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Abstract

Image-based Condition Assessment for Concrete Bridge Inspection

Ram Sebak Adhikari, Ph.D.
Concordia University, 2014

The following approaches are usually taken for the condition assessment and performance
evaluation of civil infrastructure: visual inspection, structural response measurement due
to loads, and sensing based inspection of bridge structures. This thesis concentrates on the
last alternative using remote sensing for condition assessment of concrete bridge structures.
Focusing on defect quantification problems for condition assessment of bridge structures,
remote sensing techniques based on digital images provides superior result over
conventional visual inspection-based methods. The aim of this thesis is to develop digital
image-based condition assessment tools and techniques, which can be integrated with
existing bridge management systems (BMSs) in order to enhance the reliability of current

inspection practices.

The methodology of this research divides the entire task of bridge inspection into two
modules. The first module develops quantification models based on the extent and severity
of defects, and the second module develops a change detection model defined as change in
element condition state over times. For defect quantification, three fundamental concrete
defects such as cracks, spalling, and scaling have been considered. To illustrate the
proposed methodology, digital images are acquired from laboratory experiments during the

testing of reinforced concrete beams in flexure, and from field visits of bridges in Montreal,



Quebec using portable digital cameras. This research contributes in the development of
crack quantification model based on the corresponding crack skeleton which takes
consideration of crack tortuosity for retrieving of crack properties. The output of the crack
quantification model is validated by capturing the crack properties using a crack scale. In
addition, an automated model for estimating the condition rating and related computational
algorithms for bridge inspection are developed using the guidelines of the Ontario Structure
Inspection Manual. The developed algorithms for mapping of condition ratings are based
on the supervised training of back propagation neural networks. Recognizing the
importance of 3D visualization, which can mimic the on-site visual inspection, 3D
visualization model is developed using ordinary digital images by manually projecting

images on the 3D model of the bridge being inspected.

The second module proposes a novel approach for periodic detection of defects in concrete
bridges based on a set of dimensionless metrics pertinent to spectral and fractal analyses of
the captured images. The fractal analysis of digital images is described by fractal dimension
(FD) using Box Counting algorithms. Similarly, the method of spectral analysis requires
digital images to be translated from spatial domain to Fourier domain, and then finds one
dimensional signatures to quantify change detection. The developed algorithm for change
detection demonstrates superior results and eliminates the limitations of traditional
approach of change detection based on image subtraction. The developed image-based
models can either be applied as standalone condition assessment and rating applications or
integrated with existing systems such as PONTIS ( a Bridge Management System in USA)

in order to enhance the reliability of visual inspection.
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Chapter 1: Introduction

1.1 Overview

2013 report card published by American Society of Civil Engineers for America’s
Infrastructures reveals that the average age of bridges in the USA (i.e. 607,380 ) is 42 years
and about 11% of the bridges are rated as structurally deficient (ASCE 2013). Likewise, in
Canada, more than 40% of the bridges currently in use were built over 50 years ago, and
they are in need of immediate upgrade (Bisby and Briglio 2004). To maintain the condition
of such infrastructure, there exist different inspection programs for monitoring the
conditions of a structure during its life span. However, the importance of bridge inspection
was not fully understood until the collapse of [-35 W Mississippi River Bridge which was
built in 1964. According to the investigation report of the National Transportation Safety
Board (NTSB, 2008), the Mississippi River Bridge on [-35 was inspected a year before the
catastrophic failure of the deck truss at 6.05 p.m. on August 2007. As a result of the
collapse, 1000 ft of the 1,907 ft long bridge fell to the water, 13 people lost their lives, 145
people injured, and 111 vehicles were involved in the accident. In further investigation, the
inspection report showed that the bridge was rated 4 out of 9 resulting in the continuation
of the bridge operation without any load restriction. The tragic accident of the Mississippi
River Bridge revealed that the condition of such deficient bridges could have been worse
than what bridge inspectors had reported in inspection report. Such accidents drew serious
attention towards proper inspection guidance’s and technologies for accurately assessing
the condition state of bridges for effective Bridge Management System (BMS) (National

Transportation Safety Board, 2008).



In order to improve the effectiveness of a BMS, data collection and interpretation strategies
need to be improved. In general, routine bridge inspection is carried out every two years to
collect information on bridge conditions in the form of text, images, and drawings based
on inspection manual guidelines (Navy Bridge Inspection Program, 2008). Routine
inspections are generally carried out through visual inspection which is an arm’s length
inspection of all portions of structures using some fundamental measuring methods and
tools. However, the reliability of visual inspection regarding consistency and objectivity of

inspected data has been questioned in literature (Moore et al. 2001).

1.2 Limitations of Current Practices for Condition Assessment of Bridges

Although several satellites such as (LANDSAT TM, SPOT4, IRS, and RADARSAT) are
capable of identifying objects lying on the Earth surfaces, the defect detection and
quantification of civil infrastructure are not possible due to the limitations of spatial
resolution, temporal resolution, radiometric resolution, swath width, and spectral bands
(Roy, 2008). The commonly used non-destructive techniques for condition evaluation of
concrete decks are visual inspection, liquid penetrant dye, chain drag, Half-cell potential
(HP), acoustic emission, ultrasonic pulse velocity, ground penetrating radar (GPR), impact
echo (IE), and IR thermography (Yehia et al. 2007). However, these technologies are
unable to provide the desirable accuracy in terms of extent and severity of defects required
for effective BMS. To prove this point, a systematic study for the condition assessment of

concrete bridge decks through experimental and field testing was conducted using several



remote sensing technologies listed above (Ahlborn et al. 2010). The study showed that the
Bridge Viewer Remote Camera System (BVRCS) technique based on the close range 3D
photogrammetry technique, and GigaPan Techniques based on Street View-style
photography are the best technologies for defect measurement in concrete decks (Ahlborn

etal., 2010).

Previously, Abudayyeh et al. (2004) proposed a framework for automated bridge imaging
system based on digital image processing and integrated with Bridge Management Systems
(BMSs) PONTIS. However, the assignment of condition rating for bridge elements was
done manually by displaying the collected images on computer screens. The current
version of PONTIS 5.1.2 allows multi picture uploading just by selecting all images stored
in a folder (AASHTOWare Bridge, 2012). The approach provides great advantages over
old version where pictures were uploaded one at a time. However, these images are not
used for defect quantification purposes. They are just kept for references or visual

comparisons.

The New Zealand Office of the Auditor General (2010) addressed the need for improved
data collection in order to adopt the advanced bridge asset management system. Since the
current practices of data collection is based on visual inspections, the approaches are not
providing consistent or reliable information, and often they are not able to detect critical
problems in bridge components (Bush et al. 2012). Therefore, there is a need for integration
of non-destructive evaluation (NDT) techniques with the data collection needed for bridge

management system. The validation of NDT program for defects assessments requires


http://www.youtube.com/user/PontisBridge?feature=watch

developing a laboratory based specimens with embedded defects obtained from
decommissioned bridges. Such approach will enhance the reliability of NDT program for

further applications.

1.3 Motivation

Civil infrastructure, especially bridges, plays an important role for economic development
of a country. The bridges not performing as per current code requirements can threaten
human lives. Thus, regular maintenance and proper rehabilitation actions are necessary in
order to maintain the functionality of bridges in preventing sudden failures. In spite of
regular inspection of De La Concorde overpass in Quebec, on September 20 (2006), the
bridge collapsed leaving five people killed and six people wounded (Vaysburd & Benoit,
2007). The investigation done by Vaysburd and Benoit (2007) showed that the inspection
reports of de la Concorde were not consistent. There was a misinterpretation of abutment
definition of de la Concorde Bridge. Until 1999, the bridge was defined as single span
bridge, but from 1999, the bridge was started to be called a three span bridge taking into
consideration of the cantilevers on both sides. In another report, it was admitted that bridge
defects were rarely sketched; the location and extent of distresses were almost never
reported, and that prevented the accurate evaluation of the bridge condition assessment
over time (Commission of Inquiry 2007). The failure of the bridge underscored the

importance of tracking of critical bridge element during bridge inspection.



The current practices of bridge inspections, which are based on visual inspections, are not
reliable in terms or data consistency, and information reliability; and they are often unable
to detect critical problems in structural components (Bush et al. 2012). The analysis of a
critical element requires the tracking of progression of a particular defect over time so that
necessary actions can be performed before any emergency situation. The advancement of
information technologies and their application in civil engineering have made possible to
acquire such information digitally in order to track the conditions of bridge elements,

periodically (Brilakis et al. 2006).

Additionally, there exists several remote sensing technologies for accessing bridge defects;
however, they do not provide reliable information such as the extent and severity of defects
required for the effective application of BMS. This research presents a methodology based
on digital image processing for condition assessment of the critical elements in a bridge,
suitable for the application of BMS, as well as, a procedure for tracking of progression of

defects in critical bridge elements.

1.4 Scope and Objectives

The condition assessment of bridge structural components encompasses diagnosis and
monitoring of external and internal defects. This thesis considers only external defects with
a focus on improving current practices for concrete bridge inspection, which is based on

digital image analysis. The aim of this research is to develop tools and techniques in order



to enhance the reliability of visual inspection for effective performance of BMS using

digital image processing.

In order to achieve the above main objective, the entire activities relating to condition
assessment of concrete bridges have been categories into two parts: a) Defect
Quantification Module, and b) Change Detection Module. For further development of these
modules, this thesis considers three major categories of surface defects in reinforced
concrete elements, which are: a) Spalling, b) Scaling, and c) Cracking. These defects
including the crack map are to be captured by commercially available digital cameras, and

processed for condition assessment of reinforced concrete beams/decks.

In order to fulfill the main objective, the following sub-objectives are identified.

1) Study the current practices, related literature, and limitations of remote sensing
technologies for condition assessment of concrete bridges in order to support BMS.

2) Develop a methodology for condition assessment of concrete beams that accounts
for not only individual cracks, but also crack patterns.

3) Design a prototype software application for automated prediction of element
condition rating based on identified concrete bridge scaling defects.

4) Develop an application for change detection in order to track progression of critical

defects for improved condition assessment of bridge structures.



1.5 Thesis Organization

Chapter two presents a literature review on the current practices of condition assessment
of bridge structures. The chapter starts with introduction followed by the application of
remote sensing technology for civil infrastructure. Previously, the remote sensing
application was limited for geometry measurement; however, due to current development
of digital cameras, now it is possible to quantify defects in bridge structures in addition to
capturing the geometries of bridge components. One of the sections of this chapter focus
on digital image processing such as automated detection of lines, points, image pre-
processing, and image segmentation. Also, the chapter discusses the importance of 3D
visualization of bridge defects through the digital images which can mimic the on-site

visualization of bridges.

Chapter three presents the proposed methodology describing the main aspect of this
research. In broad sense, the methodology consists of three main components: a) digital
image processing, b) data processing, c¢) condition assessment modules. The condition
assessment module is again sub-divided into three sub-modules which form the three next

chapters as described here.

Chapter four, five and six develop procedures for crack quantification model, condition
rating model, and change detection model for automated process of condition assessment
of concrete bridges using digital images. For example, chapter four develops step by step

process for crack detection and its length estimation based on crack skeleton itself. The



approach shows significant improvement over the previous approach of crack length
estimation based on bounding box obtained by segmenting cracks. Also, the chapter
presents a method to estimate crack density of a beam element, which is defined as total

length of cracks over the total surface area, by developing 3D visualization models.

In chapter seven, the results of the present research are summarized, the main contributions

are listed, and the recommendations for further research are presented.



Chapter 2: Literature Review

2.1 Introduction

The bridge infrastructure plays an important role for a country’s development. The social,
economic, and political development of a country is largely dependent on the effective
operation and management of the civil infrastructure. Bridges are one of the major
components of highway infrastructure connecting people from different places
economically and emotionally. However, in current scenarios, the condition of bridges in
North America is rapidly degrading and it poses a major challenge in managing the
effective distribution of financial packages for maintenance and rehabilitation of

infrastructure (Hammad et al. 2007).

Since 40 years, in spite of technological development in North America, there has been
insignificant improvement in routine bridge inspection. In general, routine bridge
inspection is carried out in every two years through visual inspection which has been
identified with several limitations. To overcome these limitations, there is an urgent need
for developing methodologies to enhance the reliability of visual inspection without adding
financial burdens to users for the effective management of civil infrastructure (Hammad et
al. 2007). The American Society of Civil Engineers (ASCE) started to publish a Report
Card in the beginning of 1988 to grade the nation’s infrastructure conditions. According to
the latest report in 2012, about 11% of nation’s bridges (i.e. total bridges in USA 607,380)

were classified as structurally deficient due to increased traffic, aging of construction



materials, and several environmental effects (ASCE Report 2013). Likewise, in Canada,
more than 40% of bridges are older than 50 years (Bisby and Briglio 2004). Such bridges
require immediate actions for condition evaluation to ascertain that they still meet the
service requirements, and are safe for operations. In the past, several bridge management
systems (BMSs) were developed for managing bridge structures such the Pontis bridge
management system (PONTIS) developed by FHWA in 1989 (AASHTO, 2005) and later,
the BRIDGIT bridge management system developed by the National Cooperative Highway
Research Program (NCHRP) (Hawk, 1999). The input data source required for such BMSs
are generally obtained through visual inspections which have been identified with several
limitations such as they being time consuming, influenced by inspector’s experiences, and
unreliability of element condition ratings (Gutkowski and Arenella, 1998; FHWA, 1995).
The FHWA report in 2001 indicated that the condition rating assigned through visual
inspection can vary significantly which raises questions on the reliability of visual
inspection (Moore et al., 2001). The current BMSs require information on the defects in
terms of their extent and severity in order to assign condition rating for the bridge elements.
At this point, an accurate method of defect detection and quantification is essential for a
reliable output from any automated trading systems such as PONTIS. Therefore, automated
quantification of bridge defects using computer vision approaches needs to be explored
further. Currently, a number of remote sensing techniques are available to evaluate the
exterior or interior defects in bridge components. However, the major challenges are the
cost and time. One of the promising approaches to enhance the reliability of visual
inspection is through the use of digital image processing. Based on the processing of digital

images, (Abudayyeh et al., 2004) developed an imaging data model for automated
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condition assessment of concrete bridges. The model was integrated with an automated
Bridge Management System (BMS), which was capable of generating automated
inspection reports with the application of computers. However, in their approach, the
assignment of condition rating for bridge elements was done manually by visualising
images on computer screens by inspection experts. Thus, the literature review reveals that
there is a need for the development of automated methodologies for predication of
condition rating for bridge components. Such methodologies can be integrated with an
automated bridge management system in order to enhance the current practices of visual

inspections.

The next section presents the issues in current practices of routine bridge inspection with a
focus on evaluating bridge condition rating and condition index associated with bridge
components with multiple defects. Additionally, the chapter discusses the automation
aspect of visual inspection through the application of digital image processing, and also the
importance of shape descriptors for numerical representation of bridge defects. The chapter
will also highlight the importance of 3D visualization of bridge defects through digital
image processing in order to simulate on-site visual inspection through the use of modern

technologies to assist in routine bridge inspection.

2.2 Remote Sensing

2.2.1 Advanced Technologies

The application of remote sensing in civil engineering can be defined as deriving

information about the characteristics of civil infrastructure without being in contact with
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them (Aronoff, 2005). The principle relies on reflectance signature of different surface
materials over various portions of electromagnetic spectrum as shown in Figure 2.1
(NASA, 2013). Figure 2.1 clearly demonstrates that radio waves have larger wavelength
with lower energy content, whereas gamma waves have shorter wavelength with higher
energy content. Although, remote sensing can be carried out at any part of the light
spectrum, the common form of light bands used in the management of civil infrastructure
include visible and infrared light bands. The digital photography is limited to visible light
bands occupying a small portion of the spectrum varying from 400 nanometers (nm) to 700

nm as shown in Figure 2.1.
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Figure 2.1: Electro-magnetic Spectrum relation with Energy and Wavelengths

Although several satellites such as LANDSAT TM, SPOT4, IRS, and RADARSAT are
capable of identifying objects lying on the Earth surface, the defect detection and
quantification of a civil infrastructure are not possible due to the limitations of spatial
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resolution, temporal resolution, radiometric resolution, swath width, and spectral bands
(Roy, 2008). Table 2.1 displays the capabilities of four types of international satellites
currently working the sky for gathering spatial and temporal information about the earth
surfaces. The RADARSAT-1, a Canadian space satellite launched in November 4, 1995,
is still active; however, the spatial resolution of digital images is just above 3 meters which
are not sufficient for quantification of defects associated with civil infrastructure. The
temporal resolution of the above mentioned four satellites varies from 16 days to 24 days
which is sufficient enough to compare change detection for further recommendations after
heavy flood or natural disasters.

Table 2.1: Satellites Spatial and Temporal Resolution (Roy, 2008)

Spatial Temporal

Altitude Swath
System Bands Resolution Resolution  Scales
KM) (KM
(m) (days)

LANDSAT 705 7 185 30 16 1:50,000
SPOT4 803 4 60 20 26 1:50,000
IRS 900 4 147 36 22 1:125,000
RADARSAT 798 1 <500 >3 24 1:50,000

Apart from the satellite remote sensing, Aerial Photogrammetry which is also called
passive sensors is very popular in civil engineering. The commonly used active sensors for
the geometry measurement of civil infrastructural components are LIDAR (Light Detection

and Ranging) and IFSAR (Interferometric Synthetic Aperture Radar). So, it is important to
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select right sensors for a particular problem of interest because sensors selection is
application dependent.

Figure 2.2 demonstrates the selection of different remote sensing technologies based on the
required resolution and object sizes (Luhmann et al. 2006). Luhmann and others
summarized that smaller objects required higher accuracy. The engineering
photogrammetry yields accuracy in mm range for objects ranging from few meters to 100

meters.
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Figure 2.2: Spatial Resolution Accuracy and Object Size (Luhmann et al. 2006)

2.2.2  Suitable Remote Sensing for Surface Defects Analysis

Although bridges are composed of variety of materials such as concrete, timber, and steel,
the current thesis focuses on reinforced concrete Bridges. Most of bridge structures can be

classified into three major components as shown in Figure 2.3.
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Figure 2.3: Major Bridge Components (BRIM -1, 2012)

Out of the three major components of bridges (Decks, Piers, and Abutments), bridge decks
are the most vulnerable part of any bridges. Because of direct contact with traffics, they are
prone to wear and tear in comparison to structural bridge components (Ryall, 2003). Table
2.2 lists seventeen defects required to be studied for complete condition assessments of
reinforced concrete structures; however, all the defects may not be present in a particular
bridge component in question (FHWA, 2006). In general, the details of information
necessary for condition assessment of bridge components are a) types of damages, b)

location of damages, c) damage intensity, and d) damage extent (Bien, 1999).
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Table 2-2: Types of defects in Reinforced Concrete Structures (FHWA, 2006)

Material Defect

Type Type

Cracking, Spalling, Scaling, delaminations, chloride
contamination, efflorescence, formation,

Concrete honeycombs, pop-outs, wear, collision damage,
abrasion, overload damage, reinforcing steel

corrosion, prestressed concrete deterioration

The Norwegian graphic symbols list the important damage types necessary for condition
assessment of bridge structures in Figure 2.4 (NCHRP SYNTESIS 375). The figure
explores five major types of defects in concrete bridge structures. These defects are further
classified into sub-classes according to their severity and impact on structural integrity of

bridges.
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Figure 2.4: The Important Bridge Defects (Norwegian graphic symbols)

The thesis considers only external defects which can be captured with digital images. For
condition assessment of reinforced concrete beams/decks, the three types of defects
considered in this thesis are: a) Spalling, b) Scaling, and c) Cracking or Crack Map. The

typical Spalling, Scaling, and Cracking defects are shown in Figure 2.5.
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Figure 2.5: (a) Spall area < 10 square inches (left); and > 100 square inches (right) -
(Project Scoping Manual, 2013)

Figure 2.5: (¢) Concrete deck surface scaling (FHWA 2006)

For detection and quantification of bridge defects listed in Figure 2.4 needs a number of
remote sensing technologies to be integrated for complete condition assessment of

infrastructure. The commonly used non-destructive techniques for condition evaluation of
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concrete decks are visual inspection, liquid penetrant dye, chain drag, Half-cell potential
(HP), acoustic emission, ultrasonic pulse velocity, ground penetrating radar (GPR), impact
echo (IE), and IR thermography (Yehia et al. 2007). For example, GPR, IE, and IR
thermography were found promising techniques for detection of internal defects in concrete
bridge decks (Yehia et al. 2007), while others could be suitable for surface defects.

How these technologies can be helpful in enhancing the task of visual inspections are of
great interest to researchers in managing civil infrastructure. A systematic study for the
condition assessment of concrete bridge decks through experimental and field testing was
conducted using Three Dimensional Optical Bridge Evaluation Techniques (3DOBS),
Bridge Viewer Remote Camera System (BVRCS), GigaPan, LIDAR, Thermal IR, Digital
Image Correlation (DIC), Ground Penetrating radar (GPR), Remote Acoustics, and high
resolution Street View-style digital photography (Ahlborn et al. 2010). The study showed
that 3DOB or BVCRS techniques based on the close range 3D photogrammetry technique
and GigaPan techniques based on Street View-style photography are the best technologies
for defect measurement for bridge inspections as illustrated in Table 2.3 (Ahlborn et al.,
2010). An element receives the best score of 16 based on eight evaluation criteria from A
to H which is rated to 0, 1, and 2 depending upon the condition of elements. The detailed
information about rating of different techniques can be found in Appendix B.

The most successful technologies for bridge deck evaluation based on the field, as well as
laboratory test verification have been listed in Figure 2.6 (Ahlborn et al., 2010). The rest
of the sections discusses on the application of digital image processing for condition

assessment of concrete bridge structures.
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Table 2-3: Rating based Theoretical Sensitivity for Measurement Technologies

(Ahlborn et al., 2010)
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Figure 2.6: Successful technologies for Bridge Deck Analysis (Ahlborn et al., 2010)

2.3 Current Practices in Automated Bridge Condition Assessment

The Navy Bridge Inspection Program Manual (2008) for bridge inspection lists seven types
of bridge inspections required to document a bridge conditions over its useful life. They
are 1) Initial Inspection, 2) Routine Inspection, 3) In-Depth Inspection, 4) Damage
Inspection, 5) Fracture Critical Inspection, 6) Underwater Inspection, and 7) Interim
Inspection. However, the discussion here is only focused on routine bridge inspection
which has been defined as an arm’s length visual inspection of all parts of bridge structures
using simple instruments supported by comments and photographs (Navy Bridge
Inspection Program Manual, 2008). During routine inspections, it is necessary to assign
the condition rating of all elements in accordance with FHWA guidelines (Recording,

1995). Although such method of assigning bridge condition rating is very popular, the
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reliability of visual inspection has been questioned in literature (Moore et al., 2001). The
reliable inspection information regarding to bridge elements are important for advance

bridge management system.

2.3.1 Damage Evaluation

A damage inspection can be defined as an unplanned inspection i.e. not following any
schedule to assess structural damages resulting from environmental factors or human
actions (Ohio DOT, 2010). The purpose of this type of inspection is to determine the nature,
severity, and extent of structural damages after any kinds of extreme events, traffic
collisions/accidents to evaluate the safety requirement of structural members. Liu (2010)
studied 69 collapsed bridges in the USA from 1967 to 2008. The result showed that more
than 50% bridges were collapsed due to collisions, and natural disasters. These events
trigger or initiate defect at an element level and progresses in due time during the service
life of infrastructure. When these events will happen is unknown in advance, and therefore,
it is difficult to establish a common inspection interval which can take care of impact on
structural components resulted through such events. One way to tackle this problem is to
revise the inspection frequency based on event-based management strategies. However,
since bridge monitoring and inspection is expensive program, there is a need for developing
automated tools using current technologies to assist routine bridge inspection. In the
previous section, it has been discussed that the best way for concrete damage detection and
quantification by using remote sensing technologies is the use of digital images (Ahlborn
et al., 2010). Several researchers have worked on digital images for condition assessment
of civil infrastructure in recent years as explained next.
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Abudayyeh et al. (2004) proposed a framework for automated bridge imaging system based
on digital image processing and integrated with Bridge Management Systems (BMSs)
PONTIS. Their models were capable of storing different surface defects in a structured
way and generated automated inspection reports. However, the assignment of condition
rating for bridge elements was done manually by displaying images on computer screens.
To automate this process, a model for automated prediction of condition rating is required
which can assign a unique number based on the severity and extent of defects. The
approach requires training of expert functions for prediction of condition rating as an output

based on selected input parameters.

2.3.2 Close Range Photogrammetry

Photogrammetry can be defined as measuring of geometry of physical objects from two-
dimensional photographs. Depending upon how the digital images are acquired, the
photogrammetry can be defined in two types: a) Aerial Photogrammetry and b) Terrestrial
Photogrammetry (Gruen, 2000). Furthermore, the terrestrial photogrammetry is also called
close-range photogrammetry when the object size and camera-to-object distance are both
less than 100 meters (Jiang et al., 2008). Since the close-range photogrammetry has the
ability to acquire detailed images of physical objects, it has been many applications in
engineering (Fryer, 2000). In the development of automated bridge inspection tools,
researchers have worked on ground-based remote sensing techniques for infrastructure
monitoring using close range photogrammetry (Jiang et al., 2008). They presented a
detailed literature review on the potential application of close-range photogrammetry in
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bridge engineering. Their work briefly summarizes the basic development of ground-based
remote sensing related to bridge deformation and geometry measurement, as well as
structural health monitoring and documentation of historical infrastructure. Table 2-4
summarized work done from 1985 to 2003 based on the use of different types of cameras,
target and control points application, and softwares covering the automated aspects of
bridge inspection. Due to the rapid development in information technology in processing
of digital images, the analysis of bridge defects such as cracks, spalling, and scaling is
possible with reasonable accuracy which can be used to enhance the reliability of visual
inspection. The next section will demonstrate the necessary steps required to analyze digital

images to extract useful information.

2.3.3 Digital images application for civil infrastructure

As discussed in the previous section, Abudayyeh et al. (2004) proposed a framework for
automated bridge imaging system based on digital image processing and integrated with
Bridge Management Systems (BMSs) PONTIS. This was the first attempt to work with
bridge defects by visualizing digital images on the computer screen.

The proposed methodology documented bridge defects digitally and automated reports
were produced, however, the condition rating was assigned manually. The current thesis
fulfills the gap by developing automated prediction of condition state rating based on
digital image analysis. A considerable volume of literature has been published in the
domain of construction industries using digital images to augment the effective

infrastructure management systems.
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Digital photograph of construction sites provides the evidence of as-built project and the
digital information can be used for effective infrastructure management which can assist a
large number of construction inspection and management applications such as construction

productivity and progress monitoring (Brilakis et al. 2006, Brilakis & Soibelman, 2008).

The above work was the first step in recognizing construction objects form images obtained
from actual construction sites. They developed an automated recognition of construction
materials (steel, concrete, or wood) using similarity-based criteria obtained from color or
texture properties of material surfaces. They also added a content-based attribute (shape

recognition) to recognize beam, columns, and wall related to construction activities.

These works are further studied by Zhu et al. (2010) and they proposed a novel method for
detecting large-scale concrete columns for the purpose of developing an automated bridge
condition assessment system. Since columns are large structural members, several images
were taken and image stitching algorithm developed by Brown and Lowe (2007) was used
to combine individual images into a single image. A neural-network based material
classification method was reported in FANN (2009). Although above researchers worked
for enhancing the effective bridge management systems, there were little attentions paid
towards developing concrete defect models which could be an input to any BMS for
concrete bridges. However, there has been a significant improvement in developing models

for crack quantification.
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Advantage and limitations of Google Street View Imaging

The Google Street view provides a continuous 360 degrees viewing environment for civil
infrastructure. The technology is suitable for assessing the condition of an infrastructure
by the inspectors from the offices without travelling to the site. Recently, Hinzen (2013)
demonstrated the feasibility of damage detection and quantification based on Google Street
View images. However, since the technology is based on vehicle-mounted instrumentation,
this approach may not be suitable for condition assessment for elements at the underside

of a bridge.

Since the imaging model is based on remote sensing technology, there is less disruption of
traffic. By developing a technology which can be fixed with traffic moving at the same
highway speed will maximize the benefit of such techniques. Although digital image-based
analysis of condition assessment of infrastructure provides low capital cost, rapid
deployment, and useful metrics (can compare condition over time, % area, volume, crack
density, and roughness index), the slow speed of data collection (usually less than 5 mile
per hour), traffic disruption, requires high resolution images, field of view, and data

processing time are the challenges that need to be improved further (Ahlborn et al. 2010).

It is unlikely that fine cracks can be detected with the available resolution in the Google
Street View; however, the detection accuracy of cracks can be increased using high
resolution digital cameras. Currently, there are not enough guidelines available on the
required resolution for detecting fine cracks. However, the resolution available in the

Google Street view images is useful for condition evaluation of bridge deck surfaces
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including spalling and scaling of bridge deck surfaces, mapping of cracks, joint damage,

and delaminations expressed as surface damages (Ahlborn et al. 2010).

In order to improve the reliability of visual inspection, the developed methodology based
on digital images needs to be integrated with existing bridge management system which is
another challenge to be considered in developing an effective imaging model. In terms of
cost, LIDAR scanners are very expensive for data acquisition and processing because they
require digital cameras, scanners, positioning systems, computers, and related software
tools. Similarly, the data collection by a digital camera is much cheaper than a GPR system
(Ahlborn et al. 2010). Since each of the image-based technologies has its own advantages
and disadvantages, a proper combination of such technologies is required to provide

appropriate results.

Often, the dimension of a surface defect captured by a digital image is measured in pixels.
However, the defect measurement needs to be expressed in engineering units such as, feet
or millimeters. Also the defect size is relative to the dimension of the image frame, and the
actual size of the frame or the defect in physical/engineering units depends on many factors
including image resolution, distance at which the image is taken etc. Several authors have
used either artificial or natural scales of benchmark in the image frame for obtaining the
actual dimension of a defect from a digital image (Adhikari et al. 2014, and Ahlborn et al.
2010). While working with digital images, the criteria need to be considered are: a) color
images, b) the distance between camera and object which is called field of view shall be

such that the minimum resolution on an image is 1 pixel per mm, c¢) lighting should be
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uniform to maintain images are consistent, and images shall be overlapped to ensure full
coverage (McRobbie et al. 2008). Apart from the general conditions, they suggested that
for defect evaluation, an image shall be acquired orthogonal to the plane on which a defect
lie in order to improve accuracy of defect quantification by avoiding parallax and

projection errors (McRobbie et al. 2008).

2.3.4 Neural Networks Application for Civil Structures

Neural Networks mimic the thought process of human brain by assigning weights to
individual inputs attributes and output is mapped through a simple transfer functions (Liu,
2001). In the existing literature, neural networks (NN) have been reported to be used for
several purposes for developing data fitting regression models as well as to solve
classification problems where direct relations among input parameters do not exist
(Moselhi and Shehab-Eldeen 2000, Biert and Rewinski, 1999). Neural Networks can be
used as an intelligent system to assist bridge management systems for efficient operations
as well as the maintenance schedule of structures. The systematic application of NN was
listed in four categories for efficient bridge management systems (Bien, 2000). They are:
1) technical condition assessment processes, 2) maintenance technology selection
processes, 3) real time data management systems, and 4) monitoring of structural
parameters. However, the information required for training of NN was based on the result

of visual inspection (Bien, 2000).

Over the past few decades, the application of NN was also very popular in automation of
civil infrastructure management based on digital image processing. Neural networks were
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used for automatic classification of defects in sewer pipe lines where digital images of
sewer defects were used for extraction of geometric parameters required for training of
neural networks (Moselhi and Shehab-Eldeen 2000). The accuracy of their prediction and
classification of sewer defects was reported to be 98.2%. The geometric attributes used by

them were area, perimeter, and major as well as minor axis lengths of defects as displayed

in Figure 2.7.
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Figure 2-7: Feature attributes of a defect (Moselhi and Shehab-Eldeen 2000)

Similarly, Khan et al. (2010) also used neural networks to analyze structural behavior of
sewer pipes in terms of the variation of condition ratings, and the success rate of the
developed model for the prediction of condition rating was reported to be 92.3%. However,
the geometric attributes obtained for training of NN were obtained from visual inspection.

Also, decision processes regarding to future conditions of an infrastructure depend on many
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variables. Such uncertainties in the classification of defects in sewer pipes were discussed
using neural-fuzzy networks (Sinha et al. 2003). One of the most relevant applications of
neural networks was developed for predicting the fatigue life and failure of reinforcing bars
in concrete elements. A recent paper written by Abdalla and Hawileh (2013) tested 15
specimens to measure fatigue failure of reinforcing bars and then neural networks were

trained to predict failure patterns for the chosen samples.

2.3.5 Automated crack detection using digital images

In recent years, several automated crack detection algorithms have been proposed in the
literature which can assist in condition assessment of reinforced concrete bridges. Abdel-
Qader et al. (2003) compared the performance of crack edge detection against Fast Haar
Transform (FHT), Fast Fourier Transform, Sobel, and Canny algorithms. It was concluded
that FHT produced the best result over the other algorithms in detecting crack edge.
Likewise, a Principal Component Analysis (PCA) was applied successfully for pattern
recognition to determine whether a concrete surface was cracked or not, based on the
Euclidean Distance as similarity criterion (Abdel-Qader et al. (2006). The crack analysis is
necessary for automatic repair and maintenance of concrete surfaces. Haas et al. (1992)
developed an automated field prototype crack sealing system which required fully
automated crack detection, surface mapping, and control systems. In the digital imaging
process, crack pixels need to be separated from their background. For segmentation of a
crack from its background, a threshold is used for extracting the crack boundary pixels.
The threshold can be estimated from mean and standard deviation of gray-level images
(Cheng et al., 2003). However, this method does not ensure proper crack connectivity. To
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solve this problem, the percolation-based image processing method was suggested to
correctly detect cracks on concrete surfaces (Yamaguchi and Hashimoto, 2009). The result
of this approach indicated that the percolation-based method is efficient even for larger-
size concrete surfaces. In a later development, mathematical morphology was adopted in
an image segmentation method where images were partitioned based on either similarity
or discontinuity. Lyer and Sinha (Iyer and Sinha, 2006) adopted morphological filters with
linear structuring elements for defect identification in sewer pipelines. Several types of
concrete defects such as cracks, holes, joints, and collapsed surfaces were identified based
on image processing and morphological segmentation approach which is necessary for
automated classification of defects in sewer pipelines (Sinha, Fieguth, 2006). However,
this approach was not suitable to discriminate all kinds of defects in sewer pipelines.
Therefore, certain objects like joints and lateral displacements were classified by using the

shape or texture features such as, roundness and compactness (Sinha, Fieguth, 2006).

The purpose of image processing is to extract the areas of interest from a given image
frame. For example, the extraction of length and width of a crack is necessary for crack
analysis of concrete members. So, proper definition of crack length and width needs to be
stated explicitly. For practical purpose, average crack width is required to prepare a bid for
repair and maintenance purposes. This could be possible by dividing a long crack into small
crack segments and retrieving average length and width for each segment. In recent study,
crack segmentation was achieved by searching of crack connectivity and matching the
pixel orientations (Zhu et al., 2011). This approach needs input of at least one crack

skeleton pixel to start searching of crack connectivity. Moreover, the length of a crack is
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estimated from object-oriented bounding box which ignores the tortuosity of cracks (Zhu
et al., 2011). The current thesis aims to fill the gaps by developing an automated crack

quantification model using digital image processing.

2.3.6 3D Defects Modeling to Assist Visual Inspection

Many software systems have been developed for the design of structural components,
however, little attention has been given to modeling defects in concrete elements based on
defect parameters such as extent, severity and intensity of defects. The simplest way to
obtain the geometry of defects is to collect the data of defect size, shape etc. by an inspector.
But, such an approach is time consuming, costly, and prone to subjectivity. Therefore,
modeling of defects from images for condition assessment of structural components
provides an attractive alternative which can serve to augment the information obtained

from visual inspection.

In order to overcome the limitations of visual inspection, several attempts have been
proposed to automate the current bridge inspection process. One such attempt is to
automatically retrieve the three dimensional (3D) as-built/as-is bridge information using
remote sensing techniques. Although the 3D as-built/as-is bridge information is useful, the
retrieval of such information is a challenging task (Remondino and El-Hakim, 2006).
McRobbie et al. (2010) investigated several off-the-shelf 3D software tools, such as,
MeshLab, Rhino, TrueSpace, and Phtosynth, and found that existing tools could not fully
support the automatic retrieval of 3D as-built/as-is bridge information. A lot of manual
editing and correction work are still required, which makes the overall information retrieval
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process labor-intensive and time-consuming (Zhu, 2012). A photographic technique was
demonstrated for 3D visualization of bridge components in quantitative assessment of
bridge defects (Maksymowicz, 2011). However, the authors added an additional tool called
“Damage Assessment Graphic Analysis — DAGA” for modeling defects from
photographs. The above system was equipped with an advanced graphical editor enabled
with fast creation of 3D models of bridge components and presentation of the results
graphically. A quick 3D visualization model based on digital images and available software

tools is required to assist the condition assessment process for concrete bridges.

However, one of the challenges still exists is how to reflect the current level of deterioration
in the structure on a 3D model so that they could be reviewed on computer simulating the
on-site visual inspection process. The thesis attempts to address this issue with the

application of current available commercial software tools.

2.4 Automated Bridge Management Systems

2.4.1 Bridge Management Systems

A Bridge Management system (BMS) can be defined as an automated system for tracking
the condition of bridges in a highway network which helps in prioritizing the task of
maintenance and rehabilitation for better performance of infrastructure (Tonias and Zhao,
2007). A BMS is composed of several components consisting of bridge inventories,
inspection reports, bridge deficiencies, financial evaluation, and management components

(AASHTO, 2005). In USA, the importance of bridge safety through routine inspection and
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maintenance regulation had not been realized until the collapse of Silver Bridge at Point
Pleasant, West Virginia where 46 people were killed in 1967 (Lichtenstein, 1993). In 1971,
the minimum standard required for bridge inspection was set up by the National Bridge
Inspection Standards (NBIS) consisting of Bridge Inspector’s Training Manual by the
Federal Highway Administration (FHWA), Manual for Maintenance Inspection of Bridges
by the American Association of State Highway Officials (AASHO), as well as the FHWA’s
Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation’s
Bridges (Liu, 2010). The development of BMS goes back to 1991, when the Intermodal
Surface Transportation Efficiency Act (ISTEA) of USA mandated the requirement for the
use of Bridge Management Systems by each state Department of Transportation (DOT).
Soon, a rigorous BMS software package, Pontis, was developed and implemented in
several states for effective bridge asset management (Gutkowski & Arenella, 1998). Today,
more than 44 states are licensed with Pontis BMS. However, the level of implementation
of a BMS varies from state to state (AASTHO, 2009). The literature revealed that the
application of a BMS is different from not only from one country to another, but also from
one state to another state. Several BMSs are listed here adopted in different countries, for
examples, BRIME BMS is used in Europe (Woodward et al. 2001), Finland uses Finnish-
BMS (Soderqvist 2004), Denmark uses DANBRO (Bjerrum and Jensen 2006), Taiwan
uses T-BMS (Liao et al. 2008), and Argentinean-BMS is used by Argentina (Ruiz et al.

2008).

In spite of the fact that a majority of the states have used BMSs for managing infrastructure,

less than 50% of the states consider BMSs recommendations for selecting bridge projects
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because of skepticism of the simulation modeling, and resource limitations (Bektas, 2011).
For effective application of BMS, a robust data management system is required. Inspection
data required for BMS, in general, is collected through visual inspection. The first
inspection, also called initial inspection, is necessary immediately after bridges are opened
for traffic so that a baseline inspection target can be defined to compare the condition of
bridge components over the service life of structures (Moore et al., 2000). As discussed in
the previous section, visual inspection suffers from several limitations, and the application
of advance information technology can enhance the reliability of BMS output. The current
thesis adopts digital image processing application in enhancing the task of assigning
condition rating for bridge elements. The next paragraph discusses the BMSs adopted by

Canadian provinces.

Canadian provinces have developed different BMSs to suite their individual needs; for
example, Alberta uses Transportation Infrastructure Management System (TIMS), Ontario
uses Ontario-BMS, and Quebec has Quebec-BMS (Hammad et al., 2007). The Ministry of
Transportation of Ontario (MTO) developed the Ontario Bridge Management System
(OBMS) to store inventory and inspection data which can be processed for decision making
purpose to identify the need of immediate repair, maintenance, and rehabilitation for
bridges. The newly developed BMS in Ontario works at the network-level, as well as, at
the project-level (Thompson and Ellis, 2000). The OBMS, which was first implemented in
1999, consists of five structural data records: Inventory, Elements, Inspections, Work
History and Documents (Ontario-BMS, 2012). The regular inspection module of OBMS

consists of Biennial Detail Tab and Recommendation Tab. The Biennial Details record the
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element condition data, comments, and performance deficiencies for each element.
Similarly, the recommendation Tab allows the inspector to recommend the immediate
actions to be taken if required for further investigation or maintenance activities. Here, the
Biennial Details and Recommendations are entirely based on the inspector’s personal

experience.

To support the inspector’s views and recommendations, the OBMS allows the inspector to
store three types of documents: Photos, Drawings, and Reports. Photos and drawings are
related to element inspection, whereas, the drawings are concerned with construction and
rehabilitation related problems. Due to the limitation of storage problem, the OBMS resizes
the original photograph to a resolution of 1024 x 768 to the database. Figure 2.8 illustrates
the screenshot of crack photo displayed on monitor in the documents module of the OBMS

software (Ontario-BMS, 2012).
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Figure 2-8: Photo Visualization in the OBMS (Ontario-BMS, 2012)

The software also allows users to upload a key photograph showing the current condition
of structures. The key photo shall be taken such a way that the whole structure in question
should be visible from a single location, usually taking photograph from a corner of a
structure. However, these photos are used only for reference purposes or visual based
decisions are made by visualizing the images on computer screen. The current thesis
focuses on the use of digital images for quantification purpose using digital image

processing.
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The Navy Bridge Inspection Manual outlines requirement of images for condition
evolution of structural components based on photographs (Navy Bridge, 2008). According
to the manual, the photos shall be taken digitally with a 3 mega pixels camera in order to
produce clear images of 3 inch by 6 inch. Likewise, a digital image with a minimum
resolution of 240 dpi in JPEG format needs to be taken for a typical and significant
structural condition evolution. The key aspect in acquiring digital image is to place a scale
or inspection tool (e.g. hammer, tape, or pencil) in order to provide a frame of reference
for the subject of photograph. A sample of well composed photograph is shown in Figure

2.9 (Navy Bridge, 2008).

Figure 2.9: A Well Composed Digital Images (Navy Bridge, 2008)
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Further, the manual suggests acquiring a minimum number of photographs considering the
following areas: a) an elevation view form each side of a bridge, b) a typical view of any
deficiencies, c) a photograph of each approach road, d) a view looking upstream and a view
looking downstream, ¢) minimum of two typical views per span and one per superstructure
(Navy Bridge, 2008). In addition to the above mentioned photographs, all major defects
found on the surface of structural elements shall be photographed and documented. Figure
2.10 illustrates a well composed photograph of underside of a bridge deck, and Figure 2.11

shows a poorly composed photograph.

Figure 2.10: A Well Composed Digital Image showing the Underside of a Bridge Deck
(Navy Bridge, 2008)
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Figure 2.11: A Poorly Composed Digital Image, No scale for reference, location or

orientation (Navy Bridge, 2008)

2.4.2 Element Condition rating

In BMS, bridges are recognized as assembly of structural elements. In Pontis, AASHTO
Commonly Recognized (CoRe) elements are used to represent the structural components
of bridges. The bridge inspectors collect element level information such as the extent and
severity of different defects through visual inspections. In general, the outcome of routine
bridge inspection is reported in the form of element condition rating (Hearn & Shim, 1998).
According to the Recording and Coding Guide for the Structure Inventory and Appraisal

of the Nation’s Bridges, the element condition rating is expressed on a scale of nine (9;
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excellent condition) to zero (0; failed condition) (FHWA, 1995). However, the current
BMS software like PONTIS uses four-state and five-state condition rating scales depending
upon the types of materials used for construction of bridge structures especially developed
for the commonly recognized (CoRe) elements (Hearn & Shim, 1998). The application of
different condition rating scales for a reinforced concrete bridge structures is displayed in
Figure 2.12. The bridge performance is measured by finding utilizing weighted sum of the

element condition ratings.

NBI Rating 9 8 7 6 5 4 3 2 1
Pontis Condition State 1 2 3 4 5
Spalls 0% <2% <10% | <25% | >25%
Visible State Good Fair Poor Bad

Figure 2.12: Current Condition Rating Scale for Reinforced Concrete Decks

The above Figure shows the quantitative information required for assigning each condition
states in Pontis for condition assessment of bridge decks. During a bridge deck inspection,
the top and bottom of bridge decks are evaluated against cracking, spalling, scaling, and
delaminations to assign condition rating for top and bottom surfaces, respectively. The
deficiencies on the top surface of a bridge deck is defined as “the percent of deck surface
area that is spalled, delaminates, or patched with temporary patch material” and the defect

on the bottom surface not concealed by the stay-in-place forms is defined as “the percent
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of deck underside area that is spalled, delaminated, or map cracked” (Aktan et al., 2013).
The element condition rating is highly dependent of all types of defects that exist in a
particular element. However, in the current practice of assigning element condition rating,
the relative importance of all defects in a bridge element is often not considered (Akgul,
2012). In the conventional way, the quantitative analysis of element condition rating is
based on visual inspection. Hence, the reliability of such approach of assigning element
condition rating information need to be enhanced by using emerging technologies such as,
digital image processing. As per Pontis Bridge Inspection manual (2009), the detailed

description of the four condition states are shown in Table 2.5.

Table 2.5: Current Condition Rating Scale for Reinforced Concrete Decks

(Pontis Bridge Inspection Manual, 2009)

Condition (Index)  Description

The element shows little or no

“Good” (1)
deterioration.
Minor cracks and spalls may be present
“Fair” (2) but there is no exposed reinforcing or
surface evidence of rebar corrosion.
Some delaminations and/or spalls may
“Poor”  (3) be present and some  reinforcing may
be exposed.
“Serious” (4) Advanced deterioration.
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Based on the above criteria, the condition rating of concrete columns and concrete
abutments have been assigned as condition ratings of 2, 3, and 4 as shown in Figure 2.13

(a), (b), and (c) , as well as, Figure 2.14 (a), (b), and (c) respectively.

(a) (b) (c)
Figure 2.13: (a) Condition States 2, (b) Condition States 3, and (c) Condition States 4 of
bridge columns (Pontis Bridge Inspection Manual, 2009)

(2) (b) (©)

Figure 2.14: (a) Condition States 2, (b) Condition States 3, and (c) Condition States 4 of
bridge Abutments (Pontis Bridge Inspection Manual, 2009)

The Bridge Inspector’s Reference Manual suggests collecting the photographs of the
defects highlighting the degrees of deterioration reflected on bridge components during the
data collection required for BMS through visual inspection techniques (FHWA, 2006).
However, such images are not usually utilized for analysis of the defects. The thesis
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proposes the application of digital images in evaluating element condition rating which can

assist in improving the reliability of visual inspection.

2.4.3 Bridge Performance Indicators

Several types of bridge performance data are measured against defined assessment criteria
such as condition assessment, seismic assessment, loading assessment, and scour
assessment for a particular bridge element. Ghasemi et al. (2009) expressed the idea of
ideal bridge should have the following characteristics: a) minimal hazard to users and
minimal traffic obstruction, b) minimal negative impact on the local and global
environment, c¢) pleasing appearance, and d) minimum whole-of-life cost. A summarized

version of bridge performance issues is expressed in Figure 2.15.

Bridge Performances

Y \ 4 Y \ 4

Structural Condition Structural integrity Functionality Coss
Durability and Safety and User Safety and User and Aenc
Stability Serviciability Service geney

Figure 2.15: Bridge Performance Framework

After determining the individual performance of bridge components by assigning their

condition rating based on the extent and severity of defects, the individual element rating
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is again combined together to evaluate an integrated bridge performance by assigning a
number from 0 to 100. The PONTIS software uses performance indicator as Bridge Health
Index (HI), whereas the Ontario and Australian BMS use Bridge Condition Index (BCI)

(Thompson & Shepard, 1994; OSIM 2000; Austroads, 2002).

Mathematically, HI can be defined as the ratio of the current element value to the initial
element value summed for all elements of a bridge as expressed by equation 2.1 (Roberts

& Shepard, 2000).

X CEV
X TEV

Health Index = { } x 100 2.1

where: Total Element Value (TEV) = Total element quantity * Failure cost of element
(FC), Current Element Value (CEV) = X (Condition State;i* WF;)* FC, and the condition

state weight factor (WF;) can be expresses as:

WFi1 = [1-(Condition State # -1) * (1/Total State Count- 1)] 2.2
When maintenance and rehabilitation actions are performed, the HI is likely to be increased
for that element since corresponding asset value of the element will be increased. Figure

2.16 below represents the ranking of defects corresponding to the health index (Roberts &

Shepard, 2000).
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Health 100 Health 90-99.5

Health 80-89.5

Health 70-79.5

A

Health below 70

Figure 2.16: Bridge Health Index

The bridge Health Index (HI) is an important measure in accessing the condition of overall
rating of bridges. If any one of the bridge components fails, then the component needs to

be treated separately as a critical defect in bridge which requires immediate action without

any delay. HI can be used for managing budget in a long term planning of assets.

The Bridge Condition Index used by Ontario BMS combines inspection information into a
single value. The ministry of transportation of Ontario uses the bridge condition index for
repair and maintenance planning purpose, and not for bridge safety purpose. If there is a
question of safety of a bridge, immediate actions are required to maintain the bridge. The
Bridge Condition Index (BCI) is evaluated in similar way as Bridge Health Index, but the

BCT utilizes the replacement value of an element instead of an element failure cost shown

in Equation 2.3 (Hammad et al. 2007).

BCI = (Current Replacement Value/Total Replacement Value * 100)

Table 2.6 below highlights the performance indicator of bridges based on Bridge

Condition Index obtained from element replacement value (Ontario Bridges, 2013).
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Table 2.6: Bridge Condition Index (Ontario Bridges, 2013)

Ontario BCI Performance
70 - 100 Good
60 - 70 Fair
<60 poor

CSS Bridge Group in UK developed Bridge Condition Score which had the scale as the
Element Condition Score ranging from 1 (Best) to 5 (Worst). However, the scale was
considered to be difficult to understand and confusing for those outside the engineering
community. Hence, a Bridge Condition Index (BCI) was introduced with a scale ranging

from 100 (Best) to 0 (Worst) (Bridge Condition Indicators, 2002).

X (BCI * EIF)

2 EIF 24

BCS =
where: BCI = Bridge Condition Index derived from the following relation.

BCI=ECS - ECF
where: EIF = Element Importance Factor, and ECF = Element Condition Factor. Although,
the above equations hold good for evaluating Bridge Condition Score, the critical elements

need to be treated separately in order to prevent sudden failure of bridge components.

2.5 Digital Image Processing

Digital images have been proved to be very effective for condition assessment of concrete
structures because magnified digital images are possible to acquire through the recent

advancement in camera technology. However, the acquired digital images need to be
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processed in order to derive meaningful or useful information required for a particular
application. A number of useful techniques for image processing are: pre-processing,
segmentation, edge detection, dilation, and image representation (Gonzalez et al., 2009).

Some of the important image processing steps are described in the next sections.

Point and Line Detection

Image analysis is a fully developed area of computer science; however, the application in
civil engineering has been growing fast since past decades. The application of image in
civil engineering provides quantitative information on objects contained in an image frame,
which enabling engineer’s confidence in the decision making processes. Since the process
can be automated using computer vision application, several complex engineering
problems have been solved in the past (Moselhi and Shehab-Eldeen 1999a, 1999b, 2000,
Shehab-Eldeen 2001, Weil 1998, Ritchie et al. 1991, Chen and Abraham 2001, and Chen
and Chang 2000). Image segmentation is the most important task in machine vision
approaches. It can be handled by sub-dividing a given image into its different constituent
objects so that high level machine vision analysis can be performed to extract desired
information. The segmentation approach requires identifying points, lines, and edges
(Gonzalez et al., 2009). These attributes can be obtained by mask processing techniques as

illustrated in Figure 2.17.
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Figure 2.17: (a) A Mask for Point Detection

A mask operation can be defined by the Equation 2.5:

9
R = ZWiZi 25
i=1

For point detection, the mask used is shown in Figure 2.17, where the center pixel contains
the number 8 and neighbouring pixels contain the number -1. An isolated point is detected
if the corresponding value of / R / as shown in Equation 2.5 is greater than T (i.e. /R />
T), where T is non-negative threshold value, R is the sum of product of coefficient within
the mask region, and then the point is said to be detected.

Similarly, after the detection of points, lines can also be detected. The above mask as shown
in Figure 2.18 (a, b, & c¢) can be used to detect the lines lying on horizontal plane, + 45

degrees, and - 45 degrees.
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2 -1 -1

-1 2 -1

-1 -1 2

(©)

Figure 2.18: (a) A Mask for Line Detection a) Horizontal, b) + 45 Degrees, c) -45

Degrees,
Edge Detection
In digital images, edges show drastic change in the gray level intensities. To determine the
change in the gray level intensities, the first and second derivatives of the intensities need
to be determined for a given image profile. Since the second derivative is very sensitive to
noise, it 1s normally used to locate the crossing points which identify the zero intensity
points. In order to find the first derivative of an image f (x, y), the gradient vector (Vf) is

calculated as shown in Equation (2.6).

of
Gy 0x
dy

and the magnitude of this vector is given by

51



Vf=mag(Vh) = {G,* + G2} "
There are a number of operators developed for computing the image gradient for edge
detection. The Prewitte Edge Operator (Figure 2.19) finds the image gradient operators
i.e. Gx and Gy in order to compute the strength of edge detection; and another operator

called Sobel Edge Operator is defined by two masks horizontal and vertical as shown in

Figure 2.20 (Gose et al. 1996, Russ 1992; Batchelor and Whelan 1997).

1 1 1 1 0 -1
0 0 0 1 0 -1
-1 -1 -1 1 0 -1

-1 -2 -1 -1 0 -1
0 0 0 ) 0 2
-1 2 -1 -1 0 -1

Figure 2.20: Sobel Edge Operators (Horizontal & Vertical)

It has been found that Sobel edge operator performed better than Prewitte edge operator

because Sobel operator takes care of noise by averaging the image intensities, whereas
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Prewitte does not consider noise components (Gonzalez et al., 2009). Similarly, the second

derivative operator can be found by Laplacian Operator which is given by Equation 2.7.
V2 = of? N of? 27
0= 0x2 dy? '

Since Laplacian Operator is very sensitive to noise, it is not used for edge detection.
However, the effect of noise can be reduced by first operating with Gaussian Operator
which is called Laplacian of Gaussian (LoG Operator). The LoG mask in two dimensions

is shown in Figure 2.21.

0 0 0 0 0
0 -1 -2 -1 0
-1 -2 16 -2 -1
0 -1 -2 -1 0
0 0 -1 0 0

Figure 2.21: Laplacian of Gaussian (LoG) Mask
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Edge Linking and Threshold

Due to various reasons, the edges of an object operated by Sobel Edge Detector are not
continuous. However, the edge linking operations can be done by either local edge linking
or global edge linking processes. The local processing is based on a similarity measure
defined by the strength and direction of the detected edge (Gonzalez et al., 2009). In
practices, the detected edges are not continuous due to non-uniform illumination and the
presence of noise. So, the next step requires the disconnected edges to be linked together
forming continuous edges. One of the popular methods used for linking the edges is called
Hough Transform which is defined as mapping from spatial domain to parametric domain.
Figure 2.22 shows the mapping of a straight line AB in spatial domain to a point P in
parametric domain, and mapping of a point in spatial domain to a straight line in parametric

domain.
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Figure 2.22: Hough Transform a line AB to A Point “P”

To avoid the situation of infinite slopes in spatial domain, a polar coordinate system can
be used instead of rectangular a coordinate system. A straight line among any points can
be drawn or detected by Hough Transform by selecting the parametric values which

corresponds to the intersection points in the parametric domain (Gonzalez et al., 2009).

In digital image processing, thresholding is the simplest way of image segmentation.
During thresholding process, all the image pixels greater than threshold value are called
“Object”, and all the image pixels less than threshold are called “Background”. Generally,
objects pixels are assigned a value of 1, and background pixels are assigned as 0. In case
of bi-model histogram, it is very convenient to automate the process of deterring the

threshold value by analysing the histogram of images as shown in Figure 2.23.
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Figure 2-23: Threshold Determination by Analyzing Histogram

Figure 2.23 demonstrates the histogram plot of an image, where the threshold image can
be mathematically represented by Equation 2.8. In the case of multimodal histogram, more

than one objects need to defined to isolate from image background.

. — . >
Object (1) =if(xy) =T } 2.8

g(xy) = {Background (0) =if (xy) <T

As explained above, the threshold is not only dependent on pixel intensities, but also it is
dependent on pixel location and local properties in a neighbourhood. Hence, the threshold

can be defined as a function of three parameters as shown in Equation 2.9 (Gonzalez et al.,

2009).

T=T&I&y)pxY) } 2.9

where, (x, y) = Pixel Location, f (x, y) = Pixel intensities, and p (x, y) = Pixel local
properties in the neighbourhood. Depending upon above three parameters, the threshold
could be Global, Local or Adopting threshold value. The three types of thresholds are
defined in Equation 2.10.

Global Threshold = T (xy)
T= Local Threshold =T < p (xy), f (xy)> 2.10
Adoptive Threshold = T <(xy), f (x,y), p (x,y)>
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Global thresholding can be easily automated based on histogram analysis as it is not
dependent on pixel location. However, in the real life, the global thresholding may not be
applicable for a given image due to non-uniform variation of the pixel intensity. In such a
case, the global threshold will fail and an Adoptive/Dynamic threshold operation may

need to be applied.

2.6 Measuring Shapes

Dryden and Mardia (1998) defined “shape” as all the geometric information that remains
when the location, scale, and rotational effects are filtered out from an object. However,
describing the images with a few numbers of parameters or metrics is a challenging task

(Neal and Russ, 2012).

Traditionally, man-made objects can be easily classified using the geometric parameters
such as, area, length, and perimeter based on the Euclidean geometry. These 2D features
are well developed for image interpretation and can be calculated using mathematical
modeling (Ghosh and Deguchi, 2008). However, these features are not suitable for natural
defects occurring in bridge decks because of irregular size and wide range of variability in
texture patterns. Problem also arises when working with a large number of individual
images which have been photographed at different locations (Nishimura, 2012). It is not

possible to work with individual images in finding their locations and image scales. This
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thesis discusses the features which are invariant to translation, rotation, and scale

manipulation in describing objects.

The shape of an object is primarily controlled by the material characteristics, processing
and history, and environmental effects. The shape of an object changes at different point
of time. The shape metric extracted using the image analysis can be useful to determine the
behavior of an object and compare the change in a bridge element determined from

inspection, which is the major focus area of this work.

Loncaric (1998) explained that finding few metrics for describing shape is an important
goal for computer vision approach. However, the selection of the best set of few metrics
that will provide adequate uniqueness and show correlation with human intuition is a
complex task. Figure 2.24 describes different types of shape descriptors based on either the
entire perimeter or the entire area. Some features allow reconstructing the original image
completely and others do not. The choice of descriptors depends on a particular application.
However, for this work, the methods which produce a few set of shape numbers and are
invariant to image manipulations are selected for change detection. In the past, several
feature vectors had been chosen for quantification of defects contained in digital images.
Some of the feature vectors extracted from digital images for defect representation have

been discussed briefly.
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Figure 2.24: Shape Descriptors (F. B. Neal & J. C. Russ, Measuring Shape)
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2.7 Summary

The literature review highlighted the current development in condition assessment of
concrete structures using remote sensing applications. It was observed that digital based
technology is the best for concrete surface defect quantification purpose. Based on the
literature review, three problems are identified to conduct this research. The first problem
is to determine the depth of crack in a reinforced concrete beam if a crack width is known.
In practices, the concrete beams are concealed and it is a challenging task to measure the
depth of cracks. For this problem, this research develops crack detection and quantification
models based on digital images. The second problem is to develop an automated prediction
of condition rating tool for bridge elements based on severity and extent of defects. For
this problem, digital images are suggested to use for defect data collection associated with
bridge elements. And the last problem is to investigate the propagation of defects with
change in time periods. Such tracking of defects will show that when and how the financial
budget need to be spent on structures in order to maintain the safe operation. The next

chapter deals with the methods how to approach the identified problems.
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Chapter 3: Proposed Methodology

3.1 Introduction

The previous chapter on literature review summarized the application and importance of
digital image processing to help solving the problems of condition assessment of civil
infrastructure (Abudayyeh et al. 2004, and Brilakis et al. 2006). Recent literature clearly
demonstrated that the use of high resolution digital cameras provides the best results for
defect quantification using non-destructive technology in reinforced concrete bridges
(Ahlborn et al., 2010, McRobbie 2008/2009, and McRobbie et al. 2010). However, the
application of non-destructive testing technologies for the enhancement of visual
inspection in conjugation with the bridge management system needs to be explored further.
In current practices of condition assessment of civil infrastructure, digital images and
sketches are used to supplement the inspection findings by maintaining photo logs and
filling bridge inspection forms similar to one given in Appendix B (BIRM 2012). This
thesis aims to integrate the output of digital image processing with bridge management
system in order to enhance the reliability of visual inspection by analyzing digital images.

The adopted methodology for this research has been explained next.

3.2 Proposed Methodology

The proposed research methodology is shown in Figure 3.1 and the detailed methodology
framework which encompasses three modules: digital image processing module, data
processing module, and condition assessment module as illustrated in Figure 3.2. The thesis

61



work started with reading literature on remote sensing application for condition assessment
of civil infrastructures. During literature review, it was found that there is a need for
improved method of data acquisition and interpretation for enhancing the reliability of
visual inspection process for bridge condition assessment. This thesis proposes several

modules which have been described in brief here.

Research Methodology

Preparation Literature Review
Data Collection Field Visits Lab Experiments Computer Simulated
Images
v
Design of Algorithms Defect Quantification Module based on Digital
Imgaes
Analysis
Implication Case Studies Validation Future Research

Figure 3.1: Research Methodology
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Figure 3.2 : The structure of the proposed Framework
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To develop the proposed methodology, the thesis considers three types of major defects
associated with reinforced concrete bridge decks and supported beams. The first type of
defects considered here is cracking of concrete surfaces which show crack patterns due to

material failure or other reasons.

For reinforced concrete beams and decks, crack widths of less than 0.3 mm (0.01 in.) have
little consequence in terms of overall corrosion of reinforcing steel (Houston et al. 1972,
Ryell and Richardson, 1972). When the width of a crack is more than 0.3 mm, the chance
of corrosion increases in reinforcing steel leading to concrete spalling. Any concrete cracks
wider than 0.9 mm (0.035") require to be maintained by contractors according to Colorado
Department of Transportation in USA (0.035") (Yunping et al. 2003, OSIM 2008). The
second type of defects considered in this thesis is spalling which is an issue with the
concrete surfaces resulting from the loss of concrete material due to delaminations in the
concrete decks. The third type of defects considered is scaling defined as loss of deck
surface due to physical or chemical material properties. The magnitude of scaling defect

varies from 1/4 inch to 1.5 inch in depth for demonstration of the proposed methodology.

3.3 Field and Lab Data Collection

Generally, bridge locations are inaccessible due to traffic movements, river crossing, train
crossing, tunnels, and many more to list. However, to demonstrate a real bridge example,

the easy accessible overpass bridge site at the intersection of Selby Street and Greene St.
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in Montreal was selected to collect photographs of the bridge as shown in Figure 3.3. Only
a small portion of the overpass was modeled to illustrate the application of digital image
processing for defect quantification. Based on visual inspection in the selected portion of
the over pass, the condition rating was assessed to be 2 based on observation that the area
of spalling is less than 2 percent for the entire deck soffit. The elevation of the overpass

has been shown in Figure 3.4.

s iz & - rare
il 'ql-:n,;, :53,.,4 s 4F errw Jessie-Maxwell-Emith
Fleasani Wt i g
ey m = Atwater e )
o [ S ol
L Oscar
H Geongesglgiier Peterson Park
"I'E‘uf,- The Maontreal , Parc
o 3 4”-‘.“' Chi|d"?|-|'5 4 Dscar-Paterson
ch Hospital
M Hopital'de
-Q(ﬂo ~ Montréal pour g8
\(33 Bethel Gospel fiats enfants duCUSM i
=23 Chapel Darchester A o x&\ -
e £ ‘ =]
P i Stayner > r Q\_':‘:' S"\t$ 2
DP’J.:; Park (2} ’ é/ = o :’PD 2 ’
e . FParc Stayner = s e o
(=] G = e Iy “ﬁ‘
2 £r e.':) e e R =
& 55 By, g W i, i Q\e,
& uE = 3t R 2
& o &, o G2 =
= Westmount > A ks = = <&
= Athletics Field . > o =A 5 e ey
o Terrain 20 @ Station M e e
S d'athlétisme ) Q:-j Lionel-Grouls 2 o y Stelco P
A7 de Westmaunit = & "9,;, &) Parc de
o‘}' Q‘:P& ﬁ% la Srelco
oy ;
” ((,19 St Henhri 'y O 0}%
o Park o L %,
_‘1{3’ Parc g o S
_-\}e” Saini-Henri t‘e q
45\ * & LI Atwater o
~3 Rousselot Market
/ /i L=y Park (%) &
e i ok Marche
arc Palyvalents = ) Parc Atwater
# Saint-Henri ey wictor-Rousselot
{ "Musée Des Ondes
" Emile Berliner Parcdu chi

Cmmiied histmrimian

Figure 3.3: The location of Bridge Site for Field Demonstration
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Figure 3.4: The Elevation of a Bridge Overpass

To illustrate crack quantification and change detection approach, several digital images
were also collected during lab experiments designed for bending test of reinforced concrete
beams as illustrated in Figure 3.5. For this experimental study, the design of reinforced the
concrete beam was done by Rahmatian (2014) and the flexural testing was conducted at
the Structural Engineering Laboratory at Concordia University. As of the present thesis,
the crack patterns and their progression were monitored using crack scale and digital

imaging.
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Figure 3.5: Images form Lab Observations

For image data acquisition, portable Sony cameras have been as used shown in Figure 3.6.
For defect quantification, high resolution images are necessary with sufficient overlapping
so that image stitching can be performed to get a single detailed image (Brown and Lowe,
2007). As far as possible, the high resolution digital images are taken orthogonal to surface
of interest so that error due to camera manipulation can be minimized. The methodology
also requires a single image showing entire face of a bridge element in order to build 3D
model for bridge components to simulate on-site visual inspection. In order to accelerate the
process of image acquisition, a framework of hybrid camera can be used. The hybrid camera
consists of two cameras: one focusing on capturing the entire surface and another focusing
on defects only. The details of using hybrid camera for image acquisition have been

discussed in details by Nishimura et al. (2012).
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Figure 3.6: Cameras used in for Image Acquisition

Targets

The dimension of objects in an image frame cannot be determined without a real world
coordinate system with known scale. The image scale can be established by placing a target
of known length in the image frame while performing photography. Generally, an artificial
scale or natural scale can be included in image frames to highlight the object of interest, and
also for image quantification purpose (Jauregui et al. 2006). The natural objects such as
sharp corners of beams and any visible objects in the image frame can be related to the
scale of an image. Similarly, artificial targets are used when sufficient numbers of natural
targets are not available. Any kinds of painted rods and colored card boards can be used as
artificial targets (Jauregui et al. 2006). Figure 3.7 shows a piece of paper of width 60 mm

used as an artificial target.
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Figure 3.7: Artificial Target in the image Frame

3.4 Digital image Processing

3.4.1 Pre-processing

After image acquisition with digital cameras, image pre-processing is necessary for image
enhancement because real images contain noise. Noise is the unwanted element present in
a picture frame which adds difficulties in processing image algorithms for the automation
process. Generally, there are two image enhancement methods that can be applied: spatial
domain operation, and frequency domain operations as shown in Figure 3.8 (Gonzalez et

al., 2009). Spatial domain operation is divided into three parts based on the particular
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needs. They are point processing, histogram based techniques and mask processing. For a
particular given image, a combination of image enhancement algorithms may be required

to produce representative images.

Image Enhancement

Algorithms
I
O v O v
Spatial Domain Frequency Domain
Operation Operation
v l v v
Point Histogram Based Mask Mask
Processing Techniques Processing Operation
v |—V v v
Contrast Stretching i Eoualizati 1. Linear Filter Low Pass,
Logarithmic, Power-Law , and 1st0§rgm ,%ua 1.z ation 2. Non-linear High Pass
Gray-level Slicing and Spectlication 3. Sharpening Filter Filter

Figure 3.8: Image pre-processing techniques

As explained above, the main image acquisition device used in this research are digital
cameras as shown in Figure 3.6. A conventional camera image is a 2D image, which is
essentially a projection of 3D world scene. The perspective projection of a real object has
been shown in Figure 3.9. The perspective projection of an image has two properties: a)
foreshortening — the objects farther away from the viewer appears to be smaller, and line
convergence — the lines parallel in the image frame appears to converge at a point (Solomon
& Breckon, 2011). The elevation of the overpass bridge depicted in Figure 3.4 after
correcting perspective errors has been shown in Figure 3.10. Further details of image pre-

processing are described in Chapters 4, 5, and 6.
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Figure 3.9: Effect of perspective projection model (Solomon & Breckon, 2011)

Figure 3.10: Corrected Image form Perspective Error
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3.4.2 Segmentation

Digital images usually contain huge quantity of data with respect to pixel, as well as the
intensity level associated with each pixel. However, all information present in an image
may not be useful for a solution of a particular problem. Such extra information is called
noise and need to be removed through the process of image segmentation. An overview of

image segmentation algorithm is explained in Figure 3.11.

Image
Segmentation
Algorithms
v 7 v
Discontinuity Similarity
Based Edge Detection Based
¢ 1) Prewrit Edge Operator
2) Sobel Edge Operator A 4
Identification of (1 Derivative, not connected) 1) Threshold
1) Points, 2) Lines 2) Region Growing
( f3) Edge;{ 9 v 3) Region Splitting &
se of various Mas .
! vanet 2" Derivative Merging
Sensitive to noise, LOG as a
zero Detector

Figure 3.11: Image Segmentation Algorithms (Gonzalez et al., 2009).

Manual setting of threshold is considered to be more accurate than automatic thresholding;
however, such process should be avoided, if possible, because different results are likely
to be obtained at different time by different people (Russ, 1992). A number of automated
thresholding methods have been developed over past decades and a summary of widely

used methods can be found in (Parker 1997, Otsu 1979, Sezgin and Sankur 2004). As an
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initial segmentation, canny edge detection is applied; however, the segmented result from
this operation does not yield satisfactory results (Maini & Aggarwal, 2009). So, a number
of additional mathematical morphology operations are designed for proper image
enhancement which successfully separates objects and their backgrounds. The process
starts with the proper selection of color plane which can better represent the class of defects.

The details image segmentation sequences are explained in Chapter 4.

3.4.3 Morphology

The common applications of mathematical morphology in digital image processing can be
classified into three groups: a) image pre-processing, for example, noise filtering, and
shape simplification i.e. complicated structure can be broken into simple form, b) object
quantification by finding out object area, perimeter, and etc., and c¢) enhancing object
structure by dilation, erosion, opening, and closing operations (Biswas, 2008). The erosion,
dilation, and their combinations are most widely used morphological operations which are
usually processed from binary images (Coster and Chermant 1985, Dougherty and Astola

1999). An example of mathematical morphology is shown in Figure 3.12.
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Original, b) Erosion, and c) Dilation

Figure 3.12: Combining Erosion and Dilation Processes (Maini & Aggarwal, 2009).

3.5 Data Processing and Condition Assessment

In this research, neural networks algorithms are used for data processing which is

described briefly here.

3.5.1 Neural networks

After obtaining the feature attributes form digital image analysis, the features are processed
using neural network to draw meaningful information which can aid in condition
assessment of bridge components. Neural Networks were first introduced by McCulloch
& Pitts in 1943 (Fausett 1994). They can be used as an effective tool for decision making
purpose because they mimic the similar way of how human brain works (Anderson and
Davis, 1995). The processes can be automated and the influence of subjectivity can be
eliminated, and thus improving the reliability of asset management. Back propagation
neural networks are adopted for data analysis for mapping bridge defects into element

condition ratings. The superior performance of neural networks for condition assessment
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of civil infrastructure has been discussed by several authors (Moselhi et al. 1994, Tamura

and Tateishi 1997).

The outcome of neural networks processing is based on distribution of weight which is
generally obtained by trial and error method. Although there are some guidelines in
choosing initial parameters such as: a) activation and scaling functions, b) numbers of
hidden layers, ¢) numbers of neurons in input, hidden, and output layers, and learning rate
and momentum coefficients, the iterative process can only predict the satisfactory
performance of mapping models. The details of neural networks design and
implementation can be found in Chapter 5. The neural networks model for prediction of

condition rating has been illustrated in Figure 3.13.
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Figure 3.13: Neural Network Model for Condition Assessment (Adhikari et al. 2012a).

3.5.2 Spectral and Fractal Analysis

The changes in defect patterns or in element condition index during visual inspection of
bridges are primary concerns for inspectors. This thesis presents a new approach for change
detection of defects in bridges by identifying changes in texture patterns through spectral
analysis of digital images. The commonly used method for change detection is image

differentiation. This subtraction method requires images to be of same size, scale, and
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rotation. However, no two images are same in real practice. Thus, image registration is
required to align images and to produce change maps. This process is tedious and it is
difficult often to achieve a good registered image. But, the change detection task can be
readily modeled in frequency domain for texture patterns discrimination and also for
quantifying their properties. The novel approach of change detection works by
transforming digital images into Fourier spectrum. In new coordinate system, 1-D signature
functions can be drawn which facilitates easy comparison of textures in different directions
(Adhikari et al. 2013a). Similarly, the fractal analysis describes the surface disorder of
defects by finding the fractal dimension (FD) using Box Counting Modeling algorithm.
The proposed methodology provides useful tools for comparison of inspection history
graphically and quantitatively. In practice, expensive sensors are used to detect subtle
change in defect patterns (Adhikari et al. 2013d). The proposed method can be used to
detect subtle changes in defect patterns using digital images at much lower cost. Enhanced
methodologies of spectral and fractal analyses has been shown in Figure 3.14 and 3.15

respectively.
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Figure 3. 14: Spectral Analysis of Digital Images (Adhikari et al. 2013a).
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Figure 3. 15: Fractal Analysis of Digital Images (Adhikari et al. 2013d).
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The condition assessment of reinforced concrete bridge module consists of three major
modules: a) condition assessment based on crack analysis of concrete beams and slabs, b)
condition rating assignment based on scaling defects, and c¢) recommendation based on
change detection. The details of condition assessment module with 3D visualization are
explained in Chapter 4. This thesis explores the aspect of condition assessment based on
surface defects which can be tracked with digital images. In general, condition assessment
of bridges depends on any changes in geometric properties of structures, environmental
conditions, loading/boundary conditions, and change in material properties. Although the
current structure health monitoring methods for bridges use level IV to assess in-service
performance of structures with primarily focus on determining the damage extent and
location (ISIS 2001), the detailed condition assessment of bridge structures including

internal defects are outside the scope of this research.

3.6 Limitations

As outlined in this chapter, as well as described description found in Chapters 4, 5, and 6
along with the lab and field studies, the following limitations are identified during this

research.

This thesis develops crack quantification algorithms which have utilized the digital images
collected in lab during the bending test of reinforced concrete beams. Considering the

camera limitations adopted for this work, the developed algorithms are suitable for the
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crack width from 0.3 mm to 0.9 mm. The developed algorithms can be also applicable for
crack quantification of hairline cracks provided higher resolution digital camera is used for

crack data acquisition.

Another limitation of the quantification module is that most of the digital images are taken
in similar environmental conditions. Several digital image processing techniques have used
to isolate the required objects from their background. However, the effect of environmental
effects on object segmentation has not been studied in this research. During the research,
it has been realised that concrete crack detection and quantification problem is also

dependent on the texture of the concrete surface.

This research develops a neural networks model for prediction of a crack length given the
crack width for a reinforced concrete beam, which is 1.7 m in length having the cross
section of 0.25 m x 0.15 m. It was found that the crack width is not directly proportional to
the crack length/depth ratio for a given material and beam cross section. The behaviour
need to be studied with different beam length with varying cross sections to simulate the

real world environment.

The complete condition assessment of concrete structures involves studying more than
seventeen defects as mentioned in FHWA (2006). So far, this research proposes automatic
predication of condition rating for bridge elements based on scaling defect only. The
condition rating model has been developed based on supervised learning of neural

networks which is based on OSIM (2008). To develop such rating system for other defects,
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it is necessary to have quantitative condition rating mapping information available in
inspection manuals either in the form of images or numbers. Unfortunately, the current
inspection manuals do not provide such information for all defects except crack, scaling,
rusting, and so on. Based on the linguistic information, it is difficult, although not

impossible, to develop automated condition rating models.
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Chapter 4: Concrete Crack Analysis using Digital Images

4.1 General

The problems of cracking in reinforcement concrete structures are natural and can invite
spectacular failure of entire structures (Rizkalla & Shahawi, 1982). There always exist
constraints in reinforced concrete structures and hence cracking is unavoidable regardless
the types of structures. Cracks not only provide access to harmful and corrosive chemicals
inside concrete, but also allow water and de-icing salts to penetrate through bridge decks
which can damage superstructures and bridge aesthetics (Krauss & Rogalla, 1996). In spite
of significant research in addressing the problems of cracking in bridges, it still remains a
challenging problem whether it is an old and newly constructed bridge (Ganapuram et al.
2012). Therefore, a rigorous study towards the evaluation of extent and severity of cracks
is necessary for condition assessment of bridges, and to maintain database for bridge

inspections for long-term analysis.

This chapter presents an integrated model considering crack as a major defect for condition
assessment of concrete bridges in order to enhance the tasks of routine bridge inspection.
The proposed integrated model consists of crack quantification, neural networks, and 3D
visualization models to represent concrete defects in such a way that it mimics the on-site

visual inspection.
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Many attempts have been made to enhance traditional approaches of condition assessment
of concrete bridges. Abudayyeh et al. (Abudayyeh et al. 2004) proposed a framework for
automated bridge imaging system based on digital image processing and integrated with
Bridge Management Systems (BMS) PONTIS (Gutkowski & Arenella 1998). The pre-
requisite to such automated models are the digital representation of defects i.e. the defects
or change detection need to be defined numerically to automate the process. Several Non-
Destructive Testing (NDT) techniques such as corrosion detection, alkali-silica reactions,
and sulfate attacks exist to identify the existence and extent of deterioration in concrete
structures in order to understand their behavior (OSIM 2008). However, the detection of
extent and severity of internal defects in concrete components is laborious, time
consuming, and often may not be reliable. Although this thesis discusses only external
defects which can be tracked by digital images or visual observation, the internal defects
may not often reflected on the concrete surfaces in the form of scaling, spalling and cracks.
Those defects can be identified using Non-Destructive Test or Evaluation (NDT/NDE) and
Structural Health Monitoring (SHM) techniques. The concrete surfaces show the combined
effects of internal and external defects in the form of surface defects. Out of several defects
in reinforced concrete structures, cracks play a vital role in determining the condition
assessment of structural elements. For this reason, this work adopts concrete cracks as the
major defect parameter for condition assessment of concrete elements. For crack analysis,
crack quantification and identification of crack patterns are necessary to reveal the

condition of bridges.
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Crack width varies at each point along the length of cracks. From practical point of view,
a long crack needs to be divided into several small segments and average width of each
segment requires to be analyzed separately. The proposed crack quantification model
evaluates crack length from crack skeleton perimeter which considers the tortuosity of
cracks and the crack segments are obtained by subtracting key marks such as branch points
from the crack skeleton itself. The existing work on crack length quantification is based on
object-oriented bounding box which does not consider the tortuosity of cracks (Zhu et al.
2011). Also, the crack segmentation approach required searching of crack pixel
connectivity. This approach needs input of at least one point to start searching of connected
points and matching with orientation angle to decide whether the pixel in question belongs
to same group or not (Zhu et al. 2011). If there exists multiple of crack skeletons
(unconnected crack regions) in a same image frame, the existing approach of segmentation
becomes time consuming. The proposed method is free of such issues. Additionally, the
number of branch points serves as a good indicator of condition rating of concrete elements.
The increasing numbers of branch points could be an indicator of decreasing integrity of

structural elements.

Identification and detection of individual cracks are not sufficient in understanding the
structural behavior. It is a challenging task to identify how the crack patterns will develop
over time and what will be the severity of cracks on those locations. For this purpose, a
method is developed for 3D visualization model of crack patterns measured through crack
density defined as the total length of cracks divided by total surface area. Maksymowicz et

al. (2011) developed 3D visualization models of defects based on digital image processing.
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However, their models were supported by advanced graphical editor software to model
defects from photos. The proposed integrated model is supported by 3D visualization of
crack density by projecting digital images and neural networks models to predict crack
depth necessary for condition assessment of concrete components. With the successful
application of the proposed approach, the tasks of routine bridge inspection can be greatly

enhanced by merging with automated bridge management systems.

4.2 Crack evaluation in Concrete Structures

The common forms of crack patterns experienced in reinforced concrete structures are
longitudinal, transverse, diagonal, crack map, and random cracks (Schmitt & Darwin
1995). Transverse cracks are generally formed perpendicular to longitudinal axis of bridge
decks under the transverse reinforced steel. Transverse cracks are typically full depth
across sections and cracks spacing are 3-10 feet apart seen along the length of bridge deck
(Krauss & Rogalla 1996). Field survey requires identifying the location and orientation of
such cracks. Similarly, the cracks running parallel to longitudinal axis are called
longitudinal cracks which appear just above the longitudinal reinforced steels. The latter
cracks follow the paths of reinforcing steel in structural elements (Curtis & White 2007).
Crack patterns also differ from one type of bridges to another. Skewed bridge decks are
more prone to diagonal cracks as compared to straight aligned bridges (Feng et al. 2007).
Another way of visualizing a crack pattern is Map Cracking. Improper curing and
restraining volumetric change of concrete are the primarily causes of Map Cracking

(Schmitt & Darwin 1995). There is a lack of appropriate methods for modeling and
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visualization of crack patterns that can assist in quick and reliable decision making process.
The crack survey described here is as per the protocol developed by the University of
Kansas as a part of Pooled Fund TPF -5(051) Construction of Crack-Free Concrete Bridge
Decks (Ganapuram et al. 2012, Pooled Fund 2009). The cracks considered in this protocol
are greater than 0.2 mm because this size of cracks is visible with the naked eyes. The
initial preparation of the deck surface is required before carrying out crack survey. The
bridge deck might require cleaning with clear water so that the cracks are visible to the
naked eyes. Then, a grid of 5ft by 5 ft. (as reported by Ganapuram et al. 2012) is marked
on the deck surface to locate the position and dimension of cracks. This survey data is
plotted on CAD drawings and overlaid on structural drawing. The obtained crack map can
reveal important distinction between structural and non-structural cracks on the deck
surface (Ganapuram et al. 2012). However, this procedure is time consuming and
expensive. Hence, a fast and economical way of preparing a crack map using digital image

processing is sought for 3D visualization of cracks.

4.3 Proposed Method for Analysis of Cracks

The developed method encompasses structured procedures for image capturing, image
projection, crack segmentation, and data fittings by Neural Networks with a 3D
visualization of crack patterns as shown in Figure 4.1. A set of algorithms such as crack
identification and quantification are designed and developed based on branching concept
of cracks. Additionally, a neural network model was developed that maps relationship

between crack depth and crack width suppo