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Abstract 

Image-based Condition Assessment for Concrete Bridge Inspection  

 

Ram Sebak Adhikari, Ph.D. 

Concordia University, 2014 

 

The following approaches are usually taken for the condition assessment and performance 

evaluation of civil infrastructure: visual inspection, structural response measurement due 

to loads, and sensing based inspection of bridge structures. This thesis concentrates on the 

last alternative using remote sensing for condition assessment of concrete bridge structures. 

Focusing on defect quantification problems for condition assessment of bridge structures, 

remote sensing techniques based on digital images provides superior result over 

conventional visual inspection-based methods. The aim of this thesis is to develop digital 

image-based condition assessment tools and techniques, which can be integrated with 

existing bridge management systems (BMSs) in order to enhance the reliability of current 

inspection practices. 

 

The methodology of this research divides the entire task of bridge inspection into two 

modules. The first module develops quantification models based on the extent and severity 

of defects, and the second module develops a change detection model defined as change in 

element condition state over times. For defect quantification, three fundamental concrete 

defects such as cracks, spalling, and scaling have been considered. To illustrate the 

proposed methodology, digital images are acquired from laboratory experiments during the 

testing of reinforced concrete beams in flexure, and from field visits of bridges in Montreal, 
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Quebec using portable digital cameras. This research contributes in the development of 

crack quantification model based on the corresponding crack skeleton which takes 

consideration of crack tortuosity for retrieving of crack properties. The output of the crack 

quantification model is validated by capturing the crack properties using a crack scale. In 

addition, an automated model for estimating the condition rating and related computational 

algorithms for bridge inspection are developed using the guidelines of the Ontario Structure 

Inspection Manual. The developed algorithms for mapping of condition ratings are based 

on the supervised training of back propagation neural networks. Recognizing the 

importance of 3D visualization, which can mimic the on-site visual inspection, 3D 

visualization model is developed using ordinary digital images by manually projecting 

images on the 3D model of the bridge being inspected. 

 

The second module proposes a novel approach for periodic detection of defects in concrete 

bridges based on a set of dimensionless metrics pertinent to spectral and fractal analyses of 

the captured images. The fractal analysis of digital images is described by fractal dimension 

(FD) using Box Counting algorithms. Similarly, the method of spectral analysis requires 

digital images to be translated from spatial domain to Fourier domain, and then finds one 

dimensional signatures to quantify change detection. The developed algorithm for change 

detection demonstrates superior results and eliminates the limitations of traditional 

approach of change detection based on image subtraction. The developed image-based 

models can either be applied as standalone condition assessment and rating applications or 

integrated with existing systems such as PONTIS ( a Bridge Management System in USA) 

in order to enhance the reliability of visual inspection. 
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Chapter 1: Introduction 

1.1 Overview  

 

2013 report card published by American Society of Civil Engineers for America’s 

Infrastructures reveals that the average age of bridges in the USA (i.e. 607,380 ) is 42 years 

and about 11% of the bridges are rated as structurally deficient (ASCE 2013). Likewise, in 

Canada, more than 40% of the bridges currently in use were built over 50 years ago, and 

they are in need of immediate upgrade (Bisby and Briglio 2004). To maintain the condition 

of such infrastructure, there exist different inspection programs for monitoring the 

conditions of a structure during its life span. However, the importance of bridge inspection 

was not fully understood until the collapse of I-35 W Mississippi River Bridge which was 

built in 1964. According to the investigation report of the National Transportation Safety 

Board (NTSB, 2008), the Mississippi River Bridge on I-35 was inspected a year before the 

catastrophic failure of the deck truss at 6.05 p.m. on August 2007. As a result of the 

collapse, 1000 ft of the 1,907 ft long bridge fell to the water, 13 people lost their lives, 145 

people injured, and 111 vehicles were involved in the accident. In further investigation, the 

inspection report showed that the bridge was rated 4 out of 9 resulting in the continuation 

of the bridge operation without any load restriction. The tragic accident of the Mississippi 

River Bridge revealed that the condition of such deficient bridges could have been worse 

than what bridge inspectors had reported in inspection report. Such accidents drew serious 

attention towards proper inspection guidance’s and technologies for accurately assessing 

the condition state of bridges for effective Bridge Management System (BMS) (National 

Transportation Safety Board, 2008).  
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In order to improve the effectiveness of a BMS, data collection and interpretation strategies 

need to be improved. In general, routine bridge inspection is carried out every two years to 

collect information on bridge conditions in the form of text, images, and drawings based 

on inspection manual guidelines (Navy Bridge Inspection Program, 2008). Routine 

inspections are generally carried out through visual inspection which is an arm’s length 

inspection of all portions of structures using some fundamental measuring methods and 

tools. However, the reliability of visual inspection regarding consistency and objectivity of 

inspected data has been questioned in literature (Moore et al. 2001).  

 

1.2 Limitations of Current Practices for Condition Assessment of Bridges 

 

Although several satellites such as (LANDSAT TM, SPOT4, IRS, and RADARSAT) are 

capable of identifying objects lying on the Earth surfaces, the defect detection and 

quantification of civil infrastructure are not possible due to the limitations of spatial 

resolution, temporal resolution, radiometric resolution, swath width, and spectral bands 

(Roy, 2008). The commonly used non-destructive techniques for condition evaluation of 

concrete decks are visual inspection, liquid penetrant dye, chain drag, Half-cell potential 

(HP), acoustic emission, ultrasonic pulse velocity, ground penetrating radar (GPR), impact 

echo (IE), and IR thermography (Yehia et al. 2007). However, these technologies are 

unable to provide the desirable accuracy in terms of extent and severity of defects required 

for effective BMS. To prove this point, a systematic study for the condition assessment of 

concrete bridge decks through experimental and field testing was conducted using several 
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remote sensing technologies listed above (Ahlborn et al. 2010). The study showed that the 

Bridge Viewer Remote Camera System (BVRCS) technique based on the close range 3D 

photogrammetry technique, and GigaPan Techniques based on Street View-style 

photography are the best technologies for defect measurement in concrete decks (Ahlborn 

et al., 2010). 

 

Previously, Abudayyeh et al. (2004) proposed a framework for automated bridge imaging 

system based on digital image processing and integrated with Bridge Management Systems 

(BMSs) PONTIS. However, the assignment of condition rating for bridge elements was 

done manually by displaying the collected images on computer screens. The current 

version of PONTIS 5.1.2 allows multi picture uploading just by selecting all images stored 

in a folder (AASHTOWare Bridge, 2012). The approach provides great advantages over 

old version where pictures were uploaded one at a time. However, these images are not 

used for defect quantification purposes. They are just kept for references or visual 

comparisons. 

 

The New Zealand Office of the Auditor General (2010) addressed the need for improved 

data collection in order to adopt the advanced bridge asset management system. Since the 

current practices of data collection is based on visual inspections, the approaches are not 

providing consistent or reliable information, and often they are not able to detect critical 

problems in bridge components (Bush et al. 2012). Therefore, there is a need for integration 

of non-destructive evaluation (NDT) techniques with the data collection needed for bridge 

management system. The validation of NDT program for defects assessments requires 

http://www.youtube.com/user/PontisBridge?feature=watch


4 
 

developing a laboratory based specimens with embedded defects obtained from 

decommissioned bridges. Such approach will enhance the reliability of NDT program for 

further applications. 

 

1.3 Motivation 

 

Civil infrastructure, especially bridges, plays an important role for economic development 

of a country. The bridges not performing as per current code requirements can threaten 

human lives. Thus, regular maintenance and proper rehabilitation actions are necessary in 

order to maintain the functionality of bridges in preventing sudden failures. In spite of 

regular inspection of De La Concorde overpass in Quebec, on September 20 (2006), the 

bridge collapsed leaving five people killed and six people wounded (Vaysburd & Benoit, 

2007). The investigation done by Vaysburd and Benoit (2007) showed that the inspection 

reports of de la Concorde were not consistent. There was a misinterpretation of abutment 

definition of de la Concorde Bridge. Until 1999, the bridge was defined as single span 

bridge, but from 1999, the bridge was started to be called a three span bridge taking into 

consideration of the cantilevers on both sides. In another report, it was admitted that bridge 

defects were rarely sketched; the location and extent of distresses were almost never 

reported, and that prevented the accurate evaluation of the bridge condition assessment 

over time (Commission of Inquiry 2007). The failure of the bridge underscored the 

importance of tracking of critical bridge element during bridge inspection.  
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The current practices of bridge inspections, which are based on visual inspections, are not 

reliable in terms or data consistency, and information reliability; and they are often unable 

to detect critical problems in structural components (Bush et al. 2012). The analysis of a 

critical element requires the tracking of progression of a particular defect over time so that 

necessary actions can be performed before any emergency situation. The advancement of 

information technologies and their application in civil engineering have made possible to 

acquire such information digitally in order to track the conditions of bridge elements, 

periodically (Brilakis et al. 2006).  

 

Additionally, there exists several remote sensing technologies for accessing bridge defects; 

however, they do not provide reliable information such as the extent and severity of defects 

required for the effective application of BMS. This research presents a methodology based 

on digital image processing for condition assessment of the critical elements in a bridge, 

suitable for the application of BMS, as well as, a procedure for tracking of progression of 

defects in critical bridge elements. 

 

1.4 Scope and Objectives 

 

 The condition assessment of bridge structural components encompasses diagnosis and 

monitoring of external and internal defects. This thesis considers only external defects with 

a focus on improving current practices for concrete bridge inspection, which is based on 

digital image analysis. The aim of this research is to develop tools and techniques in order 
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to enhance the reliability of visual inspection for effective performance of BMS using 

digital image processing.  

 

In order to achieve the above main objective, the entire activities relating to condition 

assessment of concrete bridges have been categories into two parts: a) Defect 

Quantification Module, and b) Change Detection Module. For further development of these 

modules, this thesis considers three major categories of surface defects in reinforced 

concrete elements, which are: a) Spalling, b) Scaling, and c) Cracking. These defects 

including the crack map are to be captured by commercially available digital cameras, and 

processed for condition assessment of reinforced concrete beams/decks.  

 

In order to fulfill the main objective, the following sub-objectives are identified. 

 

1) Study the current practices, related literature, and limitations of remote sensing 

technologies for condition assessment of concrete bridges in order to support BMS. 

2) Develop a methodology for condition assessment of concrete beams that accounts 

for not only individual cracks, but also crack patterns.  

3) Design a prototype software application for automated prediction of element 

condition rating based on identified concrete bridge scaling defects.  

4) Develop an application for change detection in order to track progression of critical 

defects for improved condition assessment of bridge structures. 
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1.5 Thesis Organization 

 

Chapter two presents a literature review on the current practices of condition assessment 

of bridge structures. The chapter starts with introduction followed by the application of 

remote sensing technology for civil infrastructure. Previously, the remote sensing 

application was limited for geometry measurement; however, due to current development 

of digital cameras, now it is possible to quantify defects in bridge structures in addition to 

capturing the geometries of bridge components. One of the sections of this chapter focus 

on digital image processing such as automated detection of lines, points, image pre-

processing, and image segmentation. Also, the chapter discusses the importance of 3D 

visualization of bridge defects through the digital images which can mimic the on-site 

visualization of bridges.  

 

Chapter three presents the proposed methodology describing the main aspect of this 

research. In broad sense, the methodology consists of three main components: a) digital 

image processing, b) data processing, c) condition assessment modules. The condition 

assessment module is again sub-divided into three sub-modules which form the three next 

chapters as described here.   

 

Chapter four, five and six develop procedures for crack quantification model, condition 

rating model, and change detection model for automated process of condition assessment 

of concrete bridges using digital images. For example, chapter four develops step by step 

process for crack detection and its length estimation based on crack skeleton itself. The 
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approach shows significant improvement over the previous approach of crack length 

estimation based on bounding box obtained by segmenting cracks. Also, the chapter 

presents a method to estimate crack density of a beam element, which is defined as total 

length of cracks over the total surface area, by developing 3D visualization models. 

 

In chapter seven, the results of the present research are summarized, the main contributions 

are listed, and the recommendations for further research are presented.    
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Chapter 2: Literature Review 

 

2.1 Introduction 

 

The bridge infrastructure plays an important role for a country’s development. The social, 

economic, and political development of a country is largely dependent on the effective 

operation and management of the civil infrastructure. Bridges are one of the major 

components of highway infrastructure connecting people from different places 

economically and emotionally. However, in current scenarios, the condition of bridges in 

North America is rapidly degrading and it poses a major challenge in managing the 

effective distribution of financial packages for maintenance and rehabilitation of 

infrastructure (Hammad et al. 2007). 

 

Since 40 years, in spite of technological development in North America, there has been 

insignificant improvement in routine bridge inspection. In general, routine bridge 

inspection is carried out in every two years through visual inspection which has been 

identified with several limitations. To overcome these limitations, there is an urgent need 

for developing methodologies to enhance the reliability of visual inspection without adding 

financial burdens to users for the effective management of civil infrastructure (Hammad et 

al. 2007). The American Society of Civil Engineers (ASCE) started to publish a Report 

Card in the beginning of 1988 to grade the nation’s infrastructure conditions. According to 

the latest report in 2012, about 11% of nation’s bridges (i.e. total bridges in USA 607,380) 

were classified as structurally deficient due to increased traffic, aging of construction 
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materials, and several environmental effects (ASCE Report 2013). Likewise, in Canada, 

more than 40% of bridges are older than 50 years (Bisby and Briglio 2004). Such bridges 

require immediate actions for condition evaluation to ascertain that they still meet the 

service requirements, and are safe for operations. In the past, several bridge management 

systems (BMSs) were developed for managing bridge structures such the Pontis bridge 

management system (PONTIS) developed by FHWA in 1989 (AASHTO, 2005) and later, 

the BRIDGIT bridge management system developed by the National Cooperative Highway 

Research Program (NCHRP) (Hawk, 1999). The input data source required for such BMSs 

are generally obtained through visual inspections which have been identified with several 

limitations such as they being time consuming, influenced by inspector’s experiences, and 

unreliability of element condition ratings (Gutkowski and Arenella, 1998; FHWA, 1995). 

The FHWA report in 2001 indicated that the condition rating assigned through visual 

inspection can vary significantly which raises questions on the reliability of visual 

inspection (Moore et al., 2001). The current BMSs require information on the defects in 

terms of their extent and severity in order to assign condition rating for the bridge elements. 

At this point, an accurate method of defect detection and quantification is essential for a 

reliable output from any automated trading systems such as PONTIS. Therefore, automated 

quantification of bridge defects using computer vision approaches needs to be explored 

further. Currently, a number of remote sensing techniques are available to evaluate the 

exterior or interior defects in bridge components. However, the major challenges are the 

cost and time. One of the promising approaches to enhance the reliability of visual 

inspection is through the use of digital image processing. Based on the processing of digital 

images, (Abudayyeh et al., 2004) developed an imaging data model for automated 
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condition assessment of concrete bridges. The model was integrated with an automated 

Bridge Management System (BMS), which was capable of generating automated 

inspection reports with the application of computers. However, in their approach, the 

assignment of condition rating for bridge elements was done manually by visualising 

images on computer screens by inspection experts. Thus, the literature review reveals that 

there is a need for the development of automated methodologies for predication of 

condition rating for bridge components. Such methodologies can be integrated with an 

automated bridge management system in order to enhance the current practices of visual 

inspections. 

 

The next section presents the issues in current practices of routine bridge inspection with a 

focus on evaluating bridge condition rating and condition index associated with bridge 

components with multiple defects. Additionally, the chapter discusses the automation 

aspect of visual inspection through the application of digital image processing, and also the 

importance of shape descriptors for numerical representation of bridge defects. The chapter 

will also highlight the importance of 3D visualization of bridge defects through digital 

image processing in order to simulate on-site visual inspection through the use of modern 

technologies to assist in routine bridge inspection.     

2.2 Remote Sensing 

2.2.1 Advanced Technologies 

The application of remote sensing in civil engineering can be defined as deriving 

information about the characteristics of civil infrastructure without being in contact with 
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them (Aronoff, 2005). The principle relies on reflectance signature of different surface 

materials over various portions of electromagnetic spectrum as shown in Figure 2.1 

(NASA, 2013). Figure 2.1 clearly demonstrates that radio waves have larger wavelength 

with lower energy content, whereas gamma waves have shorter wavelength with higher 

energy content. Although, remote sensing can be carried out at any part of the light 

spectrum, the common form of light bands used in the management of civil infrastructure 

include visible and infrared light bands. The digital photography is limited to visible light 

bands occupying a small portion of the spectrum varying from 400 nanometers (nm) to 700 

nm as shown in Figure 2.1.  

 

Figure 2.1: Electro-magnetic Spectrum relation with Energy and Wavelengths  

Although several satellites such as LANDSAT TM, SPOT4, IRS, and RADARSAT are 

capable of identifying objects lying on the Earth surface, the defect detection and 

quantification of a civil infrastructure are not possible due to the limitations of spatial 



13 
 

resolution, temporal resolution, radiometric resolution, swath width, and spectral bands 

(Roy, 2008).  Table 2.1 displays the capabilities of four types of international satellites 

currently working the sky for gathering spatial and temporal information about the earth 

surfaces. The RADARSAT-1, a Canadian space satellite launched in November 4, 1995, 

is still active; however, the spatial resolution of digital images is just above 3 meters which 

are not sufficient for quantification of defects associated with civil infrastructure. The 

temporal resolution of the above mentioned four satellites varies from 16 days to 24 days 

which is sufficient enough to compare change detection for further recommendations after 

heavy flood or natural disasters. 

Table 2.1: Satellites Spatial and Temporal Resolution (Roy, 2008) 

 

System 
Altitude 

(KM) 
Bands 

Swath 

(KM) 

Spatial 

Resolution 

(m) 

Temporal 

Resolution 

(days) 

Scales 

LANDSAT  705 7 185 30 16 1:50,000 

SPOT4 803 4 60 20 26 1:50,000 

IRS 900 4 147 36 22 1:125,000 

RADARSAT 798 1 < 500 >3 24 1:50,000 

 

Apart from the satellite remote sensing, Aerial Photogrammetry which is also called 

passive sensors is very popular in civil engineering. The commonly used active sensors for 

the geometry measurement of civil infrastructural components are LIDAR (Light Detection 

and Ranging) and IFSAR (Interferometric Synthetic Aperture Radar). So, it is important to 
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select right sensors for a particular problem of interest because sensors selection is 

application dependent.  

Figure 2.2 demonstrates the selection of different remote sensing technologies based on the 

required resolution and object sizes (Luhmann et al. 2006). Luhmann and others 

summarized that smaller objects required higher accuracy. The engineering 

photogrammetry yields accuracy in mm range for objects ranging from few meters to 100 

meters.  

 

Figure 2.2: Spatial Resolution Accuracy and Object Size (Luhmann et al. 2006) 

 

2.2.2 Suitable Remote Sensing for Surface Defects Analysis 

 

Although bridges are composed of variety of materials such as concrete, timber, and steel, 

the current thesis focuses on reinforced concrete Bridges. Most of bridge structures can be 

classified into three major components as shown in Figure 2.3.  
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Figure 2.3: Major Bridge Components (BRIM -1, 2012) 

Out of the three major components of bridges (Decks, Piers, and Abutments), bridge decks 

are the most vulnerable part of any bridges. Because of direct contact with traffics, they are 

prone to wear and tear in comparison to structural bridge components (Ryall, 2003). Table 

2.2 lists seventeen defects required to be studied for complete condition assessments of 

reinforced concrete structures; however, all the defects may not be present in a particular 

bridge component in question (FHWA, 2006). In general, the details of information 

necessary for condition assessment of bridge components are a) types of damages, b) 

location of damages, c) damage intensity, and d) damage extent (Bien, 1999).  
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Table 2-2: Types of defects in Reinforced Concrete Structures (FHWA, 2006) 

 

Material 

Type 

Defect 

Type 

Concrete  

Cracking, Spalling, Scaling, delaminations, chloride 

contamination, efflorescence, formation, 

honeycombs, pop-outs, wear, collision damage, 

abrasion, overload damage, reinforcing steel 

corrosion, prestressed concrete deterioration 

 

The Norwegian graphic symbols list the important damage types necessary for condition 

assessment of bridge structures in Figure 2.4 (NCHRP SYNTESIS 375). The figure 

explores five major types of defects in concrete bridge structures. These defects are further 

classified into sub-classes according to their severity and impact on structural integrity of 

bridges.  
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Figure 2.4: The Important Bridge Defects (Norwegian graphic symbols) 

 

The thesis considers only external defects which can be captured with digital images. For 

condition assessment of reinforced concrete beams/decks, the three types of defects 

considered in this thesis are: a) Spalling, b) Scaling, and c) Cracking or Crack Map. The 

typical Spalling, Scaling, and Cracking defects are shown in Figure 2.5.  

 

     
Casting Joint 

 

 

 

Delaminations, Spalling 

 

 

 

 

Porous or Bad Quality Concrete 

 

 

 

Cracks 

 

            < 2 

 

Cracks > 0.2 mm, and  

< 2 mm 

 

> 2 

 

Cracks > 2 mm 

 

 

 

Cracking 

 

       

 

Visibly Corroding Reinforcement 
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Figure 2.5: (a) Spall area < 10 square inches (left); and > 100 square inches (right) - 

(Project Scoping Manual, 2013) 

 

Figure 2.5: (b) Crack Map on bridge deck surface (FHWA 2006) 

 

Figure 2.5: (c) Concrete deck surface scaling (FHWA 2006) 

For detection and quantification of bridge defects listed in Figure 2.4 needs a number of 

remote sensing technologies to be integrated for complete condition assessment of 

infrastructure. The commonly used non-destructive techniques for condition evaluation of 
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concrete decks are visual inspection, liquid penetrant dye, chain drag, Half-cell potential 

(HP), acoustic emission, ultrasonic pulse velocity, ground penetrating radar (GPR), impact 

echo (IE), and IR thermography (Yehia et al. 2007). For example, GPR, IE, and IR 

thermography were found promising techniques for detection of internal defects in concrete 

bridge decks (Yehia et al. 2007), while others could be suitable for surface defects.  

How these technologies can be helpful in enhancing the task of visual inspections are of 

great interest to researchers in managing civil infrastructure. A systematic study for the 

condition assessment of concrete bridge decks through experimental and field testing was 

conducted using Three Dimensional Optical Bridge Evaluation Techniques (3DOBS), 

Bridge Viewer Remote Camera System (BVRCS), GigaPan, LIDAR, Thermal IR, Digital 

Image Correlation (DIC), Ground Penetrating radar (GPR), Remote Acoustics, and high 

resolution Street View-style digital photography (Ahlborn et al. 2010). The study showed 

that 3DOB or BVCRS techniques based on the close range 3D photogrammetry technique 

and GigaPan techniques based on Street View-style photography are the best technologies 

for defect measurement for bridge inspections as illustrated in Table 2.3 (Ahlborn et al., 

2010). An element receives the best score of 16 based on eight evaluation criteria from A 

to H which is rated to 0, 1, and 2 depending upon the condition of elements. The detailed 

information about rating of different techniques can be found in Appendix B.  

The most successful technologies for bridge deck evaluation based on the field, as well as 

laboratory test verification have been listed in Figure 2.6 (Ahlborn et al., 2010). The rest 

of the sections discusses on the application of digital image processing for condition 

assessment of concrete bridge structures.   
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Table 2-3: Rating based Theoretical Sensitivity for Measurement Technologies 

(Ahlborn et al., 2010)   

 
L

o
ca

ti
o

n
 

C
h

al
le

n
g

es
 

In
d

ic
at

o
r 

G
P

R
 

S
p

ec
tr

a 

3
D

 P
h

o
to

g
ra

p
h

y
 

 S
at

el
li

te
 I

m
ag

er
y

 

O
p

ti
ca

l 
 

In
te

rf
er

o
m

et
ri

c 

 L
iD

A
R

 

T
h

er
m

al
 I

R
 

A
co

u
st

ic
s 

D
IC

 

R
ad

ar
 

In
S

A
R

 

S
tr

ee
tV

ie
w

  

Im
ag

es
 

D
ec

k
 S

u
rf

ac
es

 

Expansion 

Joint 

Cracks Within 

2 ft 
0 8 14 0 12 12 11 0 0 9 0 13 

Spalls within 

2ft 
0 8 14 12 12 12 11 0 0 9 0 13 

Map 

Cracking 

Surface 

Cracks 
0 8 14 12 12 12 11 8 0 9 0 13 

Scaling 

 

Depression in 

Surface 
0 8 14 12 12 12 11 0 0 9 0 13 

Spalling 

 

Depression 

with Fracture 
0 8 14 12 12 12 11 0 0 9 0 13 

 

 

 

 

 

 

 

 

 

 



21 
 

 

3D optical bridge 

Evaluation system 
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Remote Camera 
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Figure 2.6: Successful technologies for Bridge Deck Analysis (Ahlborn et al., 2010) 

 

 2.3 Current Practices in Automated Bridge Condition Assessment  

 

The Navy Bridge Inspection Program Manual (2008) for bridge inspection lists seven types 

of bridge inspections required to document a bridge conditions over its useful life. They 

are 1) Initial Inspection, 2) Routine Inspection, 3) In-Depth Inspection, 4) Damage 

Inspection, 5) Fracture Critical Inspection, 6) Underwater Inspection, and 7) Interim 

Inspection. However, the discussion here is only focused on routine bridge inspection 

which has been defined as an arm’s length visual inspection of all parts of bridge structures 

using simple instruments supported by comments and photographs (Navy Bridge 

Inspection Program Manual, 2008). During routine inspections, it is necessary to assign 

the condition rating of all elements in accordance with FHWA guidelines (Recording, 

1995). Although such method of assigning bridge condition rating is very popular, the 
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reliability of visual inspection has been questioned in literature (Moore et al., 2001). The 

reliable inspection information regarding to bridge elements are important for advance 

bridge management system.  

 

2.3.1 Damage Evaluation 

 

A damage inspection can be defined as an unplanned inspection i.e. not following any 

schedule to assess structural damages resulting from environmental factors or human 

actions (Ohio DOT, 2010). The purpose of this type of inspection is to determine the nature, 

severity, and extent of structural damages after any kinds of extreme events, traffic 

collisions/accidents to evaluate the safety requirement of structural members. Liu (2010) 

studied 69 collapsed bridges in the USA from 1967 to 2008. The result showed that more 

than 50% bridges were collapsed due to collisions, and natural disasters. These events 

trigger or initiate defect at an element level and progresses in due time during the service 

life of infrastructure. When these events will happen is unknown in advance, and therefore, 

it is difficult to establish a common inspection interval which can take care of impact on 

structural components resulted through such events. One way to tackle this problem is to 

revise the inspection frequency based on event-based management strategies. However, 

since bridge monitoring and inspection is expensive program, there is a need for developing 

automated tools using current technologies to assist routine bridge inspection. In the 

previous section, it has been discussed that the best way for concrete damage detection and 

quantification by using remote sensing technologies is the use of digital images (Ahlborn 

et al., 2010). Several researchers have worked on digital images for condition assessment 

of civil infrastructure in recent years as explained next. 
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Abudayyeh et al. (2004) proposed a framework for automated bridge imaging system based 

on digital image processing and integrated with Bridge Management Systems (BMSs) 

PONTIS. Their models were capable of storing different surface defects in a structured 

way and generated automated inspection reports. However, the assignment of condition 

rating for bridge elements was done manually by displaying images on computer screens. 

To automate this process, a model for automated prediction of condition rating is required 

which can assign a unique number based on the severity and extent of defects. The 

approach requires training of expert functions for prediction of condition rating as an output 

based on selected input parameters. 

 

2.3.2 Close Range Photogrammetry 

 

Photogrammetry can be defined as measuring of geometry of physical objects from two-

dimensional photographs. Depending upon how the digital images are acquired, the 

photogrammetry can be defined in two types: a) Aerial Photogrammetry and b) Terrestrial 

Photogrammetry (Gruen, 2000). Furthermore, the terrestrial photogrammetry is also called 

close-range photogrammetry when the object size and camera-to-object distance are both 

less than 100 meters (Jiang et al., 2008). Since the close-range photogrammetry has the 

ability to acquire detailed images of physical objects, it has been many applications in 

engineering (Fryer, 2000). In the development of automated bridge inspection tools, 

researchers have worked on ground-based remote sensing techniques for infrastructure 

monitoring using close range photogrammetry (Jiang et al., 2008). They presented a 

detailed literature review on the potential application of close-range photogrammetry in 
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bridge engineering. Their work briefly summarizes the basic development of ground-based 

remote sensing related to bridge deformation and geometry measurement, as well as 

structural health monitoring and documentation of historical infrastructure. Table 2-4 

summarized work done from 1985 to 2003 based on the use of different types of cameras, 

target and control points application, and softwares covering the automated aspects of 

bridge inspection. Due to the rapid development in information technology in processing 

of digital images, the analysis of bridge defects such as cracks, spalling, and scaling is 

possible with reasonable accuracy which can be used to enhance the reliability of visual 

inspection. The next section will demonstrate the necessary steps required to analyze digital 

images to extract useful information.  

 

2.3.3 Digital images application for civil infrastructure 

 

As discussed in the previous section, Abudayyeh et al. (2004) proposed a framework for 

automated bridge imaging system based on digital image processing and integrated with 

Bridge Management Systems (BMSs) PONTIS. This was the first attempt to work with 

bridge defects by visualizing digital images on the computer screen. 

The proposed methodology documented bridge defects digitally and automated reports 

were produced, however, the condition rating was assigned manually. The current thesis 

fulfills the gap by developing automated prediction of condition state rating based on 

digital image analysis. A considerable volume of literature has been published in the 

domain of construction industries using digital images to augment the effective 

infrastructure management systems.  
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Table 2-4: Application for Bridge Deformation and Geometry Measurements (Jiang 2008) 
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Digital photograph of construction sites provides the evidence of as-built project and the 

digital information can be used for effective infrastructure management which can assist a 

large number of construction inspection and management applications such as construction 

productivity and progress monitoring (Brilakis et al. 2006, Brilakis & Soibelman, 2008).   

 

The above work was the first step in recognizing construction objects form images obtained 

from actual construction sites. They developed an automated recognition of construction 

materials (steel, concrete, or wood) using similarity-based criteria obtained from color or 

texture properties of material surfaces. They also added a content-based attribute (shape 

recognition) to recognize beam, columns, and wall related to construction activities.  

 

These works are further studied by Zhu et al. (2010) and they proposed a novel method for 

detecting large-scale concrete columns for the purpose of developing an automated bridge 

condition assessment system. Since columns are large structural members, several images 

were taken and image stitching algorithm developed by Brown and Lowe (2007) was used 

to combine individual images into a single image. A neural-network based material 

classification method was reported in FANN (2009). Although above researchers worked 

for enhancing the effective bridge management systems, there were little attentions paid 

towards developing concrete defect models which could be an input to any BMS for 

concrete bridges. However, there has been a significant improvement in developing models 

for crack quantification.  
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Advantage and limitations of Google Street View Imaging  

 
 

The Google Street view provides a continuous 360 degrees viewing environment for civil 

infrastructure. The technology is suitable for assessing the condition of an infrastructure 

by the inspectors from the offices without travelling to the site. Recently, Hinzen (2013) 

demonstrated the feasibility of damage detection and quantification based on Google Street 

View images. However, since the technology is based on vehicle-mounted instrumentation, 

this approach may not be suitable for condition assessment for elements at the underside 

of a bridge. 

 

Since the imaging model is based on remote sensing technology, there is less disruption of 

traffic. By developing a technology which can be fixed with traffic moving at the same 

highway speed will maximize the benefit of such techniques. Although digital image-based 

analysis of condition assessment of infrastructure provides low capital cost, rapid 

deployment, and useful metrics (can compare condition over time, % area, volume, crack 

density, and roughness index), the slow speed of data collection (usually less than 5 mile 

per hour), traffic disruption, requires high resolution images, field of view, and data 

processing time are the challenges that need to be improved further (Ahlborn et al. 2010).  

 

It is unlikely that fine cracks can be detected with the available resolution in the Google 

Street View; however, the detection accuracy of cracks can be increased using high 

resolution digital cameras. Currently, there are not enough guidelines available on the 

required resolution for detecting fine cracks. However, the resolution available in the 

Google Street view images is useful for condition evaluation of bridge deck surfaces 
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including spalling and scaling of bridge deck surfaces, mapping of cracks, joint damage, 

and delaminations expressed as surface damages (Ahlborn et al. 2010). 

 

 In order to improve the reliability of visual inspection, the developed methodology based 

on digital images needs to be integrated with existing bridge management system which is 

another challenge to be considered in developing an effective imaging model. In terms of 

cost, LiDAR scanners are very expensive for data acquisition and processing because they 

require digital cameras, scanners, positioning systems, computers, and related software 

tools. Similarly, the data collection by a digital camera is much cheaper than a GPR system 

(Ahlborn et al. 2010). Since each of the image-based technologies has its own advantages 

and disadvantages, a proper combination of such technologies is required to provide 

appropriate results.  

 

Often, the dimension of a surface defect captured by a digital image is measured in pixels. 

However, the defect measurement needs to be expressed in engineering units such as, feet 

or millimeters. Also the defect size is relative to the dimension of the image frame, and the 

actual size of the frame or the defect in physical/engineering units depends on many factors 

including image resolution, distance at which the image is taken etc. Several authors have 

used either artificial or natural scales of benchmark in the image frame for obtaining the 

actual dimension of a defect from a digital image (Adhikari et al. 2014, and Ahlborn et al. 

2010). While working with digital images, the criteria need to be considered are: a) color 

images, b) the distance between camera and object which is called field of view shall be 

such that the minimum resolution on an image is 1 pixel per mm, c) lighting should be 
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uniform to maintain images are consistent, and images shall be overlapped to ensure full 

coverage (McRobbie et al. 2008). Apart from the general conditions, they suggested that 

for defect evaluation, an image shall be acquired orthogonal to the plane on which a defect 

lie in order to improve accuracy of defect quantification by avoiding parallax and 

projection errors (McRobbie et al. 2008).     

 

2.3.4 Neural Networks Application for Civil Structures  

 

Neural Networks mimic the thought process of human brain by assigning weights to 

individual inputs attributes and output is mapped through a simple transfer functions (Liu, 

2001). In the existing literature, neural networks (NN) have been reported to be used for 

several purposes for developing data fitting regression models as well as to solve 

classification problems where direct relations among input parameters do not exist 

(Moselhi and Shehab-Eldeen 2000, Bień and Rewiński, 1999). Neural Networks can be 

used as an intelligent system to assist bridge management systems for efficient operations 

as well as the maintenance schedule of structures. The systematic application of NN was 

listed in four categories for efficient bridge management systems (Bień, 2000). They are: 

1) technical condition assessment processes, 2) maintenance technology selection 

processes, 3) real time data management systems, and 4) monitoring of structural 

parameters. However, the information required for training of NN was based on the result 

of visual inspection (Bień, 2000).  

 

Over the past few decades, the application of NN was also very popular in automation of 

civil infrastructure management based on digital image processing. Neural networks were 
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used for automatic classification of defects in sewer pipe lines where digital images of 

sewer defects were used for extraction of geometric parameters required for training of 

neural networks (Moselhi and Shehab-Eldeen 2000). The accuracy of their prediction and 

classification of sewer defects was reported to be 98.2%. The geometric attributes used by 

them were area, perimeter, and major as well as minor axis lengths of defects as displayed 

in Figure 2.7. 

 

 

 

 

 

 

 

 

 

Figure 2-7: Feature attributes of a defect (Moselhi and Shehab-Eldeen 2000) 

 

Similarly, Khan et al. (2010) also used neural networks to analyze structural behavior of 

sewer pipes in terms of the variation of condition ratings, and the success rate of the 

developed model for the prediction of condition rating was reported to be 92.3%. However, 

the geometric attributes obtained for training of NN were obtained from visual inspection. 

Also, decision processes regarding to future conditions of an infrastructure depend on many 
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variables. Such uncertainties in the classification of defects in sewer pipes were discussed 

using neural-fuzzy networks (Sinha et al. 2003). One of the most relevant applications of 

neural networks was developed for predicting the fatigue life and failure of reinforcing bars 

in concrete elements. A recent paper written by Abdalla and Hawileh (2013) tested 15 

specimens to measure fatigue failure of reinforcing bars and then neural networks were 

trained to predict failure patterns for the chosen samples.  

 

2.3.5 Automated crack detection using digital images 

 

In recent years, several automated crack detection algorithms have been proposed in the 

literature which can assist in condition assessment of reinforced concrete bridges. Abdel-

Qader et al. (2003) compared the performance of crack edge detection against Fast Haar 

Transform (FHT), Fast Fourier Transform, Sobel, and Canny algorithms. It was concluded 

that FHT produced the best result over the other algorithms in detecting crack edge. 

Likewise, a Principal Component Analysis (PCA) was applied successfully for pattern 

recognition to determine whether a concrete surface was cracked or not, based on the 

Euclidean Distance as similarity criterion (Abdel-Qader et al. (2006). The crack analysis is 

necessary for automatic repair and maintenance of concrete surfaces. Haas et al. (1992) 

developed an automated field prototype crack sealing system which required fully 

automated crack detection, surface mapping, and control systems. In the digital imaging 

process, crack pixels need to be separated from their background. For segmentation of a 

crack from its background, a threshold is used for extracting the crack boundary pixels. 

The threshold can be estimated from mean and standard deviation of gray-level images 

(Cheng et al., 2003). However, this method does not ensure proper crack connectivity. To 
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solve this problem, the percolation-based image processing method was suggested to 

correctly detect cracks on concrete surfaces (Yamaguchi and Hashimoto, 2009). The result 

of this approach indicated that the percolation-based method is efficient even for larger-

size concrete surfaces. In a later development, mathematical morphology was adopted in 

an image segmentation method where images were partitioned based on either similarity 

or discontinuity. Lyer and Sinha (Iyer and Sinha, 2006) adopted morphological filters with 

linear structuring elements for defect identification in sewer pipelines. Several types of 

concrete defects such as cracks, holes, joints, and collapsed surfaces were identified based 

on image processing and morphological segmentation approach which is necessary for 

automated classification of defects in sewer pipelines (Sinha, Fieguth, 2006). However, 

this approach was not suitable to discriminate all kinds of defects in sewer pipelines. 

Therefore, certain objects like joints and lateral displacements were classified by using the 

shape or texture features such as, roundness and compactness (Sinha, Fieguth, 2006). 

 

 

The purpose of image processing is to extract the areas of interest from a given image 

frame. For example, the extraction of length and width of a crack is necessary for crack 

analysis of concrete members. So, proper definition of crack length and width needs to be 

stated explicitly. For practical purpose, average crack width is required to prepare a bid for 

repair and maintenance purposes. This could be possible by dividing a long crack into small 

crack segments and retrieving average length and width for each segment. In recent study, 

crack segmentation was achieved by searching of crack connectivity and matching the 

pixel orientations (Zhu et al., 2011). This approach needs input of at least one crack 

skeleton pixel to start searching of crack connectivity. Moreover, the length of a crack is 
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estimated from object-oriented bounding box which ignores the tortuosity of cracks (Zhu 

et al., 2011). The current thesis aims to fill the gaps by developing an automated crack 

quantification model using digital image processing. 

 

2.3.6 3D Defects Modeling to Assist Visual Inspection 

 

Many software systems have been developed for the design of structural components, 

however, little attention has been given to modeling defects in concrete elements based on 

defect parameters such as extent, severity and intensity of defects. The simplest way to 

obtain the geometry of defects is to collect the data of defect size, shape etc. by an inspector. 

But, such an approach is time consuming, costly, and prone to subjectivity. Therefore, 

modeling of defects from images for condition assessment of structural components 

provides an attractive alternative which can serve to augment the information obtained 

from visual inspection. 

 

In order to overcome the limitations of visual inspection, several attempts have been 

proposed to automate the current bridge inspection process. One such attempt is to 

automatically retrieve the three dimensional (3D) as-built/as-is bridge information using 

remote sensing techniques. Although the 3D as-built/as-is bridge information is useful, the 

retrieval of such information is a challenging task (Remondino and El-Hakim, 2006). 

McRobbie et al. (2010) investigated several off-the-shelf 3D software tools, such as, 

MeshLab, Rhino, TrueSpace, and Phtosynth, and found that existing tools could not fully 

support the automatic retrieval of 3D as-built/as-is bridge information. A lot of manual 

editing and correction work are still required, which makes the overall information retrieval 
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process labor-intensive and time-consuming (Zhu, 2012). A photographic technique was 

demonstrated for 3D visualization of bridge components in quantitative assessment of 

bridge defects (Maksymowicz, 2011). However, the authors added an additional tool called 

“Damage Assessment Graphic Analysis — DAGA” for modeling defects from 

photographs. The above system was equipped with an advanced graphical editor enabled 

with fast creation of 3D models of bridge components and presentation of the results 

graphically. A quick 3D visualization model based on digital images and available software 

tools is required to assist the condition assessment process for concrete bridges. 

 

However, one of the challenges still exists is how to reflect the current level of deterioration 

in the structure on a 3D model so that they could be reviewed on computer simulating the 

on-site visual inspection process. The thesis attempts to address this issue with the 

application of current available commercial software tools. 

 

2.4 Automated Bridge Management Systems 

2.4.1 Bridge Management Systems 

 

A Bridge Management system (BMS) can be defined as an automated system for tracking 

the condition of bridges in a highway network which helps in prioritizing the task of 

maintenance and rehabilitation for better performance of infrastructure (Tonias and Zhao, 

2007).  A BMS is composed of several components consisting of bridge inventories, 

inspection reports, bridge deficiencies, financial evaluation, and management components 

(AASHTO, 2005). In USA, the importance of bridge safety through routine inspection and 
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maintenance regulation had not been realized until the collapse of Silver Bridge at Point 

Pleasant, West Virginia where 46 people were killed in 1967 (Lichtenstein, 1993). In 1971, 

the minimum standard required for bridge inspection was set up by the National Bridge 

Inspection Standards (NBIS) consisting of Bridge Inspector’s Training Manual by the 

Federal Highway Administration (FHWA), Manual for Maintenance Inspection of Bridges 

by the American Association of State Highway Officials (AASHO), as well as the FHWA’s 

Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation’s 

Bridges (Liu, 2010). The development of BMS goes back to 1991, when the Intermodal 

Surface Transportation Efficiency Act (ISTEA) of USA mandated the requirement for the 

use of Bridge Management Systems by each state Department of Transportation (DOT). 

Soon, a rigorous BMS software package, Pontis, was developed and implemented in 

several states for effective bridge asset management (Gutkowski & Arenella, 1998). Today, 

more than 44 states are licensed with Pontis BMS. However, the level of implementation 

of a BMS varies from state to state (AASTHO, 2009). The literature revealed that the 

application of a BMS is different from not only from one country to another, but also from 

one state to another state. Several BMSs are listed here adopted in different countries, for 

examples, BRIME BMS is used in Europe (Woodward et al. 2001), Finland uses Finnish-

BMS (Soderqvist 2004), Denmark uses DANBRO (Bjerrum and Jensen 2006), Taiwan 

uses T-BMS (Liao et al. 2008), and Argentinean-BMS is used by Argentina (Ruiz et al. 

2008). 

 

In spite of the fact that a majority of the states have used BMSs for managing infrastructure, 

less than 50% of the states consider BMSs recommendations for selecting bridge projects 



36 
 

because of skepticism of the simulation modeling, and resource limitations (Bektas, 2011). 

For effective application of BMS, a robust data management system is required. Inspection 

data required for BMS, in general, is collected through visual inspection. The first 

inspection, also called initial inspection, is necessary immediately after bridges are opened 

for traffic so that a baseline inspection target can be defined to compare the condition of 

bridge components over the service life of structures (Moore et al., 2000). As discussed in 

the previous section, visual inspection suffers from several limitations, and the application 

of advance information technology can enhance the reliability of BMS output. The current 

thesis adopts digital image processing application in enhancing the task of assigning 

condition rating for bridge elements. The next paragraph discusses the BMSs adopted by 

Canadian provinces.  

 

Canadian provinces have developed different BMSs to suite their individual needs; for 

example, Alberta uses Transportation Infrastructure Management System (TIMS), Ontario 

uses Ontario-BMS, and Quebec has Quebec-BMS (Hammad et al., 2007). The Ministry of 

Transportation of Ontario (MTO) developed the Ontario Bridge Management System 

(OBMS) to store inventory and inspection data which can be processed for decision making 

purpose to identify the need of immediate repair, maintenance, and rehabilitation for 

bridges. The newly developed BMS in Ontario works at the network-level, as well as, at 

the project-level (Thompson and Ellis, 2000). The OBMS, which was first implemented in 

1999, consists of five structural data records: Inventory, Elements, Inspections, Work 

History and Documents (Ontario-BMS, 2012). The regular inspection module of OBMS 

consists of Biennial Detail Tab and Recommendation Tab. The Biennial Details record the 
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element condition data, comments, and performance deficiencies for each element. 

Similarly, the recommendation Tab allows the inspector to recommend the immediate 

actions to be taken if required for further investigation or maintenance activities. Here, the 

Biennial Details and Recommendations are entirely based on the inspector’s personal 

experience.  

 

To support the inspector’s views and recommendations, the OBMS allows the inspector to 

store three types of documents: Photos, Drawings, and Reports. Photos and drawings are 

related to element inspection, whereas, the drawings are concerned with construction and 

rehabilitation related problems. Due to the limitation of storage problem, the OBMS resizes 

the original photograph to a resolution of 1024 x 768 to the database. Figure 2.8 illustrates 

the screenshot of crack photo displayed on monitor in the documents module of the OBMS 

software (Ontario-BMS, 2012).   
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Figure 2-8: Photo Visualization in the OBMS (Ontario-BMS, 2012) 

 

The software also allows users to upload a key photograph showing the current condition 

of structures. The key photo shall be taken such a way that the whole structure in question 

should be visible from a single location, usually taking photograph from a corner of a 

structure. However, these photos are used only for reference purposes or visual based 

decisions are made by visualizing the images on computer screen. The current thesis 

focuses on the use of digital images for quantification purpose using digital image 

processing. 

 



39 
 

The Navy Bridge Inspection Manual outlines requirement of images for condition 

evolution of structural components based on photographs (Navy Bridge, 2008). According 

to the manual, the photos shall be taken digitally with a 3 mega pixels camera in order to 

produce clear images of 3 inch by 6 inch. Likewise, a digital image with a minimum 

resolution of 240 dpi in JPEG format needs to be taken for a typical and significant 

structural condition evolution. The key aspect in acquiring digital image is to place a scale 

or inspection tool (e.g. hammer, tape, or pencil) in order to provide a frame of reference 

for the subject of photograph. A sample of well composed photograph is shown in Figure 

2.9 (Navy Bridge, 2008).    

 

 

 

Figure 2.9: A Well Composed Digital Images (Navy Bridge, 2008) 
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Further, the manual suggests acquiring a minimum number of photographs considering the 

following areas: a) an elevation view form each side of a bridge, b) a typical view of any 

deficiencies, c) a photograph of each approach road, d) a view looking upstream and a view 

looking downstream, e) minimum of two typical views per span and one per superstructure 

(Navy Bridge, 2008). In addition to the above mentioned photographs, all major defects 

found on the surface of structural elements shall be photographed and documented. Figure 

2.10 illustrates a well composed photograph of underside of a bridge deck, and Figure 2.11 

shows a poorly composed photograph. 

 

 

 

Figure 2.10: A Well Composed Digital Image showing the Underside of a Bridge Deck 

(Navy Bridge, 2008) 
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Figure 2.11: A Poorly Composed Digital Image, No scale for reference, location or 

orientation (Navy Bridge, 2008) 

 

2.4.2 Element Condition rating 

 

In BMS, bridges are recognized as assembly of structural elements. In Pontis, AASHTO 

Commonly Recognized (CoRe) elements are used to represent the structural components 

of bridges. The bridge inspectors collect element level information such as the extent and 

severity of different defects through visual inspections. In general, the outcome of routine 

bridge inspection is reported in the form of element condition rating (Hearn & Shim, 1998). 

According to the Recording and Coding Guide for the Structure Inventory and Appraisal 

of the Nation’s Bridges, the element condition rating is expressed on a scale of nine (9; 
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excellent condition) to zero (0; failed condition) (FHWA, 1995). However, the current 

BMS software like PONTIS uses four-state and five-state condition rating scales depending 

upon the types of materials used for construction of bridge structures especially developed 

for the commonly recognized (CoRe) elements (Hearn & Shim, 1998). The application of 

different condition rating scales for a reinforced concrete bridge structures is displayed in 

Figure 2.12. The bridge performance is measured by finding utilizing weighted sum of the 

element condition ratings.  

  

 

 

 

Pontis Condition  State 1 2 3 4 5 

   

Spalls 0 % < 2 % < 10 % < 25 % >25% 

 

Visible State Good Fair Poor Bad 

 

  

Figure 2.12: Current Condition Rating Scale for Reinforced Concrete Decks  

  

The above Figure shows the quantitative information required for assigning each condition 

states in Pontis for condition assessment of bridge decks. During a bridge deck inspection, 

the top and bottom of bridge decks are evaluated against cracking, spalling, scaling, and 

delaminations to assign condition rating for top and bottom surfaces, respectively. The 

deficiencies on the top surface of a bridge deck is defined as “the percent of deck surface 

area that is spalled, delaminates, or patched with temporary patch material” and the defect 

on the bottom surface not concealed by the stay-in-place forms is defined as “the percent 

NBI Rating 9 8 7 6 5 4 3 2 1 
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of deck underside area that is spalled, delaminated, or map cracked” (Aktan et al., 2013). 

The element condition rating is highly dependent of all types of defects that exist in a 

particular element. However, in the current practice of assigning element condition rating, 

the relative importance of all defects in a bridge element is often not considered (Akgul, 

2012). In the conventional way, the quantitative analysis of element condition rating is 

based on visual inspection. Hence, the reliability of such approach of assigning element 

condition rating information need to be enhanced by using emerging technologies such as, 

digital image processing. As per Pontis Bridge Inspection manual (2009), the detailed 

description of the four condition states are shown in Table 2.5. 

 

 

Table 2.5: Current Condition Rating Scale for Reinforced Concrete Decks 

(Pontis Bridge Inspection Manual, 2009) 

 

Condition (Index) Description 

“Good”     (1)      
The element shows little or no 

deterioration. 

“Fair”        (2)      

Minor cracks and spalls may be present 

but there is no exposed reinforcing or 

surface evidence of rebar corrosion. 

“Poor”       (3)      

Some delaminations and/or spalls may 

be present and some      reinforcing may 

be exposed. 

“Serious”   (4)     Advanced deterioration. 
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Based on the above criteria, the condition rating of concrete columns and concrete 

abutments have been assigned as condition ratings of  2, 3, and 4 as shown in Figure 2.13 

(a), (b), and (c) , as well as, Figure 2.14 (a), (b), and (c) respectively. 

 

   

(a)   (b)    (c) 

Figure 2.13: (a) Condition States 2, (b) Condition States 3, and (c) Condition States 4 of 

bridge columns (Pontis Bridge Inspection Manual, 2009) 

 

     

(a)   (b)         (c) 

 

Figure 2.14: (a) Condition States 2, (b) Condition States 3, and (c) Condition States 4 of 

bridge Abutments (Pontis Bridge Inspection Manual, 2009) 

 

The Bridge Inspector’s Reference Manual suggests collecting the photographs of the 

defects highlighting the degrees of deterioration reflected on bridge components during the 

data collection required for BMS through visual inspection techniques (FHWA, 2006). 

However, such images are not usually utilized for analysis of the defects. The thesis 
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proposes the application of digital images in evaluating element condition rating which can 

assist in improving the reliability of visual inspection.  

 

2.4.3 Bridge Performance Indicators 

 

Several types of bridge performance data are measured against defined assessment criteria 

such as condition assessment, seismic assessment, loading assessment, and scour 

assessment for a particular bridge element. Ghasemi et al. (2009) expressed the idea of 

ideal bridge should have the following characteristics: a) minimal hazard to users and 

minimal traffic obstruction, b) minimal negative impact on the local and global 

environment, c) pleasing appearance, and d) minimum whole-of-life cost. A summarized 

version of bridge performance issues is expressed in Figure 2.15.  

 

Bridge Performances

Structural Condition

Durability and 

Stability

Structural integrity

Safety and 

Serviciability

Functionality

User Safety and 

Service

Costs

User and Agency

 

 

Figure 2.15: Bridge Performance Framework 

 

After determining the individual performance of bridge components by assigning their 

condition rating based on the extent and severity of defects, the individual element rating 
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is again combined together to evaluate an integrated bridge performance by assigning a 

number from 0 to 100. The PONTIS software uses performance indicator as Bridge Health 

Index (HI), whereas the Ontario and Australian BMS use Bridge Condition Index (BCI) 

(Thompson & Shepard, 1994; OSIM 2000; Austroads, 2002).  

 

Mathematically, HI can be defined as the ratio of the current element value to the initial 

element value summed for all elements of a bridge as expressed by equation 2.1 (Roberts 

& Shepard, 2000).  

 

 Health Index = { 
Σ CEV

Σ TEV
}  x 100                  2.1  

 

where: Total Element Value (TEV) = Total element quantity * Failure cost of element 

(FC), Current Element Value (CEV) = Σ (Condition Statei* WFi)* FC, and the condition 

state weight factor (WFi) can be expresses as:  

 

 WFi = [1-(Condition State # -1) * (1/Total State Count- 1)]                 2.2  

 

When maintenance and rehabilitation actions are performed, the HI is likely to be increased 

for that element since corresponding asset value of the element will be increased. Figure 

2.16 below represents the ranking of defects corresponding to the health index (Roberts & 

Shepard, 2000).  
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Figure 2.16: Bridge Health Index   

The bridge Health Index (HI) is an important measure in accessing the condition of overall 

rating of bridges. If any one of the bridge components fails, then the component needs to 

be treated separately as a critical defect in bridge which requires immediate action without 

any delay. HI can be used for managing budget in a long term planning of assets. 

   

The Bridge Condition Index used by Ontario BMS combines inspection information into a 

single value. The ministry of transportation of Ontario uses the bridge condition index for 

repair and maintenance planning purpose, and not for bridge safety purpose. If there is a 

question of safety of a bridge, immediate actions are required to maintain the bridge. The 

Bridge Condition Index (BCI) is evaluated in similar way as Bridge Health Index, but the 

BCI utilizes the replacement value of an element instead of an element failure cost shown 

in Equation 2.3 (Hammad et al. 2007). 

 

BCI = (Current Replacement Value Total Replacement Value⁄  * 100)                    2.3  

 

Table 2.6 below highlights the performance indicator of bridges based on Bridge 

Condition Index obtained from element replacement value (Ontario Bridges, 2013).  
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Table 2.6: Bridge Condition Index (Ontario Bridges, 2013) 

Ontario BCI Performance 

70 - 100 Good 

60 - 70 Fair 

< 60 poor 

 

CSS Bridge Group in UK developed Bridge Condition Score which had the scale as the 

Element Condition Score ranging from 1 (Best) to 5 (Worst). However, the scale was 

considered to be difficult to understand and confusing for those outside the engineering 

community. Hence, a Bridge Condition Index (BCI) was introduced with a scale ranging 

from 100 (Best) to 0 (Worst) (Bridge Condition Indicators, 2002).  

BCS = 
Σ (BCI * EIF)

Σ EIF
                             2.4  

where: BCI = Bridge Condition Index derived from the following relation.       

BCI = ECS – ECF 

where: EIF = Element Importance Factor, and ECF = Element Condition Factor. Although, 

the above equations hold good for evaluating Bridge Condition Score, the critical elements 

need to be treated separately in order to prevent sudden failure of bridge components.   

 

2.5 Digital Image Processing 

 

Digital images have been proved to be very effective for condition assessment of concrete 

structures because magnified digital images are possible to acquire through the recent 

advancement in camera technology. However, the acquired digital images need to be 
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processed in order to derive meaningful or useful information required for a particular 

application. A number of useful techniques for image processing are: pre-processing, 

segmentation, edge detection, dilation, and image representation (Gonzalez et al., 2009). 

Some of the important image processing steps are described in the next sections. 

 

 Point and Line Detection 

 

 Image analysis is a fully developed area of computer science; however, the application in 

civil engineering has been growing fast since past decades. The application of image in 

civil engineering provides quantitative information on objects contained in an image frame, 

which enabling engineer’s confidence in the decision making processes. Since the process 

can be automated using computer vision application, several complex engineering 

problems have been solved in the past (Moselhi and Shehab-Eldeen 1999a, 1999b, 2000, 

Shehab-Eldeen 2001, Weil 1998, Ritchie et al. 1991, Chen and Abraham 2001, and Chen 

and Chang 2000). Image segmentation is the most important task in machine vision 

approaches. It can be handled by sub-dividing a given image into its different constituent 

objects so that high level machine vision analysis can be performed to extract desired 

information. The segmentation approach requires identifying points, lines, and edges 

(Gonzalez et al., 2009). These attributes can be obtained by mask processing techniques as 

illustrated in Figure 2.17.  

 

 



50 
 

 

 

 

 

Figure 2.17: (a) A Mask for Point Detection  

 

A mask operation can be defined by the Equation 2.5: 

R = ∑ wizi

9

i = 1

                                                                                                                                  2.5 

For point detection, the mask used is shown in Figure 2.17, where the center pixel contains 

the number 8 and neighbouring pixels contain the number -1. An isolated point is detected 

if the corresponding value of / R / as shown in Equation 2.5 is greater than T (i.e. / R / > 

T), where T is non-negative threshold value, R is the sum of product of coefficient within 

the mask region, and then the point is said to be detected.  

Similarly, after the detection of points, lines can also be detected. The above mask as shown 

in Figure 2.18 (a, b, & c) can be used to detect the lines lying on horizontal plane, + 45 

degrees, and - 45 degrees. 

  

-1 -1 -1 

-1 8 -1 

-1 -1 -1 
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(a)                                                        (b) 

    

 

    

    

(c)      

 

Figure 2.18: (a) A Mask for Line Detection a) Horizontal, b) + 45 Degrees, c) -45 

Degrees,  

Edge Detection 

In digital images, edges show drastic change in the gray level intensities. To determine the 

change in the gray level intensities, the first and second derivatives of the intensities need 

to be determined for a given image profile. Since the second derivative is very sensitive to 

noise, it is normally used to locate the crossing points which identify the zero intensity 

points. In order to find the first derivative of an image f (x, y), the gradient vector (∇𝐟) is 

calculated as shown in Equation (2.6).  

∇f = (
Gx

Gy
)  =  (

∂f
∂x
∂f
∂y

)                                                                                                                    2.6 

and the magnitude of this vector is given by 

-1 -1 2 

-1 2 -1 

2 -1 -1 

-1 -1 -1 

2 2 2 

-1 -1 -1 

2 -1 -1 

-1 2 -1 

-1 -1 2 
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∇f =mag(∇f) = {Gx
2 + Gy

2}
1/2

                                               

There are a number of operators developed for computing the image gradient for edge 

detection. The Prewitte Edge Operator (Figure 2.19) finds the image gradient operators 

i.e. Gx and Gy in order to compute the strength of edge detection; and another operator 

called Sobel Edge Operator is defined by two masks horizontal and vertical as shown in 

Figure 2.20 (Gose et al. 1996, Russ 1992; Batchelor and Whelan 1997). 

 

-1 -1 -1 

0 0 0 

-1 -1 -1 

                       

Figure 2.19: Prewitt Edge Operators (Horizontal & Vertical)   

-1 -2 -1 

0 0 0 

-1 2 -1 

 

Figure 2.20: Sobel Edge Operators (Horizontal & Vertical)     

 

It has been found that Sobel edge operator performed better than Prewitte edge operator 

because Sobel operator takes care of noise by averaging the image intensities, whereas 

-1 0 -1 

-1 0 -1 

-1 0 -1 

-1 0 -1 

-2 0 2 

-1 0 -1 
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Prewitte does not consider noise components (Gonzalez et al., 2009). Similarly, the second 

derivative operator can be found by Laplacian Operator which is given by Equation 2.7. 

 

∇2(f) =  {
∂f 2

∂x2
}    +   {

∂f 2

∂y2
}                                                                                                          2.7 

 

Since Laplacian Operator is very sensitive to noise, it is not used for edge detection. 

However, the effect of noise can be reduced by first operating with Gaussian Operator 

which is called Laplacian of Gaussian (LoG Operator). The LoG mask in two dimensions 

is shown in Figure 2.21. 
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Figure 2.21: Laplacian of Gaussian (LoG) Mask 
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Edge Linking and Threshold 

 

Due to various reasons, the edges of an object operated by Sobel Edge Detector are not 

continuous. However, the edge linking operations can be done by either local edge linking 

or global edge linking processes. The local processing is based on a similarity measure 

defined by the strength and direction of the detected edge (Gonzalez et al., 2009). In 

practices, the detected edges are not continuous due to non-uniform illumination and the 

presence of noise. So, the next step requires the disconnected edges to be linked together 

forming continuous edges. One of the popular methods used for linking the edges is called 

Hough Transform which is defined as mapping from spatial domain to parametric domain. 

Figure 2.22 shows the mapping of a straight line AB in spatial domain to a point P in 

parametric domain, and mapping of a point in spatial domain to a straight line in parametric 

domain. 
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     Y                      B                            c 

            A      Y = m1x + C1          c1                             P 

                                                                       X                             m1                       m 

 

Figure 2.22: Hough Transform a line AB to A Point “P” 

To avoid the situation of infinite slopes in spatial domain, a polar coordinate system can 

be used instead of rectangular a coordinate system. A straight line among any points can 

be drawn or detected by Hough Transform by selecting the parametric values which 

corresponds to the intersection points in the parametric domain (Gonzalez et al., 2009). 

 

In digital image processing, thresholding is the simplest way of image segmentation. 

During thresholding process, all the image pixels greater than threshold value are called 

“Object”, and all the image pixels less than threshold are called “Background”. Generally, 

objects pixels are assigned a value of 1, and background pixels are assigned as 0. In case 

of bi-model histogram, it is very convenient to automate the process of deterring the 

threshold value by analysing the histogram of images as shown in Figure 2.23.    
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  H (z)  Background 

          Threshold    Object 

        Z 

Figure 2-23: Threshold Determination by Analyzing Histogram 

 

Figure 2.23 demonstrates the histogram plot of an image, where the threshold image can 

be mathematically represented by Equation 2.8. In the case of multimodal histogram, more 

than one objects need to defined to isolate from image background. 

     g(x,y) = {
  Object (1)   = if (x,y)    ≥ T

Background (0) = if (x,y) < T        
}                                                              2.8 

As explained above, the threshold is not only dependent on pixel intensities, but also it is 

dependent on pixel location and local properties in a neighbourhood. Hence, the threshold 

can be defined as a function of three parameters as shown in Equation 2.9 (Gonzalez et al., 

2009). 

T =  T{ (x, y), f (x, y), p (x, y)  }                                                                                          2.9 

where, (x, y) = Pixel Location, f (x, y) = Pixel intensities, and p (x, y) = Pixel local 

properties in the neighbourhood. Depending upon above three parameters, the threshold 

could be Global, Local or Adopting threshold value. The three types of thresholds are 

defined in Equation 2.10. 

T = {

 
Global Threshold  =  T ( x,y)

Local Threshold = T < p (x,y), f (x,y)>
Adoptive Threshold = T <(x,y), f (x,y), p (x,y)>  

}                                             2.10 
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Global thresholding can be easily automated based on histogram analysis as it is not 

dependent on pixel location. However, in the real life, the global thresholding may not be 

applicable for a given image due to non-uniform variation of the pixel intensity. In such a 

case, the global threshold will fail and an Adoptive/Dynamic threshold operation may 

need to be applied. 

 

2.6 Measuring Shapes 

 

Dryden and Mardia (1998) defined “shape” as all the geometric information that remains 

when the location, scale, and rotational effects are filtered out from an object. However, 

describing the images with a few numbers of parameters or metrics is a challenging task 

(Neal and Russ, 2012).  

 

Traditionally, man-made objects can be easily classified using the geometric parameters 

such as, area, length, and perimeter based on the Euclidean geometry. These 2D features 

are well developed for image interpretation and can be calculated using mathematical 

modeling (Ghosh and Deguchi, 2008). However, these features are not suitable for natural 

defects occurring in bridge decks because of irregular size and wide range of variability in 

texture patterns. Problem also arises when working with a large number of individual 

images which have been photographed at different locations (Nishimura, 2012). It is not 

possible to work with individual images in finding their locations and image scales. This 
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thesis discusses the features which are invariant to translation, rotation, and scale 

manipulation in describing objects. 

 

The shape of an object is primarily controlled by the material characteristics, processing 

and history, and environmental effects. The shape of an object changes at different point 

of time. The shape metric extracted using the image analysis can be useful to determine the 

behavior of an object and compare the change in a bridge element determined from 

inspection, which is the major focus area of this work.  

 

Loncaric (1998) explained that finding few metrics for describing shape is an important 

goal for computer vision approach. However, the selection of the best set of few metrics 

that will provide adequate uniqueness and show correlation with human intuition is a 

complex task. Figure 2.24 describes different types of shape descriptors based on either the 

entire perimeter or the entire area. Some features allow reconstructing the original image 

completely and others do not. The choice of descriptors depends on a particular application. 

However, for this work, the methods which produce a few set of shape numbers and are 

invariant to image manipulations are selected for change detection. In the past, several 

feature vectors had been chosen for quantification of defects contained in digital images. 

Some of the feature vectors extracted from digital images for defect representation have 

been discussed briefly.  
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Figure 2.24: Shape Descriptors (F. B. Neal & J. C. Russ, Measuring Shape) 
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2.7 Summary 

 

The literature review highlighted the current development in condition assessment of 

concrete structures using remote sensing applications. It was observed that digital based 

technology is the best for concrete surface defect quantification purpose. Based on the 

literature review, three problems are identified to conduct this research. The first problem 

is to determine the depth of crack in a reinforced concrete beam if a crack width is known. 

In practices, the concrete beams are concealed and it is a challenging task to measure the 

depth of cracks. For this problem, this research develops crack detection and quantification 

models based on digital images. The second problem is to develop an automated prediction 

of condition rating tool for bridge elements based on severity and extent of defects. For 

this problem, digital images are suggested to use for defect data collection associated with 

bridge elements. And the last problem is to investigate the propagation of defects with 

change in time periods. Such tracking of defects will show that when and how the financial 

budget need to be spent on structures in order to maintain the safe operation. The next 

chapter deals with the methods how to approach the identified problems.       
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Chapter 3: Proposed Methodology 

 

3.1 Introduction 

 

The previous chapter on literature review summarized the application and importance of 

digital image processing to help solving the problems of condition assessment of civil 

infrastructure (Abudayyeh et al. 2004, and Brilakis et al. 2006). Recent literature clearly 

demonstrated that the use of high resolution digital cameras provides the best results for 

defect quantification using non-destructive technology in reinforced concrete bridges 

(Ahlborn et al., 2010, McRobbie 2008/2009, and McRobbie et al. 2010). However, the 

application of non-destructive testing technologies for the enhancement of visual 

inspection in conjugation with the bridge management system needs to be explored further. 

In current practices of condition assessment of civil infrastructure, digital images and 

sketches are used to supplement the inspection findings by maintaining photo logs and 

filling bridge inspection forms similar to one given in Appendix B (BIRM 2012). This 

thesis aims to integrate the output of digital image processing with bridge management 

system in order to enhance the reliability of visual inspection by analyzing digital images. 

The adopted methodology for this research has been explained next. 

 

3.2 Proposed Methodology 
 

 

The proposed research methodology is shown in Figure 3.1 and the detailed methodology 

framework which encompasses three modules: digital image processing module, data 

processing module, and condition assessment module as illustrated in Figure 3.2. The thesis 
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work started with reading literature on remote sensing application for condition assessment 

of civil infrastructures. During literature review, it was found that there is a need for 

improved method of data acquisition and interpretation for enhancing the reliability of 

visual inspection process for bridge condition assessment. This thesis proposes several 

modules which have been described in brief here.  

Research Methodology

Literature Review

Field Visits Lab Experiments
Computer Simulated 

Images

Preparation

Data Collection

Design of Algorithms 
Defect Quantification Module based on Digital 

Imgaes

Analysis Models DevelopmentTraining/Testing

Implication ValidationCase Studies Future Research

 

Figure 3.1: Research Methodology 
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Figure 3.2 : The structure of the proposed Framework 
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To develop the proposed methodology, the thesis considers three types of major defects 

associated with reinforced concrete bridge decks and supported beams. The first type of 

defects considered here is cracking of concrete surfaces which show crack patterns due to 

material failure or other reasons.  

 

For reinforced concrete beams and decks, crack widths of less than 0.3 mm (0.01 in.) have 

little consequence in terms of overall corrosion of reinforcing steel (Houston et al. 1972, 

Ryell and Richardson, 1972). When the width of a crack is more than 0.3 mm, the chance 

of corrosion increases in reinforcing steel leading to concrete spalling. Any concrete cracks 

wider than 0.9 mm (0.035″) require to be maintained by contractors according to Colorado 

Department of Transportation in USA (0.035″) (Yunping et al. 2003, OSIM 2008). The 

second type of defects considered in this thesis is spalling which is an issue with the 

concrete surfaces resulting from the loss of concrete material due to delaminations in the 

concrete decks. The third type of defects considered is scaling defined as loss of deck 

surface due to physical or chemical material properties. The magnitude of scaling defect 

varies from 1/4 inch to 1.5 inch in depth for demonstration of the proposed methodology. 

 

3.3 Field and Lab Data Collection 

 

Generally, bridge locations are inaccessible due to traffic movements, river crossing, train 

crossing, tunnels, and many more to list. However, to demonstrate a real bridge example, 

the easy accessible overpass bridge site at the intersection of Selby Street and Greene St. 
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in Montreal was selected to collect photographs of the bridge as shown in Figure 3.3. Only 

a small portion of the overpass was modeled to illustrate the application of digital image 

processing for defect quantification. Based on visual inspection in the selected portion of 

the over pass, the condition rating was assessed to be 2 based on observation that the area 

of spalling is less than 2 percent for the entire deck soffit. The elevation of the overpass 

has been shown in Figure 3.4. 

 

 

 

Figure 3.3: The location of Bridge Site for Field Demonstration 
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Figure 3.4: The Elevation of a Bridge Overpass 

 

To illustrate crack quantification and change detection approach, several digital images 

were also collected during lab experiments designed for bending test of reinforced concrete 

beams as illustrated in Figure 3.5. For this experimental study, the design of reinforced the 

concrete beam was done by Rahmatian (2014) and the flexural testing was conducted at 

the Structural Engineering Laboratory at Concordia University. As of the present thesis, 

the crack patterns and their progression were monitored using crack scale and digital 

imaging. 
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Figure 3.5: Images form Lab Observations 

 

For image data acquisition, portable Sony cameras have been as used shown in Figure 3.6. 

For defect quantification, high resolution images are necessary with sufficient overlapping 

so that image stitching can be performed to get a single detailed image (Brown and Lowe, 

2007). As far as possible, the high resolution digital images are taken orthogonal to surface 

of interest so that error due to camera manipulation can be minimized. The methodology 

also requires a single image showing entire face of a bridge element in order to build 3D 

model for bridge components to simulate on-site visual inspection. In order to accelerate the 

process of image acquisition, a framework of hybrid camera can be used. The hybrid camera 

consists of two cameras: one focusing on capturing the entire surface and another focusing 

on defects only. The details of using hybrid camera for image acquisition have been 

discussed in details by Nishimura et al. (2012).  
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Figure 3.6: Cameras used in for Image Acquisition 

 

Targets 

The dimension of objects in an image frame cannot be determined without a real world 

coordinate system with known scale. The image scale can be established by placing a target 

of known length in the image frame while performing photography. Generally, an artificial 

scale or natural scale can be included in image frames to highlight the object of interest, and 

also for image quantification purpose (Jáuregui et al. 2006). The natural objects such as 

sharp corners of beams and any visible objects in the image frame can be related to the 

scale of an image. Similarly, artificial targets are used when sufficient numbers of natural 

targets are not available. Any kinds of painted rods and colored card boards can be used as 

artificial targets (Jáuregui et al. 2006). Figure 3.7 shows a piece of paper of width 60 mm 

used as an artificial target. 
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Figure 3.7: Artificial Target in the image Frame  

 

3.4 Digital image Processing 

 

3.4.1 Pre-processing 

 

After image acquisition with digital cameras, image pre-processing is necessary for image 

enhancement because real images contain noise. Noise is the unwanted element present in 

a picture frame which adds difficulties in processing image algorithms for the automation 

process. Generally, there are two image enhancement methods that can be applied: spatial 

domain operation, and frequency domain operations as shown in Figure 3.8 (Gonzalez et 

al., 2009). Spatial domain operation is divided into three parts based on the particular 
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needs. They are point processing, histogram based techniques and mask processing. For a 

particular given image, a combination of image enhancement algorithms may be required 

to produce representative images. 
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Figure 3.8: Image pre-processing techniques 

 

As explained above, the main image acquisition device used in this research are digital 

cameras as shown in Figure 3.6. A conventional camera image is a 2D image, which is 

essentially a projection of 3D world scene. The perspective projection of a real object has 

been shown in Figure 3.9. The perspective projection of an image has two properties: a) 

foreshortening – the objects farther away from the viewer appears to be smaller, and line 

convergence – the lines parallel in the image frame appears to converge at a point (Solomon 

& Breckon, 2011). The elevation of the overpass bridge depicted in Figure 3.4 after 

correcting perspective errors has been shown in Figure 3.10. Further details of image pre-

processing are described in Chapters 4, 5, and 6. 
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Figure 3.9: Effect of perspective projection model (Solomon & Breckon, 2011) 

 

 

 

Figure 3.10: Corrected Image form Perspective Error 
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3.4.2 Segmentation 

 

Digital images usually contain huge quantity of data with respect to pixel, as well as the 

intensity level associated with each pixel. However, all information present in an image 

may not be useful for a solution of a particular problem. Such extra information is called 

noise and need to be removed through the process of image segmentation. An overview of 

image segmentation algorithm is explained in Figure 3.11.   
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Figure 3.11: Image Segmentation Algorithms (Gonzalez et al., 2009). 

 

Manual setting of threshold is considered to be more accurate than automatic thresholding; 

however, such process should be avoided, if possible, because different results are likely 

to be obtained at different time by different people (Russ, 1992). A number of automated 

thresholding methods have been developed over past decades and a summary of widely 

used methods can be found in (Parker 1997, Otsu 1979, Sezgin and Sankur 2004). As an 
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initial segmentation, canny edge detection is applied; however, the segmented result from 

this operation does not yield satisfactory results (Maini & Aggarwal, 2009). So, a number 

of additional mathematical morphology operations are designed for proper image 

enhancement which successfully separates objects and their backgrounds. The process 

starts with the proper selection of color plane which can better represent the class of defects. 

The details image segmentation sequences are explained in Chapter 4. 

 

3.4.3 Morphology 

 

The common applications of mathematical morphology in digital image processing can be 

classified into three groups: a) image pre-processing, for example, noise filtering, and 

shape simplification i.e. complicated structure can be broken into simple form, b) object 

quantification by finding out object area, perimeter, and etc., and c) enhancing object 

structure by dilation, erosion, opening, and closing operations (Biswas, 2008). The erosion, 

dilation, and their combinations are most widely used morphological operations which are 

usually processed from binary images (Coster and Chermant 1985, Dougherty and Astola 

1999). An example of mathematical morphology is shown in Figure 3.12. 
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Original,                 b) Erosion,                  and   c) Dilation 

 

Figure 3.12: Combining Erosion and Dilation Processes (Maini & Aggarwal, 2009). 

 

3.5 Data Processing and Condition Assessment 

 

In this research, neural networks algorithms are used for data processing which is 

described briefly here.  

 

3.5.1 Neural networks 

 

After obtaining the feature attributes form digital image analysis, the features are processed 

using neural network to draw meaningful information which can aid in condition 

assessment of bridge components. Neural Networks were first introduced by McCulloch 

& Pitts in 1943 (Fausett 1994). They can be used as an effective tool for decision making 

purpose because they mimic the similar way of how human brain works (Anderson and 

Davis, 1995). The processes can be automated and the influence of subjectivity can be 

eliminated, and thus improving the reliability of asset management. Back propagation 

neural networks are adopted for data analysis for mapping bridge defects into element 

condition ratings. The superior performance of neural networks for condition assessment 
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of civil infrastructure has been discussed by several authors (Moselhi et al. 1994, Tamura 

and Tateishi 1997).  

 

The outcome of neural networks processing is based on distribution of weight which is 

generally obtained by trial and error method. Although there are some guidelines in 

choosing initial parameters such as: a) activation and scaling functions, b) numbers of 

hidden layers, c) numbers of neurons in input, hidden, and output layers, and learning rate 

and momentum coefficients, the iterative process can only predict the satisfactory 

performance of mapping models. The details of neural networks design and 

implementation can be found in Chapter 5. The neural networks model for prediction of 

condition rating has been illustrated in Figure 3.13.  

 



76 
 

BPNN 

Models

Information Model (b)

(Condition Rating 

Prediction)

Information Model (a)

(Depth Prediction)

Model Training & 

Testing

Model Training & 

Testing

Model Validation Model Validation

Scaling Depth Condition Rating

Feature Extraction

(Image Processing)

Data Acquisition

(Digital Camera)

 

 

Figure 3.13: Neural Network Model for Condition Assessment (Adhikari et al. 2012a). 

 

3.5.2 Spectral and Fractal Analysis 

 

The changes in defect patterns or in element condition index during visual inspection of 

bridges are primary concerns for inspectors. This thesis presents a new approach for change 

detection of defects in bridges by identifying changes in texture patterns through spectral 

analysis of digital images. The commonly used method for change detection is image 

differentiation. This subtraction method requires images to be of same size, scale, and 
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rotation. However, no two images are same in real practice. Thus, image registration is 

required to align images and to produce change maps. This process is tedious and it is 

difficult often to achieve a good registered image. But, the change detection task can be 

readily modeled in frequency domain for texture patterns discrimination and also for 

quantifying their properties. The novel approach of change detection works by 

transforming digital images into Fourier spectrum. In new coordinate system, 1-D signature 

functions can be drawn which facilitates easy comparison of textures in different directions 

(Adhikari et al. 2013a). Similarly, the fractal analysis describes the surface disorder of 

defects by finding the fractal dimension (FD) using Box Counting Modeling algorithm. 

The proposed methodology provides useful tools for comparison of inspection history 

graphically and quantitatively. In practice, expensive sensors are used to detect subtle 

change in defect patterns (Adhikari et al. 2013d). The proposed method can be used to 

detect subtle changes in defect patterns using digital images at much lower cost. Enhanced 

methodologies of spectral and fractal analyses has been shown in Figure 3.14 and 3.15 

respectively.  
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Figure 3. 14: Spectral Analysis of Digital Images (Adhikari et al. 2013a). 
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Figure 3. 15: Fractal Analysis of Digital Images (Adhikari et al. 2013d). 
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The condition assessment of reinforced concrete bridge module consists of three major 

modules: a) condition assessment based on crack analysis of concrete beams and slabs, b) 

condition rating assignment based on scaling defects, and c) recommendation based on 

change detection. The details of condition assessment module with 3D visualization are 

explained in Chapter 4. This thesis explores the aspect of condition assessment based on 

surface defects which can be tracked with digital images. In general, condition assessment 

of bridges depends on any changes in geometric properties of structures, environmental 

conditions, loading/boundary conditions, and change in material properties. Although the 

current structure health monitoring methods for bridges use level IV to assess in-service 

performance of structures with primarily focus on determining the damage extent and 

location (ISIS 2001), the detailed condition assessment of bridge structures including 

internal defects are outside the scope of this research.  

 

3.6 Limitations 

 

As outlined in this chapter, as well as described description found in Chapters 4, 5, and 6 

along with the lab and field studies, the following limitations are identified during this 

research.  

 

This thesis develops crack quantification algorithms which have utilized the digital images 

collected in lab during the bending test of reinforced concrete beams. Considering the 

camera limitations adopted for this work, the developed algorithms are suitable for the 
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crack width from 0.3 mm to 0.9 mm. The developed algorithms can be also applicable for 

crack quantification of hairline cracks provided higher resolution digital camera is used for 

crack data acquisition. 

 

Another limitation of the quantification module is that most of the digital images are taken 

in similar environmental conditions. Several digital image processing techniques have used 

to isolate the required objects from their background. However, the effect of environmental 

effects on object segmentation has not been studied in this research. During the research, 

it has been realised that concrete crack detection and quantification problem is also 

dependent on the texture of the concrete surface.  

 

This research develops a neural networks model for prediction of a crack length given the 

crack width for a reinforced concrete beam, which is 1.7 m in length having the cross 

section of 0.25 m x 0.15 m. It was found that the crack width is not directly proportional to 

the crack length/depth ratio for a given material and beam cross section. The behaviour 

need to be studied with different beam length with varying cross sections to simulate the 

real world environment. 

 

The complete condition assessment of concrete structures involves studying more than 

seventeen defects as mentioned in FHWA (2006). So far, this research proposes automatic 

predication of condition rating for bridge elements based on scaling defect only. The 

condition rating model has been developed based on supervised learning of neural 

networks which is based on OSIM (2008). To develop such rating system for other defects, 



81 
 

it is necessary to have quantitative condition rating mapping information available in 

inspection manuals either in the form of images or numbers. Unfortunately, the current 

inspection manuals do not provide such information for all defects except crack, scaling, 

rusting, and so on. Based on the linguistic information, it is difficult, although not 

impossible, to develop automated condition rating models.  
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Chapter 4: Concrete Crack Analysis using Digital Images 

 

4.1 General 

 

The problems of cracking in reinforcement concrete structures are natural and can invite 

spectacular failure of entire structures (Rizkalla & Shahawi, 1982). There always exist 

constraints in reinforced concrete structures and hence cracking is unavoidable regardless 

the types of structures. Cracks not only provide access to harmful and corrosive chemicals 

inside concrete, but also allow water and de-icing salts to penetrate through bridge decks 

which can damage superstructures and bridge aesthetics (Krauss & Rogalla, 1996). In spite 

of significant research in addressing the problems of cracking in bridges, it still remains a 

challenging problem whether it is an old and newly constructed bridge (Ganapuram et al. 

2012). Therefore, a rigorous study towards the evaluation of extent and severity of cracks 

is necessary for condition assessment of bridges, and to maintain database for bridge 

inspections for long-term analysis. 

 

This chapter presents an integrated model considering crack as a major defect for condition 

assessment of concrete bridges in order to enhance the tasks of routine bridge inspection. 

The proposed integrated model consists of crack quantification, neural networks, and 3D 

visualization models to represent concrete defects in such a way that it mimics the on-site 

visual inspection. 
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Many attempts have been made to enhance traditional approaches of condition assessment 

of concrete bridges. Abudayyeh et al. (Abudayyeh et al. 2004) proposed a framework for 

automated bridge imaging system based on digital image processing and integrated with 

Bridge Management Systems (BMS) PONTIS (Gutkowski & Arenella 1998). The pre-

requisite to such automated models are the digital representation of defects i.e. the defects 

or change detection need to be defined numerically to automate the process. Several Non-

Destructive Testing (NDT) techniques such as corrosion detection, alkali-silica reactions, 

and sulfate attacks exist to identify the existence and extent of deterioration in concrete 

structures in order to understand their behavior (OSIM 2008). However, the detection of 

extent and severity of internal defects in concrete components is laborious, time 

consuming, and often may not be reliable. Although this thesis discusses only external 

defects which can be tracked by digital images or visual observation, the internal defects 

may not often reflected on the concrete surfaces in the form of scaling, spalling and cracks. 

Those defects can be identified using Non-Destructive Test or Evaluation (NDT/NDE) and 

Structural Health Monitoring (SHM) techniques. The concrete surfaces show the combined 

effects of internal and external defects in the form of surface defects. Out of several defects 

in reinforced concrete structures, cracks play a vital role in determining the condition 

assessment of structural elements. For this reason, this work adopts concrete cracks as the 

major defect parameter for condition assessment of concrete elements. For crack analysis, 

crack quantification and identification of crack patterns are necessary to reveal the 

condition of bridges.  
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Crack width varies at each point along the length of cracks. From practical point of view, 

a long crack needs to be divided into several small segments and average width of each 

segment requires to be analyzed separately. The proposed crack quantification model 

evaluates crack length from crack skeleton perimeter which considers the tortuosity of 

cracks and the crack segments are obtained by subtracting key marks such as branch points 

from the crack skeleton itself. The existing work on crack length quantification is based on 

object-oriented bounding box which does not consider the tortuosity of cracks (Zhu et al. 

2011). Also, the crack segmentation approach required searching of crack pixel 

connectivity. This approach needs input of at least one point to start searching of connected 

points and matching with orientation angle to decide whether the pixel in question belongs 

to same group or not (Zhu et al. 2011). If there exists multiple of crack skeletons 

(unconnected crack regions) in a same image frame, the existing approach of segmentation 

becomes time consuming. The proposed method is free of such issues. Additionally, the 

number of branch points serves as a good indicator of condition rating of concrete elements. 

The increasing numbers of branch points could be an indicator of decreasing integrity of 

structural elements.  

 

Identification and detection of individual cracks are not sufficient in understanding the 

structural behavior. It is a challenging task to identify how the crack patterns will develop 

over time and what will be the severity of cracks on those locations. For this purpose, a 

method is developed for 3D visualization model of crack patterns measured through crack 

density defined as the total length of cracks divided by total surface area. Maksymowicz et 

al. (2011) developed 3D visualization models of defects based on digital image processing.  
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However, their models were supported by advanced graphical editor software to model 

defects from photos. The proposed integrated model is supported by 3D visualization of 

crack density by projecting digital images and neural networks models to predict crack 

depth necessary for condition assessment of concrete components. With the successful 

application of the proposed approach, the tasks of routine bridge inspection can be greatly 

enhanced by merging with automated bridge management systems.   

 

4.2 Crack evaluation in Concrete Structures 

 

The common forms of crack patterns experienced in reinforced concrete structures are 

longitudinal, transverse, diagonal, crack map, and random cracks (Schmitt & Darwin 

1995). Transverse cracks are generally formed perpendicular to longitudinal axis of bridge 

decks under the transverse reinforced steel. Transverse cracks are typically full depth 

across sections and cracks spacing are 3-10 feet apart seen along the length of bridge deck 

(Krauss & Rogalla 1996). Field survey requires identifying the location and orientation of 

such cracks. Similarly, the cracks running parallel to longitudinal axis are called 

longitudinal cracks which appear just above the longitudinal reinforced steels. The latter 

cracks follow the paths of reinforcing steel in structural elements (Curtis & White 2007). 

Crack patterns also differ from one type of bridges to another. Skewed bridge decks are 

more prone to diagonal cracks as compared to straight aligned bridges (Feng et al. 2007). 

Another way of visualizing a crack pattern is Map Cracking. Improper curing and 

restraining volumetric change of concrete are the primarily causes of Map Cracking 

(Schmitt & Darwin 1995). There is a lack of appropriate methods for modeling and 
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visualization of crack patterns that can assist in quick and reliable decision making process. 

The crack survey described here is as per the protocol developed by the University of 

Kansas as a part of Pooled Fund TPF -5(051) Construction of Crack-Free Concrete Bridge 

Decks (Ganapuram et al. 2012, Pooled Fund 2009). The cracks considered in this protocol 

are greater than 0.2 mm because this size of cracks is visible with the naked eyes. The 

initial preparation of the deck surface is required before carrying out crack survey. The 

bridge deck might require cleaning with clear water so that the cracks are visible to the 

naked eyes. Then, a grid of 5ft by 5 ft. (as reported by Ganapuram et al. 2012) is marked 

on the deck surface to locate the position and dimension of cracks. This survey data is 

plotted on CAD drawings and overlaid on structural drawing. The obtained crack map can 

reveal important distinction between structural and non-structural cracks on the deck 

surface (Ganapuram et al. 2012). However, this procedure is time consuming and 

expensive. Hence, a fast and economical way of preparing a crack map using digital image 

processing is sought for 3D visualization of cracks.  

 

4.3 Proposed Method for Analysis of Cracks 

 

The developed method encompasses structured procedures for image capturing, image 

projection, crack segmentation, and data fittings by Neural Networks with a 3D 

visualization of crack patterns as shown in Figure 4.1. A set of algorithms such as crack 

identification and quantification are designed and developed based on branching concept 

of cracks. Additionally, a neural network model was developed that maps relationship 

between crack depth and crack width supported by 3D visualization models.  
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Figure 4.1: Proposed Method for Analysis of Cracks 

 

4.3.1 Imaging Criteria for Data Acquisition  

 

A digital image is 2D projection of 3D real world objects. The effectiveness of digital 

image analysis highly depends upon how 3D to 2D projections occurs. The image 
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projections can be broadly classified in two parts: perspective and orthographic projections. 

The camera coordinate in perspective projection can be defined by Equation 4.1 (Solomon 

& Breckon, 2011).  

 

x = f*X/Z  and y = f *Y/Z                                                                                (4.1) 

 

where, a 3D read world coordinate is represented by (X, Y, Z), a camera coordinate is given 

by (x, y), and f represents the focal length of a conventional camera as shown in Equation 

4.1.  

 

Scheffy et al. (1999) corrected the orientation of original images by removing warp and 

skew before tracing the cracks properties. Similarly, McRobbie (2008) showed a single 

pixel in an image taken perpendicularly to surface that would represent a smaller area than 

the same pixel in an image taken at an angle. Furthermore, the report lists various imaging 

criteria’s such as minimum pixel resolution shall be 1 pixel/mm, camera position, elevation 

and bearing shall be recorded while taking images, and successive images shall be 

overlapped for image stitching problems. The orthography projection is defined 

mathematically by Equation 4.2 (Solomon & Breckon, 2011) as follows. 

 

X = m * X  and y = m * Y                                                              (4.2) 

 

where, m is called the scaling factors. This projection is an affine transformation in which 

the relative geometric relationships are maintained. In practice, if the images are acquired 
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very close to scene, it can be considered as orthographic projection and is suitable for 

digital image analysis (Solomon & Breckon, 2011). However, in bridge inspection, it is not 

always possible to acquire images very close to the scene, and they need some sort of 

transformation to make the images orthographic. In general, a transformation matrix is 

composed of rotation, translation, and magnification as expressed by Equation (3) 

(Gonzalez et al. 2009). 

 

         (
x` 

y`
)  = [

A11

A21
 
A12

A22
]  (

x

y
)  + (

b1

b2
)                                                            (4.3)    

 

Where, x`, y ` are the transformed coordinate of points (x, y).  

The coefficients b1, b2 relate to translation, A11, A12, A21, A22 correspond to rotational 

and scaling parameters.   

 

For affine transformation, all elements of the projection vector is equal to 0. To illustrate 

the perspective error, synthetic images of different length and width were drawn and the 

developed algorithms was tested on the images as shown in Figures 4.2a and 4.2b. Figure 

4.2a was taken by rotating the image by 10 degrees and Figure 4.2b was taken at 45 degrees. 

The analysis showed that errors increased significantly, up to 40%, in oblique images.   
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Figure 4.2: (a) Images rotated by 10 degrees 

 

 

Figure 4.2: (b) Images at 45 degrees (oblique view)  

 

Projective transformation can be considered as a tool to project images on 2D planes such 

that the geometric relationships within each image are not destroyed. The complete work 

flow for this projective transformation has been shown in Figure 4.3, based on (Solomon 

& Breckon, 2011). 
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Figure 4.3: Projective Transform Work Flow  

 

The synthetic image displayed in Figure 4.2b was corrected against the perspective error 

and displayed in Figure 4.4. The errors in crack width calculation from the corrected image 

are within an acceptable range from inspection aspect of concrete elements in comparison 

to visual inspection. 

 

 

 

Figure 4.4: Image after Projective Transformation (corrected Image)  
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The tests on five such synthetic images show that the orthogonal images have the least 

perspective and parallax errors. The Figure 4.4 shows the estimated width of cracks and 

the actual width of cracks measured manually. The results show that error increases up to 

48% by taking the images at 45 degree angles from horizontal plane (perspective error). In 

bridge inspection, it is not always possible to take images in orthogonal views and it needs 

to apply geometric transformations to correct such errors. After applying orthogonal 

transformation, the error was reduced to below 15% on the test images which is acceptable 

in many cases for bridge inspection purpose in comparison to visual inspection of bridges 

shown in Figure 4.4.  

 

4.3.2 Image Stitching  

 

This research adopts the image stitching algorithm developed by Brown and Lowe, 2007. 

In this process, a set of images of different parts of an object are stitched or combined 

together based on the invariant features extracted from those images and matching them. 

This algorithm works on feature-based registration which is invariant to rotation, zooming, 

and illumination change in input images. The additional details about the image stitching 

problem can be found in Zhu et al. 2011, and Brown & Lowe 2007. 

 

In this work, each photo frame must include either a natural or artificial target for scale 

calibration to get pixel value in millimeter. After image acquisition, pre-processing is 

required for proper image enhancement. Generally, there are two image enhancement 

methods considered: spatial domain, and frequency domain operations. Spatial domain 
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operation is divided into three parts: point processing, histogram based techniques and 

mask processing (Biswas 2013). The adoption of particular algorithm is an application 

dependent. The preliminary study of image stitching and image preprocessing is explained 

in Adhikari et al. (2012a).  

 

4.3.3 Discrete Crack Detection and Analysis 

 

Practically, it is not feasible to develop a generic algorithm to extract object properties form 

digital images (Laptev et al. 2000). There is always human intervention at some point in 

the automation process and an acceptable level of human intervention shall be defined 

based on accuracy, efficiency, and repeatability (Paul 2000). The developed algorithms for 

retrieval of crack properties are shown in Figure 4.5. The process starts with reading digital 

images and selecting a suitable color plane for crack identification. Then, image 

preprocessing and image morphology are carried out to find image skeletons and branch 

points associated with an image frame. After identifying the desired objects in the image 

frame, objects attributes such as crack length and width are labeled for visualization. The 

detection and analysis of cracks starts with reading images, exploring red, green, and blue 

(RGB) color planes and segmenting by suitable edge detection algorithms. 
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Figure 4.5: Crack Detection Algorithm 

 

4.3.4 Skeletonization of cracks 

 

Skeletonization is an important step to retrieve crack segments which show different paths 

at their branching points. This can be described mathematically by distance measure in 

image processing domain (Biswas 2013). In digital domain, the commonly used algorithms 

for distance measures are Euclidean Distance, D4 distance, City Block distance, Manhattan 

Distance, and Chase Board Distance. Considering three points p (x, y), q (s, t), and z (u, 

v), the Euclidean Distance, D4 distance, and D8 distance can be calculated using Equations 

4.4, 4.5, and 4.6 respectively (Biswas 2013). 

De (p, q) = [(x-s) 2 + (y-t) 2] ½                                                          (4.4) 

D4 (p, q) = abs (x-s) + abs (y-t)                                                        (4.5)  

D8 (p, q) = max [abs (x-s), abs (y-t)]                                              (4.6)  
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From the skeleton of an image, the following crack descriptors which can be easily 

obtained are defined: length of the segment, points of at least 2 branches, points of at least 

3 branches, and number of branch points, and width profile. 

 

4.3.5 Crack Length and width 

 

The above approach divides a given crack in various segments subtracting branch points 

from the crack skeleton. The estimation of crack length is based on the perimeter of crack 

skeleton. Practically, cracks in concrete elements have less number of pixels as compared 

to their background and have large length to width ratios. Hence, half of the perimeter of 

crack skeleton is a good approximation of crack length. The area of a crack object in binary 

images is found by the summing area covered by each pixel. After getting the length and 

area of a crack object, its average width can be calculated by dividing total area by length 

of the crack segment. The process has been described in Figure 4.6d. Then each crack 

segment is labeled and the crack properties are retrieved. However, additional criteria need 

to be defined to clean up the noise present at the final stage to discriminate among the 

cracks (Richard et al. 2001). For example, the additional criterion for length estimation is 

that a crack must not have a length smaller than 20 pixels. This limit is application 

dependent and can vary from one problem to another. The developed algorithms are tested 

on real images shown in Figure 4.6. The images in Figure 4.6a, 4.6b, and 4.6c show crack 

detection, branch points, and estimation of crack length respectively. 
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Figure 4.6: Original crack image,              (a) Crack Detection 

  

 Figure 4.6 (b): Branch Points,                       Figure 4.6 (c): Crack length 

 

Figure 6(d): Estimation of Crack Length and Width  
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Images from Lab Experiments  

 

Due to a great variability in observing the crack-depth and crack-width, the accurate 

assessment of the condition of a structural member are is possible only at a statistical level 

(Gilbert 1992). The experimental setup is shown in Figure 4.7 where a numbers of digital 

images were collected for data analysis. The details of cross sections and structural 

reinforcing bars details are shown in Figure 4.7a. When tensile strength of a concrete 

member reaches its maximum allowable value, the flexural cracks appear the stiffness of 

the member reduces. These cracks are called primary cracks which penetrate spontaneously 

to a certain depth. It was observed that the height of a primary crack immediately after 

cracking is significant and remains constant under increasing loads to some extent. 

However, the width of such a crack increases gradually with load and time. The images 

were collected during experiment at different levels of the applied load.  

 

 

 

Figure 4.7: Experimental setup for beam loading under bending 
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Figure 4.7a - Cross-section and reinforcement details. 

 

For crack detection, a camera was focused at the critical crack point just below the point 

of application of loads, while another camera was used to take different images covering 

crack patterns of the whole beam. At images taken at different stages were later retrieved 

and their length and width were calculated separately. To check the accuracy of crack width 

obtained from developed algorithms, a crack scale shown in Figure 4.8 was used to 

measure the actual crack-width. For illustration, the original image was rotated to 90 degree 

to fit the paper size and space. The obtained crack width using the developed algorithms at 

115 KN load was found 0.89 mm as shown in Figure 4.8a and 4.8b. The actual width 

measure is 0.9 mm in Figure 4.8.  

 

  ϕ 
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Figure 4.8: Use of Crack Scale for Width Measurement 

 

American Concrete Institute (ACI) (Richard et al. 2001) and Ontario Structure Inspection 

Manual (OSIM 2008) assign permissible limit of crack-width in various weather exposure 

conditions as shown in Tables 4.2 and 4.3. These limits are important for condition 

assessments of reinforced concrete structures. The result of tracking of cumulative crack-

depth and width (width in mm *100, to plot in same graph) of a particular flexural crack 

under various loading stages are summarized in Figure 4.9 and Table 4.1. The developed 

algorithm has also been shown in detail in Appendix B as implemented in MATLAB.   
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Figure 4.8(a): Crack Edge Detection 
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Figure 4.8 (b): Crack width  
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Figure 4.9: Plot of Cumulative Crack Depth and width 

Table 4-1: Evaluation of Crack Width and Depth 

 

Image No 0045.tif 0046.tif 0050.tif 0083.tif 0092.tif 00100.tif 

Load in KN 30.00 50.00 70.00 90.00 100.00 115.00 

Proposed Crack 

Width in mm: 
0.30 0.37 0.58 0.75 0.86 0.89 

Measured Crack 

Width in mm:  
0.23 0.30 0.50 0.77 0.85 0.90 

% Error: 30.43 23.33 16.00 -2.60 1.18 1.11 

Measured Crack 

Depth in mm: 
67.00 120.00 120.00 136.00 145.00 163.00 
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Table 4.2: ACI 224R-01, 2008 Permissible crack width in Reinforced concrete structures 

 

Exposure Condition Maximum Allowable 

Width 

Dry Air 0.016 in (0.406 mm) 

Humidity, Moist Air, Soil 0.012 in (0.305 mm) 

Deicing Chemicals 0.007 in (0.178 mm) 

Sea Water 0.006 in (0.152 mm) 

Water Retaining Structures 0.004 in (0.101 mm) 

  

 

Table 4.3: OSIM (2008), Crack Classification for Reinforced Concrete Structures 

 

Hairlines Cracks – less than 0.1 mm wide 

Narrow Cracks – 0.1 mm to 0.3 mm wide 

Medium Cracks – 0.3 mm to 1 mm wide 

Wide Cracks – greater than 1 mm wide 

 

 

4.3.6 Data Fitting for Crack Depth vs Crack Width 

 

Marsi (2000) showed a method to predict the level of damage by neural networks 

constructed using the data from vibration measurements of structures. A back-propagation 

neural network and computational mechanics approach were used by Liu et al. (2002) to 

classify type, location, and the length of cracks. Similarly, Xu and Humar (2006) used the 

modal energy-based damage index to determine location of damages and an ANN to 
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determine the extent of damages in structures. In this thesis, a neural network was trained 

to predict depth of crack given width of crack. The proposed neural networks model is a 

supervised model having input attribute as crack-width and output attribute as crack-depth. 

One hidden layer was used with 10 neurons. The total of 101 crack patterns was obtained 

from digital images to train networks with 39 patterns defined as testing and validation 

sets. The training algorithms work flow chart for this network explained in Figure 4.10.  
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Figure 4.10: Neural network Training Flow Chart  

  

After defining the training, testing, and validation sets for the network, the actual training 

of the neural network was started. The training stopped at 12th epochs since the validation 

error was constant after 6th epochs as shown in Figure 4.12. The fitted data of the rest of 

the patterns are displayed in Figure 4.11 with the distribution of error at each point.  
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Figure 4.11: Data Fitting by Neural Networks  

 

 

 

Figure 4.12: Error in Training, Validation, and Test Sets 
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Next the trained networks were tested with test data to evaluate the performance of the 

model shown in Figure 4.13. This Figure shows the data fitted with 39 data patterns which 

were not exposed to the network during the training phase. The predicted data points and 

test data points matched with an acceptable degree of accuracy as shown in the plot of the 

residual and histogram. The residual error was calculated using Equation 7 (MATLAB 

R2012a): 

 

Error _ Percentage  

= (abs (Residuals). / Test _ Data)*100                                               (4.7) 

where, Residuals = (Forecast _ Data) – (Test _ Data) 

 

The residual plot showed the distribution of data very close to zero line. Most of the data 

points were distributed with + 5 to – 5 which was also clearly seen in residual histogram 

plot at top right of the Figure 4.13. 
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Figure 4.13: Performance Evaluation of Trained Networks 

 

 

 

Figure 4.14: Comparison with Boosted Decision Tree  
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The above trained model was compared with Boosted Decision Tree algorithms and the 

results are presented in Figure 4.14, which show that the predicted data and the test data 

are not fitted well, and the residuals plots are very scattered from + 90 to – 50 as shown in 

bottom of Figure 4.14. This comparison shows the model developed by neural networks is 

superior as compared to boosted decision tree models.  

 

The results successfully demonstrate the crack quantification model. The work adopts a 

new approach of crack segmentation method based on key features in an image frame 

called branch points, crack length estimation based on crack skeleton perimeter which 

considers the tortuosity of crack instead of estimating crack length from object-oriented 

bounding box, and the average crack width considering the entire characteristics of crack 

pixels instead of seeking how many points need to be considered to obtain the average 

crack width. First, this approach overcomes the limitation of manual input of at least one 

skeleton point to start searching of the crack connectivity to define the crack segmentation 

boundaries (Zhu et al. 2011), and is efficient even when multiple unconnected crack 

skeletons are present in the same image frame. Previously, the length of a crack was 

approximated from a bounding box enclosing the crack skeleton. Although the maximum 

and minimum crack width could be successfully estimated using existing methods, the 

average crack-width could not be determined, which is one of the important pieces of 

information required for condition assessment and billing purpose to prepare contract 

documents.  
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To demonstrate the proposed method, 101 images retrieved from the experimental set up 

as illustrated in Figure 4.7 were utilized. A part of the result of crack analysis performed 

over these images from developed algorithms is illustrated in Table 4.1. The depth of a 

crack represents the perpendicular distance from top of a crack tip to the bottom of the 

beam surface. The width of cracks obtained at various loading stages was displayed in 

Table 4.1 and the results were compared with the actual crack width measured from a crack 

scale in Figure 4.8. The results showed that developed algorithms works well for crack 

width greater than 0.3 mm, however, errors are not acceptable when crack-width is less 

than 0.3 mm. Since the OSIM and ACI mention that for visual inspection purpose, a crack 

width less than 0.3 mm falls in narrow crack class and may not be documented (OSIM 

2008, ACI 2008). So, the developed algorithms are suitable for inspection of cracks in 

reinforced concrete structures with the camera used in this work. The limitation of the 

crack-width accuracy can be improved by using high resolution cameras.  

 

4.4 3D Visualization and Crack Density 

 

Alan (2011) proposed a new framework for object recognition process using BIM. This 

system supports the storage and retrieval of objects of interests in his model. Ryan (2012) 

showed his work in evaluating surface defect detection capability of terrestrial LiDAR for 

reinforced concrete bridge decks by generating 3D model from Point Cloud. Likewise, El-

Omari and Moselhi (2008) integrated 3D scanning and photogrammetry in order to 

enhance the accuracy of data collection from construction sites. The above approach 

requires point cloud to be matched with digital images to identify members and defects on 
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elements. In this paper, the 3D visualization is developed manually by projecting digital 

images as well as the image texture. The automated process of 3D visualization model is 

possible by integrating 3D point clouds with digital images (Adhikari et al. 2013c). 

However, further works are required in quantification of defects based on such models. For 

better 3D models, at least four images are required at the four sides of an object. However, 

a 3D model can also be developed just from a single image taken at 45 degree so that at 

least three corners can be seen from a single position.  

The images shown in Figure 4.15(a) and 4.15(b) have been used here to develop the 3D 

models of a beam, and Figures 5.15 (c), (d) show the crack pattern on the front and back 

faces of the beam, respectively. Based on these models, specific parameters such as crack 

densities are calculated to differentiate the severity of cracks and cracking patterns.  

 

    

 

 

     

 

 

    

 

 

     

Figure 4.15(a): 2D images of GFRP-Reinforced Concrete beams  

 



111 
 

    

  

 

    

  

Figure 4.15 (b) 3D Visualization Model of a beam  

 

 

 

Figure 4.15(c): 3D visualization, Front Face Crack Density = 0.0066 mm/mm2) 
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Figure 4.15 (d): 3D visualization, (Back Face Crack Density = 0.0058 mm/mm2, Bottom 

Face Crack Density = 0.0085 mm/mm2)   

 

4.5 Discussion  

 

Displaying the information from visual inspection in the form of a 3D model is an 

important aspect visualization of the condition of a structure or a part of the structure. Based 

on digital images, 3D models were developed as shown in Figures 4.15. The cracks patterns 

in the Figures 4.15 were observed under the load at 115 KN. The model was developed by 

projecting images by finding matching lines in x and y directions. Crack density can be 

visualized from these models showing as crack density of 0.0066 mm/mm2 for front face, 

0.0058 mm/mm2 for back face, and 0.0085 mm/mm2 for bottom face. The crack patterns 

are important to identify during bridge inspection which includes the types of cracks, 

location of cracks, crack width and depth, and crack spacing. In this research, neural 

  Back 

Face 
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networks model was trained to predict the depth of cracks given the crack width. Such 

information will be important for decision making about integrity of structural members 

and for repair and maintenance purpose. The trained networks performance was acceptable 

with Mean Absolute Percent Error (MAPE) equal to 1.66%. The plot of residuals showed 

normal distribution centered on zero. The data fitting algorithms were tested with Boosted 

Decision Tree method and Mean Absolute Percent Error (MAPE) was found to be 24.88%. 

Also, the residuals in this case are wide spread as shown in Figure 4-14. The analysis 

showed that neural networks data fittings are superior over boosted decision tree model. 

The remaining part of this result discusses how the images can be photographed so that 

numerical errors for defects could be minimized.  

 

The 3D visualization of cracks is demonstrated in Google Sketch up software in displaying 

the crack density of concrete elements under flexural loads. In the past, researchers have 

used several commercial software systems to develop 3D visualization model, such as 

Mesh Lab, Rhino, TrueSpace, and Photosynth (McRobbie et al. 2010). However, this kind 

of software becomes obsolete after few years and it is difficult to get an updated version. 

Some authors have used advanced graphical software to model defects and quantify them 

for bridge inspection purpose (Maksymowicz et al. 2011). Hence, easily accessible and 

comprehensible model sought to be developed for proper visualization of defects. This 

work adopted Google Sketch Up software which has the capability to project texture from 

digital images directly on models to simulate on-site visual inspection (Google Sketch). 

This approach does not require field measurement survey for 3D visualization (Ganapuram 

et al. 2012).   
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4.6 Summary  

 

This chapter proposed an integrated model based on digital image processing to enhance 

the fundamental tasks of routine bridge inspections. The integrated model consists of crack 

quantification, neural networks, and 3D visualization models for condition assessment of 

concrete structures. Crack length is estimated form its crack skeleton perimeter. Since the 

aspect ratio of crack length to crack width is large and crack skeleton is a single pixel 

connected path, this approximation is reasonable for estimation of crack properties.   

 

The integrated model also consists of the neural networks models to predict crack depth 

given crack width. The importance of 3D visualization model has been demonstrated by 

developing 3D models based on digital images which mimic the on-site visual inspection. 

The visualization model is demonstrated in terms of crack density which is one of the crack 

parameter required for industry experts. The proposed integrated model can be integrated 

with BMS to enhance the reliability of decision making process for the condition 

assessment of concrete bridges. 
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Chapter 5: Image-based Automated Element Condition Rating 

 

5.1 Introduction 

 

To ensure effective management of civil infrastructure, it is necessary to identify the 

critical components of structures, and evaluate their performance in order to verify that 

they are safe under current service loads and satisfy service requirements. In general, the 

performance of bridges is evaluated by two approaches. The first approach is based on 

reliability analysis of bridge structures considering the load and resistance models of 

infrastructure (Frangopol et al. 2008a & 2008b). In recent years, the tracking of real time 

performance of structures is made possible by using Structural Health Monitoring (SHM) 

technique utilizing several types of sensors (Humar et al. 2006, Lee et al. 2007). However, 

the application of SHM sensors is found to be expensive as compared to visual inspections 

(Orcesi & Frangopol (2010). The second approach of bridge performance evaluation is 

based on visual inspection which is widely accepted by the governments in most 

jurisdictions, as well as by other agencies (AASHTO 2001). This current research adopts 

the second approach in developing condition assessment models for concrete bridges, 

while augmenting it through new methods developed based on digital image processing 

and artificial neural networks.  

 

This Chapter proposes an automated prediction of condition rating for bridge elements 

using artificial neural networks. To illustrate the concept, the approach considers scaling 

defect as a candidate defect in reinforced concrete structures. The guidelines used here for 
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assigning a condition rating are based on Ontario Structure Inspection Manual (OSIM 

2008). Recently, Hinzen (2013) showed that a systematic comparison of building damage 

evaluation is possible with Google street view data. The study demonstrated that the 

Google street view resolution was enough to detect structural damages, as well as in 

identifying cracks as reported by the author. The work by Hinzen (20130 shows the 

importance of digital image application for condition assessment of civil infrastructure. 

However, the application of digital image processing for automatic prediction of condition 

rating for structural components is yet to be developed. 

 

Abudayyeh et al. (2004) proposed an imaging data model for monitoring and generation of 

inspection report of bridges based on digital images. The developed model was integrated 

with PONTIS to enhance the reliability of visual inspections. Although the imaging data 

model demonstrated the capability of producing inspection reports automatically based on 

stored information, the process of assigning condition rating for the structural components 

was done manually.  

  

5.2 Proposed Framework  

 

The proposed framework encompasses a structured procedure for evaluating an element 

condition index after predicting condition rating for elements as illustrated in Figure 5.1. 

In order to obtain a bridge condition index, the approach integrates the condition rating of 

individual elements according to their weights or element importance factors. The process 

starts with developing a 3D model of the inspected bridge for visualization purpose. Before 
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performing defect quantification, the recorded images need to be corrected if they contain 

noise, perspective, and parallax errors as discussed in Chapter 4.  
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Figure 5.1: The Proposed Framework 
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A detailed procedure for prediction of condition rating based on neural networks is shown 

in Figure 5.2. The condition rating according to OSIM guidelines is based on the severity 

of scaling defects which are defined by the depth of scaling defect. Evaluating the scaling 

depth is a time consuming task. Therefore, in this work, the depth of scaling is estimated 

by digital image processing as explained here. 

 

Data Acquisition

(Digital Camera)

Image Pre-processing

(Image Enhancement)

Feature Extraction

(Defect Geometry)

Classifiers

Neural Networks

Naïve Bayes Classifier

Bagged Decision Trees

Data Acquisition

(Digital Camera)
 

 

Figure 5.2: Work Flow Diagram for Automated Condition Rating 

 

The variation in Red, Green, and Blue (RGB) color profile is measured to quantify the 

depth perception from digital analysis of the retrieved images. The major components of 

the proposed methodology comprise data acquisition, image preprocessing, attributes 
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extraction, and development of neural networks models for automated labeling of condition 

rating for structural elements.  

 

5.2.1 Feature Extraction 

 

A commercially available digital camera is used for data collection of reinforced concrete 

bridge surface defects. For defect identification, close-range photographs are required with 

proper focus on defects. Each photograph frame shall include either a natural or artificial 

target for calibrating the dimensions. In general, natural objects such as the details of 

beams, and columns can be used as natural targets. In case of insufficient natural objects, 

an artificial target can be placed in the vicinity of area of interest (Jauregui et al. 2006). An 

example of use of artificial target has been shown in Figure 5.3.  

 

 

 

Figure 5.3: Artificial Target  
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Collected images are processed through spatial and frequency domain operations in order 

to enhance the feature extraction. Depending on situations, one can use high pass filter or 

low pass filter to filter for image enhancement using frequency domain operations (Xu et 

al. 2012 and Adhikari et al. 2012b). In this work, both domains of image pre-processing 

are used for image enhancement as explained in Figure 3.7 in Chapter 3. 

 

Feature extraction can be done either at global or local level depending upon the task 

requirements. In this work, the scaling defect attributes are estimated by selecting a Region 

of Interest. Various attributes considered for mapping of scaling depth and prediction of 

condition rating based on defects severity are listed in Figure 5.4.  

 

 

 

Figure 5. 4: Attributes Feature Extraction 
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The perception of distance based on light intensity was first discovered by Leonardo Da 

Vinci saying that among bodies equal in size and distance, that which shines the more 

brightly seems to the eye nearer (MacCurdy 1938). After this statement, a number of 

studies are done to validate the hypothesis concerning the intensity of light and object 

distance relationship (Samonds et al. 2012, Coules 1955, and Ashley 1898). This research 

adopts the property of intensity variation of light with depth as shown in Figures 5.5a and 

5.5b. It is evident from the 3D visualization of color profile that brighter the intensity the 

lower the depth perception. The sectional RGB color profile is shown in Figure 5.6 which 

is used for quantifying the depth perception. Several RGB profiles are obtained by varying 

the selection width shown in Figure 5.7. To filter such noise, the width of line is increased 

from 1 to 30 units leading to smooth intensity variation with pixels distance.  

   

 

   

 

 

 

Figure 5.5 (a): Scaling Defects region 

of Interest 

 

 

 

 

 

Figure 5.5(b): 3D Visualization of Scaling 

Defects 
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Figure 5. 6: RGB profile with line width of 1 Unit 

 

 

 

 

Figure5. 7: RGB profile with line width of 30 Units 

 

Based on the above description, 19 images have been processed to obtain the intensity of 

color variation along the selected sectional profile. Some of the sample images used in this 

research are displayed in Appendix A. The difference in intensity is correlated with the real 

scaling depth shown in Figure 5.8.  
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Figure 5.8: Scaling Depth Estimation from RGB Profile 

 

5.2.2 Artificial Neural networks (ANN) 

 

The neural networks are the ideal choice of algorithm when the solution cannot be 

represented by a flowchart (Heaton Research 2013). In general, the solution of the problem 

is difficult to predict when it depends on various parameters and final solution is highly 

dependent on selected factors. The neural networks are ideal choices for prediction of 

condition rating because condition ratings of bridges depend on a number of parameters. 

The following two training parameters are important for training the neural networks. 

 

1) Learning rate: it determines to what degree the calculated change will be to the NN 

weight matrix. High learning rate can cause instability to the networks whereas 

setting low learning rate may take forever to train NN.  

2) Momentum: It determines the influence of previous iterations to the current 
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iterations. It is useful in avoiding the situation when there is chance to trap in local 

minima. 

 

While choosing multi-layer perceptron architectures, the number of neurons assigned to a 

layer is important. In general, the number of neurons is decided on trial and error method. 

For the initial guess, one can use the number of neurons in a layer based on rule of thumb. 

For example, the number of neurons in a hidden layer may be taken as two-third the size 

of input layers plus the size of output layers (Heaton Research 2013). Sometimes multi-

layer perceptron and back propagation terms are used interchangeably. However, they have 

their own significance. Back propagation means propagation of errors in backward 

direction shown in Figure 5.9. Multi-layer perceptron has two types of signals. One is the 

functional signal which flows in the forward direction and the other is the error signal 

which flows in the backward direction.  
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Figure 5.9:  Forward and backward pass for Back Propagation Algorithm 

 

Back Propagation Algorithms are explained in Appendix C. 

 

5.3 Data Analysis and results 

 

The proposed methodology for automated prediction of condition rating is implemented in 

MATLAB (MATLAB R2012a) and Neuroshell (Ward Systems, 2013) in Windows Vista 

Enterprise 32 bit operating System. The desktop consists of Intel ® Core ™ 2 Duo CPU, 

E6550 @ 2.33 GHz. A commercially available SONY-DSC T5 digital camera of 5.1 mega 

pixels with optical zoom 3X is used for image acquisition. Also, commercially available 

software called ImageJ is used for extracting digital information of an image and 3D 

visualizations (ImageJ 1.45s).  
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5.3.1 Check for Normal Distribution 

 

In this work, seven input parameters were retrieved from the selected digital images as 

shown in Figure 5.10. The simplest model for such mapping problem is to use discriminant 

analysis. However, in that case, the data set should follow a normal distribution. The 

distribution of input data is shown in Figure 5.9.  

 

 

 

Figure 5.10: Check for Normal Distribution of input parameters 

 

The plots in the above Figure 5.10 clearly show that the data points are not following the 

red lines and are not normally distributed. So, the discriminant analysis for such problem 
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is not deemed a good choice; and hence, neural networks are chosen for the classification 

purpose, which is explained in next section.  

 

5.3.2 BPNN Models 

 

Back propagation neural networks (BPNN) models are developed for mapping of elements 

condition rating based of their scaling depth. The following two models are constructed: 

model (a) to predict scaling depth, and model (b) to predict condition rating based on 

scaling depth shown in Figure 5.11. Model (b) contains an additional attribute of depth as 

an input variable in data patterns to predict element condition rating. The data sets are 

collected from the bridge located in Montreal, Quebec. Digital photographs are taken from 

close range so that defects are magnified. Table 5.1 summarizes the condition state rating 

grades as mentioned in OSIM (2008), where condition rating 1 indicates a light damage, 

and 3 indicates a severe damage. The input data used in the BPNN models are normalized 

between 0 and 1 using the Equation 5.1. 

 

                X ni =(Xi–Xmin)/(Xmax–Xmin)                                                                (5.1)   

 

where, Xni is the normalized value of Xi; Xi is the ith value of a data series with X 

representing the raw data; Xmin is the minimum value of X in the sample set; and Xmax is the 

maximum value of X in the sample set. 
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Figure 5.11: BPNN Models 

  



129 
 

Table 5.1: Description of Condition State Rating based on OSIM (2008) guidelines 

 

Condition State Rating for Scaling Defect  

Local Flaking/Loss of Surface Portion of Concrete or Mortar due 

to Freeze or Thaw 

Light (1) Medium (2) Severe (3) 

Up to 5 mm Depth 6-10 mm Depth > 10mm Depth 

 

5.3.3 Training and validating of the BPNN 

The modeling process for the neural networks as explained in Figure 5.12 consists of the 

development of ANN architecture, and design and training modules. The architecture of 

the network consisted of five layers of neurons with one input layer (the number of input 

neurons is equal to number of attributes in each pattern), 3 hidden layers, and one output 

layer (the number of output neuron is one). The detailed information about the design of 

neural networks architecture is shown in Table 5.2. The important parameters for training 

such as training rate, momentum, and initial weights are chosen to be 0.2, 0.2, and 0.3, 

respectively. It requires a trial and error approach to fix these parameters to get the desired 

output. A total of 19 data patterns are prepared consisting of 60% training set, 20% testing 

set, and 20% validation set. The validation data sets are also called production set which is 

not presented to the networks during training module. These data sets are later used to 

validate the model.  
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Figure 5.12: Neural Network Modeling Process 

Table 5.2: Neural Networks design criteria 

Slab 

Number 

Number 

of 

Neurons 

Activation 

Functions 

Learning 

Rate 

Momentum Initial Weight 

1 7 Linear (0,1) 0.2 0.2 0.3 

2 2 Gaussian 0.2 0.2 0.3 

3 2 Tanh 0.2 0.2 0.3 

4 3 Gaussian 

comp 

0.2 0.2 0.3 

5 1 Logistic 0.2 0.2 0.3 

Training 

Stop training when one of these is 

true about the training set 

Stop training when one of these is 

true about the test set 

 

Average error<                                              0.0002 

Epochs since minimum average error>          1,000 

Calibration interval (events)                               200 

Events since minimum average error>         20,000 
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Table 5-3: Performance of Model (a) and Performance of Model (b) respectively 

         

Patterns processed 19 

R squared 0.70 

r squared .79 

Mean squared error 0.02 

Mean absolute error 0.14 

Min. absolute error 0 

Max. Absolute error 0.27 

Correlation coefficient r 0.89 

(a)                                                                          

      

Patterns processed 19 

R squared 0.98 

r squared 0.98 

Mean squared error 0.01 

Mean absolute error 0.03 

Min. absolute error 0.00 

Max. Absolute error 0.16 

Correlation coefficient r 0.99 

(b)                                                                           

  

Table 5.4: Contribution factors for Model (a) and Contribution factors for Model (b) respectively 

 

   

Ranking Parameter CF 

1 Depth 53% 

2 Length of Minor  9.6% 

3 Aspect Ratio 8.8% 

4 Roundness 7.6% 

5 Length of Major  7.2% 

6 Perimeter 6.8% 

7 Area 6.7% 

 

Ranking Parameter CF 

1 
Length of Major 

Axis 
27.6% 

2 Area 23.8% 

3 
Length of Minor 

Axis 
19.6% 

4 Aspect Ratio 12.2% 

5 Perimeter 9.9% 

6 Roundness 6.7% 

 

(a) (b) 
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The accuracy of the developed model is evaluated by applying the validation data sets and 

measuring their performance in terms of statistical parameters. The BPNN depth prediction 

model shows the accuracy 89 %, whereas the BPNN condition rating prediction model 

shows the accuracy of 99 % expressed in terms of correlation coefficients as shown in 

Table 5.3 and Table 5.4 respectively. Likewise, contribution factors (CF) are evaluated to 

measure the importance of an input variable contributed for outputs in comparison with 

other input variables as shown in Table 5.4. A largest number of contribution factors 

indicate that the particular variable has contributed the most in entire training process of 

networks. However, a variable having a low value of contribution factor does not mean 

that it shall not be included in the model.  

 

A comparison of the estimated depth obtained from the BPNN model and the actual one 

for all data points is presented in Figure 5.13. Similarly, the predicted condition rating for 

the selected sample images after training the neural networks is plotted with the actual 

condition rating according to the OSIM (2008) guidelines is shown in Figure 5.14.  
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Figure 5.13: Prediction of Actual Depth Vs Model Output 

 

 

 

Figure 5.14: The Actual Condition State Rating Vs Model Output 
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5.3.4 Comparison with other classifiers 

 

The choice of classifier is largely dependent of the characteristics of data input. Since the 

selected input attributes are dependent on each other, the choice of neural networks appears 

to be the best classifier for this problem. There is no assumption for the input data for the 

training of neural networks, and hence expected to perform better than other classifier. The 

results of a few commonly used classifiers, such as Naïve Bayes Classifier and Bagged 

Decision Tree Model are compared here. 

 

Naïve Bayes Classifier 

Bayes’ rule is given by Eq. 5.12,  

P(H|E) =
P(E|H)x P(H)

P(E)
                                                                    (5.12) 

The basic idea of Bayes’s theorem is that the probability of an event (H) can be predicted 

based on some evidences (E). A prior probability of H or P (H) is the probability of an 

event before the evidence is observed. A posterior probability of H or P (H|E) is the 

probability of an event after the evidence is observed. It also classifies data in two steps: 

 

1) Training Steps: The method determines the probability distribution based on the 

training sample assuming that the feature is conditionally independent for the given 

class. 

2) Prediction Steps: The method calculates the posterior probability of the data set which 

is unseen to the model; and then classifies the test sample based on the largest posterior 

probability. 
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The independency of the data sets is an underlined assumption for Naïve Bayes Classifier. 

To check the accuracy of the Naïve Bayes Model, Bayes Error is calculated using statistical 

tools and was found as 66%. The Bayes error shows that only 34% of the test data sets are 

correctly classified and 66% of test sets are wrongly classified. The analysis is tested for 

the importance of each parameter and the process indicated that only two input parameters 

Major Axis Length and Depth are important for this problem.  

 

Bagged Decision Tree Model 

 

Bagged Decision Tree is another type of machine learning algorithm which can improve 

the classification accuracy and stability of the training process. It reduces variance and 

avoids data over fitting problems. This method has better capability than Naïve Bayes 

Classifier and it can also measure the feature importance of input parameters. The bagged 

decision tree algorithm has been performed on the previous data set and out of bag error 

was found as 37% which shows better accuracy in condition rating prediction than Naïve 

Bayes Classifier which has 66 % error. Also, the input parameter importance factors are 

calculated as shown in Figure 5.15. It shows that feature number 5 (Aspect ratio) and 6 

(Roundness) did not contribute to classification problem. The highest contributing factor 

for this classification is depth, which has a contribution of more than 65%.  



136 
 

 

 

 

Figure 5.15: Out of Bag algorithms (Feature Importance factors) 

 

Table 5.5: Comparison of results from different classifies 

Classifier 
Naïve Bayes 

Classifier 

Bagged 

Decision Tree 

Artificial Neural 

Network 

Accurately 

Predicted 
34 % 63 % 99 % 

 

Table 5.5 summarizes the results of different classifiers. The results show that the 

prediction capability of neural networks is better than other classifiers showing 99% of 

predicting accuracy. The Naïve Bayes Classifier shows only 34% of data was classified 

correctly, whereas Bagged Decision tree is able to correctly classify 63% of input data. The 

neural networks do not have any underlying assumptions on the requirements in input data 

during training process except that during a complete cycle of back propagation (forward 

pass and backward pass), the input data pattern shall not be changed. For other classifiers, 
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there are fundamental assumptions associated with specific requirements in input data 

which might be the reasons of poor accuracy. The statistical features of the trained BPNN 

models are shown in Tables 5-3 and 5-4.  

 

5.3.5 Element Condition Index  

3D visualization  

 

3D modeling provides a better understanding of objects as well as several features can be 

derived from such models without going to bridge sites. This work utilizes a direct method 

of photo projection to generate 3D models with help of Google Sketch up (2008). Figure 

5.16 illustrates the result of 3D modeling which shows overall dimensions of bridges and 

texture projected on elements. 

 

 

Figure 5.16: Fly over pass at the intersection of street Selby and Greene near Lionel 

Groux Metro 
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Distress Quantification  

 

Evaluation of an element condition index requires estimation of percentage defect in 

structural components. For example, the element condition rating for concrete decks 

without overlay as defined in PONTIS are as follows: 1 (no spall, Delaminations, and 

temporary patching), 2 (the combined distress is 2% or less of the total deck area), 3 (the 

combined distress is more than 2% but less than 10% the total deck area), 4 (the combined 

distress is more than 10 % but less than 25% the total deck area), 5 (the combined distress 

is more than 25% the total deck area) (Minnesota Bridge Inspection Manual, 2009). Hence, 

it is important to determine the percentage of defects to assign an appropriate condition 

rating as shown in Figure 5.17.  

 

 

            (a) 
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             (b) 

 

        (c)     

Figure 5.17: (a) Detection of the spalled area, (b) defects identified as an object, and (c) 

object leveling and quantification. 
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Table 5.6: Condition Assessment of a Deck Slab 

 

S.N. 
Area 

(m2) 

Percentage Defects 

(%) 

Condition Rating 

Deck Slab (18*32) 576   

Spalled 5.2 0.92 2 

Exposed Reinforce 5.2 0.92 2 

 

A set of equations (5.13, 5.14, and 5.15) are proposed for evaluation of element condition 

index which utilizes the information of condition rating obtained from digital image 

processing.  

  

 BCI = { ∑ W (i) * ECI(i)} /N
i=1     { ∑ W(i)}N

i=1                 (5.13) 

 

 ECI(i) = { ∑ W(j) * SCI(j)}n
j=1  /    { ∑ W(j)n

j=1 }   (5.14) 

 

 SCI(j)    =   [{∑  m ∗ W(k)d
k=1 } / d ] * 100    (5.15) 

 

where, 

 

BCI      = Bridge Condition Index,                   W (i) = Element Weight Factors, 

ECI (i) = Element Condition Index,                 W (j) = Sub-element Weight Factors, 

SCI (j) = Sub-element Condition Index,          W (k) = Distress Weight Factors, 

N         = Number of Bridge Components,          m    = Material Factors, Concrete =1.0, 

n         = Number of Sub-element Components,   d    = Number of distress, 
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The weights of element and sub-element, and distress weight factors were adopted from 

Wakchaure and Jha, 2012. The distress weight factors are calculated from Equation 5.16: 

 

Wk = [1- (Condition State # -1) * (1/ (State Count -1))]                                (5.16) 

 

The identified spalling defect is found to be 0.92 %. Based on this information, the 

condition ratings are assigned for the deck is 2.  

 

Table 5.7: Evaluation of Bridge Condition Index 

 

S.

N. 
Component 

Distress 

Type 

Conditio

n State 

No. 

Wk SCI(j) W(j) ECI(i) W(i) BCI 

1 Substructure           100 26   

  Pier Nil 1   100 26       

2 

Super- 

structure           75.00 15   

2a Deck Slab Spalling 2 0.75 75.00 15       

    

Exposed 

Reinforce 2 0.75           

                  91 

* Identified Defects 

 

For an element having 5 condition states such as Condition State numbers 1, 2, 3, 4, and 5, 

the weights obtained from Equation 6 are 1, 0.75, 0.5, 0.25 & 0.0 respectively.  Table 5.7 

explains the procedure of calculating bridge condition index using the above equations. For 
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demonstration purpose, two types of defects are identified: spalling and exposed 

reinforced. Based on identified defects, the bridge condition is found to be in good 

condition as the derived bridge condition index number is 91. 

 

5.4 Summary  

 

This Chapter presents an automated prediction of condition rating models based on the 

severity of defects captured by using digital cameras and processing data with neural 

networks. The proposed method considers scaling defects to demonstrate the mapping of 

condition rating based on OSIM, 2008. The model contains 5 layers of neurons; one input 

layer, three hidden layers, and one output layer with several types of activation functions 

in each layer. The production data set, which has not been presented to the network during 

training of neurons, is later used to validate the model. A comparison of the estimated depth 

output by the BPNN model and the actual one for data points are plotted, and the acceptable 

accuracy has been observed showing a correlation coefficient of 89%. Similarly, the 

predicted condition ratings after training of neural networks are plotted with the actual 

condition rating obtained according to the OSIM (2008) manual, and the accuracy of the 

prediction of condition rating has been observed 99 % as a correlation coefficient.  

 

A case study example has been demonstrated for evaluation of bridge condition index 

based on identified defects. This procedure can reduce inspections time as inspectors need 

only to take engineering photographs, and analyze them to determine the distress level in 

order to assign element condition rating. Once element rating is available, it can be summed 
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at bridge level to find bridge condition index. Since the proposed method is fast and less 

expensive, the frequency of inspection can be altered to provide additional safety to bridges 

by recognizing the effect of extreme loadings and defects propagation.  
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Chapter 6: A Study of Defect Propagation  

 

6.1 General 

This chapter proposes a novel approach of change detection based on non-dimensional set 

of parameters obtained from spectral and fractal analysis of digital images. Radke et al. 

(2005) conducted a systematic survey on the state-of-the-art for change detection based on 

digital images taken from close field of view. However, their work was demonstrated in 

general terms without emphasising on a particular area of application. Previously, authors 

worked in evaluating for change detection for condition assessment of civil structures 

based on comparison of multi-temporal remote sensing data (Singh 1989, Coppin & Bauer 

1996). The key aspect of change detection in those studies was based on remotely sensed 

data from satellites or flying airplanes. To address the problem of change detection in 

concrete structures for bridge inspection, this thesis proposes a set of scale-invariant shape 

descriptors obtained from Fourier and fractal analysis of digital images. In the process of 

change detection, it is necessary to establish a base image from where percentage change 

can be measured. For this purpose, two types of images are used in developing the concept; 

real crack images from testing of reinforced concrete beams in laboratory environment, 

and fractal images generated through fractal tree algorithms simulating the base crack and 

its propagation.  
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6.2 Periodic Detection of Defects 

 

The change detection process has many engineering applications. It can be used to monitors 

the Earth surface such as it changes due to construction, deforestation, floods, forest fires 

and other kinds of activities (Carlotto 1997). High resolution 3D scanning techniques were 

used to measure internal damages and crack growth in a small mortar cylinder at different 

levels of deformation and loadings (Landis et al. 1999). In recent years, the concept of 

change detection through digital images has been extensively used for medical diagnosis. 

Such techniques also have valuable applications to find subtle changes between MRI 

(Magnetic Resonance Imaging) scans for assessing the progression of diseases over time 

(Bosc et al. 2003). Change detection approach answers some of the fundamental questions 

such as, 1) how fast the changes are taking places; and 2) what is the trend of changes (EL 

Shehaby et al. 2012). However, there are a number of limitations for a successful 

application of change detection in engineering fields. For examples, the lack of a priori 

information about the shape of changed areas, absence of a reference background, 

differences in lighting conditions, and the alignment of multi-temporal images are 

important ones (Townshend et al. 1992).   

 

6.3 Fractal Damage Characteristics 

 

Fractal geometry has abilities to model irregular shapes and to measure fractal dimension 

more accurately than dividing the region into regular geometry (Mandelbrot 2008). 

Recently, fractal theory has been extensively used in many engineering field and the 

http://en.wikipedia.org/wiki/Magnetic_resonance_imaging
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application has been also tested on analysis of concrete structures (Carpinteri 1994). For 

example, fracture surfaces of rock were measured by fractal dimension which basically 

characterize the topology of rock surfaces (Zhou and Xie 2003).  

 

Berke (Berke 2005) introduced a new mathematical tool for estimating spectral fractal 

dimension (SFD). Fractal dimension (FD) estimation is primarily based on a binary image 

which did not consider the color associated with original image. He showed that SFD had 

higher number than FD. Similarly, fractal theory based on mono-fractal and multi-fractal 

was suggested for online non-destructive damage assessment of reinforcement concrete 

structures (Maosen et al. 2006). They showed that fractal theory and conventional damage 

parameters are linearly correlated with commonly used physical parameters such as natural 

frequency, average carbonized depth, and residual material intensity.   

 

Likewise, Carpinteri et al. (2009) used fractal analysis for evaluation of damages in 

concrete structures. They found that single fractal dimension did not adequately describe a 

crack network since two crack domains might have the same fractal dimension having 

significantly different properties. This emphasises that apart from fractal features, other 

feature attributes need to be considered for defining the system properly. These studies 

suggest that comparison of multiple defects with fractal dimension may not be a good tool. 

However, it can be used as a tool for change detection. Fadi (2010) developed a framework 

to automate the detection, localization, and characterization of subsurface defects inside 

bridge decks based on ground penetrating radar (GPR) images. The developed algorithms 
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were based on a fractal-based feature extraction to detect defective regions, estimate the 

depth of defects, and classify defects in concrete structures.  

 

6.4 Methodology 

 

A new algorithm for change detection is developed which can quantify changes in element 

condition state based on fractal and spectral analysis of digital images shown in Figure 6.1. 

Two types of experiments are performed in analyzing digital images for deriving defect 

parameters. In the first experiment, eight sets of images are captured during bending test of 

a reinforced concrete beam at different loading stages as discussed earlier. In the second 

experiment, four sets of artificial crack images are generated simulating the notion of cracks 

observed at different inspection time. The proposed method requires high-resolution images 

to capture defect propagation over time. To achieve such high-resolution images, two 

cameras are used to collect digital images. The first camera is placed orthogonal to the defect 

surface and focuses only on the crack of interest, whereas the second camera is placed next 

to the first one focusing on the entire concrete surface. The details of using hybrid camera 

for image acquisition had been discussed in details by Nishimura et al. (2012).  
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Figure 6.1: Proposed Change Detection Algorithm 

 

6.4.1 The Fractal Analysis of digital images 

 

Before carrying out fractal analysis of digital images, it is necessary to have a reliable 

method for defect quantification based on digital image processing. The crack 

quantification model used in this Chapter is taken from Adhikari et al. 2014. The 

segmentation approach adopted for the procedure is Canny Edge Detection algorithm 

because the performance of Canny algorithm has been observed superior over Sobel, 
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Prewitt, Robert, and LoG (Laplacian of Gaussian) in many scenarios (Maini and Aggarwal 

(2009).  

 

The concept of fractal was introduced by Mandelbrot (2008) to describe the irregular 

structures of many natural objects and phenomenons. The typical fractal dimension for 

fractal dust lies between 0- 1, for fractal signal between 1- 2, and for fractal surface between 

2- 3 (Turner et al. 1998). Fractal and Euclidean dimensions are equal to 1 for a straight 

line; however, for a line inscribed in a plane, the fractal dimension varies from 1 to 2 

depending upon the tortuosity of crack and how crack fills the entire plane.  

 

 6.4.2 Computation of Fractal Dimension  

 

Fractal dimension obtained from fractal analysis has many different applications in Civil 

Engineering, including rock surface study due to fracture (Lee et al. 1990, Kulatilake et al. 

1997), the study of cracks in concrete (Farhidzadeh et al. 2012, Carpinteri et al. 2012), and 

condition of crack propagation in reinforced concrete structures (Sun et al. 2011). In these 

studies, authors have used various algorithms for estimating fractal dimensions by 

introducing Bounding Box method, Spectral Fractal Dimension, Hurst method, Fractional 

Brownian Motion method, and to name a few. The popular method for estimating fractal 

dimension in civil engineering application is the Bounding Box method because it is easy 

to use and requires selection of box size for a given image frame (Kulatilake et al. 1997, 

Farhidzadeh et al. 2012, Liaw & Chiu 2009). For condition assessment of reinforced 

concrete structures, the crack patterns are important surface pointers indicating the health 

of entire structures. To access the health of concrete structures based on crack patterns, a 
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Damage Index (DI) based on fractal dimension using bounding box algorithm was 

proposed as shown in Equation 6.1 (Farhidzadeh et al. 2012). However, the process 

required the redrawing of cracks manually ignoring the crack width to get the crack pattern 

of the entire surface considered for analysis. 

 

DI = 
Di – D1

2 - D1
,  0 ≤ DI ≤ 1       (6.1) 

 

where,  

Di = represents the fractal dimension of ith inspection, and 

D1= represents the fractal dimension of first inspection when cracks appears to be visible. 

 

Although the bounding box algorithm is simple and easy to use, it is not suitable for the 

time sequence data analysis (Ashkenazy et al. 1999). In such case, the more popular method 

of estimating fractal dimension is by using Hurst exponent H, and the fractal dimension D 

can be estimated from Equation 6.2 (Biagini 2008). 

 

 D = 2 – H                (6.2) 

 

In further discussion of different algorithms, Fractional Brownian Motion (FBM) 

algorithm is suitable for describing the time dependent random events such as change in 

water level profile at the sea coast hitting on a wall, and weather patterns prediction. In 

fbm process, if the Hurst parameter corresponds to 1/2, it is called constant process and 

random process is independent with variable increments. But when the Hurst parameter H 

> 1/2, the process is called positively correlated and when the Hurst parameter H < 1/2, the 
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process is called negatively correlated (Biagini 2008). Berke (2005) used spectral 

characteristics to evaluate fractal dimension taking into account of color layers associated 

with the given image frame. To demonstrate spectral fractal dimension, he took two digital 

images; one black and white image (8 bits) and another color image (24 bits). He calculated 

the fractal dimension of both images using bounding box method and was found as 1.99, 

whereas the spectral fractal dimension for the color image was increased to 2.49 

considering the color layers in the image (Berke 2005). Based on the literature review, it 

was found that the problem in hand with the characterization of concrete surfaces, the 

bounding box method is more suitable which has been adopted for this research and the 

detailed algorithm has been explained in next section.  

 

6.4.3 Box-counting of 2D images 

 

To demonstrate the concept, a square box is considered having side length ϵ and N is the 

number of box required to fill the square space, then Equation 6.3 can be used to develop 

the relationship for estimating FD for any object (Banerjee 2009). 

N (ϵ) ≡ (1/ ϵ) 2                             (6.3)  

For triangle,  

N (ϵ) ≡ ½ * (1/ ϵ) 2           

For Circle, 

N (ϵ) ≡ π/4 * (1/ ϵ) 2           

In general, it can be concluded that the idealized objects converges to  

N (ϵ) ≡ k * (1/ ϵ) 2           
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where, k is a constant. By taking log on both sides of the above expression, the following 

relation can be derived, 

ln N (ϵ) = ln (k) + 2 * ln (1/ ϵ)  

2 = ln N (ϵ)/ (ln (1/ ϵ) - ln (k)/ (ln (1/ ϵ)   

In the above relation, the number 2 represent the dimension of a regular plane shape, which 

can be replaced by the fractal dimension, FD, for an object of an irregular shape. Since, the 

second term in the above relation vanishes to zero as ϵ tends to infinity, the expression for 

FD of an object can be simplified as follows in Equation 6.4.   

 

FD = ln N (ϵ)/ (ln (1/ϵ))                                   (6.4) 

 

The proposed workflow approach for estimation of fractal dimension is illustrated in 

Figures 6.2, and 6.3. Figure 6.3 (a) explains the process of size selection and Figure 6.3 (b) 

shows the derivative of the above plot to visualize fractal behaviour along the curve. 
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Figure 6.2: Box Counting Work Flow Diagram  
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(a) 

 

(b) 

Figure 6.3: Box Counting Modelling Process 
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6.5 Spectral Analysis 

Figure 6.4 illustrates the work flow diagram for the change detection procedure in spectral 

domain. Spectral descriptors can provide quantitative information of images taken at 

different times to classify and rank them. For this operation, we need to convert the original 

images into frequency domain by Fast Fourier Transform (FFT). The FFT spectrum reveals 

information about the principal direction of texture contained in the images. Also, the 

location of the fundamental peaks provides information about the fundamental periods 

associated with the texture of the given images. Such method is useful for discriminating 

between the periodic and non-periodic texture patterns, and for quantifying differences 

among periodic patterns.  

 

Spectral descriptors can provide quantitative information of images to classify and rank 

them taken at different times. The Fast Fourier Transform (FFT) of the selected image is 

shown in Figure 6.5. For convenient, Fourier Spectrum is converted to Polar Co-ordinates. 

These procedures yields a function S(r, θ) called spectrum function and r and θ are 

variables in polar coordinate system (Gonzalez et al. 2009). Two important relationships 

are derived from this frequency plot. 
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Figure 6.4: Spectral Change Detection  

 

 

 

Figure 6.5: Fourier Transform of Digital Images at Time T1 

 

A global description is obtained by integrating these functions as shown in Equations 6.9 

and 10 (Gonzalez et al. 2009): 
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S(r) = Sum [S(θ) (r)]                                                                                           (6.9) 

where, (theta) varies from 0 to π.  

 

S (θ) = Sum [S (r) (θ)]                                                                      (6.10) 

where, (r) varies from 1 to R0/2, R0 = the radius of a circle centered at the origin. 

 

The result of the above equations is a pair of coordinates [S(r), S (θ)]. The plot of these 

coordinates provides the information of variation in spectral energy contained in texture 

form. Typical descriptors can be retrieved from the functions S(r) and S(θ) which can 

characterize their behavior quantitatively. Typical descriptors include location of the 

highest value, the mean and variance of both the amplitude and axial variations, and 

distance between mean and the highest value of the function as shown in Figure 6.6 (a) and 

(b).  

 

 

Figure 6.6: (a) Fourier Transform, Radial, and Angular Plot of Digital Images at Time T2  



158 
 

 

The distribution of energy in the radial direction between these two cracks varies from 100 

to 150 and the texture variation in angular direction showed significant difference in the 

peak values from 1350 to 1600 as illustrated in Figure 6.6 (b). These digital values are the 

numerical representation of digital images which can be used as features to compare the 

extent of damage at different times. 

  

 

 

Figure 6.6 (b): Comparison of Descriptors at Time T1 and T2   

 

6.6 Analysis and Results  

 

In this experiment, a crack is tracked with a digital camera at various stages of loadings 

during the flexural behavior of reinforced concrete beams shown in Figure 6.7, and its 
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fractal dimension at each loading step is evaluated using box counting algorithm. In the 

second experiment, several crack patterns are developed to compare the fractal dimension 

simulating various images taken at different periods of time.  

 

6.6.1 Analysis for isolated cracks  

 

 

 

 

Figure 6.7: Crack Tracking in Lab Environment 

 

The maximum crack width indicated in Figure 6.8 is evaluated using developed algorithms 

in previous chapter 4 and verified the results with the help of a crack scale. The crack image 

at 30 KN load is considered as a base image, and the crack image at 115 KN is represented 

as a final image. These crack images are used for estimating change detection based on 

spectral and fractal analysis of digital images which produce unique numbers to represent 
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the surface abnormalities. Figure 6.9 demonstrates the procedure for evaluating fractal 

dimension of a digital image based on box counting algorithm. It is clear from the 2D box-

count plot of Figure 6.9 that all range of box-size increments for the crack image at 90 KN 

load do not follow the fractal dimension properties, and hence fractal dimension is 

evaluated by plotting the local dimension represented by a constant slope region.      

 

 

 

Figure 6.8: Cracked Images at Different Loads  

 

Similarly, the cracks are processed for evaluating spectral parameters representing the 

surface defects in terms of surface texture. The adopted procedure for spectral analysis is 

already demonstrated in Figure 6.4. In spectral analysis for these crack images, the best 

parameter to represents the surface defects is found as peak value of radial plot which 
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shows the total energy variation in radial direction. It is clear from the Figure 6.10 that the 

peak value of radial plot for 100 KN load is 2272.  

 

 

 

Figure 6-9: Estimation of Fractal Dimension 
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Figure 6.10: Estimation of Spectral Parameter 

 

The obtained parameters from spectral and fractal analysis of the crack images are 

displayed in Table 6.1. Then, based on these information, the percentage change is 

calculated considering the base image as 30 KN load. The maximum detected change from 

fractal and spectral analysis are 23% and 24%, respectively which showed a close match 

in defect quantification. Also, the damage index (DI) as illustrated in Equation 6.1 

proposed by Farhidzadeh et al. (2013) is evaluated and displayed in Table 6.2. The 

maximum damage index relating to image at 115 KN is found as 0.21. From visual 

inspection point of view, crack width of 0.9 mm is not critical; however, the crack width is 

wide enough for moisture penetration inside the beam which can result in corrosion of the 
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reinforcements (OSIM 2008). The result of damage index is 0.21, which is much lower 

than 1.0 representing the complete damage of the beam.  The crack density (total crack 

length/total surface area) does not have significant change throughout the experiment 

because it is based on the crack length which does not change much in this particular 

experiment. The reason is that the beam has compressive tendency above the neutral axis 

and does not allow the crack to grow further, however, the change detection can be 

observed based on growing width of cracks. 

 

6.6.2 Analysis for crack patterns  

 

To illustrate the concept of change detection, several crack patterns are generated using 

fractal tree algorithm. The generated crack patterns are demonstrated in Figure 6.11 where 

crack 1 represents the base image crack pattern, and the crack 4 represents the final image 

crack pattern. The crack patterns are generated by changing the number of iterations (n) 

and affine transformation parameters (translation, rotation, and scaling) to fractal tree 

algorithms. The generated cracks form n = 1 to 4 are considered as crack propagation form 

time T1 to T4. A sample MATLAB code for the algorithm is shown in Appendix C.  
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Table 6.1: Spectral and Fractal Analysis of digital images 

Image Description 

Fractal 

Analysis  

(FD) 

% 

Change 

Spectral 

Analysis 

(Radial 

Peak Value) 

% 

Change 

Damage 

Index (DI) 

Base Image at 30KN  

0.960 0 1898 0 0.00 

Crack Image at 50KN  
1.039 8 2105 11 0.08 

Crack Image at 70KN  
1.078 12 2192 15 0.11 

Crack Image at 80KN  
1.084 13 2228 17 0.12 

Crack Image at 90KN  
1.121 17 2231 18 0.15 

Crack Image at 100KN  
1.142 19 2272 20 0.17 

Crack Image at 110KN  
1.172 22 2348 24 0.20 

Crack Image at 115KN  
1.183 23 2349 24 0.21 

 



165 
 

 

 

Figure 6.11: (a) Fractal images generated by Fractal Tree algorithms simulating cracks 

from Time T1 to T4 

 

 

 

Figure 6.12: Estimation of Fractal Dimension using Box Count Algorithms 
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The result of the fractal analysis for crack patterns is shown in Figure 6.12 for the 

representative crack at n = 4. Figure 6.12 (b) shows the plot of box size against the number 

of box required to fill the given object space and Figure 6.12 (c) represents the derivative 

of the above plot representing the fractal dimension. The fractal dimension is evaluated for 

all the crack patterns and their plots are displayed in Figure 6.13. 

 

 

 

Figure 6.13: Change Detection by Fractal Analysis of Concrete Surfaces 

 

The fractal-generated cracked images are converted to real images by photographing the 

images at different camera resolution shown in Figure 6.14. The printed cracks are imaged 

at camera resolution 3.591 pixels/mm, 2.07 pixels/mm, and at camera zoom 2x with 
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resolution 3.44 pixels/mm. The Min FD and Max FD represent the minimum and maximum 

fractal dimension obtained from standard deviation of plotted fractal dimension.  

 

 

 

Figure 6.14: Experimented at different resolutions (Resolution 3.591 pixels/mm) 

 

Due to camera quality and environmental lighting conditions, it is not possible to get the 

same results of defects based on fractal dimension. However, the change detection trends 

are similar. The results in Figure 6.15 shows that fractal dimension (FD) of cracks at 

camera resolution 3.59 pixels/mm is very close to FD of fractal generated cracks (taken as 

reference FD). However, the errors (deviation of FD from reference value) increase as the 

camera resolution is decreased to 2.07 pixels/mm. The errors further increase by zooming 

the camera although keeping image resolution at 3.44 pixels/mm. These errors are 
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experienced due to the loss of objects pixels by changing image resolutions at different 

lighting conditions.  

  

Figure 6.15: Experiments results of Fractal Images for Fractal Dimension at different 

image resolutions  

 

 

Figure 6.16: Change Detection by Crack Density  
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All the results are summarized in Table 6.2 showing the comparison of results from fractal 

analysis, spectral analysis, and traditional approach of crack density (Ganapuram et al. 

2012).  

Table 6.2: Change Detection based on Spectral Analysis and Fractal Analysis 

Fractal Analysis Crack # 1  Crack # 2 Crack # 3 Crack # 4 

No. of Cases (n) 1 2 3 4 

Fractal Dimension 

(FD) 1.13 1.18 1.22 1.28 

% Crack Growth  3.87 8.21 13.26 

     

Spectral Analysis     

Spectral Mean 

Values 1618.00 1656.00 1743.00 1798.00 

% Crack Growth  2.35 7.73 11.12 

     

Traditional approach     

Length (mm) 390.00 500.00 716.00 1105.00 

Area (mm2) 45135.00 45144.00 45144.00 45144.00 

Crack Density (%) 0.86 1.11 1.59 2.45 

% Crack Growth  28.31 83.95 184.15 
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The crack #1 is considered as the base crack for result comparison. The results of fractal 

analysis and spectral analysis match very closely to 3 %, 8 %, and 12 % for Crack 2, 3, and 

4 respectively considering Crack 1 as the base crack image. However, using the traditional 

Euclidean distance-based approach of obtaining crack density for the comparison purpose, 

the difference is found to be 28%, 84%, and 184% for the crack images 2, 3, and 4 

respectively considering the base crack image as Crack 1. These results are too far away 

from that obtained from the spectral and fractal analyses. These analyses concluded that 

the Euclidean distance measurements are unable to capture the surface information 

contained in the form of texture properties.  

 

6.6.3 Comparison with manually segmented images 

 

To compare the efficiency of spectral change detection, two images are analyzed separately 

by choosing different threshold values manually and percentage changes between these 

two images are found. Figure 6.17 (a) presents an original image taken at time T1 and the 

binary image obtained by global image threshold using Otsu's method (Otsu 1979). After 

this operation, the image is labeled with different color as shown in Figure 6.17 (b) and the 

number of pixels contained in each object are counted and displayed. Similarly, the process 

has been repeated for another image taken at time T2 with the threshold value of 0.5 and 

leveled as shown in Figure 6.8 (a) and 6.18 (b). 
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(a)       (b) 

Figure 6.17: (a) Image taken at Time T1 at threshold 0.5, (b) Object labelling and area in pixels 

 

(a)       (b) 

Figure 6.18: (a) image at Time T2 at threshold 0.5, (b) Object labelling and area in pixels 

 

Again, the same images are analyzed at increased threshold value of 0.8 and the results are 

displayed in Table 6.3. Table shows that the percentage of change for the chosen threshold 

of 0.5 and 0.8 are 1.54 % and 9.98 % respectively. Hence, it can be concluded that 

traditional approach of change detection is totally based on the chosen threshold. 
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Table 6.3: Change Analysis based on image registration 

 

 
Threshold 

(0.5) 

Threshold 

(0.8) 

Image Size 298 x 448 298 x 448 

Image at Time T1 246* 1532 

Image at Time T2 2300 14853 

%    Defects at T1 0.18 1.15 

%    Defects at T2 1.72 11.13 

%             Change 1.54 9.98 

   

*image pixels 

 

The same images are analyzed in frequency domain using spectral analysis of digital 

images and the results are shown in Table 6.4. Here, the mean values of radial and angular 

plots are of interest to find the change in successive images. The analysis shows that 

average percentage change detection found from spectral analysis is 10.75 % which is 

higher than the maximum threshold value of 0.8. Hence, it has been observed that spectral 

method completely avoids image registration process, provided superior results than 

traditional approach of image subtraction method.  

 

Table 6.4: Change Detection based on Spectral Analysis 

 Image at T1 Image at T2 % Change 

Mean of Radial Plot   1386* 1537 10.89 

Mean of Angular 

Plot 1055 1167 10.62 

* is a number obtained from Spectral Analysis indicating mean of radial plot at time T1. 
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6.6.4 Median Filter for Temporal Change Detection  

 

To monitor change detection, digital images of an object are required at different periods 

of time. For illustration purpose, mask processing techniques are used to smooth images to 

get different extents of damage. The general operation of mask processing can be defined 

by Equation 6.11 (Gonzalez et al. 2009). 

 

G(x, y) = T [f(x, y)]                                                                               (6.11)  

 

where, T is a transformation function which operates on original image f(x, y) to produce 

modified image G(x, y). The size of the mask can be considered as [3 x3], [5 x5], or [7 x7] 

depending upon the degree of roughness or smoothness required. The first column of 

Figure 6.19 shows the same images at different damages levels using different mask, the 

second column shows the plot of radial energy variation, and third column shows angular 

variation of texture contained in images. The statistical values are summarized in Table 

6.5.  
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Figure 6.19: Temporal change detection  
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Table 6.5: Extraction of Descriptors from Spectral Analysis 

 

Images Descriptions Radial Change Angular Change 

Original crack (6)    

Peak  2052 1372 

Mean 1537 1167 

Smoothed Image (5 Pixels) (5)    

Peak  2052 1236 

Mean 1333 1017 

Smoothed Image (10 Pixels) (4)    

Peak  2048 1221 

Mean 1157 885 

Smoothed Image (15 Pixels) (3)    

Peak  2037 1214 

Mean 1008 777 

Smoothed Image (20 Pixels) (2)    

Peak  2029 1207 

Mean 958 760 

Smoothed Image (100 Pixels) (1)    

Peak  1826 1165 

Mean 865 671 

 

 6.7 Summary  

This Chapter describes the development of new algorithm for periodic detection of changes 

in concrete defect and demonstrated its application utilizing digital images from laboratory 

environment as well as fractal generated images. The procedure extracts a set of 

dimensionless metrics pertinent to spectral and fractal analysis of digital images. The result 

shows that the maximum changes after the fractal and spectral analysis for the selected 
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images captured at 30 kN load to 115 kN load are 23% and 24% respectively measured 

from a base crack image at 30 kN load. Furthermore, Damage Index (DI) is also calculated 

based on the fractal dimension analysis of digital images, and the maximum value DI found 

is 0.21. The change of DI equal to 0.21 indicates safe operating condition for bridge 

components because the complete failure of concrete beams will happen at DI equal to 1.0. 

However, the correlation of such parameters with the performance history of bridge 

components needs to be studied further which is outside the scope of this work. 

 

The second part of the spectral and fractal analysis is tested on different crack patterns 

generated through fractal tree algorithms. The results of fractal and spectral analysis match 

closely to 3%, 8%, and 12% change in cracks #2, #3, and #4 respectively where crack #1 

is considered as the base defect. However, the tradition approach of obtaining crack density 

for comparison purpose is found to indicate the change level of 28%, 84%, and 184% for 

crack images #2, #3, and #4 respectively where crack #1 is considered as the base image. 

Also, the result of the spectral analysis of digital images is tested with the result of different 

threshold values. The detected change for the selected images taken at time T1 and T2 is 

1.54% at threshold 0.5 and 9.98% at threshold 0.8. The change detection parameter 

obtained from the spectral analysis is 10.6% which neither required a threshold value nor 

an image registration process. The proposed method overcomes the limitations of the 

existing subtraction method by simply bypassing image registration processes and 

demonstrates the value of superior features of the developed algorithm.  
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Chapter 7: Conclusions and Future Work 

 

7.1 Conclusions 

 

Civil infrastructure systems are deteriorating at an alarming rate because of increased load 

(e.g. traffic on bridges and roads), aging, material degradation, environmental effect, and 

to list a few. To effectively manage infrastructure, reliable inspection reports are needed. 

However, the current practice of infrastructure condition evaluation is primarily based on 

visual inspection. Such approaches have been identified with several limitations: costly, 

time consuming, and prone to subjective error. This thesis develops image-based condition 

assessment tools and techniques, which can be integrated with existing bridge management 

systems (BMSs) in order to enhance the reliability of current inspection practices.  

 

In the current practice, BMSs store large numbers of digital images; however, the images 

are used just as a reference to support the inspected documents. This thesis utilizes digital 

image based inspection of bridges focusing on object detection and quantification of 

defects in order to augment the information obtained from current inspection practices. 

Although, remote sensing technologies were used earlier for tracking of Earth objects, their 

applications in Civil Engineering for condition assessment of bridges has been recognized 

only recently after recent development in camera and other imaging technologies.  

 

The research encompasses three modules: digital image processing, data processing, and 

condition assessment modules. The condition assessment module of this research is based 
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on data processing where the important feature metrics are extracted from digital images 

using various image-processing technologies. For data acquisition, commercially available 

digital cameras have been used to acquire digital images from lab experiments during 

bending test of reinforced concrete beams, as well as from field study of existing bridges 

in Montreal, Quebec.  

 

The first module of this research develops crack quantification model which evaluates 

crack properties using digital image processing. The quantified crack properties have been 

validated by measuring the crack properties manually using crack scales. Further, this 

module develops relationship between crack width and length, which are essential pieces 

of information required for condition assessment of concrete structures. The result of this 

module showed that under the increasing tendencies of loads, the crack width increases, 

while the crack length may or may not increase.  

 

The second module of this thesis develops an automated prediction algorithm for condition 

rating of concrete bridge elements using digital images. Under this method, scaling defects 

are considered as a candidate defect in bridges, and the guideline adopted for developing 

the algorithm is based on Ontario Structure Inspection Manual (OSIM). Although only 

scaling defect is considered for demonstration purpose, the method can be easily extended 

to other types of defects on a concrete surface. The developed automated algorithm for 

mapping of condition ratings is based on the supervised training of back propagation neural 

networks. The result of the developed models showed better prediction capability of 

condition rating over the existing methods: Naïve Bayes Classifiers and Bagged Decision 
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Tree. The developed model has been validated using validation data sets and presented in 

the form of statistical data.  

 

Likewise, this research also proposes change detection model defined as change in element 

condition state over times. The purpose of this model is to track the progression of defects 

at different inspection intervals. In this method, a set of dimensionless metrics pertinent to 

spectral and fractal analysis of digital images are generated. The fractal analysis of digital 

images is described by fractal dimension (FD) using Box Counting algorithms. Similarly, 

the method of spectral analysis requires digital images to be translated from spatial domain 

to Fourier domain, and then finds one dimensional signatures of an image to quantify 

change detection. Such approach avoids image registration process since it doesn’t operate 

in spatial domain. The proposed methods successfully generate unique numbers to 

represent defect characteristics required for change detection and make them feasible for 

computer automated applications. To assist visual inspection for condition assessment of 

bridge components, each of the above discussed modules utilizes 3D visualization of 

defects to mimic on-site visual inspection.   

 

The developed image-based models in this research can be potentially integrated with any 

existing automated bridge management system such as PONTIS in order to enhance the 

reliability of visual inspection or can be integrated in an excel sheet for independent 

analysis. 
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7.2 Contributions 

 

1) This research contributed an integrated model consisting of crack quantification 

model supported by 3D defect visualization, and neural networks models for condition 

assessment of reinforced concrete beams.  

 

One important contribution of the integrated model is crack length estimation based on 

crack skeleton itself which considers the tortuosity of the crack alignment. This aspect 

(tortuosity) has been overlooked in the existing method where the length of a crack is 

estimated form a bounding box. The existing crack segmentation method is based on 

searching of crack connectivity which requires input of at least one crack skeleton point to 

start searching for the crack connectivity. Also, the orientation angle of each crack pixel 

need to be calculated and checked to know whether the crack pixel can be included in that 

crack segment or not. The proposed method detects branch points (key marks) in a given 

image frame and extracts the features automatically. Current approach for 3D visualization 

requires field survey for defect measurement and then develops 3D models. A fast and easy 

3D visualization approach has been proposed based on the digital images. Hence, it does 

not require field survey for measurements except digital images with high resolution 

cameras. The area of interest for industry experts are not only the maximum or the 

minimum crack width, but also the average crack width in a given crack segment. This 

information is important for billing or contractual purpose. In many cases, the depth of 

concrete beams is concealed and it is inaccessible for measuring crack lengths. This work 
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presents a model for crack length estimation given crack widths which are usually visible 

and can be measured using remote sensing technology.  

 

2) Another contribution of the research is the development of automated prediction of 

condition rating model using neural networks and digital image processing techniques.  

 

Digital image processing helps to automate the extraction of defect attributes, whereas, the 

application of neural networks automates the mapping of condition rating. The presented 

work is useful in enhancing the reliability of current Bridge Management System if 

integrated with any automated bridge management system such as PONTIS. Recently 

researchers have started to use Street View Google Images for quantification of civil 

infrastructure. This research forms a base for automated predication of bridge condition 

states without going to field visits if integrated with Google Street View models.  

 

3) The third contribution of this research is to present change detection model based 

on spectral and fractal analysis of digital images to assess defects in reinforced concrete 

bridges. The proposed spectral method is based on Fourier Transform of digital images. 

The proposed approach works in the frequency domain, and hence, the method does not 

require the cumbersome operations in spatial domain such as, pixel-based operations or 

threshold based operations and image registration. Furthermore, the twisting of cracks can 

be best described by fractal analysis of crack images. The result of the current work is also 

compared by evaluating Damage Index (DI) based on fractal dimension obtained from 

fractal analysis of digital images. Non-Euclidean geometry-based measurement of change 

in defects for condition assessment of concrete bridge is one of the major contributions of 
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this thesis. The proposed approach eliminates the limitations of visual inspection and the 

process can be automated with the computer vision application to enhance the reliability 

of current inspection practices.         

Based on the contribution from the present research a number of papers have produced for 

peer-reviewed journals and conferences as listed in Appendix-E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

 

7.3 Limitations of the Current Research and Scope for Future Studies 

 

1) Training and testing of neural networks 

The training and testing of neural networks are done with data collected form a 

particular beam tested in lab. Ideally data shall be collected from various sources with 

different types of beams, loading, and boundaries conditions. Then only the result of this 

model can be generalised for practical purpose in different locations. Another problem is 

the quantification of defects in common units of measurements. So, further automated 

image pre-processing algorithms need to be developed for automatic tracking of images 

scale. It is evident that the number of image pixels is different if the images of the same 

defects are taken at different fields of view. In the current research, either artificial or 

natural targets have been used to define scale in each image frame. The application of 

Ground Positioning System (GPS) for automatic tracking of images scale should be 

explored in the future studies. Also, the developed model needs to be compared with Fuzzy 

logic to compare the outputs which can accelerate the decision making process. 
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2) 3D visualization Model 

The developed 3D models based on digital images provide additional information 

about condition of an infrastructure. The model developed for 3D visualization was based 

on commercially available software. Although this method was efficient in photo 

projection with texture, human intervention was required for drawing 3D elements on 

screen. The initial work has demonstrated the detection of defects and structural 

components using combination of 3D point cloud and digital images, a detailed analysis is 

required for automated development of 3D visualization model in combination of digital 

images for large and complex structures.  

 

3) Scaling Problems in Digital Imaging 

The current work considered only scaling defects for prediction of element 

condition ratings. However, an element might consist of several defects and each individual 

defect (extent and severity) contributes to the element condition rating. So, for the proper 

element condition assessment of elements, several expert functions need to be developed 

which can be integrated together to obtain a single condition rating for the element. 

Different digital image processing algorithms need to be developed to capture the different 

defects and extracting their feature vector for defect mapping. Also, the depth perception 

of defects is highly influenced by lighting conditions. The mapping of difference in lighting 

intensity (ΔI) and defect depths work well when digital images are taken in similar lighting 

conditions. However, in actual practice it might be difficult to maintain the same lighting 

conditions during data acquisition. So, it is necessary to acquire digital images in similar 

environmental conditions so that image pre-processing tasks can be minimized. The thesis 
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demonstrated the methodology of automated prediction of condition rating for bridges 

based on 19 data patterns obtained from analyzing digital images for demonstration 

purpose. However, the output of the models can be updated with additional information if 

available.  

 

4) Available Time for Inspection 

The future study will be able to answer the question of what will be the revised 

inspection frequency for an element or what is the remaining life of an element by 

combining fracture mechanics with NDT. Cracking in concrete can cause failure of bridges 

due to fracture of critical elements, and the two aspects need to be understood to deal with 

these situations. First, a mechanism is required to capture cracks with the aid of Non 

Destructive Test (NDT) to access the current condition of elements. Second, a failure 

assessment of bridge components needs to be evaluated based on element fracture 

mechanism. The first criterion is discussed to a great extent in this research to capture a 

crack and its quantification using digital image processing. However, the estimation of the 

remaining life of a component based on the fracture analysis of elements needs further 

study. The neural networks model discussed in this work can serve as the starting point 

towards this study. More tests are required to capture the effects of different materials and 

their strengths which would ultimately affect the relationship between the crack depth and 

width. In a future study, finite element models can be helpful to study the effect of fracture 

mechanism of concrete elements under cyclic loads. From such simulations, it may be 

possible to establish a relationship among variable of concrete structures useful for 

condition assessment of civil infrastructure. 
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5) Selection of Parameter for Change Detection 

In engineering practice of bridge inspection, the exact measurement regarding the 

shape of an object is not always important; rather a comparison of one shape to another is 

required for decision making purposes. Currently, the comparisons of two objects are 

performed through routine inspection based on Euclidean distance measurements. Such 

measurements are unable to describe the characteristics of defects associated with surface 

properties such as texture and color of digital images. To overcome such limitations, the 

proposed method based on spectral and fractal analysis of digital images provides unique 

metrics with respect to surface characteristics of digital images. However, the proposed 

methods possess the following limitations. There exist a number of spectral parameters that 

can be derived from spectral analysis of digital images. But it is not always obvious which 

parameter will better represent a particular type of defect in question. The use of a particular 

parameter is application-dependent and it needs to be carefully selected for a particular 

problem in hand. Likewise, for fractal analysis, robust defect quantification algorithms are 

necessary to estimate fractal dimensions of 2D objects. The result of fractal analysis reveals 

that the selected defects do not possess fractal properties for the entire box size increments. 

Hence, only local fractal dimension is estimated for change detection analysis. However, 

such estimation might have an effect on the performance evaluation of structural elements 

based on fractal dimension. In terms of operating time, spectral analysis performed faster 

over fractal analysis of digital images. The future work requires making a correlation 

between shape descriptors and object’s behavior. The following two approaches might be 
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suitable for establishing such relationships. First, all possible information regarding the 

shape that controls an object’s behavior would be collected. Based on these collected data, 

statistical analysis could be performed to find out which shape descriptors would be closely 

correlated to the performance of component by establishing suitable mathematical 

equations. Second, a series of controlled experiments using finite element software could 

be performed to study the object’s behavior with different surface characteristics. By 

considering few experiments, it would be possible to study the effect of any variable on the 

behavior of an object more effectively than only statistical analysis.  
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Appendix A: Sample images of spalling defect 

The first part of this Appendix shows the real spalled defects of a reinforced concrete 

bridges in Montreal as shown in the following figures. 

 

Figure: A.1 Spalled Defects in a Reinforced Concrete Structures with exposed 

reinforcement in a bridge in Montreal, Quebec 

 

Figure: A.2 Spalled Defects in a Reinforced Concrete Structures with exposed 

reinforcement in a bridge in Montreal, Quebec  
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Appendix B: Condition rating charts and figures 

 

Figure B.1: Comparison of Remote Sensing Technologies (Ahlborn et al. 2010) 
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Figure B.2: Photo Log (BRIM 2012) 
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Figure B.3: Inspection Report Form (BRIM 2012) 
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Figure B.4: Element Importance Factors (Wakchaure and Jha, 2012) 
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Appendix C: Back Propagation Algorithm 

 

Consider a neuron j at the output layer and C is the set of all neurons in output layer. At 

the nth iteration (i.e. the presentation of nth pattern in an epoch, where a complete set of 

patterns is called epoch), the error signal is given by Eq. (5.1), 

𝑒𝑗(𝑛) =  𝑑𝑗 (𝑛) −  𝑦𝑗(𝑛)           (5.1)  

where, 𝑑𝑗  is the desired output of neuron j & and 𝑦𝑗 = is the actual output of neuron j. 

Then, instantaneous value of error energy is given by Eq. (5.2), 

              𝐸(𝑛) =
1

2
∑ 𝑒𝑗

2
𝑗 Ɛ 𝐶 (𝑛)         (5.2) 

If N is the total numbers of training patterns which makes one epoch; and then average 

squared error energy can be calculated as in Eq. (5.3),  

                              𝐸𝑎𝑣(𝑛) =  
1

𝑁
 ∑ 𝐸(𝑛)𝑁

𝑛=1         (5.3) 

The energy calculated from Equations (2)-(3) will not be same. Then the induced local 

field at the input neuron j was evaluated. The input to the activation function of neuron j 

will be given by Eq. (4), 

                                     𝑣𝑗(𝑛) =  ∑ 𝑤𝑗𝑖
𝑚
𝑖 (𝑛)𝑦𝑖(n)               (5.4)                        

where, 𝑤𝑗𝑖 is the synaptic weight connection from nodes i to j; m is the number of neurons 

in the previous layer i.e., the hidden layer; and 𝑦𝑖 is the actual output in the previous layer. 

And actual output of neuron j is defined by Eq. (5.5),   

𝑦𝑗(𝑛) =  ∮ (𝑣𝑗(𝑛))         (5.5) 
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Now, to find the change in weight 𝛥𝑤𝑗𝑖(n) to update the actual weight 𝑤𝑗𝑖(𝑛), it is 

necessary to find this term, 
𝛿𝐸(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
, which can be obtained by applying the chain rule as 

below. 

𝛿𝐸(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
=

𝛿𝐸(𝑛)

𝛿𝑒𝑗(𝑛)
.

𝛿𝑒𝑗(𝑛)

𝛿𝑦𝑗(𝑛)
.

𝛿𝑒𝑗(𝑛)

𝛿𝑣𝑗(𝑛)
.

𝛿𝑣𝑗(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
                                                     (5.6) 

By substituting the respective values from the above equation, and after taking partial 

derivatives, it can be found that  

𝛿𝐸(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
=  − 𝑒𝑗(𝑛) ∮

′
(𝑣𝑗(𝑛)) 𝑦𝑖(𝑛)                                       (5.7) 

 The correction applied to  𝑤𝑗𝑖(𝑛) is proportional to the learning rate “η”, 

𝛥𝑤𝑗𝑖(n) = - η 
𝛿𝐸(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
  = η 𝑒𝑗(𝑛) ∮

′
(𝑣𝑗(𝑛)) 𝑦𝑖(𝑛)                                        (5.8) 

We substitute, δ𝑗(𝑛) =  𝑒𝑗(𝑛) ∮
′

(𝑣𝑗(𝑛))  in the above equation; the local gradient can be 

defined as  

                     δ𝑗(𝑛) =  − 
𝛿𝐸(𝑛)

𝛿𝑣𝑗(𝑛)
                                                                                        (5.9) 

The final form of the change in synaptic weight is given by Eq. (5.10),   

         𝛥𝑤𝑗𝑖(n) = η δ𝑗(𝑛)𝑦𝑖(𝑛)                                                                (5.10) 

 

The only underlying problem in the above Eq. (5.10) is to calculate the local gradient. The 

problem can be divided into the following two cases. 

Case 1: Neuron j belongs to output layer, in which case, δ𝑗(𝑛) can be calculated from Eq. 

(9) because this is the supervised learning and the output is known in advance. 
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Case 2: Neuron j belongs to a hidden layer. In this case, since the error in hidden layer is 

known yet, it is difficult to determine δ𝑗(𝑛). But, with the similar formulation as shown 

above, the local gradient in hidden layers can be estimated by using the Equation (5.10) 

for weight adjustment. These algorithms do not have any restriction on their input data. 

The only underlying assumption in back propagation algorithm is that the input 

parameters shall not be changed during the forward and backward pass. 
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Appendix D: Sample MATLAB Code for Spectral and Fractal Analysis 

 
 

Spectral Analysis of digital images 

 

 ff = imread('face1.tif'); 

imshow(ff); 

f=rgb2gray(ff); 

% imshow(f); 

S = fftshift(fft2(f)); 

S = log(1+abs(S)); 

%figure; 

%imshow(S,[]); 

[d, e, g] = specxture(f); 

%figure; 

% plot(d) 

%axis tight 

%axis([0 240 1400 2200]) 

% axis([0 500 1200 5000]) 

%figure; 

%plot(b) 

%axis tight 

subplot(2,2,1); imshow(ff) 

subplot(2,2,2); imshow(S,[]) 

subplot(2,2,3); plot(d), axis tight, axis([0 240 1600 2300]) 

subplot(2,2,4); plot(e), axis tight 

%% 

subplot(3,1,1); imshow(ff) 

subplot(3,1,2); imshow(S,[]) 

subplot(3,1,3); plot(d), axis tight, axis([0 240 1600 2300]) 

%subplot(2,2,4); plot(e), axis tight 

function [srad, sang, S] = specxture(f) 

%SPECXTURE Computes spectral texture of an image. 

%   [SRAD, SANG, S] = SPECXTURE(F) computes SRAD, the spectral energy 

%   distribution as a function of radius from the center of the 

%   spectrum, SANG, the spectral energy distribution as a function of 

%   angle for 0 to 180 degrees in increments of 1 degree, and S = 

%   log(1 + spectrum of f), normalized to the range [0, 1]. The 

%   maximum value of radius is min(M,N), where M and N are the number 

%   of rows and columns of image (region) f. Thus, SRAD is a row 

%   vector of length = (min(M, N)/2) - 1; and SANG is a row vector of 

%   length 180. 

%   Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins 

%   Digital Image Processing Using MATLAB, Prentice-Hall, 2004 

%   $Revision: 1.7 $  $Date: 2003/11/21 14:48:47 $ 

% Obtain the centered spectrum, S, of f. The variables of S are  

% (u, v), running from 1:M and 1:N, with the center (zero frequency) 

 % at [M/2 + 1, N/2 + 1] (see Chapter 4).  

 S = fftshift(fft2(f)); 

 S = log(1+abs(S)); 

 [M, N] = size(S); 

 x0 = round(M/2 + 1); 

 y0 = round(N/2 + 1); 

 % Maximum radius that guarantees a circle centered at (x0, y0) that 

 % does not exceed the boundaries of S.  
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 rmax = min(M, N)/2 - 1;  

 % Compute srad. 

 srad = zeros(1, rmax); 

 srad(1) = S(x0, y0); 

 for r = 2:rmax 

 [xc, yc] = halfcircle(r, x0, y0); 

 srad(r) = sum(S(sub2ind(size(S), xc, yc))); 

 end 

 % Compute sang. 

 [xc, yc] = halfcircle(rmax, x0, y0); 

 sang = zeros(1, length(xc)); 

 for a = 1:length(xc) 

 [xr, yr] = radial(x0, y0, xc(a), yc(a)); 

 sang(a) = sum(S(sub2ind(size(S), xr, yr))); 

 end 

 % Output the log of the spectrum for easier viewing, scaled to the 

 % range [0, 1]. 

 S = mat2gray(log(1 + S)); 

 %-------------------------------------------------------------------% 

 function [xc, yc] = halfcircle(r, x0, y0) 

 %   Computes the integer coordinates of a half circle of radius r and 

 %   center at (x0,y0) using one degree increments.  

 % 

 %   Goes from 91 to 270 because we want the half circle to be in the 

 %   region defined by top right and top left quadrants, in the 

 %   standard image coordinates.  

 theta=91:270; 

 theta = theta*pi/180; 

 [xc, yc] = pol2cart(theta, r); 

 xc = round(xc)' + x0; % Column vector. 

 yc = round(yc)' + y0; 

 %-------------------------------------------------------------------% 

  

function [xr, yr] = radial(x0, y0, x, y) 

%   Computes the coordinates of a straight line segment extending 

%   from (x0, y0) to (x, y).  

% 

%   Based on function intline.m.  xr and yr are returned as column 

%   vectors.   

[xr, yr] = intline(x0, x, y0, y); 

  

 

Fractal Analysis of Digital Images 

 

subplot(2,2,1), FraktalT(1,01,[pi/9,-pi/9],[0,0],[0,0.5]) 

set(gca,'Fontsize', 14); 

xlabel('a) Initial Crack, n= 1', 'Fontsize', 14); ylabel('Crack Depth', 'Fontsize', 14) ; 

subplot(2,2,2), FraktalT(2,01,[pi/9,-pi/9],[0,0],[0,0.5]) 

set(gca,'Fontsize', 14); 

xlabel('b) Crack, n= 2', 'Fontsize', 14); ylabel('Crack Depth', 'Fontsize', 14) ; 

 

subplot(2,2,3), FraktalT(4,01,[pi/9,-pi/9],[0,0],[0,0.5]) 

set(gca,'Fontsize', 14); 

xlabel('c) Crack, n= 4', 'Fontsize', 14); ylabel('Crack Depth', 'Fontsize', 14) ; 

 

subplot(2,2,4), FraktalT(3,01,[pi/9,-pi/9],[0,0],[0,0.5]) 
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set(gca,'Fontsize', 14); 

xlabel('d) Crack, n= 3', 'Fontsize', 14); ylabel('Crack Depth', 'Fontsize', 14) ; 

 

set(gcf,'Color',[1,1,1]) 

[ax,h3]=suplabel('Crack Propagation by Fractal Analysis' ,'t'); 

set(h3,'FontSize',18) 

function A = FraktalT(n,r,phi,xb,yb) 

% This function allow you to bild fractal trees 

%  by using modified algorithms based on the so-called Kantor`s array 

%  and method of inverse trace 

%  These methods allow you to economise time and computer memory 

%  considerably 

% It`s arguments: 

%  Fraktal(n,r,phi,xb,yb) 

%     n - number of iterations 

%     r - scale factor 

%       in case of nonuniform fractals where different scale-factors take 

%       place, r may be vector (in this case the lengths of r and phi must be equal) 

%     phi - vector of angles in fractal generator that are calculated 

%     relative to the horizontal axis connecting end points of generator 

%     xb and yb - coordinates of trunk 

% 

%   For example for famous Pifagorus`s tree in it`s vertical position the call of this function is 

%   so: 

%   FraktalT(n,0.5,[pi/4,-pi/4],[0,0],[0,1]) 

%       n is recommended to be in range 1..12 not to call the overloaded of stack 

 

%h=figure; 

%axes('Parent',h); 

 

mN=length(phi); 

if length(r)==1 

rM=ones(1,mN)*r; 

elseif length(r)==mN 

rM=r; 

else 

warndlg('The sizes of scale vector and vector of angles in fraktal`s generator don`t equal'); 

end 

 The adress to the system to ignore warnings as divide by zero 

warning off MATLAB:divideByZero 

 

% ksi - angle of trunk with vertical axes 

% it`s calculated on the basis of coordinates xb and yb of trunk 

%  by using the line-equation: 

%  y=k*x+d,   here 

%      k=(yb(2)-yb(1))/(xb(2)-xb(1)); 

%      d=(yb(1)*xb(2)-xb(1)*yb(2))/(xb(2)-xb(1)); 

a=sqrt((xb(1)-xb(2))^2+(yb(1)-yb(2))^2);   % scale factor 

b=1; 

c=sqrt((1-xb(2))^2+(yb(2))^2); 

alpha=acos((a^2+b^2-c^2)/(2*a*b)); 

k=(yb(2)-yb(1))/(xb(2)-xb(1));                       % define the tangent 

d=(yb(1)*xb(2)-xb(1)*yb(2))/(xb(2)-xb(1));           % define the free member 

if yb(2)>=yb(1) 

ksi=alpha; 

else 
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ksi=-alpha; 

end 

 

%    auxiliary vectors for theta and rD (see below their definition) 

psi=zeros(n,mN^n); 

ralt=ones(n,mN^n); 

%   psi and ralt have Kantor array`s structur !!! 

 

for i=1:1:n 

z=1; 

for j=1:1:mN^(i-1) 

for k=1:1:mN 

for m=1:1:mN^(n-i) 

psi(i,z)=phi(k);               % define psi on the base of phi 

ralt(i,z)=rM(k);               % define ralt on the base of rM 

z=z+1; 

end 

end 

end 

end 

 

theta=zeros(n,mN^n);  % vector of angles between each branch of fractal and vertical axes 

rD=ones(n,mN^n);      % lengths of branches 

for i=1:1:mN^n 

for j=1:1:n 

for k=1:1:j 

theta(j,i)=theta(j,i)+psi(k,i);        % define theta on the base of psi 

rD(j,i)=rD(j,i)*ralt(k,i);             % define rD on the base of rD 

end 

end 

end 

theta=theta+ksi; 

% ----Matrix for coordinates------- 

A=ones(n+1,mN^n,2); 

% initial coordinates 

A(1,:,1)=ones(1,mN^n)*xb(2);   % x-coordinate 

A(1,:,2)=ones(1,mN^n)*yb(2);   % y-coordinate 

for j=1:1:mN^n 

for i=1:1:n 

% define following coordinates 

A(i+1,j,1)=A(i,j,1)+a*rD(i,j)*cos(theta(i,j)); 

A(i+1,j,2)=A(i,j,2)+a*rD(i,j)*sin(theta(i,j)); 

end 

end 

 

% By visualisation the method of inverse trace is used 

tau=1; 

for i=1:mN:mN^n 

z=1; 

for k=1:1:mN-1 

for j=z:1:n-1 

line([A(j,i,1),A(j+1,i,1)],[A(j,i,2),A(j+1,i,2)],'LineWidth',3, 'color', 'r'); 

end 

z=z+1; 

end 

end 
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% -------------------------- end branches ---------------------------- 

for i=1:1:mN^n 

line([A(n,i,1),A(n+1,i,1)],[A(n,i,2),A(n+1,i,2)],'LineWidth',3, 'color', 'r'); 

end 

% -------------- Trunk ----------------- 

line([xb(1),xb(2)],[yb(1),yb(2)],'LineWidth',3, 'color', 'r'); 

d1 = imread('crackmap3.tif'); 

figure 

image(d1) 

axis image 

%% 

d2 = ~im2bw(d1, 0.5); 

%  

%  i = c(1:230,1:1551, 3); 

%  bi = (i<80); 

 figure 

 imshow(d2); 

%  imagesc(bi) 

%   colormap gray 

%   axis image 

  

%% Dilate  

% %togglefig('Dilated Image Segments'); 

%  

% d = imdilate (d2, strel ('disk', 2)); 

% imshow (d2) 

%% 

d = bwareaopen (d2,20); 

%togglefig('Vessel Segments Exclude Small Length'); 

imshow (d) 

%% 

figure 

[n,r] = boxcount(d,'slope'); 

%% 

boxcount(d) 

figure 

boxcount(d) 

%% 

df = -diff(log(n))./diff(log(r)); 

disp(['Fractal dimension, Df = ' num2str(mean(df(3:5))) ' +/- ' num2str(std(df(3:5)))]); 

%% 

subplot (1,3,1), image(imrotate (d1,90)), axis image 

subplot (1,3,2), boxcount(d); 

subplot (1,3,3), [n,r] = boxcount(d,'slope'); 


