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Abstract 
 
 
 
 

FMRI study of the brain correlates of hedonic and sensory perception during thermal 
alliesthesia   

 
 
 

Marc-André Bacon 
 

 
 
 

  This functional MRI experiment uses the alliesthesia phenomenon to map the 

brain correlates of hedonic experience and sensation. Alliesthesia refers to the 

dependence of the hedonic impact of a stimulus on the ‘milieu interne’. Thus, a thermal 

stimulus applied to the skin during hyperthermia or hypothermia should be perceived as 

having the same temperature but opposite hedonic impact. Twenty participants took part 

in two successive scanning sessions during which mild states of hyperthermia and 

hypothermia were induced. Participants wore a water-perfused suit consisting of a long-

sleeved shirt and trousers. In two of the stimulus conditions, either cold or hot water 

perfused the suit; in the third ‘neutral’ condition, water flow was interrupted. At intervals 

of 9 seconds, the participants rated, on two Likert scales, the thermal sensation perceived 

(from hot to cold) and the corresponding hedonic experience (from unpleasant to 

pleasant).Three different regressors were built from the ratings: hedonic, homeostatic, 

and sensory. The hedonic regressor was derived from the pleasantness ratings, whereas 

the sensory regressor was derived from the temperature ratings. The homeostatic 

regressor was also derived from the temperature ratings, but the sign was adjusted to 

conform to the value that would oppose the deviation of core temperature. Application of 

the hedonic and homeostatic regressors revealed conjoint activations in the more lateral 

areas of the orbitofrontal cortex. Application of the sensory regressor revealed clusters of 
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activation, mainly in the middle frontal gyrus, the superior frontal gyrus, the precentral 

gyrus, and the right orbitofrontal cortex. 
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Introduction 

 

After a long and exhausting trip, you are finally about to eat a favorite meal that 

you have been dreaming of, and the smell of that tasty dish makes your mouth water. You 

are enjoying every single bite, which is even better than expected, to a point where you 

can’t control yourself. It is just so good … But by continuing eating beyond the moment 

you feel completely full, you will reach a state where even the smell of that delicious 

food will have become aversive. You have probably experienced this sensation at some 

point in your lifetime. This type of phenomenon was observed and explained first by 

Cabanac (1971) who called it alliesthesia. For Cabanac, alliesthesia refers essentially to 

the relation between the pleasure or the unpleasantness felt and the ‘milieu interne’ of an 

organism. In the previous example, the state of satiety changed the hedonic value of your 

favorite meal. In that sense, the phenomenon of alliesthesia has a strong motivational 

impact. For Cabanac, organisms are primarily driven by the search of pleasure and the 

avoidance of potential suffering. Three main types of primary reinforcers can procure 

pleasure according to Cabanac: chemical (odor, taste), mechanical (sex), and thermal 

(related to body core temperature). The latter is of particular interest. Within the context 

of thermal deviation (hypothermia or hyperthermia), pleasure would result from thermal 

stimulation that promotes a return to normothermia and thus fosters survival of the 

organism. Unpleasantness, on the other hand, would be caused by thermal stimulation 

that exacerbates thermal deviation. Interestingly, in both cases, the temperature of 

identical thermal stimulation (hot or cold) would be perceived similarly, but opposite 

hedonic values would be assigned. For instance, people soaking in hot tubs after freezing 
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in a cold winter day or after wilting on a hot summer day could have very different 

experiences. 

The phenomenon of alliesthesia is a promising framework for distinguishing brain 

correlates of hedonic value from those of sensation. A few experiments in neuroimaging 

have been done specifically with non-noxious thermal stimulation, but none of the 

published work has yet fully exploited the potential of alliesthesia. We will review the 

previous studies by highlighting the main methodological differences and results.  

In a functional magnetic resonance imaging (fMRI) experiment conducted by 

Rolls, Grabenhorst, & Parris (2008), thermal stimulation was applied on the dorsum and 

palm of the left hand of 12 participants with a thermode and a thermal resistor. A series 

of four different stimulations were delivered in a random permuted order: a warm 

pleasant stimulus, a cold unpleasant stimulus, and two distinct combinations of warm and 

cold stimuli with different degrees of pleasantness. Rolls, Grabenhorst, and Parris derived 

distinctive brain activations from correlations between the ratings of the participants (on 

pleasantness, unpleasantness, and stimulus-intensity scales) with the blood-oxygen-level-

dependent (BOLD) signal. Activations in the mid-orbitofrontal cortex, the pregenual 

cingulate cortex, and the ventral striatum were associated with the positive hedonic state; 

activations in the lateral parts of the orbitofrontal cortex were related to the negative 

hedonic value. The intensity of the stimulation was correlated with the BOLD signal in 

the somatosensory cortex and the ventral posterior insula. 

Using a different neuroimaging technique, Positron Emission Tomography (PET), 

Farrell et al. (2011) also investigated this specific question. Unlike the Rolls, 
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Grabenhorst, and Parris experiment, they stimulated the whole body with a water-

perfused suit. Oral and skin temperatures were recorded. Notably, Farrell et al. relied on 

the latter to define a stable state (fixed at 34 degrees Celsius) for the establishment of five 

successive trials: ‘neutral’, cool, ‘neutral’, warm, and cool. These three different types of 

trials, resulting from the water temperature (set either at 4, 34, or 50 degrees Celsius) 

circulating through the suit, were administered to 12 participants lying in a scanner. Both 

the cool and the warm trials lasted for a period of 10 to 20 minutes, when the temperature 

of the skin had reached a stable state. During the experiment, the participants rated the 

intensity and pleasantness of the stimulation. We should specify that none of the scans 

were performed during the pleasant transitions. To determine the brain regions associated 

specifically with the hedonic valuation, Farrell et al. contrasted the latter with the 

correlates of the oral and the skin temperatures. They observed activation in the posterior 

part of the mid-cingulate cortex, which differed from the activation found by Rolls, 

Grabenhorst, and Parris in the lateral parts of the orbitofrontal cortex.  

In a recent study, Dunn et al. (2010) performed a fMRI experiment that 

incorporates a significant modification : with a water-perfused suit, they induced a mild-

state of hyperthermia and hypothermia before stimulating participants with a series of 

eight consecutive hot and cold water trials (135 sec per trial). Dunn et al. performed two 

scans per participant, one for each thermal state, using a similar experimental design to 

that of this current study (presented in the methods section). The order of the trials 

differed between each scan so that the initial trial of each series was designed to lead to 

an unpleasant feeling (hot – hyperthermia; cold – hypothermia). With this procedure, they 

mapped brain correlates of hedonic valuation. During the experiment, 16 participants 
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rated their hedonic and sensory perceptions. Based on the sensation perceived and the 

thermal state, a regressor (‘homeostatic’) was built to predict which thermal stimulation 

would be evaluated as pleasant or unpleasant (i.e., in hyperthermia, a hot thermal 

stimulation should be perceived as hot and unpleasant). An analysis of the brain 

activations common to the two thermal conditions showed similar results for both the 

hedonic and homeostatic regressors: activations in the ventromedial prefrontal cortex, the 

bilateral orbitofrontal cortices, the bilateral temporal poles, the bilateral superior and 

inferior temporal gyri, and the subgenual cingulate gyri. Further analysis revealed a 

distinct brain area that was particular to the hedonic regressor: the right medial orbital 

sulcus (located in the orbitofrontal cortex).  

These results, at least the ones of Rolls, Grabenhorst, and Parris and Dunn et al., 

provide evidence for the primordial role played by the orbitofrontal cortex in hedonic 

valuation as established widely in the field of neuroscience (Kringelbach & Rolls, 2004; 

Kringelbach, 2005; O’Doherty, 2007; Murray, O’Doherty & Schoenebaum, 2007; 

Grabenhorst & Rolls, 2009; Grabenhorst & Rolls, 2011). Anatomically, this cortical area 

receives signals from the different sensory modalities, including the somatosensory 

cortex, and is reciprocally connected to several brain structures related to emotion and 

reward such as the amygdala, hippocampus, hypothalamus, striatum, and cingulate cortex 

(Kringelbach, 2005). 

In the current fMRI experiment, we essentially set out to replicate the main results 

obtained by Dunn et al. Our experimental design differs only by the addition of a new 

condition in the sequence of trials: the ‘neutral’ trial in which no water flows. This new 

condition makes the predetermined sequence of trials less predictable for the participants 
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and thus, attenuates the probable effects related to the anticipation and learning processes. 

Also, the inclusion of neutral trials makes it possible, in principle, to distinguish between 

single- and dual-ended encoding of hedonic responses. 
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Methods 

 

Participants 

Twenty healthy young adults, aged between 19 and 33 years, have participated in 

this study (9 women and 11 men). The participants were mainly Concordia University 

students recruited on campus. Fourteen of them were from different sports teams. Two 

participants, who were not from Concordia University, were recruited after hearing about 

the experiment.  

The data for three of these participants cannot be used in the current study. One 

participant (a male) withdrew from the experiment due to claustrophobia. Data from two 

other participants (one female and one male) were not usable. Technical difficulties 

occurred during the scanning process in the case of the female participant, and the 

hyperthermia condition of the male participant was not analyzed because he fell asleep in 

the scanner.  

Screening procedures 

All the participants underwent psychological and physical evaluations after 

having read and signed a consent form approved by the Montreal Neurological Institute 

and Hospital Research Ethics Board as well as the Concordia University Human 

Research Ethics Committee. The psychological screening consisted of a Structured 

Clinical Interview based on the DSM-IV-TR (American Psychiatric Association, 2000) 

and a questionnaire assessing depression (Beck Depression Inventory, Beck et al., 1961). 

The participants also filled out a magnetic resonance imaging screening form during that 

meeting. We were particularly vigilant regarding addictions (alcohol and drug of abuse), 
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current mood disorders or histories of mental illness and head injuries. Responsible, 

persevering, active young adults were the kind of participants we sought. Once selected, 

all the participants underwent a cardiac stress test overseen by the cardiologist, Dr. 

Marcel Fournier, at the Queen Elizabeth Health Complex in Montreal. This measure was 

taken to detect cardiac abnormalities that are risk factors for the performance of aerobic 

exercise.               

Experimental sequence 

Data from each participant was acquired over the course of day, and included two 

thermal-induction periods, one to produce hyperthermia and one to produce hypothermia, 

each followed by a scanning session. The day began at 7:30 AM at the McConnell Brain 

Imaging Centre of the Montreal Neurological Institute (MNI) with a screening procedure 

consisting of a drug of abuse test (a QuickTox® dip card) and a pregnancy test for the 

females. Each participant also completed a questionnaire assessing affective mood state 

fluctuation (Profile of Mood States standard, McNair et al., 1992), a magnetic resonance 

imaging screening form, and a consent form. At 8:00 AM, after the participant donned 

the tube suit, we did a preliminary scan (about 10 seconds in duration) that had three 

purposes: to facilitate the acclimatization of the participant to the scanner environment, to 

test the head-stabilization procedure and to check our equipment. At that time, we also 

carefully explained the task to the participants. Next, a fiber-optic temperature probe was 

taped to the skin of the participant, between the second and third ribs, and preparations 

for the initial deviation of core temperature ensued.  

The thermal-induction procedures were aimed at producing a one-degree Celsius 

deviation from the measured baseline at the start of the first thermal-induction period. 
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This baseline and the consequent deviation were measured with both an oral and a 

tympanic thermometer.  

Hyperthermia was induced by the performance of aerobic exercise (pedalling a 

stationary bicycle) while wearing insulating clothing as hot water flowed through the tube 

suit. Throughout the deviation of core temperature, the participants held a modified 

snorkel mouthpiece in their mouths. This helped stabilize oral temperature while 

providing an access port for the oral thermometer.  

By around 10:30 AM, the participant was generally ready to proceed with the first 

scan.  As they experienced a series of predetermined thermal stimuli through their tube 

suits, the participants had to rate, continuously, their sensations and hedonic-state 

evaluations on two distinct scales presented in alternate order. Once the data was 

acquired, we started the second thermal induction. Hypothermia was induced by exposure 

to a cool environment while cold water flowed through the tube suit. When necessary, ice 

packs were placed in the axillae to speed the development of hypothermia. In the scanner, 

the participants again rated their thermal sensations and hedonic state. We finalized the 

data acquisition by 1:30 PM. After a snack and shower, the participants again completed 

the Profile of Mood States questionnaire and were debriefed. To ensure the safety of the 

participant, a registered nurse (Louise Ullyatt) was present and an anesthesiologist (Dr. 

Gilles Plourde) was on call throughout the thermal-induction and scanning periods.      

Thermal control 

The participant wore a water-perfused suit (Med-Eng Systems COOLTUBE Suit) 

consisting of a long-sleeved shirt and trousers (Figure 1). About 200-275 feet of 0.097’’  
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Figure 1. Tube suit in detail.  

 

ID Tygon tubing were sewn into the fabric in a serpentine pattern, thus allowing us to  

cool or heat the participant. Modified Gaymar MediTherm II hypo/hyperthermia units 

served as the sources of hot and cold water; two backup units were kept on hand and at  

the target temperatures. For both the thermal inductions and the scanning sessions, the set 

points for the cold and hot water were at 10 and 52 degrees Celsius, respectively. Due to  

their ferromagnetic components, the MediTherm II units had to be placed outside the 

Faraday shield in the machine room adjacent to the scanner enclosure. A pair of booster 

pumps, also housed in the machine room, provided the pressure/flow characteristics 

required to produce adequate flow in the suit-perfusion circuit. Insulated dual-channel 

hoses, 25 feet in length, were passed through the Faraday shield so as to link the outputs 

of the booster pumps to a specially designed MRI-compatible valve, which was 

positioned next to the scanner during the experiment. The proximity of the valve to the 

participant minimized the delays entailed in changing the suit temperature. To complete 

the circuit represented in Figure 2, an additional 10-foot, dual-channel hose, connected  
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Figure 2. Thermal control schematic. 

  

the valve to the tube suit worn by the participant. 

Three different flow conditions were in force during the scanning session, each 

determined by appropriate positioning of the valve handle. During the ‘cold’ condition, 

water from the cold source flowed through the suit, during the ‘hot’ condition, water from 

the hot source flowed through the suit, and during the ‘neutral’ condition, no water 

flowed through the suit. Throughout the scanning session, a team member operated the 

valve according to a predetermined sequence presented on a digital display. 

Temperature monitoring                  

During the induction of both the hyperthermic and hypothermic states, we 

measured the core temperature of the participants every three minutes with an oral 

thermometer (Welch Allyn SureTemp Plus 690, Skaneateles Falls, NY) and a tympanic 

thermometer (Braun ThermoScan Pro 4000, Skaneateles Falls, NY). Once the target 



 

11 
 

temperature had been achieved and the participant had been transferred to the anteroom 

of the scanner, the mouthpiece was exchanged for one that included a port for a 

temperature-sensitive fiber-optic probe. This sensor, the skin sensor, and sensors 

positioned to monitor the temperature of the water entering and exiting the suit were 

connected, via fiber-optic patch cords that passed through the Faraday shield, to a 

biomedical fluoroptic thermometry system (model 3100, Luxtron, Santa Clara, CA), thus 

allowing us to obtain temperature readings while the subject was in or near the scanner.   

Thermal inductions 

Hyperthermia was induced by performance of mild aerobic exercise while hot 

water flowed through the suit. To facilitate the induction of hyperthermia, each 

participant wore fleece garments (top and bottom), a waterproof Tyvek jumpsuit (which 

served as an evaporation barrier), a fleece neck tube, a pair of insulated gloves, and a 

tuque over the tube suit (Figure 3). Once hot-water flow was established (the water 

reaching the suit was about 48 degrees Celsius), the participant started to pedal a 

stationary bicycle at a speed of ~15 km/h with a limited load. The induction was 

generally achieved after 45-60 minutes.  

Prior to induction of hypothermia, the insulating clothing was removed. Cold 

water was then pumped through the suit while the participants slowly pedalled the 

stationary bicycle, which was located in a cool environment (the machine room). The 

purpose of the slow pedalling was to facilitate exchange of cooled blood from the 

periphery with the body core due to the rhythmic contraction and relaxation of major 

muscle groups. Roughly 45-60 minutes were required to reach the target core 

temperature.  



 

12 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Participant during the hyperthermia induction. 

 

Experimental design 

A similar experimental design was used for the scanning sessions conducted 

during hyperthermia and hypothermia (Figure 4). The block design consists of a series of 

12 trials (including two dummy trials, one at the beginning and the other at the end). The 

trial sequences for the hyperthermic and hypothermic conditions were inverted in terms 

of the temperature of the water flowing through the suit but were intended to be 

congruent hedonically. For example, hot water flowed through the suit in the 

hyperthermia condition and cold water during the hypothermia condition. Cabanac’s 

alliesthesia theory predicts that both of these flow conditions would be experienced as 

unpleasant. The entire sequence of intended hedonic states is as follows: bad (dummy), 

bad, good, bad, neutral, good, neutral, bad, good, bad, neutral, neutral (dummy). The 

duration of each hot- and cold-water trial (except for the dummy trials) was 126 sec (or  
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Figure 4. Experimental design schematic. 
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56 repetition times (TRs), which represents the time to acquire a complete set of ‘slices’ 

spanning the targeted brain volume (2.25 sec)); whereas the duration of each neutral trial 

was 180 sec (or 80 TRs). The reason for longer neutral trials was to allow the body to 

bring the temperature of the still water in the tubing closer to skin temperature, thus 

producing an ‘indifferent’ hedonic state (neither pleasant nor unpleasant).  

Throughout the trial sequence, the participants rated their hedonic state and 

thermal sensation. Alternating Likert scales were projected for nine seconds on a screen 

visible via a mirror on the headcoil. One scale depicted a hedonic continuum ranging 

from unpleasant (-5) to pleasant (+5), whereas the other depicted thermal sensations 

ranging from cold (0) to hot (10). 

Regressors  

From the hedonic and sensory ratings, we derived three distinct regressor sets: 

hedonic, sensory, and homeostatic. As their names imply, the purpose of the hedonic and 

sensory regressors is to identify brain regions in which the BOLD signal is correlated 

with the ratings. The purpose of the homeostatic regressors is to identify brain regions in 

which the BOLD signal is correlated with the potential of the thermal stimulation to re-

establish normothermia (i.e., to move core temperature back towards its set point). The 

homeostatic regressor was thus derived from the sensory ratings. For example, a rating of 

‘hot’ on the sensory scale during hyperthermia is assigned a negative homeostatic value 

because the water flow that generates this sensation will accentuate the deviation of core 

temperature from its set point. Similarly, a rating of ‘cold’ on the sensory scale during 

hyperthermia is assigned a positive value because the water flow that generates this 

sensation will reduce the deviation from set point. Thus, the homeostatic regressor 
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consists of the inverse of the sensory ratings obtained during hyperthermia and the non-

inverted sensory ratings obtained during hypothermia. Perfusion of the suit with hot 

water, which generates positive ratings on the sensory scale, accentuates the deviation of 

core temperature during hyperthermia but reduces it during hypothermia.  

The button box used to register the ratings was sampled at a rate of 1 Hz. By 

means of interpolation, the resulting vector was downsampled to the frame rate of the 

scan acquisition (i.e., to generate one rating for each TR). The final rating in each 9-

second rating epoch was used to construct the regressors (Figure 5). The rationale for this 

practice is that the adjustment in the ratings occurred almost exclusively during the early 

portion of the 9-second epoch, and the ratings were generally stable for the remainder. 

Finally, each of the three regressors was normalized so as to vary between 0 and 1. 

 

Figure 5. Section of the hedonic ratings obtained from one participant and 

interpolation to build the regressor. 



 

16 
 

Scanning 

The brain images were acquired using a 3-Tesla Siemens Magnetom Trio scanner 

with a 32-channel head coil. A series of scans was performed for each thermal condition 

in this order: AA Scout, localizer-TruFisp, functional scan, GRE field-mapping scan, and 

high resolution structural scan. The AA Scout, as described by the Center for Brain 

Science of Harvard University, ‘takes two low-resolution whole-head scans, and 

compares the result to a brain atlas on the scanner. This is used to position all future scans 

in the session, and ensure reproducible positioning if the subject is scanned multiple 

times.’ TruFisp registers imaging sequences to anatomical landmarks. For the functional 

scan, gradient echo EPI sequences generated the T2* weighted images with blood 

oxygenation level-dependent (BOLD) contrast. We used the following acquisition 

parameters: Field of view = 256 mm, TE = 30 msec, TR = 2.25 sec, Flip angle = 90˚, 

voxel size = 4x4x4 mm. A total of 664 volumes (36 slices per volume) for each condition 

were acquired using an interleaved acquisition order at an angle of 30˚ from the anterior 

commissure-posterior commissure line to reduce the susceptibility effects due to the 

proximity of the sinuses to the orbitofrontal cortex (Deichmann et al., 2003). The GRE 

field-mapping scan also helps correct for susceptibility effects. The spatial distortions 

(functional signals from places close to the sinuses that are artifactually displaced) can be 

corrected given a map of the B0 field distortion that is derived from the GRE field-

mapping scan. Finally, the structural scans were 3D T1-weighted images with a voxel 

size of 1 mm³.   
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Data analysis: Preprocessing and registration 

The analyses were performed with FSL library tools (FMRIB, Oxford, UK) 

executed under the control of a MATLAB (Mathworks, Natick, MA) script written by Dr. 

Kent Conover. Preprocessing began with motion correction, B0 field distortion 

correction, temporal filtering and spatial smoothing. The Motion Correction FMRIB’s 

Linear Image Registration Tool (MCFLIRT) realigns the acquired volumes to the middle 

volume (Jenkinson et al., 2002) using 6 degrees of freedom (3 rotations and 3 

translations). The correction of the field distortion was done using the field maps 

provided by the Siemens mapping protocol. A high-pass temporal filter was used to 

eliminate a range of frequencies lower than the ones of interest, determined by the 

repetition frequency of the experimental task (2.5x10
-3

 Hz). A spatial Gaussian filter 

kernel of 5 mm full width half-maximum was also applied.  

We used the Multivariate Exploratory Linear Optimised Decomposition into 

Independent Components (MELODIC) tool (Beckmann & Smith, 2004) to reduce 

systematic noise by revealing characteristic artifacts in data sets. By inspecting the spatial 

map and the corresponding time course of each component signal, this tool made it 

possible to identify and remove noise associated with head motion and slice drop-out. For 

this study, two independent raters reviewed the components for the appearance of these 

two specific artifacts. Components that were classed as noise by both raters were 

removed from the data. We finalized the preprocessing of the functional images by 

removing the first 16 volumes from each of the two data sets. This procedure was 

necessary considering the BOLD signal at time t reflects brain events as long as 18 sec (8 

TRs) in the past due to the duration of the hemodynamic response. To make possible the 
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inclusion of response lags in the analysis, we started acquiring data 36 sec (16 TRs; 2.25 

sec per TR) prior to the start of the first trial.  

The anatomical images were first registered to a standard space (MNI 152 non-

linear 1mm) using the FMRIB's Linear Image Registration Tool (FLIRT) and 12 spatial 

degrees of freedom (3 rotations, 3 translations, 3 scalings, and 3 skews), after separating 

each brain from the head using the Brain Extraction Tool (BET V2, Jenkinson, Pechaud 

& Smith, 2005). The preprocessed functional images were then registered, with the same 

tool, to their respective registered anatomical images. In those two cases, the spatial 

transformation was based on 12 degrees of freedom (3 rotations, 3 translations, 3 

scalings, and 3 skews). The validity of the transformations was confirmed by comparing 

the warped anatomical images to the non-linear MNI 152 atlas. 

Afterwards, we calculated the deformation fields (or warps) of the registered 

anatomical images based on the MNI 152 non-linear 1mm atlas, with the FMRIB's Non-

linear Image Registration Tool (FNIRT) and applied the deformation fields to the 

corresponding functional images. 

Data analysis: Model testing  

The statistical analyses were based on the general linear model. At the subject 

level, the FMRI Expert Analysis Tool (FEAT) performs time series analysis using the 

FMRIB’s Improved Linear Model (FILM). This tool allows correction for temporal 

autocorrelation for each single voxel of the preprocessed functional images. This 

correction is relevant only if the autocorrelation is estimated accurately, which 

necessitates spatial smoothing of the initial estimations (Smith et al., 2004). Removing 

the autocorrelation provides the best linear unbiased estimates of the three regressor sets 
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(Smith et al., 2004). 

We also defined seven confounding variables for the analysis at the subject level: 

six motion parameters (3 rotations and 3 translations) and the volume mean time course. 

The latter, which is the series comprised of the mean BOLD signal arising from the brain 

in each functional volume, attempts to account for systematic noise sources (e.g., scanner 

drift) that contribute to the BOLD signal. Before proceeding to the regressions of the 

observed signals per se (two regressions per participant, one for each thermal state), we 

convolved the three regressor sets with a canonical gamma function to model 

hemodynamic responses. After estimating the regressors, we obtained six statistical maps 

(three regressors X two thermal conditions) for each participant, which correspond to the 

significant activations associated with each regressor set. 

Using those statistical maps, we performed six distinct group analyses, one for 

each regressor and thermal state, with the FMRIB’s Local Analysis of Mixed Effects 

(FLAME) tool (Beckmann, Jenkinson & Smith, 2003; Woolrich et al., 2004). Based on a 

Bayesian approach, this tool generates t-statistics describing activity in each voxel. 

FLAME generates an estimation of the unknown variances (and thus of the covariances) 

with the maximum a posteriori method. To obtain a more accurate estimation of the brain 

activity (reflected by the estimated parameters at the group level), each voxel near the 

significance threshold was then re-analyzed with the Markov chain Monte Carlo method. 

All the resulting t-statistics were then converted into z-scores afterwards. The FLAME 

tool also permits the detection and the de-weighting of outliers to improve the 

estimations.    
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Conjunction analyses       

Identification of regions with common brain activity for both thermal states was 

performed via spatial conjunction analysis using MATLAB for each of the three 

regressors at the group level. We first looked at all the voxels in the statistical map of 

each thermal state, for the same regressor, which showed significant activity. We then 

retained only the voxels, located at the same spatial position, presenting statistically 

significant activity in both thermal states. The three conjunction maps obtained were 

overlaid on the non-linear MNI 152 template for anatomical localization. 
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Results 

 

Behavioural results 

We first evaluated the ratings of the participants, on both the hedonic and the 

perceived sensory scales for each of the two thermal conditions. The ratings were plotted 

against the series of thermal stimulations. Figures 6 and 7 show the results from two 

participants. The three different traces (blue, red, and grey) respectively reflect the ratings 

(hedonic or sensory), the temperature of the water reaching the suit, and the trial 

sequence. Recall that according to the theory of alliesthesia, the flow of hot water should 

be perceived as unpleasant when hyperthermic and pleasant when hypothermic; the flow 

of cold water should be perceived as pleasant when hyperthermic and unpleasant when 

hypothermic. These predictions are borne out fairly well by the results shown in Figure 6 

(with the exception of the final ‘hot’ trial) and less well by the results from the 

hypothermia condition in Figure 7. The sensory ratings conform fairly closely to the 

temperature of the water entering the suit.  

To achieve a better understanding of the ratings, we also conducted a principal 

component analysis (PCA). This mathematical technique was applied to assess the 

concordance of the ratings across subjects. The first principal component identifies the 

amount of rating variance that is common to all subjects, and the greater this amount is as 

a proportion of total variance, the more the subject ratings are intercorrelated. 

Concordance of individual ratings to the first principal component is indicated by a 

loading factor. Ratings that load positively on the first component are positively 

correlated with it, while those with negative loadings are negatively correlated.  
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      Hedonic ratings – Hyperthermia                    Sensory ratings – Hyperthermia 

  

      Hedonic ratings – Hypothermia                               Sensory ratings – Hypothermia 

 

Figure 6. Plots of the ratings, for each thermal condition, against the series of 

thermal stimulations – case of participant (he111014) who rated in accordance to 

the alliesthesia predictions.  
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     Hedonic ratings – Hyperthermia                               Sensory ratings – Hyperthermia 

  

     Hedonic ratings – Hypothermia                                Sensory ratings – Hypothermia 

  

Figure 7. Plots of the ratings, for each thermal condition, against the series of 

thermal stimulations – case of participant (he120413) who rated to a lower degree of 

accordance to the alliesthesia predictions.    
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Ratings with small load factors are independent of the first component.  

For each of the three regressor types (the homeostatic regressor differed from the 

sensory regressor only by the inversion of the sensory ratings for the hyperthermia 

condition), we first plotted the first principal component of each participant’s normalized 

ratings against the scanning time expressed in TRs (Figure 8). The blue and red traces 

respectively represent the principal component and the predicted hedonic state. We can 

distinguish the different transitions reflecting our experimental design for each regressor 

type. We noticed the progressive return toward ‘neutrality’ in each of the three neutral 

trials. Interestingly, for the two neutral trials following a bad trial, the first principal 

component revealed that the ratings were slightly below the ‘neutrality’ level, whereas 

opposing results were observed in the neutral trial following the good trial.  

We also generated heat maps reflecting the actual ratings of all the participants in 

both thermal conditions, as well as individual loadings for the first principal components 

(Figures 9, 10, and 11). In the heat maps, the ratings are expressed by the designated 

colour (blue through white through red) to represent the degree of pleasantness (bad-

neutral-good) or the sensation perceived (cold-neutral-hot) during the trial sequence. The 

individual loadings, once multiplied by the first principal component, allowed us to 

recover the participants’ ratings. The blue bars indicate the value of the loading for each 

participant. As becomes apparent when considering the heat maps and the individual 

loadings, a certain level of inconsistency is apparent only for the hedonic regressor in the 

hyperthermia condition. Four of the seventeen participants didn’t rate as expected 

(Hyper_he110718; Hyper_he110822; Hyper_he120203; and Hyper_he120413). 
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First principal component for the hedonic regressors    

 

First principal component for the homeostatic regressors 

 

First principal component for the sensory regressors 

 

 

Figure 8. Plots, for each regressor type, of the first principal component of each 

participant’s normalized ratings against the scanning time expressed in TRs.  
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Figure 9. Heat map and individual loadings for the first principal component – 

hedonic regressor. 
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Figure 10. Heat map and individual loadings for the first principal component – 

homeostatic regressor. 
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Figure 11. Heat map and individual loadings for the first principal component – 

sensory regressor. 
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fMRI results 

Conjoint analysis 

To identify both positive and negative BOLD signal correlates in the brain, in both 

thermal states for each of the three regressors, we conducted a conjoined analysis of the 

six corresponding statistical group maps. These specific regions are represented by the 

green clusters in the following figures. For the hedonic regressor, we presented in Figure 

12 the conjoint positive correlation between the hyperthermia (in red) and the 

hypothermia (in blue) conditions. We observed two principal clusters, both in the more 

lateral parts of the orbitofrontal cortex (Peaks: x, y, z, Z-value = 23, 18, -25, 4.64; cluster 

size = 3123 mm³ and x, y, z, Z-value = -25, 43, -19, 4.43; cluster size = 1338 mm³). More 

precisely, following the cytoarchitectonic map of the orbitofrontal cortex established by 

Kringelbach (2005), the overlapping regions in the right hemisphere corresponded to 

parts of 11l, 11m, 131, and 13m. As for the left hemisphere, the positive correlation 

observed corresponded to parts of the regions 11l, 13l, and 47/12m (Figure 13). Smaller 

clusters were also observed, notably in the left frontal pole (Peak: x, y, z, Z-value = -43, 

49, 22, 2.97; cluster size = 1121 mm³) and in the subcallosal cortex (Peak: x, y, z, Z-value 

= -9, 19, -10, 3.37; cluster size = 452 mm³), in keeping with the Harvard-Oxford Cortical 

Structural Atlas provided by FSL. We also compared our results for the hedonic regressor 

with the conjoint regions obtained in Dunn et al.’s study (presented in pink in Figure 14). 

On Kringelbach’s map, we identified three clear regions in the orbitofrontal cortex in the 

right hemisphere: 11l, 11m, and 13m. In the left hemisphere, the three regions observed 

are limited to the border of the two clusters: parts of 11l, 13l, and 13m. Dunn et al.’s 

clusters are more medial than those in the current experiment. 
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Figure 12. Conjoint analysis – positive BOLD signal correlates for the hedonic 

regressor. In blue: Hypothermia; in red: Hyperthermia; in green: Conjoint regions. 

  

 

 

 

 

 

 

 

Figure 13. Localization of the orbitofrontal cortex hedonic correlations with the 

cytoarchitectonic map established by Kringelbach (2005).   
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Figure 14. Conjoint analysis – comparison with Dunn et al.’s results for the hedonic 

regressor. In green: Conjoint regions; In pink: Conjoint regions in Dunn et al.’s 

study. 
  

The negative correlates of the hedonic regressor reveal different conjoint regions. 

Among these conjoint regions, we found the precentral gyrus (Peak: x, y, z, Z-value =      

-19, 25, 67, 5.06; cluster size = 91 047 mm³) and the cingulate gyrus (Peak: x, y, z, Z-

value = 23, -47, 11, 3.54; cluster size = 715 mm³) at the cortical level, and the right 

hippocampus (Peak: x, y, z, Z-value = 25, -22, -9, 2.90; cluster size = 60 mm³) at the 

subcortical level (Figure 15). 

In the case of the positive correlates of the homeostatic regressor, Figure 16 shows 

two main common clusters in the orbitofrontal cortex that overlap in the hyperthermia 

and the hypothermia conditions (Peaks: x, y, z, Z-value = 17, 45, -18, 4.49; cluster size = 

3670 mm³ and x, y, z, Z-value = -26, 39, -18, 4.59; cluster size = 2789 mm³). We found a 

region corresponding to parts of 11l, 11m, 13l, and 13m in the right hemisphere. In the 

left hemisphere, the conjoint cluster overlapped parts of 11l, 13l, 13m, and 47/12m 

(Figure 17). We also see conjoint clusters in the left temporal pole (Peak: x, y, z, Z-value  

R L 
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Figure 15. Conjoint analysis – negative BOLD signal correlates for the hedonic 

regressor (precentral gyrus). In blue: Hypothermia; in red: Hyperthermia; in green: 

Conjoint regions.  
 

 

 

 

Figure 16. Conjoint analysis – positive BOLD signal correlates for the homeostatic 

regressor. In blue: Hypothermia; in red: Hyperthermia; in green: Conjoint regions. 
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Figure 17. Localization of the orbitofrontal cortex homeostatic correlations with the 

cytoarchitectonic map established by Kringelbach (2005).    
 

 

= -34, 4, -35, 4.92; cluster size = 2839 mm³) and in the frontal medial cortex (Peak: x, y, 

z, Z-value = -2, 47, -22, 4.55; cluster size = 1243 mm³). Figure 18 shows overlap between 

the present results and those obtained by Dunn et al. in parts of 11l, 11m, 13l, and 13m of 

the right orbitofrontal cortex. In the left hemisphere, the common region in the 

orbitofrontal cortex covered parts of 11l, 13l, 13m, and 47/12m.  

Figure 19 shows the negative correlates for the homeostatic regressor which are 

found between the two thermal conditions. At the cortical level, the postcentral gyrus 

(Peak: x, y, z, Z-value = 2, -37, 65, 4.61; cluster size = 3785 mm³), the precentral gyrus 

(Peak: x, y, z, Z-value = 9, -21, 53, 3.26; cluster size = 1406 mm³), and the  

Z = -18 
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Figure 18. Conjoint analysis – comparison with Dunn et al.’s results for the 

homeostatic regressor. In green: Conjoint regions; in pink: Conjoint regions in 

Dunn et al.’s study. 

 
 

 

 

Figure 19. Conjoint analysis – negative BOLD signal correlates for the homeostatic 

regressor (postcentral gyrus). In blue: Hypothermia; in red: Hyperthermia; in 

green: Conjoint regions. 
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juxtapositional lobule cortex (Peak: x, y, z, Z-value = -10, -4, 52, 3.84; cluster size = 

1380 mm³) appear deactivated while at the subcortical level, the left and right thalamus 

(Peaks: x, y, z, Z-value = -22, -32, 7, 3.84; cluster size = 178; x, y, z, Z-value = 16, -35, 

6, 2.71; cluster size = 50 mm³), and the right caudate (Peak: x, y, z, Z-value = 16, 6, 20, 

3.48; cluster size = 99 mm³), appear deactivated.  

The common regions between the two thermal conditions for the sensory 

regressor, in the case of the positive correlates, were more circumscribed. Clusters were 

found in the middle frontal gyrus (Peak: x, y, z, Z-value = -35, 2, 43, 4.09; cluster size = 

1718 mm³), the superior frontal gyrus (Peak: x, y, z, Z-value = -18, 11, 50, 3.06; cluster 

size = 284 mm³), the precentral gyrus (Peak: x, y, z, Z-value = 35, 4, 30, 3.85; cluster size 

= 282 mm³), and the orbitofrontal cortex (Peak: x, y, z, Z-value = 32, 26, -9, 2.77; cluster 

size = 254 mm³) (Figure 20). The latter cluster (located in the right hemisphere at the 

border of 13l and 47/12m) was the only one that overlaps the clusters reported by Dunn et 

al.’s results (Figure 21). In the analysis of the negative correlates between the 

hyperthermia and hypothermia conditions, we found a single conjoint region: the right 

amygdala (Peak: x, y, z, Z-value = 10, -3, -17, 3.29; cluster size = 177 mm³) (Figure 22). 
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Figure 20. Conjoint analysis – positive BOLD signal correlates for the sensory 

regressor (lateral occipital cortex). In blue: Hypothermia; in red: Hyperthermia; in 

green: Conjoint regions. 

  

 

 

 

Figure 21. Conjoint analysis – comparison with Dunn et al.’s results for the sensory 

regressor (orbitofrontal cortex). In green: Conjoint regions; in pink: Conjoint 

regions in Dunn et al.’s study. 
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Figure 22. Conjoint analysis – negative BOLD signal correlates for the sensory 

regressor (right amygdala). In green: Conjoint regions; in pink: Conjoint regions in 

Dunn et al.’s study. 
  

 

Finally, we performed a conjoint analysis to determine the regions in which 

common correlates of the hedonic and homeostatic regressors were seen both in this 

study and the one carried out by Dunn et al. Figure 23 shows overlapping regions in the 

lateral parts of the orbitofrontal cortex (in green, the conjoint cluster for the hedonic 

regressor; in yellow, the conjoint cluster for the homeostatic regressor; in blue, the 

conjoint cluster between these two regressors in Dunn et al.’s study). In the right 

hemisphere, the common region overlapped parts of 111, 11m, and 13m. The small 

common cluster in the left hemisphere is located at the borders of 11l, 13l, and 13m. 
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Figure 23. Comparison of the conjoint clusters for the hedonic and the homeostatic 

regressors between the current study and Dunn et al.’s study. In green and yellow 

are represented respectively the conjoint clusters of the hedonic and the homeostatic 

regressors for the current experiment. In blue are the conjoint clusters of Dunn et 

al.’s study for both the hedonic and the homeostatic regressors. 
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Discussion 

 

In this experiment, we studied the brain correlates of hedonic value and sensation 

using the alliesthesia phenomenon. The initial core-temperature deviations (mild 

hyperthermia and hypothermia) and thermal stimulation over the whole body surface 

provided a unique context for studying hedonic and sensation encoding. As in the Dunn 

et al.’s experiment, we were able to compare brain activation patterns for two distinct 

thermal conditions. These two conditions differed only by the sequence of the trials with 

the first trial leading to an unpleasant feeling (i.e., hot water for hyperthermia and cold 

water for hypothermia). From the ratings of the participants on their subjective hedonic 

feelings (pleasantness/ unpleasantness) and sensory perceptions, we built three different 

regressor sets: hedonic, homeostatic, and sensory. As a result, we were able to distinguish 

brain correlates of hedonic value from those of sensation. For the hedonic and 

homeostatic regressor sets, the main results we obtained were activations in the OFC as 

reported by Rolls, Grabenhorst, and Parris (2008), and Dunn et al. (Unpublished thesis) 

for non-noxious thermal stimulations.  

Interestingly, for both regressor sets we observed the same pattern of activation at 

the group level: a large activation covering the medial and lateral parts of the OFC for the 

hyperthermia condition, and circumscribed activations in the more lateral parts (of the 

medial and lateral areas of the OFC) for the hypothermia condition. Consequently, the 

conjoint activations are located more in the lateral parts of the OFC than in Dunn et al.’s 

results. Referring to the cytoarchitectonic map established by Kringelbach (2005), the 

common activations observed for each regressor sets cover parts of these areas: 11l, 11m, 
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13l, 13m, and 47/12m. 

It has been proposed that the OFC is organized in one principal network, the 

orbital and medial prefrontal cortex (OMPFC) network, constituted by two specific and 

distinct networks:  the orbital and the medial (Öngür and Price, 2000; Öngür, Ferry and 

Price, 2003; Kringelbach and Rolls, 2004; Kringelbach, 2005). The orbital network is 

composed mainly of the areas 11l, 13l, 13m, 47/12l, 47/12m, and 47/12s corresponding 

essentially to the activations observed in this study (Öngür, Ferry and Price, 2003). 

According to Kringelbach (2005), these areas would receive signals from sensory 

modalities, especially from the somatosensory cortex for the regions 13l and 47/12m 

which are both connected to the areas 11l and 13m (Figure 24). Öngür, Ferry and Price 

(2003) reported also that the orbital network could be involved with the appreciation and 

anticipation of rewards, which is consistent with our data. The medial network is 

principally constituted from the areas of the medial wall (10m, 10r, 10p, 24b, 25, and 

32pl); Öngür, Ferry and Price (2003) suggest it is involved in visceral activity, notably in 

relation to affective stimuli. No clear conjoint activations were observed, despite the 

thermoregulation process involved. The two networks could be connected, especially 

through the areas 11m, 14c, and 14r (Öngür, Ferry and Price, 2003).  

It has also been suggested that the hedonic encoding occurs in specific areas in the 

OFC, the medial part being associated notably to pleasantness (reward) and the lateral 

parts to unpleasantness (punishement) (Kringelbach and Rolls, 2004; Kringelbach, 2005; 

Murray, O’Doherty, and Schoenbaum, 2007; O’Doherty, 2007; Grabenhorst and Rolls, 

2011). This dissociation has been observed with different types of stimuli in 

neuroimaging studies investigating correlates of odour (Rolls, Kringelbach and de  
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Figure 24. Schematic of the connectivity in the orbitofrontal cortex as established by 

Kringelbach (2005). 

 

Araujo, 2003), money (O’Doherty et al., 2001), food (Small et al., 2003), facial 

expression (O’Doherty et al., 2003), and thermal stimuli (Rolls, Grabenhorst, and Parris, 

2008; Dunn et al., 2010). Another dissociation has been proposed along the anterior-

posterior axis in the OFC. It has been suggested that abstract or secondary reinforcers 

(i.e., money) are more likely to be processed in the anterior region of the OFC while 

primary reinforcers (i.e., erotic stimulation) would be processed in the posterior region 

(Sescousse, Redouté, and Dreher, 2010).  

 Our data corresponds to the medial (11 and 13), the lateral (47/12m), the anterior 

(11), and the posterior (13) areas of the OFC, partially reflecting the previous results. 

Thermal stimulations in this current experiment are clearly a primary reinforcer 

activating both the posterior and the anterior areas of the OFC. The specificity and/or the 

intensity of the stimulus could explain, in part, the disparity of the results. The stimuli of 
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seeing a picture of a sexy woman or winning a small amount of money as in the 

Sescousse, Redouté, and Dreher’s study may be considered less rewarding than a thermal 

stimulation promoting return to normothermia, for instance.  

To interpret the lateralization of the activations, we need to take into consideration 

that each regressor set was sensitive to the pleasant and unpleasant transitions (as 

measured by both ratings). In this sense, how could we explain the absence of a 

statistically significant activation in the more medial part of the orbitofrontal cortex for 

the hypothermia condition? Compared to Dunn et al.’s experiment that used a similar 

procedure, the current study differed mainly in the group of participants and the 

introduction of ‘neutral’ trials in the experimental design. The size and the composition 

of the samples may explain part of the variability of the results. The data of only 18 

participants were analyzed in the current study (17 for the hyperthermia condition) 

compared to 16 in Dunn et al.’s experiment. In both cases, the samples are relatively 

small. We also recruited mainly young and lean athletes in-to-excellent physical 

condition (for instance, some participants were running about 100 kilometers per week) 

whereas Dunn et al.’s focused on more average fitness participants. The low body fat of 

the participants in the present study may have affected their hedonic valuation for the 

hypothermia condition. Since they were prevented from making gross movements in the 

scanner (thus reducing their ability to defend their core body temperature), this thermal 

condition may have been more challenging. Some participants did actually report after 

the experiment that the warm water trials were not pleasant or long enough and thus, less 

rewarding. The addition of the ‘neutral’ trials in the experimental design reduced the 

number of pleasant and unpleasant trials. This decreased the statistical power of the 
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analysis as compared to Dunn et al.’s experiment. In addition, the addition of the neutral 

trials reduced the number of large hedonic transitions (i.e., unpleasant to pleasant), which 

likely lessened the salience and rewarding effect of the changes in thermal stimulation.  

Another element to take into consideration is the induction of hypothermia. For 

the majority of the participants, we relied exclusively on the tympanic thermometer to 

determine the ~one degree Celsius core body temperature deviation. Even with apparent 

shivering, the oral thermometer measurements indicated no significant deviation for 

nearly all the participants. It has been reviewed by Forbes et al. (2009) that the tympanic 

thermometer is the least reliable device for monitoring intraoperative temperatures of 

patients. Esophageal probes and oral thermometers are preferred. It has also been 

suggested by Rogers et al. (2007) that tympanic thermometers underestimate the core 

body temperature of swimmers in the state of hypothermia. Again, this study supports the 

reliability of oral thermometers. In our experiment, a participant near the state of 

normothermia would probably not appreciate both the cold and warm stimulations.  

 It is likely that the addition of the ‘neutral’ trials also reduced the contribution of 

anticipation. In Dunn et al.’s experiment, it is legitimate to think that the participants 

could eventually predict the trial sequence (unpleasant-pleasant) for the two thermal 

conditions. Moreover, in Dunn et al.’s experiment, since the structure for the 

hyperthermia and hypothermia conditions were analogous, the participants had 

presumably a better idea of what to expect in the second thermal condition. In the 

literature on anticipation in humans, it has been reported in some fMRI studies that the 

OFC was activated during the anticipation phase and during the receipt of the reward 

(O’Doherty et al., 2002; Kahnt et al., 2010). In addition, Nitschke et al. (2006) observed 
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activation in the OFC for aversive stimuli. Perhaps decreased anticipation explains, in 

part, the difference in the activation in the medial OFC noted in the two studies.  

As for the sensory regressor, the main activations observed in the current 

experiment were in the middle frontal gyrus, the superior frontal gyrus, the precentral 

gyrus, and the orbitofrontal cortex.  These results are interesting notably in regard to the 

study of Goldberg, Harel, & Malach (2006). In their fMRI experiment, brain correlates 

were compared as they occurred during a perceptual task and during self-reflective 

introspection. Goldberg, Harel, and Malach were also interested in distinguishing brain 

correlates of the self-related process involved in introspection from emotional processes. 

In a sense, their experiment has some resemblance to the current one. For the first part of 

the experiment, the participants were asked to categorize stimuli and to reflect on their 

emotional responses to the stimuli presented. Two sets of scans were performed for this 

block design experiment: one with visual stimuli (identifying animals among a series of 

pictures) and one with auditory stimuli (identifying the sound of trumpet among a series 

of sounds). For the introspection condition, the participants had to categorize their own 

reactions as high (positive or negative) or neutral. Among their results, the researchers 

observed brain activations in the prefrontal cortex (PFC) of the left hemisphere, in the 

superior frontal gyrus, in the middle frontal gyrus, and in the inferior frontal gyrus for the 

introspection condition. We noted similarities (the middle frontal gyrus and the superior 

frontal gyrus) with our sensory regressor results.   

The second part of the experiment had some similarities to the first part in terms 

of the design. The participants were asked again to categorize stimuli and to do self-

reflective introspection. In one of the three conditions, the ‘semantic judgment’, 
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participants had to categorize words (not emotionally charged) as either a noun or a verb. 

As for the two other conditions, the ‘self-judgment’ and the ‘emotional picture 

judgment’, participants had to respectively consider if they relied on the words presented 

(again, not emotionally charged) and if they judged positively or negatively the pictures 

shown. After their analyses, one of the main observations of Goldberg, Harel, and 

Malach was that the superior frontal gyrus seemed to be involved in the self-related 

process. In the context of our experiment, the water temperature perception in the state of 

hyperthermia/hypothermia could reflect the same self-reported process, explaining this 

activation.  

Proposed improvements 

This experiment could be improved in different ways. First, in spite of known 

thermal induction or technical difficulties, we included the data of four participants in the 

hyperthermia condition analysis. These four participants were the ones presenting 

inconsistent hedonic ratings to the alliesthesia predictions. For two participants 

(Hyper_he110822, and Hyper_he110718), we respectively lost the ~one degree Celsius 

core body temperature deviation prior to the scan, and we had to modify the induction 

procedure. In this specific case, the participant had to increase her effort intensity on the 

stationary bicycle significantly toward the end to reach the target deviation while 

respecting our time schedule. In contrast, the other participants had only to pedal slowly, 

and most of the heating occurred passively. The technical difficulties occurred in the 

scanning sessions of the participants Hyper_he12020, and Hyper_he120413. A problem 

with one of the hoses reduced the hot water flow, and a disconnected booster pump for 

the hot water altered the stimulations and thus, probably influenced the participants’ 



 

46 
 

ratings. By scanning new participants to replace this data in the analysis, we would 

enhance the reliability of the results for the hyperthermia condition. As for the 

hypothermia condition, we previously mentioned issues regarding the core body 

temperature measurements. A better comprehension of both the processes involved in the 

induction of the hypothermia state, and the optimal functioning of the oral and tympanic 

thermometers would be beneficial. Also, an extra 30 minutes for the induction period 

would probably be helpful considering the constrained time schedule.  

With the addition of the ‘neutral’ trials in the experimental design, we already 

highlighted the decrease of statistical power for the analysis as compared to Dunn et al. 

To overcome this concern, more participants should be tested. Moreover, there is a bias 

towards the ‘bad’ trials in the current design. The participants were exposed in total to 

four ‘bad’, three ‘neutral’, and three ‘good’ trials. Having an equivalent number of ‘good’ 

and ‘bad’ trials could be an adjustment to consider in a future experiment.                  

Future research 

With the current experiment in mind, it would be interesting to study further how 

the brain encodes hedonic responses. Is it through a single- or dual-ended coding? In 

other words, is it a unique system encoding for both pleasant and unpleasant stimulations, 

or is it the combination of two distinct and specific systems encoding pleasant and 

unpleasant stimulations? Well established in colour vision, the idea of opponent 

processes, related to dual-ended coding, found echoes in motivation and hedonic states 

most notably through the work of Solomon (1974, 1980), and Seymour et al. (2005). The 

latter, inspired by Solomon’s theoretical model, studied the opponent process in the case 

of pain specifically at the neuronal level. Based on the idea that a return to the 
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homeostatic state—after an imbalance—solicited reward processes, Seymour et al. 

defined pain relief as rewarding and pain exacerbation as penalizing. Using this 

framework, they did an fMRI experiment following a classical pavlovian delay-

conditioning procedure in which the participants were presented a series of three distinct 

visual cues, each followed by a potentially predetermined stimulation (pain, pain relief, 

and control) induced by topical 1% capsaicin and thermode. The pain and the pain relief 

were, in fact, delivered 50% of the time. To evaluate the prediction errors and the 

corresponding brain activity, Seymour et al. employed the temporal difference learning 

model. They observed that two distinct neuronal patterns were activated in an opponent 

way for the two appetitive and aversive prediction errors defined. The blood-oxygenated-

level dependent (BOLD) signal from the midbrain and the amygdala correlated with the 

appetitive prediction error signal. As for the aversive prediction error signal, it correlated 

with the BOLD signal from the lateral orbitofrontal cortex and anterior cingulate cortex. 

The time courses of the neurons involved in those two patterns appeared to be opponent. 

Based on Seymour et al.’s experiment, it appears that neurons within the significant 

clusters in those four distinct brain areas are probably of a double-ended type, at least 

regarding the encoding of those prediction errors. The ‘neutral’ trials in this current 

experiment could possibly facilitate finding evidence supporting either the single- or 

dual-ended coding of the hedonic response. We would essentially have to define 

regressor sets for the pleasant, unpleasant, and ‘unique’ system, and evaluate whether 

neurons, through the BOLD signal, are only activated or both activated and deactivated to 

the hedonic value of the stimulation. Generating the appropriate statistical maps and 

performing a conjoint analysis for the pleasant and unpleasant regressor sets could be a 
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way to determine the nature of the hedonic encoding.  

A procedure developed by Shizgal, based on alliesthesia phenomenon, could also 

be interesting in studying the anticipation of the participants, notably their active role to 

forestall or delay stimulations. In the current experiment, all the participants were waiting 

passively for the next pleasant, unpleasant, or ‘neutral’ stimulation. In contrast, it has 

been reported notably by Tricomi, Delgado & Fiez (2004), and Delgado (2007) that the 

dorsal striatum is involved in the action leading to a reward or the avoidance of a 

punishment in humans. In an fMRI study, Tricomi, Delgado & Fiez (2004) did a series of 

three event-related experiments using an oddball paradigm. The three experiments were 

design to compare brain activation to rewards, to anticipation, and to action leading to a 

monetary outcome. In the first experiment, a series of three predetermined visual cues 

(arrows), associated with a definite gain, loss, or no money awarded, were presented 

pseudorandomly to the participants at intervals varying between 10,5 and 19,5 seconds. 

The participants had to press a button upon the presentation of the visual cues to get the 

corresponding money outcome. The second experiment differed from the first one, only 

by the elimination of the ‘no money’ trials and the addition of a new visual cue, a yellow 

circle; on 50% of the trials, the yellow circle appeared three seconds before the onset of 

the two remaining visual cues (arrows). Thus, the presentation of the yellow circle had no 

predictive value. In the third experiment, the yellow circle alternated randomly with a 

blue circle; one of the two circles appeared on half the trials three seconds before the 

onset of the two reward related arrows. The yellow circle led to a choice between two 

buttons to determine the monetary outcome. Each participant had to press one of two 

buttons before the onset of the arrow signaling a gain or loss. In contrast, the blue circle 
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led to a forced choice: the participants had been informed which button to press following 

presentation of the blue circle. Tricomi, Delgado, and Fiez principally reported 

significant activation in the caudate nucleus ‘…when the participants thought that their 

button presses determined whether they won or lost money; neither pseudorandomly 

presented rewards and punishments nor timelocked anticipation of the rewards and 

punishments was enough to drive such a response.’ (Tricomi, Delgado & Fiez, 2004, p. 

287)  

The proposed experiment would differ from the current one, by presenting to the 

participants in the scanner the following information on a monitor: The water temperature 

of the following trial and the remaining time of its occurrence plus two Likert scales, 

presented in alternate order at 9 seconds intervals, related respectively to the participant’s 

actual hedonic state and to the participant’s desire to forestall or delay the upcoming trial. 

By pressing a button box, the participants would have the possibility to actually forestall 

or delay the next trial allowing us to measure objectively that desire. It would then be 

possible, with the appropriate regressor, to determine at the group level the brain 

correlates associated to that desire. By comparing the result with the brain correlates 

related to the hedonic evaluation, we would be able to distinguish the two processes.      
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Conclusion 

 

 The present experiment provides further evidence linking the orbitofrontal cortex 

(OFC) to hedonic valuation. The experimental protocol, and the alliesthesia phenomenon 

on which it is based, made it possible to distinguish between hedonic correlates of 

activity in different OFC regions. Whereas activations in the medial part of the OFC were 

associated with pleasantness, activations in the lateral part were associated with 

unpleasantness. That said, the dissociation was clearest in the hyperthermia condition; in 

the hypothermia condition, more lateral activations were observed even in response to 

‘pleasant’ stimulation provided by the flow of hot water through the suit. The experiment 

of Dunn and colleagues made use of a similar protocol but yielded results in the 

hypothermia conditions that are more consistent with alliesthesia. This discrepancy may 

reflect several differences between the present study and that of Dunn et al., including the 

introduction of ‘neutral’ trials, the level of fitness of the participants, and the magnitude 

of the core-temperature deviations.   

 Experimental protocols based on the alliesthesia phenomenon provide promising 

tools for the study of decision making at the neurological level. The essence of these 

protocols is the distinction they provide between the correlates of sensory and hedonic 

experience. No other strategy has been proposed to make such a distinction. The present 

experiment provides qualified support for the validity of the alliesthesia-based approach.  

 Thermal stimuli are powerful primary reinforcers, and the responses to them are 

critical for homeostasis and survival. Future work can reveal the degree to which the 

results obtained using these stimuli can be generalized to the neural processing of other 
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hedonically potent and biologically important stimuli. Decisions about whether to 

approach or avoid a goal object and whether to maintain or break off contact are 

characterized ultimately by only a single degree of freedom. Thus, it stands to reason that 

there is a final common path in the nervous system through which the myriad factors 

contributing to approach/withdrawal decisions are funnelled. If so, the neural circuitry 

that processes the hedonic impact of thermal stimuli should be expected to share 

important components with the neural substrates for other determinants of hedonic 

experience.   
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