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ABSTRACT 

Analysis of New Multi Cellular Vortex Model  

 Israt Jahan Eshita  

A complete theoretical description of multi-celled vortices is complex. 

Nevertheless, a simplified approach like the one presented in this thesis can provide 

the most fundamental characteristics satisfactorily. 

In this model all velocity distributions are bounded. The solution is obtained using 

MATLAB and Maple 14 code. The main goal is to develop a numerical technique 

that will provide good fits to a variety of actual vortices of different types. 

The simulated results correlate well actual data of some naturally and 

experimentally occurring vortices. Two-celled vortices developed in the intakes of 

gas turbine engines operating near the ground, wing-tips, tornadoes and vortices 

generated under a liquid-air interfacial wave by wind action are examined here. 

The correlations provided in this thesis are biased towards two-cell vortices because 

a fair number of actual data for the velocity are readily available in the scientific 

literature. In addition, a simulated four-cell vortex model also described.  
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NOMENCLATURE 

Listed below are the main symbols, which are used in this thesis. Note that more 

than one meaning maybe assigned to a symbol. Other symbols are described 

internally.  

 

a     = constant 

C   = arbitrary constant 

f      = general function 

m,i  = constant exponents 

n     = constant exponents 

N     = number of cells 

P     = static pressure, Pa 

Re   = the vortex Reynold’s number 

r,z    = radial and axial cylindrical coordinates 

s, t = dummy variables. 

V     = velocity 



xiii 

 

x,y,z = Cartesian coordinates. 

Vθ = Non dimensional tangential velocity. 

Vr = Non dimensional radial velocity. 

Vz = Non dimensional axial velocity. 

 r=r*/rc*= Non dimensional radius.  

rc
*
=  Dimensional core radius  

x,y = Cartesian coordinates 

Greek Symbols  

α      = arbitrary constant 

β      = scaling constant 

 * 
   = circulation, m

2
/s 

  = normalized pressure 

1   = constant scaling parameters 

2   = scaling parameters 

λ      = positive smallest root 

η      = scaling constant 



xiv 

 

       η1     = model constant 

        η2      = model constant 

 
* 
kinematic viscosity, m

2
/s

* 
     = density, kg/m

3
 

     = vorticity 

  z   = non dimensional vorticity 

 

 

Subscripts 

c        = quantity at the vortex core 

r, θ, z = radial, tangential and axial component 

0        = quantity at the vortex center 

    = dimensional quantity  

 

Superscript 

* = dimensional quantity  
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Chapter 1 Introduction 

 

1.1 The Problem 

Vortices are known to play a vital part in transporting mass momentum and energy in 

many areas of science and technology. The last fact motivated researchers to study 

their most fundamental characteristics since the 19
th

 century. For one-cell vortices, 

where the radial flow converges from far field and then rises upwards near the axis of 

rotation, there are several well-known models in existence. 

This is not however the case for the multi-cellular (N-cells) type. The so-called two-

celled vortex consists of two kinds of flow structures that take place in the 

meridional (r-z) plane. There is a region near the axis of rotation where the fluid 

drops from above and then diverges radially outwards near the vortex base. At a 

specific location, it meets the converging flow arriving from the outer periphery 

whereby both meet and deflect upwards (see Fig. 2.3.2). Two-celled vortices are also 

characterized by a very modest (if not zero) rotation near the origin. It was long 

known that at least one third (if not more) of the tropical and localized severe storms 

could mature from the severe one-cell type to devastating two-cell vortices [1]. This 

kind of whirls are not however exclusive to atmospheric sciences. Mechanically 

produced vortices could also display the two-cell fundamental characteristics [3]. 
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 Until the late 19 hundreds, the now famed Sullivan’s vortex was the only simple 

model that could predict the previously mentioned downdraft/updraft combination of 

the two-celled vortices. In 1998 Vatistas et al published on a novel model that was 

able to simulate both single and double-celled vortices while all velocity components 

remained bounded in the radial direction. The most popular member of the single-

cell group is the n = 2 [4]. Its mathematical simplicity has made it particularly 

valuable in numerous studies that range from helicopter blade aerodynamics to dust 

devils in Mars.  

In this thesis, the original two-cell vortex is enlarged to include a wide range of 

multi-celled vortices of relevance to natural and technological whirls [4]. Our 

analysis focuses on model correlations with actual observations of velocity and static 

pressure. 

 1.2 Previous Work 

  As mentioned earlier, most of the approximate models, which have been developed 

in the past, pertain to single cell vortices. Rankine proposed the simplest of these 

156 years ago. His formulation, still in use, assumes a linear tangential velocity 

distribution inside the core region 0 ≤ r
*

 ≤ rc 
*
(where r

*
 is the radial coordinate, rc

* 
is 

the radius where the tangential velocity attains its maximum value), and a 

hyperbolic variation in the interval rc 
*

 ≤ r
*

 ≤   [5]. This velocity distribution 

however, generates an unrealistic sharp pinnacle for the velocity at the core (rc
*
), 
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and renders the vorticity discontinuous at the point of transition from forced to free 

vortex modes. Also, the nature of this formulation requires that both the radial and 

axial-velocity components to be zero. In spite of these weaknesses, the static 

pressure approximates reality quite well, which suggests further that the velocity 

deviations from the experimental values near the core do not influence the pressure 

profile significantly. 

The Kaufmann-Scully (Kaufmann (1962)-Scully (1975) [6]), popularly known as 

Scully’s vortex, is an empirical vortex model where the tangential velocity 

encompasses the smoothing effects of viscosity close to the core radius [6,7].  

Although it assumes non-zero radial and axial velocity components this model 

nonetheless underestimates most of the measured values of tangential velocity near 

the core radius. 

Burgers in 1948 proposed another single celled vortex model, which produced an 

improvement between the predicted and observed values of tangential velocity near 

the core [7]. However, it assumes a linear profile for the radial-velocity, and a 

constant axial-velocity, making the model to be non-bounded and therefore not 

suitable for further treatment for unconfined vortices, such as for example 

compressible two celled vortices. 

In 1959 based on Burgers' work, Sullivan proposed a double cellular structure, 

where the radial and axial velocity components reverse their directions near center 
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of vortex thus producing a central recirculation zone [8]. Being a model that was 

based on Burgers’s, this too produces unbounded radial velocity. 

The development of velocity and vorticity is not the same for all vortices. A vortex 

such as strong tornadoes may develop zero velocity and vorticity near the origin, 

known as the “vortex eye”. None of the classical single- or double-celled vortex 

models predict convincingly this property.  

In 1991 Vatistas et al. proposed a new vortex formulation, which is now familiar as 

the n-vortex model [9], capable in producing a family of bounded velocity 

distributions. Depending upon the value of the exponent n, one can simulate the 

tangential velocity distributions of the classical formulations such as Rankine to 

Kaufmann-Scully, and also approximates closely Burgers’s. The tangential, radial 

and axial velocities are bounded in the interval [0, ∞]. The axial velocity ranges 

from a pure jet-like to profile with a 100% deficit at the central axis to jet-like [4]. 

Percentages of vorticity more or equal to 50% existing inside the core makes them 

concentrated. This approach made further developments of unconfined vortices 

possible. 
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Figure 1.2.1 Tangential velocity profiles for different past vortex models (Vθ = Non 

dimensional tangential velocity). 
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From Fig. 1.2.1 we observe that in Rankine’s vortex the tangential velocity 

distribution is linear inside the core (radius of maximum tangential velocity, where r 

=1) and hyperbolic outside of core [5]. The velocity changeover from linear to 

hyperbolic modes creates a sharp pinnacle at the core radius. The expected 

smoothing effect of viscosity in the last region is present in Sullivan’s, Burgers’, 

Vatistas’ et al (n =2) and Kaufmann-Scully (or n = 1) models. 
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Figure 1.2.2 Radial velocity profiles for different past vortex models (where, Vr = 

Non dimensional radial velocity). 
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The radial velocity of Sullivan, Burgers, Vatistas et al (n =2), Kaufmann-Scully 

models are shown in the Fig. 1.2.2. This velocity component is zero in Rankine’s 

and linear in Burgers’s vortices. 
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0

1

2

3

4

 

 

Rosenhead

Burgers

Vatistas et al.(n=2)

Sullivan

      

VzRe/2z

 χ 

Kaufmann-Scully

Figure 1.2.3 Axial velocity profiles for different past vortex models, (where, Vz = 

Non dimensional axial velocity). 
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Since the radial velocity in Sullivan’s and Burgers’s formulations grows continually 

with the radius makes them unbounded, and thus unsuitable without any other 

drastic simplification.  From Fig. 1.2.3 the axial velocity of Sullivan, Burgers, 

Vatistas et al (n =2), Kaufmann-Scully models are shown. The axial velocity 

component is zero in Rankine’s and constant in Burgers’s vortex models. 
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dimensional vorticity) 
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The corresponding vorticity distributions for all the previous models are shown in 

Fig. 1.2.4. The sudden changeover of the tangential velocity in Rankine’s vortex 

renders the associated vorticity to be discontinuous at the point of transition. 

Table 1.2.1 Percentage of vorticity inside the core for different vortex models [4]. 

 

 

 

 

 

 

The percentage of vorticity existing within the core for the different vortex models is 

given Table 1.2.1. Because the vortex core contains most of the vorticity, makes these 

vortices concentrated.  

 

 

 

 

Vortex model %of  vorticity 

Rankine vortex 100 

Kaufmann-Scully 50 

Burgers  71.05 

Sullivan 88.3 

Vatistas et al. model 

(n= 2) 

70.70 
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Table 1.2.2 Velocity formulas for different vortex models [4]. 

 

Vortex 

model 
V  

rV  /zV z  

Rankine r, for r in [0, 1] 

1/r, for every r in 

[1,  ) 

0 0 

Kaufmann

-Scully 

21

r

r
 

2

4

1

r

Re r



 

2 2

8

(1 )

r

Re r
 

Burgers 2

1

1
1 exp( )r

r
     12

r
Re


  14

Re


 

Vastistas 

et al. 

1 12 1/
(1 )

n n

r

r
 

1

1

2 1

1

2

2( 1)

(1 )

n

n

n r

Re r





 

1

2

1 1 1

2 2

4 ( 1) ( 1)

(1 )
n

n n r n

Re r

 


 

Sullivan 2

2

2

2

( )1

lim ( )
r

H r

r H r






 
2

2

2 3
1 exp( )r r

Re r


 
      

 
 

2

2

4
1 3exp( )r

Re
     

     1 = 1.256, 2 = 6.238 

 

Table 1.2.2 summarizes the formulae for the velocity components associated with all 

the previous vortex models. 
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1.3 The Contribution 

The original single-cell n = 2 vortex model, presented in Vatistas et al. [9] correlates 

well many vortices. Several vortices however, are also known to be of the multi-

celled type. In order to represent the last characteristic, n = 2 vortex model was 

extended to include this property [4]. The present study moves one step ahead 

extending the mathematical formulation of Vatistas [4] to describe multi-celled 

vortices. The solution is obtained using the MATLAB and Maple 14 software. 

Although, it is well known that, some vortices like mature hurricanes develop more 

than two cells, there are no however detailed velocity data to perform reliable 

correlations. Due to the last mentioned reason, the correlations in this thesis are 

biased towards two-cell vortices because a fair number of actual data for the velocity 

exist in the scientific literature. 

The new methodology is also shown to fairly correlate the observations of naturally 

occurring and industrial vortices. In the process a more general form of Sullivan’s 

double-cell vortex was analyzed [8]. 
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Chapter 2 Mathematical Modeling 

  

2.1 The Theoretical Frame of the Problem 

We consider here a steady, axisymmetric, incompressible vortex. The usual 

assumption that considers Vr and Vθ  to be functions of the radius (r) only is 

implemented. Furthermore, the radial (Vr) and axial (Vz) velocity components in 

strong vortices are substantially weaker than the tangential (Vθ),  

V
r
=

V
r

*

V
c

*
  and  V

Z
=

V
z

*

V
c

*

 

are      <<1

 

        Where, 

         
*

*

*2
c

c

V
r
    

         and  *

  is the vortex circulation. 
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 The mathematical modeling of the problem starts from continuity and the Navier-     

stokes equations. According to the previous assumptions, the equations of motion in 

cylindrical coordinates are as follows: 

        Continuity: 

          
0

            

r r zV V V

r r z

  

 
  

 

                                                                                 (2.1.1 a)                                                             

                           

             

 

All the terms in the continuity equation have same order of magnitude (where  

represents a very small number with order ranging10
-5

 to 10
-7

, see Table 2.1.1). 

Therefore, this equation remains as is.    

Radial, r- momentum: 

2 2 2

z 2 2 2

1 1
  -   -      -   

Re

                    1                                                           

r r r r r r
r

VV V V V V V
V V

r z r r r r r r z



        

     
     

             

(2.1.1 b)

 

The radial momentum equation contains one term having order of magnitude 1. 

Axial, z - momentum: 



 

 

 

30 

2 2

z 2 2

1 1
    -        

Re

                                                                   

Z Z Z Z Z
r

V V V V V
V V

r z z r r r z

       

     
     

                        

(2.1.1 c)

 

         Tangential, θ-momentum: 

     

2

 
 2 2

1 1
        -  

Re

     1             1               1                1        1

r
r

V V V V V V
V

r r r r r r

    

  

   
   

                                       

(2.1.1 d)
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Figure 2.1.1 Coordinate system for a multi-cell vortex. 
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  Table 2.1.1 Representative order of magnitude of  for various vortices. 

_______________________________________________________ 

Vortex type       rc
* 
(m)     Vmax 

*
(m/s)     Re          

_______________________________________________________ 

 Tornadoes  10.0        60.0   4.0 10
7
    o (10

-7
)

 
 

 Dust-devils     3.0        10.0    5.0 10
6
     o (10

-6
)  

 Whirl pools        15.0          5.0   7.5 10
7 
     o (10

-7
)  

 Aerodynamic        1.0        10.0    6.7 10
5 
     o (10

-5
) 

_______________________________________________________ 

 

Table 2.1.1 shows us various types of vortex and the corresponding magnitude  

Under the previous assumptions, the equation of motion in cylindrical coordinates is 

shown in the Fig. 2.1.1. Neglecting the terms of   or smaller and simplifying the above 

equations are reduced into:  

 

Continuity:  

   
1

0r

d
r V f r

r dr
 

                                                                                        (2.1.1) 
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Radial, r- momentum: 

2

   
V d

r dr

 
                                                                                                     (2.1.2)                                                                                                    

Axial, z - momentum: 

0
d

dz




                                                                                                             (2.1.3) 

The above equation of axial momentum shows us the dimensionless static pressure 

does not vary in the axial direction. Therefore, the pressure must be only a function 

of z. 

Tangential θ-momentum: 

   
1 1

                     
Re

rV d d d
r V r V

r dr dr r dr
 

 
  

                                               (2.1.4)                                
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Figure 2.1.2 Typical tangential velocity profile for a multi-cell vortex. 

Where,  

r=r*/rc*. 

z=z*/rc*. 

Vθ=Vθ*/Vc*. 

 Vr=Vr*/Vc*. 

 Vz=Vz*/Vc*. 
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p = (p* – p*o) / *
 
V*

2
c.  

p = (p* – p*o) / *
 
V*

2
c. 

= p/p, 

Re = ∞*/2 p* is the pressure, p* is the pressure far from the vortex center) 

Subscript “c” label properties at the vortex core while the asterisk indicates that the 

specific quantities have dimensions. 

 

   2.2 Generalized Sullivan Two-Celled Vortices 

   Sullivan proposed a double cellular structure where within the inner cell there is a        

central downdraft in the axial, and a divergence of the flow in the radial directions [8]. 

These properties are displayed by negative and positive values of the axial and radial 

velocity components, respectively. 

The original Sullivan is: 

2
*

2 ( ) 2

ar
V H

rH




 
  

   
                                                                                        (2.2.1)                         

Where, 
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   
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6
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r s
tH r s t e dt ds

t


  

        
  

                                                 

 * 2( ) lim
r

H H r


    

2

* 2
6

1
ar

rV ar e
r




 
    

 
 

                                                                                      (2.2.2) 

2

* 22 1 3
ar

zV az e 
 

  
 
 

                                                                                             (2.2.3) 

 

The asterisk indicates that the specific quantities have dimensions. 

Sullivan and others did not notice that, if the number 6 in the radial velocity by m (m is 

a constant), and then one can obtain a family of Sullivan vortices. This is possible 

since the intense vortex equations 2.2.1 to 2.2.3 represent an undetermined system. 

With this modification the dimensionless radial and axial velocity equations become: 

 
2

*

*

2 Re
Re 2 1 rr

r

V m
U V r e

r


 



     


                                                    (2.2.4) 

   
2

*

*

2 Re
Re 2 2 rz zV V

W f r m e
z z


 



     


                                          (2.2.5) 
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The tangential velocity is: 

 2* *

*

2 1

( )

c
H rV r

V
r H








 
 

                                                                                    (2.2.6) 

Where: 

   
22

0 0
exp 2 1

r s
tm

H r s t e dt ds
t

  
  

      
  

   

Here, s is dummy variable  

and 

 2( ) lim
r

H H r


   

But, the maximum tangential velocity should occur at r =1,  

or  
1

0
r

dV

dr





 
 

 
   

Application of the previous constraint in Eq. 2.2.6 yields: 

 

 

2

2

1

0

1

0 0

exp 2 1

exp 2 1 0

t

s
t

m
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t


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






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 

                                                    (2.2.7)              
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Given m, the above equation is used to find  numerically. Then equation 2.2.6 along 

with 2.2.7 will yield the tangential velocity distribution for the Sullivan family of 

vortices with m = 6 being the classical Sullivan’s formulation. All the numerical 

calculations and the code written to perform the calculations can be found in Appendix 

A.  

The simplified tangential momentum is: 

U

r

d

dr
(rV

q
) =

d

dr

1

r

d

dr
(rV

q
)

ì
í
î

ü
ý
þ

 

or 

     
dY

U Y
dr

    Where, Y =
1

r

d

dr
(rV

q
)  

Then 

=U 
dY

dr
Y

 

Separation of variables followed by integration yields 

0

0

ln =  

r

Y U dr c  
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or 

1

r

0

U  dr
d

( rV )= e
r dr




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r

0

U  dr
d

( rV )= e  r
dr


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  ®  

r

0

U  dr

d( rV )= e  r dr


 

 

A second integration gives, 
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q
 r ]

r
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 r ]

0
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U
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ò  dr
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ò  r dr  

Since [V
q
 r ]

0
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
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Inserting the expression 

 
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2 1 rm
U r e
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into the derived tangential velocity gives,

 

1

r

0

r U  dr

0

V  = e  r dr
r
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or

 

 
2
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1
2 1

r
x

s

0

m
V  = xexp s e ds  dx

r s



  
  

    
  

   

Here both x and s are dummy variables. 

As the above equation does not satisfy the condition: 

lim   1
r

V r


  

Therefore, in order to satisfy the last, the tangential velocity component becomes: 
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The term 
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m
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


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Which represents a constant and as such the tangential velocity component satisfies 

the original differential equation in the azimuth direction: 

1
( ) ( )

U d d d
rV rV

r dr dr r dr
 

 
  

 
 

Since Sullivan’s formulation is based on Burgers’ solution, Burgers’vortex will be 

obtained at the limit as m in the extended Sullivan’s approaches zero ( m® 0): 

Radial velocity 

Re 2rU V r    

Axial velocity 

 Re 4W f r    

Tangential velocity 

21
1 exp( )V r

r
       

Where, 

 = 1.25643 
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Table 2.2.1 the values of for different m (constant). 

 

 

 

 

 

 

 

Given m, the value of is calculated solving Eq. 2.2.7 numerically. Table 2.2.1 

provides the  valuesfor different m.  

 

 

m  

0 1.2564 

2 2.5756 

4 4.4248 

6 6.2381 

10 9.4433 

20 16.4688 
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Figure 2.2.1 Tangential velocity profiles for different values of m. 

 

Tangential velocity distributions for various values of m are given in Fig. 2.2.1. It is 

evident that the grater the value of m is, the more the concavity of the velocity 

distribution in 0 ≤ r ≤ 1. In fact for large m values one can observe                                
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the “eye” of the vortex evolving. The size of the “eye” enlarges as the value of m 

increases. Unfortunately, as it will be shown next, this formulation being a descendant 

of Burgers produces radial velocity profiles that are unbounded in r. 
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Figure 2.2.2 Radial velocity profiles for different values of m. 
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In Fig. 2.2.2 the radial velocity profiles for various values of m are presented. When m 

= 0 classical Burgers’ velocity evolves, while when m = 6 the original Sullivan’s radial 

velocity appears. The rate of growth of the radial velocity far from the center increases 

with the value of m. As illustrated in Fig. 2.2.3 the same is also the case with the axial 

velocity profiles. In this case however the far field constant value of the axial velocity 

increases with m. 
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Figure 2.2.3 Axial velocity profiles for different values of m. 
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Figure 2.2.4 Static pressure profiles for different values of m. 

 

The overall pressure profile for different values of m is shown in Fig. 2.2.4. Once 

more the classical vortices of Burgers and Sullivan appear for m = 0 and 6 

respectively. Also, inside the vortex “eye”, where the velocity is almost zero, the 

pressure profile is flat. 
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It is important to note that more mathematically involved developments of the    

generalized Sullivan vortex can be found in Gilliam et al. (2003) [10], Mickel 

(2000) [11], and Baker, J. T. (2000) [12]. 

2.3 The New Multi-Celled Vortices 

The 1959 Sullivan’s vortex accounted for one case of a double-cell meridional flow. 

The work of Vatistas (1998) produced a family of two-cell flow field [4]. Here the 

original contributions of multi-celled vortices are explained. In an attempt to 

incorporate this behaviour, the following generalized Vatistas [4] axial velocity 

profile is suggested: 

Vz

z
= 2a

-1( )
i+1
k i

1+bir
2( )
2

i=1

N

å          (2.3.1) 

Where, N is the parameter that indicates the number of cells, α is arbitrary constant 

and β is scaling constant. 

        From continuity equation (2.1.1) the radial velocity component is, 

     
 
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r
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Inserting the above expression into the θ-momentum equation (2.1.4) and after a 

double integration realizing also that Vθ r  1 as r , the general form of the 

tangential velocity component is obtained, 

            2

0
1

1
1 /  

i
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r

i

i

V r r dr Y
r





  



  
    

  
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Where, 
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
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Re

2


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The requirement that the maximum velocity must occur at r = 1, yields the 

following, 

1
2 2
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1 1
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 

 

 
 

      
            

      
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The value of the root () is found numerically solving the equation (2.3.4) in Maple 

14 software. Here, only the smallest positive roots for various 2 values are 

calculated. 

The axial-momentum equation (equation 2.1.3) suggests that the pressure does not 

vary along the axial direction. The pressure is then obtained from the radial 

momentum equation (equation 2.1.2). 

2

0

2

0

    

lim

r

L

L

V
dr

r

V
dr

r







 




                                                                                     (2.3.5) 

Where,  

* *

0

* *

0

p p

p p


 


 

According to the preceding equation it is worthwhile to remark that the diffusion of 

vorticity is balanced by that carried by the converging radial flow. 

The vorticity component in the axial direction is given by: 

  2

1

1
1 /

i
N

z i

i

d
r V r Y

r dr





  



  
      

  
                                                   (2.3.6)             

Where, z = z* rc*/Vc*. 
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Figure 2.3.1 Schematic of the meridional flow pattern in the r - z plane for one- 

celled vortices. 

 

   A typical schematic of the meridional flow for one-cell vortex is shown in Fig.  

2.3.1. In addition, Rankine, Kaufmann-Scully, Burgers vortex models are assumed 

one-celled vortex with the general flow pattern in the r - z plane [5, 6 and 7]. 
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    Figure 2.3.2 Schematic of the meridional flow pattern in the r - z plane for two-                    

celled vortices. 

 

Sullivan proposed a two-celled vortex characterized by a direction reversal of the 

radial and axial- velocity components near the axis of rotation. A schematic of the 

meridional flow pattern in the r - z plane for two-celled vortices is provided in 

Fig. 2.3.2.   
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Figure 2.3.3 Schematic of the meridional flow pattern in the r - z plane for three- 

celled vortices. 

 

Three and four cells are given in Figs. 2.3.3, and. 2.3.4 respectively. 
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The present study provides a new multi-celled vortices model, where one with a 

proper choice of the scaling parameters can generate single to N-celled intense 

vortices. 

 

Figure 2.3.4 Schematic of the meridional flow pattern in the r - z plane for four-

celled vortices. 
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Chapter 3 Numerical Solution 

 

3.1 Methodology 

The tangential, radial and axial velocity equations of multi-celled vortex are derived 

in the chapter 2. Static pressure and vorticity equations were also provided. The 

presentation of results for N = 2 begins by setting the scaling parameters as follows: 

  1 = 1,  

β1 = 0.375,  

β2 = 0.6, and vary 2.  

The values of 1, β1, and β2 were given before by Vatistas (1998) after a great deal 

of parametric examination [4]. 

The value of λ is then calculated via equation 2.3.4. The solution is obtained using 

MATLAB and Maple 14 code. The codes can be found in Appendices A and B. 
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Next, Y  is evaluated and then it is insert into equation 2.3.3 to obtain the tangential 

velocity profile. The radial component of the velocity is obtained from equation 

2.3.2 while equation 2.3.1 provides the axial velocity profile. Equations 2.3.5 and 

equation 2.3.6 furnish the static pressure and vorticity correspondingly. Table 3.1.1 

contains the value of the calculated parameters, which are needed for the specific 

calculations. 

 

Table 3.1.1 Important scaling parameters of tangential velocity 

 of present vortex model. 

 

2 

 

λ 

 

Y∞ 

 

VӨ (at the 

peak, 

 r =1) 

0.6  3.3069 0.4041 0.666 

0.8 5.3847 0.4082 0.698 

1.0 15.7418 0.4553 0.777 
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1.08  52.8349 0.9307 0.869 

1.10 111.1532 4.3713 0.913 

1.12 318.7127 8208.1328 0.951 

1.13 474.8508 1166679.141 0.965 

 

         3.2 Mathematical Formulation of Multi Cellular Vortices 

The profiles of the tangential velocity for different values of 2 = 0.6, 0.7, 0.8, 0.9, 

1.0, 1.1, and 1.13 are plotted in Fig. 3.2.1. For 2 ≤ 1 there is no change in the 

profiles within the inner part of the vortex core. When 2 increases further, the 

tangential velocity is formed a concavity near the center. Moreover, when the value 

of 2 is 1.1 a vortex-eye (area of almost zero velocity) begins to develop inside the 

core.  
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Figure 3.2.1 Profile of the tangential velocity of multi cellular vortices for    

different scaling parameters. 
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Figure 3.2.2 Profile of the radial velocity of multi cellular vortices for different 

scaling parameters. 

Figure 3.2.2 shows that far away from the axis of rotation the radial velocity profile 

converges towards the center of the vortex.  Furthermore, for 2 ≤ 1 the value of the 

radial velocity is negative and vice versa for 2 ≥ 1.10. On the other hand, inside the 

core the flow diverges for 2 > 1.  

 



 

 

 

59 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

K
2
=0.6

K
2
=0.7

K
2
=0.8

K
2
=0.9

K
2
=1.0

K
2
=1.1

K
2
=1.13

V
z
 R

e
/2

z

r
 

Figure 3.2.3 Profile of the axial velocity of multi cellular vortices for different 

scaling parameters. 

 

The axial velocity profile is shown in Fig. 3.2.3. When, 2 ≥ 1.10, this velocity 

produces a wake-like profile.  On the contrary, 2 from 0.60 to 1, the axial velocity 
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develops a deficit at the axis of rotation and reaching the zero value when 2 = 1. It 

is interesting that the axial velocity component possesses a jet-like shape when 2 = 

0.6.  

Vorticity radial profiles are given in Fig. 3.2.4. The first characteristic to be noticed 

is that its maximum peaks occur always inside the core. From the same graph the 

vorticity is contained within the core, which is the trade-characteristic of 

concentrated vortices [13]. 
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Figure 3.2.4 Profile of the vorticity of multi cellular vortices for different scaling 

parameters. 
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 Figure 3.2.5 Profile of the static pressure of multi cellular vortices for different 

scaling parameters. 

Static pressure distributions for different values of 2, are plotted in Fig. 3.2.5. It is 

clear from Fig. 3.2.5 that the static pressure exhibits a flat valley near the vortex 

center and the flat valley is the eye, because the tangential velocity is almost zero 

there.  
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Table 3.2.1 Percentage of vorticity (%) for the present vortex model. 

 

2 

(When  1 = 1, β1 = 0.375, β2 = 0.6) 

 

Percentage of vorticity (%) 

0.6 66.71 

0.8 69.85 

1.0 77.76 

1.08 87.22 

1.10 91.42 

1.12 95.65 

1.13 97.51 
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The percentage of vorticity inside the core for the present multi cellular vortex model, as 

a function of 2 is shown in Table 3.2.1. Where, 1 = 1, β1 = 0.375 and β2 = 0.6. The 

percentage of vorticity is directly proportional to the value of 2.  

 The 2 value controls also the size of the vortex eye. As it is clearly illustrated in Fig. 

3.2.6 the region where the velocity and hence vorticity is almost zero, expands outwards 

with 2. 

 

Figure 3.2.6 Vortex eye radius as a function of scaling parameter 2. 
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Chapter 4 Discussion of Results  

 

  In this section, using the present methodology, a sample of correlations of multi-

celled (N = 2) atmospheric and aerodynamic vortices is presented. All the needed 

scaling parameters for these curve-fits are given in Tabular form. Here the new multi 

cellular vortex model is compared with experimental data of Dallas Tornado as well 

as Kansas Tornado [14, 15]. These two tornados are atmospheric vortices. The speed 

of the wind in the tornado has been a topic of continuous interest since many indirect 

ways have been used to estimate at least the maximum speed near the ground of 

tornadoes.  

4.1 Correlations of Geophysical Vortices 

4.1.1 Atmospheric Vortices 

There are various kinds of atmospheric vortices such as, dust devils, tornadoes, and 

mesocyclones. Among those, only the tornado will be considered. This whirl is 

approximated by continuous functions that are zero at the vortex center, increase to a 

maximum at core radius, and then decrease asymptotically to zero infinitely far from 

the center. 
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 Figure 4.1.1 Comparisons of the tangential velocity with present multi-celled 

vortices model, (2 = 1.0882) and experimental data of Walter H. Hoecker (Dallas 

Tornado April 2, 1957) [14]. 
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The tangential component of wind around the Dallas tornado is discussed in the 

section. It is assumed; the tornado appeared to be in approximately the same stage of 

development, for most of the observations [14].  

 

The data points are located where by chance tracer particles were located and that the 

highest speed measured was not necessarily the highest speed existing in the tornado.  

The multi-cell vortex model is compared with the Dallas tornado as a 

nondimensional form. We can observe from the Fig. 4.1.1 that by selecting suitable 

values for the scaling parameter, 2 = 1.0882 the present vortex model correlates 

reasonably the experimental data of the Dallas Tornado [14]. Other important scaling 

parameters are as follows:  

λ = 70.1064 

Y∞ = 1.410 

VӨ = 0.913 (the value of the tangential velocity is at the pick, when r =1). 

 

Kansas tornado of 15 May 1999 was collected by a mobile, 3-mm-wavelength, 95-

GHz (W-band) Doppler radar high-resolution radar reflectivity and Doppler velocity 

data [16]. Data collection contained thirty-five scans of radar reflectivity and velocity 
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data during the entire life cycle of the tornado [15]. We are comparing the Kansas 

tornado with the present vortex model. All the Maple and Math lab cod are attached 

at the Appendix A   and Appendix B.  
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Figure 4.1.2 Correlations of multi-celled vortex model, (2 = 0.65) and experimental 

data of Vincent T. Wood (Kansas Tornado May 15, 1999) [15]. 
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For the best fit of Kansas Tornado with our multi cellular vortex model, all the 

scaling parameters were first calculated. The parameters are as follows:  

 

2 = 0.65 

λ = 3.7399 

Y∞ = 0.4047 

VӨ = 0.690 (the value of the tangential velocity is at the pick, when r =1). 

 

Figure 4.1.2 compares the tangential velocity of our present model with the Kansas 

Tornado, with the scaling parameter of 2 = 0.65 was found to be more appropriate 

[15]. 

 

Table 4.1.1 shows us all the important scaling parameter of tangential velocity of 

atmospheric vortices, which are plotted in the Fig. 4.1.1 and Fig.4.1.2. 
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Table 4.1.1 Important scaling parameter of tangential velocity of Atmospheric 

Vortices [20]. 

 

Atmospheric 

vortices 

 

2 

 

λ 

 

Y∞ 

 

VӨ (at the 

pick, r =1) 

Dallas Tornado 

April 2, 1957 

1.0882 70.1064 1.4103 0.913 

Kansas 

Tornado May 

15, 1999 

0.65 3.7399 0.4047 0.690 

 

A large tornado occurred that caused F4-level damage was intercepted by the 

Doppler on Wheels (DOW) mobile radar near Mulhall, Oklahoma, on 3 May 1999 

[17]. Three-dimensional structure of a tornado was deduced using the ground-based 

velocity track display (GBVTD) technique [18]. Pressure was deduced from the 

tangential and radial wind fields [19]. Now, the pressure profiles of Mulhall tornado 

with our present multi cellular vortex model is compared as well as calculated all the 

important parameters. 
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Figure 4.1.3 Comparisons of the static pressure with present multi-cell vortices 

model, (2= 1.1) and experimental data of the Mulhall Tornado on 3 May 1999 [17]. 
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The comparison of the Mulhall Tornado with our present model is provided in Fig. 

4.1.3. All the important scaling parameters are calculated, here 2 was set at 1.1. 
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Figure 4.1.4 Comparisons of the static pressure with present multi-cell vortices model, 

(2= 1.07) and experimental data of the Mulhall Tornado on 3 May 1999 [17]. 
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The comparison of static pressure with the present model is provided in Fig. 4.1.4.  

The theoretical static pressure yielded a better match with the experimental data 

when 2 was taken as 1.07. 

Table 4.1.2 Important scaling parameter of static pressure of Atmospheric Vortices 

(Mulhall Tornado on 3 May 1999) [20]. 

 

Atmospheric 

vortices 

 

2 

 

λ 

 

Y∞ 

Mulhall Tornado 

May 3, 1999 

1.1 111.1532 4.3713 

Mulhall Tornado 

May 3, 1999 

1.07 42.1239 0.7352 

 

Important scaling parameters for static pressure of Mulhall Tornado are presented in the 

Table 4.1.2.  
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4.1.2 Vortices Generated by Surface Wind Action  

 When wind is blowing on the surface of a liquid like the ocean it creates waves. 

Underneath these waves a multitude of vortices are generated near the air-water 

interface. 

 

Figure 4.1.5 Two-cell vortices produced in a wind-wave flume.  
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The scaling parameters used in Eq. 2.3.3 are:b1 = 0.375,b2 = 0.620 , k1 =1.000 , and 

k2 =1.072. 

Data collected in a wind-wave flume using a digital particle image velocimetry by 

Siddiqui (2005) [21]. Upon dimensionalization, a sample of 805 circular vortices, 

collapsed into a single curve. The experimental data given in Fig. 4.1.5 show good 

correlations with Eq. 2.3.3 and the generalized m = 4 Sullivan’s theory. 

4.2 Aerodynamic Vortices 

Sample of correlations of multi-celled aerodynamic vortices with our present vortex 

model is compared. Aerodynamics vortices are important in a number of 

applications. It is a significant factor in any type of vehicle design, including 

automobiles. It is important in the prediction of forces and moments in sailing. It is 

used in the design of mechanical components such as hard drive heads. Structural 

engineers also use aerodynamics, and particularly in aeroelasticity, to calculate wind 

loads in the design of large buildings and bridges [22].  

Next the present multi cellular vortex model is compared with two experimental 

aerodynamic vortices. All the needed scaling parameters for these curve-fits are 

given in tabular forms.  
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Figure 4.2.1 Comparisons of the tangential velocity with present multi-celled 

vortices model, (2 = 0.88) and experimental data of J.P Murphy and D.G 

MacManus 2010 [23]. 

 

The tornado-like vortex, developed in front of the gas turbine intake, while the engine is 

operating at high power near the ground, can ingest foreign objects that cause pressure 

asymmetry, produce vibration and noise, and could also cause severe damage [23]. 
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Figure 4.2.1 illustrates the correlations of the present vortex model for the aerodynamic 

vortices given in references. For this Figure the scaling parameter is 2 = 0.88.  
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(b) 

Figure 4.2.2 Comparisons of the tangential velocity for  (a) two cells (2 = 1.098) 

and (b) one cell with the experimental data of Snedeker (1972) [2] 

 

One way to weaken the wake of an aircraft wing is to introduce an axial jet in the 
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proximity of the tip vortex inception [2]. Snedeker wind-tunnel experimental results show 

that the originally one cell tip-vortex transforms into two-cell type by introducing the 

axial jet. Figure 4.2.2 (a) illustrates the correlations of the present vortex model for the 

aerodynamic vortices given in reference [2]. For comparison the single-cell vortex 

(produced without axial jet) is shown in Figure 4.2.2 (b). 

Table 4.2.1 Important scaling parameter of tangential velocity of Aerodynamic 

Vortices [20]. 

 

Aerodynamic  

vortices 

 

2 

 

λ 

 

Y∞ 

 

VӨ (at the 

pick, r 

=1) 

Experimental data of J.P Murphy and 

D.G MacManus 2010 

0.88 5.9471 0.4539 0.699 

Snedeker  (1972) 1.098 109.1375 3.4107 0.9128 

 

 

Essential scaling parameters for tangential velocity of aerodynamic vortices are 

presented in the Table 4.2.1. [20]. The Table gives us details idea. 
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4.3 Vortex with 4 Cells 

Until now most of the results presented pertained to two-cell vortices. This 

preference had as a base the fact that most of the evidence vis-à-vis multi-celled 

vortices were related to the latter kind. Here one representative example of a 

simulated four-cell whirl is given with β1 = 0.1, β2 = 0.2, β3 = 0.785, β4 = 5, 1 = 1, 

2 = 2, 3 = 2 and 4 = 2. 
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Figure 4.3.1 Tangential velocity for a case of four-cell vortex. 
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The tangential velocity profile shown in Fig. 4.3.1 indicates the presence of multiple 

maxima (two peaks).  

 

The radial velocity provided in Fig. 4.3.2 show the converging flow from far field 

caries vorticity in the negative r-direction (Vr
is negative), which replenishes that 

diffused (see -momentun equation, Eq. 2.1.4), 

Vr W=
1

Re

dW

dr
 

This is keeping the vortex steady. There are as many r-intercepts of the radial 

velocity curve as the number (N) of cells. At the base of the vortex the axial velocity 

is zero (z = 0). Therefore, there must be N stagnation points in the radial-axial 

flow Vr =Vz = 0( ). Note that the tangential velocity due to free-slip condition for z = 0 

will not be zero. All velocities will be approximately equal to zero inside the “eye” 

because Vq ~ 0 in0 £ r £ reye
, while Vr

 and Vz
~ 1/Re (the vortex Reynolds number for 

intense vortices ~ 4.0 x 10
7
) 
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Figure 4.3.2 The radial velocity for a case of four-cell vortex. 
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Figure 4.3.3 The axial velocity for a case of four-cell vortex. 

 

The axial velocity distribution is given in Fig. 4.3.3. Responding to continuity the 

axial velocity peaks (both positive and negative) corresponds to N. 
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Here only one case of N = 4 was given. There is no doubt that a more extensive study is 

required. This is outlined in the section Future Work that is to follow. 

 

 

 

 

 

 

 

 

 

 



 

 

 

85 

Conclusions 

 

In this investigation a new multi-cell vortex model, able to describe a variety of 

geophysical and aerodynamic multi-celled vortices was presented. The numerical 

results obtained using MATLAB and Maple 14 code confirmed by curve fitting 

actual observations of the tangential velocity and static pressure of geophysical and 

mechanically produced vortices. The methodology is kept simple, easy to 

understand, and general enough to be used in various future applications. 

Selecting suitable values for the scaling parameters, the present theory correlate 

well the velocity, pressure, and vorticity distributions of multi cell vortices such as 

tornadoes, wind driven near the interface ocean whirls intake of gas turbines 

operating near the ground, and wing-tip-vortices.  

In addition, the observed tangential velocity peaks detected in Hurricane Frances 

(2004) that were identified in the flight-level aircraft data were discussed in context 

of a simulated four-cell vortex. 
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Future Work 

 

The present analysis can be further explored in various ways. Here are some ideas about 

next steps of our analysis: 

 In this study the multi cellular vortex model is considered as steady, 

axisymmetric, incompressible vortex model. For the next step we can develop the 

analysis for unsteady as well as compressible fluid flow.  

 Our present vortex formulation is capable to simulate multi-cell vortex but for this 

study most of the numerical calculations are done for mainly the two cell 

category. Future work should examine the fluid mechanical properties of three 

cell vortices or more.  
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Appendix A 

1. Algebraic solution of tangential, axial and radial velocity of Sullivan 

vortex model in Maple 13: 

For N=2, (2 cell vortices) 

Here 

 1 = 1, 1 = 0.375, 2 = 0 is used to get the perfect value of 2 and λ (have to calculate 

positive smallest root), which gives us perfect match with the experimental values. 

 Step 1: first of all the value of 2=1.0882, then put the value in to the 

equation,     011
1

0
1

2

1

2 

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


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




  and solves it to get the value of λ. 

Solving the equation and after calculation, we get λ =111.1532167. 

 

Step 2: Now we know λ which we can use to solve the tangential velocity component. 

Here mechanical vortex model is shown below: 

 

 

 
 

We also solve the equation by using Maple 13 software. The equation is critical to 

solve so we have done it two steps, first we have to 
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Where, 



i 
 i 1 

i

 i

 . Then we get the value of Y . In the second part we have to 

solve



V 
1

r
1  i r

2 
 i

i 1

m
















r dr /Y0

r

 . 

 Step 3: After getting the perfect profile for the comparison of experimental data 

we have to extract all the data points from the Maple 13 software. So for that we 

write a code in Mat lab to get all the data points.  

 

 Step 4: Now we have to run the Mat lab code to get all the data points of Vatistas’ 

multi-cellular mechanical vortex model. On the other hand experimental data 

points are extracted from the Data Thief software, so we have to plot the 2 

velocity profiles together. For that we write another code in Mat lab to plot the 

two graphs together.   

 

 Step 5: Now we have to measure the differences between values predicted by the 

model and the experimental values. Here we use root-mean-square error (RMSE) 

method. Here the value of RMSE   = 0.092, which is pretty good match. If the 

RMSE is very large then we have to guess the value of 2 and calculate the λ 

again and repeat the step 1 to step 5. 
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2. Algebraic solution of tangential velocity of Multicellular vortex in 

Maple 13: 

 

>  

>  

 

>  

>  

> PLOT(CURVES([[.4929004710e-3, .5637907464e-4], [.9858009420e-3, .1127586060e-3], 

[.1478701413e-2, .1691390509e-3], [.1971601884e-2, .2255208661e-3], [.2957402826e-2, .3382904344e-

3], [.3943203768e-2, .4510709658e-3], [.5914805650e-2, .6766795387e-3], [.7886407535e-2, 

.9023758378e-3], [.1182961130e-1, .1354148723e-2], [.1577281507e-1, .1806624129e-2], [.2263473610e-

1, .2596391255e-2], [.2949665713e-1, .3390243482e-2], [.4493055285e-1, .5197233141e-2], 

[.6046675445e-1, .7058276276e-2], [.7592911520e-1, .8967654213e-2], [.9026470294e-1, .1080277256e-

1], [.1051083737, .1278341451e-1], [.1204597192, .1493465775e-1], [.1357618328, .1720165188e-1], 

[.1515019374, .1968261794e-1], [.1653658302, .2201189416e-1], [.1809732898, .2481865359e-1], 

[.1966448351, .2786048080e-1], [.2117472729, .3103240532e-1], [.2254617333, .3414288884e-1], 

[.2417695531, .3816164917e-1], [.2555844156, .4186969684e-1], [.2716543849, .4657525513e-1], 

[.2858790307, .5113136203e-1], [.3014857216, .5659985189e-1], [.3163469820, .6231243842e-1], 

[.3318531481, .6885404957e-1], [.3460926492, .7543584710e-1], [.3614518748, .8321147988e-1], 

[.3774057935, .9210091588e-1], [.3912937267, .1005730932], [.4062930750, .1105543146], 
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[.4217888694, .1218422708], [.4369484812, .1339165758], [.4516161850, .1466352553], [.4679021694, 

.1620247225], [.4825358507, .1770514582], [.4981604290, .1944062275], [.5123186192, .2113427836], 

[.5277972607, .2312112433], [.5423614562, .2512163848], [.5575852369, .2734921706], [.5724692652, 

.2966081204], [.5880514634, .3221915190], [.6030589723, .3481138477], [.6184063177, .3758431107], 

[.6336265794, .4044542003], [.6476124191, .4316066605], [.6636417698, .4635785218], [.6779786121, 

.4927785301], [.6932646762, .5243391540], [.7078953901, .5547531810], [.7241409176, .5884958670], 

[.7382083507, .6174607300], [.7541750131, .6497775002], [.7687268925, .6784688222], [.7846443617, 

.7087478801], [.7983784457, .7337374434], [.8140199642, .7606912684], [.8291288989, .7850031492], 

[.8442279632, .8074296818], [.8592714809, .8277721496], [.8737235918, .8453311037], [.8893467064, 

.8620480661], [.9042366674, .8757505285], [.9199076503, .8878154250], [.9340936634, .8966791628], 

[.9497718636, .9042615946], [.9647888474, .9094321215], [.9722790635, .9112795576], [.9797692794, 

.9126602106], [.9875928390, .9136216636], [.9954163987, .9141114311], [1.002622183, .9141629376], 

[1.009827967, .9138483420], [1.024587384, .9121329175], [1.040883534, .9087169361], [1.055638363, 

.9044096049], [1.070727940, .8989700709], [1.086073650, .8925212640], [1.100179345, .8859074897], 

[1.115215558, .8782608918], [1.130137315, .8701816927], [1.146098956, .8611202853], [1.160184413, 

.8528552759], [1.176436106, .8431016077], [1.191102007, .8341729954], [1.205613149, .8252791747], 

[1.221217288, .8157032035], [1.236884549, .8061227621], [1.251139437, .7974687450], [1.266277495, 

.7883709378], [1.281050760, .7796044211], [1.297065135, .7702442295], [1.310922021, .7622755275], 

[1.326837160, .7532811068], [1.341798226, .7449850387], [1.356614785, .7369239187], [1.371443131, 

.7290115971], [1.386567105, .7211010831], [1.402598264, .7128903295], [1.417297267, .7055171728], 

[1.431807071, .6983819709], [1.447317812, .6909084368], [1.462794787, .6836059451], [1.476686292, 

.6771799304], [1.493141781, .6697208787], [1.506910971, .6636036779], [1.523015585, .6565884645], 

[1.538385880, .6500295467], [1.552109722, .6442826717], [1.567543617, .6379396783], [1.583079820, 

.6316793678], [1.598542180, .6255695115], [1.612877767, .6200094730], [1.627721439, .6143555287], 

[1.643072784, .6086156330], [1.658374898, .6029998768], [1.674115002, .5973304755], [1.687978894, 

.5924244333], [1.703586355, .5869969308], [1.719257900, .5816462880], [1.734360337, .5765814422], 

[1.748074798, .5720578952], [1.764382619, .5667704856], [1.778197480, .5623672326], [1.794267450, 

.5573305125], [1.808492095, .5529468451], [1.824098787, .5482159224], [1.838960047, .5437856036], 

[1.854466213, .5392387267], [1.868705715, .5351297379], [1.884064940, .5307672672], [1.900018858, 

.5263105655], [1.913906791, .5224914841], [1.928906140, .5184285431], [1.944401935, .5142969577], 

[1.959561547, .5103182401], [1.974229251, .5065267873], [1.990515235, .5023824899], [2.005148915, 

.4987160767], [2.020773494, .4948600142], [2.034931685, .4914169881], [2.050410325, .4877072593], 

[2.064974522, .4842674761], [2.080198302, .4807233998], [2.095082330, .4773082115], [2.110664529, 

.4737844342], [2.125672037, .4704394575], [2.141019382, .4670672335], [2.156239644, .4637703433], 

[2.170225484, .4607816132], [2.186254834, .4574032196], [2.200591677, .4544232400], [2.215877742, 

.4512884357], [2.230508455, .4483282714], [2.246753983, 
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3. Algebraic solution of radial velocity of Multicellular vortex in Maple 

13: 

>  

>  

 

>  

>  

>  

 

4. Algebraic solution of axial velocity of Multicellular vortex in Maple 

13: 

>  

>  
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>  

>  

 

5. Algebraic solution of pressure of Multicellular vortex in Maple 13: 

>  

>  

 

>  

>  



 

 

 

101 

> PLOT(CURVES([[0., 0.], [.3154563015e-1, .8704525919e-5], [.5899331427e-1, .3086702520e-4], 

[.8986110573e-1, .7349170118e-4], [.1209335089, .1381390353e-3], [.1518582305, .2286295555e-3], 

[.1805294059, .3415456803e-3], [.2102167474, .4959916052e-3], [.2409194385, .7080305361e-3], 

[.2715236656, .9898718680e-3], [.3030038750, .1379372425e-2], [.3307316605, .1835707141e-2], 

[.3619465797, .2522748518e-2], [.3932896704, .3465551150e-2], [.4234945459, .4704660525e-2], 

[.4509234667, .6210403032e-2], [.4835391064, .8637821387e-2], [.5111688314, .1141107842e-1], 

[.5433087700, .1573190847e-1], [.5717580615, .2081658176e-1], [.6029714433, .2811735299e-1], 

[.6326939641, .3711881377e-1], [.6637062965, .4905054760e-1], [.6921852986, .6262170506e-1], 

[.7229037498, .8034978311e-1], [.7548115873, .1023384133], [.7825874536, .1244469958], 

[.8125861502, .1512553760], [.8435777391, .1817728037], [.8738969626, .2138625113], [.9032323704, 

.2464012789], [.9358043391, .2834713614], [.9650717017, .3169514403], [.9963208583, .3522329827], 

[1.024637239, .3833366791], [1.055594522, .4160218178], [1.084722913, .4452816828], [1.115170474, 

.4741760527], [1.144938531, .5007040514], [1.176102927, .5266684345], [1.206117945, .5499890254], 

[1.236812636, .5722196167], [1.267253159, .5927572712], [1.295224839, .6104004833], [1.327283540, 

.6292873917], [1.355957225, .6450683256], [1.386529353, .6608330521], [1.415790781, .6749783015], 

[1.448281836, .6896927489], [1.476416702, .7016581165], [1.508350027, .7144362678], [1.537453786, 

.7253955986], [1.569288724, .7366920894], [1.596756892, .7459010141], [1.628039929, .7558264478], 

[1.658257798, .7648854994], [1.688455927, .7734570888], [1.718542962, .7815517278], [1.747447184, 

.7889376729], [1.778693413, .7965205378], [1.808473335, .8033848194], [1.839815301, .8102521688], 

[1.868187328, .8161730656], [1.899543728, .8224106012], [1.929577695, .8281022106], [1.959538559, 

.8335212148], [1.990832798, .8389221815], [2.019655934, .8436761968], [2.049174768, .8483385205], 

[2.081767069, .8532576497], [2.111276727, .8575164312], [2.141455880, .8616910127], [2.172147301, 

.8657592544], [2.200358690, .8693495961], [2.230431116, .8730277627], [2.260274630, .8765337545], 

[2.292197913, .8801335234], [2.320368827, .8831875422], [2.352872214, .8865758470], [2.382204015, 

.8895152391], [2.411226298, .8923186743], [2.442434577, .8952224549], [2.473769099, .8980281156], 

[2.502278875, .9004898149], [2.532554990, .9030135425], [2.562101520, .9053906967], [2.594130270, 

.9078763617], [2.621844044, .9099540492], [2.653674320, .9122604935], [2.683596453, .9143542613], 

[2.713229571, .9163599090], [2.742886263, .9183024222], [2.773134211, .9202198137], [2.805196529, 

.9221848800], [2.834594535, .9239283675], [2.863614142, .9255970179], [2.894635624, .9273255706], 

[2.925589575, .9289958444], [2.953372585, .9304505096], [2.986283563, .9321214076], [3.013821943, 

.9334776783], [3.046031171, .9350175515], [3.076771761, .9364423374], [3.104219445, .9376788963], 

[3.135087235, .9390309196], [3.166159640, .9403521630], [3.197084361, .9416290634], [3.225755536, 

.9427802556], [3.255442879, .9439403410], [3.286145569, .9451071837], [3.316749796, .9462381852], 

[3.348230005, .9473693526], [3.375957790, .9483395873], [3.407172712, .9494036237], [3.438515801, 

.9504430052], [3.468720676, .9514181005], [3.496149597, .9522817737], [3.528765238, .9532826670], 

[3.556394961, .9541090990], [3.588534902, .9550465210], [3.616984191, .9558555339], [3.648197575, 

.9567214660], [3.677920095, .9575256299], [3.708932427, .9583441659], [3.737411430, .9590779607], 

[3.768129881, .9598508801], [3.800037718, .9606339616], [3.827813584, .9612997540], [3.857812282, 

.9620027362], [3.888803871, .9627119677], [3.919123095, .9633895941], [3.948458503, .9640304300], 

[3.981030471, .9647254373], [4.010297831, .9653355424], [4.041546989, .9659723843], [4.069863371, 

.9665368344], [4.100820651, .9671405972], [4.129949044, .9676963383], [4.160396605, .9682648150], 

[4.190164661, .9688086671], [4.221329059, .9693657473], [4.251344075, .9698907415], [4.282038766, 

.9704162469], [4.312479290, .9709263581], [4.340450970, .9713856665], [4.372509670, .9719012829], 

[4.401183356, .9723529431], [4.431755485, .9728248831], [4.461016912, .9732675324], [4.493507967, 

.9737489412], [4.521642832, .9741574493], [4.553576159, .9746119661], [4.582679916, .9750179598], 

[4.614514854, .9754532859], [4.641983023, .9758217232], [4.673266058, .9762334430], [4.703483928, 

.9766233689], [4.733682057, .9770056041], [4.763769094, .9773792268], [4.792673316, .9777315545], 

[4.823919543, .9781053288], [4.853699467, .9784548654], [4.885041431, .9788158537], [4.913413459, 

..9850728632], [5.577781122, .9853067680], [5.607327651, .9855313931], [5.639356402, .9857709121], 

[5.667070173, .9859748939], [5.698900450, .9862055122], [5.728822583, .9864188096], [5.758455703, 
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.9866267785], [5.788112394, .9868317229], [5.818360342, .9870375333], [5.850422660, .9872522130], 

[5.879820667, .9874459752], [5.908840273, .9876344137], [5.939861756, .9878328049], [5.970815705, 

.9880276901], [6., .9882086780]],COLOUR(RGB,1.00000000,0.,0.)),AXESLABELS(r,y),VIEW(0. .. 6.,0. 

.. 1.0)) 

 

 

6. Algebraic solution of axial velocity of 4 cell vortex of in Maple 13: 

 

>  

 

>  

 

>  >  

>  
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7. Algebraic solution of tangential velocity of 4 cell vortex of in Maple 

13: 

 

>  

 

>  
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> 
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Appendix B 

 

Code for extracted data point of tangential, radial, axial, velocity of 

Sullivan vortex model: 

 

function [X,Y]=ReadMaplePlot1t(filename, Figure_Title) 

% reads into matlab the data in a Maple plot structure 

% 

% in Maple 10 do 

% > P:=plot(whatever multiple 2D plot); # this creates the plot structure. Plot in Maple 

with display(P); 

% > FileTools[Text][WriteString]( "MaplePlot.txt", convert(P,string)); 

% > FileTools[Text][Close]( "MaplePlot.txt" ); 

% 

% in Matlab do 

% >> [Xdata, Ydata]=ReadMaplePlot('MaplePlot.txt','title, if you want a plot'); 

  

fileIn = char(textread(filename,'%s','whitespace','','bufsize',50000)); 

start=regexp({fileIn},'CURVES('); start=start{:} 

ends=regexp({fileIn},',COLO'); ends=ends{:} 
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X=cell(length(start),1); 

Y=cell(length(start),1); 

  

for n=1:length(start) 

eval(['d=' fileIn(start(n)+7:ends(n)-1) ';']); 

X{n}=d(1:2:end); 

Y{n}=d(2:2:end); 

end 

 

  

clc 

clear all 

close all 

format long 

  

% Data was saved in 'MaplePlot.txt' from Maple by using- 

% FileTools[Text][WriteString]( "MaplePlot.txt", convert(P,string)); 

% FileTools[Text][Close]( "MaplePlot.txt" ); 

  

  

[X, Y]= ReadMaplePlot2t('MaplePlot2t.txt','Title'); 
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figure(1); 

if exist('Title') 

plot(X{1},Y{1}); % Assuming 4 plots. Adjust accordingly 

hold on 

end 

  

% To see variabales 

% X1 = X{1}.' etc 

  

X1 =X{1}.' 

  

 

 

 

Code for extracted data point of tangential velocity of Multicellular 

vortex: 

function [X,Y]=ReadMaplePlot7t(filename, Figure_Title) 

% reads into matlab the data in a Maple plot structure 

% 

% in Maple 10 do 
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% > P:=plot(whatever multiple 2D plot); # this creates the plot structure. Plot in Maple 

with display(P); 

% > FileTools[Text][WriteString]( "MaplePlot.txt", convert(P,string)); 

% > FileTools[Text][Close]( "MaplePlot.txt" ); 

% 

% in Matlab do 

% >> [Xdata, Ydata]=ReadMaplePlot('MaplePlot.txt','title, if you want a plot'); 

  

fileIn = char(textread(filename,'%s','whitespace','','bufsize',50000)); 

start=regexp({fileIn},'CURVES('); start=start{:} 

ends=regexp({fileIn},',COLO'); ends=ends{:} 

  

X=cell(length(start),1); 

Y=cell(length(start),1); 

  

for n=1:length(start) 

eval(['d=' fileIn(start(n)+7:ends(n)-1) ';']); 

X{n}=d(1:2:end); 

Y{n}=d(2:2:end); 

end 

  

% 
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clc 

clear all 

close all 

format long 

  

% Data was saved in 'MaplePlot.txt' from Maple by using- 

% FileTools[Text][WriteString]( "MaplePlot.txt", convert(P,string)); 

% FileTools[Text][Close]( "MaplePlot.txt" ); 

  

  

[X, Y]= ReadMaplePlot7t('MaplePlot7t.txt','Title'); 

  

figure(1); 

if exist('Title') 

plot(X{1},Y{1}); % Assuming 4 plots. Adjust accordingly 

hold on 

end 

  

% To see variabales 

% X1 = X{1}.' etc 

  



 

 

 

110 

Y1 =Y{1}.' 

  

  

a= [ 

    0 

0.01 

0.1633 

0.2399 

0.291 

0.3932 

0.4699 

0.5721 

0.6232 

0.7509 

0.8535 

0.9013 

0.9301 

0.9539 

0.9685 

0.9834 

0.9922 

1.007 

1.032 
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1.083 

1.16 

1.211 

1.39 

1.492 

1.543 

1.62 

1.773 

1.85 

2.003 

2.08 

2.233 

2.31 

2.412 

2.463 

2.591 

2.693 

2.872 

  ]; 

b = [ 

    0 

0.0011 

0.02161 



 

 

 

112 

0.03772 

0.05286 

0.1018 

0.1641 

0.2961 

0.385 

0.6436 

0.8199 

0.8732 

0.8943 

0.9059 

0.9104 

0.9132 

0.9139 

0.9141 

0.9108 

0.8938 

0.853 

0.8219 

0.7194 

0.6702 

0.6479 

0.6173 
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0.564 

0.5405 

0.4991 

0.4807 

0.4478 

0.4329 

0.4146 

0.406 

0.386 

0.3713 

0.3481 

]; 

plot(a,b,'r'); 

 

Code for extracted data point of radial velocity of Multicellular 

function [X,Y]=ReadMaplePlot4t(filename, Figure_Title) 

% reads into matlab the data in a Maple plot structure 

% 

% in Maple 10 do 

% > P:=plot(whatever multiple 2D plot); # this creates the plot structure. Plot in Maple 

with display(P); 

% > FileTools[Text][WriteString]( "MaplePlot.txt", convert(P,string)); 
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% > FileTools[Text][Close]( "MaplePlot.txt" ); 

% 

% in Matlab do 

% >> [Xdata, Ydata]=ReadMaplePlot('MaplePlot.txt','title, if you want a plot'); 

  

fileIn = char(textread(filename,'%s','whitespace','','bufsize',50000)); 

start=regexp({fileIn},'CURVES('); start=start{:} 

ends=regexp({fileIn},',COLO'); ends=ends{:} 

  

X=cell(length(start),1); 

Y=cell(length(start),1); 

  

for n=1:length(start) 

eval(['d=' fileIn(start(n)+7:ends(n)-1) ';']); 

X{n}=d(1:2:end); 

Y{n}=d(2:2:end); 

end 

  

% 

clc 

clear all 

close all 

format long 
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% Data was saved in 'MaplePlot.txt' from Maple by using- 

% FileTools[Text][WriteString]( "MaplePlot.txt", convert(P,string)); 

% FileTools[Text][Close]( "MaplePlot.txt" ); 

  

  

[X, Y]= ReadMaplePlot4t('MaplePlot4t.txt','Title'); 

  

figure(1); 

if exist('Title') 

plot(X{1},Y{1},X{2},Y{2},X{3},Y{3},X{4},Y{4}); % Assuming 4 plots. Adjust 

accordingly 

hold on 

end 

  

% To see variabales 

% X1 = X{1}.' etc 

  

Y4 =Y{4}.' 

 

start = 

 

           6        7770       15537       23295 
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ends = 

 

        7739       15493       23251       31012 

 

Code for extracted data point of axial velocity of Multicellular 

function [X,Y]=ReadMaplePlot(filename, titulo) 

% reads into matlab the data in a Maple plot structure 

% 

% in Maple 10 do 

% > P:=plot(whatever multiple 2D plot); # this creates the plot structure. Plot in Maple 

with display(P); 

% > FileTools[Text][WriteString]( "MaplePlot.txt", convert(P,string)); 

% > FileTools[Text][Close]( "MaplePlot.txt" ); 

%  

% in Matlab do 

% >> [Xdata, Ydata]=ReadMaplePlot('MaplePlot.txt','title, if you want a plot'); 

  

fileIn = char(textread(filename,'%s','whitespace','','bufsize',50000)); 

start=regexp({fileIn},'CURVES('); start=start{:}; 

ends=regexp({fileIn},',COLO'); ends=ends{:}; 
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for n=1:length(start) 

    eval(['d=' fileIn(start(n)+7:ends(n)-1) ';']); 

    X(:,n)=d(1:2:end); 

    Y(:,n)=d(2:2:end); 

end 

  

if exist('titulo') 

    plot(X,Y); 

    title(titulo); 

end 

  

clc 

clear all 

close all 

format long 

 % Data was saved in 'MaplePlot.txt' from Maple by using- 

% FileTools[Text][WriteString]( "MaplePlot.txt", convert(P,string)); 

% FileTools[Text][Close]( "MaplePlot.txt" ); 

 [Xdata, Ydata]=ReadMaplePlot('MaplePlot.txt','Title'); 

 Xdata % To see Xdata 

Ydata % To see Ydata 
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