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Montréal, Québec, Canada

August 2014

c© Behnam Karimi, 2014



Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Mr. Behnam Karimi

Entitled: An automatic system for classification of breast cancer

lesions in ultrasound images

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. Otmane Ait Mohamed Chair

Dr. Farida Cheriet External Examiner

Dr. Ching Y. Suen Examiner

Dr. Nawwaf Kharma Examiner

Dr. Thomas G. Fevens Examiner

Dr. Adam Krzyżak Supervisor

Approved
Chair of Department or Graduate Program Director

20

Dean of Faculty

Faculty of Engineering and Computer Science



Abstract

An automatic system for classification of breast cancer lesions in

ultrasound images

Behnam Karimi, Ph.D.

Concordia University, 2014

Breast cancer is the most common of all cancers and second most deadly cancer in

women in the developed countries. Mammography and ultrasound imaging are the

standard techniques used in cancer screening. Mammography is widely used as the

primary tool for cancer screening, however it is invasive technique due to radiation

used.

Ultrasound seems to be good at picking up many cancers missed by mammography.

In addition, ultrasound is non-invasive as no radiation is used, portable and versa-

tile. However, ultrasound images have usually poor quality because of multiplicative

speckle noise that results in artifacts. Because of noise segmentation of suspected ar-

eas in ultrasound images is a challenging task that remains an open problem despite

many years of research.

In this research, a new method for automatic detection of suspected breast cancer

lesions using ultrasound is proposed. In this fully automated method, new de-noising

and segmentation techniques are introduced and high accuracy classifier using com-

bination of morphological and textural features is used.

We use a combination of fuzzy logic and compounding to denoise ultrasound im-

ages and reduce shadows. We introduced a new method to identify the seed points

and then use region growing method to perform segmentation. For preliminary classi-

fication we use three classifiers (ANN, AdaBoost, FSVM) and then we use a majority

voting to get the final result. We demonstrate that our automated system performs

better than the other state-of-the-art systems. On our database containing ultra-

sound images for 80 patients we reached accuracy of 98.75% versus ABUS method

with 88.75% accuracy and Hybrid Filtering method with 92.50% accuracy.

Future work would involve a larger dataset of ultrasound images and we will

extend our system to handle color ultrasound images. We will also study the impact
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of larger number of texture and morphological features as well as weighting scheme

on performance of our classifier. We will also develop an automated method to

identify the ”wall thickness” of a mass in breast ultrasound images. Presently the

wall thickness is extracted manually with the help of a physician.
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Chapter 1

Introduction

Mammography is one of the screening tests that has been shown to decrease the

breast cancer death rate for women. Where the breast tissue is dense, cancers can

be hidden on mammogram. Mammography is less able to show cancers in younger

women, between 40 and 49 years old, than in women 50 years or older, although

mammography is beneficial in both age groups. Sonography shows many cancers

not seen on mammography, especially when the tissue is dense. This success has

stimulated interest in using sonography for breast cancer screening. It is not known

at this time whether patients with cancers found only by sonography have the same

outcome as those with cancers found on mammography or whether treating cancers

found only by sonography saves lives. Most of cancers found only on sonography are

small invasive cancers. Figure 1.1 illustrates breast cancer death rates for women

from 1999 to 2010.

Usually, when there is a suspicious lesion found in mammography, it is recom-

mended to perform sonography for better analysis. If the suspicious growth detected

by mammography is confirmed by sonography, then the patient will be sent to per-

form biopsy in order to get the final diagnosis. It is very important to know that

mammography and sonography are not diagnosis tests but rather screening tests.

Figure 1.2 illustrates a sample sonography image of breast.

A suspicious mass or nodule is typically darkest in the sonogram. The reason is

that the more dense the tissue is, the more unlikely that the sound passes through

the tissue. That is why that area becomes darker. When a dark area in sonography

image is found, sonographer examines that area carefully to see the type of the mass.

1



Figure 1.1: Female Breast Cancer Death Rates by Race and Ethnicity, U.S., 1999 to
2010

Figure 1.2: A sonography image from breast that shows a suspicious mass
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Radiologists usually use heuristic and measurable criteria to identify if a mass is

suspicious for carcinoma. The most important features of a mass that could raise

the red flag are the size, the shape, the area and the texture. Upon completion of

image analysis the radiologist decides whether a patient requires a diagnostic test,

i.e., biopsy.

Tumors are sometimes cancerous but this does not mean that tumors and cancers

are synonyms (as most people think). Therefore a proper examination of lumps is

very important. Differences between cancer, carcinoma and tumor are:

• Cancer: Class of diseases occurring due to uncontrolled growth of groups of

cells. Cancerous cells are malignant.

• Carcinoma: Is a cancer that begins in the skin or in tissues that line or cover

internal organs

• Tumor: A tumor is the name for swelling or lesion formed by an abnormal

growth of cells. A tumor can be benign, pre-malignant or malignant, whereas

cancer is by definition malignant.

When biopsy is recommended, the abnormality identified on a mammogram or

ultrasound is surgically removed. Biopsy is an excisional biopsy, meaning that the

abnormality seen on mammogram is surgically removed. You will be given the anes-

thesia that you and your physician have discussed. The surgeon uses the wire im-

planted earlier to locate the abnormality and remove it in the operating room. The

specimen, once removed from the breast, is then sent to radiology to be X-rayed.

The radiologist and the surgeon communicate to confirm that the abnormality seen

on mammogram or ultrasound has been removed. The abnormality that is removed is

then sent to pathologist to determine if the sample contains cancerous cells and also

some other information life grade and type of cancer is determined during pathological

analysis. Figure 1.3 illustrates a sample pathology report.
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Figure 1.3: Pathology report

4



1.1 The problem

Interpretation of breast ultrasound images is a very critical step in diagnosing breast

cancer. The radiologist analyzes the ultrasound images and makes a decision to send

the patient for biopsy.

There are some challenges in interpretation of ultrasound images. Sometimes even

experienced radiologists have difficulties to identify if a lesion is suspicious for cancer.

If a radiologist decides that a lesion is not suspicious for cancer, and in reality it is

cancer, then it is called a false negative result. Unfortunately, false negative results

happen and it is not unheard of. False negatives are very dangerous because the

patient will not seek medical treatment and cancer can spread to the other organs in

the body.

There are some reasons that make interpretation of breast ultrasound images

a challenging task. One of the reasons is that ultrasound images (specially breast

ultrasound images) are very noisy. This makes the interpretation very difficult as

sometimes normal breast tissues are considered as part of the lesion and vice versa.

The other reason that radiologists sometimes have difficulties analyzing breast

ultrasound images is shadowing. Shadowing is not part of the normal breast tissue

or lesion but it is an artifact that can be seen in ultrasound images. The shadows

are sometimes mistakenly considered part of the lesions and make the analysis very

difficult.

When radiologist finds the boundary of the lesion, limited number of features

are considered to define if the lesion is suspicious for cancer. Those limited number

of features might not be enough to cover all the possible cases. Radiologists some-

times use their own experience for making their decision. Therefore interpretation of

ultrasound images can be very subjective.

1.2 The approach

In this thesis a new method to automatically detect suspicious lesions in breast ul-

trasound images is proposed. The goal of this study is to remove as much noise as

possible from ultrasound images so we can identify lesions easier. Also, our method

tries to eliminate or reduce the shadows appearing in ultrasound images.

The other challenge we are trying to overcome is to consider a better set of features
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with higher discriminatory power. We consider morphological features and texture

features.

To summarize, in this thesis a new CAD system with high performance and ac-

curacy is introduced. Here are the main contributions of this thesis:

• Implementation of a new method for de-noising to eliminate as much noise as

possible while preserving important information in ultrasound images

• Implementation of a new segmentation method with more accuracy than the

state-of-the-art segmentation methods

• Finding proper set of features with better discriminatory power

• Combination of different types of features (i.e. morphological and texture fea-

tures) and study the effect of those features on the performance and accuracy

of the system

• Considering ultrasound images from different angles to get more information

about the lesions seen in those images

• Introduction of a new two class classification method with high accuracy for

classifying lesions in breast ultrasound images

• Comparison between state-of-the-art methods and our method to validate the

performance and accuracy of our proposed system

Based on the mentioned items, we have done several experiments to prove our

system could perform better than other state-of-the-art systems.

1.3 Structure of the thesis

This thesis consists of six chapters preceded by a list of figures and tables. Chapter 2

illustrates the characteristics of ultrasound images and discusses some difficulties that

radiologists have for interpretation of ultrasound images.

In chapter 3 different methods of pre-processing and segmentation are studied and

the advantages and disadvantages of those methods are discussed. We also discuss
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existing methods for feature selection. Finally we discuss the state-of-the-art classi-

fication methods to classify lesions in breast ultrasound images and we also discuss

advantages and disadvantages of each method.

Our contribution in this thesis is discussed in chapter 4. We used fuzzy logic

and compounding for de-noising of breast ultrasound images. We also introduced a

new approach for segmentation of lesions in ultrasound images based on automatic

selection of seed points and region growing algorithm. We used combination of texture

features and morphological features and selected proper set of features. Our new

classification method is shown in this chapter along with implementation details and

proper methods of validation and verification. Finally, the complete system to classify

lesions in breast ultrasound images is proposed.

In chapter 5 we show the result of our experiments based on the new method we

introduced. A comparison between our method and other methods is done and we

show representative outputs of our algorithm.

We finally conclude the thesis in chapter 6 and discuss future work.
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Chapter 2

Breast cancer and its diagnosis

using ultrasound

Ultrasound is a useful diagnostic tool for breast cancer, especially for younger patients.

Most of the time breast ultrasound is used as a way to distinguish solid from cystic

masses and often to determine the extent of cancer in known or suspected cases.

A cystic mass is a closed capsule or sac-like structure, typically filled with liquid,

semisolid or gaseous material - very much like a blister.

For young women (younger than 30) ultrasound imaging may be the first step

in which a clinical exam reveals either a palpable mass or nipple discharge. (Since

breast cancer tends to happen with older post-menopausal women, doctors try not to

expose younger women to unnecessary radiation of a mammogram). But sonography

can help establish the differentiation between benign and malignant solid tumors as

well. A lack of circumscribed margins, heterogeneous echo patterns, and an increased

anteroposterior dimension can indicate a higher probability of malignancy in solid

breast nodules as shown in Fig. 2.1 [124, 146].
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Figure 2.1: An example of a solid breast nodule

2.1 Biology of cancer

Cells are fundamental unit of life. Organs in the body (i.e. breast, colon, brain,

etc.) are made of specialized cells that carry out the organs functions. This may

include transporting oxygen to other parts of the body, digestion, excretion of waste,

reproduction, etc. [31].

When a cell is worn out, it has to be replaced to allow organs to perform. The

cells might also increase in number in response to changes in the environment. Re-

production of cells happens by cell division. When the cell is normal, the division

is happening in a regulated way. When cell grows, inheritance and containment is

being controlled by DNA. DNA is considered as cells brain. It is like a blueprint of

the functions of the cell. In humans, cells DNA is arranged in 46 sections. Those

sections are called chromosomes. Chromosomes are in pairs (23 chromosomes from

each biological parent).

The 46 chromosomes contain more than 100,000 genes. Gene is a segment of DNA

that makes the structure of a protein. Protein is the main source for development and

growth of the cells and it carries out vital chemical functions in the body. Genes are

also arranged in pairs (like DNA). The pair of gene consists of gene from the mother

and gene from the father. Gene responsibility is to tell a cell to make different

proteins. Some genes send a message to the cell to produce structural proteins that

serve as building blocks. Other genes tell the cell to make hormones, which exit the

cell and communicate with other cells.

Cells division happens when they receive signals from growth factors that circulate

in the bloodstream or from another cell. When cells receive signals to divide, they
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go through a cycle called cell cycle. Each step has a checkpoint to make sure the

process is performed the way it should. When the process goes wrong, a cell might

become cancerous. In another word, a cancer cell is a cell that grows uncontrollably.

These cells do not respond to signals to stop the division. When the cells grow in an

uncontrollable manner and they are not able to recognize their own natural boundary,

the cells may spread to other parts of the body, where they do not even belong to.

A cancer cell is a defective cell that goes through mutation. Mutation means

several genes changes happen. There are two types of mutations. The first type is

called dominant mutation, which is caused by an abnormality in one gene in a pair.

An example is a gene that produces defective protein and makes the growth-factor

receptor on a cells surface to be always on, when there is no growth-factor even

present. The second type of mutation is called recessive mutation. In this type of

mutation, both pairs are damaged. For example, a normal gene called p53 produces

a protein that turns off the cell cycle and helps to control cell growth.

When a cell becomes cancerous, many mutations are necessary. In some cases,

both types of mutation (dominant and recessive) may occur in order for a cell to

become cancerous. A gene mutation can cause an abnormal cell to invade normal

tissues, where the cancer started or it can travel in the bloodstream, which is called

metastasize, and reach remote parts of the body. To summarize, cancerous cells are

defective cells which divide uncontrollably. They can invade the surrounding tissues

and spread by vascular and/or lymphatic systems. These defects are the result of

gene mutation [67].

2.2 Sonography

Ultrasound is cyclic sound pressure with a frequency greater than the upper limit of

human hearing. It is used in different fields, typically to penetrate a medium and

measure the reflection signature or supply focused energy. The reflection signature

can show the details about the inner structure of the medium. The most well-known

application of ultrasound is its use in sonography.

Sonography is a procedure widely used in medicine. It can be used for screen-

ing, diagnosis and therapeutic procedures, using ultrasound to guide interventional

procedures such as biopsy. The procedure of sonography is usually performed by
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Figure 2.2: (a) illustrates a sonographic instrument and (b) shows a transducer

Radiologists, who are physicians specialized in the application and interpretation of

a wide variety of medical imaging modalities. To perform sonography, a hand-held

probe is typically used (called transducer) that is placed directly on and moved over

the patient. As the transducer moved over the patient, an ultrasound image can be

seen on the sonographic instrument monitor. This instrument can take snapshots

of different areas for further reference. The snapshots can then be printed and be

filed. Fig. 2.2 illustrates a sonographic instrument. Using sonographic instrument,

sonographer can analyze the images seen on the monitor.

2.2.1 Examining margins, shape, and echogenicity

The most important features in a breast ultrasound are the clarity and contour of the

mass margins, the orientation and shape of the mass, the echo texture and echogenic-

ity (reflecting ultrasound waves), and the effects on distal echoes. Others aspects of

the mass such as compressibility and vascularity may also be noted. Some of the fea-

tures one might usually find in a sonograph of a malignant breast mass would include

a marked hypoechogenicity, acoustic shadowing, a branch pattern or microlobulation,
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or a duct extension. Other malignant features might be a ’taller than wide’ shape, an-

gular margins, the presence of calcification, and speculation, which probably has the

highest positive predictive value for malignant breast cancer. Benign breast lesions

on the other hand tend to appear on ultrasound with intense and uniform hypere-

chogenicity, as an oval shape with a thin, consistent capsule, and they may have two

to three gentle lobulations.

2.2.2 Sonographic features of benign and malignant nodules

A breast sonograph can help in diagnosis in differentiating between benign and malig-

nant tumors, often without the need for a biopsy. The absence of a well-circumscribed

margin, heterogeneous echo patterns, as well as an increased anteroposterior dimen-

sion to the image does tend to indicate a higher probability of malignant cancer in

solid breast nodules. A ’probably benign’ and with recommended short term follow

up only, can only be given if there is an absence of any of these clearly suspicious

features.

2.2.3 Ultrasound characteristics typical of malignant breast

masses

The typical sonographic presentation of a malignant breast mass would be an ir-

regular, heterogeneous, hypoechoic mass, with speculations and angular margins.

And, these kinds of masses tend to have that ’taller-than-wide’ appearance, and also

demonstrate acoustic shadowing. Figure 2.3 compares a malignant tumour with a

benign tumour. In the malignant tumour, an ill-defined border, an irregular shape,

microlobulations, and speculations (which appears as a hyperechoic ’band’ around

the mass) can clearly be seen. The lesion also appears to be ’taller-than-wide’, with

an angular margin. This would all be highly predictive of invasive ductal carcinoma,

and the lesions would be biopsied.

Speculations often represent breast tumor ’tentacles’ or desmoplastic reactions.

On ultrasound, speculations will often consist of straight lines that ’radiate’ in a

perpendicular fashion from the surface of the breast mass.
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Table 2.1: Selected Features
Sonographic Features Benign Potentially Malignant

Absence of malignant findings *
Hyperechoic/ intense, fibrous tissue
like

*

Two or three microlobulations *
Ellipsoid shape/ wider than tall, paral-
lel to the skin

*

Pseudocapsule/ thin, echogenic, well-
circumscribed

*

Speculations/ alternating hyper and
hypoechoic straight lines

*

Height divided by width greater than 1
or non-parallel to the skin

*

Angular margins *
Shadowing/ through transmission at-
tenuated

*

Branch pattern extensions / multiple
radial projections, peri or intra-ductal,
nipple oriented

*

Markedly hypoechoic (sound waves not
absorbed)

*

Microcalcifications *
Duct extension / single radial projec-
tion, peri or intra-ductal, nipple ori-
ented

*

Microlobulations *
Intracystic nodule (cyst inside a mass),
parietal thickening (thickening of the
border of the mass)

*
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Figure 2.3: a) Benign tumour b) Malignant tumour

An ’angular margin’ is observed as an angular configuration to the junction be-

tween relatively hypoechoic or isoechoic central portion of a solid mass and surround-

ing tissue. Sometimes these features are referred to as ’jagged’ or ’irregular’ margins.

Angular margins are quite distinct from ’lobulations’ which tend to be smooth and

rounded. Angular margins observed on breast ultrasound are highly predictive of

malignancy.

If a solid breast nodule appears on ultrasound to be ’taller-than-wide’, this is

quite suspicious of malignancy. When a patient is scanned by ultrasound, they are

usually in a supine position, and as a result the normal ’tissue planes’ on the breast

will have a horizontal orientation. If a mass or part of the mass seems longer in

the anteroposterior dimension (tallness) compared to either the sagittal or transverse

dimensions (depth and width) then one can conceive that this might likely be caused

by a malignancy ’aggressive enough’ to overcome normal breast tissue barriers and

planes, and grow vertically.

Hypoechoic breast lesions are suspicious for malignancy, and on ultrasound imag-

ing they will tend to look intensely black compared to the surrounding isoechoic fat.

But malignancies can also be isoechoic and hyperechoic on breast ultrasound, so it is

not a ’hard and fast’ finding by any means.

’Microlobulations’ observed on breast ultrasound indicate the presence of lots of

very small (1mm to 2 mm) lobulations on the surface of a solid breast nodule, and will

be quite similar to mammogram findings. As the number of these microlobulations

increase, the probability that the breast mass is malignant also increases.
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Figure 2.4: An example of calcification in breast ultrasound

A ’duct extension’ appears on ultrasound as a ’radially oriented’ projection that

seems to arise from the lesions an axis oriented towards the nipple. These projec-

tions are often observed either within or around breast duct. Sometimes a duct

extensions/projection can be observed which has developed as a ’bridge’ between

multifocal malignancies. This is different from a ’branch pattern’ in which multi-

ple extensions are seen to arise from the mass but extend away-from the nipple. A

branching pattern tends to indicate a tumor growth advancing away from the nipple.

Any apparent growth that is long enough to visibly fill a duct and branch, no matter

what direction is goes, will be suspicious for malignancy and be biopsied.

Calcifications

Mammography is more sensitive than ultrasound when it comes to the detection

of micro calcifications. Calcifications on a solid mass which appear ’punctate’ are

highly suspicious of malignancy, and will usually appear on ultrasound as bright,

punctate foci. Since malignant breast lesions are typically either intensely or mildly

homogenous hypoechoic solid masses, on ultrasound this provides a ’background’

which makes it easier to view calcifications sonographically. So, while calcifications

are usually not seen on ultrasound, when they do appear vividly, it is highly suspicious

for malignancy. An example of calcification is shown in Figure 2.4.
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Figure 2.5: Irregular borders

Irregular borders

Speculated margins have a positive predictive value for malignant breast cancer in

about the 85% range. Masses showing an irregular shape or non-parallel orientation

are also quite suggestive of malignancy, with a positive predictive value in the 62% to

69% range. Other studies place a higher predictive value on the presence of an irregu-

lar border (about 88% predictive of malignancy) and evidence of increased vascularity

in the mass predicts malignancy about 82% of the time. The sonograph image below

shows an irregular vascularized retroareolar mass, with calcifications. This is very

likely to be infiltrating ductal carcinoma and a biopsy sample would likely be taken

right away. Figure 2.5 illustrates a mass with irregular borders.

2.2.4 Benign breast masses ultrasound

Hyperechogenicity, thin well defined border

On ultrasound, a benign breast mass will typically be well defined and with smooth

margins. The lesion might also be microlobulated or with just 2 to 4 mild lobulations.

Benign breast lesions also tend to be ovoid or round in shape, and are often ’wider-

than-tall’ (which indicates a parallel orientation to the chest wall). The echo texture

of a benign mass will usually be homogeneous with an isoechoic, hyperechoic, to

mildly hypoechoic echogenicity. Some benign breast masses will also exhibit mild

acoustic enhancement on ultrasound, and might be slightly compressible. Vascularity

in an ultrasound of a benign mass is variable and will depend on the specific histology

of the suspicious mass.
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Figure 2.6: Well-defined border

In terms of sonographic features suggestive of benign breast lesions, a well cir-

cumscribed margin has a positive predictive value for being benign about 90% of the

time, and an ’oval shape’ about 84% of the time. Breast lesions with a ’parallel’

orientation are predictive of benignity almost 80% of the time.

The quality of the margins of a breast lesions scanned with ultrasound is some-

times referred to as its ’capsule’. If the margin of the suspected mass seems well-

circumscribed in both its inner and outer edges, and seems thin and even, this tends

to be a sign of a benign mass. The lesion is ’encapsulated’ by the compressed ad-

jacent breast tissue, and the mass itself is ’pushing against’ this tissue, rather than

infiltrating and invading that tissue. Figure 2.6 illustrates an example of a mass with

well-defined border.

Sometimes you do see a mild undulation in contour on ultrasound with a benign

fibroadenoma. But there should not be many of these mild ’lobulations’, and usually

any more than three is considered a potentially malignant sign. Of greater concern

are more numerous, smaller, and sharper microlobulations than one tends to find in

malignant breast cancer tumors.

Breast lesions which appear as having a marked and uniform hyperechogenicity are

highly predictive of a benign lesion. This feature typically represents normal fibrous

changes within the breast. But when there are some regions are either hypoechogenic-

ity or isoechogenicity that are larger than normal (larger than either normal ducts

or terminal ductal-lobular units), that would indicate a ’medium’ level of concern

and would probably result in a biopsy, particularly if these areas were not contained

within fat lobules.
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Figure 2.7: Enlarged lymph node that can be interpreted as metastasis of breast
cancer

The ’compressibility’ of a breast lesions scanned with ultrasound refers to changes

in the shape of a lesion as a result of the pressure applied by the probe. A solid, likely

malignant, breast lesion will not ’compress’ at all from the pressure of the probe, but

a tumor of benign fibrous or glandular tissue, such as a fibroadenoma, will show some

compressibility. A benign breast fibroadenoma is usually oriented horizontally, more

wide than tall. Often the compression of the scanner will cause a ’flattened’ oval

shape of a fibroadenoma, which would not occur with solid, malignant breast lesions.

the

Sometimes a breast ultrasound will pick up an enlarged node in axilla. Many

breast cancer oncologists would take an enlarged axillary node on ultrasound as proof

positive for lymph node metastasis, even without a lymph node dissection. (Some-

times patients will not agree to a lymph node dissection to check for breast cancer

metastasis). Figure 2.7 illustrates an example of an abnormal lymph node.

If the findings of ultrasound imaging of suspicious breast nodules where expressed

as an odds ratio (the odds of a person with these features as having breast cancer,

as compared to an breast ultrasound where these features are not present) it may

be suggested that breast lesions without a well-circumscribed margins are almost 17

times more likely to indicate malignant breast cancer. Breast sonographs showing

a heterogeneous echo texture are about 8x more likely to be breast cancer. The

’incompressibility’ of a breast lesion on ultrasound would tend to be almost 9 times

more likely to be malignant.
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Figure 2.8: Ultrasound image interpretations challenges

2.3 Ultrasound interpretations

Not all suspicious breast lesions will be straightforward in their ultrasound appearance

and diagnosis. In some cases the findings are still inconclusive, with a recommendation

for short interval follow-up, or biopsy. But, one of the reasons to use ultrasound in

the first place is because there is a high suspicion of a benign mass to begin with,

and the use of ultrasound is mostly to confirm the cystic nature of the lesion. For

example, ultrasound cannot always reliably confirm the diagnosis of a breast abscess.

Figure 2.8 illustrates an example of a mass that is challenging for professional to

diagnose.

2.4 Use of computer in analysis of breast ultra-

sound images

Computer-aided diagnosis (CAD) has been used more and more in past two decades.

It is used to assist radiologists to interpret medical images by using a computer

system to provide second opinions. Studies on CAD systems shows that it could

dramatically reduce the workload and reduce cancer missed by other methods and

give more information to the radiologist [39].

Since breast ultrasound is much more operator-dependent than mammography,

reading ultrasound image requires very well-trained and experienced radiologists.

Even among well-trained experts, they might have a high inter-observer variation

19



rate. Therefore, computer-aided diagnosis (CAD) has been investigated to help radi-

ologists in making accurate decisions.

2.5 Computer-aided screening

CAD systems are used to provide radiologists with second opinion. They can ex-

tract some features, such as computational features and statistical features. Those

features cannot be obtained by visual cues. Another advantage is that CAD can help

with eliminating workload and minimize the operator-dependent nature inherent in

ultrasound imaging and make the diagnosis process more reproducible [50].

2.6 Stages in CAD

In a Computer-aided diagnosis system for ultrasound images, there are four stages as

shown in Figure 2.9.

2.6.1 Pre-processing

This stage is used to enhance the ultrasound image and to reduce noises without

eliminating important features in the image.

2.6.2 Segmentation

This state is used to find non-overlapping segments that can be distinguished from

the background. Those segments are believed to be the lesions in interest.

2.6.3 Feature extraction

In this stage, features for each segment identified in previous stage are extracted

for classification purposes. These features will be used to distinguish benign from

malignant in classification stage.
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Figure 2.9: Stages in CAD

2.6.4 Classification

In this final stage, lesions are categorized into groups such as benign or malignant.

Several classification methods can be used in this stage such as linear discriminant

analysis (LDA), support vector machine (SVM) and artificial neural network (ANN).
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Chapter 3

Literature survey

3.1 State-of-the-art CAD systems

Many research has been done in recent years and not many methods have been pro-

posed to automate detection of breast cancer.

A method is proposed by Yap [145] that uniquely combines histogram equalization

as a preprocessing stage and then uses hybrid filtering, multifractal analysis, thresh-

olding segmentation, and a rule-based approach in fully automated ROI labeling as

shown in as shown in Figure 3.1.

Figure 3.1: Fully automated ROI labelling system
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The proposed method is able to very accurately label most lesions, with its best

performance being the identification of malignant lesions (90%) and its worst being

the identification of fibroadenomas (77.59%). It appears that even by using Hybrid

Filtering and Multifractal Processing, the accuracy of the result to identify fibroade-

nomas is not very high. It appears that noise and shadowing in the images still

prevents high accuracy identifying fibroadenomas.

Another method was introduced by Ikedo et al. [51] that uses a bilateral sub-

traction technique to reduce false positives in mass candidate regions detected by

detection scheme for whole breast ultrasound images. It was found that the bilateral

subtraction technique could reduce false positives effectively. In this technique, Nor-

mal left and right breasts on same subject are architectural symmetry. This method

is based on the symmetrical features in both breasts. This is used by radiologists as a

useful tool to interpret ultrasound images. Even if there is such a region like a mass,

the region is classified normal tissue if same position in the other breast image has

similar feature region. This method uses this feature to reduce false positives. The

method involves (1) image feature extraction; (2) registration of bilateral breasts;

and (3) reduction of false positives. This method removes 67.3% of false positives but

requires more improvements. It appears the accuracy of the system can be improved

by employing a batter pre-processing technique for noise and shadow removal.

Another method was proposed by Moon et al. [91] that uses speckle features of

automated breast ultrasound images (ABUS). The ABUS images of 147 pathologi-

cally proven breast masses (76 benign and 71 malignant cases) were used. For each

mass, a volume of interest (VOI) was cropped to define the tumor area, and the av-

erage number of speckle pixels within a VOI was calculated. In addition, first-order

and second-order statistical analyses of the speckle pixels were used to quantify the

information of gray-level distributions and the spatial relations among the pixels. Re-

ceiver operating characteristic curve analysis was used to evaluate the performance. It

achieves the accuracy of 84.4%. The performance indices of the speckle features were

comparable to the performance indices of the morphological features, which include

shape and ellipse-fitting features. Accuracy of the system is not ideal and therefore

could be improved. Addition of morphological and texture features could improve

the accuracy of the system.

In the next sections state-of-the-art methods for each stage in a CAD system are
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studied. We identified advantages and disadvantages of each method and tried to

overcome the disadvantages by proposing new methods.

3.2 Pre-processing

Ultrasound images are usually deteriorated by noise because of various sources of

interferences and other phenomena. The noise usually appears as bright and dark

spots and called Speckle, which obscures fine details and makes it difficult to detect

low-contrast lesions. Speckle noise occurrence is often undesirable, as it does make

it difficult to interpret the lesions and diagnosis. Thus in a computerized system for

detection of ultrasound images, pre-processing to eliminate the noise is an important

stage [51, 91, 42].

In the past years a lot of image enhancement algorithms have been introduced.

They usually belong to two categories: spatial domain- and transform-domain-based.

The spatial domain algorithms include image operations on a whole image or a local

region based on the image statistics. This category includes methods such as his-

togram equalization, image averaging, sharpening of images using edge detection and

morphology operators, and nonlinear median filtering [11] . In transform-domain-

based algorithms, operations are performed in the transform domain. This category

includes methods such as in the Fourier and wavelet domain. The frequency trans-

form methods facilitate the extraction of certain image features that cannot be derived

from the spatial domain [107].

Image enhancement algorithms use mathematics to improve the quality of a given

image. The result is another image that contains certain features in a manner that

is better in some sense as compared to their appearance in the original image.

A method for speckle reduction of ultrasonic images was implemented in Matlab

[94] based on median filtering, Wiener filtering, and Wavelet transform methods.

Median filter is a nonlinear filter that is widely used to replace the original grey

level of a pixel by the median of the grey values of pixels in a specific neighborhood.

Another name for median filter is order specific filter because it is based on statistics

related to ordering of the elements rather than taking the mean. This method is

extremely popular and works well for reducing noise without blurring edges of the

image [125]. The noise-reducing effect of the median filter depends on two factors: the
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spatial extent of the neighborhood and the number of pixels involved in the median

calculation.

Because noises can be easily identified in frequency domain, filtering using fre-

quency domain is much easier than filtering in spatial domain. For example, when

an image is transformed into the Fourier domain, it is known that low frequency

components correspond to smooth regions or blurred structures of the image, and

high-frequency components correspond to image details, edges, and noises. By know-

ing that, we can design filters according to image frequency components to remove

undesirable noises [51]. Low-pass filtering will usually smooth images by attenuating

high-frequency components, and high-pass filtering will emphasize the image edges

or sharp details by attenuating low-frequency components. The Wiener filter is an

optimal filter derived under a minimum of mean-squared error criteria [89] but has

some limitations.

Another method to represent images is wavelets. A wavelet is a wave-like oscil-

lation with amplitude that starts out at zero, increases, and then decreases back to

zero. It can typically be visualized as a ”brief oscillation” like one might see recorded

by a seismograph or heart monitor. They can be used for analysis of multi-scale im-

age structures. Wavelet functions are distinguished from other transformations such

as Fourier transform because they not only dissect signals into their component fre-

quencies but also vary the scale at which the component frequencies are analyzed. As

a result, wavelets are exceptionally suited for applications such as data compression,

noise reduction, and singularity detection in signals.

Wavelets have been used widely to enhance medical images including ultrasound

images. Wavelet de-noising involves three steps: (1) Compute the DWT (discrete

wavelet transform) of the image; (2) Threshold details wavelet coefficients; (3) Com-

pute the IDWT (inverse discrete wavelet transform) to obtain the de-noised estimate.

The main idea of using this method is to separate signal from noise.

How to choose the wavelet filter is based on the signal itself. Signals have different

characteristics and are coming from different sources. For example, for ultrasound

images, it is not clear what wavelet filter is the best. The problem is to represent

typical signals with a small number of convenient computable functions [85].

Another method (called SRI) of speckle reduction was introduced by Ahn et al. [6].

The algorithm is based on Figure 3.2. In the Analyze phase, the image is examined
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pixel-by-pixel and classified as Mostly Speckle or Mostly Feature. This classification is

performed by examining the relative difference between neighboring pixel values and

determining whether the grey-scale variations have a sharp difference, follow a trend,

or are random in nature. It claims to have better edge detection and uniform grey-

scale output. It is also said that it enhances the overall quality of the image without

losing the features. SRI, or Speckle Reduction Imaging, is the first real-time algorithm

that provides a significant reduction in speckle without the disadvantages that have

plagued implementations to date. The adaptive nature of the SRI algorithm allows

it to smooth regions where no feature, or edges, appear and maintain or enhance

edges and borders. It has been shown that SRI increases contrast resolution by

increasing the signal to noise ratio. Lastly, the algorithm does not eliminate any

information, so diagnostic criteria are preserved. These image quality improvements

will help to improve consistency in diagnosis, reduce patient and operator dependence

and may ultimately improve diagnostic accuracy and confidence and increase patient

throughput. SRI methods may also enable computer aided diagnostic techniques.

Several methods have been introduced to use angular compounding to reduce

shadows in ultrasound images. In all the methods, ultrasound scans at each insonifi-

cation angle have simply been regarded as relatively independent estimates, which can

be averaged to increase the information content. One method introduced by Treece

et al. [132] goes above just averaging, where various forms of median and maximum

filter is also investigated. It is possible to combine two approaches and use insoni-

fication from variety of known angles to deduce the attenuation, rather than simply

averaging results from each angle. It is also possible to calculate lateral variations in

attenuation in a sample from the single envelope of a pair of scans from equal and

opposite steered angles. This information then can be used to provide a compounded

backscatter image free from shadows and enhancements.

Despite all of the noise reduction techniques that have been introduced, one study

suggested that Speckle reduction imaging of breast ultrasound does not improve the

diagnostic performance of morphology-based CAD System [140]. In this study one

hundred ten patients with pathologically proven breast lesions were enrolled con-

secutively from April 2008 to October 2008. SRI (Speckle Reduction Imaging) and

non-SRI ultrasound images were both obtained at the same examination for each

patient. The regions of interest were manually sketched by an experienced physician
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Figure 3.2: Speckle reduction

without histological information. Nineteen practical morphologic features from the

extracted contour were calculated and a support vector machine classifier identified

the breast tumour as benign or malignant. Conventional binomial receiver operating

characteristics curve analysis was used to represent the diagnostic performance of

both SRI and non-SRI. Between SRI and non-SRI methods, there were no significant

differences in the area under the receiver operating characteristics curve (z-value: 0.82

versus 0.81), the sensitivity (78.9% versus 84.2%), and the specificity (73.6% versus

70.8%).
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3.3 Segmentation

There are several segmentation methods that were applied to breast ultrasound im-

ages. Here, we are going to review different segmentation methods used in breast

ultrasound images and discuss the advantage and disadvantage of each of them

[140, 110].

3.3.1 Histogram thresholding

Simple histogram thresholding [152] can find the preliminary lesion boundary. In a

histogram thresholding method, an intensity threshold is chosen at the valley of the

image histogram to separate the image into background and foreground. The over-

simplified approach in these methods results in imprecise generation of boundaries.

They are also very sensitive to noise. But they can definitely be used as intermediate

step to provide a rough contour or can be combined with post-processing procedures

such as morphological operations [62], disk expansion [56] and Bayesian neural net-

work [21, 148, 32].

As an example in Wu et al. [140] and Yu and Acton [152], a 44 median filter

was used to reduce noise in the regions of interest (ROI). Then, a 33 unsharp filter

was constructed using the negative of a two-dimensional Laplacian filter to enhance

the contrast between object and background. At last, the ROIs were converted to

a binary image by thresholding and selected nodules boundary pixels were obtained

using morphologic operations. The algorithm determines breast nodule malignancy

using digital image processing and ANN based on multiple sonographic features. The

typical accuracy for classifying benign and malignant tumors in US is 91.4% with

92.3% sensitivity (the proportion of actual positives which are correctly identified)

and 90.7% specificity (the proportion of negatives which are correctly identified). In

addition, the results indicate that 53.3% of biopsies on benign nodules can be avoided

with 99.3% sensitivity. This performance of the system is comparable to the clinical

study by Stavros in the similar patient populations.

Another method of histogram thresholding is introduced by Kenjiro and Nishimura

[65]. The proposed method uses an iterative cluster unification to develop a dendro-

gram iteratively until two groups of gray levels are obtained. Initially, it assumed

that each gray level is assigned to a different cluster. If there are K gray levels used
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in the image, then we can assume there are K classes, C1, C2, CK , which gray level Tk

is contained in Ck, and satisfy T1 < T2 < ... < TK . For convenience to describe the

parameters, we add T0 = 0. Similarity is measured between two adjacent clusters in

the histogram to know the closeness between both cluster distributions. The distance

measurement between cluster A and B, DistAB is using discriminant analysis adapted

from the criterion function defined by Otsu. The smaller value of the distance, the

better pair to merge. Therefore, the closest pair is determined as the pair that can be

merged. Since thresholding algorithm can be generalized to deal with the multi-level

threshold problem, we can assume the initial problem as the multi-level threshold

problem.

Histogram thresholding uses very simple concept and has a very high performance.

The disadvantage for this method is that this method works only for bimodal his-

tograms and is not accurate for ultrasound images. It is also very sensitive to noise

[57]. These methods might not be suitable for segmentation of breast ultrasound

images because breast ultrasound images are very noisy.

3.3.2 Model-based methods

These methods perform well with noise present in the ultrasound images and seem to

be very stable. Commonly used models are level set citeZaina2006, active contours

[92, 19] and Markov random fields [83].

The idea in Markov random fields is to fix the problems with conventional segmen-

tation methods based on intensity. Those methods do not work well under speckle

noise and intense tissue. Even methods that reduce speckle noise are not working

well in boundary preserving [113].

A method is introduced by Yu and Acton [152] that assumes a representative

template of a contour is available, and then a physician will select a slice, call it p

and will manually deform the template with the mouse. The result of this will be an

adjusted template. The adjusted contour will have center (Ca
x(p), C

a
y (p)) and contour

vectors ρa(p) and θa(p). The model will refine the adjusted template in the current

slice, which is unsupervised. Then the model automatically detects the contours for

the rest of the slices within the volume data. The summary of the procedure is shown

in Figure 3.3.

Lihua et al. [77] proposes a level set maximum likelihood method to achieve a
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Figure 3.3: Detection of contours in slices(taken from [152])

maximum likelihood segmentation of the target. The Rayleigh probability distribu-

tion was used to model grey level behavior of ultrasound images. A partial differential

equation-based flow was derived as the steepest descent of an energy function taking

into account the density probability distribution of the gray levels, as well as smooth-

ness constraints. A level set formulation for the associated flow was derived to search

the minimal value of the model. Finally, the image was segmented according to the

minimum energy.

Liao et al. [76] proposes a novel level set-based active contour model. It is ar-

gued that because of the low signal/noise ratio, low contrast and blurry boundaries,

segmentation of ultrasound images is a challenging task. Thus a novel level set-

based active contour model is proposed for breast ultrasound image segmentation.

The first step is to formulate an energy function based on the differences between

the actual and estimated probability densities of the intensities of the regions in ul-

trasound images. The probability densities are calculated directly. For calculating

the estimated probability densities, the probability density estimation method and

background knowledge are utilized. The energy function is formulated with level set

approach, and a partial differential equation is derived for finding the minimum of
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the energy function. For performing numerical computation, the derived partial dif-

ferential equation is approximated by the central difference and non-re-initialization

approach. The result shows that the proposed method performs well, is robust and

is reliably.

Most of model based methods are not sensitive to noise in ultrasound images

and they are robust. Disadvantages of these methods are that they are very time

consuming to run and also some of them do not work well under speckle noises. Also

they all require pre-labelled region of interest (ROI) or initial contour. Because of the

noisy nature of breast ultrasound images, these methods might not be a good choice

for segmentation.

3.3.3 Machine learning methods

Machines learning methods are widely used in image classification. Machine learning

is a branch of artificial intelligence that uses learning technique from some generally

unknown probability distribution. Then the system predicts the result based on a

set of input feature and based on the experience. Example of classifiers are neural

networks and support vector machines.

Dokur and Olmez [30] proposes a segmentation method based on neural network.

Images are divided into blocks of squares. Features are extracted from each block

using discrete cosine transform (DCT). After that, a three-layer hybrid neural network

is trained to classify the blocks into background and foreground.

Reference Lui et al. [82] uses a support vector machine (SVM) with a radial basis

function kernel to classify different patterns. In this method a window of size of 15x15

is selected and is ran over the image. If the central point of the running window falls

inside a circular lesion, then the training pattern is labeled as positive, otherwise it is

labeled as negative. For the training purposes, several positive patterns and negative

patterns were extracted from the training set. The result shows that this method

performs better when the training set is larger.

A system is proposed by Ulagamuthalvi and Sridharan [135] that applies the co-

occurrence matrix features and gray level run-length features for identifying the seed

point for given ultrasound liver images. After the detection of automated seed point,

segmentation of the image is done by applying the region growing algorithm using

gray space map and Otsu algorithm for segmenting the ultrasound image. These
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co-occurrence matrix features and the run length also used for the classification of

the ultrasound images. The algorithm of region growing is very simple. The seed

gray level is computed: U, then it looks for structures which have the same gray

level than the seed overlapping the seed position. At the second iteration, it looks

for structures having a small gray level difference from the seed. In other words a set

of gray levels from U-D to U+D is defined. Then those structures which overlap the

seed position are kept. In each iteration, the difference D is increased by 1. In this

way structures which are closed from a spatial AND intensity point of view to the

seed are highlighted with higher values. In new image if we are far spatially and from

an intensity point of view from the seed, the lower intensity is labelled. The resulted

image is Gray Space map of image. For segmentation, the maximum area variation

is found in which means that from this intensity to 0 we are sure that this is not

the ROI. Then the histogram from MAX to 0 is cut. After that, the threshold from

MAX to the highest intensity is found which separates the uncertainty area from the

ROI. This is simply done using the well-known Otsu thresholding method. This is

a parameter free thresholding technique which maximizes the inter-class variance. It

is interesting to observe that the Otsu method is more accurate in cutting into two

classes. Otsu also takes care to get compact clusters using the inter-class variance.

Shan et al. [119] introduces a segmentation method that utilizes a novel phase

feature to improve the image quality, and a novel neutrosophic clustering approach

to detect the accurate lesion boundary. First, a region of interest is generated to cut

off complex background. After speckle reduction, an enhancement algorithm based

on phase in max-energy orientation (PMO) is developed to further improve the image

quality. The PMO is a newly proposed 2D phase feature obtained by filtering the

image in the frequency domain and calculating the phase accumulation in the orienta-

tion with maximum energy. Finally, the authors propose a novel clustering approach

called neutrosophic l-means (NLM) to detect the lesion boundary. NLM is a gener-

alized clustering method that can be used to solve other clustering problems as well.

In this paper, NLM is used to segment images with vague boundaries, and to deal

with uncertainty better. To evaluate the performance of the proposed method, the

authors compare it with the traditional fuzzy c-means clustering, active contour, level

set, and watershed-based segmentation methods, using a common database. Radiol-

ogist’s manual delineations are used as the golden standards. The proposed method
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generates the most similar boundaries to the radiologist’s manual delineations (TP

rate is 92.4%, FP rate is 7.2%), which outperforms the other mentioned segmentation

methods.

By using machine learning methods we can incorporate different lesion character-

istics using feature extraction. But the disadvantage is that these methods require

long training time and we might face over-training problem. Also the test images

should come from the training images. Another disadvantage is that they are ma-

chine dependent, meaning that we can get different results based on different type of

sonographic machines.

3.4 Feature extraction

After segmentation, we need to find the features in the regions to be able to categorize

the lesions into malignant or benign categories. In the diagnosis of breast cancer, a

mass is regarded as an important criterion. Features of the mass playing a significant

role in breast cancer diagnosis include shape, boundary, branch, internal structures,

and the micro calcifications. For example, when a doctor observes a mass in an

ultrasound image, which usually is the darkest area of the image, the first thing he

does is to see if the mass is in irregular shape and has branched. If the mass is

branched or if the mass has irregular shape, with sharp edges, or if the height of

the mass is not in synch with the width, then the mass is considered suspicious for

carcinoma. Figure 3.4 shows a mass that is both branched and is in irregular shape.

Figure 3.4: A mass with irregular shape and with branches
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3.4.1 Morphological features

The following geometrical features are extracted from ultrasound images:

• Perimeter

• Area

• NSPD (number of substantial protuberances and depressions)

• LI (lobulation index)

• ENC (elliptic-normalized circumference)

• ENS (elliptic-normalized skeleton)

• LS Ratio (long axis to short axis ratio)

• Aspect Ratio

• Roundness

• Solidity

• Convexity

• Extent

• TCA Ratio (tumor area to convex area ratio)

• TEP Ratio (tumor perimeter to ellipse perimeter ratio)

• TEP Difference (difference between tumor perimeter and ellipse perimeter)

• TCP Ratio (tumor perimeter to circle perimeter ratio)

• TCP Difference (difference between tumor perimeter and circle perimeter)

• AP Ratio (area to perimeter ratio)

• Thickness of the wall
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3.4.2 Texture extraction

Extracting morphological features for classification purposes requires lots of computa-

tional time. Although these features result in accurate classification, it is worth it to

consider other types of features for this purpose [135]. For extracting texture feature

information, there are two primary methodologies. The first class of methods applies

a linear transform, filter, or filter bank globally to the image. The local energy of the

filter responses represents the local texture feature values. Generally these methods

have high computational complexity. The second class of methods divides the whole

image into many small non-overlapping pixel blocks, and then applies some trans-

form, such as a wavelet transform, to each block to get the local information. These

methods extract texture features for a block of pixels. Both methodologies have the

problem of generating texture information for each individual pixel.

Part of the manual diagnosis by a physician is to see the texture of the lesions and

decide whether they look suspicious or not. As texture is a very important feature in

manual diagnosis, it could be used as part of CAD systems to provide more accurate

information. Extracting those features are not very time consuming and combining

them with morphological features could give better and more accurate classification

results [28, 99, 141, 104].

Singh et al. [121] discusses that extracting texture features are not time consuming

and have a very strong discriminatory power for classification. They discuss that

because physicians always look at the texture of the mass in ultrasound images, that

is a very good indication that these types of features are very powerful for diagnosis.

Chen et al. [22] studies several different texture features used to process ultrasound

images. These features include BDIP (Block difference of inverse probabilities), 2D

normalized auto-covariance coefficients, SGLDM (Spatial gray-level dependence ma-

trices, GLDM (Gray-level difference matrix) and NGTDM (Neighborhood gray-tone

difference matrix. After extraction of features, PCA is applied to reduce the dimen-

sion. After applying PCA, the study considers all the possible combination texture

features and ranks all the possible combinations to extract the best features. Table 3.1

shows the result of the study that selects seven texture features for classification. The

accuracy of this method is reported in a range of about 65-84%.

Gomez et al. [40] uses an statistical approach that considers co-occurrence texture
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Table 3.1: Selected features by Chen et al. [22] - A: 77 auto-covariance matrix; B:
SGLDM; C: GLDM; D: BDIP; E: BVLC; F: NGTDM

Rank Feature set Az std

1 AD 0.9253 0.0196
2 ADE 0.9240 0.0199
3 AEF 0.9209 0.0217
4 ABCF 0.9184 0.0218
5 A 0.9173 0.0206
6 ADF 0.9129 0.0219
7 ACDE 0.9114 0.0250

features. It extracts 22 texture features and ranks them using the mutual informa-

tion (MI) technique, which is in agreement to minimal-redundancy-maximal-relevance

(mRMR) criterion. The final extracted features are: contrast, correlation I, correla-

tion II, cluster prominence, cluster shade, difference variance, information measure

of correlation I, information measure of correlation II, and inverse difference moment

normalized. The accuracy of the classification based on the selected features is at

83.05%.

Krishnan and Sudhakar [69] proposes a CAD system and eliminates segmentation

step in the process. It uses GLRLM texture features for the whole image and uses

a classifier to classify lesions into benign and malignant classes. It is concluded that

the overall accuracy of the system is 92.91%. The list of features that are extracted

in this study is shown in Table 3.2.

Table 3.2: GLRLM features
Rank Feature

1 Short Run Emphasis
2 Long Run Emphasis
3 Gray Level Non-uniformity
4 Run-length Non-uniformity
5 Run Percentage
6 Low Gray Level Run Emphasis
7 High Gray Level Run Emphasis
8 Short Run Low Gray Level Emphasis
9 Short Run High Gray Level Emphasis
10 Long Run Low Gray Level Emphasis
11 Long Run High Gray Level Emphasis
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Figure 3.5: Window of some pre-determined size

Zhang et al. [156] proposes a method to extract texture features for each pixel. It

applies a window of some pre-determined size, k ∗ k, to each pixel, as illustrated in

Figure 3.5. The centre of the window slides over every pixel and performs the wavelet

transform (Daubechies-4 wavelet is used) at each location to determine each pixels

texture feature.

Let I be the whole image, M,N indicate the width and height of the image (as

measured in pixels) respectively, and p(i, j) be the pixel for which we want to extract

the texture information, where 0 ≤ i < M , 0 ≤ j < N . Let k ∗ k be the size of

the transform window. Since the texture values are defined in three orientations,

the horizontal, vertical and oblique directions, we use V h
t (p), V

v
t (p), V

o
t (p) to denote

the texture in these directions, respectively. Assume Cr
x(x, y) denotes the wavelet

coefficient in sub-band s at position (x, y), after the rth level wavelet transform, where

s ∈ LL,HL,LH,HH , 0 ≤ x < k, 0 ≤ y < k and r ≤ log2 k . Then the texture-

orientation equations are defined in 1, 2 and 3. This will give us texture feature in

three different orientations. This method is a very fast method but does not discuss

the accuracy for medical imaging.

V h
t (p(i, j)) =

[∑log2 k
r=1 r ∗

[√∑ k
2r−1−1

x= k
2r

∑ k
2r
−1

y=0 (Cr
HL(x,y))

2

k∗2−r

]]
∑log2 k

r=1 r
(1)
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V v
t (p(i, j)) =

[∑log2 k
r=1 r ∗

[√∑ k
2r
−1

x=0

∑ k
2r−1−1

y= k
2r

(Cr
LH(x,y))2

k∗2−r

]]
∑log2 k

r=1 r
(2)

V o
t (p(i, j)) =

[∑log2 k
r=1 r ∗

[√∑ k
2r−1−1

x=0

∑ k
2r−1−1

y= k
2r

(Cr
HH(x,y))2

k∗2−r

]]
∑log2 k

r=1 r
(3)

Another method of extracting texture feature is proposed by Srinivasan and

Shobha [123]. This is one of the most well-known texture feature, diagonal moment,

that is used in different applications. This method is an statistical method that uses

joint probability distributions of pairs of pixels. It shows how often each gray level

occurs at a pixel located at a fixed geometric position relative to each other pixel, as

a function of gray level.

As part of this research, we will find the optimum number and set of features

that provide the highest accuracy and performance. We are not able to consider all

the combination of the features as it is practically impossible to compute but we are

going to try to find a sub-set of features that are highly discriminative.

3.5 Feature selection

Two broad categories of optimal feature subset selection have been proposed: filter

and wrapper. In filter approaches, features are scored and ranked based on certain

statistical criteria and the features with highest ranking values are selected. Fre-

quently used filter methods include t-test, chi-square test, Wilcoxon Mann-Whitney

test, mutual information, Pearson correlation coefficients and principal component

analysis (PCA) [38].

Filter methods are fast but lack robustness against interactions among features

and feature redundancy. In addition, it is not clear how to determine the cut-off point

for ranking s to select only truly important features and exclude noise.

In the wrapper approach, feature selection is wrapped in a learning algorithm.

The learning algorithm is applied to subsets of features and tested on a hold-out

set, and prediction accuracy is used to determine the feature set quality. Generally,
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wrapper methods are more effective than filter methods. Since exhaustive search is

not computationally feasible, wrapper methods must employ a search algorithm to

search for an optimal subset of features.

Sohail et al. [122] combines the concept of between-class distance and within-class

divergence. Therefore, the ultimate objective becomes to select a subset of image

features that (i) Maximizes the distances among the classes, and (ii) minimizes the

divergence within each class. Let TS be a labeled training set with NS samples. The

classes ωk represented by subsets TK ⊂ TS, each class having NK samples
∑

N
K
=

NS. Measurement vectors in TS (without reference to their class) are denoted by

zn. Measurement vectors in TK (vectors coming from class ωk denoted by zk,n). The

sample mean of a class and that of the entire training set can be defined respectively

as: μ̂k(Tk) = 1
Nk

∑Nk

n=1zk,n and μ̂k(TS) = 1
NS

∑NS

n=1zn. The following formula defines

the partial within-class scattered matrix for one specific class:

Sk(Tk) =
1

Nk

Nk∑
n=1

(zk,n − μ̂k)(zk,n − μ̂k)
T (4)

The following formula represents the within-class scattered matrix.

Sω(TS) =
1

NS

K∑
k=1

NkSk(Tk) =
1

NS

K∑
k=1

Nk∑
n=1

(zk,n − μ̂k)(zk,n − μ̂k)
T (5)

The following formula provides the between-class scattered matrix:

Sb(TS) =
1

NS

K∑
n=1

Nk(μ̂k − μ)(μ̂k − μ)T (6)

Peng et al. [98] discusses a mutual information (MI) technique that is extensively

used for ranking the feature space in agreement to minimal-redundancy-maximal-

relevance (mrMR) criterion. The minimal redundancy condition selects the features

such that they are mutually exclusive, whereas the maximal relevance condition mea-

sures the level of dependency between an individual feature and the target class.

Therefore, the whole M -dimensional feature set is ranked, where the first feature has

the largest dependency on the target class. For discrete variables, the MI of two

random variables x and y could be computed by subtracting the conditional entropy

of x given y from the marginal entropy of x.

Haralick and Watson [45] introduces the methods of Sequential Backward Search

(SBS) and Sequential Forward Search (SFS). In sequential forward search, first the
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best single feature is found. Then among the remaining features, the feature that

best discriminate between the classes when used along with already selected features

is chosen and added to the list of selected features. The procedure is repeated until

the addition of new features increases the error rate or no feature remains to be

added. In sequential backward search, the search space is drawn like an ellipse to

emphasize the fact that there are fewer states towards the full or empty sets. The

main disadvantage of SFS is that it is unable to remove features that become obsolete

after the addition of other features.

In sequential backward search, we eliminate the features that have smallest con-

tribution to separation of classes. In this procedure, first all the subsets obtained

by removing one of the features are compared and the subset with lowest error rate

is selected. Then among the subsets containing one feature lower than the selected

subset the best subset in terms of error rate is picked up. The procedure is continuing

until the removal of features result in higher rate error rate.

Sequential backward search works best when the optimal feature subset is large,

since sequential backward search spends most of its time visiting large subsets. The

main limitation of sequential backward search is its inability to re-evaluate the useful-

ness of a feature after it has been discarded. Figure 3.6 visualizes the two mentioned

methods.

Probably the most effective feature selection techniques is sequential backward

search and sequential forward search. Basically, in the case of forward search, the

algorithm starts with a null feature set and, for each step, the best feature that

satisfies some criterion function is included with the current feature set, i. e., one

step of the sequential forward selection is performed. The algorithm also verifies the

possibility of improvement of the criterion if some feature is excluded. In this case,

the worst feature (concerning the criterion) is eliminated from the set, that is, it is

performed one step of sequential backward search. Therefore, the sequential forward

search proceeds dynamically increasing and decreasing the number of features until

the desired is reached [45].

The backward search works analogously, but starting with the full feature set (of

size m) and performing the search until the desired dimension d is reached. The time

complexity of these methods is O(d) for sequential forward search and O(m− d) for

sequential backward search.
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Figure 3.6: (a) Sequential forward search (b) Sequential backward search

Figure 3.7 illustrate the algorithm used for sequential forward search and Fig-

ure 3.8 illustrates the algorithm for sequential backward search.

Figure 3.7: Sequential forward search algorithm (taken from [45])
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Figure 3.8: Sequential backward search algorithm (taken from [45])

The problem with these sequential approaches is that they gravitate toward local

minima due to the inability to re-evaluate the usefulness of features that were previ-

ously added or discarded. Therefore they might miss some of the important features.

In order to avoid that, in our proposed method, we used a combination of sequential

forward search, sequential backward search and mutual information (MI) techniques.

This will be discussed in details when we discuss our proposed method.

Lauera et al. [72] introduces a method of Convolutional neural network that is

independent of a classifier and extracts the features from handwritten digits. This

is a feed-forward neural network that extracts topological features of the image. Al-

though the research is about handwritten digits and this method was not applied to

medical images, it could still be beneficial to try this method on a database of breast

ultrasound images.

3.6 Classification

The main goal of this study is to help radiologists in interpreting ultrasound images.

After the features are extracted from the ultrasound image, we need to perform a

classification in order to see if the lesion is suspicious based on the extracted features.

Image classification is one of classical problems in image processing. The goal of image

classification is to predict the categories of the input image using its features. There
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are various approaches for solving this problem such as principal component analysis

(PCA), Fisher’s linear discriminant (FLD), k nearest neighbor (KNN), adaptive boost

(Adaboosted), artificial neural network (NN), support vector machine (SVM), tree

classifier, etc. [34, 129].

In statistics, principal components analysis (PCA) is a technique that can be used

to simplify a dataset; more formally it is a linear transformation that chooses a new

coordinate system for the data set so that the greatest variance by any projection

of the data set comes to lie on the first axis (then called the first principal compo-

nent), the second greatest variance on the second axis, and so on. PCA can be used

for reducing dimensionality in a dataset while retaining those characteristics of the

dataset that contribute most to its variance by eliminating the later principal compo-

nents (by a more or less heuristic decision). These characteristics may be the ”most

important”, but this is not necessarily the case, depending on the application [9, 52].

Image space is redundant so the goal of PCA is to reduce the space dimension to

get fewer variables for recognition. PCA is also called the Karhunen-Love transform

(named after Kari Karhunen and Michel Love) or the Hotelling transform (in honor of

Harold Hotelling). PCA has the specialty of being the optimal linear transformation

for keeping the subspace that has largest variance. However this comes at the price of

greater computational requirement, e.g. if compared to the discrete cosine transform.

Unlike other linear transforms, PCA does not have a fixed set of basis vectors. Its

basis vectors depend on the data set.

Assuming zero sample mean (the sample mean has been subtracted away from

the data set), the principal component w1 of a dataset x can be defined as:

w1 = arg max
||w||=1

E(W Tx)2 (7)

with the first k−1 components, the k−th component can be found by subtracting

the first k − 1 principal components from x:

x̂k−1 = x−
k−1∑
i=1

wiw
T
i x (8)

There are two phases in PCA: 1) The training phase and; 2) the recognition

phase. In the training phase, training images are selected and PCA variables are

calculated. In the recognition phase, the calculated variables are used to recognize an
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unidentified image. In this algorithm, the training set is transformed into eigenfaces.

Then required variables are calculated for each image in the training set (weights).

After weights are calculated, weights for an unknown image are calculated as well. In

the last step, the difference between the weights in the training set and the weights for

the unknown image are compared and the closest difference based on the threshold θ

is considered as the recognized image, i.e. the test image is categorized as benign or

malignant. Figure 3.9 shows the conversion of training image into eigenfaces.

Figure 3.9: Eigenfaces generation process

The Fisherface method was suggested by Belhumeur et al. [9]. Both the Eigenface

algorithm and the Fisherface methods project images into a feature space. However,

Fisherface uses Fishers Linear Discrimination (FLD), a class-specific method. FLD,

on the other hand, tries to find a projection, which separates data clusters. Figure 3.10

illustrates good cluster separation and poor cluster separation.

Figure 3.10: Cluster separation
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In PCA, projection is best for reconstruction of images from a low dimensional

basis. However, the projection does not make use of the betweenclass variance. The

projection may not be optimal for discrimination for different classes. In FLD, the

projection maximizes the ratio of the between-class scatter to that of the within-class

scatter. It tries to reshape the scatter to make it more reliable for classificatioin. The

between-class scatter is defined as following:

SB =
c∑

k=1

mi(Ψk −Ψ)(Ψk −Ψ)T (9)

where c is the number of classes and mi is the number of samples in class Ti. The

within-class scatter matrix is defined as:

SW =
c∑

i=1

∑
Xk∈Ci

(Xk −Ψi)(Xk −Ψi)
T (10)

The k-NN classifier, a conventional non-parametric, calculates the distance be-

tween the feature vector of the input image (unknown class image) and the feature

vector of training image dataset. Then, it assigns the input image to the class among

its k-NN, where k is an integer.

Adaboost is a good classifier based on the set of weak classifiers. Weak classifiers

label a sub-region of an image, x, as belonging to either the object or clutter class by

comparing f to a threshold θ. A weak classifier based on Haar-Like features can be

defined as:

hj =

{
1 if pjf(x) ≤ pjθj

0 otherwise.
(11)

where x is a sub-window, and θ is a threshold and pj indicates the direction of

the inequality sign.

AdaBoost (Adaptive Boost) is an iterative learning algorithm to create a ”strong”

classifier using a training dataset and a ”weak” learning algorithm. They are called

weak because they are expected to perform only slightly better than a random guesser.

At every iterative step, the ”weak” classifier with the minimum classification error is

selected.

Artificial Neural Network (ANN), a brain-style computational model, has been

used for many applications. Researchers have developed various ANNs structure

45



relevant to their problems. After the network is trained, it can be used for image

classification. One of the best known methods in pattern classification and image

classification is SVM. It is designed to separate of a set of training images two different

classes, (x1, y1), (x2, y2), ..., (xn, yn) where xi in Rd, d-dimensional feature space, and

yi in −1,+1, the class label, with i = 1..n. SVM builds the optimal separating hyper

planes based on a kernel function (K). All images, of which feature vector lies on

one side of the hyper plane, are belong to class −1 and the others are belong to class

+1. Besides there are some integrated multi techniques model for classifying such as

Multi Artificial Neural Network (MANN) for facial expression classification and Multi

Classifier Scheme for Adult image classification. ANN model is shown in Figure 3.11.

Figure 3.11: Multi Artificial Neural Network model

In Figure 3.11, Multi Artificial Neural Network (MANN), applying for pattern or

image classification with parameters (m, L), has m Sub-Neural Network (SNN) and

a global frame (GF) consisting L Component Neural Network (CNN). In particular,

m is the number of feature vectors of image and L is the number of classes. This

model uses many Neural Networks so that the training phrase is complex and long.

Besides, it is not suitable in case the number of classes L is high. MANN is the
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2-layers classifier model using Neural Network.

Multi classifier scheme has been proposed for adult image classification with low

level feature. This model contains two-layer classifier. Layer 1 uses Support Vector

Machine (SVM) classifier and AdaBoost classifier. Layer 2 is the majority base classi-

fier integrating the classified results of layer 1. Multi Classifier Scheme model is shown

in Figure 3.12 (CLD: Color Layout Descriptor, SCD: Scalable Color Descriptor, EHD:

Edge Histogram Descriptor).

Figure 3.12: Multi Classifier Scheme model (taken from [129])

In Figure 3.12, the Multi Classifier Scheme model is two layers classifier. The

output of SVM classifier and AdaBoost classifier has been combined by Majority

Base Classifier. This experiment has showed that we need to choose the appropriate

classifiers for the feature extraction to increase the precision of image classification.

On the other hand, the precision of classification system depends on the feature

extraction and the classifier.
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Figure 3.13: Image classifier

In Figure 3.13, CL1, CL2, ..., CLn refers to the classes or categories that images are

classified into. Step 1, pre-processing, is required before applying any image analysis

methods. The images are normalized, performing histogram equalization, applying

the noise filter and segmenting. In the step 2, feature extraction, using the suitable

transform to decompose an image for example, wavelet, PCA, ICA... The features of

images are the input of our classification system. Finally, images are classified into

the responsive classes by the suitable techniques (K-NN, NN, SVM ...).

There are various approaches for image classification. Most of classifiers, such as

maximum a posterior probability, minimum distance, neural network, decision tree, k-

NN and support vector machine, are supervised classifiers making a definitive decision

about the test sample class and require a training sample. On the contrary, clustering

based algorithm, e.g. K-mean or ISODATA, are unsupervised classifier, and fuzzy-

set classifier are soft classification providing more information and potentially a more

accurate result. Besides, the knowledge based classification, using knowledge and

rules from expert, or generating rules from observed data, is becoming attractive. In

recent years, combining of multiple classifiers received considerable attention. Some

researchers combine NN classifier, SVM classifier or AdaBoost classifier for image

classification [7].

After the images were preprocessed and extracted features, they would present

in the large representation space. Thus, they would be projected into the Sub-space

in order to analysis easily and reduce dimensions of images feature as illustrated in

Figure 3.14
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Figure 3.14: Image classifier

Using ANN to classify each sub-image

In the Figure 3.14, for each sub-space, an image would be extracted the feature vector.

This feature vector is the input of ANN for image classification based on a sub-space.

Every ANN has 3 layers: input, hidden and output. The number nodes of input

layer are equal to the dimension of feature vector, called in. The number nodes of

output are equal to n, the number of classes. We have k sub-spaces so that there

are k classification results of sub-space, called CL SS1, CL SS2, ..., CL SSk. Thus

the problem is how to integrate all of those results. The simple integrating way is to

calculate the mean value:

CL =
1

k

k∑
i=1

CL SSi (12)

or weighted mean value:

CL =
1

k

k∑
i=1

wiCL SSi (13)

49



where wi the weight of classification is result of sub-space SSi and satisfies:

CL =
k∑

i=1

wi = 1 (14)

MANN has used Neural Network for identify the weights or importance of the local

results. In this research, we suggest that the parameter of the hyperplanes of SVM

is instead of the weight swi. Although SVM need to be trained first, the parameter

of SVM is adjusted to suitable for the training data in the specific problem.

SVM and Fuzzy SVM

Image classification is one of classical problems of concern in image processing. The

goal of image classification is to predict the categories of the input image using its

features. There are various approaches for solving this problem such as k nearest

neighbor (KNN), Adaptive boost (AdaBoost), Artificial Neural Network (NN), Sup-

port Vector Machine (SVM).

The learning method in SVMs is motivated by statistical learning theory. SVMs

are powerful in solving two-class classification problem but some limitations exist in

the SVM theory [2]. Traditionally, we know each sample xi, yi in the training dataset

belongs to either one class or the other, i.e., the value of yi is only assigned to 1 or

-1. All samples in training dataset are treated uniformly in the same class during the

learning process of SVMs.

In practical classification problems, the effects of the samples in training dataset

may be different. Usually, some of samples in training dataset are corrupted by noise,

which is introduced during sampling. These samples are called outliers, and usually

less important than others. In fact, that we care about the meaningful samples can

be classified correctly.

In short, a sample in the training dataset may not completely belong to one

class. For example, 90% of the samples belongs to one of the two classes and 10%

is meaningless, or we say that the sample belongs to one of two classes with 90%

confidence. In other words, each training sample xi, yi is associated with a fuzzy

membership (0si1). This fuzzy membership si indicates the certainty that the sample

belongs to one of two classes is si, and the value (1−si) can be regarded as meaningless

in the classification problem.
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An FSVM (fuzzy SVM) is proposed in Lin and Wang [78]. In FSVM, each sample

xi, yi in the training data is weighted by using fuzzy membership function. It becomes

as xi, yi, si, where si is the fuzzy membership, i.e., the confidence of this sample belong

to one of two classes. Then the optimization problem in SVM is reformulated as:

Minimize

L(α) =
1

2

n∑
i=1

n∑
j=1

yiyjαiαjK(xi, xj)−
∑

αi (15)

subject to

n∑
i=1

yiαi = 0, 0 ≤ αi ≤ siC, i = 1, 2, ..., n (16)

The significant difference of FSVM from SVM is that the sample with smaller

fuzzy member si is less important than all other samples in SVM during training. It

indicates that the importance of the training sample can be measured by the fuzzy

membership si.

A comparison between different classification methods was done by Gab [2] as

shown in Table 3.3.

Table 3.3: Comparison between different classification methods to detect suspicious
lesions in kidney ultrasound images [2]

Radiologist ANN SVM FSVM

Accuracy (%) 74.71 88.51 87.36 94.25
Sensitivity (%) 88.89 86.11 86.11 91.67
Specificity (%) 64.71 90.20 88.24 96.08

In Figure 3.15, SVM is used to combine all of ANNs classify results. Here SVM

is the solution for identifying the weight of the ANNs result.
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Figure 3.15: Aggregation of sub-images using SVM
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3.7 Summary

Several pre-processing techniques have bee introduced but they have some limitations.

Some techniques do not make good separation between foreground and background

and some techniques do not remove shadows in ultrasound images. Some of the

techniques remove the important information in ultrasound images. These deficien-

cies requires better pre-processing method to improve the quality of the image while

preserving important information in ultrasound images.

In segmentation techniques, some techniques are very sensitive to noise and not

suitable for ultrasound images. Some others are very time consuming to run. Some of

the methods do not perform well when the training dataset is small. These problems

suggests use of a technique that is not sensitive to noise and is suitable for ultrasound

images.

For feature selection, it appears that SFS and SBS are probably the most effective

methods for feature selection. These methods require the features to be ranked. In

feature ranking methods, MI appears to be one of the best and widely used technique.

Among classification methods, some do not perform well on medical imaging ap-

plications. It appears that ANN and SVM perform better in applications for medical

imaging. Also AdaBoost appears to be good as a two class classifier.
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Chapter 4

Proposed computer system

The detection of structures is crucial for the diagnosis of a vast number of illnesses in-

cluding breast cancer in breast ultrasound images. Being blurred in nature, with little

contrast or immerse in noise, most standard techniques of Digital Image Processing,

do not yield optimum results in these images.

The main problem with most of the computer aided diagnosis (CAD) systems

is that they are sensitive to noises and noise is unavoidable in ultrasound images.

Another problem with some of the CAD methods is that they produce different results

for images from different types of sonographic machines.

The mentioned problems suggest using a method to be able to make a clear sep-

aration between background and foreground of the ultrasound images. By doing so,

the segmentation is expected to be more accurate. The uncertainty to identify the

lesions and lesions boundaries suggest the use of fuzzy logic. The use of fuzzy logic

that uses both the global and local information and has the ability to enhance the

fine details of the ultrasound images is a suitable choice for low-contrast ultrasound

images as their details cannot be obtained easily in those images. Also one of the

artifacts in ultrasound images is shadowing. A compounding technique could reduce

the shadows and made the classification more accurate.
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4.1 Pre-processing

4.1.1 Fuzzy logic for de-noising

The enhancement can be done to better distinguish the background from the actual

image. It is logical that the better we can distinguish the background from foreground,

the better the final detection of cancer would be.

An interval-valued fuzzy set constitutes that the membership degree of every ele-

ment to the set is given by a closed subinterval of interval [0, 1]. The concept of type

2 fuzzy sets was introduced by Zadeh [153, 154] as a generalization of an ordinary

fuzzy set. The membership degree of an element to a type 2 fuzzy set is a fuzzy set

in [0, 1].

An interval type 2 fuzzy set A in U is defined as

A = {(u,A(u), μu(x))|u ∈ U,A(u) ∈ L([0, 1])} (17)

where A(u) = [A(u), A(u)] is a membership function; i.e., a closed subinterval is

[0, 1], and function μ(x) represents the fuzzy set associated with the element u ∈ U

obtained when x is within [0, 1]; μu(x) is given in the following way:

F (x) =

{
a if A(u) ≤ x ≤ A(u)

0 otherwise.
(18)

Sahba et al. [109] proposes fuzzy rules for image enhancement, in which fuzzy

rules such as the following have been used:

• IF the pixel does not belong to the object, THEN leave it unchanged.

• IF the pixel belongs to the breast object AND is dark, THEN make it darker.

• IF the pixel belongs to the breast object AND is gray, THEN make it dark.

• IF the pixel belongs to the breast object AND is bright, THEN make it brighter.

The degree of belonging of each pixel to the object is a function of its distance

to the central point of the object or the inside of an initial/coarse segment. For

initial segment, we used the region growing algorithm proposed by Ulagamuthalvi

and Sridharan [135]. The initial segment is required to identify if a pixel belongs to
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Figure 4.1: Membership functions for input gray level values

the lesion. The main idea of enhancement is to eliminate the noise in the images

and enhance the gray levels of selected area (regional contrast enhancement). In this

method, each pixel is fuzzyfied depending on its intensity with a membership function

that is constructed taking into account the mean level of gray of the surroundings

and the position of the selected point. The fuzzy membership function that is used

in this research is shown in Figure 4.1.

In Figure 4.1, T4 is the brightest gray level in the image. For simplicity we used

T1 = 25, T2 = 50 and T3 = 80.

In this research, this method has been applied to breast ultrasound images for

eliminating unwanted noise. The idea is to map the image space to a fuzzy space

using fuzzy rules and then apply segmentation techniques to detect lesions.

4.1.2 Compounding and correlation of images

Real time compounding of ultrasound images has been investigated for long time.

Special equipments have been designed to perform compounding of ultrasound images

from different angles. But despite that, conventional ultrasound still being used [35].

In conventional ultrasound, radiologist investigate the breast from different angles.

These images from different angles could be used to get more information about the

lesions in breast ultrasound images (i.e. using compounding). This information can
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be used to improve the classification results of our proposed system.

Although the application of ultrasound images is usually promising, there are

some restrictions due to the physical nature of imaging:

• Image noise is high because of systematic noise in ultrasound images.

• Due to anisotropic resolution in ultrasound images and due to differences in the

propagation velocity of sound waves in different types of tissues, the geometric

representation of objects is strongly dependent on the angle of insonification.

• Some artifacts like shadowing may hamper a clear delineation of the lesion.

Because of the points mentioned above, ultrasound imaging is an interactive process

and requires lots of experience to capture and interpret ultrasound images. Findings

in the ultrasound images sometimes are not reproducible and often vary between

different interpreters.

The limitation mentioned above might be overcome by considering correlation

between images from different angles (i.e. multiple viewing angles all around the

breast). The concept is known as Full Angle Spatial Compounding (FASC). When

the ultrasound is being performed, the investigator usually moves the transducer

around the female breasts to capture images from different angles. The correlation

between those images could give more information and makes the investigation easier.

The method of capturing images from different angles is illustrated in Figure 4.2.

This method has capability of improving diagnosis for the following reasons:

• As noise is uncorrelated in images from different angles, it will be reduced by

using this technique.

• Compound images exhibit an isotropic resolution which is a combination of the

axial and lateral resolution of the individual images.

• Shadowing are suppressed because of varying angle of insonification.

• Structures, which cause specular reflection are imaged and delineated in the

compound image.
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Figure 4.2: An ultrasound transducer is rotated fully around the female breast to
acquire data from multiple angles (taken from Techavipoo et al. [128])

Compounding

Ultrasound images contain many artifacts due to the complex nature of sound trans-

mission and reflection in anatomical structures. Because of the variations in attenua-

tion throughout the image, shadowing and enhancement are happening. This can be

compensated in the vertical direction by a set of time-gain sliders which control the

gain in horizontal bands across the image. Gain variations in the horizontal direction

remain, but they appear as over-compensated bright patches under regions of low

attenuation (enhancement) or under-compensated dark patches under regions of high

attenuation (shadowing).

In some cases, shadows and enhancements have clinical significance. For instance,

this has been demonstrated in detecting liver disease [78] or certain tumors [112].

However, some other cases they can simply be confusing. Especially in 3D data that

the visualization planes are not in general along the direction of insonification. In

such planes, shadows or enhancements can appear without the corresponding anatomy

which generated them.

In any case, it would seem logical to display attenuation effects separately from

signal backscatter (or reflection) which is the main component of ultrasound images.
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Certainly this would ease the interpretation of ultrasound images, and make down-

stream processing (for instance segmentation) more reliable. We can display the

estimated attenuation as a completely separate image rather than having to infer it

from artifacts in an image of ultrasound backscatter.

Several methods have been introduced to use angular compounding. In all the

methods, ultrasound scans at each insonification angle have simply been regarded as

relatively independent estimates, which can be averaged to increase the information

content.

It is possible to combine two approaches and use insonification from variety of

known angles to deduce the attenuation, instead of just simply averaging results from

each angle. It is also possible to calculate lateral variations in attenuation in a sample

from the single envelope of a pair of scans from equal and opposite steered angles.

This information then can be used to provide a compounded backscatter image free

from shadows and enhancements.

We have applied the mentioned algorithm on ultrasound images consists of three

images per patient. Out of the three images per patient, one is obtained from the

front, and the other two obtained in 90 degrees angle, opposite to each other [133].

Attenuation estimation

One way to reduce shadowing and enhancing is to estimate the attenuation indepen-

dently from the backscatter. If we estimate the attenuation at all points in an image,

it is going to be very straightforward to adjust the image for this known attenuation

and removing the artefact (i.e. shadowing).

One algorithm proposed by Bevan and Sherar [12] deduces attenuation directly

from the backscattered signal by assuming that the attenuation is directly propor-

tional to the backscatter. Also it is assumed that the ultrasound pulse has a broadly

Gussian spectrum, and use the shift in centre frequency to estimate attenuation. Both

of the mentioned methods require the scattering spectrum of the sample to be the

same as in a calibration object.

Angular compounding

In angular compounding the transducer is steered to various angles and the resulting

image is averaged. The main benefit of this method is to increase the signal to speckle
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Figure 4.3: B-scan vs. compounding (taken from [132])

ratio and reduce the dependency of reflection from planar interfaces on relative angle

to the transducer. But because we know that shadowing and enhancements will

always lie in the direction of insonification, angular compounding also has subsidiary

effect that these artifacts are blurred by the compounding procedure. Figure 4.3

shows some examples, in which the strength of the shadow is not substantially reduced

by compounding, but appearance is different than conventional B-scan.

Attenuation and backscatter model

In the presentation we will follow [132]. In order to simplify the process, two assump-

tions are made:

• At least over a small range of insonification angles, both the backscatter and

attenuation from a particular location are isotropic.

• Effect of attenuation on the center frequency of the ultrasound pulse is small

compare to the center frequency.
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Figure 4.4: Coordinate system for paired angle compounding (taken from [132])

By making the above assumptions, we can model the tissue with two scalar fields,

b(x, y) giving the backscatter coefficient in dB at (x, y) and a(x, y) giving the attenu-

ation coefficient in dB/cm at the average center frequency of ultrasound pulse in the

tissue.

We also assume that the ultrasound pulse is everywhere focused and that the

speed of sound is constant in the medium. Now the cumulative attenuation c(x, y)

from the pulse origin o to the scanned location (x, y) is twice the line integral of

a(x, y) along this path:

c(x, y) = 2

∫ r(x)

0

a(r, θ)dr (19)

where r is distance along the insonification direction r and a(r, θ) is a scatter

field expressed in polar coordinates r, θ. The signal v(x, y) (in dB) received at the

transducer corresponding to the location (x, y) is

v(x, y) = b(x, y)− c(x, y). (20)

Derivation of paired angle compounding

We now can consider a point (x, y) that is imaged from three different insonification

directions at steering angles −θo, 0o, θo as shown in Figure 4.4. It has to be said

that the underlying backscatter and attenuation coefficients in all three directions

are the same. Because the attenuation at a point is the derivative of the cumulative
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attenuation along the direction of insonification, then comparing the two equal and

opposite angle scans, attenuation a at a point is defined as:

a(x, y) = �c1(x, y) · r1 = �c2(x, y) · r2 (21)

where the subscript 1 corresponds to an insonification angle of −θo, subscript 2 to

an insonification angle of θo and · denotes the dot product. r1 is a unit vector along

the −θo and � is the gradient operator.

The previous equation implies:

�b(x, y) · i = 1

2
�(v2(x, y) + v1(x, y)) · i+ 1

2tanθ
� (v2(x, y)− v1(x, y)) · j, (22)

where i and j are unit vectors in the x and y directions, respectively.

Angular compounding is usually performed over more than two angles. We can

combine estimates for b from multiple pairs of angles by taking the weighted average

of the difference images before we calculate the gradient. Therefor the final equation

for the compounded backscatter image is

ccomp(x, y) =

∫ x

0

[�
|θ|∑
θ

[
1

2tanθ
(v2(t, y)− v1(t, y))] · j]dt+K(y), (23)

where
∑

is summation over all the angles involved and K(y) is undetermined func-

tion. Even though K cannot be determined it is not required to correct shadows in

the ultrasound data (we refer reader to [132] for details).

We have applied the mentioned algorithm to the database of ultrasound images

which consists of three images per patient. Out of the three images per patient, one is

obtained from the front, and the other two are obtained for 90 degrees angle, opposite

to each other as shown in Figure 4.5.
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Figure 4.5: Different views of breast

4.2 Segmentation

A region growing method for segmentation of ultrasound images by Ulagamuthalvi

and Sridharan [135] is proposed. This method applies the co-occurrence matrix fea-

tures and gray level run-length features for identifying the seed point for given ultra-

sound liver images. We have implemented the method and ran it against our breast

ultrasound images. We used fuzzy method to de-noise our images before applying the

method. Using this method, the seed points are not selected correctly in some of the

cases. An example is shown in Figure 4.6.

Figure 4.6: Incorrect seed point selection using method by Ulagamuthalvi and Srid-

haran [135]

The reason for this inaccurate result is the fact that there are other noise areas
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in the image that are considered as lesion. Therefore the seed point is not selected

correctly.

To overcome that problem, we used a method to identify the regions in the image,

remove the noise region and rank the remaining regions based on importance and

select the main region of interest [117]. In order to achieve this, we first calculate all

the local minimums of the image histogram. Then we need to find a good threshold

to separate the lesion from the background. This threshold should be one of the local

minimums. We used well-known Otsu thresholding method to achieve this [86]. This

is a parameter free thresholding technique which maximizes the inter-class variance.

It is interesting to observe that the Otsu method is more accurate in cutting into two

classes (foreground and background).

After finding the proper threshold, we then binarize and reverse ultrasound im-

ages using that threshold (lesions become white and background become black). An

example of binarized images is shown in Figure 4.7.

Figure 4.7: a) Original Image b) Binarized image

(taken from [117])

After binarizing image, we use a center window to evaluate every boundary region.

The center window is about 1/2 size of the whole image and centered at the image

center. We only leave the regions that have an intersection with the image center

window. In cases that no region has intersection with the image center window, we

64



reduce the size of the window by half and repeat the same procedure. Figure 4.8

illustrates this method.

Figure 4.8: a) Binarized image b) After deleting boundary-connected region

We use the following score formula to rank each left region. The one with the

highest score is considered as the lesion region.

Sn =

√
Area

dis(Cn, C0).var(Cn)
, n = 1, ..., k (24)

where k is the number of regions, Area is the number of pixels in the region, Cn

is the center of the region, C0 is the center of the image, and var(Cn) is the variance

of a small circular region centered at Cn. Figure 4.9 illustrates the selected region.
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Figure 4.9: a) After deleting boundary-connected region b) Winning region

Now that we identified the winning region, we can select the seed point. To

select a seed point, we use a simple approach. Lets consider the minimum rectangle

containing winning region [xmin, xmax; ymin, ymax]. In most cases the center of the

minimum rectangle could be considered as a seed point. However is some cases that

the region shape is irregular, center point might be outside of the lesion. For those

cases we can consider xseed =
(xmin+xmax)

2
and yseed = {∀y|(xseed, y) ∈ lesion region}

Now that we have identified our seed point, we use the region growing method

introduced by Ulagamuthalvi and Sridharan [135] to complete our segmentation pro-

cess.

The gold standard to define the accuracy of a segmentation method is a physician.

The segmentation has to be performed and be verified by a physician in order to

conclude if segmentation is done correctly. As it is practically impossible to ask a

physician to verify the result of several methods, we relied on existing research in

combination with our own experiments.

Shan et al. [119] introduces a novel method based on neutrosophic l-means clus-

tering and compares the method with other state-of-the-art segmentation methods.

This method is compared with the state-of-the-art segmentation methods introduced

by Madabhushi and Metaxas [83] , Zhang [158] and Liu et al. [79]. Shan et al. [119]

claims to outperform other state-of-the-art segmentation methods.
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We introduced a new region growing method that seems to be very accurate for

segmentation of ultrasound images. Our approach was to run the neutrosophic I-

means clustering method introduced by Shan et al. [119] and the region growing

method we introduced against our breast ultrasound images database and choose the

best performing segmentation method for our experiments. Table 4.1 summarizes the

result of our comparison.

Table 4.1: Comparison between proposed segmentation method, region growing
method and neurotrophic I-means clustering method

Method # of patients Segmented Correctly Accuracy %

Region growing 80 74 92.50
I-means clustering 80 75 93.75
Proposed method 80 78 97.50

For selection of seed points, we also considered using K-means algorithm to classify

ultrasound images into two classes (lesion and none-lesion) [58]. K-Means algorithm is

an unsupervised clustering algorithm that classies the input data points into multiple

classes based on their inherent distance from each other. The algorithm assumes that

the data features form a vector space and tries to nd natural clustering in them. The

points are clustered around centroids μi∀i = 1...k which are obtained by minimizing

the objective:

V =
k∑

i=1

∑
xj∈Si

(xj − μi)
2

(25)

where there are k clusters Si, i = 1, 2, ..., k and μi is the centroid or mean point of

all the points xj ∈ Si. The algorithm can be summarized as follows:

• Computer the intensity distribution(also called the histogram) of the intensities.

• Initialize the centroids with k random intensities.

• Repeat the following steps until the cluster labels of the image does not change

anymore.

• Cluster the points based on distance of their intensities from the centroid in-

tensities.

c(i) := argmin
j

||x(i) − μj||2 (26)

67



• Compute the new centroid for each of the clusters.

After clustering, we use a center window to evaluate every boundary region. The

center window is about 1/2 size of the whole image and centered at the image center.

We only leave the regions that have an intersection with the image center window.

In cases that no region has intersection with the image center window, we reduce the

size of the window by half and repeat the same procedure. Figure 4.10 shows this

method.

After removing noise regions, we use the simple approach that was used before

to select the seed point. Lets consider the minimum rectangle containing winning

region [xmin, xmax; ymin, ymax]. In most cases the center of the minimum rectangle

could be considered as a seed point. However is some cases that the region shape

is irregular, center point might be outside of the lesion. For those cases we can

consider xseed = (xmin+xmax)
2

and yseed = {∀y|(xseed, y) ∈ lesion region}. Now that

we have identified our seed point, we use the region growing method to complete

our segmentation process. Table 4.2 shows the comparison between two proposed

methods: 1) region growing using binarized image to select seed point 2) region

growing using k-means algorithm.

Figure 4.10: a) Original image b) Clustered image c) Winning region

Table 4.2: Comparison between proposed segmentation methods (using binarized
image to select seed point and using k-means algorithm to select seed points)

Method # of patients Segmented Correctly Accuracy %

Region growing (k-means) 80 76 95.00
Region growing (binarizing) 80 78 97.50
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The comparison shows the proposed method that uses binarized image to select

seed point is performing better than using k-means to select seed point.

4.3 Feature extraction

4.3.1 Morphological features

Below is the list of all morphological features we use for our experiments in this thesis:

• Perimeter. The Perimeter feature represents the length of the tumor perimeter.

As malignant tumors usually have irregular shapes, a large tumor perimeter is

associated with the likelihood that a tumor is malignant.

• Area. The Area feature is the area of a breast tumor. Malignant tumors

frequently have a large area compared with benign tumors.

• NSPD (number of substantial protuberances and depressions). The NSPD fea-

ture can be utilized to calculate the level of boundary irregularity.

• LI (lobulation index). According to the definition for a concave point from the

NSPD, the lobe region enclosed by a lesion contour and a line connected by any

two adjacent concave points can be obtained. Usually, a malignant tumor has

a larger LI than does a benign one.

• ENC (elliptic-normalized circumference). The angle of inclination for each tu-

mor, with respect to the x y coordinate plane, can be obtained by using the

second order moment.

• ENS (elliptic-normalized skeleton). The skeleton of a tumor region expresses a

set S, and ENS is defined as the sum of the skeleton points in S. When a tumor

has a twisted boundary, the skeleton is also complex. A malignant lesion always

has a twisted boundary and generates a large ENS.

• LS Ratio (long axis to short axis ratio). The LS Ratio is the length ratio of the

major (long) axis and minor (short) axis of the equivalent ellipse defined in the

ENC feature.
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• Aspect Ratio. The Aspect Ratio is the ratio of a tumor’s depth and width. If

a tumor depth exceeds its width, the Aspect Ratio is greater than 1 and the

tumor has a high probability of being malignant.

FormFactor =
4π × Area

Perimeter2
(27)

when Form Factor is close to 1, the tumor shape is nearly round.

• Roundness

Roundness =
4× Area

π ×Max Diameter2
(28)

where Max Diameter denotes the length of the major axis from the equivalent

ellipse of a tumor.

• Solidity

Solidity =
Area

Convex Area
(29)

where Convex Area is the area of the convex hull of a tumor. When Solidity is

close to 0, the tumor is malignant.

• Convexity

Convexity =
Convex Perimeter

Perimeter
(30)

where Convex Perimeter is the perimeter of the convex hull of a tumor.

• Extent

Extent =
Area

Bounding Rectangle
(31)

where Bounding Rectangle is the smallest rectangle containing the tumor.

• TCA Ratio. The TCA Ratio (tumor area to convex area ratio) is defined as:

TCARatio =
Area

Convex Area
(32)

• TEP Ratio (tumor perimeter to ellipse perimeter ratio). The TEP Ratio is

the ratio of a tumor perimeter and the corresponding ellipse perimeter. The

major and minor axes of the corresponding ellipse are calculated based on the

proportion of width to depth of a tumor to acquire the same area for the ellipse

and tumor.
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• TEP Difference (difference between tumor perimeter and ellipse perimeter).

The TEP Difference is defined as the difference between tumor perimeter and

the corresponding ellipse perimeter.

• TCP Ratio (tumor perimeter to circle perimeter ratio). The TCP Ratio is the

ratio of a tumor perimeter and the corresponding circle perimeter, the corre-

sponding circle having the same area as the tumor.

• TCP Difference (difference between tumor perimeter and circle perimeter). The

TCP Difference is defined as the difference between the tumor perimeter and

the corresponding circle perimeter, the corresponding circle having the same

area as the tumor.

• AP Ratio (area to perimeter ratio). The AP Ratio is the ratio of the area and

the perimeter of a tumor.

• Thickness of the wall. If the wall of the mass is thick, there is a better chance

that it is cancerous. If it is thin, it is more possible that it is a cyst rather than

a malignant tumor.

4.3.2 Texture features

The texture features that we used in our research are the ones extracted by Chen

et al. [22] and shown in Table 4.3
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Table 4.3: All possible texture features by Chen et al. [22] - A: 77 auto-covariance

matrix; B: SGLDM; C: GLDM; D: BDIP; E: BVLC; F: NGTDM

Rank Feature set Rank Feature set

1 AD 20 ABDF

2 ADE 21 AF

3 AEF 22 ABF

4 ABCF 23 ACEF

5 A 24 ABC

6 ADF 25 AB

7 ACDE 26 AC

8 ABCD 27 ABCEF

9 ACDEF 28 ADEF

10 ACDF 29 ABCE

11 ABCDF 30 ABD

12 ABCDE 31 ABDE

13 ACF 32 ABE

14 ABCDEF 33 C

15 ACD 34 F

16 ABDEF 35 D

17 AE 36 E

18 ACE 37 B

19 ABEF

4.3.3 Moments features

Geometrical moment of order (p + q) for a two-dimensional discrete function like

image is computed by using the following equation. If the image can have nonzero

values only in the finite part of xy plane, then moments of all orders exist for it [48].

mpq =
M−1∑
x=0

N−1∑
y=0

xpyqf(x, y) (33)

where f(x, y) is image function and M,N are image dimensions. Then by using
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the following equation, geometrical central moments of order equal to (p+ q) can be

computed.

μpq =
M−1∑
x=0

N−1∑
y=0

(x− x)p(y − y)qf(x, y) (34)

where x and y are gravity center of image and are calculated by using the following

equation. Actually by image translation to coordinate origin while computing central

moments, they become translation invariant.

x =
m10

m00

y =
m01

m00

(35)

Note that in a binary image, m00 = μ00 is count of foreground pixels and has direct

relation to image scale, therefore central moments can become scale normalized using

the following equation.

ηpq =
μpq

ma
00

a =
p+ q

2
+ 1

(36)

Moment invariants are a set of nonlinear functions, which are invariant to trans-

lation, scale, and orientation and are defined on normalized geometrical central mo-

ments. Hu [48] first introduced seven moment invariants based on normalized geo-

metrical central moments up to the third order. Then, Li [74] extended the moments

and listed 52 Hu invariant moments of order 2-9. Since the higher order moment

invariants have resulted higher sensitivity, a set of twelve moment invariants limited

by order less than or equal to four seems to be proper in most applications [15]. Hav-

ing normalized geometrical central moments of order four and the lesser ones, seven

moment invariants (φ1−φ7) introduced by Hu and then five extended ones (φ8−φ12)

developed by Li, can be computed using the following equations.
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φ1 = η20 + η02

φ2 = (η20 − η02)
2 + 4η211

φ3 = (η30 − 3η12) + (3η21 − η03)
2

φ4 = (η30 + 3η12)
2 + (η21 + η03)

2

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

+ (3η12 − η03)(η21 + η03)[(3η30 + η12)
2 − (η21 + η03)

2]

φ6 = (η20 − η02)[(η30 + v12)
2 − (η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03)

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]

+ (3η21 − η03)(η21 + η03)[(3η30 + η12)
2 − (η21 + η03)

2]

φ8 = η40 + η22 + η02

φ9 = (η40 − η04)
2 + 4(η31 − η13)

2

φ10 = (η40 − 6η22 + η04)
2 + 16(η31 − η13)

2

φ11 = (η40 − 6η22 + η04)
2[(η40 − η04)

2 + 4(η31 − η13)
2]

+ 16(η40 − η04) + (η31 + η13)(η31 − η13)

φ12 = (η40 − 6η22 + η04)
2[(η40 − η04)

2 + 4(η31 − η13)
2]

+ 16(η40 − η04) + (η31 + η13)(η31 − η13)

(37)

4.3.4 Convolutional neural network for feature extraction

We identified a sub-set of morphological features and texture features for classification

of breast lesions. Selection of these features depend on a classifier and the classifica-

tion stage depends on these selected features. CNN is an independent method that

does not rely on a classifier. The method is trained like a normal neural network

using back propagation. This method uses several layers: convolutional and sub-

sampling and they alternate (i.e. one convolutional layer followed by subsampling

layer). Convolutional layer extracts elementary features of the image. It is organised

in planes, also called feature maps, of simple units called neurons. It uses a 5×5 area

that forms a unit in the input image or in the previous layer. A trainable weight is

assigned to each connection, as it is done in normal neural networks. The fact that an

elementary feature detector is useful in a part of the image and it is likely to be useful
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Figure 4.11: CNN structure used for feature extraction

in the entire image justifies the approach. A convolutional layer consists of several

feature maps. We converted the images in our database to be the size of 64× 64. We

used a sliding window of 7 × 7 to perform transformation. Fig. 4.11 illustrates the

architecture of the proposed system.

In subsampling layer, we have the same number of feature maps from the previous

convolutional layer but half the number of rows and columns. Each unit j is connected

to a 2 × 2 receptive field and we compute the average of its four inputs yi, multiply

it by a trainable weight ωj and add a trainable bias bj to obtain the activity level vj:

vj = wj

∑4
i=1 yi
4

+ bj

The end result will be 15 features that we can use in our classifier.

4.3.5 Combination of texture features with morphological

features

In our automated CAD system, we are able to extract morphological features and

texture features. Combination of different feature sets could improve the accuracy of

a CAD system. Yang et al. [143] suggests that combining different sets of features

(in our case morphological and texture features) would improve computer-aided di-

agnosis of breast cancer. In our research, we considered two texture features that

had high discriminatory power and we combined them with a sub-set of mentioned

morphological features.
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4.4 Feature selection

4.4.1 Using MI, SFS and SBS techniques for feature selection

We discussed morphological and texture features. We discussed how they can be

extracted and how they can be used for segmentation. Now we need to find a combi-

nation of selected features that can be used to give the best performance and accuracy.

Now we can use a feature selection method to select the best feature set. We

thought about using different combination of features and compare them but because

there are lots of features, it is computationally not possible.

In this research As discussed before, we used a mutual information technique that

ranks the features based on the discriminatory power. Then we used a selection algo-

rithm to select a sub-set of those features. Due to limitations of Sequential Forward

Search (SFS) and Sequential Backward Search (SBS) methods, a combination of those

methods are used to make sure no important feature is eliminated by any of those

methods. To guarantee that SFS and SBS converge to the same solution, we must

ensure that features already selected by SFS are not removed by SBS and features

already removed by SBS are not selected by SFS. In order to achieve that, everytime

SFS attempts to add a new features, we should check if it has been removed by SBS.

If it has been removed by SBS then we should attempt to add the second best feature.

This method is called Bidirectional Search (BDS).

4.4.2 Selected morphological and texture features

Our feature selection algorithm (MI, SFS and SBS) is used to select a subset of

morphological features and Chen et al. [22] selects a subset of texture features shown

in Table 4.4.
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Table 4.4: Selected morphological and texture features

# Morphological Feature # Texture Features

1 Roundness 1 AD

2 Solidity 2 ADE

3 Convexity 3 AEF

4 TCA Ratio 4 ABCF

5 Perimeter 5 A

6 Area 6 ADF

7 NSPD 7 ACDE

8 Aspect Ratio

4.5 Classification

For classification, we implemented several classification methods and concluded that

ANN, AdaBoost and FSVM perform better on breast ultrasound images. The com-

parison between these methods and other well-know classification methods is shown

in chapter 5. In our proposed method, we use a combination of Adaboost, FSVM and

ANN as the first layer and then we use a majority vote classifier to combine the result

of the three classifiers. A conceptual model of our classifier is shown in Figure 4.12.

For majority based classifier, we used the approach of majority votes [70]. Assume

that the label outputs of the classifiers are given as c-dimensional binary vectors

[di,1, ..., di,c]
T ∈ {0, 1}c, i = 1, ..., L, where di,j = 1 if Di labels x in ωj, and 0 otherwise.

The majority vote will result in an ensemble decision for class ωk if majority of the

classifiers classify the unknown sample into specific class.

Ties are resolved arbitrarily. This rule is often called majority vote. It will indeed

coincide with the simple majority (50 percent of the votes+1) in the case of two

classes (c = 2).
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Figure 4.12: Proposed classifier - combination of FSVM, AdaBoost, ANN and Ma-
jority base classifiers

4.6 Stages in our proposed CAD system

In our proposed system, we use fuzzy logic and compounding for de-noising. The

fuzzy nature of breast ultrasound images suggested the use of fuzzy logic and because

of several other artifacts like shadowing, compounding proved to enhance the quality

of ultrasound images.

We extracted several morphological and texture features. We used a MI (mutual

information) approach to rank the morphological features and also used a combination

of SFS and SBS methods to select the best set of features.

For segmentation, we used a new approach to select seed points and used a region

growing method to perform segmentation. This method seems to perform better than

other state-of-the-art segmentation methods.

For classification, we used a combination of ANN, AdaBoost and FSVM as the

first layer and a majority base classifier as the second layer to classify benign and

malignant lesions in breast ultrasound images.

Figure 4.13 describes the conceptual diagram of our proposed system.

Pre-processing: To remove noises from ultrasound images and make it ready for

segmentation.
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Figure 4.13: Proposed system

Segmentation: To determine the boundary of the suspected lesion(s).

Feature extraction: To identify the features for classification purpose.

Classification: To classify the lesion in different classes to identify if the lesion is

benign or malignant.

Pre-processing is the most important stage in the system. We need to remove

noise and shadow as much as possible in order to better distinguish lesions from

breast tissues. We are going to study different pre-processing methods. Because of

the fuzzy nature of ultrasound images, we are going to propose the use of fuzzy logic

for pre-processing and perform several experiments.

We also realized that sometimes radiologists look at a lesions from different an-

gles. The reason is that sometimes due to shadowing and noise the lesion cannot

be clearly recognized. Based on that finding, we thought correlation of ultrasound

images from different angles could give us more information and eliminate some of

the unwanted noises and shadows. For this, compounding and perform experiments

on breast ultrasound images from different angles to see if it can reduce noise and

shadow while preserving important information in ultrasound images.

For segmentation of lesions in ultrasound images, we introduced a new approach
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that selects seed points automatically and uses a region growing algorithm to find the

boundaries of lesion.

For feature selection, we used combination of some well-known feature selection

algorithms such as Sequential Forward Search, Sequential Backward Search and Mu-

tual Information (MI) methods. We also extracted some texture features as they are

not correlated to morphological features and they could provide more accuracy for

classification. The methods of selecting a sub-set of morphological features and also

the method for extraction texture features are described later in this thesis.

Finally, classification stage in our CAD system consists of a new classification

method, which is the combination of AdaBoost, ANN, FSVM and majority-based

classifier.

Implementation notes of our proposed system are given in Appendix A.
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Chapter 5

Experimental results

5.1 Ultrasound image database

The database selected for experiments in this research is from HIT Pattern Recogni-

tion Research center. It consists of breast ultrasound images from 80 patients. These

images are pathologically proven and consist of 59 malignant and 21 benign cases.

The database of ultrasound images used in this research is shown in Appendix B.

5.2 Formulas used for evaluation

The following formulas are used in our experiments:

Overall accuracy =
TP + TN

TP + TN + FP + FN

Specificity =
TN

TN + FP

Sensitivity =
TP

TP + FN

Positive predictive value(PPV ) =
TP

TP + FP

Negative predictive value(NPV ) =
TN

TN + FN
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where TP = True Positive, TN = True Negative, FP = False Positive, FN =

False Negative.

5.3 Pre-processing

Our proposed region growing method (for segmentation) and support vector machine

[83] (for classification) methods have been implemented. For de-noising, we imple-

mented the fuzzy approach explained in chapter 4. Figure 5.1 illustrates an image

after fuzzy concept is applied. As one can see, after applying fuzzy approach, the

background and foreground are much better separated.

In another experiment, we used fuzzy approach for de-noising and proposed region

gowning method for segmentation. Figure 5.2 illustrates segmented ultrasound image.

After validation by the physician, it looks like the segmentation is done in proper

way, although it does not give the best margin. This is very significant for the

physician to see if the mass is branched or whether it has irregular shape.

If we do not apply fuzzy approach (do not perform de-noising) and only use

proposed segmentation method , the segmented image can be seen in Figure 5.3.

As can be seen, this approach totally misses the branch of the mass. If that branch

is not included, then the diagnosis could be completely different. In addition to the

above experiment, we chose 20 patients and applied the method on the ultrasound

images. We segmented the masses and asked a physician to tell us if the segmentation

was done properly. We have not disclosed the diagnosis for the patients so it does

not have impact on physician’s decision.

Out of 20 patients, the masses for 19 patients were segmented correctly. The

branches were identified as well as irregular shapes. We have asked the physician to

Figure 5.1: Fuzzy logic for de-noising
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Figure 5.2: Segmentation

Figure 5.3: Segmentation without using Fuzzy logic for de-noising

identify the suspicious masses. Out of the 19 patients, 10 were identified by physician

to be suspected for carcinoma. Out of 10 suspicious patients, 8 of those who had

cancerous masses and 2 were false positive. There was no false negative. Table 5.1

summarizes the result of the experiment.

Table 5.1: Applying fuzzy logic for de-noising (TP: True Positive; TN: True Negative;
FP: False Positive; FN: False Negative)

TP TN FP FN Accuracy% Specificity% Sensitivity% PPV% NPV%

15 3 2 0 90.00 60.00 100.00 88.00 100.00

For the next experiment, we did not use fuzzy approach for de-noising and repeated

the same experiment. The result of the experiment is shown in Table 5.2

As you can see, in this experiment, we have one false negative, which did not exist

when we applied fuzzy logic for de-noising.
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Table 5.2: No fuzzy logic for de-noising

# of patients TP TN FP FN

20 14 3 2 1

5.3.1 Compounding

In order to find out how compounding of the images will improve the result, we applied

the compounding algorithm we discussed earlier after de-noising. The algorithm is

applied on 3 images per patient (9 o’clock, 0 o’clock and 3 o’clock). A sample of the

result is shown in Table 5.3

Original De-noised Comp. Segmented System output Gold stand.

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Benign

Malignant Malignant

Malignant Malignant
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Original De-noised Comp. Segmented System output Gold stand.

Malignant Malignant

Benign Benign

Benign Benign

Table 5.3: Experiment using compounding (Gold stand.:

Cold standard, Comp.: Compounded)

After applying compounding, all one case of false positive is eliminated cases were

identified correctly. One of the false positives that we saw before was due to shadowing

that was eliminated after applying compounding to ultrasound images as illustrated

in Table 5.4

Table 5.4: Results with compounding

TP TN FP FN Accuracy% Specificity% Sensitivity% PPV% NPV%

59 20 0 1 98.75 100.00 98.33 100.00 95.24

5.3.2 Performance of our pre-processing methods

The performance metrics used are Peak Signal to Noise Ratio (PSNR) and De-noising

Time [136]. PSNR is a quality measurement between the original and a de-noised

image. The higher the PSNR, the better is the quality of the compressed or recon-

structed image. To compute PSNR, the block first calculates the Mean-Squared Error

(MSE) and then the PSNR:

PSNR = 10 log10
[ R2

MSE

]
(38)

where MSE =
∑

[I1(m,n)−I2(m,n)]2

M∗N where M and N , m and n are number of rows
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and columns in the input and output image respectively. Table 5.5 shows the compar-

ison between our proposed de-noising method (Fuzzy and Compounding) and other

standard de-noising methods used in medical imaging.

Table 5.5: Comparison between several de-noising methods

Filter PSNR

Lee 27.25

Frost 27.42

Bayes 47.21

Fuzzy 54.96

Compounding 36.45

Proposed method 63.24

5.4 Segmentation

Our proposed segmentation method is compared with other state-of-the-art segmen-

tation methods. Our approach selects the seed point automatically and then uses a

region growing algorithm to perform segmentation. Table 5.6 summarizes the result

of our comparison.

Table 5.6: Comparison between proposed segmentation method, region growing
method and neurotrophic I-means clustering method

Method # of patients Segmented Correctly Accuracy %

Region growing [135] 80 74 92.50
I-means clustering [119] 80 75 93.75
Proposed method 80 78 97.50

5.5 Feature extraction and selection

Total of twenty morphological features and thirty seven texture features are consid-

ered. A combination of MI (mutual information), Combination of Sequential Forward

Search and Sequential Backward Search has been implemented (Bidirectional Search)

to select a sub-set of morphological features. Total of seven texture features (selected
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by Chen et al. [22]) and eight morphological features were selected. Table 5.7 sum-

marizes the selected morphological features and selected texture features.

Table 5.7: Selected morphological features used in our experiments

# Morphological Feature # Texture Features

1 Roundness 1 AD

2 Solidity 2 ADE

3 Convexity 3 AEF

4 TCA Ratio 4 ABCF

5 Perimeter 5 A

6 Area 6 ADF

7 NSPD 7 ACDE

8 Aspect Ratio

9 Wall Thickness

For quantative evaluation of our feature selection method, we used criteria that

measures the separation of each class and we compared it with other feature selection

methods. The criteria S = trace(S−1
b Sw) is used, where Sb is between class scattered

matrix and Sw is within class scattered matrix. A lower value of separability criteria

S ensures that the classes are well separated by their scatter means. The result of

our comparison between BDS (Bidirectional Search) method and other well-known

methods are summarized in Table 5.8.

Table 5.8: Comparison between different feature selection algorithms

Method S

Branch and Bound[29] 0.45

Sequential Floating Forward Search[22] 0.55

Stepwise Clustring[66] 0.52

Sequential Forward Search[22] 0.45

Sequential Backward Search[22] 0.45

Bidirectional Search (used in our CAD system) 0.42

Based on the result of the comparison, it looks like BDS makes better separation

between the classes.
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5.6 Classification

Our proposed classification method consists of a combination of three different state-

of-the-art classification methods (refer to section 4.5. These three methods are: Ad-

aBoost, ANN and FSVM.

In order to prove that our proposed classification method outperforms the other

methods. We used the methods for pre-processing, segmentation and feature extrac-

tion shown in Table 5.9.

Table 5.9: Methods used in each stage

Stage Method

Pre-processing Fuzzy method and Compounding

Segmentation Proposed region growing method

Feature Extraction Morphological and texture features

Feature Selection
MI (mutual information), Sequential Forward
Search and Sequential Backward Search

Classification ANN, AdaBoost and FSVM

We used PCA, FLD, AdaBoost, ANN and FSVM classifiers separately to compare

the accuracy of those classifiers with our proposed classifier. Table 5.10 and Table 5.11

compares the performance of our proposed classification method with other state-of-

the-art classification methods. In table Table 5.10 we use k-fold cross-validation

technique with 16 partitions. Table 5.11 does not use k-fold cross-validation.

Table 5.10: Comparing our proposed classifiers with state-of-the-art classifiers - using

k-fold cross-validation

Method Accuracy

FLD 86.25%

KNN 85.00%

PCA 87.50%

ANN 90.00%

AdaBoost 92.50%

FSVM 97.50%

Proposed classifier 98.70%
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Table 5.11: Comparing our proposed classifiers with state-of-the-art classifiers

Method Accuracy

PCA 87.50%

FLD 87.50%

KNN 87.50%

ANN 91.25%

AdaBoost 95.00%

FSVM 97.50%

Proposed classifier 98.70%

5.7 Performance of our proposed CAD system

In this experiment, we used fuzzy logic for pre-processing of ultrasound images. We

also used compounding of three images of each patient (9 o’clock, 0 o’clock and 3

o’clock) and performed compounding on the images. Proposed region growing method

is used for Segmentation. We used the morphological features that we extracted using

MI (mutual information), Sequential Forward Search and Sequential Backward Search

methods. We also included texture features by Chen et al. [22]. For classification,

we used our proposed classification method, which uses a combination of FSVM,

AdaBoost, ANN and Majority based methods. The selected morphological features

and texture features are showing in Table 5.12. Methods used in each stage of our

system are shown in Table 5.13.
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Table 5.12: Proposed CAD system - Selected features (A: 77 auto-covariance matrix;

B: SGLDM; C: GLDM; D: BDIP; E: BVLC; F: NGTDM)

# Morphological Feature # Texture Features

1 Roundness 1 AD

2 Solidity 2 ADE

3 Convexity 3 AEF

4 TCA Ratio 4 ABCF

5 Perimeter 5 A

6 Area 6 ADF

7 NSPD 7 ACDE

8 Aspect Ratio

Table 5.13: Proposed CAD system - Methods used in each stage

Stage Method

Pre-processing Fuzzy method + Compounding

Segmentation Proposed region growing method

Feature Extraction Morphological and texture features

Feature Selection
MI (mutual information), Sequential Forward

Search and Sequential Backward Search

Classification

Our proposed classification method (combination

of ANN, AdaBoost, FSVM and Majority base clas-

sifier)

We have performed experiments on the database of 80 patients. The results are

given in Table 5.14 and 5.15.

Table 5.14: Proposed CAD system - Results

TP TN FP FN Accuracy% Specificity% Sensitivity% PPV% NPV%

59 20 0 1 98.75 100.00 98.33 100.00 95.24
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Table 5.15: Proposed CAD system - Comparison with other methods

Method Accuracy

ABUS[51] 88.75%

Hybrid Filtering[145] 92.50%

Our approach 98.75%

5.8 Performance of our proposed CAD system with

different set of features

5.8.1 Experiment using manually extracted feature (wall thick-

ness)

We added a new feature to the list of the texture features in our proposed system

(wall thickness) and repeated the experiments. We also use k-fold cross-validation

technique with 16 partitions. The performance of the system does not change when

using k-fold cross-validation. The result is shown in Table 5.16 and 5.17.

Table 5.16: Results

TP TN FP FN Accuracy% Specificity% Sensitivity% PPV% NPV%

59 20 0 1 98.75 100.00 98.33 100.00 95.24

Table 5.17: Comparison with other methods

Method Accuracy

ABUS[51] 88.75%

Hybrid Filtering[145] 92.50%

Our approach 98.75%

Including ”wall thickness” in the list of features did not improve the accuracy of

the system. Radiologists usually do not consider this feature unless there is a lack of

other features. This feature is hard to extract and it is very subjective even among

experienced radiologists.
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5.8.2 Experiment using CNN to extract texture features

In our proposed CAD system, we used CNN and performed experiments to see the

effect on the accuracy of our classifier. The result of the experiments is shown in

Table 5.18 when using k-fold cross-validation technique with 16 partitions. The result

in Table 5.19 does not use k-fold cross-validation.

Table 5.18: Result of comparing our proposed classifiers with state-of-the-art classi-

fiers - using CNN for texture feature extraction and using k-fold cross-validation

TP TN FP FN Accuracy% Specificity% Sensitivity%

55 19 4 2 92.25 82.61 96.49

Table 5.19: Result of comparing our proposed classifiers with state-of-the-art classi-

fiers - Using CNN for texture feature extraction

TP TN FP FN Accuracy% Specificity% Sensitivity%

57 19 2 2 95.00 90.48 96.61

It appears that using CNN for feature extraction does not improve the overall

accuracy of the system.

5.8.3 Experiment using Hu moments to extract texture fea-

tures

In our proposed CAD system, we used Hu moments as texture features and performed

experiments to see the effect on the accuracy of our classifier. The result of the

experiments is shown in Table 5.20 when using k-fold cross-validation technique with

16 partitions. The result in Table 5.21 does not use k-fold cross-validation. The

performance is the not better than the experiment using Chen et al. [22] texture

features.

Table 5.20: Experiment - Using Hu moments - Results using k-fold cross-validation

TP TN FP FN Accuracy% Specificity% Sensitivity% PPV% NPV%

56 19 3 2 93.75 86.36 96.55 94.91 90.48
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Table 5.21: Experiment - Using Hu moments - Results

TP TN FP FN Accuracy% Specificity% Sensitivity% PPV% NPV%

57 21 2 0 97.50 90.91 100.00 96.67 100.00

5.8.4 Experiment using texture features and only Fuzzy for

pre-processing

In order to see the effect of texture features on the performance of our CAD system,

we performed experiment using Fuzzy logic for pre-processing (no compounding) and

used morphological and texture features. The reason was to see if using texture fea-

tures can compensate for not using compounding. We also use k-fold cross-validation

technique with 16 partitions. The performance of the system does not change when

using k-fold cross-validation. The result is shown in Table 5.22.

Table 5.22: Experiment using texture features and Fuzzy logic - Results

TP TN FP FN Accuracy% Specificity% Sensitivity% PPV% NPV%

58 19 1 2 96.25 95.00 96.67 98.30 90.48

5.9 Using concurrent computing

Some of the stages in our CAD system can benefit from concurrent computing to

decrease the time required to process an image. In pre-processing, we used fuzzy logic

to de-noise breast ultrasound images. This algorithm uses a membership function to

perform the task and we make a pixel darker or lighter depending on the membership

function. Because each pixel is processed independently from other pixels, we can get

benefit of using multi-thread programming to decrease processing time.

Also our multi-layer classifier is a good candidate for using concurrency. As men-

tioned in previous sections, in the first layer of our proposed classifier, we use three

different classifiers (ANN, AdaBoost and FSVM) and the result of each classifier will

be passed to a majority vote classifier to assign the test image into malignant and

benign classes. In our first layer, we can use three threads for our three classifiers

(ANN, AdaBoost and FSVM). We expect this to reduce the time for classifying a test

image.
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We use a computer with Intel Core i5-3360M processor (4 cores, 2.80 GHz, 4MB

L3, 1333MHz FSB), 32GB DDR3 Memory and Windows 7 Professional 64bit oper-

ating system. We use 4 different threads in our program to perform de-noising using

fuzzy logic and 3 different threads to perform classification using proposed classifier.

For de-noising, each pixel is processed by a separate thread and all other pixels wait

for their turn to be processed. As soon as a thread is free, another pixel in the queue

is picked up and is processed. For classification, 3 threads are created in the program

and each classifier is assigned to a thread (i.e. one thread for ANN, one thread for

AdaBoost and one thread for FSVM). Majority base classifier waits until all threads

are completed and then makes the final decision.

The computational time of our system (on a database of 80 patients) using one

core (one CPU, no concurrent computing) and concurrent version of our system that

uses uses 4 threads for de-noising and 3 threads for classification are shown in Ta-

ble 5.23. The average computational time for processing one ultrasound image using

our proposed system and using one CPU is around 5 seconds. Average processing

time for one image using the concurrent version of our system is around 4 seconds.

Table 5.23: Computational time for our proposed system (in seconds)

Using 1 CPU Using 4 CPU

Pre-processing 105s 71s
Segmentation 127s 127s
Feature Ext./Sel. 134s 134s
Classification 48s 19s
Total 414s 351s

5.10 Complete list of experiments

Please see Appendix C for complete list of experiments with the output results.

5.11 Conclusion of our experiments

We showed that our proposed pre-processing method (Fuzzy and Compounding) per-

forms better than other well-known pre-processing methods. It also appears that if we

do not apply a pre-processing method and use texture features in combination with
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morphological features, it can somehow compensate for the accuracy. We also showed

that our proposed classifier (ANN, AdaBoost, FSVM and Majority Vote) performs

better than other well-known classification methods.

We also manullay extracted one morphological feature to evaluate the effect on

classification performance. This feature is called ”wall thickness” and it seems that

it does not affect classification performance. We also used CNN and Hu moments as

texture features and evaluated classification performance. It appears that by using

those features we get lower accuracy. In general, the accuracy of our proposed clas-

sification method combined with our proposed pre-processing method outperforms

other state-of-the-art CAD systems.

In our experiments we used relatively low number of ultrasound images. Due

to difficulties obtaining more images, we evaluated the performance of our proposed

system using ultrasound images from 80 patients. We also had to extract one of

the features manually with the help from a physician. We definitely can do more

reasearch on the effect of different texture features and morphological features on the

performance of the system. Also our proposed classifier could use weighted majority

classifier to possibly improve classification accuracy.
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Chapter 6

Conclusions

An automatic system for classification of breast cancer lesions in ultrasound images is

proposed. We reviewed the background and related work and we proposed a method-

ology to enhance detection of suspicious lesions in breast ultrasound images.

The main problem with processing ultrasound images is speckle noise and shad-

owing. These two are big challenge for automating detection of suspicious lesions in

ultrasound images. To overcome some of the problems, we proposed a fully automated

system for detection of breast ultrasound images. To remove the noise, we proposed

a fuzzy logic method and a compounding method for the pre-processing stage of our

system. By using this Fuzzy logic method and compounding method, we were able

to improve the quality of the image before segmentation, therefore we were able to

get a better performance out of the system.

We have also identified a sub-set of features for classification purposes. As exper-

imenting with all combinations of features was practically impossible, we extracted

most significant features for the purpose of classification.

We also proposed a new approach of segmentation and classification. In our

proposed segmentation method, we used an automatic seed selection technique and

then used a region growing method to segment the breast ultrasound images in our

database. This segmentation method is more accurate compared to other state-of-the-

art segmentation methods. For classification, we used a combination of AdaBoost,

ANN, FSVM and majority-based classifier and the result suggests that our proposed

method performs better than other state-of-the-art classification methods.

We performed our experiments on the database of 80 patients with 3 pathologically
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proven images per patient taken at three different angles: 9 o-clock, 0 o-clock and 3

o-clock.

In our experiments we used relatively low number of ultrasound images. Due

to difficulties obtaining more images, we evaluated the performance of our proposed

system using ultrasound images from 80 patients. We also had to extract one of the

features manually with the help from a physician. Future research will focus on the

effect of different texture features and morphological features on the performance of

the system. We will also investigate weighted majority classifier to possibly improve

classification accuracy.
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Appendix A

Implementation notes

A.1 Statistical Analysis

Implementation of the algorithms mentioned in this research was done using Mi-

crosoft.Net C#. But C# does not natively provide statistical analysis, machine

learning, image processing and computer vision methods.

We have used a rich library called Accord.NET. This library provides different

interfaces to do statistical analysis, machine learning and image processing.

A.2 Accord.NET library

Accord.NET provides statistical analysis, machine learning, image processing and

computer vision methods for .NET applications. The Accord.NET Framework ex-

tends the popular AForge.NET with new features, adding to a more complete envi-

ronment for scientific computing in .NET.

The framework is divided in libraries, available through an executable installer,

standalone compressed archives and NuGet packages. Those libraries are divided

among three main functionalities: Scientific computing, Signal and image processing

and Support libraries.

A.2.1 Scientific computing

Accord.Math: Contains a matrix extension library, along with a suite of numerical

matrix decomposition methods, numerical optimization algorithms for constrained
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and unconstrained problems, special functions and other tools for scientific applica-

tions.

Accord.Statistics: Contains probability distributions, hypothesis testing, statistical

models and methods such as Linear and Logistic regression, Hidden Markov Models,

(Hidden) Conditional Random Fields, Principal Component Analysis, Partial Least

Squares, Discriminant Analysis, Kernel methods and many other related techniques.

Accord.MachineLearning: Support Vector Machines, Decision Trees, Naive Bayesian

models, K-means, Gaussian Mixture models and general algorithms such as Ransac,

Cross-validation and Grid-Search for machine-learning applications.

Accord.Neuro: Neural learning algorithms such as Levenberg-Marquardt, Parallel

Resilient Backpropagation, the Nguyen-Widrow initialization algorithm, Deep Belief

Networks and Restrictured Boltzmann Machines, and many other neural network re-

lated items.

Signal and image processing

Accord.Imaging: Contains interest point detectors (such as Harris, SURF, FAST

and FREAK), image filters, image matching and image stitching methods, as well as

feature extractors such as Histograms of Oriented Gradients and Haralick’s textural

feature descriptors.

Accord.Vision: Real-time face detection and tracking, as well as general methods

for detecting, tracking and transforming objects in image streams. Contains cascade

definitions, Camshift and Dynamic Template Matching trackers.

Support libraries

Accord.Controls: Histograms, scatterplots and tabular data viewers for scientific

applications.

Accord.Controls.Imaging: Windows Forms controls to show and handle images.
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Contains a convenient ImageBox control which mimics the traditional MessageBox

for quickly displaying or inspecting images.

Accord.Controls.Audio: Windows Forms controls to display waveforms and audio-

related information.

Accord.Controls.Vision: Windows Forms components and controls to track head,

face and hand movements and other computer vision related tasks.

A complete listing of the framework’s namespaces is presented below:

Namespace Description

Accord

Contains common classes,

such as exceptions, events

and framework infrastruc-

ture classes.

Accord.Audio

Process, transforms, filters

and handle audio signals for

machine learning and statis-

tical applications.

Accord.Audio.ComplexFilters
Contains frequency-domain

signal filters.

Accord.Audio.Filters
Contains time-domain sig-

nal processing filters.

Accord.Audio.Formats
Classes used to handle dif-

ferent audio file formats.

Accord.Audio.Generators

Contains specialized sig-

nal generators. Generate

square signals, sinusoids,

pulse and other filters for

use in signal processing.
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Namespace Description

Accord.Audio.Windows

Contains audio window

functions which can be used

to split signals in time.

Accord.Audition.Beat

Contains beat detection al-

gorithms and related meth-

ods.

Accord.Controls

Contains useful Windows

Forms controls to help cre-

ating scientific applications.

Includes histograms, scat-

terplots, wavecharts and

tabular data viewers for sci-

entific applications.

Accord.Controls.Vision

Windows Forms compo-

nents and controls to track

head, face and hand move-

ments and other computer

vision related tasks.

Accord.DirectSound

Contains audio devices

to reproduce and capture

sounds exposed through

DirectSound.

Accord.Imaging

Contains Interest point de-

tectors (i.e. Harris, SURF

and FAST), image matching

and image stitching meth-

ods.
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Namespace Description

Accord.Imaging.Converters

Contains classes and meth-

ods to convert between

different image representa-

tions, such as between com-

mon images, numeric matri-

ces and arrays.

Accord.Imaging.Filters

Contains the image pro-

cessing filters such as the

Wavelet transform, stereo

rectification, image blend-

ing and point markers.

Accord.Imaging.Moments

Contains image moments

calculators such as central

and raw moments.

Accord.MachineLearning

Support Vector Machines,

Decision Trees, Naive

Bayesian models, K-means,

Gaussian Mixture models

and general algorithms

such as Ransac, Cross-

validation and Grid-Search

for machine-learning appli-

cations.

Accord.MachineLearning.Bayes

Contains discrete and con-

tinuous density Naive Bayes

models for pattern recogni-

tion and concept learning.

Supports a wide diversity of

probabilistic distributions.
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Namespace Description

Accord.MachineLearning.Boosting

Contains Boosting related

techniques for creating clas-

sifier ensembles and other

composition models.

Accord.MachineLearning.Boosting.Learners

Contains Boosting related

learning for training clas-

sifier ensembles and other

composition models.

Accord.MachineLearning.DecisionTrees

Contains discrete and con-

tinuous Decision Trees, with

support for automatic code

generation.

Accord.MachineLearning.DecisionTrees.Learning

Contains Decision Tree

learning algorithms such as

the ID3 and C4.5.

Accord.MachineLearning.DecisionTrees.Pruning

Accord.MachineLearning.Geometry

Contains methods for ro-

bust estimation of geometry

entities.

Accord.MachineLearning.Structures

Contains specialized search

structures, such as K-

dimensional Trees.
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Namespace Description

Accord.MachineLearning.VectorMachines

Contains classes related to

Support Vector Machines

(SVMs). Contains linear

machines, kernel machines,

multi-class machines, SVM-

DAGs (Directed Acyclic

Graphs), multi-label clas-

sification and also offers

support for the probabilistic

output calibration of SVM

outputs.

Accord.MachineLearning.VectorMachines.Learning

Contains algorithms for

training Support Vector

Machines (SVMs).

Accord.Math

Mathematics, including ma-

trix algebra and numeric

optimization.

Accord.Math.Comparers

Accord.Math.ComplexExtensions

Contains extension methods

to operate over Complex

numbers.

Accord.Math.Decompositions

Contains numerical decom-

positions such as QR, SVD,

LU, Cholesky, and NMF

with specialized definitions

for most .NET data types:

float, double, and decimals.

Accord.Math.Differentiation

Contains methods for the

automatic differentiation

of mathematical formu-

las, such as the Finite

Differences method.
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Namespace Description

Accord.Math.Environments

Contains algorithm environ-

ments you can inherit from

and let your code be simi-

lar to famous environments

such as R and Octave.

Accord.Math.Geometry

Contains geometry-related

classes. Can identify

convex-hulls, detect curva-

tures and extract convexity

defects. When used to-

gether with the Imaging

and Vision namespaces,

can create finger detection

components.

Accord.Math.Kinematics

Contains classes to model

complex kinematic chains,

useful for robotic applica-

tions.

Accord.Math.Optimization

Contains classes for con-

strained and unconstrained

optimization. Includes

Conjugate Gradient (CG),

BroydenFletcherGoldfarb-

Shanno (BFGS), and the

Goldfarb-Idnani solver for

Quadratic Programming

(QP) problems.

Accord.Math.Wavelets

Contains Wavelet trans-

forms such as the Cohen-

Daubechies-Feauveau and

the Haar Wavelet trans-

forms.
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Namespace Description

Accord.Neuro

Neural learning algo-

rithms such as Levenberg-

Marquardt, Parallel Re-

silient Backpropagation,

initialization procedures

such as Nguyen-Widrow

and Deep Learning models,

such as Restricted Boltz-

mann Machines and Deep

Belief Networks.

Accord.Neuro.ActivationFunctions

Contains different activa-

tion functions for artificial

neurons.

Accord.Neuro.Layers

Contains different layer ar-

chitectures for artificial neu-

ral networks.

Accord.Neuro.Learning

Contains neural network

learning algorithms such as

the Levenberg-Marquardt

(LM) with Bayesian Regu-

larization and the Resilient

Backpropagation (RProp)

for multi-layer networks.

This namespace extends the

AForge.Neuro namespace

of the AForge.NET project.

Accord.Neuro.Networks

Contains different neural

network architectures, such

as specialized architectures

for deep learning and Boltz-

mann machines.
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Namespace Description

Accord.Neuro.Neurons
Contains different kinds of

artificial neurons.

Accord.Neuro.Visualization

Contains methods to visual-

ize information drawn from

neural networks.

Accord.Statistics

Statistics, including proba-

bility distributions, regres-

sion models and hypothesis

testing.

Accord.Statistics.Analysis

Contains many statistical

analysis, such as PCA,

LDA, KPCA, KDA, PLS,

IDA, Logistic Regression

and Stepwise Logistic Re-

gression Analyses. Also

contains performance as-

sessment analysis such as

contingency tables and

ROC curves.

Accord.Statistics.Analysis.ContrastFunctions

Contains contrast functions

to be used with Indepen-

dent Component Analysis

(ICA).

Accord.Statistics.Distributions

Contains more than 30+

statistical distributions,

with support for most

probability distribution

measures and fitting (esti-

mation) methods.

Accord.Statistics.Distributions.DensityKernels
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Namespace Description

Accord.Statistics.Distributions.Fitting

Contains special options

which can be used in distri-

bution fitting (estimation)

methods.

Accord.Statistics.Distributions.Multivariate

Contains a multivariate dis-

tributions such as the mul-

tivariate Normal, Multino-

mial, Independent, Joint

and Mixture distributions.

Accord.Statistics.Distributions.Univariate

Contains univariate distri-

butions such as Normal,

Cauchy, Hypergeomet-

ric, Poisson, Bernoulli,

and specialized distri-

butions such as the

Kolmogorov-Smirnov,

Nakagami, Weilbull, and

Von-Mises distribtuions.

Accord.Statistics.Filters

Contains data processing

filters, such as data nor-

malization, discretization,

equalization, selection and

projection filters.

Accord.Statistics.Formats

Contains readers for special-

ized formats, such as Lib-

SVM’s sparse format and

Microsoft (c) Excel formats.
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Namespace Description

Accord.Statistics.Kernels

Contains more than 30+

kernel functions for machine

learning and statistical ap-

plications. Kernel functions

are used in kernel methods

such as the Support Vector

Machine (SVM).

Accord.Statistics.Kernels.Sparse

Contains kernel function

able to deal with sparse

data in LibSVM’s format.

Accord.Statistics.Links

Contains link functions for

generalized linear models,

such as the Logit, the Probit

and Cauchit link functions.

Accord.Statistics.Models

Contains link functions for

generalized linear models,

such as the Logit, the Probit

and Cauchit link functions.

Accord.Statistics.Links

Contains statistical mod-

els with direct applications

in machine learning, such

as Hidden Markov Mod-

els, Conditional Random

Fields, Hidden Conditional

Random Fields and linear

and logistic regressors.

Accord.Statistics.Models.Fields

Contains classes related

to Conditional Random

Fields, Hidden Conditional

Random Fields and their

learning algorithms.
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Namespace Description

Accord.Statistics.Models.Fields.Features

Contains CRF feature func-

tions such as Emission,

Transition, First and Sec-

ond Moments features.

Accord.Statistics.Models.Fields.Functions
Contains potential func-

tions for CRFs and HCRFs.

Accord.Statistics.Models.Fields.Functions.Specialized

Accord.Statistics.Models.Fields.Learning

Contains learning algo-

rithms for CRFs and

HCRFs, such as Conjugate

Gradient, L-BFGS and

RProp-based learning.

Accord.Statistics.Models.Markov

Contains classes related

to Hidden Markov Models

and their learning algo-

rithms. Offers support

for both discrete and

continuous-density models,

as well as Markov classifiers

and threshold models for

sequence rejection.

Accord.Statistics.Models.Markov.Hybrid

Accord.Statistics.Models.Markov.Learning

Contains learning algo-

rithms such as Baum-

Welch.

Accord.Statistics.Models.Markov.Topology

Contains topologies for

HMMs, such as Forward-

only and Ergodic topolo-

gies.

Accord.Statistics.Models.Regression

Contains statistical regres-

sion models such as logistic

and linear regressions.
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Namespace Description

Accord.Statistics.Models.Regression.Fitting

Fitting (learning) al-

gorithms for regression

models, such as the It-

erative Reweighted Least

Squares for standard lo-

gistic regressors and the

Lower-Bound approximator

for multinomial logistic

regression.

Accord.Statistics.Models.Regression.Linear

Linear statistical regression

models such as simple, poly-

nomial, multiple and multi-

variate linear regressions.

Accord.Statistics.Moving

Contains classes to esti-

mate moving statistics, i.e.

statistics computed within a

time frame window.

Accord.Statistics.Running

Contains classes to esti-

mate running statistics, i.e.

statistics which should be

computed and updated as

soon as new data becomes

available.
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Namespace Description

Accord.Statistics.Testing

Contains 15+ statis-

tical hypothesis tests,

including ANOVA tests,

non-parametric tests such

as the Kolmogorov-Smirnov

test, contingency table tests

such as the Kappa test,

the Bhapkar and Bowker

tests and the more common

Chi-Square, Z, F, T and

Wald tests.

Accord.Statistics.Testing.Power

Contains methods for power

analysis of several related

hypothesis tests, including

support for automatic sam-

ple size estimation.

Accord.Statistics.Visualizations

Contains classes for sta-

tistical visualization such

as Histograms and Scatter-

plots.

Accord.Vision

Real-time face detection

and tracking, as well as gen-

eral methods for detecting,

tracking and transforming

objects in image streams.

Contains cascade defi-

nitions, Camshift and

Dynamic Template Match-

ing trackers.
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Namespace Description

Accord.Vision.Detection

Contains object detectors

such as the Viola-Jones

(Haar feature) method.

The Haar cascades are

completely compatible with

OpenCV generated defi-

nitions and the assembly

comes with direct support

for bundled definitions for

face and nose templates.

Accord.Vision.Detection.Cascades

Built-in Haar cascade def-

initions to use with the

Haar feature object detec-

tor. Those definitions can

be called directly from code

without need for loading

XML files.

Accord.Vision.Tracking

Contains classes for ob-

ject tracking. Include the

Camshift algorithm, color

segmentation-based track-

ers and dynamic template

matching trackers.

A.3 Basic linear algebra - DotNetMatrix library

Accord.NET lacks in the area of linear algebra. Therefore we used a combination of

Accord.NET and a linear algebra library called DotNetMatrix.

DotNetMatrix is a Microsoft.NET C# library that is used for basic linear algebra

operations. The classes in this library give a basic linear algebra package for .NET. It

provides user-level C# classes for constructing and manipulating real, dense matrices.
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It is meant to provide sufficient functionality for routine problems, packaged in a way

that is natural and understandable to non-experts. That said, it is a port of a public

domain Java matrix library, called JAMA.

A.3.1 Background

Currently, the developer of this library (Paul Selormey) works for a small GIS com-

pany in Japan developing GIS components for application developers. Coordinate

Transformation and therefore Affine Transformation is a very basic part of the de-

velopment efforts. Recently, he was assigned a task of designing and implementing a

new GIS system for the .NET framework with the ability to easily port to Java and

other frameworks. He decided to make maximum use of matrix-based affine trans-

formation, which is also a requirement for the OpenGIS Coordinate Transformation

Specifications.

Then, he discovered that the Matrix class provided as part of the GDI+ is the

.NET implements the affine transformations in a manner different from standard spec-

ifications. In short, while the standard 2D Coordinate System Affine Transformation

Matrix is define as: ⎛
⎜⎜⎝
a11 a12 a1,3

a21 a22 a2,3

0 0 1

⎞
⎟⎟⎠

The matrix defined by GDI+ is:⎛
⎜⎜⎝
a11 a12 0

a21 a22 0

a31 a32 1

⎞
⎟⎟⎠

The effect is that most affine transformations with GDI+ Matrix class will not con-

form to standard or specifications. For instance, by standard (and mathematically)

anti-clockwise (or counter-clockwise) rotations are considered positive but must be

negative when using the GDI+ classes. To solve this problem, he decided to im-

plement a standard affine transformation matrix and found this small Java general

matrix library JAMA. The presented classes are ported from the JAMA with .NET

specific improvements like operator overloading etc. The library is referred to as

DotNetMatrix, which provides linear algebra operations.
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A.3.2 Using the library

DotNetMatrix is comprised of the following six C# classes:

• GeneralMatrix

• CholeskyDecomposition

• LUDecomposition

• QRDecomposition

• SingularValueDecomposition

• EigenvalueDecomposition

The GeneralMatrix class provides the fundamental operations of numerical linear

algebra. Various constructors create matrices from two dimensional arrays of double

precision floating point numbers. Various gets and sets (properties) provide access

to submatrices and matrix elements. The basic arithmetic operations include matrix

addition and multiplication, matrix norms and selected element-by-element array

operations. A convenient matrix print method is also included.

Five fundamental matrix decompositions, which consist of pairs or triples of ma-

trices, permutation vectors, and the like, produce results in five decomposition classes.

These decompositions are accessed by the GeneralMatrix class to compute solutions

of simultaneous linear equations, determinants, inverses and other matrix functions.

The five decompositions are:

• Cholesky Decomposition of symmetric, positive definite matrices

• LU Decomposition (Gaussian elimination) of rectangular matrices

• QR Decomposition of rectangular matrices

• Eigenvalue Decomposition of both symmetric and non-symmetric square matri-

ces

• Singular Value Decomposition of rectangular matrices
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The DotNetMatrix deals only with real matrices, there is not support for complex

matrices. The design of DotNetMatrix represents a compromise between the need for

pure and delegant object-oriented design and the need to enable high performance

implementations. The following table illustrates a summary of DotNetMatrix library

capabilities as shown in Table A.2:

Library Capabilities

Object Manipulation

• constructors

• set elements

• get elements

• copy

• clone

Elementary Operations

• addition

• subtraction

• multiplications

• scalar multiplication

• element-wise multiplication

• element-wise division

• unary minus

• transpose

• norm
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Library Capabilities

Decompositions

• Cholesky

• LU

• QR

• SVD

• symmetric eigenvalue

• non-symmetric eigenvalue

Equation Solution

• non-singular

• least squares

Derived Quantities

• condition

• determinant

• rank

• inverse

• pseudoinverse

Table A.2: DotNetMatrix library capabilities
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Appendix B

Ultrasound database

M M M M

M M B M

B B M B

M M M M

M B M B
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M B M B

M M M M

M M M B

B M M M

M B B M

B M B M

M M M M

M M M B
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M B M B

M B M M

M M M M

M M M M

B M M M

M B M M

M M B M

Table B.1: Breast ultrasound database - B: Benign, M:

Malignant
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Appendix C

All Experiments

C.1 Experiment #1 - Experiment using no pre-

processing and using morphological features

only

In this experiment, we do not do any pre-processing for ultrasound images. Proposed

region growing method is used for segmentation. We used the morphological fea-

tures that we extracted using MI (mutual information), Sequential Forward Search

and Sequential Backward Search methods. For classification, we used our proposed

classification method, which uses a combination of FSVM, AdaBoost, ANN and Ma-

jority based methods. The selected morphological features are showing in Table C.1.

Methods used in each stage of our system are shown in Table C.2.
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Table C.1: Experiment #1 - Selected morphological features

# Morphological Feature

1 Roundness

2 Solidity

3 Convexity

4 TCA Ratio

5 Perimeter

6 Area

7 NSPD

8 Aspect Ratio

Table C.2: Experiment #1 - Methods used in each stage

Stage Method

Pre-processing None

Segmentation Proposed region growing method

Feature Extraction Morphological features

Feature Selection
MI (mutual information), Sequential Forward

Search and Sequential Backward Search

Classification

Our proposed classification method (combination

of ANN, AdaBoost, FSVM and Majority base clas-

sifier)

We have performed experiments on our database of 80 patients. For the purpose

of this experiment, we only used the 0 o’clock ultrasound images. The results are

shown in Table C.3, C.4 and C.5.

Table C.3: Experiment #1 - Results

TP TN FP FN Accuracy% Specificity% Sensitivity% PPV% NPV%

57 18 2 3 93.75 90.00 95.00 96.61 85.71
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Table C.4: Experiment #1 - Comparison with other methods

Method Accuracy

ABUS[51] 88.75%

Hybrid Filtering[145] 92.50%

Our approach 93.75%

Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Benign

Malignant Malignant

Malignant Malignant

Malignant Benign

Malignant Malignant

Benign Malignant

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Benign

Benign Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Benign Benign

Malignant Malignant

Benign Benign

Benign Benign

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Benign Benign

Malignant Malignant

Benign Benign

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

130



Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Table C.5: Experiment #1 - Output

C.2 Experiment #2 - Experiment using fuzzy logic

for de-noising and using morphological fea-

tures only

In this experiment, we used Fuzzy logic for pre-processing of ultrasound images. Pro-

posed region growing method is used for Segmentation. We used the morphological

features that we extracted using MI (mutual information), Sequential Forward Search

and Sequential Backward Search methods. For classification, we used our proposed

classification method, which uses a combination of FSVM, AdaBoost, ANN and Ma-

jority based methods. The selected morphological features are showing in Table C.6.

Methods used in each stage of our system are shown in Table C.7.

Table C.6: Experiment #2 - Selected morphological features

# Morphological Feature

1 Roundness

2 Solidity

3 Convexity

4 TCA Ratio

5 Perimeter

6 Area

7 NSPD

8 Aspect Ratio
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Table C.7: Experiment #2 - Methods used in each stage

Stage Method

Pre-processing Fuzzy method

Segmentation Proposed region growing method

Feature Extraction Morphological features

Feature Selection
MI (mutual information), Sequential Forward

Search and Sequential Backward Search

Classification

Our proposed classification method (combination

of ANN, AdaBoost, FSVM and Majority base clas-

sifier)

We have performed experiments on the database of 80 patients. For the purpose

of this experiment, we only used the 0’oclock ultrasound images. The results are

given in Table C.8, C.9 and C.10.

Table C.8: Experiment #2 - Results

TP TN FP FN Accuracy% Specificity% Sensitivity% PPV% NPV%

58 18 1 3 95.00 94.74 95.08 98.30 85.71

Table C.9: Experiment #2 - Comparison with other methods

Method Accuracy

ABUS[51] 88.75%

Hybrid Filtering[145] 92.50%

Our approach 95.00%

Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Benign
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Benign

Malignant Malignant

Benign Malignant

Malignant Malignant

Malignant Benign

Malignant Malignant

Malignant Malignant

Benign Benign
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign

Benign Benign
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Ultrasound image Segmented Classifier output Gold standard

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Benign Benign

Benign Benign

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Table C.10: Experiment #2 - Output
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C.3 Experiment #3 - Experiment using fuzzy logic

for pre-processing and using morphological and

texture features

In this experiment, we used fuzzy logic for pre-processing of ultrasound images. Seg-

mentation is carried out by proposed region growing approach. We used the morpho-

logical features that we extracted using MI (mutual information), Sequential Forward

Search and Sequential Backward Search. We also included texture features by Chen

et al. [22]. For classification, we used our proposed classification method, which uses

a combination of FSVM, AdaBoost, ANN and Majority based methods. The selected

morphological features and texture features are showing in Table C.11. Methods used

in each stage of our system are shown in Table C.12.

Table C.11: Experiment #3 - Selected features (A: 77 auto-covariance matrix; B:

SGLDM; C: GLDM; D: BDIP; E: BVLC; F: NGTDM)

# Morphological Feature # Texture Features

1 Roundness 1 AD

2 Solidity 2 ADE

3 Convexity 3 AEF

4 TCA Ratio 4 ABCF

5 Perimeter 5 A

6 Area 6 ADF

7 NSPD 7 ACDE

8 Aspect Ratio
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Table C.12: Experiment #3 - Methods used in each stage

Stage Method

Pre-processing Fuzzy method

Segmentation Proposed region growing method

Feature Extraction Morphological and texture features

Feature Selection
MI (mutual information), Sequential Forward

Search and Sequential Backward Search

Classification

Our proposed classification method (combination

of ANN, AdaBoost, FSVM and Majority base clas-

sifier)

We have performed experiments on the database of 80 patients. For the purpose

of this experiment, we only used the 0 o’clock ultrasound images. The results are

given in Table C.13, C.14 and C.15.

Table C.13: Experiment #3 - Results

TP TN FP FN Accuracy% Specificity% Sensitivity% PPV% NPV%

58 19 1 2 96.25 95.00 96.67 98.30 90.48

Table C.14: Experiment #3 - Comparison with other methods

Method Accuracy

ABUS[51] 88.75%

Hybrid Filtering[145] 92.50%

Our approach 96.25%

Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Benign
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Benign

Malignant Malignant

Benign Malignant

Malignant Malignant

Malignant Benign

Malignant Malignant

Malignant Malignant

Benign Benign
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign

Benign Benign
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Ultrasound image Segmented Classifier output Gold standard

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Benign Benign

Benign Benign

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Table C.15: Experiment #3 - Output
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C.4 Experiment #4 - Experiment using fuzzy logic

and compounding for de-noising and using mor-

phological and texture features

In this experiment, we used fuzzy logic for pre-processing of ultrasound images. We

also used compounding of three images of each patient (9 o’clock, 0 o’clock and 3

o’clock) and performed compounding on the images. Proposed region growing method

is used for Segmentation. We used the morphological features that we extracted using

MI (mutual information), Sequential Forward Search and Sequential Backward Search

methods. We also included texture features by Chen et al. [22]. For classification,

we used our proposed classification method, which uses a combination of FSVM,

AdaBoost, ANN and Majority based methods. The selected morphological features

and texture features are showing in Table C.16. Methods used in each stage of our

system are shown in Table C.17.

Table C.16: Experiment #3 - Selected features (A: 77 auto-covariance matrix; B:

SGLDM; C: GLDM; D: BDIP; E: BVLC; F: NGTDM)

# Morphological Feature # Texture Features

1 Roundness 1 AD

2 Solidity 2 ADE

3 Convexity 3 AEF

4 TCA Ratio 4 ABCF

5 Perimeter 5 A

6 Area 6 ADF

7 NSPD 7 ACDE

8 Aspect Ratio
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Table C.17: Experiment #4 - Methods used in each stage

Stage Method

Pre-processing Fuzzy method + Compounding

Segmentation Proposed region growing method

Feature Extraction Morphological and texture features

Feature Selection
MI (mutual information), Sequential Forward

Search and Sequential Backward Search

Classification

Our proposed classification method (combination

of ANN, AdaBoost, FSVM and Majority base clas-

sifier)

We have performed experiments on the database of 80 patients. The results are

given in Table C.18, C.19 and C.20.

Table C.18: Experiment #4 - Results

TP TN FP FN Accuracy% Specificity% Sensitivity% PPV% NPV%

59 20 0 1 98.75 100.00 98.33 100.00 95.24

Table C.19: Experiment #4 - Comparison with other methods

Method Accuracy

ABUS[51] 88.75%

Hybrid Filtering[145] 92.50%

Our approach 98.75%

Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Benign Benign
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Benign Benign
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign

Benign Benign
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Ultrasound image Segmented Classifier output Gold standard

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Benign Benign

Benign Benign

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Malignant Malignant

Table C.20: Experiment #4 - Output

C.5 Experiment #5 - Experiment using an extra

feature (wall thickness)

In this experiment, we used fuzzy logic for pre-processing of ultrasound images. We

also used correlation of three images for each patient (9 o’clock, 0 o’clock and 3
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o’clock) and performed compounding on the images. Proposed region growing method

is used for Segmentation. We used the features that we extracted using MI (mutual

information), Sequential Forward Search and Sequential Backward Search methods.

We also included texture features by Chen et al. [22]. A new feature (wall thickness) is

added to the set of features. The outer boundary of the mass was drawn manually by

a physician. Feature is defined by the subtracting areas of two regions (Area of outer

region - Area of inner region). For classification, we used our proposed classification

method, which uses a combination of FSVM, AdaBoost, ANN and Majority based

methods. The selected morphological features and texture features are showing in

Table C.21. Methods used in each stage of our system are shown in Table C.22.

Table C.21: Experiment #5 - Selected features (A: 77 auto-covariance matrix; B:

SGLDM; C: GLDM; D: BDIP; E: BVLC; F: NGTDM)

# Morphological Feature # Texture Features

1 Roundness 1 AD

2 Solidity 2 ADE

3 Convexity 3 AEF

4 TCA Ratio 4 ABCF

5 Perimeter 5 A

6 Area 6 ADF

7 NSPD 7 ACDE

8 Aspect Ratio

9 Wall Thickness
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Table C.22: Experiment #5 - Methods used in each stage

Stage Method

Pre-processing Fuzzy method + Compounding

Segmentation Proposed region growing method

Feature Extraction
Morphological and texture features + additional

morphological feature (Wall Thickness)

Feature Selection
MI (mutual information), Sequential Forward

Search and Sequential Backward Search

Classification

Our proposed classification method (combination

of ANN, AdaBoost, FSVM and Majority base clas-

sifier)

We have performed experiments on the database of 80 patients. The results are

given in Table C.23, C.24 and C.25.

Table C.23: Experiment #5 - Results

TP TN FP FN Accuracy% Specificity% Sensitivity% PPV% NPV%

59 20 0 1 98.75 100.00 98.33 100.00 95.24

Table C.24: Experiment #5 - Comparison with other methods

Method Accuracy

ABUS[51] 88.75%

Hybrid Filtering[145] 92.50%

Our approach 98.75%

Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Benign Benign
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Ultrasound image Segmented Classifier output Gold standard

Malignant Malignant

Malignant Malignant

Malignant Benign

Malignant Malignant

Malignant Malignant

Malignant Malignant

Benign Benign

Malignant Malignant

Malignant Malignant

Benign Benign

Table C.25: Experiment #5 - Sample output
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Considering ”wall thickness” did not make any difference in our results. Radi-

ologists usually do not consider this feature unless there is a lack of other features.

This feature is hard to extract and it is very subjective even among experienced

radiologists.

Summary of the above experiments are summarized in Table C.26. The summary

shows how the system performance improved.

Table C.26: Summary of experiments (Spec.: Specificity, Sen.: Sensitivity)

# TP TN FP FN Accuracy% Spec.% Sen.% PPV% NPV%

1 57 18 2 3 93.75 90.00 95.00 96.61 85.71

2 58 18 1 3 95.00 94.74 95.08 98.30 85.71

3 58 19 1 2 96.25 95.00 96.67 98.30 90.48

4 59 20 0 1 98.75 100.00 98.33 100.00 95.24

5 59 20 0 1 98.75 100.00 98.33 100.00 95.24

C.6 Experimental results using combination of dif-

ferent methods

In order to know what exactly causes the performance of our system to improve

compare to other state-of-the-art CAD systems, we performed the experiments in

Table C.27. Please note that for segmentation, we use proposed region growing

method. We also use 8 morphological features and 7 texture features we used before.

For feature extraction, we use a combination of MI (mutual information), Sequential

Forward Search and Sequential Backward Search.
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Table C.27: Experiments with different combination of methods in each stage of the

CAD system

Experiment # Pre-processing Classifier

1 None ANN

2 None AdaBoost

3 None FSVM

4 None Proposed classifier

5 Fuzzy ANN

6 Fuzzy AdaBoost

7 Fuzzy FSVM

8 Fuzzy Proposed classifier

9 Fuzzy and Compounding ANN

10 Fuzzy and Compounding AdaBoost

11 Fuzzy and Compounding FSVM

12 Fuzzy and Compounding Proposed classifier

The result of the experiments mentioned is shown in Table C.28.
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Table C.28: Result of comparing our proposed classifiers with state-of-the-art classi-

fiers

# TP TN FP FN Accuracy% Specificity% Sensitivity%

1 54 16 5 5 87.50 76.19 91.52

2 54 15 4 6 87.50 80.00 90.00

3 56 17 3 4 91.25 85.00 93.33

4 57 18 2 3 93.75 90.00 95.33

5 56 16 3 5 90.00 84.21 91.80

6 57 16 2 5 91.25 88.89 91.93

7 57 20 2 1 93.75 90.00 98.27

8 58 18 1 3 95.00 94.74 95.08

9 57 16 2 5 91.25 88.89 91.93

10 56 20 3 1 95.00 86.96 98.24

11 57 20 2 1 96.25 90.91 98.27

12 59 20 0 1 98.75 100.00 98.33
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