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Abstract 

Diameter and Broadcast Time of the Knödel graph 

 

Efficient dissemination of information remains a central challenge for all types of 

networks. There are two ways to handle this issue. One way is to compress the amount of 

data being transferred and the second way is to minimize the delay of information 

distribution. Well-received approaches used in the second way either design efficient 

algorithms or implement reliable network architectures with optimal dissemination time. 

Among the well-known network architectures, the Knödel graph can be considered a 

suitable candidate for the problem of information dissemination. The Knödel graph 𝑊𝑑,𝑛 

is a regular graph, of an even order n and degree d, 1 ≤ 𝑑 ≤ ⌊log2 𝑛⌋. The Knödel graph 

was introduced by W. Knödel almost four decades ago as network architecture with good 

properties in terms of broadcasting and gossiping in interconnected networks. Although 

the Knödel graph has a highly symmetric structure, its diameter is only known for 𝑊𝑑,2𝑑. 

Recently, the general upper and lower bounds on diameter and broadcast time of the 

Knödel graph have been presented. 

In this thesis, our motivation is to find the diameter, the number of vertices at a 

particular distance and the broadcast time of the Knödel graph. Theoretically, we succeed 

to prove the diameter and broadcast time of the Knödel graph 𝑊3,𝑛. We also claim that 

the Knödel graph 𝑊3,𝑛 for 𝑛 = 4 𝑚𝑜𝑑 6 and 𝑛 > 16 is a diametral broadcast graph. We 

present that W3,22 is a broadcast graph. Experimentally, however, we obtain the following 

results; (a) the diameter of some specific Knödel graphs, and (b) the propositions on the 

number of vertices at a particular distance. We also construct a new graph, denoted as 

𝐻𝑊𝑑,2𝑑 , by connecting Knödel graph 𝑊𝑑−1,2𝑑−1 to hypercube  𝐻𝑑−1 and experimentally 

show that 𝐻𝑊𝑑,2𝑑  has even a smaller diameter than Knödel graph 𝑊𝑑,2𝑑 . 
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Chapter 1 

Introduction 
 

 

Since the birth of the Internet, our world has become a global village where 

almost all commercial, social, private, public, and research and development networks 

are covered under the umbrella of the Internet. Fast and reliable dissemination of 

information remains the central issue in all types of real networks such as ad-hoc, 

wireless, satellite communications, supercomputers, Internet, cloud-based infrastructure. 

Much effort, money and time has been spent improving dissemination of information. 

There are two ways to approach this issue. One way would be to compress the amount of 

data that is being transferred and the second way would be to minimize the delay of 

information distribution. The well-received approaches used in the second way either 

design efficient algorithms or implement reliable network architectures with optimal 

dissemination time. Network architecture can be defined as the logical and structural 

layout of the network. Regular network architectures provide the platform to implement 

the powerful algorithms related to routing, broadcasting and parallel and distributed 

computing [42].         

1.1 Network architecture design 
 

There are some important aspects of network architecture design i.e., (i) network 

implementation cost (ii) support to create or extend a network to any size, (iii) 

performance of the network architecture in terms of information dissemination. Along 

with other aspects of network architecture design, the above three play an important role 
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in the design of network architecture. There are many network architectures available for 

dissemination of information, each with its own advantages and limitations. For instance, 

some networks are less expensive in terms of implementation cost but they lack the 

ability to provide better performance. In another case, the network architecture may 

provide a better performance, but it may not support the creation or extension of a 

network to any size. A network architecture is needed that not only provides better 

performance, low implementation costs, and the support to create a network of any size, 

but also appropriately addresses and handles other important issues related to the 

dissemination of information.   

Among well-known network architectures, the Knödel graph can be considered a 

suitable candidate for the problem of information dissemination. The Knödel graph not 

only supports important aspects of network architecture design, but it also contains a 

wide class of graphs. Using the Knödel graph one can design any type of network, where 

either distribution of information is on high priority or with less implementation cost.  

1.2 Communication model for dissemination of information 
 

In this thesis, we focus on the problem of broadcasting. Broadcasting is a process 

of information distribution in an interconnected network by which messages are 

transmitted from the originator to the remaining nodes of the network. To broadcast in a 

network, we consider the classical communication model. This model is simple and can 

be utilized when small messages are exchanged. Additionally, this model is also suitable 

for the type of networks, where the nodes of the network have very limited processing 

power and resources.  
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We studied the problem of information dissemination under these constraints: 

 

 Each call requires one unit of time. 

 A vertex can participate in only one call per unit of time. 

 Each call involves only one informed vertex and one of its uninformed neighbors. 

The following section provides definitions and notations helpful to understand the 

research work provided in this thesis.    

 

1.3 Definitions and notations 
 

In general, any interconnected network can be modeled as a graph G = (V, E), 

where V is the set of vertices (nodes) and E is the set of edges (communication links) as 

depicted by Figure 1.1.   

        𝐺 = (𝑉, 𝐸) 
 

        𝑉 =  {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} 
 

        𝐸 = {𝑒12, 𝑒23, 𝑒43, 𝑒24, 𝑒54, 𝑒15, } 

 
 

 

Two vertices 𝑢, 𝑣 ∈ 𝑉, are adjacent, if there is an edge 𝑒 ∈ 𝐸, such that 𝑒 = (𝑢, 𝑣). 

In this case, we can say that 𝑢 and 𝑣 are neighbors. The degree of vertex 𝑣, 𝑑𝑒𝑔(𝑣),  is 

the number of neighbors of this vertex. The degree of graph G, ∆(𝐺), is the maximum 

degree among all vertices, formally written as: 

 

∆(𝐺) = 𝑚𝑎𝑥{ 𝑑𝑒𝑔(𝑣) | 𝑣 ∈ 𝑉} 
 

 

Figure 1.2 demonstrates that ∆(𝐺) = 3. A graph G, where each vertex has the same 

degree, is called  a regular graph. A path  P  in a graph  G,  is  a sequence of edges which 

𝑒43 

𝑒15 𝑒24 

𝑒54 

𝑒23 

𝑒12 
𝑣2 𝑣1 

𝑣5 𝑣4 

𝑣3 

Figure 1.1 Graph G with 5 vertices and degree 3 
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connect a sequence of vertices. Generally it is of the form 𝑃 = (𝑣1, 𝑣1, … , 𝑣𝑛 ), 𝑛 > 1, 

where the length of the path is the number of edges of P. The length of the shortest path 

between two vertices 𝑣 and 𝑢 is the distance between them, 𝑑𝑖𝑠𝑡(𝑣, 𝑢). The diameter of 

the graph is the maximum distance between any pair of vertices of the graph: 

𝐷(𝐺) = 𝑚𝑎𝑥{ 𝑑𝑖𝑠𝑡(𝑣, 𝑢) | 𝑣, 𝑢 ∈ 𝑉} 

A graph is connected, if there is a path between every two nodes in G.             

Broadcasting and gossiping are two problems of information dissemination 

described for a group of individuals connected by a communication network. In 

broadcasting, an individual has a piece of information which needs to be communicated 

to everyone else. In gossiping, each person in the network has a unique piece of 

information and needs to communicate it to everyone else [33].  

The message broadcasting from originator v in a graph 𝐺 = (𝑉, 𝐸) is a sequence 

of vertex sets {𝑣} = 𝑆0 ⊂ 𝑆1 ⊂ ⋯ ⊂ 𝑆𝑘 = 𝑉, where each 𝑆𝑖 represents the set of 

informed vertices after the i-th time unit. All vertices from 𝑆𝑖\𝑆𝑖−1 are connected by 

disjoint edges with 𝑆𝑖−1. Given an originator v, the broadcast time, 𝑏(𝑣), is defined as the 

minimum  number  of  time  units  required  to complete broadcasting from vertex v.  It is  

easy  to   conclude  that  for   any  vertex  v  in   a  connected   graph  G  with  n  vertices,       

⌈log2𝑛⌉ ≤ 𝑏(𝑣) ≤ 𝑛 − 1, since during each time unit the number of informed vertices 

Figure 1.2 The degree of graph G is 3 

𝑑𝑒𝑔(𝑣3)

= 2 

𝑑𝑒𝑔(𝑣5)

= 2 

𝑑𝑒𝑔(𝑣4)

= 3 

𝑑𝑒𝑔(𝑣2)

= 3 

𝑑𝑒𝑔(𝑣1)

= 2 
Graph G 
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can at most double. The broadcast time of graph G, 𝑏(𝐺), is defined as the maximum 

broadcast time among all the vertices, formally written as:  

𝑏(𝐺) = 𝑚𝑎𝑥{ 𝑏(𝑣) | 𝑣 ∈ 𝑉} 

The process of broadcasting and the broadcast time of graph G are demonstrated 

in Figure 1.3, where 𝑣1 is the originator of broadcasting.  

 

 

 

 

 

 

Time 0,   𝑆0 = {𝑣1} 

 

 

 

 

 

 

Time 1,   𝑆1 = {𝑣1, 𝑣2} 

 

 

 

 

 

 

Time 2,   𝑆2 = {𝑣1, 𝑣2, 𝑣3, 𝑣5} 

 

 

 

 

 

 

Time 3,   𝑆3 = {𝑣1, 𝑣2, 𝑣3, 𝑣4 𝑣5} 

Figure 1.3 The process of broadcasting in graph G, where b(G) = 3 

 

 

A graph on n vertices with 𝑏(𝐺) =  ⌈log2𝑛⌉ is called a broadcast graph. A 

broadcast graph with the minimum possible number of edges is called minimum 

broadcast graph (mbg). The broadcast function, denoted 𝐵(𝑛), is defined as the number 

of edges in an n vertex mbg. A minimum gossip graph is a gossip graph with a minimum 

number of edges. The graph, where the broadcast time equals to its diameter, is called the 

diametral broadcast graph. 

𝑣2 𝑣1 

𝑣5 𝑣4 

𝑣3 

Graph G 

(a) 

1 
𝑣2 𝑣1 

𝑣5 𝑣4 

𝑣3 

(b) 

2 

2 

1 
𝑣2 𝑣1 

𝑣5 𝑣4 

𝑣3 

(c) 

2 

2 

1 
𝑣2 𝑣1 

𝑣5 𝑣4 

𝑣3 

3 

(d) 
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1.4 Motivation 

Many interconnection networks for efficient communication are considered in the 

literature i.e., Path 𝑃𝑛, Cycle 𝐶𝑛, Complete tree 𝑇𝑘
𝑚, Complete graph 𝐾𝑛, Hypercube 𝐻𝑚, 

Cube-connected cycles 𝐶𝐶𝐶𝑚, Butterfly 𝐵𝐹𝑚, Shuffle-exchange 𝑆𝐸𝑚, DeBruijn 𝐷𝐵𝑚, 

Grid 𝐺[𝑎1 X 𝑎2 X…  X 𝑎𝑑] and Recursive circulant 𝐺(2𝑚, 4) [36][37]. All these network 

architectures either have constant degree and relatively small diameter or they have 

logarithmic degree and logarithmic diameter. Also all of the above mentioned 

interconnection networks can be designed only for specific number of nodes. In particular 

the network architectures i.e., 𝑇𝑘
𝑚,  𝐻𝑚, 𝐶𝐶𝐶𝑚, 𝐵𝐹𝑚, 𝑆𝐸𝑚, 𝐷𝐵𝑚, 𝐺[𝑎1 X 𝑎2 X…  X 𝑎𝑑] 

and 𝐺(2𝑚, 4) have (𝐾𝑚+1 − 1)/(𝑘 − 1), 2𝑚, 𝑚2𝑚, 𝑚2𝑚, 2𝑚, 2𝑚, 𝑎1 𝑎2…𝑎𝑑 and 2𝑚 

number of nodes, respectively.  

Compared to all of the networks, Knödel graph is the only network that can be 

designed for any even number of nodes. Moreover, the degree of every node in Knödel 

graph on 𝑛 nodes can be any value between 2 and ⌊log2 𝑛⌋. When the degree of Knödel 

graph is 2, then it becomes the well-known cycle. When the degree is equal to ⌊log2 𝑛⌋, 

then Knödel graph is a broadcast and gossip graph, in which the main communication 

tasks can be performed, theoretically in minimum possible time.  

The above properties make the Knödel graph the largest possible unique 

interconnection network, which could be sparse (when degree is constant) or dense (when 

degree is logarithmic of 𝑛). This way Knödel graph can be suitable for all possible 

applications based on communication time, network design or implementation cost.  

All this gives us the motivation to study the Knödel graph. Therefore, in this 

thesis we studied the diameter, broadcast time and also the number of nodes at particular 

distance in Knödel graph for all possible even number of nodes and degree of any node.     
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1.5 Contribution of this thesis  
 

In this thesis, our motivation is to find the diameter, the number of vertices at a 

particular distance and the broadcast time of the Knödel graph. Theoretically, we succeed 

in proving the diameter and the broadcast time of the Knödel graph 𝑊3,𝑛. We claim that 

the Knödel graph 𝑊3,𝑛 for 𝑛 = 4 𝑚𝑜𝑑 6 and 𝑛 > 16, is the first infinite family of 

diametral broadcast graphs in the Knödel graph 𝑊𝑑,𝑛. Experimentally, however, we 

obtain the following results: (a) the diameter of some specific Knödel graphs, and (b) the 

propositions on the number of vertices at a particular distance. The obtained results 

increase the list of explored communication properties of the Knödel graph.     

 

1.6 Thesis outline 

The rest of the thesis is structured as follows: Chapter 2 is divided in two sections; 

the first section covers the brief review of commonly used interconnection topologies. 

The second section surveys the Knödel graph in the light of known important results from 

the previous research work.  

Chapter 3 is divided in three sections. In the first section, the diameter of the 

Knödel graph 𝑊3,𝑛, for 𝑛 > 8, is given through a constructive proof. In the second 

section, we give the diameters of some specific Knödel graphs through extensive 

simulation. In the last section, we present three propositions for the number of vertices at 

a particular distance in some specific Knödel graphs.  

In Chapter 4, we present the broadcast time of Knödel graph 𝑊3,𝑛. We also 

present that Knödel graph 𝑊3,𝑛, for 𝑛 = 4 𝑚𝑜𝑑 6 and 𝑛 > 16, is the first infinite family 

of the diametral broadcast graphs in the Knödel graph 𝑊𝑑,𝑛.  
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In chapter 5, we construct a new graph, denoted as 𝐻𝑊𝑑,2𝑑, by connecting the 

vertices of the Knödel graph 𝑊𝑑−1,2𝑑−1 to hypercube 𝐻𝑑−1. We investigate the 

communication properties of 𝐻𝑊𝑑,2𝑑 in terms of number of vertices, degree, edges, 

diameter, and broadcast time. With the use of extensive simulation, we provide diameter 

and broadcast time of 𝐻𝑊𝑑,2𝑑  for all 𝑑 ≤ 24.  

Chapter 6 concludes the thesis and lists the future work.  
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Chapter 2 

Literature Review 
 

 

This chapter is divided in two sections. The first section of this chapter briefly 

reviews the commonly used interconnection topologies. A topology is a schematic or 

geometric description of the arrangement of a network (graph), including its nodes 

(vertices) and connecting lines (edges). The second section of this chapter surveys the 

Knödel graph in the light of known important results from the previous research work.   

2.1 Commonly used topologies 
 

This section reviews the commonly used topologies on basis of three important 

communication parameters: (i) the degree, (ii) the diameter, and (iii) the broadcast time.  

 

The Path 𝑷𝒏  

 
The path 𝑃𝑛 is a tree with two end nodes of vertex degree 1, and the remaining      

𝑛 – 2 nodes of vertex degree 2, thus the maximum degree of 𝑃𝑛 is 2.  The 𝐷(𝑃𝑛) =

𝑏(𝑃𝑛) = 𝑛 − 1. A path is therefore a graph that can be drawn so that all of its vertices and 

edges lie on a single straight line [24]. Figure 2.1 shows a path with seven vertices, where 

𝐷(𝑃7) = 𝑏(𝑃7) = 6. 

 

 

 

  
1            2           3           4           5           6           7 

Figure 2.1 Path 𝑷𝟕 
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The Cycle 𝑪𝒏  

Cycle 𝐶𝑛, 𝑛 ≥ 3, is a simple graph with vertices 𝑣1, … , 𝑣𝑛 and edges 

{𝑣1, 𝑣2}, {𝑣2, 𝑣3}, … , {𝑣𝑛−1, 𝑣𝑛}, {𝑣𝑛, 𝑣1}. In other words cycle 𝐶𝑛 is a path such that the 

start vertex and end vertex are also connected by an edge. 𝐶𝑛 has n vertices and the 

maximum degree is 2. The 𝐷(𝐶𝑛) = ⌊ 
𝑛

2
 ⌋ and the 𝑏(𝐶𝑛) = ⌈ 

𝑛

2
 ⌉. Figure 2.2 demonstrates 

𝐶6, where the diameter and the broadcast time of 𝐶6 is 3. 

 

 
 

 

 

 

 

 

 
 

 

 

The Complete graph 𝑲𝒏  

A complete graph 𝐾𝑛 is a simple graph with exactly one edge between any pair of 

distinct vertices. 𝐾𝑛 has n vertices and degree n – 1. The diameter of 𝐾𝑛 is 1. 𝐾𝑛 is a 

broadcast graph because during each time unit the number of informed vertices is 

doubled, thus 𝑏(𝐾𝑛) = ⌈log2𝑛⌉. Figure 2.3 shows a complete graph 𝐾6, where 𝑏(𝐾6) = 3. 

 

 

 

 

 

  

1 

2 3 

4 

5 6 

Figure 2.2 Cycle 𝑪𝟔 in three different shapes 

Figure 2.3 The Complete graph 𝑲𝟔 

5 

6 

4 

3 

2 

1 

𝐶6 
2 6 

3 

4 5 

1 

𝐶6 

1 

2 

3 

4 

5 

6 

𝐶6 
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The Hypercube 𝑯𝒏  
 

The hypercube of dimension n, denoted by 𝐻𝑛, is a simple graph with vertices 

representing 2𝑛 bit strings of length n, 𝑛 ≥ 1 such that adjacent vertices have bit strings 

differing in exactly one bit position. 𝐻𝑛 has 2𝑛 vertices and 𝑛 ∙ 2𝑛−1 edges. The diameter 

of 𝐻𝑛 is n and each vertex has exactly degree n. A (n+1)-dimensional hypercube can be 

constructed from two n-dimensional hypercubes by connecting each pair of the 

corresponding vertices. 𝐻𝑛 is the minimum broadcast graph. The 𝑏(𝐻𝑛) = ⌈log2 2
𝑛⌉ = 𝑛. 

Figure 2.4 illustrates three hypercubes of dimensions 1, 2 and 3.  

 

 

 

 

 

 

Figure 2.4 Hypercubes of dimensions 1, 2 and 3 

 

 

The Cube-Connected Cycles 𝑪𝑪𝑪𝒏 
 

𝐶𝐶𝐶𝑛 is a modification of the hypercube 𝐻𝑛 by replacing each vertex of the 

hypercube with a cycle of n vertices. The i-th dimensional edge incident to a node of the 

hyper-node is then connected to the i-th node of corresponding cycle of the 𝐶𝐶𝐶𝑛. Thus, 

𝐶𝐶𝐶𝑛 has 𝑛 ∙ 2𝑛 nodes and the maximum degree is 3. The 𝐷(𝐶𝐶𝐶𝑛) = 2𝑛 + ⌊
𝑛

2
⌋ − 2. The 

𝑏(𝐶𝐶𝐶𝑛) = ⌈
5𝑛

2
⌉ − 1 [9], first every informed vertex sends the message to the hypercube 

neighbor, then to the right neighbor on the ring, and finally to the left one. Figure 2.5 

shows a 3-dimensional cube connected cycle. 

𝐻1 

𝐻2 

𝐻3 
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Figure 2.5 Cube Connected Cycle 𝑪𝑪𝑪𝟑 

 

The Shuffle-Exchange 𝑺𝑬𝒏  

 

𝑆𝐸𝑛 is the graph whose vertices can be represented by binary strings of length n. 

Each edge of 𝑆𝐸𝑛 connects vertex 𝛽𝑎, where 𝛽 is a binary string of length n – 1  and 𝑎  is 

in {0, 1}, with vertex 𝛽𝑐 and vertex 𝛽𝑎, where c is the binary complement of 𝑎. 𝑆𝐸𝑛 has 

2𝑛 vertices and the maximum degree is 3. The 𝐷(𝑆𝐸𝑛) = 2𝑛 − 1 and in [38], it is 

provided that  𝑏(𝑆𝐸𝑛) ≤ 2𝑛 − 1. Figure 2.6 presents a Shuffle-Exchange graph 𝑆𝐸3. 

 

 

Figure 2.6 Shuffle-Exchange graph 𝑺𝑬𝟑 
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The DeBruijn 𝑫𝑩𝒏  
 

𝐷𝐵𝑛 is the graph, whose nodes can be represented by binary strings of length n 

and whose edges connect each string 𝛽𝑎, where 𝛽 is a binary string of length n – 1 and 𝑎 

is in {0, 1}, with the strings 𝛽𝑏, where b is a symbol in {0, 1}. 𝐷𝐵𝑛 has 2𝑛 vertices with 

the maximum degree 4 and the diameter is n. [43] provides the lower bound 𝑏(𝐷𝐵𝑛) ≥

1.3171𝑛, and [4] proves the upper bound, 𝑏(𝐷𝐵𝑛) ≤ 1.5𝑛 + 1.5. Figure 2.7 illustrates a 

DeBruijn graph of dimension 3. 

 

Figure 2.7 DeBruijn graph 𝑫𝑩𝟑 

 

The d-Grid 𝑮[𝒂𝟏 X 𝒂𝟐 X…  X 𝒂𝒅] 
 

The d-dimensional grid (or mesh) is the graph whose nodes are all d-tuples of 

positive integers (𝑧1, 𝑧2, . . . , 𝑧𝑑), where 0 ≤ 𝑧𝑖 < 𝑎𝑖 for all 𝑖 (1 ≤ 𝑖 ≤ 𝑑), and whose 

edges connect d-tuples, which differ in exactly by coordinate one. For example, in 

𝐺[3,3], vertex (1, 1) is connected to vertices (0, 1), (2, 1), (1, 0) and (1, 2). 

𝐺[𝑎1 X 𝑎2 X…  X 𝑎𝑑]  has  𝑎1 X 𝑎2 X…  X 𝑎𝑑 vertices with the maximum degree 2d, if 

each 𝑎𝑖 is at least 3. The diameter of d-Grid 𝐺[𝑎1 X 𝑎2 X…  X 𝑎𝑑] is (𝑎1 − 1) +

(𝑎2 − 1) + ⋯+ (𝑎𝑑 − 1) and [33] provides the 𝑏(𝐺[𝑎1 X 𝑎2]) = 𝑎1 + 𝑎2 − 2.     

Figure 2.8 shows a 2-Grid graph 𝐺[4 x 5]. 
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Figure 2.8  2-Grid graph 𝑮[𝟒 𝐱 𝟓] 

 
 

The d-Torus 𝑻   
 

A d-Torus graph is a d-grid graph with both ends of rows and columns connected. 

𝑇[𝑎1 X 𝑎2 X…  X 𝑎𝑑] denotes the d-Torus graph. The diameter of k x k  X-Torus is given 

in [24], that is ⌊𝑘 2⁄ ⌋ + 1 if k is odd, and ⌊𝑘 2⁄ ⌋ if k is even. It is proven in [11] that the 

optimal broadcast time of 2-Torus graph is ⌈
𝑎1

2
⌉ + ⌈

𝑎2

2
⌉, when 𝑎1 or 𝑎2 is even; and it is 

⌈
𝑎1

2
⌉ + ⌈

𝑎2

2
⌉ – 1, when both 𝑎1 and 𝑎2 are odd. The bounds on the broadcast time of Torus 

are 𝐷 ≤ 𝑏(𝑇[𝑎1 X 𝑎2 X…  X 𝑎𝑑]) ≤ 𝐷 +max (0,𝑚 − 1), where 𝐷 = ∑ 𝑎𝑖 − 𝑑
𝑑
𝑖=1 , and m 

is the number of odd 𝑎𝑖. Figure 2.9 shows a 2-Torus graph 𝑇[4 x 3]. 

 

Figure 2.9  2-Torus graph 𝑻[𝟒 𝐱 𝟑] 
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Recursive Circulant graph 𝑮(𝒏, 𝒅)   

 

The recursive circulant graph 𝐺(𝑛, 𝑑) is introduced by Park and Chwa [37]. We 

define the recursive circulant graph 𝐺(𝑛, 𝑑) = (𝑉, 𝐸) with 𝑑 ≥ 2, to be a graph where, 

𝑉 = {0,1, … , 𝑛 − 1}, and the edge set 𝐸 = {𝑢𝑣|∃𝑖, 0 ≤ 𝑖 ≤ ⌈log𝑑(𝑛)⌉ − 1, such that 𝑢 +

𝑑𝑖 ≡ 𝑣(mod 𝑛)}. 𝐺(𝑁, 𝑑) has recursive structure when 𝑁 = 𝑐𝑑𝑚, 1 ≤ c < 𝑑. The [37] 

provides the diameter as follows: if d is odd,  𝐷(𝐺(𝑐𝑑𝑚, 𝑑)) = ⌊𝑑 2⁄ ⌋𝑚 + ⌊𝑐 2⁄ ⌋. When d 

is even and c is odd, the diameter is ⌈
𝑑−1

2
𝑚⌉ + ⌊𝑐 2⁄ ⌋. Finally, when both d and c are 

even, the diameter is  ⌊
𝑑−1

2
𝑚⌋ + ⌊𝑐 2⁄ ⌋. 𝐺(2𝑚, 4), whose degree is m, compares favorably 

to the hypercube 𝐻𝑚. 𝐺(2𝑚, 4) has the maximum possible connectivity, and its diameter 

is ⌈3𝑚 − 1 4⁄ ⌉. The broadcast time of 𝐺(2𝑚, 4) is m. Figure 2.10 shows the two recursive 

circulant graphs, G(8,4) and G(16,4). 

 

 

 

Figure 2.10 Recursive circulant graphs 𝑮(𝟖, 𝟒) and 𝑮(𝟏𝟔, 𝟒) 
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The summary of the communication properties (i.e., the degree, the diameter and 

the broadcast time, of reviewed commonly used topologies), is provided in Table 2.1. 

  

Table 2.1 Summary of commonly used topologies 

Graph Degree Diameter Broadcast time 

Path graph 𝑃𝑛 2 n – 1 n – 1 

Cycle 𝐶𝑛 2 ⌊ 
𝑛

2
 ⌋ ⌈ 

𝑛

2
 ⌉ 

Complete graph 

𝐾𝑛 
n – 1 1 ⌈log2𝑛⌉ 

Hypercube 𝐻𝑛 

(n = dimension) 
n n 𝑛 = ⌈log22

𝑛⌉  

Cube-Connected 

Cycles 𝐶𝐶𝐶𝑛 
3 2𝑛 + ⌊

𝑛

2
⌋ − 2 ⌈ 

5𝑛

2
 ⌉ − 1 

Shuffle-Exchange 

𝑆𝐸𝑛 
3 2𝑛 − 1 2𝑛 − 1 

DeBruijn 𝐷𝐵𝑛 4 n 1.3171𝑛 ≤ 𝑏(𝐷𝐵𝑛) ≤ 1.5𝑛 + 1.5 

d-Grid 

𝐺[𝑎1 x 𝑎2 x… x 𝑎𝑑] 
2d 

(𝑎1 − 1)
+ (𝑎2 − 1) + ⋯
+ (𝑎𝑑 − 1) 

Broadcast time of a 2-grid 

𝑏(𝐺[𝑎1 X 𝑎2]) = 𝑎1 + 𝑎2 − 2 

d-Torus graph 
[𝑎1 x 𝑎2 x…  x 𝑎𝑑] 

2d 

Diameter of kxk 

d-Torus, is 
⌊𝑘 2⁄ ⌋ + 1 if k 

is odd and 
⌊𝑘 2⁄ ⌋ if k is 

even 

The bounds on the broadcast time 

of d-Torus are 𝐷 ≤
𝑏(𝑇[𝑎1 x 𝑎2 x…  x 𝑎𝑑]) ≤ 𝐷 +

max (0,𝑚 − 1),  

where 𝐷 = ∑ 𝑎𝑖 − 𝑑
𝑑
𝑖=1 , and m is 

the number of odd 𝑎𝑖. 

Recursive 

Circulant 

𝐺(2𝑚, 4)  
m ⌈3𝑚 − 1 4⁄ ⌉ m 
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2.2 Survey of the Knödel graph 
 

The Knödel graph 𝑊𝑑,𝑛 is a regular graph of even order n and degree d, 1 ≤ 𝑑 ≤

⌊log2 𝑛⌋.  It was introduced by W. Knödel for 𝑑 = ⌊log2 𝑛⌋ in 1975 and was used in an 

optimal gossiping algorithm [40]. For smaller d, the family of Knödel graphs has been 

defined formally by Fraigniaud and Peters [19]. Since 1994 a lot of research has been 

done on Knödel graph, especially because some subfamilies of the Knödel graph tend to 

have good properties in terms of broadcasting and gossiping [16]. Many graphs 

introduced as minimum broadcast (resp. gossip) graphs, such as in [7] [39] [41], were in 

fact isomorphic to the Knödel graphs [17].  

 

In particular, for any 𝑛 = 2𝑑, the Knödel graph of order n and degree d, 𝑊𝑑,2𝑑, 

turns out to be minimum broadcast (resp. gossip, linear gossip) graph [16]. In that way 

𝑊𝑑,2𝑑 competes to the hypercube of dimension d, 𝐻𝑑, and the recursive circulant graph 

𝐺(2𝑑 , 4) [37]. These three topologies are comparable because they all have good 

properties in terms of interconnection networks. Moreover, they are of the same order 2𝑑, 

and regular of the same degree d. The Knödel graph become famous due to its smallest 

known diameter among all regular and minimum broadcast graphs on 2𝑑 vertices with 

degree d [26].  

 

Definitions of the Knödel graph 

The Knödel graph has been formally defined in [19] as follows: 

 

Definition 1:  (Knödel graph – one layer representation)  

The Knödel graph 𝑊𝑑,𝑛 of an even order n and degree d is the graph G = (V, E) 

with number of vertices, V={0, 1,…, n-1} and 𝐸 = {(𝑖, 𝑗)| 𝑖 + 𝑗 = 2𝑟 − 1 𝑚𝑜𝑑 𝑛,

0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1, 1 ≤ 𝑟 ≤ 𝑑}.  
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Figure 2.11 One layer representations of the Knödel graph 𝑾𝟑,𝟏𝟐 

 

It is clear from the above definition that the Knödel graph is a regular graph of 

degree d. Through-out this thesis we will refer to this definition as one-layer 

representation. Figure 2.11 demonstrates the one-layer representations of the Knödel 

graph 𝑊3,12.  

 

Definition 2: (Knödel graph – Bipartite or two-layer representation)  

The Knödel graph on n ≥ 2 vertices (n even) and degree d, 1 ≤ d ≤ ⌊𝑙𝑜𝑔2𝑛⌋, is 

denoted by 𝑊𝑑,𝑛. The vertices of 𝑊𝑑,𝑛 are the pairs (𝑖, 𝑗) with 𝑖 = 0, 1 𝑎𝑛𝑑 0 ≤

 𝑗 ≤  
𝑛

2
 –  1, and the set of edges: 𝐸 = {(0, 𝑖), (1, 𝑗) |  𝑗 = 𝑖 + 2𝑟 – 1 𝑚𝑜𝑑 

𝑛

2
,   0 ≤

𝑖, 𝑗 ≤  
𝑛

2
– 1,   0 ≤ 𝑟 ≤ 𝑑– 1}.               

Dimensions of the Knödel graph 

 An edge of 𝑊𝑑,𝑛 that connects a vertex (0, 𝑗)  to vertex (1, 𝑖 + 2𝑟– 1 𝑚𝑜𝑑 
𝑛

2
)  is 

said to be in dimension 𝑟, where 0 ≤ 𝑟 ≤ 𝑑– 1. Figure 2.12 illustrates an example of the 

Knödel graph 𝑊3,12 in a bipartite representation.  
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It is clear from the above definition, that the Knödel graph 𝑊𝑑,𝑛 is a bipartite 

graph. Knödel graph 𝑊𝑑,𝑛 is connected, iff  𝑑 ≥ 2, since in that case it suffices to 

alternate edges in dimensions 0 and 1 to get Hamiltonian cycle [16].  

 

The Knödel graph  𝑊𝑑,𝑛 can also be defined as a Cayley graph [34] [35], as stated 

in Proposition 1 below. 

 

Proposition 1 [35] 

For any even n and 1≤ d ≤ ⌊log 𝑛⌋, 𝑊𝑑,𝑛 is a Cayley graph on the semi-direct 

product 𝐺 = ℤ2 ⋉ ℤ𝑛/2 for the multiplicative law: (𝑥, 𝑦)(𝑥’, 𝑦’) =(x+x’, y+(-1)x y’), with 

𝑥, 𝑥’ ∈  ℤ2 and 𝑦, 𝑦’ ∈  ℤ𝑛/2 with the set of generators 𝑆 = {(1,2i-1), 0 < 𝑖 < ∆ − 1}. 

 

Corollary 1 [16]  

For any even n and  1 ≤ 𝑑 ≤ ⌊log 𝑛⌋, 𝑊𝑑,𝑛 is vertex-transitive. 

 

Proof: This follows directly from Proposition 1 above because it is well known that any 

Cayley graph is vertex-transitive (see [44]). 

 

It has been proven in [16], that for any n and 1 ≤ 𝑑 ≤ ⌊log 𝑛⌋, it is possible to 

construct 𝑊𝑑+1,2𝑛 by taking two copies of  𝑊𝑑,𝑛 and linking the vertices of each copy by 

a certain perfect matching.  

              Dimension 0 

              Dimension 1 

              Dimension 2 

(1,5) (1,4) (1,3) (1,2) (1,0) (1,1) 

(0,5) (0,4) (0,3) (0,2) (0,0) (0,1) 
Layer 0 

Layer 1 

Figure 2.12 Bipartite or two-layer representation of the Knödel graph 𝑾𝟑,𝟏𝟐 
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Knödel graphs, along with their routing, broadcasting and gossiping 

performances, have been studied in [2], where at each step only edges in a certain 

dimension k are being used. Such graphs are called Modified Knödel Graphs, which turn 

out to be isomorphic to Knödel graphs 𝑊⌊log2(𝑛)⌋,𝑛 according to Definition 2, for any n 

not a power of 2 [16]. Their main goal was to study the performances of these graphs, 

when dimensions are used alternatively. They proved that the dimensions of the Knödel 

graphs had a similar role than the ones of hypercubes, with respect to routing, 

broadcasting and gossiping.  

 

Shortest path problem in the Knödel graph 
  

In [31] 2-approximation algorithm with the logarithmic time complexity is 

proposed for the shortest path problem in the Knödel graph 𝑊𝑑,2𝑑 .  

Diameter of the Knödel graph 

Despite being a highly symmetric and widely studied graph, the diameter of the 

Knödel graph 𝑊𝑑,𝑛 is only known for 𝑛 = 2𝑑 and degree d. In [13], it was proven that 

𝐷(𝑊𝑑,2𝑑) = ⌈
𝒅+𝟐

𝟐
⌉. The nontrivial proof of this result is algebraic and the actual 

diametral path is not presented. The diameter of 𝑊𝑑,2𝑑  is the smallest among all known 

regular and broadcast networks on 2d vertices with degree d [26].  

  

 The diameter is one of the parameters for which we can say that 𝑊𝑑,2𝑑 can 

compete with Hypercube 𝐻𝑑 and Recursive circulant 𝐺(2𝑑 , 4) graphs. Table 2.2 [16] 

provides the comparison between 𝑊𝑑,2𝑑,  𝐻𝑑,  and  𝐺(2𝑑 , 4).  
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Table 2.2 Comparison between 𝑾𝒅,𝟐𝒅,  𝑯𝒅, and 𝑮(𝟐𝒅, 𝟒) 

Properties 𝑯𝒅 𝑮(𝟐𝒅, 𝟒) 𝑾𝒅,𝟐𝒅 

Number of vertices 2d 2d 2d 

Degree 𝑑 𝑑 𝑑 

Diameter 𝑑 ⌈(3𝑑 − 1) 4⁄ ⌉ ⌈(𝑑 + 2) 2⁄ ⌉ 

Vertex-transitivity Yes Yes Yes 

Edge-transitivity Yes No No 

Hamiltonian cycle Yes Yes Yes 

Binomial Tree Yes Yes Yes 

 

The upper and lower bounds on the diameter of the Knödel graph 𝑊𝑑,𝑛 have 

recently been proved in [22]. These bounds are given by the following Theorem 1 and 2. 

 

Theorem 1 [22]: (Upper bound on Diameter) Let 𝑎 = ⌊
1

2
⌈
𝑛−2

2∆−2
⌉⌋  𝑎𝑛𝑑 𝑏 =  ∆ − 2(∆≥ 3).  

 

 If 𝑎 ≥ 𝑏 𝑡ℎ𝑒𝑛 𝐷(𝑊∆,𝑛) ≤ 2𝑎 + 3 = 2 ⌊
1

2
⌈
𝑛−2

2∆−2
⌉⌋ + 3, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

  𝐷(𝑊∆,𝑛) ≤ 2𝑎 + 3⌈(∆ − 2 − 𝑎)/4⌉ + 7 ≤
3

4
∆ +

5

4
𝑎 +

17

2
. 

 

Theorem 2 [22]: (Lower bound on Diameter)     𝐷(𝑊∆,𝑛) ≥ 2 ⌊
1

2
⌈
𝑛−2

2∆−2
⌉⌋ + 1.  

 

Broadcasting in the Knödel graph 

The Knödel graph has been studied since long time in terms of broadcasting and 

gossiping. The Knödel graph 𝑊⌊log2(𝑛)⌋,𝑛 is a broadcast and gossip graph [2] [13] [18]. 

The 𝑊⌊log2(𝑛)⌋,𝑛 is used to construct sparse broadcast graphs of a bigger size by 

interconnecting several smaller copies or by adding and deleting vertices [3] [8] [23] [27] 

[28] [29] [30] [31]. The broadcast time of the Knödel graph is known only for 𝑊𝑑,2𝑑  and 

for 𝑊𝑑−1,2𝑑−2. It is shown that 𝑏(𝑊𝑑,2𝑑) = 𝑑 (𝑑 ≥ 1) [12] [37] [40] and that 
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𝑏(𝑊𝑑−1,2𝑑−2) = 𝑑 (𝑑 ≥ 2) [7] [39]. Table 2.3 [42] provides a summary of known 

broadcast and gossiping properties of the Knödel graph.   

Table 2.3 Broadcast and gossip properties of the Knödel graphs 

Type of graph Properties 

𝑾𝒅,𝟐𝒅 
Minimum broadcast graph [12] 

Minimum gossip graph [40] 

Minimum linear gossip graph [19] 

𝑾𝒅−𝟏,𝟐𝒅−𝟐 
Minimum broadcast graph [7] [39] 

Minimum gossip graph [41] 

Minimum linear gossip graph [19] 

𝑾𝒅−𝟏,𝟐𝒅−𝟒 
Minimum gossip graph [41] 

Minimum linear gossip graph [19] 

𝑾𝒅−𝟏,𝟐𝒅−𝟔 Minimum linear gossip graph [19] 

𝑾𝒅−𝟐,𝒏 
 

2𝑑−1 + 2 ≤ 𝑛 ≤ 3 ∙ 2𝑑−2 − 4 

Broadcast graph [14] 

Gossip graph [14] 

Linear gossip graph [15] 

𝑾𝒅−𝟏,𝒏 
 

3 ∙ 2𝑑−2 − 4 ≤ 𝑛 ≤ 2𝑑 − 2 

Broadcast graph [14] 

Gossip graph [14] 

Linear gossip graph [15] 
 

It is shown in [2] that the edges of the Knödel graph can be grouped into 

dimensions that are similar to hypercube dimensions. This allows these dimensions to be 

used in a similar manner to hypercube for broadcasting [27]. 

The broadcast graphs on odd number of vertices have been constructed in [1], by 

applying a vertex deletion method to the Knödel graph. This construction provides an 

improved general upper bound on 𝐵(𝑛) for all odd n except when 𝑛 = 2𝑑 − 1. 

The general upper and lower bounds on the broadcast time of the Knödel graph 

𝑊𝑑,𝑛,  have recently been proven in [23], which are as follows: 

 

2 ⌊
1

2
⌈
𝑛 − 2

2𝑑 − 2
⌉⌋ + 1 ≤ 𝑏(𝑊𝑑,𝑛) ≤ ⌈

𝑛 − 2

2𝑑 − 2
⌉ + 𝑑 − 1 
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Chapter 3 

The Diameter of the Knödel graph 
 

 

This chapter is divided in three sections. In the first section, the diameter of the 

Knödel graph 𝑊3,𝑛, for 𝑛 > 8, is given through a constructive proof. In the second 

section, we find the diameters of some specific Knödel graphs through extensive 

simulation. In the last section, we present three propositions for the number of vertices at 

a particular distance in some specific Knödel graphs.  

3.1 The Diameter of Knödel graph 𝑾𝟑,𝒏 
 

In this section, we present the diameter of the Knödel graph 𝑊3,𝑛. Our proof is 

constructive and we provide an actual diametral path in 𝑊3,𝑛. The distance between 

vertices 𝑢 and 𝑣 is denoted by 𝑑𝑖𝑠𝑡(𝑢, 𝑣). Using these notations and the vertex 

transitivity of the Knödel graph, we state that  

𝐷(𝑊3,𝑛) = 𝑚𝑎𝑥  { 𝑑𝑖𝑠𝑡(0, 𝑦)| 0 ≤ 𝑦 ≤ 𝑛 − 1}. 
 

3.1.1 Paths in the Knödel graph 𝑾𝟑,𝒏 
 

Recall that according to the Definition 1 of the Knödel graph 𝑊𝑑,𝑛, in 𝑊3,𝑛 three 

different paths can be formed using the dimensions: (i) 1 and 2,  (ii) 2 and 3, and (iii) 1 

and 3. In the first path the 1 and 2-dimensional edges “move” forward by only two 

vertices. In the second path 2 and 3-dimensional edges, “move” forward by only four 

vertices.  In fact, a shorter path can be formed by the 1 and 3-dimensional edges, where 

every “move” is of six vertices.  
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We construct three different paths between two vertices in the Knödel graph 𝑊3,𝑛. 

These paths have certain properties, which will be used to determine the diameter of 

𝑊3,𝑛. We first discuss the set of vertices in 𝑊3,𝑛 that can be reached from vertex 0, using 

1 and 3-dimensional edges. It is clear that in 𝑊3,𝑛 we can “move” either clockwise or 

anti-clockwise from vertex 0, as shown in Figure 3.1. We can choose the path  

0
𝑑𝑖𝑚: 1 
→    1

𝑑𝑖𝑚: 3 
→    6

𝑑𝑖𝑚: 1 
→    𝑛 − 5

𝑑𝑖𝑚: 3
→    6(2)

𝑑𝑖𝑚: 1 
→     …   

𝑑𝑖𝑚: 3
→    6𝑥           (clockwise)             

or the path 

 0
𝑑𝑖𝑚: 3 
→    7

𝑑𝑖𝑚: 1
→    𝑛 − 6

𝑑𝑖𝑚: 3
→    13

𝑑𝑖𝑚: 1
→    𝑛 − 6(2)

𝑑𝑖𝑚: 3
→     … 

𝑑𝑖𝑚: 1
→    𝑛 − 6𝑥  (anti − clockwise) 

 

by alternating the 1 and 3-dimensional edges. The 3-dimensional edges move “forward” 

by 5 vertices, whereas the 1-dimensional edges by 1 vertex only. So, in the each iteration, 

the 1 and 3-dimensional edges move forward by 6 vertices. These two paths will 

eventually intersect or overlap, somewhere near the vertex 𝑛/2. There are six possible 

cases of 𝑊3,𝑛, depending on the number of vertices. The 1 and 3-dimensional edges will 

split 𝑊3,𝑛 into 2𝑥 segments, where  

 

2𝑥 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

6
, 

each having length 6, except the one containing vertex 𝑛/2. We can perform only  

 

𝑥 =
1

2
 (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

6
) =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

12
 

 

1 and 3-dimensional passes in each of these two paths, (i.e., clockwise and anti-

clockwise), before they intersect. Therefore, we will never use more than 𝑥 1 and 3-

dimensional passes to reach a vertex in 𝑊3,𝑛.  
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Using 1 and 3-dimensional edges, we can reach the vertices 6, 6(2),

6(3), … , 6(𝑥 − 1), 6𝑥 from vertex 0, in the clockwise direction. Similarly, anti-

clockwise, we reach the vertices 𝑛 − 6, 𝑛 − 6(2), 𝑛 − 6(3), … , 𝑛 − 6(𝑥 − 1), 𝑛 − 6𝑥.  

 

 
 

Figure 3.1 Schematic illustration of paths (clockwise and anti-clockwise) in 𝑾𝟑,𝒏. 

 

Once, we arrive at the vertices 𝑣1 = 6𝑥 and 𝑣2 = 𝑛 − 6𝑥, then our goal is to find 

and reach the diametral vertices. Since, these diametral vertices of 𝑊3,𝑛 cannot be 

reached using  1 and 3-dimensional edges. Therefore, these vertices are reached by the 

small moves of 1, 2 or 3 dimensional edges, either in “forward” or “backward” 

directions, from vertices 𝑣1 and 𝑣2.  

 

3.1.2 Six cases of the Knödel graph 𝑾𝟑,𝒏 
 

In this section, we consider six different cases depending on number of vertices of 

the Knödel graph 𝑊3,𝑛, in order to determine the diameter of 𝑊3,𝑛. 
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Case 1: 𝒏 = 𝟎 𝒎𝒐𝒅 𝟔 and 
 𝐧 

𝟐
 is even 

𝑛 = 0 𝑚𝑜𝑑 6 and 
 n 

2
 is even, can be written as 𝑛 = 0 𝑚𝑜𝑑 12. Let us consider 

𝑛 = 12𝑥, for some 𝑥 ∈ ℤ+ (ℤ+: set of positive integers). We can perform only 𝑥 =
𝑛

12 
,  1 

and 3-dimensional passes in each of these two paths (i.e., clockwise and anti-clockwise), 

before they intersect. Figure 3.2 illustrates the discussed path. The vertices 𝑣1 and 𝑣2 can 

be determined as follows: 

 𝑣1 = 6𝑥 = 6 (
𝑛

12
) =

𝑛

2
                            (clockwise) 

and    𝑣2 =  𝑛 − 6𝑥 = 𝑛 − 6 (
𝑛

12
) =

𝑛

2
            (anti-clockwise) 

 

In this case, in either direction, we reach the vertex 𝑣 =
𝑛

2
, using 1 and 3-

dimensional edges. The distance between the vertices 0 and 𝑣,  

𝑑𝑖𝑠𝑡 (0,
𝑛

2
) = 2𝑥  = 2 (

𝑛

12
)   =  

𝑛

6
    

 

 

Figure 3.2 The diameter of the Knödel graph 𝑾𝟑,𝒏, where n = 0 mod 6 and n/2 is even 
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Two vertices, 
𝑛

2
+ 3 and 

𝑛

2
+ 5, are the neighbors of the vertices those are at 

distance 2𝑥, from vertex 0. Therefore, their distance from vertex 0 is 2𝑥 + 1. Since, there 

is no any other vertex in the graph, whose distance is greater than the vertices  
𝑛

2
+ 3  and   

𝑛

2
+ 5, from vertex 0. Therefore, these are the diametral vertices of 𝑊3,𝑛, when 𝑛 =

0 𝑚𝑜𝑑 6 and 
 n 

2
 is even. Each diametral vertex can be reached from three vertices of 

distance 2𝑥 as follows: 

𝑛

2
− 2

    𝑑𝑖𝑚: 1   
→       

𝑛

2
+ 3,       

𝑛

2

    𝑑𝑖𝑚: 2   
→       

𝑛

2
+ 3     and     

𝑛

2
+ 4

    𝑑𝑖𝑚: 3   
→       

𝑛

2
+ 3    

𝑛

2
− 4

    𝑑𝑖𝑚: 1   
→       

𝑛

2
+ 5,       

𝑛

2
− 2

    𝑑𝑖𝑚: 2   
→       

𝑛

2
+ 5     and     

𝑛

2
+ 2

    𝑑𝑖𝑚: 3   
→       

𝑛

2
+ 5    

 

Since the diametral vertices are at distance  2𝑥 + 1 =
 𝑛 

6
+ 1 from vertex 0, thus, 

 𝑫(𝑾𝟑,𝒏) =
 𝒏 

𝟔
+ 1           for  𝑛 = 0 𝑚𝑜𝑑 6  and  

𝑛

2
 is even 

Case 2: 𝒏 = 𝟎 𝒎𝒐𝒅 𝟔 and 
 𝐧 

𝟐
 is odd 

 

𝑛 = 0 𝑚𝑜𝑑 6 and 
 n 

2
 is odd, can be written as 𝑛 = 6 𝑚𝑜𝑑 12. Let us consider 𝑛 =

12𝑥 + 6, for some 𝑥 ∈ ℤ+. We can perform only 𝑥 =
𝑛−6

12
   1 and 3-dimensional passes in 

each of these two paths (i.e., clockwise and anti-clockwise), before they intersect. The 

discussed path is demonstrated in Figure 3.3. The vertices 𝑣1 and 𝑣2 can be determined as 

follows: 

 𝑣1 = 6𝑥 = 6 (
𝑛−6

12
) =

𝑛−6

2
=
𝑛

2
− 3           (clockwise) 

and    𝑣2 =  𝑛 − 6𝑥 = 𝑛 − 6 (
𝑛−6

12
) = 𝑛 − (

𝑛−6

2
) =

𝑛

2
+ 3         (anti-clockwise) 
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Figure 3.3 The diameter of the Knödel graph 𝑾𝟑,𝒏, where n = 0 mod 6 and n/2 is odd 

 

The vertices 𝑣1 and 𝑣2 are at distance 2𝑥 from vertex 0.   

𝑑𝑖𝑠𝑡 (0,
𝑛

2
− 3) = 2𝑥  = 2 (

𝑛−6

12
)   = 

𝑛−6

6
  =

𝑛

6
− 1 

𝑑𝑖𝑠𝑡 (0,
𝑛

2
+ 3) = 2𝑥  = 2 (

𝑛−6

12
)  = 

𝑛−6

6
  =

𝑛

6
− 1 

Once we reach the vertices 𝑣1 =
𝑛

2
− 3 and 𝑣2 =

𝑛

2
+ 3 then our goal is to find and 

reach the diametral vertices, using the paths discussed in Section 3.1.1. The vertices  
𝑛

2
−

7,
𝑛

2
− 5,

𝑛

2
+ 5 and  

𝑛

2
+ 7 are also at distance 2𝑥 because they are the neighbors of the 

vertices of distance 2𝑥 − 1 from vertex 0. The vertices  
𝑛

2
,   
𝑛

2
+ 2,   

𝑛

2
+ 4,

𝑛

2
+ 6,

and 
𝑛

2
+ 8 are the neighbors of the vertices of distance 2𝑥 from vertex 0. Therefore, their 

distance from vertex 0 is 2𝑥 + 1. Two vertices labeled with 
𝑛

2
− 1 and 

𝑛

2
+ 1, are only 

connected to the vertices of distance 2𝑥 + 1. Therefore, these two vertices are at distance 
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2𝑥 + 2, from vertex 0. Since there is no any other vertex in the graph whose distance is 

greater than the distance of vertices 
𝑛

2
+ 3 and 

𝑛

2
+ 5, from vertex 0. Therefore, these are 

the diametral vertices of 𝑊3,𝑛, when 𝑛 = 0 𝑚𝑜𝑑 6 and 
 n 

2
 is odd. Each diametral vertex 

can be reached from three vertices of distance 2𝑥 + 1 as follows: 

𝑛

2
+ 2

    𝑑𝑖𝑚: 1   
→       

𝑛

2
− 1,       

𝑛

2
+ 4

    𝑑𝑖𝑚: 2   
→       

𝑛

2
− 1     and     

𝑛

2
+ 8

    𝑑𝑖𝑚: 3   
→       

𝑛

2
− 1    

𝑛

2
 
    𝑑𝑖𝑚: 1   
→       

𝑛

2
+ 1,       

𝑛

2
+ 2

    𝑑𝑖𝑚: 2   
→       

𝑛

2
+ 1     and     

𝑛

2
+ 6

    𝑑𝑖𝑚: 3   
→       

𝑛

2
+ 1    

 

Since the diametral vertices are at distance  2𝑥 + 2 from vertex 0, thus 

            𝐷(𝑊3,𝑛) = 2𝑥 + 2  = (
 𝑛 

6
− 1) + 2 =

 𝑛 

6
+ 1        where 2𝑥 =

 𝑛 

6
− 1 

𝑫(𝑾𝟑,𝒏) =
 𝒏 

𝟔
+ 1           for  n = 0 mod 6 and 

𝑛

2
 is odd  

Case 3: 𝒏 = 𝟐 𝒎𝒐𝒅 𝟔 and 
 𝐧 

𝟐
  is even 

𝑛 = 2 𝑚𝑜𝑑 6 and 
 n 

2
 is even, can be written as 𝑛 = 8 𝑚𝑜𝑑 12. Let us consider 

𝑛 = 12𝑥 + 8, for some 𝑥 ∈ ℤ+. We can perform only 𝑥 =
𝑛−8

12
   1 and 3-dimensional 

passes in each of these two paths (i.e., clockwise and anti-clockwise), before they 

intersect. The discussed path is demonstrated in Figure 3.4. The vertices 𝑣1 and 𝑣2, can 

be determined as follows: 

 𝑣1 = 6𝑥 = 6 (
𝑛−8

12
) =

𝑛−8

2
=
𝑛

2
− 4           (clockwise) 

and    𝑣2 =  𝑛 − 6𝑥 = 𝑛 − 6 (
𝑛−8

12
) = 𝑛 − (

𝑛−8

2
) =

𝑛

2
+ 4         (anti-clockwise) 

From vertex 0, the vertices 𝑣1 and 𝑣2 are at the distance:   

𝑑𝑖𝑠𝑡 (0,
𝑛

2
− 4) = 2𝑥  = 2 (

𝑛−8

12
)   = 

𝑛−8

6
  =

𝑛

6
−
4

3
 

𝑑𝑖𝑠𝑡 (0,
𝑛

2
+ 4) = 2𝑥  = 2 (

𝑛−8

12
)  = 

𝑛−8

6
  =

𝑛

6
−
4

3
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Figure 3.4 The diameter of the Knödel graph 𝑾𝟑,𝒏where n = 2 mod 6 and n/2 is even 

 

Once we reach the vertices 𝑣1 =
𝑛

2
− 4 and 𝑣2 =

𝑛

2
+ 4 then our goal is to find and 

reach the diametral vertices, using the paths discussed in Section 3.1.1. The vertices 
𝑛

2
−

8,   
𝑛

2
− 6,   

𝑛

2
+ 6 and  

𝑛

2
+ 8 are also at distance 2𝑥 because they are the neighbors of the 

vertices of distance 2𝑥 − 1 from vertex 0. The vertices 
𝑛

2
− 1,   

𝑛

2
+ 1,   

𝑛

2
+ 3,   

𝑛

2
+

5,   
𝑛

2
+ 7 and  

𝑛

2
+ 9 are the neighbors of the vertices of distance 2𝑥, from vertex 0. 

Therefore, their distance from vertex 0 is 2𝑥 + 1. 

Three vertices labeled with  
𝑛

2
,  
𝑛

2
− 2 and 

𝑛

2
+ 2, are only connected to the vertices 

of distance 2𝑥 + 1, from vertex 0. Therefore, their distance from vertex 0, is 2𝑥 + 2. 

Since there is no any other vertex in the graph, whose distance is greater than the distance 
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of vertices  
𝑛

2
,  
𝑛

2
− 2 and 

𝑛

2
+ 2, from vertex 0. Therefore, these are the diametral vertices 

of 𝑊3,𝑛, when 𝑛 = 2 𝑚𝑜𝑑 6 and 
 n 

2
 is even. Each diametral vertex can be reached from 

three vertices of distance 2𝑥 + 1, as follows: 

𝑛

2
+ 1

    𝑑𝑖𝑚: 1   
→       

𝑛

2
,               

𝑛

2
+ 3

    𝑑𝑖𝑚: 2   
→       

𝑛

2
            and     

𝑛

2
+ 7

    𝑑𝑖𝑚: 3   
→       

𝑛

2
    

𝑛

2
+ 3 

    𝑑𝑖𝑚: 1   
→       

𝑛

2
− 2,       

𝑛

2
+ 5

    𝑑𝑖𝑚: 2   
→       

𝑛

2
− 2     and     

𝑛

2
+ 9

    𝑑𝑖𝑚: 3   
→       

𝑛

2
− 2    

𝑛

2
− 1 

    𝑑𝑖𝑚: 1   
→       

𝑛

2
+ 2,       

𝑛

2
+ 1

    𝑑𝑖𝑚: 2   
→       

𝑛

2
+ 2     and     

𝑛

2
+ 5

    𝑑𝑖𝑚: 3   
→       

𝑛

2
+ 2    

Since the diametral vertices are at distance  2𝑥 + 2 from vertex 0, thus, 

            𝐷(𝑊3,𝑛) = 2𝑥 + 2  = (
 𝑛 

6
−
 4 

3
)+ 2 =

 𝑛 

6
+
2 

3
            where 2𝑥 =

 𝑛 

6
−
 4 

3
 

      𝑫(𝑾𝟑,𝒏) =
 𝒏 

𝟔
+
 𝟐 

𝟑
         for  𝑛 > 8, 𝑛 = 2 𝑚𝑜𝑑 6  and  

𝑛

2
  is even  

 

Case 4:   𝒏 = 𝟐 𝒎𝒐𝒅 𝟔 and  
 𝐧 

𝟐
  is odd 

𝑛 = 2 𝑚𝑜𝑑 6 and 
 n 

2
 is odd, can be written as 𝑛 = 2 𝑚𝑜𝑑 12. Let us consider 𝑛 =

12𝑥 + 2, for some 𝑥 ∈ ℤ+. We can perform only 𝑥 =
𝑛−2

12
   1 and 3-dimensional passes in 

each of these two paths (i.e., clockwise and anti-clockwise), before they intersect. Figure 

3.5 illustrates the discussed path. The vertices 𝑣1 and 𝑣2, can be determined as follows: 

 

 𝑣1 = 6𝑥 = 6 (
𝑛−2

12
) =

𝑛−2

2
= 

𝑛

2
− 1                                (clockwise) 

and    𝑣2 =  𝑛 − 6𝑥 = 𝑛 − 6 (
𝑛−2

12
) = 𝑛 − (

𝑛−2

2
) =

𝑛

2
+ 1      (anti-clockwise) 

From vertex 0, the vertices 𝑣1 and 𝑣2 are at the distance:   

𝑑𝑖𝑠𝑡 (0,
𝑛

2
− 1) = 2𝑥  = 2 (

𝑛−2

12
)   = 

𝑛−2

6
   

𝑑𝑖𝑠𝑡 (0,
𝑛

2
+ 1) = 2𝑥  = 2 (

𝑛−2

12
)  =  

𝑛−2

6
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Figure 3.5 The diameter of the Knödel graph 𝑾𝟑,𝒏, where n = 2 mod 6 and n/2 is odd 

 

Once we reach the vertices 𝑣1 =
𝑛

2
− 1 and 𝑣2 =

𝑛

2
+ 1 then our goal is to find and 

reach the diametral vertices, using the paths discussed in Section 3.1.1. The vertices 
𝑛

2
−

5,
𝑛

2
− 3,

 𝑛

2
+ 3 and  

𝑛

2
+ 5 are also at distance 2𝑥 because they are the neighbors of the 

vertices of distance 2𝑥 − 1 from vertex 0. There are three vertices, 
𝑛

2
+ 2,  

𝑛

2
+ 4 and 

𝑛

2
+

6, those are only connected to the vertices of distance 2𝑥. Therefore, their distance from 

vertex 0, is 2𝑥 + 1. Since there is no any other vertex in the graph whose distance is 

greater than the distance of vertices 
𝑛

2
+ 2,  

𝑛

2
+ 4 and 

𝑛

2
+ 6, from vertex 0. Therefore, 

these are the diametral vertices of 𝑊3,𝑛, when 𝑛 = 2 𝑚𝑜𝑑 6 and 
 n 

2
 is odd. Each diametral 

vertex can be reached from three vertices of distance 2𝑥, as follows: 
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𝑛

2
+ 1

    𝑑𝑖𝑚: 1   
→       

𝑛

2
+ 2,        

𝑛

2
+ 3

    𝑑𝑖𝑚: 2   
→       

𝑛

2
+ 2     and     

𝑛

2
+ 7

    𝑑𝑖𝑚: 3   
→       

𝑛

2
+ 2    

𝑛

2
+ 3 

    𝑑𝑖𝑚: 1   
→       

𝑛

2
+ 4,       

𝑛

2
+ 5

    𝑑𝑖𝑚: 2   
→       

𝑛

2
+ 4     and     

𝑛

2
+ 9

    𝑑𝑖𝑚: 3   
→       

𝑛

2
+ 4    

𝑛

2
− 1 

    𝑑𝑖𝑚: 1   
→       

𝑛

2
+ 6,       

𝑛

2
+ 1

    𝑑𝑖𝑚: 2   
→       

𝑛

2
+ 6     and     

𝑛

2
+ 5

    𝑑𝑖𝑚: 3   
→       

𝑛

2
+ 6    

Since the diametral vertices are at distance  2𝑥 + 1 from vertex 0, thus, 

            𝐷(𝑊3,𝑛) = 2𝑥 + 1 = 
𝑛−2

6
 + 1 =

𝑛−2+6

6
=
𝑛 + 4

6
       where 2𝑥 =

𝑛−2

6
   

 

𝑫(𝑾𝟑,𝒏)  =
𝒏

𝟔
+
𝟐

𝟑
          for 𝑛 = 2 𝑚𝑜𝑑 6 and 

𝑛

2
  is odd  

 

Case 5:   𝒏 = 𝟒 𝒎𝒐𝒅 𝟔 and 
 𝐧 

𝟐
  is even 

𝑛 = 4 𝑚𝑜𝑑 6 and 
 n 

2
 is even, can be written as 𝑛 = 4 𝑚𝑜𝑑 12. Let us consider 

𝑛 = 12𝑥 + 4, for some 𝑥 ∈ ℤ+. We can perform only 𝑥 =
𝑛−4

12
   1 and 3-dimensional 

passes in each of these two paths (i.e., clockwise and anti-clockwise), before they 

intersect. The discussed path is demonstrated in Figure 3.6. The vertices 𝑣1 and 𝑣2, can 

be determined as follows: 

 𝑣1 = 6𝑥 = 6 (
𝑛−4

12
) =

𝑛−4

2
=
𝑛

2
− 2           (clockwise) 

and    𝑣2 =  𝑛 − 6𝑥 = 𝑛 − 6 (
𝑛−4

12
) = 𝑛 − (

𝑛−4

2
) =

𝑛

2
+ 2         (anti-clockwise) 

From vertex 0, the vertices 𝑣1 and 𝑣2 are at the distance:   

𝑑𝑖𝑠𝑡 (0,
𝑛

2
− 2) = 2𝑥  = 2 (

𝑛−4

12
)   =  

𝑛 − 4

6
   

𝑑𝑖𝑠𝑡 (0,
𝑛

2
+ 2) = 2𝑥  = 2 (

𝑛−4

12
)  =  

𝑛 − 4

6
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Figure 3.6 The diameter of Knödel graph 𝑾𝟑,𝒏, where n = 4 mod 6 and n/2 is even 

 

Once we reach the vertices 𝑣1 =
𝑛

2
− 2 and 𝑣2 =

𝑛

2
+ 2 then our goal is to find and 

reach the diametral vertices, using the paths discussed in Section 3.1.1. The vertices  
𝑛

2
−

6,   
𝑛

2
− 4,   

𝑛

2
+ 4  and  

𝑛

2
+ 6 are also at distance 2𝑥 because they are the neighbors of the 

vertices of distance 2𝑥 − 1 from vertex 0. The vertices labeled with  
𝑛

2
+ 1,

𝑛

2
+ 3,

𝑛

2
+ 5 

and   
𝑛

2
+ 7 are the neighbors of the vertices of distance 2𝑥 from the vertex 0. Therefore, 

they are at distance 2𝑥 + 1, from vertex 0.  

There is a vertex, 
𝑛

2
 that is only connected to the three vertices of distance 2𝑥 + 1, 

from vertex 0. Therefore, the distance of the vertex 
𝑛

2
 is 2𝑥 + 2, from vertex 0. Since 

there is no any other vertex in the graph whose distance is greater than the distance of 
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vertex  
𝑛

2
, from vertex 0. Therefore, this is the diametral vertex of 𝑊3,𝑛, when 𝑛 =

4 𝑚𝑜𝑑 6 and 
 n 

2
 is even. This diametral vertex can be reached, by any of the three vertices 

of distance 2𝑥 + 1, as follows: 

𝑛

2
+ 1

    𝑑𝑖𝑚: 1   
→       

𝑛

2
,               

𝑛

2
+ 3

    𝑑𝑖𝑚: 2   
→       

𝑛

2
            and     

𝑛

2
+ 7

    𝑑𝑖𝑚: 3   
→       

𝑛

2
    

Since the diametral vertex is at distance  2𝑥 + 2 from vertex 0, thus, 

            𝐷(𝑊3,𝑛) = 2𝑥 + 2 = (
𝑛 − 4

6
) + 2        where 2𝑥 =

𝑛 − 4

6
 

                 =
𝑛 − 4 + 12

6
  =

𝑛 + 8

6
 

  𝑫(𝑾𝟑,𝒏) =
𝒏

𝟔
+
𝟒

𝟑
          for 𝑛 = 4 𝑚𝑜𝑑 6 and 

𝑛

2
  is even  

 

Case 6:   𝒏 = 𝟒 𝒎𝒐𝒅 𝟔 and 
 𝐧 

𝟐
  is odd 

𝑛 = 4 𝑚𝑜𝑑 6 and 
 n 

2
 is odd, can be written as 𝑛 = 10 𝑚𝑜𝑑 12. Let us consider 

𝑛 = 12𝑥 + 10, for some 𝑥 ∈ ℕ (ℕ: set of natural numbers). We can perform only 𝑥 =

𝑛 − 10

12
   1 and 3-dimensional passes in each of these two paths (i.e., clockwise and anti-

clockwise), before they intersect. The discussed path is demonstrated in Figure 3.7. The 

vertices 𝑣1 and 𝑣2, can be determined as follows: 

 𝑣1 = 6𝑥 = 6 (
𝑛−10

12
) =

𝑛−10

2
=
𝑛

2
− 5           (clockwise) 

and    𝑣2 = 𝑛 − 6𝑥 = 𝑛 − 6 (
𝑛−10

12
) = 𝑛 − (

𝑛−10

2
) =

𝑛

2
+ 5       (anti-clockwise) 

From vertex 0, the vertices 𝑣1 and 𝑣2 are at the distance:   

𝑑𝑖𝑠𝑡 (0,
𝑛

2
− 5) = 2𝑥  = 2 (

𝑛−10

12
)   = 

𝑛−10

6
   

𝑑𝑖𝑠𝑡 (0,
𝑛

2
+ 5) = 2𝑥  = 2 (

𝑛−10

12
)  = 

𝑛−10

6
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Figure 3.7 The diameter of the Knödel graph 𝑾𝟑,𝒏, where n = 4 mod 6 and n/2 is odd 

 

Once we reach the vertices 𝑣1 =
𝑛

2
− 5 and 𝑣2 =

𝑛

2
+ 5 then our goal is to find and 

reach the diametral vertices, using the paths discussed in Section 3.1.1. The vertices  
𝑛

2
−

7,   
𝑛

2
− 9,   

𝑛

2
+ 7  and  

𝑛

2
+ 9 are also at distance 2𝑥 because they are the neighbors of the 

vertices of distance 2𝑥 − 1 from vertex 0.  The vertices 
𝑛

2
− 2,

𝑛

2
,   
𝑛

2
+ 2,   

𝑛

2
+ 6,

𝑛

2
+ 8 

and   
𝑛

2
+ 10, are one edge far from the vertices of distance 2𝑥, from vertex 0. So, they 

are at distance 2𝑥 + 1, from vertex 0. The vertices 
𝑛

2
− 1,   

𝑛

2
− 3,   

𝑛

2
+ 1 and  

𝑛

2
+ 3, can 

only be reached by the vertices of distance 2𝑥 + 1, from vertex 0. Therefore, these 

vertices are at distance 2𝑥 + 2, from vertex 0.  
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There is a vertex, 
𝑛

2
+ 4, that is only connected to the three of vertices of distance 

2𝑥 + 2. Since there is no any other vertex in the graph whose distance is greater than the 

distance of vertex  
𝑛

2
+ 4, from vertex 0. Therefore, this is the diametral vertex of 𝑊3,𝑛, 

when 𝑛 = 4 𝑚𝑜𝑑 6 and 
 n 

2
 is odd. This diametral vertex can be reached, from any of the 

three vertices of distance 2𝑥 + 2, as follows: 

𝑛

2
− 3

    𝑑𝑖𝑚: 1   
→       

𝑛

2
+4,          

𝑛

2
− 1

    𝑑𝑖𝑚: 2   
→       

𝑛

2
+ 4         and     

𝑛

2
+ 3

    𝑑𝑖𝑚: 3   
→       

𝑛

2
+4    

Since the diametral vertex is at distance  2𝑥 + 3 from vertex 0, thus, 

   𝐷(𝑊3,𝑛) = 2𝑥 + 3 = (
𝑛 − 10

6
) + 3        where 2𝑥 =

𝑛 − 10

6
 

 

                    =
𝑛−10+18

6
  =  

𝑛 + 8

6
 

 

  𝑫(𝑾𝟑,𝒏) =
𝒏

𝟔
+
𝟒

𝟑
          for 𝑛 = 4 𝑚𝑜𝑑 6 and 

𝑛

2
  is odd  

3.1.3 Generalized Expression for Diameter of the Knödel graph 𝑾𝟑,𝒏   

 

We get the following expressions for the diameter of the Knödel graph 𝑊3,𝑛.   

(i) 𝐷(𝑊3,𝑛) =  
𝑛

6
+ 1      for 𝑛 = 0 𝑚𝑜𝑑 6  

(ii) 𝐷(𝑊3,𝑛) =  
𝑛

6
+
2

3
      for 𝑛 = 2 𝑚𝑜𝑑 6 and 𝑛 > 8 

(iii) 𝐷(𝑊3,𝑛) =  
𝑛

6
+
4

3
      for 𝑛 = 4 𝑚𝑜𝑑 6  

 

From the above three expressions, the generalized expression for the diameter of 

the Knödel graph 𝑊3,𝑛 can be obtained as,   

   𝑫(𝑾𝟑,𝒏) =  ⌈
 𝒏 − 𝟐 

𝟔
⌉ + 𝟏   for  𝑛 > 8 
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3.2 The diameter of some specific Knödel graphs 
 

 

In this section, we provide the exact diameter of some specific Knödel graphs. 

The diameter of these graphs is obtained, by the extensive use of simulation. The 

simulation uses the Breadth-First-Search technique. Due to limited computer memory, 

we went up to the certain number of vertices and degrees.  

 

Diameter of the Knödel graph 𝑾𝒅−𝟏, 𝟐𝒅−𝟐 

𝐷(𝑊𝑑−1, 2𝑑−2) = ⌈𝑑+2
2
⌉      for   3 ≤ 𝑑 ≤ 24.    

Example 1.1         𝐷(𝑊4−1,  24−2) =   ⌈
4+2

2
⌉ = 3     

Diameter of the Knödel graph 𝑾𝒅−𝟏, 𝟐𝒅  

𝐷(𝑊𝑑−1, 2𝑑) =   ⌈
𝑑+2

2
⌉       for   5 ≤ 𝑑 ≤ 24 

Example 1.2:               𝐷(𝑊8−1,  28) = ⌈8+2
2
⌉ = 5 

Diameter of the Knödel graph 𝑾𝒅, 𝟐𝒅+𝟐 

             𝐷(𝑊𝑑, 2𝑑+2) =  ⌊
𝑑+2

2
⌋      for   4 ≤ 𝑑 ≤ 24   

Example 1.3:             𝐷(𝑊7 , 27+2) =  ⌊
7+2

2
⌋ = 4   

Diameter of the Knödel graph 𝑾𝒅, 𝟐𝒅+𝟒 

           𝐷(𝑊𝑑, 2𝑑+4) =  ⌈𝑑+2
2
⌉        for   5 ≤ 𝑑 ≤ 24    

Example 1.4:             𝐷(𝑊10, 210+4) =  ⌈
10+2

2
⌉  = 6 

Diameter of the Knödel graph 𝑾𝒅, 𝟐𝒅+ 𝟐𝒅−𝟏−𝟐  

𝐷(𝑊𝑑, 2𝑑+ 2𝑑−1−2 ) =  ⌈
𝑑+2

2
⌉         for   3 ≤ 𝑑 ≤ 24    

Example 1.5:          𝐷(𝑊9, 29+ 28−2 ) =  ⌈
9+2

2
⌉  = 6 
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3.3 The number of vertices at a particular distance in Knödel graph 

In this section, we present three propositions, regarding the number of vertices at 

a particular distance, denoted as 𝑁𝑖, where 0 ≤ 𝑖 ≤ 𝐷(𝑊𝑑,𝑛), from vertex 0, for six 

specific Knödel graphs. The 𝑁𝑖 can be obtained, using the Breadth-First-Search (BFS) 

operation on the Knödel graph.   

The massive experimental work, enables us to obtain the 𝑁𝑖 for the six Knödel 

graphs i.e.,𝑊𝑑, 2𝑑 ,  𝑊𝑑, 2𝑑+2, 𝑊𝑑, 2𝑑+4,  𝑊𝑑, 2𝑑+6, 𝑊𝑑, 2𝑑+8 and 𝑊𝑑−1, 2𝑑−2.  The 𝑁𝑖  for 

the specified Knödel graphs is presented in Tables 3.1 to 3.6. Due to limited computer 

memory, we went up to the 224 + 8 = 16777224 vertices and degree 24. 

 

Proposition 3.1 

Let 𝑁𝑖 denotes the number of vertices of the Knödel graph 𝑊𝑑, 2𝑑 at distance i, 

where 0 ≤ 𝑖 ≤ 𝐷(𝑊𝑑, 2𝑑 ). Then 𝑁0 = 1, 𝑁1 = 𝑑, 𝑁2 = (𝑑 − 1) + (𝑑 − 2)
2 and 

𝑁3 = 
(𝑑−2)2(𝑑−3)

2
+ 2, for 4 ≤ 𝑑 ≤ 24. 

 

The careful study of the 𝑁𝑖 values for 𝑊𝑑, 2𝑑 presented in Table 3.1, enables us to 

give the 𝑁𝑖 for 𝑁0 𝑡𝑜 𝑁3. Using vertex transitivity of the Knödel graph, we consider the 

vertex labeled 0, as the root vertex. 𝑁0 = 1 because at distance 0, there is only one root 

vertex. 𝑁1 = 𝑑, because, the Knödel graph 𝑊𝑑, 2𝑑  is a regular graph of degree d, 

therefore, vertex 0 is connected to the 𝑑 vertices. 𝑁2 = (𝑑 − 1) + (𝑑 − 2)
2 and 𝑁3 =

 
(𝑑−2)2(𝑑−3)

2
,  are determined by observing the data presented in Table 3.1.  
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Table 3.1 Number of vertices at particular distance from vertex 0 in 𝑾𝒅,𝟐𝒅 

# of 
Vertices 

Number of vertices at distance 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

23 1 3 3 1           

24 1 4 7 4           

25 1 5 13 11 2          

26 1 6 21 26 10          

27 1 7 31 52 32 5         

28 1 8 43 92 84 28         

29 1 9 57 149 192 98 6        

210 1 10 73 226 386 276 52        

211 1 11 91 326 702 673 230 14       

212 1 12 111 452 1182 1459 754 125       

213 1 13 133 607 1874 2869 2070 607 18      

214 1 14 157 794 2832 5214 4980 2170 222      

215 1 15 183 1016 4116 8891 10790 6426 1294 36     

216 1 16 211 1276 5792 14393 21470 16593 5294 490     

217 1 17 241 1577 7932 22319 39832 38476 17484 3147 46    

218 1 18 273 1922 10614 33384 69730 81758 49628 13990 826    

219 1 19 307 2314 13922 48429 116280 161624 125346 49670 6288 88   

220 1 20 343 2756 17946 68431 186100 300752 288184 150599 31714 1730   

221 1 21 381 3251 22782 94513 287570 531707 613116 404710 124614 14374 112  

222 1 22 421 3802 28532 127954 431112 899776 1222248 987186 411968 78412 2870  

223 1 23 463 4412 35304 170199 629490 1466278 2305560 2222841 1195796 330347 27690 204 

224 1 24 507 5084 43212 222869 898130 2312384 4147588 4679309 3130098 1163154 169072 5784 
 

 

Table 3.2 Number of vertices at a particular distance from vertex 0 in 𝑾𝒅, 𝟐𝒅+𝟐 

# of 
Vertices 

Number of vertices at distance 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

23+2 1 3 4 2           

24+2 1 4 8 5           

25+2 1 5 16 12           

26+2 1 6 26 27 6          

27+2 1 7 38 58 26          

28+2 1 8 52 107 76 14         

29+2 1 9 68 176 188 72         

210+2 1 10 86 268 406 235 20        

211+2 1 11 106 386 770 628 148        

212+2 1 12 128 533 1328 1459 592 45       

213+2 1 13 152 712 2134 3006 1810 366       

214+2 1 14 178 926 3248 5634 4702 1619 64      

215+2 1 15 206 1178 4736 9804 10750 5388 692      

216+2 1 16 236 1471 6670 16083 22210 15067 3652 132     

217+2 1 17 268 1808 9128 25154 42312 36983 13828 1575     

218+2 1 18 302 2192 12194 37826 75478 81896 42920 9141 178    

219+2 1 19 338 2626 15958 55044 127562 166861 115482 37595 2804    

220+2 1 20 376 3113 20516 77899 206110 317494 278114 125414 19172 349   

221+2 1 21 416 3656 25970 107638 320640 570679 612558 360586 88992 5997   

222+2 1 22 458 4258 32428 145674 482942 977748 1253554 924570 327304 44881 466  

223+2 1 23 502 4922 40004 193596 707398 1608170 2412368 2161999 1023654 225595 10378  

224+2 1 24 548 5651 48818 253179 1011322 2553786 4406962 4685323 2831108 889781 89850 865 
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Table 3.3 Number of vertices at a particular distance from vertex 0 in 𝑾𝒅, 𝟐𝒅+𝟒 

# of 
Vertices 

Number of vertices at distance 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

23+4 1 3 5 3           

24+4 1 4 8 6 1          

25+4 1 5 14 13 3          

26+4 1 6 24 28 9          

27+4 1 7 36 55 29 4         

28+4 1 8 50 101 79 21         

29+4 1 9 66 168 189 81 2        

210+4 1 10 84 258 393 246 36        

211+4 1 11 104 374 741 635 180 6       

212+4 1 12 126 519 1279 1436 644 83       

213+4 1 13 150 696 2061 2926 1880 463 6      

214+4 1 14 176 908 3147 5463 4730 1809 140      

215+4 1 15 204 1158 4603 9502 10626 5696 952 15     

216+4 1 16 234 1449 6501 15604 21750 15398 4284 303     

217+4 1 17 266 1784 8919 24446 41246 37032 15088 2259 18    

218+4 1 18 300 2166 11941 36831 73440 81009 44898 11050 494    

219+4 1 19 336 2598 15657 53698 124078 163881 117696 41915 4378 35   

220+4 1 20 374 3083 20163 76132 200586 310588 278810 133450 24356 1017   

221+4 1 21 414 3624 25561 105374 312350 557144 607698 372582 102508 9833 46  

222+4 1 22 456 4224 31959 142831 471016 953799 1235436 937195 356652 59083 1634  

223+4 1 23 500 4886 39471 190086 690810 1568709 2367834 2163911 1077286 266607 18404 84 

224+4 1 24 546 5613 48217 248908 988878 2492150 4315164 4650128 2911614 988533 124190 3254 
 

Table 3.4 Number of vertices at a particular distance from vertex 0 in 𝑾𝒅, 𝟐𝒅+𝟔 

# of 
Vertices 

Number of vertices at distance 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

23+6 1 3 6 4           

24+6 1 4 10 7           

25+6 1 5 16 14 2          

26+6 1 6 26 29 8          

27+6 1 7 38 59 28 1         

28+6 1 8 52 111 78 12         

29+6 1 9 68 183 190 67         

210+6 1 10 86 278 418 227 10        

211+6 1 11 106 399 808 617 112        

212+6 1 12 128 549 1402 1472 520 18       

213+6 1 13 152 731 2254 3103 1692 252       

214+6 1 14 178 948 3424 5900 4574 1333 18      

215+6 1 15 206 1203 4978 10345 10800 4824 402      

216+6 1 16 236 1499 6988 17027 22822 14189 2724 40     

217+6 1 17 268 1839 9532 26651 44136 36174 11602 858     

218+6 1 18 302 2226 12694 40048 79488 82356 38546 6427 44    

219+6 1 19 338 2663 16564 58185 135110 171162 108800 30118 1334    

220+6 1 20 376 3153 21238 82175 218982 330259 271436 108598 12258 86   

221+6 1 21 416 3699 26818 113287 341112 599375 613706 329482 66526 2715   

222+6 1 22 458 4304 33412 152956 513836 1033593 1280454 878982 268888 27298 106  

223+6 1 23 502 4971 41134 202793 752138 1707154 2499484 2117922 896876 161444 4172  

224+6 1 24 548 5703 50104 264595 1073990 2717807 4613846 4695835 2600068 704452 50054 195 
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Table 3.5 Number of vertices at a particular distance from vertex 0 in 𝑾𝒅, 𝟐𝒅+𝟖 

# of 
Vertices 

Number of vertices at distance 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

24+8 1 4 11 8           

25+8 1 5 16 15 3          

26+8 1 6 24 30 11          

27+8 1 7 36 59 31 2         

28+8 1 8 50 103 81 21         

29+8 1 9 66 169 193 82         

210+8 1 10 84 259 405 247 26        

211+8 1 11 104 375 753 641 170 1       

212+8 1 12 126 520 1293 1463 632 57       

213+8 1 13 150 697 2077 2973 1872 417       

214+8 1 14 176 909 3165 5534 4774 1739 80      

215+8 1 15 204 1159 4623 9600 10764 5613 796 1     

216+8 1 16 234 1450 6523 15732 22040 15404 3974 170     

217+8 1 17 266 1785 8943 24607 41750 37298 14580 1833     

218+8 1 18 300 2167 11967 37028 74224 81810 44350 10053 234    

219+8 1 19 336 2599 15685 53934 125214 165600 117612 39995 3300 1   

220+8 1 20 374 3084 20193 76410 202152 313724 280268 130591 21304 463   

221+8 1 21 414 3625 25593 105697 314430 562321 612586 369768 95556 7148   

222+8 1 22 456 4225 31993 143202 473700 961774 1246716 937484 343672 50449 618  

223+8 1 23 500 4887 39507 190508 694194 1580382 2389820 2173945 1057906 244562 12380 1 

224+8 1 24 546 5614 48255 249384 993064 2508575 4353808 4682129 2891370 941718 101568 1168 

 
Table 3.6 Number of vertices at a particular distance from vertex 0 in 𝑾𝒅−𝟏, 𝟐𝒅−𝟐 

# of 
Vertices 

Number of vertices at distance 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 

24-2 1 3 6 4           

25-2 1 4 12 11 2          

26-2 1 5 20 26 10          

27-2 1 6 30 52 32 5         

28-2 1 7 42 92 84 28         

29-2 1 8 56 149 196 98 2        

210-2 1 9 72 226 396 276 42        

211-2 1 10 90 326 720 680 212 7       

212-2 1 11 110 452 1210 1496 726 88       

213-2 1 12 132 607 1914 2962 2046 514 2      

214-2 1 13 156 794 2886 5395 5018 1989 130      

215-2 1 14 182 1016 4186 9198 11032 6146 982 9     

216-2 1 15 210 1276 5880 14870 22160 16353 4516 253     

217-2 1 16 240 1577 8040 23016 41328 38712 15924 2214 2    

218-2 1 17 272 1922 10744 34357 72522 83436 47192 11339 340    

219-2 1 18 306 2314 14076 49740 121008 166515 122844 43545 3908 11   

220-2 1 19 342 2756 18126 70148 193572 311733 288496 138985 23750 646   

221-2 1 20 380 3251 22990 96710 298780 553095 623028 387223 103394 8276 2  

222-2 1 21 420 3802 28770 130711 447258 937706 1255058 969451 364790 55460 854  

223-2 1 22 462 4412 35574 173602 651992 1529121 2384558 2224673 1107612 262460 14104 13 

224-2 1 23 506 5084 43516 227010 928648 2411205 4310476 4748350 2995290 995394 110170 1541 
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Proposition 3.2 

In 𝑊𝑑, 2𝑑 ,  𝑊𝑑, 2𝑑+2, 𝑊𝑑, 2𝑑+4,  𝑊𝑑, 2𝑑+6, 𝑊𝑑, 2𝑑+8 and 𝑊𝑑−1, 2𝑑−2, the maximum 

number of vertices, are at distance 1 + ⌊ 
𝒅

𝟑
 ⌋,  for  3 < 𝑑 ≤ 24.  

 

Tables 3.1 to 3.6 present the number of vertices at a particular distance from 

vertex 0, for Knödel graphs, 𝑊𝑑, 2𝑑 ,   𝑊𝑑, 2𝑑+2,   𝑊𝑑, 2𝑑+4,   𝑊𝑑, 2𝑑+6, 𝑊𝑑, 2𝑑+8 and 

𝑊𝑑−1, 2𝑑−2, respectively. It can be observed from the data that the maximum numbers of 

vertices are at a distance 1 + ⌊ 
𝒅

𝟑
 ⌋ from vertex 0.  

 

Proposition 3.3 

Let 𝑁𝑥 denotes the number of vertices at diametral distance of the Knödel graphs 

𝑊𝑑, 2𝑑 ,   𝑊𝑑, 2𝑑+2,   𝑊𝑑, 2𝑑+4,   𝑊𝑑, 2𝑑+6, 𝑊𝑑, 2𝑑+8  and  𝑊𝑑−1, 2𝑑−2. Then, 𝑁0 <

𝑁1 < ⋯ < 𝑁⌊ 𝑑
3
 ⌋
< 𝑵

𝟏+⌊ 
𝒅

𝟑
 ⌋
> 𝑁

2+⌊ 
𝑑

3
 ⌋
> ⋯ > 𝑁𝑥, where  3 < 𝑑 ≤ 24.  

 

This proposition is based on the data presented in Tables 3.1 to 3.6, where the 

number of vertices increases from distance 0 until the distance is 1 + ⌊ 
𝑑

3
 ⌋. Once the 

vertex count reaches its maximum at distance 1 + ⌊ 
𝑑

3
 ⌋, then the number of vertices starts 

to decrease from the distance 2 + ⌊ 
𝑑

3
 ⌋  till 𝑁𝑥. Here 𝑁𝑥 denotes the number of vertices at 

diametral distance of the Knödel graphs 𝑊𝑑, 2𝑑 ,  𝑊𝑑, 2𝑑+2, 𝑊𝑑, 2𝑑+4,   𝑊𝑑, 2𝑑+6,

𝑊𝑑, 2𝑑+8 and  𝑊𝑑−1, 2𝑑−2. 

 

3.4 Summary  
 

Table 3.7 provides the summary of contributions, regarding the diameter of some 

specific Knödel graphs. 



44 

 

Table 3.7 Diameter of some specific Knödel graphs 

Knödel graph Diameter Tested ranges 

𝑊3,𝑛 ⌈
𝑛 − 2

6
⌉ + 1 𝑛 > 8 

𝑊𝑑−1, 2𝑑−2 ⌈
𝑑+2

2
⌉ 3 ≤ d ≤ 24 

𝑊𝑑−1, 2𝑑 ⌈
𝑑+2

2
⌉ 5 ≤ d ≤ 24 

𝑊𝑑, 2𝑑+2 ⌊
𝑑+2

2
⌋ 5 ≤ d ≤ 24 and d is odd 

𝑊𝑑, 2𝑑+2 ⌈
𝑑+2

2
⌉ 4 ≤ d ≤ 24 and d is even 

𝑊𝑑, 2𝑑+4 ⌈
𝑑+2

2
⌉ 5 ≤ d ≤ 24 

𝑊𝑑, 2𝑑+ 2𝑑−1−2  ⌈
𝑑+2

2
⌉ 3 ≤ d ≤ 24 

 

Three propositions, regarding the number of vertices at a particular distance, in 

the Knödel graphs 𝑊𝑑, 2𝑑 ,  𝑊𝑑, 2𝑑+2, 𝑊𝑑, 2𝑑+4,   𝑊𝑑, 2𝑑+6, 𝑊𝑑, 2𝑑+8 and  𝑊𝑑−1, 2𝑑−2: 

 

 Proposition 3.1: Let 𝑁𝑖 denotes the number of vertices of Knödel graph 𝑊𝑑, 2𝑑 at 

distance i, where 0 ≤ 𝑖 ≤ 𝐷(𝑊𝑑, 2𝑑 ). Then 𝑁0 = 1, 𝑁1 = 𝑑, 𝑁2 = (𝑑 − 1) + (𝑑 −

2)2 and 𝑁3 = 
(𝑑−2)2(𝑑−3)

2
+ 2, for 4 ≤ 𝑑 ≤ 24. 

 

 Proposition 3.2: In 𝑊𝑑, 2𝑑 ,  𝑊𝑑, 2𝑑+2, 𝑊𝑑, 2𝑑+4,  𝑊𝑑, 2𝑑+6, 𝑊𝑑, 2𝑑+8 and 𝑊𝑑−1, 2𝑑−2, 

the maximum number of vertices, are at distance 1 + ⌊ 
𝒅

𝟑
 ⌋,  for  3 < 𝑑 ≤ 24.  

 

 Proposition 3.3: Let 𝑁𝑥 denotes the number of vertices at diametral distance of the 

Knödel graphs 𝑊𝑑, 2𝑑 ,   𝑊𝑑, 2𝑑+2,   𝑊𝑑, 2𝑑+4,   𝑊𝑑, 2𝑑+6, 𝑊𝑑, 2𝑑+8  and  𝑊𝑑−1, 2𝑑−2. 

Then, 𝑁0 < 𝑁1 < ⋯ < 𝑁⌊ 𝑑
3
 ⌋
< 𝑵

𝟏+⌊ 
𝒅

𝟑
 ⌋
> 𝑁

2+⌊ 
𝑑

3
 ⌋
> ⋯ > 𝑁𝑥, where  3 < 𝑑 ≤ 24.  
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Chapter 4 

The Broadcasting in the Knödel graph 𝑾𝟑,𝒏 
 

 

In this chapter, we present the broadcast time of the Knödel graph 𝑊3,𝑛 for all 

even 𝑛 and degree 3. There are six possible cases of 𝑊3,𝑛, depending on the number of 

vertices. We present a broadcast scheme for six cases of the Knödel graph 𝑊3,𝑛. We 

show that the Knödel graph 𝑊3,𝑛 for 𝑛 = 4 𝑚𝑜𝑑 6 and 𝑛 > 16, is the first infinite family 

of diametral broadcast graphs in the Knödel graph 𝑊𝑑,𝑛.    

4.1 Broadcasting in the Knödel graph 𝑾𝟑,𝒏 
 

In this section, we study the broadcast problem in the Knödel graph 𝑊3,𝑛. In 

general the broadcast problem can be defined as follows: 

Let 𝐺 = (𝑉, 𝐸) be a graph and let 𝑣 be a vertex in 𝐺. Now consider that 𝑣 knows 

a piece of information, 𝐼(𝑣), that is unknown to all other vertices in 𝑉 = {𝑣}. The 

broadcast problem is to find a communication strategy, called broadcast scheme, 

such that all nodes from 𝐺 learn the piece of information 𝐼(𝑣) in the minimum 

possible time [42]. 

Now we present the broadcast scheme for the Knödel graph 𝑊3,𝑛. For that we 

consider only the 1 and 3-dimensional edges of the Knödel graph 𝑊3,𝑛. Recall that 1 and 

3-dimensional edges split 𝑊3,𝑛 into 2𝑥 segments, where  

2𝑥 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

6
. 
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Each segment is of length 6, except the one containing the vertex 𝑛/2. We can perform 

exactly   

𝑥 =
1

2
 (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

6
) =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

12
 

1 and 3-dimensional passes clockwise and anti-clockwise, before they intersect.  Using 1 

and 3-dimensional edges, we can reach the vertices 6, 6(2), 6(3),… , 6(𝑥 − 1), 6𝑥 from 

vertex 0, in the clockwise direction. Similarly, going anti-clockwise, we reach the 

vertices 𝑛 − 6, 𝑛 − 6(2), 𝑛 − 6(3), … , 𝑛 − 6(𝑥 − 1), 𝑛 − 6𝑥. 

Using the vertex transitivity of the Knödel graph, we consider the vertex labeled 0 

as the originator (initially informed vertex) in broadcasting. The broadcasting in the 

Knödel graph 𝑊3,𝑛 will be performed in two steps.  

Step – 1:  

In step – 1 our goal is to pass the message from the vertex 0 to the vertices 6𝑥 and 

𝑛 − 6𝑥 as early as possible. To achieve this goal, we use the long “moves” of 1 and 3-

dimensional edges (see Figure 4.1). We start the broadcasting from vertex 0. At time 1 

the vertex 0 sends the message to the vertex 1 in the clockwise direction. At time 2, the 

vertex 0 informs the vertex 7 in the anticlockwise direction. Since the vertices 6𝑥 and 

𝑛 − 6𝑥 are at distance 2𝑥 from the vertex 0, and we start broadcasting in a clockwise 

direction first, the vertex 6𝑥 will be informed at the time 𝑇 = 2𝑥. Subsequently, the 

vertex 𝑛 − 6𝑥 will receive the message one time unit later than the vertex 6𝑥, so the 

vertex 𝑛 − 6𝑥 will be informed at time 𝑇 + 1.  

Recall that to pass the message to the vertex 6𝑥, in the clockwise direction, we 

use the path and time slots as follows: 



47 

 

                     0
𝑇𝑖𝑚𝑒 1 
→    1

𝑇𝑖𝑚𝑒 2
⇒    6

𝑇𝑖𝑚𝑒 3 
→    𝑛 − 5

𝑇𝑖𝑚𝑒 4
⇒    6(2)

𝑇𝑖𝑚𝑒 5 
→     …   

𝑇𝑖𝑚𝑒 𝑇
⇒    6𝑥.                        

Similarly, to pass the message to the vertex  𝑛 − 6𝑥, in the anti-clockwise direction, we 

use the path and time slots as follows: 

0
𝑇𝑖𝑚𝑒 2
⇒    7

𝑇𝑖𝑚𝑒 3
→    𝑛 − 6

𝑇𝑖𝑚𝑒 4
⇒    13

𝑇𝑖𝑚𝑒 5
→    𝑛 − 6(2)

𝑇𝑖𝑚𝑒 6
⇒     … 

𝑇𝑖𝑚𝑒 𝑇+1
→      𝑛 − 6𝑥. 

Note that in the above specified two paths, the single line arrow “
             
→   ” is representing 

the 1-dimensional edge and the double line arrow “
            
⇒   ” is representing the 3-

dimensional edge.  

When we broadcast in 𝑊3,𝑛 from the vertex 0 using the above specified paths, 

formed by 1 and 3-dimensional edges, the 3-dimensional edge forms a “cycle” of length 

6. As the “cycle” of length 6 is formed, it starts to broadcast within itself, and in parallel 

broadcasting continues on the specified path that forms other “cycles” of length 6. Now 

consider the “cycle” in the clockwise direction where the 3-dimensional edge is labeled 

with time unit 2. Recall that at time 2, the vertex 1 informs the vertex 6 using 3-

dimensional edge, that forms the cycle of length 6 (see Figure 4.1). At time 3, the vertex 

1 informs the vertex 2 and the vertex 6 sends the message to the vertex 𝑛 − 5  that is out 

of this “cycle” but it is on the specified path. At time 4, the vertices labeled with 2 and 6 

inform the vertices 𝑛 − 1 and  𝑛 − 3, respectively. In parallel at time 4, the vertex 𝑛 − 5 

sends the message to the vertex 6(2) using 3-dimensioal edge, this forms another “cycle” 

of length 6 on above specified path. At time 5, the vertex 𝑛 − 1 informs the vertex 4, this 

way broadcasting in this “cycle” finishes in 4 time units (i.e., from time 2 to 5). And also 

at time 5 the vertex 𝑛 − 3 sends the message using 3-dimensional edge to the vertex 10 

that is in the next “cycle” of length 6 where 3-dimensional edge is labeled with time 4. 
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Similarly, in anti-clockwise direction the “cycle”, where the 3-dimensional edge is 

labeled with time 2, completes the broadcasting in 4 time units (i.e., from time 2 to 5). 

Here we can see that the second “cycle” on each path is formed at time 4, whereas the 

broadcasting in first “cycle” where 3-dimensional edge is labeled with time 2 completes 

broadcasting at time 5.     

 
Figure 4.1 The general broadcast scheme for the Knödel graph 𝑾𝟑,𝒏 

 

 

The broadcasting in the remaining 2𝑥 − 2 “cycles” of length 6 is performed in a 

similar way as described above, except that the one of the vertices in each of these 

“cycles” is informed by a vertex from the previous “cycle” of length 6, using 3-

dimensional edge. Now consider the “cycle” in clockwise direction where 3-dimensional 
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edge is labeled with time 4. Recall that at time 4, the vertex 𝑛 − 5  informs the vertex 

6(2)  using 3-dimensional edge, that forms the “cycle” of length 6 (see Figure 4.1).  At 

time 5, the vertex 𝑛 − 5 informs the vertex 8, the vertex 𝑛 − 3, the informed vertex from 

the previous “cycle”, informs the vertex 10, and the vertex 6(2) sends the message to the 

vertex 𝑛 − 11 that is out of this “cycle” but it is on the specified path. At time 6, the 

vertices labeled with 6(2) and 8 inform the vertices 𝑛 − 9 and 𝑛 − 7, this way the 

broadcasting in this “cycle” finishes in 3 time units (i.e., from time 4 to 6). Also in 

parallel at time 6 the vertex 𝑛 − 11, that is out of this “cycle”, informs the vertex 6(3) 

using 3-dimensional edge, that forms another “cycle” of length 6 on specified path. At 

time 7 the vertex 𝑛 − 9 will inform one of the vertices of a newly formed “cycle” of 

length 6 using 3-dimensional edge. Similarly, in anti-clockwise direction the “cycle” 

where the 3-dimensional edge is labeled with time 4, completes the broadcasting in 3 

time units (i.e., from time 4 to 6). And in parallel at time 6, the vertex 𝑛 − 6(2) informs a 

certain vertex using 3-dimensional edge that forms another “cycle” of length 6 on 

specified path. The process of broadcasting as described above continues till the 𝑥-th (the 

last) “cycle” of length 6 on each path (clockwise and anti-clockwise). It follows that, 

except 2 “cycles” where 3-dimensioal edges are labeled with time 2, the broadcasting in 

each of the remaining 2𝑥 − 2 “cycles” of length 6 finishes at the same time when the 

next “cycle” of length 6 is formed on the paths specified above (see Figure 4.1).  

Moreover, except 2 “cycles”, where 3-dimensioal edges are labeled with time 2, 

the broadcasting in each of the remaining 2𝑥 − 2  “cycles” of length 6 is performed in 3 

time units. Because one of the vertices in each of these 2𝑥 − 2  “cycles” is informed by a 

vertex from the previous “cycle” of length 6, using 3-dimensional edge, therefore it is 
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taking 3 time units. In general this can be expressed as follows: “If any “cycle” from 

2𝑥 − 2  “cycles” of length 6, where the 3-dimensional edge is labeled with time 𝑦, it 

takes 3 time units (i.e., 𝑦, 𝑦 + 1 and 𝑦 + 2 ) to finish the broadcasting within it”. Now 

consider the last two “cycles” of length 6, where the 3-dimensional edges are labeled 

with time 𝑇, the broadcasting in these two “cycles”  finishes in 3 time units (i.e.  𝑇, 𝑇 +

1 and 𝑇 + 2).   

Recall that we can perform only 𝑥 3-dimensional passes on each path (clockwise 

and anti-clockwise), that is formed by 1 and 3-dimensional edges. The 𝑥-th                      

3-dimensional pass on each path forms the last “cycle” of length 6. Since 𝑥-th “cycles” of 

length 6 on each path are formed at the same time when (𝑥 − 1)-th “cycles”, where 3-

dimensional edges are labeled with time 𝑇 − 2, finish the broadcasting within 

themselves. It follows that when the 𝑥-th “cycles” of length 6 on each path are formed, 

where 3-dimensional edges are labeled with time 𝑇, the vertices in all previous “cycles” 

will receive the message by time 𝑇. 

Step – 2:  

The second step of broadcasting in 𝑊3,𝑛 starts when the vertices 6𝑥 and 𝑛 − 6𝑥 

have been informed at time units 𝑇 and  𝑇 + 1, respectively. Recall that, there are six 

cases of 𝑊3,𝑛, depending on the number of vertices. In the following, we present the six 

broadcast schemes, one for each case, to inform the remaining vertices starting from time 

𝑇 + 1 onwards. We also obtain the upper bound on the broadcast time for each of these 

six cases of 𝑊3,𝑛 using the following broadcast schemes.   
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Case 1: 𝒏 = 𝟎 𝒎𝒐𝒅 𝟔 and 
 𝐧 

𝟐
 is even 

Recall from Case 1 under Section 3.1, that after 𝑥 =
 𝑛 

12
  1 and 3-dimensional 

passes in each direction, we the reach the vertex labeled 
 𝑛 

2
. The vertex 

 𝑛 

2
 is at distance 

 𝑛 

6
 

from vertex 0. If we start broadcasting in a clockwise direction, the vertex 
 𝑛 

2
 will receive 

the message at time 𝑇 =
 𝑛 

6
.  Figure 4.2 demonstrates the broadcast scheme for Case 1. 

 
Figure 4.2 The broadcast scheme for 𝑾𝟑,𝒏, where n = 0 mod 6 and n/2 is even 

Also recall that when the 𝑥-th “cycles” of length 6 on each path are formed, where 

3-dimensional edges are labeled with time 𝑇, the vertices in all previous “cycles” will 

receive the message by time 𝑇. Therefore all the vertices in any “cycles” of length 6 

except C1 and C2 will receive the message by time 𝑇. The broadcasting in C1 will be 

completed at time 𝑇 + 2 in the following way. 
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Since the vertex 
 𝑛 

2
+ 7 is on the specified path, therefore at time 𝑇 − 1 it is 

informed by the vertex 
 𝑛 

2
− 6 using 1-dimensional edge. At time 𝑇, the vertex 

 𝑛 

2
+ 7 

sends the message to the vertex 
 𝑛 

2
, that forms the 𝑥-th “cycle” of length 6 in the 

clockwise direction. Now at time 𝑇 + 1 the vertices 
 𝑛 

2
+ 7 and  

 𝑛 

2
  send the message to 

the vertices 
 𝑛 

2
− 4 and 

 𝑛 

2
+ 3, respectively. Also at time 𝑇 + 1 the vertex  

 𝑛 

2
+ 9 (the 

informed vertex from (𝑥 − 1)-th “cycle”) informs the vertex 
 𝑛 

2
− 2 using 3-dimensional 

edge. At time 𝑇 + 2 the vertex 
 𝑛 

2
− 4 informs the vertex 

 𝑛 

2
+ 5 using 3-dimensional edge, 

this completes the broadcasting in 𝑥-th “cycle” on specified path (clockwise direction). 

Similarly, the broadcasting in C2, the 𝑥-th “cycle” on specified path in anti-

clockwise direction, will be completed at time  𝑇 + 2 in a similar way as described 

above. Since there is no other vertex left to be informed, this proves that, 𝑏(0,𝑊3,𝑛) ≤

 T + 2, where 𝑇 =
 𝑛 

6
, 𝑛 = 0 𝑚𝑜𝑑 6 and 

 𝑛 

2
 is even. Thus, 

         𝒃(𝑾𝟑,𝒏) ≤  𝑫(𝑾𝟑,𝒏) + 𝟏 =
 𝒏 

𝟔
+ 𝟐 = ⌈

𝒏−𝟐

𝟔
⌉ + 𝟐,    for 𝑛 = 0 𝑚𝑜𝑑 6 and 

 𝑛 

2
 is even  

Case 2: 𝒏 = 𝟎 𝒎𝒐𝒅 𝟔 and 
 𝐧 

𝟐
 is odd 

Recall from Case 2 under Section 3.1, that after 𝑥 =
𝑛 − 6

12
   1 and 3-dimensional 

passes in clockwise and anti-clockwise directions, we reach the vertices 
 𝑛 

2
− 3 and 

 𝑛 

2
+

3, respectively. Both of these vertices are at distance 
𝑛

6
− 1 from vertex 0. If broadcasting 

is started in a clockwise direction the vertex 
 𝑛 

2
− 3 receives the message at time 𝑇 =

𝑛

6
−

1.  The vertex 
 𝑛 

2
+ 3 receives the message one time unit later than vertex 

 𝑛 

2
− 3, at time  

𝑇 + 1. Figure 4.3 demonstrates the broadcast scheme for Case 2.  



53 

 

Recall that when the 𝑥-th “cycles” of length 6 on each path are formed, where 3-

dimensional edges are labeled with time 𝑇, the vertices in all previous “cycles” will 

receive the message by time 𝑇. Also recall that the broadcasting in the 𝑥-th “cycles” of 

length 6 on each path will finish by time 𝑇 + 2. Therefore all the vertices in any “cycles” 

of length 6 except two vertices of C1 will receive the message by time 𝑇 + 2. The 

broadcasting in C1 will be completed at time 𝑇 + 3 in the following way.   

 
Figure 4.3 The broadcast scheme for 𝑾𝟑,𝒏, where n = 0 mod 6 and n/2 is odd 

Since the vertices 
 𝑛 

2
− 3 and 

 𝑛 

2
+ 3 are informed at time 𝑇 and 𝑇 + 1, 

respectively, therefore at time 𝑇 + 1 the vertex 
 𝑛 

2
− 3 sends the message to the vertex 

 𝑛 

2
+ 4. Now at time 𝑇 + 2 the vertices 

 𝑛 

2
+ 3 and 

 𝑛 

2
+ 4 send the message to the vertices 

 𝑛 

2
 and 

 𝑛 

2
− 1, respectively. There are only two vertices left to be informed in C1. Finally 
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at time 𝑇 + 3 vertices 
 𝑛 

2
− 1 and 

 𝑛 

2
  send the message to the vertices  

 𝑛 

2
+ 2 and 

 𝑛 

2
+ 1, 

respectively. Since there is no other vertex left to be informed, this proves that 

𝑏(0,𝑊3,𝑛) ≤  T + 3, where 𝑇 =
 𝑛 

6
− 1, 𝑛 = 0 𝑚𝑜𝑑 6 and 

 𝑛 

2
 is odd. Thus,  

       𝒃(𝑾𝟑,𝒏) ≤  𝑫(𝑾𝟑,𝒏) + 𝟏 =
 𝒏 

𝟔
+ 𝟐 = ⌈

𝒏−𝟐

𝟔
⌉ + 𝟐,   for 𝑛 = 0 𝑚𝑜𝑑 6 and 

 𝑛 

2
 is odd   

Case 3: 𝒏 = 𝟐 𝒎𝒐𝒅 𝟔 and 
 𝐧 

𝟐
  is even 

Recall from Case 3 under Section 3.1, that after 𝑥 =
𝑛 − 8

12
   1 and 3-dimensional 

passes in clockwise and ant-clockwise directions, we the reach the vertices 
 𝑛 

2
− 4 and 

 𝑛 

2
+ 4 respectively. Both of these vertices are at distance 

𝑛

6
−
4

3
 from vertex 0. If 

broadcasting is started in a clockwise direction the vertex 
 𝑛 

2
− 4 will receive the message 

at time 𝑇 =
𝑛

6
−
4

3
.  The vertex 

 𝑛 

2
+ 4 will receives the message one time unit later then 

the vertex 
 𝑛 

2
− 4, at time  𝑇 + 1. Figure 4.4 depicts the broadcast scheme for Case 3. 

Recall that when the 𝑥-th “cycles” of length 6 on each path are formed, where 3-

dimensional edges are labeled with time 𝑇, the vertices in all previous “cycles” will 

receive the message by time 𝑇. Also recall that the broadcasting in the 𝑥-th “cycles” of 

length 6 on each path will finish by time 𝑇 + 2. Therefore all the vertices in any “cycles” 

of length 6 except four vertices of C1 will receive the message by time 𝑇 + 2. The 

broadcasting in C1 will be completed at time 𝑇 + 3 in the following way.   

Since the vertices 
 𝑛 

2
− 4 and 

 𝑛 

2
+ 4 are informed at time 𝑇 and 𝑇 + 1, 

respectively, therefore at time 𝑇 + 1 the vertex 
 𝑛 

2
− 4 sends the message to the vertex 

 𝑛 

2
+ 5. At time 𝑇 + 2 the vertices 

 𝑛 

2
− 2 and 

 𝑛 

2
− 1 receive the message from the 
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vertices 
 𝑛 

2
+ 5 and  

 𝑛 

2
+ 4, respectively. Now there are only four vertices left to be 

informed in C1. At time 𝑇 + 3 the vertices 
 𝑛 

2
− 2 and 

 𝑛 

2
− 1 inform the vertices  

 𝑛 

2
+ 3 

and 
 𝑛 

2
+ 2, respectively. As the vertices 

 𝑛 

2
+ 7 and  

 𝑛 

2
+ 6 are from the 𝑥-th “cycles” and 

they get informed by time 𝑇 + 2, so they can participate in the broadcasting process. 

Therefore at time 𝑇 + 3 the vertices 
 𝑛 

2
+ 7 and  

 𝑛 

2
+ 6 send the message to the vertices 

 𝑛 

2
 

and  
 𝑛 

2
+ 1 of C1, respectively. Since there is no other vertex left to be informed, this 

proves that, 𝑏(0,𝑊3,𝑛) ≤  T + 3, where 𝑇 =
 𝑛 

6
−
4

3
, 𝑛 = 2 𝑚𝑜𝑑 6 and 

 𝑛 

2
 is even. Thus, 

𝒃(𝑾𝟑,𝒏) ≤  𝑫(𝑾𝟑,𝒏) + 𝟏 =
 𝒏 

𝟔
+
 𝟓 

𝟑
= ⌈

𝒏−𝟐

𝟔
⌉ + 𝟐,  for 𝑛 > 8, 𝑛 = 2 𝑚𝑜𝑑 6  and 

 𝑛 

2
 is even  

 

Figure 4.4 The broadcast scheme for 𝑾𝟑,𝒏, where n = 2 mod 6 and n/2 is even 
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Case 4:   𝒏 = 𝟐 𝒎𝒐𝒅 𝟔 and  
 𝐧 

𝟐
  is odd 

Recall from Case 4 under Section 3.1, that after 𝑥 =
𝑛 − 2

12
   1 and 3-dimensional 

passes in clockwise and anti-clockwise directions, we reach the vertices 
 𝑛 

2
− 1 and 

 𝑛 

2
+

1, respectively. Both of these vertices are at distance 
𝑛

6
−
1

3
 from vertex 0. If broadcasting 

is started in a clockwise direction the vertex 
 𝑛 

2
− 1 will receive the message at time 𝑇 =

𝑛

6
−
1

3
.  The vertex 

 𝑛 

2
+ 1 will receive the message one time unit later then the vertex 

 𝑛 

2
−

1, at time 𝑇 + 1. Figure 4.5 illustrates the broadcast scheme for Case 4. 

 

Figure 4.5 The broadcast scheme for 𝑾𝟑,𝒏, where n = 2 mod 6 and n/2 is odd 

 

Recall that when the 𝑥-th “cycles” of length 6 on each path are formed, where 3-

dimensional edges are labeled with time 𝑇, the vertices in all previous “cycles” will 

receive the message by time 𝑇. Therefore all the vertices in any “cycles” of length 6 
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except C1 and C2 (the 𝑥-th “cycles”) will receive the message by time 𝑇. The 

broadcasting in C1 will be completed at time 𝑇 + 2 in the following way. 

 Since the vertex 
 𝑛 

2
+ 8 is on the specified path, therefore at time 𝑇 − 1 it is 

informed by the vertex 
 𝑛 

2
− 7 using 1-dimensional edge. At time 𝑇 the vertex 

 𝑛 

2
+ 8 

sends the message to the vertex 
 𝑛 

2
− 1 that forms the 𝑥-th “cycle” of length 6 in the 

clockwise direction. At time 𝑇 + 1 the vertices  
 𝑛 

2
+ 8 and 

 𝑛 

2
− 1 send the message to the 

vertices 
 𝑛 

2
− 5 and 

 𝑛 

2
+ 2, respectively. As the vertex 

 𝑛 

2
+ 10 is from the (𝑥 − 1)-th 

“cycle” and it get informed by time 𝑇, so this can participate in the broadcasting process. 

Therefore at time 𝑇 + 1 the vertex 
 𝑛 

2
+ 10  sends the message to the vertices 

 𝑛 

2
− 3 using 

3-dimensional edge. Now there are two vertices left to be informed in C1. At time 𝑇 + 2  

the vertices  
 𝑛 

2
− 5  and 

 𝑛 

2
− 1  inform the vertices  

 𝑛 

2
+ 6 and  

 𝑛 

2
+ 4, respectively, this 

completes the broadcasting in C1. 

Similarly, the broadcasting in C2, the 𝑥-th “cycle” on specified path in anti-

clockwise direction, will be completed at time  𝑇 + 2 in a similar way as described 

above. Since there is no other vertex left to be informed, this proves that, 𝑏(0,𝑊3,𝑛) ≤

 T + 2, where  𝑇 =
 𝑛 

6
−
1

3
,  𝑛 = 2 𝑚𝑜𝑑 6 and 

 𝑛 

2
 is odd. Thus,   

𝒃(𝑾𝟑,𝒏) ≤  𝑫(𝑾𝟑,𝒏) + 𝟏 =
 𝒏 

𝟔
+
 𝟓 

𝟑
= ⌈

𝒏−𝟐

𝟔
⌉ + 𝟐,  for 𝑛 = 2 𝑚𝑜𝑑 6 and 

 𝑛 

2
 is odd 

Case 5:   𝒏 = 𝟒 𝒎𝒐𝒅 𝟔 and 
 𝐧 

𝟐
  is even 

Recall that in Case 5 under Section 3.1 after 𝑥 =
𝑛 − 4

12
  1 and 3-dimensional passes 

in clockwise and anti-clockwise directions, we reach the vertices 
 𝑛 

2
− 2 and 

 𝑛 

2
+ 2, 
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respectively. Both of these vertices are at distance 
𝑛

6
−
2

3
 from vertex 0. If the 

broadcasting is started in a clockwise direction the vertex 
 𝑛 

2
− 2 will receive the message 

at time 𝑇 =
𝑛

6
−
2

3
.  The vertex 

 𝑛 

2
+ 2 will be informed one time unit later then the vertex 

 𝑛 

2
− 2, at time 𝑇 + 1. Figure 4.6 shows the broadcast scheme for Case 5. 

 
Figure 4.6 The broadcast scheme for 𝑾𝟑,𝒏, where n = 4 mod 6 and n/2 is even 

 

Recall that when the 𝑥-th “cycles” of length 6 on each path are formed, where 3-

dimensional edges are labeled with time 𝑇, the vertices in all previous “cycles” will 

receive the message by time 𝑇. In other words, all the vertices from “cycle” 1 to (𝑥 − 1) 

of length 6 on each path will receive the message by time 𝑇. The broadcasting in 𝑥-th 

“cycles” of length 6 on each path and the vertices between these two “cycles” will be 

completed at time 𝑇 + 2. 
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Now consider the C2 (𝑥-th “cycle” of length 6 in clockwise direction). Since the 

vertex 
 𝑛 

2
+ 9 is on the specified path, therefore at time 𝑇 − 1 it is informed by the vertex 

 𝑛 

2
− 8 using 1-dimensional edge. At time 𝑇 the vertex 

 𝑛 

2
+ 9 sends the message to the 

vertex 
 𝑛 

2
− 2, that forms the 𝑥-th “cycle” of length 6 in the clockwise direction. At time 

𝑇 + 1 the vertices 
 𝑛 

2
+ 9 and 

 𝑛 

2
− 2 send the message to the vertices 

 𝑛 

2
− 6 and 

 𝑛 

2
+ 3, 

respectively. As the vertex 
 𝑛 

2
+ 11 is from the (𝑥 − 1)-th “cycle” and it get informed by 

time 𝑇, so this can participate in the broadcasting process. Therefore at time 𝑇 + 1 the 

vertex 
 𝑛 

2
+ 11  sends the message to the vertices 

 𝑛 

2
− 4 using 3-dimensional edge. Now 

there are two vertices left to be informed in C2. At time 𝑇 + 2  the vertices  
 𝑛 

2
− 6  and 

 𝑛 

2
− 2 inform the vertices 

 𝑛 

2
+ 7 and 

 𝑛 

2
+ 5, respectively, this completes the broadcasting 

in C2. Similarly the broadcasting in C3, the 𝑥-th “cycle” on specified path in anti-

clockwise direction, will be completed at time 𝑇 + 2 in a similar way as described above. 

C1 consists of the vertices between 𝑥-th “cycles” of length 6 on each path. The 

broadcasting in C1 will also be completed at time 𝑇 + 2 in the following way. Recall that 

at time 𝑇 + 1 the vertices 
 𝑛 

2
− 2 and  

 𝑛 

2
− 1 send the message to the vertices 

 𝑛 

2
+ 3 and 

 𝑛 

2
+ 2, respectively. Now at time 𝑇 + 2 the vertices 

 𝑛 

2
+ 3 and 

 𝑛 

2
+ 2 inform the vertices 

 𝑛 

2
 and 

 𝑛 

2
+ 1, respectively, this way all the vertices of the graph are informed. Since there 

is no other vertex left to be informed, this proves that 𝑏(0,𝑊3,𝑛) ≤  T + 2, where 𝑇 =

 𝑛 

6
−
1

3
,  𝑛 = 4 𝑚𝑜𝑑 6 and 

 𝑛 

2
 is even. Thus,   

   𝒃(𝑾𝟑,𝒏) ≤ 𝑫(𝑾𝟑,𝒏) = 
 𝒏 

𝟔
+
𝟓 

𝟑
 = ⌈

𝒏−𝟐

𝟔
⌉ + 𝟏,  for  𝑛 > 16, 𝑛 = 4 𝑚𝑜𝑑 6 and 

 𝑛 

2
 is even    
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Case 6:   𝒏 = 𝟒 𝒎𝒐𝒅 𝟔 and 
 𝐧 

𝟐
  is odd 

Recall that in Case 6 under Section 3.1 after 𝑥 =
𝑛 − 10

12
  1 and 3-dimensional 

passes in clockwise and anti-clockwise directions, we reach the vertices 
 𝑛 

2
− 5 and 

 𝑛 

2
+

5, respectively. Both of these vertices are at distance 
𝑛

6
−
5

3
 from vertex 0. If the 

broadcasting is started in a clockwise direction the vertex 
 𝑛 

2
− 5 will receive the message 

at time 𝑇 =
𝑛

6
−
5

3
. The vertex 

 𝑛 

2
+ 5 will receives the message one time unit later than the 

vertex 
 𝑛 

2
− 5, at time 𝑇 + 1. Figure 4.7 depicts the broadcast scheme for Case 6. 

 
Figure 4.7 The broadcast scheme for 𝑾𝟑,𝒏, where n = 4 mod 6 and n/2 is odd 

 

Recall that when the 𝑥-th “cycles” of length 6 on each path are formed, where 3-

dimensional edges are labeled with time 𝑇, the vertices in all previous “cycles” will 

receive the message by time 𝑇. Also recall that the broadcasting in the 𝑥-th “cycles” of 
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length 6 on each path finish by time 𝑇 + 2. Therefore all the vertices from the “cycle” 1 

to 𝑥-th of length 6 on each path will receive the message by time 𝑇 + 2. The vertices 

between 𝑥-th “cycles” of length 6 on each path (C1) will be informed by time 𝑇 + 3 in the 

following way.  

Recall that, at time 𝑇 + 1, the vertices 
 𝑛 

2
− 5 and 

 𝑛 

2
− 4 send the message to the 

vertices 
 𝑛 

2
+ 6 and 

 𝑛 

2
+ 5, respectively. Now, at time 𝑇 + 2, the vertices 

 𝑛 

2
+ 6  and  

 𝑛 

2
+ 5  inform the vertices 

 𝑛 

2
− 3 and 

 𝑛 

2
− 2, respectively. After time 𝑇 + 2, there are 6 

vertices yet to be informed in C1. At time 𝑇 + 3, the vertices  
 𝑛 

2
− 3 and 

 𝑛 

2
− 2  using     

1-dimensional edge inform the vertices 
 𝑛 

2
+ 4 and 

 𝑛 

2
+ 3, respectively. Also at time 𝑇 +

3 the vertices 
 𝑛 

2
+ 6, 

 𝑛 

2
+ 8, 

 𝑛 

2
+ 5 and 

 𝑛 

2
+ 7 using 3-dimensional edge inform the 

vertices 
 𝑛 

2
+ 1, 

 𝑛 

2
− 1, 

 𝑛 

2
+ 2 and 

 𝑛 

2
, respectively. Since there is no other vertex left to 

be informed, this proves that 𝑏(0,𝑊3,𝑛) ≤  T + 3, where 𝑇 =
 𝑛 

6
−
5

3
,  𝑛 = 4 𝑚𝑜𝑑 6 and 

 𝑛 

2
 is odd. Thus,   

 𝒃(𝑾𝟑,𝒏) ≤ 𝑫(𝑾𝟑,𝒏) =  
 𝒏 

𝟔
+
𝟓 

𝟑
 = ⌈

𝒏−𝟐

𝟔
⌉ + 𝟏,   for  𝑛 > 10, 𝑛 = 4 𝑚𝑜𝑑 6 and 

 𝑛 

2
 is odd  

4.2 Broadcast time of 𝑾𝟑,𝒏 
 

In this section, we present the 𝑏(𝑊3,𝑛) for all even 𝑛 and degree 3. We know that 

𝑏(𝐺) ≥ 𝐷(𝐺), for any connected graph 𝐺. The following lemma provides the lower 

bound on 𝑏(𝐺), when at least two vertices are at diametral distance 𝐷, from vertex 𝑢. 

 

Lemma 4.1 [18] 

 𝐼𝑓  𝑡ℎ𝑒𝑟𝑒  𝑒𝑥𝑖𝑠𝑡𝑠  𝑎𝑡  𝑙𝑒𝑎𝑠𝑡  𝑡𝑤𝑜  𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠  𝑎𝑡  𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑎𝑙  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐷 𝑓𝑟𝑜𝑚 

 𝑣𝑒𝑟𝑡𝑒𝑥  𝑢  𝑖𝑛 𝑔𝑟𝑎𝑝ℎ  𝐺, 𝑡ℎ𝑒𝑛 𝑏(𝐺) ≥ 𝐷 + 1.  
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Recall that the Knödel graph 𝑊3,𝑛, when 𝑛 = 0 𝑚𝑜𝑑 6, has two vertices at 

diametral distance 𝐷 from vertex 0. Also recall that 𝑊3,𝑛, when 𝑛 > 8 and  𝑛 = 2 𝑚𝑜𝑑 6, 

has three vertices at diametral distance 𝐷 from vertex 0. Based on the Lemma 4.1, it 

follows that 𝑏(𝑊3,𝑛) ≥  𝐷(𝑊3,𝑛) + 1, where 𝑛 > 8 and  𝑛 = 0, 2 𝑚𝑜𝑑 6.  In Section 4.1 

we derived that 𝑏(𝑊3,𝑛) ≤  𝐷(𝑊3,𝑛) + 1, where 𝑛 > 8 and  𝑛 = 0, 2 𝑚𝑜𝑑 6. Combining 

these two inequalities we get,  

𝒃(𝑾𝟑,𝒏) = 𝑫(𝑾𝟑,𝒏)+ 𝟏 = ⌈
𝒏 − 𝟐

𝟔
⌉+ 𝟐    for   𝑛 = 0, 2 𝑚𝑜𝑑 6 

The lower bound on 𝑏(𝑊3,𝑛), when 𝑛 = 4 𝑚𝑜𝑑 6, follows from its diameter. We 

need at least 𝐷(𝑊3,𝑛) = ⌈
𝑛−2

6
⌉ + 1, time units to inform a vertex at distance ⌈

𝑛−2

6
⌉ + 1, 

from the broadcast originator. Thus,  

𝒃(𝑾𝟑,𝒏) ≥  𝑫(𝑾𝟑,𝒏) = ⌈
𝒏−𝟐

𝟔
⌉ + 𝟏   for   𝑛 = 4 𝑚𝑜𝑑 6 

In Section 4.1, we derived that 𝑏(𝑊3,𝑛) ≤  𝐷(𝑊3,𝑛), where 𝑛 = 4 𝑚𝑜𝑑 6. 

Combining these two inequalities we get,  

𝒃(𝑾𝟑,𝒏) = 𝑫(𝑾𝟑,𝒏) = ⌈
𝒏 − 𝟐

𝟔
⌉+ 𝟏    for  𝑛 > 16, 𝑛 = 4 𝑚𝑜𝑑 6  

𝑊3,10 and 𝑊3,16 are the only two graphs in 𝑊3,𝑛, for 𝑛 = 4 𝑚𝑜𝑑 6, where the 

broadcasting cannot be done in diametral time. The 𝐷(𝑊3,10) = 3, and 𝑏(𝑊3,10) = 4. In 

𝑊3,10, 8 vertices will be informed in 3 time units, because a Knödel graph of order 8 and 

degree 3 is a broadcast graph, where 𝑏(𝑊3,8) = ⌈log2 8⌉ = 3. The remaining 2 vertices 

of 𝑊3,10 will be informed at time 4. Similarly, the 𝐷(𝑊3,16) = 4, and 𝑏(𝑊3,16) = 5. In 

𝑊3,16,  8 vertices will be informed in 3 time units. After time 3, 2 out of 8 informed 

vertices will not participate in the rest of the broadcasting process, since all of their 
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neighbors are already informed. So, at time 4, at most 6 vertices can be informed and the 

remaining 2 vertices will be informed at time 5, thus 𝑏(𝑊3,16) = 5. Figures 4.8 and 4.9 

illustrate the diametral broadcasting in 𝑊3,22 and 𝑊3,28, respectively.  

 

Figure 4.8 The diametral broadcast graph, the Knödel graph 𝑾𝟑,𝟐𝟐  

 

 

Figure 4.9 The diametral broadcast graph, the Knödel graph 𝑾𝟑,𝟐𝟖 



64 

 

4.3 The first diametral broadcast graph family in 𝑾𝒅,𝒏  
       

Recall that for the lower bound on the broadcast time of any graph 𝐺, we have  

𝑏(𝐺) ≥  ⌈log2𝑛⌉. Another obvious lower bound on the broadcast time is 𝑏(𝐺) ≥  𝐷(𝐺). 

Also recall that the graph, where the broadcast time equals to its diameter, is known as 

the diametral broadcast graph.  

The graphs with 𝑏(𝐺)  =  𝐷(𝐺) have been studied in [23], where the problem of 

existence of graphs with broadcast time equal to their diameter was introduced. The 

diametral broadcast graph (dbg) problem is to answer the question whether for a given 𝑛 

and 𝑑, a graph on 𝑛 vertices can be constructed whose diameter and broadcast time are 

equal to 𝑑 [23]. They also defined the diametral broadcast function 𝐷𝐵(𝑛, 𝑑) as the 

minimum possible number of edges in a dbg on 𝑛 vertices and diameter 𝑑. In [23], the 

following three different constructions were presented to solve the diametral broadcast 

graph problem for all possible values of 𝑛 and 𝑑.  

In [23], the first construction was based on trees and provided the exact value of 

𝐷𝐵(𝑛, 𝑑) = 𝑛 − 1, for a few values of 𝑛 and 𝑑. The second construction was based on a 

hypercube and binomial subtrees attached to it, where they obtained that the 𝐷𝐵(𝑛, 𝑑) =

1

2
𝑛(⌈log2 𝑛⌉ − 1). In the last construction a dbg was obtained by removing certain 

vertices with adjacent edges from the hypercube and they obtained 𝐷𝐵(𝑛, 𝑑) =
1

2
𝑛⌈log2 𝑛⌉. 

However, in section 4.2, we have presented and proved that the broadcasting in 

the Knödel graph 𝑊3,𝑛, where 𝑛 > 16 and 𝑛 = 4 𝑚𝑜𝑑 6, can be performed in diametral 

time. Since the Knödel graph 𝑊𝑑,𝑛 has degree 𝑑 and 𝑛 vertices, and it is bipartite, 

therefore the number of edges are equal to |𝐸| =
𝑑𝑛

2
. Subsequently, the number of edges 

in 𝑊3,𝑛, where 𝑛 > 16 and  𝑛 = 4 𝑚𝑜𝑑 6, are |𝐸| = 
3𝑛

2
. Moreover, 𝑊3,𝑛, where 𝑛 >
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16 and 𝑛 = 4 𝑚𝑜𝑑 6, is the first infinite diametral broadcast graph family in Knödel 

graph 𝑊𝑑,𝑛. 

4.4 The Broadcast graph 𝑾𝟑,𝟐𝟐 

 The construction of the graphs with 𝑏(𝐺) = ⌈log2 𝑛⌉ (i.e., broadcast graphs) is a 

well-studied problem in literature. See e.g. [3] [5] [6] [7] [10] [12] [20] [21] [27] [29] 

[30]. In terms of Knödel graph, it is presented in [14] that 𝑊𝑑−2,𝑛, where 2𝑑−1 + 2 ≤

𝑛 ≤ 3 ∙ 2𝑑−2 − 4, is a broadcast graph. Recall that a graph on 𝑛 vertices with 𝑏(𝐺) =

 ⌈log2𝑛⌉ is known as a broadcast graph. For the Knödel graph 𝑊3,𝑛 the number of 

vertices can be calculated from the range of 𝑛 given above in [14]. Since the degree in 

𝑊𝑑−2,𝑛 is 𝑑 − 2, therefore 𝑑 = 5 in 𝑊3,𝑛. Thus,  

2𝑑−1 + 2 ≤ 𝑛 ≤ 3 ∙ 2𝑑−2 − 4  

25−1 + 2 ≤ 𝑛 ≤ 3 ∙ 25−2 − 4 

18 ≤ 𝑛 ≤ 20 

 

For 𝑊3,𝑛 the interval of 𝑛 presented in [14] is calculated as 18 ≤ 𝑛 ≤ 20. 

Because of the the interval of 𝑛 from [14], the Knödel graph 𝑊3,22, cannot be considered 

as a broadcast graph. But we show that 𝑊3,22 is the broadcast graph. In Figure 4.8, we 

present the broadcast scheme for 𝑊3,22, which demonstrates that the broadcasting in 

𝑊3,22 can be done in ⌈log 22⌉ = 5 time units. The broadcasting of 𝑊3,22 is also presented 

in Table 4.1, where the information, like 0→7(3), can be interpreted as follows: the 

vertex 0 informs the vertex 7 using 3-dimensional edge. Moreover 𝑏(𝑊3,22) = 𝐷(𝑊3,22). 

Therefore this is a diametral broadcast graph too. 
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Table 4.1 Broadcasting in the Knödel graph 𝑾𝟑,𝟐𝟐 

Time Informed vertices 

0 0 

1 0→1(1) 

2 0→7(3),  1→6(3) 

3 0→3(2),  1→2(2),  6→17(1),  7→16(1) 

4 2→21(1),  3→20(1),  6→19(2),  7→18(2),  16→9(2),  17→8(2) 

5 
8→15(1),  9→14(1),  16→13(3),  17→12(3),  18→11(3),  19→10(3),  20→5(2),  

21→4(2) 
 

 

4.5 Summary 

In this chapter, we studied the problem of broadcasting in the Knödel graph 𝑊3,𝑛, 

for all even 𝑛 and degree 3. Our contributions to this chapter are the following: 

 𝒃(𝑾𝟑,𝒏) = 𝑫(𝑾𝟑,𝒏) + 𝟏 = ⌈
𝒏 − 𝟐

𝟔
⌉ + 𝟐   for   𝑛 = 0, 2 𝑚𝑜𝑑 6 

 𝒃(𝑾𝟑,𝒏) = 𝑫(𝑾𝟑,𝒏) = ⌈
𝒏 − 𝟐

𝟔
⌉ + 𝟏   for   𝑛 > 16, 𝑛 = 4 𝑚𝑜𝑑 6 

 We showed that 𝑊3,𝑛, for 𝑛 > 16 and  𝑛 = 4 𝑚𝑜𝑑 6, is the first diametral 

broadcast graph family in the Knödel graph 𝑊𝑑,𝑛.  

 Using the broadcast scheme, we proved that, 𝑊3,22, is a broadcast graph. 

Moreover, 𝑏(𝑊3,22) = 𝐷(𝑊3,22), so this is also a diametral broadcast graph. 

 Since 𝒃(𝑾𝟑,𝒏) = ⌈
𝒏 − 𝟐

𝟔
⌉ + 𝟏 for 𝑛 > 16 and 𝑛 = 4 𝑚𝑜𝑑 6. Therefore, it turns 

out that the conjecture 𝒃(𝑾𝒅,𝒏) = ⌈
𝒏 − 𝟐

𝟐𝒅−𝟐
⌉ + 𝒅 − 𝟏 for all even 𝑛 and degree 𝑑 

given in [23] is not valid anymore.  
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Chapter 5    

New graph construction and its communication properties 
 

 

In this chapter we construct a new graph, denoted as 𝐻𝑊𝑑,2𝑑 , by connecting the 

vertices of the Knödel graph 𝑊𝑑−1,2𝑑−1 to hypercube 𝐻𝑑−1. We investigate the 

communication properties of 𝐻𝑊𝑑,2𝑑 in terms of number of vertices, degree, edges, 

diameter, and broadcast time. With the use of extensive simulation, we provide diameter 

and broadcast time of 𝐻𝑊𝑑,2𝑑  for all 𝑑 ≤ 24.  

5.1 The construction of  𝑯𝑾𝒅,𝟐𝒅 

We construct the 𝐻𝑊𝑑,2𝑑 graph of order 2𝑑 and degree 𝑑 by connecting the 

vertices of the Knödel graph 𝑊𝑑−1,2𝑑−1 and hypercube 𝐻𝑑−1. The construction of 

𝐻𝑊𝑑,2𝑑  is as follows:  

Consider the Knödel graph 𝑊𝑑−1,2𝑑−1 and hypercube 𝐻𝑑−1, we use the definition 

1 for Knödel graph. Now connect the vertices of Knödel graph 𝑊𝑑−1,2𝑑−1 and hypercube 

𝐻𝑑−1 using d-dimensional edges in a way that the vertex 𝑖, for all 0 ≤ 𝑖 ≤ 2𝑑−1 − 1, of 

the Knödel graph is connected to the vertex of 𝐻𝑑−1 whose binary label is equal to 𝑖. 

Connecting both of these graphs using d-dimensional edges, we have a 𝐻𝑊𝑑,2𝑑 graph of 

order 2𝑑 and degree 𝑑. 

To demonstrate the construction of 𝐻𝑊𝑑,2𝑑  graph, let’s consider 𝐻𝑊4,24, where 

the vertex labeled 0 of Knödel graph 𝑊3,23 connects to the vertex labeled 000 of 

hypercube 𝐻3 using 4-dimensioanl edge. Now the rest of the vertices labeled 1, 2, 3, 4, 5, 
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6, 7 of Knödel graph 𝑊3,23 connect to the vertices 001, 010, 011, 100, 101, 110, 111 of 

hypercube 𝐻3, respectively, using 4-dimensional edges. Figure 5.1 illustrates the 

construction of 𝐻𝑊4,24 graph by connecting the vertices of 𝑊3,23 and 𝐻3 using 4-

dimensional edges.  

 
Figure 5.1 The construction of 𝑯𝑾𝟒,𝟐𝟒 graph by connecting the vertices of 𝑾𝟑,𝟐𝟑 

and 𝑯𝟑 using 4-dimensional edges. 

  
 

5.2 The communication properties of 𝑯𝑾𝒅,𝟐𝒅 

In this section we investigate the communication properties of 𝐻𝑊𝑑,2𝑑 graph in 

terms of number of vertices, degree, edges. The 𝐻𝑊𝑑,2𝑑  graph has 2𝑑 vertices and the 

degree d. The number of edges of 𝐻𝑊𝑑,2𝑑  graph is obtained from the number of edges of 

𝑊𝑑−1,2𝑑−1, 𝐻𝑑−1 and the edges those connects these two graphs. Thus, 𝐻𝑊𝑑,2𝑑  graph has 

|𝐸| = 𝑑 ∙ 2𝑑−1. 

5.3 Diameter of 𝑯𝑾𝒅,𝟐𝒅 graph 

  In order to obtain 𝐷(𝐻𝑊𝑑,2𝑑), we have performed an experiment, where the 

Breadth-First-Search operation is applied on the 𝐻𝑊𝑑,2𝑑  graph. The simulation results 

suggest that  𝑫(𝑯𝑾𝒅,𝟐𝒅) = ⌊
𝒅+𝟐

𝟐
⌋,  for  1 ≤ 𝑑 ≤ 24. 
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5.4 Broadcast time of 𝑯𝑾𝒅,𝟐𝒅 graph 

  This section provides the broadcast time of 𝐻𝑊𝑑,2𝑑  graph that is based on the 

simulation results. The broadcasting in 𝐻𝑊𝑑,2𝑑 graph is performed using classical 

broadcast model. The careful study of generated data regarding 𝑏(𝐻𝑊𝑑,2𝑑) demonstrates 

that the broadcasting in 𝐻𝑊𝑑,2𝑑  graph is performed in ⌈log2 𝑛⌉ time. Recall that a graph 

on n vertices with 𝑏(𝐺) =  ⌈log2𝑛⌉ is called a broadcast graph. Thus, 𝐻𝑊𝑑,2𝑑  is a 

broadcast graph of order 2𝑑 and degree d.  

 

  𝒃(𝑯𝑾𝒅,𝟐𝒅) = ⌈𝐥𝐨𝐠𝟐 𝟐
𝒅⌉ = 𝒅        for  1 ≤ 𝑑 ≤ 24  

5.5 Comparison of 𝑯𝒅, 𝑮(𝟐𝒅, 𝟒), 𝑾𝒅,𝟐𝒅 and 𝑯𝑾𝒅,𝟐𝒅 

For any 𝑛 = 2𝑑 and degree d, hypercube 𝐻𝑑, recursive circulant 𝐺(2𝑑 , 4) and the 

Knödel graph 𝑊𝑑,2𝑑 are the three non-isomorphic infinite graph families known to be 

minimum broadcast and gossip graphs [16][22]. Recall that a broadcast graph with the 

minimum possible number of edges is called minimum broadcast graph. Since 𝐻𝑊𝑑,2𝑑 

graph has 2𝑑 vertices and degree d, and the broadcasting is performed in ⌈log2 𝑛⌉ time (as 

in 𝐻𝑑, 𝐺(2𝑑, 4) and 𝑊𝑑,2𝑑), therefore, 𝐻𝑊𝑑,2𝑑 , when 1 ≤ 𝑑 ≤ 24, is also a minimum 

broadcast graph.   

 These four topologies are comparable because they all have good communication 

properties in terms of interconnection networks. Moreover, they are of the same order 2𝑑 

and regular graphs with the same degree d. Table 5.1 provides the comparison between 

𝐻𝑑, 𝐺(2𝑑 , 4), 𝑊𝑑,2𝑑  and 𝐻𝑊𝑑,2𝑑  graphs. 
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Table 5.1 Comparison between 𝑯𝒅, 𝑮(𝟐𝒅, 𝟒), 𝑾𝒅,𝟐𝒅 and  𝑯𝑾𝒅,𝟐𝒅 

Properties 𝑯𝒅 𝑮(𝟐𝒅, 𝟒) 𝑾𝒅,𝟐𝒅 𝑯𝑾𝒅,𝟐𝒅 

Number of 

vertices 
2d 2d 2d 2d 

Degree 𝑑 𝑑 𝑑 𝑑 

Edges 𝑑 ∙ 2d−1 𝑑 ∙ 2d−1 𝑑 ∙ 2d−1 𝑑 ∙ 2d−1 

Diameter 𝑑 ⌈
3𝑑 − 1

4
⌉ ⌈

𝑑 + 2

2
⌉ ⌊

𝑑 + 2

2
⌋ for 1 ≤ 𝑑 ≤ 24   

Broadcast time 𝑑 𝑑 𝑑 𝑑 

Minimum 

broadcast 

graph 

Yes Yes Yes Yes 

  

It is observed from Table 5.1, that diameter of 𝐻𝑊𝑑,2𝑑  and 𝑊𝑑,2𝑑  is equal to  
𝑑+2

2
  

for even degree d and 2 ≤ 𝑑 ≤ 24. Whereas, when degree d is odd and 3 ≤ 𝑑 ≤ 24  then 

𝐷(𝐻𝑊𝑑,2𝑑) = ⌊
𝑑+2

2
⌋, that is smaller than the 𝐷(𝑊𝑑,2𝑑) = ⌈

𝑑+2

2
⌉, for any odd degree d.  

5.6 Summary 

In this chapter, we provided the construction of a new graph, denoted as 𝐻𝑊𝑑,2𝑑, 

by connecting the vertices of the Knödel graph 𝑊𝑑−1,2𝑑−1 to hypercube 𝐻𝑑−1. Our 

contributions to this chapter are the following: 

 The construction of a new graph, denoted as 𝐻𝑊𝑑,2𝑑  

 𝐷(𝐻𝑊𝑑,2𝑑) = ⌊
𝑑+2

2
⌋,           for  1 ≤ 𝑑 ≤ 24 

 𝑏(𝐻𝑊𝑑,2𝑑) = ⌈log2 2
𝑑⌉ = 𝑑,        for  1 ≤ 𝑑 ≤ 24 

 𝐻𝑊𝑑,2𝑑  graph is a minimum broadcast graph  
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Chapter 6  

Conclusion and Future Work 
 

 

In this thesis we studied three inter-related communication properties, i.e., 

diameter, number of vertices at a particular distance and the broadcast time of the Knödel 

graph. We can divide our work in three parts.  

In the first part, the Knödel graph is studied in terms of diameter. Theoretically, 

we provide 𝑫(𝑾𝟑,𝒏) = ⌈
𝒏 − 𝟐

𝟔
⌉ + 𝟏 for 𝑛 >  8. Moreover, the massive experimental work 

on the Knödel graph, and careful studies of the observed properties lead us to give the 

exact diameter of some other specific Knödel graphs, i.e., 𝑊𝑑−1, 2𝑑−2, 𝑊𝑑−1, 2𝑑, 

𝑊𝑑, 2𝑑+2,  𝑊𝑑, 2𝑑+4, and  𝑊𝑑, 2𝑑+ 2𝑑−1−2.  

 In the second part, we studied the Knödel graph in terms of the number of vertices 

at a particular distance. In this regard, the experiment was conducted, where Breadth-

First-Search operation was performed on Knödel graphs 𝑊𝑑, 2𝑑 ,   𝑊𝑑, 2𝑑+2,  𝑊𝑑, 2𝑑+4, 

   𝑊𝑑, 2𝑑+6, 𝑊𝑑, 2𝑑+8 and 𝑊𝑑−1, 2𝑑−2. The comprehensive study of the data and observed 

properties enables us to give three propositions for the number of vertices at a particular 

distance in specific Knödel graphs.   

The problem of determining the broadcast time of the Knödel graph 𝑊3,𝑛 for all 

even 𝑛 and degree 3 has been undertaken in the last part of our work. Regarding the 

broadcast time of Knödel graph 𝑊3,𝑛, we obtained the following results: 

 𝒃(𝑾𝟑,𝒏) = 𝑫(𝑾𝟑,𝒏) + 𝟏 = ⌈
𝒏 − 𝟐

𝟔
⌉ + 𝟐   for   𝑛 = 0, 2 𝑚𝑜𝑑 6 

 𝒃(𝑾𝟑,𝒏) = 𝑫(𝑾𝟑,𝒏) = ⌈
𝒏 − 𝟐

𝟔
⌉ + 𝟏    for   𝑛 > 16 and 𝑛 = 4 𝑚𝑜𝑑 6 

 We showed that 𝑊3,𝑛, for 𝑛 > 16 and  𝑛 = 4 𝑚𝑜𝑑 6, is the first diametral 

broadcast graph family in the Knödel graph 𝑊𝑑,𝑛.  
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 Using the broadcast scheme, we proved that 𝑊3,22 is a broadcast graph. 

Moreover, 𝑏(𝑊3,22) = 𝐷(𝑊3,22), so this is also a diametral broadcast graph.  

 Since 𝒃(𝑾𝟑,𝒏) = ⌈
𝒏 − 𝟐

𝟔
⌉ + 𝟏 for 𝑛 > 16 and 𝑛 = 4 𝑚𝑜𝑑 6. Therefore, it turns 

out that the conjecture 𝒃(𝑾𝒅,𝒏) = ⌈
𝒏 − 𝟐

𝟐𝒅−𝟐
⌉ + 𝒅 − 𝟏 for all even 𝑛 and degree 𝑑 

given in [23] is not valid anymore.  

 

In Chapter 5, we provided the construction of a new graph, denoted as 𝐻𝑊𝑑,2𝑑, 

and also investigated it’s communication properties. It turns out that this is a minimum 

broadcast graph on order 2𝑑 and degree d,  1 ≤ 𝑑 ≤ 24. Also when degree d is odd and 

3 ≤ 𝑑 ≤ 24  then 𝐷(𝐻𝑊𝑑,2𝑑) = ⌊
𝑑+2

2
⌋, that is smaller than the 𝐷(𝑊𝑑,2𝑑) = ⌈

𝑑+2

2
⌉, for 

any odd degree d.  
 

 

Following this we would like to mention few open questions for future research: 

 The exact value of diameter is given in this thesis for some specific Knödel graphs. 

To find the diameter for other families of Knödel graph 𝑊𝑑,𝑛 is still an open and a 

challenging question.  

 We presented that  𝑊3,𝑛, where 𝑛 > 16, 𝑛 = 4 𝑚𝑜𝑑 6, is the first diametral broadcast 

graph family in the Knödel graph 𝑊𝑑,𝑛. But we are expecting that there might be 

other families of diametral graphs in Knödel graph 𝑊𝑑,𝑛, where 4 ≤ 𝑑 ≤ ⌊log2 𝑛⌋.  

  

 The remarkable number of vertices to diameter ratio characteristic enables Knödel 

graph to compete with hypercube and circulant graphs of same order and degree. Knödel 

graph with its known characteristics in terms of dissemination of information becomes a 

suitable candidate for communication networks, where parallel algorithms are heavily 

employed. 
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