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Abstract—Citadel is an advanced information-stealing malware
which targets financial information. This malware poses a real
threat against the confidentiality and integrity of personal and
business data. A joint operation was recently conducted by
the FBI and the Microsoft Digital Crimes Unit in order to
take down Citadel command-and-control servers. The operation
caused some disruption in the botnet but has not stopped it
completely. Due to the complex structure and advanced anti-
reverse engineering techniques, the Citadel malware analysis
process is both challenging and time-consuming. This allows
cyber criminals to carry on with their attacks while the analysis
is still in progress. In this paper, we present the results of the
Citadel reverse engineering and provide additional insight into
the functionality, inner workings, and open source components
of the malware. In order to accelerate the reverse engineering
process, we propose a clone-based analysis methodology. Citadel
is an offspring of a previously analyzed malware called Zeus;
thus, using the former as a reference, we can measure and
quantify the similarities and differences of the new variant.
Two types of code analysis techniques are provided in the
methodology, namely assembly to source code matching and
binary clone detection. The methodology can help reduce the
number of functions requiring manual analysis. The analysis
results prove that the approach is promising in Citadel malware
analysis. Furthermore, the same approach is applicable to similar
malware analysis scenarios.

Index Terms—Reverse Engineering, Malware Analysis, Clone
Detection, Botnet Takedown, Incident Response, Zeus Botnet
Variant, Static Analysis, Dynamic Analysis

I. INTRODUCTION

Making headlines in recent months (March 2013 - July

2013) has been an offspring of Zeus malware known as

Citadel. Cyber criminals behind the Citadel malware have

stolen over 500 million dollars from online bank accounts [15].

Zeus is a prolific Trojan that has been stealing information

since 2007. In 2011, its source code was leaked on the internet

and became available to the underground community. Since

then, several malware have been developed based on the Zeus

source code. Citadel has been employed by botnet operators

to steal banking credentials and personal information [10],

[17]. In addition, Citadel has features that extend beyond

targeting financial institutions. Spying capabilities, such as

video capture, is an example of such features that literally

enables cyber criminals to collect anything from a victim’s

machine. The malware also acts as ransomware and scareware

in order to extort money from victims. Reverse engineering is

often the primary step taken to gain an in-depth understanding
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of a piece of malware; however, it is both a challenging and

time-consuming process which requires a great deal of manual

intervention.
The major objectives of this paper are to reverse engineer

the Citadel malware and gain more insight into its structure

and functionality. In particular, the objectives can be summa-

rized as follows:

1) Quantify the similarities and differences between Citadel

and Zeus malware.

2) Obtain additional insight into online open source com-

ponents used in Citadel.

3) Accelerate the reverse engineering process of similar

malware variants.

To enhance and speed up the process, a new approach termed

clone-based analysis is employed in this study. This paper

illustrates the usefulness of the proposed approach in the

analysis of new variants of a malware family. In this scenario,

a preceding malware P is presumed to be analyzed and

understood. If a variant V uses portions of the P code, the

approach will highlight the shared portions. Consequently,

disregarding the clones could reduce the analysis time. In a

more general case where P is unknown, the approach can still

provide insight into the components of V in comparison to

other sources.
The main contributions of this paper are three-fold: first, a

detailed reverse engineering analysis of the Citadel malware

is presented and its functionality is described. Second, a new

methodology for reverse engineering malware is proposed.

This methodology significantly decreases malware analysts’

efforts and reduces the analysis time. Third, the similarity be-

tween the Citadel malware and the Zeus malware is precisely

quantified. Additional insights are also provided into the open-

source components used in the Citadel malware.
This case study was chosen for a number of reasons.

First, Citadel and Zeus are real threats against confidential-

ity, integrity and availability of information systems. Cyber

criminals are constantly enhancing their tools for gaining

access to personal and financial data. The profitability of

such crimeware tools in the underground market depends on

the timeliness and support for new vulnerabilities. For this

reason, malicious developers often reuse all or parts of existing

components during their incremental development process. As

a result, it is quite probable that they leave fingerprints of

previously analyzed malcode on new releases. Clone-based

analysis serves as a beneficial tool in such situations due to its

potential for producing quick results. Integrating a clone-based



Fig. 1. The overlap in reverse engineering methodologies.

analysis in the reverse engineering process will significantly

reduce the overall analysis time. The second benefit of this

case study is that it allows us to leverage our developed tools

such as RE-Source [7] and RE-Clone [8] in reverse engineering

sophisticated malware. The lessons learned during the analysis

would bring new opportunities for future extensions of our

tools. Third, the analysis provides us with practical solutions

for mitigating future threats in a timely fashion. Once the

analysis is performed on Zeus and Citadel, new Zeus-based

malware variants with shared components can be more quickly

analyzed.

The remainder of this paper is organized as follows. Sec-

tion II is dedicated to explaining our methodology in studying

the malware. Section III details the dynamic analysis and ex-

plains the debugging process and memory forensic approaches.

The main features of the Citadel malware are also described

in this section. Section IV presents the static analysis and the

steps which led to the actual de-obfuscated code. Section V

presents the clone-based analysis. The threat mitigation is

briefly presented in Section VI, and the conclusion is drawn

in Section VIII.

II. METHODOLOGY

Static and dynamic analysis are commonly used in studying

malware [1], [5]. Static analysis focuses on malware code,

inspecting its structure and functionality without execution. In

contrast, dynamic analysis deals with behavior monitoring dur-

ing the malware execution. In general, the process of malware

reverse engineering is a combination of these two approaches,

which is both time-consuming and costly. The success of these

approaches is tightly coupled with the functionalities of the

tools and skills of the reverse engineer [3], [4].

To enhance and accelerate the process in analyzing the

Citadel malware, another dimension is considered in our study

as shown in Figure 1. This new dimension is called clone-

based analysis. In brief, the clone-based analysis identifies

the pieces of code in Citadel malware that originate from

other malware and open-source applications. This step is per-

formed automatically by leveraging the tools that are designed

and developed in our security lab [7], [8]. There are two

main advantages in considering this extra dimension in the

static analysis: first, it avoids dealing with low-level assembly

code in situations where the corresponding high-level code is

available; second, it prevents reverse engineering parts of the

malware that have already been analyzed. This approach is

very promising, especially in scenarios similar to Citadel that

share a significant portion of code with a previously reverse

engineered malware like Zeus [6]. The process of assembly

to source code matching is performed using the RE-Source

framework [7], and the binary clone matching is carried out

using RE-Clone [8].

The proposed methodology is composed of three processes.

Each process comprises several steps. We elaborate each step

in the following sections:

1) Static Analysis Process

• The disassembly is reviewed for finding obfuscated

segments, decoder stubs, and embedded file images.

The feasibility of static data decryption is assessed.

Switching to dynamic analysis for code and data

decryption may be necessary.

• A suitable circumvention strategy is adopted for

bypassing the anti-static protection of the malware.

Having a de-obfuscated/decrypted disassembly is a

prerequisite for the clone-based analysis process.

• Control flow analysis and data flow analysis are

applied to gain an understanding of the crypto

algorithms and encoding/decoding functionality.

2) Dynamic Analysis Process

• A debugging environment is set to execute the

binary, attach the debugger, set the breakpoints,

control the unpacking, dump the process memory,

generate an executable image, and save the process

to file. The dumping process is repeated according

to the analysis scenario.

• System calls are monitored, malware activities are

logged, network traffic is captured, downloaded files

are backed up, and the communication protocol is

observed. In addition, the interesting artifacts are

extracted.

3) Clone-based Analysis Process

• Using the unpacked and de-obfuscated disassembly,

a search is performed for standard and open-source

components by applying the assembly to source-

code matching technique of RE-Source [7]. The data

matching technique encompasses two threads of

online and offline analysis. This step is repeated for

all process memory dumps and the set of matched

projects are stored as online analysis results.

• An offline analysis is performed for assigning the

functionality tags according to API call classifica-

tion in RE-Source. Function labels are updated, the

proportion of assembly functions in each function-

ality group is calculated, and the functionality tags

are reviewed based on the scenario.

• Using the unpacked and de-obfuscated disassembly,

a binary clone matching is performed against the

previously analyzed malware binaries in RE-Clone.

The occurrences of inexact and exact clones are then

recorded.



• The outputs of assembly to source-code matching

and binary clone matching are combined for quan-

tifying the similarities and difference of malware

variants. The results draw a high-level picture of

the code.

• The clones are selectively used to guide the static

and dynamic analyses. In order to speed up the

process, the clones are removed and the focus

of analysis is shifted to the original (non-clone)

functions.

As illustrated in Figure 1, three connected processes are

defined in the proposed methodology. In the Citadel case study,

the dynamic analysis focuses on web debugging, memory

forensics, process injection and web injects. An important

aspect in this process is the observation of malware’s behavior

in response to controlled inputs. On the other hand, the static

analysis process focuses on assembly-level functions. De-

obfuscation could occur in the overlapping area of these two

methods. Unpacking and decryption are relevant examples that

fall in this area. It is assumed that a database of previously

analyzed code is available during the analysis. Code search

engines provide an interface to online open source code repos-

itories. Similarly, an offline code repository is maintained for

storing the malware assembly code and the results of previous

analysis sessions. One advantage of the clone-based analysis is

that it can guide the dynamic and static steps: it highlights the

important directions that the other two processes should follow

by eliminating code clones, recognizing library functions, and

providing additional comments. The analysis focus is thus

shifted to non-clone parts of the payload, resulting in a shorter

analysis time frame.

III. DYNAMIC ANALYSIS

The purpose of the dynamic analysis process is to execute

the malware and monitor its behavior in a controlled environ-

ment. Many tools and techniques are available for debugging

malware [2], [3]. Sandboxing is a common technique in

dynamic analysis used for running untrusted code in a virtual

setting; however, modern malware are well-equipped with anti-

virtual machine protection against popular tools such as Oracle

VirtualBox and VMWare Workstation. The malware can easily

sense whether it is running on a virtual machine by checking

certain artifacts in memory or on disk. As a result, the malware

might change its normal behavior by taking an alternative

execution path, thereby hindering the analysis. Malware can

go even one step further and try to exploit the virtual machine

vulnerabilities in order to gain access to the host operating

system. Successful dynamic analysis may thus require caution

and pre-processing steps. Debugging Citadel is challenging

due to the built-in anti-debugging and injection capabilities,

but the protection can be circumvented by choosing the right

strategy. As it will be discussed in Section V, RE-Source

can provide informative tags such as ADB, PSJ or AVM

for functions that potentially contain anti-debugging, process

injection, or anti-virtual machine functionality. Upon the first

Fig. 2. Citadel process injection and agent mode.

execution, Citadel begins the infection process based on an

embedded attack configuration.

A. Citadel Infection Process

The Citadel bot operates in several modes. Upon the first

execution, the dropper is in the installation mode. First, it

unpacks and decrypts itself into memory. It then creates a

copy of the binary file and stores it in the %AppData%

folder under a randomly generated sub-folder and file name.

The bot file is referred to as Random.exe in this context.

As an example, the output path could be similar to: ...\App-

Data\Roaming\Random\Random.exe. The bot also generates a

batch file for removing the installation code. Checking for the

existence of this path is a way to determine whether the system

has been infected by the malware. Once the Random.exe is run

from the new location, a sequence of similar steps are taken

for unpacking and decrypting the bot. Subsequently, the bot

switches to injection mode and injects itself into the Explorer

process and its child processes.

The injection step is dependent upon the privileges of the

user who runs the bot as well as the version of the operating

system. Following the injection, the bot process is terminated

and the installation files are removed. The bot also updates the

registry and adds an entity so that it will execute each time the

operating system boots up. The registry path would appear as:

HKU\...\Software\Microsoft\Windows\CurrentVersion\Run\Rad.

The Random.exe is identical to the dropper except for the flag

bytes located at the end of the file. This portion is encrypted

and is used for controlling the bot mode. Thus, although the

two executables are very similar, their behavior is different as

the Random.exe operates only in agent and injection modes.

Upon each system startup, the bot initiates the intelligence

gathering process as demonstrated in Figure 2.

B. Debugging and Memory Forensics

After setting up the analysis environment and infecting it

with the malware, the bot execution can be monitored and

controlled using a scriptable debugger [18], [19]. Several

techniques are available for hiding the debugger process from

the bot and gaining more control over the debugger [2]. A web

debugger or a network protocol analyzer is used for monitoring

the HTTP network communication of the malware. Citadel

encrypts the command-and-control (C&C) network traffic with

RC4; therefore, the crypto keys are required to intercept the

commands and view the stolen data. One way to find the

keys is through debugging and setting hardware breakpoints

on functions that precede network communication.

As will be discussed in Section V, such network-related

functionality can be identified through the NET, WNT and



Fig. 3. Decoded Citadel config file name and location.

CRY tags assigned in the offline analysis. Upon success-

ful installation, the bot checks for Internet connectivity

and tries to connect to embedded C&C addresses in order

to announce its availability. The bot sends requests such

as POST /carfca/basket.php HTTP/1.1 or POST

/carfca/file.php HTTP/1.1 to the server. The server

then replies and sends the encrypted config file to the bot.

One major difference between Zeus and Citadel is in the

way they handle the transmission of the configuration file.

It was possible to find the location of the Zeus config file

and download it with minimal effort, whereas in Citadel, it

is more difficult to obtain the config file during the analysis.

Citadel uses dynamic APIs and decrypts strings in memory

during execution. This can be considered as an extra layer

of protection that prevents the config file from being easily

detected. Figure 3 shows one of the decrypted links to a Citadel

C&C server which hosts the encrypted “sport.doc” config file.

During the debug, the bot allocates memory for new segments

and overwrites the memory space with decrypted code and

data. The zero values in Figure 3 show the bytes that are

yet to be overwritten by data. Blocking the malware’s access

to the requested C&C and modifying its timing mechanism

will force the malware to enumerate the list of alternative

embedded C&C servers.

Several tools and plug-ins are available for dumping mem-

ory, reconstructing import tables, and fixing PE headers. Olly-

Dump and ImpRec are examples of such tools for unpacking

Citadel [1], [3]. Volatility [20] was the most versatile and

straightforward tool for memory forensics that was used in this

project. It automatically builds the import tables and generates

the executable versions of the unpacked binary. Volatility was

utilized for creating executable process dumps and retrieving

decrypted strings from memory. Figure 4 lists the utilized tools

and shows the number of detected functions, extracted strings,

and identified function imports during different stages of the

unpacking process.

C. Citadel Attack Configuration

The bot options are set in the configuration file. This file

contains two sections for static and dynamic configuration as

depicted in Figure 5. The bot builder reads this file and embeds

the settings in the generated bot.exe. The bot encryption key is

also defined in this file. The static config section is where the

Fig. 4. Unpacking stages of Citadel binary.

options for the initial attack are set. The setting for web injects

are defined in the dynamic config section. Web injects are

used for tricking users into revealing confidential information

such as additional passwords or PINs. Since the man-in-

the-middle attack (DLL hooking) occurs in libraries such as

wininet.dll or nspr4.dll, the victim user might not be able to

distinguish the injected data from the genuine page. The result

of injection could be in the form of extra fields, text boxes

or warning messages. In comparison to Zeus, Citadel has a

few extra features such as the anti-virus and security software

evasion mechanism. In addition, the DNS filter enables the bot

to block the victim from accessing security-related websites

and downloading new updates and patches. Consequently, the

machine is made more vulnerable to future attacks. A DNS

redirection technique is used for implementing this feature.

The config file includes a list of blocked websites and the

corresponding redirected IP addresses. The report in [17]

provides a list of Citadel DNS filter domains. This type of

DNS poisoning attack does not modify the Windows Hosts

file. The settings related to the dynamic configuration can be

updated by the C&C server according to predefined rules set

by the botmaster. For instance, new modules can be remotely

installed for country-specific web inject which target online

banking accounts, automatic money transfer, and ransom [13],

[17]. The encrypted configuration file can be obtained by

capturing the bot traffic and replaying a crafted request in

debugging.

Fig. 5. Structure of Citadel configuration file.

IV. STATIC ANALYSIS

In this section, we describe the main steps taken during the

static analysis of Citadel. The static malware analysis process

normally starts by disassembling the malware binary. However,

the initial disassembled code may not draw a complete picture

of the original code due to different layers of obfuscation.

Disassembling the Citadel malware using IDA Pro [19] results

in a packed binary containing merely 13 functions, 11 imports,

and 337 strings. The binary was compressed, encrypted, and



employed anti-reverse engineering techniques. Our static anal-

ysis therefore began by de-obfuscating the malware. Accord-

ing to the first process of the proposed methodology, static

and dynamic techniques should be interleaved for advancing

the analysis.

A. Unpacking Step

Not surprisingly, the malware was packed with a non-

standard packing scheme, thus automatic unpacking tools

such as UPX could not be used and manual unpacking was

necessary. To unpack the malware, a combination of static

and dynamic techniques was used. The packed binary was

executed in Immunity debugger [18] until the unpacking stub

decompressed the binary in memory. Once the unpacking

procedure was completed, the unpacking stub transferred the

execution to the original entry point of the binary by making a

jump from one segment to another. At this moment, Volatility

[20] was used to dump the unpacked version of the binary’s

process out of memory and generate an executable unpacked

version of the binary. The generated binary contained roughly

800 functions, 386 imports, and more than 900 decrypted

strings.

B. Code Decryption Step

The unpacking allowed the static analysis to be resumed.

After this step, there still remained encrypted portions in the

binary code. One of the interesting points was located at the

address of 0x0040336 in our sample. An in-depth exam-

ination of the function which cross-referenced this portion

revealed the structure of encrypted data and the decryption

mechanism. As shown in Figure 6, the structure size is 8

bytes and consists of 4 chunks. The key for string decryption

is embedded in the binary file. Algorithm 1 presents the

decryption procedure used for decrypting the data. It helped us

recover more than 300 strings and 45 C&C commands from

the packed data in the binary.

Fig. 6. Structure of the encrypted data.

Algorithm 1: String Decryption Procedure

/* The command for decrypting embedded

strings */

for j in range length do

UNPACKED_DATA =

join(char(PACKED_DATA[j]) ˆ j ˆ key)

Fig. 7. Communication messages for retrieving the configuration file.

C. Crypto Algorithms

The Zeus malware suffered from two main weaknesses:

receiving an RC4-encrypted configuration file from a C&C

server in response to a plain GET request, and reusing non-

random values for encrypted messages. To overcome these

weaknesses, significant improvements concerning crypto al-

gorithms have been made in Citadel. As shown in Figure 7,

the Citadel C&C server requires a specially crafted RC4-

encrypted POST message to send the configuration file. In

addition, in order to provide better security, the configuration

file is encrypted using AES. The Citadel authors have used a

composition of different ciphers as shown in Figures 8 and

9. The RC4 encryption (Figure 8) starts by a customized

encoding (obfuscation) mechanism known as Visual Encrypt

(VE).

Fig. 8. Citadel RC4 encryption process.

Algorithm 2: Visual Encrypt Procedure

void Crypt::VisualEncrypt(void *buffer, DWORD

size) {

for (DWORD i = 1; i < size; i++) do

((LPBYTE)buffer)[i] ˆ = ((LPBYTE)buffer)[i - 1];

}

The input to the algorithm is an encoded buffer. The VE

code is provided in Algorithm 2. This function was used in

Zeus for crypto purposes as well. After the XOR operation,

the non-standard RC4 initialization routine generates a 0x100-

byte key based on the static configuration data embedded in the

binary. The output of the routine is a new RC4 key that is used

in RC4 encryption function along with the customized XOR-

ed data. Finally, performing an XOR on the RC4 output and

the login key embedded in the binary results in the RC4 en-

crypted data. Given login_key=lkey and VE=encode, the func-



tionality can be stated as: out = lkey XOR RC4rkey(encode(in)).

Therefore, out=Enc(in). The AES decryption is depicted in

Figure 9. The configuration decryption routine takes as input

the embedded static configuration data and produces as output

the RC4 key. The MD5 hashed login key and the embedded

RC4 key are fed to the RC4 routine. Subsequently, the AES

key is generated by performing an XOR on the output of the

RC4 routine and the login key. This key is used by the AES

decryption function. Finally, the Visual Decrypt (VD) function

(Algorithm 3) takes the result of the AES routine and decodes

the decrypted data. The process can be formulated as: AESkey

= MD5(lkey) XOR RC4rkey. Given VD=decode, the output

can be stated as: out = decode(AESAES_key(in)). The weakest

point in the crypto process is that it is based on static config

data, which shows that the authors lack competency in security

algorithms and cipher composition.

Fig. 9. Citadel AES decryption process.

Algorithm 3: Visual Decrypt Procedure

void Crypt::VisualDecrypt(void *buffer, DWORD

size) {

if size > 0 then

for (DWORD i = size − 1; i > 0; i−−) do

((LPBYTE)buffer)[i] ˆ= ((LPBYTE)buffer)[i - 1];

}

V. CLONE-BASED ANALYSIS

The third process of the proposed methodology focuses on

clone-based analysis, which can be applied to complement the

process of reverse engineering. It could be particularly helpful

in reducing the time required for the static analysis phase.

In this context, two techniques are taken into account for

quantifying the similarities between Citadel and Zeus samples.

The first approach uses RE-Source in order to reveal the

open-source building blocks of the malware. The second ap-

proach utilizes RE-Clone for binary code matching. The major

steps in the clone-based methodology can be enumerated as

follows: (1) identification of standard algorithms and open-

source library code in the malware disassembly, (2) assigning

meaningful labels to assembly-level functions based on API

classification, (3) commenting the assembly code based on a

predefined dictionary of malware functions, and (4) applying a

window-based search and comparison mechanism for finding

the pre-analyzed code components.

Fig. 10. Matched features with open-source projects.

A. Assembly to Open-Source Code Matching

The RE-Source framework [7] has been used for extracting

assembly-level features from Citadel. This framework exam-

ines assembly functions in both online and offline phases

in order to find source files that share features with the

disassembly. The key steps of the framework are: (1) extrac-

tion of interesting features, (2) feature-based query encoding,

(3) query refinement for online code search engines, (4)

request/response processing, (5) data extraction and parsing,

(6) reporting results and updating comments, and (7) feature-

based offline analysis. Different features are considered for

online and offline analysis. During the online analysis phase,

RE-Source revealed the correlation between function-level

features of Citadel and several open-source projects. The video

capture capability of the malware was unleashed through

links to source files such as: MHRecordContol.h, stopRe-

cord.c, trackerRecorder.h, signalRecorder.h, waitRecord.c, etc.

(See Figure 11). This observation was further supported by

occurrences of strings such as “_startRecord16” during the

dynamic API de-obfuscation. Moreover, a “video_start”

C&C command was also found in this process. Even though

screen capture is a common feature in modern malware, live

video capture capability is a new feature which is only seen

in complex and progressive samples. It should be noted that

the online analysis results of RE-Source suggesting video-

related capability were the outcome of an approximate code

matching process. Although the matching process was not

perfect, it was sufficiently accurate to reveal the functionality

context in this case. Similarly, RE-Source had commented the

code with references to other open-source projects such as

those listed in Figure 10. The number of matched projects

in each category determines the size of each pie slice. Many

Zeus-based malware variants have appeared online since the

release of Zeus source code in 2011. Having access to Zeus

source code enabled us to match Citadel binary against Zeus

source code. The pie chart in Figure 10 shows the general

categories of open-source projects used in Citadel. Apart from

the detached slices, Citadel and Zeus share a considerable

amount of code related to the core, VNC, crypto, and proxy

functionalities. However, the differences can be summarized

in network communication code, new exploits and browser-

specific code for web injects.

B. Offline Analysis and Functionality Tags

RE-Source can also be used for tagging assembly functions

based on API calls and classifying functions according to their



Fig. 11. The output of RE-Source pointing to video capture source code.

potential functionality. When applied to the unpacked version

of Citadel, 652 functionality tags were detected by the offline

analyzer. A function is assigned several tags if it contains more

than one system call. Accurate functionality tags could convey

meaningful hints to the reverse engineer during the static

analysis phase. In conjunction with the code and data cross-

referencing, functionality tags can enrich the disassembly by

highlighting the final system calls in a multi-level function call

hierarchy. Since system calls serve as interaction points with

the operating system, having a high-level view of them could

draw a more organized view of the code.

Fig. 12. Functionality tags for offline analysis.

Functionality tags are not limited to simple system calls

for file processing or registry modifications. They can be

composed of several operations related to common malware

behavior. New patterns can be defined for highlighting com-

mon malicious code in downloaders, launchers, reverse shells,

remote calls and keyloggers based on the combination of

several simple system operations. In this context, process

memory modification and code injection points are of great

interest to the reverse engineer. RE-Source includes tagging

Fig. 13. Functionality tags assigned by offline analysis.

categories such as process injection, launcher, DLL injection,

process replacement, hook injection, APC injection and re-

source segment manipulation in the offline analysis. Figure 12

lists some of the available functionality tags in the prototype.

A practical application of functionality tags is in disassembly

comparison/synchronization of two malware variants. Instead

of comparing the files by address, the code can be analyzed

offline and the generated tags can be used as association

criteria/sync points. In this process, the functions are sorted

based on the assigned tags, and those with similar tags are

analyzed side by side. This technique was specifically helpful

in synchronizing the disassembly of Citadel versus Zeus.

Figure 13 depicts the detected functionality tags. The pie

chart sectors are proportional to the number of assembly

functions categorized under the same functionality group.

The NET tag was assigned to 60 functions related to low-

level socks. Furthermore, 41 functions were tagged with CRT

(critical section objects) for mutual exclusion synchronization.



Similarly, 36 FIL tags were assigned to file manipulating

functions. The other tags, such as crypto, hashing, search and

code injection, were also identified during the analysis. The

CRY (crypto) and HSH (hashing) tags provided an easy way

of disassembly synchronization between Citadel and Zeus as

the slight differences between the assembly files had no effect

on the overall functionality group.

Translated into quantifiable terms, Figure 14 shows the

output of RE-Source for Citadel vs. Zeus comparison. The

numbers are reported in accordance with occurrence of certain

features such as the number of assembly functions, API

and functionality tags, common API in malware, number of

matched opens source components, imported function calls,

and Unicode strings. The results imply that the framework

has been successful in revealing the internal components of

the malware. The final outcome of assembly to source code

matching is a list of source files alongside the description from

the malware dictionary. This information provides valuable

insight into the potential functionality of the malicious code

and facilitates the analysis.

Fig. 14. RE-Source analysis results.

C. Binary Clone Analysis

The malware analysis process can be accelerated by identi-

fying and removing the previously analyzed code fragments.

The aim of binary clone analysis is to compare the assembly

file of a new binary sample with a repository of analyzed

code. The result of this analysis is a set of matched clones. In

this context, we rely on the RE-Clone binary clone detector

tool [8] that implements an improved version of the clone

detector framework proposed in [9]. RE-Clone considers the

same problem definition, that is the exact and inexact clone

detection, as stated in [9]. Exact clones share the same

assembly features, i.e., mnemonics, operands and registers.

The only difference is in memory addresses. Inexact clones

can be regarded as equal up to a certain level of abstraction,

which means that the number of common features must be

greater than a certain threshold.

Fig. 15. Binary clone detection results.

The analysis parameters such as search window size, nor-

malization level and detection algorithm play a significant role

in the analysis results. These parameters are set according

Fig. 17. Code analysis after clone elimination.

to each analysis scenario. After marking the detected code

fragments as clones, the focus of analysis is shifted to non-

analyzed and new code segments. The core components of

the Zeus malware has been thoroughly studied in [6]. The

source and binary files are also available online. A new Zeus

variant can therefore be compared against the existing files

in order to measure the similarity and detect the potential

exact and inexact clones. This analysis is also applicable to

finding the additional functions of the new malware variant.

Figure 15 shows the results of the binary clone matching

process. The samples share 526 exact binary clones with a

window size of 15 instructions. In other words, almost 93%

of Zeus assembly code also appears in Citadel. These clones

form approximately 67% of the Citadel binary. This analysis

highlights the remaining 33% of the Citadel assembly to be

analyzed. Thus, a significant amount of time is saved by

disregarding the clones. RE-Clone shows the address of each

clone in the disassembly. Furthermore, the remaining functions

can be examined in RE-Source before the manual analysis

process is begun by the reverse engineer. This approach is

depicted in Figure 17. The 1876 inexact clones reported by

the tool include multiple combinations of regions that also

contain the exact clones.

An interesting example of crypt-related clones is the de-

tection of an inexact clone in the RC4 function that is used

for encrypting the C&C network traffic. There are a few

extra assembly instructions in the Citadel version of the

RC4 function. This clone was found with a threshold of 0.8

and a two-combination inexact clone search method. In this

approach, each two-combination of features is considered as

a cluster. If more than 80% of regions appear in the same

clusters, they are treated as inexact clones. The red segments

in Figure 16 highlight the detected inexact clones.

VI. THREAT MITIGATION BY SINKHOLING

In June 2013, the Microsoft Digital Crimes Unit reported

on an operation known as Operation b54 in collaboration

with the FBI to shut down Citadel C&C servers [14]. As

a result of this operation, 1400 Citadel botnets around the

world were interrupted and redirected to sinkhole servers

controlled by Microsoft. A comprehensive list of the domain

names is available in [16]. Although the operation significantly

disrupted Citadel botnets and reduced the threat levels, it also

affected honeypot systems that were used for identifying and

locating the malware creators and distributors. Despite the

overall success of the threat countermeasure, cyber criminals

can still operate by infecting new machines and controlling

their bots using alternative servers.



Fig. 16. An inexact clone detected in the RC4 encryption function (Citadel vs. Zeus).

VII. RELATED WORK

AnhLab [11] presented a comprehensive static analysis of

Citadel malware. To the authors’ knowledge, this report is

the most complete analysis on Citadel malware that has been

released so far. The process of infection, the structure of

the malware binary, and the malware’s main functionalities

and features are explained in detail in this technical report.

The report gives valuable insight into the malware and its

capabilities; however, the methodology and steps that were

taken for reaching the outcomes were not discussed. Further-

more, despite mention in the report that Citadel is remarkably

similar to Zeus, the precise quantification of their similarity

is not provided. Only approximate resemblance percentages

is given without any details. To compare our analysis to this

work, we provided a new methodology for reverse engineering

malware by adopting clone-based analysis. Following our

methodology, we concisely explained the steps we took in

reverse engineering Citadel and the insight that we obtained

through our study.

SophosLabs [12] provided a brief report on Citadel mal-

ware. The major enhancements which occurred in Citadel

compared to Zeus is briefly explained in high-level in this

report. No explanation was provided about the process of

reverse engineering the malware and how the authors gained

those insights. Indeed, this report gave a modest overview

about the Citadel malware without digging into the details.

CERT Polska [13] also provided a technical report on Citadel

malware. Similar to the previously mentioned report, this

report was high-level and reviewed the main features of Citadel

without providing details. The reports mainly provided statis-

tics focusing on the impact of the malware and its geographical

distribution. The statistics were gathered based on the traffic

to the sinkhole server after the domain had been taken down.

By leveraging the tools developed in our security lab,

we quantified the similarity between the Zeus and Citadel

malware. These results could be further refined by integrating

other existing techniques designed to automate malware anal-

ysis. For instance, our binary clone detector could be extended

with a CFG-like dimension. For this purpose, we could benefit

from the model proposed in [21] which aims to identify the

common code fragments between two executable files and

analyze the CFG subgraphs containing these fragments.

VIII. CONCLUSION

The Citadel malware targets confidential data and financial

transactions. It is an emerging threat against online privacy

and security. Citadel reverse engineering is challenging as it

is equipped with anti-reverse engineering techniques which

hinder the malware analysis process. As the number of in-

cidents entailing new malware attacks are increasing, agile

approaches are required for obtaining the analysis results in

a timely fashion. The malware reverse engineering process

consists of two major stages of static and dynamic analysis.

This process can be accelerated and enhanced by adding a

new dimension for clone analysis. Instead of initiating the

process from scratch, a quick clone-based analysis can easily

highlight the similarities and differences between two samples

of the same family. The focus of analysis is then shifted

to the differing sections. We have presented a methodology

along with the tools and techniques for analyzing the Citadel

malware. We have also compared Citadel with its predecessor,

Zeus. The similarities have been quantified as the result of

two code matching techniques, namely assembly to source



and binary code matching. The same methodology can be

applied to other malware samples for providing insight into

the potential malware functionality. The results of the malware

analysis process can be added to a local code repository and

used as a reference for measuring the similarities between

future samples. They can also be used for improving the

accuracy of the results. Overall, the successful completion of

our objectives has led to underlining the best practices for

supporting real-world malware analysis scenarios.
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