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Abstract—Citadel is an advanced information stealing malware
that targets financial information. This malware poses a real
threat against the confidentiality and integrity of personal and
business data. Recently, a joint operation has been conducted by
FBI and Microsoft Digital Crimes Unit in order to take down
Citadel command-and-control servers. The operation caused
some disruption in the botnet but has not stopped it completely.
Due to the complex structure and advanced anti-reverse en-
gineering techniques, the Citadel malware analysis process is
challenging and time-consuming. This allows cyber criminals
to carry on with their attacks while the analysis is still in
progress. In this paper, we present the results of the Citadel
reverse engineering and provide additional insights into the
functionality, inner workings, and open source components of the
malware. In order to accelerate the reverse engineering process,
we propose a clone-based analysis methodology. Citadel is an
offspring of a previously analyzed malware called Zeus. Thus,
using the former as a reference, we can measure and quantify
the similarities and differences of the new variant. Two types of
code analysis techniques are provided in the methodology namely
assembly to source code matching, and binary clone detection.
The methodology can help reduce the number of functions that
should be analyzed manually. The analysis results prove that the
approach is promising in Citadel malware analysis. Furthermore,
the same approach is applicable to similar malware analysis
scenarios.

Index Terms—Reverse Engineering, Malware Analysis, Clone
Detection, Botnet Takedown, Incident Response, Zeus Botnet
Variant, Static Analysis, Dynamic Analysis

I. INTRODUCTION

One of the offspring of Zeus malware that has been making

headlines in recent months (March 2013 - July 2013) is

called Citadel. Cyber criminals behind the Citadel malware

have stolen more than 500 million dollars from online bank

accounts [15]. Zeus was a prolific information stealing Trojan

that has been around since 2007. In 2011, its source code was

leaked on the internet and became available to the underground

community. Since then, several malware have been developed

based on the Zeus source code. Citadel has been employed

by botnet operators to steal banking credentials and personal

information [10], [17]. In addition, Citadel has features that

extend beyond targeting financial institutions. Spying capabil-

ities such as video capture is an example of such features that

literally enables cyber criminals to collect anything from a

victim’s machine. The malware also acts as ransomware and

scareware in order to extort money from victims. Reverse

engineering is often considered as the primary step taken
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to gain an in-depth understanding of a piece of malware.

However, it is a challenging and time-consuming process,

which requires a great deal of manual intervention.
The major objectives of this paper are to reverse engineer

the Citadel malware and gain more insights into its structure

and functionality. In particular, the objectives can be summa-

rized as follows:

1) Quantify the similarities and differences between Citadel

and Zeus malware.

2) Get additional insights into online open source compo-

nents used in Citadel.

3) Accelerate the reverse engineering process of similar

malware variants.

To enhance and speed up the process, a new approach termed

as clone-based analysis is employed in this study. Indeed,

this paper illustrates the usefulness of the proposed approach

in the analysis of new variants of a malware family. In this

scenario, a preceding malware P is supposed to be analyzed

and understood. If a variant V uses portions of the P code,

the approach will highlight the shared portions. Consequently,

disregarding the clones could reduce the analysis time. In

a more general case where P is not known in advance, the

approach can still provide insights into the components of V,

in comparison to other sources.
The main contributions of this paper are three folds. First,

a detailed reverse engineering analysis of the Citadel malware

is presented and its functionality is described. Second, a new

methodology for reverse engineering malware is proposed.

This methodology significantly decreases malware analysts’

efforts and reduces the analysis time. Third, the similarity be-

tween the Citadel malware and the Zeus malware is precisely

quantified. Also, additional insights are provided into the open-

source components used in the Citadel malware.
This case study has been chosen for a number of reasons.

First, Citadel and Zeus are real threats against confidentiality,

integrity and availability of information systems. Cyber crimi-

nals are constantly enhancing their tools for gaining access to

personal and financial data. The profitability of such crimeware

tools in the underground market depends on the timeliness

and support for new vulnerabilities. Therefore, malicious

developers often reuse all or parts of existing components

during their incremental development process. As a result,

it is quite probable that they leave fingerprints of previously

analyzed malcode on the new releases. Clone-based analysis

comes in handy in such situations due to its potential for

producing quick results. Integrating a clone-based analysis in



Fig. 1. The overlap in reverse engineering methodologies

the reverse engineering process will significantly reduce the

overall analysis time. The second benefit of this case study

is that it allows us to leverage our developed tools such

as RE-Source [7] and RE-Clone [8] in reverse engineering

sophisticated malware. The lessons learned during the analysis

would bring new opportunities for future extensions of our

tools. Third, the analysis provides us with practical solutions

for mitigating future threats in a timely fashion. Once the

analysis is performed on Zeus and Citadel, new Zeus-based

malware variants with shared components can be analyzed

faster.

The reminder of this paper is organized as follows. Sec-

tion II, is dedicated to explaining our methodology in studying

the malware. Section III details the dynamic analysis and ex-

plains the debugging process and memory forensic approaches.

The main features of the Citadel malware are also described

in this section. Section IV presents the static analysis and

the steps led to the actual de-obfuscated code. Section V

presents the clone-based analysis. The threat mitigation is

briefly presented in Section VI and the conclusion is drawn in

Section VIII.

II. METHODOLOGY

Static and dynamic analysis are commonly used in studying

malware [1], [5]. Static analysis focuses on malware code for

inspecting its structure and functionality without execution.

In contrast, dynamic analysis deals with behavior monitoring

during the malware execution. In general, the process of

malware reverse engineering is a combination of these two

approaches, which is time-consuming and costly. The success

of these approaches are tightly coupled with the functionalities

of the tools and skills of the reverse engineer [3], [4].

To enhance and accelerate the process in analyzing the

Citadel malware another dimension is considered in our study

as shown in Figure 1. This new dimension is called clone-

based analysis. In few words, the clone-based analysis identi-

fies the pieces of code in Citadel malware that are originated

from other malware and open-source applications. This step

is performed automatically by leveraging the tools that are

designed and developed in our security lab [7], [8]. There

are two main advantages in considering this extra dimension

into the static analysis. First, to avoid dealing with low-level

assembly code in situations where the corresponding high-

level code is available. Second, to prevent reverse engineering

parts of the malware that has already been analyzed. This

approach is very promising, especially in scenarios similar

to Citadel that shares a significant portion of code with a

previously reverse engineered malware like Zeus [6]. The

process of assembly to source code matching is performed

using the RE-Source framework [7]. Also, the binary clone

matching is carried out using RE-Clone [8].

The proposed methodology is composed of three processes.

Each process comprises several steps. We elaborate each step

in the following sections:

1) Static Analysis Process

• The disassembly is reviewed for finding obfuscated

segments, decoder stubs, and embedded file images.

The feasibility of static data decryption is assessed.

It might be necessary to switch to dynamic analysis

for code and data decryption.

• A suitable circumvention strategy is adopted for

bypassing the anti-static protection of the malware.

Having a de-obfuscated/decrypted disassembly is a

prerequisite for the clone-based analysis process.

• Control flow analysis and data flow analysis are

applied to gain an understanding of the crypto

algorithms and encoding/decoding functionality.

2) Dynamic Analysis Process

• A debugging environment is set to execute the

binary, attach the debugger, set the breakpoints,

control the unpacking, dump the process memory,

generate an executable image, and save the process

to file. The dumping process is repeated according

to the analysis scenario.

• System calls are monitored, malware activities are

logged, network traffic is captured, downloaded files

are backed up, and the communication protocol

is observed. Also, the interesting artifacts are ex-

tracted.

3) Clone-based Analysis Process

• Using the unpacked and de-obfuscated disassembly,

a search is performed for standard and open-source

components by applying the assembly to source-

code matching technique of RE-Source [7]. The data

matching technique encompasses two threads of

online and offline analysis. This step is repeated for

all process memory dumps and the set of matched

projects are stored as online analysis results.

• An offline analysis is performed for assigning the

functionality tags according to API call classifica-

tion in RE-Source. Function labels are updated, the

proportion of assembly functions in each function-

ality group is calculated, and the functionality tags

are reviewed based on the scenario.

• Using the unpacked and de-obfuscated disassem-

bly, a binary clone matching is done against the

previously analyzed malware binaries in RE-Clone.

Then, the occurrences of inexact and exact clones

are recorded.



• The outputs of assembly to source-code matching

and binary clone matching are combined for quan-

tifying the similarities and difference of malware

variants. The results draw a high-level picture of

the code.

• The clones are selectively used to guide the static

and dynamic analyses. In order to speed up the

process, the clones are removed and the analysis

focus is shifted to the original (non-clone) functions.

According to Figure 1, three connected processes are de-

fined in the proposed methodology. In the Citadel case study,

the dynamic analysis track focuses on web debugging, memory

forensics, process injection and web injects. An important

aspect in this process is the observation of malware’s behavior

in response to controlled inputs. On the other hand, the static

analysis process focuses on assembly-level functions. De-

obfuscation could occur in the overlapping area of these two

methods. Unpacking and decryption are relevant examples that

fall in this area. It is assumed that a database of previously

analyzed code is available during the analysis. Code search

engines provide an interface to online open source code

repositories. Likewise, an offline code repository is maintained

for storing the malware assembly code and the results of

previous analysis sessions. One advantage of the clone-based

analysis is that it can guide the dynamic and static steps.

In other words, it highlights the important directions that

the other two processes should follow by eliminating code

clones, recognizing library functions, and providing additional

comments. Therefore, the analysis focus is shifted to non-clone

parts of the payload, resulting in a shorter analysis timeline.

III. DYNAMIC ANALYSIS

The purpose of the dynamic analysis process is to execute

the malware and monitor its behavior in a controlled environ-

ment. Many tools and techniques are available for debugging

malware [2], [3]. Sandboxing is a common technique in

dynamic analysis and it is used for running untrusted code in

a virtual setting. However, modern malware are well-equipped

with anti-virtual machine protection against popular tools such

as Oracle VirtualBox and VMWare Workstation. The malware

can easily sense whether it is running on a virtual machine

by checking certain artifacts in memory or on disk. As a

result, the malware might change its normal behavior by

taking an alternative execution path for hindering the analysis.

Malware can even go one step further and try to exploit

the virtual machine vulnerabilities in order to gain access to

the host operating system. Thus, successful dynamic analysis

may require caution and pre-processing steps. Debugging

Citadel is challenging due to the built-in anti-debugging and

injection capabilities but the protection can be circumvented by

choosing the right strategy. As it will be discussed in Section

V, RE-Source can provide informative tags such as ADB, PSJ

or AVM for functions that potentially contain anti-debugging,

process injection, or anti-virtual machine functionality. Upon

the first execution, Citadel begins the infection process based

on an embedded attack configuration.

Fig. 2. Citadel process injection and agent mode

A. Citadel Infection Process

The Citadel bot operates in several modes. Upon the first

execution, the dropper is in the installation mode. First, it

unpacks and decrypts itself into memory. Then, it creates

a copy of the binary file and stores it in the %AppData%

folder under a randomly generated sub-folder and file name.

The bot file is referred to as Random.exe in this context.

As an example, the output path could be similar to: ...\Ap-

pData\Roaming\Random\Random.exe. The bot also generates

a batch file for removing the installation code. Looking for the

existence of this path is a way of checking whether the system

has been infected by the malware. Once the Random.exe is

run from the new location, a sequence of similar steps are

taken for unpacking and decrypting the bot. Afterwards, the

bot switches to the injection mode and injects itself into the

Explorer process and its child processes.

The injection step is dependent upon the privileges of the

user who runs the bot and the version of the operating system.

Following the injection, the bot process is terminated and

the installation files are removed. Also, the bot updates the

registry and adds an entity so that it will execute each time the

operating system boots up. The registry path would appear as:

HKU\...\Software\Microsoft\Windows\CurrentVersion\Run\Rad.

The Random.exe is almost identical to the dropper except

for the flag bytes located at the end of the file. This portion

is encrypted and is used for controlling the bot mode.

Therefore, even though the two executables are very similar,

their behavior is different as the Random.exe operates in

agent and injection modes only. Upon each system startup,

the bot initiates the intelligence gathering process as it has

been demonstrated in Figure 2.

B. Debugging and Memory Forensics

After setting up the analysis environment and infecting it

with the malware, the bot execution can be monitored and

controlled using a scriptable debugger [18], [19]. Several

techniques are available for hiding the debugger process from

the bot and gaining more control over the debugger [2]. A web

debugger or a network protocol analyzer is used for monitoring

the HTTP network communications of the malware. Citadel

encrypts the command-and-control (C&C) network traffic with

RC4. Therefore, the crypto keys are required to intercept the

commands, and view the stolen data. One way to find the

keys is through debugging and setting hardware breakpoints

on functions that precede network communication.

As it will be discussed in Section V, such network-

related functionality can be identified through the NET, WNT

and CRY tags assigned in the offline analysis. Upon suc-



Fig. 3. Decoded Citadel config file name and location

cessful installation, the bot checks for Internet connectivity

and tries to connect to embedded C&C addresses in order

to announce its availability. The bot sends requests such

as POST /carfca/basket.php HTTP/1.1 or POST

/carfca/file.php HTTP/1.1 to the server. The server

then replies and sends the encrypted config file to the bot.

One major difference between Zeus and Citadel is in the

way they handle the transmission of the configuration file.

It was possible to find the location of Zeus config file and

download it with minimal effort. Whereas in Citadel, it is

more difficult to obtain the config file during the analysis.

Citadel uses dynamic APIs and it decrypts strings in memory

during the execution. This can be considered as an extra layer

of protection that prevents the config file from being detected

easily. Figure 3 shows one of the decrypted links to a Citadel

C&C server which hosts the encrypted “sport.doc” config file.

During the debug, the bot allocates memory for new segments

and overwrites the memory space with decrypted code and

data. The zero values in Figure 3 show the bytes that are

yet to be overwritten by data. Blocking the malware’s access

to the requested C&C and modifying its timing mechanism

will force the malware to enumerate the list of alternative

embedded C&C servers.

Several tools and plug-ins are available for dumping mem-

ory, reconstructing import tables, and fixing PE headers. Olly-

Dump and ImpRec are examples of such tools for unpacking

Citadel [1], [3]. Volatility [20] was the most versatile and

straightforward tool for memory forensics that was used in this

project. It automatically builds the import tables and generates

the executable versions of the unpacked binary. Volatility was

utilized for creating executable process dumps and retrieving

decrypted strings from memory. Figure 4 lists the utilized

tools, and shows the number of detected functions, extracted

strings, and identified function imports during different stages

of the unpacking process.

C. Citadel Attack Configuration

The configuration file is where the bot options are set. This

file contains two sections for static and dynamic configuration

as depicted in Figure 5. The bot builder reads this file and

embeds the settings in the generated bot.exe. The bot encryp-

tion key is also defined in this file. The static config section is

where the options for the initial attack are set. The setting

Fig. 4. Unpacking stages of Citadel binary

for web injects are defined in the dynamic config section.

Web injects are used for tricking the users into revealing

confidential information such as additional passwords or PINs.

Since the man-in-the-middle attack (DLL hooking) occurs in

the libraries such as wininet.dll or nspr4.dll, the victim user

might not be able to distinguish the injected data from the

genuine page. The result of injection could be in forms of

extra fields, text boxes or warning messages. In comparison

to Zeus, Citadel has a few extra features such as the anti-virus

and security software evasion mechanism. Also, the DNS filter

enables the bot to block the victim from accessing security-

related websites and downloading new updates and patches.

Consequently, this makes the machine more vulnerable to

future attacks. A DNS redirection technique is used for imple-

menting this feature. The config file includes a list of blocked

websites and the corresponding redirected IP addresses. The

report in [17] provides a lists of Citadel DNS filter domains.

This type of DNS poisoning attack does not modify the

Windows Hosts file. The settings related to the dynamic

configuration can be updated by the C&C server according

to predefined rules set by the botmaster. For instance, new

modules can be remotely installed for country-specific web

inject which target online banking accounts, automatic money

transfer, and ransom [13], [17]. The encrypted configuration

file can be obtained by capturing the bot traffic and replaying

a crafted request in debugging.

Fig. 5. Structure of Citadel configuration file

IV. STATIC ANALYSIS

In this section, we describe the main steps taken during

the static analysis of the Citadel. The static malware anal-

ysis process normally starts by disassembling the malware

binary. However, the initial disassembled code may not draw

a complete picture of the original code due to different lay-

ers of obfuscation. Disassembling the Citadel malware using

IDA Pro [19] results in a packed binary containing merely

13 functions, 11 imports, and 337 strings. The binary was



compressed, encrypted, and employed anti-reverse engineer-

ing techniques. Therefore, our static analysis started by de-

obfuscating the malware. According to the first process of the

proposed methodology, static and dynamic techniques should

be interleaved for advancing the analysis.

A. Unpacking Step

Not surprisingly, the malware was packed with a non-

standard packing scheme. Therefore, automatic unpacking

tools such as UPX could not be used and manual unpacking

was necessary. To unpack the malware, a combination of

static and dynamic techniques was used. The packed binary

was executed in Immunity debugger [18] until the unpacking

stub decompressed the binary in memory. Once the unpacking

procedure was completed, the unpacking stub transferred the

execution to the original entry point of the binary by making a

jump from one segment to another segment. At this moment,

Volatility [20] was used to dump the unpacked version of the

binary’s process out of memory and generate an executable

unpacked version of the binary. The generated binary con-

tained about 800 functions, 386 imports, and more than 900

decrypted strings.

B. Code Decryption Step

The unpacking allowed the static analysis to be resumed.

After this step, there were still some encrypted portions in

the binary code. One of the interesting points was located at

the address of 0x0040336 in our sample. An in-depth ex-

amination of the function, which cross-referenced this portion

revealed the structure of encrypted data and the decryption

mechanism. As shown in Figure 6, the structure size is 8 bytes

and it consists of 4 chunks. Also, the key for string decryption

is embedded in the binary file. Algorithm 1, presents the

decryption procedure used for decrypting the data. It helped us

recover more than 300 strings and 45 C&C commands from

the packed data in the binary.

Fig. 6. Structure of the encrypted data

Algorithm 1: String Decryption Procedure

/* The command for decrypting embedded

strings */

for j in range length do

UNPACKED_DATA =

join(char(PACKED_DATA[j]) ˆ j ˆ key)

Fig. 7. Communication messages for retrieving the configuration file

C. Crypto Algorithms

Receiving an RC4 encrypted configuration file from a C&C

server in response to a plain GET request, and reusing of non-

random values for encrypted messages were two main weak-

nesses of the Zeus malware. To overcome these weaknesses,

significant improvements have been taken place concerning

crypto algorithms in Citadel. As shown in Figure 7, Citadel

C&C server requires a specially crafted RC4-encrypted POST

message to send the configuration file. In addition, in order to

provide better security, the configuration file is encrypted using

AES. The Citadel authors have used a composition of different

ciphers as shown in Figures 8 and 9. The RC4 encryption

(Figure 8) starts by an customized encoding (obfuscation)

mechanism known as Visual Encrypt (VE).

Fig. 8. Citadel RC4 encryption process

Algorithm 2: Visual Encrypt Procedure

void Crypt::VisualEncrypt(void *buffer, DWORD

size) {

for (DWORD i = 1; i < size; i++) do

((LPBYTE)buffer)[i] ˆ = ((LPBYTE)buffer)[i - 1];

}

The input to the algorithm is an encoded buffer. The VE

code is provided in Algorithm 2. This function was used in

Zeus for crypto purposes as well. After the XOR operation,

the non-standard RC4 initialization routine generates a 0x100

bytes key based on the static configuration data embedded

in the binary. The output of the routine is a new RC4

key that is used in RC4 encryption function along with the

customized XOR-ed data. Finally, performing an XOR on

the RC4 output and the login key embedded in the binary,

results in the RC4 encrypted data. Given login_key=lkey

and VE=encode, the functionality can be stated as: out =



lkey XOR RC4rkey(encode(in)). Therefore, out=Enc(in). The

AES decryption is depicted in Figure 9. The configuration

decryption routine takes the embedded static configuration

data as input, and outputs the RC4 key. The MD5 hashed

login key and the embedded RC4 key are fed to the RC4

routine. Next, the AES key is generated by performing an

XOR on the output of the RC4 routine, and the login key.

This key is used by the AES decryption function. Finally,

the Visual Decrypt (VD) function (Algorithm 3) takes the

result of the AES routine and decodes the decrypted data.

The process can be formulated as: AESkey = MD5(lkey) XOR

RC4rkey. Given VD=decode, the output can be stated as: out

= decode(AESAES_key(in)). The weakest point in the crypto

process is that it is based on static config data, which shows

that the authors lack competency in security algorithms and

cipher composition.

Fig. 9. Citadel AES decryption process

Algorithm 3: Visual Decrypt Procedure

void Crypt::VisualDecrypt(void *buffer, DWORD

size) {

if size > 0 then

for (DWORD i = size − 1; i > 0; i−−) do

((LPBYTE)buffer)[i] ˆ= ((LPBYTE)buffer)[i - 1];

}

V. CLONE-BASED ANALYSIS

The third process of the proposed methodology focuses on

clone-based analysis, which can be applied for complementing

the process of reverse engineering. Particularly, it could be

helpful in reducing the required time for the static analysis

phase. In this context, two techniques are taken into account

for quantifying the similarities between Citadel and Zeus

samples. The first approach uses RE-Source in order to reveal

the open-source building blocks of the malware. The second

approach utilizes RE-Clone for binary code matching. The ma-

jor steps in the clone-based methodology can be enumerated

as follows: (1) identification of standard algorithms and open-

source library code in the malware disassembly, (2) assigning

meaningful labels to assembly-level functions based on API

classification, (3) commenting the assembly code based on

a predefined dictionary of malware functions, (4) applying a

window-based search and comparison mechanism for finding

the pre-analyzed code components.

Fig. 10. Matched features with open-source projects

A. Assembly to Open-Source Code Matching

The RE-Source framework [7] has been used for extracting

assembly-level features from Citadel. This framework exam-

ines assembly functions in two phases of online and offline

in order to find source files that share features with the

disassembly. The key steps of the framework are: (1) extrac-

tion of interesting features, (2) feature-based query encoding,

(3) query refinement for online code search engines, (4)

request/response processing, (5) data extraction and parsing,

(6) reporting results and updating comments, (7) feature-based

offline analysis. Different features are considered for online

and offline analysis. During the online analysis phase, RE-

Source revealed the correlation between function-level features

of Citadel and several open-source projects. The video capture

capability of the malware was unleashed through the links

to source files such as: MHRecordContol.h, stopRecord.c,

trackerRecorder.h, signalRecorder.h, waitRecord.c, etc. (See

Figure 11). This observation was further supported by oc-

currences of strings such as “_startRecord16” during the

dynamic API de-obfuscation. Moreover, a “video_start”

C&C command was also found in this process. Even though

screen capture is a common feature in modern malware, live

video capture capability is a new feature, which is only seen

in complex and progressive samples. It should be noted that

the online analysis results of RE-Source that suggested video-

related capability were the outcome of an approximate code

matching process. Although the matching process was not

perfect, it was accurate enough to reveal the functionality

context in this case. Similarly, RE-Source had commented

the code with references to other open-source projects such

as the ones listed in Figure 10. The number of matched

projects in each category determines the size of each pie slice.

Many Zeus-based malware variants have appeared online since

the release of Zeus source code in 2011. Having access to

Zeus source code enabled us to match Citadel binary against

Zeus source code. The pie chart in Figure 10 shows the

general categories of open-source projects that are used in

Citadel. Apart from the detached slices, Citadel and Zeus

share a considerable amount of code related to the core, VNC,

crypto, and proxy functionality. However, the differences can

be summarized in network communication code, new exploits

and browser-specific code for web injects.

B. Offline Analysis and Functionality Tags

RE-Source can also be used for tagging assembly functions

based on API calls and classifying functions according to their



Fig. 11. The output of RE-Source pointing to video capture source code

potential functionality. When applied to the unpacked version

of Citadel, 652 functionality tags were detected by the offline

analyzer. A function is assigned several tags if it contains more

than one system call. Accurate functionality tags could convey

meaningful hints to the reverse engineer during the static

analysis phase. In conjunction with the code and data cross-

referencing, functionality tags can enrich the disassembly by

highlighting the final system calls in a multi-level function call

hierarchy. Since system calls serve as interaction points with

the operating system, having a high-level view of them could

draw a more organized view of the code.

Fig. 12. Functionality tags for offline analysis

Functionality tags are not limited to simple system calls

merely for file processing or registry modifications. They can

be composed of several operations related to common mal-

ware behavior. New patterns can be defined for highlighting

common malicious code in downloaders, launchers, reverse

shells, remote calls and keyloggers based on the combination

of several simple system operations. In this context, process

memory modification and code injection points are of great

interest to the reverse engineer. RE-Source includes tagging

Fig. 13. Functionality tags assigned by offline analysis

categories such as process injection, launcher, DLL injection,

process replacement, hook injection, APC injection and re-

source segment manipulation in the offline analysis. Figure 12

lists some of the available functionality tags in the prototype.

A practical application of functionality tags is in disassembly

comparison/synchronization of two malware variants. Instead

of comparing the files by address, the code can be analyzed

offline and the generated tags can be used as association

criteria/sync points. In this process, the functions are sorted

based on the assigned tags and the ones with similar tags

are analyzed side by side. This technique was specifically

helpful in synchronizing the disassembly of Citadel versus

Zeus. Figure 13 depicts the detected functionality tags. The

pie chart sectors are proportional to the number of assembly

functions categorized under the same functionality group. The

NET tag was assigned to 60 functions related to low-level

socks. Also, 41 functions were tagged with CRT (critical sec-

tion objects) for mutual exclusion synchronization. Similarly,



36 FIL tags were assigned to file manipulating functions.

The other tags such as crypto, hashing, search and code

injection were also identified during the analysis. The CRY

(crypto) and HSH (hashing) tags provided an easy way of

disassembly synchronization between Citadel and Zeus as the

slight differences between the assembly files had no effect on

the overall functionality group.

Translated into quantifiable terms, Figure 14 shows the

output of RE-Source for Citadel vs. Zeus comparison. The

numbers are reported in accordance with occurrence of certain

features such as the number of assembly functions, API

and functionality tags, common API in malware, number of

matched opens source components, imported function calls,

and Unicode strings. The results imply that the framework

has been successful in revealing the internal components of

the malware. The final outcome of assembly to source code

matching is a list of source files along side the description from

the malware dictionary. These information provide valuable

insights into the potential functionality of the malicious code

and facilitate the analysis.

Fig. 14. RE-Source analysis results

C. Binary Clone Analysis

The malware analysis process can be accelerated by identi-

fying and removing the previously analyzed code fragments.

The aim of binary clone analysis is to compare the assembly

file of a new binary sample with a repository of analyzed

code. The result of this analysis is a set of matched clones. In

this context, we rely on the RE-Clone binary clone detector

tool [8] that implements an improved version of the clone

detector framework proposed in [9]. RE-Clone considers the

same problem definition, that is the exact and inexact clone

detection, as stated in [9]. Exact clones share the same

assembly features, i.e., mnemonics, operands and registers.

The only difference is in memory addresses. Inexact clones

can be regarded as equal up to a certain level of abstraction,

which means the number of common features must be greater

than a certain threshold.

Fig. 15. Binary clone detection results

The analysis parameters such as search window size, nor-

malization level and detection algorithm play a significant role

on the analysis results. These parameters are set according

Fig. 17. Code analysis after clone elimination

to each analysis scenario. After marking the detected code

fragments as clones, the analysis focus is shifted to non-

analyzed and new code segments. The core components of

the Zeus malware has been thoroughly studied in [6]. Also,

the source and binary files are available online. Therefore, a

new Zeus variant can be compared against the existing files

in order to measure the similarity and detect the potential

exact and inexact clones. This analysis is also applicable to

finding the additional functions of the new malware variant.

Figure 15 shows the results of the binary clone matching

process. The samples share 526 exact binary clones with a

window size of 15 instructions. In other words, almost %93

of Zeus assembly code also appears in Citadel. These clones

form approximately %67 of the Citadel binary. This analysis

highlights the remaining %33 of the Citadel assembly to be

analyzed. Thus, a significant amount of time is saved by

disregarding the clones. RE-Clone shows the address of each

clone in the disassembly. Furthermore, the remaining functions

can be examined in RE-Source before the manual analysis

process is begun by the reverse engineer. This approach is

depicted in Figure 17. The 1876 inexact clones reported by

the tool include multiple combinations of regions that also

contain the exact clones.

An interesting example of crypt-related clones is the de-

tection of an inexact clone in the RC4 function that is used

for encrypting the C&C network traffic. There are a few

extra assembly instructions in the Citadel version of the

RC4 function. This clone was found with a threshold of 0.8

and a two-combination inexact clone search method. In this

approach, each two-combination of features are considered as

a cluster. If more than %80 of regions appear in the same

clusters, then they are treated as inexact clones. The red

segments in Figure 16 highlight the detected inexact clones.

VI. THREAT MITIGATION BY SINKHOLING

In June 2013, Microsoft Digital Crimes Unit reported on

an operation known as Operation b54, in collaboration with

FBI to shut down Citadel C&C servers [14]. As a result of

this operation, 1400 Citadel botnets around the world were

interrupted and redirected to sinkhole servers controlled by

Microsoft. A comprehensive list of the domain names is

available in [16]. Although, the operation has significantly

disrupted Citadel botnets and has reduced the threat levels,

it has also affected the honeypot systems that were used for

identifying and locating the malware creators and distributors.

Even though the threat counter-measurement has been success-

ful, cyber criminals can still operate by infecting new machines

and controlling their bots using alternative servers.



Fig. 16. An inexact clone detected in the RC4 encryption function (Citadel vs. Zeus)

VII. RELATED WORK

AnhLab [11], presented a comprehensive static analysis of

Citadel malware. To the authors’ knowledge, this report is

the most complete analysis on Citadel malware which has

been released so far. The process of infection, the structure

of the malware binary, and malware’s main functionalities

and features are explained in details in this technical report.

The report gives valuable insights on the malware and its

capabilities, however, the methodology and steps that were

taken for reaching the outcomes were not discussed. Also, al-

though it is mentioned in the report that Citadel is remarkably

similar to Zeus, the precise quantification of their similarity

is not provided. Only approximate resemblance percentages

is given without any details. To compare our analysis to this

work, we provided a new methodology for reverse engineering

malware by adopting clone-based analysis. Following our

methodology, we concisely explained the steps we took in

reverse engineering Citadel and insights that we obtained

through our study.

SophosLabs [12], provided a brief report on Citadel mal-

ware. The major enhancements occurred in Citadel comparing

to Zeus is explained in high-level and very briefly in this

report. No explanation was provided about the process of

reverse engineering the malware and how the authors gained

those insights. Indeed, this report gave a decent overview

about the Citadel malware without digging into the details.

CERT Polska [13], also provided a technical report on Citadel

malware. Similar to the previously mentioned report, this

report was high-level and goes through the main features of

Citadel without providing details. The reports mainly provided

statistics focusing on the impact of the malware and its

geographical distribution. The statistics were gathered based

on the traffic to the sinkhole server after the domain had been

taken down.

By leveraging the tools developed in our security lab, we

quantified the similarity between Zeus and Citadel malware.

These results could be further refined by integrating other

existing techniques designed to automate malware analysis.

For instance, our binary clone detector could be extended with

a CFG-like dimension. For this purpose, we could benefit from

the model proposed in [21] which aims to identify the common

code fragments between two executable files and analyze the

CFG subgraphs containing these fragments.

VIII. CONCLUSION

The Citadel malware targets confidential data and financial

transactions. It is an emergent threat against the online privacy

and security. Citadel reverse engineering is challenging as

it is equipped with anti-reverse engineering techniques for

hindering the malware analysis process. As the number of

incidents entailing new malware attacks are increasing, agile

approaches are required for obtaining the analysis results in

a timely fashion. The malware reverse engineering process

consists of two major stages of static and dynamic analysis.

This process can be accelerated and enhanced by adding a

new dimension for clone analysis. Instead of initiating the

process from the scratch, a quick clone-based analysis can

easily highlight the similarities and differences between two

samples of the same family. The analysis focus is then shifted

to the differing sections. We have presented a methodology

along with the tools and techniques for analyzing the Citadel

malware. Also, we have compared Citadel with its predecessor,

Zeus. The similarities have been quantified as the result of



two code matching techniques namely assembly to source,

and binary code matching. The same methodology can be

applied to other malware samples for providing insights into

the potential malware functionality. The results of the malware

analysis process can be added to a local code repository and

used as a reference for measuring the similarities between

future samples. They can also be used for improving the

accuracy of the results. Overall, the successful completion of

our objectives has led to underline best practices for supporting

real-world malware analysis scenarios.
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