
AndroSAT: SECURITY ANALYSIS TOOL FOR ANDROID

APPLICATIONS

SAURABH OBEROI

A THESIS

IN

THE CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEMS

SECURITY

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

JUNE 2014

c© SAURABH OBEROI, 2014

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

______________________________________ Chair

______________________________________ Examiner

______________________________________ Examiner

______________________________________ Supervisor

Approved by__
Chair of Department or Graduate Program Director

__
Dean of Faculty

Date __

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Saurabh Oberoi

Entitled: AndroSAT: Security Analysis Tool for Android Applications

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Information Systems Security

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Chair

Examiner

Examiner

Examiner

Supervisor

Co-supervisor

Approved

Chair of Department or Graduate Program Director

20

Dr. Christopher Trueman, Dean

Faculty of Engineering and Computer Science

ABSTRACT

AndroSAT: Security Analysis Tool for Android Applications

Saurabh Oberoi

With about 1.5 million Android device activations per day and billions of applications

installation from Google Play, Android is becoming one of the most widely used operating

systems for smartphones and tablets.

Besides typical personal usages, Android mobile devices are also being integrated into

enterprises, government organizations, and military networks. Consequently, these devices

hold valuable sensitive information which makes them face the same level of malicious

attacks that have targeted the desktop environments over the past three decades.

In this thesis, we present AndroSAT, a Security Analysis Tool for Android applications.

The developed framework allows us to efficiently experiment with different security aspects

of Android apps through the integration of (i) a static analysis module that scans Android

apps for malicious patterns. The static analysis process involves several steps such as n-

gram analysis of dex files, de-compilation of the app, pattern search, and analysis of the

AndroidManifest file; (ii) a dynamic analysis sandbox that executes Android apps in a

controlled virtual environment which logs low-level interactions with the operating system.

The effectiveness of the developed framework is confirmed by testing it on popular

apps collected from F-Droid, and malware samples obtained from a third party and the

iii

Android Malware Genome Project dataset. As a case study, we show how the analysis

reports obtained from AndroSAT can be used for studying the frequency of use of different

Android permissions and dynamic operations, and detection of Android malware.

iv

Acknowledgments

First of all, I would like to express my deepest gratitude to my supervisor, Dr. Amr Youssef,

for his constant support, heartily guidance and enduring patience during my graduate study.

This thesis would not have been possible without his help. His attitude and enthusiasm for

scientific and academic research will always be my role model.

I also wish to express my appreciation to all the faculty and people at Concordia In-

stitute for Information Systems Engineering for having such a warm and cosy working

environment. To each of my professors, I owe a great debt of gratitude for their wonderful

teaching, which has helped me in reaching this stage.

I thank my grandmother, parents and sister for teaching me valuable lessons of life. I

also thank my fiancée who always kept me going and helped me in my hard times.

Last, but not least, I would like to thank my colleagues at Concordia University, specif-

ically, Song Weilong, Eman Alzahrani, Rohit Upadhyay, Maryam Asgariazad and Dhruv

Jariwala for making my time at the University and in Montreal pleasurable and memorable.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Contributions . 4

1.4 Thesis Organization . 5

2 Background 6

2.1 Android Overview . 6

2.2 Android Security . 8

2.2.1 Secure Android Operating System Development 10

2.2.2 System Level Security . 11

2.2.3 Application Level Security . 13

2.3 Evolution of Android Security over time 15

vi

2.4 Past, Present and Future of Android Malware 19

2.4.1 Past . 20

2.4.2 Present . 24

2.4.3 Future . 28

2.5 Efforts Made to Improve Android Security 30

2.5.1 Assessing current Android security 30

2.5.2 Extensions proposed to improve Android security 31

2.5.3 Tools developed to analyze Android applications 33

3 AndroSAT 39

3.1 Introduction . 39

3.1.1 Droid-Shelf . 44

3.1.2 Droid-Repository . 45

3.1.3 Analyzer . 45

3.2 Static Analysis Module . 46

3.2.1 Static Analysis Process . 48

3.2.2 N-gram Aanlysis Process . 49

3.2.3 Features extracted from the AndroidManifest file 50

3.2.4 Feature Extraction from Source Code 51

3.3 Dynamic Analysis Module . 52

3.3.1 Dynamic Analysis Process . 54

3.3.2 Features collected during the dynamic analysis 55

vii

3.4 Using AndroSAT . 57

4 Experimental Results 60

4.1 Frequent Permissions and Dynamic Operations 61

4.2 Cyber-intelligence . 64

4.3 Malware Detection . 66

5 Conclusions and Future Work 71

5.1 Conclusion . 71

5.2 Future Work . 72

Bibliography . 74

viii

List of Figures

1 Android Architecture [15] . 7

2 Multi-layered Security Architecture of Android Platform [33] 9

3 The GUI for the Verify Apps functionality [38] 17

4 An Example for Verify Apps functionality detecting malicious application

installation [38] . 18

5 Premium SMS Warning . 18

6 Server application accessing exact location of the client RAT 24

7 Ransom message and encrypted files by Android/Simplocker.A [20] 26

8 An Example for Fake Facebook token generator used by iBanking [21] . . 27

9 Overview of AndroSAT . 40

10 The main menu of Droid-Shelf . 44

11 Overview of the static analysis module 46

12 Overview of the dynamic analysis module 53

13 Graphical User Interface of AndroSAT . 58

14 Top 15 permissions used by malicious applications 62

15 Top 15 permissions used by benign applications 62

ix

16 Top 15 dynamic operations performed by malicious applications 63

17 Top 15 dynamic operations performed by benign applications 63

18 Geographical Presentation of the locations of suspected IPS 65

19 Accuracy obtained by different classification techniques 66

20 Precision obtained by different classification techniques 67

21 Recall obtained by different classification techniques 67

22 Partial Decision Trees obtained using static, and static & dynamic features 69

x

List of Tables

1 Android version history [47] . 7

xi

Chapter 1

Introduction

Android is one of the most popular operating system these days. It powers more than a

billion smart devices that include phones, tablets, wearables and consoles [5]. Around one

million android devices are activated every day and more than one billion applications are

downloaded every month, worldwide [6]. Android powered devices have replaced everyday

use of laptops and desktops. Most of the smartphones these days have a better hardware

configuration as compared to the laptop and desktop computers used in the 90’s.

Android is the biggest open source mobile operating system. Its open source nature

makes it flexible and customizable while maintaining the easy to use quality [5]. On the

other hand, being an open source platform, Android opens itself to numerous amount of

sophisticated attacks. At the same time, it also gives an opportunity to the developers to

quickly learn its possible vulnerabilities and keep it vaccinated against attacks. Overall,

being an open source helps Android to remain up to date against attacks as compared

to many other mobile platforms and, in turn, Android can build strong prevention and

detection techniques.

Over the past years, Android applications with malicious intent were observed not only

at the third party app stores but also at the Google Play store. These malicious applications

include virus, worms, Trojans, remote access tools, botnets and coin-miners. Although

1

Google has exerted a large effort to get rid of malicious applications from the Google Play

store, there were thousands of victims before Google realized the malicious existence of

such malware. All these malicious applications were proved to be dangerous to the smart-

phone users as they aimed for stealing the personal information of users including contacts,

emails, pictures, text messages, call logs and banking information. One of the most dan-

gerous types of malware is remote access tools, also known as RATs, which can remotely

control a smartphone without the user’s knowledge and installation of such malware does

not even need a rooted device.

1.1 Motivation

According to a recent report from Juniper Research [30], smartphone sales have increased

by 49% year-on-year since the third quarter of 2012. In the third quarter of 2013, more

than 250 million smartphones were sold worldwide. This rapid increase of smartphone

usage has moved the focus of many attackers and malware writers from desktop computers

to smartphones. Today, mobile malware is far more widespread, and far more dangerous,

especially in Bring Your Own Device (BYOD) arrangements where mobile devices, which

are often owned by users who act as defacto administrators, are being used for critical busi-

ness and are also being integrated into enterprises, government organizations and military

networks [32, 35].

Android, being one of the utmost market share holders, not only for smartphones and

tablets, but also in other fields such as automotive integration, wearables, smart TVs and

video gaming systems, is likely to be facing the biggest level of threat from malware writ-

ers. As an open-source platform, Android is arguably more vulnerable to malicious attacks

than many other platforms. According to a report from Juniper Networks [29], mobile mal-

ware grew 614% for a total of 276,250 malicious apps from March 2012 to March 2013.

Another recent report from Kaspersky [17] shows that 99% of all mobile malware in the

2

wild is attacking the Android platform. Kaspersky also mentioned that mobile malware

is no longer an act of an individual hacker; some rogue companies are investing time and

money to perform malicious acts such as stealing credit card details and launching phishing

attacks, to gain profit. According to the Kaspersky report, the number of unique banking

Trojans has risen from 67 to 1321 from the start to the end of 2013. Thousands of users

were forced to pay millions of dollars due to the gradual dissemination of infected apps. In

extreme cases, an application with malicious intent can do more than just sending premium

text messages–they can turn a phone into a spying tool. These spying tools can track the

current location of a smartphone, make phone calls, send and receive text messages, and

send stolen private information to remote servers without raising any alarm.

1.2 Objectives

Throughout this work, we focus on building a prototype to analyze Android applications

and record their interaction with the Android emulator. The idea is to make the whole

process automated so as to keep the Android apps security analysis easier and faster by

analyzing numerous Android applications at once without manual intervention.

The developed prototype aims at recording security relevant information that can be

obtained by observing the actions performed by Android apps when they run on Android

devices. This information can then be used to perform different case studies or infer the

intentions of an Android app.

The objective of this work can be summarized as follows:

• Design and implement a static analysis tool for Android apps

• Design and implement a dynamic analysis tool for Android apps

• Integrate static and dynamic analysis tools in order to automate the whole analysis

procedure

3

• Perform case studies on information collected during static and dynamic analysis of

Android apps in order to confirm the effectiveness of the developed framework

1.3 Contributions

In this thesis, we present a Security Analysis Tool for Android applications, named An-

droSAT. The developed framework allows us to experiment with different security aspects

of Android apps. In particular, AndroSAT comprises of:

• A static analysis module that scans Android apps for malicious patterns. This process

involves several steps such as n-gram analysis of dex file (compiling an Android

application generates a dex file, also known as Dalvik executable, as a part of the

APK package), de-compilation of the app, pattern search, and extracting security

relevant information from the AndroidManifest files.

• A dynamic analysis sandbox that executes Android apps in a controlled virtual envi-

ronment which logs low-level interactions with the operating system. The developed

sandbox allows not only for observing and recording of relevant activities performed

by the apps (e.g., data sent or received over the network, data read from or written

to files, and sent text messages) but also manipulating, as well as instrumenting the

Android emulator. Many modifications were made to the Android emulator in order

to evade simple detection techniques used by malware writers.

• Analysis tools and add-ons for investigating the output of the static and dynamic

analysis modules.

In order to demonstrate the effectiveness of our framework, we tested it on popular apps

collected from F-Droid [22] which is a Free and Open Source Software (FOSS) repository

for Android applications, and a malware dataset obtained from a third party as well as

4

from the Android Malware Genome Project. The reports produced by our analysis were

used to perform three case studies that aim to investigate the frequency of use of different

Android permissions and dynamic operations, detection of malicious apps, learning about

the deciding factors in distinguishing between benign and malicious apps, interpreting data

collected during the static and dynamic analysis of Android apps and generating cyber in-

telligence about domain names involved in mobile malware activities. The results obtained

by the first case study can be utilized to narrow down the list of features that can be used to

determine malicious patterns. In the classification experiment, using the features extracted

from our analysis reports, we applied feature space reduction, and then performed classifi-

cation on the resultant dataset. The obtained classification results are very promising. All

these experiments show the versatility as well as the wide variety of possible usages for the

information obtained by AndroSAT.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Android security, malware on Android

and related work are reviewed in the next chapter. In chapter 3, we present AndroSAT, a

Security Analysis Tool for Android applications. In chapter 4, we present the case studies

on security relevant information obtained during static and dynamic analysis of Android

applications in order to confirm the effectiveness of the developed framework. Finally,

in chapter 5, we present a summary of our research and some possible future research

directions.

5

Chapter 2

Background

2.1 Android Overview

Android is an emerging platform with about 19 different versions till date [47]. Table 1.

shows different Android versions and their corresponding release date. As shown in Figure

1, the Android framework is built over a Linux kernel [15] which controls and governs

all the hardware drivers such as audio, camera and display drivers. Android contains open-

source libraries such as SQLite, which is used for database purposes, and SSL library which

is essential to use the Secure Sockets Layer protocol. The Android architecture contains

Dalvik Virtual Machine (DVM) which works similar to the Java Virtual Machine (JVM).

However, DVM executes .dex files whereas JVM executes .class files. Every application

runs in its own Dalvik virtual environment or sandbox in order to avoid possible interfer-

ence between applications and every virtual environment running an application is assigned

a unique User-ID (UID).

The application layer consists of the software applications with which users interact.

This layer communicates with the application framework to perform different activities.

This application framework consists of different managers which are used by Android apps.

For example, if an app needs access to incoming/outgoing phone calls, it needs to access

6

Android Version OS Name Release Date
1.0 Alpha 09/2008
1.1 Beta 02/2009
1.5 Cupcake 04/2009
1.6 Donut 09/2009

2.0-2.1 Eclair 10/2009
2.2 Froyo 05/2010

2.3.x Gingerbread 12/2011
3.1-3.2 Honeycomb 02/2011

4.0.3-4.0.4 Ice Cream Sandwich 10/2011
4.1.x-4.3 Jelly Bean 08/2012

4.4 KitKat 09/2013

Table 1: Android version history [47]

Figure 1: Android Architecture [15]

7

TelephonyManager. Similarly, if an app needs to pop-up some notifications, it should

interact with NotificationManager.

An Android application, also known as an APK package, consists of AndroidMani-

fest.xml, res, META-INF, assets and classes.dex files. The AndroidManifest.xml file con-

tains information about supported versions, required-permissions, services-used, receivers-

used, and features-used [15]. META-INF contains the certificate of the application devel-

oper, resource directory (res) contains the graphics used by an applications such as back-

ground, icon and layout [15]. The assets directory contains the files used by an Android

application, for example: SQLite database, and images. The classes.dex file is an exe-

cutable file in a format that is optimized for resource constrained systems.

2.2 Android Security

The multi-layered security architecture of Android gains it a significant advantage and

allows it to become secure compared to its counterparts. This multi-layer security archi-

tecture keeps it secure from apps with malicious intent. Figure 2 depicts the multi-layered

security architecture of the Android platform. Android permissions is one of the layers in

the secure operating system multi-layered architecture. However, the open source nature

of Android makes it somewhat dependent upon the users and developers to do the right

thing. To perform any given task, an application needs control over the users data and the

device resources. At the time of the application installation, the users are asked to grant

these permissions to the application which makes the operating system secure provided that

users always manage to make the right decision at this step. Users can deny or allow all the

permissions requested by an app. In other words, users have the privilege to grant a lot of

permissions as requested by an application and may access the depths of Android operating

system if the device is rooted.

To retain flexibility as an operating system, Android allows the users to access system

8

Figure 2: Multi-layered Security Architecture of Android Platform [33]

sensitive data or functionality by granting corresponding permission to an app. However,

as a secure operating system Android also tries to keep sensitive data and functionalities

safe from the mistakes of the users by warning them of possible malicious outcomes. For

example, when a new application is installed, Android advices the user for possible issues

which might occur if a particular permission is granted. Despite of such warnings, Android

devices usually get open to a lot of malicious applications not because Android is insecure

but because users make it insecure. However, security-savvy developers and users can keep

the Android operating system more secure and flexible to use in day to day life operations.

Android security can be divided into three different levels:

• Secure Android Operating System Development

• System Level Security

• Application Level Security

9

2.2.1 Secure Android Operating System Development

According to Google, for making and keeping an operating system secure, it is always

necessary to think about security from the very first development steps of the operating

system. The key steps in secure Android operating system development process are listed

below [11]:

• Design Review : The security process starts from the very first step in the operating

system life cycle. Design of the operating system is then reviewed by chief security

professionals at Android [11]. The development process of the Android operating

system goes to the next steps only if the design passes all the security aspects of an

operating system.

• Penetration Testing and Code Review : During the development process of the

Android operating system, it goes through plenty of pen-testing processes. The code

is reviewed and penetrated by the Android Security Team, Google Information Se-

curity Engineering team, and independent security consultants [11]. The main aim

of these tests and reviews is to check the code for possible vulnerabilities and known

weaknesses to fix them before moving to the next steps.

• Open Source and Community Review : Google allows the Android operating sys-

tem to be reviewed by external security professionals, security developers, code re-

viewers and secure code reviewing communities [11]. After all, security by obscurity

does not work and it is better to get scrutiny done by experts.

• Incident Response : Even after shipping the operating system, security issues might

occur in an operating system. New vulnerabilities might get discovered while the

product is shipped and being used by millions of users. Android has a special re-

sponse team for all vulnerabilities that are discovered once the operating system is

live. The goal of this team is to eradicate any vulnerability that is discovered, as

10

quickly as possible. The usual tasks of this team include fixing the vulnerability, re-

leasing fixed updates to the users and removing the malicious applications from the

Google Play store [11].

2.2.2 System Level Security

The Android platform provides an extra layer of security at the operating system level.

Some of the security aspects that come under system level security of Android platform are

mentioned below:

• Linux Security : The Android platform is based upon a Linux kernel and conse-

quently, it inherits all the security aspects of this Linux Kernel [11]. The Linux

platform is also an open source platform and is used by millions of users and security

experts. Being an open source platform, Linux was built, designed, researched, tested

and fixed by security experts all over the planet which makes it a reliable, robust and

trusted platform.

• SE Linux : Android applies the functionalities of Security Enhanced Linux to make

the operating system more secure and reliable [11]. SE Linux is used most widely

in the areas which need very high security like government servers, military systems

and other security oriented departments. In Android 4.3 and later versions, discre-

tionary access control environment is replaced by mandatory access control [13].

Mandatory access control limits an app with root privileges to write to raw block

device specified in the associated policy. Hence, overcoming the issues with discre-

tionary access control environments where an app can write to any raw block device.

• Root Access : Generally, no third party application can gain root access to an An-

droid device. Only the kernel and few core applications have root access and can

execute with root privileges [11]. An application with root privileges can access

11

everything on an Android platform whether it is another application’s data, user’s

private data or private banking information. With root privileges, any application can

take over the whole operating system and learn about all the information stored on

that device. In this case, even encryption does not work because the decryption key

itself is stored onto the device which is controlled by the rogue application.

For any application to gain root access, it needs the operating system to be rooted

which can be easily done by installing a custom OS image onto the device. With

a rooted device, users can access extra functionalities of the Android device - for

example, using a custom firewall, Tor browser, packet sniffers, ad blockers and CPU

tuners.

• Application Sandbox : Every Android application installed on the operating system

is assigned a unique User ID (UID) and each user operates under a separate process.

This creates a sandbox for every application which means that each application runs

in its own Dalvik virtual environment or sandbox in order to avoid possible interfer-

ence between applications [11].

This technique is a bit different than that of the usual Linux operating system and

can only be bypassed if the Linux kernel is compromised. The application sand-

box keeps the application secure from other applications and keeps the application

specific data/information secure and private. It would be a disaster if a third party

application can have control over banking applications or if a malicious application

takes control of the e-mail clients. The idea of keeping the applications in their own

sandbox keeps the operating system secure yet simple.

• Safe Mode : All devices powered by Android can be booted in a safe mode which

starts the operating system in an environment which is free from third party appli-

cations where users can only access pre-installed applications which come with the

12

operating system [11]. As this mode is free from third party applications, it is ex-

tremely secure and is vaccinated against malicious attacks.

• Cryptography : Android offers cryptographic techniques which can be used by

applications to keep the sensitive data, such as credentials and banking information,

secure from any external or network intrusions. These techniques use cryptographic

primitives such AES, SHA, RSA and DSA [11].

• Password Protection : Android protects the data from unauthorized access through

different device locking techniques. There are six different ways of locking an An-

droid device which include swipe, face unlock, face and voice, pattern, PIN and

password.

2.2.3 Application Level Security

• Applications from Unknown Sources : By default, the Android platform does not

allow any application from third party stores to be installed on the device unless the

user specifically tells it to. Android gives an option to allow installation of applica-

tions from sources other than the Google Play store. Since it is considered insecure

by Android, this functionality is not activated by default and can only be activated

manually with the consent of the user.

• Application Signing : Every application must be signed by its developer before it is

uploaded to the Google Play store [11]. Signing helps to uniquely identify the author

of the application and makes it easier for the Google Play store to keep track of the

application’s developer for security purposes.

While the application is installed onto the Android device, its certificate is verified

with the signature to make sure that the integrity of the application is maintained. Ap-

plication signing is used to assign the applications to the application sandbox. Thus,

13

two applications with similar application signature will share the same application

sandbox.

• Android Permission Model : On an Android device, no application can access user

or system sensitive data of an Android device [11]. An application, by default, uses

no permissions until and unless it needs access over user or system specific resources.

The user can either allow or deny all the permissions asked by an application. As of

now, there is no feature like denying or allowing only a specific subset of the permis-

sions requested by an application. Once the permissions requested by an application

are granted, there is no way to take them off from that application.

• Cost-Sensitive APIs : Android distinguishes the APIs which might incur cost to the

users in some sense and names them Cost-Sensitive APIs [11]. To use these APIs,

the application should ask for their corresponding Android permissions. Some of the

Cost-Sensitive APIs are mentioned below:

– SMS/MMS : Android applications use this API to send or receive SMS/MMS.

An application with malicious intent can subscribe to premium messaging ser-

vices using this API.

– Network : Using this API, some malicious applications may use cellular data

to download huge amount of data using the victim’s Android device and hence,

incurring unwanted data usage cost.

– Telephony : The application with malicious intent can use this API to make

calls to premium numbers without the user’s knowledge.

– In-App Purchase : Many users set-up their credit cards on their Android de-

vices to make the process of In-App purchase or buying an application easier

and faster. Malicious applications using this API can cost the user a lot of

money by making irrelevant purchases without the user’s knowledge.

14

2.3 Evolution of Android Security over time

The main aim of the Android developers was to keep the Android platform secure yet

simple. These developers have paid a lot of attention in keeping the platform secure from all

the attacks and vulnerabilities that were discovered. They have maintained this security by

not only maintaining the operating system level security but also application level security.

Android security has evolved over recent years with the new outcoming versions of the

Android operating system. Some of the recently added security features in the Android

platform to keep the platform secure from the known vulnerabilities/issues are:

• Memory Management Enhancements : The enhancements made to the memory

management in the context of security are mentioned below [11]:

– Android 1.5 :

� Extensions to OpenBSD dlmalloc to prevent double free() vulnerabilities

and to prevent exploits against heap corruption

� OpenBSD calloc to prevent integer overflows during memory allocation

� ProPolice to prevent stack buffer overruns

� safe_iop to reduce integer overflows

– Android 2.3 :

� Hardware-based No eXecute (NX) to prevent code execution on the stack

and heap

� Linux mmap_min_addr to mitigate null pointer dereference privilege esca-

lation

� Format string vulnerability protections

– Android 4.0 :

15

� Address Space Layout Randomization to randomize key locations in mem-

ory

– Android 4.1 :

� Avoid leaking kernel addresses

� Position Independent Executable support

– Android 4.2 :

� FORTIFY_SOURCE for system code

– Android 4.3 :

� ADB Authentication

� Android sandbox reinforced with SELinux

• Device Encryption : Full device encryption was introduced in Android 3.0 and

is supported by all its following versions. The device can be encrypted using the

dmcrypt implementation of AES128 with CBC and ESSIV:SHA2561 [12]. The en-

cryption key accepted by Android is only user entered password and not pattern as

seen in lock-screen of an Android device. This password/encryption key is secured

by AES 128 and, to keep it secure from password guessing attacks, a salt is added to

it and repeated hash is generated using SHA1 [11].

• Device Administration : Device Administration API was introduced in Android 2.2

and is supported by all its following versions. Device Administration API allows an

application to access the device as an administrator. An application with administra-

tor privileges can evade its uninstallation and perform administrative tasks such as

restoring the Android device to factory defaults. It is most widely used by the soft-

ware installed on the laptop or desktop computers to communicate with the Android

1Encrypted salt-sector initialization vector technique is used to generate initialization vectors for block
encryption in cipher-block chaining

16

Figure 3: The GUI for the Verify Apps functionality [38]

device (for example, Samsung Kies and Sony PC Companion). Also, it is used to

remotely wipe all the data from the device, restore the factory defaults, lock-screen

and reset the lock code.

• Application Verification : The application verification (See Figure 3) was intro-

duced in Android 4.2 and is supported by all its following versions. By selecting the

option named “Verify Apps” under security settings in Android devices, users can

verify the third party apps to identify known malware. Application verifier verifies

the application with the Google’s malicious applications database and if the veri-

fier suspects it to be harmful for the device, it may stop the installation process and

display a message as shown in Figure 4.

• Premium SMS Warning : This functionality was introduced in Android 4.2. The

premium SMS warning warns the user if any application tries to send a premium SMS

and if that SMS will incur premium charges as shown in Figure 5. In such cases, the

user can either go ahead and send the message by selecting the Send button on the

notification or cancel it by hitting Cancel.

• Keychain : Keychain was introduced in Android 4.0 and is available in all its fol-

lowing versions. Keychain is used to store private keys and their corresponding cer-

tificates in credential storage. These keys and certificates can then be accessed by

17

Figure 4: An Example for Verify Apps functionality detecting malicious application instal-
lation [38]

Figure 5: Premium SMS Warning

18

their corresponding applications. This functionality provides user convenience by

not prompting the users to enter the keys again and again.

• READ_LOGS permission : The READ_LOGS permission is used to allow any ap-

plication to read all the system level log files which might contain privacy-sensitive

data and activities performed on the Android device. These log files store all the

actions performed by the user and the data involved in those actions. Every activity

on an Android device including SMS sent, received with the data inside the message,

call received, websites browsed, applications opened and credentials entered are writ-

ten in the system log files. Recently, Android prevented third party applications from

accessing the READ_LOGS permission due to security issues.

2.4 Past, Present and Future of Android Malware

With the increasing number of activated Android devices, attackers are trying to utilize

every chance to gain control over these millions of devices either to earn money, mine

electronic coins, perform a DDoS attack or maintain a sophisticated botnet. Being an open-

source platform, Android faces many security challenges every day and Android developers

are trying their best to keep the platform secure from any known or unknown malicious

activity that might result into user inconvenience. Most Android users are unaware of the

vulnerabilities of the platform and do not see any malicious activity coming their way. This

does not mean that Android is perfectly secure. Android malware have made it quite clear

that Android is not as safe as users consider it to be.

Millions of users were forced to pay billions of dollars due to infected Android devices.

According to the Android developers, they have made their platform very powerful and

gave all the power to its users. It is the user’s responsibility to keep it safe and away from the

malicious intentions. As seen in case of windows and many other platform, we individuals

19

are lazy and tend to ignore warnings issued by the operating system. The ignorance of

users has made them pay a hefty amount to attackers. Most of the malicious applications in

the wild depend on social engineering techniques to get installed on the users’ devices. We

believe that with reasonable attention and understanding of the Android capabilities these

threats can be avoided.

In this section, we discuss the past, present and possible future of Android malware.

2.4.1 Past

In the past, Android malware was proved to be a challenge for the Android developers.

Malware writers abused all possible vulnerabilities of Android to earn money and gain

control over millions of devices without the user’s knowledge. Some of the malware that

made their way to the Google Play store and proved out to be very dangerous are listed

below:

• DroidKungFu : In June 2011, the first version of DroidKungFu was discovered by

researchers at NC State University followed by its second and third versions in July

and August, respectively [51]. These researchers were also successful in identifying

the fourth, fifth and sixth variants of DroidKungFu named DroidKungFu4, Droid-

KungFuSapp and DroidKungFuUpdate, respectively. The medium of infection of

DroidKungFu was through repackaged applications and it was considered the most

sophisticated family of Android malware. DroidKungFu comprised of root exploits,

C&C servers, shadow payloads and obfuscation.

DroidKungFu was the first malware family that had an encrypted root exploits to

avoid easy detection by signature based analysis schemes and anti-virus tools. Also,

the encryption keys of the encrypted root exploits varied with changing versions.

However, only four out of six variants had encrypted root exploits. DroidKungFu

also made a use of C&C servers to steal sensitive information from the Android

20

device and perform particular tasks on the device according to the attacker’s will.

C&C servers were included in all versions of DroidKungFu. Moreover, attackers

paid a lot of attention to keep the C&C servers secret from the malware researchers

and security professionals. They started from storing the server address in plaintext

to encrypted text and finally encrypted with home-made encryption scheme [51]. The

malware writers also increased the number of C&C servers.

Shadow payload was one of the important constituents of DroidKungFu. It contained

an embedded application with the same malicious payload within the DroidKungFu

package. DroidKungFu installs this embedded application onto the Android device

once the root exploit succeeds. The reason behind installing the embedded applica-

tion was that even if the original repackaged application is removed by the user, this

application will be functional. Initially, this embedded application, once installed,

showed up as a fake Google search icon which was later fixed and displayed no icon

on the screen. DroidKungFu was heavily obfuscated malware which had strings,

server address, embedded application and root exploits encrypted with changing en-

cryption key with varying versions.

• AnserverBot : AnserverBot was initially distributed in Chinese third party Android

application stores and it piggybacked on popular or paid Android applications [50].

It was discovered in September 2011 and was considered as a sophisticated malware

because it exploited several vulnerabilities to stay undetected. The three main tech-

niques used by AnserverBot were anti-analysis, C&C servers and security software

detection [51].

One of the main aims of AnserverBot was to keep it secure from analysis done by

security researchers and professionals. To avoid any analysis, AnserverBot detects

any changes done to the package which might result into change of signature or the

21

integrity of the application which contains it. If the application’s integrity is not main-

tained, AnserverBot won’t unfold its payload. Also, the developers of AnserverBot

did a lot of obfuscation to make the code very hard to read. The payload of Anserver-

Bot was divided into three different parts, the first one was the application installed

and the other two were embedded in a package sharing the same name. AnserverBot

loads one of them dynamically without actually installing it and the other one was

installed using the update attack. This proved out to be the biggest challenge for

malware analyzers.

AnserverBot also paid a special attention to avoid its detection by any security related

software installed on the Android device like anti-virus. In particular, AnserverBot

included encrypted string of package name of three of the most popular anti-virus

software at that time and performed a search operation to match the application in-

stalled on the device. If the matching application is found, AnserverBot kills it by

calling the restartPackage function. This technique helps to avoid any detection from

well-known anti-virus software installed on the Android device.

AnserverBot uses two types of C&C servers. One of them is just a normal C&C

server that receives commands from the attacker whereas the other one is used to

upload the payload and server address for the first C&C server. The second type is

maintained by service providers like Sina and Baidu. AnserverBot connects to the

popular blog site to obtain the encrypted new payload and server address. This en-

sures that even if the traditional C&C server is offline, its payload and server address

will be updated with the second type of C&C server.

• AndroRAT : As the name suggests, AndroRAT is a remote access tool used to con-

trol Android devices remotely [44]. AndroRAT consists of a server and a client.

The client application is the infected Android application that is installed onto the

Android device whereas server application is a Jar file which can be executed on

22

Windows, MAC or Linux environment. Initially, AndroRAT was introduced as an

open-source remote access tool in November 2012 which can gain almost complete

control over an Android device. To remotely control the victim’s Android device, the

attacker needs to install the RAT application with modified server IP address and port

onto the Android device. Once the application is installed and starts running on the

device, it communicates with the server application and creates a connection with the

server. After this, the server can perform the following actions over the controlled

device:

– Monitor phone calls and SMSs

– Make phone calls and send SMSs

– Obtain all the contacts

– Download files stored on the device

– Obtain exact location of the device

– Display toast messages on device

– Take pictures

– Stream video or audio

Figure 6 shows an example illustrating the location of the Android device being con-

trolled through AndroRAT. One of the problems with AndroRAT was the installation

of the RAT application on the Android device. However, the recent introduction of

AndroRAT APK binder has made this tool more dangerous and easier to spread. An-

droRAT APK binder can be used to bind the RAT application with any popular or

well-known application using the “bind+build” functionality of this tool. This makes

the infection easier, faster and more widespread.

The biggest advantage of AndroRAT is that it does not need root privileges to per-

form the actions mentioned below. Moreover, variants to AndroRAT are introduced

23

Figure 6: Server application accessing exact location of the client RAT

in underground markets every now and then with new features and functionalities.

Dendroid is one of the variant of AndroRAT. Dendroid is a HTTP remote access

tool with APK binder and a sophisticated PHP panel through which an attacker can

control the infected Android devices [41].

2.4.2 Present

The current focus of Android malware is not to exploit any vulnerability in the operating

system but perform the malicious activities by using the useful functionalities offered by

Android platform. Malware writers have moved their focus on developing malware using

the extra and powerful functionalities offered by Android platform. This technique helps

to easily evade any signature based malware detection by well-known antivirus software.

Some of the recent malware identified in the wild in the last few weeks are mentioned

below:

24

• Android/Simplocker.A : Few weeks ago, a file-encrypting ransomware which is

named as Simplocker was discovered by ESET’s security engineers [20]. The sam-

ple was discovered in the form of an Android application “Sex xionix”. According to

their findings, this application acts as a Trojan, it scans the SD card installed on the

Android device for certain type of files such as doc, docx, jpg, jpeg, txt, avi and png.

It then encrypts them using the AES encryption algorithm. Meanwhile, it displays

a ransom message to decrypt all the files. Figure 7 shows an example for the ran-

som message displayed by the application once it is installed and finished encrypting

photos in camera directory. The message is written in Russian and the ransom is 260

Ukrainian hryvnias (21 US dollars) which makes it safe to assume that the source

and target of this Trojan are Russians. The last few lines translates to “After payment

your device will be unlocked within 24 hours. In case of no PAYMENT YOU WILL

LOSE ALL DATA ON your device!”. To keep the identity secret, the application asks

the user to pay the ransom using Monexy [36]. Simplocker also sends device spe-

cific information to its C&C server which is hosted on a TOR domain to maintain

anonymity.

Similarly, a fake anti-virus (Android/FakeAV) application named Android Defender

was discovered and analyzed last year by Sophos [40]. The application poses itself to

be a genuine anti-virus. According to Sophos engineers, this anti-virus, in the initial

scan, prompts the user about two viruses, one Trojan and one malware which it offers

to get rid of, only if the user clicks on Buy and eliminate threats button. Symantec

discovered more aggressive version of Android Defender which almost locks down

the device [42]. The User might not have an option of uninstalling the application

or performing a factory restore as the malware attempts to prevent other applications

from launching. Since the application is not stable on all Android applications, few

lucky users might get a chance to uninstall the malware as it crashes.

25

Figure 7: Ransom message and encrypted files by Android/Simplocker.A [20]

• iBanking : It was initially introduced as an SMS stealer which is now turned into a

sophisticated and powerful Android Trojan. According to Symantec [43], the source

of iBanking is Russian cybercrime gangs and it is proved to be the most expensive

malware sold in the underground markets/forums, priced at 5000 US dollars with

updates and technical support. The strongest aspect of iBanking is that its application

code is obfuscated. Social engineering techniques are used by the attackers to lure

the user to install iBanking application.

Consider a user infected with a Trojan on her PC. When the user visits a banking,

social networking, e-mail account website, she is shown a message instructing her

install a two-step verification token generator to keep the account secure from the

ever increasing attacks. The user is prompted to enter her phone number and select

the type of operating system she is using. If the operating system is Android, the user

will be given a link to download the token generator client. She can also use a QR

26

Figure 8: An Example for Fake Facebook token generator used by iBanking [21]

code2 to download the token generator client. The victim also receives a text message

containing a link to iBanking application. The installed application is a complete

imitation of a genuine banking, social networking or email account application which

generates token for two-step verification. Figure 8 shows a fake Facebook token

generator used by iBanking.

Once installed on a victim’s device, iBanking can be controlled by the attacker either

through HTTP or SMS control. The attacker can perform the following tasks using

iBanking C&C server:

– Steal sensitive information

– Intercept, forward SMS and phone calls to the server

– Upload contacts, GPS location and recorded audio to the server

2QR code is also known as Quick Response code which is a trademark for matrix barcode. Smartphones

can be used to scan QR codes which are mapped to a website URL

27

– Redirect a call to the attacker’s number

– Prevent its removal or uninstallation

– Restore device to factory defaults

• Android/Samsapo.A : Android/Samsapo.A was first discovered by ESET malware

researcher and security professional [19]. This malware uses a technique similar

to computer worms and tries to spread itself. It relies totally on social engineering

where a victim installs the application thinking of it as a useful link. Hence, the

installation process is totally dependent on the user’s ignorance. If an application

gets installed on an Android device, it sends an SMS message to all users in the

contact list with a message that says “Is this your photo?” in Russian and a link

which contains the malware package. The capabilities of Android/Samsapo.A can be

summarized as follows:

– It looks like a system utility with package name com.android.tools.system v1.0

– No icon is generated after installation and the application has no GUI

– Download malicious files

– Upload sensitive information to server

– Register for premium message service

– Block phone calls and modify alarm settings

2.4.3 Future

The future of Android malware is vast. Unlike past and similar to present, future malware

may focus on the use of advanced functionalities offered by the Android operating system

to obtain sensitive information and perform malicious activities. Hasan et al. [26] explore a

new generation of Android malware that exploits the various services available to Android

28

applications such as the wide variety of sensors. The idea of exploiting the wide variety of

sensors is to generate a malware that can target a very large amount of victims.

Malware in the past used to depend upon the traditional command and control servers

which can be operated through a centralized server or by sending a text message. However,

these new generation of malware would not need any centralized server to take control of

the infected Android devices, it may make use of out-of-band channels. These communica-

tion channels allow the attacker to reach out to a very large number of users at once without

raising an alarm in the user’s mind.

This technique offers a very high level of anonymity and keeps it almost impossible for

any malware analyzer to detect any malicious intent. The idea is to make use of sensor

enabled channels instead of network-based communications which makes it very hard to

identify the malicious activity by monitoring cellular or wireless communication data. In

[26], Hasan et al. presented C&C servers based on visual, magnetic, audio and vibrational

signals. For example, a malware can monitor the audio sensor and trigger the malicious

payload when a specific song, announcement or message is played on radio or television.

This technique can trigger billions of devices to perform a specific action at the same time.

Examples of such malicious actions include performing factory restore, DDoS attack on a

website, playing same song on billions of devices, send premium messages or make phone

calls. Think of a situation where all the Android devices in the airport after listening to

a particular announcement to perform a DDoS attack on a carefully chosen airport server

causing all flight-ground communication to fail.

A malware with such capabilities can easily cause a worldwide disaster. Using this

technique, a botnet can be controlled without using traditional networks and will be ex-

tremely hard for any malware analyzer or antivirus to detect it. This kind of malware can

be used as a weapon against many facilities around the world. An intrusion detection sys-

tem can be installed to monitor sensors and identify any malicious activity. However, a

29

sophisticated malware can use a virtualization layer between the sensor and the application

to avoid detection. There is a serious need to think about eradicating these kind of attacks

before they even come into existence.

2.5 Efforts Made to Improve Android Security

Due to sudden increase in the number of Android malware, researchers too have moved

their focus and resources towards securing the Android platform from the rising threats.

Most of the security researchers and professionals have realized that Android is a very

powerful platform and all its power is being controlled by its user. If the user is smart

enough to properly use these powers, then there will be no need to take any actions against

the rising threats. However, it is almost impossible for every user to totally understand the

Android platform. Most of the users are even unaware of the possible actions they may

allow an application to perform by allowing a specific permission.

Due to the gaps between Android security and user’s understandings, malware pro-

fessionals and researchers have developed ways to save users from the possible malicious

actions performed by any application with malicious intents. We have divided the work

related to our thesis into three different parts as mentioned below:

• Assessing current Android security

• Extensions proposed to improve Android security

• Tools developed to analyze Android applications

2.5.1 Assessing current Android security

In [51], Yajin and Xuxian collected over 1200 malware samples from 49 different families

to systematically characterize the existing Android malicious applications. According to

30

Yajin and Xuxian, more than 14 different families of Android malware were discovered on

Google Play store. Furthermore, according to their characterization results, around 86% of

Android malware are repackaged version of most popular applications, around 37% of An-

droid malware focus on exploiting platform level vulnerabilities, about 45% of the malware

tries to subscribe to premium services by sending out SMSs without the user’s knowledge

and 93% of them showed bot like capabilities. Then, Yajin and Xuxian chose four leading

antivirus software for Android devices and installed them on different smartphones. After

this, they executed all the samples, one by one, on those smartphones and monitored the

response from the anti-virus software. They received very astonishing results where only

one of the anti-virus was able to reach an accuracy of about 79% whereas the worst de-

tection rate was as low as 20%. According to them, current anti-malware solutions are not

good enough to diligently identify the presence of even known malicious applications and

there is a need to develop better anti-malware solutions to fight the outgrowing number of

malicious applications.

2.5.2 Extensions proposed to improve Android security

Enck et al. [18] proposed an extension to current Android platform named TaintDroid.

TaintDroid is designed to provide the user with adequate amount of visibility and control

over third party applications. TaintDroid performs a real-time dynamic taint tracking to

detect if any third party application tries to access sensitive information. To perform dy-

namic taint tracking, TaintDroid defines labels or taint for data that is privacy-sensitive

which includes user data, device specific information or data stored on the device. Enck

et al. claimed that TaintDroid can track multiple labels at the same time and record the

information to generate logs. The key goal of TaintDroid is to achieve very high efficiency

due to limited amount of resources in smartphones. TaintDroid achieved high efficiency by

combining four different levels of granularity together, namely, file-level, variable-level,

31

message-level and method-level. TaintDroid was tested with 30 samples collected ran-

domly from distinct repositories and the results came out promising. It detected that 20 out

of 30 applications misused the user’s private information in 68 instances. Moreover, 15 out

of 30 applications sent the user’s current location to the remote servers.

Russello et al. [39] presented an Android extension named YAASE (yet another Android

security extension). YAASE provides a policy enforcing mechanism and incorporates taint-

ing mechanism from TaintDroid [18] for labelling the sensitive data and monitoring how

the data is spread within the operating system and leaves the operating system through the

Internet connection. Due to the policy enforcing mechanism introduced in YAASE, appli-

cations are limited to access specific labels only which provides an opportunity to the user

to keep the sensitive data far away from the user. It also allows the users to assign network

capabilities to an application and limit them to certain links only resulting into controlled

Internet access; hence, keeping the device safe from any data being uploaded to the remote

servers. YAASE tags the data using user-defined labels such as public, private and confiden-

tial; hence, providing access to the public tags to all the applications while keeping private

and confidential data untouched. Russello et al. claimed that the results show possible

overheads. However, it can be further optimized to reduce the overheads by limiting the

focus on monitoring data leaving the operating system through Internet connections.

Nauman et al. [37] presented a framework named Apex that allows policy enforcement

mechanism for Android platform. Their biggest concern is why users need to allow all

the permissions to an application to use it and not grant only specific permissions. They

also constraint the use of resources by any specific application even after it is installed on

the device. Nauman et al. aimed at allowing users to control the resources accessible by

any third party application. Apex is an extension for current Android operating systems

which can be practiced by modifying very small part of the code. Their idea was to add

this functionality while installing the application. Users should be able to select which

32

permissions to allow and which permissions to deny before an application is installed onto

the device. Also, if an application asks for SEND_SMS permissions, it should specify how

many text messages an application is planning to send out every day, weekly or monthly

so that users can use Apex GUI to constraint that application to that many number of short

messages. Similarly, other resources can be constrained to keep the device secure from any

unknown data leakage by applications with malicious intentions.

Tang et al. [45] proposed an extension to the current Android operating system using a

security distance model named as ASESD (extension of Android Security Enforcement us-

ing Security Distance model). According to Tang et al., a permission alone cannot do much

to compromise sensitive data on an Android device but certain combinations of permissions

can be a huge threat to the users. Also, some combinations are extremely malicious whereas

others are used to provide normal functionality to the users. For example, the combination

of READ_PHONE_STATE and RECEIVE_SMS or INTERNET and RECEIVE_SMS per-

missions poses no threat to the user. However, a combination of READ_PHONE_STATE

and INTERNET or RECEIVE_SMS and SEND_SMS can result into a huge amount of data

leakage. ASESD calculates the security distance based upon the severity of the permission

combinations used by an application. Security distance is defined as safe, normal, danger-

ous and severe dangerous, based upon the security distance 0, 1, 5 and 25, respectively.

Security distance helps in determining the threat level of an application. Tang et al. tested

their proposed system on 100 Android applications where about 80 applications lied be-

tween security distance or threat level of 1-20, less than 20 applications lied between 21-50

and a few between 51-100.

2.5.3 Tools developed to analyze Android applications

Burguera et al. [16] proposed a solution to analyze Android applications and differentiate

between malicious and benign application using Crowdsourcing. Keeping in mind the

33

limitations of resources and the limited battery life of a smartphone, they came up with

an idea of completely analyzing the applications on a dedicated remote server instead of

the Android device. The authors also developed a client named Crowdroid which can

be downloaded and installed from the Google Play store. The client, once installed on

an Android device, monitors and records all the system calls (Linux Kernel) issued by

any application installed on that device. Crowdroid uses a well-known Linux system call

tracing tool named Strace. Later, the monitored data is sent to the centralized remote

server which parses the received data from different users. The server generates a set of

system call feature vector that defines the application behavior. There are more than 250

Linux system calls and this server counts the number of times a particular system call

is issued by an application in the data received from Crowdroid. The feature vector is

nothing but the count of every system call in an application. According to the authors, the

accuracy is directly preoperational to the number of users practicing Crowdroid. Finally,

Burguera et al. performed partitioning clustering techniques to cluster the data into benign

and malicious applications. The clustering algorithm they used was k-means because of its

efficiency, speed and simplicity. Burguera et al. tested their system for both self-written

and real malware specimens. They claimed that they obtained an accuracy of 100% for

all the self-written malware. Burguera et al. also tested it with two real world malware

specimens which resulted in 100% and 85% accuracy.

Grace et al. [24] built an Android zero-day malware detection tool named RiskRanker.

They wanted to overcome the limitation of detecting only the known families of malware

most frequently used by anti-virus companies through signature based detection. Grace et

al. claimed that RiskRanker aims towards analyzing the application’s behavior to assess se-

curity risks posed by zero-day vulnerabilities as well as known vulnerabilities. RiskRanker

analyzes applications collected from any source through two different analysis modules,

34

namely, first-order and second-order module. First-order analysis module focuses on ap-

plications which do not use any obfuscation technique and then distinguishes that applica-

tion into high or medium-risk application where application using platform level exploits

(for e.g., RATC, Asroot and Exploid) are categorized as high-risk, and applications that

might result into spending money without user’s direct involvement are categorized as

medium-risk. Whereas, second-order focuses more on applications that use obfuscation

techniques and dynamic code loading. However, the applications cannot be assumed to

be malicious only because of obfuscation and dynamic code loading. The authors claimed

that, if an application use these techniques with any malicious intentions that might make

an application really dangerous. Grace et al. collected more than 118K applications and

performed analysis on all these applications using RiskRanker in less than four days; hence,

achieved very high analysis speed. The authors were successful in identifying a large num-

ber of applications with zero-day vulnerabilities and known vulnerabilities (from known

malware families). Grace et al. also claimed that RiskRanker is the only tool that identifies

applications with zero-day vulnerabilities with minimal analysis time.

Blasing et al. [14] proposed a sandbox named AASandbox which can perform both

static and dynamic analysis on Android applications and then detect suspicious applica-

tions. They suggested that it can be deployed onto a cloud server to perform analysis of

Android applications in a much faster way. In static analysis, an application under analysis

in disassembled and then searched for known malicious signatures or patterns. To perform

dynamic analysis on Android applications, they used a LKM (Loadable Kernel Module) to

load a custom kernel image onto the Android emulator which allows logging of low level

interactions of Android applications with the device. Similar to Crowdroid [16], AASand-

box also counts the number of times a particular system call is issued by an application.

The information obtained during the static and dynamic analysis of Android applications

is then logged and can be used for further investigations.

35

In [27], Isohara et al. proposed a kernel based behavior analysis system for Android

applications. Similar to Crowdroid [16], they have also used Strace. Strace records all

the system calls issued by a process and any signal received by a process. Kernel based

behavior analysis for Android malware detection consists of two main modules, namely,

log collector and log analyzer. Log collector logs all the kernel level logs using Strace

whereas log analyzer parses the collected logs. Log collector collects the logged system

calls issued be all the applications on a device and sends it to a remote server for further

analysis by the log analyzer. Log analyzer removes the noise from the logs received by

filtering it to show the logs regarding the application in question and then further filters it for

the selected number of system calls. Then, to identify any information leakage, it searches

for signatures such as IMEI, IMSI and Android ID. For identifying any platform level

exploitations, it searches for signatures like asroot, exploid and gingerbreak. It also looks

for any application that uses “su” command in its activities. The authors performed their

analysis over 230 samples and claimed that their solution detected 37 leakage applications,

14 platform exploits and 13 applications using “su”.

Zhou et al. [52] presented a system named DroidRanger which detected the malicious

applications amongst the samples collected from five app stores including Google Play

store. The collected applications were stored in a repository which feeds the applications to

DroidRanger one by one for analysis. They claimed that their tool can detect new malware

applications which belong to known malware families and malicious applications contain-

ing zero-day vulnerabilities. To detect malware from known malware families, it performs

a permission based behavioral footprinting, looks for API call sequence, searches for pos-

sible SMS interception or monitoring (abortBroadcast method) and matches the structural,

hierarchical layout of an application. To detect unknown malware, DroidRanger performs

heuristics-based filtering and dynamic execution monitoring. The authors analyzed more

than 200K Android applications from well-known market places including the Google Play

36

store. DroidRanger detected 211 malicious applications which include 32 from Google

Play store and also uncovered two zero-day vulnerabilities in 40 applications which in-

clude one application from Google Play store.

Wu et al. [48] proposed an application analysis technique purely based upon static fea-

tures named as DroidMat. This techniques use the permissions, API calls, intent message

passing and deployment of components to identify the behavior of the application. The

first step in the analysis of an Android application is to extract the useful information from

Android manifest file such as permissions used and identify different components used by

the application. Based on the information collected from the manifest file, it drills down

the components used in an application such as activity, service and receiver to identify API

related to the permissions used. DroidMat applies k-means clustering with the number of

clusters being decided by the Singular Value Decomposition method. Finally, to classify the

application into benign and malicious categories, it applies k-nearest neighbor algorithm.

The testing results of DroidMat were promising. Wu et al. claimed that even without us-

ing any dynamic analysis, DroidMat offers a high accuracy of about 97%. Moreover, the

absence of the dynamic analysis makes the analysis process extremely fast.

Alazab et al. [4] investigates the behavior of Android applications by using a well-

known dynamic analysis tool named DroidBox. In this thesis, we have also utilized Droid-

Box to perform dynamic analysis of Android applications. Alazab et al. used DroidBox

to obtain behavioral and treemap graphs for each application under analysis and generate

patterns to identify and classify the applications into different families. They collected mal-

ware samples from different families and then compared behavioral and treemap graphs of

the applications to classify similar graphs into same families. Alazab et al. claimed that the

results achieved by their analysis have proved that behavioral and treemap graphs generated

by DroidBox can be used to accurately classify malware samples into different families.

The authors also claim that the comparison between their system and three well-known

37

antivirus vendors proved the antivirus vendors wrong. Moreover, they also discovered that

some of the applications which were tagged as benign by these vendors turned out to be

leaking data.

38

Chapter 3

AndroSAT

3.1 Introduction

In this chapter, we present AndroSAT, a Security Analysis Tool for Android applications.

The developed framework allows us to efficiently experiment with different security aspects

of Android apps. This can be achieved through the integration of (i) a static analysis module

that scans Android apps for malicious patterns. The static analysis process involves several

steps such as n-gram analysis of dex files, de-compilation of the app, pattern search, and

analysis of the AndroidManifest file; (ii) a dynamic analysis sandbox that executes Android

apps in a controlled virtual environment and logs API level interactions with the operating

system.

AndroSAT comprises a local web-server where we can upload the Android applications

to our Droid-Repository (MySQL database of Android applications to be analyzed) through

a PHP webpage (DroidShelf). As depicted in Figure 9, AndroSAT includes three main

modules, namely:

• Droid-Shelf

• Droid-Repository

39

Figure 9: Overview of AndroSAT

40

• Analyzer

Analyzer further includes two modules, a static analysis module and a dynamic analysis

module, which are used together to produce analysis reports in both XML and PDF formats.

The produced XML reports can be processed using several add-ons and analysis tools.

Moreover, AndroSAT uses the Android emulator to perform the dynamic analysis. As a

matter of fact, all security professionals and researchers prefer to use a virtual machine as

their testing and analyzing environment. They do that for plenty of reasons including:

• A malware with malicious intents might corrupt the operating system and make the

device inoperative forever. On the other hand, using a virtual machine as the analysis

environment helps to keep the physical device intact.

• It is easier to automatically install new applications in the virtual machine.

• Generating a fresh copy of the operating system for analysis of each application is

only feasible in a virtual machine. Doing this ensures that no residue is left behind

by the previous analysis process.

• Using a virtual machine allows random or specific clicks over the user interface of

the application. This helps to unveil all the facets of the application under analysis.

• In a virtual machine, it is easier to record interactions between the operating system

and an installed application.

• Virtual environments make it easier to switch between different versions of the oper-

ating system.

• It is easier to feed a virtual machine with mock user data every time a fresh copy is

generated.

41

Because of the reasons mentioned above, most of the security professionals and re-

searchers remain inclined towards using a virtual environment for the dynamic analysis of

malicious applications. However, using a virtual environment also has its own drawbacks.

All the malware writers are aware that dynamic analysis tools use virtual machines. Hence,

these malware writers spend a lot of time in making their malicious applications vaccinated

against virtual environments. Their aim is to write a malicious application which first veri-

fies on which environment it is being run. Only after confirming that the application is not

running in a virtual environment, it reveals and executes its malicious payload. Doing so

allows malware writers to keep the malicious code from being revealed to automated secu-

rity analysis tools. These analysis tools might make the malware useless if the information

extracted from the analysis is used to generate signatures for ant-virus and IDS tools.

Malware writers these days tend to use anti-sandbox code in their applications which

makes it very hard for a virtual environment to reveal the malicious payload. Anti-sandbox

codes are made to diligently identify the presence of a virtual environment. Many mal-

ware writers sell these codes for thousands of dollars in underground forums and software

markets.

Throughout our work, we paid a special attention on how to keep our emulator unde-

tected and vaccinated towards anti-sandbox codes. There are many well-known techniques

used by Android malware writers to identify if the application is running on an emula-

tor or not. These techniques are based upon hardware and software specifications of an

Android device, such as the IMEI number. For example, IMEI number of an emulator is

000000000000000 by default. If an application issues an API call to obtain the IMEI num-

ber of an Android device and the default string is returned, the application will not execute

the malicious code on that device. We developed several techniques to modify many at-

tributes of the sandbox. These techniques make it difficult for a malicious application to

detect the presence of a virtual machine. Some of the fields we modified to make the virtual

42

machine difficult to detect include:

• IMEI number

• IMSI number

• Android ID

• Fingerprint

• BootLoader

• Model and Manufacturer

• Service Provider

• CPUInfo and MEMInfo

We developed an automated tool which can modify these fields of an emulator to avoid

detection. To modify these fields we applied three different techniques:

• Replacing Build.prop file : Build.prop is a part of system.img image file which

is used to boot the emulator. In this technique, Build.prop file is extracted from

system.img and then modified to reflect the properties of a genuine device such as

model, brand, manufacturer, brand and board. After this, Build.prop file is repacked

into system.img file.

• Updating contents of Emulator’s Executable : This technique involves updat-

ing the contents of the emulator’s executable. Some of the useful fields that can

be updated through this technique are IMEI, IMSI, SIM serial number and service

provider.

43

Figure 10: The main menu of Droid-Shelf

• Loadable Kernel Module (LKM) : This technique is used to modify the information

about the installed CPU and memory in the emulator which is stored in the CPUInfo

and the MEMInfo process, respectively. Loadable kernel module can be used to re-

place CPUInfo and MEMInfo processes with dummy processes containing modified

information.

3.1.1 Droid-Shelf

Droid-Shelf is a web-based user interface where a user can easily upload the Android appli-

cations that need to be analyzed by AndroSAT. The interface is easy to use and understand

as shown in Figure 10. The web interface gives an option to browse the Android applica-

tion and then upload it to a database (Droid-Repository). It also allows the user to view

the reports of analyzed applications. Moreover, the user also have an option to view the

applications which are in queue and waiting for the analysis.

44

3.1.2 Droid-Repository

Droid-Repository is a MySQL database which stores all the Android applications that are

uploaded to the database through Droid-Shelf. Only the unique Android applications are

stored onto the Droid-Repository. To make sure that a duplicate copy of the same applica-

tion is not uploaded, Droid-Shelf calculates the hash of the application to be uploaded and

compares it with applications stored in the database. Only if no match is found, the appli-

cation is considered unique and is uploaded to the Droid-Repository for further analysis.

Also, Droid-Repository keeps track of the applications which were analyzed in the past

so as to avoid analyzing the same application again. A specific field in the database, related

to the application is updated with the analysis status. It can be either “Waiting”, “Ongoing”

or “Finished”. When an application is uploaded to the database, the value is set to “Waiting”

by default. When the application is being analyzed, the value is updated to “Ongoing” and

then to “Finished” when the analysis of that application ends. All the applications stored

on Droid-Repository are downloaded by AndroSAT to a local directory to perform static

and dynamic analysis on them. Once the analysis is finished, the application is moved to

its corresponding “Finished Reports” directory.

3.1.3 Analyzer

The third, and the most important building block of AndroSAT is the Analyzer. Analyzer

goes through the Droid-Repository and searches for the applications that are waiting to be

analyzed by AndroSAT. Then, the application waiting for analysis is downloaded to the

local directory. It then passes the application location to the static and dynamic analysis

modules of AndroSAT. Once the analysis is finished, the application is moved by the an-

alyzer to its corresponding “Finished Reports” directory along with the newly generated

XML, PDF and screenshots. Analyzer is divided into two parts based upon the different

analysis techniques:

45

Figure 11: Overview of the static analysis module

• Static Analysis Module

• Dynamic Analysis Module

3.2 Static Analysis Module

Static analysis techniques aim to analyze Android applications without executing them.

The objective of these techniques is to understand the intention of an application and predict

46

what kind of operations and functionalities it might perform. Independent of the operating

system, static analysis techniques have proved to be very fruitful.

Static analysis techniques are used by most well-known analyzers to obtain useful data

present inside the APK package. This includes useful information such as permissions,

services, activities and receivers which are stored inside the AndroidManifest file and API

calls that can be obtained by disassembling the APK package. Static analysis proved to be

quite effective and efficient as the analysis requires very little time as compared to dynamic

analysis techniques.

As shown in Figures 9 and 11, the process of static analysis involves several steps such

as extracting n-gram statistics of .dex files, disassembling the application, performing pat-

tern search for malicious API calls and URLs, and extracting relevant information (such as

permissions, activities, intents and actions, services, and receivers) from the AndroidMan-

ifest file.

In order to perform the static analysis, the analyzed application is first fetched from

the Droid-Repository. Then, useful information from the AndroidManifest file is extracted.

To do so, the contents of the AndroidManifest file are obtained from the APK package

using the Android Asset Packaging Tool (AAPT). AAPT is used for compiling the resource

files during the process of Android app development and is included in the Android SDK

package [7]. After this, the application is fed to the disassembler which disassembles the

APK package to obtain the SMALI and Java code of the application. The disassembly

process is performed using APKTool [1] and Apk2java [2], which are open source reverse

engineering tools, to obtain SMALI and Java code, respectively. Once the source code

is obtained from the Android application undergoing analysis, we search for malicious

functions/API calls and URLs hardcoded inside the application. SMALI is used to search

URLs embedded in the application whereas Apk2java is used to search dangerous API

or function calls. After that, the application is fed to the DEXtractor that extracts the

47

classes.dex file from the package. Classes.dex file is then fed to the feature selection and

extraction module which generates an n-gram feature set. In what follows we provide

some further details on the n-gram analysis process, static analysis process and the different

features extracted from both the AndroidManifest and source code during the static analysis

of an application.

3.2.1 Static Analysis Process

The static analysis process goes down three ways: the first one provides the information

extracted from the AndroidManifest file, the second searches for useful features in the

source code of the Android application. The third part performs the n-gram analysis. The

steps of the static analysis process can be summarized as follows:

1. Extract application from Droid-Repository

2. Feed the extracted application to the Android Asset Packaging Tool (AAPT) to obtain

the information stored in AndroidManifest file

3. The information extracted in previous step is fed to the parser, to obtain useful fea-

tures such as permissions, services, activities and receivers

4. The application is fed to the open-source disassemblers APKTool and Apk2java to

obtain SMALI and Java source code

5. The SMALI and Java source code are then searched to obtain hard-coded URLs and

dangerous API/function calls, respectively

6. The application is fed to the DEXtractor which extracts the classes.dex file from the

APK package

7. Useful n-gram features are selected and extracted from the classes.dex file to generate

n-gram feature set

48

3.2.2 N-gram Aanlysis Process

Different forms of n-gram analysis have been previously used for malware detection in the

Windows and Linux/Unix environments. Different from Portable Executable (PE) but sim-

ilar to MSI packages in Windows, Android OS has Android application package file (APK)

as the file format used to install application software. The APK file can be looked at as a zip

compression package containing all of the application bytecode including classes.dex file,

compiled code libraries, application resource (such as images, and configuration files), and

an XML file, called AndroidManifest. The classes.dex file holds all of application bytecode

and implementing any modification in the application behavior will lead to a change in this

file.

The process of n-gram analysis is performed by extracting the application bytecode files

(i.e., classes.dex), calculating byte n-gram, and then performing a dimensionality reduction

step for these calculated n-gram features. The byte n-grams are generated from the over-

lapping substrings collected using a sliding window where a window of fixed size slides

one byte every time. The n-gram feature extraction captures the frequency of substrings of

length n byte. Since the total number of extracted features is very large, we apply feature

reduction to select appropriate features for malware detection. We chose Classwise Doc-

ument Frequency (CDF) [28] as our feature selection criterion. AndroSAT applies feature

reduction on bigram and trigram sorted by CDF value and top k features are selected. The

obtained feature vectors are saved in the analysis reports and can then be used as inputs for

classifier to generate models for malicious applications. Surprisingly, as will be shown in

the next chapter, applying this simple analysis method to .dex files even without any pre-

processing or normalization for the byte code yields very promising results and allows us to

differentiate between malicious and benign applications with relatively very good accuracy.

49

3.2.3 Features extracted from the AndroidManifest file

Throughout the analysis process, the following features are extracted from the Android-

Manifest file of analyzed applications:

• Requested Permissions: An Android application does not need any permission un-

less it is trying to use a private or system related resource/functionality of the under-

lying Android device. There are numerous permissions which developers can add

into an Android application to provide better experience to users. Example of these

permissions include CAMERA, VIBRATE, WRITE_EXTERNAL_STORAGE, RE-

CEIVE_SMS, and SEND_SMS [9]. Permissions requested by an application implic-

itly inform users about what they can expect from the application and a smart user

can easily realize if an application is asking for more than it should supposedly do.

For example, an application claiming to show weather reports should raise suspicion

if it requests a SEND_SMS permission.

• Features Used: An Android application can use hardware or software features. The

features available (e.g., bluetooth, and camera) vary with different Android devices.

Therefore, many applications use features as preferences, i.e., they can still function

even if the feature is not granted. Features come with a required attribute that helps

developers to specify whether the application can work normally with or without

using that specific feature.

• Services-Used: Services-Used lists all the services recorded in the application An-

droidManifest file. In an Android application, a service can be used to perform oper-

ations that need to run at the background for a long time without any user interaction.

The service keeps on running even if the user switches to another application. An

attacker can make use of a service to perform malevolent activities without raising

an alarm.

50

• Receivers Used: In Android, events send out a broadcast to all the applications to

notify their occurrence. A broadcast is triggered once the event registered with the

corresponding broadcast receiver occurs. The main purpose of using a broadcast

receiver is to receive a notification once an event occurs. For example, if there is a

new incoming message, a broadcast about the new incoming message is sent out and

applications which use the corresponding receiver, i.e., SMS_RECEIVED receiver

will get the incoming message. Malicious applications can use the broadcast receiver

in numerous ways such as receiving the incoming messages that are not intended to

them and monitoring the phone state.

• Intents and Actions: An intent or action specifies the exact action performed by the

broadcast receiver used in an application. Some of the most widely used broadcast

receivers include SMS_RECEIVED, and BOOT_COMPLETED.

• Activities Used: Activities-used is a list of all the activities used in an Android ap-

plication. In Android, every screen which is a part of an application and with which

users can interact is known as an activity. An application can have more than one

activity.

3.2.4 Feature Extraction from Source Code

In this section, we list the features extracted from the decompiled Java code.

• getLastKnownLocation: This function is used to get the last known location from

a particular location provider. Getting this information does not require starting the

location provider which makes it more dangerous. Even if this information is stale,

it is always useful in some context for malicious app developers.

• sendTextMessage: This function is most widely used by many malware developers

51

to earn money or to send bulk messages while hiding their identity. The biggest ad-

vantage that attackers have when utilizing this function is that it sends text messages

in the background and does not require any user intervention.

• getDeviceId: This function is used to obtain the International Mobile Station Equip-

ment Identity (IMEI) number of the Android device. Every device has its own unique

IMEI which can be used by the service provider to allow the device to access the net-

work or block its access to the network. IMEIs of stolen phones are blacklisted so

that they never get access to the network. An attacker with malevolent intentions can

use this unique code to make a clone and then performs illegal activities or blacklists

the IMEI so that the user can never put it back onto the cellular network.

All the features extracted by the static analysis module are then fed to a parser module

in order to remove redundant data. The extracted relevant information is then saved in both

XML and PDF formats.

3.3 Dynamic Analysis Module

The main advantage of the static analysis described above is that it can be performed rela-

tively very efficiently without the need to execute the applications and hence avoids any risk

associated with executing malicious applications. On the other hand, some malware writ-

ers use different obfuscation and cryptographic techniques that make it very hard for static

analysis techniques to obtain useful information which makes it essential to use dynamic

analysis. Dynamic analysis is most widely used to analyze the behavior and interactions of

an application with the operating system. Typically, dynamic analysis is performed using

a virtual controlled environment in order to avoid any possible harm that can result from

running the malware on actual mobile devices. Furthermore, using the virtual environment

makes it easier to prepare a fresh image and install the new application in question on it for

52

Figure 12: Overview of the dynamic analysis module

analysis.

The main disadvantage of dynamic analysis, however, is that the usefulness of the anal-

ysis is somewhat correlated to the duration of the analysis interval. Some malicious ac-

tivities may not be invoked by the app during the, usually short, analysis interval. This

happens either because the conditions to trigger these events do not occur during the dy-

namic analysis process or because the malicious app can detect the presence of an analyzer.

Anti-debugging and virtual machine detection techniques have long been used by Windows

malware writers. To make the virtual environment looks like a genuine smartphone, we

made some changes to the Android emulator. For example, we modified IMEI, IMSI, SIM

serial number, product, brand and other information related to the phone hardware and

software as explained in section 3.1.

During the dynamic analysis process, the application is installed onto the system and

its activities and interactions are logged to analyze its actions. We use a sandbox to execute

53

the Android application in question in a controlled virtual environment.

Figure 12 shows an overview of our dynamic analysis module. The main part of this

module is based on an open source dynamic analysis tool for Android applications named

DroidBox [31]. However, as mentioned above, we performed some modifications in order

to improve the resistance of the emulator against detection. AndroSAT launches the emula-

tor using DroidBox to log the system and API level interactions of an Android application.

Once the emulator is up, the application is installed onto the emulator for further analysis.

Immediately after successful installation of the application, AndroSAT starts DroidBox to

monitor the application at runtime for a configurable interval (the default is two minutes).

Meanwhile, the MonkeyRunner tool [10] launches the main activity and performs random

gestures on it, while DroidBox consistently logs any API level interactions of the applica-

tion with the operating system. In what follows, we provide some further details on the

dynamic analysis process and the features collected during this process.

3.3.1 Dynamic Analysis Process

Unlike the static analysis process, most parts of the dynamic analysis, as explained above,

have to be performed in a sequential manner. However, whenever possible, we used mul-

tithreading to make the process more efficient. The steps of the dynamic analysis process

can be summarized as follows:

1. Extract the target application from Droid-Repository

2. Initialize the emulator with DroidBox’s custom image which makes monitoring API

level calls feasible

3. Install the extracted application onto the emulator using ADB (Android Debug Bridge)

[8]

54

4. Start DroidBox through command line to start monitoring and logging the interac-

tions between the application and the operating system for the duration of the analy-

sis interval

5. Launch main activity of the application installed in step 3 using MonkeyRunner [10]

6. Perform random gestures on the main activity launched in the previous step and take

screenshots using MonkeyRunner

7. Logged interactions are fed to the parser to obtain useful information such as file

activities, network activities, phone calls and sent SMSs

8. Extracted information is written to XML and PDF files for further analysis

3.3.2 Features collected during the dynamic analysis

• File Activities: File activities consist of information regarding any file which is read

and/or written by the application. This information includes timestamps for these file

activities, absolute path of accessed files and the data which was written to/read from

these files.

• Crypto Activities: Crypto Activities consist of information regarding any crypto-

graphic techniques used by the application (e.g., key generation, encryption, and

decryption). It also includes information regarding the type of operation performed

by the application, algorithms used (e.g., AES, DES), key used and the data involved.

• Network Activities: This unveils the connections opened by the application, packets

sent and received. It also provides detailed information about all these activities

including the timestamp, source, destination and ports.

• Dex Class Initialized: In Android, an application can initialize a dex file which is not

a part of its own package. In the most malicious way, an application can download a

55

dex file to the Android device and then executes it using the DexClassLoader. This

way, an application under analysis will come out clean which makes it very hard for

any malware analyzer or sandbox to detect the malicious activities performed by the

application. DroidBox logs relevant details whenever an application initializes any

dex class.

• Broadcast Receiver: As explained earlier, the use of broadcast receiver helps improve

the user experience of an application. However, an attacker can use this functionality

to easily gain access to private/critical data without raising any alarm in the users’

mind. We log information regarding any broadcast receiver used by the application

and record the name of the broadcast and the corresponding action.

• Started Services: Services play a very critical role in Android applications. They are

used to execute the code in the background without raising an alarm. Started services

provide the information about any service which is started or initialized during the

runtime of the application.

• Bypassed permissions: Lists the permission names which are bypassed by the appli-

cation. This aims to detect scenarios where an application can perform the task that

needs a specific permission without explicitly using that permission. For example,

an Android application can direct the browser to open a webpage without even using

the Internet permission [49].

• Information Leakage: Information leakage can occur through files, SMSs, and net-

works. Leakage may occur through a file if the application tries to write or read any

confidential information (e.g., IMEI, IMSI, and phone number) of an Android device

to or from a file. Leakage occurs through SMS if the information is sent through an

SMS. Timestamp, phone number to which the information is sent, information type,

and data involved are also logged. Leakage occurs through network if the application

56

sends critical data over the Internet. Timestamp, destination, port used, information

type and data involved is recorded. Detailed information about the absolute path of

the file, timestamp, operation (read or write), information type (IMEI, IMSI or phone

number) and data are logged.

• Sent SMS: If an Android application tries to send a text message, the timestamp,

phone number and the contents of the text message are logged.

• Phone call: If an Android application tries to make a phone call, the timestamp and

the dialed phone number are recorded.

Dynamic analysis module logs all these features into a text file which is then sent to the

parser module to remove any redundant data. The extracted relevant information is then

saved in XML and PDF formats.

3.4 Using AndroSAT

Figure 13 shows the Graphical User Interface of AndroSAT running on Ubuntu. This tool

provides security professionals with many handy options. Before starting the analysis of an

application, it is necessary for the user to select one of the following options as the source

for the Android applications that needs to be analyzed:

• Analyze Applications from a Specific Directory : If this radio button is selected

while hitting the Start Analysis button, a browse window pops-up. Then, the user

is asked to browse and open the first application from the directory containing the

applications that needs to be analyzed.

• Analyze Applications from Droid-Repository : Unlike previous button, if this but-

ton is selected while hitting the Start Analysis button, the analysis will automatically

fetch the applications from the pre-configured database Droid-Repository. AndroSAT

57

Figure 13: Graphical User Interface of AndroSAT

goes through the Droid-Repository and searches for the applications that are “Wait-

ing” to be analyzed.

After the Start Analysis button is pressed, AndroSAT analyzes all the applications present

in that specific directory or Droid-Repository unless the user interrupts the analysis by

pressing the Stop Analysis button. In case of Analyze Applications from a Specific Direc-

tory, the applications analyzed up to that point will be moved to the directory containing

all the reports of analyzed apps. Later on, if the user starts the analysis from the same

directory, she does not need to analyze the same applications again. Similarly, in the case

of Analyze Applications from Droid-Repository, the analysis status field is updated to “Fin-

ished” whenever an application is completely analyzed. If the user decides to stop the

analysis process and start it later, AndroSAT starts the analysis of applications with “Wait-

ing” analysis status. Hence, avoiding analysis of same applications again. However, if the

user does not select any of the radio buttons, the analysis does not start and user gets an

alert to select one of the radio buttons.

58

When the analysis process starts, “APK under analysis” in the GUI is updated with the

name of the application under analysis. “SHA 256 of APK” is updated with the SHA256

hash of the application and “Analysis status” keeps the user informed about the current

analysis phase. Moreover, while the applications are being analyzed, the user can perform

the following “Other Actions”:

• Add a sample to Droid-Repository : If the user selects this option from the drop

down list and presses the button “GO”, the user will be redirected to Droid-Shelf

where she can upload new applications that needs to be analyzed.

• View samples in Droid-Repository : If the user selects this option from the drop

down list and presses the button “GO”, the user will be redirected to a PHP webpage

showing all the applications stored in the Droid-Repository.

• Access/Search APK reports : If the user selects this option from the drop down list

and presses the button “GO”, the user will be redirected to the directory containing

all the “Finished Reports”.

At any time in the analysis process, the user can press the “Exit” button to quit An-

droSAT.

59

Chapter 4

Experimental Results

To confirm the effectiveness of our proposed framework, we analyzed a total of 1932 An-

droid applications, out of which 970 are benign and 962 are malicious. We collected the

malicious samples from the Android Malware Genome Project [51] and from another third

party. The benign samples were obtained from F-Droid [22] which is a Free and Open

Source Software (FOSS) repository for Android applications. We also verified the applica-

tions collected from F-Droid are benign using VirusTotal [3]. The reports generated by our

framework contain useful information regarding the analyzed Android applications which

in turn can be used in many Android security related applications.

Results from the dynamic analysis show that 254 out of 962 (i.e., 26%) malicious ap-

plications and none of the 970 benign applications lead to private data leakage through

network. Many malware writers use cryptographic techniques to hide the malicious pay-

load in order to make it impossible for a signature based malware analyzer to understand

the malicious intentions of an application. Among the analyzed applications, 41 out of 962

malicious applications and 2 out of 970 benign applications used cryptography at runtime.

Generally, an Android application with different versions have different package con-

tents and hence the checksum of the packages differ. However, according to our experi-

mental results, the checksum of classes.dex file from different versions of an application

60

came out to be the same. This tells us that some malware writers might add junk data in the

APK package to make the different versions of an application look different. Meanwhile,

the content of classes.dex file remains the same.

AndroSAT is not limited to case studies mentioned in this thesis. The information col-

lected in the form of XML and PDFs can be used to perform further analysis. These case

studies prove the wide usage possibilities of reports generated by AndroSAT. We incorpo-

rated the reports generated during the analysis process of applications and performed three

case studies, namely, analyzing the frequency of use of different Android permissions and

dynamic operations for both malicious and benign apps, producing cyber-intelligence in-

formation, and malware detection. These three case studies are explained in detail below.

4.1 Frequent Permissions and Dynamic Operations

Our first case study focuses on identifying the frequent permissions and dynamic opera-

tions to understand the distinguishing factors amongst malicious and benign Android ap-

plications.

Figure 14 shows the top 15 permissions used by the analyzed malicious applications and

their frequency as compared to the benign ones. It is interesting to find out that some per-

missions are used by most of the malicious applications. As depicted in Figure 14 READ_-

PHONE_STATE permission is used by ≈86% of the malicious applications as compared

to ≈12% of the benign applications. This permission is most widely used to obtain sys-

tem sensitive data such as IMEI, IMSI, phone number and SIM serial number. Similarly,

the frequency of use of INTERNET, ACCESS_WIFI_STATE, ACCESS_NETWORK_-

STATE, READ_SMS and WRITE_SMS permissions shows noticeable differences. Figure

15 shows the top 15 permissions used by the analyzed benign applications and their fre-

quency as compared to the analyzed malicious applications.

61

Figure 14: Top 15 permissions used by malicious applications

Figure 15: Top 15 permissions used by benign applications

62

Figure 16: Top 15 dynamic operations performed by malicious applications

Figure 17: Top 15 dynamic operations performed by benign applications

63

In total, 962 malicious applications used 10,203 permissions which comes to an aver-

age of 10.6 permissions per application. On the other hand, 970 benign applications used

3,838 permissions which comes to an average of around 3.95 permissions per application.

These results confirm that, on average, the number of permissions requested by a benign

application is less than the number of permissions requested by a malicious application.

Figure 16 shows the top 15 dynamic operations performed by the analyzed malicious

applications. As shown in the figure, there are many operations that are frequently per-

formed by the malicious applications. These include BroadcastReceiver(BOOT_COM-

PLETED), OpenNetworkConnection:801, and DataLeak_Network2. Applications with ma-

licious intents use BOOT_COMPLETED broadcast receiver to receive a notification when-

ever an Android device boots up. This notification helps the malware to launch the intended

malicious activity or service as soon as the system restarts. Data leakage through network

is another frequently used dynamic operations amongst the malicious apps. It has a high

occurrence in the malicious dataset, 254 as compared to 0 in the benign dataset. Figure 17

shows the top 15 dynamic operations performed by the benign applications.

4.2 Cyber-intelligence

Cyber-intelligence is performed at a large scale to identify cyber criminals and users with

malicious intentions. In short, cyber-intelligence is tracking, analyzing and countering any

threat related to digital media. One of the main objectives of cyber-intelligence is tracking

sources of online threats. In our work, we utilized the URLs and IP addresses obtained

during the static and dynamic analysis process of malicious applications to track possible

malicious servers around the world. The URLs and IP addresses obtained during the static

and dynamic analysis were either hard coded into the package or visited by the malicious

1This operation represents opened port 80 for network connections
2This operation represents sensitive data leakage through network

64

Figure 18: Geographical Presentation of the locations of suspected IPS

applications during the dynamic analysis process. We also converted the extracted URLs

to their corresponding IP addresses. Then we mapped the collected IP addresses to their

source location and obtained their corresponding latitude and longitude using MaxMind’s

GeoIP2 database [34]. GeoIP2 allows to identify the country, city, location and organiza-

tion of the IP address. To map these latitude and longitude obtained from the database onto

the map, we used Google Maps API which is free to use and can be easily adjusted to fit

our requirements [23]. We mapped the IP addresses on to the Google Maps to generate a

graphical representation of the geographical locations of possible malicious servers (and

their ISPs). Figure 18 shows a sample output of this analysis (IP addresses are not shown

for privacy and liability concerns).

65

Figure 19: Accuracy obtained by different classification techniques

4.3 Malware Detection

The most widely used technique to separate benign and malicious applications from the

mixed dataset is classification. We used classification as one of our case studies to dis-

tinguish malicious applications from benign and to confirm the accuracy of the AndroSAT

framework. Throughout this experiment, we incorporated 134 static, 285 dynamic and 400

n-grams based features. We performed the classification over 1932 Android applications

using different combinations of these features, namely, static analysis features, dynamic

analysis features, n-grams based features, combination of static & dynamic features (S+D),

combination of static & n-grams based features (S+N) and combination of dynamic & n-

grams based features (D+N). We also combined features from all three analysis techniques

i.e., static, dynamic and n-grams (S+D+N) and performed feature space reduction using

classwise document frequency. CDF is used to reduce the features and to obtain a feature-

set containing the top features for classification.

We employed five different algorithms supported by WEKA [46] for classification with

10-fold cross-validation: SMO [25], IBK [25], J48 [25], AdaBoost1(J48 as base classifier)

[25], and RandomForest [25]. In what follows we provide some brief overview of these

66

Figure 20: Precision obtained by different classification techniques

Figure 21: Recall obtained by different classification techniques

67

classifiers.

• AdaBoost1 : AdaBoost1 is known as a boosting algorithm which is widely used

to boost the performance of any learning algorithm [25]. It is used in conjunction

with the weak learning algorithm to significantly reduce the errors and noise. We

have used this technique in this thesis with J48 as the base classifier and obtained

promising results.

• SMO : SMO stands for sequential minimal optimization and is used for training

SVMs (support vector machines) [25]. Sequential minimal optimization solves the

quadratic problems for training SVM. The problem is divided into the smallest pos-

sible sub-problems and then solved analytically.

• Decision Tree : Decision tree is a tree or flowchart like structure which is most

widely used in decision analysis to help identify the path to reach the goal [25]. A

decision tree consists of root, leaves, internal nodes and branches. The trails from

the root node to the leaf node are explained as rules that are used to perform the clas-

sification. The internal nodes represent attributes with some test, branches represent

the result to the test and leaves represent the class labels.

• IBK : IBK is based on the k-nearest neighbors algorithm [25]. As the word neighbor

suggests, the objects are classified into different classes on the bases of the majority

of their neighbors. If an object is nearest to the neighboring objects with malicious

as the class label, then it is also classified to the same class.

Our experimental results show that the AdaBoost1 and RandomForest models achieve

better accuracy compared to the other models. Figures 19, 20 and 21 show the results

obtained for the five different feature sets in terms of accuracy, precision, and recall. From

Figure 19, it is clear that n-gram features using AdaBoost1, D+N features using AdaBoost1

68

Figure 22: Partial Decision Trees obtained using static, and static & dynamic features

and S+D+N features using RandomForest provide the highest accuracy (≈98%). Figure 20

and 21 show the corresponding precision and recall, respectively. It should be noted that

this relatively high accuracy should be interpreted with care since it might have resulted

because of the limited variance in the characteristics of the analyzed samples.

Moreover, we used decision trees obtained while performing classification for only

static features and combination of static and dynamic features. Decision trees are most

widely used because of their transparent mechanism and it is easy to follow the structure

of the tree to understand the classification rules and criteria. We used this technique to

better understand the factors that play an important role in deciding the class label for a

sample. Figure 22 shows the partial decision trees obtained while using only static and

then combination of static and dynamic features.

From both decision trees, it is clear that READ_PHONE_STATE, READ_SMS and

SEND_SMS permissions play a very important role in deciding whether the application

under analysis is malicious or benign. The decision tree obtained from only static anal-

ysis features makes a lot of sense; for example, an application that reads SMS and uses

Internet might leak privacy sensitive data to some attacker or malware writer. Similarly, an

69

application that sends an SMS and has a capability to receive SMS might subscribe user

to premium messaging services or extract useful information from received SMS like one

time passwords. An application using RECEIVE_SMS permission has the capability to re-

ceive the incoming text messages and also block those messages from reaching the inbox;

hence, resulting into data stealing.

70

Chapter 5

Conclusions and Future Work

5.1 Conclusion

The Android operating system powers more than a billion smart devices. Everyday, more

than one million Android devices are activated with better hardware configuration as com-

pared to the laptop and desktop computers used in the 90’s. The sudden increase in the

use of Android powered devices led to a huge amount of Android malware creation and

dissemination.

In this thesis, we developed a prototype which can analyze Android applications and

lay down its possible actions, functionalities and interactions with the Android emulator. It

generates XML and PDF files containing useful information about an application’s inten-

tions. This information can be used to perform numerous security related case studies.

The effectiveness of AndroSAT was tested by analyzing a dataset of 1932 applications.

The information obtained from the produced analysis reports proved to be very useful in

many Android security related applications. In particular, we used the data in these reports

to perform three case studies: analyzing the frequency of use of different Android per-

missions and dynamic operations for both malicious and benign applications, producing

cyber-intelligence information, and malware detection.

71

The implemented prototype is not limited to the analysis techniques presented in this

thesis. It can be further extended to allow for more useful add-ons that may provide detailed

investigation of malicious Android applications. Moreover, many different case studies can

be performed with the data collected in the form of XML and PDF files to better understand

intentions of the Android applications.

5.2 Future Work

There are few limitations with AndroSAT that needs to be addressed in our future research

and development. In what follows, we summarize some of these weaknesses and limita-

tions:

• The analysis of each application takes a relatively long time (about 5-6 minutes),

which is not practical when analyzing thousands of applications. The default time

to finish the dynamic analysis process is 2 minutes. Initializing a fresh copy of the

emulator everytime an application is analyzed, takes about 2 minutes. In our future

work, we would like to bring down the analysis time to 3-4 minutes. This will allow

faster analysis of applications. To achieve this, we plan to discover techniques which

can generate a fresh copy of the emulator without rebooting it everytime. Further-

more, we aim to bring down the time required to perform the static analysis of an

application.

• Whenever an application is analyzed, the dynamic analysis process uses a fresh copy

of the emulator, vaccinated against anti-sandbox code. However, there is no user data

stored inside the emulator which makes it easier for the attackers to recognize the

presence of a sandbox. Soon malware writers will introduce malware that does not

execute their payload in the absence of user data. Our aim in our forthcoming work is

to feed the emulator with some carefully crafted user data such as e-mails, contacts,

72

call logs, text messages, third-party applications, pictures, videos and songs.

• DroidBox is a very effective and efficient open-source dynamic analysis tool available

online. However, it does not track native API calls. Many malware writers include

native code in their applications which helps to keep the malicious applications safe

from commonly used security radars. According to our knowledge, native API calls

are not enough to perform malicious activities. Nevertheless, the use of native API

calls provides a backdoor to the malicious applications to hide some of its malicious

intents from the outside world. In our future work, we plan to discover techniques

which can track native API calls and detect applications which are trying to hide their

malicious activities from security analysis tools.

73

Bibliography

[1] Android-Apktool: A tool for reverse engineering Android APK files. [Online]. Avail-

able: https://code.google.com/p/android-apktool/.

[2] Apk2java: Batch file to automate APK decompilation process. [Online]. Available:

https://code.google.com/p/apk2java/.

[3] VirusTotal. [Online]. Available: https://www.virustotal.com/en/about/.

[4] M. Alazab, V. Monsamy, L. Batten, P. Lantz, and R. Tian. Analysis of Malicious

and Benign Android Applications. In 32nd International Conference on Distributed

Computing Systems Workshops (ICDCSW), 2012, pages 608–616, June 2012.

[5] Android. Android - Meet Android. [Online]. Available:

http://www.android.com/meet-android/.

[6] Android. Android: the world’s most popular mobile platform. [Online]. Available:

http://developer.android.com/about/index.html.

[7] Android Developers. Android Asset Packaging Tool. [Online]. Available:

http://developer.android.com/tools/building/index.html.

[8] Android Developers. Android Debug Bridge. [Online]. Available:

http://developer.android.com/tools/help/adb.html.

74

[9] Android Developers. Android Permissions. [Online]. Available: http://developer.an

droid.com/reference/android/Manifest.permission.html.

[10] Android Developers. Monkey Runner. [Online]. Available:

http://developer.android.com/tools/help/ monkeyrunner_concepts.html.

[11] Android Devices. Android Security Overview. [Online]. Available:

https://source.android.com/devices/tech/security/.

[12] Android Devices. Notes on the implementation of encryption in Android 3.0.

[Online]. Available: https://source.android.com/devices/tech/encryption/android_-

crypto_implementation.html.

[13] Android Devices. Validating Security-Enhanced Linux in Android. [Online]. Avail-

able: https://source.android.com/devices/tech/security/se-linux.html.

[14] T. Blasing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak. An Android

Application Sandbox system for suspicious software detection. In 5th International

Conference on Malicious and Unwanted Software (MALWARE), 2010, pages 55–62,

Oct 2010.

[15] S. Brahler. Analysis of the Android Architecture. Karlsruhe institute for technology,

2010.

[16] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: Behavior-Based Mal-

ware Detection System for Android. In Proceedings of the 1st ACM workshop on

Security and privacy in smartphones and mobile devices, pages 15–26. ACM, 2011.

[17] S. Dredge. Kaspersky: forget lone hackers, mobile malware is serious business. [On-

line]. Available: http://www.theguardian.com/technology/2014/feb/26/kaspersky-

android-malware-banking-trojans.

75

[18] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. Sheth.

Taintdroid: An Information-Flow Tracking System for Realtime Privacy Monitoring

on Smartphones. In OSDI, volume 10, pages 1–6, 2010.

[19] ESET. Android malware worm catches unwary users. [Online]. Available:

http://www.welivesecurity.com/2014/04/30/android-sms-malware-catches-unwary-

users/.

[20] ESET. ESET Analyzes First Android File-Encrypting, TOR-enabled Ransomware.

[Online]. Available: http://www.welivesecurity.com/2014/06/04/simplocker/.

[21] ESET. Facebook Webinject Leads to iBanking Mobile Bot. [Online].

Available: http://www.welivesecurity.com/2014/04/16/facebook-webinject-leads-to-

ibanking-mobile-bot/.

[22] F-Droid. F-Droid: Free and Open Source Android App Repository. [Online]. Avail-

able: https://f-droid.org/.

[23] Google. Google Maps API. [Online]. Available:

https://developers.google.com/maps/.

[24] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. RiskRanker: Scalable and Accu-

rate Zero-day Android Malware Detection. In Proceedings of the 10th International

Conference on Mobile Systems, Applications, and Services, MobiSys ’12, pages 281–

294. ACM, 2012.

[25] M. A. Hall, E. Frank, and I. H. Witten. Data Mining: Practical Machine Learning

Tools and Techniques. Burlington, MA: Morgan Kaufmann, 2013.

[26] R. Hasan, N. Saxena, T. Haleviz, S. Zawoad, and D. Rinehart. Sensing-enabled Chan-

nels for Hard-to-detect Command and Control of Mobile Devices. In Proceedings of

76

the 8th ACM SIGSAC Symposium on Information, Computer and Communications

Security, ASIA CCS ’13, pages 469–480. ACM, 2013.

[27] T. Isohara, K. Takemori, and A. Kubota. Kernel-based Behavior Analysis for An-

droid Malware Detection. In Seventh International Conference on Computational

Intelligence and Security (CIS), 2011, pages 1011–1015, Dec 2011.

[28] S. Jain and Y. Meena. Byte Level n-gram Analysis for Malware Detection. In Com-

puter Networks and Intelligent Computing, volume 157 of Communications in Com-

puter and Information Science, pages 51–59. Springer Berlin Heidelberg, 2011.

[29] Juniper Networks. Third Annual Mobile Threats Report. [Online]. Avail-

able: http://www.juniper.net/us/en/local/pdf/additional-resources/3rd-jnpr-mobile-

threats-report-exec-summary.pdf.

[30] Juniper Research. Smartphone Shipments Reach a Record 250m

in Q3 2013, with Nokia Back in the Top 3. [Online]. Available:

http://www.juniperresearch.com/viewpressrelease.php?pr=408.

[31] P. Lantz. Droidbox: Android Application Sandbox. [Online]. Available:

https://code.google.com/p/droidbox/.

[32] Q. Li and G. Clark. Mobile Security: A Look Ahead. Security Privacy, IEEE,

11(1):78–81, Jan 2013.

[33] A. Ludwig. Android: Practical Security from the Ground Up. [Online]. Available:

http://goo.gl/7xZ4cd.

[34] MaxMind. GeoIP Web Services and Databases. [Online]. Available: http://dev.max

mind.com/geoip/geoip2/whats-new-in-geoip2/.

77

[35] C. Miller. Mobile Attacks and Defense. Security Privacy, IEEE, 9(4):68–70, July

2011.

[36] Monexy. Monexy: Defining the future of payments. [Online]. Available:

http://monexy.biz/.

[37] M. Nauman, S. Khan, and X. Zhang. Apex: Extending Android Permission Model

and Enforcement with User-defined Runtime Constraints. In Proceedings of the

5th ACM Symposium on Information, Computer and Communications Security, ASI-

ACCS ’10, pages 328–332. ACM, 2010.

[38] A. Orozco. Is Google Acknowledging Android Is Not Secure? hmm...

[Online]. Available: http://blog.malwarebytes.org/mobile-2/2013/06/is-google-

acknowledging-android-is-not-secure-hmm/.

[39] G. Russello, B. Crispo, E. Fernandes, and Y. Zhauniarovich. YAASE: Yet Another

Android Security Extension. In IEEE third international conference on Privacy, se-

curity, risk and trust (passat), 2011 and IEEE third international conference on social

computing (socialcom), 2011, pages 1033–1040, Oct 2011.

[40] SOPHOS. Android malware in pictures - a blow-by-blow account of mobile scare-

ware. [Online]. Available: http://nakedsecurity.sophos.com/2013/05/31/android-mal

ware-in-pictures-a-blow-by-blow-account-of-mobile-scareware/.

[41] Symantec. Android RATs Branch out with Dendroid. [Online]. Available:

http://www.symantec.com/connect/blogs/android-rats-branch-out-dendroid.

[42] Symantec. FakeAV holds Android Phones for Ransom. [Online]. Available:

http://www.symantec.com/connect/blogs/fakeav-holds-android-phones-ransom.

78

[43] Symantec. iBanking: Exploiting the Full Potential of Android Malware. [On-

line]. Available: http://www.symantec.com/connect/blogs/ibanking-exploiting-full-

potential-android-malware.

[44] Symantec. Remote Access Tool Takes Aim with Android APK Binder. [On-

line]. Available: http://www.symantec.com/connect/blogs/remote-access-tool-takes-

aim-android-apk-binder.

[45] W. Tang, G. Jin, J. He, and X. Jiang. Extending Android Security Enforcement with

a Security Distance Model. In International Conference on Internet Technology and

Applications (iTAP), 2011, pages 1–4, Aug 2011.

[46] The University of Waikato. WEKA. [Online]. Available:

http://www.cs.waikato.ac.nz/ml/weka/.

[47] Wikipedia. Android Version History. [Online]. Available:

http://en.wikipedia.org/wiki/Android_version_history.

[48] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu. DroidMat: Android

Malware Detection through Manifest and API Calls Tracing. In Seventh Asia Joint

Conference on Information Security (Asia JCIS), 2012, pages 62–69, Aug 2012.

[49] T. Wyatt, D. L. Richardson, and A. Lineberry. These Aren’t The Permissions You’re

Looking For. [Online]. Available: https://www.defcon.org/images/defcon-18/dc-

18-presentations/Lineberry/DEFCON-18-Lineberry-Not-The-Permissions-You-Are-

Looking-For.pdf.

[50] Y. Zhou and X. Jiang. An Analysis of the Anserverbot Trojan. Technical report,

Tech. Rep., 9 2011. [Online]. Available: http://www. csc. ncsu. edu/faculty/jiang/pub-

s/AnserverBot Analysis. pdf, 2011.

79

[51] Y. Zhou and X. Jiang. Dissecting Android Malware: Characterization and Evolution.

In IEEE Symposium on Security and Privacy (SP), 2012, pages 95–109, May 2012.

[52] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my market: Detecting

malicious apps in official and alternative android markets. In Proceedings of the 19th

Annual Network and Distributed System Security Symposium, pages 5–8, 2012.

80

