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ABSTRACT

Essays in Theoretical and Applied Econometrics

Di Liu, Ph.D.

Concordia University, 2014

This thesis investigates three topics in theoretical and applied econometrics:

two sample nonparametric estimation of intergenerational income mobility, sparse

sieve maximum likelihood estimation, and asymptotic efficiency of Improved QMLE

and Sieve MLE.

The first essay proposes a two sample nonparametric GMM estimator, which

extends the local linear GMM estimator to two sample settings, and applies it

to estimate the intergnerational income mobility in the U.S and Sweden. The

second essay proposes an estimator that uses the Dantzig Selector to improve the

finite sample performance of Sieve MLE in a panel data setting. We show that

in simulations the sparsity imposed by the Dantzig Selector is innocuous with

respect to the sieve MLE, and substantially improves its computational efficiency.

The third essay compares an optimal GMM estimator, known as Improved QMLE,

with sieve MLE in a panel data setting. We derive a condition when these two

estimators are equally efficient asymptotically and provide simulation results to

illustrate the extent of efficiency loss.
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develop the idea of a two-sample nonparametric estimator (TS-NPGMM). They

proved the consistency and asymptotic normality of this estimator. Later on, I

joined this project and worked on the computational tasks. First, I conducted

Monte Carlo simulations to study the finite sample behavior of TS-NPGMM. Sec-

ond, I applied the TS-NPGMM to the estimation of intergenerational income mo-

bility in the U.S and Sweden. Third, I proposed a matching algorithm for band-

width selection and variance estimation.

Chapter 2

This paper is co-authored with Dr. Artem Prokhorov. The idea of using the

Dantzig selector to reduce the parameter dimension was first proposed by Dr.

Prokhorov, when he was on research leave at Harvard University. Dr. Prokhorov

proved the oracle inequality. I designed an algorithm applying the Dantzig selector

to sieve maximum likelihood estimation (DS-SMLE). I compared the properties of

DS-SMLE with brute-force SMLE through simulations. Finally, I illustrated the

use of DS-SMLE with an insurance application.
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Introduction

This thesis investigates three topics in theoretical and applied econometrics: two

sample nonparametric GMM estimation of intergenerational income mobility, sparse

sieve maximum likelihood estimation, and asymptotic efficiency of Improved QMLE

and sieve MLE. They are organized as Chapter 1, 2 and 3 respectively.

Chapter 1 proposes an estimator which extends the local linear GMM in Cai

and Li (2008) to a two sample setting, and estimates the intergenerational income

mobility in the United States and Sweden using this new approach. Unlike existing

measure of the degree to which earnings are transmitted from one generation to an-

other, our estimator is nonparametric and applies when other estimators are infea-

sible. We allow intergenerational income mobility to depend flexibly on observable

family background, which is particularly relevant for cross-country comparisons.

We further allow for data on fathers and sons to come from different samples,

which solves a critical missing data issue and alleviates attrition concerns. Fi-

nally, our estimator is consistent in the presence of measurement errors in father’s

long-run economic status. Using the US and Swedish data, we argue that previous

parametric estimates of income mobility tend to conceal the heterogeneous nature

of the transmission mechanism by keeping mobility constant across families. The

striking differences we find between mobility patterns across family backgrounds

as captured by father’s education lead us to question the conventional result that

intergenerational transmission of earnings is weaker in Sweden than in the United

States, for important parts of population.

The Dantzig Selector (Candes and Tao (2007)) is traditionally used for point

1



estimation by least squares when the number of parameters exceeds the number

of observations. Chapter 2 uses it to obtain smaller standard errors in a sieve

maximum likelihood estimation in a panel setting. We assume correctly specified

likelihood model for each cross section and the Bernstein polynomial serves as

a copula sieve capturing dependence between them. This estimator has smaller

standard errors asymptotically than the conventional QMLE but, in finite samples,

the number of parameters in the sieve is close to the number of observations and

may exceed it. At the same time, most of the sieve parameters are close to zero.

We propose an estimator that uses the Dantzig Selector to find the sparsest vector

of the sieve parameters satisfying the first order conditions of MLE up to a given

tolerance level. We show in simulations that our estimator produces a sparse sieve

MLE with finite-sample properties very similar to the non-sparse alternative, and

substantially better than the QMLE. As a theoretical motivation for the good

performance of sparse SMLE, we provide an oracle inequality relating the risk of

the sparse estimator with that of an infeasible estimation where an oracle tells us

which coefficients are insignificant. We also study the parameter path behavior for

various tolerance levels and consider a version of a double Dantzig selector which

resolves the arbitrariness in choosing the tolerance level.

Chapter 3 compares Improved QMLE (IQMLE) with Sieve MLE (SMLE) in

a panel data setting in which we assume to have correctly specified probabilis-

tic models for each cross sections and it is all the information we have. IQMLE,

proposed by Prokhorov and Schmidt (2009a), is an optimally weighted GMM es-

timator based on the marginal scores. Sieve MLE, proposed by Panchenko and

Prokhorov (2013), can be viewed as MLE except it uses a copula sieve to ap-

proximate the true copula. IQMLE is known to be asymptotically efficient among

estimators using the marginal scores as moment conditions, while SMLE is known

to reach a semiparametric efficiency bound for the marginal parameters. We inter-

pret the variance of IQMLE and SMLE in an intuitive way, and derive a condition

when they are equally efficient. The simulation results show that SMLE can be

2



relatively more efficient than IQMLE up to 70%.

Finally, I develop a Matlab package called CopulasToolbox to conduct different

simulations in Chapter3 2 and 3. This toolbox provides a uniform platform for

simulations in multivariate modeling using copulas. It contains Matlab classes

for multivariate probability densities, which provide easy-to-use functions for data

fitting via MLE and Sieve MLE, multivariate random number generations and 3-D

graphical presentation of dependence structures. Appendix A describes the design,

structure and implementation of CopulasToolbox.
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Chapter 1

Two-Sample Nonparametric

Estimation of Intergenerational

Income Mobility

The extent of income mobility across generations has been a focus of economists’

attention for a long while. Using empirical evidence from different countries, Solon

(2002) provides a thorough survey of the literature going back at least to the 1980s,

on how fathers’ long-run economic status affects that of their sons. Cross-country

comparisons of intergenerational income mobility have been emphasized in the

literature since they permit the study of the character of inequality in a particular

society and produce insights into whether cross-sectional and intergenerational

inequalities are linked to each other (see, e.g., Björklund and Jäntti, 1997).

Our study focuses on measuring intergenerational income mobility in Sweden

and the United States. Comparisons between the United States and a Scandinavian

country have been viewed as particularly relevant when studying intergenerational

income mobility across countries. Gustafsson (1994), Björklund and Jäntti (1997),

and Bratsberg, Røed, Raaum, Naylor, Jäntti, Eriksson, and Österbacka (2007) are

just a few studies focusing on intergenerational economic status transmission in

these countries. The interest in these country pairs is due to the finding highlighted

4



in Gottschalk and Smeeding (1997) that the Scandinavian countries have the lowest

annual income inequality in contrast to the United States where income inequality

is high.

While conducting the cross-country comparison of intergenerational mobility

between Sweden and the USA we address three major issues previously raised in

the empirical literature on intergenerational mobility. The first issue – discussed,

for example, by Corak and Heisz (1999) and Bratsberg et al. (2007) – is mod-

elling nonlinearities in intergenerational income mobility. In particular, Bratsberg

et al. (2007) emphasize that the elasticity of son’s income with respect to father’s

income – a traditional measure of income mobility – may be inappropriate, de-

pending on whether the functional relationship between father’s and son’s income

is linear in logs. They argue that if the functional form is nonlinear, elasticities

estimated using linear models may be misleading.

There were several attempts to address this concern. In particular, Bhat-

tacharya and Mazumder (2011) suggest a new direct measure of intergenerational

income mobility obtained by using a nonparametric model where the conditional

transition probability of moving across income quantiles varies with individual-

specific covariates. Murtazashvili (2012) proposes yet another measure of inter-

generational mobility, which is based on a random coefficient model and which

allows intergenerational income mobility to vary across the distribution of fami-

lies.

This paper addresses the issue of nonlinearities by designing a new nonpara-

metric estimation strategy that allows intergenerational income mobility to vary

freely across the population of families. We build on the nonparametric GMM

(NPGMM) estimation of Cai and Li (2008) and exploit the functional form flexi-

bility permitted by the nonparametric estimation in order to introduce heterogene-

ity in intergenerational elasticities across the population of families with different

observed characteristics.

By allowing for the heterogeneity we contribute to the long standing debate

5



about the “mysterious background factors” (see, e.g., Solon, 1999, p. 1766) that

have explanatory power for children’s future earnings along with parental income.

Empirical studies have looked at community background characteristics, such as

community origins and neighborhood characteristics where children have been

raised (see, e.g., Corcoran, Gordon, Laren, and Solon, 1992; Datcher, 1982). Other

studies have considered parent’s characteristics other than earnings, for example,

parent’s education. For example, when studying the nonlinear patterns of earnings

transmission in the Nordic countries (not including Sweden) and the USA, Brats-

berg et al. (2007) looked at the link between sons’ and parents’ education and

found cross-country differences similar to those between earnings. In our analy-

sis we employ father’s education as a family background characteristic behind the

heterogeneous patterns of intergenerational mobility in the US and Sweden. The

nonparametric nature of our econometric method allows us to introduce this fam-

ily characteristic into the equation for intergenerational mobility in a very flexible

nonlinear way.

The second empirical issues we address is a lack of sufficiently comparable

data. Earnings data for fathers and sons are often unavailable from a single source

or are subject to severe attrition. This imposes a critical missing data problem,

which causes the common single-sample-based estimators, such as OLS and 2SLS,

to become infeasible. For example, the Swedish Level of Living Survey supplies

information on the dependent variable – sons’ earnings – and family characteristics,

such as father’s education, in one wave and information on the independent variable

– fathers’ earnings – in a different, partially matched wave. When, earnings are

available from the same source for two generations, the sample for one of the

generations usually suffers from severe attrition. For example, the US Panel Study

of Income Dynamics contains earnings information for matched cross sections of

individuals, one generation apart, but, due to attrition, the sample of sons is

usually much smaller.

Björklund and Jäntti (1997) address these data concerns by employing a two-

6



sample two-stage least squares (TS-2SLS) approach, initially suggested by Angrist

and Krueger (1992). This method constructs estimates of individual population

moments off the two samples and uses them in a standard parametric 2SLS pro-

cedure. This simple but effective approach has become quite popular among em-

pirical economists in various economic fields (see, e.g., Arellano and Meghir, 1992;

Lefranc and Trannoy, 2005). However, this is a fully parametric method which

does not permit the degree of flexibility required to study the earnings transmis-

sion patterns.

We solve this problem by developing an extension of the NPGMM estimator

along the lines of Angrist and Krueger (1992). The two-sample-based estimator we

propose remains consistent and demonstrates a number of robustness properties

when the data comes from two somewhat heterogeneous samples. We provide

the asymptotic distribution of the new estimator and devise a new method for

bandwidth selection and variance estimation, suitable to our data structure.

The third empirical issue we address is measurement error. It has been long

emphasized that using OLS for estimating intergenerational income mobility under

a measurement error in fathers’ permanent economic status may result in biased

estimates (see, e.g., Solon, 1992). If valid instruments are available, numerous

empirical studies have proposed ways of using instrumental variables (IV) estima-

tion to obtain consistent estimates (see, e.g., Björklund and Jäntti, 1997; Solon,

1992, and references therein). We follow earlier work on using instruments to han-

dle measurement error but adapt that framework to a nonparametric two-sample

setting. The nonparametric GMM nature of our method allows for a consistent

estimation of intergenerational elasticities in the presence of measurement error in

fathers’ income.

To the best of our knowledge, this is the first estimator to handle the issues

of nonlinearity, missing data and measurement error simultaneously. As a result,

it provides a set of empirical observations that have not been previously recog-

nized. While our interest in developing the new method is driven primarily by

7



the empirical concerns raised in the literature on intergenerational mobility, the

econometrics of our estimator is fairly general and can be applied in settings other

than intergenerational income mobility estimation.

Some of our empirical findings are more striking than others. In both Sweden

and the US, we find highly nonlinear relationships between the intergenerational

income elasticity and family background captured by father’s education. This

finding is in contrast with the conclusions of Bratsberg at al. (2007) who detect a

nonlinear pattern in intergenerational mobility for the Nordic countries they con-

sider but not for the US. We find that earnings transmission is stronger in the

USA but only when fathers have less education than at least some years of college.

Earnings transmission is stronger in Sweden and quickly grows with father’s edu-

cation for sons of well-educated fathers. This is contrary to the conventional result

that intergenerational mobility cannot be lower in the USA than in Sweden.1 Im-

portantly, we report the profiles of income mobility across the entire distribution

of family backgrounds in the two countries, which is key to targeted policy analysis

and to cross-country comparisons.

The rest of the paper is organized as follows. Section 1.1 sets the stage by

describing our data and the empirical issues it brings. Section 1.2 introduces

the empirical model of intergenerational mobility. Section 1.3 describes our two-

sample nonparametric GMM (TS-NPGMM) estimator, discusses its properties and

provides simulation results illustrating how it can handle the limitations of the data

in realistic sample sizes. Appendix 1.6 contains the econometric proofs underlying

Section 1.3. Section 1.4 contains a discussion of our empirical findings and policy

implications. Section 1.5 concludes.

1A notable exception is Jantti, Bratsberg, Roed, Raaum, Naylor, Osterbacka, Bjorklund, and
Eriksson (2006) who find that mobility out of the lowest quintile of the income distribution is
much lower in the US, while in the Nordic countries income persistence is higher in the upper
tails of the distribution. We thank a referee for providing this reference to us.
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1.1 Data Description

Following Björklund and Jäntti (1997), we use the Panel Study of Income Dynamics

(PSID) and the Swedish Level of Living Survey (SLLS) to obtain data for the

United States and Sweden, respectively. Both, the PSID and SLLS are longitudinal

(but not necessarily annual) surveys conducted since 1968. As Björklund and

Jäntti (1997) point out, while in its original wave of 1968 the SLLS was based on

a representative sample of around 6,000 individuals, new individuals were added

to the sample in the following waves to ensure representativeness for the whole

population. Therefore, by using a two-sample approach we are able to exploit all

observations available in the SLLS.

Furthermore, while the PSID is a longitudinal survey following individuals and

their families from the original wave of 1968 onward, the two-sample approach

using data from the PSID permits, similarly to the SLLS, to handle the missing

data issues more adequately than single-sample methods. Specifically, using a two-

sample approach to study the relation between fathers’ and sons’ incomes, we are

able to circumvent the attrition problem in the PSID. Besides using observations

on individuals added to the survey in the later waves, we are able to exploit

observations on spouses of grown children that were a part of the survey from

its origination (as long as they report information on their fathers’ education),

which we cannot do in a one-sample setting.

We create our US and Swedish samples using the guidelines from Björklund

and Jäntti (1997). Specifically, our US sample of individuals – we will refer to these

individuals as fathers – is taken from the 1968 wave and contains 1,613 male heads

of household of age between 27 and 68 who had at least one child (daughter or

son). This sample is obtained from the Survey Research Center (SRC) component

of the PSID. The independent sample of the US individuals – we will refer to these

individuals as sons – taken from the 1988 SRC contains 467 individuals. Sons

are restricted to those individuals who were born between 1951 and 1959 and who

were the oldest sons from multiple-son families. Only those fathers and sons who

9



Table 1.1: Summary Statistics for US and Swedish Samples

Variables Mean St Dev Min Max
Panel A: US sample (467 sons and 1,613 fathers)

Father’s age in 1967 45.19 10.94 27 68
Father’s earnings in 1967 (in 1987 $) 28,311 19,432 442 222,744
Father’s log earnings in 1967 10.04 0.74 6.09 12.31
Father’s education 11.45 4.12 0 18
Son’s age in 1987 32.49 2.46 28 36
Son’s earnings in 1987 28,598 19,352 1,200 210,000
Son’s log earnings in 1987 10.06 0.67 7.09 12.25
Reported father’s education 11.77 3.50 0 18

Panel B: Swedish sample (324 sons and 565 fathers)
Father’s age in 1967 42.88 7.63 25 60
Father’s earnings in 1967 (in 1990 Kronas) 16,821 8,903 5,678 76,687
Father’s log earnings in 1967 9.63 0.42 8.64 11.25
Father’s education 8.00 2.93 6 16
Son’s age in 1990 34.44 3.07 30 39
Son’s earnings in 1990 1,797 637 550 5,550
Son’s log earnings in 1990 7.43 0.36 6.31 8.62
Reported father’s education 8.01 3.05 6 16

reported positive annual earnings for 1967 and 1987, respectively, are included

into the samples. The US fathers report their 1967 annual income, education

and occupation, while the US sons report their annual income in 1987, as well as

occupation and education of their actual fathers.

Our Swedish sample of fathers (analogously to the US sample) is taken from the

1968 wave of the SLLS and contains 565 individuals who are either native Swedes

or moved to Sweden before the age of 16. The sample of Swedish sons (by analogy

to the US sample) is taken from the 1991 wave of the SLLS and contains 324

individuals who were born between 1952 and 1961. The Swedish fathers report

their 1967 annual income, occupation and the highest education level attained.

The Swedish sons provide information on their 1990 annual income, as well as

their actual fathers’ education and occupation.

Panel A of Table 1.1 presents summary statistics for fathers and sons from the
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Table 1.2: Education and Occupation Characteristics of Fathers

Fathers’ own Sons’
report of fathers’ characteristics

Panel A: US Sample
Fraction with education higher than
compulsory

0.94 0.97

Pearson χ2 test p-values 0.000 to 0.078

Fraction with given occupation:
1 Professional, technical and kindred
workers

0.16 0.15

2 Managers, officials and proprietors 0.11 0.08
3 Self-employed businessmen 0.07 0.03
4 Clerical and sales workers 0.11 0.11
5 Craftsmen, foremen, and kindred workers 0.23 0.25
6 Operatives and kindred workers 0.17 0.19
7 Laborers and service workers, farm
laborers

0.09 0.08

8 Farmers and farm managers 0.04 0.09

Panel B: Swedish Sample
Fraction with education higher than
compulsory

0.62 0.63

Pearson χ2 test p-value 0.8102

Fraction with given occupation:
1 Higher-grade professional 0.09 0.11
2 Lower-grade professional 0.12 0.08
3 Non-manual workers and lower-grade
technicians

0.14 0.15

4 Small proprietors with employees 0.06 0.07
5 Small proprietors without employees 0.04 0.05
6 Farmers, self-employed in primary
agricultural production and other workers

0.11 0.13

7 Skilled manual workers 0.22 0.18
8 Semi-skilled manual workers 0.17 0.20

11



US samples, while Panel B of Table 1.1 reports those for the Swedish samples. Ta-

ble 1.2 presents more detailed information on education and occupation of fathers.

Implicitly, there are two types of fathers in our analysis: (1) individuals observed

directly in the samples of fathers (we can think of them as pseudo-fathers), and

(2) individuals who were not directly observed but described by their sons in the

samples of sons (we can think of them as actual fathers).

As Table 1.2 suggests, some features of the two distributions of the educational

and occupational characteristics of pseudo-fathers and actual fathers appear to be

reasonably close. However, a more careful consideration is warranted here.2 When

we consider the differences in all parts of the distribution, not just at a single point,

the picture may change. The distribution of father’s education is what matters

here as this will capture the family background in what follows. Indeed the actual

fractions of the observed education levels (not reported here) have more variation

between the two samples than the means. When we use a two-sample Pearson Chi-

square distribution equality test with an appropriate adjustment for the different

(and small) sample sizes we do not reject the null of equal distribution only for

the Swedish samples. For the US samples, we fail to obtain strong evidence in

favor of the equal distribution assumption. The test statistic here depends on the

grouping used for education levels but no grouping leads to strong evidence of

equality and for the groupings we used, the range of p-values suggests a strong to

marginal rejection of the null. The equal distribution assumption is likely violated

for the US education data and we need to study the effects of such violations when

considering the properties of our estimator.

2We are grateful to a referee for pointing this out to us.
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1.2 Empirical Model of Intergenerational Income

Mobility

In compliance with the extensive literature on intergenerational income mobility,

as a starting point we employ the intergenerational income elasticity to measure

the degree to which income status is transmitted from one generation to another.

The equation of interest can be written as follows:

yS = ρyF + ε. (1)

Here, yS and yF are the natural logarithms of permanent incomes of sons and

fathers, respectively, and ε is an idiosyncratic error. The parameter of interest,

ρ, is referred to as the intergenerational income elasticity if the variance of the

long-run economic status is different for fathers and sons, i.e., if V ar(yF ) = σ2
F 6=

σ2
S = V ar(yS). In a special case when σ2

F = σ2
S, ρ coincides with intergenerational

income correlation. We follow Solon (1992) and use deviations of log income from

generation means, so that there is no intercept in equation (1).

The existing literature on intergenerational income mobility has long empha-

sized that the simplicity of equation (1) should not be taken at the face value.

Solon (1999) points out that, though seemingly simple, the basic income mobil-

ity equation is still capable of showing that “intergenerational transmission occurs

through a multitude of processes” (Solon, 1999, p. 1765). A large empirical body

of research maintains that the child’s earnings are likely to depend on other aspects

of family background, and, thus, this strand of the literature incorporates factors

other than parents’ earnings into the intergenerational income equation to account

for the influence of those factors on intergenerational mobility. Specifically, father’s

education, occupation, race, union status, industry and country of residence are a

few of the characteristics that have been argued to affect intergenerational mobility

(see, e.g., Black and Devereux, 2011, for a recent survey of relevant studies).

Furthermore, one of the major concerns with estimating (1), raised in the intro-
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duction, is that the standard elasticity of sons’ income with respect to that of their

fathers’ does not appropriately capture the nonlinearity in the intergenerational

transmission mechanism of economic status. Therefore, we modify equation (1) to

explicitly allow for dependence between the intergenerational elasticity and some

characteristic(s) of families. The modified equation can be written as follows:

yS = ρ(z1)yF + ε, (2)

where z1 contains some family characteristic(s) observable to researchers. While

also allowing for explicit variation in intergenerational mobility across the distri-

bution of families, both Bhattacharya and Mazumder (2011) and Murtazashvili

(2012) are agnostic about any specific characteristics of the transmission mecha-

nism of earnings from one generation to the next. Similarly, equation (2) permits

a flexible functional form describing the intergenerational transmission mechanism

of earnings at various points of the distribution of families.

It has been widely discussed in the literature that the permanent earnings of

fathers and sons are unobserved. Instead, short-run earnings in the form of either

annual earnings or even hourly earnings have to be used as measures of the long-run

economic status of fathers and sons. Due to the measurement error in short-run

earnings as a proxy for long-run earnings, traditional methods used to estimate

intergenerational mobility, which ignore the endogeneity of yF , suffer from the

well-known “attenuation” bias. Traditionally, instrumental variables approaches

are used to deal with endogenenity due to measurement error. In the context

of intergenerational mobility, Solon (1992) was one of the first to advocate the

standard IV approach to estimating intergenerational earnings mobility.

Studies of intergenerational mobility that use IV methods often employ father’s

characteristics other than income as instrumental variables for fathers’ income. In

particular, Lefranc and Trannoy (2005) use father’s education, occupation, and

indicators for living in urban/rural areas as IVs when studying intergenerational

earnings mobility in France. Solon (1992) uses father’s education to instrument
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for father’s income when estimating intergenerational income mobility in the USA.

Björklund and Jäntti (1997) also employ father’s education but add father’s oc-

cupation dummies as instruments for father’s income when comparing intergener-

ational income mobility in the US and Sweden. Studying the USA, Zimmerman

(1992) uses the Duncan index of the prestige of fathers’ occupation as an instru-

ment for fathers’ earnings.

We follow Björklund and Jäntti (1997) and use fathers’ education and fathers’

occupation dummies as exogenous variables. Our choice of the exogenous variables

is largely driven by data availability. In fact, fathers’ education and occupation

are the only two characteristics of fathers available in our data set in addition

to fathers’ earnings. We use fathers’ education as z1 and fathers’ occupation as

the instrumental variable, z2, for fathers’ earnings. The reason we do not employ

fathers’ education as z2 and fathers’ occupation as z1 is that occupational status

varies substantially across countries while the level of education is much more

standardized. In fact, Table 3 suggests that occupational categories used in the

US and Swedish surveys are hard to match. Therefore, our choice of fathers’

education as z1 is meant to facilitate direct cross-country comparisons. It is also

easier to justify the assumption of equal distributions of z1 in the two samples of

fathers we are using.

From a theoretical standpoint, parental education along with parental income

can be used to explain the differences in financial resources available for invest-

ment in children’s human capital. Moreover, as Datcher (1982) suggests fathers’

education might also reflect fathers’ preferences for and value they place on such

investment. This idea can be traced back at least to the work by Hill and Stafford

(1974) who find a positive association between parents’ education and the amount

of time they devote to children. Additionally, fathers’ years of education used as an

exogenous regressor is a way to test “. . . the idea that broader societal constraints

– like discrimination, limits on access to education, and credit market restrictions

– limit the earnings prospective of the more successful children from low earnings
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backgrounds.”(Aydemir, Chen, and Corak, 2009, p. 394).

While our choice of the exogenous variables fits comfortably in the existing

theoretical and empirical literature on intergenerational mobility, it is worth men-

tioning that, when used as instrumental variables, fathers’ occupation might also

have an independent direct effect on sons’ income. However, there is a wide range

of literature claiming that it is unlikely to be so. In particular, studies by Sewell

and Hauser (1975), Kiker and Condon (1981), Datcher (1982), Corcoran, Gordon,

Laren, and Solon (1992), Checchi, Ichino, and Rustichini (1999), and Lefranc and

Trannoy (2005) all maintain that fathers’ occupational status is correlated with

sons’ earnings only through its correlation with fathers’ income. Furthermore,

Solon (1992) shows that even if an instrumental variable has a direct effect on

sons’ income then, under the typical assumptions, the traditional IV approach will

produce an upper bound on the intergenerational income elasticity, which is still a

usable result. Thus, we follow this wide literature and employ a full set of fathers’

occupational dummies as instrumental variables for fathers’ income in our analysis.

A major issue with estimating equation (2) is that, due to the data limitations,

we cannot employ conventional econometric methods to estimate the functional

coefficient ρ(z1). Contrary to the traditional assumption and similar to the inter-

generational income mobility studies by Björklund and Jäntti (1997) and Lefranc

and Trannoy (2005), we are faced with the situation that information on fathers’

and sons’ income comes from two different samples.

When equation (1) is the equation of interest, Angrist and Krueger (1992)

proposed a parametric method that can deal with the situations that the data come

from two samples. In essence, their two-sample IV estimator uses instruments z2

to predict yF and then, employs the predicted yF to estimate ρ. It turns out

that a similar nonparametric estimation strategy is possible for the equation in

(2). Specifically, under certain conditions, we obtain a consistent nonparametric

estimator of ρ(z1) using moments obtained from the different data sources. Besides

resolving the critical missing data issue, our two-sample nonparametric estimator
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remains consistent, provided we have valid instruments, under measurement error

in the explanatory variable.

1.3 Two-Sample Nonparametric GMM Estima-

tion

In this section we state a general econometric model of interest, introduce our

estimator and discuss its asymptotic properties. We also conduct Monte Carlo

simulations to study its properties in samples of the size relevant to the application

we consider.

1.3.1 General Statement of Model

In general settings, our model of interest can be written as follows:

yi = xib(z1i) + ui, (3)

where yi is a response variable, xi is a 1 × K vector of endogenous explanatory

variables, z1i is a 1×L1 subvector of the vector of exogenous variables zi = (z1i, z2i),

b(·) is an unknown K-valued function on RL1 , with typical element bj(·), j =

1, .., K, and ui is an idiosyncratic error. As usual, we assume that E[ui|zi] = 0,

i.e. we assume that our instruments zi are at least weakly exogenous. We will

assume that L = L1 + L2 ≥ K, where L2 = dim(z2i), so that there is at least one

instrument not in z1i for every endogenous explanatory variable in xi.

In the nonparametric literature, model (3) is called a varying (or functional)

coefficient model. This model incorporates many linear and partially linear mod-

els and it has been used in many applications other than intergenerational income

mobility, including exchange rate forecasts (see, e.g., Hong and Lee, 2003) and US

unemployment and interest rate analysis (see, e.g., Juhl, 2005). In a parametric

context, when b(z1i) ≡ bi model (3) is called a random coefficient model. Pfeffer-
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mann (1984) and Fisher and Voia (2002) generalize the Gauss-Markov theorem to

the random coefficient model with missing data. The possibility of correlation be-

tween the individual-specific coefficients bi ≡ b(z1i) and xi makes (3) a correlated

random coefficient model.

When y, x, and z are contained in a single sample, there are numerous estima-

tion methods that can be used to estimate b(·) in such models (see, e.g., Cai, Das,

Xiong, and Wu, 2006; Zhang, Lee, and Song, 2002). Recently, Cai and Li (2008)

proposed a nonparametric GMM approach, which combines the local linear fitting

technique and the generalized method of moments (see, e.g., Fan and Gijbels, 1996,

for a review of other local smoothing methods). The method is computationally

simpler than many other available nonparametric alternatives, so we build on this

method in designing our new estimator.

1.3.2 Two-Sample Nonparametric GMM Estimator

For a given point z1∈RL1 and for {z1i} in a neighborhood of z1, assuming that

{bj(·)} are twice continuously differentiable, we exploit Taylor expansions to ap-

proximate bj(z1i) by a linear function 3 bj0 + bj1(z1i − z1) where bj0 = bj(z1) and

bj1 =
∂bj(z1)

∂z1
. So, (3) can be approximated locally by

yi ' wiβ + ui, (4)

wherewi = {xi,xi⊗(z1i−z1)} is a 1×K(1+L1) vector, and β = (b10, ..., bK0,b
′
11, ...,b

′
K1)′

is a K(1 + L1)× 1 vector of parameters. Thus, for any vector function Q(zi), we

can rewrite the standard orthogonality conditions E[ui|zi] = 0 in the following

form:

E[Q(zi)ui|zi] = 0. (5)

3Following Cai and Li (2008), we employ local linear approximation. However, the order of
local polynomial approximation can be optimally chosen by cross-validation (see, e.g., Hall and
Racine, 2013)
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If we observe all the variables yi, xi, and zi in one sample, the local ap-

proximation of conditions (5) will produce the (one-sample) nonparametric GMM

(NPGMM) estimator of Cai and Li (2008). We are interested in estimating model

(3) using data that come from two samples. To emphasize the distinction between

the samples we use superscripts (1) and (2). The difficulty in estimation arises due

to the fact that the first data set contains only {y(1)i , z
(1)
i }, i = 1, ..., N1, while the

second data set contains only {x(2)
l , z

(2)
l }, l = 1, ..., N2.

The fundamental difficulty here is that, due to the data structure, calculation

of model residuals is infeasible. The dependent variable, the instruments and the

independent variables are not available in the same sample and so error-based

objective functions, such as the sum of squared residuals, cannot be used. In

the setting of nonparametric estimation, this also means that traditional methods

of data-driven bandwidth selection and variance estimation are infeasible because

they are usually based on residuals. However, under certain conditional moment

assumptions it is still possible to obtain a consistent nonparametric estimator based

on local averages from the two samples.

In the context of two samples, condition (5) can be approximated by the locally

weighted moment condition (6):

E
[
Q
(
z
(1)
i

)
y
(1)
i Kh1

(
z
(1)
1i − z1

)
−Q

(
z
(2)
l

)
w

(2)
l βKh2

(
z
(2)
1l − z1

)]
= 0, (6)

where Khj
(·) is a bounded symmetric kernel function on RL1 , j = 1, 2, h1 and h2

are bandwidths and the dimension of Q(·) must be at least K(1 + L1). Though

there are many possibilities for Q(·), we follow Cai and Li (2008) in using the

following form

Q(zi) = (z2i, z2i ⊗ (z1i − z1)/h2)
′ : L2(1 + L1)× 1

Clearly, for such a choice of Q(zi), a necessary identification condition is L2 ≥ K.
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Define the following local averages

S2 =
1

N2

N2∑

l=1

Q(z
(2)
l )w

(2)
l Kh2(z

(2)
1l − z1) (7)

T1 =
1

N1

N1∑

i=1

Q(z
(1)
i )Kh1(z

(1)
1i − z1)y

(1)
i (8)

Then, the two-sample nonparametric GMM (TS-NPGMM) estimator we propose

has the following simple form

β̂ = (S′
2S2)

−1S′
2T1. (9)

Implicitly, the estimator in (9), as well as its components S2 and T1, are functions

of z1. In essence it is a nonparametric estimator of b(z1) and of its first-order

derivatives ∇bj(z1), where j = 1, ..., K, obtained by the GMM for the local neigh-

borhood of z1.

The following regularity conditions are sufficient for consistency and asymptotic

normality of the estimator in (9).

Assumptions:

1. {y(1)i ,x
(1)
i , z

(1)
i , u

(1)
i } and {y(2)i ,x

(2)
i , z

(2)
i , u

(2)
i } are two independent samples

from the same population, observations are independent across i and only

{y(1)i , z
(1)
i } and {x(2)

i , z
(2)
i } are observed. Further, E||z(j)′2 x(j)||2 < ∞, E||z(j)′2 z

(j)
2 ||2 <

∞, and E|u(j)|2 < ∞, where ||A||2 = tr(AA′), and j = 1, 2.

2. For each z1, f(z1) > 0, where f(z1) is the density function of z1, and b(z1)

and f(z1) are both twice continuously differentiable at any z1 ∈ RL1 .

3. The kernel K(·) is a symmetric, non-negative and bounded second-order

kernel function having a compact support; hj → 0, h2/h1 → 1 and Njh
L1
j →

∞ as Nj → ∞, j = 1, 2. Also, limN2→∞
N2

N1
= k for some constant, k.

4. A. E(u|z) = 0 and E[π(z)π(z)′|z1] has a full rank for all z1, where π(z) =

E[x′|z].
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B. E[x(1)|z] = E[x(2)|z] = E[x|z].

C. The density of z1 is identical for both samples and equal to f(z1).

Assumptions 1-3 are similar to those in Cai and Li (2008) except for the modifi-

cations due to two samples. An important difference is that now we require that the

bandwidths used in the two samples satisfy a condition that ensures that no extra

terms appear in the asymptotic bias. Deviations from the independence assump-

tion on the error terms and from a homoskedasticity assumption (should we wish

to impose it) can be adjusted for using standard methods once we have a consistent

estimate of the functional parameter. Assumption 4 is necessary and sufficient for

model identification – it makes sure NPGMM works in the two-sample setting.

This assumption is similar to the one used by Angrist and Krueger (1992). Their

two-sample IV estimator is a parametric two-sample estimator based on equality of

unconditional expectations for the two samples while our nonparametric estimator

is based on equality of conditional expectations in the context of the two-sample

data structure.

We assume that z1 has the same support in the two samples. Assumption 4

implies that the density of z1 for the two samples is identical and equal to f(z1),

which is an even stronger assumption than identical support. If the densities are

different, this may cause problems for consistency and nonparametric identification

of b(z1). This point is important in intergenerational mobility applications because

the two samples are one generation apart. For example, our PSID samples show

evidence of different distribution of z1 for actual fathers and pseudo-fathers. It is

therefore important to consider robustness of β̂ to deviations from this assumption.

We return to this point in Section 1.3.3.

A key part of Assumption 4 is that the conditional expectation function for x

given z is the same for the two samples. If we could observe x in both samples then

given a value of z = z(1) = z(2), the moment condition E[x(1)|z(1)] = E[x(2)|z(2)] =
E[x|z] must hold. Under this assumption, sample equivalents of the quantities

contained in moment conditions (6) have the same probability limit as for the
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one-sample analogue. Intuitively, this guarantees that the probability limit of our

estimator is the same as that of Cai and Li (2008).

We provide a formal proof of this intuition in Appendix 1.6 and state only the

main result here. Let Hj = diag{IK , hjIKL1}, j = 1, 2, where Im is a m × m

identity matrix.

Theorem 1.1 Under Assumptions 1–4, the TS-NPGMM estimator β̂ is con-

sistent and asymptotically normal and

√
N2h

L1
2

[
H2(β̂ − β)− h2

2

2

(
Bb(z1)

0

)
+ op(h

2
2)

]
d→ N(0,Ψ), (10)

where matrices Ψ and Bb(z1) are given in Appendix 1.6.

The theorem establishes consistency and asymptotic normality of our estimator

and provides its asymptotic variance matrix. It is worth noting that the theorem

uses sample-specific quantities N2, H2, T1 and S2, which distinguish it from its

single-sample analogue. The structure of the asymptotic variance matrix (given in

Appendix 1.6) is similar to the single-sample case, but the central element of Ψ

is the limiting covariance matrix of
√
N2h

L1
2 (T1 − S2β), which is obtained using

sample-specific moments so its relation to the single-sample counterpart cannot be

established without further assumptions. Specifically, whether the single-sample

estimator is relatively more efficient than the two-sample estimator will likely de-

pend on how higher-order moments of Sj and Tj compare for the two samples.

In a parametric setting, Inoue and Solon (2010) show that the two-stage least

squares version of the two-sample estimator of Angrist and Krueger (1992) is more

efficient that the IV version (when both 2SLS and IV are possible). Similarly,

in our case, estimator (9) may not deliver the minimal asymptotic variance due

to the suboptimal choice of Q(z). While finding the optimal instruments may

be feasible, we prefer the computationally simple form of Q(z) from Cai and Li

(2008). This form is also preferred because it results in a relatively simple form

of the asymptotic variance matrix Ψ, whose estimation is sufficiently complicated
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as is, due to the two-sample data structure. We address the issue of variance

estimation, along with the choice of bandwidth, in Appendix 1.7.

1.3.3 Monte Carlo Simulations

In this section, we conduct Monte Carlo simulations to study the behavior of the

TS-NPGMM estimator in realistic non-asymptotic settings relevant for our empir-

ical task. First, we provide graphical illustrations that the TS-NPGMM approach

successfully uncovers the true functional forms. Second, we present numerical re-

sults showing the rate of convergence as a function of the sample size. Finally, we

consider robustness of TS-NPGMM to deviations from the assumption that the

distributions of z1 in the two samples are identical.

We use the sample sizes encountered in our SLLS and PSID data sets and for

the robustness study we consider the case where z1 in both samples is multinomial

but there is a slight difference in probabilities. We use the multinomial distribution

because fathers’ education can be viewed as a discrete random variable for which

the multinomial probabilities are equal to the fractions of different education levels

in the sample. Correspondingly, in our simulations we allow for deviations from

the equal proportions assumption which are equal to the differences in fractions

observed in the two US samples.

1.3.3.1 Graphical Illustrations

We start by considering the following data generating process:

Yi = (0.5 + 0.25U c2

i + 0.5U c
i ) + (1 + e0.1U

c
i + U c

i )Xi + sεi, (11)

where U c
i ∼ N(0, 1) truncated at ±2, Xi = (Zi + τεi)/

√
1 + τ 2, εi ∼ N(0, 1) , and

(Zi, εi)
′ ∼ N(0, I2). This is one of the DGPs considered by Su, Murtazashvili, and

Ullah (2013). Similarly, we use τ to control the degree of endogeneity and choose

s to ensure the signal-noise ratio is 1 when we generate observations on Yi.

{Yi, Ui, Zi}N1
i=1 and {Xj, Uj, Zj}N2

j=1 are two independent samples drawn from a
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Figure 1.1: Monte Carlo Simulations for g1(u) and g2(u) with 500 Replications

(a) TS-NPGMM (N1 = 3, 000 , N2 = 3, 000)
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(b) NPGMM (sample size N= 3,000)
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population, subject to (11). We do not observe Xi in the first sample and Yj

in the second sample. As a benchmark, we also consider a hypothetical setting

where we can observe {Xk, Yk, Uk, Zk}Nk=1 in one sample. We are interested in

estimating the two functional coefficients: g1(u) = 0.5+0.25u2+0.5u and g2(u) =

1 + e0.1u + u. For both the two- and one-sample NPGMM estimators, we use the

standardized Epanechnikov kernel k(u) = 3
4
√
5
(1 − 1

5
u2)I(|u| ≤

√
5) for smoothing

and the following simple rule of thumb for bandwidth: h = sU n−1/5, where sU is

the standard error of U .

Figure 1.1 provides graphical representations of the two- and one-sample NPGMM

approaches based on N1 = N2 = 3, 000 observations and 500 replications. There

are at least three interesting observations that can be made from Figure 1.1. First,

both of these estimators are remarkably successful in recovering the true func-

tional coefficients. A visual inspection of the two figures reveals an excellent fit.

Second, the TS-NPGMM approach appears to have a slightly larger bias than the

one-sample NPGMM method. That bias may be caused by a violation of the first

equality of Assumption 4B in finite samples. Finally, the confidence bands, cal-

culated using the average variability over replications, are fairly narrow except at

the boundaries and the single-sample estimator is substantially more precise than
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Table 1.3: Numerical Assessment of TS-NPGMM and NPGMM

TS-NPGMM NPGMM
Sample Size ĝ1(u) ĝ2(u) ĝ1(u) ĝ2(u)

MAD MSE MAD MSE MAD MSE MAD MSE
500 0.445 0.684 0.680 2.275 0.217 0.092 0.229 0.103
800 0.349 0.318 0.496 0.789 0.174 0.057 0.178 0.061
1,000 0.320 0.273 0.441 0.617 0.159 0.046 0.164 0.052
1,500 0.262 0.177 0.363 0.396 0.134 0.033 0.134 0.034
2,000 0.227 0.126 0.323 0.308 0.116 0.025 0.120 0.027
2,500 0.203 0.099 0.287 0.231 0.106 0.020 0.109 0.022
3,000 0.194 0.092 0.271 0.203 0.098 0.017 0.101 0.018
3,500 0.173 0.067 0.245 0.156 0.091 0.015 0.094 0.016
4,000 0.166 0.064 0.236 0.147 0.087 0.013 0.089 0.014

the two-sample estimator. The boundary effect is standard for nonparametric esti-

mators but the visible relative efficiency loss of the two-sample estimator is a new

observation. It can be interpreted as the cost of obtaining a feasible estimator.

1.3.3.2 Numerical Assessment

Next, we consider the behavior of TS-NPGMM and NPGMM as the sample size

increases. We do so using a grid of S = 25 equally spaced points on the interval

[−2, 2]. We evaluate the estimates of g1(u) and g2(u) on the grid and calculate the

mean absolute deviation (MAD) and mean squared error (MSE) for each estimator

as follows:

MADk =
1

S R

R∑

r=1

S∑

s=1

|ĝk(r)(us)− gk(us)|,

MSEk =
1

S R

R∑

r=1

S∑

s=1

[ĝk
(r)(us)− gk(us)]

2,

where ĝk
(r)(us), k = 1, 2, is an estimate of gk(us) evaluated at grid point s in the

r-th replication. This is done over R = 500 replications.

We consider nine sample sizes for N1 = N2. We also looked at unequal samples
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but the substantive results are unchanged. We report the corresponding MSE

and MAD for TS-NPGMM and NPGMM in Table 1.3. Clearly, as the sample

size increases, the MSE and MAD of both estimators decrease quite quickly but

remain substantially larger for the two-sample estimator than for their single-

sample analogue. This is an interesting result that has to do with the relative bias

and relative efficiency of the two-sample versus one-sample estimator.

1.3.3.3 Deviations from Multinomial

Finally, we study robustness of TS-NPGMM to deviations from the assumption of

identical distribution of z1 in both samples. Here we consider the following data

generating process:

Yi = (0.0008Z4
1i − 0.0378Z3

1i + 0.6017Z2
1i − 4.0631Z1i + 10.0717)Xi + sεi,(12)

where Z1i is multinomial with K categories, Xi = (Z2i+τεi)/
√
1 + τ 2, εi ∼ N(0, 1)

, and (Z2i, εi)
′ ∼ N(0, I2).

To mimic the U.S data, we set the number of observations at 467 for the first

sample and 1,613 for the second sample. Also, following the discussion in Section

1.1 we let the K multinomial probabilities in the two samples differ by exactly as

much as in the two US samples of fathers. So if we applied the two-sample Chi-

square tests of Section 1.1 we would obtain the same p-values, up to a simulation

error. The number of replications is 500. The number of categories K ranges

between 5 and 9, corresponding to alternative groupings of the PSID education

categories.

Figure 1.2 presents simulation results for four cases. Panel 1.2(a) shows the

performance of TS-NPGMM under the ideal scenario that Z1 comes from the same

multinomial distribution in the two samples. The estimator reveals the true func-

tional form g(Z1) quite accurately. Panels 1.2(b) to 1.2(d) illustrate the extent of

potential bias caused by deviations from the equal distribution assumption, where

the deviations are of the magnitude observed in the PSID education data. Clearly
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Figure 1.2: Monte Carlo Simulations for Deviations from Same Distribution As-
sumption

(a) K = 5, p-value = 0.885
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(b) K = 5, p-value = 0.058
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(c) K = 6, p-value = 0.026
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(d) K = 9, p-value = 0.000
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the bias is larger when the differences in the distribution are spread over a larger

number of categories K. This corresponds to the range of p-values we obtained

when calculating Pearson’s Chi-square test for the US education data in Section

1.1. The p-values we report here are the average values over 500 replications.

The main message of Figure 1.2 is that TS-NPGMM shows a degree of ro-

bustness to deviations from the assumption of equally distributed Z1. Extreme

deviations captured by near-zero p-values of the Pearson test lead to an upward

bias illustrated on Panel 1.2(d). However, for sizable deviations with marginal and

strong rejections of the null of equal distributions (p-values of 0.02-0.06), the es-

timator still correctly estimates the overall functional form, up to a slight upward

bias, and contains the true curve within the 95% confidence band, as shown on

Panels 1.2(b) and 1.2(c). We will use this robustness feature in the discussion of

our empirical findings based on the US data.
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Table 1.4: TS-NPGMM Estimates of Intergenerational Income Mobility

USA Sweden
Father’s Income Standard Correlation Income Standard Correlation
Education Elasticity Error Coefficient Elasticity Error Coefficient

6 0.314 0.023 0.284 0.227 0.026 0.195
9 0.275 0.027 0.249 0.145 0.026 0.124
10 0.371 0.026 0.336 0.207 0.027 0.177
12 0.422 0.024 0.382 0.296 0.023 0.254

14 0.264 0.026 0.239 0.344 0.044 0.295
16 0.321 0.023 0.291 0.478 0.014 0.410

1.4 Empirical Findings and Policy Implications

In this section, we provide our main empirical findings obtained using the TS-

NPGMM estimation on the US and Swedish data and we discuss their policy

implications. For the estimation, we use the second-order Epanechnikov kernel

and a new matching-based method for optimal bandwidth selection and variance

estimation, designed to take account of our data structure. We describe the method

in Appendix 1.7.

We start by checking the variance equality assumption, which motivates the use

of our empirical estimates of ρ(z1) from equation (2) as intergenerational income

correlations rather than elasticities. If the variance of fathers’ and sons’ earnings

is homogeneous, the estimates of ρ(z1) are equivalent to intergenerational correla-

tions. If the variances are different, the estimates coincide with intergenerational

income elasticities. To test the assumption of homogeneity of variances, we em-

ploy Levene’s (1960) test of equality of variance. Our test statistics reject the null

hypothesis of homogeneity for both the US and Swedish samples with p-values of

0.012 and 0.003, respectively. We conclude that the estimates of ρ(z1) we obtain are

indeed the estimates of intergenerational elasticities rather than intergenerational

correlations.

Table 1.4 reports the TS-NPGMM estimates, for both the USA and Sweden, of
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intergenerational income elasticity as a function of fathers’ educational attainment

for selected values of fathers’ education measured in years. In addition, Table 1.4

reports the standard errors of the TS-NPGMM estimates and the estimates of cor-

relation coefficients between sons’ and fathers’ earnings. We obtain the correlation

coefficients by multiplying the US and Swedish intergenerational elasticities by the

ratios of the standard deviations in sons’ and fathers’ earnings that can be found

in Table 1.1.

Table 1.4 shows that for the median level of fathers’ education, which is at

around 12 years (the bold font entries in the table), the corresponding intergener-

ational income elasticities are about 0.42 and 0.30 for the US and Sweden, respec-

tively. Our TS-NPGMM estimates at the median levels of fathers’ education are

similar to those reported by Björklund and Jäntti (1997), which are 0.42 and 0.28,

respectively. This suggests that income mobility across generations is substantially

higher at the median in Sweden than in the US, which is the standard conclusion

also found in other studies, involving the US and Scandinavian countries. However,

in contrast to the previous studies, our estimates of intergenerational mobility vary

a lot outside the median range in both countries.

Similar conclusions regarding intergenerational mobility in the two countries

can be made when relying on correlation coefficients rather than intergenerational

elasticities. An apparent difference between the estimates of elasticities and cor-

relations is that the latter estimates are noticably smaller than the former ones.

This observation is not surprising and it is widely discussed in the literature. For

example, Black and Devereux (2011) point out that correlations factor out cross-

sectional variations in fathers’ and sons’ earnings while elasticities might be higher

in one society than in another simpy because the variance in sons’ earnings is higher

in that society. It is for this reason that we report both estimates. Importantly,

regardless of which measure of intergenerational mobility we consider, our main

conclusions are the same – intergenerational mobility in Sweden is higher than in

the USA for the median levels of fathers’ education, and it varies a lot outside the
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Figure 1.3: TS-NPGMM Estimates of Income Elasticity as a Function of father’s
Education

(a) US
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(b) Sweden

6 7 8 9 10 11 12 13 14 15 16
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Sweden

Father’s Education

In
te

rg
e

n
e

ra
ti
o

n
a

l 
E

la
s
ti
c
it
y

Notes: TS-NPGMM estimate, solid line; 95% confidence band, dashed line.

median range in both countries.

Table 1.5: Robustness checks for U.S income elasticity estimates

Father’s K = 6, p-value = 0.028 K = 5, p-value = 0.078
Education Income Elasticity Standard Error Income Elasticity Standard Error

6 0.239 0.018 0.287 0.014
9 0.307 0.023 0.303 0.018
10 0.371 0.022 0.366 0.017
12 0.381 0.023 0.375 0.018
14 0.273 0.021 0.269 0.016
16 0.344 0.026 0.339 0.020

Figure 1.3 presents a visual summary of the intergenerational elasticity esti-

mates reported in Table 1.4, extending them to the entire range of father’s educa-

tional attainment. Even though a degree of similarity exists in the overall pattern

of the two fits – there is an initial trough at 8-9 years followed by a hump at

11-12 years (almost unnoticeable in the case of Sweden) – the profiles of inter-

generational income mobility in the two counties look strikingly distinct. Income

mobility is lower in the US at the median value of father’s education, but the

situation is reversed at higher educational attainments. Sweden’s income elastic-

ity quickly grows in fathers’ education virtually for the entire range of education,

starting from at least some high school. American income elasticity decreases no-
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Figure 1.4: TS-NPGMM Estimates of Income Mobility for U.S Based on 3 Group-
ings

(a) K = 6, p-value = 0.028
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(b) K = 5, p-value = 0.078
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Notes: TS-NPGMM estimate, solid line; 95% confidence band, dashed line.

ticeably when fathers’ educational attainment includes the first years of college,

and basically stays low (within the error bounds) for higher attainments. So, while

Swedish sons seem to inherit the economic status of their well-educated fathers,

the US income mobility of sons of educated fathers is actually higher.

When comparing the two parts of Figure 1.3 at education levels below first

years of college, we find support for the conventional result that the elasticity is

lower in Sweden than in the USA. Also, Figure 1.3(a) clearly shows evidence of a

nonlinear relationship between intergenerational income mobility and father’s ed-

ucational attainment for the US. According to Figure 1.3(b), while also nonlinear,

this relation is much closer to being linear in Sweden especially when only levels

of fathers’ education above 9 years are taken into consideration. None of the two

patterns provides evidence of a constant income mobility.

Furthermore, the least mobile subpopulation of the Swedish society are sons

of highly educated fathers, who also happened to be higher income earners. On

the contrary, the least mobile individuals in the US are sons of fathers with a

high school degree and lower earnings. Interestingly, in both countries, the income

elasticity is lowest when fathers’ education is about 8-9 years of schooling, which

is close to compulsory education.

In light of the fundings in Section 1.3.3, we carry out robustness checks. We
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re-estimate the model for two more groupings of the observed education categories

in the US samples, for which the Pearson test of distribution equality leads to

a strong or marginal rejection of the null with p-values reported in Section 1.1.

Table 1.5 reports the resulting income mobility estimates at selected values of

father’s education using the grouping with K categories. Figure 1.4 is a visual

summary of Table 1.5. Though the new estimates are somewhat lower than in

Table 1.4 and Figure 1.3, our conclusions from the comparison with the Swedish

estimates are unchanged. The patterns of income elastiticies in Figures 1.3 to 1.4

are remarkably similar in spite of the differences in fractions of various education

categories between actual fathers and pseudo-fathers in the PSID samples. The

simulation results in Section 1.3.3.3 suggest that TS-NPGMM is robust against

this kind of deviations. The empirical results also support that conclusion.

The remarkable observation concerning families with well-educated fathers in

the two countries goes against the standard result measured at the median edu-

cational attainment of fathers (see, e.g., Björklund and Jäntti, 1997; Österberg,

2000). The median-based estimate seems to mask the widely heterogeneous degree

of persistence in earnings across generations with varying family backgrounds. For

families with fathers that have at least some college education, intergenerational

transmission of earnings turns out stronger in Sweden than in the United States,

which is a novel and interesting result.

Given this noteworthy result we are forced to reconsider the link often made

between lower income mobility across generations and higher income inequality

within a generation across countries (see, e.g., Björklund and Jäntti, 1997; Corak,

2013). Using the Gini coefficient – a popular measure of cross-sectional income

inequality – we can make the standard conclusion of the literature on income

inequality that Sweden is more equitable than the USA. Indeed, our calculations

reported in Table 1.6 show that the Gini coefficient for the USA is larger for both

generations than the Gini coefficient for the (roughly) corresponding generations in

Sweden. Furthermore, the Gini coefficients in Table 1.6 indicate a (relatively) large
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Table 1.6: Gini coefficients for USA and Sweden

USA Sweden
Fathers’ Earnings 0.318 0.241
Sons’ Earnings 0.321 0.188

decrease in income inequality between fathers and sons in Sweden in comparison

with a (relatively) small increase in the US. While the magnitudes of the changes

we obtain are somewhat different from the ones usually reported in the literature,

the direction of the changes are in accordance with the existing findings. Some

mismatch in the magnitude is not surprising due to the nature of the data we

use for the two countries. In particular, since our samples were constructed using

the standard guidelines (see, e.g., Björklund and Jäntti, 1997; Solon, 1992), we

inevitably ignore those individuals in both generations who reported zero earnings

during the years we consider.

On the one hand, our empirical findings agree with the literature on income

inequality in the two countries. On the other, they are in contrast with the existing

literature on intergenerational income elasticity. These two observations together

highlight a naturally arising possibility of a nonlinear relationship between income

mobility across generations and income inequality across countries. In view of

our findings, the theoretical conjecture of Solon (2004) that more income equal-

ity translates into more intergenerational mobility, known as the “Great Gatsby

Curve”, may need to be revisited and possibly reversed for important parts of

countries’ populations.

Do our findings contradict all the existing literature on the intergenerational

income transmissions in Sweden and the US? A careful review of previous studies

on the subject reveals a surprising conclusion. Several studies have pointed out

the possibility of finding the results we find. For example, Peters (1992, p. 466)

writes: “[m]uch of the theoretical literature on intergenerational mobility maintains

that the interactions between parents’ income and ... parents’ education ... are
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complex,” and goes on estimating a model with an unexpected but statistically

significant negative effect of fathers’ education on sons’ earnings, for families with

fathers who have at least some college education. The resulting magnitude of the

coefficient estimate on the interaction term between fathers’ earnings and a dummy

variable for whether the father attended some college suggests that there might be

no direct relationship between fathers’ and sons’ earnings for families with fathers

who have at least some college education.

Another study indirectly supporting our empirical results is by Aydemir, Chen,

and Corak (2009). They document a generational reversal of earnings, that is a sit-

uation where sons from below-average backgrounds become above-average earners

in their adulthood if the average parental education levels are controlled for. As

Peters (1992) speculates, there can be at least two theoretical explanations for the

mixed evidence on the interaction effect between parental earnings and education

on sons’ earnings. First, better educated parents might be more efficient investors.

Second, better educated parents might have better access to capital markets and

therefore might be able to reduce the dependency of investment on income.

Why do we observe these particular patterns of intergenerational elasticity

as a function of fathers’ education in the US and Sweden? First, the observed

differences can reflect the differences in educational policies targeting low income

families in these countries (see, e.g., Bratsberg, Røed, Raaum, Naylor, Jäntti,

Eriksson, and Österbacka, 2007). More specifically, the public educational system

in Sweden is known to be centralized while it is highly decentralized in the US.

Furthermore, the sources of public funding for schools are different in the two

countries. In Sweden, schools are funded by the central government while in the

USA, local authorities (cities, counties) are heavily involved.

The theoretical framework proposed by Solon (2004) for explaining the differ-

ences in intergenerational mobility across countries allows for an explicit effect of

government policy in public investment in children’s human capital on intergener-

ational mobility. In particular, Solon’s (2004) theoretical model implies that the
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more progressive the public spending policy in children’s education, the higher the

intergenerational mobility in the society. The differences in public policies across

countries should be very important due to the role the family background plays

in educational decisions. After all, a parental choice to locate in a community is

characterized by a combination of such factors as the local tax rates, housing prices

and quality of schools.

Interestingly, we observe that the US elasticity is at a minimum for 8-9 and

14 years of fathers education. These two levels of education represent important

landmarks in a young man’s life in the US, corresponding to the decisions whether

to pursue a higher level of education or not. It is possible that the US fathers who

once decided not to proceed with their own education have an incentive to persuade

their sons to proceed with theirs, while the fathers who achieved higher levels of

education and have less personal regrets with respect to their own educational

achievements do not have such strong incentives. In this way, the US fathers with

8-9 and 14 years of education can increase their sons’ chances of higher earnings

in the future.

Given the differences in the educational systems between the USA and Sweden,

as well as the differences in public policies in the two countries it is not surprising

to find that the family background plays a more important role for US families with

low levels of father’s education than for Swedish families. The Swedish educational

system has been characterized as more successful “in providing all citizens with

sufficiently high basic skills so that, particularly at the bottom of parents’ earnings

distribution, the adult earnings of sons are independent of their parents’ economic

resources” (Bratsberg at al., 2007, p. C73).

1.5 Conclusion

This paper studies intergenerational income mobility in the US and Sweden while

allowing for a flexible nonlinear relationship between fathers’ and sons’ earnings

that has not been previously considered in the literature. Our choice of the country
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pair is driven by the previous findings that the Scandinavian countries have the

lowest annual income inequality while the US is among the countries with the

highest inequality.

In order to estimate the flexible relationship between fathers’ and sons’ earn-

ings we develop a new nonparametric estimator that addresses the three main

concerns arising when conducting cross-country comparisons in intergenerational

income transmission – constancy of income mobility across the distribution of fam-

ilies, measurement error in father’s long-run economic status, and major missing

data issues, which include a two-sample data structure and attrition in later gen-

erations. First, we allow for a flexible nonparametric functional form between in-

tergenerational income mobility and observable family background characteristics

represented by father’s education in our analysis. Second, we exploit an instru-

mental variable approach to account for measurement error in father’s permanent

income (using father’s occupation as an instrument for father’s income). Third, we

design a two-sample nonparametric estimator, similar in spirit to the parametric

estimator of Angrist and Krueger (1992), to deal with the fact that fathers’ and

sons’ earnings come from different samples.

When we employ our estimator for estimation of intergenerational income mo-

bility in the United States and Sweden we find that the character of inequality in

the two countries is strikingly different. Even though the median mobility measures

we obtain are similar to those reported in other studies, our mobility estimates for

the entire population of families deviate greatly from these median-based levels.

Furthermore, our empirical findings suggest that family background captured by

father’s education matters for both Sweden and the US. For sons of fathers with

more than 14 years of education, earnings transmission is stronger in Sweden, with

the transmission strength quickly increasing in father’s education. For sons whose

fathers have educational attainment of less than 14 years of education, earnings

transmission is stronger in the US. Most importantly, our empirical results show the

patterns characterizing the relationship between intergenerational income mobility
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and family background that are useful for designing targeted policy recommenda-

tions. Besides permitting detailed cross-country comparisons in income mobility,

these results allow to track the effects of various policy changes on specific sub-

groups of the population. Finally, we advocate future research on the relationship

between intergeneratioal mobility and income inequality as our empirical findings

suggest a potentially nonlinear nature of this relationship.
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1.6 Appendix: Formal Statement and Proof of

Theorem

Here we provide a formal proof of consistency and asymptotic normality for the

TS-NPGMM estimator. For ease of reference, we adopt the following notation.

Let µ2(K) =
∫
vv′K(v)dv and µ =

∫
K2(v)dv. Define

Rj =
1

Nj

Nj∑

i=1

Khj
(z

(j)
1i − z1)Q(z

(j)
i )

K∑

k=1

Rk(z
(j)
1i , z1)x

(j)
ik , (13)

where Rk(z1i, z1) = bk(z1i)− bk0 − bk1(z1i − z1)− 1
2
(z1i − z1)

′ ∂2bk(z1)

∂z21
(z1i − z1),

Bj =
1

Nj

Nj∑

i=1

Khj
(z

(j)
1i − z1)Q(z

(j)
i )

1

2

K∑

k=1

(z
(j)
1i − z1)

′∂
2bk(z

(j)
1 )

∂z21
(z

(j)
1i − z1)x

(j)
ik , (14)

and

T∗
j =

1

Nj

Nj∑

i=1

Khj
(z

(j)
1i − z1)Q(z

(j)
i )u

(j)
i , (15)

where j = 1, 2. Denote the first-sample analogue of S2 by S1. Clearly, S1, R1, B1

and T∗
j are not feasible because x

(1)
i , y

(2)
i , and u

(j)
i , j = 1, 2, are not observed. How-

ever, it turns out that for the asymptotic results to apply, we will need assumptions

on these quantities.

Theorem. Under Assumptions 1–4, we have

√
N2h

L1
2

[
H2(β̂ − β)− h2

2

2

(
Bb(z1)

0

)
+ op(h

2
2)

]
d→ N(0,Ψ), (16)

where Ψ = f−2(z1)(S
′S)−1S′ΦS(S′S)−1 with Ω = Ω(z1) = E(z′

2
x|z1) and S =

S(z1) = diag{Ω,Ω ⊗ µ2(K)} and Φ being the limiting covariance matrix of√
N2h

L1
2 (T1−S2β). In addition, Bb(z1) =

∫
D(v, z1)K(v)dv = (tr(∇2bj(z1)µ2(K))),
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D(v, z1) =




v′∇2b1(z1)v
...

v′∇2bK(z1)v


, and ∇2bj(z1) =

∂2bj(z1)

∂z1∂z′1
.

Proof of Theorem: First, notice β̂ − β = (S′
2S2)

−1S′
2(T1 − S2β). Then,

H2β̂ = H2(S
′
2S2)

−1H2H
−1
2 S′

2T1 = (S̃′
2S̃2)

−1S̃′
2T1, where S̃2 = S2H

−1
2 , and we can

expressT1 asT1 = S1β+R1+B1+T∗
1. Then, T1−S2β = (S1−S2)β+R1+B1+T∗

1,

and we can write

H2(β̂ − β)− (S̃′
2S̃2)

−1S̃′
2[(S̃1H1 − S̃2H2)β +R1 +B1] = (S̃′

2S̃2)
−1S̃′

2T
∗
1. (17)

The proof of Theorem 2 from Cai and Li (2008) shows that
√
Njh

L1
j T∗

j , where

j = 1, 2, is asymptotically normal with zero mean and finite variance. Further, by

Proposition 1 of Cai and Li (2008), Bj = Op(h
2
j) and Rj = op(h

2
j), where j = 1, 2.

These results imply that the last term on the left-hand side of (17), which contains

B1, contributes to the asymptotic bias, while the term containing R1 is negligible

in probability. Condition h1/h2 → 1 of Assumption 3 ensures thatR1 = op(h
2
2) and

B1 = Op(h
2
2). Then, to establish consistency of (9), we are left with determining

the behavior of (S̃1H1−S̃2H2). Notice that, by Proposition 1 of Cai and Li (2008),

S̃1 − S̃2 = op(1) and
√

N2h
L1
2 (S̃1H1 − S̃2H2) =

√
N2h

L1
2 (S̃1−f(z1)S)H1−

√
N2h

L1
2 (S̃2−f(z1)S)H2−

√
N2h

L1
2 f(z1)S(H2−H1),

(18)

where S̃j → f(z1)S for both samples due to Proposition 1 of Cai and Li (2008)

and Assumption 4. Condition h2/h1 → 1 of Assumption 3 guarantees that the last

term of (18) is negligible in probability. Condition limN2→∞
N2

N1
= k of Assumption

3 allows to rewrite the first term of (18) as
√
k
√

N1h
L1
1 (S̃1 − f(z1)S)H1. Then,

the first two terms of (18) are also negligible in probability due to Proposition 1 of
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Cai and Li (2008). Thus, the consistency of TS-NPGMM is established, and the

order of the bias term in expression (17) is h2
2.

Second, observe that
√

N2h
L1
2 H2(β̂ − β) =

√
N2h

L1
2 (S̃′

2S̃2)
−1S̃′

2(T1 − S2β).

Then,

√
N2h

L1
2

[
H2(β̂ − β)− h2

2

2

(
Bb(z1)

0

)
+ op(h

2
2)

]
d→ N(0, (S̃′

2S̃2)
−1S̃′

2ΦS̃2(S̃
′
2S̃2)

−1),

(19)

whereΦ is the limiting covariance matrix of
√

N2h
L1
2 (T1−S2β). Using Proposition

1 from Cai and Li (2008) the asymptotic variance of the left-hand side of (19)

becomes f−2(z1)(S
′S)−1S′ΦS(S′S)−1, where S = S(z1) = diag{Ω,Ω ⊗ µ2(K)}.

QED.
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1.7 Appendix: Bandwidth Selection and Vari-

ance Estimation

Bandwidth selection is not straightforward for TS-NPGMM because yi and xi are

not contained in the same sample. Therefore, the calculation of residuals is infea-

sible and such standard data-driven tools of residual-based bandwidth selection as

least squares cross-validation cannot be applied directly.

Similarly, the main issue in variance estimation is how to obtain an estimate of

the limiting covariance matrix of
√
N2h2(T1 − S2β) if T1 and S2 are not available

in one sample.

We propose first obtaining a surrogate sample using the following procedure:

Step 1: We match x
(2)
j with y

(1)
i by matching z

(2)
j to z

(1)
i . That is, for a given

value of z
(2)
j , we look for such i that z

(1)
i = z

(2)
j . The y

(1)
i corresponding to that z

(1)
i

is the value of y matched to x
(2)
j . Specifically, in our empirical analysis, we match

son’s income with father’s income by choosing equal values of father’s education,

reported in both samples. Not surprisingly, there are more than one such matching

observations for any value of father’s education. That is, for each value x
(2)
j we

have several matched values of y
(1)
i .

Step 2: We take an average of the subsample of y
(1)
i matched to x

(2)
j . This

produces a single value of the matched y – we denote it by ȳ
(2)
j – and a surrogate

full sample {ȳ(2)j ,x
(2)
j , z

(2)
j }, j = 1, . . . , N2.

In essence, this procedure is based on Assumption 4B. It can be shown that,

under Assumption 4B, E(y(1)|z) = E(y(2)|z) and so, given z, we expect to observe

the same values of y in both samples. Basically, we estimate the value of y for the

sample that does not contain it with the average of the matched values of y from

the sample where y is actually observed.

Once we have the full sample, we apply the standard leave-one-out cross-

validation technique to obtain the optimal bandwidth and use it in both samples.
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Similarly, we use the surrogate sample {ȳ(2)j ,x
(2)
j , z

(2)
j } and our consistent esti-

mator β̂ to estimate Ψ by

Ψ̂ = f̂−2(Ŝ′Ŝ)−1Ŝ′Φ̂Ŝ(Ŝ′Ŝ)−1,

where, for scalar z1, z2 and x,

f̂ =
1

N2h

N2∑

i=1

Kh

(
z
(2)
1i − z1

)

Ŝ = diag{Ω̂, Ω̂⊗ µ2(K)}

Ω̂ =

∑N2

i=1 z
(2)
2i x

(2)
i Kh

(
z
(2)
1i − z1

)

∑N2

i=1 Kh

(
z
(2)
1i − z1

)

Φ̂ =
1

N2

[
N2∑

i=1

q̂iq̂
′
i + 2

∑

i 6=j

q̂iq̂
′
j

]

q̂i = Q
(
z
(2)
i

)
Kh

(
z
(2)
1i − z1

) [
ȳ
(2)
i −

(
x
(2)
i ,x

(2)
i (z

(2)
1i − z1

)
β̂
]

Here, f̂ , Ŝ and Ω̂ are feasible without the surrogate sample and are consistent

for the population equivalents under standard assumptions. However, Φ̂ would

not be feasible without our matching procedure and its consistency depends on an

additional assumption of homoskedasticity across samples. Specifically, since the

weighted local residuals q̂i represent the sample (2) residuals, the estimates of the

limiting covariance matrix based on q̂i are consistent if the conditional (co)variance

of the error terms in the selected samples is the same, i.e., if E

[(
u
(1)
i

)2
|z
]

=

E

[(
u
(2)
i

)2
|z
]
= E [u2

i |z] and E
[
u
(1)
i u

(1)
j |z

]
= E

[
u
(2)
i u

(2)
j |z

]
= E [uiuj|z]. In other

words, we have to assume homoskedasticity across samples whether or not we

assume homoskedasticity and uncorrelatedness across i within each sample. In

essence Ψ̂ is a version of heteroskedasticity and autocorrelation robust variance

estimator based on the surrogate sample.

A further note on homoskedasticity is in order. Our basic consistency and

asymptotic normality result in Theorem 1 holds under unrestricted conditional er-

42



ror variance E

[(
u
(j)
i

)2
|z
]
, j = 1, 2 (provided it is finite – Assumption 1). That is,

in principle the errors are allowed to be heteroskedastic across observations within

a sample and across samples. Even the independence of u
(j)
i across i, implied by

the first part of Assumption 1, can be relaxed with no consequence for the result as

the asymptotic variance matrix Ψ would reflect the non-equal conditional covari-

ances. The product and cross-product terms q̂iq̂
′
j in our estimator of Ψ provide for

the required adjustment to handle heteroskedasticity and autocorrelation within

the surrogate sample, but not across the samples.
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Chapter 2

Sparse Sieve MLE

The Dantzig selector (DS) was recently introduced to deal with linear regressions

in which the number of parameters is very large, possibly larger than the number

of observations, but some parameters are believed to be zero – a setting known

as a sparsity scenario (Candes and Tao, 2007). DS is attractive because of its

property – known as the oracle inequality – to achieve a loss very similar to what

we would get if we were told (by an oracle) which elements of the true parameter

vector are zero (see, e.g., Koltchinskii, 2009). Unlike the LASSO estimator, which

shares similar oracle properties, DS gives parameter estimates with the smallest l1

norm and is computationally simpler because it reduces to a linear programming

problem (see, e.g., Bickel, Ritov, and Tsybakov, 2009).

In this paper we consider using DS in a semiparametric sieve maximum like-

lihood estimation (SMLE) under a sparsity scenario. Basically, we employ DS in

an adaptive nonparametric copula density estimation where the number of sieve

farameters is potentially larger than the sample size but the sieve parameter space

is sparse. Therefore, this work is related to the sparse density estimation via l1

penalization (SPADES) of Bunea, Tsybakov, Wegkamp, and Barbu (2010), who

consider a LASSO-type penalized objective function. Instead, we use the DS ap-

proach, minimizing the l1 norm of the parameter vector directly.

The goal is to use the nonasymptotic nature of the oracle inequalities to achieve
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in finite samples what SMLE achieves only asymptotically – an estimator that

dominates the conventional, independence-based QMLE. In other words, the pri-

mary purpose of using DS here is relative efficiency and improved finite sample

properties, not model selection.

The rest of this chapter is organized as follows. Section 2.1 presents our es-

timator: the Dantzig selector based Sieve MLE (DS-SMLE). In Section 2.2, we

illustrate the finite sample performance of DS-SMLE through simulations. Section

2.3 is an application of DS-SMLE to insurance. Section 2.4 concludes.

2.1 Copula-Based SMLE of Parameters in Marginals

2.1.1 SMLE and QMLE

Consider the setting of a panel with T time periods and N individuals. Assume T

is fixed and N → ∞. We will fix T = 2 for simplicity. Suppose that for each cross

section, we have a correctly specified parametric likelihood-based model and we

can estimate this model consistently using only the cross sectional data. However,

it is usually possible to use the entire panel to obtain more efficient estimators (see,

e.g., Amsler, Prokhorov, and Schmidt, 2014; Prokhorov and Schmidt, 2009b).

The estimator we consider is the sieve MLE (SMLE) (see Chen, 2007, for a

review). In essence, this is a maximum likelihood estimator which uses a sieve

approximation to the true joint log density. Specifically we follow Panchenko and

Prokhorov (2013) and consider a sieve approximation of the copula correspond-

ing to the joint density. In this setting, the SMLE attempts to use information

contained in the dependence structure between cross sections.

Let f(yit; β), t = 1, 2, denote the marginal densities for each cross section,

indexed by parameter β. Let h(yi1, yi2; β) denote the joint density of (yi1,, yi2)

and let c(u1, u2) denote the copula density, corresponding to h(yi1,, yi2; β). We

are interested in estimation of β – a parameter vector that collects all unknown

parameters from the likelihood-based models for the cross sections. By a well
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known result due to Sklar (1959),

lnh(yi1,, yi2; β) = ln f(yi1; β) + ln f(yi2; β) + ln c(F (yi1; β), F (yi2; β)), (1)

where F (yit; β) denotes the corresponding marginal cdf’s. They may be distinct

but we will put this aside for the moment.

The SMLE replaces the last term in (1) with a truncated infinite series represen-

tation (a sieve) of the copula log density and then carries out the usual optimization

over both β and the parameters of that representation. This produces the sieve

MLE estimator β̂. Panchenko and Prokhorov (2013) derive the semiparametric

efficiency bound for estimation of β and show that β̂ achieves it.

Denote the vector of sieve parameters by γ and the sieve approximator by ln cγ.

Then, the SMLE maximizes the approximate joint log likelihood

lnLγ(β) =
N∑

i=1

[ln f(yi1; β) + ln f(yi2; β) + ln cγ(F (yi1; β), F (yi2; β))] (2)

The fundamental logic of the sieve estimation is that, when the space of functions

to be approximated is not too complex and the approximation error goes to zero

sufficiently fast, we obtain a
√
N -consistent estimator of β (see, e.g., Shen, 1997;

Shen and Wong, 1994).

As an alternative we consider the conventional QMLE estimator which maxi-

mizes the quasi-log-likelihood

lnLQ(β) =
N∑

i=1

[ln f(yi1; β) + ln f(yi2; β)]

– identicial to the joint log-likelihood under the assumption of independence be-

tween yi1 and yi2. It is now well understood that the QMLE is consistent for β but

the robust, or “sandwich”, version of the variance matrix should be used if there

is dependence between the cross sections.

The last term in lnLγ(β) is what distinguishes SMLE from QMLE. We have
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assumed that the marginals are correctly specified so the marginal score function –

the derivative of ln f(yit, β) with respect to β – is zero mean for both cross sections.

Correspondingly, the estimator that maximizes lnLγ(β) requires that the copula

score is mean zero while the QMLE requires that it is exactly zero, or equivalently,

that the copula is the independence copula c(u, v) = 1. That is, unlike QMLE, the

SMLE implies that the following first-order condition holds:

N∑

i=1

∇(β,γ) ln cγ (F (yi1; β), F (yi2; β)) = 0

We will use this condition in constructing our new estimator.

2.1.2 Bernstein Polynomial Sieve

Let [0, 1]2 denote the unit cube in R2. For a distribution function Pc : [0, 1]
2 → R,

a bivariate Bernstein polynomial of order k = (k1, k2) associated with Pc is defined

as

Bk,Pc
(u) =

k1∑

j1=0

k2∑

j2=0

Pc

(
j1
k1

,
j2
k2

)
qj1k1(u1)qj2k2(u2) (3)

where u = (u1, u2) ∈ [0, 1]2, qjsks(us) =
(
ks
js

)
ujs
s (1 − us)

ks−js . The polynomial

is dense in the space of distribution functions on [0, 1]2 and its order k controls

the smoothness of Bk,Pc
, with a smaller ks associated with a smoother function

along dimension s. Moreover, with the conditions Pc(0, 1) = Pc(1, 0) = 0 and

Pc(1, 1) = 1, Bk,Pc
(u) is a copula function and is referred to as the Bernstein

copula associated with Pc. As min{k} → ∞, Bk,Pc
(u) converges to Pc at each

continuity point of Pc and if Pc is continuous then the convergence is uniform on

the unit cube [0, 1]2 (Sancetta and Satchell, 2004; Zheng, 2011).
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The derivative of (3) is the bivariate Bernstein density function

bk,Pc
(u) =

∂2

∂u1∂u2

Bk,Pc
(u)

=

k1∑

j1=1

k2∑

j2=1

wk(j)
2∏

s=1

β(us; js, ks − js + 1) (4)

where, for j = (j1, j2), wk(j) = ∆Pc

(
j1−1
k1

, j2−1
k2

)
are weights derived using the for-

ward difference operator ∆, and β(·; γ, δ) denotes the probability density function

of the β-distribution with parameters γ and δ.

In order to give a mixing interpretation to wk, let Cube(j,k) denote a cube

given by ((j1−1)/k1, j1/k1]× ((j2−1)/k2, j2/k2] with the convention that if js = 0

then the interval ((js−1)/ks, js/ks] is replaced by the point {0}. Then, the mixing

weights wk(j) are the probabilities of Cube(j,k) under Pc. The Bernstein density

function bk,Pc
(u) can thus be viewed as a mixture of beta densities, and if Pc is a

copula, bk,Pc
(u) is itself a copula density.

Alternatively, if we interpret Pc as an empirical copula on
[

1
k1
, 2
k1
, ..., k1

k1

]
×[

1
k2
, 2
k2
, ..., k2

k2

]
then bk,Pc

(u) can be viewed as a smoothed copula histogram using

β-densities as smoothing functions.

The Bernstein copula density has several attractive properties as a sieve for the

space of copula densities, which makes it preferable to other types of sieve. Being

a mixture of (a produce of) β-densities, it assigns no weights outside [0, 1]2 and

it easily extends to dimensions higher than two. Other sieves known to approxi-

mate well smooth functions and densities on R are often subject to the boundary

problem and do not extend easily to multivariate settings (see, e.g., Bouezmarni

and Rombouts, 2010; Chen, 2007). The Bernstein sieve is a copula density by

construction; at the same time, it does not impose symmetry, contrary to other

conventional kernels used in mixture models such as multivariate Gaussian (see,

e.g., Burda and Prokhorov, 2013).

Most importantly, as a density corresponding to Bk,Pc
(u), bk,Pc

(u) converges, as

min{k} → ∞, to pc(u) ≡ ∂2

∂u1∂u2
Pc(u) at every point on [0, 1]2 where pc(u) exists,
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and if pc is continuous and bounded then the convergence is uniform(Lorentz,

1986). Uniform approximation results for the univariate and bivariate Bernstein

density estimator can be found in Vitale (1975) and Tenbusch (1994).

In what follows we will assume Pc(u) to be a continuous copula. As a result,

we will omit subscript Pc and let bk(u) simply denote the Bernstein copula density

with weights wj, where j = 1, . . . , J, indexes the set {j1, j2}. Consequently, we can
write the copula density as follows

bk(u) =
J∑

j

wjgj(u),

where gj(u) =
∏2

s=1 β(us; js, ks − js + 1).

2.1.3 SMLE with Dantzig Selector

In practice, the SMLE involves a truncation of the Bernstein polynomial approx-

imation at some large values kN ≡ (k∗
1, k

∗
2) . This means there is a large but

finite number – possibly different in each coordinate – of the mixing weights wj

in the Bernstein copula density. Let γN contain all such mixing weights. Then,

J = dim{γN} = k∗
1k

∗
2 and it will grow exponentially as we add dimensions. An im-

portant issue in adaptive estimation of such models is how to reduce the dimension

of γN .

2.1.3.1 Dantzig Selector

The Dantzig selector is an “automatic” mechanism for selecting non-zero parame-

ters in highly parameterized problems. It is “automatic” because we do not need

to even set the maximum number of non-zero parameters. So long as there are

zero and non-zero elements in the parameter vector, that is, so long as a sparsity

scenario applies, the method will pick the non-zero parameters correctly.

The initial application of the Dantzig selector was in linear regressions with

more regressors than observations. Suppose we have the following regression model
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y = Xθ + u, where θ ∈ Rp, u ∼ N(0, σ2I) and X is a N × p data matrix with

possibly fewer rows than columns, i.e. with N < p. Then, the Dantzig selector of

Candes and Tao (2007) is the solution to the following problem

min
θ

||θ||l1 subject to ||X ′(y −Xθ)||l∞ ≤ λp σ, (5)

where ||θ||l1 =
∑p

j=1 |θj| is the l1-norm of θ, ||Z||l∞ = max{|Z1|, . . . , |Zp|} is the

l∞-norm of any vector Z ∈ Rp, and λp is a positive number – a function of p

only. Compared to the usual OLS, the Dantzig selector searches for a θ which

has the smallest l1-norm and, within a fixed tolerance level λ, satisfies the normal

equations. Beacuse it produces sparse coefficient estimates, it can be used for

model selection. For λ = 0, it reduces to standard OLS.

It is well known (see, e.g., Bickel, Ritov, and Tsybakov, 2009) that this problem

can be viewed as a penalized LS problem, written as follows

min
θ

{
SSE(θ) + 2λpσ

p∑

j=1

|θj|
}
, (6)

where SSE(θ) = 1
N

∑N
i=1(yi − Xiθ)

2 and the penalty term grows with complexity

of θ as measured by the l1-norm. So the Dantzig selector solves this problem for a

vector having the smallest l1-norm.

The most attractive theoretical property of the Dantzig selector is that there is

a nonasymptotic bound on the error in the estimator of θ that is within a factor of

log p of the error achieved if the true predictors are assumed known. To see this, let

θ̂ denote the solution. Candes and Tao (2007) show that under certain conditions

on X and under a sparsity scenario (which roughly amounts to an identification

condition in this model), the following holds with a large probability,

||θ̂ − θ||2l2 ≤ const · λ2
p ·
(
σ2 +

p∑

j=1

min
{
θ2j , σ

2
}
)
, (7)

where ||θ||l2 =
√
θ′θ and λ2

p is of order O(log p).
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Now consider a standard LS estimator in the situation when we know (from an

oracle) which θj’s are significant (i.e., larger than the noise, |θj| > σ). In this case,

we can set equal to zero all the elements of θ that are smaller than σ in magnitude

and let the OLS estimate the significant elements. If, for simplicity, X is assumed

to be the identity matrix, then the MSE of the LS estimate of θ will contain terms

equal to σ2 for each significant θj and terms equal to θ2j ’s for each insignificant θj’s

(i.e., for the coordinates within the noise level). That is, the MSE of this infeasible

estimator can be written as follows

MSEOLS =

p∑

i=1

min{θj, σ2}

When we relax the assumption that X is identity but still allow the oracle to

tell us which subset of θj’s is right to use in the OLS, the MSE will be different.

However, Candes and Tao (2007) show that, under certain assumptions on X,

MSEOLS can still be viewed as a proxy for the MSE in the more general setting,

which has the following natural interpretation

p∑

i=1

min{θj, σ2} = min
S⊂{1,...,p}

||θ − θS||2l2 + |S|σ2,

where S indexes the set of significant θj’s, θS contains θj’s if j is in S and 0’s

otherwise and |S| denotes the number of non-zero elements in S. Of course, the

first term of this representation is the squared bias of the ideal estimator and the

second is its variance

So the DS nearly achieves the MSE of the ideal estimation, in which an oracle

tells us the composition of S. Specifically, the MSE of DS in (7) can be written as

follows

MSEDS ≤ const · λ2
p · (σ2 +MSEOLS).

In other words, even though no knowledge of the sparsity scenario was used in
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estimating θ̂, the estimation error is proportional to log p times the error rate

achieved if the significant X’s were known. So the price we pay for choosing the

true predictors by DS is quite small as log p is not a fast rate. This feature is

known as the oracle property of DS.

2.1.3.2 Dantzig Selector for Copula Score

It is not difficult to see that under Gaussian errors the constraint in (7) is a

constraint on the score function of the underlying likelihood. So the DS can be

equivalently interpreted as looking for a sparse θ close to the peak of the normal

likelihood. This observation motivates the estimator we propose.

The Dantzig Selector SMLE (DS-SMLE) we propose is the solution to the

following minimization problem

min
β,γN

||γN ||l1 subject to

∣∣∣∣∣

∣∣∣∣∣
1

N

N∑

i=1

∇(β,γ) ln cγN (F (yi1; β), F (yi2; β))

∣∣∣∣∣

∣∣∣∣∣
l∞

≤ r (8)

and
1

N

N∑

i=1

∇β ln f(yit; β) = 0, t = 1, 2

where cγ(u) = bk(u) is the Bernstein copula density, and ∇(β,γ) denotes the deriva-

tive with respect to (β, γ).

The mean zero conditions on the marginal scores correspond to the assumption

of correct specification of the marginals, which is our basic supposition. The copula

score with respect to β and γ corresponds to the additional terms in the joint log-

likelihood. In the fully parametric setting with a correctly-specified (up to a finite

dimensional parameter γ) copula family, this score would be zero mean. In our

setting, γ represents a function and dim{γ} is potentially greater than the sample

size. Essentially, our estimator looks for such a vector (β′, γ′) for which γ has the

smallest l1-norm and the first order conditions characterizing the MLE solution

hold within a fixed tolerance level.

This problem is an example of l1-norm minimization subject to nonlinear con-

straints. There are equivalent convex formulations for such problems (see, e.g.,
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Candes, 2006). We can rewrite (8) as follows

min
β,γN ,x

dim γN∑

j=1

xi subject to −x � γN � x (9)

−r1 � 1
N

∑N
i=1 ∇(β,γ) ln cγN (F (yi1; β), F (yi2; β)) � r1

1
N

∑N
i=1 ∇β ln f(yit; β) = 0, t = 1, 2

where x = {xi}dim γN
i=1 , 1 denotes a conforming vector of ones and “�” represents

coordinate-wise comparison of vectors. This will be the preferred formulation in

practice because standard convex optimization procedures and fast algorithms are

available to compute the solution, which includes β̂ (see, e.g., Birgé and Massart,

1997; Devroye and Lugosi, 2000).

In order to see the relationship between this estimator and the penalized LS

problem (6), note that DS-SMLE can be viewed as a solution to the following

penalized MLE problem:

min
β,γ



− 1

N
lnLγ(β) + r

dim{γ}∑

j=1

|γj|



 , (10)

where lnLγ(β) is the copula-based log-likelihood given in (2), in which the marginals

are assumed to be correctly specified. This is, of course, the penalized LS criterion

from (6), with SSE replaced by lnL, and the logic of our estimator is in essence the

same as that of the conventional Dantzig selector – we are choosing the sparsest

vector satisfying the Dantzig constraint implied by the penalized problem.

The choice of 1
N
lnLγ(β) in (10) is natural if we view our problem as a mini-

mization of the Kullback-Leibler distance between the true density h(y1, y2) and the

sieve-based density hγ(y1, y2; β), where hγ(y1, y2; β) = f(y1; β)·f(y2; β)·cγ(F (y1; β), F (y2; β)).

Let KL(f, g) denote the Kullback-Leibler distance between arbitrary densities f

and g. Then,

argmin
β,γ

KL(h, hγ) = argmin
β,γ

E ln
h(y1, y2)

hγ(y1, y2; β)
= argmin

β,γ
[−E lnhγ(y1, y2; β)] .

53



The expectation we minimize depends on the unknown h, so instead, we approx-

imate it by its empirical counterpart − 1
N
lnLγ(β). From this perspective, the

problem in (10) can be viewed as a minimization of penalized Kullback-Leibler

divergence.

2.1.3.3 Oracle Inequality

In this section we provide an oracle property of our estimator. We compare its risk

with that of an infeasible procedure in which an oracle tells us which components

of γ are insignificant. We start with a result for the copula parameter γ.

Suppose the marginal distributions are known. Then, the DS problem in (8) re-

duces to looking for the sparsest vector γ such that
∣∣∣
∣∣∣ 1N
∑N

i=1 ∇γ ln cγ (ui1, ui2)
∣∣∣
∣∣∣
l∞

≤
r, where uij = F (yij), j = 1, 2, are obtained using the known marginals. Let γ̂

denote this solution. The next result gives a bound on the KL divergence of the

γ̂-based copula.

Proposition 2.1. Let cγ(u) be the Bernstein copula sieve, i.e. cγ(u) = γ′g(u),

where g(u) = (g1(u), . . . , gJ(u))
′ and gj(u) =

∏2
s=1 β(us; js, ks − js + 1), j =

1, . . . , J. Let Mj ≡ ||gj(u)||l∞, j = 1, . . . , J . Then, with probability close to one,

for all γ ∈ RJ

KL(c, cγ̂) ≤ KL(c, cγ) + 2r
J∑

j=1

|γ̂j − γj| (11)

Proof. Let lγi ≡ ln cγ(u1i, u2i) and let J ≡ dim{γ}. By definition of γ̂,

− 1

N

N∑

i=1

lγ̂i + r

J∑

j=1

|γ̂j| ≤ − 1

N

N∑

i=1

lγi + r

J∑

j=1

|γj|,

for any γ ∈ RJ . Thus,

KL(c, cγ̂) ≤ KL(c, cγ) +
1

N

N∑

i=1

(lγ̂i − lγi)− E(lγ̂i − lγi) + r

J∑

j=1

|γj| − r

J∑

j=1

|γ̂j|
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Define ξj(ui) =
gj(ui)

cγ(ui)
and let Dj =

1
N

∑N
i=1{ξj(ui)−Eξj(ui)}. Define the event

Ω =
⋂J

j=1{|Dj| ≤ r}. By concavity of the log-function,

1

N

N∑

i=1

(lγ̂i − lγi)− E(lγ̂i − lγi) ≤ 1

N

N∑

i=1

1

cγ(ui)
[cγ̂(ui)− cγ(ui)]− E

1

cγ(ui)
[cγ̂(ui)− cγ(ui)]

=
J∑

j=1

(
1

N

N∑

i=1

gj(ui)

cγ(ui)
− E

gj(ui)

cγ(ui)

)
[γ̂j − γj]

Therefore,

KL(c, cγ̂) ≤ KL(c, cγ) +
J∑

j=1

(
1

N

N∑

i=1

ξj(ui)− Eξj(ui)

)
[γ̂j − γj] + r

J∑

j=1

|γj| − r
J∑

j=1

|γ̂j|

Hence, on the event Ω,

KL(c, cγ̂) ≤ KL(c, cγ) + r

J∑

j=1

|γ̂j − γj|+ r

J∑

j=1

|γj| − r

J∑

j=1

|γ̂j|

≤ KL(c, cγ) + 2r
J∑

j=1

|γ̂j − γoj| ,

where the last inequality follows by the triangle inequality.

Now by the Hoeffding inequality,

P(Ω) = P(
J⋂

j=1

|Dj| ≤ r) = 1−P(
J⋃

j=1

|Dj| > r) ≥ 1−
J∑

j=1

exp(nr2/(16M2
j )) = 1−δ.

2.2 Simulations

In this section we study the finite sample behavior of DS-SMLE as well as discuss

issues arising when simulating from the Bernstein copula. Our goal is to com-

pare the behavior of DS-SMLE with QMLE and SMLE, where the QMLE is the

conventional estimator based on the independence assumption and the SMLE is
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the unpenalized SMLE based on the Bernstein copula. The DS-SMLE reduces to

SMLE when r = 0.

Numerically, the fundamental difference between SMLE and DS-SMLE is that

the SMLE estimates the entire vector γN for some large value of JN , while DS-

SMLE shrinks the elements of γN toward zero and estimates only the non-zero

elements.

2.2.1 Simulating from Bernstein copula

A key issue in simulations is how to generate data from the Bernstein copula. The

problem is that the standard way of generating observations from an arbitrary

copula, known as the conditional cdf method, is too expensive in the settings of

the Bernstein copula. The reason for this is that γ is obtained as the first order

difference of parameters in the Bernstein copula cdf. As a result, γ basically

contains ∆Pc(
j1
k1
, j2
k2
) and we have to solve a large system of equations to obtain

Pc(
j1
k1
, j2
k2
), where

∆Pc

(
j1
k1

,
j2
k2

)
= Pc

(
j1 + 1

k1
,
j2 + 1

k2

)
− Pc

(
j1 + 1

k1
,
j2
k2

)
− Pc

(
j1
k1

,
j2 + 1

k2

)
+ Pc

(
j1
k1

,
j2
k2

)

As an alternative, we use the accept-reject approach (see, e.g., Pfeifer, Strass-

burger, and Philipps, 2009). To introduce the method, suppose we want to generate

data from a distribution F with a pdf f(x), which is a complicated distribution

and we do not know how to simulate from it directly. The basic idea of the method

is to find another distribution G with a pdf g(y), for which we already have an

efficient algorithm to generate data. The key is that this distribution should also

be very close to f(x). Specifically, the ratio f(x)/g(x) should be bounded by a

positive constant M , i.e. supx{f(x)/g(x)} ≤ M . Then we can apply the following

procedure:

1. Generate y from g(y)

2. Independently generate u from uniform on [0,1]
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3. If u ≤ f(y)
Mg(y)

, then set x = y and use x as a sample from f(x). Otherwise, go

back to Step 1.

It can be easily shown that P (Y ≤ y|U ≤ f(y)
cg(y)

) = F (y). Also, note that the

expected number of steps required to generate one observation from f(x) is M .

We wish to apply the accept-reject method to the Bernstein copula. We use a

multivariate uniform distribution as the reference distributionG(.) with the density

function g(.) = 1. In this case, M = supu{bk(u)/g(u)} = maxu∈[0,1]d{bk(u)}. The
simulation algorithm is as follows:

1. Generate (u1, . . . , ud) from the multivariate uniform distribution. Here d

denotes the number of cross-sections.

2. Independently generate ud+1 from uniform on [0,1].

3. if ud+1 ≤ bk(u)
M

, then use (u1, . . . , ud) as an observation from the Bernstein

copula. Otherwise, go back to step 1.

It is clear that due to the reference distribution G being uniform, we can actually

combine Step 1 and 2 into one step.

2.2.2 Sparse Parameter Path

The tuning parameter r is key to the amount of shrinkage done by the DS. As a

first step of the simulation exersice we study the behavior of our estimator of γ

over all r.

Our data generating process has exponential marginals with µ1 = µ2 = 0.5 and

the Bernstein copula with J = 16 (four parameters in each dimension), so in total,

there are 18 parameters. However, the γ has only four elements out 16 that are
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nonzero as shown in the following matrix.




0 0 0 0.278

0 0 0.212 0

0 0.244 0 0

0.266 0 0 0




This corresponds to a copula with a high negative dependence. The number of

observations is 100.

Figure 2.1 shows the estimated parameter paths for the non-zero elements of

γ (colored solid lines) and the insignificant elements (dashed red lines). There are

two important observations. First, the DSSMLE can correctly identify the non-

zero elements in γ. Second, in the region where the zero γj’s are actually estimated

to be close to zero (the region with small l1), the non-zero γj’s are estimate to be

smaller than the true values. This suggests that the DS-SMLE over-shrinks γ.

The over-shrinkage result is not uncommon in the DS literature and James and

Radchenko (2009) propose a two-step procedure called double Dantzig to overcome

this issue. We follow James and Radchenko (2009) and implement the following

two-step procedure in our simulations:

1. Run the DS-SMLE using a large value of the tuning parameter. Select the

non-zero elements γj. Denote the selected set by γ∗.

2. Run the unrestricted SMLE over γ∗ and β.

So in effect we run two DS-SMLE where in the second step we set the tuning pa-

rameter equal to be zero. A similar procedure called the gaussian Dantzig selector

was proposed by (Candes and Tao, 2007, p. 2323) and can be seen as a special

case of the double Dantzig of James and Radchenko (2009).
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Figure 2.1: DSSMLE Parameter Path
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Notes: Plot of estimated coefficients for different values of λ. The solid lines represent the
variables which are nonzeros in the true setting of γ. The dashed lines correspond to the

remaining variables.

2.2.3 Simulation Results

Compared to the QMLE and SMLE, our DS-SMLE estimator does not restrict

the dependence structure but uses a sparsity scenario, that is, it estimates only

non-zero elements of γ. For all three estimators, we report bias, variance, MSE,

relative efficiency (RE) with respect to the QMLE and relative MSE (RMSE) with

respect to QMLE. For SMLE and DS-SMLE we also report the dimension of γ.

The number of observations is 500 and the number of replications is 1,000.

We consider four data generation processes. All have the same exponential

marginals, where the mean µ is the parameter of interest with the true value

µ1 = µ2 = 0.5, but the copula functions are different. We use the Plackett ,Student-

t, Frank, and Gaussian copula as true copula. The copula parameter varies over the

relevant range, representing different strengths of dependence. We report Kendall’s

τ for each such value.

We use Akaike information criterion (AIC) to choose the dimension of γ. The

simulation results show that AIC is a more reasonable indicator than Bayesian
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information criterion (BIC). Figure 2.2 illustrates that models with the low RE

and RMSE usually have smaller AIC scores.

Figure 2.2: AIC, BIC, RE and RMSE for different values of dim(γ)
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Notes: The DGP is exponential marginals and Frank Copula with Kendall’s τ = −0.8. The
number of replications is 1000 and the number of observations is 500. BIC and AIC in the figure
are the average of simulated values. The circle line is scaled BIC; the star dash line is scaled
AIC; the dot dash line is relative efficiency; the solid line is relative mean squared errors.

Table 2.2 summarizes the simulation results. Two things are important here.

First, for some values of τ , the DS-SMLE is at least as efficient as unrestricted

SMLE, while it dramatically reduces the number of sieve parameters to be esti-

mated. For example, Table 2.2 shows that ,when τ = −0.9 with Plackett copula,the

DS-SMLE estimates only 15 of 256 sieve parameters and it preserves the efficiency

gains of the SMLE. We can observe simiar patterns if DGP is Frank, Student t, or

Gaussian copula. Second, as negative dependence goes from high to low, both the

SMLE and DS-SMLE have decreasing relative efficiency over QMLE. For instance,

Table 2.2 shows as Kendall’s τ varies from -0.9 to -0.7, both of DS-SMLE and

SMLE become less advantageous than QMLE.
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Table 2.1: QMLE, t copula based Pseudo-MLE, SMLE, DS-SMLE for insurance
application with standard errors

QMLE PMLE SMLE DS-SMLE
(Rob.St.Er) (Rob.St.Er) (St.Er) (St.Er)

a 14.7561 15.0103 15.7039 15.0344
(4.4702) (4.3306) (3.1607) (3.4653)

b 9.7020 9.6806 9.2871 9.7482
(2.9080) (2.8499) (2.1433 ) (2.4846 )

LogL -290.8190 -266.3389 -271.5390 -271.7004

2.3 Application from Insurance

We illustrate the use of the DS-SMLE with an insurance application. We consider

automobile bodily injury liability claims from a sample of n = 29 Massachusetts

towns in 1995 and 1997. The details of the data set can be found in Frees and

Wang (2005). The two cross-sections have a strong positive correlation at 0.88 in

the average town-wide claims (AC).

Following Frees and Wang (2005), the claims are assumed to have the same

gamma distribution for the two years and the goal is the efficient estimation of the

parameters (a, b) of that distribution. That is, we use the following cdf and pdf,

respectively:

Fi(x|a, b) =
1

baΓ(a)

∫ x

0

ta−1e
−t
b dt

fi(x|a, b) =
1

baΓ(a)
xa−1e

−x
b where i=1,2

The four estimators we consider are QMLE, Pseudo-MLE (PMLE), SMLE, and

DS-SMLE. The QMLE estimator assumes independence between cross-section. It

is known to be consistent even if the independence assumption is incorrect. To

obtain a robust estimator of the standard errors, the “sandwich” formula is used.

The PMLE is the estimator based on a fully specified parametric joint likelihood.

We follow Frees andWang (2005) and use t-copula for this. The PMLE is consistent
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if the assume copula family is correct. Otherwise, the PMLE is generally biased and

we do not know either the sign or the magnitude of the bias. Both the SMLE and

DS-SMLE are robust in the sense that they do not depend on a specific assumption

on the copula family. They are more efficient asymptotically relative to QMLE

and, as illustrated by the simulation of the previous sections, behavie similarly in

small samples.

Table 2.1 reports the estimates and standard errors. A few interesting observa-

tions can be made using these results. First, both the SMLE and DS-SMLE have

smaller standard errors than QMLE. Second, while the SMLE shows evidence of

bias, the DS-SMLE estimates are fairly close to FMLE or QMLE. We use 8 pa-

rameters in each dimension of the sieve, where this value is chosen using the BIC

criterion. So for the SMLE, we have 66 parameter to estimate. For the DS-SMLE,

we have only 10.

2.4 Concluding Remarks

We have proposed to use a penalized sieve to improve efficiency of likelihood-based

estimators in panel settings. The settings can easily be generalized to multivari-

ate models where a part of the joint distribution is modelled by a sieve with a

potentially very large number of parameters, only a few of which are significant.

We show that the sparse sieve MLE, based on the Dantzig penalization, has very

similar properties to the sieve MLE in finite samples, so the sparsity imposed by the

Dantzig constraint does not add to the bias as much as much as it takes away from

the variance. We also looked at the behavior of the estimator for various values

of the tolerance and found evidence that our estimator tends to over-shrink. We

proposes a two-step procedure that addresses this issue and clarifies the problem

of choosing the tolerance level.

The relative efficiency and mean square gains we obtain are up to 70% which

is very encouraging. The computational benefit is of course even more important;

especially in cases when SMLE is infeasible due to small sample size.

62



Table 2.2: Simulation of SMLE and DS-SMLE for 3 dependence levels, using 1000 simulations with true copula to be Placket,
Student’s t, Frank and Gaussian copula. The sample size for each simulation is 500

Plackett Student’s t Frank Gaussian
Kendall’s τ Statistics QMLE SMLE DS-SMLE QMLE SMLE DS-SMLE QMLE SMLE DS-SMLE QMLE SMLE DS-SMLE

τ = −0.9

mean 0.5005 0.4934 0.4954 0.5016 0.4941 0.4939 0.4996 0.4926 0.4927 0.5005 0.4925 0.4928
NVar 0.5208 0.2169 0.1608 0.4983 0.1404 0.1561 0.4772 0.1479 0.1552 0.5100 0.1725 0.1781
MSE 0.5206 0.2605 0.1816 0.5003 0.1747 0.1933 0.4769 0.2032 0.2077 0.5097 0.2290 0.2298
dim(γ) 256 12 225 150 225 111 144 10
RE 0.4164 0.3087 0.2817 0.3132 0.3099 0.3252 0.3382 0.3492

RMSE 0.5005 0.3488 0.3491 0.3864 0.4262 0.4355 0.4492 0.4507

τ = −0.8

mean 0.4999 0.4903 0.4941 0.499 0.4933 0.4927 0.4996 0.4879 0.4947 0.4986 0.4902 0.4900
NVar 0.4836 0.3491 0.2888 0.4889 0.2904 0.243 0.4790 0.3131 0.2787 0.4732 0.3609 0.3017
MSE 0.4831 0.4433 0.3228 0.4895 0.3356 0.2967 0.4787 0.4580 0.3062 0.4746 0.4571 0.4014
dim(γ) 49 8 225 64 49 7 49 14
RE 0.722 0.5972 0.594 0.4971 0.6538 0.5819 0.7627 0.6375

RMSE 0.9177 0.6682 0.6857 0.6062 0.9569 0.6397 0.9632 0.8458

τ = −0.7

mean 0.5006 0.4927 0.4935 0.4991 0.4945 0.4947 0.5006 0.4896 0.4894 0.5008 0.4949 0.4959
NVar 0.5101 0.4456 0.4461 0.4953 0.4377 0.4017 0.5230 0.3633 0.3507 0.5096 0.4664 0.4309
MSE 0.5099 0.4986 0.4875 0.4956 0.4671 0.429 0.5229 0.4714 0.4623 0.5097 0.4919 0.4470
dim(γ) 36 6 64 62 36 13 64 9
RE 0.8735 0.8747 0.8836 0.811 0.6946 0.6704 0.9154 0.8456

RMSE 0.9779 0.9561 0.9425 0.8656 0.9015 0.8842 0.9651 0.8770

Note: SMLE, Sieve MLE; DS-SMLE, Dantzig Selector based Sieve MLE; RE, Relative Efficiency with respect to QMLE; RMSE, Relative MSE
with respect to QMLE; dim(γ), dimension of γ
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Chapter 3

On Asymptotic Efficiency of

Improved QMLE and Sieve MLE

Consider the setting of a panel with T time periods andN individuals. Assume T is

fixed andN → ∞. Suppose that for each cross section, we have a correctly specified

parametric likelihood-based model and we can estimate this model consistently

using only the cross sectional data. However, it is usually possible to use the

entire panel to obtain more efficient estimators.

In this chapter we will focus on two such estimators. One estimator, known as

the Improved QMLE (IQMLE), was proposed by Prokhorov and Schmidt (2009b).

It is based on optimally weighted marginal score functions from all T cross sections.

More specifically, let yit represent the data for person i at time t, t = 1, . . . , T ,

i = 1, . . . , N . Assume that yit are iid over i but not necessarily over t. Let

ln f(yit; β) denote the log-density of yit, where β collects the unknown density

parameters. This is the density we assume we have correctly specified. It is

a marginal density in the sense that it corresponds to the marginal (single t)

distribution of an unknown joint distribution over all t’s. The derivative of the

log-density with respect to β, known as the marginal score function, is a zero
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mean function when evaluated at the true value of β. That is,

Esit(βo) = 0, any t,

where sit(β) = ∇ ln f(yit; β) and ∇ denotes the derivative with respect to β.

Prokhorov and Schmidt (2009b) propose to estimate β by optimal GMM based

on all T zero-mean score functions. That is, their estimator is based on the fol-

lowing moment conditions

E




si1(βo)

· · ·
siT (βo)


 = 0 (1)

The alternative estimator we consider is the sieve MLE (SMLE) proposed by

Panchenko and Prokhorov (2013). In essence the SMLE is a maximum likeli-

hood estimator which uses an approximator for the true joint log-density. Let

h(yi1,, . . . , yiT ; β) denote the joint density of (yi1,, . . . , yiT ) and let c(u1, . . . , uT ) de-

note the copula density, corresponding to the joint density h(yi1,, . . . , yiT ; β) and

the marginals f(yit; β), t = 1, . . . , T . It is a well known result (see, e.g, Sklar, 1959)

that

lnh(yi1,, . . . , yiT ; β) =
T∑

t=1

ln f(yit; β) + ln c(F (yi1; β), . . . , F (yiT ; β)), (2)

where F (yit; β) denotes the relevant cdf. The SMLE uses the sieve approximator

of this joint log-density. That is, it replaces the last term in (2) with a truncated

infinite series representation (a sieve) of the copula log density and then carries

out the usual optimization over both β and the parameters of that representation.

Denote the sieve parameters by γN and the sieve approximator by ln cγ. Then, the
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SMLE maximizes the approximate joint log likelihood

lnLγ(β) =
N∑

i=1

[
T∑

t=1

ln f(yit; β) + ln cγ(F (yi1; β), . . . , F (yiT ; β))

]
.

Under appropriate regularity conditions, both estimators are consistent and

asymptotically normal. Moreover, the IQMLE is known to be asymptotically ef-

ficient among the regular estimators that use moment conditions (1), while the

SMLE is known to reach a semiparametric efficiency bound for estimation of β.

However, their asymptotic variance matrices are not identical and it is unclear why

one or the other should be preferred and under what circumstances.

The rest of this chapter is organized as follows. Section 3.1 introduces the

asymptotic variance of IQMLE and SMLE. Section 3.2 presents the theoretical

results regarding the relative efficiency of SMLE to IQMLE. Section 3.3 provides

the simulation results. Finally, Section 3.4 concludes.

3.1 Asymptotic Variance of IQMLE and SMLE

This section discusses asymptotic properties of IQMLE, SMLE and related esti-

mators. We assume without loss of generality that T = 2. This assumption is

standard for copula literature and is used just to keep the notation under control.

3.1.1 Assumptions

Let θ ≡ (β′, c)′ ∈ Θ ≡ B × Γ, where B ⊂ Rp and Γ is a space of copula functions.

Let θN ≡ (β′, γN)
′ ∈ ΘN ≡ B × ΓN , where ΓN is a sieve space for Γ. We need

assumptions that ensure consistency and asymptotic normality of both SMLE and

GMM based on the marginal scores.

Assumption 3.1. (identification) βo ∈int(B), B is compact and there exists a

unique βo for which equation (1) holds and that is the same βo which maximizes

E[lnh(yi; β)] where yi = (yi1, yi2) and lnh is defined in (2).
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Assumption 3.2. (smoothness) Γ = {c = exp(g) : g ∈ Λr([0, 1]m), r > 1/2,
∫
c(u)du =

1}, where u = (u1, u2), Λ
r([0, 1]2) denotes the class of r-smooth (Hölder) functions

on [0, 1]2, and ln fj(yj; θ), j = 1, 2, are twice continuously differentiable w.r.t. θ.

Also, for SMLE asymptotics assume Assumptions 3-4 of Panchenko and Prokhorov

(2013) and for the IQMLE asymptotics assume the equivalents of Assumptions of

2.1.iv-vi of Prokhorov and Schmidt (2009a).

3.1.2 QMLE and Improved QMLE

Recall the moment conditions

Es∗i (βo) = 0, where s∗i (β) =


 si1(β)

si2(β)


 . (3)

The IQMLE is an optimal GMM estimator based on the moment conditions in

(3).1 It should be consistent so long as the marginal distributions are correctly

specified, since Es∗i (βo) = 0 if Esit(βo) = 0 for all t.

Define H∗ = E∇βs
∗
i (βo) and V∗ = Es∗i (βo)s

∗
i (βo)

′. Then, if β̂IQMLE is the

IQMLE estimator, standard results would indicate that the asymptotic variance

of β̂IQMLE is

VIQMLE = (H′
∗V

−1
∗ H∗)

−1.

It is a well known result that β̂IQMLE is asymptotically efficient in the class of

estimators using the moment conditions (3), that is, no other regular estimator

using the same moment conditions achieves an asymptotical variance smaller than

VIQMLE (see, e.g., Newey and McFadden, 1994). For example, the traditional

1Because we deal only in asymptotics here, we will not be explicit about issues like how
to estimate the optimal GMM weighting matrix. Nor would it matter if instead of GMM we
considered other asymptotically equivalent estimates, such as empirical likelihood, exponential
tilting, etc.
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QMLE 2 based on the moment condition

E[si1(βo) + si2(βo)] = 0,

is dominated by IQMLE because optimal GMM weighting dominates summation.

Prokhorov and Schmidt (2009b, Section 2) derive conditions under which IQMLE

and QMLE are equally efficient. They also prove that the matrices H∗ and V∗ have

the following structure:

V∗ =


 A G

G′ B


 ,H∗ =


 −A

−B


 (4)

where A = Esi1(βo)si1(βo)
′, B = Esi2(βo)si2(βo)

′ and G = Esi1(βo)si2(βo)
′.

3.1.3 Full MLE and Sieve MLE

We follow Panchenko and Prokhorov (2013) and use the Bernstein polynomial sieve

introduced by Sancetta and Satchell (2004):

cγ(u) = J2
N

JN−1∑

v1=0

JN−1∑

v2=0

ωv

2∏

l=1


 JN − 1

vl


uvl

l (1− ul)
JN−vl−1, u (5)

where γ = {ωv} denotes parameters of the polynomial indexed by v = (v1, . . . , vm)

such that 0 ≤ ωv ≤ 1 and
∑JN−1

v1=0

∑JN−1
v2=0 ωv = 1. Sancetta (2007) derives rates

of convergence of the Bernstein copula to the true copula. Ghosal (2001) and

references therein discuss the rate of convergence of the sieve MLE based on the

Bernstein polynomial (only for one-dimensional densities). Other sieves can be

used (see, e.g., Bouezmarni and Rombouts, 2010; Chen, 2007) but we found this

sieve to perform better in simulations than others.

Note 3.1. For the Bernstein copula sieve, ΓN is dense in Γ, i.e. cγ → co as

2QMLE represent Quasi Maximum Likelihood Estimation, which constructs the joint like-
lihood assuming independence. To distinguish, the QMLE is different from Quasi Likelihood
which is an estimating function(see, e.g., Heyde, 1997).
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JN → ∞; the dimension of γ is J2
N and the dimension of θN is p+ J2

N .

The sieve MLE can be written as

θ̂SMLE = arg max
θN∈ΘN

N∑

i=1

[ln f(yi1; β) + ln f(yi2; β) + ln cγ(F (yi1; β), F (yi2; β))] , (6)

where cγ(·) is given in (5).

If there exists a value of γN , for which c(u1, u2) = cγ(u1, u2) for any (u1, u2) ∈
[0, 1]2 then we have the true joint log-density in (6) and the SMLE becomes the

full MLE, where γN are nuisance parameters. In this case, it is a well known result

that the variance of β̂SMLE – the variance of the first p elements of θ̂SMLE – can

be obtained as the variance of the population error projection of the score with

respect β on the space spanned by the score with respect to γN .

In general, cγ is not equal to the true copula density for any (finite dimensional)

γN due to the approximation error and the asymptotic variance derivation is harder

(see, e.g., Ai and Chen, 2003; Chen, Fan, and Tsyrennikov, 2006; Chen and Pouzo,

2009; Panchenko and Prokhorov, 2013; Shen, 1997, who study the asymptotic

properties of this estimator in various settings). We will now provide just the end

results of this derivation; more details can be found in Panchenko and Prokhorov

(2013).

For each component βq, q = 1, . . . , p, denote by g∗q the solution to

inf
gq

E

[
m∑

j=1

{
∂ ln fj(yj, βo)

∂βq

+

(
1

c(u)

∂c(u)

∂uj

)∣∣∣∣
uk=Fk(yk,βo)

∂Fj(yj, βo)

∂βq

}
(7)

+

(
1

c(u)
gq(u1, . . . , um)

)∣∣∣∣
uk=Fk(yk,βo)

]2
.

and define

S ′
β =

∑m
j=1

{
∂ ln fj(yj ,βo)

∂β′
+
(

1
c(u)

∂c(u1,...,um)
∂uj

)∣∣∣
uk=Fk(yk,βo)

∂Fj(yj ,βo)

∂β′

}

+
(

1
c(u)

g∗(u1, . . . , um)
)∣∣∣

uk=Fk(yk,βo)
,

(8)
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where g∗ = (g∗1, . . . , g
∗
p). Then, Panchenko and Prokhorov (2013) show that under

the assumptions above,
√
N(β̂SMLE − βo) → N(0,VSMLE), where

VSMLE = (E[SβS
′
β])

−1,

and β̂SMLE is semiparametrically efficient.

The efficiency result suggests that β̂SMLE has the smallest asymptotic variance,

in the positive definite sense, among all regular estimators which use the informa-

tion contained in the parametric marginals. The SMLE efficiency argument goes

back to Stein (1956). He observed that a model with a nonparametric component is

at least as hard as any one-dimensional submodel that satisfies semiparametric as-

sumptions. If we “parameterize” our problem as θ(t) = θo+tν, where ν ∈ V̄ (Θ, θo)

is the closed linear span of Θ−{θo} also known as the tangent space, then estimat-

ing θo should be at least as hard as estimating t (”true” t = 0). The semiparametric

lower bound, reached by SMLE, is then the supremum over the traditional Cramer-

Rao bounds (infimum over Fisher informations) for estimating t over all suitable

parametric submodels. Therefore, VSMLE is no smaller, in positive definite sense,

than the asymptotic variance matrix obtained using a full parametric MLE. At

the same time, VSMLE is not generally the same as (and should be smaller than)

VIQMLE and, consequently, VQMLE.

Note 3.2. If Jn = 1, SMLE reduces to QMLE. In this case, the sieve copula

pdf contains only a constant and can be disregarded in estimation, which gives the

QMLE objective function.

We will now define new notation that will make the Stein (1956) argument

formal. Define the directional derivative of the log-likelihood in direction ν =
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(ν ′
β, νγ)

′ ∈ V , where V is the linear span of Θ− {θo},

l̇(θo)[ν] ≡ limt→0
lnh(y,θ+tν)−lnh(y,θ)

t

∣∣∣
θ=θo

= ∂ lnh(y,θo)
∂θ′

[ν]

=
∑m

j=1

{
∂ ln fj(yj ,βo)

∂β′
+
(

1
c(u1,...,um)

∂c(u1,...,um)
∂uj

)∣∣∣
uk=Fk(yk,βo)

∂Fj(yj ,βo)

∂β′

}
νβ

+ 1
c(F1(y1,βo),...,Fm(ym,βo))

νγ(u1, . . . , um)
∣∣∣
uk=Fk(yk,βo)

Also, define the Fisher inner product 〈·, ·〉 ≡ E
[
l̇(θo)[·]l̇(θo)[·]

]
on space V and the

Fisher norm ||ν|| ≡
√

〈ν, ν〉, where expectation is with respect to the true density

h. The closed linear span of Θ − {θo} and the inner product 〈·, ·〉 form a Hilbert

space, call it (V̄ , || · ||).

Note 3.3. The Fisher information for estimating t is now the Fisher norm E
[
l̇(θo)[·]l̇(θo)[·]

]
.

Given the consistent estimates β̂SMLE and ĉSMLE = cγ̂N , g
∗
q ’s can be estimated

consistently in a sieve minimization problem as follows

arg min
gq∈AN

N∑

i=1

[
m∑

j=1

{
∂ ln fj(yji, β̂)

∂βq

+

(
1

ĉ(ûi)

∂ĉ(û1i, . . . , ûmi)

∂uj

)∣∣∣∣
ûki=Fk(yki,β̂)

∂Fj(yji, β̂)

∂βq

}

+
1

ĉ(ûi)
gq(û1i, . . . , ûmi)

∣∣∣∣
ûki=Fk(yki,β̂)

]2
,

where q = 1, . . . , p and AN is one of the sieve spaces discussed above. Given

consistent estimates β̂, ĉ, and ĝ∗, a consistent estimate of E[SβS
′
β] is easy to obtain

if we replace the expectation evaluated at the true values with a sample average

evaluated at the estimates.

A simpler alternative estimator of the sieve MLE asymptotic variance is pro-

vided by Ackerberg, Chen, and Hahn (2009). They show that one can use the upper

left p× p block of the usual MLE covariance matrix as an estimate of (E[SβS
′
β])

−1

provided that the outer-product-of-the-score form of the covariance matrix is used.

Note 3.4. The variance estimator of Ackerberg, Chen, and Hahn (2009) can be

viewed as a Pseudo-MLE (PMLE) variance estimator.
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3.2 IQMLE versus SMLE

Before comparing IQMLE with SMLE directly, we will first consider the cases

where IQMLE is equally efficient as QMLE. Once we can identify these cases,

comparing SMLE with IQMLE is reduced to compare SMLE with QMLE.

Then we will compare IQMLE with SMLE when the number of sieve parameters

is fixed. In other words, suppose we use the Bernstein copula with Jn fixed at a

certain number k. Then the SMLE becomes a fully parametric problem with p+k2

parameters to estimate. The joint density used in this problem is not the correct

density h, but a pseudo-density, which would be h if Jn was infinity. This kind

of comparison is useful for practitioners, who regard SMLE as a PMLE, whose

variance matrix is estimated without using the “sandwich” formula to account for

the joint density misspecification.

Finally, we will compare IQMLE with SMLE. We consider a simple example of

a bivariate discrete model and show that SMLE dominates IQMLE in this specific

setting.

3.2.1 IQMLE vs QMLE

We consider three situations: same marginals with common parameters, same

marginals with distinct parameters, and different marginals with distinct param-

eters. Theorem 3.1 compares IQMLE and QMLE when marginals do not share

common parameters, while Theorem 3.2 compares them in a contrary case.

Theorem 3.1. If the marginal pdf have distinct parameters, IQMLE is the same

as QMLE.

Proof. see Appendix 3.5 for all proofs.

Theorem 3.2. (Prokhorov and Schmidt, 2009b) If the marginal pdf have common

parameters, IQMLE estimator is efficient relative to QMLE estimator, and the two

estimators are equally efficient if and only if H∗ is in the space spanned by (V∗A
′)
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3.2.2 IQMLE vs SMLE fixed k

3.2.2.1 Asymptotic variance for SMLE fixed k

In this section, we no longer impose any restrictions on marginal pdf parameters.

We view SMLE as a parametric MLE except that the sieve copula is generally

not the true copula family. More precisely, we estimate θ̂N = (β̂SMLE−K , γ̂N)
′ =

argmaxθ∈ΘN
E[l(zi, β, γ)], where ΘN is the sieve of Θ.

√
n(β̂SMLE − β∗, γ̂ − γ∗)

′ → N(0, I−1) (9)

where, I =


E[dls(z,β∗,γ∗)

dβ
dls(z,β∗,γ∗)

dβ′
] E[dls(z,β∗,γ∗)

dβ
dls(z,β∗,γ∗)

dγ′
]

E[dls(z,β∗,γ∗)
dγ

dls(z,β∗,γ∗)
dβ′

] E[dls(z,β∗,γ∗)
dγ

dls(z,β∗,γ∗)
dγ′

]


 (10)

ls = ln f1 + ln f2 + ln cγ (11)

The asymptotic variance of β̂SMLE−K is the upper left block in the inverse of the

covariance matrix. One remark is that the generalized information matrix equality

does not apply to I because the sieve copula ln cγ is not the true copula ln c.

Equation (4) shows that the asymptotic variance of IQMLE depends on the

covariance matrix of moment conditions in (3). Accordingly, we would like to

represent the asymptotic variance of SMLE(fixed k) in a similar way as IQMLE,

except that the moment conditions for SMLE(fixed k) are different.

We have four moment conditions based on sieve MLE (fixed k) estimation. In

addition, if the sieve copula is the same as the true copula, we have a correctly

specified full MLE model and another group of moment conditions. Accordingly,

we can define the covariance matrix in an explicit way.

E(∇βlnf1) = 0

E(∇βlnf2) = 0

E(∇βlncs) = 0

E(∇γlncs) = 0

cs=c
=⇒

E(∇βlnf1) = 0

E(∇βlnf2) = 0

E(∇βlnc) = 0

E(∇γlnc) = 0

(12)

Definition 3.1. Let Csieve be the variance covariance matrix for moments (12) of
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sieve MLE with fixed k, and Ctrue be the covariance matrix for moments when we

have correct full MLE model. Then Csieve and Ctrue can be expressed as

Csieve =




A G −K −P

G′ B −L′ −Q′

−K ′ −L N Z

−P ′ −Q Z ′ W




Ctrue =




A G −G 0

G′ B −G′ 0

−G′ −G J E

0 0 E ′ F




(13)

where, A,B,G,K,L N,P,Q ,Z,W,J,E,F are defined in Definition 3.2 in Appendix.

We first decompose E(∇βls∇′
βls) ,E(∇βls∇′

γls) , and E(∇θls∇′
γls) in terms of

covariance of moments in Definition 3.1, and Lemma 3.1 derives another represen-

tation of information matrix I. Then Lemma 3.2 uses the fact that the asymptotic

variance of SMLE fixed k is just the upper-left block in the inverse of the informa-

tion matrix.

Lemma 3.1. The information matrix I in SMLE fixed k can be written as

I =


A+G+G′ +B −K − L′ −K ′ − L+N −P −Q′ + Z

−P ′ −Q+ Z ′ W


 (14)

Lemma 3.2. The asymptotic variance of SMLE(fixed k) is the upper left block in

the inverse of information matrix I.

VSMLE-k = [A+G+G′ +B −K − L′ −K ′ − L+N

−(−P −Q′ + Z)W−1(−P ′ −Q+ Z ′)]−1 (15)

3.2.2.2 Theoretical results and intuition

First, we give the expression of the asymptotic variance of IQMLE.
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Lemma 3.3. (Prokhorov and Schmidt, 2009b) The asymptotic variance of IQMLE

is

VIQMLE = {
[
−A −B

]

A G

G′ B




−1 
−A

−B


}−1 (16)

= {A+B −G′ −G+
[
−G′ −G

]

A G

G′ B



−1 
−G

−G′


}−1 (17)

Theorem 3.3. IQMLE is asymptotically as efficient as SMLE with fixed number

of sieve parameters if and only if the following condition is satisfied:

A+G+G′ +B −K − L′ −K ′ − L+N − (−P −Q′ + Z)W−1(−P ′ −Q+ Z ′) =

A+B −G′ −G+
[
−G′ −G

]

A G

G′ B




−1 
−G

−G′


 (18)

Given the expression of asymptotic variance of IQMLE and SMLE(fixed k),

Theorem 3.3 derives a sufficient and necessary condition for when the two estima-

tors are equally asymptotically efficient. The equal efficiency condition in Theorem

3.3 is difficult to interpret. In fact, we can represent it in an intuitive way. We pro-

ceed in the following order. First, in Lemma 3.4 and 3.5 we represent VIQMLE and

VSMLE-k in a intuitive way such that they are general enough to include different

values of T . Then, in Theorem 3.4 we establish a necessary and sufficient condition

under which SMLE(fixed k) is equally efficient as IQMLE. Finally, in Theorem 3.5

we make a link to a previous result in Prokhorov and Schmidt (2009b).

Lemma 3.4. The asymptotic variance for IQMLE can be expressed as

VIQMLE = {E(∇βl∇′
βl)− E(∇βlnc∇′

βlnc) + E(∇̃βlnc∇̃′
βlnc)}−1 (19)

= {E(∇βl∇′
βl)− E(ee′)}−1 (20)

where l = lnf1 + lnf2 + lnc, so l is the true log-density, e is the regression error of

∇β ln c regressed on
[
∇′

βlnf1 ∇′
βlnf2

]
, ∇̃βlnc is the fitted value of regression of
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∇βlnc on
[
∇′

βlnf1 ∇′
βlnf2

]
.

There are several interesting remarks on VIQMLE in Lemma 3.4.

First, although the proof of Lemma 3.4 is based on T = 2, it can be easily

extended to include the cases where T is larger than 2. For example, assume

T = 3, VIQMLE = {E(∇βl∇′
βl)−E(ee′)}−1, where l =

∑3
i=1 lnfi + lnc and e is the

regression error of ∇β ln c regressed on
[
∇′

βlnf1 ∇′
βlnf2 ∇′

βlnf3

]
.

Second, by Equation (19), VIQMLE is negatively related to the variance of ∇̃βlnc,

the fitted values of copula scores regressed on the marginal scores. Although

IQMLE only uses the stacked marginal scores as moment conditions, it does include

some information on copula scores, which can be expressed as a linear combination

of marginal scores. In other words, the linear relationship between ∇β ln c and the

marginal scores brings efficiency gains to IQMLE.

Third, let’s consider the case where copula scores is a perfect linear combination

of marginal scores, ie, E(ee′) = 0. By Theorem 4 in Prokhorov and Schmidt

(2009b) or Theorem 3.5 later in this section , IQMLE is equally efficient as FMLE.

Since FMLE dominate SMLE and QMLE, IQMLE should also dominate SMLE

and QMLE in this special case.

Lemma 3.5. The asymptotic variance of SMLE(fixed k) can be expressed as:

VSMLE-k = {E(∇βls∇′
βls)− E(∇βls∇′

γN
ls)E(∇γN ls∇′

γN
ls)

−1E(∇γN ls∇′
βls)}−1

= {E(∇βls∇′
βls)− E(∇̂βls∇̂′

βls)}−1 (21)

where ls = ln f1 + ln f2 + ln cs and ∇̂βls is the fitted value of regression of ∇βls on

∇′
γN
ls.

We have some interesting observations on VSMLE-K in Lemma 3.5.

First, Equation (21) shows that VSMLE-K depends on how well the sieve likeli-

hood ls could approximate the true likelihood. However, the goodness of fit for the

sieve copula is a two-edged sword. On the one hand, good approximation of the

true likelihood will increase the variance of ∇βls, which will increase the efficiency
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of SMLE. On the other hand, to increase the goodness of fit for ls, we have to

increase the number of sieve parameters γN . As a result, ∇βls will be better fitted

as we increase the number of regressor γN , which in turn implies an increase of

E(∇̂βls∇̂′
βls) and a decrease the efficiency of SMLE.

Second, SMLE has incorporated the sieve copula scores, which may not be a

linear combination of the marginal scores. More precisely, compared with Equation

(20) for IQMLE, Equation (21) shows that VSMLE-K includes the variance of ∇βls

without subtracting E(ese
′
s), where es is the regression error of ∇β ln cs regressed

on
[
∇′

βlnf1 ∇′
βlnf2

]
. In other words, VSMLE-K encloses the part of ∇β ln cs that

could not be explained as a linear combination of marginal scores. Furthermore, if

the sieve copula cs can approximate the true copula well enough, SMLE could be

viewed as containing some partial information on true copula scores that are not

explained by the linear combination of marginal scores.

Finally, assume ls is the true likelihood, then Equation (21) gives the asymptotic

variance of Full-MLE. That is to say, VMLE = {E(∇βl∇′
βl)−E(∇̂βl∇̂′

βl)}−1, where

where l = ln f1+ln f2+ln c and ∇̂βl is the fitted value of regression of ∇βl on ∇′
γl.

Theorem 3.4. IQMLE is asymptotically as efficient as SMLE with fixed number

of sieve parameters if and only if the following condition is satisfied:

E(∇βl∇′
βl)− E(ee′) = E(∇βls∇′

βls)− E(∇̂βls∇̂′
βls) (22)

where l = lnf1 + lnf2 + lnc, ls = lnf1 + lnf2 + lncs, e is the regression error

of ∇βlnc regressed on
[
∇′

βlnf1 ∇′
βlnf2

]
, ∇̂βls is the fitted value of regression of

∇βls on ∇′
γls

There are several implication of Theorem 3.4.

If the true copula score is a linear combination of the marginal scores, IQMLE

should be efficient relative to SMLE with fixed k. By Theorem 4 in Prokhorov and

Schmidt (2009b), IQMLE dominate FMLE under this condition, which in turn

implies IQMLE also dominate SMLE fixed k.
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In contrast, suppose there is nonlinear relationship between copula scores and

marginal scores , and the sieve copula approximate the true copula well enough

such that E(∇βl∇′
βl) ≈ E(∇βls∇′

βls) , SMLE fixed k could be efficient relative to

IQMLE. More precisely, if E(∇βl∇′
βl) ≈ E(∇βls∇′

βls) and E(∇̂βls∇̂′
βls) is smaller

than E(ee′), in the negative definite sense, by Equation (22) SMLE fixed k is more

efficient than IQMLE.

Actually, we have some simulation results to support these implications.

Prokhorov and Schmidt (2009b) have a result regarding equal relative asymp-

totic efficiency between IQMLE and FMLE. It can be shown that their result is

a special case of Theorem 3.4. If we assume the sieve log-density ls is the same

as the true log-density l and apply Theorem 3.4, we get the same condition as in

Prokhorov and Schmidt (2009b) for FMLE to be equally efficient as IQMLE.

Theorem 3.5. IQMLE is asymptotically as efficient as Full-MLE iff the following

condition is satisfied.

E(∇βlnc∇′
βlnc) = E(∇βlnc

∗∇′
βlnc

∗
) (23)

where ∇βlnc
∗ is the fitted value of regression of ∇βlnc on

[
∇′

βlnf1 ∇′
βlnf2 ∇γ′lnc

]
.

In other words, ∇βlnc is a linear combination of ∇βlnf1, ∇βlnf2 and ∇γlnc.

3.2.3 IQMLE versus SMLE in an Example

We compare IQMLE with SMLE in an bivariate example.

Example 3.1. We have a bivariate discrete distribution. The marginal probability

mass functions are Bernoulli. The probability mass function is summarized in

Table 3.1
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Table 3.1: Bivariate Bernoulli Probability Mass Function

y1 y0
x1 γ 1− µ− γ 1− µ
x0 1− µ− γ 2µ− 1 + γ µ

1− µ µ 1

We want to estimate the marginal parameter µ by SMLE and IQMLE. Please

note that SMLE is the same as FMLE in this setup.

Theorem 3.6. In Example 3.1, SMLE is always asymptotically efficient relative

to IQMLE.

3.3 Simulation Results

We conduct four different kinds of simulations to support the theoretical results

derived in Section 3.2.

First, in Section 3.3.1 we have a data generating process (DGP) with the same

exponential marginals, but in SMLE and IQMLE implementation we do not impose

the restrictions that marginal pdf parameters are the same. In other words, we

assume distinct marginal parameters. By Theorem 3.1, IQMLE should be the

same as QMLE in this situation. The simulation results do show that IQMLE is

almost the same as QMLE.

Second, in Section 3.3.2 we have normal marginals and the Gaussian copula as

the true copula. In this DGP, the copula scores are a linear combination of the

marginal scores. By Theorem 3.4, IQMLE should be more efficient than SMLE.

In fact, IQMLE should be the same as FMLE in this case. The simulation result

do show that SMLE could not improve on IQMLE.

Third, in Section 3.3.3 the DGP is very similar to that in Section 3.3.2 except

the true copula is replaced by the Frank copula. As a result, the copula scores are

no longer the linear combination of the marginal scores. By Theorem 3.4, SMLE
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should dominate IQMLE. The simulation results show that SMLE has improved

the efficiency of IQMLE by about 50%.

Finally, in Section 3.3.4 we compare SMLE and IQMLE with some incorrectly

specified copula-based likelihood models. The marginals are exponential distri-

butions, while the dependence is modelled by the Plackett, Frank and Gaussian

copulas. The simulation results show that SMLE is more efficient and robust

compared to IQMLE and a group of misspecified copula models.

3.3.1 Same marginals, Distinct parameters

We consider a bivariate DGP with exponential marginals in which both the mean

parameters µ1 and µ2 are set to 0.5. The dependence is modelled by the Frank cop-

ula, with γ0 = −39. So we have negative dependence. The number of observations

is 1000.

Table 3.2 contains simulation results. MSE is minimized at Jn = 16. So we

are estimating 256 nuisance parameters in the sieve copula and 2 parameters of

the marginals. To reduce estimation time, we use parallel computing toolbox of

Matlab in Cirrus3.

We use 1000 simulation runs and report the simulated mean of QMLE, IQMLE,

SMLE, and Full MLE, their simulated variance and mean square error (MSE), and

the simulated relative efficiency (RE) and relative MSE (RMSE). As in Joe (2005),

RE is the ratio of the SMLE simulated variance to that of QMLE. RMSE is the

ratio of the SMLE simulated MSE to that of QMLE.

The simulation results in Table 3.2 suggest that in this specific data setting,

IQMLE and QMLE are almost the same, and SMLE has improved efficiency over

IQMLE by about 60%. This result supports Theorem 3.1 and 3.4. First, since

we do not assume the same marginal parameters, IQMLE is expected to be the

same as QMLE asymptotically. Second, the copula scores in this DGP is not a

3Cirrus is a cluster of high performance computers at department of engineering in Concordia
university.
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linear combination of the marginal scores, by Theorem 3.4, we expect SMLE to be

efficient relative to IQMLE.

We note that in the following simulations, we always impose the same marginal

parameters in the implementation of IQMLE, SMLE, FMLE and QMLE.

3.3.2 Normal Marginals, Gaussian Copula

We consider a bivariate DGP with normal marginals in which µ = 5 and variance

σ2 = 1. The dependence is modelled by the Gaussian Copula with parameter

γ = −0.9. So there is negative dependence between the two cross-sections.

We estimate the common mean µ with σ2 = 1 by QMLE, IQMLE, SMLE, and

full MLE respectively. We impose the restriction that the two marginals are the

same in the implementation of these four estimators.

The MSE of SMLE is minimized when Jn = 1. The simulation results in Table

3.3 suggest that IQMLE is significantly better than SMLE, and IQMLE is almost

the same as FMLE. In addition, we observe that SMLE is the same as QMLE if

Jn = 1.

Actually, this simulation result is as expected. Assume Normal marginal den-

sities with σ2
1 = σ2

2 = 1 and µ1 = µ2 = µ, and let the true copula be Gaussian with

parameter γ. We have

f1(y1;µ) =
1√
2π

e−
(y1−µ)2

2

f2(y2;µ) =
1√
2π

e−
(y2−µ)2

2

c(F1(y1;µ), F2(y2;µ); γ) =
1√

1− γ2
e
− γ(γ(y1−µ)2+γ(y2−µ)2−2(y1−µ)(y2−µ))

2(1−γ2)
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The relevant moment conditions for full MLE are

E{Y1 − µ} = 0 (24a)

E{Y1 − µ} = 0 (24b)

E{−((Y1 − µ) + (Y2 − µ))γ

γ + 1
} = 0 (24c)

E{−γ(Y 2
1 + Y 2

2 ) + µ(1− γ)2(y1 + y2)− (1 + γ2)Y1Y2 + γ(γ2 − 1)− µ2(1− γ)2

(γ − 1)2(γ + 1)2
}

= 0 (24d)

In this setting, the copula scores are a linear combination of the marginal scores.

We observe that (24c) is a linear combination of (24a) and (24b), so (24c) is also a

linear combination of (24a) , (24b) and (24d). By Prokhorov and Schmidt (2009b),

we know that IQMLE is as efficient as Full MLE. As SMLE could not be more

efficient than Full MLE, SMLE should be less efficient than IQMLE.

3.3.3 Normal Marginals, Frank Copula

The DGP is the same as that in Section 3.3.2 except that the dependence is

modelled by the Frank copula with γ = −39. The MSE of SMLE is minimized

at Jn = 5. The simulation results in Table 3.4 indicate that SMLE has improved

efficiency of IQMLE by about 50%, and there is no significant difference between

IQMLE and QMLE.

In fact, simulation results in Table 3.4 is as expected. In this specific setting,

the copula scores are no longer a linear combination of the marginal scores. IQMLE

should be less efficient.

3.3.4 Simulations for Robust SMLE

One interesting question that we often encounter in practice is that there could be

a bias in marginal parameter estimates if we assume a wrong copula. Compared

to an incorrectly specified copula-based likelihood model (Pseudo-MLE), which
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estimator is more robust, SMLE or IQMLE ?

Assume the DGP has two exponential marginal distributions with µ1 = µ2 =

0.5, and the dependence is modelled by Plackett, Frank, and Gaussian copula. The

parameters in the true copula are set such that there is strong negative dependence

between cross-sections. We estimate the marginal parameter by Full-MLE, QMLE,

IQMLE, SMLE, and Pseudo-MLE which assumes different copulas other than the

true copula.

The simulation results are summarized in Table 3.5, 3.6 and 3.7. There are

several interesting observations from this simulation. First, SMLE is relatively

more efficient than IQMLE or QMLE. This can be explained by the nonlinear

relationship between copula scores and marginal scores. Second, SMLE is relatively

more efficient than the group of Pseudo-MLEs. For example, Table 3.5 shows that

SMLE is efficient if the assumed copula is Gaussian, Gumbel, Joe, Clayton, FGM,

or AMH copulas. We can observe similar patterns in Table 3.6 and 3.7. This

simulation results suggest that SMLE is more robust not only than IQMLE, but

also than some Pseudo-MLE if the assumed parametric copula is very different

from the true one.

3.4 Concluding Remarks

We compare SMLE and IQMLE in a panel setting with information only on the

marginal probability distribution.

In practice, SMLE should be more advantageous. Because we usually do not

impose the same marginal parameter restrictions, IQMLE is the same as QMLE.

In addition, SMLE could not be worse than QMLE since SMLE becomes QMLE if

Jn = 1. Secondly, as long as there is a nonlinear relationship between copula scores

and marginal scores, which is more plausible in practice, SMLE should bring some

efficiency gains over IQMLE.

However, the efficiency gains of SMLE over IQMLE come with some computa-

tional costs. Usually, the sieve parameter matrix in SMLE is a large sparse matrix.
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How efficiently to estimate a large sparse matrix is a key to improve the algorithm

of SMLE. This issue has been addressed in Chapter 2.

Most of the theoretical results in this paper are about SMLE when the number

of sieve parameters is fixed. In future’s research, we should try to compare IQMLE

and SMLE directly, ie, when the number of sieve goes to infinity and the sample

is very large.
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3.5 Appendix: Proofs

Proof of Theorem 3.1. Without loss of generality, assume that we have a panel data with time

periods T = 3. We also assume (yi1, yi2, yi3) is i.i.d over i, but we allow dependence across time t.

Assume the marginal pdf f1(y1;β1), f2(y2, ;β2), f3(y3;β3) are different with distinct parameters.

β = (β′
1, β

′
2, β

′
3)

′

The QMLE is the value of β that maximizes the quasi-likelihood

lnLQ =
∑

i

∑

t

lnft(yit, β)

Then the QMLE β̂ solves the first-order condition

∑

i

si(β̂) = 0

where si(β) =
∑

t

sit(β) =
∑

t

∇βlnft(yit, β)

As a result, QMLE could be regarded as a GMM estimator based on the moment condition

Esi(β0) = 0 =⇒

E(∇βlnf1(yit, β10) +∇βlnf2(yit, β20) +∇βlnf3(yit, β30)) = 0 (25)

By contrast, IQMLE is a GMM estimator based on the moment

E




∇βlnf1(y1, β1)

∇βlnf2(y2, β2)

∇βlnf2(y3, β3)


 = 0 (26)

If β1 6= β2 6= β3, the moment condition (25) for QMLE is

ESi(β) = E




∂f1(yi1,β1)
∂β1

1
f1(yi1,β1)

0

0


+ E




0

∂f2(yi2,β2)
∂β2

1
f2(yi2,β2)

0


+ E




0

0

∂f3(yi3,β3)
∂β3

1
f3(yi3,β3)




= E




∂f1(yi1,β1)
∂β1

1
f1(yi1,β1)

∂f2(yi2,β2)
∂β2

1
f2(yi2,β2)

∂f3(yi3,β3)
∂β3

1
f3(yi3,β3)


 = 0
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The moment condition (26) for IQMLE is

E




∇βlnf1(y1, β1)

∇βlnf2(y2, β2)

∇βlnf2(y3, β3)


 = E




∂f1(yi1,β1)
∂β1

1
f1(yi1,β1)

0

0

0

∂f2(yi2,β2)
∂β2

1
f2(yi2,β2)

0

0

0

∂f3(yi3,β3)
∂β3

1
f3(yi3,β3)




= E




∂f1(yi1,β1)
∂β1

1
f1(yi1,β1)

∂f2(yi2,β2)
∂β2

1
f2(yi2,β2)

∂f3(yi3,β3)
∂β3

1
f3(yi3,β3)


 = 0

Please note that we disregard 0 because they are redundant moment condition.

We see clearly that both of QMLE and IQMLE is a GMM estimator based on the same

moment conditions, so IQMLE is the same as QMLE and they have the same efficiency. Although

the proof is based on three periods, it it can be extended easily to more time periods.

Proof of Theorem 3.2 . See in Prokhorov and Schmidt (2009b) theorem 1.

Definition 3.2. A,B,G,K,L N,P,Q ,Z,W,J,E,F are defined as

E(∇βlnf1 ×∇′

βlnf1) = A, E(∇βlnf1 ×∇′

βlnf2) = G,

E(∇βlnf1 ×∇′

βlncs) = −K, E(∇βlnf1 ×∇′
γ lncs) = −P,

E(∇βlnf2 ×∇′

βlnf2) = B, E(∇βlnf2 ×∇′

βlncs) = −L′

E(∇βlnf2 ×∇′

γ lncs) = −Q′, E(∇βlncs ×∇′

βlncs) = N,

E(∇βlncs ×∇′

γ lncs) = Z, E(∇γ lncs ×∇′
γ lncs) = W,

E(∇βlnc×∇′

βlnc) = J, E(∇βlnc×∇′
γ lnc) = E,

E(∇γ lnc×∇′

γ lnc) = F

The special form of Ctrue has been proved in Prokhorov and Schmidt (2009b) Lemma 1.

Proof of Lemma 3.1. In order to get the asymptotic variance for SMLE(fixed k), we have to

decompose E(∇βls∇′

βls),E(∇βls∇′
γ ls),and E(∇θls∇′

γ ls) Here ls = lnf1 + lnf2 + lncs, and cs is

the sieve copula.
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Given the Definition 3.1 and 3.2, we have

E(∇βls ×∇′

βls) = E((∇βf1 +∇βf2 +∇βlncs)× (∇′

βf1 +∇′

βf2 +∇′

βlncs))

= A+G+G′ +B −K − L′ −K ′ − L+N

E(∇βls ×∇′

γ ls) = E((∇βf1 +∇βf2 +∇βlncs)×∇′

γ lncs)

= −P −Q′ + Z

E(∇γ ls ×∇′

βls) = −P ′ −Q+ Z ′

E(∇γ ls ×∇′

γ ls) = E(∇γ lncs ×∇′

γ lncs) = W

We now could write the information matrix of SMLE(fixed k) in an alternative form.

I =


E[dls(z,β∗,γ∗)

dβ

dls(z,β∗,γ∗)
dβ′

] E[dls(z,β∗,γ∗)
dβ

dls(z,β∗,γ∗)
dγ′

]

E[dls(z,β∗,γ∗)
dγ

dls(z,β∗,γ∗)
dβ′

] E[dls(z,β∗,γ∗)
dγ

dls(z,β∗,γ∗)
dγ′

]




=


A+G+G′ +B −K − L′ −K ′ − L+N −P −Q′ + Z

−P ′ −Q+ Z ′ W




Proof of Lemma 3.2 . Given Lemma 3.1, the asymptotic variance VSMLE-K for SMLE fixed

k is the upper left block of the inverse of information matrix I. By partitioned inverse formula,

Σ could be expressed as

VSMLE-K = [A+G+G′ +B −K − L′ −K ′ − L+N

−(−P −Q′ + Z)W−1(−P ′ −Q+ Z ′)]−1

Proof of Lemma 3.3. see Prokhorov and Schmidt (2009b) theorem 4.

Proof of Theorem 3.3. Given Lemma 3.2 and 3.3, we have the expressions for VIQMLE and

VSMLE-K. The IQMLE is as efficient as SMLE (fixed k) if and only if VSMLE-K = VIQMLE, which

implies

A+G+G′ +B −K − L′ −K ′ − L+N − (−P −Q′ + Z)W−1(−P ′ −Q+ Z ′) =

A+B −G′ −G+
[
−G′ −G

]

A G

G′ B



−1 
−G

−G′



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Proof of Lemma 3.4. Given Lemma 3.3

VIQMLE = {A+B −G′ −G+
[
−G′ −G

]

A G

G′ B



−1 
−G

−G′


}−1

= {A+G−G+G′ +B −G′ −G′ −G+ J − J

+
[
−G′ −G

]

A G

G′ B



−1 
−G

−G′


}−1

= {E(∇βl∇′

βl)− E(∇βlnc∇′

βlnc) + E(∇βlncP[

∇′

βlnf1 ∇′

βlnf2

])∇′

βlnc}−1

= {E(∇βl∇′

βl)− E(∇βlnc(I − P[

∇′

βlnf1 ∇′

βlnf2

])∇′

βlnc}−1

= {E(∇βl∇′

βl)− E(∇βlnc∇′

βlnc) + E(∇̃βlnc∇̃′

βlnc)}−1

= {E(∇βl∇′

βl)− E(ee′)}−1

where l = lnf1 + lnf2 + lnc, so l is the true log-likelihood. PX is the projection matrix of X, e

is the regression error of ∇βlnc on
[
∇′

βlnf1 ∇′

βlnf2

]
, ∇̃βlnc is the fitted value of regression of

∇βlnc on
[
∇′

βlnf1 ∇′

βlnf2

]

Proof of Lemma 3.5. Given Lemma 3.2, we have

VSMLE-K = {A+G+G′ +B −K − L′ −K ′ − L+N

− (−P −Q′ + Z)W−1(−P ′ −Q+ Z ′)}−1

= {E(∇βls∇′

βls)− E(∇βls∇′

γN
ls)E(∇γN

ls∇′

γN
ls)

−1E(∇γN
ls∇′

βls)}−1

= {E(∇βls∇′

βls)− E(∇̂βls∇̂′

βls)}−1

where ls = lnf1 + lnf2 + lncs and ∇̂βls is the fitted value of regression of ∇βls on ∇′
γN

ls

Proof of Theorem 3.4. It follows easily by Theorem 3.3, and Lemma 3.4 and 3.5

Proof of Theorem 3.5. Assume that the sieve likelihood ls is the same as the true likelihood

l, then sieve MLE with fixed k is the same as Full MLE. By Theorem 3.4, we have IQMLE is as

efficient as FMLE if and only if

E(∇βl∇′

βl)− E(ee′) = E(∇βl∇′

βl)− E(∇̂βl∇̂′

βl)

⇐⇒ E(ee′) = E(∇̂βl∇̂′

βl)

⇐⇒ E(∇βlnc(I − P[

∇′

βlnf1 ∇′

βlnf2

])∇′

βlnc) = E(∇βlP∇′

γ lnc
∇′

βl) (27)

Under FMLE, ∇βlnf1 and ∇βlnf2 are orthogonal to ∇γ lnc.
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So,

E(∇βlP∇′

γ lnc
∇′

βl) = E(∇βlncP∇′

γ lnc
∇′

βlnc) (28)

combine equation 27 and 28, we have

E(∇βlnc(I − P[

∇′

βlnf1 ∇′

βlnf2

])∇′

βlnc) = E(∇βlncP∇′

γ ln
′c∇′

βlnc)

⇐⇒ E(∇βlnc∇′

βlnc) = E(∇βlncP[

∇′

βlnf1 ∇′

βlnf2 ∇′
γ lnc

]∇′

βlnc)

⇐⇒ E(∇βlnc∇′

βlnc) = E(∇βlnc
∗∇′

βlnc
∗
) (29)

where PX is the projection matrix of X, and ∇βlnc
∗ is the fitted value of regression of ∇βlnc on[

∇′

βlnf1 ∇′

βlnf2 ∇γ′lnc

]
.

Equation 29 is satisfied when ∇βlnc is a linear combination of ∇βlnf1, ∇βlnf2 and ∇γlnc.

Proof of Theorem 3.6. In Example 3.1, SMLE is the same as FMLE. So SMLE has the same

asymptotic variance as FMLE. SMLE(FMLE) From asymptotic theory for MLE, we have

(µ̂− µ0, γ̂ − γ0) → N(0, I−1)

I = E




∇µlnf

∇γ lnf



[
∇µlnf ∇γ lnf

]



lnf = 111lnγ + (110 + 101)ln(1− µ− γ) + 100ln(2µ− 1 + γ)

where I is the fisher information matrix, lnf is individual log-likelihood, 111 is the indicator

function for x = x1 and y = y1. The asymptotic variance for µ̂ is the upper left block of I−1

From information matrix equality, we know

I(θ)i,j = −E(
∂2

∂θi∂θj
lnf(x; θ)|θ)
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We will use information matrix equality to get I−1.

∂lnf

∂µ
= − 101 + 101

1− µ− γ
+

2100
2µ− 1 + γ

∂lnf

∂γ
=

111
γ

− 101 + 110
1− µ− γ

+
100

2µ− 1 + γ

∂2lnf

∂µ2
= − 101 + 110

(1− µ− γ)2
− 4100

(2µ− 1 + γ)2

∂2lnf

∂γ2
= −111

γ2
− 101 + 110

(1− µ− γ)2
− 100

(2µ− 1 + γ)2

∂2lnf

∂µ∂γ
= − 101 + 110

(1− µ− γ)2
− 2100

(2µ− 1 + γ)2

∂2lnf

∂γ∂µ
=

∂2lnf

∂µ∂γ

We then can get information matrix by taking expectations.

I11 = −E(
∂2lnf

∂µ2
) =

2(1− µ− γ)

(1− µ− γ)2
+

4(2µ− 1 + γ)

(2µ− 1 + γ)2

=
2(1 + γ)

(1− µ− γ)(2µ− 1 + γ)

I22 = −E(
∂2lnf

∂γ2
) =

1

γ
+

2

1− µ− γ
+

1

2µ− 1 + γ

=
3µ− 1 + γ − 2µ2

(1− µ− γ)(2µ− 1 + γ)γ

I12 = I21 = −E(
∂2lnf

∂µ∂γ
) =

2

1− µ− γ
+

2

2µ− 1 + γ

=
2µ

(1− µ− γ)(2µ− 1 + γ)

By partitioned matrix inverse formula, the upper left block of I−1 is (I11 − I12I
−1
22 I21)

−1.

Plug I11,I12,I21 and I22 into the partitioned matrix inverse formula. we get the asymptotic

variance of marginal parameters in SMLE. The asymptotic variance VSMLE for µ̂

VSMLE =
γ + 3µ− 1− 2µ2

2
(30)

IQMLE is the optimal GMM based on moment condition 31

E


µ1x1

− (1− µ)1x0

µ1y1
− (1− µ)1y0


 = 0 (31)

The asymptotic variance VIQMLE of µ̃ for IQMLE is (D′C−1D)−1 ,where D is the derivative
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of moment conditions, and C is the covariance matrix for moments.

C =


 µ(1− µ) γ + (1− µ)2

γ + (1− µ)2 µ(1− µ)




D =


1
1




The asymptotic variance VIQMLE for µ̃ is

VIQMLE =
γ + 1− µ

2

More precisely,

V−1
IQMLE =

[
1 1

]

 µ(1− µ) γ + (1− µ)2

γ + (1− µ)2 µ(1− µ)



−1 
1
1




=
1

det(C)
[2µ(1− µ)− 2γ − 2(1− µ)2]

So,

VIQMLE =
det(C)

2µ(1− µ)− 2γ − 2(1− µ)2

=
[µ(1− µ)]2 − [γ + (1− µ)2]2

2µ(1− µ)− 2γ − 2(1− µ)2

=
µ(1− µ) + γ + (1− µ)2

2

=
1 + γ − µ

2

Given the asymptotic variance of SMLE and IQMLE, we could compare them directly.

VIQMLE − VSMLE =
1 + γ − µ− (γ + 3µ− 1− 2µ2)

2

=
2(µ− 1)2

2
≥ 0

So , SMLE is efficient relative to IQMLE in bivariate bernoulli example.
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3.6 Appendix: Tables

Table 3.2: Same Marginal, Distinct Parameters

µ1 = 0.5 QMLE IQMLE SMLE FMLE
mean 0.499 0.499 0.493 0.500

var(10−4) 2.398 2.397 0.712 0.340
bias(10−5) 0.002 0.003 4.721 0.001
MSE(10−4) 2.395 2.395 1.183 0.340

RE - 0.999 0.291 0.149
RMSE - 0.999 0.494 0.149
µ2 = 0.5 QMLE IQMLE SMLE FMLE
mean 0.500 0.500 0.493 0.499

var(10−4) 2.400 2.390 0.729 0.345
bias(10−5) 0.001 0.001 4.701 0.002
MSE(10−4) 2.401 2.391 1.199 0.345

RE - 0.999 0.303 0.143
RMSE - 0.999 0.499 0.143

Table 3.3: Normal Marginals, Gaussian Copula

Jn = 1 QMLE IQMLE SMLE FMLE
mean 5 5 5 5

var(10−5) 5.023 5.016 5.023 5.025
bias(10−10) 3.642 4.803 3.637 3.584
MSE(10−5) 5.018 5.011 5.018 5.019

RE - 0.999 1 1
RMSE - 0.998 1 1
Jn = 2 QMLE IQMLE SMLE FMLE
mean 5 5 5 5

var(10−5) 4.805 4.801 4.856 4.803
bias(10−11) 9.273 3.051 3.764 9.435
MSE(10−5) 4.805 4.801 4.856 4.803

RE - 0.999 1 0.999
RMSE - 0.999 1 0.999
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Table 3.4: Normal Marginals, Frank Copula

Jn = 5 QMLE IQMLE SMLE FMLE
mean 4.9999 4.9999 4.9999 5

var(10−5) 1.543 1.544 0.811 0.519
bias(10−8) 1.581 1.495 0.851 0.001
MSE(10−5) 1.543 1.544 0.811 0.519

RE - 1 0.525 0.336
RMSE - 1 0.525 0.336

Table 3.5: Exponential Marginals, Plackett Copula

MEAN VAR(10−5) MSE(10−5) RE RMSE
t 0.500 0.145 0.145 0.032 0.032

frank 0.500 0.155 0.158 0.035 0.035
gaussian 0.499 0.409 0.410 0.092 0.092
gumbel 0.5 4.443 4.438 0.999 0.999
joe 0.5 4.447 4.443 1.000 1.000

clayton 0.500 4.446 4.441 1.000 1.000
fgm 0.486 2.387 20.964 0.537 4.722
amh 0.465 2.237 12.076 0.503 27.202

QMLE 0.5 4.443 4.439 - -
IQMLE 0.499 4.460 4.467 1.003 1.006
SMLE 0.494 0.313 3.455 0.070 0.778
FMLE 0.499 0.118 0.118 0.026 0.026
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Table 3.6: Exponential Marginals, Frank Copula

MEAN VAR(10−4) MSE(10−4) RE RMSE
plackett 0.500 0.899 0.901 0.180 0.180

t 0.501 1.417 1.426 0.284 0.286
gaussian 0.501 2.298 2.301 0.461 0.462
amh 0.465 3.771 15.913 0.756 3.193
fgm 0.486 4.196 6.094 0.841 1.223

clayton 0.500 4.988 4.984 0.999 0.999
gumbel 0.500 4.987 4.983 0.999 0.999
joe 0.500 4.986 4.982 0.999 0.999

QMLE 0.500 4.989 4.984 - -
IQMLE 0.500 4.987 4.982 0.999 0.999
SMLE 0.492 1.749 2.274 0.351 0.456
FMLE 0.500 0.749 0.749 0.150 0.150

Table 3.7: Exponential Marginals, Gaussian Copula

MEAN VAR(10−4) MSE(10−4) RE RMSE
t 0.499 1.319 1.318 0.268 0.268

plackett 0.500 1.674 1.673 0.340 0.340
frank 0.501 2.053 2.061 0.417 0.419
amh 0.466 3.723 14.659 0.756 2.980
fgm 0.486 4.107 5.873 0.834 1.194

clayton 0.499 4.920 4.917 0.999 0.999
gumbel 0.499 4.919 4.917 0.999 0.999
joe 0.499 4.919 4.916 0.999 0.999

QMLE 0.499 4.921 4.918 - -
IQMLE 0.499 4.919 4.917 0.999 0.999
SMLE 0.494 2.503 2.794 0.508 0.568
FMLE 0.499 1.311 1.310 0.266 0.266
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Appendix A

CopulasToolbox: A Matlab

Package For Copulas Modeling

The idea of creating CopulasToolbox package in Matlab comes from my doctoral thesis. In a panel

data setting, given that the true marginal probability distribution is known, we want to estimate

the marginal parameters when using a copula to capture the dependence between cross-sections.

However, we usually do not know the true copula that underlies the data generating process, so

specifying a wrong copula may result in a biased estimation.

I wish to conduct a simulation-based study of the bias caused by an incorrectly specified

copula. However, there are two main difficulties with such simulations. First, since there are

many different univariate marginal probability distributions and many copula functions, I will

have a large number of combinations of marginals and copulas. It is tedious to modify the code

each time I have a different data generating process (DGP). Second, even if I have a flexible

platform for multivariate analysis, running simulations are very time consuming. Normally, in a

dual-core computer, it can take several hours to run a single simulation. As I have to consider

many different cases, I need to run different simulations many times.

Facing the obstacles above, I wish to create an efficient toolbox general enough to handle

different marginals and copulas. The first difficulty can be solved by objective-oriented program-

ming (OOP). I just need to create three classes, one for marginal distributions, one for copula

distributions and one for multivariate probability distributions. One combination of marginals

and copulas is just an entity in the class of multivariate probability distribution. OOP is sup-

ported in many languages such as C++, Java, Matlab, R, and Python. The second difficulty can

be solved by parallel computing on a cluster of computers. Fortunately, Concordia University
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have a cluster called Cirrus1, on which Matlab can be run in parallel.

Although CopulasToolbox is usually used on a cluster, it can also be used in a normal personal

computer. Instead of using simulated data, we can also use empirical data.

This manual is organized as follows. Section A.1 presents three main classes, with their

class properties and methods. Section A.2 will give some simulation examples in multivariate

probability modelling. Section A.3 discusses possible further developments.

A.1 Three Classes

By Sklar’s (1959) theorem, a copula is a multivariate distribution function that connects two or

more marginal distributions to form a joint multivariate distribution. More precisely,

Theorem A.1. (Sklar, 1959, p229-230). Let H be a T-dimensional distribution function with

marginals F1, . . . , FT . Then there exists a T-dimensional copula C such that for all (y1, . . . , yT )

H(y1, . . . , yT ) = C(F1(y1), . . . , FT (yT )). (1)

If F1, . . . , FT are continuous, then C is unique. Conversely, if C is a T-dimensional copula and

F1, . . . , FT are distribution functions, then the function H in (1) is a T-dimensional distribution

function with marginals F1, . . . , FT

By Theorem A.1, it appears natural that a multivariate distribution class can be constructed

based on a copula distribution class and a marginal distribution class. Figure A.1 presents the

design of CopulasToolbox.

Figure A.1: Design of CopulasToolbox

1see link: https://www.encs.concordia.ca/aits/public/sag/systems/cirrus/
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A.1.1 Copulas Class

Copulas Class is a general description for different copulas. For now, this class includes 11

different copulas. They are Gaussian, t, Gumbel, Clayton, Frank, Plackett, Ali-Mikhail-Haq,

Farlie-Gumbel-Morgenstern , Joe, Logistic, and Bernstein copulas. Each copula distribution

has its proper probability density function, cumulative density function, and random number

generation function.

Methods It has four main methods: pdf, cdf, random, and Copulas

Table A.1: Copulas Class: Methods

Names description
Copulas constructor

pdf copula probability density function
cdf copula cumulative density function

random bivariate copula random number generation

It is very easy to construct a copula, you just to need to provide the name and parameter of

the copula. For example, the following code generates the Plackett copula.

Example A.1. Construction of Plackett copula

CopulaName=’plackett’;

CopulaParams={0.039};

plackett=Copulas(CopulaName,CopulaParams);

The Copulas class supports multi-parameters copulas. For example, we want to construct t

copula with correlation matrix ρ and degree of freedom ν.

Example A.2. Construction of t copula with correlation matrix ρ and degree of freedom ν.

CopulaName=’t’;

rho=[1 0.5 ; 0.5 1];

nu=3;

CopulaParams={rho,nu};

t=Copulas(CopulaName,CopulaParams);

This copulas class is easily extensible.
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Example A.3. Add a new copula into existing Copulas class.

We want to add a new copula called ’ind’. It is the product of two marginal distributions. It

takes two steps to add this new copula.

First, define functions pdf, cdf, statistics,and random for ind copula in the folder ”./tools/-

copulas/ind”. Let’s say, these three functions are named as ind cdf.m, ind pdf.m, ind rnd.m and

ind stats.m.

Second, in the file ’/@Copulas/private/getCopula.m’, we add the following lines in the sub-

function ’getBuiltinCopula’

\% independent copula

j=1;

s(j).name=’independent’;

s(j).code=’ind’;

s(j).paramName = {’theta’};

s(j).paramNum = 1;

s(j).cdffunc = @ind_cdf ;

s(j).pdffunc = @ind_pdf;

s(j).randfunc = @ind_rnd;

s(j).statsfunc=@ind_stats;

s(j).lowerBound={-Inf};

s(j).upperBound={Inf};

Now, ’ind’ copula can be constructed by the Copulas class.

CopulaName=’ind’;

CopulaParams={0};

ind=Copulas(CopulaName,CopulaParams);

A.1.2 Marginal Distribution Class

Marginal distribution class is a subclass of ProbDistUnivParam, which is a Matlab built-in class

for parametric univariate probability distributions. So, the class Marginal inherits all the prop-

erties and methods defined in ProbDistUnivParam. However, Marginal class also contains some

additional properties and methods.

Before listing the properties and methods, let us consider an example of creating a Marginal

distribution .

Example A.4. Creating Exponential marginal distribution.
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m1Name=’exp’;

m1Params=[0.5];

m1=Marginal(m1Name,m1Params);

m1.FixedParams=[0];

So the function Marginal() is the constructor of a Marginal distribution. FixedParams ,

as a property of Marginal class, indicate whether we fix the parameter in maximum likelihood

estimation. Let’s consider an example.

Example A.5. Normal marginals with mean 0 and variance 0.5. The variance is fixed at 0.5.

m1Name=’norm’;

m1Params=[0 , 0.5];

m1=Marginal(m1Name,m1Params);

m1.FixedParams=[0 1];

Suppose the variance is known, we want to estimate the mean parameter by MLE.

Table A.2: Marginal Class: Methods

Names description
Marginal constructor

cdf Cumulative distribution function
icdf Inverse cumulative distribution function
iqr Interquartile range

mean Mean
median Median
paramci Confidence intervals for the parameters

pdf Probability density function
random Random number generation
std Standard deviation
var Variance
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Table A.3: Marginal Class: Properties

Names description
DistName name of the distribution
InputData structure containing data used to fit the distribution
NLogL negative log likelihood for fitted data

NumParams number of parameters
ParamNames cell array of NumParams parameter names

Params array of NumParams parameter values
FixedParams logical vector indicating which parameters are

fixed rather than estimated
ParamDescription cell array of NumParams strings describing

the parameters
ParamCov covariance matrix of parameter values
Support structure describing the support of the distribution

A.1.3 ProbDistMulvParam Class

ProbDistMulvParam is a class for parametric multivariate probability densities. By Theorem

A.1, we see that a given copula and marginal distributions imply a joint probability density. So

naturally, ProbDistMulvParam is based on Marginal class and Copulas Class. Let’s see this in

an example.

Example A.6. Construction of object of ProbDistMulvParam class, which has Plackett as copula

and two exponential marginals.

%% %%%%%%%%%%%%%%%%%%%%%%%

%1. Marignal distribution%

%%%%%%%%%%%%%%%%%%%%%%%%%%

%first marginal

m1Name=’exp’;

m1Params=[0.5];

m1=Marginal(m1Name,m1Params);

m1.FixedParams=[0];

%second marginal

m2Name=’exp’;

m2Params=[0.2];
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m2=Marginal(m1Name,m1Params);

m2.FixedParams=[0];

%% %%%%%%%%%%%%%%%%%%%%%%

%2.Copula distribution %

%%%%%%%%%%%%%%%%%%%%%%%%

%true copula

trueCopulaName=’plackett’;

trueCopulaParams={3};

trueCopula=Copulas(trueCopulaName,trueCopulaParams);

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Multivariate Probability Distribution %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

trueProbDist=ProbDistMulvParam(trueCopula,{m1,m2});

Table A.4: ProbDistMulvPram Class: Methods

Names description
ProbDistMulvParam constructor

fit Given the data, using MLE to estimate
parameters in marginals and copula distribution

bernsteinFit Given the data, using Sieve MLE to estimate
parameters in marginals and berstein copula

NlogLikelihood negative loglikelihood given data set
random random number generation

setParams set new parameters for marginals and copulas
pdf probability density function
cdf cumulative probability density function

picture3D provide data for a 3D surface for the whole panel
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Table A.5: ProbDistMulvParam Class: Properties

Names description
copula copula probability distribution

marginals marginal probability distribution
InputData input data

SameMarginal logical indicate whether two marginal are considered
the same in MLE.

SameMarginal is worth a note. This property is set to be False by default. However, if we

have a prior knowledge that both marginals are the same, SameMarginal can be set explicitly as

True.

A.2 Examples with Simulations

This section will give examples used in simulations. We will see how to generate data in Example

A.7, have it fitted by an assumed multivariate density in Example A.8, and visualize the estimated

pdf in a 3-D surface in Example A.9. Example A.10 demonstrates how to fit marginal parameters

with a nonparametric copula–Bernstein Copula.

Example A.7. Bivariate random number generation.

Nobs=1e+3;

trueProbDist=ProbDistMulvParam(trueCopula,{m1,m2});

Y=random(trueProbDist,Nobs);

Here, trueCopula , m1 and m2 have been defined in previous example. We can also invoke random

function as

Y=trueProbDist.random(Nobs);

Example A.8. Fitting copula and marginal with given data.

%% %%%%%%%%%%%%%%%%%%%%%%%

%1. Marignal distribution%

%%%%%%%%%%%%%%%%%%%%%%%%%%

%first marginal

m1Name=’exp’;
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m1Params=[0.5];

m1=Marginal(m1Name,m1Params);

m1.FixedParams=[0];

%second marginal

m2Name=’exp’;

m2Params=[0.5];

m2=Marginal(m2Name,m2Params);

m2.FixedParams=[0];

%% %%%%%%%%%%%%%%%%%%%%%%

%2.Copula distribution %

%%%%%%%%%%%%%%%%%%%%%%%%

%true copula

trueCopulaName=’plackett’;

trueCopulaParams={0.039};

trueCopula=Copulas(trueCopulaName,trueCopulaParams);

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Multivariate Probability Distribution %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

trueProbDist=ProbDistMulvParam(trueCopula,{m1,m2});

%% %%%%%%%%%%%

% simulation %

%%%%%%%%%%%%%%

Nobs=1e+3; % number of observations

x0=[0.4 0.4 0.5]; % starting point for fmincon when using trueProbDist

Y=random(trueProbDist,Nobs); % random number generation

fmle=fit(x0,trueProbDist,Y)

First-order Norm of
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Iter F-count f(x) Feasibility optimality step

0 4 4.413037e+02 0.000e+00 7.310e+02

1 13 3.538780e+02 0.000e+00 1.622e+02 3.385e-01

2 17 2.551253e+02 0.000e+00 4.125e+04 3.163e-01

3 24 2.034738e+02 0.000e+00 4.182e+04 7.761e-02

4 29 1.327612e+02 0.000e+00 6.406e+02 1.539e-01

5 33 1.276413e+02 0.000e+00 6.692e+02 2.547e-02

6 38 5.872722e+01 0.000e+00 7.850e+02 1.219e-01

7 42 3.247599e+01 0.000e+00 9.450e+02 2.694e-02

8 47 -3.219737e+00 0.000e+00 2.283e+03 4.237e-02

9 52 -3.403438e+01 0.000e+00 3.382e+02 4.428e-02

10 56 -3.539860e+01 0.000e+00 2.243e+02 2.991e-02

11 60 -3.584991e+01 0.000e+00 1.795e+01 4.771e-03

12 64 -3.586809e+01 0.000e+00 2.558e+00 3.360e-03

13 68 -3.586897e+01 0.000e+00 7.349e-01 6.288e-04

14 72 -3.586898e+01 0.000e+00 1.263e-01 8.803e-06

Local minimum possible. Constraints satisfied.

fmincon stopped because the size of the current step is less than

the selected value of the step size tolerance and constraints were

satisfied to within the default value of the constraint tolerance.

<stopping criteria details>

fmle=

0.5075 0.4840 0.0352

In this example, we first generate data from a multivariate density with exponential marginals

and the dependence is modelled by the Plackett copula with 0.039. Suppose we correctly specify

the copula and marginal family, but we do not know the values of the parameters. Then we

could fit plackett and marginal to the generated data. The fmle = [0.5075, 0.4840, 0.0352] is the

MLE estimates. 0.5075 is estimates for the first exponential marginals, 0.4840 is for the second

marginals, and 0.0352 is for the Plackett copulas. We see that MLE estimates are near the true
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values [0.5, 0.5, 0.039].

Example A.9. Visualization of estimated joint pdf and copula pdf by 3-D surface

%% %%%%%%%%%%%%%%%%%%%%%%%

%1. Marignal distribution%

%%%%%%%%%%%%%%%%%%%%%%%%%%

%first marginal

m1Name=’exp’;

m1Params=[0.5];

m1=Marginal(m1Name,m1Params);

m1.FixedParams=[0];

%second marginal

m2Name=’exp’;

m2Params=[0.5];

m2=Marginal(m2Name,m2Params);

m2.FixedParams=[0];

%% %%%%%%%%%%%%%%%%%%%%%%

%2.Copula distribution %

%%%%%%%%%%%%%%%%%%%%%%%%

%true copula

trueCopulaName=’gaussian’;

trueCopulaParams={0.9};

trueCopula=Copulas(trueCopulaName,trueCopulaParams);

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Multivariate Probability Distribution %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

trueProbDist=ProbDistMulvParam(trueCopula,{m1,m2});

%% %%%%%%%%%%%
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% simulation %

%%%%%%%%%%%%%%

Nobs=1e+3; % number of observations

x0=[0.4 0.4 0.5]; % starting point for fmincon when using trueProbDist

%random data generation

Y=random(trueProbDist,Nobs);

fmle=fit(x0,trueProbDist,Y);

%% Joint-pdf surface

trueProbDist=setParams(fmle,trueProbDist);

[x1,y1,z1]=picture3D(trueProbDist,1);

figure(1);

surf(x1,y1,z1);

title(sprintf(’estimated Joint pdf ---Copula:%s, Marginals:%s’, ...

trueProbDist.Copula.CopulaName,trueProbDist.Marginals{1}.DistName));

xlim([1 9]);

ylim([1 9]);

zlim_j_t=zlim;

view(35,10);

%% Copula pdf surface

[x3,y3,z3]=picture3D(trueProbDist,2);

figure(2);

surfc(x3,y3,z3);

title(sprintf(’estimated Copula pdf---%s’,trueProbDist.Copula.CopulaName));

zlim_c_t=zlim;

view(35,10);
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Figure A.2: Visulization: 3D Scatter

(a) Estimated Joint pdf
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(b) Estimated Copula pdf
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In Example A.9, the data is generated by the Gaussian copula and exponential marginals.

Then we estimate the marginal and copula parameters by full maximum likelihood estimation.

Finally, the estimated joint probability density function and estimated copula density are visu-

alized in a 3 dimensional surface.

Example A.10. Fitting marginals to a data with a nonparametric copula–Bernstein Copula.

%% %%%%%%%%%%%%%%%%%%%%%%%

%1. Marignal distribution%

%%%%%%%%%%%%%%%%%%%%%%%%%%

%first marginal

m1Name=’exp’;

m1Params=[0.5];

m1=Marginal(m1Name,m1Params);

m1.FixedParams=[0];

%second marginal

m2Name=’exp’;

m2Params=[0.5];

m2=Marginal(m2Name,m2Params);

m2.FixedParams=[0];
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%% %%%%%%%%%%%%%%%%%%%%%%

%2.Copula distribution %

%%%%%%%%%%%%%%%%%%%%%%%%

%true copula

trueCopulaName=’frank’;

trueCopulaParams={39};

trueCopula=Copulas(trueCopulaName,trueCopulaParams);

%bernstein copula

assumedCopulaName=’bernstein’;

Jn=6;

assumedCopulaParams= {ones(1,Jn^2)+1;Jn};

BernsteinCopula=Copulas(assumedCopulaName,assumedCopulaParams);

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %

% Multivariate Probability Distribution %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

trueProbDist=ProbDistMulvParam(trueCopula,{m1,m2});

BernsteinProbDist=ProbDistMulvParam(BernsteinCopula,{m1,m2});

%% %%%%%%%%%%%

% simulation %

%%%%%%%%%%%%%%

Nobs=1e+3; % number of observations

Nrep=0.01e+3; % number of replications

x0=[0.4 0.4 0.5]; % starting point for fmincon when using trueProbDist

x1=[0.4 0.4];
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%random data generation

Y=random(trueProbDist,Nobs);

%full-MLE

fmle=fit(x0,trueProbDist,Y);

%sieve-MLE

smle=bernsteinFit(x1,Jn,BernsteinProbDist,Y);

A.3 Further Development

Many other desirable features of copulas have not been implemented. In addition, some numerical

issues have not been elegantly solved yet.

First, CopulasToolbox only supports data with 2 dimensions, because the copula random

number generation is implemented for bivariate data. It would be good to extend the pack-

age to support 3 or more dimensional data. For example, we can consider using compounding

construction algorithm.

Second, for some copulas, the random number generation algorithm is not very satisfactory.

For example, for the Joe copula, random numbers are generated through solving an equation

based on conditional cumulative probability function (ccdf). However, it is possible that for some

copulas, the ccdf do not have an explicit form. Then ccdf should be obtained by numerically

evaluating the derivative of cdf. But numerical derivatives could be very inaccurate.

Third, MLE and Sieve MLE are implemented by Matlab built-in optimizer: fmincon and

fminunc. In simulations, it can be observed that initial starting point for the optimizer can be

important. This requires some additional prior knowledge of the data. Furthermore, fmincon

and fminunc are slow if the parameter space is large. Especially for sieve MLE, it requires an

optimizer to estimate a large sparse matrix. This problem can be solved by using the Dantzig

selector to select the non-zeros elements in the Bernstein copula parameter vector, and to fix the

zero or near zero elements in the subsequent optimization.

Fourth, automatic differentiation provides an accurate approximation to the derivative of

any function written in a computer code, and it is much more stable than traditional numerical

differentiation. So we can use this technique to provide the first order derivative, which can

greatly improve the computational efficiency.

Finally, goodness-of-fit tests could be included. It is convenient to recommend a best fitting

copula to end users.
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In the future development, I may consider implementing a similar package in C++ for two

reasons. First, C++ is much faster than Matlab, so we may have similar performance on a

personal computer in C++ as in Matlab on a cluster. Second, many favourable numerical pack-

ages are available. For example, Armadillo is available for linear algebra; CPPAD for automatic

differentiation; NLopt for nonlinear optimization; Boost has a general purpose library, which

includes a very good package for Probability distributions.
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