justifications) which IaaS may require to take into account

while discovering and selecting a substrate.

4.1.1.3 SubaaS Layer Components

In this section we explain each of architectural components of conferencing IaaS layer

shown in figure 4-1.

 SubaaS Management Engine: The key component of the SubaaS layer is the

SubaaS Management Engine. This component handles several functionalities:

publication of the substrates to the broker, virtualization and instantiation of

substrates, monitoring the substrate instances and managing the resource

53

allocation to the substrate instances for scaling purposes. Details on the

resource allocation mechanism that substrate provider uses to realize the

scaling support is discussed in chapter 5.

 Data center: the data center at substrate provider’s cloud which houses the

Physical Machines (PM) hosting the VMs which run the substrates. Substrate

provider may also deploy the services on VM instances they get from other

cloud providers e.g. Amazon EC2 services.

 Substrate Instance Repository: Each Substrate provider has an internal

repository to save the information of the substrate instances created (e.g.

substrate type, PM’s address hosting the substrate, VM’s name, IP address of

VM, etc.).

4.1.2 Communication Interfaces

In this section we explain each of communication interfaces shown in the general

architecture. They are namely Publication interface, Discovery interface, Pi interface

and Si interface.

 Publication interface: is the interface between SubaaS Management Engines

and the broker for the publication of conferencing substrates. It is a RESTful

interface provided by broker that substrate providers can publish their

substrate descriptions through it.

 Discovery interface: is the interface between IaaS Management Engine and

the broker which enables IaaS to discover the conferencing substrates

previously published by substrate providers. It is a RESTful interface which

provides an advanced search by criteria function for an expressive discovery.

It also has the capability to rank the search result based on the importance

54

given to each criterion by the requester using a ranking algorithm. For

example if the most important criterion is the cost, the discovery result for a

specific conferencing substrate will be sorted in a way which the less costly

substrate is on the top of the list.

 Pi interface: is an interface between Conferencing PaaS and IaaS

Management Engine to forward service activation and execution related

requests from PaaS to IaaS.

 Si interface: is the interface between Conferencing IaaS and SubaaS

Management Engine to forward activation and execution related requests from

IaaS to SubaaS.

We have chosen REST for the implementation of Pi and Si interfaces. RESTful web

services provide several advantages: REST is lightweight, standards-based, offers a

uniform interface (REST resources can be accessed and manipulated in a standard

way), is flexible in terms of the supported data formats (e.g., plain text, JavaScript

Object Notation (JSON), and Extensible Markup Language (XML)), and is

lightweight comparing to other web service technologies. REST has also the

addressability advantage, which means that the REST models the information as

resources, where a resource is any information that is important to be named and

referenced.

 In this section we present Pi and Si interfaces which we have designed for activation

and execution of substrates at IaaS and SubaaS levels. They contain two categories of

APIs: activation related APIs and execution related APIs. The reader should note that

the activation related APIs are generic, but execution related APIs are specific to the

55

type of target conferencing substrate. Based on the architectural principle to using

RESTful web services for communications, all substrates should provide a REST

interface to The interfaces we present in this section are designed for dial-out

signaling and audio mixer substrates. Similarly, for the other types of conferencing

substrates the REST interfaces can be designed and then substrate providers can use

them as standard templates for designing the REST interfaces of conferencing

substrates.

Table 4-1 shows the REST APIs provided in the Pi interface at conferencing IaaS

level to be called by conferencing PaaS. It has some APIs for activation and

deactivation of a conference service. It has some other some other APIs for the

coordination of execution of a dial-out audio conference application which is based on

two dial-out signaling and audio mixer substrates.

 Operation

Method

name

Path

Request

body

parameters

Response

Direction

ActivateService POST

/Activation/Services/ Set of

SubstrateInfo

ServiceId,

Set of

SubstrateIds

PaaS IaaS

DeactivateService PUT

/Activation/Services/

{ServiceId}/status

ServiceId

200 OK

PaaS IaaS

56

CreateConference POST

/Execution/Services/

{ServiceId}

/DialOutSignaling/

Conferences

ServiceId,

ConfInfo

ConfId PaaS IaaS

DeleteConference DELETE

/Execution/

Services/{ServiceId}

/DialOutSignaling/

Conferences/{ConfId}

ServiceId,

ConfId

200 OK PaaS IaaS

CallParticipant POST

/Execution/Services/{S

erviceId}/

DialOutSignaling/

Conferences/

{ConfId}/Participants

ServiceId,

ConfId,

UserInfo,

CallBackInfo

ParticipantId PaaS IaaS

SendAkhnowledgmen

tToParticipant

POST

/Execution/

Services/{ServiceId}/

DialOutSignaling/

Conferences/

{ConfId}/Participants/

{ParticipantId}

 ServiceId,

 ParticipantId,

MixerInfo

200 OK PaaS IaaS

DeleteParticipant DELETE

/Execution/

Services/{ServiceId}/

DialOutSignaling/

conferences/{ConfID}/

Participants/{Participa

ntId}

ServiceId,

ParticipantId

200 OK PaaS IaaS

57

CreateConference POST

/Execution/

Services/{ServiceId}

/AudioMixer/

Conferences

ServiceId,

ConfInfo

ConfId PaaS IaaS

DeleteConference DELETE

/Execution/

Services/{ServiceId}/

AudioMixer/

Conferences/{ConfId}

ServiceId,

ConfId

200 OK PaaS IaaS

StartReceivingAudio POST

/Execution/

Services/{ServiceId}/

AudioMixer/

Conferences/

{ConfID}/Participants

ServiceId,

ParticipantId

200 OK PaaS IaaS

SendSendingAudio POST

/Execution/

Services/{ServiceId}/

AudioMixer\/

Conferences/

{ConfID}/Participants/

{ParticipantId}/

Connect

ServiceId,

ParticipantInfo

200 OK PaaS IaaS

DeleteParticipant DELETE

/Execution/

Services/{ServiceId}/

AudioMixer/

Conferences

/{ConfID}/Participants

{ParticipantId}

ServiceId,

ParticipantId

200 OK PaaS IaaS

Table ‎4-1. RESTful Pi interface for Dial-out Audio Conference (Conferencing Infrastructure Provider)

58

Table 4-2 shows the APIs provided in a Si interface by a substrate provider offering a

dial-out signaling substrate as SubaaS to be called by conferencing IaaS. It contains

some APIs for substrate activation and deactivation, and some execution APIs for

different operations of a dial-out signaling substrate to be called by conferencing IaaS.

Operation

Method

name

Path

Request

body

parameters

Response

Direction

ActivateSubstrate POST

/Activation/Substrates/ SubstrateInfo,

ReferenceId

SubstrateId IaaS SubaaS

DeactivateSubstrate PUT

/Activation/Substrates/

{substrateId}/status

SubstrateId 200 OK IaaS SubaaS

NotifySubstrate

Activation

POST

Notification/Substrates/

{Referenced}

ReferenceId ,

SubstrateId

200 OK SubaaS IaaS

CreateConference POST

/Execution/

DialOutSignaling/

Conferences

ConfInfo ConfId IaaS SubaaS

DeleteConference DELETE

/Execution/DialOutSign

aling/Conferences/

ConfId 200 OK IaaS SubaaS

59

{ConfId}

CallParticipant POST

/Execution/

DialOutSignaling/

Conferences/{ConfId}/

Participants

ConfId,

UserInfo,

CallBackInfo

ParticipantId IaaS SubaaS

SendAckTo

Participant

POST

/Execution/

DialOutSignaling/

Conferences/{ConfId}/

Participants/

{ParticipantId}

ParticipantId,

MixerInfo

200 OK IaaS SubaaS

DeleteParticipant DELETE

/Execution/

DialOutSignaling/

Conferences/{ConfID}/

Participants/

{ParticipantId}

 ConfId

 ParticipantId

200 OK IaaS SubaaS

Table ‎4-2. RESTful Si interface of a Dial-out signaling (Substrate Provider A)

Table 4-3 shows the APIs in a Si interface provided by a substrate provider for an

audio mixer substrate offered as SubaaS. It has some APIs for substrate activation and

deactivation, and some execution APIs for different operations of an audio mixer

substrate to be called by conferencing IaaS.

60

Operation

Method

name

Path

Request body

parameters

Response

Direction

ActivateSubstrate POST
/Activation/Substrates SubstrateInfo SubstrateId IaaS SubaaS

DeactivateSubstrate PUT

/Activation/Substrates/

{substrateId}/status

SubstrateId 200 OK IaaS SubaaS

NotifySubstrate

Activation

POST

Notification/Substrates/

{Referenced}

ReferenceId ,

SubstrateId

200 OK SubaaS IaaS

CreateConference POST

/Execution/AudioMixer

/ / Conferences

ConfInfo ConfId IaaS SubaaS

DeleteConference DELETE

/Execution/AudioMixer

/conferences/{ConfId}

ConfId 200 OK IaaS SubaaS

StartReceivingAudio

POST

/Execution/AudioMixer

/conferences/{ConfId}/

Participants

confId

ParticipantInfo

200 OK IaaS SubaaS

StartSendingAudio POST

/Execution/AudioMixer

/Conferences/{ConfId}/

Participants/

{ParticipantId}/

Connect

confId,

ParticipantId

200 OK IaaS SubaaS

DeleteParticipant DELETE

/Execution/AudioMixer

/Conferences/{ConfId}/

Participants/

{ParticipantId}

confId,

ParticipantId

200 OK IaaS SubaaS

Table ‎4-3. RESTful Si interface of an Audio Mixer (Substrate Provider B)

61

4.2 Illustrative Scenario

In this section we provide an illustrative scenario to demonstrate the interactions

between different architectural components during service creation, service activation

and service execution. First briefly we explain the service creation phase, and then we

explain the interactions during service activation phase and after that the interactions

during service execution phase. Conference application used as example is a dial-out

audio conference service.

4.2.1 Service Creation

 Service creation is the first step toward building a conferencing application. After a

conference service is created, it can be activated and then executed. The details of

service creation phase and how a conferencing PaaS composes several conferencing

substrates to develop a conferencing application are out of scope of this work and

should be investigated in future.

In this thesis we assume that the conferencing service provider has used a service

creation tool provided by the conferencing PaaS and has created a dial-out audio

conference service. We assume that as the result of service creation, the workflow of

the conference application is created from composition of two substrates: a dial-out

audio signaling substrate and an audio mixer substrate. The workflow is the logic of

application which defines the flow of execution for different requests. Based on this

assumption we focus only on the conferencing infrastructure and the interactions

which take place in next steps during service activation and execution.

62

4.2.2 Service Activation

 Conferencing service provider initiates the service activation process. Service provider

uses a service activation tool provided by Conferencing PaaS and requests for the

activation of the dial-out audio conference application created during service creation

phase.

 Conferencing PaaS sends a service activation request to IaaS Management Engine to

activate the conferencing substrates involved in this conferencing service. They are

dial-out signaling and audio mixer substrates in this example. Conferencing PaaS

sends information of required substrates along with the activation request (e.g. type of

substrate, substrate features, QoS requirements, etc.). IaaS Management Engine upon

receiving the activation request will continue the activation process by searching into

the broker to find the requested substrates. The criteria for required substrate are

specified in the request (e.g. substrate type is an audio mixer and it should support up

to 100 users). The broker finds the substrate that matches to the criteria given and

returns back the information of substrate and also its provider the IaaS Management

Engine. Assume that discovered substrates are a dial-out signalling substrate given by

substrate provider A and an audio mixer substrate given by substrate provider B.

Now IaaS Management Engine will contact each of these substrate providers to ask

for instantiation of substrates. Substrate activation requests will be sent to

corresponding SubaaS Management Engines of these two SubaaSes. Each SubaaS

Management Engines checks the resource availability and then instantiates a

substrate, save the instance information in the internal substrate instance repository

and returns back the instantiation result to the IaaS Management Engine. In case of a

successful activation for both substrates, IaaS Management Engine sends back the

63

positive activation response to the conferencing PaaS. The sequence of service

activation is shown in figure 4-3. The substrate mapping information will be saved in

the substrate mapping repository of IaaS for later use. Now that the back end for the

dial-out audio conference application SaaS is provided, and end users can start using

this application.

Figure ‎4-3 .Service Activation Sequence

4.2.3 Service Execution

Administrator of the conference application now can use the conference application

and perform different functions (e.g. see the list of registered users, asks for creation of

a conference and then add users to a conference). The main functions to be requested

by conference administrator in a dial-out audio conference application are Create

64

Conference, Add Participant to conference, Delete Participant from conference and

Delete Conference. Execution requests pass through the workflow of the service

hosted at conferencing PaaS (the workflow was produced at the time of service

creation). In order to process the request, conferencing PaaS sends substrate execution

requests to the IaaS Management Engine and IaaS Management Engine sends redirects

the requests to the target SubaaS Management Engines. Eventually when request is

received by the actual substrate instance, it will be executed there.

Process of execution of a request may have several substrates involved. So depending

on the request, the workflow of a request may contain several sub processes which will

be executed one after another until the initial request is completely fulfilled. In the next

two sub-sections we explain the execution sequence for two main types of requests in a

dial-out audio conference service: Create Conference and Add Participant to

conference requests.

4.2.3.1 Create Conference Execution Process

In the dial out audio conference application, when an end user asks for creation of a

conference, this request will have both dial-out signaling substrate and also the audio

mixer substrate involved. The workflow for a create conference consists of two sub

processes. The first one asks dial-out signaling substrate to create a new conference

and the second asks audio mixer substrate to reserve the resources for the new

conference. Only after both these two sub processes get executed successfully, the

initial request which was a Create Conference request can be considered as

successfully processed. The sequence of Create Conference execution is shown in

figure 4-4.

65

Figure ‎4-4. Create Conference Execution Sequence

4.2.3.2 Add Participant to the Conference Execution Process

In the dial out audio conference application, after creation of a conference, the admin

of the conference application can check the registered users, select them and ask en an

end user asks for adding them to the conference as conference participants. The Add

Participant request will have both dial-out signaling substrate and also the audio mixer

substrate involved. The workflow for an Add Participant request consists of three sub

processes. The first one is to ask audio mixer to reserve the resources required for the

end user as new participant (E.g. reserving a port and setting a Real-time Transport

Protocol (RTP) endpoint to receive the audio from participant from that end point).

The second one is to ask dial-out signaling substrate to call the end user and give the

66

audio mixer information to let end user know where to send the media and then send

acknowledgment to end user after receiving answer of call. The third one is to ask

audio mixer substrate to start sending audio to the new participant giving the

information of participant (E.g. participant’s IP number and the receiving port

number). From now on a bidirectional media session is established between participant

and the audio mixer. The sequence of Add Participant execution is shown in figure

4-5.

Figure ‎4-5. Add Participant Execution Sequence

67

4.3 How the Requirements are Met by the Architecture

In this section we explain that how the proposed architecture satisfies our

requirements.

Requirement #1 was that the IaaS provider should interact with all the other actors via

standard based interfaces to ease interoperability. In our architecture we adopt REST

for the design and implementation of interfaces which is standards-based.

Requirement #2 was that third party substrate providers should be able to make their

substrates known to the IaaS provider by publishing them, providing the

characteristics of substrates in their description (e.g. substrate provider information,

functional features of substrate, the QoS they offer, their cost). We have integrated a

broker in our architecture which enables publication of conferencing substrates to the

broker which stores the semantic description of substrates in which they can be

discovered by conferencing infrastructure provider. The broker was developed by

another student of our lab as previously stated.

Requirement #3 was that conferencing infrastructure should be able to search for the

substrates by criteria (e.g. functional features of substrate, QoS requirements, cost,

etc.) in order to discover the substrates which fit the best to the requirements. The

integrated broker in our architecture enables an expressive discovery of conferencing

substrates for infrastructure provider and provides an advanced search option based

on criteria.

Requirement # 4 was scalability of conferencing IaaS in terms of number of end users

which use the conferencing applications/services and in terms of number of

applications/services that can be offered by application/service providers as SaaS.

68

Scalability is improved in several ways in this architecture. First, this architecture uses

atomic conferencing components (we called them substrates) as elements to build a

conferencing service, instead of coarse grained monolithic conference servers. This

improves scalability significantly. Second, in this cloud conferencing business model,

a conferencing application can be built using conferencing substrates from different

substrate providers and is not limited to a single provider. This improves the

scalability in terms of the number of conference applications that can be created. And

third, each substrate provider uses a scaling mechanism to take care of scaling the

substrates based on demand. We explain this scaling mechanism in the next chapter.

Requirement #5 was that IaaS should scale in an elastic way for resource efficiency

purposes. The scaling mechanism that we propose to be used for scaling conference

substrates is elastic and performs scaling at the granularity of underlying hardware

resources. Chapter 5 provides information on the scaling mechanism.

4.4 Chapter Summary

In this chapter we presented the overall architecture for a virtualized infrastructure for

cloud-based conferencing applications. In this architecture we integrated a broker

from a previous work into our architecture. This broker satisfies our requirements for

the publication and discovery of conferencing substrates.

 We explained all the architectural components and the communication interfaces in

the proposed architecture in detail.

 We presented an illustrative scenario to give a clear view of the events that take place

during activation and execution of conferencing applications in respect to the

69

architecture and the cloud based business model. We also showed the sequence of

execution of different requests in a dial-out audio conference application as an

example to support the illustrative scenario described.

At the end of chapter, we discussed how our proposed architecture meets the

requirements that we specified in chapter 3.

70

Chapter 5

5 Resource Allocation Mechanism

In chapter 4, we explained the functionality of each architectural component in the

proposed architecture. We mentioned that monitoring and resource allocation

management are among the tasks assigned to SubaaS Management Engine component

of a SubaaS. In this chapter first we state the problem and discuss the related

challenges. Then we review existing scaling approaches for resource allocation

management and show that they are not adequate for the specific case of conferencing

substrate. After that, we propose our scaling mechanism. At the end of chapter, we

conclude.

5.1 Problem Statement

In chapter 3 we mentioned that elastic scalability based on demand as a requirement

for a virtualized cloud conferencing infrastructure. In order to meet this requirement,

conferencing substrate providers as the actual providers of conferencing resources for

a conferencing application have to implement an elastic scaling mechanism. First we

define salability and elasticity terms, as they are important prerequisites for stating of

the problem.

The two terms of scalability and elasticity are broadly used in the context of cloud

computing. In [57], authors define scalability as the ability of a system to sustain

increasing workloads with adequate performance by making use of additional

resources.

71

Several organizations have defined elasticity. Open Data Center Alliance (OCDA)

defines elasticity as the ability to scale up and scale down capacity based on

subscriber’s workload [57].

NIST defines rapid elasticity as: ”Capabilities can be elastically provisioned and

released, in some cases automatically, to scale rapidly outward and inward

commensurate with demand. To the consumer, the capabilities available for

provisioning often appear to be unlimited which can be appropriated at any time

[57]”.

Scalability is a prerequisite for elasticity, but it does not consider how fast, how often,

and at what granularity scaling actions can be performed. Elasticity aims at matching

the amount of resources allocated to a service with the amount of resources it actually

requires, avoiding over- or under-provisioning. Over-provisioning, i.e., allocating

more resources than required, should be avoided as the service provider often has to

pay for the resources that are allocated to the service” [57].

The problem is that conferencing substrate providers need to scale and be responsive

to a growing demand. In other hand substrate provider needs to scale to the demand in

an elastic way to be resource efficient and to realize the elastic provisioning support

as a key feature for cloud applications. Thus, substrate providers need to follow an

elastic scaling approach appropriate for scaling the conferencing substrates which

support a conferencing application. They need adequate algorithms.

72

5.2 Existing Scaling Approaches

 In this section we briefly review different existing scaling approaches for non-cloud

and clouds applications. They are namely: static resource allocation mechanism for

non-cloud applications, and VM-level elasticity and fine grained resource-level

elasticity for cloud applications.

5.2.1 Static Resource Allocation

 Scaling for non-cloud applications has long been studied. These kind of scaling

techniques focus on transforming performance targets into underlying resources and

statically allocate enough resources to the application’s servers to meet the

application’s peak workload [39]. The drawback of this static resource allocation

approach is that dynamic load changes and various capacity demands of the

applications in their lifetime results in low resource utilization [40].

This resource provisioning approach has crucial relevance for the industry of mobile

multimedia services. For example the services which are based on IP Multimedia

Core Network Subsystem (IMS). These services require a non-negligible amount of

resources and are shared by a large number of users (e.g. voice over IP, conferencing

and messaging services). The usage of the resources in these services may

significantly vary with current user load during different times. These services may

have different loads during the day, during the night, during the week or special peak

times in the year such as New-Year’s-Eve. Thus, in order to meet the QoS levels

promised at all times, the resources are over-provisioned statically and that leads to

non-efficient resource utilization [41].

73

5.2.2 VM-level Elasticity

In contrast to non-cloud environments which use the static resource allocation

approach, cloud applications have more focus on providing resources on demand.

Cloud applications in shared virtual computing environments have dynamic load

changes and apply dynamic on-demand approaches for resource scaling. They scale

up and down when the user demand changes. This kind of scaling approach

introduces a high elasticity requirement [39] as well. The reason is that such scaling,

needs to decide how quick and in what granularity level the scaling up and down

actions should be performed.

Most dynamic on-demand resource scaling approaches perform scaling by increasing

or decreasing the number of VM instances that serve an application [41, 42, 43, 44].

According to [39], this kind of scaling is called VM-level elasticity. Most

infrastructure cloud providers follow a policy-based mechanism to control the VM-

level elasticity approach. This mechanism employs pre-defined policies (rules) to

guide the application scaling. E.g. Amazon EC2 auto scaling [42] enables application

owners to manually specify scaling rules giving the upper and lower bounds of the

number of servers, the conditions to trigger scaling and the number of changed servers

in each scaling [39].

The drawback of VM-level elasticity approach is that when the application is not

using new created VMs efficiently, considerable computing resources will be wasted

and this will incurs extra cost [39]. Also, creating, shutting down and removing the

VMs dynamically at run time will increase the overhead.

74

 This scaling approach is the most used approach for on-demand resource scaling in

practice and is appealing for a wide range of applications for which scaling up of an

application involves adding a new application server and hence an extra VM in the

cloud context (each VM hosts one application server), and scaling down of an

application involves removing a VM, e.g. applications which are based on multitier

architectures, or server-side software platforms. But typically this is not the case for

the applications that have a fluctuating demand where the load changes rapidly over

time [39].

5.2.3 Fine Grained Resource-level Elasticity

There are other researches [39, 34, 35, 40] that focus on a fine grained scaling for

cloud applications and VM-based data centers rather than VM-level elasticity. They

focus on changing the VM capacity at the level of underlying resources (e.g. CPU,

memory) instead of using VMs as basic units for dynamic resource provisioning. This

is called a resource-level elasticity which resource allocation is at the granularity of

underlying resource components (e.g. CPU, memory, I/O) [39]. They notice that VM-

level elasticity is not always required and in some real word scenarios lightweight

resource-level elasticity can be sufficient [39]. Also, resource-level scaling can be

completed quicker than VM-level elasticity and has less overhead [39]. Fine grained

resource-level elasticity by dynamic allocation of fine grained resources solves the

problem of non-efficient resource utilization of the static resource allocation and the

VM-level elasticity approaches.

There are different scaling algorithms proposed based on fine grained resource-level

elasticity approach. Gong et al. [34] proposes a predictive fine grained resource-level

elasticity approach that conducts accurate resource allocation using two techniques:

75

patterns-driven and state-driven demand prediction techniques. First it acquires

knowledge about the application demand after the application starts. After getting a

few resource demand samples, it starts making predictions. Resource allocation for

scaling starts once it is confident in those predictions. If it finds a signature (they call

repeating patterns as signatures), it uses the signature-based technique to make the

predictions. It derives a signature from the pattern of historic resource usage, and uses

that signature for predictions. Repeating resource usage patterns are often caused by

repeating requests or iterative computations. If a signature is not found, which is often

the case in applications without cyclic workloads, it will use the state-based technique

to make predictions. Statistical state-driven technique is used to capture short term

patterns in resource demand, and a discrete-time Markov chain is used to build a

short-term prediction of demand for the near future. As resource consumption patterns

change, the resource prediction models will be repeatedly updated.

 Scaling based on demand predictions will introduce different errors namely under

estimation and over estimation errors. Such scaling is not elastic because of over-

provisioning and under provisioning problems as the result of under estimation and

over estimation errors. Under estimation error happens when the predicted demand is

less than real demand and this error may lead to Service Level Objectives (SLO)

violation. Over estimation error happens when the predicted demand is more than the

real demand and this error leads to non-efficient resource utilization. Shen et al. [35]

proposes a proactive resource-level scaling approach based on demand predictions

and addresses the set of under estimation and over estimations problems. Over-

estimations waste the resources and are corrected by updating the online resource

demand prediction model with true application resource demand data. They further

improve the prediction mechanism by introducing two handling schema for the under

76

estimation errors in predictions, namely online adaptive padding and reactive error

correction. The prediction error correction schema performs online adaptive padding

that adds a dynamically determined cushion value to the predicted resource demand to

avoid under-estimation errors. The reactive error correction schema detects under-

estimation errors that are not prevented by the padding scheme and corrects them by

considering an initial resource cap for each application VM. In online adaptive

padding, under estimation errors are corrected by adding a small extra value to the

predicted resource demand. The padding value is chosen based on the recent

burstiness of application resource usage and recent prediction errors. In the error

correction schema, the aim is to correct under estimation errors as soon as possible to

prevent the application violating SLOs during resource under-provisioning. To do so,

they raise the resource cap by multiplying the current resource cap by a ratio

parameter until the under-estimation error is corrected. The value of this scale-up ratio

is a value greater than 1 and is calculated by mapping the resource pressure and

application SLO feedback to a value, considering the severity of the underestimation

error. They mention that this scaling approach is application-agnostic and can achieve

good prediction accuracy for a range of real world applications.

 Han et al. [39] proposes a fine grained resource-level scaling algorithm which

performs scaling based on the feedback collected from the application execution.

They assume that QoS requirements are specified as the required response time in the

SLAs. This response time includes a lower bound and an upper bound which is the

range of response times acceptable by service users. They target multi-tier

applications mainly where each tier’s server is installed on separate dedicated VMs.

They collect end-to-end response time of the application and each VM’s resource

utilization by monitors. The algorithm runs for each PM in the data center. The

77

algorithm triggers a Lightweight Scaling Up (LSU) when the observed response time

is larger than the upper bound of the required response time and a Lightweight

Scaling Down (LSD) if the observed response time is smaller than the lower bound of

the required response time. The scaling process will be completed when the detected

response time meets the required response time. No prior knowledge about the

application is required and the algorithm applies an automatic reactive scaling

mechanism based on measurements collected during application’s run time. LSU

algorithm conducts different levels of scaling with different priorities. The resource-

level scaling first reduces the application’s response time by increasing VMs’

capacity using the available resources from the VM’s hosting PM. The server’s

underlying resources scaled in this algorithm are namely CPU, memory and

bandwidth. Each VM’s resource utilization is collected periodically by monitors. In

LSU, first the usage of resource r is compared with the threshold of utilization defined

for scaling up that resource. If the usage has passed the threshold, one unit of that

resource will be added to the VM in each scaling and the configuration of VM

resources will be updated. The resource-level scaling has some constraints. For

example, the available resources on a PM that can be allocated to a VM instance are

limited. The LSU can be accomplished if constrained fine grained resource-level

scaling can meet the response time target. Otherwise, a VM-level scaling is required

to be performed too. This is done by adding a new VM instance for the application in

a new PM. The LSD algorithm first tries to remove as many as VMs possible from an

application when there are several instances given to an application. The algorithm

first performs the VM-level scaling down until it is infeasible and removing a VM

would violate response time target. This feasibility is checked using application

profiling and workload predication techniques. After removing redundant VMs, LSD

78

algorithm will conduct the resource-level scaling down and removes units of

resources from VM’s resources which their utilization is lower than the lower bound

threshold for resource utilization. When remaining resources allocated to a VM reach

to the default minimum amount of resources allocated, resource-level scaling down

will be stopped and no more resources will be removed from the VM. Based on the

result of their emulation test they claim that this lightweight scaling approach can

adapt to different fluctuating demands and meet response time expected from the

application by performing the fine granularity scaling up (down).

Song et al. [40] proposes a two-tiered fine-grained resource allocation mechanism for

on-demand resource provisioning which improves the efficiency of data centers. This

work states that the existing techniques of turning on or off servers with the help of

VM migration are not enough for the efficiency of data centers and optimized

dynamic resource allocation methods are required to solve the problem. In contrast to

other existing dynamic resource allocation mechanisms which only focus on local

optimization within a server, this mechanism proposes a two-tiered on-demand

resource allocation mechanism consisting of the local and global resource allocations.

The reason for introduction of a global optimization is that local optimization cannot

always lead to global optimization. This is true when a number of VMs distributed

onto various PMs host the same application and resources are independently allocated

to VMs by each PM’s local optimizer, and this may result in unbalanced resource

allocation among applications. However, as there is no technological support provided

yet for the resource allocation from a PM to a VM residing in another PM, they only

evaluate the local optimization algorithms proposed. They propose a set of algorithms

to control the dynamic resource allocation among VMs according to the demand and

quality goals of the hosted applications. The local on-demand resource allocation on

79

each PM optimizes the resource allocation to VMs within a PM. In order to avoid the

huge interaction among applications hosted on VMs, there is an allocation threshold

for each VM. They have implemented a Xen-based prototype, on a workload scenario

reflecting the resource demands in an enterprise environment where a local resource

scheduler controls resource allocation in each PM. It works in small intervals (e.g., 1

second) for each PM to quickly respond to the sudden changes of resource demand of

applications in a timely manner. It dynamically adjusts the allocated resource to VMs

according to their static priorities, resource utilizations, and the demand of the hosted

applications. Resource demand of a VM at a time t is proportional to the request

arrival rate to and denotes the activity of the hosted application on the VM. They

point that resources demanded for and the resources allocated to a VM determine the

quality of the application hosted on the VM. They use the resource utilization of VMs

and the number of arrival requests during the last interval as a predictor for the next

interval and the resources allocated to the VM will be adjusted based on that. As this

algorithm triggers scaling based on resource utilization and not based on quality of

application (like the algorithm proposed in [39]), it removes the need of continuously

checking the quality of application and measuring the performance metrics. The

quality of application indirectly comes to play in this algorithm by mapping the

quality of application to an amount of resources that should be allocated to a VM for a

specific demand.

5.3 Proposed Scaling Mechanism

In this section, we first provide details on which type of scaling approach can be used

to fulfill the elastic scaling requirement based on the review we did in the previous

80

section. Then, we propose a scaling mechanism to be used by substrate providers for

resource provisioning.

5.3.1 Discussion on a Scaling Approach for Cloud Conferencing Applications

 The load of a cloud conferencing application dynamically changes over time. Thus,

for cloud applications an on-demand resource allocation mechanism is required to

solve the low resource utilization problem of static resource allocation in non-cloud

applications. Among on demand elasticity approaches, the ones that are based on

addition/ deletion of the VM instances to an application typically cause overhead and

extra cost for applications which have fluctuating demands [39]. For this type of

applications, a fine grained resource-level scaling approach will result to more

efficient resource utilization. Cloud conferencing applications with rapidly changing

demands are among those applications. Hence, an on-demand resource allocation

mechanism with a fine grained resource-level scaling approach can improve resource

utilization of cloud conferencing applications. In our cloud model, a conferencing

application is composed from several conferencing substrates and to scaling to the

demand of the application, each of underlying conferencing substrates should scale to

the demand.

5.3.2 Description of the Proposed Scaling Mechanism

In the previous section, we concluded that a resource-level fine grained scaling

approach can be appropriate to be used for scaling of cloud conferencing substrates,

because of their fluctuating demand.

81

 We reviewed different fine grained resource-level scaling approaches. Some of them

[34, 35] predict the future demand for an application and scale based on the

predictions. Predictive scaling approaches do not seem appropriate for scaling

conferencing substrates. Since, finding a usage pattern or a signature to be used for

prediction of the future demand, may not be the case for conferencing substrates

because of their dynamic load changes. Using predictive scaling approach for

conferencing substrates may lead to high severity of under estimation and over

estimation errors, and consequently high under provisioning and over provisioning

problems. Even in the predictive scaling approach which corrects the under estimation

and over estimation errors [35], a lot of corrections can be required and the quality of

application may get affected during correction of under estimation errors.

Algorithm proposed in [39] triggers scaling based on quality of application. Response

time of the application is measured periodically and when it gets violated, scaling

procedure will be triggered. Now if the utilization of any VM resources has passed the

resource utilization thresholds, scaling up/down will be performed accordingly. Using

such scaling approach for conferencing substrates introduces several complexities.

One problem is that for each conferencing substrate, the appropriate performance

metric which can specify the quality of application should be defined. The

performance metric measured in [39] is the response time of application’ main request

which as the only performance metric defined. This is not the always the case for

conferencing substrates. Different conferencing substrates have their own specific

quality metrics. Some of them may have several quality metrics. e.g. for an audio

mixer substrate with several QoS metrics of average packet loss, bit error rate, and

average jitter. Second problem is that this approach requires checking the QoS of

application continuously by measuring the performance metric. So using such

82

approach for scaling conferencing substrates introduces the need of monitoring

systems for QoS metrics of different conference substrates. Third problem is that if

the time duration that violation of QoS lasts is acceptable from the users or not. The

forth problem is that, a conferencing substrate may be shared between several

conferencing applications and using an algorithm which triggers scaling based on

QoS of application may have its own complexities as there are multiple terminals

(conference applications) that use the same conferencing substrate which may

experience different qualities.

In [40], the scaling is triggered based on resource utilization. The resource utilization

of the VM (CPU, Memory) and the demand (number of coming requests in period of

time) of application are monitored. If the utilization of any resources passes the

resource utilization threshold, scaling up/down based on the demand will be

performed to meet the quality requirements of application.

Using a scaling mechanism for conferencing substrates which triggers scaling based

on resource utilization, removes all the problems we mentioned an approach which

triggers scaling based on the quality the application may introduce. The scaling of

conferencing substrates may also need a custom support in some scaling cases. For

example when scaling down is triggered, if the substrates still holds any ongoing

conferences or has any active users, the substrate should not be totally deleted. To

determine this, the application level information should be checked before taking a

scaling action. Also we mentioned that a substrate can be shared among several

applications. Each individual tenant expects the application to be scalable and

actions of other tenants should not affect the performance of the application.

83

 As none of existing scaling algorithms satisfies all of our requirements, we propose

a new mechanism. This mechanism is derived from existing works. What we propose

to be used as scaling mechanism for conferencing substrates is a scaling mechanism

which is triggered based on the resource utilization of VMs. Resource utilization

denotes the activity of application [40]. In this mechanism, we propose to scale unit

by unit in terms of resources in the scaling iterations. A similar approach to work

done in [39] which adds/ removes only one unit of resources in each scaling action.

This way, the cost will be minimum because it just adds the minimum units of

resources required [39]. This gives the flexibility to scale in the smallest scale

possible with the smaller cost. Also, resources are typically charged based on their

basic units (e.g. 1 GB memory or one unit vCPU) and is easier to design a pricing

model based on the cost of the number of resource units used. The scaling mechanism

proposed is a generic mechanism and can be applied to different type of conferencing

substrates.

Before delving into explaining the proposed scaling mechanism, in the next sub

section first we explain the assumptions that we have taken into account. After that,

we explain the scaling mechanism in detail in the sub section after.

5.3.2.1 Assumptions

In this section we explain the assumptions that are taken into account in this scaling

mechanism. They are as follows:

 Only one conferencing substrate is deployed on each VM, e.g. a dial-out

signaling, an audio mixer substrate, etc.). This way, the changes in resource

84

utilization can be reasoned to the activity of the only conferencing substrate

running on that VM.

 Each T period of time (e.g. 1 minute) VM metrics (CPU, memory and I/O) are

monitored. CPU, memory and bandwidth are the resources that their

utilization significantly varies in a conferencing application with different user

loads.

 For each type of resources (CPU, memory and I/O), two thresholds of

utilization are defined which trigger scaling up and down. The upper bound

threshold indicates high resource utilization (e.g. 80% CPU usage) which

indicates additional units of resources should be added. The lower bound

threshold indicates that utilization rate of the resource is low and redundant

resource can be removed (e.g. 20% CPU usage).

 This scaling mechanism is applied to each PM in a datacenter. As a result, all

the VMs hosted on a PM are monitored periodically.

 When performing a VM-level scaling up, the new VM will be added on a new

PM and not to the same PM. This is to avoid having several instances of the

same substrate given to same application on the same PM.

 Each PM reserves some resources in advance in order to have the required

resources for performing a resource-level scaling up [39]. These resources can

be used for scaling up without affecting the other VMs hosted on the PM.

Please note that resource-level scaling up will be limited to the resources

reserved on a PM. Excessive resource reservation on a PM is costly as well.

So there is trade-offs between reservation cost and the cost incurred by VM-

level scaling which should be further investigated [39].

85

 In order to avoid huge negative effects of the VMs hosted on the same PM to

each other when competing for available resources, we assume that the

resources allocated to a VM should be a value between minimum and

maximum available resource thresholds of the VM [40]. (e.g. when the

minimum available memory resource threshold of a VM is defined 1 MB and

the maximum 4 MB, it means that 1) if a VM has only 1 MB memory, it will

not scale down in terms of memory resources anymore and 2) the VM will not

get a share of memory more than 4 MB from memory resources).

 Each VM starts with its basic resource configuration which is the minimum

available resource threshold of the VM (the least resources that should be

allocated to the VM all time).

5.3.2.2 Scaling Mechanism Step by Step

The procedure of resource allocation in the proposed scaling mechanism is shown in

Figure 5-1. We explain the steps of this procedure one by one.

The mechanism starts by checking the utilization of VM resources on a PM. All the

VMs on a PM are monitored and the resource utilization information is collected each

T period of time. Dynamic resource provisioning of applications enables real-time

acquisition/release of computing resources to adjust the applications performance

[39]. Hence, choosing a value for T (e.g. 10 seconds) depends on how quick you need

to respond to the sudden changes of resource demand (this can be decide by

experimental evaluations). We name the set of monitored VM resources R and R

includes CPU, Memory and network I/O. In the next step, the resource utilization of a

resource R is compared with upper bound threshold and lower bound threshold for

86

resource R. The resource utilization of a resource R can be either less than the lower

bound threshold, greater than the upper bound threshold or between this two values. If

it is between these two values, no scaling action is required and the VM configuration

will not change. If it is greater than the upper bound threshold, a scaling up operation

on resource R should be performed. If the resource R utilization was less than the

lower bound threshold for resource R, a scaling down operation will be performed.

We explain scaling up and down procedures below:

Scaling up:

We mentioned that if the resource utilization of a resource R is greater than the upper

bound threshold, a scaling up operation on resource R should be performed. By

resource R we mean the type of resource which has experienced high utilization and

triggered the scaling process. It can be either CPU, memory or I/O or a couple of

them. E.g. if the utilization of CPU is greater than 0.8 (the upper bound threshold

defined for CPU utilization), a scaling up operation on VM’s CPU will be performed.

Each time in a resource-level scaling up , one unit of resources will be added to VM.

Now if the PM has any resource R available and if the VM has not yet reached to the

maximum available resource threshold for resource R, a resource-level scaling up can

be performed by adding one unit of resource R to the VM. Otherwise a new VM will

be created on another PM. This new VM starts with its basic resource configuration.

As a result, when resource-level scaling up cannot be responsive enough to the

demand, a VM-level scaling up will be performed. This happens when we already

have allocated the maximum resources available to the VM, but the resource

utilization is still higher than the upper bound threshold. In this case we cannot

87

perform any more resource-level scaling and a VM-level scaling up will be performed

to add a new VM to serve the application.

Scaling down:

 If the utilization of resource R in a VM is less than the lower bound threshold for

resource R, a scaling down operation will be performed. To decide for the level of

scaling down, either a resource-level or a VM-level scaling down, first some

conditions should be checked. If this VM belongs to a group of VMs serving the same

conferencing application and if there is no ongoing execution processes in on the VM,

this VM is considered redundant and it will be removed by performing a VM-level

scaling down. Else, if the VM is the only VM serving a conferencing application, or if

the VM has any ongoing processes (e.g. active conference, active user, etc.) which

should not be interrupted, a resource-level scaling down will be performed by

releasing one unit from the resource R. For example, assume that there is a VM

running an audio mixer substrate to serve a dial-out audio conference application and

this VM is one of the 2 audio mixer VMs given to the same conference application. If

this VM is serving any active conference end user, it cannot be removed even if it

belongs to a group of VMs serving the same application. Only a resource-level scaling

down can be performed on this VM. This can be checked by using application profile

and saving application level information [39].

88

Figure ‎5-1. Resource Allocation Procedure for scaling

The Pseudo code of the scaling mechanism is also provided below:

Scaling Mechanism
Input: Lower bound utilization thresholds of resources, Upper bound

utilization thresholds of resources
1. Begin
2. while (VM is running)
3. Monitor utilization of VM resources R (CPU, memory, I/O) once every T

period of time;
4. if (utilization of resource R > Upper bound utilization threshold of resource

R), then Scale UP
6. else if (utilization of resource R < Lower bound utilization threshold of

resource R), then Scale Down
7. Else No action is required
8. End

89

Scale Up

Input: Maximum resources available threshold, Resources available on the
PM

1. Begin
2. if ((Resources allocated to VM< Maximum resources available threshold)

and (PM. has available resource R = true)), then add one unit of resource R
to VM.

3. Else create a new VM on another PM
4. End

Scale Down

Input: Minimum resources available threshold, Application profile, application
level information
1. Begin
2. Check Application profile and application level information
3. if (VM is redundant = true), then Remove the VM
3. Else if (Resources allocated to VM> Minimum resources available

threshold), then remove one unit of resource R from the VM
4. End

5.4 Chapter Summary

In this chapter we discussed how the elastic scalability requirement can be satisfied by

substrate providers.

 We started by explaining the problem that substrate provider need to use a proper

scaling approach for scaling of conferencing substrates to meets the elastic scaling

requirement. We reviewed different scaling approaches for cloud and non-cloud

environments. We explained existing scaling approaches for cloud environments in

two different categories of VM-level scaling approaches and fine grained resource-

level scaling approaches. Based on the review, we concluded that the fine grained

resource-level scaling approach is the most resource efficient scaling approach

because scaling is in the granularity of underlying resources. Then we reviewed

90

different existing scaling algorithms which are based the fine grained resource-level

scaling approach. Based on the reviewed algorithms, we proposed a fine grained

resource allocation mechanism to be used by substrate providers for scaling. This

mechanism is still in a preliminary level to be used as a skeleton for designing a

scaling algorithm. It should be further tested and evaluated.

91 | P a g e

Chapter 6

6 Validation: Prototype and Evaluation

In chapter 4, we proposed a general architecture for a virtualized infrastructure for cloud

based multimedia conferencing applications. In this chapter we focus on designing the

software architecture, validating the architecture with an implemented prototype and

evaluating the measurements collected from prototype.

This chapter starts by presenting the overall software architecture. Then we describe the

prototype we implemented as a proof of concept to validate architecture. After that we

present the performance measurements collected from the prototype and evaluate them.

And finally, we summarize this chapter.

6.1 Software Architecture

In this section, first we present the overall software architecture proposed for virtualized

infrastructure for cloud-based conferencing applications.

6.1.1 Overall Software Architecture

Figure 6-1 shows the software architecture proposed for the virtalized infrastructure for

cloud-based conferencing applications. Architectural components shown in the general

architecture are broken to smaller software modules which carry different functionalities.

In the next four following sub-sections we explain the software components of IaaS layer,

software components of SubaaS layer, the operational procedures and the communication

92 | P a g e

interfaces.

 Figure ‎6-1. Software Architecture

6.1.1.1 IaaS Layer Software Components

In the Conferencing IaaS, the components are: IaaS Management Engine. IaaS

Management Engine includes Request Manager, Service Execution Engine, Service

Activation Engine and Substrate Discovery/Selection Engine.Request Manager: this

module handles the requests coming from the PaaS layer. It includes two request manager

entities:

93 | P a g e

 Activation Request Manager: realizes the activation interface provided to

the cloud platform provider. It receives service activation requests from PaaS

and sends them to substrate activation engine to be further processed.

 Execution Request Manager: receives execution requests from PaaS and

sends them to the corresponding service execution engine instance to be

processed (e.g. a using a content based routing with service identifier to

proxy the requests to the corresponding service execution engine instance).

 Service Activation Engine: each service activation request may ask for activation

of one or several substrates. Upon receiving a service activation request, service

activation engine searches for the substarates that match to the criteria given along

the request. Service activation engine cooperates with Substrate

Discovery/Selection Engine to find the substrates from the broker and after

discovering them sends substrate activation requests to each of substrate

activation engines of the corresponding SubaaSes. After receiving the successful

substrate activation notifications from all of SubaaSes, service activation engine

of IaaS creates a Service Excution Engine instance for coordination of execution

of this service and notifies the PaaS that the service is activated, giving the

endpoint address for service execution. If any of the subsrate providers was not

able to provide the requested substrate and returned a negative response to the

request, substrate activation engine will try to find an alternative substrate and

repeat the substrate activation procedure. PaaS may also request for deactivation

of a service. In this case substrate activation engine contacts the corresponding

substrate providers to dectivate the substrates.

94 | P a g e

 Service Execution Engine: the service execution engine is responsible for

managing and coordinating the execution of a service. It realizes the execution

interface provided to the platform provider. It translates the execution requests

received to the requests that will be sent to the target substrates. It uses the

substrate mapping repository to find out the information of target substrates since

these substrates can be provided by different substrate providers and can have

several instances. Substrate Execution Engine of IaaS is like a mediator between

PaaS and SubaaS for redirecting the execution requests to target substrates during

the execution of a service.

 Substrate Discovery/ Selection Engine: interacts with the broker to find the

substrates through the RESTful discovery interface provided by the broker. After

finding the proper substrate which match to the criteria given in the discovery

request, it returns the information of substrates and their substrate providers to the

service activation engine.

6.1.1.2 SubaaS Layer Software Components

In SubaaS layer, the software components of SubaaS Mangemnet Engine are Publication

Engine, Request Manager, Substrate Activation Engine, and Monitoring and Resource

Allocation Engine.

 Publication Engine: this component is used for publication of substrates to the

broker through the RESTful interface provided by broker. The description of the

substrate will be sent along publication request and will be saved in the broker.

95 | P a g e

 Request Manger: this module handles requests from the IaaS layer. It includes

two request manager entities:

 Activation Request Manager: realizes the activation interface provided to

the IaaS provider. It receives substrate activation requests from IaaS and

sends them to substrate activation engine of SubaaS to be further processed.

 Execution Request Manager: It receives execution requests from IaaS and

sends them to a substrate instance to be processed since there can be several

instances of a substrate given to a service. The execution request manager

dispatches the execution requests to destined substrate instances. It may use a

load balancing algorithm for distributing the workload across multiple

substrate instances which serve the same conference service.

 Substrate Activation Engine: upon receiving a substrate activation request,

substrate activation engine checks the availbility of resourses for provisioning the

reqiuered substrate and then creates an instantance from substrate. Substrate

activation engine has access to the datacenter of SubaaS and uses a virtualization

client to connect to a server/ physical machine in data center to communicate for

creation of substrate instances (more precisely, creating the VMs which host the

substrates).

 Monitoring and Resource Allocation Engine: realizes on demand scaling

support and implements the scaling mechanism proposed for scaling conferencing

substrates in chapter 5. It monitors the resource usgae of substrate instances and

uses the management APIs provided by the virtualization framworks used in data

center to manage the resource allocation.

96 | P a g e

6.1.1.3 Operatinal Procedures

Here we illustrate the service activation and service execution procedures based on the

proposed software architecture for a dial-out audio conference application.

Figure 6-2 shows the sequence diagram of service activation. The service activation

process is initiated by PaaS to activate the conference application.

Figure ‎6-2. Service Activation Procedure

97 | P a g e

Figure 6-3 shows the sequence diagram of service execution for a Create Conference

request. The request is initiated by PaaS when a conference administrator asks for

creation of a conference.

Figure ‎6-3. Service ExecutionPprocedure (creating a conference)

6.1.1.4 Communication Interfaces

The communication interfaces shown in the software architecture between cloud layers

are:

 Pi1 interface: this is the REST based interface between conferencing PaaS and

conefrencing IaaS provided for service activation. Conferencing PaaS is a REST

98 | P a g e

client to the REST server provided by IaaS (more precisely the REST server

provided by substrate activation enigine of IaaS).

 Si1 interface: this is the REST based interface between conferencing IaaS and

conefrencing SubaaS provided for service activation. Service activation engine of

IaaS is a REST client to the REST server provided by substrate activation engine

of SubaaS to send substrate activation requests. And, substrate activation engine

of SubaaS is a REST client to the REST server provided by service activation

engine of IaaS to send substrate activation notifications.

 Pi2 interface: this is the REST based interface between conferencing PaaS and

conefrencing IaaS provided for substrate execution coordination. Conferencing

PaaS is a REST client to the REST server provided by IaaS for substrate

execution (more precisely the REST server provided by a service execution

engine instance in IaaS).

 Si2 interface: this is the REST based interface between conferencing IaaS and

conefrencing SubaaS provided for execution of a substrate. Conferencing IaaS is a

REST client to the REST server provided by a substrate instance.

6.2 Prototype Design and Architecture

As a proof of concept we have implemented a prototype to validate the proposed

architecture. In the following subsections, first we describe the implemented scenario,

and then we present a high level description of prototype. After that we present the

prototype architecture.

99 | P a g e

6.2.1 Implemented Scenario

As for the prototype, we have implemented the dial-out audio conference application

scenario where we have a conferencing service provider that uses the conferencing PaaS

to create and activate a dial-out audio conference application and offer it as a

conferencing SaaS. Service provider uses a service creation tool of PaaS and choosing

two substrates of dial out signaling and an audio mixer creates a dial-out audio

conference application. Figure 6-4 shows a simple Graphical User Interface (GUI) for

service creation. At this step, the conference application is not activated yet. More

precisely, the back end substrate resources required for the execution of the application

are not activated yet and only the composition of substrates is done. Later, service

provider uses a service activation tool provided by PaaS to activate the conferencing

application created. Figure 6-5 shows a simple activation GUI where service provider

request for activation of application.

100 | P a g e

Figure ‎6-4. Service Creation GUI by PaaS

101 | P a g e

Figure ‎6-5. Service Activation GUI by PaaS

IaaS receives this request and interacts with corresponding substrate providers to ask for

substrates. The substrates providers create instances from substrates and send back the

required information for execution of substrates (e.g. the endpoint address for substrate

execution, a signaling domain address that conference end users can register themselves

with it, etc.). After receiving successful substrate activation notifications from substrate

providers, infrastructure provider creates the execution interface required at the

infrastructure level, using the execution interfaces of substrates and the substrates’

102 | P a g e

execution endpoint addresses. This interface will be called by PaaS during the execution

of conference application. Then infrastructure provider notifies the platform provider that

substrates are activated, giving the required information for service execution (e.g.

endpoint address for service execution). Platform provider receives the successful service

activation notification from infrastructure provider, configures the created application and

deploys the conference application.

After activation of application the conference application is ready to be used. The

conference application provides a GUI on the web (figure 6-6) to be used by a conference

administrator to manage the conference application through it, e.g. to view the list of

users (figure 6-7), to create conferences (figure 6-8), add participants (figure 6-9) to the

conferences, etc.

103 | P a g e

Figure ‎6-6. Conference Application GUI- Initial Screen

104 | P a g e

Figure ‎6-7. Conference Application GUI- View Registered End Users

105 | P a g e

Figure ‎6-8. Conference Application GUI- Create Conference

106 | P a g e

Figure ‎6-9. Conference Application GUI- Add Participant

6.2.2 Prototype High Level Description

In this section first we explain the scope of prototype, the assumptions and design

decisions that we have made for the prototype.

6.2.2.1 Scope

The roles involved in this prototype are: a conferencing service provider, a conferencing

platform provider providing the conferencing PaaS, a conferencing infrastructure

provider providing the conferencing IaaS, and two substrate providers A and B providing

dial-out signaling and audio mixer substrates.

107 | P a g e

Service creation/composition is related to the PaaS layer and is out of scope of this thesis.

Just for the prototype we provide a simplified web GUI to illustrate the initiation of

creating a conferencing service. We also provide a simple web GUI to allow the service

provider initiate the activation process through it.

Substrate providers statically allocate resources to the substrates and there is no dynamic

resource allocation management mechanism used in the prototype (this will be introduced

as a future work).

6.2.2.2 Assumptions

The assumptions that we have made for the implemented prototype are as follows:

 Substrate provider A offers dial-out signaling substrate as SubaaS and Substrate

provider B offering audio mixer substrate as SubaaS. The signaling substrate

performs SIP signaling.

 The two substrates given by substrate provider A and substrate provider B

correspond to the substrates composed for creation of the dial-out audio

conference application.

 Infrastructure provider knows that substrate provider A and substrate provider B

are offering two substrates which match to the requested substrates by the PaaS

and therefore infrastructure doesn’t require to check the broker. We assume that

infrastructure provider has the required information for the activation and

execution of these substrates (e.g. the invocation interface for substrate activation,

108 | P a g e

the end point addresses to send substrate activation request and also the

invocation interfaces for execution of substrates).

 We have several conference end users as participants and a conference

administrator to manage and control the conference application.

6.2.2.3 Design Decisions

The signaling communication protocol used to perform signaling actions for the

prototype is SIP. SIP is a signaling protocol used to establish and manage multimedia IP

sessions [52]. It is an application-layer control protocol for creating, modifying, and

terminating sessions with one or more participants (unicast or multicast sessions) in

internet telephone calls, multimedia conferences, and instant messaging applications. SIP

allows participants to agree on a set of compatible media types [53]. For several reasons

we have decided to use SIP:

 SIP is an IETF standard and can be used with other IETF protocols to build a

complete multimedia architecture. Protocols such as RTP for transporting real-

time data and providing QoS feedback, and the Session Description Protocol

(SDP) for describing multimedia sessions [53].

 SIP is the major signaling protocols used in Voice over IP (VoIP). It is accepted

as a 3GPP signaling protocol and creates a more robust standard compared to the

H.323 [56].

http://en.wikipedia.org/wiki/Unicast
http://en.wikipedia.org/wiki/Multicast

109 | P a g e

 It is an open standard and there are several implementations of SIP signaling

servers available. There are also many free sip clients available compatible with

different operating systems [56]

 SIP is less complex than other signaling protocols (e.g. H.323), and offers text-

based protocol encoding which is human readable [54]. Establishing a connection

using H.323 takes about three times the data and turnarounds compared to when

using SIP. H.323 uses several protocols and more ports need to be opened in a

firewall to enable H.323 traffic through, while SIP is a single protocol and only

one port has to be opened for SIP traffic [55].

Conference end users in the prototype use SIP softphones to get the calls and participate

in the conferences. They need to be first registered with a SIP signaling server. Figure

6-10 shows an end user using a SIP softphone registered with the dial-out signaling

substrate.

Figure ‎6-10. A SIP client (X-Lite softphone)

110 | P a g e

6.2.3 Prototype Architecture

 In this section we present the prototype architecture. First we explain the

implementation scope of the prototype. Then we give a detailed description of the

prototype architecture and explain the software tools used in the prototype. After that we

provide the procedure of application activation and two procedures from application

execution procedures. Lastly we explain the environmental setting of the prototype.

6.2.3.1 Implementation scope of prototype

As for the prototype we have implemented a subset of components from the proposed

software architecture. In this section we explain which components are implemented and

which are not.

For the IaaS layer we have implemented the service activation engine for activation of

two substrates and a service execution engine instance to redirect the execution requests

from PaaS to SubaaS. The substrate discovery/selection engine is not implemented as we

assumed that IaaS already knows the substrates and will not search into the broker to find

them. We have not used any activation request manager as there is only one activation

request performed. We also have not used any execution request manager as there is only

one service execution instance which receives the execution requests directly.

For the SubaaS layer we have implanted the substrate activation engine for activation of

substrates. We have not implemented any substrate publication engine as substrates are

already published in this step. We have not used any activation request manager as there

111 | P a g e

is only one activation request performed. We do not use any execution request manager

as there is only one substrate instance which receives the execution requests directly.

Monitoring and resource allocation engine is part of future work for the resource

allocation management and is not implemented.

Furthermore, we have provided a PaaS layer which contains a simplified web GUIs to

illustrate service creation, an application activation engine which comes with a web GUI.

It is the PaaS layer which also hosts and runs the conference application.

6.2.3.2 Detailed Prototype Architecture

Figure 6-11 shows the architecture of the prototype. We have used a Xen server for the

virtualization of substrates. We explain the components in prototype architecture:

 Application Activation Engine: a web application with a GUI provided by PaaS

for service provider to request for activation of the dial-out audio conference

application. Upon activation request by service provider, application activation

engine sends the information of dial-out signaling and audio mixer substrates with

a REST request to service activation engine provided by IaaS. Application

activation engine is a REST client to the REST server provided by service

activation engine of SubaaS.

 Application Execution Engine: which run the conference application and is

provided as a web application with a GUI to be used by conference administrator.

It contains the workflow of application and hosted on PaaS. It is a REST client to

service execution engine of IaaS. The details about composition of substrates is

112 | P a g e

out of scope of this thesis and we only provide a simplified PaaS layer to use it for

validation of our infrastructure. By having the REST interfaces of two substrates

and knowing the sequence of execution of substrates, we have hardcoded the

workflow of application.

 Service Activation Engine: provided as web application in IaaS to receive the

service activation request from application activation engine of PaaS and send

two activation requests to substrate activation engines of dial-out signaling

SubaaS and audio mixer SubaaS. It is a REST client to the REST server provided

by substrate activation engine of SubaaS.

 Service Execution Engine: a web application which contains the REST

interfaces of both dial-out signaling and audio mixer substrates to redirect the

execution requests from IaaS to the target substrate instances. It is a REST server

for application execution engine of PaaS and a REST client for substrate

instances.

 Substrate Activation Engine: receives the substrate activation request coming

from substrate activation engine of IaaS and creates one instance of substrate (one

VM from predefined templates on the Xen server which hosts the substrate using

XML-RPC (XML based Remote Procedure Call) based Xen server APIs).

 Dial-out signaling VM: a VM running the dial-out signaling substrate, provided

by SubaaS A (a substrate instance given to the dial-out audio conference

application).

 Audio Mixer VM: a VM running the audio mixer substrate, provided by SubaaS

B.

113 | P a g e

 X-Lite softphones: the SIP clients used by conference end users to receive/send

signaling messages in order to join to a conference and send/receive audio.

Figure ‎6-11. Prototype Architecture

6.2.3.3 Software Tools

In this section we explain the software tools and technologies used in the implementation

of prototype.

114 | P a g e

6.2.3.3.1 Java

Java is the programming language used for the development of the software component

in the prototype.

6.2.3.3.2 NetBeans

The Integrated Development Environment (IDE) used for the development of the java

components is NetBeans (vesion 7.1).

6.2.3.3.3 Jersey

 All these REST interfaces between SaaS, PaaS, IaaS and SubaaS in the prototype are

implemented using Jersey. Jersey [45] provides an open source framework for RESTful

web services. It has support for Java APIs for RESTful Services (JAX-RS). Libraries

provided in Jersey contain implementation for both client and server sides of RESTful

web services. JAX-RS is standard specification (JSR 311) for RESTful web services

from the Java Community.

6.2.3.3.4 Xen Server

We have used the Xen Server of our laboratory to provide a test bed for our prototype

and virtualize the substrates. It has Citrix Xen Server 6.1 installed with 12vCPUs

(Intel(R) Xeon(R), Speed: 2532 MHz), 4 network interface card (NIC 0-3 with Speed

1000 Mbit/s), 600 GB local storage and 14326 MB memory.

115 | P a g e

Xen server provides XML-RPC based APIs for control and management of VMs during

their life cycle. Java binding of Xen’s XML-RPC based APIs is used for the VM

management operations (creating, starting, shutting down, deleting, etc.). At the

activation time, substrate VMs get created from predefined templates. The VMs are

configured in a way to run the substrate at the start up (init scripts to run dial-out

signaling and audio mixer programs at the boot time) and send notification back to the

substrate activation engine by a REST POST request to notify that the VM has started

and is running.

6.2.3.3.5 Medooze Multi Conference Server

 For the dial-out signaling substrate, we reused an existing conferencing server which

performs SIP signaling and is implemented by SIP servlets. SIP Servlet API defines a

high-level extension API for SIP servers and enables SIP applications be deployed and

managed based on the servlet model [52]. The conference server is called Medooze multi

conference server [46], and is an open source project which allows several participants

using a SIP compatible client (either softphones or videophone) join to a conference with

audio, video and text mixing between all the participants. It provides a RESTful interface

for the invocations. We extract and reuse only the modules which are related to dial-out

SIP signalling operations and the other irrelevant modules in this conference server are

ignored.

116 | P a g e

6.2.3.3.6 Medooze Media Mixer

As for the audio mixer substrate, we reused Medooze media mixer [47]. This media

mixer is able to handle any media input and provide the desired output for the device that

participant is using and participants don't need to share the same codecs. This mixer

provides mixing for audio, video and text and transfers media using Real Time Transport

Protocol (RTP) over User Datagram Protocol (UDP) and can be run on a Linux OS. We

only reuse the modules related to audio mixing. It provides a XML-RPC interface for the

invocations that we have built a RESTful interface on top of it to provide our audio mixer

substrate with a REST interface.

6.2.3.3.7 Glassfish Application Server

 GlassFish Server is the implementation of the Java Platform by Oracle. GlassFish

Server delivers a flexible, lightweight, and production-ready Java EE 6 application server

[51].

6.2.3.3.8 SailFin Application Server

 SailFin is an open-source Java application server by Sun Microsystems. It implements

 JSR 289 specification of SIP servlet APIs and defines a standard application

programming model to mix SIP servlets and Java EE components such as web services

and persistence, and enable faster development of smarter communications-enabled

applications, while integrating with existing GlassFish services [50].

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-glassfish-419424.html#ogs-301-oth-JPR
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Sun_Microsystems
http://jcp.org/en/jsr/detail?id=289

117 | P a g e

6.2.3.3.9 MySQL Server

The dial-out audio conference application uses persistence unit to save the information of

registered conference end users, conferences and the participants of the conferences. For

this purposes a MySQL database (MySQL workbench 5.2) is used. MySQL is a popular

open source database which MySQL can cost-effectively help to deliver high

performance, scalable database applications [49].

6.2.3.3.10 X-Lite

To provide SIP clients for conference end users, we used X-Lite (version 3 and 4) which

is a SIP based softphone. To enable making voice and video calls with X-Lite, first it

should be registered with a VoIP service provider [48]. In our prototype, we register them

with the dial-out signaling server.

6.2.3.4 Procedures

In this section we show the sequence of 3 main operational procedures in the prototype

based on the REST interfaces designed: 1) Service activation procedure (Figure 6-12), 2)

create conference execution procedure (Figure 6-13), and 3) add participant execution

procedure Figure 6-14).

118 | P a g e

Figure ‎6-12 . Procedure of Activation of Dial-out Audio Conference Application

119 | P a g e

z

 Figure ‎6-13. Create Conference Execution Procedure

Figure ‎6-14. Add participant Execution Procedure

120 | P a g e

6.2.3.5 Environmental Setting

All the components of the prototype are located in a local network. We have used a Xen

server from our laboratory to host the prototype components. Totally we have 5 nodes in

the prototype. Each node is hosted on a separate VM on the Xen server. First node

(named PaaS VM) hosts the PaaS components (the dial-out audio conference application

and application activation GUI) and 2 X-lite clients, second one (IaaS VM) hosts IaaS

components and 2 X-lite clients, third one (SubaaS VM) hosts substrate activation engine

of SubaaS, forth one hosts dial-out signaling substrate and fifth one audio mixer

substrate. Specification of these VMs is as follows:

 Dial- out signaling VM: Windows 7 (64 bit), storage: 9.5 GB, memory: 1024 MB,

CPU: Intel core 2 (2.53 GHz)

 Audio mixer VM: Ubuntu 12.10, storage: 9.5 GB, memory: 1024 MB, CPU: Intel

core 2 (2.53 GHz)

 PaaS VM: Windows 7 (64 bit), storage: 9.5 GB, memory: 1024 MB, CPU: Intel

core 2 (2.53 GHz)

 IaaS VM: Windows 7 (64 bit), storage: 42 GB, memory: 1024 MB, CPU: Intel

core 2 (2.53 GHz)

 SubaaS VM: Windows 7 (64 bit), storage: 9.5 GB, memory: 1024 MB, CPU: Intel

core 2 (2.53 GHz)

121 | P a g e

6.3 Performance Evaluation

 In this section we present the performance measurements from the implemented

prototype. Please take note that the measurements are based on a prototype which is built

on a local network. In a real cloud conferencing model each of providers may belong to

different networks and be spread across different geographical locations.

6.3.1 Performance Metrics

 We consider response time as the performance metric to study the time delay of

prototype’s different functions. We measure the response time of 3 main requests. They

are as follows:

 Response time to substrate activation request in the activation phase.

 Response time to create conference requests in the execution phase.

 Response time to add participant requests in the execution phase.

6.3.1.1 Substrate Activation Measurements

The response time to substrate activation request is the time delay starting from the point

a substrate activation request is sent from IaaS to SubaaS, until the point that substrate

activation notification is sent back to the requester. We have measured the response time

to substrate activation requests for a dial-out signaling substrate and an audio mixer

substrate. The results are shown in the table 6-1. This time includes the time for sending

activation request, creation of VM, starting it, the boot time of VM’s operating system

and sending the activation notification back to request. Booting time has the largest share

122 | P a g e

in this time delay. The windows VM has a longer activation time than the Ubuntu VM

mainly because Windows’ boot time is longer than Ubuntu’s boot time (the other

specifications of these two VMs are the same). As the activation operation is a one-time

operation which happens once only at the time of service activation, this time delay is

acceptable.

Table ‎6-1. Substrate Activation Time Delay

6.3.1.2 Create Conference Request Measurements

The diagram in figure 13 shows the response time to the create conference requests. It

measures the time delay from the point that conference administrator asks for creating a

certain number of conferences until they are created and response is sent back to the

requester. This test is repeated for different number of conferences. The conferences are

created one by one in a loop repeated for number of conferences. With the increase of

number of conferences the response time grows, as server gets busier and uses more

resources. The growth of response time is approximately linear with a slope around 3/2

with the number of conferences.

123 | P a g e

To have a comparison, we also built a dial-out audio conference application using the

same substrates with the same specification and same environmental setting, but this time

using a non-cloud distributed model in order to determine the overhead which is added to

response time in the cloud model. In this configuration we have a dial-out audio

conference application, a dial-out signaling server, an audio mixer server which are

distributed in a local network (Figure 6-15). In contrast to the cloud model, there is no

intermediate layer between conference application and the conferencing elements (in the

cloud model there is an IaaS intermediate layer in between). Also despite to the cloud

model which it was the IaaS interacting with two substrates for the execution

coordination, in the non-cloud distributed model it is the signaling component which

directly interacts with audio mixer. The conference application is a REST client to dial-

out signaling server and dial-out signaling server is a REST client to audio mixer server.

Figure ‎6-15. Non-cloud Distributed Conferencing Model

124 | P a g e

The results are collected for the same create conference requests in a non-cloud

distributed environment (table 6-2). The response times of non-cloud distributed model

(red line) are compared with the results collected from the cloud model (blue line) in the

Figure 6-16.

Number of

Conferences

Create Conference Response Time

 in cloud model

 (in ms)

Create Conference Response

Time in non-cloud distributed

model

(in ms)

1 965 649

2 1459 910

4 2312 1431

6 3229 1982

8 3998 2586

10 6331 4102

Table ‎6-2. Measurement Result of Create Conference Request

125 | P a g e

Figure ‎6-16. Create conference Delay in Cloud and Non-cloud Distributed Models

The result shows that the non-cloud distributed model has less overhead than cloud

model by 32 to 38 %. Each conference can have many participants. After creation of a

conference, participants can join/leave the conference. So, create conference will be a

onetime operation for a group of participants. The time delays are a few seconds and are

considered acceptable. The acceptability of these delays may also depend on the desired

response time by service provider for creating a conference.

6.3.1.3 Add Participant Request Measurements

The diagram in figure 6-17 shows the time delay for adding participants to a created

conference room. By this time we mean the delay from the point that conference

administrator asks for adding a certain number of users to a conference until the point that

the session is established for participants. This test is repeated for different number of

participants. In order to have a comparison, again we compare the results collected from

cloud model with the non-cloud distributed model to find out the overhead added in the

126 | P a g e

cloud model (Figure 6-17). Auto answering of X-Lite softphones is enabled and there is

no human delay involved in answering the calls. With the increase of number of

participants the response time grows significantly. To have a more clear view how the

response time grows with the number of participants, simulations are required to generate

huge number of participants.

For an add participant request several REST requests have to be processed by passing the

PaaS and IaaS layers back and forth. After the establishment of the session, the audio is

exchanged directly between the end user and audio mixer substrate. So, the actual service

which is receiving/transmission of media from/ to end users will not be affected in this

cloud model. This time delay which is a few seconds is reasonable. But again the

acceptability of this time delays may also depend on the service provider’s desired time

delay for adding a participant to a conference.

Figure ‎6-17. Add Participant Delay in Cloud and Non-cloud Distributed Models

127 | P a g e

The result shows that the response time of add participant requests in the non-cloud

distributed model is less than the cloud model by 30 to 37 %.

6.4 Chapter Summary

 In this chapter, we presented the overall software architecture and exposed the general

architecture proposed in chapter 3. We explained each of architectural components and

communication interfaces and then we presented the prototype implemented as a proof of

concept. To validate our proposed architecture, we designed a scenario for the a dial-out

audio signaling conference service where we assumed that we have a conference service

provider offering a dial-out audio conference application, a conferencing platform

provider, a conferencing infrastructure provider and two conferencing substrate providers

offering dial-out signaling and audio mixer substrates. The conferencing substrates were

virtualized and deployed on Xen server. We ran the prototype and showed the feasibility

of our architecture. We collected some performance measurements and analyzed them.

Through these experiments, we learned that our proposed architecture can be a valid

approach for having a virtualized infrastructure for conferencing applications.

 In the next chapter, we will summarize our contribution in the thesis and then we

propose some additional future research directions.

128 | P a g e

Chapter 7

7 Conclusion and Future Work

In this chapter we conclude the thesis by summarizing our contributions and then we

provide several research directions for the future work.

7.1 Contribution Summary

Conferencing applications are among important enterprise applications nowadays.

However, fine grained scalability and elasticity remain quite elusive for multimedia

conferencing applications. Cloud-based conferencing services can inherent several

benefits such as resource usage efficiency, scalability, elasticity and easy introduction of

different types of conferences.

This thesis relied on a recently proposed business model for cloud-based conferencing.

The model has the following roles: conferencing substrate provider, conferencing

infrastructure provider, conferencing platform provider, conferencing service provider,

and broker. Conferencing substrates are generally the elementary building blocks of

conferencing applications which can be virtualized and shared among several

conferencing applications. This thesis focused on the conferencing infrastructure provider

and conferencing substrate provider roles. We specified the requirements for a virtualized

cloud infrastructure for multimedia conferencing applications. We have reviewed the state of

the art and related work and evaluated them based on our requirements. We found that none

of them satisfies all of our requirements.

129 | P a g e

We proposed an architecture to realize the roles of conferencing infrastructure provider and

conferencing substrate provider. We integrated a broker architecture from a previous work

into our architecture for publication and discovery of substrates. We also designed RESTful

interfaces for the communication of components in the architecture. Furthermore, we

proposed a resource allocation mechanism for scaling of conferencing substrates. It is fine

grained resource allocation mechanism which performs scaling actions at the granularity of

underlying resources.

We proposed a software architecture and implemented a prototype as a proof of concept to

validate the feasibility of proposed architecture. The implemented scenario is where we have

a dial-out audio conference application offered by a service provider, a conferencing platform

provider, a conferencing infrastructure provider and two conferencing substrates of dial-out

signaling and audio mixer given by two different substrate providers which the dial-out audio

conference relies on. For the prototype we used XEN as virtualization framework. We

collected some performance measurements on the prototype for different type of requests and

evaluated the collected results. Based on the result, we concluded that the processing time of

requests is reasonable.

7.2 Future Work

We peoposed an scaling mechanism to be used for scaling conferencing substrates. This

mechanim is still in a priliminary level and it needs to be further investigated and

enhanced to take some other factors into considerations. Some of potential enhancemnts

are: adding a mechanism for distributing the application workload among VMs hosting

the same application on different PMs, using VM migration as an alternative solution to

130 | P a g e

perform more resource level scaling actions when there is no resource available on the

current PM to be allocated for resource level scaling. Eventually this mechanism should

be implemented as an algorithm and the algorithm should be tested. Simulations should

be done to produce different work loads and evaluate the algorithm based on different

quality metrics of conferencing substrates. We studied the scaling at SubaaS level for

conferencing substrates. Moreover, the scaling of the components in IaaS and PaaS layers

which are transfer bottlencks should be also studied.

For the prototype we implemented a simple scenario where substrates are used by a

single application. More complex scenario where a substrates is shared between several

applications can be tested and the results should be evaluated. Application isolation

should be provided by substrates and a chrging model should be proposed.

 This thesis had focus on conferencing IaaS and SubaaS. The other cloud layers of PaaS

and SaaS in the cloud based conferencing model should be further investigated in future.

In the scenario we assumed the composite service is already created by PaaS. Creating of

composite conferencing services from multiple conferencing substrates should be studied.

Some tools for service creation should be provided, in which service providers with

different levels of technical experience be able to use it and create new conferencing

services. Usage of other client interfaces for conference end users rather than softphones

(e.g. web browser communications using WebRTC, mobile phones, etc.) and also the

usage of different signaling protocols (e.g. Extensible Messaging and Presence Protocol

(XMPP)) should be further investigated.

131 | P a g e

We studied cloud-based conferencing applications in this thesis. Furthermore the usage of

cloud conferencing domain in other cloud domains can be studied. E.g. in game

applications or distance learning application to include conferencing capabilities by using

the services given in cloud conferencing.

132 | P a g e

Bibliography

[1] R. H. Glitho, ‘Cloud-based Multimedia Conferencing: Business Model, Research

Agenda, State-of-the-Art’, 2011 IEEE 13th Conference on Commerce and

Enterprise Computing (CEC), 2011, pp. 226 –230.

[2] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, ‘A break in the

clouds: towards a cloud definition’, Acm Sigcomm Comput. Commun. Rev., vol.

39, no. 1, pp. 50–55, 2008.

[3] S. NIST, 800-145: 'The NIST definition of cloud computing', 2012.

[4] Q. Zhang, L. Cheng, and R. Boutaba, 'Cloud Computing: State of the Art and

Research Challenges', Journal of Internet Services and Applications, Springer,

Vol. 1, no. 1, 2010.

[5] 'XenSource Inc: Xen'. [Online]. Available: http://www.xensource.com/. [Accessed:

8-Oct-2013].

[6] 'VMWare ESX Server'. [Online]. Available:

http://www.vmware.com/products/esx/. [Accessed: 8-Oct-2013].

[7] M. Miller, 'Cloud Computing: Web-Based Applications That Change the Way You

Work and Collaborate Online', QUE publishing, 2009.

[8] L. M. Vaquero, L. R. Merino, J. Caceres, and M. Lindner, 'A Break in the Clouds:

Towards a Cloud Definition', ACM SIGCOMM Computer Communication

Review, Vol. 39, No. 1, January 2009.

[9] I. Sriram, and A. Khajeh-Hosseini, 'Research Agenda in Cloud Technologies', 1st

ACM Symposium on Cloud Computing, SOCC 2010.

[10] N. Antonopoulos, and L. Gillam, 'Cloud Computing: Principles, Systems and

Applications', Springer publications, 2010.

[11] R. Buyya, J. Broberg , A. M. and Goscinski, 'Cloud Computing: Principles and

Paradigms', John Wiley & Sons publications, 2011.

[12] 'What is cloud computing?'. [Online]. Available:

https://developers.google.com/appengine/training/intro/whatiscc [Accessed: 8-Sept-

2013].

http://www.xensource.com/
http://www.vmware.com/products/esx
http://library.books24x7.com/SearchResults.aspx?qdom=author&scol=%7ball%7d&qstr=Nick%20Antonopoulos
http://library.books24x7.com/SearchResults.aspx?qdom=author&scol=%7ball%7d&qstr=Lee%20Gillam%20(eds)
http://library.books24x7.com/SearchResults.aspx?qdom=author&scol=%7ball%7d&qstr=Rajkumar%20Buyya
http://library.books24x7.com/SearchResults.aspx?qdom=author&scol=%7ball%7d&qstr=James%20Broberg
http://library.books24x7.com/SearchResults.aspx?qdom=author&scol=%7ball%7d&qstr=Andrzej%20M.%20Goscinski%20(eds)
http://library.books24x7.com/books.aspx?imprintid=35
https://developers.google.com/appengine/training/intro/whatiscc

133 | P a g e

[13] C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong, 'The Characteristics of Cloud

Computing', 39th International Conference on Parallel Processing Workshops,

2010.

[14] M. Barnes and C. Boulton, ‘A Framework for Centralized Conferencing - RFC

5239’, RFC 5239, June, June 2008.

[15] G. Camarillo, K. Drage, and J. Ott, ‘Binary Floor Control Protocol (BFCP) - RFC

4582’, 2006.

[16] O. Novo, G. Camarillo, and D. Morgan, ‘Conference Information Data Model for

Centralized Conferencing (XCON) - RFC 6501’, RFC 6501, March 2012.

[17] 3GPP TS 24.147, ‘Conferencing Using the IP Multimedia (IM) Core Network

(CN)’, Stage 3, Release 11’, September 2012.

[18] H. P. Dommel, and J. J. Garcia-Luna-Aceves, ‘Floor control for multimedia

conferencing and collaboration’, Baskin Center for Computer Engineering &

Information Sciences, University of California, Santa Cruz,USA, 1997.

[19] J. Rosenberg, ‘A Framework for Conferencing with the Session Initiation Protocol

(SIP)’, IETF RFC 4353, February 2006 [Online]. Available:

http://tools.ietf.org/html/rfc4353. [Accessed: 20- Dec-2013].

[20] ‘RFC 4245, 'High-Level Requirements for Tightly Coupled SIP Conferencing’,

[Online]. Available: http://tools.ietf.org/html/rfc4245 [Accessed: 10- Dec-2013].

[21] T. Zhao , and Y. Wang, ‘Virtual High Performance Computing Environments for

Science Computing on-Demand’, High Performance Computing Center, 2011

Sixth Annual ChinaGrid Conference.

[22] G. J. Popek, and R. P. Goldberg, ‘Formal Requirements for Virtualizable Third

Generation Architectures’, Communications of the ACM, 1974.

[23] 'Virtualization in education'. [Online]. Available: http://www-

07.ibm.com/solutions/in/education/download/Virtualization%20in%20Education.pdf,

IBM. October 2007. [Accessed: 20- Nov-2013].

[24] 'Xen Server'. [Online]. Available:

‘http://www.citrix.com/products/xenserver/overview.html [Accessed: 20- Oct-2013].

[25] J. Li, R. Guo and X. Zhang, 'Study on Service Oriented Cloud Conferencing',

Third IEEE International Conference on Computer Science and Information

Technology, 2010

http://tools.ietf.org/html/rfc4245
http://en.wikipedia.org/wiki/IBM
http://www.citrix.com/products/xenserver/overview.html

134 | P a g e

[26] 'VMware'. [Online]. Available: http://www.vmware.com/pdf/virtualization.pdf

[Accessed: 20- Oct-2013].

[27] 'Paravirtualization' [Online]. Available:

http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf [Accessed:

20- Oct-2013].

[28] A. Buono, S. Loreto, L. Miniero, and S.P. Romano, 'A distributed IMS enabled

conferencing architecture on top of a standard centralized conferencing

framework', IEEE Communications Magazine, vol.45, No 3, March 2007.

[29] 3GPP TS 29.199-12, 'Open Service Access (OSA), Parlay-X Web Services' – Part

12: Multimedia Conference (Release 9), December 2009.

[30] 'WebEx'. [Online]. Available: http://www.webex.com/ [Accessed: 5-Dec-2013].

[31] 'Blue Jeans'. [Online]. Available: http://bluejeans.com/video-conferencing

[Accessed: 5-Dec-2013].

[32] 'Hypervisor' .[Online]. Available: http://en.wikipedia.org/wiki/Hypervisor

[Accessed: 20-Oct-2013].

[33] J. N. Matthews, E. M. Dow, T. Deshane, W. Hu, J. Bongio, P. F. Wilbur,and B.

Hohnson, Running Xen; A hands-on guide to the art of virtualization, Prentice

Hall, 2008.

[34] Z. Gong, X. Gu, and J. Wilkes, "PRESS: PRedictive Elastic ReSource Scaling for

cloud systems," in CNSM’10, Niagara Falls, Canada, 2010, pp. 9 - 16.

[35] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, "CloudScale: elastic resource scaling

for multi-tenant cloud systems," in SOCC'11, Cascais, Portugal, 2011.

[36] J. Cervino, F. Escribano, P. Rodriguez, I. Trajkovska, and J. Salvachua,

'Videoconference Capacity Leasing on Hybrid Clouds', 2011 IEEE 4th

International Conference on Cloud Computing.

[37] P. Rodriguez, D. Gallego, J. Cerviiio, F. Escribano, J. Quemada, and J. Salvachua,

'VaaS: Videoconferencing as a Service', 5
th

 International Conference on

Collaborative Computing: Networking, Application and Worksharing, 2009.

[38] J. George, F. Belqasmi, R. Glitho, and N. Kara, 'A Semantic-Oriented Description

Framework and Broker Architecture for Publication and Discovery of Cloud

Based Conferencing'. 2013.

http://www.vmware.com/pdf/virtualization.pdf
http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf
http://www.webex.com/
http://bluejeans.com/video-conferencing

135 | P a g e

[39] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, 'Lightweight Resource Scaling for

Cloud Applications', Department of Computing Imperial College London, 12th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,

2012.

[40] Y. Song, Y. Sun, and W. Shi , 'A Two-Tiered On-Demand Resource Allocation

Mechanism for VM-Based Data Centers', IEEE transactions on services

computing, VOL. 6, NO. 1, JANUARY-MARCH 2013.

[41] G. Carella, L. Foschini, and T.Magedanz, 'QoS-aware elastic cloud brokering for

IMS infrastructures', IEEE Symposium on Computers and Communications

(ISCC), 2012.

[42] 'Amazon elastic compute cloud (EC2)'. [Online]. Available:

http://aws.amazon.com/ec2/ [Accessed: 2-Jan-2014].

[43] 'GoGrid'. [Online]. Available: http://www.gogrid.com/ [Accessed: 2-Jan-2014].

[44] 'RightScale'. [Online]. Available: http://www.rightscale.com/ [Accessed: 2-Jan-

2014].

[45] ‘Jersey Web Service Framework’. [Online]. Available: https://jersey.java.net/

[Accessed: 28-Feb-2014].

[46] 'Medooze Multi conference server’. [Online]. Available:

 http://www.medooze.com/products/mcu.aspx . [Accessed: 28-Feb-2014].

[47] ‘Medooze media mixer server’. [Online]. Available:

http://www.medooze.com/products/media-mixer-server.aspx [Accessed: 28-Feb-

2014].

[48] ’X-Lite’. [Online]. Available: http://www.counterpath.com/x-lite [Accessed: 28-

Feb-2014].

[49] ‘MySQL’ [Online]. Available: http://www.mysql.com/products/ [Accessed: 28-

Feb-2014].

[50] 'Sailfin'. [Online]. Available: https://sailfin.java.net/ [Accessed: 28-Feb-2014].

[51] 'Glassfish'. [Online]. Available:

http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html?s

sSourceSiteId=otncn [Accessed: 28-Feb-2014].

[52] 'JSR 1116'. [Online]. Available: https://jcp.org/en/jsr/detail?id=116 [Accessed:

28-Feb-2014].

https://jersey.java.net/
http://www.medooze.com/products/mcu.aspx
http://www.mysql.com/products/
http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html?ssSourceSiteId=otncn
http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html?ssSourceSiteId=otncn

136 | P a g e

[53] 'RFC 3261 SIP: Session Initiation Protocol'. [Online]. Available:

http://www.ietf.org/rfc/rfc3261.txt [Accessed: 11-Dec-2013].

[54] 'Building Voice Over IP'. [Online]. Available:

http://www.networkcomputing.com/netdesign/1109voip2.html?ls=NCJS_1107bt

[Accessed: 20-April-2014].

[55] 'SIP Protocol'. [Online]. Available: http://www.ingate.com/files/422/fwmanual-

en/xa9835.html [Accessed: 20-April-2014].

[56] 'The SIP advantage'. [Online]. Available: http://www.voip-

info.org/wiki/view/The+SIP+advantage [Accessed: 20-April-2014].

[57] N. R. Herbst, S. Kounev, and R. Reussner, 'Elasticity in Cloud Computing: What It

Is, and What It Is Not', ICAC the 10th International Conference on Autonomic

Computing, 2013.

http://www.ingate.com/files/422/fwmanual-en/xa9835.html
http://www.ingate.com/files/422/fwmanual-en/xa9835.html

