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ABSTRACT

Set-Valued Maps and Their Applications

Joe Pharaon

The serious investigation of set-valued maps began only in the mid 1900s when mathe-

maticians realized that their uses go far beyond a mere generalization of single-valued maps.

We explore their fundamental properties and emphasize their continuity. We present exten-

sions of fixed point theorems to the set-valued case and we conclude with an application to

Game Theory.
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Chapter 1

Introduction

In this thesis, we attempt to understand set-valued maps, a class of maps that was considered irrelevant

until Kuratowski [8] gave them their proper status. They are an extension and a generalization of single-

valued maps. Their use in applications such as in control theory, economics and management, biology and

systems sciences, artificial intelligence, etc... [2] helped them gain unprecedented attention and encouraged

a lot of mathematicians, like J.P. Aubin, to develop theories about their calculus. J.P. Aubin, in his book

”Set-Valued Analysis” [2], expands on the properties of sequences of sets and their limits [11], known as

Kuratowski limits. We will present these results in the second chapter of this thesis.

In the third chapter, we move from the discrete case of a sequence of sets to the continuous case to get

a set-valued map. We discuss fundamental properties and we emphasize, in our discussion, the definition of

continuity. The sequential definition of continuity for single-valued maps fails to hold in the set-valued case.

It wasn’t until 1932 that the concepts of semi-continuous maps had been introduced by G. Bouligand [3] and

K. Kuratowski [8].

In the fourth chapter, the class of upper semi-continuous set-valued maps is used to extend the Brouwer

Fixed Point Theorem to its analogue in the set-valued case. The theorem due to Kakutani [6] provides

sufficient conditions for a set-valued map to have a fixed point. We also state the Ky-Fan inequality [4], an

important theorem discovered in 1972, used to prove existence of equilibria.

1



2 CHAPTER 1. INTRODUCTION

In the final chapter, we discuss an application of set-valued maps and the existence of equilibria in the

context of game theory. Game theory became a field of its own after the publication of a paper by John Von

Neumann in 1928 [13]. It is the study of strategic decision making through building mathematical models

that describe the process of decision making. We start the chapter with fundamental concepts about a

two-person non-cooperative normal game. In this game, we have two players who do not cooperate and their

decision rules and evaluation functions are represented by matrices. In 1951, John Nash proved a theorem

of existence of an equilibrium for non-cooperative games with finitely many players [10]. We conclude the

thesis with a statement of the theorem and an elegant proof [1].



Chapter 2

Sequences Of Sets And Their Limits

2.1 Sequences of Sets

Think about a sequence of sets Sn := S(n) as a rule that assigns to every natural number n, a subset of a

well-defined space. In most of our discussion, the space under consideration is Rd, the set of ordered d-tuples

whose elements are real numbers. There are many reasons behind this choice. We observe its frequent use

in the modelling of real world problems and its elegant topological properties.

We refer to the collection of all subsets of Rd as the power set of Rd and we denote it by P(Rd). Therefore,

formally speaking, we will define a sequence of sets Sn as follows:

S : N −→ P(Rd)

Example: Suppose a virus is released in the world causing each country to have a certain number of

infected individuals and non-infected individuals. We might be interested in the evolution of this virus in

time. If we let n be a unit of time, we can create a sequence Sn that sends each unit of time to a subset

of R2 that represents the number of infected individuals I and non-infected individuals N in 193 countries.

Therefore, if we let n = 0 be the moment of the release of the virus, we can let S0 = {(0, pi)|i = 1 . . . 193}
where pi represents the population of the ith country. In this example each element of the sequence Sn has

precisely 193 elements of R2.

3



4 CHAPTER 2. SEQUENCES OF SETS AND THEIR LIMITS

We will now look at an abstract example in R
2 since it is very easy to graph.

Sn =

{
1

n

}
× [0, 1]

Figure 2.1: Sequence Sn = { 1
n} × [0, 1]

In this example, S1 = {(1, y)|0 ≤ y ≤ 1}.

Just as we are interested in finding the distance that separates two points in a Euclidean space, we are

also interested in defining a distance function to measure how far two sets are apart from each other. We

will start by defining the distance from a point in R
d to a subset of Rd.

Let x ∈ R
d and let S ⊂ R

d such that S �= ∅. Then the distance between x and S is given as follows:

dist(x, S) = inf{d(x, y)|y ∈ S} = inf{‖x− y‖|y ∈ S}

For metric spaces that are not normed, we use their well-defined metric. Also note that if S is closed
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and bounded in R
d, then we can write minimum instead of infimum. As a convention we define the distance

from x to the empty set as:

dist(x, ∅) = +∞

Example: Consider the line y = x + 1 that is represented by the set L = {(x, y)|y = x + 1, x ∈ R} and

the point p(2, 0).

dist(p, L) = min{
√
(x− 2)2 + y2|(x, y) ∈ L} = min{

√
(x− 2)2 + (x+ 1)2|x ∈ R} =

3√
2

Later, we will discuss distance between two sets which describes the work of the German mathematician

Felix Hausdorff.

In the next section we develop an understanding of the work of the Polish mathematician Kazimierz

Kuratowski who characterized the convergence of sets.

2.2 Kuratowski Convergence

We start by considering a sequence of real numbers sn and reviewing two fundamental concepts: limit point

and accumulation point.

We call s a limit point of the sequence sn if the tail of the sequence can be grouped inside a ball of small

radius around s. More formally, s is a limit point of the sequence sn if for every small positive real number

ε we can find a natural number N such that all the elements following sN are at most ε far away from s.

We call s an accumulation point of the sequence sn if we can find infinitely many elements of sn close

enough to s. More formally, s is an accumulation point of sn if, for every small positive real number ε and

for every natural number N , we can find n ≥ N such that sn is at most ε away from s.

For sequences of real numbers, any limit point is an accumulation point but the converse is not true. The

proof merely uses the definitions.
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Example 1: sn = 1
n . The limit point is 0 since the tail of the sequence can be grouped around 0 in a ball

with a very small radius. The accumulation point is also 0 since we can find infinitely many elements of this

sequence close enough to 0.

Example 2: sn = (−1)n

n . The limit point is 0, and so is the accumulation point.

Example 3: sn = (−1)n. In this case the elements of this sequence are −1 and 1. Those two numbers

are accumulation points since we can find infinitely many elements of sn around −1 and 1. In fact there

are infinitely many 1’s and −1’s in this sequence. On the other hand, this sequence has no limit point since

there does not exist a real number to which the tail of the sequence is infinitesimally close.

It is worth noting that for sequences of real numbers, if the limit point exists then it is unique. On the

other hand, we can have an arbitrary number of accumulation points.

Very often, sequences of real numbers do not have limit points. Therefore, it is very useful to define a

“limit superior” and a “limit inferior” of a sequence of real numbers. If we are working in the extended

reals, those two values always exist and they are frequently used in analysis. We will use soon limit supe-

rior and limit inferior in the definition of the Kuratowski limits. But first, we have to understand the concepts.

Consider a sequence of real numbers sn. s is the limit superior of sn if it is the supremum of the limits

of all (convergent) subsequences of sn. On the other hand, s would be the limit inferior of sn if it is the

infimum of all (convergent) subsequences of sn. More formally, let L be the set of all limits of all convergent

subsequences of sn. Then limit superior and limit inferior are defined as follows:

lim sup
n→∞

sn = sup{L}

lim inf
n→∞ sn = inf{L}

We now provide two examples.
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Example 1: sn = (1, 1, 1
2 , 1,

1
3 , 1,

1
4 , 1,

1
5 , . . . ). If we pick all the convergent subsequences, we get two

limits: 0 and 1. An example of a subsequence that converges to 1 is (1, 1, 1, 1, 1, 1, 1, 1, . . . ) and a subse-

quence that converges to 0 is (1, 1
2 ,

1
3 ,

1
4 ,

1
5 , . . . ). Therefore L = {0, 1} and lim sup

n→∞
sn = sup{0, 1} = 1 and

lim inf
n→∞ sn = inf{0, 1} = 0.

Example 2: sn = sin(nπ3 ). Writing this sequence explicitly, we can deduce that L = {0,
√
3
2 ,−

√
3
2 }. Hence,

lim sup
n→∞

sn = sup{0,
√
3
2 ,−

√
3
2 } =

√
3
2 and lim inf

n→∞ sn = inf{0,
√
3
2 ,−

√
3
2 } = −

√
3
2 .

We are now ready to define the ”Upper Kuratowski Limit” and the ”Lower Kuratowski Limit” of a

sequence of sets. Consider a sequence of sets Sn. Then, the upper Kuratowski limit (sometimes called the

upper limit) is defined as follows:

UL(Sn) = lim sup
n→∞

Sn = {y ∈ R
d| lim inf

n→∞ dist(y, Sn) = 0}

The lower Kuratowski limit (sometimes called the lower limit) is defined as follows:

LL(Sn) = lim inf
n→∞ Sn = {y ∈ R

d| lim
n→∞ dist(y, Sn) = 0}

An equivalent way of thinking about the UL and LL of Sn is the following: the upper limit of Sn is the

set of all accumulation points of all sequences sn such that sn ∈ Sn. The lower limit of Sn is the set of all

limit points of all sequences sn such that sn ∈ Sn.

An interesting property is that the Lower Kuratowski limit (as a set) is a subset of the Upper Kuratowski

limit. This is true since any limit point is an accumulation point.

Before we provide a few examples, we must note that if the upper limit and lower limit coincide then the

sequence of sets Sn has a Kuratowski limit S. This is precisely Kuratowski convergence of Sn.

Example 1: Consider the following sequence of sets:
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Sn =

⎧⎪⎪⎨
⎪⎪⎩

1
n × [0, 1] if n is odd

1
n × [−1, 0] if n is even

Figure 2.2: Sequence Sn from Example 1

We claim that the Lower Kuratowski limit of this sequence is the singleton {(0, 0)}. First we consider

the sequence s
(0)
n ∈ Sn defined as s

(0)
n = ( 1n , 0). Elements of this sequence clearly belong to the sequence

of sets and s
(0)
n converges to the point {(0, 0)}. Another sequence that converges to {(0, 0)} is for example

s
(1)
n = ( 1n ,

(−1)n+1

n ).

Next we show that if there exists a convergent sequence sn ∈ Sn then it can only converge to {(0, 0)}.
This last statement holds because whatever sequence we choose, we are always alternating between the

positive side of the x-axis and the negative side. This fact does not allow convergence to any other point of

the form (0, y) where y is strictly positive or strictly negative, otherwise, we could draw a small ball around

(0, y) and infinitely many elements of sn will not be contained in it.

We now find the Upper Kuratowski limit of this sequence. We know that {(0, 0)} belongs to the up-

per limit since it is a superset of the lower limit. We claim that the line segment joining the points (0, 1)

and (0,−1) (i.e. the set {(0, y)| − 1 ≤ y ≤ 1}) is the Upper Kuratowski limit. Indeed, any point of this
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set is an accumulation point of all possible sequences of sn ∈ Sn. For instance, if we pick the sequence

s
(2)
n = ( 1n ,

(−1)n+1

2 ), there exists a subsequence s
(2)
nk = ( 1

2n−1 ,
1
2 ) ∈ Snk

that converges to (0, 1
2 ). In other

words, (0, 1
2 ) is an accumulation point of s

(2)
n .

Finally notice how the sequence Sn ”accumulates” around the vertical line segment described above. The

Upper Kuratowski limit is validated.

Example 2: We can represent the graph of a sequence of functions as a sequence of sets since for any

function f : X → Y we can associate the set Graph(f) = {(x, y)|f(x) = y} ⊂ X × Y .

Consider the graphs of the sequence of functions fn : [0, 1] → [−1, 1] defined by:

fn(x) = (−1)n(−2x3 + 3x2 + x− 1)2n−1

Figure 2.3: Sequence Sn from Example 2

Notice that f2n−1(x) starts at the point (0, 1) and ends at the point (1,−1) whereas f2n(x) starts at the

point (0,−1) and ends at the point (1, 1). Note also that each fn(x) goes through the point ( 12 , 0). It is

worthy mentioning that often we guess the upper and lower limits and then try to prove we have the correct

answer. In this example, we claim that the lower limit is the unit interval on the x-axis. More formally, the
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set LL = {(x, 0)|0 ≤ x ≤ 1}. Let Sn = Graph(fn). Fix x0 ∈ (0, 1) and the sequence s0n = (x0, fn(x0)). Since

x0 ∈ (0, 1) and | −2x3
0 + 3x2

0 + x0 − 1 |< 1 it is easy to show that s0n converges to (x0, 0).

In the limit, and in a small neighborhood of (0, 0) we can approximate the sequence of sets by that from

example 1 so (0, 0) belongs to the lower limit and by symmetry (1, 0) also belongs to the lower limit. We

claim that the upper limit is the union of three segments. The first segment is derived from the lower

limit. The other two segments are V 1 = {(0, y)| − 1 ≤ y ≤ 1} and V 2 = {(1, y)| − 1 ≤ y ≤ 1} so that

UL = LL ∪ V 1 ∪ V 2. Indeed, If we fix ȳ ∈ (0, 1) then the subsequence (f−1
2n−1(ȳ), ȳ) converges to (0, ȳ)

(all the fn’s are one-to-one) and the subsequence (f−1
2n (ȳ), ȳ) converges to (1, ȳ). On the other hand, fixing

¯̄y ∈ (−1, 0) we use a similar argument to get similar results and the subsequences converge to (0, ¯̄y) and

(1, ¯̄y). Consider the graph and notice how the sequence of sets accumulates at the union of the three segments.

We end this section with a statement of a theorem due to Zarankiewicz [14].The proof follows [2].

Theorem 1. Every sequence of subsets Sn of a separable metric space X contains a subsequence which has

a (possibly empty) limit.

Proof. Since X is a separable metric space, there exists a countable collection of open subsets Um in X that

satisfies the following:

∀ open subset U, ∀x ∈ U, ∃Um such that x ∈ Um ⊂ U.

Consider any sequence of subsets Sn. We construct a sequence of subsequences of Sn by induction and

denote it by (S
(m)
n )n>0. For m = 0 we define (S

(0)
n )n>0 = Sn i.e. the first element of this sequence is the

sequence Sn itself. The construction is achieved through the process of induction. Assume that the m − 1

first subsequences have been constructed: (S
(p)
n )n>0 for 0 ≤ p ≤ m − 1. We proceed to construct the mth

term of the sequence.

Consider the mth open subset Um. Then either for every subsequence nj of natural numbers, we have

Um ∩ lim sup
j→∞

S
(m−1)
nj �= ∅ in which case S

(m)
n = S

(m−1)
n

OR there exists a subsequence nj such that Um ∩ lim sup
j→∞

S
(m−1)
nj = ∅ in which case S

(m)
n = S

(m−1)
nj .

Having constructed the sequence of subsequences, we now extract the diagonal subsequence and define it

Dn = S
(n)
n . We claim that Dn has a set limit.
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We prove our claim by contradiction. Assume it does not have a set limit. This means that its upper limit

and lower limit do not coincide. Therefore there exists x0 ∈ X such that x0 ∈ lim sup
n→∞

Dn and x0 /∈ lim inf
n→∞ Dn.

If x0 /∈ lim inf
n→∞ Dn, there exists a neighborhood U of x0 and a subsequence Dnj

such that U ∩Dnj
= ∅ for

any j.

Let us fix Um such that x0 ∈ Um ⊂ U , we thus deduce Um ∩ lim sup
j→∞

Dnj
= ∅. Since for nj ≥ m we have

Dnj
= S

(nj)
nj = S

(m−1)
pj for some pj , we observe that Dnj

is a subsequence of (S
(m−1)
nj )n>0 the upper limit of

which is disjoint from Um.

By the construction of the sequence of subsequences, we have S
(m)
j = S

(m−1)
pj and therefore Um∩lim sup

j→∞
S
(m)
j =

Um ∩ lim sup
j→∞

S
(m−1)
pj = ∅.

Since Dn = S
(n)
n = S

(m)
pn for some pn, we deduce that (Dn)n≥m is a subsequence of (S

(m)
j )j>0 and

x0 ∈ lim sup
n→∞

Dn ⊂ lim sup
j→∞

S
(m)
j ⊂ X\Um which contradicts x0 ∈ Um and therefore such x0 does not

exist.

As a corollary to this theorem, every sequence of sets in R
d has a convergent subsequence.

2.3 Hausdorff Convergence

We start this section by defining the Hausdorff space of Rd. We follow this definition with a metric con-

struction. The main purpose of this section is to be able to measure how far two subsets of Rd are from each

other. We conclude the section with an interesting theorem.

We will call the collection of all non-empty compact subsets of Rd the Hausdorff space of Rd denoted by

H(Rd). Since R
d is a complete space then so is H(Rd). A proof can be found in [7]. The elements of H(Rd)

are subsets of Rd. For example, any closed disk is an element of H(R2). We now construct a metric that

calculates the distance between two elements of H(Rd).

Let d denote the Euclidean metric. Consider two elements A,B ∈ H(Rd). We fix x ∈ A and recall from

the previous section the distance from x to B:
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dist(x,B) = inf{d(x, y)|y ∈ B}

Next we define the Hausdorff semi-distance as:

D(A,B) = sup{dist(x,B)|x ∈ A} = sup{inf{d(x, y)|y ∈ B}|x ∈ A}

The reason why D fails to be a proper metric on H(Rd) is because it fails to satisfy the symmetric

property of metrics. In particular, it is not always true that D(A,B) = D(B,A). Consider for example the

two sets A and B in R
2 defined as follows:

A = {(x, y)|(x+ 4)2 + y2 ≤ 1}, B = {(x, y)|(x− 4)2 + y2 ≤ 4}

They are both closed disks in R
2. A simple picture and calculation concludes that 7 = D(A,B) �=

D(B,A) = 9.

Finally, we define the Hausdorff distance between A and B as follows:

H(A,B) = max{D(A,B), D(B,A)}

(H(Rd), H) inherits the properties of (Rd, d); It is complete and separable. The non-negativity and sym-

metry conditions are easily deduced. It remains to prove the triangle inequality. We first prove the following

lemma:

Lemma. Let m, n, p and q be non-negative real numbers. Then the following holds:

max{m+ n, p+ q} ≤ max{m, p}+max{n, q}

Proof. Since m ≤ max{m, p} and n ≤ max{n, q} then: m + n ≤ max{m, p} +max{n, q}. Similarly we can

say that p+ q ≤ max{m, p}+max{n, q}. The two inequalities give the desired result.

Proposition . D(A,B) ≤ D(A,C) +D(C,B).
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Proof. Let a ∈ A be arbitrary. There exists c ∈ C such that d(a, c) ≤ D(A,C). For this c, we can

find b ∈ B such that d(c, b) ≤ D(C,B). Therefore d(a, b) ≤ d(a, c) + d(c, b) ≤ D(A,C) + D(C,B). But

dist(a,B) ≤ d(a, b) so dist(a,B) ≤ D(A,C) +D(C,B).

Since the choice of a ∈ A was arbitrary, we can take the supremum over all a ∈ A and conclude D(A,B) ≤
D(A,C) +D(C,B).

We use a similar argument to conclude that D(B,A) ≤ D(B,C) +D(C,A).

Finally, using the lemma above, we get the following result:

H(A,B) = max{D(A,B), D(B,A)} ≤ max{D(A,C)+D(C,B), D(B,C)+D(C,A)} ≤ max{D(A,C), D(C,A)}+
max{D(C,B), D(B,C)} = H(A,C) +H(C,B).

Definition.A sequence of sets An ∈ H(Rd) converges to a set A ∈ H(Rd) if and only if:

lim
n→∞H(An, A) = 0

We say that An converges to A in the Hausdorff metric. This is precisely Hausdorff convergence.

We conclude this section with an interesting result (without a proof) that marks the connection between

the Kuratowski convergence and Hausdorff convergence [7]:

Theorem 2. Let X be a metric space. Let An ∈ H(X) be a sequence of sets. Assume that there exists

K ⊂ X such that K is compact and An ⊂ K, ∀n ∈ N. Then the Hausdorff convergence of An is equivalent

to the Kuratowski convergence of An.

2.4 Calculus of Limits

In the last section of this chapter, we state some properties of sequences of sets in the form of a lemma.

Lemma: Assume S
(1)
n and S

(2)
n are two sequences of subsets of Rd. Then the following holds:
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lim sup
n→∞

(S(1)
n ∩ S(2)

n ) ⊂ lim sup
n→∞

S(1)
n ∩ lim sup

n→∞
S(2)
n

lim inf
n→∞ (S(1)

n ∩ S(2)
n ) ⊂ lim inf

n→∞ S(1)
n ∩ lim inf

n→∞ S(2)
n

lim sup
n→∞

(S(1)
n ∪ S(2)

n ) = lim sup
n→∞

S(1)
n ∪ lim sup

n→∞
S(2)
n

lim inf
n→∞ (S(1)

n ∪ S(2)
n ) ⊂ lim inf

n→∞ S(1)
n ∪ lim inf

n→∞ S(2)
n

Proof. • Suppose x ∈ lim sup
n→∞

(S
(1)
n ∩S

(2)
n ) then there exists a sequence xn ∈ (S

(1)
n ∩S

(2)
n ) with at least one

subsequence xnk
∈ (S

(1)
nk ∩ S

(2)
nk ) such that xnk

→ x. This means that xnk
∈ S

(1)
nk and x ∈ lim sup

n→∞
S
(1)
n .

Similarly, xnk
∈ S

(2)
nk and x ∈ lim sup

n→∞
S
(2)
n . We conclude that x ∈ lim sup

n→∞
S
(1)
n ∩ lim sup

n→∞
S
(2)
n .

• Suppose x ∈ lim inf
n→∞ (S

(1)
n ∩S

(2)
n ) then there exists a sequence xn ∈ (S

(1)
n ∩S

(2)
n ) such that xn → x. But

this means that xn ∈ S
(1)
n and xn ∈ S

(2)
n and therefore x ∈ lim inf

n→∞ S
(1)
n as well as x ∈ lim inf

n→∞ S
(2)
n . We

conclude that x ∈ lim inf
n→∞ S

(1)
n ∩ lim inf

n→∞ S
(2)
n .

• Suppose x ∈ lim sup
n→∞

S
(1)
n ∪ lim sup

n→∞
S
(2)
n . Then x is either in lim sup

n→∞
S
(1)
n or in lim sup

n→∞
S
(2)
n . Without loss

of generality, consider x ∈ lim sup
n→∞

S
(1)
n . x is therefore an accumulation point of a sequence xn ∈ S

(1)
n .

So x is a cluster point of xn ∈ S
(1)
n ∪ S

(2)
n and finally x ∈ lim sup

n→∞
(S

(1)
n ∪ S

(2)
n ). On the other hand,

suppose that that x ∈ lim sup
n→∞

(S
(1)
n ∪S

(2)
n ). Then, x is a cluster point of some sequence xn ∈ S

(1)
n ∪S

(2)
n .

There exists a subsequence xnk
converging to x that belongs to the union of the two sequences of

sets. But xnk
contains infinitely many elements that belong to S

(1)
n (wlog). We index those elements

and create a further subsequence xnkj
which converges to x since xnk

converges to x and therefore x

is a cluster point of some sequence in S
(1)
n and so x ∈ lim sup

n→∞
S
(1)
n . Finally x ∈ lim sup

n→∞
S
(1)
n ∪lim sup

n→∞
S
(2)
n .

• Suppose x ∈ lim inf
n→∞ (S

(1)
n ∪ S

(2)
n ). Then x is a limit point of some sequence xn ∈ S

(1)
n ∪ S

(2)
n . But xn

contains infinitely many elements in S
(1)
n (wlog). We index those elements by k. We create a subse-

quence xnk
∈ S

(1)
n that converges to x since xn converges to x. Therefore x ∈ lim inf

n→∞ S
(1)
n . Finally, we
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conclude that x ∈ lim inf
n→∞ S

(1)
n ∪ lim inf

n→∞ S
(2)
n .

Consider now a single-valued continuous function f(x) defined on R
d. Recall, if xn ∈ R

d such that xn

converges to x̄ then by the continuity of f we have:

f( lim
n→∞xn) = lim

n→∞ f(xn)

If also f is one-to-one, then if yn = f(xn) is given such that yn converges to ȳ then the following holds:

f−1( lim
n→∞ yn) = lim

n→∞ f−1(yn)

We can generalize the above to sequences of sets. Under the same assumptions on f (continuity), the

following holds:

f(lim sup
n→∞

Sn) ⊂ lim sup
n→∞

f(Sn)

f(lim inf
n→∞ Sn) ⊂ lim inf

n→∞ f(Sn)

f−1(lim sup
n→∞

Sn) ⊃ lim sup
n→∞

f−1(Sn)

f−1(lim inf
n→∞ Sn) ⊃ lim inf

n→∞ f−1(Sn)

Proof. • Let y ∈ f(lim sup
n→∞

Sn) then there exists x ∈ lim sup
n→∞

Sn such that f(x) = y. Since x ∈ lim sup
n→∞

Sn

then x is the accumulation point of some sequence sn ∈ Sn and therefore there exists a subsequence

snk
that converges to x. By the continuity of f , we deduce that f(snk

) converges to f(x) = y and

therefore y ∈ lim sup
n→∞

f(Sn).
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• Let y ∈ f(lim inf
n→∞ Sn). There exists x ∈ lim inf

n→∞ Sn such that f(x) = y. There exists a sequence xn ∈ Sn

such that xn → x. By the continuity of f , we observe that f(Sn) � f(xn) → f(x) = y. Finally, we

conclude that y ∈ lim inf
n→∞ f(Sn).

• Let x ∈ lim sup
n→∞

f−1(Sn). There exists xn ∈ f−1(Sn) such that x is the cluster point of this sequence.

But xn = f−1(yn) and so f(xn) = yn ∈ Sn. By the continuity of f , f(x) is a cluster point of

f(xn) = yn ∈ Sn. Hence, f(x) ∈ lim sup
n→∞

Sn and finally, x ∈ f−1(lim inf
n→∞ Sn).

• Let x ∈ lim inf
n→∞ f−1(Sn). There exists x ∈ f−1(Sn) such that xn → x. There exists yn ∈ Sn such that

xn = f−1(yn). By the continuity of f , we have f(xn) = yn → f(x). Therefore, f(x) ∈ lim inf
n→∞ Sn and

finally x ∈ f−1(lim inf
n→∞ Sn).



Chapter 3

Set-Valued Maps And Continuity

3.1 Set-valued Maps

We have previously seen that sequences of sets map a natural number to an element of P(Rd). We can view

them as discrete functions defined on the discrete metric space of natural numbers N. From there we can

extend this concept to the continuous case and define a set-valued map F as a function that maps a metric

space (Rd in our discussion) to an element of P(Rd):

F : Rd −→ P(Rd)

We can regard a set-valued map as a correspondence or a multifunction that maps a point in R
d to a

subset of Rd. It is represented as:

F : Rd � R
d

Set-valued maps are a generalization of single-valued maps. Their relevance was neglected until the late

parts of the 20th century. Many applied mathematicians realized that they could be used to answer ques-

tions in different sciences such as economics, biology, physics, etc... In the last chapter of this thesis, we

will see how set-valued maps are used for modelling in game theory. Mathematicians have tried to extend

the properties of single-valued maps (functions) to the set-valued case. New concepts had to be formulated.

Among those who contributed to this theory is the French mathematician Jean-Pierre Aubin in his book on

set-valued analysis published in 1990.

17
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In this chapter, we will present some of the significant properties starting with the basic concept of do-

main and ending with a detailed study of continuity which is crucial to further analysis.

We start by formally defining the domain of a set-valued map F :

Dom(F ) = {x ∈ R
d|F (x) �= ∅}

The domain of a set-valued map is any point in the d-dimensional Euclidean space, for which F admits

a non-empty image. In order not to reduce it to the single valued case, we require that at least one x ∈ R
d

admits an image with a cardinality strictly greater than 1. The image of F is defined as follows:

Im(F ) =
⋃

x∈Dom(F )

F (x)

Suppose we want to follow an air molecule’s path in space. It is natural to model the dynamics as a

set-valued map since at each instant, the molecule occupies a particular volume in space (a subset of R3).

It would be plausible to express the dynamics using the following motion map:

M : T� R
3,

where T = [0,∞) represents time. Questions like continuity of motion may arise.

Let us consider a few abstract examples with their graphs.

Consider the set-valued map F : [0, 1]� [0, 1] defined as follows:

F (x) = {y ∈ [0, 1]|x2 ≤ y ≤ √
x}
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Figure 3.1: Set-Valued Map example 1

In this example, F ( 12 ) = [ 14 ,
√

1
2 ].

Another example is G : [0, 1]� [0, 1] defined as follows:

G(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[ 14 ,
3
4 ] if x ∈ [0, 1

4 )

[0, 1] if x ∈ [ 14 ,
3
4 ]

[ 14 ,
3
4 ] if x ∈ ( 34 , 1]
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Figure 3.2: Set-Valued Map example 2

In this last example, G( 18 ) = [ 14 ,
3
4 ] and G( 12 ) = [0, 1].

Finally note that in the second example there is a ”jump” at x = 1
4 . Later in this chapter, we learn that

G(x) graphed above is not a continuous set-valued map.

3.2 Properties of Set-Valued Maps

In this section, we consider some properties of set-valued maps. Consider S, S1, S2 ⊂ R
d and a correspondence

F between Euclidean spaces then the following holds:

F (S1 ∪ S2) = F (S1) ∪ F (S2)

F (S1 ∩ S2) ⊂ F (S1) ∩ F (S2)

Im(F )\F (S) ⊂ F (Rd\S)

S1 ⊂ S2 =⇒ F (S1) ⊂ F (S2)
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We prove the first statement in the above list:

Let y ∈ F (S1 ∪ S2). Then there exists x ∈ S1 ∪ S2 such that y ∈ F (x). Therefore, x ∈ S1 or x ∈ S2.

Without loss of generality, assume x ∈ S1. Therefore y ∈ F (x) ⊂ F (S1) and we have: y ∈ F (S1) ∪ F (S2).

Note that the proof works in both directions and therefore both inclusions F (S1 ∪ S2) ⊂ F (S1)∪F (S2) and

F (S1 ∪ S2) ⊃ F (S1) ∪ F (S2) are true. Hence F (S1 ∪ S2) = F (S1) ∪ F (S2).

We say a set-valued map is described by its graph. First recall that the graph of a set-valued map F is

defined as follows:

Graph(F ) = {(x, y)|y ∈ F (x)} ⊂ R
d1 × R

d2

The graph of a set-valued map F is a subset of the product space and whatever (topological) prop-

erty the graph displays, we name F after this property. For example, if the graph of F is closed then we

say that F is a closed set-valued map. If the graph of F is compact we say that F is a compact set-valued map.

A very important and interesting property is convexity. A set-valued map F is convex if the following

holds:

⎧⎪⎪⎨
⎪⎪⎩
∀x1, x2 ∈ Dom(F ), ∀λ ∈ [0, 1]

λF (x1) + (1− λ)F (x2) ⊂ F (λx1 + (1− λ)x2)

Referring to the two graphs above, the first shows a convex set-valued map but the second one is not.

We end this section with the definition of the inverse of a set-valued map. Unlike single-valued maps,

set-valued maps admit two distinct types of inverses. The first one is the ”strong inverse” and the second is

the ”weak inverse”. We will follow the terminology used in Jean-Pierre Aubin’s book (Inverse and Core).

Let S ⊂ R
d and let F : Rd � R

d be a set-valued map. Then the inverse of S by F is defined as follows:

F−(S) = {x ∈ R
d|F (x) ∩ S �= ∅}

.
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The core of S by F is defined as follows:

F+(S) = {x ∈ R
d|F (x) ⊂ S}

Notice that the core is a subset of the inverse because whenever F (x) ⊂ S then F (x) intersects S.

Consider the first example above:

F (x) = {y ∈ [0, 1]|x2 ≤ y ≤ √
x}

Let S = [0, 1
2 ]. Then the inverse of S by F is:

F−(S) = [0,
1√
2
]

The core of S by F is:

F+(S) = [0,
1

4
]

3.3 Continuity of Set-valued Maps

We start by recalling the concept of continuity for a single-valued map. We call f continuous at x if the

following holds:

∀ε > 0, ∃δ > 0 such that ∀y satisfying ‖x− y‖ < δ,we have ‖f(x)− f(y)‖ < ε

In simple terms, a single-valued map f is continuous at x if a small deviation from x does not induce a

large deviation from f(x). There is another equivalent way of defining continuity of single-valued maps. f

is continuous at x if for any sequence xn converging to x, we have f(xn) converging to f(x).

Problems arise when we want to extend the definition of continuity to set-valued maps. The sequential

definition no longer holds true. Therefore in 1932, the concept of semicontinuous maps was introduced by

two famous mathematicians G. Bouligand and K. Kuratowski.

Definition. A set-valued map F is called upper semicontinuous at x ∈ Dom(F ) if and only if for any
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open set V ⊃ F (x), there exists a neighbourhood U � x such that U ⊂ F+(V ). F is upper semicontinuous

if it is upper semicontinuous on its domain.

Definition. A set-valued map F is called lower semicontinuous at x ∈ Dom(F ) if and only if for any

open set V such that V ∩ F (x) �= ∅, there exists a neighbourhood U � x such that U ⊂ F−(V ). F is lower

semicontinuous if it is lower semicontinuous on its domain.

There are other equivalent definitions that can be found in [2].

A set-valued map is said to be continuous if it is both lower and upper semicontinuous.

Maps that are either lower or upper semicontinuous exist and we present an example of each case.

Consider the set-valued map from the example above G : [0, 1]� [0, 1] defined as follows:

G(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[ 14 ,
3
4 ] if x ∈ [0, 1

4 )

[0, 1] if x ∈ [ 14 ,
3
4 ]

[ 14 ,
3
4 ] if x ∈ ( 34 , 1]

Figure 3.3: Upper but not Lower semicontinuous
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G is an upper semicontinuous map but not lower semicontinuous. Indeed G is upper semicontinuous at

x = 1
4 . This is true because F ( 14 ) = [0, 1]. Let V = (−ε, 1 + ε) ⊃ F ( 14 ) be an open set. Now F+(V ) = [0, 1]

and from here we see that any neighbourhood U of x = 1
4 satisfies U ⊂ F+(V ). Also G is not lower semi-

continuous at x = 1
4 . Consider V = (1− ε, 1 + ε) and note that F ( 14 ) ∩ V �= ∅. Now F−(V ) = [ 14 ,

3
4 ]. There

does not exist a neighbourhood U � x such that U ⊂ F−(V ).

Consider on the other hand the set-valued map G : [0, 1]� [0, 1] defined as follows:

G(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[0, 1] , x ∈ [0, 1
4 )

[ 14 ,
3
4 ] , x ∈ [ 14 ,

3
4 ]

[0, 1] , x ∈ ( 34 , 1]

Figure 3.4: Lower but not Upper semicontinuous

G is a lower semicontinuous map but not upper semicontinuous. Indeed, G is lower semicontinuous at

x = 1
4 . This is true because F ( 14 ) = [ 14 ,

3
4 ]. Choosing any open set V that intersects F ( 14 ), we will always get

F−(V ) = [0, 1] which definitely intersects any image of x̄ ∈ U where U is a neighbourhood of x = 1
4 . For any

x ∈ [0, 1], we have F (x) ∩ V �= ∅. Also G is not upper semicontinuous at x = 1
4 . Letting V = ( 14 − ε, 3

4 + ε),

we notice that F ( 14 ) ⊂ V and that F+(V ) = [ 14 ,
3
4 ]. There exists no neighbourhood of U � x = 1

4 such that
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U ⊂ F+(V ).

We can similarly create set-valued maps that are neither upper nor lower semicontinuous but they are

not of analytical interest. When working in Euclidean spaces, upper semicontinuous maps form a very im-

portant class of maps that is helpful in fixed point and equilibrium theory. We shall discuss fixed points and

equilibrium points in the next chapter. In the last section of this chapter, we will cover topics that will help

us in our study of the following chapter.

3.4 Cones and Upper Hemicontinuity

In this section we define the tangent cone of a set at a point and the polar cone of a set. These two sets are-

essential to understand the next chapter. Before we do so, we have to introduce the concept of a ”support

function”. It is much easier to visualize a ”support function” in the Euclidean space R
d. Recall if we regard

the space Rd as the set of all column vectors of d-components, then the dual of Rd is the set of all row vectors

of d-components.

Definition. Let S be a non-empty subset of Rd. We associate with every row vector v in the dual space

of Rd the following:

σS(v) = sup
x∈S

< v, x >∈ R ∪ {+∞}

The function σS : (Rd)∗ → R ∪ {+∞} is called the support function of S.

Here < v, x > denotes the regular dot product of two vectors. If we fix v in the dual space of Rd, then

the set S is contained in the closed half space {y ∈ R
d| < y, v >≤ σS(v)} and there is at least one point of

S on the boundary of the closed half space.

We illustrate with an example. Consider the closed disk S centred at (3, 0) and with radius 1 in R
2. Let

v = [1, 1] then:

σS([1, 1]) = sup
x∈S

{x1 + x2}

Here x1 and x2 are the components of the vectors in the closed disk. Since S is compact we can replace
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supremum with maximum and we proceed to solve the following problem:

⎧⎪⎪⎨
⎪⎪⎩
maximize: x1 + x2

subject to: (x1 − 3)2 + x2
2 ≤ 1

Solving for x2 in the inequality and choosing positive values of x2 we get: x2 ≤ √
1− (x1 − 3)2 which

implies that x1 + x2 ≤ x1 +
√
1− (x1 − 3)2. We define m(x1) = x1 +

√
1− (x1 − 3)2. This function admits

a maximum for x1 = 3 + 1√
2
. Therefore, m(3 + 1√

2
) = 3 +

√
2, and finally σS([1, 1]) = max

x∈S
{x1 + x2} ≤

max{m(x1)} = 3 +
√
2.

This means that we can contain S in the closed half-plane determined by {y ∈ R
2|y1 + y2 ≤ 3+

√
2} and

S touches the boundary of the closed half plane at the point (3 + 1√
2
, 1√

2
), as shown in Figure 5:

Figure 3.5: Support function example

We use support functions in R
d to define the polar cone of a set. Let S be a subset of Rd (later in our

discussion, we will require S to be convex and compact). The polar cone of S is defined as:

S− := {y ∈ R
d|σS(y) ≤ 0}
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We regard elements of the set S as vectors. Then the polar cone of S is the set of vectors whose dot

product with any vector from S is non-positive. Specifically, in R
2, S− contains all the vectors that form an

angle greater than 90◦ with any vector in S. We present an example.

Consider the closed disk S = {(x1, x2)|(x1 − 3)2 + (x2 − 3)2 ≤ 4}. The polar cone of S is then given by:

S− = {(y1, y2)|x1y1 + x2y2 ≤ 0}.

After simple algebra, we can deduce that: S− = {(y1, y2)|y2 ≤
√
14−7√
14+7

y1 and y2 ≤
√
14+7√
14−7

y1}. See

Figure 6, where the polar cone of S is the shaded region. The lines that determine the boundaries of the

polar cone are described in S− above.

Figure 3.6: Polar cone of the disk

We now introduce the tangent cone to a set at a point. Notice that it is important to specify at what

point we are forming our tangent cone. It is similar to the idea of drawing a tangent line to a function at a

particular point (tangent lines will look differently at different points of the function). For that, we consider

a set S ⊂ R
d that we require to be compact. We define the tangent cone TS(x) of S at x as follows:

TS(x) =
⋃
h>0

S − x

h
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Consider a compact set S ⊂ R
2. Fix a point x on the boundary of S so that x ∈ ∂S. In order to draw

the tangent cone of S at x, draw all the vectors that start at point x and whose terminal points are all other

points of S and then take all their positive scalar multiples. If we choose x from the interior of S so that

x ∈ Sn∂S then the tangent cone of S at x is generally the whole space. In fact this is true whenever we can

draw a ball around x with a radius ε > 0 such that the ball is entirely contained in S.

We finish our discussion of tangent cones with an illustrative example. Consider the boundary and the

interior of the lemniscate S (”sleeping eight” figure) defined by: (x2 + y2)2 ≤ 8(x2 − y2). We are interested

in drawing the tangent cone of S at the origin. In Figure 7, the union of the lines passing through the origin

and whose slope is bounded by real numbers whose absolute values are less than or equal to 1, forms the

tangent cone to S at the origin .

Figure 3.7: Tangent cone to the lemniscate

We end this chapter with an introduction to upper hemicontinuous maps. We will define this class of

maps and state a theorem that is relevant to our study.

Definition. A set-valued map F : Rd � R
d is upper hemicontinuous at x ∈ Dom(F ) if and only if for

any y ∈ R
d the function x → σF (x)(y) is upper semicontinuous at x. F is upper hemicontinuous if and only

if it is upper hemicontinuous on its domain.
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Theorem 3. Let X be a topological space and Y a metric space and F : X � Y .

If F is upper semicontinuous then F is upper hemicontinuous.

Theorem 4. Let X be a topological space and Y be a metric space and F : X � Y .

If F is upper hemicontinuous and compact-valued then F is upper semicontinuous.

The proofs of the these theorems can be found in [12].

Corollary. Let F be a compact set-valued map between Euclidean spaces. Upper semicontinuity is

equivalent to upper hemicontinuity.
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Chapter 4

Equilibria And Fixed Points

4.1 Definitions

In this chapter, we present the most important part of this thesis. We state and prove 3 theorems that will

guarantee the existence of an equilibrium and/or a fixed point. These points play a major role in game theory

as we will see in Chapter 5. Before we state and prove them, we start with some definitions. Throughout

this chapter, X = R
d unless otherwise stated.

Definition. Let F : X � X be a set-valued map. We call x ∈ Dom(F ) an equilibrium point of F if and

only if 0 ∈ F (x).

Example 1: Let F (x) = {√x,−√
x} for any non-negative real number x. It is clear from the definition

that x = 0 is the unique equilibrium point.

Example 2: Consider the set-valued map F defined by the area bounded between these two single-valued

maps:

T1(x) =

⎧⎪⎪⎨
⎪⎪⎩
2x if x ∈ [0, 1

2 ]

2− 2x if x ∈ ( 12 , 1]

T2(x) =

⎧⎪⎪⎨
⎪⎪⎩
2x− 1

4 if x ∈ [0, 1
2 ]

7
4 − 2x if x ∈ ( 12 , 1]

31
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Figure 4.1: Equilibrium points for example 2

A careful study shows that x is an equilibrium point if and only if x ∈ [0, 1
8 ]∪ [ 78 , 1]. In fact, the set-valued

map intersects the x-axis at x = 0 and x = 1 but also where T2(x) touches the x-axis. This happens at

x = 1
8 and x = 7

8 .

We now proceed to define a fixed point for a set-valued map. It is a natural extension of the single-valued

case. It is also important to understand the difference between an equilibrium point and a fixed point.

Definition. Let F : X � X be a set-valued map. We call x ∈ Dom(F ) a fixed point of F if and only if

x ∈ F (x).

Example 1: Let F (x) = {√x,−√
x} for any non-negative real number x. It is clear from the definition

that x = {0, 1} are the only 2 fixed points.

Example 2: Consider the set-valued map F defined by the area bounded between T1(x) and T2(x) from

above. In order to find the fixed points of F , it suffices to find the intersection of the line y = x with the

lines {y = 2x− 1
4 , y = 7

4 − 2x, y = 2− 2x} which gives the x-values { 1
4 ,

7
12 ,

2
3} respectively. Therefore, x is a

fixed point of F if and only if x ∈ [0, 1
4 ] ∪ [ 7

12 ,
2
3 ].
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In [1], a viability domain is defined for a set-valued map F . The viability domain of F , call it V , is a

subset of the domain and satisfies the following condition:

∀x ∈ V, F (x) ∩ TV (x) �= ∅,

where TV (x) is the tangent cone to V at x. This means that for any x ∈ V , there exists y ∈ F (x) such

that y is tangent to V at x. In [2], viability domains are used to show that for any initial state x0 ∈ V , there

exists a solution x(t) to the differential inclusion x′ ∈ F (x) which is viable in V in the sense that x(t) ∈ V

for any t ≥ 0.

We end this section with Schauder’s fixed point theorem that will be essential in proving the theorems

of this chapter.

Theorem 5. A continuous function f on a compact convex set K admits a fixed point, i.e. there exists

x ∈ K such that x = f(x).

4.2 Ky-Fan’s Inequality

The Ky-Fan Inequality is a fundamental inequality in fixed point theory. Discovered in 1972, it was used

in the proof of many theorems, in particular the Constrained Equilibrium Theorem. The statement of the

theorem and the proof follows [2].

Theorem 6. Let K be a compact convex subset of a Banach space X and φ : X × X → R be a function

satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

i)∀y ∈ K, x → φ(x, y)is lower semicontinuous;

ii)∀x ∈ K, y → φ(x, y)is concave;

iii)∀y ∈ K, φ(y, y) ≤ 0.
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Then there exists x ∈ K, a solution to

∀y ∈ K, φ(x, y) ≤ 0

Proof. Our proof is by contradiction. Assume that the conclusion does not hold. Then, for any x ∈ K, there

exists y ∈ K such that φ(x, y) > 0.

We define new subsets of K in the following way:

νy = {x ∈ K|φ(x, y) > 0}

These subsets cover K and they are open sets since φ is lower semicontinuous in x. So, {νy}y is an open

covering of K. But K is compact so it has a finite subcover {νyi
} where i = 1, .., n.

We consider a continuous partition of unity {αi} associated with the open covering {νyi
} . This means

that for each x ∈ K,
n∑

i=1

αi(x) = 1 and for any i, αi(x) ≥ 0 and support(αi) ⊂ νyi
.

We define a new function f : K → X by:

∀x ∈ K, f(x) =

n∑
i=1

αi(x)yi,

f mapsK to itself sinceK is convex and yi ∈ K. f is also continuous. So we can apply the Schauder’s fixed point theorem

to conclude the existence of a fixed point y = f(y) ∈ K of f . Therefore, the second assumption of the theo-

rem (concavity in the second argument) implies:

φ(y, y) = φ(y,
n∑

i=1

αi(y)yi) ≥
n∑

i=1

αi(y)φ(y, yi)
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We introduce the following set:

I(y) = {i = 1, ..., n|αi(y) > 0}

It is not empty because
n∑

i=1

αi(y) = 1 so at least one of the values is strictly positive. Furthermore

n∑
i=1

αi(y)φ(y, yi) =
∑

i∈I(y)
αi(y)φ(y, yi) > 0

The last inequality holds because whenever i ∈ I(y) then αi(y) > 0 which means that y ∈ νyi
and by the

very definition of these sets φ(y, yi) > 0. We conclude that:

φ(y, y) > 0

This contradicts the third assumption of the theorem.

4.3 Constrained Equilibrium Theorem

We are now ready to state and prove the Constrained Equilibrium Theorem [2]. We show that for an upper

semicontinuous map F that is closed and convex defined on a Banach space X, with constraints belonging

to a closed subset V , there exists x ∈ V such that 0 ∈ F (x) or in other words x is an equilibrium point.

Theorem 7. Let X be a Banach space and F : X � X is an upper hemicontinuous set-valued map with

closed and convex images. If K ⊂ X is a convex compact viability domain of F , then it contains an

equilibrium of F .

Proof. We prove by contradiction. We assume that there exists no equilibrium point of F . Hence, for any
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x ∈ K, 0 /∈ F (x). Since the images of F are closed and convex, the geometric Hahn-Banach Separation

Theorem [9] implies the existence of px ∈ X∗ such that σ(F (x), px) < 0.

We define the following subsets:

νp = {x ∈ K|σ(F (x), p) < 0}

The negation of the existence of an equilibrium implies that K can be covered by the subsets νp. These

subsets are open by the very definition of upper hemicontinuity of F . Since K is compact, there exists a

finite subcover {νpi
} where i = 1, ...n. We consider a continuous partition of unity {αi} associated with the

subcover and we define a new function φ : K ×K → R by:

φ(x, y) =
n∑

i=1

αi(x) < pi, x− y >

It is continuous with respect to x so it satisfies the first assumption of Ky-Fan’s inequality.

It is affine with respect to y and so it satisfies the second assumption of the inequality. Finally φ(y, y) = 0

and the third assumption is also satisfied. Therefore, there exists x ∈ K such that

∀y ∈ K, φ(x, y) =

n∑
i=1

αi(x) < pi, x− y >=< p, x− y >≤ 0

Here, p =
n∑

i=1

αi(x)pi. The above inequality can be rewritten as: < −p, y − x >≤ 0, thus −p belongs to

the polar cone of the tangent cone to K at x, i.e., −p ∈ TK(x)−.

Since K is a viability domain of F , there exists v ∈ F (x) ∩ TK(x). Thus,

σ(F (x), p) = sup
y∈F (x)

< p, y >≥< p, v >≥ 0

The last inequality holds because v ∈ TK(x) and −p ∈ TK(x)−, so we have < −p, v >≤ 0 ⇒< p, v >≥ 0.
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We now show that σ(F (x, p) < 0 which contradicts the last series of inequalities. To do so, we first define:

I(x) = {i = 1, ..., n|αi(x) > 0}

which is not empty. Hence,

σ(F (x), p) = sup
y∈F (x)

< y, p >

= sup
y∈F (x)

< y,

n∑
i=1

αi(x)pi >

= sup
y∈F (x)

n∑
i=1

αi(x) < y, pi >

≤
n∑

i=1

αi(x) sup
y∈F (x)

< y, pi >

=

n∑
i=1

αi(x)σ(F (x), pi)

=
∑

i∈I(x)
αi(x)σ(F (x), pi)

< 0

The last inequality holds because i ∈ I(x) implies αi(x) > 0, which means that x ∈ νpi
and therefore

σ(F (x), pi) < 0 by the definition of νpi . We have created the desired contradiction.

4.4 Kakutani Fixed Point Theorem

The Kakutani Fixed Point Theorem is a generalization of the Brouwer Fixed Point Theorem [5] in the single-

valued case. It establishes conditions under which a set-valued map F admits a fixed point. The statement

and proof of the theorem follow [2].

Theorem 8. Let K be a convex compact subset of a Banach space X and G : X � K be an upper

hemicontinuous set-valued map with nonempty closed convex images. Then G has a fixed point x ∈ G(x).

Proof. We define the new map F (x) = G(x) − x which is also upper hemicontinuous being the sum of two

upper hemicontinuous maps. Also since G is convex then ∀λ ∈ [0, 1] and ∀x1, x2 ∈ Dom(G) we have
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G(λx1 + (1− λ)x2) ⊂ λG(x1) + (1− λ)G(x2)

Therefore,

F (λx1 + (1− λ)x2) = G(λx1 + (1− λ)x2)− (λx1 + (1− λ)x2)

⊂ λG(x1) + (1− λ)G(x2)− (λx1 + (1− λ)x2)

= λ(G(x1)− x1) + (1− λ)(G(x2)− x2)

= λF (x1) + (1− λ)F (x2)

Since K is convex then K − x ⊂ TK(x) and since G is convex then G(K) ⊂ K. We deduce that K is a

viability domain of F because

F (x) = G(x)− x ⊂ G(K)− x ⊂ K − x ⊂ TK(x)

Hence there exists an equilibrium point x ∈ K of F , i.e. 0 ∈ F (x) = G(x)−x which implies that x ∈ G(x)

which is the desired fixed point of G.



Chapter 5

Game Theory Application

5.1 Fundamental Concepts

We start by considering two players: Elie and Mirna. The game requires Elie to pick a strategy x ∈ E and

Mirna to pick a strategy y ∈ M . The pair (x, y) ∈ E×M is called a strategy pair or a bistrategy. A natural

mechanism for the selection of strategies by the two players is coming up with decision rules.

Definition. A decision rule for Elie is a set-valued map CE : M � E which associates each strategy

y ∈ M played by Mirna with the strategies x ∈ CE(y) which may be played by Elie. Similarly, a decision

rule for Mirna is a set-valued map CM : E � M which associates each strategy x ∈ E played by Elie with

the strategies y ∈ CM (x) which may be played by Mirna.

Once Elie and Mirna come up with their decision rules CE and CM , respectively, we become interested

in pairs of strategies (x, y) that are in static equilibrium, in the sense that:

x ∈ CE(y) and y ∈ CM (x)

This leads to the following definition:

Definition. A pair of strategies (x, y) which is in static equilibrium is called a consistent pair of strategies

or a consistent bistrategy.

39
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The set of consistent bistrategies may be empty or very large. From the point of view of a game theorist,

it would be only interesting if it is non-empty and small (at best consisting of one element). The problem of

finding consistent bistrategies is a fixed point problem. We use C to denote the set-valued map from E×M

into itself:

∀(x, y) ∈ E ×M, C(x, y) := CE(y)× CM (x).

And so, we are looking for pairs (x, y) that satisfy the following condition:

(x, y) ∈ C(x, y)

We recall the powerful Brouwer’s Fixed Point Theorem which provides sufficient conditions for a map

defined on a certain set to have a fixed point.

Theorem 9. Let K be a convex compact subset of a finite-dimensional space. Any continuous mapping of

K into itself has a fixed point.

We state the following corollary:

Corollary. Suppose that the behaviours of Elie and Mirna are described by one-to-one continuous de-

cision rules and that the strategy sets E and M are convex compact subsets of finite-dimensional vector

spaces. Then there is at least one consistent bistrategy.

We generalize this Corollary later to the multi-valued case.

Most of fixed point theorems require the sets to be convex and compact but in practice, this assumption

might fail to be satisfied. Over the years mathematicians had to find a way to work around that problem

since finite strategy sets are not convex. We first start by identifying the finite strategy set E = {1, . . . , n}
of n elements and we associate E with the (n− 1)−simplex of Rn, given by:
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Sn = {λ ∈ R
n
+|

n∑
i=1

λi = 1}.

Note that a simplex is a convex compact set. We next embed E in Sn by the mapping δ given by:

δ : i ∈ E −→ ei ∈ R
n,

where (e1, . . . , en) is the canonical basis of Rn.

John Von Neumann proposed interpreting the elements of Sn as mixed strategies. A player does not

choose one strategy but chooses only the probabilities with which he plays all the strategies. By doing so,

the player is disguising his intentions from his opponents.

Any set-valued map C from E = {1, . . . , n} to a vector space X may be extended to a set-valued map C

from R
n to X as follows:

∀λ ∈ R
n, C(λ) =

n∑
i=1

λiC(i).

Elie and Mirna will each use an evaluation function to classify their strategies. We will call it a loss

function fi since it will be representing Elie’s and Mirna’s losses if a bistrategy (x, y) is played. The function

fi is associated with a partial order of preference as follows:

(x1, y1) ∈ E ×M is preferred to (x2, y2) ∈ E ×M if and only if fi(x1, y1) ≤ fi(x2, y2).

This means that a bistrategy is preferred if the loss is minimal.

fE(x, y) represents Elie’s loss if Elie plays strategy x and Mirna plays strategy y.

fM (x, y) represents Mirna’s loss if Mirna plays strategy y and Elie plays strategy x.

We set:

f(x, y) = (fE(x, y), fM (x, y)) ∈ R
2
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Definition. A two-person game in normal (strategic) form is defined by a mapping f from E ×M into

R
2 called a biloss mapping.

If Elie knows that Mirna is playing strategy y ∈ M , then he may be tempted to choose a strategy x ∈ E

that minimizes his loss. From this idea, we create the canonical decision rule CE in the following way:

CE(y) = {x ∈ E|fE(x, y) = inf
x∈E

fE(x, y)}

Similarly, if Mirna knows that Elie is playing strategy x ∈ E, then she may be inclined to choose strategy

y ∈ M that minimizes her loss. Her canonical decision rule is:

CM (x) = {y ∈ M |fM (x, y) = inf
y∈M

fM (x, y)}

Definition. A consistent pair of strategies (x, y) based on the canonical decision rules is called a

non-cooperative equilibrium (or a Nash equilibrium) of the game.

In other words (x, y) is a non-cooperative equilibrium if and only if

fE(x, y) = inf
x∈E

fE(x, y)

fM (x, y) = inf
y∈M

fM (x, y).

A convenient way to find non-cooperative equilibria is to introduce the following functions (
 is read

”flat”):

f �
E(y) = inf

x∈E
fE(x, y)

f �
M (x) = inf

y∈M
fM (x, y)

And so (x, y) is a non-cooperative equilibrium if and only if
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f �
E(y) = fE(x, y) and f �

M (x) = fM (x, y).

5.2 Pareto Optima

In this context, we assume that players communicate and cooperate so there may exist bistrategies (x, y)

such that

fE(x, y) < fE(x, y) or fM (x, y) < fM (x, y)

Definition. (x�, y�) is a bistrategy that is Pareto optimal if there are no other pairs (x, y) ∈ E×M such

that fE(x, y) < fE(x�, y�) and fM (x, y) < fM (x�, y�).

If there exists a bistrategy that minimizes Elie’s loss: αE , then this bistrategy is Pareto optimal. For this

to happen, Mirna’s only goal would be to please Elie. On the other hand, if there exists another bistrategy

that minimizes Mirna’s loss: αM , then this bistrategy is also Pareto optiomal. For this to happen, Elie’s

only goal would be to please Mirna. It rarely occurs that the virtual minimum of the game (αE , αF ) is a

non-cooperative equilibrium.

5.3 Conservative Strategies

There is a behaviour where Mirna’s only goal is to annoy Elie and Elie is aware of this. Therefore, it would

be wise for Elie to evaluate the loss associated with a strategy x ∈ E using the function f �
E (fE sharp) given

by:

f �
E(x) = sup

y∈M
fE(x, y).

This is called the worst-loss function. In this case, Emil’s behaviour consists of finding x� ∈ E which

minimizes his worst loss, namely:
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f �
E(x

�) = inf
x∈E

f �
E(x) = inf

x∈E
sup
y∈M

fE(x, y).

This strategy is conservative and v�E := inf
x∈E

f �
E(x) is Elie’s conservative value.

Similarly, v�M := inf
y∈M

f �
M (y) is Mirna’s conservative value. the vector v� = (v�E , v

�
M ) is called the conser-

vative vector of the game. Thus the bistrategies of interest are contained in the rectangle [αE , v
�
E ]×[αM , v�M ].

5.4 Examples of Finite Games

5.4.1 Prisoner’s dilemma

Suppose that Elie and Mirna are accomplices to a crime which leads to their imprisonment. Each has to

choose between the strategies of confession (”I” for Elie and ”1” for Mirna) or accusation ( ”II” for Elie and

”2” for Mirna).

The strategy sets are therefore E = {I, II} and M = {1, 2}.

If neither confesses, moderate sentences are given (b years in prison).

If Elie confesses and Mirna accuses him, Mirna is freed and Elie is sentenced to c > b years in prison.

If Mirna confesses and Elie accuses her, Elie is freed and Mirna is sentenced to c > b years in prison.

If both confess, they will each serve a years in prison where a < b < c.

We summarize the bilosses of the different bistrategies in the following table:

Mirna

1 2

Elie
I (a,a) (c,0)

II (0,c) (b,b)
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We compute the following:

f �
E(I) = c, f �

E(II) = b, f �
M (1) = c, f �

M (2) = b.

Whence, v�E = v�M = b and the bistrategy (II, 2) is the conservative strategy.

Also note that:

f �
E(1) = 0, f �

E(2) = b, f �
M (I) = 0, f �

M (II) = b.

It turns out that the bistrategy (II, 2) is also a non-cooperative equilibrium because:

fE(II, 2) = b < fE(I, 2) and fM (II, 2) = b < fM (II, 1) = c.

5.4.2 Battle of the sexes

The strategies of Elie and Mirna consist of watching a political debate or going to the mall. Mirna prefers

going to the mall while Elie prefers watching a political debate but they both prefer to be together. Elie’s

strategies are I and II for watching a political debate and going to the mall, respectively. As for Mirna, her

strategies are 1 and 2, in the same order as well. Here is a table that summarizes the bilosses incurred based

on the bistrategies played (0 < a < b):

Mirna

1 2

Elie
I (0,a) (b,b)

II (b,b) (a,0)

We compute the following:

f �
E(I) = f �

E(II) = f �
M (1) = f �

M (2) = b.
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Therefore all 4 bistrategies are conservative.

Also note that:

f �
E(1) = 0, f �

E(2) = a, f �
M (I) = 0, f �

M (II) = a.

We conclude that the bistrategies (I, 1) and (II, 2) are the non-cooperative equilibria, since:

fE(I, 1) = 0 < fE(II, 1) = b

fM (I, 1) = a < fM (I, 2) = b

fE(II, 2) = a < fE(II, 1) = b

fM (II, 2) = 0 < fM (I, 2) = b.

5.5 N-person Games

We extend the concept of a two-person game to an n-person game. The ith player is denoted by i = 1, . . . , n.

Each player may choose a strategy xi ∈ Ei. The set of multistrategies x = (x1, . . . , xn) is denoted by

E =
n∏

i=1

Ei.

In the perspective of the ith player, the set of multistrategies E is considered to be the product of Ei

(his own set of strategies) and E ı̂ =
∏
j 
=i

Ej of strategies xı̂ = (x1, . . . , xn). Thus from his point of view

x = (xi, xı̂), the set E = Ei × E ı̂.

Definition. A decision rule of the ith player is a set-valued map Ci from E ı̂ to Ei which associates

multistrategies xı̂ ∈ E ı̂ determined by the other players with a strategy set Ci(xı̂) ⊂ Ei.
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Definition. Consider an n-person game described by n decision rules Ci from E ı̂ to Ei. We shall say

that a multistrategy x ∈ E is consistent if ∀i = 1, . . . , n, we have xi ∈ Ci(xı̂).

The set of consistent multistrategies is the set of fixed points of the set-value map C from E to E defined

by: C(x) =
n∏

i=1

Ci(xı̂).

Kakutani’s Fixed Point Theorem immediately provides an existence result of consistent multistrategies

since the maps are assumed to be continuous and the set E to be convex and compact.

We shall suppose that the decision rules Ci of the players are determined by loss functions f i.

Definition. A game in normal (strategic) form is a game in which the behaviour of the ith player is

defined by a loss function f i : E → R which evaluates the loss f i(x) inflicted on the ith player by each

multistrategy x.

The multiloss mapping is therefore defined by:

∀x ∈ E, f(x) = (f1(x), f2(x), . . . , fn(x)) ∈ R
n

The associated decision rules are:

C
i
(xı̂) = {xi ∈ Ei|f i(xi, xı̂) = inf

yi∈Ei
f i(yi, xı̂)}

Definition. The decision rules C
i
associated with the loss function f i are called the canonical decision

rules. A multistrategy x ∈ E which is consistent for the canonical decision rules is called a non-cooperative

equilibrium (Nash equilibrium).

This leads us to introduce the following map:

φ : (x, y) ∈ E × E −→
n∑

i=1

(f i(xi, xı̂)− f i(yi, xı̂)) ∈ R
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Proposition. The following assertions are equivalent:

1. x ∈ E is a non-cooperative equilibrium.

2. ∀i = 1, . . . , n, ∀yi ∈ Ei, we have f i(xi, xı̂) ≤ f i(yi, xı̂).

3. ∀y ∈ E, we have φ(x, y) ≤ 0.

Proof. The equivalence of (1) and (2) is a consequence of the definition of non-cooperative equilibria and

the infimum.

(2) ⇒ (3) is obtained by adding up the n inequalities from (2).

(3) ⇒ (2): Suppose that φ(x, y) ≤ 0, ∀y ∈ E. We fix i and let y = (yi, xı̂). And so (3) can be rewritten as

f i(xi, xı̂)− f i(yi, xı̂) +
∑
j 
=i

(f j(xj , xĵ)− f j(yj , xĵ)) ≤ 0

But xj = yj whenever j �= i because of the definition of y. This concludes the proof.

Theorem 10. (Nash). Suppose that ∀i ∈ N , the sets Ei are convex and compact and f i are continuous and

yi → f i(yi, xı̂) are convex, then there exists a non-cooperative equilibrium x.

Proof. It follows from the Ky-Fan inequality. The product of convex, compact sets is also convex and

compact.

φ(x, y) is continuous in x because f i’s are continuous in x.

φ(x, y) is concave in y because f i’s are convex in y and f i(yi, .)’s are preceded by a negative sign.

φ(y, y) = 0 for any y ∈ E.

All three assumptions of the Ky-Fan inequality are satisfied and therefore there exists x ∈ E such that

φ(x, y) ≤ 0

Finally we use the above proposition that states the equivalence of statements (1) and (3) to conclude the

existence of the non-cooperative equilibrium.



Bibliography

[1] Aubin J.P., Optima And Equilibria, Springer-Verlag Berlin Heidelberg, 1993.

[2] Aubin J-P., Frankowska H., Set-Valued Analysis , Modern Birkhäuser Classics, 1990.
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