
 
 

 

Three Dimensional Finite Element Optimization Using the Partial p-Adaptive Method for 

Stress Analysis of Underground Excavations with Prismatic Cross-sections  

 

 

 

Rasha Ibrahim 

 

 

 

 
A Thesis 

in 

The Department 

of 

Building, Civil and Environmental Engineering 

 

 

 
 

Presented in Partial Fulfillment of the Requirements 

For the Degree of Master of Applied Science (Civil Engineering) at 

Concordia University 

Montreal, Quebec, Canada 

 

 

 

 

 

 

July 2014 

 

 

 

 

© Rasha Ibrahim, 2014 



 
 

CONCORDIA UNIVERSITY 

 

School of Graduate Studies 

 

This is to certify that the thesis prepared 

 

By:                 Rasha Ibrahim 

 

Entitled:         Three Dimensional Finite Element Optimization Using the Partial 

p-Adaptive Method for Stress Analysis of Underground Excavations with 

Prismatic Cross-sections  

 

 

 

and submitted in partial fulfillment of the requirements for the degree of: 

 

MASc Civil Engineering 

 

complies with the regulations of the University and meets the accepted standards with 

respect to originality and quality. 

 

 

Signed by the final examining committee: 

 

 

                                Dr. A. M. Hanna                                            Chair 

 

 

                                Dr. C. Alecsandru                                          Examiner 

 

 

                                Dr. A. Dolatabadi                                          Examiner 

 

 

                                Dr. A. M. Zsaki                                             Supervisor 

 

 

Approved by    ________________________________________________ 

                         Chair of Department or Graduate Program Director 

 

 

  ________________________________________________ 

                          Dean of Faculty 

 

 

 



iii 
 

ABSTRACT 

 

 

Three Dimensional Finite Element Mesh Optimization Using the Partial p-Adaptive 

Method for Stress Analysis of Underground Excavations with Prismatic Cross-

sections 

 

 

Rasha Ibrahim 

 

 

As the complexity and challenges in the field of geomechanics rise, reducing 

computational costs has become a major theme to be investigated. This thesis evaluates 

the p-adaptive mesh optimization method’s performance for problems in the 3D finite 

element stress analysis of underground excavations with prismatic cross-sections. The p-

adaptivity changes the element formulation within the finite element mesh, based on the 

concept of excavation disturbed zone. The changes in element formulation require the use 

of transition elements to connect linear hexahedral finite elements with quadratic ones. 

The forthcoming research was conducted using sim|FEM (Zsaki 2010), a research 

computer code intended for excavation design, which solves 2D plane strain and 3D 

problems. It was written in C++ and its key feature is its capability to test models with 

transition elements, which is not found in other analysis software. The research project 

started with an overview of 3D element formulations, both normal and transitional, which 

were implemented in the code then simple, yet practical models were tested and the 
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results were analyzed. For some models, the results were compared to commercial 

software to prove that a correct behavior of the elements tested was obtained. Finally, the 

p-adaptive method was developed for this class of excavations and it was applied to a 

linear elastic medium with two circular excavations in a triaxial stress field representing a 

practical scenario of perhaps a transportation tunnel with a service tunnel running beside 

it excavated in intact rock. Mesh optimized and non-optimized models were compared 

and the results showed that optimization results in a reduction of the global stiffness 

matrix size on average by 82 percent and a reduction of solution times by about 82 

percent for optimized models tested using 12-node and 16-node transitional elements, 

respectively, as compared to non-optimized models. 
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1. Introduction 

 

Computational science is considered to be a powerful tool that tries to solve many 

issues faced by engineers in all fields through building, analyzing and implementing 

algorithms used to solve mathematical models that simulate engineering phenomena. 

Many numerical methods have been developed that provide some of the tools needed to 

face increasing challenges in engineering. 

     Geomechanics, for instance, is a field intended to deal with complex material behavior 

of soil and rock where problems involve “nonlinear and time dependent behavior, 

arbitrary geometries, initial or in situ conditions, multi-phase media, different loadings 

(static, quasi-static, cyclic and dynamic), and such environmental factors as temperature, 

fluids and pollutant movement.” (Desai & Gioda 1990)  

     Applying numerical analysis allows engineers to simplify related problems and find 

approximate solutions. However, in spite of all the benefits of numerical methods, 

processing time and memory are expensive. This can be a major issue in large and 

complex geomechanics projects, especially when 3D analysis is needed. Therefore, a lot 

of research has attempted to develop more cost effective numerical techniques. 

     As an introduction to this thesis, a brief description of the most popular numerical 

methods: the Finite Difference Method (FDM), the Discrete Element Method (DEM), the 

Boundary Element Method (BEM) and finally the Finite Element Method (FEM) is 

presented in Chapter 2. More focus is given to the Finite Element Method (FEM), since it 

is the method implemented to analyze all of the models throughout this thesis.  
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That is followed by a general explanation of mesh adaptivity techniques. Despite the 

advanced computer software used, complex geomechanics problems still take a 

considerable amount of processing time and a large amount of memory. They also, in 

some cases, require parameter changes during the analysis process, such as material 

properties, boundary and geometry conditions (for example, to simulate the process of 

mining, excavation and material removal) that might lead to high engineering costs. To 

address these issues, mesh optimization techniques can be implemented. 

Mesh optimization techniques are applied by reducing the number of nodes or 

relocating the nodes or changing the formulation of elements in a mesh that results in 

reducing the number of degrees of freedom that in turn reduces the size of vectors and 

matrices required to solve the problem. In this thesis, a p-type adaptivity technique was 

implemented. The main application of which is presented in Chapter 7. A linear elastic 

medium containing two underground excavations was tested as a practical problem, 

perhaps representing a common scenario of an underground transportation tunnel with a 

smaller service tunnel parallel to it excavated in a homogeneous rock mass. To optimize 

the mesh with a p-type refinement, first the stresses caused by these excavations in the 

medium were calculated analytically by applying Kirsch equations (Kirsch 1898) that 

were found in the references to represent an “infinite plate with circular opening” by 

(Ramamurthy 2007). Then, the p-type procedure was implemented by determining the 

Excavation Disturbed Zone (EDZ) in order to determine the location of a transition band. 

The EDZ was defined by (Zsaki 2005) as the zone of a mesh that is undergoing more 

than a percentage of disturbance of 5% in comparison with the initial in situ stress in the 

studied medium. The p-adaptivity procedure applied to the underground excavations 
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problem is explained in Chapter 3. The transition band consisted of transition elements 

(12-node and 16-node hexahedral elements were chosen to be tested in this thesis) 

separating the mesh into two regions. In one region, the elements stayed quadratic and in 

the other region the quadratic elements were transformed to linear ones by removing the 

mid-side nodes. Three models were tested; one non-optimized mesh, as the benchmark, 

and two optimized meshes as explained later in Chapter 7.  

Few numerical modeling programs were used to test the models in this thesis, but 

only one of them was able to test both the non-optimized and the optimized models. This 

program was sim|FEM (Zsaki 2010). sim|FEM is a computer code intended for research 

in excavation design, written in C++, that solves 2D plane strain problems and 3D 

models and is capable of testing models with transition elements (Zsaki 2010). This code 

also enables a 2D visualization of the results, but it does not support a 3D visualization 

yet.  For this reason, a set of TCL scripts were written to use the Visualization Toolkit 

(VTK) (Kitware Inc. 2010) and the results of the 3D models were rendered with either 

linear or quadratic hexahedral elements.  

Before applying the p-adaptivity technique, all the formulations of the 3D elements 

programmed in sim|FEM code (8-node, 20-node, 12-node and 16-node hexahedral 

elements) are presented in Chapter 4. 

Chapters 5 and 6 are dedicated to the evaluation of the performance of transition 

elements in three simple, yet representative scenarios: the evaluation of transition 

elements as single elements, the evaluation of transition elements as part of simple 

assemblage of elements and finally, the evaluation of transition elements in a pressurized 

cavity problem, representing a simple, yet practical engineering problem. 



 

4 
 

1.1 Thesis General Objective 

The objective of this thesis is to study the possibility of reducing computation time 

and computer memory usage without affecting solution accuracy. This is attempted by 

using mesh optimization via a p-type mesh adaptivity technique when solving 3D models 

analysed with the finite element method. 

The p-type technique is performed by removing nodes from certain regions are located 

outside of the EDZ (Zsaki 2005).  

 

1.2 Detailed Objectives 

This thesis also aims to: 

- Evaluate the behavior of transition elements. The transition elements chosen to be 

tested in this thesis were: 12-node and 16-node hexahedral elements. The 

formulations of these elements were based on Morton et al. (1995). 

- Determine disturbance percentage (Zsaki 2005) in the studied medium to define the 

EDZ by applying an analytical solution (Kirsch 1898). Certain nodes that belong to 

the elements outside the EDZ were removed. As a result, those elements were 

transferred to linear elements and the band of transition elements was created. The 

band linked the quadratic elements inside the EDZ with the linear ones outside the 

EDZ. A model of two underground excavations was analyzed as an example 

application. 

- Test three kinds of meshes; quadratic, linear and meshes with transition elements to 

compare the accuracy of solution and computational resources usage.  
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2. Literature Review - Numerical Stress Analysis in Geomechanics 

 

The main objective of this thesis was to study the possibility of reducing 

computational resources while solving 3D models by implementing the Finite Element 

Method (FEM) and without affecting the solution’s accuracy. Hence, this chapter will 

review the numerical methods most used in geomechanics. The methods summarized are: 

the Finite Difference Method (FDM), the Discrete Element Method (DEM), the 

Boundary Element Method (BEM) and the Finite Element Method (FEM). More details 

will be presented about FEM since it is the method implemented in this study. Following 

that, the review will provide a brief explanation about mesh optimization techniques: r-

adaptivity, h-adaptivity, p-adaptivity and hp-adaptivity. More extended explanations are 

given about the p-type method that is applied in this thesis.  

The use of the p-adaptivity technique for underground excavations, which were tested 

in Chapter 7, requires the determination of the region of interest in the studied medium. 

Hence, it is necessary to understand the definition of the percentage of disturbance (Zsaki 

2005) to find the EDZ. 

 

2.1 Finite Difference Method (FDM) 

Before the Finite Element Method (FEM) was developed, the Finite Difference 

Method (FDM) was the main numerical method used in geotechnical engineering (Desai 

& Christian 1977). This technique was implemented by discretizing the studied domain 

as a grid. The nodes comprising this grid should have the same distance between each 

other (∆x=∆y) as shown in Figure 2.1 (Desai & Christian 1977). The functions’ 

derivatives in the differential equations governing the physical problem were replaced 
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with finite difference approximation of the functions’ values between given values of the 

variables on a discretized domain. 

  

  
        

  

  
 

  

  
      (Desai & Christian 1977)                                                     (1)    

 

 

 Figure 2.1 Finite Difference Method (Desai & Christian 1977) 

 

As a result, the differential equations are converted into a set of difference equations that 

can be evaluated by these approximations. For example, for the first derivative in the 

direction of the x-axis, the approximations are: 

 

Central difference:              
  

  
 

             

   
           (Desai & Christian 1977)    (2) 

Forward difference:             
  

  
 

           

  
              (Desai & Christian 1977)    (3) 

Backward difference:           
  

  
 

           

  
              (Desai & Christian 1977)   (4) 
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Where       “represents the error introduced in approximating the derivatives which can 

be called discretization error.” (Desai & Christian 1977).  Equations (2), (3) and (4) can 

be solved by including the points of interest and then finding the displacement value u at 

those points. 

The FDM is efficient to be used to solve many geotechnical problems, such as laterally 

loaded piles, one-dimensional consolidation and two or three dimensional seepage (Desai 

& Christian 1977). However, as the geological media usually involves non-homogenous 

materials, it is relatively difficult to obtain finite difference equations to account for the 

variation of the material properties (Desai & Christian 1977). Also, implementing the 

FDM in case of irregular boundaries is more complicated than in case of simple 

ones (Desai & Christian 1977). Dealing with simple boundaries allows the mesh points to 

be adjusted to coincide with the boundaries, while with irregular boundaries, special 

procedures should be taken to account for the uneven meshes created in that case. For the 

previous two examples, the finite element method is more efficient to be used than the 

FDM, where such special procedures are not required (Desai & Christian 1977). 

          

2.2 Discrete Element Method (DEM) 

     As stated by Jing and Stephansson (2007), the Discrete Element Method (DEM) 

includes: “all numerical methods treating the problem domain as an assemblage of 

independent units and is mainly applied for problems of fractured rocks, granular media 

and multi body systems in mechanical engineering.” The essence of DEM formulation 

depends on the contact between the individual objects, their kinematics and their 
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deformation mechanism, where each object has different displacements and rotations 

(Jing & Stephansson 2007).  

The three main aspects of the DEM for mechanical analysis are: 

1. Creating a block assemblage, recording its topology and updating it throughout 

the deformation process. 

2. Selecting a proper form of motion equations and constitutive models and solution 

techniques.   

3. Updating the geometry and mechanical behavior of contact between the blocks 

during the deformation process. (Jing & Stephansson 2007). 

The DEM is efficiently used for rock mechanics problems. Yet, it has a major 

shortcoming, which is the unknown characteristics before setting up the analysis, like the 

location, orientation and dimensions of the fractures (Jing & Stephansson 2007). This 

causes uncertainty about the feature system geometry of the problem (Jing & 

Stephansson 2007). 

 

2.3 Boundary Element Method (BEM) 

The Boundary Element method (BEM) is a numerical technique for analyzing the 

behavior of engineering structures subjected to external loads (Katsikadelis 2002). In this 

method only the boundaries of the problem are discretized, as shown in Figure 2.2. The 

solution of the governing integral equations is found at the boundary first. Then, the 

solution inside the problem boundaries can be found numerically. 
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Figure 2.1 BEM Model (Katsikadelis 2002) 

 

Using BEM has important advantages that can be summarized as follows (Katsikadelis 

2002): 

1. As the discretization happens only at the boundary of the studied problem, the 

number of unknowns is reduced. Therefore, BEM is considered an easy and fast 

technique that allows any modification process caused by any change of the 

problem conditions to be simple.  

2. BEM is suitable for analyzing problems with geometric peculiarities such as 

cracks.  

3. BEM enables the solution to be found at any point of the problem domain at any 

time instant.  

In spite of its advantages, BEM still has some shortcomings when compared to FEM. As 

a simple example, the coefficient matrices in BEM are non-symmetric and dense, as 

opposed to FEM, which are usually symmetric and sparse matrices (Katsikadelis 2002). 
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2.4 Finite Element Method (FEM) 

The Finite Element Method (FEM) or what is also called Finite Element Analysis 

(FEA) refers to a wide range of techniques used in geomechanics. It is a computational 

method used to approximate solutions of boundary and initial value problems. As stated 

by Hutton (2005), a boundary value problem is “a mathematical problem in which one or 

more dependent variables must satisfy a differential equation everywhere within a known 

domain of independent variables and satisfy specific conditions on the boundary of the 

domain.”  The general procedures of FEM can be summarized as follows (Potts & 

Zdravkovic 1999): 

1. Element discretization: the domain is divided into finite elements, as shown in 

Figure 2.3, that have nodes defined in the element boundaries or within the 

element.  

2. Primary variable approximation: a primary variable should be selected (e.g. 

displacements, stresses, etc.) and this variable is to be computed at the nodes. 

The solution in the FEM method is approximated locally within the element that 

is performed by the element’s shape functions (interpolation functions).  
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Figure 2.2 Typical 2D Finite Elements (Potts & Zdravkovic 1999) 

 

3. Element equations: the appropriate variational principle (e.g. minimum potential 

energy) should be used to derive element the equations: 

                                                                                                                                   (5) 

Where: 

    : The element stiffness matrix. 

     : The vector of incremental element nodal displacements. 

     : The vector of incremental element nodal forces. 

 

4. Global equations: combine the element equation to form global equations: 

                                                                                                                                  (6) 

Where: 

    : The global stiffness matrix. 

     : The vector of all incremental element nodal displacements. 

     : The vector of all incremental element nodal forces.  
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5. Boundary conditions: modify the global equations by applying the boundary 

conditions such as the loadings effect       and the displacement effect      . 

6. Solve the global equations: by solving the global equations, the displacements at 

all nodes can be computed and from that any secondary quantities can be 

calculated such as stresses and strains.  

 

2.4.1 Displacement Approximation and Shape Functions 

The field variables are found at the nodes and used to approximate the values at the 

non-nodal points, meaning within the element by interpolating the nodal values: 

                                                                                                                       (7) 

Where  

   :  The matrix of shape functions.  

    :  The vector of global nodal displacements. 

        : The vector of local nodal displacements. 

The displacement approximation must satisfy the compatibility conditions that are 

summarized by (Potts & Zdravkovic 1999) as follows: 

1. Continuity of the displacement field which means that the displacements must 

vary continuously within each element by ensuring that the displacement at each 

element side depends only on the nodal displacements of that side, as illustrated in 

Figure 2.4. 
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Figure 2.3 Continuity of Displacement Field (Potts & Zdravkovic 1999) 

 

2.  The displacement approximation should be able to represent rigid body 

movement. 

3. The displacement approximation should be able to represent constant strain rates. 

 

2.5 Mesh Optimization 

The base criterion in engineering problems is to define a limit of the error computed 

in the energy norm (Zienkiewicz & Taylor 2013). Yet, improving the mesh quality and 

the accuracy of results, especially at the regions of interest, is possible by implementing 

some methods that are called mesh optimization or mesh adaptivity techniques.  

Those techniques can be applied in many ways, such as changing the size of elements 

everywhere in mesh or only in specific regions of it with the necessity of respecting the 

quality of a mesh, as measured by element aspect ratio for example, or by changing the 

order of all or some elements by removing certain nodes, and thus reducing the degree of 

interpolation.   

In this section, the following adaptivity methods were covered: h-adaptivity, p-adaptivity, 

r-adaptivity and finally, h-p adaptivity, which is a combination of both the h and p 

method.  
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2.5.1 h-Adaptivity  

In h-adaptivity, the same element formulation is used but it is changed in size, 

creating a denser/coarser mesh. The elements are made larger in some locations (reducing 

mesh density), while in others they are made smaller (increasing mesh density) to provide 

the maximum economy in reaching the desired solution (Zienkiewicz & Taylor 2013). 

This method can be applied by subdividing existing elements or by regenerating a new 

mesh (Zienkiewicz & Taylor 2013). 

 

2.5.2 p-Adaptivity  

In p-adaptivity, the same element size is used and the order of the polynomial used in 

element definition is increased/decreased (Zienkiewicz & Taylor 2013). That can be done 

either uniformly throughout the whole domain or locally at some regions of the mesh. 

But as stated by Zienkiewicz & Taylor (2013), neither of cases “has a direct procedure 

developed, which allows the prediction of the best refinement to be used to obtain a given 

error. Here the procedures generally require more resolutions and tend to be more costly. 

However, the convergence for a given number of variables is more rapid with p-

refinement and it has much to recommend it.”  

 

2.5.3 r-Adaptivity  

In r-adaptivity, the total number of nodes stays constant, but the nodes’ location is 

adjusted to obtain an optimal approximation (Zienkiewicz & Taylor 2013). The r-

adaptivity method is considered a subclass of h-adaptivity. Its procedure is difficult to use 
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in practice since the relocation of nodes might lead to higher aspect ratio for some 

elements and thus deteriorating element quality.  

 

2.5.4 hp-Adaptivity  

This technique combines h and p adaptivity methods, where both the sizes of the 

elements and their order are changed (Zienkiewicz & Taylor 2013). This method might 

be applied in steps by first, using h-adaptivity to obtain acceptable accuracy and then, by 

applying p-adaptivity to obtain more accurate results in the region of interest.  

Figure 2.4 shows a summary of the four mesh optimization techniques explained above. 

 

 

Figure 2.4 Mesh refinement methods. From left to right: 1) Original mesh 2) Uniform h-

refinement 3) Uniform p-refinement 4) r-refinement, (Garcia Rosero 2011) 

 

2.6 Excavation Disturbed Zone (EDZ) 

The p-adaptivity technique was applied to the underground excavations problem as 

will be explained in Chapter 3 and tested in Chapter 7. As mentioned earlier in section 

2.5.2, the method was implemented by changing the order of shape functions, which in 

this thesis, is done locally in some regions of interest in the studied mesh. Those regions, 

referred to as the EDZ, are where a higher accuracy is required and it is defined as the 
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region where the underground excavation construction will lead to a percentage of 

disturbance of not more than 5% in the medium in respect to the initial in situ stress field 

(Zsaki 2005). Determining EDZ will specify which zones will be meshed using linear, 

quadratic or transitional elements.  

 

2.7 Percentage of Disturbance 

The percentage of disturbance is defined as the change of the model’s initial conditions, 

such as the initial in situ stresses or model geometry, according to any disturbance in the 

studied medium. In this thesis, the disturbance is due to the excavation construction and 

the percentage is calculated with respect to the in situ stresses as follows (Zsaki 2005): 

      
  

           
        

  
                                                                                                    (8) 

Where i = 1, 2, 3 denotes the major, intermediate and minor principal stresses. 

It should be noted that the disturbance caused by each excavation individually in turn was 

found as the formulation taking into account the interaction between the two excavations 

is not available.  
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3. The Application of Partial p-Adaptive Mesh Optimization 

 

The p-adaptive mesh optimization technique was applied throughout this research to 

solve stress analysis problems. The development of the procedure was started by testing 

a mesh of only second order elements. Then, the mesh optimization was performed by 

deleting selected nodes (mid-side nodes of second order elements) from the elements 

where the solution accuracy was the least important (being outside of the EDZ). 

Eventually by deleting those nodes, the number of nodes and degrees of freedom 

changed in the model. Also, the second order elements, where nodes were deleted, were 

converted to first order elements. As a result, a group of elements that connected the 

linear and quadratic elements was necessary. These elements were referred to as 

transitional elements. 

As a main application of this thesis, models of a 3D linear elastic medium containing 

two underground excavations were analyzed. Due to the memory of the computer used to 

solve the models and the symmetry of boundary conditions applied to the tested problem, 

only one layer of elements in the out-of-plane direction was considered for testing. 

Although a single-element thickness is seldom practical for large models, it was accepted 

for the purpose of this thesis since it represents a minimum condition, which makes the 

problem 3D, yet more importantly, it allows direct comparison with 2D plane-strain 

models for the assessment of solution accuracy. 

The first excavation represents a typical tunnel with a radius of 5.4 m and the second 

excavation is a smaller one that represents a service tunnel with a radius of 2.6 m. These 

tunnel dimensions represent typical sizes for a subway tunnel and its service tunnel. To 

simplify the scenario, the left excavation was called Excavation 1 and the right 
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excavation was called Excavation 2. A frontal view of the underground excavation 

model and a zoomed in view of the excavations are shown in Figures 3.1 and 3.2. The 

models’ material properties are listed in Table 3.1, while the radii and centers’ location 

of both excavations are listed in Table 3.2.  

 

Table 3.1 Model Material Properties of Underground Excavation Model 

Property Unit Value 

γ kN/m
3 

0 

E kPa
 

10
6
 

ν - 0.3 

    kPa 10 

    kPa 10 

    kPa 10 

    kPa 0 

    kPa 0 

    kPa 0 

 

Table 3.2 Location, Radii and Dimensions of Underground Excavations Model 

Location and 

Radii 

Left Excavation (Excavation 

1) 

Right Excavation (Excavation 

2) 

X (m)  Y(m)   X(m) Y (m) 

Center Coordinates  43 18 61 13 

Radius (m) 2.6 5.4 

                    X (m) Y(m) Z (m) 

Model Dimensions                   103.05                  90.23  2.19 

 

     A mesh composed of only second order hexahedral elements was tested first. 

Afterwards, a test of an optimized mesh consisting of first order, transition and second 

order hexahedral elements was performed. Before applying the p-adaptive method, the 
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EDZ had to be determined. The EDZ zone is defined as a percentage of disturbance of 

5% (Zsaki 2005) calculated as presented in section (2.7). 

The change in the shape function order was applied to elements outside the zone where 

the two excavations had no great effect on the medium and less accuracy was acceptable 

in the context of inherent uncertainties in material properties.  

 

 

Figure 3.1 Frontal View of Underground Excavation Model 

 

 

Figure 3.2 Zoomed View of Excavations 1 and 2 
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3.1 Determination of the Excavation Disturbed Zone (EDZ) 

Calculating the displacements and stresses outside a circular hole in an infinite 

homogenous, isotropic and linear elastic material was first solved by the German 

engineer, Kirsch, in 1898 and his model setup is shown in Figure 3.3 (Jaeger et al. 2007). 

As the Kirsch article is written in German, the equations used in this thesis were found in 

the following two references; Jaeger et al. (2007) and Garcia Rosero  (2011).   

The stress distribution caused by each of the modeled excavation was achieved by 

applying Kirsch’s analytical solution as explained below. The results were then compared 

to the assumed initial field stresses,    and   , to find out the zone of the model that was 

undergoing more than a 5% disturbance, which is the EDZ zone (Zsaki 2005). 

 

 

Figure 3.3 Circular hole in an infinite plate (After Kirsch, 1898) as found in (Jaeger et al. 

2007)  
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Stresses generated around an excavation are evaluated in a polar coordinated system and 

governed by equations 9 to 11: 

   
 

 
           

  

    
 

 
          

   

    
   

                                         (9) 

   
 

 
           

  

  
  

 

 
          

   

  
                                               (10) 

     
 

 
          

   

    
   

                                                                          (11) 

Where: 

   : The radial stress 

    : The tangential stress and 

     : The shear stress. 

   and    correspond to the original in situ horizontal and vertical stresses (pre-

excavation)  in the initial biaxial stress field. 

It should be noted that the stress field applied to the underground excavations model in 

this thesis was assumed to be hydrostatic; meaning the initial stresses applied at any angle 

  had the same value    =   =10 kPa) and resulted in a zero shear stress     at any point 

at any angle. Hence equations 9 to 11 can be simplified as follows: 

 

   
 

 
           

  

  
                                                                                              (12) 

   
 

 
           

  

  
                                                                                              (13) 

                                                                                                                                 (14)   
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The previous polar stresses were calculated for a quarter of each circular excavation due 

to symmetry. For every 10 degrees (from 0 to 90 degrees), the r value was taken from a 

to 15∙a to ensure a value large enough to find minimum disturbance in equations 

             (Jaeger et al., 2007). 

 

The polar stresses were then transformed to a Cartesian coordinate system by applying 

the following stress transformation equations (Garcia Rosero 2011): 

                                                                                                   (15) 

         
                                                                                          (16) 

                                                                                                  (17) 

Considering the hydrostatic initial stress field applied to this problem, equations 15 to 17 

can be rewritten as follows: 

                                                                                                                (18) 

         
                                                                                                       (19) 

                                                                                                                          (20) 

 

The transition zone was determined by averaging at the nodes where the value of     was 

equal to 0.95   or 1.05   and the value of    was equal to 0.95   or 1.05   . This +/- 

5% represents the zone of disturbance deviating from the in situ stresses. 
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Figure 3.4 Transition Band Determination 

 

     A transitional band was created connecting the elements outside the EDZ Zone (first 

order elements) and the elements inside the zone (second order elements). 

Figure 3.4 shows the radii at which the transition band was computed by applying 

equations 18-20 and determining the +/- 5 percent variation. The detailed calculations can 

be found in Appendixes 3 and 4. 

 

 

 

 

 

 

22.48 m 

11.2 m 
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4. Formulation of First Order, Second Order and Transition Hexahedral 

Elements 

 

As the sim|FEM code (Zsaki 2010) was used to solve all models in this thesis, 

Chapter 4 presents the elements formulations implemented in this code. An 

implementation starts with the shape function formulation of a first-order (8-node) and a 

second-order (20-node) hexahedral elements. Then, the shape function construction of 

transitional hexahedral elements is explained according to Morton et al. (1995). 

Transition elements are defined as the elements connecting linear elements with quadratic 

ones. Chapter 4 finally ends by summarizing the direct stiffness assembly method for 

FEM analysis as implemented in sim|FEM.   

 

4.1 Shape Functions 

The solution in the FEM method is locally approximated within an element. The 

approximation can be done through element’s shape functions, which are also called 

interpolation functions. They are called interpolation functions because the displacement 

field over the element is interpolated from the nodal displacements (Felippa 2010). 

Shape functions of first order, second order and transition hexahedral elements are 

summarized in the following sub-sections. 

 

4.1.1 8-Node Linear Hexahedral Elements 

The linear or first-order hexahedral element shown in Figure 4.1 is the simplest 

element of the hexahedral family. It has 8 nodes located at the corners of the element. 
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The natural coordinate system is at the center of the element and the nodes’ coordinates 

are listed in Table 4.1.  

The shape functions at each node can be written in a general formula as follows (Liu and 

Quek 2003): 

    
 

 
                                                                                                      (21)         

Where ( 
 
, 

 
, 

 
) denotes the natural coordinates of the node i.  

The shape functions at each node and their derivatives are listed in Table 4.2 (Morton et 

al. 1995). 

 

 

Figure 4.1 First Order Hexahedral Element 
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Table 4.1 Node Coordinates for the Linear Hexahedral Element in the Natural 

Coordinate System 

Node 1 2 3 4 5 6 7 8 

  -1 +1 +1 -1 -1 +1 +1 -1 

  -1 -1 +1 +1 -1 -1 +1 +1 

  +1 +1 +1 +1 -1 -1 -1 -1 

 

 

 

Table 4.2 Shape Functions and Their Derivatives for First Order Hexahedral Elements 

(Morton et al. 1995) 

 

 

4.1.2 20-Node Quadratic Hexahedral Elements 

The 20-node quadratic or second-order hexahedral element has 8 nodes at the corners 

and 12 nodes at the middle of the edges as shown in Figure 4.2. The coordinates for each 

node in the natural coordinate system, which is at the center of the element, are presented 

in Table 4.3. 

Shape Functions at Each Node 
Shape Function Derivatives 
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The shape functions at each node can be condensed into four groups, as follows ( Liu and 

Quek 2003): 

 

 For the corner nodes: i = 1, 2…, 8: 

    
 

 
       

 
         

 
      

 
     

 
    

 
    

 
               (22) 

 For the mid-side nodes: i = 9, 10, 11, 12: 

    
 

 
     

         
 
      

 
                                                      (23) 

 For the mid-side nodes: i = 13, 14, 15, 16: 

    
 

 
        

 
              

 
                                                     (24) 

 For the mid-side nodes: i = 17, 18, 19, 20: 

    
 

 
       

 
         

 
     

                                                    (25) 

Where ( 
 
, 

 
, 

 
) denotes the natural coordinates of the node i. 

Shape functions at each node and their derivatives are listed in Table 4.4 (Dhondt 2004). 

 

Figure 4.2 Second Order Hexahedral Element 
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Table 4.3 Node Coordinates for 20-Node Quadratic Hexahedral Element in the Natural 

Coordinate System 

Corner Nodes 

Node 1 2 3 4 5 6 7 8 

  -1 +1 +1 -1 -1 +1 +1 -1 

  -1 -1 +1 +1 -1 -1 +1 +1 

  +1 +1 +1 +1 -1 -1 -1 -1 

Mid-side Nodes 

Node 9 10 11 12 13 14 15 16 17 18 19 20 

  0 0 0 0 -1 +1 +1 -1 -1 +1 +1 -1 

  -1 +1 +1 -1 -0 0 0 0 -1 -1 +1 +1 

  +1 +1 -1 -1 +1 +1 -1 -1 0 0 0 0 

 

Table 4.4 Shape Functions and Their Derivatives for the 20-Node Quadratic Hexahedral 

Element (Dhondt 2004) 

Shape Functions And Their Derivatives 
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Table 4.4. (Continuing) Shape Functions and Their Derivatives for the 20-Node 

Quadratic Hexahedral Element (Dhondt 2004) 

 

Shape Functions And Their Derivatives 
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4.1.3 Construction of Shape Functions for Transitional Hexahedral Elements 

Based on Gupta’s (1978) 2D transition element, Morton et al. (1995) defined the 

shape functions of a 3D hexahedral element to be used in 3D adaptive meshing 

techniques. Implementing the adaptive method allows mesh refinement or the usage of 

second order elements to be only in the regions where more accuracy is required. 

The shape functions were developed for a hexahedral element with a variable number of 

nodes (8 to 26 nodes) in a natural coordinate system (-1 ≤        ≤ 1) located at the center 

of an element (Morton et al., 1995), as shown in Figure 4.3.  

     In this thesis, two transition element types were chosen to be implemented: (12-node) 

and (16-node) hexahedral elements. More details about those elements are presented in 

the following sections. 

 

 

Figure 4.3 The (8 to 26)-Node Hexahedral Element 
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     The shape function for a standard three-dimensional first order hexahedral element is 

presented in equations (    ) to (   ) and their derivatives were listed in Table 4.6, (Morton 

et al. 1995). The coordinates of nodes 1 to 8 are listed in Table 4.5.  

     The introduction of additional nodes will require modification of the shape functions, 

so they are denoted with a bar (Morton et al. 1995) while the shape functions for the 

transition elements in their final form will be denoted with no bar (Morton et al. 1995). 

 

Table 4.5 The Coordinates of Nodes (1 to 8) in a Natural Coordinate System 

Corner Nodes 

Node 1 2 3 4 5 6 7 8 

  -1 +1 +1 -1 -1 +1 +1 -1 

  -1 -1 +1 +1 -1 -1 +1 +1 

  +1 +1 +1 +1 -1 -1 -1 -1 

 

Table 4.6 Shape Functions and Their Derivatives for Nodes (1 to 8) (Morton et al. 1995) 

Shape Functions at Each Node 
Shape Functions Derivatives 
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     Shape functions for the hexahedral elements with nodes added only at midpoints of an 

edge are presented in equations (    ) to (     ) and their derivatives are listed in Table 4.8 

(Morton et al. 1995). Again, these shape functions will need to be modified to account for 

other nodes that are added to the element (Morton et al. 1995). Shape functions for 

hexahedral elements with nodes at the center of the faces are shown in equations (    ) to 

(    ) in Table 4.9. Each of these shape functions vanish at the edges and will not need to 

be modified to account for the nodes introduced before. The nodal locations for nodes 9 

to 26 are shown in Figure 4.4 and their coordinates are listed in Table 4.7. 

 

Figure 4.4 Location of Nodes 9 to 26  

 

Table 4.7 The Coordinates of Nodes (9 to 26) in a Natural Coordinate System 

Mid-side Nodes 

Node 9 10 11 12 13 14 15 16 17 18 19 20 

  0 0 0 0 -1 +1 +1 -1 -1 +1 +1 -1 

  -1 +1 +1 -1 -0 0 0 0 -1 -1 +1 +1 

  +1 +1 -1 -1 +1 +1 -1 -1 0 0 0 0 

Mid-Face Nodes 

Node 21 22 23 24 25 26 

  -0 0 -1 +1 0 0 

  -1 +1 0 0 0 0 

  0 0 0 0 -1 +1 
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Table 4.8 Shape Functions and their Derivatives for Nodes (9 to 20)  

(Morton et al., 1995) 

Shape Functions And Their Derivatives 

                         

     
              
            

              
              
            

       
              
            

  

              
 

 
                     

 

 
               

 

 
             

 

 
                

                
 

 
                     

 
 

 
                 

 

 
              

 

 
                

                
 

 
                     

 

 
                

 

 
              

 

 
                

               
 

 
                     

 

 
                

 

 
              

 

 
                

               
 

 
                     

 

 
                

 

 
               

 

 
                

                
 

 
                     

 

 
                 

 

 
               

 

 
                

               
 

 
                     

 

 
                 

 

 
                

 

 
                

               
 

 
                     

 

 
                 

 

 
                

 

 
               

               
 

 
                     

 

 
                

 

 
               

 

 
                

              
 

 
                     

 

 
                

 

 
               

 

 
               

               
 

 
                     

 

 
              

 

 
               

 

 
                

               
 

 
                     

 

 
                

 

 
               

 

 
                

 

 



 

34 
 

Table 4.9 Shape functions and their derivatives for Nodes (21 to 26)  

(Morton et al. 1995) 

Shape Functions at Each Node 
Shape Functions Derivatives 

                         

              
 

 
                       

 

 
                  

 

 
                 

 

 
                  

              
 

 
                       

 

 
                  

 

 
                 

 

 
                   

             
 

 
                       

 

 
                   

 

 
                 

 

 
                   

               
 

 
                      

 

 
                  

 

 
                  

 

 
                  

              
 

 
                       

 

 
                   

 

 
                 

 

 
                  

              
 

 
                       

 

 
                   

 

 
                 

 

 
                  

 

4.1.4 Shape Functions for Transitional Hexahedral Elements 

As mentioned earlier in this chapter, two transition elements were used throughout 

this thesis: (12-node) and (16-node) hexahedral elements as shown in Figure 4.5. Their 

shape functions were developed based on Morton et al.’s (1995) equations, as explained 

below and listed in Tables 4.10 and 4.11.  

Nodes from 9 to 26 may or may not be present. If a node doesn’t exist, its original shape 

function (           ) or (    to     ) should be set to zero and then used in the following 

equations: 

For the corner nodes: 
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                                                          (28) 

         –
 

 
                    

 

 
                                                          (29) 

         –
 

 
                   

 

 
                                                          (30) 
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         –
 

 
                   

 

 
                                                          (31) 

         –
 

 
                   

 

 
                                                          (32) 

         –
 

 
                   

 

 
                                                          (33) 

For the edge mid-nodes: 

          
 

 
                                                                                                      (34) 

            
 

 
                                                                                                   (35) 
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                                                                                                    (37) 

          
 

 
                                                                                                    (38) 
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                                                                                                    (41) 
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                                                                                                    (43) 

          
 

 
                                                                                                    (44) 

          
 

 
                                                                                                    (45) 

For the face mid-nodes: 

     
 

 
                                                                                                    (46) 

     
 

 
                                                                                                    (47) 
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                                                                                                    (48) 

     
 

 
                                                                                                   (49) 

     
 

 
                                                                                                    (50) 

     
 

 
                                                                                                    (51) 

 

 

Figure 4.5 12-Node and 16-Node Transitional Elements 

 

Table 4.10 12-Node Transitional Hexahedral Element Shape Functions 

(12-Node) Transitional Hexahedral Element Shape Functions  
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Table 4.11 16-Node Transitional Hexahedral Element Shape Functions 

 (16-Node) Transitional Hexahedral Element Shape Functions  

                                                                                          

                                                                                             

                                      

                                        

                                                           

                                                                        

                                        

                                       

                            

                             

                             

                             

                              

                             

                            

                            

 

4.2 Displacement, Strain and Stress for Hexahedral Elements  

4.2.1 Element Equation - Displacement 

There are three degrees of freedom for displacements at each node in three-

dimensional elements. The displacement in a hexahedral element, as a function of the 

global coordinates        , is given as follows (Liu and Quek 2003): 

                                                                                                                      (52) 

where: 

          : The displacement vector for the element (e) in the global coordinate 

system.  

   : The shape function Matrix at the element nodes: 
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                                                (53) 

               
   

  
    

   
   

    
  

                                                               (54)    

where (i) is the number of nodes 

     The nodal displacement vector  

    

 
 
 

 
 

  
 

  
 

  
 

 
 
  

  
 
 

 
 

                                                                                           (55)    

where: 

  
   

  
 

  
 

  
 
                                                                                            (56)  

and: 

  
 : The displacement node (i) for the element (e) in the X direction. 

  
 : The displacement node (i) for the element (e) in the Y direction. 

  
 : The displacement node (i) for the element (e) in the Z direction. 

 

The nodal displacement vector can be calculated using the following equation: 

                                                                                                                            (57)    

where: 

   : The element stiffness matrix 

   : Element body force vector 

 



 

39 
 

4.2.2 Element Strain Matrix 

In order to compute the stiffness matrix, the strain matrix should be obtained: 

       
       

       
       

        
                                                                         (58)    

where: 

  
        

  

 
 
 
 
 
 
      
        

        

           

          

          
 
 
 
 
 

  
  

 
 
 
 
 
 
 
   

          

        
       

           
    

       
          

    

   
             

    

   
         

        
 
 
 
 
 
 

        (59) 

As shape functions are defined in the natural coordinate system        , their derivatives 

with respect to the global coordinates        should be obtained, where: 

 
     

           
  

 

     
           

  
 

     
           

  
 

                                                                                                      (60) 

where: 

   
    

    
   are the global coordinates for the node (i) in the element (e) 

 

So:  

 

   
 

  
 

   
 

  
 
  

  
  

   
 

  
 
  

  
  

   
 

  
 
  

  

   
 

  
 

   
 

  
 
  

  
  

   
 

  
 
  

  
  

   
 

  
 
  

  

   
 

  
 

   
 

  
 
  

  
  

   
 

  
 
  

  
  

   
 

  
 
  

   
 
 

 
 

                                                                        (61) 

 

The previous equations can be written in a matrix form: 
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                                                                                                                                         (62) 

 

   
    

   
    

   
    

        

   
    

   
    

   
    

                                                                                  

 

where (J) is the Jacobian Matrix and defined by: 

   

               

               

               
                                                                                        (63) 

    

             

             
             

   

 
 
 
 
 
 
 
 
 
 

   
 

  
   

 

 

 

 
   

 

  
   

 

 

 

     
   

 

  
   

 

 

 

 
   

 

  
   

 

 

 

  
   

 

  
   

 

 

 

  
   

 

  
   

 

 

 

  

 
   

 

  
   

 

 

 

   
   

 

  
   

 

 

 

  
   

 

  
   

 

 

 

 
 
 
 
 
 
 
 
 
 

 

And       is the inverse of the Jacobian Matrix and calculated according to (Felippa 

2013): 

     
 

   
   

             

             
             

                                                                                           (64) 

where:  

                                                                                                              (65) 
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4.2.3 Element Stiffness Matrix 

                            (Logan 2007)                                                            (66) 

The evaluation of the stiffness matrix is done by applying a Gauss integration scheme and 

it is carried out in the natural coordinate system       : 

                                
  

  

  

  

  

  
                                               

                  
  

  

  

  

  

  
                 

 
        

   
 
   

 
                

where: 

 n: is the number of Gauss points in the directions:           respectively (usually 

it is the same number in all directions). 

                                                                                             (68) 

 C: The matrix of a linear isotropic material constant: 

     
 

           
  

 
 
 
 
 
 
 
 

                                                           
                                                               
                                                                

                                        
    

 
                   

                                                   
    

 
          

                                                                     
    

 
  
 
 
 
 
 
 
 

     (Logan, 2007)                   (69) 

          : are the weights of Gauss points in the directions:           

respectively. 

     The 1×1×1 integration scheme, the 2×2×2 integration scheme and the 3×3×3 

integration scheme are exact for a constant function, a tri-linear function and a tri-

quadratic function respectively (Dhondt 2004). Therefore, the 2×2×2 integration  

scheme represents full integration for a first order element (8–node brick) and the  
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3×3×3 integration scheme stands for full integration in a second order element (20–

node brick) (Dhondt 2004). 

The location and number of the integration points for hexahedral elements are 

summarized in Table 4.12 (Dhondt 2004). 

 

 

Table 4.12 Locations of Integration Points in Hexahedral Elements 

Scheme Location            Number Weight 

1 × 1 × 1 (0, 0, 0) 1 8 

2 × 2 × 2   
 

  
  

 

  
  

 

  
  8 1 

3 × 3 × 3 

       
 

 
  

 

(0, 0, 0) 

 

8 

 

12 

 

6 

 

1 

 

 
 

 
 

 

 

 
 

 
  

 

 
 

 

 

 
 

 
 

 

 
 

 
  

 
 

 
 

 

 

 

 

Strain:  

                (Logan 2007)                                                                                       (70) 

                                                                               

Stress:   

                (Logan 2007)                                                                                        (71) 
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4.2.4 The Direct Stiffness Assembly Method 

The discrete stiffness assembly method, also known as the direct stiffness method, is the 

assemblage of the elements’ equilibrium equations into a set of global equations. The 

global stiffness matrix      is obtained by summing the individual element contributions 

taking into account the common degrees of freedom between elements (Potts & 

Zdravkovic 1999):  

 

                             (Potts & Zdravkovic 1999)                                               (72) 

where: 

    : The global stiffness matrix 

    : The global nodal displacement vector 

    : The global body force vector 
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5.  Performance Evaluation of Transition Elements 

 

As the formulations of linear, quadratic and transition hexahedral elements were 

developed in sim|FEM code, a testing process was carried out to evaluate the accuracy 

and performance of these elements. The parameter of evaluation was set to be the nodal 

displacements, as it is the fundamental solution in the general matrix stiffness equation 

(6) (Potts & Zdravkovic 1999). 

     Two types of models (Type I and Type II) of 3 kinds of elements (first order, second 

order and transition hexahedral elements) were tested in three different programs, where 

the elements were available in those programs (sim|FEM, ABAQUS (HKS 2007), LISA 

(Sonnenhof 2012)). Type I models were aimed to test the transitional elements as single 

elements, while Type II models were aimed to test them as part of a simple assemblage of 

three-dimensional elements. The models, elements and programs used for testing are 

explained below: 

 

The developed models were: 

 Type I Models: Each of these models was composed of only one hexahedral 

element: linear, transitional or quadratic. Further description is given on the 

following pages.  

 Type II Models: Each of these models was composed of a mesh of 27 elements (a 

3 by 3 by 3 cube of elements): a mesh of only linear elements, a mesh of only 

quadratic elements or a mesh with transition elements. Further description is 

given on the following pages. 

Both types of models are illustrated in Figure 5.1.  
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     The models’ and elements’ naming conventions were chosen as follows: STR refers to 

the analysis type, which is 3D stress analysis, HEX refers to the element used that is a 

hexahedral element, (08, 20, 12, 16) refers to the number of nodes, (L, Q or T) refers to 

the kind of element tested; Linear, Quadratic or Transitional, respectively and finally (R 

and F) refer to the integration scheme used whether they were reduced or full, 

respectively. 

The elements tested were: 

 (8-node) linear hexahedral elements: two integration schemes (reduced and full 

integration) were tested; (STRHEX08LR) and (STRHEX08LF), respectively. 

 (20-node) quadratic hexahedral elements: two integration schemes (reduced and 

full integration) were tested; (STRHEX20QR) and (STRHEX20QF), respectively. 

 Transition elements where (12-node) and (16-node) elements were tested; 

(STRHEX12T) and (STRHEX16T), respectively. The integration scheme for 

these elements is explained in the following pages. 

 

The programs used for testing were: 

1. sim|FEM: a computer code developed to solve 3D models with transition 

elements (Zsaki 2010). The code was compiled in Microsoft Visual Studio where 

tests of the following elements were done:  

 8-node linear hexahedral element (STRHEX08L). 

 12-node transition hexahedral element (STRHEX12T) and 16-node 

transition hexahedral element (STRHEX16T). 

 20-node quadratic hexahedral element (STRHEX20Q). 
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2. ABAQUS: a finite element analysis software (HKS 2007) where tests of the 

following elements were done: 

 8-node linear hexahedral element (STRHEX08L), which is referred to in 

ABAQUS as C3D8. 

 20-node quadratic hexahedral element (STRHEX20Q), which is referred 

to in ABAQUS as C3D20. 

3. LISA: a finite element analysis software (Sonnenhof  2012), where tests of the 

following elements were done:  

 8-node linear hexahedral element (STRHEX08L). 

 20-node quadratic hexahedral element (STRHEX20Q). 

 

 

Figure 5.1 Type I and II Models 

 



 

47 
 

5.1 Type I Models 

All models of this type consisted of one brick element of a volume of 8 m
3
 (2m x 2m 

x 2m) of a material that was assumed to be linear elastic. Its properties are shown in 

Table 5.1. The tested models of this type were single first and second order hexahedral 

elements (STRHEX08LR, STRHEX08LF, STRHEX20QR, STRHEX20QF, 

STRHEX12T and STRHEX16T). The first and second order elements with full 

integration scheme were tested in all software mentioned above, but the first and second 

order elements with reduced integration scheme were tested only in sim|FEM and 

ABAQUS since it was possible to only test fully integrated elements in the available 

version of LISA. 

  

Table 5.1 Material Properties of Type I and Type II Models 

Property Unit Value 

γ kN/m
3 

0 

E kPa
 

1000 

ν - 0.3 

 

     After running all Type I models, in order to study the behavior of the tested elements, 

a comparison between the models was performed, as is explained further in the following 

sections. 

     For the boundary conditions, the elements were constrained at the base with pinned 

supports at the base corner nodes or base mid-side nodes depending on the element type. 

The upper face in each model was loaded with a (10 kPa) uniform distributed pressure 

load. Since the finite element method requires the forces to be applied at the nodes, the 
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uniform distributed load was transferred to the nodes. The transformation depends on the 

face type (Smith & Griffiths 2004), as shown in Figure 5.2. 

     Performing the integration in the finite element method is done using numerical 

integration techniques that are approximate methods to evaluate the stiffness matrix 

integral, as presented in equation (61), by the sum of the products of function values at 

specific points over the range [−1, +1]. The Gaussian quadrature formula is one of these 

techniques that was used for carrying out numerical integration for linear and quadratic 

elements (Liu and Quek 2003), while what is called the modified quadrature formula 

(Gupta, 1978) was used for transition elements. 

The quadrature formula includes two integration schemes: reduced integration scheme 

and full integration scheme. Reduced integration schemes were: (1x1x1) scheme that 

corresponds to one Gauss integration point and (2x2x2) scheme that correspond to eight 

Gauss integration points for (8-node) and (20-node) elements, respectively. Full 

integration schemes were: (2x2x2) scheme that corresponds to eight Gauss integration 

points and (3x3x3) scheme that corresponds to 27 Gauss integration points for (8-node) 

and (20-node) elements, respectively. The schemes are illustrated in Table 4.12. 

     Transitional elements have linear and quadratic edges where the mid-side nodes give 

rise to the displacement function that leads to discontinuity in the model. In 1978, Gupta 

developed the modified quadrature formula that is “used to numerically integrate 

discontinuous functions in the expression of the stiffness matrix.” The integral form in 

this modified formula was broken into two continuous integrals, -1.0 to 0.0 and 0.0 to 

+1.0. Thus, four quadrature point were used, meaning two integration points for each 
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sub-integral but in essence they are not really four points, they are only two points used 

in two discontinuous forms (Gupta 1978).  

 

 

 

 

 

 

 
 

Figure 5.2 Equivalent Nodal Forces 

                       

                     

  

     

     

     

20-Node Hexahedral Element 

q: Uniform distributed load;  
q= 10 kN/m2 

A: Area of the loaded face 
A= 4m2 

 

 

 

                    

     

8-Node Hexahedral Element 

q: Uniform distributed load;  
q= 10 kN/m2 

A: Area of the loaded face 
A= 4m2 
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5.1.1 Type I Models Using (STRHEX08L) - Results 

The (8-node) hexahedral model (STRHEX08L) shown in Figure 5.3 was developed 

and tested in sim|FEM, ABAQUS and LISA. But, as mentioned before, in LISA only the 

full integration scheme could be tested in the available version. 

 

 

Figure 5.3 Type I Model - STRHEX08L 

 

Since nodes at the base were all pinned supported, the displacements at them should be 

zero by definition. As the behavior of this simple element can be predicted, and as the test 

results demonstrated (refer to Appendix 1 for the full solution), the displacements at the 

corner nodes in Z direction (at the upper face) were equal. Also, by virtue of symmetry, 

|Ux|=|Uy| at those nodes. Hence, to compare the element behavior in the three different 

programs under the same conditions, it was sufficient to plot the displacement vector 

magnitude at only one of the corner nodes (at the upper face) in respect to these 

programs, as illustrated in Figure 5.4 and 5.5. Due to the fact that the coordinate and node 

numbering systems were different among the three programs and in order to make the 
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comparison process easier, the node coordinates were used to indicate the nodes’ location 

according to a coordinate system in which the Z axis is in the vertical direction, as shown 

in Figure 5.3. For a more accurate comparison, the percentage differences were 

calculated in the X, Y and Z directions with respect to the values obtained in sim|FEM, as 

shown in Table 5.2, as follows: 

 

              
                                    

               
                                                     (73) 

 

The detailed results can be found in Appendix 1. 

 

 

Figure 5.4 Illustration of Corner Node (0,0,2) location for the STRHEX08L Model 
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Figure 5.5 Displacement Vector Magnitude at Corner Node (0,0,2) 

Model STRHEX08L 

 

Table 5.2 Displacement Percentage Difference at the Corner Node (0,0,2) for the 

STRHEX08L Element 
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Model  

 (Program) 

Displacement  Difference  @ Node (0,0,2)  in %/ Model: STRHEX08LR  

Software Ux (m) Uy (m) Uz (m) 

ABAQUS -5.98481E-03 -5.98481E-03 -1.99870E-02 

With Respect to 

sim|FEM -6.00E-03 -6.00E-03 -2.00E-02 

 

% Difference  in 

Ux 

% Difference  in 

Uy 

% Difference  in 

Uz 

ABAQUS vs.  sim|FEM 0.25 0.25 0.06 

Displacement  Difference  @ Node (0,0,2)  in %/ Model: STRHEX08LF 

Software Ux (m) Uy (m) Uz (m) 

ABAQUS -5.21933E-03 -5.21933E-03 -1.93309E-02 

LISA -3.90000E-03 -3.90000E-03 -1.82000E-02 

With Respect to 

sim|FEM -3.90000E-03 -3.90000E-03 -1.82000E-02 

 

% Difference  in 

Ux 

% Difference  in 

Uy 
% Difference  in Uz 

ABAQUS vs.  

sim|FEM 
33.83 33.83 6.21 

LISA vs.  sim|FEM 0.00 0.00 0.00 
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    As can be observed, using the reduced integrated elements in both sim|FEM and 

ABAQUS resulted in almost identical values, where the maximum difference was 

(0.25%) in X and Y directions, but that was not the case when the full integrated element 

was used, where the results obtained in ABAQUS showed a considerable difference 

[(33.83%) in the X and Y directions and (6.21%) in the Z direction] in respect to those 

obtained in sim|FEM and LISA. It should be noted that the results of the fully integrated 

elements obtained from sim|FEM and LISA were identical. 

     Choosing the integration scheme that gives acceptable results in respect to the 

examined problem is important in finite element analysis. A general discussion in 

ABAQUS’ documentations can be found regarding this point. It is mentioned that the 

reduced integration accuracy depends on the nature of the problem and fully integrated 

elements should be avoided in problems with large distortions or bending. These 

conditions don’t apply for this test. Additionally, there is no indication in LISA’s manual 

about which scheme tends to give more accurate results. Thus, for one 8-node element 

and linear elastic analysis, the best way to adapt certain results obtained using a specific 

scheme is to compare the test results with the ones obtained from 3D Hooke's Law 

(Stress-Strain Relationship) for which an analytical solution exists (Davis and Selvadurai 

1996). 

 

3D Hooke's Law (Stress-Strain Relationship):  

 

    
 

 
                   

    
 

 
                   

    
 

 
                    

 
 

 
 

                                                                                                      (74) 
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Where: 

E=1000 kPa,         ,               
  

            ⟾ 

    
       

    
        ⟾ ∆x= 0.003(L=2 m) = 0.006 m  

    
       

    
        ⟾ ∆y= 0.003(L=2 m) = 0.006 m 

    
  

    
        ⟾ ∆z= 0.001(L=2 m) = 0.002 m 

 

     According to the simple manual calculations for a single linear hexahedral element 

following Hooke’s Law, the displacements were 0.006 m in both of the X and Y 

directions and 0.002 m in the Z direction. Comparing those with the values obtained 

using each of sim|FEM, ABAQUS and LISA, reduced integrated element results were 

adapted as they were closer to Hooke’s Law results than the fully integrated ones. 

 

5.1.2 Type I Models Using (STRHEX20Q) - Results  

     The (20-node) hexahedral model (STRHEX20Q) shown in Figure 5.6 was developed 

in sim|FEM, ABAQUS and LISA but, in LISA only the fully integrated scheme could be 

tested in the available version. 

     The results were summarized in three plots and as in the STRHEX08L model, the 

nodes’ coordinates were used to indicate the nodes’ locations according to coordinate 

system in which the Z axis is in the vertical direction, as shown in Figure 5.6. Following 

the same discussion for the displacement results at corner nodes in the STRHEX08L 

model, the displacement vectors magnitudes at only one corner node (0,0,2) were plotted, 

as shown in Figure 5.8. Node (0,0,2)’s location is shown in Figure 5.7. 
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Figure 5.6 Type I Model - STRHEX20Q 

 

      The vector magnitudes at the mid-side nodes at the upper face were equal (refer to 

Appendix 1), so only one plot was necessary and the same applied for the mid-side nodes 

at the side faces, as shown in Figures 5.9 and 5.10.  Mid-side nodes’ locations are shown 

in Figure 5.9. 

    For more accurate comparisons, the percent difference was calculated in the X, Y and 

Z directions in respect to the values obtained in sim|FEM as shown in Tables 5.3, 5.4 and 

5.5. The detailed results can be found in Appendix 1. 
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Figure 5.7 Illustration of Corner Node (0,0,2) location for the STRHEX20Q Model 

 

 

 

 

Figure 5.8 Displacement Vector Magnitude at the Corner Node (0,0,2) Model 
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Table 5.3 Displacement Percentage Difference at Corner Node (0,0,2) for STRHEX20Q 

Element 

Displacement Difference  @ Node (0,0,2) in %/ Model: STRHEX20QR  

Software Ux (m) Uy (m) Uz (m) 

ABAQUS -2.0542500E-03 -1.2398700E-03 -1.8352900E-02 

With Respect to 

sim|FEM -1.6470588E-03 -1.6470588E-03 -1.8352941E-02 

 

% Difference in 

Ux 

% Difference in 

Uy 

% Difference in 

Uz 

ABAQUS vs. 

sim|FEM 
24.72232 24.72218 0.0002 

Displacement Difference  @ Node (0,0,2) in %/ Model: STRHEX20QF 

Software Ux (m) Uy (m) Uz (m) 

ABAQUS -2.8239800E-03 -2.8239800E-03 -1.9346300E-02 

LISA -2.8242240E-03 -2.8242240E-03 -1.9347060E-02 

With Respect to 

sim|FEM -2.8239842E-03 -2.8239842E-03 -1.9346317E-02 

 
% Difference in 

Ux 

% Difference in 

Uy 

% Difference in 

Uz 

ABAQUS vs. 

sim|FEM 
0.00 0.00 0.00 

LISA vs. sim|FEM 0.01 0.01 0.00 

 

 

 

Figure 5.9 Illustration of Mid-Side Nodes (1,0,2) and (0,0,1) location for STRHEX20Q 

Model 
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Figure 5.10 Displacement Vector Magnitude at the Mid-Side Node (1,0,2) Model 

STRHEX20Q 
 

Table 5.4 Displacement Percentage Difference at Mid-Side Node (1,0,2) for the 

STRHEX20Q Element 

Displacement Difference  @ Node (1,0,2) in %/ Model: STRHEX20QR 

Software Ux (m) Uy (m) Uz (m) 

ABAQUS 0.0000000E+00 -1.8506500E-03 -1.9058800E-02 

with Respect to 

sim|FEM 0.0000000E+00 -1.6470588E-03 -1.9058824E-02 

 

% Difference in 

Ux 

% Difference in 

Uy 

% Difference in 

Uz 

ABAQUS vs. 

sim|FEM 
0.00 12.36 0.00 

Displacement Difference  @ Node (1,0,2) in %/ Model: STRHEX20QF 

Software Ux (m) Uy (m) Uz (m) 

ABAQUS 0.0000000E+00 -2.8038700E-03 -1.9100500E-02 

LISA 0.0000000E+00 -2.8040690E-03 -1.9100720E-02 

with Respect to 

sim|FEM 0.0000000E+00 -2.8038739E-03 -1.9100525E-02 

 
% Difference in 

Ux 

% Difference in 

Uy 

% Difference in 

Uz 

ABAQUS vs. 

sim|FEM 

0.00 0.00 0.00 

LISA vs. sim|FEM 0.00 0.01 0.00 
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Figure 5.11 Displacement Vector Magnitude at the Mid-Side Node (0,0,1) Model 

STRHEX20Q 

 

Table 5.5 Displacement Percentage Difference at the Mid-Side Node (0,0,1) for the 

STRHEX20Q Element 

Displacement Difference  @ Node (0,0,1) in %/ Model: STRHEX20QR 

Software Ux (m) Uy (m) Uz (m) 

ABAQUS -3.6741800E-03 -3.2669900E-03 -8.8235300E-03 

with Respect to 

sim|FEM -3.4705882E-03 -3.4705882E-03 -8.8235294E-03 

 

% Difference in 

Ux 

% Difference in 

Uy 

% Difference in 

Uz 

ABAQUS vs. 

sim|FEM 
0.00 5.87 0.00 

Displacement Difference  @ Node (0,0,1) in %/ Model: STRHEX20QF 

Software Ux (m) Uy (m) Uz (m) 

ABAQUS -2.9453300E-03 -2.9453300E-03 -9.0708900E-03 

LISA -2.9452980E-03 -2.9452980E-03 -9.0712170E-03 

with Respect to 

sim|FEM -2.9453288E-03 -2.9453288E-03 -9.0708922E-03 

 

% Difference in 
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% Difference in 
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The reduced integrated element in ABAQUS resulted in a relatively considerable 

difference in both of the X and Y directions in respect to sim|FEM, as shown in Tables 

5.3, 5.4 and 5.5. Yet, it should be noted that this difference was not clear in the figures, 

since the vector magnitude only was plotted. Almost identical values were obtained from 

sim|FEM, ABAQUS and LISA when the fully integrated element was used.  

     According to ABAQUS’ documentations, reduced integrated elements are generally 

more accurate than the fully integrated ones. That might be true for a mesh of elements in 

certain conditions, but it doesn’t seem to be the case for the element tested in this section. 

Also, as mentioned before, there is no indication about integration schemes accuracy in 

LISA’s manual, so depending on the test results for STRHEX20Q model, fully integrated 

element results were adapted to be considered acceptable for the studied case.  

 

5.1.3  Type I Models Using (STRHEX12T) and (STRHEX16T) – Results 

In this section, two kinds of transitional elements were tested: (12-node) and (16-

node) hexahedral elements, where transition elements are those that connect first order 

elements with second order ones. The models were tested in sim|FEM and illustrated in 

Figures 5.12 and 5.13.  

The modified quadrature formula was used as explained earlier in this chapter. The same 

geometry and material properties assumed for STRHEX08L and STRHEX20Q models 

were used as well. The material properties were as shown in Table 5.1. 

For the boundary conditions, the element base was constrained with pinned supports at 

the corner nodes in the STRHEX12T and STRHEX16T models, while the upper face in 
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each was loaded with a (10 kPa) uniformly distributed pressure that had to be transferred 

to the nodes, as illustrated earlier in Figure 5.2. 

 
Figure 5.12 Type I Model - STRHEX12T        Figure 5.13 Type I Model - STRHEX16T 

 

     The results of both models were compared to STRHEX08LR and STRHEX20QF 

models’ results that were tested in sim|FEM and presented in the previous two sections. 

The comparison was summarized in three plots, as illustrated in Figures 5.14, 5.15 and 

5.16. One plot was for corner nodes, where the results of STRHEX08LR, 

STRHEX20QF, STRHEX12T and STRHEX16T were compared, as shown in Figure 

5.14. The other two plots were for mid-side points at both the upper face and side faces. 

Based on the mid-side node location, Figure 5.15 compared the results of STRHEX20QF, 

STRHEX12T and STRHEX16T models, while Figure 5.16 compared only the results of 

STRHEX20QF and STRHEX16T models, since STRHEX12T does not have nodes at 

that location. It should be noted that the comparison was done at the nodes of the same 

locations chosen for previous models; STRHEX08L and STRHEX20Q where the 

location of these nodes is illustrated in Figures 5.4, 5.7 and 5.9. 
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The detailed results can be found in Appendix 1. 

 

 

Figure 5.14 Displacement Vector Magnitude at the Corner Node (0,0,2) with respect to 

sim|FEM Models: STRHEX08LR, STRHEX12T, STRHEX16T, STRHEX20QF 

 

 

Figure 5.15 Displacement Vector Magnitude at the Mid-Side Node (1,0,2) with respect 

to sim|FEM Models: STRHEX12T, STRHEX16T, STRHEX20QF 
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Figure 5.16 Displacement Vector Magnitude at Node (0,0,1) with respect to sim|FEM 

Models: STRHEX16T, STRHEX20QF 
 

     It should be noted that the displacement values in all directions at the corner node 

(0,0,2) obtained from the STRHEX12T, STRHEX16T and STRHEX20F models were 

greater than the ones obtained from the STRHEX08LR model. Also, the displacement 

values in all directions obtained from the STRHEX12T and STRHEX16T models were 

closer to the ones obtained from the STRHEX20F model. 

     The nodal displacements for STRHEX12T and STRHEX16T elements were ideally 

expected to fall in between the results of STRHEX08L and STRHEX20Q, but as can be 

observed from the figures above, that was not the case where a single hexahedral element 

was tested. That can be justified by the fact that in transition elements some edges are 

linear and the others are quadratic, and for a single element model the results might not 

have been approximated accurately enough. But, this approximation was expected to be 

noticeably reduced in case of a mesh of elements with the increasing of the number of 

both the nodes and the integration points, as the test of Type II Models indicated. 
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Analysing the results of all Type I models obtained in three different programs 

demonstrated an acceptable performance of these elements as implemented in the 

sim|FEM code. To further ensure the performance of the transitional hexahedral 

elements, new tests of larger models were carried out.                  

 

5.2 Type II Models 

The previous test was done for Type I models that consisted of only a single element. 

To ensure the performance of transition elements, tests of a mesh of only linear elements, 

a mesh of only quadratic elements and a mesh with transition elements were performed.   

Each of these models consisted of 27 elements (3 elements in each direction of volume of 

1 m
3
 (1m x 1m x 1m)). The models had the same material properties used for Type I 

models, as listed in Table 5.1. Regarding the boundary conditions, the nodes at the base 

were constrained in all directions and a load of 10 kN/m
2 

was applied at the top face of 

the model. Figures 5.17, 5.18, 5.20 and 5.21 show a summary of the loading scheme, 

geometry and boundary conditions of the models. 

     The models’ and elements’ naming convention was chosen to be as follows: M refers 

to mesh, HEX refers to the element used that is hexahedral element, (08, 20, 12, 16) refer 

to the number of nodes, (L, Q or T) refer to what kind of element was tested; Linear, 

quadratic or transitional, respectively, and finally the name of the program used to carry 

out the test. 

A total of six models were developed. Two of them were tested in ABAQUS and the 

remaining four were tested in sim|FEM:  
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 MHex08L_sim|FEM:  a mesh composed of only linear hexahedral elements tested 

in sim|FEM. 

 MHex08L_ABAQUS:  a mesh composed of only linear hexahedral elements 

tested in ABAQUS. 

 MHex20Q_sim|FEM: a mesh composed of only quadratic elements tested in 

sim|FEM. 

 MHex20Q_ABAQUS: a mesh composed of only quadratic elements tested in 

ABAQUS. 

 MHex12T_sim|FEM: a mesh of linear, 12-node transition hexahedral, quadratic 

elements tested in sim|FEM. 

 MHex16T_sim|FEM: a mesh of linear, 16-node transition hexahedral, quadratic 

elements tested in sim|FEM. 

 

5.2.1 Type II Models Using (MHex08L) and (MHex20Q) - Results 

Both integration schemes (reduced and full) were checked for MHex08L_sim|FEM, 

MHex08L_ABAQUS, MHex20Q_sim|FEM and MHex20Q_ABAQUS models that are 

shown in Figures 5.17 and 5.18. To determine which integration scheme’s results were 

more accurate for the studied cases, the displacements’ values of each scheme in 

sim|FEM and ABAQUS were compared. 

Due to the large number of results to be plotted, the comparison was done at only 

some of the corner nodes with the following coordinates: (0,0,3), (3,0,3), (3,3,3), (0,3,3), 

(2,0,3), (2,3,3), (0,1,3) and (3,1,3). The locations of these nodes are illustrated in Figure 

5.19 and the detailed displacement values at these nodes can be found in Appendix 2. 
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Figure 5.17 Mesh With Only Linear Hexahedral Elements - MHex08L 

Loads (kN) 

    =     =     =     = -2.5  

    =     =     =     =     =     =     =     = -5  

    =     =     =     = -10  

All dimensions are in units of meters 
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Figure 5.18 Mesh With Only Quadratic Hexahedral Elements - MHex20 

Loads (kN) 

     =      =      =      = 0.833  

     =      =      =      =      =      =      =      =      =      =      =      =        

- 3.33  

     =      =      =      =      =      =      =      = 1.666  

     =      =      =      =      =      =      =      =     =      =     =      =          

-6.66  

     =      =      =      = 3.332  

All dimensions are in units of meters 
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Figure 5.19 Illustration of Nodes (0,0,3), (3,0,3), (3,3,3), (0,3,3), (2,0,3), (2,3,3), (0,1,3) 

and (3,1,3) location 

 

 

 

Table 5.6 Percentage Difference of Reduced Integrated Models in Respect to Fully 

Integrated Models 

Percent Difference of Reduced Integrated Model in Respect to Fully Integrated 

Model in % 

Mesh of (3x3x3) Elements 

MHex08L_sim|FEM 

Nodes % Difference in Ux % Difference in Uy % Difference in Uz 

(0,0,3) 11.18 11.18 1.44 

(2,0,3) 69.78 9.68 0.88 

(0,1,3) 9.68  69.78 0.88 

MHex08L_ABAQUS 

Nodes % Difference in Ux % Difference in Uy % Difference in Uz 

(0,0,3) 8.83% 8.83% 1.52% 

(2,0,3) 64.17 9.84 0.2 

(0,1,3) 9.84 64.17 0.2 
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Table 5.6 (Continuing) Percentage Difference of Reduced Integrated Models in Respect 

to Fully Integrated Models 

MHex20Q_ sim|FEM 

Nodes % Difference in Ux % Difference in Uy % Difference in Uz 

(0,0,3) 0.3 0.3 0.19 

(2,0,3) 0.31 0.09 0.23 

(0,1,3) 0.09 0.31 0.23 

MHex20Q_ABAQUS 

Nodes % Difference in Ux % Difference in Uy % Difference in Uz 

(0,0,3) 0.29 0.29 0.19 

(2,0,3) 0.30 0.10 0.23 

(0,1,3) 0.10 0.30 0.23 

 

As the tests’ results showed and as the nodes at the base of these models are 

constrained in all directions, the displacements at them are zero by definition. It can also 

be noted that the displacements vector magnitudes at the nodes (0,0,3), (3,0,3), (3,3,3) 

and (0,3,3) are the same due to the symmetry of the boundary conditions applied o the 

models. The same applies for nodes (2,0,3) and (2,3,3) and nodes (0,1,3) and (3,1,3). 

Therefore, for simplifying, the percentage difference of the reduced integrated models in 

respect to the fully integrated ones within each program were calculated at the nodes with 

the following coordinates (0,0,3), (2,0,3) and (0,1,3). 

 

   It can be noticed from Table 5.6 that there were considerable percentage differences 

between the reduced integrated models with only linear hexahedral elements in 

comparison to the fully integrated ones (69.78% in sim|FEM and 64.17% in ABAQUS). 

While, the reduced integrated models with only quadratic hexahedral elements yielded 

very close results to the fully integrated ones with small percentage differences in both 

sim|FEM and ABAQUS (maximum of 0.31%). 
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The considerable percentage differences were expected in the studied mesh of linear 

elements with reduced integration scheme, because in this case the results were 

approximated at only one integration point for each linear element in the linear mesh. For 

the studied meshes, that was not sufficient to reach accurate results. But, in a fully 

integrated mesh of only linear elements, the results were approximated at eight 

integration points for each linear element. 

On the other hand, using quadratic elements did not yield such large differences 

because of many facts, such as, the increase of number of the nodes and that the results 

were approximated at eight integration points in the reduced integrated models and at 

twenty seven integration points in the fully integrated models which seemed to be 

sufficient to reach acceptable solution accuracy, beside the fact that the second-degree 

edge is more flexible (since it can assume the shape of a quadratic function over the three 

nodes) than a first degree edge. 

 According to the tests’ results, the full integration scheme of both linear and quadratic 

models was adapted to be used for the models tested in the next sections and chapters.  

 

5.2.2 Type II Models Using (MHex12T) and (MHex16T) - Results 

After choosing the integration scheme to be used, a comparison between the results of 

MHex08L_sim|FEM and MHex20Q_ sim|FEM models and the results obtained from the 

two meshes with transition elements; MHex12T_sim|FEM and MHex16T_sim|FEM was 

performed in order to evaluate the transition element performance. The transition 

elements were placed at the middle layer in Z direction in between a bottom layer of 



 

71 
 

linear elements and a top layer of quadratic elements. MHex12T_sim|FEM and 

MHex16T_sim|FEM models are illustrated in Figures 5.20 and 5.21. 

Due to the large number of results to be plotted, the comparison was done at only 

some of the corner nodes with the following coordinates: (0,0,3), (3,0,3), (3,3,3), (0,3,3), 

(2,0,3), (2,3,3), (0,1,3) and (3,1,3). The locations of these nodes are illustrated in Figure 

5.19 and the detailed displacement values at these nodes can be found in Appendix 2. 

As the tests’ results indicated and as the nodes at the base of these models are 

constrained in all directions, the displacements at them are zero by definition. On the 

other hand, the displacements vector magnitudes at the nodes (0,0,3), (3,0,3), (3,3,3) and 

(0,3,3) were the same due to the symmetry of the boundary conditions applied to the 

models. The same applies for nodes (2,0,3) and (2,3,3) and nodes (0,1,3) and (3,1,3). 

Therefore, for simplifying, the percentage difference of both meshes with 12-node and 

16-node transition elements in respect to quadratic and linear meshes analysed in 

sim|FEM were calculated at the nodes with the following coordinates (0,0,3), (2,0,3) and 

(0,1,3). 

Finally, the results of sim|FEM are summarized in three plots; one for each corner 

nodes as shown in Figures 5.22, 5.23 and 5.24. The detailed results are shown in 

Appendix 2. 

     As can be noticed from Table 5.7 and Figures 5.22, 5.23 and 5.24, the differences 

between the results from meshes with transitional elements in comparison to meshes with 

quadratic elements decreased from what they were in Type I models.  
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Figure 5.20 Mesh With (12) Transition Hexahedral Elements - MHex12T 

 

Loads (kN) 

    =     =     =     = 0.833  

     =      =      =      =      =      =      =      =      =      =      = -3.33  

    =     =     =     =     =     =     =     = 1.666  

     =      =      =      =      =      =      =      =     =      =     =      =   -

6.66 

    =     =     =     = 3.332  

All dimensions are in units of meters 
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Figure 5.21 Mesh With (16) Transition Hexahedral Elements - MHex16 

Loads (kN) 

     =      =      =      = 0.833  

     =      =      =      =      =      =      =      =      =      =      =      = -

3.33  

     =      =      =      =      =      =      =      = 1.666  

     =      =      =      =      =      =      =      =     =      =     =      =   -

6.66  

     =      =      =      = 3.332  

All dimensions are in units of meters 
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Table 5.7 Percentage Differences of Models with Transition Elements in Respect to 

Linear and Quadratic Models 

Percent Differences of MHex12T_sim|FEM  Model in Respect to 

MHex08L_sim|FEM Model in % 

Nodes % Difference in Ux % Difference in Uy % Difference in Uz 

(0,0,3) 0.08 0.08 3.18 

(2,0,3) 5.54 0.16 3.06 

(0,1,3) 0.16 5.54 3.06 

Percent Differences of MHex12T_sim|FEM  Model in Respect to  

MHex20Q_ sim|FEM Model in % 

Nodes % Difference in Ux % Difference in Uy % Difference in Uz 

(0,0,3) 0.32 0.32 2.19 

(2,0,3) 6.14 0.77 2.04 

(0,1,3) 0.77 6.14 2.04 

Percent Differences of MHex16T_ sim|FEM  Model in Respect to 

MHex08L_ sim|FEM Model in % 

(0,0,3) 0.49 0.49 3.15 

(2,0,3) 6.39 0.41 3.11 

(0,1,3) 0.41 6.39 3.11 

Percent Differences of MHex16T_ sim|FEM  Model in Respect to  

MHex20Q_ sim|FEM Model in % 

(0,0,3) 0.09 0.09 2.16 

(2,0,3) 6.99 0.52 2.09 

(0,1,3) 0.52 6.99 2.09 
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Figure 5.22 Displacement Vector Magnitude at Node (0, 0,3) 

 

 

 

 

Figure 5.23 Displacement Vector Magnitude at Node (2, 0, 3) 
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Figure 5.24  Displacement Vector Magnitude at Node (0, 1, 3) 
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6 Verification of Practical Performance of Transitional Elements – Pressurized 

Cavity Problem 

 

Models in the previous chapter have verified the accuracy and performance of 

transitional elements both as single elements and as part of a simple assemblage of 3-

dimensional elements. Although the transitional elements performed well, their intended 

application is to serve as connections between the first order and second order hexahedral 

elements in analyzing large and complex problems in dimensions.  

As a relatively simple, yet practical problem, a pressurized circular tunnel in an 

elastic isotropic medium was selected as the next model in the real-world application of 

p-type mesh optimization using transitional elements. The model represents a typical 

scenario of an underground water conveyance tunnel under pressure, often found in 

hydro-electric or pumped storage facilities as tailrace tunnels or tunnels feeding the 

turbines (Hoek 2007). The stability of these tunnels is often governed by the adequacy of 

the in situ confining rock pressure to balance the internal pressure of water running 

through a tunnel. If the internal pressure exceeds the confining pressure, a blowout can 

occur, leading to the failure of a tunnel, jeopardizing the operation of a facility (Hoek 

2007). Due to the symmetry in both loading conditions and geometry of the problem, 

only one quarter of the tunnel needs to be modeled using appropriate boundary 

conditions, as subsequently discussed. The physical domain representing the problem was 

modeled using a rock mass of 20 m by 20 m perpendicular to the 10 m diameter tunnel as 

seen in Figure 6.1. These dimensions were selected to provide enough rock mass around 

a tunnel to avoid the boundaries affecting the solution via stress reflection if they were 

placed too close to the tunnel. The thickness (Z dimension) of the rock mass along the 
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axis of the tunnel was selected to be 26.32 m. This number was arrived at by finding the 

average finite element edge length of quadrilaterals in the XY plane and using it to 

generate an even number of elements in the Z direction. For this problem 12 layers of 

elements were used, resulting in the depth of 26.32m. The choice of 12 layers can be 

justified because it results in a more-or-less cubic volume of rock to be analyzed, as 

shown in Figure 6.2. To assess the performance of transitional elements, three different 

bands of transitional zones were considered yielding three separate problems. The 

transition bands were selected to be located at distances of 7.5 m, 10 m and 12.5 m from 

the tunnel center as shown in Figure 5.1. These distances could represent possible zones 

of yielding and failure of the rock mass around the tunnel if plastic analysis was to be 

performed. Elements within the transition zones were kept at the second-order (quadratic) 

while elements beyond the transition zone were modeled using first-order (linear) 

hexahedral elements. The transition band was discretized using either 12 or 16-noded 

transitional hexahedral elements. The rock mass properties are summarized in Table 6.1. 

Note that the unit weight of the rock was not considered, effectively set to zero, since the 

internal pressure supplied by the water can easily exceed the pressure from the weight of 

the rock at close to ground surface problems. This decision does not affect the validity of 

the model to represent the tunnels. Other rock mass properties such as E and Poisson’s 

ratio were selected to represent a typical intact rock. The water pressure was applied to 

the tunnel boundary as a distributed load of 1.2785 kN/m per meter thickness of tunnel. 

This value represents a relatively low value of pressure, however, since the rock mass 

was considered weightless, nevertheless it exerts pressure and causes deformation within 

the rock mass. The distributed load was transformed into nodal loads and applied to the 
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element nodes comprising the tunnel boundary. The boundary conditions of the model 

were such that movement of rock, due to the pressurized tunnel, was allowed, as seen in 

Figure 6.1 for the simple 2D case of showing only the front face of the model. By setting 

the upper and right boundaries fixed and having the left and bottom boundaries on rollers, 

the initial simplifying assumption of using one quarter of a problem was maintained. It is 

expected that displacements along the bottom and left side of the model will be equal to 

each other due to the symmetry in both loading and geometry of the problem. The 

complete set of boundary conditions in 3D are summarized in Figure 6.2, noting that 

displacements along the Z direction were restrained for the front and back faces, in 

essence creating a model that will not deform in that direction at all and imitate a plane 

strain case in 3D. 

 

Table 6.1 Material Properties 

Property Units Value 

γ kN/m
3 

0 

E kPa
 

10
6
 

ν - 0.3 
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Figure 6.1 Frontal View of Boundary Conditions and Transition Bands Used in the 

Pressurized Cavity Problem 

 

 

 

Figure 6.2 3D View of the Pressurized Cavity Problem Summarizing the Boundary 

Conditions 
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The pressurized cavity problem was modeled using both ABAQUS and sim|FEM. The 

models used in ABAQUS served as benchmark problems for the cases with either all 

first-order or all second-order elements. No models with transitional elements were done 

in ABAQUS since it does not include that type of element, while all models were 

analyzed using sim|FEM. In total ten models were analyzed, as summarized in the matrix 

below. 

Table 6.2 Summary of Models for Pressurized Cavity Analysis 

Case Model – element type Analysis tool 

1 HEX8L sim|FEM 

2 HEX8L  ABAQUS 

3 HEX20Q sim|FEM 

4 HEX20Q ABAQUS 

5 HEX_TRANS1 (12T) sim|FEM 

6 HEX_TRANS1 (16T) sim|FEM 

7 HEX_TRANS2 (12T) sim|FEM 

8 HEX_TRANS2 (16T) sim|FEM 

9 HEX_TRANS3 (12T) sim|FEM 

10 HEX_TRANS3 (16T) sim|FEM 

Where: 

 HEX8L is a mesh of first-order, linear 8-noded hexahedral elements. 

 HEX20Q is a mesh of second-order, quadratic 20-noded hexahedral elements. 

 HEX_TRANS1 is a mesh with a band of transitional hexahedral elements (12-noded 

and 16-noded) located at a radius of 7.5 m. 

 HEX_TRANS2 is a mesh with a band of transitional hexahedral elements (12-noded 

and 16-noded) located at a radius of 10 m.  

 HEX_TRANS3 is a mesh with a band of transitional hexahedral elements (12-noded 

and 16-noded) located at a radius of 12.5 m. 
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The ABAQUS models (cases 2 and 4) were modeled using C3D8 (linear hexahedral) 

and C3D20 (quadratic hexahedral) elements. The location of nodes, elements, loadings, 

boundary conditions and material properties correspond to the models done in sim|FEM 

to serves as a basis of comparison. The purpose of this testing regime was to assess the 

performance of the transition elements in sim|FEM and not to validate either ABAQUS 

or sim|FEM against analytical solutions since both ABAQUS and sim|FEM are 

thoroughly tested and verified finite element codes. 

The evaluation of the results was done by comparing the stress and displacement 

contours of all models for a visual check and the displacement values along both the 

lower boundary and the left boundary at the middle cross section (half-way through the Z 

thickness) of the model. For the purpose of visualizing results generated with sim|FEM, a 

set of TCL scripts were written to use the Visualization Toolkit (VTK) (Kitware Inc. 

2010) to render the results in 3D. The following sub-sections assess the results obtained 

from models for each case. 

 

6.2 Cases 1 through 4 – Baseline cases 

The models comprised purely of 8-noded and 20-noded hexahedral elements (HEX8L 

and HEX20Q) were developed and tested in both sim|FEM and ABAQUS. The meshes 

used in the models are shown in Figures 6.3 and 6.4 for 8-noded and 20-noded elements, 

respectively. These four cases show the extremes of what a typical analysis would entail; 

discretizing the problem geometry by either all 8-noded first-order elements and saving 

on computation time while perhaps sacrificing solution quality or going for 20-noded 
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second-order elements and bearing the cost of increased time to solution and computer 

hardware requirements. 

 

 

Figure 6.3 Model with HEX08L Elements - Undeformed Mesh 

 

 

 

Figure 6.4 Model with HEX20Q Elements - Undeformed Mesh 
 



 

84 
 

     As previously discussed, the comparison between Cases 1 and 2 and 3 and 4 was 

performed only at the lower and left boundaries of the problem due to symmetry in both 

loading and boundary conditions. Even for these cases the solution was expected to be 

the same due to symmetry. The following comparison of results, summarised in Table 6.3 

and 6.4 was based on a percentage difference computed for all displacement directions 

(X, Y and Z) based on the sim|FEM results. 

As is evident from Table 6.3, the results for Cases 1 and 2 between ABAQUS and 

sim|FEM yielded a maximum difference of 0.81% at the lower boundary. Since the 

documentation of ABAQUS does not reason how the results were computed with respect 

to the number of Gauss points or the interpolation from the Gauss points to the nodes, it 

was assumed that the discrepancy was attributable to implementation differences given 

such a low number for maximum difference. Using similar reasoning, the maximum 

difference in the solution at the left boundary was 1.84%, still very reasonable. The 

summary for all of the nodes is given in Table 6.4. As a quick visual comparison, the 

magnitude of computed displacements for both Cases 1 and 2 was plotted as shown in 

Figures 6.5 and 6.6 for sim|FEM and ABAQUS, respectively. While the normal stresses 

in the X direction (σxx) are shown for both models in Figures 6.7 and 6.8. The pattern of 

displacements and stresses appears to be uniform around the circular excavation in both 

models, further confirming the validity of the solution. 

     For Cases 3 and 4, modeled with second-order hexahedral elements, the assessment of 

the solution accuracy was summarized in Tables 6.5 and 6.6 for lower and left 

boundaries, respectively. Table 6.5 reveals a maximum difference in solution of 10% at 

the lower boundary and 4.48% on the left boundary. Again, most likely due to the 
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uncertainty in solution schemes in ABAQUS the two solutions differ, yet not in a 

significant way. Plots of displacements for the two cases, similar to Case 1 and 2, were 

plotted using the VTK scripts. Figures 6.9 and 6.10 show the plots of displacement 

magnitudes for both the sim|FEM and ABAQUS models. The plots reveal the rings of 

equal displacement around the periphery of the circular tunnel. Both models have 

captured the correct physical behaviour. Stress contours for the normal stresses in the Y 

direction (σyy) were plotted for Case 3 and 4 as shown in Figure 6.11 and 6.12, 

respectively. The uniformity of stresses correlates well between the two cases. 

 

 

Table 6.3 Comparison of Displacement Results for Cases 1 and 2 – Lower Boundary 

Node 

Coordinates (m) Software 
Displacements (m) Difference (%) 

x y z Ux  Uy  Uz  Ux Uy Uz 

5 0 13.16 
sim|FEM 6.86E-06 0.0 0.0 

0.81 0.00 0.00 
ABAQUS 6.91E-06 0.0 0.0 

6.5 0 13.16 
sim|FEM 5.07E-06 0.0 0.0 

0.57 0.00 0.00 
ABAQUS 5.10E-06 0.0 0.0 

8 0 13.16 
sim|FEM 3.92E-06 0.0 0.0 

0.55 0.00 0.00 
ABAQUS 3.94E-06 0.0 0.0 

11 0 13.16 
sim|FEM 2.36E-06 0.0 0.0 

0.38 0.00 0.00 
ABAQUS 2.35E-06 0.0 0.0 

14 0 13.16 
sim|FEM 1.37E-06 0.0 0.0 

0.13 0.00 0.00 
ABAQUS 1.37E-06 0.0 0.0 

17 0 13.16 
sim|FEM 6.10E-07 0.0 0.0 

0.37 0.00 0.00 
ABAQUS 6.08E-07 0.0 0.0 

20 0 13.16 
sim|FEM 0.00E+00 0.0 0.0 

0.00 0.00 0.00 
ABAQUS 0.00E+00 0.0 0.0 
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Table 6.4 Comparison of Displacement Results for Cases 1 and 2 – Left Boundary 

Node Coordinates (m) 
Software 

Displacements (m) Difference (%) 

x y z Ux Uy Uz Ux Uy Uz 

0 5 13.16 
sim|FEM 0.0 6.87E-06 0.0 

0.00 0.43 0.00 
ABAQUS 0.0 6.901E-06 0.0 

0 6.5 13.16 
sim|FEM 0.0 5.07E-06 0.0 

0.00 0.06 0.00 
ABAQUS 0.0 5.07E-06 0.0 

0 8 13.16 
sim|FEM 0.0 3.90E-06 0.0 

0.00 0.96 0.00 
ABAQUS 0.0 3.86E-06 0.0 

0 11 13.16 
sim|FEM 0.0 2.42E-06 0.0 

0.00 0.35 0.00 
ABAQUS 0.0 2.41E-06 0.0 

0 14 13.16 
sim|FEM 0.0 1.39E-06 0.0 

0.00 1.84 0.00 
ABAQUS 0.0 1.36E-06 0.0 

0 17 13.16 
sim|FEM 0.0 6.11E-07 0.0 

0.00 0.14 0.00 
ABAQUS 0.0 6.12E-07 0.0 

0 20 13.16 
sim|FEM 0.0 0.00E+00 0.0 

0.00 0.00 0.00 
ABAQUS 0.0 0.00E+00 0.0 

 

 

 

 

Figure 6.5 Plot of Displacement Magnitude (m) – Case 1 (sim|FEM) 
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Figure 6.6 Plot of Displacement Magnitude (m) – Case 2 (ABAQUS) 

 

 

 

 

 

 

 

Figure 6.7 Plot of      Stress Contours (kPa) – Case 1 (sim|FEM) 
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Figure 6.8 Plot of      (or S11 in ABAQUS) Stress Contours (kPa) – Case 2 (ABAQUS) 
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Table 6.5 Comparison of Displacement Results for Cases 3 and 4 – Lower Boundary 

Node Coordinates (m) 
Software 

Displacements (m) Difference (%) 

x y z Ux Uy Uz Ux Uy Uz 

5 0 13.16 
sim|FEM 1.32E-05 0.0 0.0 

1.07 0.00 0.00 
ABAQUS 1.33E-05 0.0 0.0 

5.75 0 13.16 
sim|FEM 1.05E-05 0.0 0.0 

1.35 0.00 0.00 
ABAQUS 1.07E-05 0.0 0.0 

6.5 0 13.16 
sim|FEM 8.23E-06 0.0 0.0 

1.73 0.00 0.00 
ABAQUS 8.37E-06 0.0 0.0 

7.25 0 13.16 
sim|FEM 7.24E-0.6 0.0 0.0 

1.95 0.00 0.00 
ABAQUS 7.38E-06 0.0 0.0 

8 0 13.16 
sim|FEM 6.43E-06 0.0 0.0 

2.16 0.00 0.00 
ABAQUS 6.56E-06 0.0 0.0 

9.5 0 13.16 
sim|FEM 4.99E-06 0.0 0.0 

2.65 0.00 0.00 
ABAQUS 5.12E-0.6 0.0 0.0 

11 0 13.16 
sim|FEM 3.92E-06 0.0 0.0 

3.12 0.00 0.00 
ABAQUS 4.04E-06 0.0 0.0 

12.5 0 13.16 
sim|FEM 3.02E-06 0.0 0.0 

3.66 0.00 0.00 
ABAQUS 3.13E-06 0.0 0.0 

14 0 13.16 
sim|FEM 2.26E-06 0.0 0.0 

4.35 0.00 0.00 
ABAQUS 2.36E-06 0.0 0.0 

15.5 0 13.16 
sim|FEM 1.60E-06 0.0 0.0 

6.16 0.00 0.00 
ABAQUS 1.69E-06 0.0 0.0 

17 0 13.16 
sim|FEM 1.00E-06 0.0 0.0 

10.01 0.00 0.00 
ABAQUS 1.10E-06 0.0 0.0 

18.5 0 13.16 
sim|FEM 4.75E-07 0.0 0.0 

0.65 0.00 0.00 
ABAQUS 4.78E-07 0.0 0.0 

20 0 13.16 
sim|FEM 0.00E+00 0.0 0.0 

0.00 0.00 0.00 
ABAQUS 0.00E+00 0.0 0.0 
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Table 6.6 Comparison of Displacement Results for Cases 3 and 4 – Left Boundary 

 

 

 

Node 

Coordinates 

(m) Software 
Displacements (m) Difference (%) 

x y z Ux Uy Uz Ux Uy Uz 

0 5 13.16 
sim|FEM 0.0 1.27E-05 0.0 

0.00 4.38 0.00 
ABAQUS 0.0 1.33E-05 0.0 

0 5.75 13.16 
sim|FEM 0.0 1.02E-05 0.0 

0.00 4.48 0.00 
ABAQUS 0.0 1.06E-05 0.0 

0 6.5 13.16 
sim|FEM 0.0 8.28E-06 0.0 

0.00 0.44 0.00 
ABAQUS 0.0 8.32E-06 0.0 

0 7.25 13.16 
sim|FEM 0.0 7.58 E-06 0.0 

0.00 3.49 0.00 
ABAQUS 0.0 7.32E-06 0.0 

0 8 13.16 
sim|FEM 0.0 6.76E-06 0.0 

0.00 3.68 0.00 
ABAQUS 0.0 6.51E-06 0.0 

0 9.5 13.16 
sim|FEM 0.0 4.04E-06 0.0 

0.00 2.50 0.00 
ABAQUS 0.0 5.10E-06 0.0 

0 11 13.16 
sim|FEM 0.0 3.12E-06 0.0 

0.00 1.69 0.00 
ABAQUS 0.0 3.98E-06 0.0 

0 12.5 13.16 
sim|FEM 0.0 2.34E-06 0.0 

0.00 1.80 0.00 
ABAQUS 0.0 3.07E-06 0.0 

0 14 13.16 
sim|FEM 0.0 2.34E-06 0.0 

0.00 1.95 0.00 
ABAQUS 0.0 2.30E-06 0.0 

0 15.5 13.16 
sim|FEM 0.0 1.66E-06 0.0 

0.00 1.74 0.00 
ABAQUS 0.0 1.63E-06 0.0 

0 17 13.16 
sim|FEM 0.0 1.04E-06 0.0 

0.00 1.31 0.00 
ABAQUS 0.0 1.02E-06 0.0 

0 18.5 13.16 
sim|FEM 0.0 4.82E-07 0.0 

0.00 0.38 0.00 
ABAQUS 0.0 4.84E-07 0.0 

0 20 13.16 
sim|FEM 0.0 0.00E+00 0.0 

0.00 0.00 0.00 
ABAQUS 0.0 0.00E+00 0.0 
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Figure 6.9 Plot of Displacement Magnitude (m) – Case 3 (sim|FEM) 

 

 

 

 

Figure 6.10  Plot of Displacement Magnitude (m) – Case 4 (ABAQUS) 
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Figure 6.11 Plot of     Stress Contours (kPa) – Case 3 (sim|FEM) 

 

 

Figure 6.12 Plot of     Stress Contours (kPa) – Case 4 (ABAQUS) 

 

     Having established that the solution correlates well between sim|FEM and ABAQUS, 

our attention turned towards comparing the behavior of first-order and second-order 

hexahedral elements. Since the second-order elements have mid-side nodes, they can 
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conform to the shape of the circular excavation more readily. Similarly, if the resulting 

displacement field is non-linear, the second-order elements should be able to capture it 

better. Generally, first-order elements exhibit a stiffer response. This is evident from 

Figures 6.13 and 6.14, where displacements for the lower and left boundary were plotted 

resulting from the use of both first-order and second-order elements. The first-order 

elements, due to their relative higher stiffness, resulted in consistently under-estimating 

the amount of displacement. On average, the Cases 1 and 2 resulted in 50% smaller 

displacements at the tunnel boundary than Cases 3 and 4 modeled using second-order 

elements. This difference in values obtained is even throughout the analysis domain, 

starting from the far field at the model boundary. This finding re-iterates the need to use 

higher-order elements to obtain a better estimate of the displacement field at the cost of 

increased computation time and memory requirements. However, using the p-type mesh 

refinement put forward in this thesis, the best of both worlds can be achieved by using 

higher-order elements where they count the most, near the excavation. The next section 

will summarize the models employing transitional elements. 
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Figure 6.13 Plot of Displacement Magnitude at Lower Boundary – Cases 1 through 4 

 

 

 

Figure 6.14 Plot of displacement magnitude at the Left Boundary – Cases 1 through 4 
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6.3 Cases 5 through 10: The use of transitional elements 

It is anticipated that the use of transitional elements will retain the solution qualities 

of second-order elements, which will result in considerable savings in computation time 

and utilization of resources. Three sets of models were developed using transitional 

elements for the three locations of the transition zone using the two types of elements (12 

and 16-noded hexahedra). As shown in Figure 6.1 the transition zones were located 7.5 

m, 10 m and 12.5 m from the centre of the tunnel. All of the elements inside the transition 

zone were second-order hexahedral elements, while all of the elements outside of the 

transition zone were first-order elements. Figure 6.15 shows a typical mesh of the front 

face using a transitional zone. The models employ the same loads and boundary 

conditions as Cases 1 – 4. The results of analysis, summarized in Figures 6.16 and 6.17, 

reveal that all models using transitional elements behaved more like Cases 3 and 4, 

comprised of all second-order hexahedral elements. Plots of displacements along the 

lower and left boundary were investigated to be able to draw a direct comparison to 

Cases 1 though 4. Although surprising, the location of the transition band did not affect 

the behaviour of the model. The implication of this is that multiple stages of yielding, 

where the yield envelope can be quite close or far from the excavation, can be captured 

using the hybrid models of first-order, second-order and transitional elements. Although 

not tabulated but plotted in Figure 6.17, the values along the left boundary, by virtue of 

symmetry, are close to those tabulated in Table 6.7 with the exception of Case 5. In this 

case, the displacement obtained at the excavation boundary was 20% greater.  
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Figure 6.15 Frontal View of Typical Mesh Using Transition Zone 

 

 

 

 

 

Figure 6.16 Plot of Displacement Magnitude at the Lower Boundary for Cases 5-10 
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Figure 6.17 Plot of Displacement Magnitude at the Left Boundary for Cases 5-10 
 

 

6.4 Benefits of mesh optimization  

Although the previous section established that the models with transition elements 
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memory footprint of the global stiffness matrix, the number of iterations to solution and 

the time to solution. The model characteristics such as the number of nodes or elements 

and the number of degrees of freedom were condensed in the metric for the global 

stiffness matrix. The analysis of all models was conducted using a computer with 6.00 

GB RAM, 2.4 GHz Intel Core Processor and Windows 7 (Professional-64 bit) as the 

operating system. Tables 6.7 and 6.8 summarize the effect of p-type mesh optimization 
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the number of iterations to convergence using a conjugate gradient solver and the 

solution time in seconds. The first entry is Case 1, discretized with first-order hexahedral 

elements. It required uncompressed matrix storage of 76.5 MB and needed 87 iterations 

and 89 seconds. Although quite fast, its shortcomings were discussed in the previous 

section. At the other end of the list, Case 3 with all second-order elements needed 

1.15GB of memory for matrix storage and 280 iterations totalling in 4999 seconds of 

solution time. The models with transition elements, even with the farthest location of the 

transition zone from the excavation center, needed less than half as much memory and 

solution time as Case 3 with all second–order hexahedral elements.  

A more illustrative summary of requirements and solution times is shown in Table 

6.8, where all quantities were made relative to Case 1. Models with transition zones 

possess the benefits of relatively fast solution times, like models with first-order 

elements, and solution accuracy of second-order elements translating into savings in 

memory usage of at least 57% (Case 10 compared to Case 3) to as high as 90% (Case 5 

compared to Case 3) while solution times were reduced by 65 percent (Case 10 compared 

to Case 3) and up to 95% (Case 5 compared to Case 3) as shown in Figure 6.18. 
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Table 6.7 Use of Computational Resources Comparison for Pressurized Cavity Models 

Model 
No. of 

Nodes 

No. of 

Elements 

No. of 

Degrees 

of 

Freedom 

Size of Global 

Stiffness 

Matrix (Bytes) 

Iterations 

Required for 

Convergence 

Solution 

Time 

(CPU) 

(sec) 

Case 1 1378 1056 3093 76,533,192 87 89 

Case 5 1793 1056 3887 120,870,152 167 268 

Case 6 1884 1056 4098 134,348,832 194 334 

Case 7 2715 1416 6249 312,400,008 230 1031 

Case 8 2806 1416 6460 333,852,800 262 1131 

Case 9 3179 1296 7553 456,382,472 242 1484 

Case 10 3322 1296 7912 500,797,952 257 1759 

Case 3 5159 1056 12001 1,152,192,008 280 4999 

 

 

 

Table 6.8 Ratio of Computational Resource Requirements for Pressurized Cavity Models 

Model 
Size of Global Stiffness 

Matrix Ratio  

Iteration Steps 

Required for 

Convergence Ratio 

Solution Time 

(CPU) Ratio 

Case 1 1.00 1.00 1.00 

Case 5 1.58 1.92 3.01 

Case 6 1.76 2.23 3.75 

Case 7 4.08 2.64 11.58 

Case 8 4.36 3.01 12.71 

Case 9 5.96 2.78 16.67 

Case 10 6.54 2.95 19.76 

Case 3 15.05 3.22 56.17 
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Figure 0.18 Memory Usage and Solution Time Savings for Cases 5 through 10 in 

Comparison to Case 3 
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7. Application of Partial p-Adaptive Mesh Optimization to Underground 

Excavations with Prismatic Cross-sections 

 

The main application of p-adaptive mesh optimization in this research is studying the 

benefits of using transition elements in modeling underground excavations that are 

constant in cross-section (prismatic).  

As explained in Chapter 3, two underground excavations were analyzed, as illustrated in 

Figures 3.1 and 3.2. The model material properties were listed in Table 3.1. The radii and 

locations of excavation centers of both excavations were listed in Table 3.2. The 3D 

underground excavation model is shown in Figure 7.1. 

     In this model both tunnels were excavated using the Tunnel Boring Machine 

technology (TBM). TBM is a machine for excavating tunnels with a circular profile and 

was chosen because it can be applied to varying rock types (Maidl et al. 2008).  

 

 

Figure 7.1  Underground Excavation Model 
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     As explained earlier, the transition band could be found by determining the EDZ. In 

addition, Zsaki (2005) presented an algorithm based on an object-aligned minimum-

volume bounding box to approximate the shape of an excavation to a (circular or 

elliptical) shape in 2D or to a spherical or ellipsoidal shape in 3D, as shown in Figure 7.2. 

 

 

 

Figure 7.2 Ellipsoidal Approximation of an Excavation (Zsaki 2005) 

 

Three models were tested; the first model was non-optimized mesh consisting of 

quadratic hexahedral elements, while the other two models were optimized models using 

transitional elements to connect the linear and quadratic elements. Two kinds of 

transitional elements were used in the optimization; 12-node and 16-node transition 

hexahedral elements.  

 

7.1 Results of the Non-optimized Model 

     The non-optimized model is entirely meshed with 20-node quadratic hexahedral 

elements, with a total of 2005 elements and 29861 degrees of freedom. The model’s 
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material was assumed to be linear elastic and its properties are listed in Table 3.1, while 

the geometry and boundary conditions are summarized in Figure 7.3. 

 

Figure 7.3 Summary of the Boundary Conditions of the Non-optimized Model 

 

     The displacement magnitude and stress results were plotted as shown in Figures 7.4 to 

7.15. The displacements’ detailed results are listed in Tables 7.1 and 7.2 and those results 

were compared with the results of the optimized models as illustrated later on this chapter 

in Tables 7.7, 7.8, 7.9 and 7.10. The comparison was done at the nodes located at the 

borders of both excavations. 
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Table 7.1 Non-optimized Model Displacement Results at the Border of Excavation 1 

Corner Nodes 

Node Coordinates (m) Displacements (m) 

x y z Ux Uy Uz 
Vector 

Magnitude 

47.54 17.85 0.00 7.50E-06 9.44E-06 0.00E+00 1.21E-05 

46.83 19.88 0.00 4.12E-06 3.08E-05 0.00E+00 3.11E-05 

45.94 20.35 0.00 -3.86E-06 3.96E-05 0.00E+00 3.98E-05 

44.90 20.52 0.00 -1.33E-05 4.02E-05 0.00E+00 4.24E-05 

44.13 20.40 0.00 -2.16E-05 3.65E-05 0.00E+00 4.24E-05 

43.51 20.10 0.00 -2.92E-05 3.06E-05 0.00E+00 4.23E-05 

42.86 19.40 0.00 -3.74E-05 2.02E-05 0.00E+00 4.25E-05 

42.58 18.66 0.00 -4.19E-05 1.00E-05 0.00E+00 4.31E-05 

42.50 18.14 0.00 -4.34E-05 2.74E-06 0.00E+00 4.35E-05 

42.52 17.61 0.00 -4.39E-05 -5.02E-06 0.00E+00 4.42E-05 

42.89 16.63 0.00 -4.12E-05 -1.73E-05 0.00E+00 4.47E-05 

43.22 16.22 0.00 -3.78E-05 -2.32E-05 0.00E+00 4.43E-05 

43.63 15.88 0.00 -3.36E-05 -2.80E-05 0.00E+00 4.37E-05 

44.28 15.60 0.00 -2.77E-05 -3.19E-05 0.00E+00 4.23E-05 

44.97 15.48 0.00 -2.13E-05 -3.28E-05 0.00E+00 3.91E-05 

45.66 15.55 0.00 -1.46E-05 -3.07E-05 0.00E+00 3.40E-05 

46.16 15.74 0.00 -9.59E-06 -2.71E-05 0.00E+00 2.88E-05 

46.60 16.02 0.00 -4.99E-06 -2.21E-05 0.00E+00 2.26E-05 

46.98 16.40 0.00 -9.71E-07 -1.54E-05 0.00E+00 1.55E-05 

47.27 16.84 0.00 2.75E-06 -7.38E-06 0.00E+00 7.87E-06 
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Table 7.1. (Continuing) Non-optimized Model Displacement Results at the Border of 

Excavation 1 

Mid-Side Nodes 

Node Coordinates (m) Displacements (m) 

x y z Ux Uy Uz 
Vector 

Magnitude 

47.19 18.87 0.00 1.07E-05 2.22E-05 0.00E+00 2.46E-05 

46.38 20.12 0.00 7.35E-07 3.68E-05 0.00E+00 3.68E-05 

45.42 20.44 0.00 -8.47E-06 4.14E-05 0.00E+00 4.22E-05 

44.51 20.46 0.00 -1.74E-05 3.91E-05 0.00E+00 4.28E-05 

43.82 20.25 0.00 -2.55E-05 3.41E-05 0.00E+00 4.26E-05 

43.19 19.75 0.00 -3.40E-05 2.61E-05 0.00E+00 4.29E-05 

42.72 19.03 0.00 -4.04E-05 1.52E-05 0.00E+00 4.32E-05 

42.54 18.40 0.00 -4.30E-05 6.48E-06 0.00E+00 4.35E-05 

42.51 17.88 0.00 -4.40E-05 -1.24E-06 0.00E+00 4.40E-05 

42.47 15.99 0.00 -4.36E-05 -1.15E-05 0.00E+00 4.51E-05 

43.06 16.42 0.00 -3.98E-05 -2.04E-05 0.00E+00 4.47E-05 

43.43 16.05 0.00 -3.58E-05 -2.59E-05 0.00E+00 4.41E-05 

43.95 15.74 0.00 -3.08E-05 -3.06E-05 0.00E+00 4.34E-05 

44.62 15.54 0.00 -2.46E-05 -3.30E-05 0.00E+00 4.12E-05 

45.31 15.51 0.00 -1.79E-05 -3.24E-05 0.00E+00 3.70E-05 

45.91 15.64 0.00 -1.21E-05 -2.93E-05 0.00E+00 3.17E-05 

46.38 15.88 0.00 -7.20E-06 -2.50E-05 0.00E+00 2.60E-05 

46.79 16.21 0.00 -2.86E-06 -1.91E-05 0.00E+00 1.93E-05 

47.12 16.62 0.00 1.12E-06 -1.16E-05 0.00E+00 1.16E-05 

47.40 17.35 0.00 6.14E-06 7.15E-07 0.00E+00 6.18E-06 
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Table 7.2 Non-optimized Model Displacement Results at the Border of Excavation 2 

Corner Nodes 

Node Coordinates (m) Displacements (m) 

x y z Ux Uy Uz 
Vector 

Magnitude 

68.20 12.89 0.00 6.54E-05 6.09E-07 0.00E+00 6.54E-05 

68.09 13.99 0.00 6.47E-05 1.46E-05 0.00E+00 6.63E-05 

67.91 14.53 0.00 6.32E-05 2.17E-05 0.00E+00 6.68E-05 

67.75 15.04 0.00 6.07E-05 2.79E-05 0.00E+00 6.68E-05 

67.20 16.00 0.00 5.44E-05 4.00E-05 0.00E+00 6.75E-05 

66.46 16.82 0.00 4.57E-05 5.04E-05 0.00E+00 6.80E-05 

65.56 17.47 0.00 3.53E-05 5.86E-05 0.00E+00 6.84E-05 

64.00 18.14 0.00 1.77E-05 6.50E-05 0.00E+00 6.74E-05 

62.63 18.33 0.00 -1.25E-06 6.49E-05 0.00E+00 6.49E-05 

61.28 17.93 0.00 -1.86E-05 6.36E-05 0.00E+00 6.63E-05 

60.27 17.48 0.00 -2.95E-05 5.81E-05 0.00E+00 6.52E-05 

59.37 16.83 0.00 -3.98E-05 4.95E-05 0.00E+00 6.35E-05 

58.63 16.01 0.00 -4.84E-05 3.84E-05 0.00E+00 6.18E-05 

58.08 15.06 0.00 -5.52E-05 2.55E-05 0.00E+00 6.08E-05 

57.73 14.00 0.00 -5.96E-05 1.11E-05 0.00E+00 6.06E-05 

57.62 12.90 0.00 -6.17E-05 -4.19E-06 0.00E+00 6.18E-05 

57.86 11.56 0.00 -6.14E-05 -2.14E-05 0.00E+00 6.50E-05 

58.36 10.33 0.00 -5.65E-05 -3.56E-05 0.00E+00 6.68E-05 

59.36 8.97 0.00 -4.44E-05 -5.00E-05 0.00E+00 6.69E-05 

60.26 8.32 0.00 -3.31E-05 -5.83E-05 0.00E+00 6.70E-05 

61.27 7.86 0.00 -2.06E-05 -6.36E-05 0.00E+00 6.69E-05 

62.35 7.63 0.00 -7.26E-06 -6.61E-05 0.00E+00 6.65E-05 

63.45 7.63 0.00 6.48E-06 -6.57E-05 0.00E+00 6.60E-05 

64.54 7.86 0.00 2.00E-05 -6.23E-05 0.00E+00 6.55E-05 

65.55 8.31 0.00 3.36E-05 -5.61E-05 0.00E+00 6.54E-05 

67.19 9.78 0.00 5.19E-05 -3.95E-05 0.00E+00 6.52E-05 

67.74 10.73 0.00 5.93E-05 -2.64E-05 0.00E+00 6.49E-05 

68.08 11.79 0.00 6.41E-05 -1.30E-05 0.00E+00 6.54E-05 
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Table 7.2. (Continuing) Non-optimized Model Displacement Results at the Border of 

Excavation 2 

Mid-Side Nodes 

Node Coordinates (m) Displacements (m) 

x y z Ux Uy Uz 
Vector 

Magnitude 

68.14 13.44 0.00 6.58E-05 7.62E-06 0.00E+00 6.62E-05 

68.14 12.34 0.00 6.42E-05 1.83E-05 0.00E+00 6.67E-05 

68.00 14.26 0.00 6.21E-05 2.47E-05 0.00E+00 6.69E-05 

67.83 14.78 0.00 5.81E-05 3.44E-05 0.00E+00 6.75E-05 

67.47 15.52 0.00 5.06E-05 4.57E-05 0.00E+00 6.81E-05 

66.83 16.41 0.00 4.09E-05 5.51E-05 0.00E+00 6.86E-05 

66.01 17.15 0.00 2.73E-05 6.33E-05 0.00E+00 6.90E-05 

64.78 17.81 0.00 8.82E-06 6.61E-05 0.00E+00 6.67E-05 

63.31 18.23 0.00 -1.06E-05 6.54E-05 0.00E+00 6.63E-05 

61.96 18.13 0.00 -2.43E-05 6.17E-05 0.00E+00 6.63E-05 

60.78 17.71 0.00 -3.49E-05 5.45E-05 0.00E+00 6.47E-05 

59.82 17.16 0.00 -4.47E-05 4.44E-05 0.00E+00 6.30E-05 

59.00 16.42 0.00 -5.24E-05 3.23E-05 0.00E+00 6.15E-05 

58.36 15.53 0.00 -5.80E-05 1.85E-05 0.00E+00 6.09E-05 

57.91 14.53 0.00 -6.12E-05 3.55E-06 0.00E+00 6.13E-05 

57.68 13.45 0.00 -6.26E-05 -1.33E-05 0.00E+00 6.40E-05 

57.74 12.23 0.00 -5.99E-05 -2.89E-05 0.00E+00 6.65E-05 

58.11 10.94 0.00 -5.19E-05 -4.37E-05 0.00E+00 6.78E-05 

58.86 9.65 0.00 -3.92E-05 -5.48E-05 0.00E+00 6.73E-05 

59.81 8.64 0.00 -2.72E-05 -6.16E-05 0.00E+00 6.74E-05 

60.76 8.09 0.00 -1.41E-05 -6.56E-05 0.00E+00 6.71E-05 

61.81 7.75 0.00 -3.60E-07 -6.66E-05 0.00E+00 6.66E-05 

62.90 7.63 0.00 1.35E-05 -6.48E-05 0.00E+00 6.62E-05 

63.99 7.74 0.00 2.70E-05 -5.98E-05 0.00E+00 6.56E-05 

65.04 8.08 0.00 4.46E-05 -4.99E-05 0.00E+00 6.69E-05 

66.37 9.04 0.00 5.61E-05 -3.32E-05 0.00E+00 6.52E-05 

67.46 10.26 0.00 6.24E-05 -1.99E-05 0.00E+00 6.55E-05 

67.91 11.26 0.00 6.56E-05 -6.13E-06 0.00E+00 6.59E-05 
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Figure 7.4 Frontal Plot of Displacement Magnitude (m) of the Non-optimized Model 

 

 

 

 

Figure 7.5 Zoomed View of Frontal Plot of Displacement Magnitude (m) of the Non-

optimized Model 
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Figure 7.6 Frontal Plot of      (kPa) of the Non-optimized Model 

 

 

 

Figure 7.7 Zoomed View of Frontal Plot of     (kPa) of the Non-optimized Model 
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Figure 7.8 Frontal Plot of     (kPa) of the Non-optimized Model 

 

 

 

 

Figure 7.9 Zoomed View of Frontal Plot of     (kPa) of the Non-optimized Model 
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Figure 7.10 Frontal Plot of     (kPa) of the Non-optimized Model 

 

 

x 

Figure 7.4 Zoomed View of Frontal Plot of     (kPa) of the Non-optimized Model 
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7.2 Results of the Optimized Models 

The optimized models consisted of three kinds of elements; second order, first 

order and transitional hexahedral elements. The continuum’s material was assumed to 

be linear elastic and its properties are listed in Table 3.1, while the geometry and 

boundary conditions are summarized in Figure 7.16. The determination of the 

transition zone was accomplished as explained in Chapter 3. In this thesis, two kinds 

of transitional elements were chosen to be tested: 12-node and 16-node transitional 

elements. For these elements, two cases were tested; Case 1 was an optimized mesh 

of 20-node quadratic elements, 12-node transitional elements and 8-node linear 

elements; while Case 2 was an optimized mesh of 20-node quadratic elements, 16-

node transitional elements and 8-node linear elements.  

 

 

Figure 7.5 The Boundary Conditions of Optimized Models 
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7.2.1 Case 1 Results 

     The mesh using 12-node transitional hexahedral elements as the connection between 

the 20-noded and 8-noded elements consisted of 2005 elements with a total of 12622 

degrees of freedom. The displacement results at both excavations borders are listed in 

Tables 7.3 and 7.4. 

 

Table 7.3 Optimized Model Displacement Results at the Border of Excavation 1- Case 1 

Corner Nodes 

Node Coordinates (m) Displacements (m) 

x y z Ux Uy Uz 
Vector 

Magnitude 

47.54 17.85 0.00 7.57E-06 9.23E-06 0.00E+00 1.19E-05 

46.83 19.88 0.00 4.24E-06 3.06E-05 0.00E+00 3.09E-05 

45.94 20.35 0.00 -3.68E-06 3.94E-05 0.00E+00 3.95E-05 

44.90 20.52 0.00 -1.31E-05 4.00E-05 0.00E+00 4.20E-05 

44.13 20.40 0.00 -2.13E-05 3.63E-05 0.00E+00 4.20E-05 

43.51 20.10 0.00 -2.88E-05 3.04E-05 0.00E+00 4.19E-05 

42.86 19.40 0.00 -3.70E-05 1.99E-05 0.00E+00 4.20E-05 

42.58 18.66 0.00 -4.15E-05 9.76E-06 0.00E+00 4.26E-05 

42.50 18.14 0.00 -4.30E-05 2.50E-06 0.00E+00 4.31E-05 

42.52 17.61 0.00 -4.34E-05 -5.25E-06 0.00E+00 4.38E-05 

42.89 16.63 0.00 -4.09E-05 -1.75E-05 0.00E+00 4.44E-05 

43.22 16.22 0.00 -3.75E-05 -2.34E-05 0.00E+00 4.42E-05 

43.63 15.88 0.00 -3.33E-05 -2.82E-05 0.00E+00 4.36E-05 

44.28 15.60 0.00 -2.75E-05 -3.22E-05 0.00E+00 4.23E-05 

44.97 15.48 0.00 -2.11E-05 -3.30E-05 0.00E+00 3.92E-05 

45.66 15.55 0.00 -1.45E-05 -3.09E-05 0.00E+00 3.41E-05 

46.16 15.74 0.00 -9.46E-06 -2.73E-05 0.00E+00 2.89E-05 

46.60 16.02 0.00 -4.87E-06 -2.23E-05 0.00E+00 2.28E-05 

46.98 16.40 0.00 -8.71E-07 -1.56E-05 0.00E+00 1.56E-05 

47.27 16.84 0.00 2.84E-06 -7.57E-06 0.00E+00 8.08E-06 
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Table 7.3. (Continuing) Optimized Model Displacement Results at the Border of 

Excavation 1- Case 1 

Mid-Side Nodes 

Node Coordinates (m) Displacements (m) 

x y z Ux Uy Uz 
Vector 

Magnitude 

47.19 18.87 0.00 1.07E-05 2.19E-05 0.00E+00 2.44E-05 

46.38 20.12 0.00 8.85E-07 3.65E-05 0.00E+00 3.66E-05 

45.42 20.44 0.00 -8.25E-06 4.11E-05 0.00E+00 4.19E-05 

44.51 20.46 0.00 -1.72E-05 3.89E-05 0.00E+00 4.25E-05 

43.82 20.25 0.00 -2.52E-05 3.38E-05 0.00E+00 4.22E-05 

43.19 19.75 0.00 -3.37E-05 2.58E-05 0.00E+00 4.24E-05 

42.72 19.03 0.00 -4.00E-05 1.50E-05 0.00E+00 4.27E-05 

42.54 18.40 0.00 -4.25E-05 6.24E-06 0.00E+00 4.30E-05 

42.51 17.88 0.00 -4.36E-05 -1.47E-06 0.00E+00 4.36E-05 

42.47 15.99 0.00 -4.32E-05 -1.18E-05 0.00E+00 4.48E-05 

43.06 16.42 0.00 -3.94E-05 -2.06E-05 0.00E+00 4.45E-05 

43.43 16.05 0.00 -3.55E-05 -2.61E-05 0.00E+00 4.41E-05 

43.95 15.74 0.00 -3.06E-05 -3.08E-05 0.00E+00 4.34E-05 

44.62 15.54 0.00 -2.44E-05 -3.33E-05 0.00E+00 4.13E-05 

45.31 15.51 0.00 -1.78E-05 -3.26E-05 0.00E+00 3.71E-05 

45.91 15.64 0.00 -1.19E-05 -2.95E-05 0.00E+00 3.18E-05 

46.38 15.88 0.00 -7.08E-06 -2.52E-05 0.00E+00 2.61E-05 

46.79 16.21 0.00 -2.75E-06 -1.93E-05 0.00E+00 1.95E-05 

47.12 16.62 0.00 1.22E-06 -1.18E-05 0.00E+00 1.18E-05 

47.40 17.35 0.00 6.22E-06 5.12E-07 0.00E+00 6.24E-06 
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Table 7.4 Optimized Model Displacement Results at the Border of Excavation 2 - Case 1 

Corner Nodes 

Node Coordinates (m) Displacements (m) 

x y z Ux Uy Uz 
Vector 

Magnitude 

68.20 12.89 0.00 6.51E-05 1.82E-08 0.00E+00 6.51E-05 

68.09 13.99 0.00 6.43E-05 1.39E-05 0.00E+00 6.58E-05 

67.91 14.53 0.00 6.29E-05 2.10E-05 0.00E+00 6.63E-05 

67.75 15.04 0.00 6.04E-05 2.72E-05 0.00E+00 6.62E-05 

67.20 16.00 0.00 5.40E-05 3.93E-05 0.00E+00 6.68E-05 

66.46 16.82 0.00 4.54E-05 4.97E-05 0.00E+00 6.73E-05 

65.56 17.47 0.00 3.50E-05 5.79E-05 0.00E+00 6.76E-05 

64.00 18.14 0.00 1.75E-05 6.43E-05 0.00E+00 6.66E-05 

62.63 18.33 0.00 -1.39E-06 6.42E-05 0.00E+00 6.42E-05 

61.28 17.93 0.00 -1.87E-05 6.30E-05 0.00E+00 6.57E-05 

60.27 17.48 0.00 -2.95E-05 5.76E-05 0.00E+00 6.47E-05 

59.37 16.83 0.00 -3.98E-05 4.90E-05 0.00E+00 6.31E-05 

58.63 16.01 0.00 -4.83E-05 3.80E-05 0.00E+00 6.15E-05 

58.08 15.06 0.00 -5.51E-05 2.52E-05 0.00E+00 6.06E-05 

57.73 14.00 0.00 -5.94E-05 1.09E-05 0.00E+00 6.04E-05 

57.62 12.90 0.00 -6.14E-05 -4.28E-06 0.00E+00 6.16E-05 

57.86 11.56 0.00 -6.10E-05 -2.14E-05 0.00E+00 6.47E-05 

58.36 10.33 0.00 -5.62E-05 -3.56E-05 0.00E+00 6.65E-05 

59.36 8.97 0.00 -4.40E-05 -4.99E-05 0.00E+00 6.65E-05 

60.26 8.32 0.00 -3.27E-05 -5.83E-05 0.00E+00 6.68E-05 

61.27 7.86 0.00 -2.02E-05 -6.36E-05 0.00E+00 6.68E-05 

62.35 7.63 0.00 -6.96E-06 -6.61E-05 0.00E+00 6.65E-05 

63.45 7.63 0.00 6.71E-06 -6.58E-05 0.00E+00 6.61E-05 

64.54 7.86 0.00 2.02E-05 -6.25E-05 0.00E+00 6.57E-05 

65.55 8.31 0.00 3.37E-05 -5.64E-05 0.00E+00 6.56E-05 

67.19 9.78 0.00 5.18E-05 -3.99E-05 0.00E+00 6.53E-05 

67.74 10.73 0.00 5.91E-05 -2.69E-05 0.00E+00 6.49E-05 

68.08 11.79 0.00 6.38E-05 -1.36E-05 0.00E+00 6.53E-05 
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Table 7.4. (Continuing) Optimized Model Displacement Results at the Border of 

Excavation 2 - Case 1 

Mid-Side Nodes 

Node Coordinates (m) Displacements (m) 

x y z Ux Uy Uz 
Vector 

Magnitude 

68.14 13.44 0.00 6.55E-05 7.00E-06 0.00E+00 6.58E-05 

68.14 12.34 0.00 6.38E-05 1.76E-05 0.00E+00 6.62E-05 

68.00 14.26 0.00 6.18E-05 2.41E-05 0.00E+00 6.63E-05 

67.83 14.78 0.00 5.77E-05 3.37E-05 0.00E+00 6.69E-05 

67.47 15.52 0.00 5.02E-05 4.49E-05 0.00E+00 6.74E-05 

66.83 16.41 0.00 4.06E-05 5.43E-05 0.00E+00 6.78E-05 

66.01 17.15 0.00 2.71E-05 6.26E-05 0.00E+00 6.82E-05 

64.78 17.81 0.00 8.63E-06 6.54E-05 0.00E+00 6.60E-05 

63.31 18.23 0.00 -1.07E-05 6.48E-05 0.00E+00 6.56E-05 

61.96 18.13 0.00 -2.44E-05 6.11E-05 0.00E+00 6.58E-05 

60.78 17.71 0.00 -3.49E-05 5.40E-05 0.00E+00 6.43E-05 

59.82 17.16 0.00 -4.46E-05 4.40E-05 0.00E+00 6.26E-05 

59.00 16.42 0.00 -5.22E-05 3.20E-05 0.00E+00 6.13E-05 

58.36 15.53 0.00 -5.79E-05 1.83E-05 0.00E+00 6.07E-05 

57.91 14.53 0.00 -6.10E-05 3.43E-06 0.00E+00 6.11E-05 

57.68 13.45 0.00 -6.23E-05 -1.33E-05 0.00E+00 6.37E-05 

57.74 12.23 0.00 -5.96E-05 -2.89E-05 0.00E+00 6.62E-05 

58.11 10.94 0.00 -5.15E-05 -4.36E-05 0.00E+00 6.75E-05 

58.86 9.65 0.00 -3.88E-05 -5.47E-05 0.00E+00 6.70E-05 

59.81 8.64 0.00 -2.68E-05 -6.16E-05 0.00E+00 6.72E-05 

60.76 8.09 0.00 -1.38E-05 -6.56E-05 0.00E+00 6.70E-05 

61.81 7.75 0.00 -9.86E-08 -6.67E-05 0.00E+00 6.67E-05 

62.90 7.63 0.00 1.37E-05 -6.49E-05 0.00E+00 6.63E-05 

63.99 7.74 0.00 2.71E-05 -6.00E-05 0.00E+00 6.58E-05 

65.04 8.08 0.00 4.45E-05 -5.02E-05 0.00E+00 6.71E-05 

66.37 9.04 0.00 5.59E-05 -3.36E-05 0.00E+00 6.52E-05 

67.46 10.26 0.00 6.21E-05 -2.04E-05 0.00E+00 6.54E-05 

67.91 11.26 0.00 6.53E-05 -6.69E-06 0.00E+00 6.56E-05 
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7.2.2 Case 2 Results 

     The mesh using 16-node transitional hexahedral elements, as the connecting elements, 

had the same number of elements as in Case 1 with a total of 12934 degrees of freedom. 

The displacement results at both excavations borders are listed in Tables 7.5 and 7.6. 

 

Table 7.5 Optimized Model Displacement Results at the Border of Excavation 1 - Case 2 

Corner Nodes 

Node Coordinates (m) Displacements (m) 

x y z Ux Uy Uz 
Vector 

Magnitude 

47.54 17.85 0.00 7.51E-06 9.10E-06 0.00E+00 1.18E-05 

46.83 19.88 0.00 4.11E-06 3.03E-05 0.00E+00 3.05E-05 

45.94 20.35 0.00 -3.79E-06 3.90E-05 0.00E+00 3.92E-05 

44.90 20.52 0.00 -1.31E-05 3.96E-05 0.00E+00 4.17E-05 

44.13 20.40 0.00 -2.13E-05 3.60E-05 0.00E+00 4.18E-05 

43.51 20.10 0.00 -2.88E-05 3.02E-05 0.00E+00 4.17E-05 

42.86 19.40 0.00 -3.68E-05 1.99E-05 0.00E+00 4.19E-05 

42.58 18.66 0.00 -4.13E-05 9.80E-06 0.00E+00 4.24E-05 

42.50 18.14 0.00 -4.28E-05 2.61E-06 0.00E+00 4.28E-05 

42.52 17.61 0.00 -4.32E-05 -5.06E-06 0.00E+00 4.35E-05 

42.89 16.63 0.00 -4.06E-05 -1.72E-05 0.00E+00 4.41E-05 

43.22 16.22 0.00 -3.72E-05 -2.31E-05 0.00E+00 4.38E-05 

43.63 15.88 0.00 -3.30E-05 -2.78E-05 0.00E+00 4.32E-05 

44.28 15.60 0.00 -2.73E-05 -3.18E-05 0.00E+00 4.19E-05 

44.97 15.48 0.00 -2.09E-05 -3.26E-05 0.00E+00 3.88E-05 

45.66 15.55 0.00 -1.43E-05 -3.05E-05 0.00E+00 3.37E-05 

46.16 15.74 0.00 -9.32E-06 -2.71E-05 0.00E+00 2.86E-05 

46.60 16.02 0.00 -4.77E-06 -2.21E-05 0.00E+00 2.26E-05 

46.98 16.40 0.00 -8.10E-07 -1.55E-05 0.00E+00 1.55E-05 

47.27 16.84 0.00 2.85E-06 -7.53E-06 0.00E+00 8.05E-06 
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Table 7.5 (Continuing) Optimized Model Displacement Results at the Border of 

Excavation 1 - Case 2 

Mid-Side Nodes 

Node Coordinates (m) Displacements (m) 

x y z Ux Uy Uz 
Vector 

Magnitude 

47.19 18.87 0.00 1.06E-05 2.17E-05 0.00E+00 2.41E-05 

46.38 20.12 0.00 7.60E-07 3.62E-05 0.00E+00 3.62E-05 

45.42 20.44 0.00 -8.35E-06 4.07E-05 0.00E+00 4.16E-05 

44.51 20.46 0.00 -1.72E-05 3.85E-05 0.00E+00 4.22E-05 

43.82 20.25 0.00 -2.51E-05 3.36E-05 0.00E+00 4.20E-05 

43.19 19.75 0.00 -3.36E-05 2.57E-05 0.00E+00 4.23E-05 

42.72 19.03 0.00 -3.98E-05 1.50E-05 0.00E+00 4.25E-05 

42.54 18.40 0.00 -4.23E-05 6.31E-06 0.00E+00 4.28E-05 

42.51 17.88 0.00 -4.33E-05 -1.32E-06 0.00E+00 4.34E-05 

42.47 15.99 0.00 -4.29E-05 -1.15E-05 0.00E+00 4.45E-05 

43.06 16.42 0.00 -3.91E-05 -2.03E-05 0.00E+00 4.41E-05 

43.43 16.05 0.00 -3.52E-05 -2.57E-05 0.00E+00 4.36E-05 

43.95 15.74 0.00 -3.03E-05 -3.04E-05 0.00E+00 4.29E-05 

44.62 15.54 0.00 -2.42E-05 -3.29E-05 0.00E+00 4.08E-05 

45.31 15.51 0.00 -1.76E-05 -3.23E-05 0.00E+00 3.67E-05 

45.91 15.64 0.00 -1.18E-05 -2.92E-05 0.00E+00 3.15E-05 

46.38 15.88 0.00 -6.96E-06 -2.49E-05 0.00E+00 2.59E-05 

46.79 16.21 0.00 -2.67E-06 -1.91E-05 0.00E+00 1.93E-05 

47.12 16.62 0.00 1.25E-06 -1.17E-05 0.00E+00 1.18E-05 

47.40 17.35 0.00 6.19E-06 4.65E-07 0.00E+00 6.21E-06 
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Table 7.6 Optimized Model Displacement Results at the Border of Excavation 2 - Case 2 

Corner Nodes 

Node Coordinates (m) Displacements (m) 

x y z Ux Uy Uz 
Vector 

Magnitude 

68.20 12.89 0.00 6.41E-05 -2.01E-07 0.00E+00 6.41E-05 

68.09 13.99 0.00 6.34E-05 1.36E-05 0.00E+00 6.48E-05 

67.91 14.53 0.00 6.19E-05 2.06E-05 0.00E+00 6.52E-05 

67.75 15.04 0.00 5.94E-05 2.68E-05 0.00E+00 6.52E-05 

67.20 16.00 0.00 5.31E-05 3.88E-05 0.00E+00 6.57E-05 

66.46 16.82 0.00 4.45E-05 4.91E-05 0.00E+00 6.62E-05 

65.56 17.47 0.00 3.42E-05 5.72E-05 0.00E+00 6.67E-05 

64.00 18.14 0.00 1.68E-05 6.36E-05 0.00E+00 6.58E-05 

62.63 18.33 0.00 -1.91E-06 6.36E-05 0.00E+00 6.36E-05 

61.28 17.93 0.00 -1.90E-05 6.25E-05 0.00E+00 6.53E-05 

60.27 17.48 0.00 -2.98E-05 5.71E-05 0.00E+00 6.44E-05 

59.37 16.83 0.00 -3.99E-05 4.86E-05 0.00E+00 6.29E-05 

58.63 16.01 0.00 -4.83E-05 3.78E-05 0.00E+00 6.14E-05 

58.08 15.06 0.00 -5.50E-05 2.51E-05 0.00E+00 6.05E-05 

57.73 14.00 0.00 -5.93E-05 1.10E-05 0.00E+00 6.03E-05 

57.62 12.90 0.00 -6.12E-05 -4.14E-06 0.00E+00 6.14E-05 

57.86 11.56 0.00 -6.08E-05 -2.11E-05 0.00E+00 6.44E-05 

58.36 10.33 0.00 -5.59E-05 -3.52E-05 0.00E+00 6.61E-05 

59.36 8.97 0.00 -4.39E-05 -4.94E-05 0.00E+00 6.61E-05 

60.26 8.32 0.00 -3.26E-05 -5.78E-05 0.00E+00 6.63E-05 

61.27 7.86 0.00 -2.03E-05 -6.31E-05 0.00E+00 6.63E-05 

62.35 7.63 0.00 -7.09E-06 -6.56E-05 0.00E+00 6.60E-05 

63.45 7.63 0.00 6.45E-06 -6.53E-05 0.00E+00 6.56E-05 

64.54 7.86 0.00 1.98E-05 -6.21E-05 0.00E+00 6.52E-05 

65.55 8.31 0.00 3.31E-05 -5.60E-05 0.00E+00 6.51E-05 

67.19 9.78 0.00 5.10E-05 -3.97E-05 0.00E+00 6.47E-05 

67.74 10.73 0.00 5.82E-05 -2.69E-05 0.00E+00 6.41E-05 

68.08 11.79 0.00 6.29E-05 -1.37E-05 0.00E+00 6.44E-05 
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Table 7.6. (Continuing) Optimized Model Displacement Results at the Border of 

Excavation 2 - Case 2 

Mid-Side Nodes 

Node Coordinates (m) Displacements (m) 

x y z Ux Uy Uz 
Vector 

Magnitude 

68.14 13.44 0.00 6.45E-05 6.73E-06 0.00E+00 6.48E-05 

68.14 12.34 0.00 6.28E-05 1.72E-05 0.00E+00 6.51E-05 

68.00 14.26 0.00 6.08E-05 2.37E-05 0.00E+00 6.53E-05 

67.83 14.78 0.00 5.68E-05 3.33E-05 0.00E+00 6.58E-05 

67.47 15.52 0.00 4.93E-05 4.44E-05 0.00E+00 6.63E-05 

66.83 16.41 0.00 3.97E-05 5.37E-05 0.00E+00 6.68E-05 

66.01 17.15 0.00 2.63E-05 6.19E-05 0.00E+00 6.73E-05 

64.78 17.81 0.00 8.03E-06 6.48E-05 0.00E+00 6.53E-05 

63.31 18.23 0.00 -1.11E-05 6.42E-05 0.00E+00 6.51E-05 

61.96 18.13 0.00 -2.47E-05 6.06E-05 0.00E+00 6.54E-05 

60.78 17.71 0.00 -3.51E-05 5.35E-05 0.00E+00 6.40E-05 

59.82 17.16 0.00 -4.47E-05 4.37E-05 0.00E+00 6.25E-05 

59.00 16.42 0.00 -5.22E-05 3.18E-05 0.00E+00 6.12E-05 

58.36 15.53 0.00 -5.78E-05 1.83E-05 0.00E+00 6.06E-05 

57.91 14.53 0.00 -6.09E-05 3.50E-06 0.00E+00 6.10E-05 

57.68 13.45 0.00 -6.21E-05 -1.31E-05 0.00E+00 6.34E-05 

57.74 12.23 0.00 -5.93E-05 -2.85E-05 0.00E+00 6.59E-05 

58.11 10.94 0.00 -5.13E-05 -4.32E-05 0.00E+00 6.71E-05 

58.86 9.65 0.00 -3.86E-05 -5.42E-05 0.00E+00 6.66E-05 

59.81 8.64 0.00 -2.67E-05 -6.11E-05 0.00E+00 6.67E-05 

60.76 8.09 0.00 -1.39E-05 -6.51E-05 0.00E+00 6.65E-05 

61.81 7.75 0.00 -2.89E-07 -6.62E-05 0.00E+00 6.62E-05 

62.90 7.63 0.00 1.34E-05 -6.45E-05 0.00E+00 6.59E-05 

63.99 7.74 0.00 2.66E-05 -5.96E-05 0.00E+00 6.53E-05 

65.04 8.08 0.00 4.39E-05 -5.00E-05 0.00E+00 6.65E-05 

66.37 9.04 0.00 5.51E-05 -3.36E-05 0.00E+00 6.45E-05 

67.46 10.26 0.00 6.13E-05 -2.05E-05 0.00E+00 6.46E-05 

67.91 11.26 0.00 6.43E-05 -6.86E-06 0.00E+00 6.47E-05 
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7.3 Non-optimized and Optimized Models Comparison 

     After testing both the non-optimized and optimized models, the displacement results 

were compared at nodes located at the borders of excavations 1 and 2 where those nodes 

were defined by their coordinates as shown in Tables 7.7 and 7.8.  

 

Table 7.7 Comparison of displacement results for Non-optimized Model and Optimized 

Model Case 1 at the Borders of Excavation 1 

Corner Nodes 

Node Coordinates (m) Difference (%) 

x y z Ux Uy Uz Magnitude 

47.54 17.85 0.00 0.97 2.29 0.00 1.01 

46.83 19.88 0.00 2.94 0.79 0.00 0.72 

45.94 20.35 0.00 4.72 0.65 0.00 0.68 

44.90 20.52 0.00 1.88 0.66 0.00 0.78 

44.13 20.40 0.00 1.40 0.74 0.00 0.91 

43.51 20.10 0.00 1.19 0.88 0.00 1.02 

42.86 19.40 0.00 1.07 1.2 0.00 1.11 

42.58 18.66 0.00 1.00 2.46 0.00 1.08 

42.50 18.14 0.00 0.99 8.85 0.00 1.02 

42.52 17.61 0.00 1.00 4.48 0.00 0.92 

42.89 16.63 0.00 0.90 1.27 0.00 0.57 

43.22 16.22 0.00 0.84 1.10 0.00 0.30 

43.63 15.88 0.00 0.84 0.82 0.00 0.16 

44.28 15.60 0.00 0.82 0.71 0.00 0.06 

44.97 15.48 0.00 0.76 0.66 0.00 0.24 

45.66 15.55 0.00 1.01 0.60 0.00 0.31 

46.16 15.74 0.00 1.33 0.67 0.00 0.45 

46.60 16.02 0.00 2.26 0.80 0.00 0.65 

46.98 16.40 0.00 10.33 1.17 0.00 1.13 

47.27 16.84 0.00 3.22 2.59 0.00 2.67 
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Table 7.7. (Continuing)  Comparison of Displacement Results for Non-optimized Model 

and Optimized Model Case 1 at the Borders of Excavation 1 

Mid-Side Nodes 

Node Coordinates (m) Difference (%) 

x y z Ux Uy Uz Magnitude 

47.19 18.87 0.00 0.74 1.05 0.00 0.71 

46.38 20.12 0.00 20.28 0.68 0.00 0.67 

45.42 20.44 0.00 2.57 0.64 0.00 0.72 

44.51 20.46 0.00 1.59 0.70 0.00 0.84 

43.82 20.25 0.00 1.28 0.80 0.00 0.97 

43.19 19.75 0.00 1.11 1.02 0.00 1.08 

42.72 19.03 0.00 1.03 1.64 0.00 1.10 

42.54 18.40 0.00 1.00 3.75 0.00 1.06 

42.51 17.88 0.00 1.00 18.96 0.00 0.98 

42.47 15.99 0.00 0.90 2.06 0.00 0.71 

43.06 16.42 0.00 0.86 1.19 0.00 0.43 

43.43 16.05 0.00 0.83 0.96 0.00 0.21 

43.95 15.74 0.00 0.80 0.81 0.00 0.00 

44.62 15.54 0.00 0.73 0.70 0.00 0.19 

45.31 15.51 0.00 0.86 0.63 0.00 0.28 

45.91 15.64 0.00 1.14 0.62 0.00 0.37 

46.38 15.88 0.00 1.66 0.71 0.00 0.53 

46.79 16.21 0.00 3.72 0.93 0.00 0.83 

47.12 16.62 0.00 8.37 1.60 0.00 1.67 

47.40 17.35 0.00 1.27 28.39 0.00 0.94 
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Table 7.8 Comparison of Displacement Results for Non-optimized Model and Optimized 

Model Case 1 at the Borders of Excavation 2 

Corner Nodes 

Node Coordinates (m) Difference (%) 

x y z Ux Uy Uz Magnitude 

68.20 12.89 0.00 0.50 97.02 0.00 0.50 

68.09 13.99 0.00 0.55 4.40 0.00 0.73 

67.91 14.53 0.00 0.57 3.07 0.00 0.83 

67.75 15.04 0.00 0.60 2.45 0.00 0.92 

67.20 16.00 0.00 0.65 1.79 0.00 1.05 

66.46 16.82 0.00 0.72 1.47 0.00 1.13 

65.56 17.47 0.00 0.82 1.28 0.00 1.15 

64.00 18.14 0.00 1.23 1.13 0.00 1.13 

62.63 18.33 0.00 11.37 1.06 0.00 1.06 

61.28 17.93 0.00 0.42 0.98 0.00 0.87 

60.27 17.48 0.00 0.09 0.94 0.00 0.73 

59.37 16.83 0.00 0.07 0.93 0.00 0.59 

58.63 16.01 0.00 0.17 0.95 0.00 0.47 

58.08 15.06 0.00 0.26 1.04 0.00 0.39 

57.73 14.00 0.00 0.34 1.53 0.00 0.38 

57.62 12.90 0.00 0.44 2.00 0.00 0.43 

57.86 11.56 0.00 0.56 0.01 0.00 0.50 

58.36 10.33 0.00 0.69 0.13 0.00 0.53 

59.36 8.97 0.00 0.92 0.13 0.00 0.47 

60.26 8.32 0.00 1.19 0.08 0.00 0.35 

61.27 7.86 0.00 1.71 0.02 0.00 0.18 

62.35 7.63 0.00 4.07 0.06 0.00 0.01 

63.45 7.63 0.00 3.41 0.15 0.00 0.19 

64.54 7.86 0.00 0.68 0.28 0.00 0.32 

65.55 8.31 0.00 0.11 0.45 0.00 0.36 

67.19 9.78 0.00 0.25 1.00 0.00 0.21 

67.74 10.73 0.00 0.36 1.78 0.00 0.00 

68.08 11.79 0.00 0.43 4.10 0.00 0.25 
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Table 7.8. (Continuing)  Comparison of Displacement Results for Non-optimized Model 

and Optimized Model Case 1 at the Borders of Excavation 2 

Mid-Side Nodes 

Node Coordinates (m) Difference (%) 

x y z Ux Uy Uz Magnitude 

68.14 13.44 0.00 0.52 8.11 0.00 0.62 

68.14 12.34 0.00 0.56 3.59 0.00 0.78 

68.00 14.26 0.00 0.58 2.73 0.00 0.87 

67.83 14.78 0.00 0.62 2.04 0.00 0.99 

67.47 15.52 0.00 0.68 1.60 0.00 1.09 

66.83 16.41 0.00 0.76 1.35 0.00 1.14 

66.01 17.15 0.00 0.94 1.18 0.00 1.14 

64.78 17.81 0.00 2.08 1.08 0.00 1.10 

63.31 18.23 0.00 1.03 1.01 0.00 0.96 

61.96 18.13 0.00 0.22 0.96 0.00 0.80 

60.78 17.71 0.00 0.00 0.93 0.00 0.66 

59.82 17.16 0.00 0.12 0.93 0.00 0.52 

59.00 16.42 0.00 0.21 0.98 0.00 0.42 

58.36 15.53 0.00 0.30 1.17 0.00 0.38 

57.91 14.53 0.00 0.39 3.49 0.00 0.40 

57.68 13.45 0.00 0.49 0.27 0.00 0.46 

57.74 12.23 0.00 0.62 0.09 0.00 0.52 

58.11 10.94 0.00 0.78 0.14 0.00 0.51 

58.86 9.65 0.00 1.03 0.11 0.00 0.42 

59.81 8.64 0.00 1.38 0.05 0.00 0.27 

60.76 8.09 0.00 2.32 0.01 0.00 0.09 

61.81 7.75 0.00 72.56 0.10 0.00 0.10 

62.90 7.63 0.00 1.33 0.21 0.00 0.26 

63.99 7.74 0.00 0.33 0.36 0.00 0.35 

65.04 8.08 0.00 0.11 0.64 0.00 0.31 

66.37 9.04 0.00 0.31 1.31 0.00 0.12 

67.46 10.26 0.00 0.40 2.53 0.00 0.12 

67.91 11.26 0.00 0.47 9.22 0.00 0.38 
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     As can be seen from Tables 7.7 and 7.8, the maximum difference found in the 

displacement magnitude between the non-optimized mesh and the optimized mesh using 

12-node transitional hexahedral elements was 2.67% for both corner and mid-side nodes 

at the borders of Excavation 1 and 1.15% for both corner and mid-side nodes at the 

borders of Excavation 2.  

 

Table 7.9 Comparison of Displacement Results for Non-optimized Model and Optimized 

Model Case 2 at the Borders of Excavation 1 

Corner Nodes 

Node Coordinates (m) Difference (%) 

x y z Ux Uy Uz Magnitude 

47.54 17.85 0.00 0.16 3.65 0.00 2.16 

46.83 19.88 0.00 0.24 1.91 0.00 1.88 

45.94 20.35 0.00 1.82 1.64 0.00 1.64 

44.90 20.52 0.00 1.37 1.55 0.00 1.54 

44.13 20.40 0.00 1.34 1.53 0.00 1.48 

43.51 20.10 0.00 1.36 1.54 0.00 1.45 

42.86 19.40 0.00 1.45 1.61 0.00 1.48 

42.58 18.66 0.00 1.49 2.03 0.00 1.52 

42.50 18.14 0.00 1.54 4.74 0.00 1.55 

42.52 17.61 0.00 1.61 0.75 0.00 1.58 

42.89 16.63 0.00 1.56 0.48 0.00 1.40 

43.22 16.22 0.00 1.53 0.37 0.00 1.21 

43.63 15.88 0.00 1.61 0.56 0.00 1.18 

44.28 15.60 0.00 1.69 0.53 0.00 1.03 

44.97 15.48 0.00 1.73 0.48 0.00 0.85 

45.66 15.55 0.00 2.23 0.47 0.00 0.79 

46.16 15.74 0.00 2.81 0.32 0.00 0.60 

46.60 16.02 0.00 4.32 0.12 0.00 0.32 

46.98 16.40 0.00 16.62 0.37 0.00 0.31 

47.27 16.84 0.00 3.76 2.09 0.00 2.29 
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Table 7.9. (Continuing)  Comparison of Displacement Results for Non-optimized Model 

and Optimized Model Case 2 at the Borders of Excavation 1 

Mid-Side Nodes 

Node Coordinates (m) Difference (%) 

x y z Ux Uy Uz Magnitude 

47.19 18.87 0.00 0.37 2.21 0.00 1.86 

46.38 20.12 0.00 3.40 1.72 0.00 1.71 

45.42 20.44 0.00 1.45 1.57 0.00 1.57 

44.51 20.46 0.00 1.34 1.54 0.00 1.51 

43.82 20.25 0.00 1.35 1.53 0.00 1.47 

43.19 19.75 0.00 1.40 1.55 0.00 1.45 

42.72 19.03 0.00 1.47 1.71 0.00 1.50 

42.54 18.40 0.00 1.52 2.55 0.00 1.54 

42.51 17.88 0.00 1.58 6.71 0.00 1.57 

42.47 15.99 0.00 1.54 0.09 0.00 1.44 

43.06 16.42 0.00 1.53 0.40 0.00 1.30 

43.43 16.05 0.00 1.56 0.45 0.00 1.18 

43.95 15.74 0.00 1.62 0.49 0.00 1.06 

44.62 15.54 0.00 1.66 0.49 0.00 0.91 

45.31 15.51 0.00 1.95 0.48 0.00 0.82 

45.91 15.64 0.00 2.47 0.41 0.00 0.71 

46.38 15.88 0.00 3.37 0.24 0.00 0.48 

46.79 16.21 0.00 6.60 0.06 0.00 0.08 

47.12 16.62 0.00 11.71 0.90 0.00 1.01 

47.40 17.35 0.00 0.82 34.94 0.00 0.43 
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Table 7.10 Comparison of Displacement Results for Non-optimized Model and 

Optimized Model Case 2 at the Borders of Excavation 2 

Corner Nodes 

Node Coordinates (m) Difference (%) 

x y z Ux Uy Uz Magnitude 

68.20 12.89 0.00 1.95 132.92 0.00% 1.96 

68.09 13.99 0.00 2.05 6.67 0.00% 2.27 

67.91 14.53 0.00 2.11 4.85 0.00% 2.39 

67.75 15.04 0.00 2.19 4.00 0.00% 2.50 

67.20 16.00 0.00 2.37 3.09 0.00% 2.62 

66.46 16.82 0.00 2.64 2.63 0.00% 2.64 

65.56 17.47 0.00 3.10 2.36 0.00% 2.56 

64.00 18.14 0.00 5.01 2.13 0.00% 2.32 

62.63 18.33 0.00 52.73 2.01 0.00% 1.98 

61.28 17.93 0.00 2.41 1.84 0.00% 1.50 

60.27 17.48 0.00 0.98 1.75 0.00% 1.19 

59.37 16.83 0.00 0.31 1.67 0.00% 0.89 

58.63 16.01 0.00 0.06 1.60 0.00% 0.65 

58.08 15.06 0.00 0.33 1.53 0.00% 0.54 

57.73 14.00 0.00 0.54 1.47 0.00% 0.57 

57.62 12.90 0.00 0.72 1.23 0.00% 0.72 

57.86 11.56 0.00 0.91 1.27 0.00% 0.95 

58.36 10.33 0.00 1.07 1.18 0.00% 1.10 

59.36 8.97 0.00 1.27 1.05 0.00% 1.15 

60.26 8.32 0.00 1.43 0.93 0.00% 1.05 

61.27 7.86 0.00 1.63 0.82 0.00% 0.89 

62.35 7.63 0.00 2.28 0.69 0.00% 0.71 

63.45 7.63 0.00 0.51 0.54 0.00% 0.54 

64.54 7.86 0.00 1.24 0.35 0.00% 0.44 

65.55 8.31 0.00 1.43 0.11 0.00% 0.46 

67.19 9.78 0.00 1.67 0.67 0.00% 0.80 

67.74 10.73 0.00 1.76 1.74 0.00% 1.17 

68.08 11.79 0.00 1.85 4.91 0.00% 1.57 
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Table 7.10. (Continuing)  Comparison of Displacement Results for Non-optimized 

Model and Optimized Model Case 2 at the Borders of Excavation 2 

Mid-Side Nodes 

Node Coordinates (m) Difference (%) 

x y z Ux Uy Uz Magnitude 

68.14 13.44 0.00 1.99 11.73 0.00 2.11 

68.14 12.34 0.00 2.08 5.55 0.00 2.33 

68.00 14.26 0.00 2.15 4.38 0.00 2.45 

67.83 14.78 0.00 2.26 3.43 0.00 2.56 

67.47 15.52 0.00 2.48 2.82 0.00 2.63 

66.83 16.41 0.00 2.83 2.47 0.00 2.60 

66.01 17.15 0.00 3.67 2.21 0.00 2.43 

64.78 17.81 0.00 8.87 2.05 0.00 2.16 

63.31 18.23 0.00 5.23 1.91 0.00 1.72 

61.96 18.13 0.00 1.51 1.79 0.00 1.34 

60.78 17.71 0.00 0.59 1.71 0.00 1.03 

59.82 17.16 0.00 0.10 1.63 0.00 0.76 

59.00 16.42 0.00 0.21 1.56 0.00 0.58 

58.36 15.53 0.00 0.44 1.48 0.00 0.54 

57.91 14.53 0.00 0.63 1.44 0.00 0.64 

57.68 13.45 0.00 0.82 1.31 0.00 0.84 

57.74 12.23 0.00 0.99 1.23 0.00 1.03 

58.11 10.94 0.00 1.16 1.11 0.00 1.14 

58.86 9.65 0.00 1.34 0.99 0.00 1.11 

59.81 8.64 0.00 1.51 0.87 0.00 0.98 

60.76 8.09 0.00 1.82 0.75 0.00 0.80 

61.81 7.75 0.00 19.56 0.62 0.00 0.62 

62.90 7.63 0.00 1.04 0.45 0.00 0.48 

63.99 7.74 0.00 1.34 0.24 0.00 0.43 

65.04 8.08 0.00 1.54 0.18 0.00 0.58 

66.37 9.04 0.00 1.71 1.09 0.00 0.98 

67.46 10.26 0.00 1.80 2.77 0.00 1.37 

67.91 11.26 0.00 1.89 11.89 0.00 1.76 

     

 As can be observed from Tables 7.9 and 7.10, the maximum difference found in the 

displacement magnitude between the non-optimized mesh and the optimized mesh using 
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16-node transitional hexahedral elements was 2.29% for both the corner and mid-side 

nodes at the borders of Excavation 1 and 2.64% for both corner and mid-side nodes at the 

borders of Excavation 2.  

     The compared results indicated that both optimized and non-optimized meshes using 

both kinds of transitional elements 12-node and 16-node led to very close results with 

small differences. 

 

7.4 Benefits of Mesh Optimization 

     In the previous section, a comparison between the optimized and non-optimized mesh 

was conducted to study the behavior of the transition elements and their effects on 

solution accuracy. Because the essence of applying the p-type mesh technique is to 

reduce computation time and resource requirements, a cost of computation was 

performed using the memory footprint of global stiffness matrix, and the time required to 

acquire the solution. Also, the model characteristics such as number of nodes or elements 

and the number of degrees of freedom were compared. 

     The analysis of all of the models was conducted using a computer with 32 GB RAM, 

Inter Xeon W3565 3.2GHz processor and Mac OSX 10.9 as the operating system. Tables 

7.11 and 7.12 summarize the effect of p-type mesh optimization on computational 

resources.  

     The first entry is the non-optimized model that consisted of second-order hexahedral 

elements. It required un-compressed matrix storage of 6.64 GB and solution time of 2093 

seconds.  
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     The models with transition elements needed less than half as much memory and 

solution time as non-optimized models with all second–order hexahedral elements.  

      A more illustrative summary of requirements and solution times is shown in Table 

7.12, where all quantities were made relative to the non-optimized model. Models with 

transition zones possess the benefits of relatively fast solution times and solution 

accuracy of second-order elements translating into savings in memory usage of around 

82% (Case 1 compared to the non-optimized model) and around 81% (Case 2 compared 

to the non-optimized model) while solution times were reduced by around 82% (Case 1 

compared to the non-optimized model) and around 81% (Case 2 compared to the non-

optimized model) as shown in Figure 7.6. 

 

Table 7.11 Use of Computational Resources Comparison for Underground Excavation 

Models 

Model 
No. of 

Nodes 

No. of 

Elements 

No. of 

Degrees of 

Freedom 

Size of Global 

Stiffness 

Matrix (Bytes) 

Solution 

Time 

(CPU) 

(sec) 

Non-optimized 

Model 
14738 2005 29861 7,133,434,568 2093 

Optimized Model      

Case 1 6248 2005 12622 1,274,519,072 367 

Case 2 6350 2005 12934 1,338,306,848 388 

 

Table 7.12 Ratio of Computational Resource Requirements for Underground Excavation 

Models 

Model 
Size of Global Stiffness Matrix 

Ratio  

Solution Time (CPU) 

Ratio 

Non-optimized Model 1.00 1.00 

Optimized Model   

Case 1 5.6 5.7 

Case 2 5.33 5.39 
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Figure 7.6 Memory Usage and Solution Time Savings for Cases 1 and 2 in Comparison 

to the Non-optimized Model 
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8. Conclusion 

 

     The behavior of 12-node and 16-node transitional hexahedral elements was tested and 

verified, and the p-type mesh optimization method was applied to underground 

excavations problems with successful results implementing the ability of using these 

elements without affecting the solution accuracy, as presented in the previous chapter. 

Therefore, it can be said that this thesis presented a reliable approach for stress analysis 

optimization problems in geomechanics field concluding the following points: 

 It is possible to use mixed meshes with transitional elements connecting linear 

and quadratic elements in a finite element method (FEM) to solve stress analysis 

problems in geomechanics problems. 

 Using sim|FEM software, which includes the formulation of transition elements 

and allows the application of mesh optimization in finite element analysis, leads 

to noticeable savings in computational resources needed to solve the problems. 

Hence, improving the commercial software available can be a powerful tool in 

solving geomechanics problems.  

 Future researchers interested in studying transitional elements or mesh 

optimization process can rely on this thesis as a reference. In addition to the 

possibility of using sim|FEM code as it is capable of dealing with mixed meshes. 

 Applying p-type method to underground excavation example lead to considerable 

saving in computational resources as concluded in Chapter 7, where a maximum 

of around 82% saving in memory usage and a maximum of around 82% saving in 

solution times were obtained of optimized models compared to non-optimized 

model. 
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9. Recommendations for Further Work 

 

 

     This thesis studied 3D transitional element behavior through the application of a p-

type method of mesh optimization to an underground excavation problem using a finite 

element method (FEM) with hexahedral elements and two kinds of transitional 

hexahedral elements:  12-node and 16-node elements. 

     By implementing the same concept of mesh optimization and maybe by using 

different numerical analysis methods, future work can be done by investigating different 

problems in geotechnical engineering. For example, in foundation problems, the change 

in the stress status in the soil profile due to the construction of a foundation can be found 

and the optimization may be applied to the zones of the mesh that are undergoing not 

more than 5% disturbance in the medium in comparison to the initial stress field existed 

prior the construction process. 

     In addition, other formulations of transitional elements can be tested depending on the 

studied model or even a completely different shape of elements such as tetrahedral 

elements.  

     Also, as sim|FEM code does not yet support 3D visualization of the tested problems, a 

script was written in TCL to allow the visualization of 3D linear and quadratic elements 

only. Hence, sim|FEM code can be improved to include that feature of 3D visualization 

or another supported code can be written to enable the 3D visualization of meshes with 

transitional elements.   
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Appendix 1 

 Type I Models Using (STRHEX08L) - Results 

 

 

NAME SOFTWARE 
DISPLACEMENTS 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

STRHEX08LR sim|FEM 

(0,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,0,2) -6.0000000E-03 -6.0000000E-03 -2.0000000E-02 2.1725561E-02 

(2,0,2) 6.0000000E-03 -6.0000000E-03 -2.0000000E-02 2.1725561E-02 

(2,2,2) 6.0000000E-03 6.0000000E-03 -2.0000000E-02 2.1725561E-02 

(0,2,2) -6.0000000E-03 6.0000000E-03 -2.0000000E-02 2.1725561E-02 

STRHEX08LR ABAQUS 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

(0,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,0,2) -5.9848100E-03 -5.9848100E-03 -1.9987000E-02 2.1705208E-02 

(2,0,2) 5.9848100E-03 -5.9848100E-03 -1.9987000E-02 2.1705208E-02 

(2,2,2) 5.9848100E-03 5.9848100E-03 -1.9987000E-02 2.1705208E-02 

(0,2,2) -5.9848100E-03 5.9848100E-03 -1.9987000E-02 2.1705208E-02 
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STRHEX08LF sim|FEM 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

(0,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,0,2) -3.9000000E-03 -3.9000000E-03 -1.8200000E-02 1.9017360E-02 

(2,0,2) 3.9000000E-03 -3.9000000E-03 -1.8200000E-02 1.9017360E-02 

(2,2,2) 3.9000000E-03 3.9000000E-03 -1.8200000E-02 1.9017360E-02 

(0,2,2) -3.9000000E-03 3.9000000E-03 -1.8200000E-02 1.9017360E-02 

STRHEX08LF ABAQUS 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

(0,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,0,2) -5.2193300E-03 -5.2193300E-03 -1.9330900E-02 2.0692185E-02 

(2,0,2) 5.2193300E-03 -5.2193300E-03 -1.9330900E-02 2.0692185E-02 

(2,2,2) 5.2193300E-03 5.2193300E-03 -1.9330900E-02 2.0692185E-02 

(0,2,2) -5.2193300E-03 5.2193300E-03 -1.9330900E-02 2.0692185E-02 

STRHEX08LF LISA 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

(0,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,0,2) -3.9000000E-03 -3.9000000E-03 -1.8200000E-02 1.9017360E-02 

(2,0,2) 3.9000000E-03 -3.9000000E-03 -1.8200000E-02 1.9017360E-02 

(2,2,2) 3.9000000E-03 3.9000000E-03 -1.8200000E-02 1.9017360E-02 

(0,2,2) -3.9000000E-03 3.9000000E-03 -1.8200000E-02 1.9017360E-02 
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Type I Models Using (STRHEX20Q) - Results 

 

NAME SOFTWARE 
DISPLACEMENTS 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

STRHEX20QR sim|FEM 

(0,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,0,2) -1.6470588E-03 -1.6470588E-03 -1.8352941E-02 1.8500163E-02 

(2,0,2) 1.6470588E-03 -1.6470588E-03 -1.8352941E-02 1.8500163E-02 

(2,2,2) 1.6470588E-03 1.6470588E-03 -1.8352941E-02 1.8500163E-02 

(0,2,2) -1.6470588E-03 1.6470588E-03 -1.8352941E-02 1.8500163E-02 

(1,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,1,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(1,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,1,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(1,0,2) 0.0000000E+00 -1.6470588E-03 -1.9058824E-02 1.9129861E-02 

(2,1,2) 1.6470588E-03 0.0000000E+00 -1.9058824E-02 1.9129861E-02 

(1,2,2) 0.0000000E+00 1.6470588E-03 -1.9058824E-02 1.9129861E-02 

(0,1,2) -1.6470588E-03 0.0000000E+00 -1.9058824E-02 1.9129861E-02 

(0,0,1) -3.4705882E-03 -3.4705882E-03 -8.8235294E-03 1.0096764E-02 

(2,0,1) 3.4705882E-03 -3.4705882E-03 -8.8235294E-03 1.0096764E-02 

(2,2,1) 3.4705882E-03 3.4705882E-03 -8.8235294E-03 1.0096764E-02 

(0,2,1) -3.4705882E-03 3.4705882E-03 -8.8235294E-03 1.0096764E-02 
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STRHEX20QR ABAQUS 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

(0,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,0,2) -2.0542500E-03 -1.8352900E-02 -1.2398700E-03 1.8509083E-02 

(2,0,2) 2.0542500E-03 -1.8352900E-02 -1.2398700E-03 1.8509083E-02 

(2,2,2) 2.0542500E-03 -1.8352900E-02 1.2398700E-03 1.8509083E-02 

(0,2,2) -2.0542500E-03 -1.8352900E-02 1.2398700E-03 1.8509083E-02 

(1,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,1,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(1,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,1,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(1,0,2) 3.5236600E-18 -1.9058800E-02 -1.8506500E-03 1.9148440E-02 

(2,1,2) 1.4434600E-03 -1.9058800E-02 0.0000000E+00 1.9113384E-02 

(1,2,2) 1.6371500E-17 -1.9058800E-02 1.8506500E-03 1.9148440E-02 

(0,1,2) -1.4434600E-03 -1.9058800E-02 0.0000000E+00 1.9113384E-02 

(0,0,1) -3.6741800E-03 -8.8235300E-03 -3.2669900E-03 1.0100866E-02 

(2,0,1) 3.6741800E-03 -8.8235300E-03 -3.2669900E-03 1.0100866E-02 

(2,2,1) 3.6741800E-03 -8.8235300E-03 3.2669900E-03 1.0100866E-02 

(0,2,1) -3.6741800E-03 -8.8235300E-03 3.2669900E-03 1.0100866E-02 

STRHEX20QF Sim|FEM 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

(0,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,0,2) -2.8239842E-03 -2.8239842E-03 -1.9346317E-02 1.9754234E-02 

(2,0,2) 2.8239842E-03 -2.8239842E-03 -1.9346317E-02 1.9754234E-02 

(2,2,2) 2.8239842E-03 2.8239842E-03 -1.9346317E-02 1.9754234E-02 

(0,2,2) -2.8239842E-03 2.8239842E-03 -1.9346317E-02 1.9754234E-02 

(1,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,1,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(1,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,1,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(1,0,2) 0.0000000E+00 -2.8038739E-03 -1.9100525E-02 1.9305226E-02 

(2,1,2) 2.8038739E-03 0.0000000E+00 -1.9100525E-02 1.9305226E-02 

(1,2,2) 0.0000000E+00 2.8038739E-03 -1.9100525E-02 1.9305226E-02 
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STRHEX20QF Sim|FEM 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

(0,1,2) -2.8038739E-03 0.0000000E+00 -1.9100525E-02 1.9305226E-02 

(0,0,1) -2.9453288E-03 -2.9453288E-03 -9.0708922E-03 9.9815334E-03 

(2,0,1) 2.9453288E-03 -2.9453288E-03 -9.0708922E-03 9.9815334E-03 

(2,2,1) 2.9453288E-03 2.9453288E-03 -9.0708922E-03 9.9815334E-03 

(0,2,1) -2.9453288E-03 2.9453288E-03 -9.0708922E-03 9.9815334E-03 

 STRHEX20QF ABAQUS 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

(0,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,0,2) -2.8239800E-03 -1.9346300E-02 -2.8239800E-03 1.9754216E-02 

(2,0,2) 2.8239800E-03 -1.9346300E-02 -2.8239800E-03 1.9754216E-02 

(2,2,2) 2.8239800E-03 -1.9346300E-02 2.8239800E-03 1.9754216E-02 

(0,2,2) -2.8239800E-03 -1.9346300E-02 2.8239800E-03 1.9754216E-02 

(1,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,1,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(1,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,1,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

STRHEX20QF ABAQUS 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

(1,0,2) 0.0000000E+00 -1.9100500E-02 -2.8038700E-03 1.9305201E-02 

(2,1,2) 2.8038700E-03 -1.9100500E-02 0.0000000E+00 1.9305201E-02 

(1,2,2) -5.4210100E-17 -1.9100500E-02 2.8038700E-03 1.9305201E-02 

(0,1,2) -2.8038700E-03 -1.9100500E-02 0.0000000E+00 1.9305201E-02 

(0,0,1) -2.9453300E-03 -9.0708900E-03 -2.9453300E-03 9.9815321E-03 

(2,0,1) 2.9453300E-03 -9.0708900E-03 -2.9453300E-03 9.9815321E-03 

(2,2,1) 2.9453300E-03 -9.0708900E-03 2.9453300E-03 9.9815321E-03 

(0,2,1) -2.9453300E-03 -9.0708900E-03 2.9453300E-03 9.9815321E-03 

STRHEX20QF LISA 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

(0,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,0,2) -2.8242240E-03 -1.9347060E-02 -2.8242240E-03 1.9755030E-02 

(2,0,2) -2.8242240E-03 -1.9347060E-02 2.8242240E-03 1.9755030E-02 

(2,2,2) 2.8242240E-03 -1.9347060E-02 2.8242240E-03 1.9755030E-02 

(0,2,2) 2.8242240E-03 -1.9347060E-02 -2.8242240E-03 1.9755030E-02 
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STRHEX20QF LISA 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

(1,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,1,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(1,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,1,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(1,0,2) -2.9452980E-03 -9.0712170E-03 -2.9452980E-03 9.9818104E-03 

(2,1,2) -2.9452980E-03 -9.0712170E-03 2.9452980E-03 9.9818104E-03 

(1,2,2) 2.9452980E-03 -9.0712170E-03 2.9452980E-03 9.9818104E-03 

(0,1,2) 2.9452980E-03 -9.0712170E-03 -2.9452980E-03 9.9818104E-03 

(0,0,1) -2.8040690E-03 -1.9100720E-02 0.0000000E+00 1.9305448E-02 

(2,0,1) 0.0000000E+00 -1.9100720E-02 2.8040690E-03 1.9305448E-02 

(2,2,1) 2.8040690E-03 -1.9100720E-02 0.0000000E+00 1.9305448E-02 

(0,2,1) 0.0000000E+00 -1.9100720E-02 -2.8040690E-03 1.9305448E-02 
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Type I Models Using (STRHEX12T) – Results 

 

 

NAME SOFTWARE 
DISPLACEMENTS 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

STRHEX12T sim|FEM 

(0,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,0,2) -3.3011094E-03 -3.3011094E-03 -1.3595637E-02 1.4374839E-02 

(2,0,2) 3.3011094E-03 -3.3011094E-03 -1.3595637E-02 1.4374839E-02 

(2,2,2) 3.3011094E-03 3.3011094E-03 -1.3595637E-02 1.4374839E-02 

(0,2,2) -3.3011094E-03 3.3011094E-03 -1.3595637E-02 1.4374839E-02 

(1,0,2) -3.9243065E-18 -3.7493436E-03 -1.7878766E-02 1.8267672E-02 

(2,1,2) 3.7493436E-03 -9.7074325E-20 -1.7878766E-02 1.8267672E-02 

(1,2,2) 3.4539219E-18 3.7493436E-03 -1.7878766E-02 1.8267672E-02 

(0,1,2) -3.7493436E-03 1.4665951E-18 -1.7878766E-02 1.8267672E-02 
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Type I Models Using (STRHEX16T) - Results 

 

NAME SOFTWARE 
DISPLACEMENTS 

Node Location Ux (m) Uy (m) Uz (m) Vector Magnitude 

STRHEX16T sim|FEM 

(0,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,0,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(2,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,2,0) 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 

(0,0,2) -1.3455588E-03 -1.3455588E-03 -1.2953556E-02 1.3092581E-02 

(2,0,2) 1.3455588E-03 -1.3455588E-03 -1.2953556E-02 1.3092581E-02 

(2,2,2) 1.3455588E-03 1.3455588E-03 -1.2953556E-02 1.3092581E-02 

(0,2,2) -1.3455588E-03 1.3455588E-03 -1.2953556E-02 1.3092581E-02 

(1,0,2) 0.0000000E+00 -1.9468619E-03 -1.8699344E-02 1.8800419E-02 

(2,1,2) 1.9468619E-03 0.0000000E+00 -1.8699344E-02 1.8800419E-02 

(1,2,2) 0.0000000E+00 1.9468619E-03 -1.8699344E-02 1.8800419E-02 

(0,1,2) -1.9468619E-03 0.0000000E+00 -1.8699344E-02 1.8800419E-02 

(0,0,1) -3.5091374E-03 -3.5091374E-03 -6.1240188E-03 7.8823662E-03 

(2,0,1) 3.5091374E-03 -3.5091374E-03 -6.1240188E-03 7.8823662E-03 

(2,2,1) 3.5091374E-03 3.5091374E-03 -6.1240188E-03 7.8823662E-03 

(0,2,1) -3.5091374E-03 3.5091374E-03 -6.1240188E-03 7.8823662E-03 
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Appendix 2  

Type II Models – Results 

 

(3x3x3) Element Mesh Model Results 

NAME 
Integration 

Scheme 

DISPLACEMENTS 

Node 

Location 
Ux (m) Uy (m) Uz (m) 

Vector 

Magnitude 

MHex08L_sim|FEM Reduced 

(0,0,3) -5.1683430E-03 -5.1683430E-03 -2.8447676E-02 2.9371650E-02 

(3,0,3) 5.1683430E-03 -5.1683430E-03 -2.8447676E-02 2.9371650E-02 

(3,3,3) 5.1683430E-03 5.1683430E-03 -2.8447676E-02 2.9371650E-02 

(0,3,3) -5.1683430E-03 5.1683430E-03 -2.8447676E-02 2.9371650E-02 

(2,0,3) 4.7446804E-04 -5.1030111E-03 -2.8945314E-02 2.9395528E-02 

(2,3,3) 4.7446804E-04 5.1030111E-03 -2.8945314E-02 2.9395528E-02 

(0,1,3) -5.1030111E-03 -4.7446804E-04 -2.8945314E-02 2.9395528E-02 

(3,1,3) 5.1030111E-03 -4.7446804E-04 -2.8945314E-02 2.9395528E-02 

MHex08L_sim|FEM Full 

Node 

Location 
Ux (m) Uy (m) Uz (m) 

Vector 

Magnitude 

(0,0,3) -4.6487028E-03 -4.6487028E-03 -2.8863095E-02 2.9602350E-02 

(3,0,3) 4.6487028E-03 -4.6487028E-03 -2.8863095E-02 2.9602350E-02 

(3,3,3) 4.6487028E-03 4.6487028E-03 -2.8863095E-02 2.9602350E-02 

(0,3,3) -4.6487028E-03 4.6487028E-03 -2.8863095E-02 2.9602350E-02 

(2,0,3) 1.5701019E-03 -4.6527417E-03 -2.8693367E-02 2.9110523E-02 

(2,3,3) 1.5701019E-03 4.6527417E-03 -2.8693367E-02 2.9110523E-02 

(0,1,3) -4.6527417E-03 -1.5701019E-03 -2.8693367E-02 2.9110523E-02 

(3,1,3) 4.6527417E-03 -1.5701019E-03 -2.8693367E-02 2.9110523E-02 

MHex08L_ABAQUS Reduced 

Node 

Location 
Ux (m) Uy (m) Uz (m) 

Vector 

Magnitude 

(0,0,3) -5.1459100E-03 -5.1459100E-03 -2.8463200E-02 2.9378811E-02 

(3,0,3) 5.1459100E-03 -5.1459100E-03 -2.8463200E-02 2.9378811E-02 

(3,3,3) 5.1459100E-03 5.1459100E-03 -2.8463200E-02 2.9378811E-02 

(0,3,3) -5.1459100E-03 5.1459100E-03 -2.8463200E-02 2.9378811E-02 

(2,0,3) 5.2360200E-04 -5.0609700E-03 -2.8938500E-02 2.9382382E-02 

(2,3,3) 5.2360200E-04 5.0609700E-03 -2.8938500E-02 2.9382382E-02 

(0,1,3) -5.0609700E-03 -5.2360200E-04 -2.8938500E-02 2.9382382E-02 

(3,1,3) 5.0609700E-03 -5.2360200E-04 -2.8938500E-02 2.9382382E-02 
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MHex08L_ABAQUS Full 

Node 

Location 
Ux (m) Uy (m) Uz (m) 

Vector 

Magnitude 

(0,0,3) -4.7284300E-03 -4.7284300E-03 -2.8903100E-02 2.9666569E-02 

(3,0,3) 4.7284300E-03 -4.7284300E-03 -2.8903100E-02 2.9666569E-02 

(3,3,3) 4.7284300E-03 4.7284300E-03 -2.8903100E-02 2.9666569E-02 

(0,3,3) -4.7284300E-03 4.7284300E-03 -2.8903100E-02 2.9666569E-02 

(2,0,3) 1.4611700E-03 -4.6076000E-03 -2.8880100E-02 2.9281823E-02 

(2,3,3) 1.4611700E-03 4.6076000E-03 -2.8880100E-02 2.9281823E-02 

(0,1,3) -4.6076000E-03 -1.4611700E-03 -2.8880100E-02 2.9281823E-02 

(3,1,3) 4.6076000E-03 -1.4611700E-03 -2.8880100E-02 2.9281823E-02 

MHex20Q_ sim|FEM Reduced 

Node 

Location 
Ux (m) Uy (m) Uz (m) 

Vector 

Magnitude 

(0,0,3) -4.6160289E-03 -4.6160289E-03 -2.9197429E-02 2.9918311E-02 

(3,0,3) 4.6160289E-03 -4.6160289E-03 -2.9197429E-02 2.9918311E-02 

(3,3,3) 4.6160289E-03 4.6160289E-03 -2.9197429E-02 2.9918311E-02 

(0,3,3) -4.6160289E-03 4.6160289E-03 -2.9197429E-02 2.9918311E-02 

(2,0,3) 1.5849714E-03 -4.6138146E-03 -2.9045175E-02 2.9452022E-02 

(2,3,3) 1.5849714E-03 4.6138146E-03 -2.9045175E-02 2.9452022E-02 

(0,1,3) -4.6138146E-03 -1.5849714E-03 -2.9045175E-02 2.9452022E-02 

(3,1,3) 4.6138146E-03 -1.5849714E-03 -2.9045175E-02 2.9452022E-02 

MHex20Q_ sim|FEM Full 

Node 

Location 
Ux (m) Uy (m) Uz (m) 

Vector 

Magnitude 

(0,0,3) -4.6301436E-03 -4.6301436E-03 -2.9143326E-02 2.9869883E-02 

(3,0,3) 4.6301436E-03 -4.6301436E-03 -2.9143326E-02 2.9869883E-02 

(3,3,3) 4.6301436E-03 4.6301436E-03 -2.9143326E-02 2.9869883E-02 

(0,3,3) -4.6301436E-03 4.6301436E-03 -2.9143326E-02 2.9869883E-02 

(2,0,3) 1.5801419E-03 -4.6098787E-03 -2.8979624E-02 2.9386501E-02 

(2,3,3) 1.5801419E-03 4.6098787E-03 -2.8979624E-02 2.9386501E-02 

(0,1,3) -4.6098787E-03 -1.5801419E-03 -2.8979624E-02 2.9386501E-02 

(3,1,3) 4.6098787E-03 -1.5801419E-03 -2.8979624E-02 2.9386501E-02 
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MHex20Q_ABAQUS Reduced 

Node 

Location 
Ux (m) Uy (m) Uz (m) 

Vector 

Magnitude 

(0,0,3) -4.6234700E-03 -4.6234700E-03 -2.9238200E-02 2.9960395E-02 

(3,0,3) 4.6234700E-03 -4.6234700E-03 -2.9238200E-02 2.9960395E-02 

(3,3,3) 4.6234700E-03 4.6234700E-03 -2.9238200E-02 2.9960395E-02 

(0,3,3) -4.6234700E-03 4.6234700E-03 -2.9238200E-02 2.9960395E-02 

(2,0,3) 1.5867800E-03 -4.6213400E-03 -2.9084400E-02 2.9491982E-02 

(2,3,3) 1.5867800E-03 4.6213400E-03 -2.9084400E-02 2.9491982E-02 

(0,1,3) -4.6213400E-03 -1.5867800E-03 -2.9084400E-02 2.9491982E-02 

(3,1,3) 4.6213400E-03 -1.5867800E-03 -2.9084400E-02 2.9491982E-02 

MHex20Q_ABAQUS Full 

Node 

Location 
Ux (m) Uy (m) Uz (m) 

Vector 

Magnitude 

(0,0,3) -4.6369400E-03 -4.6369400E-03 -2.9182100E-02 2.9909821E-02 

(3,0,3) 4.6369400E-03 -4.6369400E-03 -2.9182100E-02 2.9909821E-02 

(3,3,3) 4.6369400E-03 4.6369400E-03 -2.9182100E-02 2.9909821E-02 

(0,3,3) -4.6369400E-03 4.6369400E-03 -2.9182100E-02 2.9909821E-02 

(2,0,3) 1.5821100E-03 -4.6167700E-03 -2.9017400E-02 2.9424941E-02 

(2,3,3) 1.5821100E-03 4.6167700E-03 -2.9017400E-02 2.9424941E-02 

(0,1,3) -4.6167700E-03 -1.5821100E-03 -2.9017400E-02 2.9424941E-02 

(3,1,3) 4.6167700E-03 -1.5821100E-03 -2.9017400E-02 2.9424941E-02 

MHex12T_ sim|FEM 
 

Node 

Location 
Ux (m) Uy (m) Uz (m) 

Vector 

Magnitude 

(0,0,3) -4.6448742E-03 -4.6448742E-03 -2.9781597E-02 3.0497430E-02 

(3,0,3) 4.6448742E-03 -4.6448742E-03 -2.9781597E-02 3.0497430E-02 

(3,3,3) 4.6448742E-03 4.6448742E-03 -2.9781597E-02 3.0497430E-02 

(0,3,3) -4.6448742E-03 4.6448742E-03 -2.9781597E-02 3.0497430E-02 

(2,0,3) 1.4831197E-03 -4.6453626E-03 -2.9571262E-02 2.9970629E-02 

(2,3,3) 1.4831197E-03 4.6453626E-03 -2.9571262E-02 2.9970629E-02 

(0,1,3) -4.6453626E-03 -1.4831197E-03 -2.9571262E-02 2.9970629E-02 

(3,1,3) 4.6453626E-03 -1.4831197E-03 -2.9571262E-02 2.9970629E-02 

MHex16T_ sim|FEM 
 

Node 

Location 
Ux (m) Uy (m) Uz (m) 

Vector 

Magnitude 

(0,0,3) -4.6259319E-03 -4.6259319E-03 -2.9773321E-02 3.0483588E-02 

(3,0,3) 4.6259319E-03 -4.6259320E-03 -2.9773321E-02 3.0483588E-02 

(3,3,3) 4.6259320E-03 4.6259320E-03 -2.9773321E-02 3.0483588E-02 

(0,3,3) -4.6259319E-03 4.6259319E-03 -2.9773321E-02 3.0483588E-02 

(2,0,3) 1.4697022E-03 -4.6337918E-03 -2.9584919E-02 2.9981652E-02 

(2,3,3) 1.4697022E-03 4.6337918E-03 -2.9584919E-02 2.9981652E-02 

(0,1,3) -4.6337918E-03 -1.4697022E-03 -2.9584919E-02 2.9981652E-02 

(3,1,3) 4.6337918E-03 -1.4697022E-03 -2.9584919E-02 2.9981652E-02 
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Appendix 3 

Kirsch Equations Results - Left Excavation 

                            

                         

2.6 0.000 20.000 0.000 0.000 20.000 0.000 

5.2 7.500 12.500 0.000 7.500 12.500 0.000 

7.8 8.889 11.111 0.000 8.889 11.111 0.000 

10.4 9.375 10.625 0.000 9.375 10.625 0.000 

13 9.600 10.400 0.000 9.600 10.400 0.000 

15.6 9.722 10.278 0.000 9.722 10.278 0.000 

18.2 9.796 10.204 0.000 9.796 10.204 0.000 

20.8 9.844 10.156 0.000 9.844 10.156 0.000 

23.4 9.877 10.123 0.000 9.877 10.123 0.000 

26 9.900 10.100 0.000 9.900 10.100 0.000 

28.6 9.917 10.083 0.000 9.917 10.083 0.000 

31.2 9.931 10.069 0.000 9.931 10.069 0.000 

33.8 9.941 10.059 0.000 9.941 10.059 0.000 

36.4 9.949 10.051 0.000 9.949 10.051 0.000 

39 9.956 10.044 0.000 9.956 10.044 0.000 

                             

                         

2.6 0.000 20.000 0.000 5.919 14.081 -9.129 

5.2 7.500 12.500 0.000 8.980 11.020 -2.282 

7.8 8.889 11.111 0.000 9.547 10.453 -1.014 

10.4 9.375 10.625 0.000 9.745 10.255 -0.571 

13 9.600 10.400 0.000 9.837 10.163 -0.365 

15.6 9.722 10.278 0.000 9.887 10.113 -0.254 

18.2 9.796 10.204 0.000 9.917 10.083 -0.186 

20.8 9.844 10.156 0.000 9.936 10.064 -0.143 

23.4 9.877 10.123 0.000 9.950 10.050 -0.113 

26 9.900 10.100 0.000 9.959 10.041 -0.091 

28.6 9.917 10.083 0.000 9.966 10.034 -0.075 

31.2 9.931 10.069 0.000 9.972 10.028 -0.063 

33.8 9.941 10.059 0.000 9.976 10.024 -0.054 

36.4 9.949 10.051 0.000 9.979 10.021 -0.047 

39 9.956 10.044 0.000 9.982 10.018 -0.041 
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2.6 0.000 20.000 0.000 16.669 3.331 -7.451 

5.2 7.500 12.500 0.000 11.667 8.333 -1.863 

7.8 8.889 11.111 0.000 10.741 9.259 -0.828 

10.4 9.375 10.625 0.000 10.417 9.583 -0.466 

13 9.600 10.400 0.000 10.267 9.733 -0.298 

15.6 9.722 10.278 0.000 10.185 9.815 -0.207 

18.2 9.796 10.204 0.000 10.136 9.864 -0.152 

20.8 9.844 10.156 0.000 10.104 9.896 -0.116 

23.4 9.877 10.123 0.000 10.082 9.918 -0.092 

26 9.900 10.100 0.000 10.067 9.933 -0.075 

28.6 9.917 10.083 0.000 10.055 9.945 -0.062 

31.2 9.931 10.069 0.000 10.046 9.954 -0.052 

33.8 9.941 10.059 0.000 10.039 9.961 -0.044 

36.4 9.949 10.051 0.000 10.034 9.966 -0.038 

39 9.956 10.044 0.000 10.030 9.970 -0.033 

                             

                         

2.6 0.000 20.000 0.000 19.524 0.476 3.048 

5.2 7.500 12.500 0.000 12.381 7.619 0.762 

7.8 8.889 11.111 0.000 11.058 8.942 0.339 

10.4 9.375 10.625 0.000 10.595 9.405 0.191 

13 9.600 10.400 0.000 10.381 9.619 0.122 

15.6 9.722 10.278 0.000 10.265 9.735 0.085 

18.2 9.796 10.204 0.000 10.194 9.806 0.062 

20.8 9.844 10.156 0.000 10.149 9.851 0.048 

23.4 9.877 10.123 0.000 10.118 9.882 0.038 

26 9.900 10.100 0.000 10.095 9.905 0.030 

28.6 9.917 10.083 0.000 10.079 9.921 0.025 

31.2 9.931 10.069 0.000 10.066 9.934 0.021 

33.8 9.941 10.059 0.000 10.056 9.944 0.018 

36.4 9.949 10.051 0.000 10.049 9.951 0.016 

39 9.956 10.044 0.000 10.042 9.958 0.014 
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2.6 0.000 20.000 0.000 11.104 8.896 9.939 

5.2 7.500 12.500 0.000 10.276 9.724 2.485 

7.8 8.889 11.111 0.000 10.123 9.877 1.104 

10.4 9.375 10.625 0.000 10.069 9.931 0.621 

13 9.600 10.400 0.000 10.044 9.956 0.398 

15.6 9.722 10.278 0.000 10.031 9.969 0.276 

18.2 9.796 10.204 0.000 10.023 9.977 0.203 

20.8 9.844 10.156 0.000 10.017 9.983 0.155 

23.4 9.877 10.123 0.000 10.014 9.986 0.123 

26 9.900 10.100 0.000 10.011 9.989 0.099 

28.6 9.917 10.083 0.000 10.009 9.991 0.082 

31.2 9.931 10.069 0.000 10.008 9.992 0.069 

33.8 9.941 10.059 0.000 10.007 9.993 0.059 

36.4 9.949 10.051 0.000 10.006 9.994 0.051 

39 9.956 10.044 0.000 10.005 9.995 0.044 

                             

                         

2.6 0.000 20.000 0.000 1.377 18.623 5.064 

5.2 7.500 12.500 0.000 7.844 12.156 1.266 

7.8 8.889 11.111 0.000 9.042 10.958 0.563 

10.4 9.375 10.625 0.000 9.461 10.539 0.316 

13 9.600 10.400 0.000 9.655 10.345 0.203 

15.6 9.722 10.278 0.000 9.760 10.240 0.141 

18.2 9.796 10.204 0.000 9.824 10.176 0.103 

20.8 9.844 10.156 0.000 9.865 10.135 0.079 

23.4 9.877 10.123 0.000 9.894 10.106 0.063 

26 9.900 10.100 0.000 9.914 10.086 0.051 

28.6 9.917 10.083 0.000 9.929 10.071 0.042 

31.2 9.931 10.069 0.000 9.940 10.060 0.035 

33.8 9.941 10.059 0.000 9.949 10.051 0.030 

36.4 9.949 10.051 0.000 9.956 10.044 0.026 

39 9.956 10.044 0.000 9.962 10.038 0.023 

 

 

 



 

151 
 

                             

                         

2.6 0.000 20.000 0.000 1.858 18.142 -5.806 

5.2 7.500 12.500 0.000 7.965 12.035 -1.452 

7.8 8.889 11.111 0.000 9.095 10.905 -0.645 

10.4 9.375 10.625 0.000 9.491 10.509 -0.363 

13 9.600 10.400 0.000 9.674 10.326 -0.232 

15.6 9.722 10.278 0.000 9.774 10.226 -0.161 

18.2 9.796 10.204 0.000 9.834 10.166 -0.118 

20.8 9.844 10.156 0.000 9.873 10.127 -0.091 

23.4 9.877 10.123 0.000 9.899 10.101 -0.072 

26 9.900 10.100 0.000 9.919 10.081 -0.058 

28.6 9.917 10.083 0.000 9.933 10.067 -0.048 

31.2 9.931 10.069 0.000 9.943 10.057 -0.040 

33.8 9.941 10.059 0.000 9.952 10.048 -0.034 

36.4 9.949 10.051 0.000 9.958 10.042 -0.030 

39 9.956 10.044 0.000 9.964 10.036 -0.026 

                             

                         

2.6 0.000 20.000 0.000 11.978 8.022 -9.802 

5.2 7.500 12.500 0.000 10.495 9.505 -2.451 

7.8 8.889 11.111 0.000 10.220 9.780 -1.089 

10.4 9.375 10.625 0.000 10.124 9.876 -0.613 

13 9.600 10.400 0.000 10.079 9.921 -0.392 

15.6 9.722 10.278 0.000 10.055 9.945 -0.272 

18.2 9.796 10.204 0.000 10.040 9.960 -0.200 

20.8 9.844 10.156 0.000 10.031 9.969 -0.153 

23.4 9.877 10.123 0.000 10.024 9.976 -0.121 

26 9.900 10.100 0.000 10.020 9.980 -0.098 

28.6 9.917 10.083 0.000 10.016 9.984 -0.081 

31.2 9.931 10.069 0.000 10.014 9.986 -0.068 

33.8 9.941 10.059 0.000 10.012 9.988 -0.058 

36.4 9.949 10.051 0.000 10.010 9.990 -0.050 

39 9.956 10.044 0.000 10.009 9.991 -0.044 

 

 

 



 

152 
 

                             

                         

2.6 0.000 20.000 0.000 19.756 0.244 -2.194 

5.2 7.500 12.500 0.000 12.439 7.561 -0.549 

7.8 8.889 11.111 0.000 11.084 8.916 -0.244 

10.4 9.375 10.625 0.000 10.610 9.390 -0.137 

13 9.600 10.400 0.000 10.390 9.610 -0.088 

15.6 9.722 10.278 0.000 10.271 9.729 -0.061 

18.2 9.796 10.204 0.000 10.199 9.801 -0.045 

20.8 9.844 10.156 0.000 10.152 9.848 -0.034 

23.4 9.877 10.123 0.000 10.120 9.880 -0.027 

26 9.900 10.100 0.000 10.098 9.902 -0.022 

28.6 9.917 10.083 0.000 10.081 9.919 -0.018 

31.2 9.931 10.069 0.000 10.068 9.932 -0.015 

33.8 9.941 10.059 0.000 10.058 9.942 -0.013 

36.4 9.949 10.051 0.000 10.050 9.950 -0.011 

39 9.956 10.044 0.000 10.043 9.957 -0.010 

                             

                         

2.6 0.000 20.000 0.000 15.985 4.015 8.012 

5.2 7.500 12.500 0.000 11.496 8.504 2.003 

7.8 8.889 11.111 0.000 10.665 9.335 0.890 

10.4 9.375 10.625 0.000 10.374 9.626 0.501 

13 9.600 10.400 0.000 10.239 9.761 0.320 

15.6 9.722 10.278 0.000 10.166 9.834 0.223 

18.2 9.796 10.204 0.000 10.122 9.878 0.164 

20.8 9.844 10.156 0.000 10.094 9.906 0.125 

23.4 9.877 10.123 0.000 10.074 9.926 0.099 

26 9.900 10.100 0.000 10.060 9.940 0.080 

28.6 9.917 10.083 0.000 10.049 9.951 0.066 

31.2 9.931 10.069 0.000 10.042 9.958 0.056 

33.8 9.941 10.059 0.000 10.035 9.965 0.047 

36.4 9.949 10.051 0.000 10.031 9.969 0.041 

39 9.956 10.044 0.000 10.027 9.973 0.036 

 

 

 



 

153 
 

Kirsch Equations Results - Right Excavation 

 

                            

                         

5.4 0.000 20.000 0.000 0.000 20.000 0.000 

10.8 7.500 12.500 0.000 7.500 12.500 0.000 

16.2 8.889 11.111 0.000 8.889 11.111 0.000 

21.6 9.375 10.625 0.000 9.375 10.625 0.000 

27 9.600 10.400 0.000 9.600 10.400 0.000 

32.4 9.722 10.278 0.000 9.722 10.278 0.000 

37.8 9.796 10.204 0.000 9.796 10.204 0.000 

43.2 9.844 10.156 0.000 9.844 10.156 0.000 

48.6 9.877 10.123 0.000 9.877 10.123 0.000 

54 9.900 10.100 0.000 9.900 10.100 0.000 

59.4 9.917 10.083 0.000 9.917 10.083 0.000 

64.8 9.931 10.069 0.000 9.931 10.069 0.000 

70.2 9.941 10.059 0.000 9.941 10.059 0.000 

75.6 9.949 10.051 0.000 9.949 10.051 0.000 

81 9.956 10.044 0.000 9.956 10.044 0.000 

                             

                         

5.4 0.000 20.000 0.000 5.919 14.081 -9.129 

10.8 7.500 12.500 0.000 8.980 11.020 -2.282 

16.2 8.889 11.111 0.000 9.547 10.453 -1.014 

21.6 9.375 10.625 0.000 9.745 10.255 -0.571 

27 9.600 10.400 0.000 9.837 10.163 -0.365 

32.4 9.722 10.278 0.000 9.887 10.113 -0.254 

37.8 9.796 10.204 0.000 9.917 10.083 -0.186 

43.2 9.844 10.156 0.000 9.936 10.064 -0.143 

48.6 9.877 10.123 0.000 9.950 10.050 -0.113 

54 9.900 10.100 0.000 9.959 10.041 -0.091 

59.4 9.917 10.083 0.000 9.966 10.034 -0.075 

64.8 9.931 10.069 0.000 9.972 10.028 -0.063 

70.2 9.941 10.059 0.000 9.976 10.024 -0.054 

75.6 9.949 10.051 0.000 9.979 10.021 -0.047 

81 9.956 10.044 0.000 9.982 10.018 -0.041 



 

154 
 

                             

                         

5.4 0.000 20.000 0.000 16.669 3.331 -7.451 

10.8 7.500 12.500 0.000 11.667 8.333 -1.863 

16.2 8.889 11.111 0.000 10.741 9.259 -0.828 

21.6 9.375 10.625 0.000 10.417 9.583 -0.466 

27 9.600 10.400 0.000 10.267 9.733 -0.298 

32.4 9.722 10.278 0.000 10.185 9.815 -0.207 

37.8 9.796 10.204 0.000 10.136 9.864 -0.152 

43.2 9.844 10.156 0.000 10.104 9.896 -0.116 

48.6 9.877 10.123 0.000 10.082 9.918 -0.092 

54 9.900 10.100 0.000 10.067 9.933 -0.075 

59.4 9.917 10.083 0.000 10.055 9.945 -0.062 

64.8 9.931 10.069 0.000 10.046 9.954 -0.052 

70.2 9.941 10.059 0.000 10.039 9.961 -0.044 

75.6 9.949 10.051 0.000 10.034 9.966 -0.038 

81 9.956 10.044 0.000 10.030 9.970 -0.033 

                             

                         

5.4 0.000 20.000 0.000 19.524 0.476 3.048 

10.8 7.500 12.500 0.000 12.381 7.619 0.762 

16.2 8.889 11.111 0.000 11.058 8.942 0.339 

21.6 9.375 10.625 0.000 10.595 9.405 0.191 

27 9.600 10.400 0.000 10.381 9.619 0.122 

32.4 9.722 10.278 0.000 10.265 9.735 0.085 

37.8 9.796 10.204 0.000 10.194 9.806 0.062 

43.2 9.844 10.156 0.000 10.149 9.851 0.048 

48.6 9.877 10.123 0.000 10.118 9.882 0.038 

54 9.900 10.100 0.000 10.095 9.905 0.030 

59.4 9.917 10.083 0.000 10.079 9.921 0.025 

64.8 9.931 10.069 0.000 10.066 9.934 0.021 

70.2 9.941 10.059 0.000 10.056 9.944 0.018 

75.6 9.949 10.051 0.000 10.049 9.951 0.016 

81 9.956 10.044 0.000 10.042 9.958 0.014 

 

 

 



 

155 
 

                             

                         

5.4 0.000 20.000 0.000 11.104 8.896 9.939 

10.8 7.500 12.500 0.000 10.276 9.724 2.485 

16.2 8.889 11.111 0.000 10.123 9.877 1.104 

21.6 9.375 10.625 0.000 10.069 9.931 0.621 

27 9.600 10.400 0.000 10.044 9.956 0.398 

32.4 9.722 10.278 0.000 10.031 9.969 0.276 

37.8 9.796 10.204 0.000 10.023 9.977 0.203 

43.2 9.844 10.156 0.000 10.017 9.983 0.155 

48.6 9.877 10.123 0.000 10.014 9.986 0.123 

54 9.900 10.100 0.000 10.011 9.989 0.099 

59.4 9.917 10.083 0.000 10.009 9.991 0.082 

64.8 9.931 10.069 0.000 10.008 9.992 0.069 

70.2 9.941 10.059 0.000 10.007 9.993 0.059 

75.6 9.949 10.051 0.000 10.006 9.994 0.051 

81 9.956 10.044 0.000 10.005 9.995 0.044 

                             

                         

5.4 0.000 20.000 0.000 1.377 18.623 5.064 

10.8 7.500 12.500 0.000 7.844 12.156 1.266 

16.2 8.889 11.111 0.000 9.042 10.958 0.563 

21.6 9.375 10.625 0.000 9.461 10.539 0.316 

27 9.600 10.400 0.000 9.655 10.345 0.203 

32.4 9.722 10.278 0.000 9.760 10.240 0.141 

37.8 9.796 10.204 0.000 9.824 10.176 0.103 

43.2 9.844 10.156 0.000 9.865 10.135 0.079 

48.6 9.877 10.123 0.000 9.894 10.106 0.063 

54 9.900 10.100 0.000 9.914 10.086 0.051 

59.4 9.917 10.083 0.000 9.929 10.071 0.042 

64.8 9.931 10.069 0.000 9.940 10.060 0.035 

70.2 9.941 10.059 0.000 9.949 10.051 0.030 

75.6 9.949 10.051 0.000 9.956 10.044 0.026 

81 9.956 10.044 0.000 9.962 10.038 0.023 

 

 

 



 

156 
 

                             

                         

5.4 0.000 20.000 0.000 1.858 18.142 -5.806 

10.8 7.500 12.500 0.000 7.965 12.035 -1.452 

16.2 8.889 11.111 0.000 9.095 10.905 -0.645 

21.6 9.375 10.625 0.000 9.491 10.509 -0.363 

27 9.600 10.400 0.000 9.674 10.326 -0.232 

32.4 9.722 10.278 0.000 9.774 10.226 -0.161 

37.8 9.796 10.204 0.000 9.834 10.166 -0.118 

43.2 9.844 10.156 0.000 9.873 10.127 -0.091 

48.6 9.877 10.123 0.000 9.899 10.101 -0.072 

54 9.900 10.100 0.000 9.919 10.081 -0.058 

59.4 9.917 10.083 0.000 9.933 10.067 -0.048 

64.8 9.931 10.069 0.000 9.943 10.057 -0.040 

70.2 9.941 10.059 0.000 9.952 10.048 -0.034 

75.6 9.949 10.051 0.000 9.958 10.042 -0.030 

81 9.956 10.044 0.000 9.964 10.036 -0.026 

                             

                         

5.4 0.000 20.000 0.000 11.978 8.022 -9.802 

10.8 7.500 12.500 0.000 10.495 9.505 -2.451 

16.2 8.889 11.111 0.000 10.220 9.780 -1.089 

21.6 9.375 10.625 0.000 10.124 9.876 -0.613 

27 9.600 10.400 0.000 10.079 9.921 -0.392 

32.4 9.722 10.278 0.000 10.055 9.945 -0.272 

37.8 9.796 10.204 0.000 10.040 9.960 -0.200 

43.2 9.844 10.156 0.000 10.031 9.969 -0.153 

48.6 9.877 10.123 0.000 10.024 9.976 -0.121 

54 9.900 10.100 0.000 10.020 9.980 -0.098 

59.4 9.917 10.083 0.000 10.016 9.984 -0.081 

64.8 9.931 10.069 0.000 10.014 9.986 -0.068 

70.2 9.941 10.059 0.000 10.012 9.988 -0.058 

75.6 9.949 10.051 0.000 10.010 9.990 -0.050 

81 9.956 10.044 0.000 10.009 9.991 -0.044 

 

 

 



 

157 
 

                             

                         

5.4 0.000 20.000 0.000 19.756 0.244 -2.194 

10.8 7.500 12.500 0.000 12.439 7.561 -0.549 

16.2 8.889 11.111 0.000 11.084 8.916 -0.244 

21.6 9.375 10.625 0.000 10.610 9.390 -0.137 

27 9.600 10.400 0.000 10.390 9.610 -0.088 

32.4 9.722 10.278 0.000 10.271 9.729 -0.061 

37.8 9.796 10.204 0.000 10.199 9.801 -0.045 

43.2 9.844 10.156 0.000 10.152 9.848 -0.034 

48.6 9.877 10.123 0.000 10.120 9.880 -0.027 

54 9.900 10.100 0.000 10.098 9.902 -0.022 

59.4 9.917 10.083 0.000 10.081 9.919 -0.018 

64.8 9.931 10.069 0.000 10.068 9.932 -0.015 

70.2 9.941 10.059 0.000 10.058 9.942 -0.013 

75.6 9.949 10.051 0.000 10.050 9.950 -0.011 

81 9.956 10.044 0.000 10.043 9.957 -0.010 

                             

                         

5.4 0.000 20.000 0.000 15.985 4.015 8.012 

10.8 7.500 12.500 0.000 11.496 8.504 2.003 

16.2 8.889 11.111 0.000 10.665 9.335 0.890 

21.6 9.375 10.625 0.000 10.374 9.626 0.501 

27 9.600 10.400 0.000 10.239 9.761 0.320 

32.4 9.722 10.278 0.000 10.166 9.834 0.223 

37.8 9.796 10.204 0.000 10.122 9.878 0.164 

43.2 9.844 10.156 0.000 10.094 9.906 0.125 

48.6 9.877 10.123 0.000 10.074 9.926 0.099 

54 9.900 10.100 0.000 10.060 9.940 0.080 

59.4 9.917 10.083 0.000 10.049 9.951 0.066 

64.8 9.931 10.069 0.000 10.042 9.958 0.056 

70.2 9.941 10.059 0.000 10.035 9.965 0.047 

75.6 9.949 10.051 0.000 10.031 9.969 0.041 

81 9.956 10.044 0.000 10.027 9.973 0.036 

 

 

 


