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ABSTRACT

As the most common mechanisms for transmitting power and motion, gears and bearings have
been widely used in various mechanical equipment. Many accidents have happened because of
failing to detect and replace the faulty gears or bearings in time. Hence it is very important to
perform accurate fault diagnosis of gears and bearings. When a gear or bearing has a fault, the
vibration signal collected from the mechanical equipment will become non-stationary and
contain a series of periodic impulses that are caused by the fault. Many theories and techniques
have been developed to extract the faulty information based on analyzing periodic impulses

contained in the vibration signals.

It has been reported that neither time-domain analysis nor frequency-domain analysis can do
well in analyzing non-stationary signals. Hence time-frequency analysis methods based on
wavelet transform and Hilbert-Huang Transform (HHT) have been investigated. Wavelet
transform includes continuous wavelet transform (CWT) and discrete wavelet transform (DWT).
Research was reported to compare the performance of these methods in fault diagnosis of
mechanical components. However, the previous works either only compared HHT based
methods with CWT based methods, or only compared HHT based methods with DWT based
methods, for certain applications. There are no reported comprehensive comparisons of the

three methods for fault diagnosis of gears and bearings.

Cepstrum analysis can detect the periodicity and reduce the influence of the noise for the low
energy signals. However, previous research usually only applied Cepstrum analysis directly to
extract fault features from the entire original signal. Some other existing methods first applied
DWT to decompose the original signal to obtain the detail signals, and then used Hilbert

spectral analysis to analyze the periodic impulses contained in the detail signals through



identifying faulty characteristic frequency with frequency domain analysis and plotting the
instantaneous amplitude with time domain analysis. Hilbert spectral analysis has the advantage
in frequency domain analysis. However, sometimes it is not very sensitive in time domain

analysis when the energy of the periodic impulses is not strong enough.

In this thesis, we investigate fault diagnosis of gears and bearings using two sets of vibration
monitoring data collected in the lab environment: one set for gear condition monitoring and
the other for bearing condition monitoring. We propose an improved DWT method that
integrates Cepstrum analysis to analyze the periodic impulses contained in the data. With the
proposed method, the vibration signals are first decomposed using DWT, and Cepstrum analysis
is used to analyze the resulting detail signals. The results show that the proposed method
performs better than the existing methods of applying Cepstrum analysis directly. Furthermore,
with the help of Cepstrum analysis, the proposed method has better performance in time
domain analysis than Hilbert spectral analysis in analyzing the periodic impulses contained in

the detail signals.

A comprehensive study is conducted in this thesis to compare the following three methods in
fault diagnosis of the gears and bearings: (1) The CWT method using time-wavelet energy
spectrum, (2) the improved DWT method using Cepstrum analysis, and (3) the HHT method.
The results show that in fault diagnosis of gears, the HHT method has better noise immunity
and is more sensitive in frequency domain analysis than the other two methods. The proposed
method shows its advantage in analyzing the periodic impulses in time domain than the other
two methods. In fault diagnosis of the bearings, the fault can be more clearly detected using
the CWT and DWT methods in analyzing the periodic impulse that caused by the outer race
fault of the bearing. The results obtained in this thesis can assist researchers and practitioners

to select suitable methods for fault diagnosis of gears and bearings.
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Chapter 1

1. Introduction

1.1 Background

Gears and bearings, which are the common mechanisms that transmit power and motion, have
applications in many mechanical driving devices. A lot of equipment’s accidents have happened
and caused huge economic losses due to failing to detect and replace the faulty gear or bearing
in time. Hence, it has great practical and academic significance to perform accurate fault

diagnosis of gears and bearings.

In practice, the running state of a healthy mechanical equipment will have a myriad of changes
when it starts up. After it running in a steady state, the vibration signals collected from the
equipment can be thought in a stationary state. However, when a fault of a gear or bearing has
happened, its parameters such as damp and elasticity will change. Also considering the
influence of the unsteady shaft rotating speed, lubrication situation, tooth stiffness variations
or other reasons, the vibration signals of the equipment will then become not only non-
stationary but also non-linear [1]. Hence, we can collect and analyze the vibration signals to
characterize the existence of the fault. A gear’s fault is usually caused by a local damage of its
tooth. The typical faults include pits, cracks on the surface of gear tooth, and even more
seriously, tooth wear and breakage. The typical faults of a bearing usually include cage fault,
inner race fault, outer race fault, ball fault, etc. There are mainly three steps to perform fault

diagnosis of gear and bearing:



1. Collect the diagnosis information (the vibration signals) from the mechanical equipment.

2. Extract fault features from the vibration signal.

3. Identify the features’ states and diagnose the fault.

In practical applications, the vibration signals are usually collected by one or more
accelerometer sensors installed on the equipment. When a faulty gear is running, the vibration
signal usually contains its rotating frequency with the periodic amplitude and phase
modulations [1]. When a bearing has a local fault, the vibration signal will also contain the
periodic impulses caused by the fault. Hence, the key point for gear/bearing fault diagnosis is
how to extract the impulse information from the vibration signals. Signal processing is typically
used for feature extraction. There are three main categories of signal processing methods:

time-domain analysis, frequency-domain analysis and time-frequency analysis.

(1) Time-domain analysis

The time-domain analysis is to analyze the amplitude and phase information of the vibration
signal in time series. Traditional analysis applies descriptive statistics methods to calculate the
features from the signals. The descriptive statistics include mean, peak, crest factor, root mean
square, skewness, kurtosis value, etc., which are called time-domain features [2]. Time
synchronous average (TSA) is also popular in time-domain analysis. These methods can detect
the fault in mechanical equipment. However, when a mechanical equipment has a faulty gear
or bearing, the frequency components of the signals will also change, which sometimes is hard

for time-domain analysis to distinguish them.



(2) Frequency-domain analysis

Frequency-domain analysis is based on the analysis of the signals that are transformed from
time domain to frequency domain. When a mechanical equipment has a fault, there will be
corresponding frequency components presented in the vibration signals. Then the frequency-
domain analysis has the advantage over time-domain analysis because it can easily identify and
isolate certain frequency components [2]. The spectrum analysis based on fast Fourier
transform (FFT) is one of the most widely used methods. The principle of spectrum analysis is
to obtain the signal’s frequency components and look at certain interesting frequency
components to find its relationship with the amplitude, the phase or the power. And then the
fault features can be extracted from the signals. The spectrum analysis mainly includes
amplitude spectrum, power spectrum, Cepstrum, Hilbert spectrum, etc. However, when a gear
or bearing has a fault, the vibration signal will become non-stationary and non-linearity, the
spectral composition of the vibration signal will often change with time, which means that only

using Fourier analysis cannot reflect such characteristics [3].

(3) Time-frequency analysis

Due to the characteristics of non-stationary vibration signal, time-frequency analysis has been
investigated to analyze it in both time and frequency domain simultaneously. Traditional time—
frequency analysis applied some time-frequency distributions to present a signal and show its
energy distribution over the time-frequency space [4]. A time-frequency distribution is a time-
frequency description of the signal [2]. The popular frequency distributions include short-time

Fourier transform (STFT), Wigner-Ville distribution, Choi-Williams distribution, etc. Because



STFT only uses one window function each time, it can’t take into account the need for
frequency resolution and time resolution at the same time. Wigner-Ville distribution and Choi-
Williams distribution belong to the Cohen class of distribution and have overcome the
limitation of STFT’s time-frequency resolution. But when applying them to multi-component
signals, there will be interference terms caused by the transforms of Cohen class. These
interference terms clutter the time-frequency plane, and make the results difficult to interpret
[3, 5]. Choi-Williams distribution is insensitive to the scaling of the signal components and can
provide the maximum resolution larger than the smoothed Wigner distribution, but it has poor

resolution of continuously time-varying frequency components [6].

Wavelet transform is an adaptive method used for time-frequency analysis. Compared with the
time-frequency distribution, it is a time-scale description of the signal. It has inherited and
developed the idea of localization from STFT but overcome the disadvantage of STFT where the
shape of sliding window can’t change with the change of the frequency. Hence, it has the
characteristic called multi-resolution or multi-scale, which means it can achieve high frequency
resolutions with low time resolutions at low frequencies and high time resolutions with low
frequency resolutions at high frequencies. It also works well in reducing noise in raw signals.
Wavelet transform includes continuous wavelet transform (CWT) and discrete wavelet
transform (DWT). Despite wavelet transform has achieved good results in fault diagnostics of
rotating machinery, such as gears and bearings, it still has some issues need to be studied and
improved. When applying wavelet transform method, energy leakage will occur due to the
limited length of the basic wavelet function, which sometimes makes it difficult to do the

accurate quantitative analysis of the frequency-time distribution. Another problem is that there
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is not a general rule for selecting an optimal mother wavelet for wavelet transform, and so
people usually have to propose specific rules for each specific case based on the past
experience and the test results. It should also be pointed out that once the mother wavelet is

selected, it will be used in the entire process.

The Hilbert-Huang Transform (HHT) was proposed by Norden E. Huang in 1998. Even though it
is an empirical method without a rigorous mathematical proof, it has achieved great success in
engineering areas. Through a time adaptive operation named empirical mode decomposition
(EMD), a complicated signal can be decomposed into a finite and small number of intrinsic
mode function (IMF). Then an energy-time-frequency distribution of the signal called as Hilbert-
Huang spectrum can be obtained by applying Hilbert transform to these IMF components [7]. It
can deal with the signal with larger size than wavelet transform because of the EMD step, which
isn’t involved with the convolution or other time resolution [8]. The frequency components
contained in each IMFs will change with the signal itself. There will be no energy leakage during
the Hilbert-transform. With these natures of adaptability, HHT can deal with not only linear and
stationary signals but also nonlinear and non-stationary signals. However, some problems have
been found at the step of EMD in some practical applications. The EMD operation sometimes is
insensitive to the low-energy components of the signal, and therefore these components may
be masked in the time-frequency plane. At the low-frequency region, sometimes it will
generate some undesired low amplitude and frequency components. At the high-frequency
region, the first IMF may cover a wide frequency range so that it cannot satisfy the definition of

mono-component very well [8].



1.2 Research Motivation

There are many theories and techniques have been proposed for fault diagnosis of gears and
bearings. The traditional methods, such as time-domain analysis and frequency-domain analysis,
are applied in fault diagnosis based on the assumption that the vibration signal is linear and
stationary. However, when a faulty gear or bearing running, the fault will generate a series of
periodic impulses, which is a very important evidence to identify the existence of the fault. The
vibration signal collected from the mechanical equipment will become non-stationary and its
components will change with time. Hence, the time-frequency analysis, such as the methods
based on wavelet transform and HHT, have been investigated in fault diagnosis of gears and

bearings. Wavelet transform includes CWT and DWT.

Because of the promises of time-frequency analysis methods, research was reported to
compare the performance of these methods in fault diagnosis of mechanical components.
However, the previous studies either only compare HHT based methods with CWT based
methods, or only compare HHT based methods with DWT based methods, for certain
applications [8-12]. There are no reported studies on comprehensive comparisons of the three

methods for fault diagnosis of gears and bearings.

Some existing methods first applied DWT to decompose the original signal to obtain the detail
signals, and then used Hilbert spectral analysis to analyze the periodic impulses contained in
the detail signals through identifying faulty characteristic frequency with frequency domain

analysis and drawing the instantaneous amplitude with time domain analysis. Hilbert spectral



analysis has shown its advantage in the frequency domain analysis. However, sometimes it is

not very sensitive in time domain analysis when the energy of the periodic impulses is weak.

Sometimes the faulty characteristic frequency contained in the vibration signals is masked by
the noise or other components if the energy is too weak. Cepstrum analysis can detect the
periodicity and reduce the influence of the noise for the low energy signal. However, the

previous research usually directly applied cepstrum analysis to analyze the entire original signal.

1.3 Research Contribution

In this thesis, we use two sets of vibration monitoring data collected in the lab environment to
investigate fault diagnosis of gears and bearings. One set is for gear condition monitoring and
the other is for the bearing condition monitoring. We propose an improved DWT method that
integrates Cepstrum analysis to analyze the periodic impulses contained in the data. The results
show that the proposed method performs better than the existing methods of applying
Cepstrum analysis directly. Moreover, with the help of Cepstrum analysis, the proposed
method has better performance in time domain analysis than Hilbert spectral analysis in

analyzing the periodic impulses contained in the detail signals.

We conduct a comprehensive study to compare the following three methods in fault diagnosis
of the gears and bearings: (1) The CWT method using time-wavelet energy spectrum, (2) the
improved DWT method using Cepstrum analysis, and (3) the HHT method. The results show
that in fault diagnosis of gears, the HHT method has better noise immunity and is more
sensitive in frequency domain analysis than the other two methods. The proposed method

shows the advantage in analyzing the periodic impulses in time domain than the other two



methods. In fault diagnosis of the bearings, the fault can be more clearly detected using the
CWT and DWT methods in analyzing the periodic impulses that caused by the outer race fault of

the bearing.

1.4 Thesis Organization
The rest of this thesis is organized as follows:
In Chapter 2, we conduct a detailed literature review of fault diagnosis.

In Chapter 3, we introduce the basic principles of fault diagnosis of the gearbox and the bearing.

Then we present the proposed methods for fault diagnosis of the gearbox and bearing.

In Chapter 4 and 5, we apply the proposed methods to fault diagnosis of the gearbox and

bearing and compare their advantages and disadvantages.

Finally, we draw conclusions from our research and present several directions of future work in

Chapter 6.



Chapter 2

2. Literature review on fault diagnosis of rotating

components

Diagnostics and prognostics are two important parts of Condition-based maintenance, which is
an advanced maintenance strategy for performing maintenance activities based on the
information collected from the age data and condition monitoring. The tasks of diagnostics is to
detect and identify the fault when it occurs. Fault detection is to indicate whether there is
something wrong with the system. Fault identification is to find out which component has fault
[2]. The method of vibration signal analysis has been applied in fault diagnostics of the
mechanical equipment for a long time. Numerous techniques and algorithms of signal
processing have been presented in order to detect and diagnose the impending or existing
faults in rotating machinery. These methods are mainly in three categories: time-domain
analysis, frequency-domain and time-frequency analysis, which will be reviewed respectively in

the following parts.

2.1 Time domain analysis

The basic time domain indicators include root mean square (RMS), peak, crest factor, skewness,
kurtosis value, shock pulse measurement, etc. Tandon [13] has made a comparative study of
detecting the bearing defects among RMS, peak, crest factor and shock pulse measurement.

Vecer [14] has compared 13 indicators’ capacity of in detecting the fault of gearbox and the



results indicates that RMS and peak can track the condition of the tested gearbox very well. But
both of them only show whether there is a fault but can’t indicate the fault’s location. Time
synchronous average (TSA) is also one of the most powerful algorithm in time domain analysis
for vibration signal analysis. Bechhoefer [15] made a review of time synchronous average (TSA)
and applied it with the indicators above to detect the gearbox’s fault. However, its
experimental process are too complicated and the results are not intuitive enough. Dalpiaz [16]
compared the approaches based on time-frequency analysis with TSA analysis in gearbox fault
diagnosis. It demonstrated that the results are better than those obtained by TSA. It should be
noted that the effectiveness and the sensitivity of TSA are effected by choosing the filtering
band and the transducer location. Another drawback of TSA is that it has to repeat the TSA
analysis of each gear to obtain a complete gearbox diagnosis. In general, time domain analysis

of the vibration signal is not enough for fault diagnosis of the rotating machinery.

2.2 Frequency domain analysis

Fourier transform has built a bridge between the time domain and the frequency domain to

extract the characteristic frequency from the vibration signal. For a given integral function f'(¢),

its Fourier transform F(w) is given as follows [17]:
F(w) = j f(H)e ™adt (1)

where w=27xf and j:x/j

Many methods of conventional frequency analysis are based on Fourier transform, which has

three basic assumptions: linear, Gaussian and stationary. The general idea of Fourier analysis is
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to treat the signal as a composition of sine or cosine signals in different frequencies and then
use Fourier transform to get the amplitude spectrum. So the frequency corresponding to the

larger amplitude (higher energy) can be found.

2.2.1 Fast Fourier transform

When the Fourier transform is discrete in time domain and frequency domain, it is called
discrete Fourier transform. Fast Fourier transform (FFT) is an algorithm of the discrete Fourier
transform to reduce the computational time. For a sequence of N complex numbers

{X>X,,....,Xy_, }, its discrete Fourier transform X (k) is defined as [18]:

N-1
X (k)= ZO x(n)e” N (2)

where j = J-1

For N points, FFT reduces the number of computations from O(2N?)to O(N log N), where log
is the base-2 logarithm [19]. FFT is a powerful tools in frequency analysis and the foundation of
many methods in frequency domain analysis. Betta [20] integrated FFT in a DSP (Digital Signal
Process)-based architecture for the on-line monitoring and diagnosis of the rotating machine.
FFT analysis may also work with time-frequency analysis to deal with non-stationary signal. Rai
[21] shown the effectiveness of incorporating FFT with Hilbert-Huang transform in bearing fault

diagnosis.
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2.2.2 Power spectral density

Power spectral density (PSD) or power spectrum reflects the power distribution of a signal’s
frequency components. It can reveal the useful information of a signal such as the implied
periodicity. When there is a failure of a mechanical equipment, obvious peaks will appear near
the certain frequencies. Hence, the peak position corresponds to the frequency can be easily
found in the PSD. After comparing with the characteristic frequency of the equipment, the type
of the fault can be identified. It can be singly used to detect and diagnosis the fault of some
simple rotating machinery, such as electromotor, bearing of pump and Massey Ferguson
gearbox [22-24]. In general, it is often used in the fault detection and diagnosis of mechanical
equipment incorporating other signal processing methods, such as wavelet decomposition [25]

and mode decomposition (EMD) [26].

2.2.3 Cepstrum analysis

There are several definitions of the Cepstrum. The most common one is to take the inverse
Fourier transform (IFT) of the logarithm of the signal’s power spectrum [27]. It converts the
complex convolution to a simple linear superposition so that it will be more easily to identify

the feature of the signal. For a time-domain signal f(¢), the Cepstrum C(7) is defined as [28]:

C(z) = F {log(| F{/ ()} ")} (3)

where F and F' is Fourier transform and inverse Fourier transform, respectively, and 7

represents the time parameter of Cepstrum.

12



There are mainly two categories of Cepstrum analysis: real Cepstrum and complex Cepstrum.
Complex Cepstrum analysis has preserved the total information of the signal while real
Cepstrum analysis only preserves the amplitude information without the phase information.

The real Cepstrum is usually applied in the engineering field.

When a rotating machinery is running with a fault, there will be a series of sidebands generated
around the carrier frequency in the power spectrum. Hence, it will be more difficult to identify
the fault because the spectrum becomes more complex. Furthermore, sometimes the
components of the faulty frequency are covered by the noise. Cepstrum analysis can reduce
the noise’s influence for a low energy signal and separate the sidebands. Hence, it performs
better than other spectra in identifying the frequency. It can also detect the components of the
periodic components contained in vibration signal. There will be wave’s crests the
corresponding to the faulty information in the Cepstrum, therefore it can be easily extracted
the concerning frequency components from the vibration signal and identified them for fault
diagnosis. However, Cepstrum analysis has a deficiency that it is not stable around the very low
frequency and sometimes generates many undesired large peaks near the zero point. Hence,

the boundary of the Cepstrum are usually ignored.

Cepstrum is a popular method widely applied in fault diagnosis of rotating machinery. Van der
Merwe [29] proposed a modified Cepstrum: linear& threds holded Cepstrum in bearing
detection. Bajric [30] compared the effectiveness of some popular vibration analysis techniques
for damage identification in gear pairs and pointed out that Cepstrum analysis could identify
the fault earlier because it is clear and easier to see the changes of the frequency. Due to the

advantage of Cepstrum, it has shown its own advantage in identifying the fault part from the
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different types of the mechanical equipment [34-38]. When applied in fault diagnosis of the
gearbox, Cepstrum analysis can locate the shaft on which there is a faulty gear. But if there are
more than one gear on it, it can’t identify which gear has a fault. Moreover, the research above
only apply Cepstrum to analyze the entire original signal, which can’t take the advantage of the

Cepstrum completely.

2.2.4 Hilbert transform and spectrum analysis

When the mechanical equipment running with a fault, such as tooth fracture of the gearbox
and fatigue spalling of the rolling bearing, it will generate a periodic pulse impact. Hence, the
collected vibration signal will contain the amplitude and phase modulation caused by the fault.
Then we can demodulate the signal to extract the fault information from the signal. There are
many demodulation methods has been presented for fault diagnosis such as wideband
demodulation [36] and resonance demodulation [37]. The Hilbert demodulation is one of the
most popular techniques. The fundamental of Hilbert demodulation is Hilbert Transform. A real
signal can be transformed by Hilbert Transform to a complex-valued form of the signal that
called ‘analytic signal’, which can simplify results and methods in some cases [38]. For any

giving time-domain signal f'(¢), its Hilbert transform H[ f'(¢)] is [38]:

HU01=70 = [ Dz (@

—00

where ¢ is the time parameter and ¢ is translation parameter.

In order to accomplish the demodulation, the analytic signal 4 f(¢)] of f(¢)is defined as:
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ALf (O] = f(O)+if (8) = a(t)e’" (5)

wherej:J—_l,

aO) =\ O+1 () (6)

a(t) is the Hilbert envelope signal of f(¢). The instantaneous amplitude of the signal can also
be obtained by plotting a(¢)in time area, which can reflect the periodic impulses if it is

contained in the signal.

 arctan| 2©
@(t)=arctan l: 0 } (7)

o(t) is the instantaneous phase of the analytic signal A[ f(¢)].

Hence, the instantaneous frequency f,  of the analytic signal A[ f(¢)]can be obtained from the

instantaneous phase:

_ L

Jins =7—dep(2)/ dt] (8)
2z

The vibration signal is usually collected by the accelerometers installed on the faulty machinery.
Because the amplitude value of collected signal is in proportion to the square of the frequency,
the modulation signal is almost invisible in the low frequency and the peak values are crowded
with sidebands in the high frequency [39]. Hence, it is difficult to diagnose the fault by the
amplitude spectrum. However, after applying the Hilbert modulation and envelope spectrum

analysis, the fault information contained in the modulating components can be easily identified.
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Different from Fourier transform, which converts a signal from the time domain to the
frequency domain, Hilbert transform is a time-domain convolution that does not change the
domain of the variable [40]. It is also a frequency-independent 90° phase shifter, so it will not
affect the non-stationary characteristics of modulating signals [1]. Due to the characteristics of
the Hilbert transform, it has been wildly used in many areas, for example, estimating the
correlative functions of a stationary random signal. However, the vibration signal of the
gearbox is non-stationary, then Hilbert transform can’t show how the signal change with time.
Hence, Hilbert transform usually integrates with the other methods, for example Wavelet
transform [1, 41-44], in fault diagnosis of the rotating machinery. The Hilbert transform based
on EMD, which is also called Hilbert-Huang transform, is one of the most popular methods. It
can analyze not only the linear-stationary signal but also the non-linear and non-stationary

signal. We will present it in detail in the following chapters.

2.3 Time-frequency analysis

Fourier analysis and the other frequency analysis methods derived from it have established an
ideal model of linear transformation and it is a steady state conversion. Therefore, they are
suitable for dealing with linear and stable signal, and performing global analysis to the signal.
However, when a mechanical equipment has a fault, the vibration signal usually becomes non-
stationary. The key to process non-stationary signal is the local time-frequency analysis. In
practical applications, it has been found that Fourier analysis is difficult to process the nonlinear
and non-stationary signal. Hence, time-frequency analysis has been developed for the non-

stationary vibration signal.
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2.3.1 Short-time Fourier transform

Short-time Fourier transform is a basic time-frequency analysis that comes from the Fourier
transform. It uses a window function to slide on the non-stationary vibration signal and then
divide it into several equal length segments. The inside signal of the segments is supposed to be
stationary. After that Fourier transform is applied in each segment to find out the frequencies
contained in that segment. Hence, the signal will be represented by two elements of: time and

frequency [45]. For a signal x(¢), its short-time Fourier transform is defined as follows [6]:
STFT(t,w) = [ x(t)w(z —1)e ""dz (9)

where j=+/-1,w(r—t)is the window function such as such as rectangular, triangular,

Hamming, etc., and 7 is the variable that slides the window across the signal x(¢).

Once the window function is chosen, the time and frequency resolution are fixed. So there is a
trade-off to choose a proper window function between the time resolution and the frequency
resolution: a longer window will lead to a higher frequency resolution with a lower time
frequency and vice versa. This is referred to the Heisenberg uncertainty principle: The
resolution in time and frequency cannot be arbitrarily small, once a window function has been
selected, the signal can be analyzed with either good time resolution or good frequency

resolution [46].

STFT has been widely used in the machinery diagnosis, such as wind turbine blade [47].
Cocconcelli [48] presented a new procedure based on STFT for bearing fault detection in a

varying speed motor while many previous experiments are based on a stable speed motor.

17



Many studies have also been done to compare STFT with other signal processing techniques.
Kemal [49] compared STFT and wavelet transform in electroencephalography signals to
determine epileptic seizure activity. It was found that STFT took the shortest processing time
that was applied for online diagnostics while wavelet transform had a high performance for
visualization in recognizing the signal. Long [50] compared STFT and HHT in fault diagnosis of
rolling bearings and indicated that if STFT has a good time-frequency identification rate and it
can extract the fault features from signal well, while HHT is a good method for adaptive signal

processing and is very suitable for nonlinear and non-stationary signal analysis.

2.3.2 Wigner-Ville distribution

The Wigner-Ville distribution (WVD) plays an important role in the time-frequency signal
analysis as it has overcome the limit of STFT and provided a high-resolution in both time and
frequency for non-stationary signals. The total energy of the signal is analyzed by instantaneous
power in time domain and energy spectrum in frequency domain [51]. In the time domain,

Wigner-Ville distribution is defined as [52]:

Wx(t.w) = | x(t+%)x*(t—%)e_j’”df (10)

wheret is the time domain variable, wis the frequency domain variable, x(¢)is restricted to a
complex continuous time analytic signal and its Fourier transform is X ( /), x*(t)is the complex
conjugate of x(¢),and j=+-1.

WVD is an effective method for non-stationary signal in time-frequency analysis and has been

widely used in fault diagnosis of machinery [53, 54]. However, there are several disadvantages
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in directly applying the Wigner-Ville distribution because of its inherent nature. It will cause the
interference of the cross terms while analyzing a multicomponent signal. The interferences of
the cross terms may have significant amplitude which can corrupt the transform space [55]. In
practice, the vibration signal collected from the gearbox is the multicomponent signal. It usually
contains the mesh frequencies and their harmonics, and occasionally some components called
ghost components. The interferences among these strong components, between these strong
components or the other low level parts of the signal such as the modulation sidebands, may
produce complicated results which is difficult to be interpreted [56]. Choy [52] made a
comparison between WVD and Wavelet transform in the damage identification of a gear
transmission. The results has shown that the wavelet transform method can provide a more
direct quantification than using WVD. In order to take its advantage, WVD has been combined
with some methods such as wavelet transform [57] and EMD [58] for fault diagnosis of the

rotating machinery.

2.3.3 Wavelet Transform

There are mainly two categories of the time-frequency analysis: One is the quadratic method
that covers the time-frequency distributions, such as STFT and WVD that we have presented
above. The other is the linear approach including the Gabor transform, the Zak transform and
the wavelet transform analysis [51]. Wavelet was first introduced by Morlet and then became a

powerful mathematical tool. For N points, the computations of wavelet transform isO(N),

which is smaller than that of FFT that isO(Nlog N).
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Wavelet transform is an adaptive transform that has overcome the resolution problem of STFT.
It has the basic properties such as linearity, translation, dilation, symmetry, etc. Due to its
properties, it is suitable for making multi-scale analysis for a non-stationary signal in both time
domain (through translation) and frequency domain (through dilation) [51]. Both continuous
wavelet transform and discrete wavelet transform have been widely used in fault diagnosis of

the machinery.

2.3.3.1 Continuous wavelet transform (CWT)
Suppose a function w(¢) € I’ (R) where L*(R)represents a real space that the square can be

integration, which means signal space’s energy is limited. Its Fourier transform t/A/(w) is [51]:
p(w) = j )(t)ye ™ dt (11)
If l/A/(w) satisfies the admissibility condition:

C, _j“/'( W 1< oo (12)

|w
Then w(¢) is called mother wavelet.

As the wavelets is a family of functions constructed from translation and dilation of the mother

wavelety (¢) , then the wavelets v, (¢) is defined by [51]:

1 -b
wa,b(o:ﬁw(’?) (13)

wherea € R,a # 0 is called a scaling (dilation) parameter that measures the degree of scale,
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b € R is a translation (location) parameter which determines the time location of the wavelet,

1
and T is used to ensure energy preservation.
a

The typical continuous wavelets include Meyer wavelet, Mexican hat wavelet, Morlet wavelet,

etc. For a given signal of limited energy f'(¢), its continuous wavelet transform is defined as [51]:
t 1 t—b

W (a,b)= 1) ——=y *(—)dt 14

,()fw.f()\/;l//(a) (14)

where y *(¢) is the complex conjugate function of w(t),aeR,a#0 is called a scaling

parameter and b € R is a translation parameter.

—jwt

Compared with the kernel e™/* in the Fourier transform in Eq. (1), it can be found that kernel

w,,(t)in Eq. (14) plays the same role. Hence, continuous wavelet transform is linear like
Fourier transform. However, it is the transform based on any wavelets i, (¢) which is different

from Fourier transform which is only based on ¢™* [51].

Similar to the window functionw(z —¢) in Eq. (9) for STFT, w_, (¢) looks like a time-frequency

window function to ‘observe’ a signal. However, the shape of it is not fixed and will change with
the parameters aandb . For a fixed parameterb, when the parameter a increases, the length
of the frequency window will become wider while the length of time window will become
narrower. The comparison of them are shown in figure 1. We can find the area and the shape of
STFT is fixed during the whole transform while only the area of wavelet transform is fixed but

the shape will change the time and frequency. Wavelet transform uses wide time window and

21



narrow frequency window at low frequencies to get high frequency resolutions while using
narrow time window and wide frequency at high frequencies to get high time resolutions.

That’s why wavelet transform is called adaptive.

Short-time Fourier transform Wavelet transform

Aduanbau4
Aduanbauy

v

v

Time Time

Figure 1 Comparison of the window function between STFT and wavelet transform [59]

Continuous wavelet transform has been successfully applied many areas. Vikhe [60] presented
that CWT performed better than STFT in the detection of the abnormal heart sound. It also
widely used in fault diagnosis of the rotating machinery. Lin [61] used Morlet wavelet transform
for ball bearing diagnosis from the machine sound. Baydar [62] applied Gabor-based wavelet to
detect the gear failures from both vibration signal and acoustic signal. Some improved methods

that combines with other methods have also been introduced: Zheng [63] presented the time-
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averaged wavelet spectrum based on Morlet continuous wavelet transform for gear fault

diagnosis. Rubini [64] applied the envelope spectrum analysis in Morlet transform to diagnose

the early faults in ball bearing. Elbarghathi [65] proposed a method that using time

synchronous average (TSA) to remove the noise and then applying continuous wavelet

transformation for fault detection and diagnosis of the gearbox.

2.3.3.2 Discrete wavelet transform (DWT)

In many applications of the signal processing, it needs to consider the discrete expression of the

continuous wavelet transform because the data are in the form of a finite number of values. In

order to get discrete wavelet transform, the two parameters aand b of CWT in Eq. (14) should

be converted into a discrete one that a and b only take integral values as follows [66]:

The discretization of the scaling parameter a

Normally it takes a:a({ where j is an integer and a, >1.Then the corresponding

wavelet is:

—y (D) =a Py - b) (1)

a

The discretization of the translation parameter b

For j=0, in order to discretizeb, it only takes the integer (positive and negative)
multiples of one fixed b, (arbitrarily fixs, > 0) where b, is appropriately chosen so that

the w(x —nb,)can ‘cover’ the whole time axis and the signal information won't lose.

—jI2
0

For different values of j, because the width of a l//(a;*/ (t—-0b))is a{{ times the width of

w(t), so that the sampling interval can be expanded ajtimes without losing the signal
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information, then the choice b:nboa‘{will make sure the discretized wavelets at the

level m can ‘cover’ the whole time axis and preserve the whole signal information.
Hence, the discretized expression of the parameters a and b is:
a=a’, b=nba’ (16)
where j and n are integersanda >1, b, >0.

Then the wavelet v, (¢) after discretizing without losing information can be presented as

follows:

(t—nbya’)

J
0

v, O=ay =a "?y(a’'t—nb,) (16)

a

We can transfer value nb,to the integer k by adjusting time axis, then the modified discrete

wavelet function y, , (¢) can be expressed as:

v, (O =a’ y(a’t-k) (17)

For a given signal f(¢) € L*(R), its discrete wavelet transform can be defined as [66]:
W, N0 = (v 0.10) [ fow’ @t (18)

where l//: (¢) is the complex conjugate function of V., (1).
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It should note that discrete wavelet transform only discretizes the parameters a and b of the

analysis wavelet v, (¢) but doesn’t convert the parameter ¢ of the analysis wavelet y_, (¢) or

the signal f(¢) into discretization. The typical discrete wavelets include Daubechies (DB)

wavelets, Haar wavelets, Symmlet wavelets, etc.

Discrete wavelet transform has greatly reduced the redundancy of continuous wavelet
transform and has been widely in the field of the signal and image processing. Like continuous
wavelet transform, there are many applications in the field of fault diagnosis of rotating
machinery. Lu [67] presented a method of based on the Daubechies-40 wavelets for fault
diagnosis of induction motor rotor. Prabhakar [68] applied DWT to detect single and multiple
faults in ball bearings. Su [69] and Liu [70] respective proved the effective of DWT in fault
diagnosis of gearbox. There are also many improved methods based on DWT for fault diagnosis.
For example, the method combining DWT and Hilbert Transform achieved success in the fault
detection and diagnosis of the gears, bearings and rotor bar [43, 44, and 71]. In recent years, an
idea that applying DWT for feature extraction and intelligent techniques for classification has
been developed and many new methods has been proposed and applied in gearbox [72],

bearing [73], and induction motors [74].

2.3.4 Hilbert-Huang Transform (HHT)

The above time-frequency analysis methods have been widely applied in many cases of fault
diagnosis of the rotating machinery, however each method also have their own limitations.

Hence, Hilbert-Huang transform is proposed as a new type of time-frequency analysis for
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analyzing nonlinear and non-stationary signal. The HHT methods are mainly consisted by two

parts: empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA).

2.3.4.1 Empirical mode decomposition

The ‘empirical mode decomposition’ is the key process of HHT to deal with the non-stationary
and nonlinear data. It has the largest computation complexity of the whole process. After EMD
decomposition, the complicated signal can be presented as the sum of a finite and small
number of ‘intrinsic mode functions’ (IMF). IMF is a function that satisfies the following

functions [7]:

1. In the whole dataset, the number of extrema and the number of zero-crossings must
either equal or differ at most by one.
2. At any point, the mean value of the envelope defined by the local maxima and the

envelope defined by the local minima is zero.

An IMF represents a simple oscillatory mode as a counterpart to the simple harmonic function,
but it is much more general: the IMF can have a variable amplitude and frequency as functions
of time while a simple harmonic component only has constant amplitude and frequency [75].
The EMD is a sifting process that decomposes the signal into IMF components. The

decomposition is based on the following assumptions [7]:

1. The signal has at least two extrema: one maximum and one minimum.

2. The characteristic time scale is defined by the time lapse between the extrema.
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3.

If the data were totally devoid of extrema but contained only inflection points, then it
can be differentiated one or more times to reveal the extrema. Final results can be

obtained by integrations of the components.

For a given signal x(¢), the procedures of its empirical mode decomposition is given in the

following steps [7]:

1.

Identify all the local extrema from the signal x(¢), then connect all the local maxima by a
cubic spline line as the upper envelope.

Repeat the procedure for the local minima to produce the lower envelope. The upper
and lower envelopes should cover all the data between them.

Compute the mean of the upper and lower envelopes designated asm,, and the

difference between the signal x(¢) and m, is the first component 4, :

by = x(t)—m, (19)
Ideally, /, should satisfy the definition of an IMF because the construction of A
describes above should have made it satisfy the requirements of IMF. However, there
common exist overshoots and undershoots in reality, which will also generate new
extrema and shift or exaggerate the existing ones. Even if the fitting is perfect, a gentle
hump on a slope can be amplified to become a local extrema which will change the local
zero from a rectangular to a curvilinear coordinate system. After the first round of

sifting, the hump may become a local maximum.
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4,

In order to eliminate riding waves and making the wave’s profiles more symmetric, the
sifting process of Eq. (19) will repeat many times to reduce the extracted signal to an
IMF.

Repeat the steps 1-3 by treating 4, as the signal in the subsequent sifting processes,
by =h—m, (20)
After repeating siftings up to k& times until /4, becomes an IMF, that is
by = hyyy —my, (21)
Then the first IMF of the signal designated as ¢, has been obtained:
¢ =h, (22)

There is a criterion to stop the sifting process accomplished by calculating of the

normalized squared difference SD between two successive sifting operations:

_ S |hk—l(t)_hk(t)|2
P _Z{ 0 } )

If SD is smaller than a predetermined value which is between 0.2 and 0.3, the sifting

process will stop. Overall, the first IMF ¢, should contain the finest scale or the shortest

period component of the signal.

Remove the first IMF ¢, the signal and get the residue of the signal r,
n=x(0)-¢ (24)

The residue # still contain longer period variations than the previous component.

6. Treat 7; as a new signal and repeat steps 1-4 to obtain the second IMFc, .
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7. Repeat steps 1-5 to obtain the series of IMFs ¢, (i = 1,2,...,n) and the final residue T,

until the sifting process satisfies any of the following predetermined criteria: either

when the component ¢, or the residue becomes so small that is less than the
predetermined value of substantial consequence, or when the residue r, becomes a

monotonic function from which no more IMFs can be extracted.

8. Sum up all the IMFs and the final residue, we can reconstruct the original signal x(¢):

x(t)=ic,. +r, (25)

Hence, the decomposition of the signal has been completed and the residue 7, can be

either the mean trend or a constant.

2.3.4.2 Hilbert spectral analysis

After obtaining all the IMFs, Hilbert transform is applied to each IMF component and calculate

the instantaneous frequency based on Eq. (4)-(8). Then the original signal x(¢) can be

expressed as [7]:

x(1) = Re{zn:a,. (Dyexp(jfw, (t)dt)} (26)

where a,(t) is the Hilbert envelope signal of each IMF, Re{.} represents the real part of a

complex quantity and j =~/—1.

The residue r, has been left out because it is either a monotonic function or a constant. Eq. (26)

can represent the instantaneous amplitude, frequency and time of the signal x(¢) in a three-
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dimensional plot, where the amplitude can be drawn on the frequency-time plane. This
frequency-time distribution of the amplitude is called as Hilbert spectrum H(w,t). Then a
measure of the total amplitude (or energy) contribution from each frequency value called

Hilbert marginal spectrum /(w) can be defined as:
T
h(w) = j H(w,t)dt (27)
0

Hilbert marginal spectrum represents the accumulated amplitude over the entire signal span in

a probabilistic sense.

Hilbert-Huang transformation has been proved as an effective method that can extract the
features from nonlinear and non-stationary signal. It has been applied to numerous scientific
investigations, such as structural safety [75], geophysics [76], and nuclear physics [77]. HHT has
also been done in fault diagnosis of the rotating machinery, such as bearings [78-80] and
gearbox [81-83]. Some expanding research base on HHT also has been presented. Cheng [84]
introduced a concept of local Hilbert energy spectrum and combined it with frequency family
separation based on EMD in the gear fault diagnosis. Su [85] presented a new singular value
decomposition method based on Hilbert-Huang transform in gears fault identification and
classification, which has overcome the problem of reconstructing a feature matrix of singular
value decomposition. Wang [86] proposed an integration method by applying continuous

wavelet transform to detect the simulated sensor fault and diagnose it with HHT.
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2.3.5 Comparative research in time-frequency analysis

As there are many techniques for time-frequency analysis, each one has its own advantage and
disadvantage. Hence, it is necessary to make a comparison research among them. Douglas [6]
made a resolution comparison of several time-frequency distributions of STFT, Wigner
distribution, Choi-Williams distribution and other distributions. He concluded that there was
not a distribution that can be considered as the best approach for all kinds of time-frequency
analysis. Each distribution has its own advantage in some specify conditions. Peng [87] made a
review of wavelet transform, STFT, Wigner-Ville distribution (WVD), Choi-Williams distribution
and other techniques. These methods are compared in many areas of the machine fault
diagnostics, such as time-frequency analysis of signals, fault feature extraction, singularity
detection, etc. The results shows that wavelet transform has better performance in these areas.
Lin [88] used an adaptive wavelet filter based on the Morlet wavelet and compared the result
obtained by discrete wavelet transform in gearbox fault diagnosis. The results shows that the

adaptive Morlet wavelet filter is more effective for capturing impulses.

Although wavelet transform and Hilbert-Huang transform are the most popular methods for
analyzing nonlinear and non-stationary signals, they still have their own limitations. For
example, although wavelet transform has the properties of analyzing nonlinear and non-
stationary signals and is suitable for diagnosing the fault from the vibration-based machine, it
still has some inevitable deficiencies including the interference terms, border distortion and
energy leakage. The same situation also applied to HHT, who suffers the shortcomings caused
by the EMD: First, the EMD will sometimes generate undesirable IMFs at the low-frequency

region that may cause misinterpretation. Second, depending on the different analyzed signals,
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the first obtained IMF may cover too wide a frequency range so that it cannot achieve the
property of mono-component. Third, the EMD operation cannot separate signals that contain
very low energy components [89]. Some research have been done to compare wavelet
transform and Hilbert-Huang transform in fault diagnosis of rotating machinery. In the field of
fault diagnosis of oil whirl, Yang [10] applied the methods of HHT and wavelet transform in
rotating machinery. He summarized that the result of HHT is more sharp and clear than wavelet
transform. Xiang [90] compared the analysis results of the oil whip signal by applying STFT,
WVD, continuous wavelet transform and HHT. He concluded that HHT is more effective because
it can detect components of low energy and displayed the distinct time-frequency distribution.
Babu [91] applied HHT, FFT and CWT in the field of detection and monitoring of crack in a
transient rotor. The results shown that HHT is more effective for extracting the salient features
from time response of the cracked rotor because of the concept of HHT’s instantaneous
frequency. In the field of gearbox fault detection and diagnosis, Liu [92] investigated the results
that obtained by continuous CWT and HHT. It is found that HHT is more effective than CWT
because HHT can better enhance transients caused by the crack. However, after making a
comparison between DWT and HHT in fault diagnosis of rotor bar in induction machines,
Antonino-Daviu [9] concluded that HHT has a better representation of the left sideband
harmonic up to the fundamental frequency but the patterns arising from it does not seem to be
any clearer than those with the DWT approaches. Yan [11] made a comparative study of modal
parameter identification based on Morlet wavelet and HHT. After comparing the results of the
application in numerical simulation, impact test and ambient vibration test, the author

concluded that the continuous wavelet transform and HHT have their own benefits for specific
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types of vibration data, thus it is hard to say which one is superior to the other. The same
conclusion also has been made by Quek [12], who applied continuous wavelet transform and
HHT in the analysis of flexural wave propagation in an aluminum beam and the analysis of

acoustic Lamb wave propagation in an aluminum plate.

According to the above research, we can find that many types of comparative studies have
been done, such as CWT based methods versus DWT based methods, HHT based methods
versus CWT based methods and HHT based methods versus DWT based methods. However,
there are no reported comprehensive comparisons of the three methods for fault diagnosis of

gears and bearings.
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Chapter 3

3. The proposed method for fault diagnosis

In this chapter, we first analyze the signal characteristics collected from the gearbox and
bearing. Then we present to the new improved DWT method which can improve the analytical
capacity of periodic impulses in time domain. The CWT method using time-wavelet energy

spectrum and the HHT method are also introduced in detail for the comprehensive study.

3.1 Signal analysis for gearboxes

For a healthy pair of gears, assuming that all teeth of the gears are identical and equally spaced
and they are meshing under a constant load and speed, the vibration signal of the healthy gears

f(¢) can be represented as follows [1]:

f(t)= ZXm cos(2zmNf.t+ @) (28)

where M is the number of tooth-meshing harmonics, X, and @, are the amplitude and the
phase of the M " meshing harmonic, N is the number of the gear teeth, f. is the shaft rotating

N

frequency, then the meshing frequency is N* f, and ¢ is time.

Eqg. (28) indicates that the predominant frequency components of the signal collected from the

healthy gears are the meshing frequency and its harmonics.
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When a gear has a fault, it usually can be reflected in the vibration signals, which will contain

the amplitude and phase modulations. Then the amplitude-modulating functions a,_(¢)and the

m

phase-modulating functions b, () caused by a faulty gear tooth can be represented by [1]:

a,(t)= i A, cosLrnft+a,,) (29)
b, (t)= i B, cos2znft+ ) (30)

where M 'is the number of sidebands around tooth-meshing harmonics, 4, and B, are

mn

respectively amplitudes at n” sidebands of amplitude and phase-modulating signals around the

th

m" meshing harmonic, anda,, and 3, are respectively the phases at the n” sidebands of

amplitude and phase-modulating signals around the m” meshing harmonic.

From Eq. (29) and Eq. (30), we can find that a,(¢) and b, (¢) are the periodic functions that are

based on the shaft rotating frequency f, and its frequency multiplication, which is accorded
with the factual situation. Then the vibration signal x(¢) of a pair of meshing gears with a tooth

fault can be represented by the combination of Eq. (28)-(30) as follows:

x(t) = i)(m (1+a, (1)) *cos(2zmNf,t + ¢, +b, (1))

m=0

M M' M'
= z X, (1 + Z A, cosrnft+ea,, )J *cos (27rmest +¢, + Z B, cos2rnft+p,, )j (31)
m=0

m=0 m=0

Because the vibration signal from a gearbox is usually non-stationary, the frequency

components of the signal will vary with time¢. Thus Eq. (31) is modified to:
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m=0

x(t) = i X, (1 + i A, cosRrnf ()i +a,, )j *cos (mmes )i+, + f“ B, cosRrnf(1).t+ 3, )) (32)

According to Eq. (32), the additional frequency components mNf, () = nf,(t) corresponding to

the meshing frequency and the shaft rotating frequency, will appear in the spectrum of the
signal. Hence, we can extract these important information from the vibration signal to detect

and diagnose the gearbox fault.

Three diagnosis methods that are respectively based on CWT, DWT and HHT will be applied to
extract fault features from the collected vibration signal. We will introduce and discuss them

respectively in the following parts.

3.2 Calculation of the bearing’s faulty characteristic frequency

When a bearing has a fault, it will usually occur in cage, inner race of the bearing, outer race
fault of the bearing and the balls. The faulty characteristic frequency of them can be calculated

as follows [93]:

Cage Faulty Frequency = g(l 4, cos (ﬂ)) (33)
e

Inner Race Faulty Frequency = %(1 + 4, cos( )j (34)
e

Outer Race Faulty Frequency = %(1 4 X COS ( p )) (35)
e

. ex f d 2 2
Ball Faulty Frequency = 7(1 — ( 4) X COS (,B)) (36)

where f is the driving frequency, b is the number of rolling elements,d is the ball bearing

diameter, e is the bearing pitch diameter and £ is the bearing contact angle.

36



3.3 Methods based on Wavelet Transform

3.3.1 The CWT method using Time-wavelet energy spectrum

The time scale and its corresponding energy distribution are the two important indicators in the
signal processing that can reflect the dominant components of the vibration. When there is a
gear that has a local fault, the damage will generate periodic impulses. The impulses will cause
the energy at that instant generate peaks. The sidebands will appear in the spectrum because
of the modulation. Thus the energy spectrum will vary with the change of time and frequency
that can reflect the dominant features of the vibration signal. Hence, it is possible to detect and

diagnose the fault by extract these features from the vibration signal.

As mentioned before, for a given signal of limited energy f(¢), its continuous wavelet transform

is defined as Eq. (14)

t—
a

byt (14)

W, (@.b)= [ £

where y *(¢) is the complex conjugate function ofw(¢), ae R,a#0is called the scaling

parameter and b € R is the translation parameter.

Wavelet transform is isometric which means wavelet transform of f(¢)is energy conservation.

We can obtain the following equation via Eq. (14) [94]:
+00 +00 +00

J1A@F dr=— [ [ =W, @b dadb 7

—0 W —o0 —0
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where C = I |W‘( ‘)| dw < © is the admissibility condition of the wavelet.
% W
o . . W (a,b)]
Because of the limitation of the Heisenberg Uncertainty Principle, ﬁ can be taken as
a

174
the energy density function in plane (a, b), which means it represents the energy in the space

(atAa,b* Ab). Hence, Eq. (37) can be expressed as follows:

+00 5 1 +oo
[O | f(0)F dt :C_./,J;E(b)db (38)

where E(b)= | i2|Wf.(a,b) ? da (39)
a

—00

Eq. (39) is the integral of squared modulus of wavelet transform over scale [95]. It expresses the
distribution of the signal’s energies in time axis (the parameter b), and it is called the time-
wavelet energy spectrum. It is an effective method in fault diagnosis of gears and bearings [93-

95].
Morlet wavelet is one of the most popular wavelet used in signal processing, it is defined as
[66]:

1 1 W 12
()= ‘(e —c 2" )e 2 (40)

where j=+/—1and w;,is the central frequency of the mother wavelet.

1,
Whenw, =5, the second exponential ¢ * " in Eq. (40) tends to be zero then it can be neglected

in practice. Then Morlet wavelet can be modified to:
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1 1,
— . —t
w()=m ‘e e ? (41)
From Eq. (41), we can find it is a squared exponentially declining function that is very similar to
an impulse vibration. Then it can be used to extract the impulse features from the signal of the

faulty gear.
The steps of using this method are as follows:

1. Denoise the signal. We apply the approach of global threshold for wavelet denoising,
which can well preserve the early characteristics of the signal.
2. Extract the fault features. We apply time-wavelet energy spectrum to analyze the

denoising signal.

3. Identify the characteristics for fault diagnosis.

3.3.2 The proposed method based on DWT integrating Cepstrum analysis

We first introduce Mallet algorithm for DWT decomposition and reconstruction. Then we
propose the new improved DWT method that can improve the capacity of analyzing the
periodic impulse in time domain. The proposed method is based on DWT that integrates
Cepstrum analysis. The results show that the proposed method performs better than the
existing methods of applying Cepstrum analysis directly. Furthermore, with the help of
Cepstrum analysis, the proposed method has better performance in time domain analysis than

Hilbert spectral analysis in analyzing the periodic impulses contained in the detail signals.
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3.3.2.1 Multi-resolution analysis and Mallet algorithm

Discrete wavelet transform is derived from continuous wavelet transform, where the scaling

parameter a and translation parameter b are discretized. For a discrete wavelet

v, () e L’(R), if the scaling and translation family {l//j,k (1) = s w27t —k)} is an

j,keZ2

orthonormal basis osz(R), then Wj,k(f) is called as orthonormal wavelet [51]. Multi-

resolution analysis (MRA) ({Vj}jez,(ﬁ(f)) is consisted by a sequence {V}._, of closed

subspaces of L*(R)and a function ¢(¢), which should satisfied the following properties [96]:

1. V(,keZ’, feV, < f(t-2k) eV,

2. VjeZ .,V

Jj+l

<,

3. V(e o f(%) eV,

4 lm¥,= (7, =0}

j=o

5. lim ¥, =closure( | V,=L(R)

Jo—o ;

J=—o
6. ¢(t)eV,and {#(t—k)},_ is the orthonormal basis of V, then ¢(¢)is called the scaling

function of the multi-resolution.

The discrete wavelet function and the scaling function are defined as [96]:
Wi (O =2"y (27 1-k) (42)

¢ ()=2""w(21-k) (43)
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DWT can analyze the signal at different frequency bands with different resolutions by
decomposing it into the coarse approximation and the detail information. It applies the scaling
function as low-pass filter and wavelet function as high-pass filter to decompose the signal. The

high-pass filter g(n) and low-pass filter i(n) are defined as follows [96]:

g(n)=<%w(§),¢<r—n>>=<—1>‘"h(l—n) (44)
h(n) =i<¢<1> ¢(z—n>> (45)
V2 \2”

Based on Multi-resolution analysis and orthonormal wavelet, Mallat proposed a fast wavelet

transform algorithm that decomposes a given signal f(¢) € L’ (R) as follows [66]:

FO=Yclp )+ Y Y div,, (1) a6

kez i=1 kez

where j e Z"is the number of decomposition level, ¢, (t)is the scaling function and vy,  (?)is

the discrete wavelet, C;{ and d/is the scaling coefficient (approximation coefficient) and

wavelet coefficient (detail coefficient) respectively.
The coefficients c,{ and d/ can be obtained by:

¢, = fi(c) (47)

o/ = ¢ ua (48)
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dl=>c"g, (49)

where j e Z"is the number of decomposition level,k =0,1,2...N —1, N is the sample number,

and f, is the time-domain waveform of the original signal £, (c;) .

After the decomposition from level 1 to level j, the signal could get its approximation
coefficient ¢, and detail coefficientsd,,d,,...d; . They contain the frequency band information of
the signal from high frequency to low frequency with the time information of the signal.

Therefore they are the time-frequency presentation of the signal. The decomposition

procedure of the Mallat algorithm is shown in Figure 2:

4> .
CO C1 NGEE— C7 . ) CI

d d, di

Figure 2 Decomposition procedure of the signal [96]

After the decomposition, the signal can also be reconstructed based on the following algorithm:

Jj J+l J+l
Cp = ch Wy, + Zdn Er-2n (50)
n n

wherek =0,1,2..N—1, N is the sample number.

In fact, the algorithm of the reconstruction is the inverse processing of the decomposition

shown in Figure 3:
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d dis diz ds

Figure 3 Reconstruction procedure of the signal [96]

In practice, the signals collected from the sampling system are usually discrete. It is the same
idea to decompose the signal by passing it through a successive combinations of quadrature

mirror filters: low-pass filters (scaling filter) 4(n)and high-pass filters (wavelet filter) g(n),
which is shown in Figure 4 [97]: the signal X (n) is a discrete signal with 1024 sample points. Its
bandwidth is(0— 7). The bandwidth of the signal at every level is marked on the figure as f,
and J,2 means downsampling by 2. The filter groups at each level i(n) and g(n) are low-pass

filter and high-pass filter respectively. The low-pass filter is used to smooth the signal and the

high-pass filter is to obtain the difference in this detail. The signal is then decomposed into two

parts by the filters at each level: high frequency part D, (i € Z") which is called as detail signal
and low frequency A4 (i€ Z") which is called as approximation signal. And it continues to

decompose the low frequency part A;each time. Hence, the composition procedure can be

presented as:

4 =4,+D

i+l

(51)

whereieZ".
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After the first decomposition level, the output of the g(n) : D, will have 512 sample points with
the frequency band (7 /2 ~ 7). Then the time resolution is half of the previous one because

there are only the half number of sample points to present the entire signal. However, the
frequency resolution is doubled because the frequency band of the signal is the half of the
previous one. Then the signal continues to pass the filters for further decomposition which will

increase frequency resolution and decrease the time resolution [98].
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Figure 4 Decomposition of the discrete signal [97]

The reconstruction is also the inverse procedure of the decomposition and the X(n) after

reconstructing can be represented as:
J
X(n)y=4,+Y.D,, (52)
i=1

where j e Z"is the number of decomposition level.
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The resolution of the signal, which is a measurement of the amount of detail information in the
signal, is changed by the filtering operations, and the scale is changed by upsampling and

downsampling operations [98].

Daubechies wavelet is a family of orthogonal wavelets that has been wildly used in fast wavelet
transform. The scaling signals and wavelets have slightly longer support in the Daubechies
wavelet transform. It usually used DBN to describe the Daubechies wavelet, where N is the
vanishing moment. When the vanishing moment become higher, the wavelet will oscillate

stronger [66]. The wavelet with a higher vanishing moment is more welcomed in practice.

3.3.2.2 The improved DWT method

After the decomposition and reconstruction steps of DWT, the information of the signal will be
contained by the detail and approximation signals at different frequency bands. Many studies
applied an improved Hilbert envelope spectrum to analyze the detail signal. The improved

Hilbert spectral analysis is presented as follows [99]:

For a given signal f(¢), its analytic signal A[ f(z)] is given by Eq. (5), then we can define a new

envelope signal

A
E(0) =|ALf ()] —M (53)

where N is the length of A[ f(¢)].

Then the envelope spectrum analysis ES( /) of E(¢) is presented as:
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(54)

ES(f) = TE(t)e’jw’dt

ES(f)presents the absolute value of the Fourier transform amplitude of E(¢) . The improved

Hilbert spectrum can reduce the undesirable distortion near the two ends of the region where

the Hilbert transform is performed.

If there are a series of periodic impulses contained in the corresponding detail signal, Hilbert
spectral analysis can detect them by plotting the instantaneous amplitude of the signal in time
domain. But in practice applications, the energy of the periodic impulses contained in the
vibration signal is usually not very strong, the periodic impulses are masked by the noise or
other frequency components. Thus sometimes the results are not very clear and
accurate.Previous studies usually only have good results in analyzing the periodic impulses in

frequency.

According to the definition of Cepstrum analysis in Eqg. (3), we can find it first apply Fourier
transform to get the estimated spectrum of a signal. After that it apply the inverse Fourier
transform of the logarithm of the estimated spectrum. Based on this process, it can make the
complex convolution become a simple linear superposition. Thus Cepstrum analysis has the
characteristics of detecting the periodicity and reducing the influence of the noise for the low
energy signal. The ‘inverted frequencies’ corresponding to the wave’s peaks in a Cepstrum

graph present the period of the periodic impulses.

revious research usually only applied Cepstrum analysis directly to extract fault features from

the entire original signal. Hence, we propose a new method that takes the advantage of Hilbert
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spectral analysis and Cepstrum in fault diagnosis of gears and bearings. The steps of the

improved DWT method are as follows:

1. Denoise the signal. Even though DWT can reduced some noise information by the
decomposition and reconstruction, but that is not enough because the original signal
usually contains a lot of noise information, which sometimes makes it is hard to
interpret the results. Therefore, we apply the same signal denoising method as in
section 3.3.1.

2. Decompose and reconstruct the signal. After denoising the original signal, we
decompose and reconstruct the signal to obtain the detail and approximation signals for
future analysis.

3. Extract the fault features. We apply Cepstrum analysis to analyze the periodic impulses
in time domain and still use the improved Hilbert envelope spectrum analysis to obtain
the faulty information in frequency domain from the corresponding detail signals.

4. Identify the characteristics for fault diagnosis.

The proposed method can not only extract the fault features in frequency domain as previous

research did but also improve the analytical capacity of the periodic impulses in time domain.

3.4 The HHT method

Due HHT’s characteristics of good noise immunity [75], we can use the original data directly for
analysis. It is also an aspect of comparison with the methods based on WT. The steps of fault
diagnosis using HHT are as follows:

1. Decompose the original data to a set of IMFs by EMD.
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2. Extract the faulty frequency information and the impulse’s period from the selected
IMFs by applying Hilbert transform and Hilbert marginal spectrum.

3. Identify the characteristics for fault diagnosis.
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Chapter 4

4. Case study on gearbox fault diagnosis

4.1 Case introduction

Traditional gearbox experiments usually analyze the vibration signals collected from some
significant faulty gears with a chipped tooth or even a missing tooth, because these damage will
generate stronger periodic impulses, which can make it easier to extract the fault features for

further diagnosis.

In practice, it requires to detect and diagnose a fault as earlier as possible once it happens.
Therefore we have respectively collected the vibration signals by using gears with the tooth’s
root been cut in different depth respectively in our experiment. The sizes of the crack at the
gear tooth root are: 0% (healthy gear), 25%, 40%, 60%, and 80%. Figure 5 shows a gear with
one tooth’s root been cut in 80% degree. In this way we can simulate the gradual growing
process of the gear damage: from a smaller damage at the beginning to a larger damage at end.
Then we will apply the methods based on CWT, DWT and HHT to analyze the five sets of
collected signals respectively and compare their capacity of fault diagnosis of the gearbox. We
will also compare the results of Cepstrum analysis and the improved Hilbert envelope spectrum
analysis at the same time because they are both based on DWT. This experiment has practical
significance and can reflect the characteristics of wavelet transform and Hilbert-Huang

Transform more precisely in fault diagnosis of the gearbox.
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Figure 5 Gear with 80% crack

4.2 Experimental equipment

The experimental equipment is shown in Figure 6, where we can see there is an accelerometer
mounted on the top of the gearbox to collect the signals. The configuration of the gearbox is
shown in Figure 7: there are four gears installed on the three shafts. The gearbox’s parameters
are shown in Table 1. One tooth’s root of the gear 3 (24 teeth) has been cut in different
degrees. Then five sets of vibration data are collected by running the five different gears

respectively and the sampling frequency is 256000Hz.
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Figure 6 Experimental equipment

Gearl Gear 2

Shaft | Shaft Il Shaft Il

Gear 3 Gear 4

Figure 7 The configuration of the gearbox
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Table 1 Gearbox parameters

Gear 1 2 3 4
Number of teeth 36 48 24 72
Rotating frequency(Hz) 30 22.5 22.5 7.5
Meshing frequency(Hz) 1080 540
Shaft | | ]|
Rotating frequency(Hz) 30 22.5 7.5

4.3 Comparison of the methods

In this part, we will apply the above methods to analyze the signals collected from the gearbox

and extract the characteristic frequency of the faulty gear.

4.3.1 Time-wavelet energy spectrum

The method of time-wavelet energy spectrum will generate two spectral: time-wavelet
spectrum that describes the instantaneous energy distributed along with time axis x and the
frequency distribution of the time-wavelet spectrum. We have used Morlet wavelet for
continuous wavelet transform. The signal has been pre-processed by the method of global

threshold for wavelet denoising to reduce the influence of the noise.

4.3.1.1 Healthy gear

The time-domain waveform of the healthy gear collected from the gearbox is shown in Figure 8
and its Fast Fourier transform is shown in Figure 9. There exist a series of the peak valves:
609.4Hz, 1045Hz, 1653Hz, 2088Hz, 2698Hz in the frequency domain in Figure 9, which reflect
the meshing frequency of gear 1&2 (1080Hz), the meshing frequency of gear 3&4 (540Hz) and

their harmonic frequency respectively. Figure 10 is the time-wavelet spectrum and there

53



doesn’t exist obvious vibration period in it, which means there are no periodic impulses. Figure
11 is the frequency distribution of the time-wavelet spectrum and there are two biggest peaks
values: (29, 3.211e-5) and (1044, 1.347e-05). The frequency 1044Hz is significant because it is
the sum of the meshing frequency of gear 1 and gear 2(1080Hz) and second order harmonic of

the meshing frequency of gear 3 and gear 4 (540Hz).

time t/s

Figure 8 Time-domain waveform for the healthy gear
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Figure 11 Frequency distribution of the time-wavelet spectrum for the healthy gear

4.3.1.2 Gear with 25% crack

Figure 12 is the time-domain waveform of the faulty gear with 25% crack. Figure 13 is the Fast
Fourier transform analysis where there are a series of the peak valves: 680.5Hz, 1063Hz,
1594Hz, 2125Hz frequencies corresponding to the meshing frequency of gear 1&2 (1080Hz),
the meshing frequency of gear 3&4 (540Hz) and their harmonic frequencies respectively. Figure
14 and Figure 15are the Time-wavelet spectrum and Frequency distribution respectively. There
doesn’t exist obviously vibration period in Figure 14. The frequencies corresponding to the
peaks in Figure 15 are: 37Hz, 401Hz, 863Hz and 1092Hz. As the fault characteristics of the fault

gear can’t be identified, it can’t detect and diagnose the gear’s fault in 25% degree.
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4.3.1.3 Gear with 40% crack

The time-domain waveform and its Fast Fourier transform are shown in Figure 16 and Figure 17.
There are many peaks in the Time-wavelet spectrum (Figure 18), but the vibration period is not
very obvious. The frequency of the highest peak in the Frequency distribution (Figure 19) is
29Hz, which is corresponding to gear 3’s rotating frequency 22.5 Hz. The meshing frequency of
gear 3 &4 (540Hz) and its harmonic can also be found in Figure 19: 517 Hz and 1051 Hz.
However, they are not very clear and obvious. Hence, it can’t detect and diagnose the gear with

40% crack.

i | | | ! | | | | |
jag
B8] t/s

Figure 16 Time-domain waveform for the gear with 40% crack
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Figure 19 Frequency distribution of the time-wavelet spectrum for the gear with 40% crack

4.3.1.4 Gear with 60% crack

The time-domain waveform and its Fast Fourier transform are shown in Figure 20 and Figure 21.
The meshing frequency of gear 1&2 (1080Hz), the meshing frequency of gear 3&4 (540Hz) and
their harmonic frequency can also be reflected in Figure 21. There doesn’t exist obvious
vibration period in the time-wavelet spectrum shown in Figure 22. However, there are a series
of the peak values that exist in the frequency distribution of the time-wavelet spectrum shown
in Figure 23: (29, 4.283e-5) is corresponding to gear 3’s rotating frequency 22.5Hz, (489,
1.475e-5) & (518, 1.443e-5) are corresponding to its meshing frequency, (1007, 1.49e-5) &
(1036, 1.443e-5) are corresponding to its meshing frequency’s second harmonic frequency.
Compared with the frequency distribution of the healthy gear shown in Figure 11, it can be
found that the amplitude of the 29Hz has greatly increased. The meshing frequency (540Hz)

doesn’t appear in Figure 11 but has appeared in Figure 23. Based on the two features, it can
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conclude that there is a fault in gear 3. Hence, this method can detect and diagnosis the gear
with 60% crack, but it is not accurate enough in frequency-domain and can’t analyze the signal

in time-domain.
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Figure 20 Time-domain waveform for the gear with 60% crack
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Figure 21 FFT for the gear with 60% crack

62



PN time wavelet energy spectrum
3% T

energy spectrum
T
1

a 01 02 03 04 05 08 a7 08 0s 1
time t/s

Figure 22 Time-wavelet spectrum for the gear with 60% crack

%107 frequency of time wavelet energy spectrum
45
I T

%2
V. 4283205

351 —

ampiuge

¥ 1007
£3l8 V14905 X103
¥ 1.4832.05 m V1472605

¥ 489
i1 475205
[ i

-
‘\

05

a [ | I i k] U, it
0 500 1000 1500 2000 2500 3000 3500
frquency/Hz

Figure 23 Frequency distribution of the time-wavelet spectrum for the gear with 60% crack
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4.3.1.5 Gear with 80% crack

Figure 24 is the time-domain waveform. Figure 25 is the Fast Fourier transform, where the
meshing frequency of gear 1&2 (1080Hz), the meshing frequency of gear 3&4 (540Hz) and its

harmonic frequency are presented. The vibration period in the time-wavelet spectrum shown in

Figure 26 is T = 0.0413s and its frequency is%=24.2Hz, which is corresponding to gear 3’s

rotating frequency. There are significant peaks in Figure 27 (the frequency distribution of the
time-wavelet spectrum). The peak vales are as follows: (29, 5.432e-5), (583, 3.354e-5) and
(1036, 2.274e-05), which are corresponding to the rotating frequency of the gear 3 (22.5Hz),
the meshing frequency of gear 3 & gear 4 (540Hz) and its higher order harmonics. Then we can
detect that there is a fault in gear 3. . Hence, this method can detect and diagnosis the gear’s

fault in 80% degree by analyzing the signal in time-frequency domain.

0.2

L

Figure 24 Time-domain waveform for the gear with 80% crack
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Figure 27 Frequency distribution of the time-wavelet spectrum for the gear with 80% crack

4.3.2 The improved DWT method

Same as CWT, the signal will be first denoised. Then we decompose the signal in 5 levels with
DB 20 (Daubechies 20) wavelet and reconstruct it to obtain the approximation signal named ‘a5’
and five detail signals named ‘d1’ to ‘d5’. The approximation signal is an approximate to the
original and detail signals contain the detail information of the signal. The ‘instantaneous
amplitude’ analysis based on Hilbert transform is an analysis method in time domain, which can
reflect the period of the impulses. Hence, we used it as a comparison with Cepstrum analysis to

find out the impulse’s period in time domain.

4.3.2.1 Healthy gear

The approximation signal ‘a5’ and the five detail signals from ‘d1’ to ‘d5’ are shown in Figure 28.

Figure 29 is the Hilbert envelope spectrum analysis from d1 to d5. There exist the peaks values:
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(29, 6.716), (522, 2.756) and (1044, 2.11), which are corresponding to gear 3’s rotating
frequency (22.5Hz), its meshing frequency and the sum of the meshing frequency of gear 1 & 2
(1080Hz) and second order harmonic of the meshing frequency of gear 3 and gear 4 (540Hz).
Figure 30 shows the instantaneous amplitude of d1 and there doesn’t exist obvious vibration
period. Figure 31 and Figure 32 are Cepstrum analysis of the entire original signal and the detail
signal ‘d5’, we can see there doesn’t exist obvious vibration period. There are a set of unusual

peaks around the zero point due to its deficiency, which are usually ignored in practice.

Figure 28 Approximation signal and detail signals for the healthy gear
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4.3.2.2 Gear with 25% crack

According to the results shown from Figure 33 to Figure 37, neither Cepstrum analysis nor

Hilbert envelope spectrum analysis extract the fault features from the vibration signals.
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Figure 33 Approximation signal and detail signals for the gear with 25% crack
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4.3.2.3 Gear with 40% crack

In Figure 39, we can find a series of the peaks values: the highest peak (29, 12.3) is
corresponding to gear 3’s rotating frequency, and compared with the healthy gear (29, 6.716),
its value has highly improved. The peaks (517, 3.032) and (1051, 2.036) are the meshing
frequency and its second harmonic. There doesn’t exist obvious vibration periods in Figure 40.
In Figure 41 the period of the impulses can be identified with T = 0.0464s and its frequency is

%:21.6Hz. We can also identify the period of the impulses in Figure 42 with T ~0.04583s

and its frequency is%=21.8Hz. Both of their frequencies are corresponding to the rotating

frequency of the shaft Il. However, there are two gears on it and the meshing frequency of gear
3 is not significant enough. Hence, we can only conclude that the faulty gear is probably gear 3

based on time domain analysis and frequency domain analysis.
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Figure 42 Cepstrum analysis of d5 for the gear with 40% crack
4.3.2.4 Gear with 60% crack
In the Hilbert envelope spectrum analysis (Figure 44), there are peaks values: (29, 9.76)
corresponding to gear 3’s rotating frequency and (518, 2.747) corresponding to its meshing
frequency. Compared with the healthy gear, the value at the point of the rotating frequency is
highly increased. There still doesn’t exist obvious period in the instantaneous amplitude of d1

(Figure 45). We can find gear 3’s rotating frequency in the Cepstrum analysis of the entire
original signal (Figure 46) withT =~ 0.0463s, and its frequency is%=21.6Hz. There also exists
the obvious periods in the Cepstrum analysis of the detail signal ‘d5’ (Figure 47) with
T = 0.0462s, and its frequency is %=21.6Hz corresponding to gear 3’s rotating frequency.

Hence, we can conclude there is a fault on gear 3. Besides, the result of the proposed method is
more clear and intuitive than that of applying Cepstrum analysis directly.
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Figure 47 Cepstrum analysis of d5 for the gear with 60% crack
4.3.2.5 Gear with 80% crack
In Figure 49, there are peaks values: (29, 9.242) corresponding to gear 3’s rotating frequency
and (554, 3.427) corresponding to its meshing frequency. Compared with the healthy gear, the
value at the point 29Hz has greatly increased. There exist a period 7 ~0.0456s and

f:%:21.9Hz in the instantaneous amplitude of d1 (Figure 50), which means there are

periodic impact in the signal. It is near the rotating period of gear 3. We can find gear 3’s
rotating frequency in the Cepstrum analysis of the entire original signal (Figure 51) but it is not
very obvious. In Figure 52, there also exists obvious period withT ~ 0.0463s, and its frequency

is %: 21.6Hz corresponding to gear 3’s rotating frequency. Therefore, we can determine that

gear 3 has a fault by time-frequency analysis. Compared the result of Figure 50, Figure 51 and

Figure 52, the proposed method is more clear and intuitionistic than the other two methods.
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Figure 51 Cepstrum analysis of the entire original signal for the gear with 80% crack
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Figure 52 Cepstrum analysis of d5 for the gear with 80% crack

4.3.3 The HHT method

Due to HHT’s particular noise immunity, we use the original raw signal directly. After decomposing
the collected data into a series of IMFs through EMD, we apply Hilbert spectral analysis to

extract the features from the IMFs for gear fault diagnosis.

4.3.3.1 Healthy gear

Figure 53 to Figure 56 show the total 11 IMFs and the residue of the signals that decomposed
by EMD. Then we apply Hilbert spectral analysis to analyze IMF1, which contains the most
information of the signal. Figure 57 shows the power spectrum of IMF1 that reflect the
frequency distribution of the signal and there exists a peak value (28, 107.3) corresponding to

gear 3’s rotating frequency. Figure 58 shows IMF1’s instantaneous envelope spectrum analysis
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that present the instantaneous amplitude.

in Figure 59.

The Hilbert marginal spectrum of the signal is shown
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Figure 59 Hilbert marginal spectrum of the signal for the healthy gear
4.3.3.2 Gear with 25% crack
Since most information of the signal is contained in first several IMFs, we only show IMF1 -
IMF3 in Figure 60. Figure 61 shows the power spectrum of IMF1 and there doesn’t exist the
frequency corresponding to the faulty gear. Figure 62 shows IMF1’s instantaneous envelope
spectrum analysis but there doesn’t exist obvious period of the impact. The Hilbert marginal
spectrum of the signal is shown in Figure 63, which also doesn’t have the information of the

faulty gear.
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4.3.3.3 Gear with 40% crack

Figure 64 shows the IMF1 - IMF3 of the gear’s root cut in 40% degree. Figure 65 is the power
spectrum of IMF1 where there are peak value (28, 136.9) corresponding to gear 3’s rotating
frequency, (518, 47.98) & (1034, 40.61) corresponding to gear 3’s meshing frequency and its
second harmonic frequency. Compared with the peak value (28, 107.3) of the healthy gear, it
has highly increased. Figure 66 shows IMF1’s instantaneous envelope spectrum analysis but the
period of the impulses is not obvious enough. The Hilbert marginal spectrum of the signal is
shown in Figure 67, and the frequency corresponding to the peak is 519.6Hz is corresponding to
gear 3’s meshing frequency. Even though the time domain analysis is not clear enough, we can

still determine that there is a fault on gear 3 based on frequency domain analysis.
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Figure 64 IMF1-IMF3 for the gear with 40% crack
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4.3.3.4 Gear with 60% crack
Figure 68 presents the IMF1 - IMF3 of the gear’s root cut in 60% degree. In the power spectrum
of IMF1 (Figure 69), there are peak value (28, 120.2) corresponding to gear 3’s rotating
frequency, (518, 45.21) & (1036, 73.96) corresponding to gear 3’s meshing frequency and its
second harmonic frequency. Compared with peak value (28, 107.3) of the healthy gear, the

value has increased. In Figure 70, there are the period of the impulses T ~ 0.035s with the

frequency %: 28.5Hz which is close to gear 3’s rotating frequency. In Figure 71, there are the

corresponding frequencies 536.6Hz and 951.6Hz of the peaks, which are gear 3’s meshing
frequency and its harmonic frequency. Then the fault information of the gear 3 can be

extracted by time-frequency domain analysis.
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4.3.3.5 Gear with 80% crack

Figure 72 shows that IMF1 has clear periodicity. In Figure 73, there are peak points (28, 136.4)
corresponding to gear 3’s rotating frequency, (576, 55.29) & (1036, 34.77) corresponding to
gear 3’s meshing frequency and its second harmonic frequency. Compared with peak value (28,

107.3) of the healthy gear, it has increased highly. There are the obvious period of the impulses

with T ~ 0.038s and its frequency is%=26.3Hz, which is near gear 3’s rotating frequency.

Figure 74 shows IMF1’s instantaneous envelope analysis. Figure 75 shows the Hilbert marginal
spectrum of the signal, where peak values’ corresponding frequency is 543.6Hz, which is gear
3’s meshing frequency. Therefore, HHT analysis works well on fault diagnosis of the gear with

80% crack.
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According to the above results, we can find that all the methods cannot diagnose the fault of
the damage in 25% degree. Perhaps it is because the energy of the damage is too weak to be
collected by the accelerometer or it is ‘masked’ by the others frequency components such as
noise and etc.

The HHT method performs more sensitive in frequency domain analysis than the other two
methods. It can make fault diagnose of the gear after 40% crack while the other two methods
can do it with the gear after 60% crack.

The proposed method shows its advantage in analyzing the periodic impulses in time domain
than the other two methods. It also performs better than the existing methods of applying
Cepstrum analysis directly. Its results are more intuitive and accurate.
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Chapter 5

5. Case study on bearing fault diagnosis

5.1 Case introduction

The experimental data of the bearing is from our lab’s collaborative partner: Green Power
Monitoring Systems Company. The vibration signals were collected from the bearing with inner
race fault (Figure 76) and outer race fault (Figure 77) respectively. The input shaft rate is 50Hz
and the sampling frequency is 97656Hz. The bearing’s parameters are shown in Table 2. Based

on Eq. (34) and Eq. (35), we can calculate the faulty characteristic frequencies shown in Table 3.

Figure 76 Bearing with inner race fault

Figure 77 Bearing with outer race fault
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Table 2 Bearing parameters

No. of the rolling Ball bearing Bearing pitch | Bearing contact
Parameter . .
elements b diameter d diameter e angle g
Value 8 0.235 1.245 0
Table 3 Bearing faulty characteristic frequency
Name Inner race fault Outer race fault
Value(Hz) 237.75 162.25

5.2 Comparison of the methods

In this section, we compare the time-frequency methods mentioned above in fault diagnosis of

the bearing with inner race fault and outer race fault respectively.

5.2.1 Time-wavelet energy spectrum

5.2.1.1 Healthy bearing

We first analyze the healthy bearing as a comparison. The time-domain waveform of the
healthy gear collected from the gearbox is shown in Figure 78 and the Fast Fourier transform is
shown in Figure 79. No periodic impulses can be found in the Frequency distribution of the
time-wavelet spectrum shown in Figure 80. There is not obvious peak value that is
corresponding to any faulty characteristic frequency in time-wavelet spectrum shown in Figure

81.
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5.2.1.2 Bearing with inner race fault

We apply the method to analyze the signal collected from the bearing with inner race fault.
Figure 82 is the time-domain waveform where we can find there are many obvious impulses.
But there is no peak values that is corresponding to the characteristic frequency of the inner

race fault in Figure 83 (the Fast Fourier transform). There are obvious vibration periods in

Figure 84 withT ~0.0042s5and its frequency is%=238.09Hz, which is correspond to the

characteristic frequency of the inner race fault (237.75Hz). There are frequency values of the
two highest peak 236.5Hzand 473Hz which is corresponding to the bearing’s faulty
characteristic frequency and its second harmonic in Figure 85. Hence, we can conclude that the

bearing has an inner race fault.

0.02 004 0.06 008 o1 012
time tfs

Figure 82 Time-domain waveform for the bearing with inner race fault
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Figure 85 Frequency distribution for the bearing with inner race fault
5.2.1.3 Bearing with outer race fault
The time-domain waveform of the signal collected from the bearing with outer race fault is
shown in Figure 86. We can find there are many obvious impulses in it. But there is no
frequency values of the peak that is corresponding to the characteristic frequency of the outer

race fault in Figure 87 (the Fast Fourier transform). There are obvious vibration period in Figure

88 with T'=0.0062s and its frequency is%=161.29Hz, which is corresponding to the

characteristic frequency of the outer race fault (162.25Hz). There are obvious peak value points
160.2Hz and 320.2Hz, which are corresponding to the bearing’s faulty characteristic frequency
and its second harmonic in Figure 89. Hence, we can conclude that the bearing has an outer

race fault.
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5.2.2 The improved DWT method

In this section, we still use DB 20 (Daubechies 20) wavelet to obtain the approximation signal
and the detail signals. We also apply the Cepstrum analysis to analyze the whole original signal

as a comparison.

5.2.2.1 Healthy bearing

Figure 90 is the Hilbert envelope spectrum analysis from d1 to d5, where no peak values are
found to be corresponding to the characteristic of the faulty bearing. No obvious impulse
periods can be found in the Cepstrum of the whole signal (Figure 91), the instantaneous

envelope analysis (Figure 92) of d1 and the Cepstrum analysis of d1 (Figure 93).
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5.2.2.2 Bearing with inner race fault
Figure 94 is the Hilbert envelope spectrum analysis from d1 to d5, where the frequencies of two
highest peaks are 236.5Hz and 473 Hz respectively. They are corresponding to the characteristic
frequencies of the inner race fault (237.75Hz) and its second harmonic. The impulse’s period T
of the Cepstrum of the whole signal (Figure 95), instantaneous envelope analysis of d1 (Figure

96) and in Cepstrum analysis of d2 (Figure 97) are all the same with7 ~0.0042sand its

frequency is% =238.1Hz , which is close to the characteristic frequency of the inner race fault.

Hence, we can conclude that there is an inner race fault of the bearing. Besides, compared
Figure 95 with Figure 97, we can find that the result of the proposed method is more clear and

has less noise than applied Cepstrum analysis directly.
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5.2.2.3 Bearing with outer race fault

In the Hilbert envelope spectrum analysis from d1 to d5 shown in Figure 98, the frequencies of
peaks values are 160.5Hz and 320.4 Hz, which are corresponding to the characteristic of the
outer race fault (162.25Hz) and its second harmonic. The impulse’s period T of the Cepstrum
of the whole signal (Figure 99) is T ~ 0.0062s with the frequency is 160.29Hz. The impulse’s
period in the instantaneous envelope analysis of d1 (Figure 100) is 7' ~0.0061s and its
frequency is 163.9Hz. The impulse’s period of the Cepstrum analysis of d5 in Figure 101 is
T ~0.0063s and its frequency is 158.73Hz. All of them are close to the characteristic frequency
of the outer race fault. Hence, we can conclude that there is an outer race fault of the bearing.
Furthermore, we can find that the result obtained by the proposed method is clearer than the

other two methods, and it also has less noise than applied Cepstrum analysis directly.
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5.2.3 HHT analysis

We apply EMD to decompose the collected data into a series of IMFs. Then we apply Hilbert

spectral analysis to extract the features from the corresponding IMFs for Bearing fault diagnosis.

5.2.3.1 Healthy bearing

We apply Hilbert spectral analysis to analyze IMF1 and get its power spectrum shown in Figure
102, where there is no frequency of the peaks that is corresponding to the characteristics of the

faulty bearing. There are no periodic impulses in Figure 103.
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5.2.3.2 Bearing with inner race fault

Figure 104 is the power spectrum analysis of IMF1, where we can find that the frequencies of
the two highest peaks values are 236.5Hz and 473 Hz respectively. They are corresponding to
the characteristic frequency of the inner race fault (237.75Hz) and its second harmonic. The

impulse’s period T of the IMF1’s instantaneous envelope analysis (Figure 105) is T ~ 0.0042s

and its frequency is% =238.1Hz , which is corresponding to the characteristic frequency of the

inner race fault. Hence, we can conclude that there is an inner race fault of the bearing.
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Figure 104 The power spectrum of IMF1 for the bearing with inner race fault

115



imft
30

28—

¥ 0001956
. 2018 ¥ 002328
v:197

* 002744
RLE

* 0.005908
¥:9.084 L
L Y7
xoowst W
V8758 ‘

¥ 001461
V: 5.004
[ ]

mm

5]

time ()

Figure 105 IMF1’s instantaneous envelope analysis for the bearing with inner race fault
5.2.3.3 Bearing with outer race fault
The power spectrum analysis of IMF1 is shown in Figure 106. We can find the frequency of the
two highest peaks are 160.2Hz and 320.4Hz, which are corresponding to the characteristic
frequency of the inner race fault (162.25Hz) and its second harmonic respectively. The

impulse’s period T' of the IMF1’s instantaneous envelope analysis (Figure 107) is 7 ~ 0.0062s
and its frequency is% =161.29Hz, which is corresponding to the characteristic frequency of the

outer race fault. Hence, we can conclude that the bearing has an outer race fault. Moreover,
the periodic impulses shown by the proposed method (Figure 101) is more intuitive than that of

HHT.
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Based on the results above, we can find that all the three methods can perform effective fault
diagnosis of bearings. They can extract faulty characteristics and analyze them in frequency
domain. Their performance are almost the same in analyzing the periodic impulses caused by
the bearing’s inner race fault in time domain. However, the CWT methods and the proposed
methods can detect the fault more clearly than the HHT method in analyzing the periodic

impulses caused by the bearing’s outer race fault.
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Chapter 6

6. Conclusion and future work

6.1 Conclusion

In this thesis, we investigate fault diagnosis of rotating machinery by using one set for gear
condition monitoring data and one set for bearing condition monitoring data. We propose an
improved DWT method integrating Cepstrum analysis which can improve the analytical capacity
of the periodic impulses in time domain. The results show that it performs better than the
existing methods of applying Cepstrum analysis directly. Furthermore, it has better
performance in time domain analysis than Hilbert spectral analysis in analyzing the periodic

impulses contained in the detail signals.

A comprehensive study is conducted to compare the following three methods in fault diagnosis
of the gears and bearings: (1) The CWT method using time-wavelet energy spectrum, (2) the

improved DWT method using Cepstrum analysis, and (3) the HHT method.
In fault diagnosis of the gearbox, we can conclude as follows:

e The HHT method performs more sensitive in frequency domain than the other two
methods. It can extract the faulty characteristic frequency of the gear after 40% crack
while the other two methods can diagnose the faulty characteristic frequency after 60%

crack. Besides, the HHT method has better noise immunity.
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e The improved DWT method is good at analyzing the periodic impulses caused by the
fault in time domain. The results of the proposed methods are more intuitive and

accurate than the other two methods.

In fault diagnosis of the bearing, all the methods can detect and identify the bearing’s inner
race fault and outer race fault. The fault can be more clearly detected using the CWT and
improved DWT methods in analyzing the periodic impulses that caused by the outer race fault
of the bearing. The results obtained in this thesis can assist researchers and practitioners to

select suitable methods for fault diagnosis of gears and bearings.

6.2 Future work

As there are more and more complex rotating machinery being designed and manufactured,
the requirement of fault diagnosis analysis will increase significantly. Hence, many research of

fault diagnosis can be done in the future.

1. In the case study on gearbox fault diagnosis, we collect five sets of data with the sizes
of the crack at the gear tooth root are: 0% (healthy gear), 25%, 40%, 60%, and 80%. In
the future, we can collect more sets of data with the sizes of the crack changing little by
little, for example, the size of the crack can be 0%, 10%, 20%... 80%, 90%. Thus the
comprehensive study of the three methods above can be more detailed. We can also
change the load and the motor speed in the experiment so that more sets of data can
be collected to investigate fault diagnosis of gears and bearings.

2. In this thesis, we use data collected from the two-stage gearbox where there is a faulty
gear. In the future, we can collect data from a gearbox where there are two or more
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faulty gears. Moreover, we can also collect data from some more complex gearboxes,
such as planetary gearboxes. Then the three methods above can be applied to
investigate the capacity of fault diagnosis.

As there are also many effective methods have been presented in fault diagnosis of
rotating machinery, we can apply these methods in our experimental data to compare
their capacity in fault diagnosis of the gears and bearings. For example, the methods
based on the wavelet package transform, which can offer better time-frequency
localization of signals, has been widely used in fault diagnosis. An improved EMD
method called as B-Spline based EMD that can overcome the disadvantage of EMD also
has been proposed in fault diagnosis. These methods can be applied in our data and

compared the results with the three methods above.
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