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ABSTRACT

Van Der Corput's Lemma in Number Theory and Analysis and its Applica-

tions to Abelian Varieties with Prescribed Groups

Valentine Chiche-Lapierre, Master

Concordia University, 2014

Let A be an Abelian variety over a �nite �eld Fq. We are interested in knowing the

distribution of the groups A(Fq) of rational points on A as we run over all varieties de�ned

over Fq. In particular, we want to show that they are in general not too �split�. For the

case of dimension 1 (elliptic curves) and dimension 2 (Abelian surfaces), there are some

theoretical results due to David and her collaborators, but the general case is open.

We are interested in Abelian Varieties of dimension 3. We use Rybakov's criterion,

which relates the existence of a given abstract group as the group of points of some

Abelian variety to properties of the characteristic polynomial of the variety. We can use

it to derive precise properties and then we use the fact that some sequence of monomials

of �ve variables is uniformly distributed modulo one to obtain stronger results that will

hold with probability one.

By Weyl's criterion, equidistribution follows by bounding exponential sums, and in

order to do so, we will use a combination of di�erent methods. We are particularly

interested in Van Der Corput's lemma. It has a continuous version that exhibits the

decay of oscillatory integrals and a discrete version that gives a bound for exponential

sums. We will see the relation between these two versions and how they apply to the

original problem of Abelian varieties.
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NOTATION

symbol meaning

e(x) e2πix

f̂ the Fourier transform of f ,
∫∞
−∞ f(x)e(−xξ)dx

∂αf directional derivative, that is ∂α1

∂x
α1
1
· · · ∂αd

∂x
αd
d

f of order |α| = α1 + · · ·+ αd,

where α = (α1, . . . , αd)

Ck functions of real variables with continuous derivatives of order k

C∞ functions of real variables whose derivatives of any order are continuous

f = O(g) there exists an absolute constant c > 0 such that |f | ≤ c |g|

f � g same as f = o(g)

f �δ g f � g, where the implied constant is allowed to depend on δ

f = o(g) f/g → 0

f ≈ g both f � g and f � g

n � N N ≤ n ≤ 2N
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Chapter 0

Introduction

Let A be an Abelian variety of dimension 3 over a �nite �eld Fq, for some prime power

q. Previous results about the dimension 1 (elliptic curves) and the dimension 2 (Abelian

surfaces) will be stated at the beginning of Chapter 4. Let A(Fq) be the group of rational

points on A. It is well known that A(Fq) form an Abelian group of rank at most 6 i.e.

A(Fq) ' Z/n1Z× Z/n1n2Z× Z/n1n2n3Z× Z/n1n2n3n4Z× Z/n1n2n3n4n5Z× Z/n1n2n3n4n5n6Z,

(1)

for some positive integers n1, n2, n3, n4, n5, n6. We are interested in knowing which groups

can occur for A(Fq). In fact, we will show that the group A(Fq) tends to be not too

�split�. This is compatible with the general philosophy of the Cohen-Lenstra heuristics,

which predict that random Abelian groups naturally occur with probability inversely

proportional to the size of their automorphism groups.

Using Rybakov's criterion, we �rst �nd the following, which is an analogue of Theorem

1.1 in [DGS+13].

Theorem 0.0.1. Suppose that

G ' Z/n1Z × Z/n1n2Z × Z/n1n2n3Z × Z/n1n2n3n4Z × Z/n1n2n3n4n5Z × Z/n1n2n3n4n5n6Z

is the group of points of an Abelian variety of dimension 3.
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If 15n
2/2
2 n

4/3
3 n4n

2/3
5 n

1/3
6 /∈ Z, then

n1 ≤ 2800n
7/6
2 n

10/3
3 n

5/2
4 n

5/3
5 n

5/6
6 .

We want to get a stronger result that will hold with probability one.For some large inte-

gers N1, N2, N3, N4, N5, N6, let S(N1, N2, N3, N4, N5, N6) be the set of sextuples

(n1, n2, n3, n4, n5, n6), for which Nj ≤ nj ≤ 2Nj for each j = 1, 2, 3, 4, 5, 6, and there

exists a prime power q and an Abelian variety A/Fq of dimension 3 such that (1) holds.

Let us now state our main result, which is an analogue of Theorem 1.2 in [DGS+13].

Theorem 0.0.2. Suppose that

logN4 � (N2N3N5N6)
1/100.

If

N1N
1/6
2

N
2/3
3 N

1/2
4 N

1/3
5 N

1/6
6

→∞

as N2N3N5N6 →∞, then

#S(N1, N2, N3, N4, N5, N6) = o(N1N2N3N4N5N6)

as N2N3N5N6 →∞.

We will give the proof of this theorem in Chapter 4. The main steps of this proof can

be considered analogous to the steps provided in [DGS+13]. We will see that an important

step of this proof involves the fact that a speci�c sequence of several variables is uniformly

distributed modulo one. By an analogue of Weyl's criterion for higher dimension (that

we will prove in Chapter 4), it is enough to �nd a bound that beats the trivial one in

all the variables for a speci�c family of exponential sums. Chapter 3 is a proof of the

existence of such a bound. Let

Ek := Ek(N2, N3, N4, N5, N6) :=
∑

Nj≤nj≤2Nj

e(15kn
2/3
2 n

4/3
3 n4n

2/3
5 n

1/3
6 )
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be the exponential sum that we need to bound in order to prove that the sequence

15n
2/3
2 n

4/3
3 n4n

2/3
5 n

1/3
6 is equistributed modulo one. We will show the following:

Proposition 0.0.3. Suppose that

logN4 � (N2N3N5N6)
1/100, (2)

then for all non zero integer k,

Ek = o(N2N3N4N5N6) as N2N3N5N6 →∞.

We will use a combination of methods to bound exponential sums and see that the

most important of these is Van Der Corput's lemma.

Van Der Corput's lemma has a discrete version that gives a bound for exponential

sums and a continuous version that gives a bound for oscillatory integrals. In general an

oscillatory integral is one of the form

I(λ) =

∫
Rd
eiλφ(x)ψ(x)dx,

for some variable positive parameter λ, some phase function φ and some amplitude func-

tion ψ. All the results that we will state and prove rely on the fact that if the phase is

smooth then the main contribution of I(λ) comes from the points x where the gradient

of the phase is vanishing. This is called the stationary phase principle. Note that we

will show an interest in the asymptotic behaviour of these integrals for large values of λ

because it is important for other applications in analysis.

Reading some of the seminal works that use Van Der Corput's methods, we note that

they do not seem to agree on what Van Der Corput's lemma is. To avoid any confusion

we will state and give names to the two versions of Van Der Corput's lemma that we will

be interested in.

3



Theorem 0.0.4. (Analytic /Continuous Van Der Corput's lemma)

1) If |φ′(x)| ≥ λ > 0 for all x ∈ [a, b] and φ′(x) is monotonic then

∣∣∣∣∫ b

a

eiφ(x)dx

∣∣∣∣ ≤ 3λ−1.

2) If k ≥ 2 and
∣∣φ(k)(x)

∣∣ ≥ λ > 0 for all x ∈ [a, b] then

∣∣∣∣∫ b

a

eiφ(x)dx

∣∣∣∣ ≤ 2kλ−1/k.

We will prove this in Chapter 1, using the book of Stein and Shakarchi [SS11] as a

reference, while also proving several other key results relating to bounds on oscillatory

integrals.

Chapter 2 is the important link between bounds on oscillatory integrals and bounds on

exponential sums. We now state the result from Chapter 2 that we will need in Chapter

3.

Theorem 0.0.5. (Discrete Van Der Corput's Lemma / kth derivative test) Let

k be an integer with k ≥ 3. Suppose f ∈ Ck and
∣∣f (k)(x)

∣∣ ≈ λ > 0 for all x � N . Let

Q = 2(k−2), then

∑
n�N

e(f(n))� Nλ−1/(4Q−2) provided λ−Q/(2Q−1) � N,

where the implied constants in each � are allowed to depend on the implied constants in

≈.

Note that we are no longer interested in large values of λ but in large intervals. The

main references for this are [Mon94] that makes the link between oscillatory integrals and

exponential sums and [Ten95], which gives a property equivalent to the case k = 3 for

Theorem 0.0.5. Even though the proof of this is original, it is a well known fact that can

easily be deduced from a stronger but more complicated theorem that can be found in

[GKK91].

4



When we are looking for bounds on exponential sums, the idea is mainly to use suc-

cessive kth derivative tests. Using this and Weyl's criterion, we can show the well known

fact that for all non-integer positive real numbers α, the sequence nα is equidistributed

modulo one. We also believe that a similar result can be obtained for a multi-variable

sequence of monomials. In fact, we were able to show it for bi-variate sequences of

monomials.

Proposition 0.0.6. Let f(n1, n2) = rnα1
1 n

α2
2 , with α1, α2 non integer positive real num-

bers, be a bi-variate sequence, then f(n1, n2) is equidistributed modulo one.

5



Chapter 1

Oscillatory integrals and stationary

phase

Our only reference for this chapter is the book of Stein and Shakarchi [SS11]. We are

interested in a special kind of integral called an oscillatory integral that we de�ne by

I(λ) =

∫
Rd
eiλφ(x)ψ(x)dx,

where φ and ψ are two functions that map Rd to R and are called the phase and the

amplitude, respectively, and λ is a positive real number that can vary. We are interested

in particular in the behaviour of I(λ) when λ is large.

We will usually need φ and ψ in Ck, for some k. For simplicity we will assume that

they are in C∞, but the value of k will be clear in each situation. We also assume ψ has

compact support so that we do not have to worry about the convergence of the integral.

We will note that if the phase is smooth with non-vanishing gradient then we have a

lot of cancellations and the above integral decreases very fast in λ. So we have that if

the phase is smooth then the main contribution of I(λ) comes from the points x where

the gradient of the phase is vanishing; this is called the stationary phase principle.

6



Also note that given ξ ∈ Rd, if we take φ = 2π ξ
|ξ|x and λ = |ξ| we get

I(λ) =

∫
Rd
e2πixξψ(x)dx = ψ̂(ξ),

which is the Fourier transform of the amplitude, and then the stationary phase prin-

ciple is in fact the decay of the Fourier transform. We recall that if ψ ∈ Ck then

ψ̂(k)(ξ) = (−2πiξ)kψ̂(k)(ξ) and since ˆψ(k)(ξ) is bounded we have that
∣∣∣ψ̂(ξ)∣∣∣ ≤ Ck |ξ|−k.

Note that we will sometimes give bounds that depends on constants that we do not

give explicitly. We will then often rename them from line to line without specifying. As

an example we may write 2c ≤ c by implicitly taking our new c to be half of the old c.

1.1 Dimension one and Van Der Corput's lemma in

analysis

Let us �rst consider the case d = 1. The amplitude and the phase are then simply

functions that map R to itself and the gradient of the phase is now just its derivative.

Proposition 1.1.1. If |φ′(x)| ≥ 1 for all x ∈ supp(ψ), then for each positive integer N ,

we have that

|I(λ)| ≤ cNλ
−N .

Proof. For a function f ∈ C∞, we de�ne the operator

L(f) =
1

iλ
a
df

dx

and its transpose

LT (f) = − 1

iλ

d

dx
(af),

with

a(x) =
1

φ′(x)
.

7



So if f, g ∈ C∞ then integration by parts gives

∫ ∞
−∞

L(f)g =

∫ ∞
−∞

fLT (g) +

[
a(x)g(x)f(x)

iλ

]∞
−∞

=

∫ ∞
−∞

fLT (g) +

[
g(x)f(x)

iλφ′(x)

]∞
−∞

.

If in addition g ∈ C∞0 , then we have

∫ ∞
−∞

L(f)g =

∫ ∞
−∞

fLT (g).

Also, this operator is useful here because L(eiλφ) = eiλφ and then LN(eiλφ) = eiλφ for all

N ∈ N.

Thus

I(λ) =

∫
R
LN(eiλφ(x))ψ(x)dx

=

∫
R
eiλφ(x)(LT )N(ψ(x))dx.

Now for each N , (LT )N(ψ(x)) is (− 1
iλ
)N times a function that is continuous and supported

in supp(ψ). This function is then integrable and does not depend on λ.

So we get

|I(λ)| ≤ cNλ
−N ,

where for each N the constant CN depends on the phase and the amplitude but not on

λ. Hence as λ goes to in�nity, the decay of the integral is very fast and is in fact as fast

as the decay of the Fourier transform mentioned above.

Remark: For each N we said that (LT )N(ψ(x)) = ( 1
iλ
)NhN(x), for some function

hN(x) that is integrable and does not depend on λ. In the proof of this proposition we do

not need to be more precise about what hN(x) looks like, but because it will be important

later, we decide to describe it now. A simple product rule gives that

h2 = (
da

dx
)2ψ +

da

dx
a
dψ

dx
+ a

d2a

dx2
ψ + a2

d2ψ

dx2

8



and by induction, we get that for each N , hN is a �nite sum whose terms are products

of N derivatives of a of orders between 0 and N , and a derivative of ψ of order between

0 and N . Now a derivative of a of any order will always be a quotient of continuous

functions, and its denominator will have absolute value at least one, since |φ′(x)| ≥ 1 for

all x in the support of ψ. For x not in the support of ψ, multiplication by ψ(x) makes

everything zero. Hence hN is continuous and supported in supp(ψ).

We will see in Chapter 2 that this proposition can be easily extended to higher di-

mensions.

Now if we take ψ(x) = χ[a,b](x) and de�ne

I1(λ) =

∫ b

a

eiλφ(x)dx,

then ψ has indeed compact support but is not continuous so we cannot use Proposition

1.1.1. In fact, we will no longer be able to get such a fast decay as λ approaches in�nity.

We will only get a bound of the form

|I1(λ)| ≤ Cλ−1,

for some constant C, which is only the special case N = 1 in the Proposition 1.1.1.

However, the advantage is that we will be able to make the constant C absolute. We

especially insist on the fact that C will not depend on the length of the interval [a, b],

which will be important later when we will be interested in large intervals.

Proposition 1.1.2. (Van Der Corput lemma with k=1) If |φ′(x)| ≥ 1 for all

x ∈ [a, b] and φ′(x) is monotonic, then

|I1(λ)| ≤ 3λ−1.

Proof. We use the same operator as in the proof of Proposition 1.1.1 but now when we

9



do the integration by parts we get

I1(λ) =

∫ b

a

L(eiλφ(x))dx

=

∫ b

a

eiλφ(x)LT (1)dx+

[
eiλφ(x)

iλφ′(x)

]b
a

.

The second term is obviously bounded by 2
λ
and the �rst term is bounded by

∫ b

a

∣∣LT (1)∣∣ dx =
1

λ

∫ b

a

∣∣∣∣ ddx
(

1

φ′(x)

)∣∣∣∣ dx (1.1)

and since φ′(x) is monotonic and continuous, d
dx

(
1

φ′(x)

)
does not change sign. Then (1.1)

is
1

λ

∣∣∣∣∫ b

a

d

dx

(
1

φ′(x)

)
dx

∣∣∣∣ = 1

λ

∣∣∣∣ 1

φ′(b)
− 1

φ′(a)

∣∣∣∣ ≤ 1

λ

∣∣∣∣ 1

φ′(b)

∣∣∣∣ ,
where the last inequality holds because φ′(a) and φ′(b) have the same sign, and this is of

course bounded by 1
λ
. Putting the two terms together, we get the result.

Note that if we replace the condition |φ′(x)| ≥ 1 by |φ′(x)| ≥ µ > 0 then we can

�transfer� a factor of µ to λ in the following way:
∣∣∣φ′(x)µ

∣∣∣ ≥ 1 so by Proposition 1.1.2 we

have that ∣∣∣∣∫ b

a

ei(λµ)(
φ(x)
µ

)

∣∣∣∣ ≤ 3(λµ)−1.

This is a simple trick that we will often use to derive this kind of conclusion from other

propositions without re-explaining.

Note that the proof of this proposition involves the evaluation of single integrals and

cannot be extended non-trivially to higher dimension.

Now what if φ(x) is allowed to have a critical point?

Proposition 1.1.3. (Van Der Corput lemma with k=2) If |φ′′(x)| ≥ 1 for all

x ∈ [a, b] then

|I1(λ)| ≤ 2
√
3λ−1/2.

10



Proof. By taking the complex conjugate, we may assume that φ′′(x) ≥ 1, so φ′(x) is

monotone increasing. Now suppose that φ has a critical point and note that the fact that

φ′ is monotone increasing forces this point to be unique; we call it x0.

For any δ > 0 we can break [a, b] into three subintervals. Two of them that are δ away

from x0, for which we will be able to use the Proposition 1.1.2, and one that contains x0

but whose length is bounded by 2δ.

Figure 1.1: break [a, b] into three subintervals

Then for all x > x0 + δ we have φ′(x) > φ′(x0 + δ) since φ′ is increasing, and by the

Mean Value Theorem, there is some ξ ∈ (x0, x0 + δ) such that

φ′(x0 + δ)− φ′(x0)
δ

= φ′′(ξ) ≥ 1.

Using the fact that φ′(x0) = 0 and rearranging this we obtain

φ′(x0 + δ) ≥ δ.

So we have φ′(x) ≥ δ on [x0 + δ, b], which allows us to use the Proposition 1.1.2 to get

∣∣∣∣∫ b

x0+δ

eiλφ(x)dx

∣∣∣∣ ≤ 3(δλ)−1,

and similarly φ′(x) ≤ −δ on [a, x0 − δ], so

∣∣∣∣∫ x0−δ

a

eiλφ(x)dx

∣∣∣∣ ≤ 3(δλ)−1.

11



Now by talking the trivial bound on the interval containing x0 we get

∣∣∣∣∫ x0+δ

x0−δ
eiλφ(x)dx

∣∣∣∣ ≤ 2δ,

and putting everything together gives

|I1(λ)| ≤ 6(δλ)−1 + 2δ.

To optimize this bound, we want to choose δ such that

6(δλ)−1 = 2δ,

or equivalently

δ =

√
3

λ
,

and taking this δ we get

|I1(λ)| ≤ 2
√
3λ−1/2.

To complete the proof, if φ has no critical point we can take x0 to be any point and

the rest of the proof still works.

In fact, using induction this proof extends to the general Van Der Corput lemma.

Proposition 1.1.4. (Van Der Corput Lemma for k ≥ 2) If
∣∣φ(k)(x)

∣∣ ≥ 1 for all

x ∈ [a, b] then

|I1(λ)| ≤ 2kλ−1/k. (1.2)

Proof. Let k = 2. By Proposition 1.1.3 we have

|I1(λ)| ≤ 2
√
3λ−1/2 ≤ 22λ−1/2,

which is (1.2) for k = 2.

Now let k ≥ 3 and suppose (1.2) holds for k − 1. Take δ > 0 and follow the same

12



steps as the case k = 2. We get

|I1(λ)| ≤ 2(2k−1)(δλ)−
1

k−1 + 2δ

The optimal choice of δ being 2
(k−1)2

k λ−1/k, which is less that 2k−1λ−1/k, we get the desired

result.

Note that one could probably improve the constant 2k but the point is that it only

depends on k and not on the length of the interval [a, b].

These last three propositions were with no amplitude, and they are the ones we will be

interested in for an application to number theory that has to do with uniform distribution

modulo 1, for which by Weyl's theorem we need to bound an exponential sum, as we will

see in the next chapter.

The Proposition 1.1.1 was with amplitude in the case k = 1; now let us consider the

case k = 2.

Proposition 1.1.5. If |φ′′(x)| ≥ 1 for all x ∈ supp(ψ) then

|I(λ)| ≤ cψλ
−1/2,

where cψ = 4
∫
|ψ′(x)| dx.

Proof. Since ψ has compact support we can �nd a and b so that ψ is supported in the

interval [a, b]. Let J(x) =
∫ x
a
eiλφ(u)du, so that J(a) = 0. Then integration by parts gives

∫ b

a

J(x)ψ′(x)dx = [J(x)ψ(x)]ba −
∫ b

a

eiλφ(x)ψ(x)dx,

and then

I(λ) = −
∫ b

a

J(x)ψ′(x)dx+ J(b)ψ(b),

since the �rst term vanishes since supp(ψ) ⊆ [a, b]. By Proposition 1.1.4 we know that

13



|J(x)| ≤ 4λ−1/2 for all x ≥ a, so

|I(λ)| ≤ 4λ−1/2
∫ b

a

|ψ′(x)| dx.

1.2 Higher dimensions

Now we want to bound integrals of the form

I(λ) =

∫
Rd
ψ(x)eiλφ(x)dx,

where d can be greater than one. The nice results of Van Der Corput that give a bound

with an absolute constant is not extendible to higher dimensions, but we see that we can

still bound these integrals in some way.

The following theorem is an extension of Proposition 1.1.1 in the previous section.

Theorem 1.2.1. Suppose φ and ψ are two C∞ functions and ψ has compact support. If

|∇φ| ≥ 1 for all x ∈ supp(ψ) then for any integer N ≥ 0,

|I(λ)| ≤ cNλ
−N .

Proof. The proof here is quite similar to the proof of Proposition 1.1.1, which is actually

just the special case d = 1 of what we are about to do. Consider the vector �eld L de�ned

on f ∈ C∞ by

L(f) =
1

iλ

d∑
k=1

ak
∂

∂xk
(f)

=
1

iλ
a · ∇f,

with

a = (a1, ..., ad) =
∇φ
|∇φ|2

.

14



Note that for each k and for all x ∈ supp(ψ),

|ak(x)| ≤

∣∣∣ ∂φ∂xk ∣∣∣
|∇φ|2

≤
∣∣∣∣ ∂φ∂xk

∣∣∣∣ ,
which is uniformly bounded since supp(ψ) is compact and φ ∈ C∞. In fact, we can

see that all the ak's and all their partial derivatives are bounded on supp(ψ), and these

bounds depend on partial derivatives of φ.

We know L has a transpose

LT (f) = − 1

iλ

∑
k

∂

∂xk
(akf) = −

1

iλ
∇ · (af),

and that L(eiλφ) = eiλφ. So for all integers N > 0, we have

I(λ) =

∫
ψ(x)LN(eiλφ(x)) =

∫
(LT )N(ψ(x))eiλφ(x).

Now as it was explained in the remark after Proposition 1.1.1, extended to higher dimen-

sions we have that

(LT )N(ψ(x)) = (− 1

iλ
)N
∑
finite

(Dα1a)...(DαNa)(Dαψ)

where each (Dαia) corresponds to a partial derivative of a of order between 0 and N and

(Dαψ) corresponds to a partial derivative of ψ of order between 0 and N . Therefore, this

sum is bounded by CN
λN

and supported in supp(ψ), and

|I(λ)| ≤ CN
λN

,

as desired.

Note that the constant CN depends on the support of ψ and on partial derivatives of

φ and ψ.
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The following is now an extension of Proposition 1.1.5 in the previous section.

Theorem 1.2.2. Suppose ψ has compact support. Let ∇2φ =
{

∂2φ
∂xj∂xk

}
be the d × d

Hessian matrix of φ. If det {∇2φ} 6= 0 on supp(ψ) then

|I(λ)| ≤ Cλ−d/2.

Proof. Take ε > 0 to be arbitrary for now. We need to control the support of ψ but since

it is compact we can cover it by �nitely many ε-balls. We will see that the choice of ε

eventually depends on φ and not on the support of ψ, so that we will be able to do this.

We write

supp(ψ) ⊆
J⋃
j=1

Bj =: B,

so there exists a smooth partition of unity {ηj}Jj=1 with, ηj smooth, supp(ηj) ⊆ Bj for

each j and
∑J

j=1 ηj = 1 on supp(ψ).

We can then write ψ as �nitely many C∞ functions supported in ε-balls in the following

way:

ψ(x) =
J∑
j=1

ψ(x)ηj(x).

So it is enough to prove the theorem replacing ψ(x) by ψ(x)ηj(x) for any of these j. Then

without loss of generality we may assume that the support of ψ is included in an ε-ball.

We use the fact that |I(λ)|2 = I(λ)I(λ) to write

|I(λ)|2 =
∫
Rd

∫
Rd
eiλ[φ(y)−φ(x)]ψ(y)ψ(x)dydx.

Fix x and change the variable in the inner integral: u = y − x, and then swap the two

integrals. Then the above becomes

|I(λ)|2 =
∫
Rd
Jλ(u)du,
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where

Jλ(u) =

∫
Rd
eiλ[φ(u+x)−φ(x)]ψ(x, u)dx

and ψ(x, u) = ψ(x+u)ψ(x) is C∞ and has compact support. In particular it is supported

in |u| ≤ 2ε.

We will show that

|Jλ(u)| ≤ CN(λ |u|)−N for all N ≥ 0, (1.3)

and then by taking simultaneously N = 0 and N = d+ 1, this will imply that

∫
Rd
|Jλ(u)| du

∫
Rd
≤ min{C0, Cd+1(|u|λ)−(d+1)}du

≤ C

∫
Rd

(
1

1 + |u|λ

)d+1

du

≤ C

∫ ∞
0

rd−1

(1 + rλ)d+1
dr

=
C

λd

∫ ∞
0

td−1

(1 + t)d+1
dt.

The second to last integral is obtained by passing from Cartesian to spherical coordinates,

and the last integral is obtained by the change of variable t = rλ and is known to converge.

This implies that

|I(λ)|2 ≤ Cλ−d,

which proves the theorem.

To see that (1.3) is true, we �x u and use the usual vector �eld L(f) = 1
iλ
(a ·∇f) and

its transpose LT (f) = − 1
iλ
∇ · (af), where

a =
b

|b|2

with

b = ∇x[φ(x+ u)− φ(x)],
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and all the derivatives are taken with respect to the variable x. As usual we want use

the fact that LN(eiλ[φ(u+x)−φ(x)]) = eiλ[φ(u+x)−φ(x)], which gives that

Jλ(u) =

∫
Rd

∫
eiλ[φ(u+x)−φ(x)](LT )N(ψ(x, u))dx,

for all integer N ≥ 0. So we are looking for an upper bound on
∣∣(LT )N(ψ(x, u))∣∣. Now

as it was explained in the remark after Proposition 1.1.1 and already extended to higher

dimensions in the proof of Theorem 1.2.1, we have that

(LT )N(ψ(x)) = (− 1

iλ
)N
∑
finite

(Dα1a)...(DαNa)(Dαψ) (1.4)

where each (Dαia) corresponds to a partial derivative of a of order between 0 and N and

(Dαψ) corresponds to a partial derivative of ψ of order between 0 and N . We know that

ψ is smooth so all its partial derivatives are bounded on its support, which is compact,

so we are actually looking for a bound of the partial derivatives of the ak's. In fact, we

want to show that for each multi-index α,

|∂αa| ≤ Cα |u|−1 , (1.5)

for some constant Cα.

We claim that |b| = |∇x[φ(x+ u)− φ(x)]| ≈ |u|.

To see that |b| ≤ c |u| we simply use the fact that φ is smooth so ∇xφ(x) is di�er-

entiable and then ∇xφ(x+u)−∇xφ(x)|u| has a limit as |u| → 0. Then for |u| small enough, we

have |b||u| < C, for some C > 0 and then |b| < C |u|. Now we need to pick ε small enough

to control |u| and this choice only depends on the function φ and not on ψ or its support.

On the other hand, to see that |b| ≥ c |u| we �x x and use the Taylor expansion of φ

as a function of u about u = 0. We get

∇x[φ(x+ u)− φ(x)] = 0 +∇2φ(x) · u+O(|u|2) (1.6)
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We will need the following simple lemma from linear algebra.

Lemma 1.2.3. Let A be an invertible matrix; then there exists a constant C > 0 such

that for all vectors x we have that

|Ax| ≥ C |x| .

Proof. Suppose for contradiction that for all C > 0 there exists a vector x such that

|Ax| < C |x| .

By dividing both sides by |x| we can take x such that |x| = 1. Then we can construct a

sequence {xn} with the property that for each n, |xn| = 1 and

|Axn| < 1/n,

which tells us that

lim
n→∞

Axn = 0.

Since A is invertible we have that

lim
n→∞

xn = 0,

which contradicts the fact that |xn| = 1 for all n.

In our situation we have that ∇2φ(x) has a non-vanishing determinant, so it is invert-

ible, and by Lemma 1.2.3 ∣∣∇2φ(x) · u
∣∣ ≥ C |u| ,

for some C > 0. Using this and (1.6) we get that, for |u| small enough so that the

term O(|u|2) is negligible (and again we need to choose ε small enough depending on the

function φ), |b| ≈ |u|.

In order to complete the proof of (1.5), note that in showing that |b| ≤ c |u| we used
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the fact that φ is smooth but in the same way we can use the fact that ∂αφ is smooth for

each multi-index α and get that ∇[∂αφ(x+ u)− ∂αφ(x)] ≤ Cα |u|, and then by swapping

∂ and ∇ we get that |∂αb| ≤ Cα |u|. Now using this with the fact that |b| ≈ |u| we obtain

(1.5), that we now recall:

|∂αa| ≤ Cα |u|−1 .

Plugging this in (1.4) we get that

∣∣(LT )N(ψ(x, u))∣∣ ≤ CN(|u|λ)−N

and then

|Jλ(u)| ≤
∫
Rd
CN(|u|N λ)−Nχsupp(ψ(x,u))(x)dx

≤ CN(|u|λ)−N ,

which completes the proof of (1.3) and then the proof of the theorem.

The next theorem is what we can get if allow the Hessian to be vanishing.

Theorem 1.2.4. Suppose ψ has compact support. If rank {∇2φ(x)} ≥ m for all

x ∈ supp(φ) then

|I(λ)| ≤ Cλ−m/2.

Proof. Taking x0 ∈ supp(φ), we have that∇2φ(x) has rank at leastm, so we can introduce

a new coordinate system x = (x′, x′′) ∈ Rm × Rd−m such that H ′, the Hessian restricted

to Rm, is non-vanishing at x′0, where x0 = (x′0, x
′′
0). Now since φ ∈ C∞, H ′ is also non-

vanishing on a small ball around x′0. More precisely, there exists ε > 0 (that depends only

on φ) such that H ′ is non-vanishing on B := B(x′0, ε). For the same reasons as in the

previous theorem, we may assume that the support of ψ restricted to the �rst coordinate,

suppRm(ψ) is contained in B. This allow us to use Theorem 1.2.2 to get that

∣∣∣∣∫
Rm

eiλφ(x
′)ψdx′

∣∣∣∣ ≤ Cλ−m/2.

20



Then we have

|I(λ)| ≤ C

∫
Rd−m

∣∣∣∣∫
Rm

ψ(x)eiλφ(x)dx′
∣∣∣∣ dx′′

≤ C

∫
Rd−m

χsupp(ψ)λ
−m/2dx′′

≤ Cλ−m/2,

where the constant C, that we rename at each step, eventually depends on the implied

constant from Theorem 1.2.2, the number of ε-balls needed to approximate ψ, which

depends on supp(ψ), and on φ (more precisely on the Hessian of φ).
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Chapter 2

Van Der Corput's methods to bound

exponential sums

2.1 Process B

Let f be a real valued function. We are interested in sums of the form

S :=
∑
n

e(f(n)),

where n varies in some range that we will specify later. We will be particularly interested

in ranges such as N ≤ n ≤ 2N as N gets very big.

We will use results from Chapter 1, Section 1 from a di�erent point of view. We

used to �x the phase φ and have the variable parameter λ that multiplied φ and we were

interested in the behaviour of the integral for large values of λ. This was the analytic

point of view of this. Now λ will no longer be a varying parameter but will be included in

the phase in the following way. Let us call θ our new phase and suppose that |θ′| ≥ λ > 0.

Then if we let φ = θ/λ we get that |φ′| ≥ 1 and the phase is our usual λφ. Then we can

write the Analytic Van Der Corput's lemma (Propositions 1.1.2 and 1.1.4) in a slightly

di�erent way:

Theorem 2.1.1. (Analytic /Continuous Van Der Corput's lemma)
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1) If |φ′(x)| ≥ λ > 0 for all x ∈ [a, b] and φ′(x) is monotonic then

∣∣∣∣∫ b

a

eiφ(x)dx

∣∣∣∣ ≤ 3λ−1.

2) If k ≥ 2 and
∣∣φ(k)(x)

∣∣ ≥ λ > 0 for all x ∈ [a, b] then

∣∣∣∣∫ b

a

eiφ(x)dx

∣∣∣∣ ≤ 2kλ−1/k.

The following theorem can be found in the book [Mon94] by Montgomery.

Theorem 2.1.2. Strong analytic Van Der Corput's lemma for k=1

Let ψ(x) and θ(x) be real-valued functions on [a, b] such that ψ(x) and θ′(x) are contin-

uous. Suppose that θ′(x)/ψ(x) is positive and monotonically increasing on this interval.

If 0 < λ1 ≤ θ′(x)/ψ(x) then

∣∣∣∣∫ b

a

ψ(x)e(θ(x))dx

∣∣∣∣ ≤ 2

πλ1
. (2.1)

Proof. The proof of this is very similar to the regular analytic Van Der Corput's lemma

for k = 1, which is Proposition 1.1.2 above. We use the operator L(f) = 1
2πi
· f ′
θ′

and its

transpose LT (f) = − 1
2πi
· d
dx

(
f
θ′

)
then

∫ b

a

ψ(x)L(e(θ(x)))dx =
1

2πi

[
ψ(x)e(θ(x))

θ′(x)

]b
a

+

∫ b

a

LT (ψ(x))e(θ(x))dx,

where the �rst term is bounded by 1
λ1π

, and the second term is bounded by

1

2πi

∫ b

a

∣∣∣∣ ddx
(
ψ(x)

θ′(x)

)∣∣∣∣ dx,
which, using the conditions on θ′(x)/ψ(x), is bounded by 1

πλ1
in the same way as in the

proof of Proposition 1.1.2. Note that the conditions on θ′(x)/ψ(x) force its reciprocal to

be continuous, which allows us to use the Fundamental Theorem of Calculus.
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The next corollaries are not in [Mon94] but we believe they are necessary to make the

details work in the next theorem.

Corollary 2.1.3. Let ψ(x) and θ(x) be real-valued functions on [a, b] such that ψ(x) and

θ′(x) are continuous. Suppose that θ′(x)/ψ(x) does not change sign and is monotone on

this interval. If 0 < λ1 ≤| θ′(x)/ψ(x) | then

∣∣∣∣∫ b

a

ψ(x)e(θ(x))dx

∣∣∣∣ ≤ 1

πλ1
. (2.2)

Proof. Replacing θ by −θ changes the sign of θ′(x)/ψ(x) and is taking the complex

conjugate of the integral, which does not change its norm. So without loss of generality

we may assume θ′(x)/ψ(x) > 0.

Now if θ′(x)/ψ(x) is monotone decreasing, we can do the change of variable u = −x

and ∣∣∣∣∫ b

a

ψ(x)e(θ(x))dx

∣∣∣∣ = ∣∣∣∣∫ −a
−b

ψ(−u)e(θ(−u))du
∣∣∣∣ , (2.3)

for which we can get a bound that does not depend on the interval of integration. So by re-

placing θ′(x)/ψ(x) by θ′(−x)/ψ(−x) without loss of generality we may assume θ′(x)/ψ(x)

is monotone increasing.

Corollary 2.1.4. Let ψ(x) and θ(x) be real-valued functions on [a, b] such that ψ(x)

and θ′(x) are continuous. Suppose that θ′(x)/ψ(x) is monotone on the intervals whose

endpoints are a, b and the possible m points of discontinuities (of any type) of θ′(x)/ψ(x).

If 0 < λ1 ≤| θ′(x)/ψ(x) | then

∣∣∣∣∫ b

a

ψ(x)e(θ(x))dx

∣∣∣∣ ≤ m+ 1

πλ1
. (2.4)

Proof. We prove the case m = 1 and the general case will follow similarly. Suppose there

is a unique point x0 ∈ [a, b] such that θ′(x)/ψ(x) has a discontinuity at x = x0. Since θ′

and ψ are continuous, we must have ψ(x0) = 0.
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For any ε positive and small enough so that |ψ(x)| < 1 for all x ∈ [x0 − ε, x0 + ε], we

have that the conditions of the previous corollary are satis�ed on the intervals [a, x0 − ε]

and [x0 + ε, b], thus

∣∣∣∣∫ b

a

ψ(x)e(θ(x))dx

∣∣∣∣ ≤ ∣∣∣∣∫ x0−ε

a

ψ(x)e(θ(x))dx

∣∣∣∣+ ∣∣∣∣∫ x0+ε

x0−ε
ψ(x)e(θ(x))dx

∣∣∣∣+ ∣∣∣∣∫ b

x0+ε

ψ(x)e(θ(x))dx

∣∣∣∣
≤ 2

πλ1
+ 2ε

and the result follows by letting ε→ 0.

The next theorem can also be found in [Mon94] but we added some details in the

proof and believe they are necessary. To avoid keeping track of constants while they are

not really important we use the notation f = O(g) or equivalently f � g to say that

there exists an absolute constant C > 0 such that |f | ≤ C |g|. We insist on the fact that

the constant cannot depend on anything, it is just a number that we could compute but

we avoid to do so only for convenience.

Theorem 2.1.5. (Truncated Poisson Theorem) Let f be a real-valued function, and

suppose that f ′ is continuous and increasing on [a, b]. Write α = f ′(a) and β = f ′(b).

Then
b∑
a

e(f(n)) =
∑

α−1≤ν≤β+1

∫ b

a

e(f(x)− νx)dx+O(log(2 + β − α)). (2.5)

Proof. Let N be an integer such that such that
∣∣N − α+β

2

∣∣ ≤ 1
2
. If we replace f(x) by

f0(x) = f(x)−Nx then (2.5) does not change and f ′0 is still continuous and increasing but

then f ′0(a) = α−N and f ′0(b) = β −N so |f ′0(a) + f ′0(b)| = |α + β − 2N | ≤ 1. Therefore

without loss of generality we may assume that |α + β| ≤ 1. Note that since α < β this

forces β > −1/2 and α < 1/2.

De�ne r(x) = e(f(x))χ[a,b] Then r has bounded variation, since it is continuous except

for a possible jump-discontinuity at a and b, and is obviously integrable, so we can use
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the Poisson summation formula. This is explained in [Hel95]. We then have

b∑
a

e(f(n)) =
∑
n

r(n+) + r(n−)

2
+O(1)

=
∑
ν

r̂(ν) +O(1),

where r̂(ν) =
∫ b
a
e(f(x) − νx)dx is the Fourier transform of r. Note that the implied

constant is absolute (at most 2). The idea is that when ν is away from the interval [α, β],

the integral that de�nes r̂(ν) has no stationary phase, so it will be small. So the main

contribution of the sum
∑

ν r̂(ν) comes from the ν's that belong to [α, β]. In fact, we will

show that
∑

ν /∈[α−1,β+1] r̂(ν)� log(2 + β − α), which proves of the theorem.

Take ν /∈ [α− 1, β + 1]. By integrating by parts we can express r̂(ν) as

∫ b

a

e(f(x))e(−νx)dx =
e(f(a)− νa)

2πiν
− e(f(b)− νb)

2πiν
+

1

ν

∫ b

a

f ′(x)e(f(x)− νx)dx. (2.6)

Note that 0 ∈ (α− 1, β + 1) since | α + β |≤ 1, so ν cannot be zero and then

r̂(ν) =
1

ν

∫ b

a

f ′(x)e(f(x)− νx)dx+O(1),

where the implied constant is absolute (at most 1
π
).

We want to show that

∑
ν /∈[α−1,β+1]

1

ν

∫ b

a

f ′(x)e(f(x)− νx)dx� log(2 + β − α).

Take ν > β + 1. We want to use Theorem 2.1.2 with ψ = f ′ and φ(x) = f(x)− xν. We

know that

(
f ′ − ν
f ′

)′
=

νf ′′

(f ′)2
> 0, (2.7)
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so f ′−ν
f ′

has no more than one point of discontinuity, is monotone increasing and

∣∣∣∣f ′ − νf ′

∣∣∣∣ ≥ min

{∣∣∣∣α− να

∣∣∣∣ , ∣∣∣∣β − νβ
∣∣∣∣}

≥ min

{∣∣∣∣β − νβ + 1

∣∣∣∣ , ∣∣∣∣β − νβ
∣∣∣∣}

=
ν − β
β + 1

> 0

since ν is closer to β than is it to α and β ≥ −1/2.

Then by Theorem 2.1.2 with λ1 =
ν−β
β+1

,

∫ b

a

f ′(x)e(f(x)− νx)dx� β + 1

ν − β
, (2.8)

where the implied constant is absolute.

Now if β ≥ 1 then (β + 1) ≤ 2β, so

∫ b

a

f ′(x)e(f(x)− νx)dx� β

ν − β

and

∑
ν>β+1

1

ν

β

ν − β
=
∑
ν>β+1

(
1

ν − β
− 1

ν

)

≤
∞∑

ν=dβe+1

(
1

ν − dβe
− 1

ν

)

= lim
N→∞

 N∑
ν=dβe+1

1

ν − dβe
−

N∑
ν=dβe+1

1

ν


=

dβe∑
ν=1

1

ν

≤ 1 + log(dβe)

≤ 3 log(β + 2),
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and if −1/2 < β < 1 then using 2.8, we have

∫ b

a

f ′(x)e(f(x)− νx)dx� 1

ν + 1/2

and ∑
ν>β+1

1

ν

1

ν + 1/2
≤

∞∑
ν=1

1

ν2
=
π2

6
≤ 5 log(3/2)� log (β + 2).

We treat the case ν < α− 1 in the same way. But now f ′−ν
f ′

is monotone decreasing and

ν is closer to α than it is to β so

∣∣∣∣f ′ − νf ′

∣∣∣∣ ≥ ν − α
α + 1

> 0,

which, using the strong analytic Van der Corput's lemma, that is Theorem 2.1.2 with

λ1 =
ν−α
α+1

, gives ∫ b

a

f ′(x)e(f(x)− νx)dx� α + 1

ν − α

and ∑
ν≤α−1

1

ν

α + 1

ν − α
� log(−α+ 2).

Putting everything together, we get

∑
ν /∈[α−1,β+1]

1

ν

∫ b

a

f ′(x)e(f(x)− νx)dx� log(β + 2) + log(−α + 2)

� log (max {β + 2, α+ 2})

� log(β − α + 2),

where the last inequality is clear for α ≤ 0 and β ≥ 0. If −1/2 < β < 0 then using

|α + β| ≤ 1 and α < β, we get −1 < α < 0 and then max {β + 2, α+ 2} < 3. Then

log (max {β + 2, α+ 2}) < log 3 < 3 log 3/2 < 3 log (β − α + 2),

since β − α + 2 > 3/2.
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The following result can be found in the book [Ten95] of Tenenbaum.

Theorem 2.1.6. (2nd derivative test) Let f ∈ C2[a, b] and suppose there exists c > 1

such that for all t ∈ (a, b) we have

0 < λ ≤ |f ′′(t)| ≤ cλ;

then ∑
a<n≤b

e(f(n))�c (b− a)λ1/2 + λ−1/2.

Here we use the notation �c to indicate that the implied constant depends on c.

Proof. The condition on f ′′ forces f ′ to be monotone (increasing or decreasing). By

taking complex conjugates on both sides, we may assume f ′ is monotone increasing. So

we can use the Truncated Poisson Theorem to get that

b∑
a

e(f(n)) =
∑

α−1≤ν≤β+1

∫ b

a

e(f(x)− νx)dx+O(log(2 + β − α)), (2.9)

where α = f ′(a) and β = f ′(b). Now for each ν ∈ [α− 1, β+1], let g(t) = f(t)− νt; then

g′(t) = f ′(t)− ν and g′′(t) = f ′′(t). So we have

0 < λ ≤ |g′′(t)| ≤ cλ

and we can use Van der Corput's lemma for k = 2 to get that

∫ b

a

e(g(x))dx� λ−1/2.

So the sum over ν is bounded by this times the length of the interval [α− 1, β + 1], and

using the Mean Value Theorem,

β − α = f ′(b)− f ′(a) = (b− a)f ′′(ξ) ≤ (b− a)cλ�c (b− a)λ. (2.10)

The length of the interval [α− 1, β +1] is then bounded by a constant times (b− a)λ+1
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(the +1 is necessary to ensure that the implied constant does not depend on λ). The sum

on the right hand side of (2.9) is then, up to a constant that depends only on c, bounded

by

[(b− a)λ+ 1]λ−1/2 = (b− a)λ1/2 + λ−1/2,

and whenever a 6= b, we use (2.10) to see that

log (2 + β − α)�c log (2 + (b− a)λ)� (b− a)λ1/2,

so we do not need to consider log (2 + β − α) in (2.9).

2.2 Combining process A and process B

We want to get bounds using higher derivatives. The following lemma is a classical trick

that will enable us to deduce information about the kth derivative of a function from

information about its (k + 1)st derivative. The next result can also be found in [Ten95].

Lemma 2.2.1. (Process A) Let fh(x) = f(x + h) − f(x) be a discrete derivative of f

where f is a real-valued function on [a, b]. Let H be an integer such that 1 ≤ H ≤ b− a,

then

|S| :=

∣∣∣∣∣
b∑

n=a

e(f(n))

∣∣∣∣∣ ≤ 2(b− a)
H1/2

+ 2

(
b− a
H

H∑
h=1

∣∣∣∣∣
b−h∑
n=a

e(fh(n))

∣∣∣∣∣
)1/2

.

Proof. Let F (n) = e(f(n)) · χ[a,b]. Then we can write

S =
∞∑

n=−∞

F (n)

=
1

H

H∑
m=1

∞∑
n=−∞

F (n)

=
1

H

H∑
m=1

∞∑
n=−∞

F (n+m) by changing the variable n→ n+m for each m

=
1

H

∞∑
n=−∞

(
H∑
m=1

F (n+m)

)

Note that what is inside the parenthesis is only non-zero when n is such that there exist
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at least one m such that 1 ≤ m ≤ H and a ≤ n + m ≤ b, which is only the case for

(a−H − 1) ≤ n ≤ (b− 1). So we can restrict the sum over n and write

S =
1

H

b−1∑
n=a−H−1

(
H∑
m=1

F (n+m)

)
,

and use the Cauchy-Schwartz inequality to get

|S|2 ≤ 1

H2

(
b−1∑

n=a−H−1

1

)(
b−1∑

n=a−H−1

H∑
m,m′=1

F (n+m)F (n+m′)

)
. (2.11)

Now the �rst factor here is at most b− a+H ≤ 2(b− a). Let us look at the inner sum in

the second factor. When m = m′ we have F (n+m)F (n+m′) = 1 so we can isolate this

case that happens exactly H times. Now since we do not change the terms by exchanging

m and m′ and we know this sum is real, we can write it as

H + 2Re
∑

1≤m<m′≤H

F (n+m)F (n+m′).

So we see that the second factor in (2.11) is at most

2H(b− a) + 2

∣∣∣∣∣ ∑
1≤m<m′≤H

∑
n∈Z

F (n+m)F (n+m′)

∣∣∣∣∣ . (2.12)

Then we perform the change of variables ν = n +m and r = m −m′ then ν runs over

Z and r takes the values 1, ..., H − 1. Moreover, for each �xed ν and r there are exactly

H − r solutions for {n,m,m′}, namely {ν − j − r, j + r, j}, where 1 ≤ j ≤ H − r, so

(2.12) becomes

2H(b− a) + 2

∣∣∣∣∣
H−1∑
r=1

(H − r)
∑
ν∈Z

F (ν)F (ν − r)

∣∣∣∣∣
≤ 2H(b− a) + 2H

H−1∑
r=1

∣∣∣∣∣∑
ν∈Z

F (ν)F (ν − r)

∣∣∣∣∣ .
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Pugging our upper bound for the �rst and the second product in (2.11) we obtain

|S|2 ≤ 1

H2
· 2(b− a) · 2H

(
(b− a) +

H−1∑
r=1

∣∣∣∣∣∑
ν∈Z

F (ν)F (ν − r)

∣∣∣∣∣
)

=

(
2(b− a)√

H

)2

+ 4

(
b− a
H

H−1∑
r=1

∣∣∣∣∣∑
ν∈Z

F (ν)F (ν − r)

∣∣∣∣∣
)
.

Now we know that for all x, y ≥ 0, x+ y ≥
√
x2 + y2) and thus |S| is at most the sum of

the square root of each term, which gives the result, noting that F (ν)F (ν − r) 6= 0 only

if a ≤ ν ≤ b− r.

Remark 2.2.2. Process A (Lemma 2.2.1) implies the following that will be useful later.

Let fh(x) = f(x+h)−f(x) be a discrete derivative of f where f is a real-valued function

on [a, b]. Let H be an integer such that 1 ≤ H ≤ b− a and

H∑
h=1

∣∣∣∣∣
b−h∑
n=a

e(fh(n))

∣∣∣∣∣� b− a.

Then
b∑

n=a

e(f(n))� b− a
H1/2

.

For simplicity and because this is what we will eventually be interested in, we will

take the special case [a, b] = [N, 2N ], for some big integer N . So we rede�ne

S :=
∑
n�N

e(f(n)).

Also, we want to weaken a little bit the condition 0 < λ ≤ |f ′′(t)| ≤ cλ in Theorem 2.1.6

to f(t) ≈ g(t). Following the proof of the 2nd derivative test, it is not hard to see that

we can extend it in the following way.

Theorem 2.2.3. (2nd derivative test) Let f ∈ C2([a, b]) and suppose that

|f ′′(x)| ≈ λ > 0 for all x � N ; then

S � Nλ1/2 + λ−1/2,
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where the implied constant in � is allowed to depend on the implied constants in ≈.

As we will see in Chapter 3, we are interested in getting a bound that beats the trivial

one for exponential sums where the phase f is a monomial like nα. In this case, we have

that the kth derivative of f , f (k)(x) ≈ xα−k, so the main term in the 2nd derivative test,

which is Nλ1/2, beats the trivial bound if and only if α−2
2

+ 1 < 1, which is only true for

α small. For bigger α, we need a bigger k to decrease the exponent of N in λ. We are

then looking for a higher derivative test. In order to do so, we will combine processes A

and B and see that an induction process is possible. The following result can be found

in [Ten95], page 94.

Theorem 2.2.4. (3rd derivative test version 1) Suppose |f ′′′(x)| ≈ λ > 0 for all

x � N ; then

S � Nλ1/6 +N1/2λ−1/6,

where the implied constant in � is allowed to depend on the implied constants in ≈.

Proof. Let H be an arbitrary (for now) integer such that 1 ≤ H ≤ N . By Lemma 2.2.1

(Process A), we know that

|S| ≤ 2N

H1/2
+ 2

(
N

H

H∑
h=1

∣∣∣∣∣
2N−h∑
n=N

e(fh(n))

∣∣∣∣∣
)1/2

. (2.13)

It follows from Taylor's Theorem and the fact that |f ′′′(x)| ≈ λ that |f ′′h (x)| ≈ hλ. So we

can use the 2nd derivative test on fh for each h from 1 to H to get that

2N−h∑
n=N

e(fh(n))� (hλ)1/2(N − h) + (hλ)−1/2

≤ (hλ)1/2N + (hλ)−1/2.

Plugging this into (2.13) and using, as in the proof of Lemma 2.2.1, the fact that

x+ y ≥
√
x2 + y2, we obtain

|S| � NH−1/2 +NH1/4λ1/4 +N1/2H−1/4λ−1/4.
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Now we need to choose H optimally. The choice H = bλ−1/3c makes the �rst two terms

of the same order of magnitude and gives

|S| � Nλ1/6 +N1/2λ−1/6. (2.14)

Note that this choice of H is only possible if 1 ≤ λ−1/3 ≤ N , but if λ > 1 then the

�rst term in (2.14) is greater than N and if λ−1/3 > N then the second term in (2.14) is

greater than N . In both cases, the theorem is trivially true.

Remark 2.2.5. An important step in the proof of Theorem 2.2.4 is the choice of H.

We saw that choosing H such that the �rst two terms have the same order of magnitude

works perfectly. If instead we want the �rst and last terms or the second and last term

to have the same order of magnitude, we need H ≈ N2λ and H ≈ (Nλ)−1, respectively,

which is possible when N and λ are such that 1 ≤ H ≤ N , but this time there is nothing

we can do with the other cases.

In the application of this that we will interested in, the �rst term in the bound of

Theorem 2.2.4 usually has a bigger order of magnitude that the second term. We will

then call the �rst and second terms the main and error terms respectively. To make the

induction process easier and get higher derivative test, we will state the following, which

is a consequence of Theorem 2.2.4, and prove it in a di�erent way.

Theorem 2.2.6. (3rd derivative test version 2) Suppose |f ′′′(x)| ≈ λ > 0 for all

x � N ; then

S � Nλ1/6 provided λ−2/3 � N,

where the implied constants in each � are allowed to depend on the implied constants in

≈.

Proof. We saw in the proof of Theorem 2.2.4 that we may assume that λ ≤ 1.

Suppose that λ−2/3 � N . This, together with the fact that λ ≤ 1, immediately gives

us that λ−1/3 � N , which allow us to pick H to be a positive integer with H ≈ λ1/3 and

H ≤ N .
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Just like in the proof of Theorem 2.2.4, it follows from Taylor's Theorem that if

|f ′′′(x)| ≈ λ then |f ′′h (x)| ≈ hλ. So we can use the 2nd derivative test on fh for each h

from 1 to H to get that

2N−h∑
n=N

e(fh(n))� (hλ)1/2(N − h) + (hλ)−1/2

≤ (hλ)1/2N + (hλ)−1/2,

which gives

H∑
h=1

∣∣∣∣∣
2N−h∑
n=N

e(fh(n))

∣∣∣∣∣� λ1/2N
H∑
h=1

h1/2 + λ−1/2
H∑
h=1

h−1/2

� N + λ−2/3,

since H ≈ λ1/3. Now the fact that λ−2/3 � N gives

H∑
h=1

∣∣∣∣∣
2N−h∑
n=N

e(fh(n))

∣∣∣∣∣� N,

so we can use Remark 2.2.2 to get that

S � N

H1/2
� Nλ1/6.

Theorem 2.2.6 will be the starting point of our induction process and we will proceed

in a similar way. Graham gives an explicit but somewhat complicated bound in [GKK91],

from which we can deduce the following theorems that we will prove in an easier way.

Theorem 2.2.7. (kth derivative test) Let k be an integer with k ≥ 3. Suppose f ∈ Ck

and
∣∣f (k)(x)

∣∣ ≈ λ > 0 for all x � N . Let Q = 2(k−2). Then

S � Nλ1/(4Q−2) provided λ−Q/(2Q−1) � N,
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where the implied constants in each � are allowed to depend on the implied constants in

≈.

Proof. We proceed by induction on k, the case k = 3 being covered by Theorem 2.2.6.

We suppose that k > 3 and that the theorem holds for (k − 1). We may again assume

that λ < 1.

Let H be an arbitrary (for now) integer such that 1 ≤ H ≤ N . It follows from Taylor's

Theorem that
∣∣∣f (k−1)
h (x)

∣∣∣ � hλ since
∣∣f (k)(x)

∣∣ � λ, so we can use the (k-1)st derivative

test on fh for each h from 1 to H with λh = hλ then the condition for the kth derivative

with the fact that h ≥ 1 implies that

λ
−(Q/2)/(2(Q/2)−1)
h ≤ λ−Q/(2Q−1) � N,

which is the condition for the (k − 1)st derivative test, so we can use it to get that

2N−h∑
n=N

e(fh(n))� N(λh)1/(2Q−2).

We would like to pick H ≈ λ−1/(2Q−1) and we can do so because the condition

λ−Q/(2Q−1) � N implies that λ−1/(2Q−1) � N1/Q ≤ N , which also gives that

H∑
h=1

∣∣∣∣∣
b−h∑
n=a

e(fh(n))

∣∣∣∣∣� λ1/(2Q−2)N
H∑
h=1

h1/(2Q−2)

� Nλ1/(Q−2)H(2Q−1)/(2Q−2)

� N.

So by Remark 2.2.2 (Process A),

S � N

H1/2
≤ Nλ1/(4Q−2).
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2.3 Application: uniform distribution of sequences of

monomials

Now we can use this to get a bound on an exponential sum where the phase is a single

variable monomial. By Weyl's criterion, a sequence f(n) is equidistributed modulo one

if and only if for each integer m 6= 0,

S :=
∑
n�N

e(mf(n)) = o(N) as N →∞

Proposition 2.3.1. Suppose α > 0 and α /∈ Z. Then for all non zero real numbers r,

the sequence {rnα} is equidistributed modulo 1.

Proof. Take an integer m 6= 0 and let f(x) = mrxα. By Weyl's criterion, we need to

show that S = o(N) as N →∞.

Take k = bαc+ 1. Then for all x � N , we have

| mf (k)(x) |= mr(α)(α− 1)...(α− k + 1)x(α
′−1) ≈ N (α′−1),

where α′ is the fractional part of α.

So taking λ = N (α′−1) and Q = 2k−2, we see that the condition λ−
Q

2Q−1 � N is always

satis�ed since −(α′ − 1) and Q
2Q−1 are both less than 1. So we can use the kth derivative

test to get that

S � Nλ
1

4Q−2 ,

and since λ = o(1) as N → ∞ we conclude that S = o(N) and then the sequence is

equidistributed modulo one.

We now consider the case of two variables. Let f(x1, x2) = rxα1
1 x

α2
2 with α1 α2 non

integer positive real numbers and some non-zero real number s. We say that the sequence
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f(n1, n2) is equidistributed modulo one if

lim
N1,N2→∞

#Zf (N1, N2;α, β)

N1N2

= β − α,

where Zf (N1, N2;α, β)) = {(n1, n2) : n1 � N1, n2 � N2, α ≤ {f(n1, n2)} ≤ β}. In fact,

the method that we use gives us this limit by only letting the product N1N2 go to in�nity,

that is

lim
N1N2→∞

#Zf (N1, N2;α, β)

N1N2

= β − α. (2.15)

To avoid re-writing (2.15) every time, we decide, in this chapter, to say that the sequence

f(n1, n2) is equidistributed if (2.15) holds.

In Chapter 4, we will see that there is some Weyl's criterion for higher dimension, see

Theorem 4.0.36 and Corollary 4.0.37, for the case of �ve variables, but in fact the same

proof can easily be adapted to any number of variables.

Theorem 2.3.2. (Weyl's criterion for two variables) Let f(n1, n2) be a sequence of

real numbers. If for each integer m 6= 0 we have that

S :=
∑
n1�N1

∑
n2�N2

e(mf(n1, n2)) = o(N1N2) as N1N2 →∞

then f(n1, n2) is equidistributed modulo one.

Proposition 2.3.3. Suppose α1, α2 > 0 and /∈ Z. If α1 + α2 < 2 then the sequence

{f(n1, n2)} is equidistributed modulo 1.

Proof. By the 2nd derivative test we have

S � (λ
1/2
1 N1 + λ

−1/2
1 )N2

S � (λ
1/2
2 N2 + λ

−1/2
2 )N1,
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where λ1 = Nα1−2
1 Nα2

2 and λ2 = Nα1
1 Nα2−2

2 . So we have

S � N
α1/2
1 N

1+α2/2
2 +N1−α1

1 N
1−α2/2
2

S � N
1+α1/2
1 N

α2/2
2 +N1−α1

1 N
1−α2/2
2

and by averaging these inequalities with respective weights t and (1− t), we get

S � N
1−α1/2
1 N

1−α2/2
2 +min{Nα1/2

1 N
1+α2/2
2 , N

1+α1/2
1 N

α2/2
2 }

� N
1−α1/2
1 N

1−α2/2
2 +N

tα1/2+(1−t)(1+α1/2)
1 N

t(1+α2/2)+(1−t)α2/2
2 .

Now the �rst term is obviously o(N1N2), and the average of the exponents in the second

term is 2+α1+α2

4
, which is smaller that 1, since α1 + α2 < 2. So by choosing the optimal

t, we can make the second term beat the trivial bound in all the variables.

Using the same technique as for single variable monomials, there should be a way to

extend this to bigger α1 and α2.

Proposition 2.3.4. Let k be an integer with k ≥ 3 and let Q = 2k−2. If

N
(k−α1)

Q
2Q−1

−1
1 � N

α2
Q

2Q−1

2 (2.16)

and

N
(k−α2)

Q
2Q−1

−1
2 � N

α1
Q

2Q−1

1 (2.17)

then

S � N
1+(α1−tk)/(4Q−2)
1 N

1+(α2−(1−t)k)/(4Q−2)
2

for all t ∈ [0, 1].

Proof. Conditions (2.16) and (2.17) are precisely the conditions for the kth derivative

test with variables N1 and N2, respectively, for which the value of λ is Nα1−k
1 Nα2

2 and
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Nα1
1 Nα2−k

2 , respectively. Applying these two kth derivative tests simultaneously, we get

∑
n1�N1

e(mf(n1, n2))� N
1+

α1−k
4Q−2

1 N
α2

4Q−2

2

∑
n2�N2

e(mf(n1, n2))� N
α1

4Q−2

1 N
1+

α2−k
4Q−2

2 ,

which trivially gives

S � N
1+

α1−k
4Q−2

1 N
1+

α2
4Q−2

2

S � N
1+

α1
4Q−2

1 N
1+

α2−k
4Q−2

2 .

Now, as it is will be explained in Chapter 3 (Lemma 3.0.11), for all t ∈ [0, 1], we can

average these two inequalities with respective weights t and 1− t to get the result.

Proposition 2.3.5. Let k = bα1 + α2 + 1c and Q = 2k−2. Suppose that k ≥ 3. If

N
(k−α1)

Q
2Q−1

−1
1 � N

α2
Q

2Q−1

2

and

N
(k−α2)

Q
2Q−1

−1
2 � N

α1
Q

2Q−1

1

then the sequence is equidistributed modulo 1.

Proof. Follows directly from Proposition 2.3.4 since the average of the exponents is

2+α1+α2−k
2

which is strictly less that one since k > α1 + α2. So by choosing the opti-

mal t ∈ [0, 1], we get a bound that beats the trivial one in all the variables.

Note that the two conditions in Proposition 2.3.5 are not very restrictive since the

power on the left hand side is less than the power in the right hand side. In particular

they are satis�ed if N1 ≈ N2.

Proposition 2.3.6. For all integers k ≥ 3, if the condition for the (k + 1)st derivative

test with N1 as a variable fails, then the kth derivative test with N1 as a variable, under
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its weaker condition, can be re-arranged get

S = o(N1N2) as N1N2 →∞.,

Proof. Fix k ≥ 3 and let Q = 2k−2. Suppose that the condition for the (k+1)st derivative

test with N1 as a variable fails. Then we have that

N
(k+1−α1)

2Q
4Q−1

−1
1 � N

α2
2Q

4Q−1

2 . (2.18)

Note that the exponent on the right hand side is positive, so (2.18) is only possible if the

exponent in the left hand side is also positive:

(k + 1− α1)
2Q

4Q− 1
− 1 > 0. (2.19)

Now, under its condition which is weaker, the kth derivative test with respect to N1 gives

S � N
1+

α1−k
4Q−2

1 N
1+

α2
4Q−2

2 , (2.20)

which for all t > 0, we can re-arrange using (2.18) to obtain

S � N
1+

α1−k
4Q−2

+t[(k+1−α1)
2Q

4Q−1
−1]

1 N
1+

α2
4Q−2

−t[α2
2Q

4Q−1
]

2 . (2.21)

If possible, the optimal choice for t is such that both exponents are the same, that is

t =
k + α2 − α1

4Q− 2

1

(k + 1− α1 + α2)
2Q

4Q−1 − 1
. (2.22)

Now using (2.19), we see that the right hand side in (2.22) is positive and then we can
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choose this t, for which both exponents in (2.21) are

γ = 1 +
α2

4Q− 2
− k + α2 − α1

4Q− 2

1

(k + 1− α1 + α2)
2Q

4Q−1 − 1
α2

2Q

4Q− 1

= 1 +
α2

4Q− 2

(
1− (k + α2 − α1)2Q

(k + 1− α1 + α2)2Q− (4Q− 1)

)
= 1 +

α2

4Q− 2

(
1− (k + α2 − α1)2Q

(k − α1 + α2)2Q− (2Q− 1)

)
< 1

Now we state our result about bi-variate sequences of monomials.

Proposition 2.3.7. Let f(x1, x2) = rxα1
1 x

α2
2 with α1, α2 non integer positive real numbers

and some non-zero real number r, then the sequence is equidistributed modulo one.

Proof. If α1 + α2 < 2 then we can use Proposition 2.3.3 to get the result. Now assume

α1+α2 ≥ 2. Let k = dα1+α2+1e, then k ≥ 3. If the two conditions of Proposition 2.3.5

holds then we're done. If the �rst condition, that is the condition of the kth derivative

test with respect to the variable N2, fails, then we can use Proposition 2.3.6 to use lower

derivative tests to get the result under weaker and weaker conditions, until we use the

3rd derivative test.

Suppose that the condition of the 3rd derivative test fails. Recall the 2nd derivative

test gives without any condition that

S � N1N2λ
1/2 +N2λ

−1/2, (2.23)

where λ = Nα1−2
1 Nα2

2 . Note that the �rst term in (2.23) is precisely what we get if we

plug k = 2 in the bounds that we usually get in the higher derivative tests, so the proof

of Proposition 2.3.6 gives us that the �rst term in (2.23) is o(N1N2) as N1N2 →∞. Now

the second term in (2.23) can be written as N1−α1/2
1 N

1−α2/2
2 , which is also o(N1N2) as

N1N2 →∞.
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Similarly if the second inequality in Proposition 2.3.5 fails, then we can go through

the same process swapping N1 and N2 to complete the proof.

Note that this gives an algorithm that we can apply similarly to sequences of mono-

mials with more than two variables, and even though we do not show it, we suspect that

it would be successful most of the time. We will see in Chapter 4 a particular case with

�ve variables.
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Chapter 3

Application: Finding a bound that

beats the trivial one for a speci�c

family of exponential sums

In this chapter we consider the sequence f(n2, n3, n4, n5, n6) = 3n
2/3
2 n

4/3
3 n4n

2/3
5 n

1/3
6 of

�ve variables. The choice of this speci�c sequence and notation (no variable n1) will be

motivated in Chapter 4. Our goal is to show that this sequence is uniformly distributed

modulo one with the most general possible range of the variables and, as we will explain

in Chapter 4 (Theorem 4.0.36 and Corollary 4.0.37), it is enough to �nd a bound for a

family of exponential sums that beat the trivial one in all of the variables. We now de�ne

the family of exponential sums that we are interested in: for some non zero integer k, let

Ek := Ek(N2, N3, N4, N5, N6) :=
∑
nj�Nj

e(3kn
2/3
2 n

4/3
3 n4n

2/3
5 n

1/3
6 ).

Let us state the main result of this chapter;

Proposition 3.0.8. Suppose that

logN4 � (N2N3N5N6)
1/100, (3.1)
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then for all non zero integer k,

Ek = o(N2N3N4N5N6) as N2N3N5N6 →∞.

The rest of this chapter is the proof of this proposition.

Consider the following 5 conditions:

(1) N59
2 � (N4

3N
3
4N

2
5N6)

8

(2) N43
3 � (N2

2N
3
4N

2
5N6)

8

(3) N59
5 � (N2

2N
4
3N

3
4N6)

8

(4) N67
6 � (N2

2N
4
3N

3
4N

2
5 )

8

(5) N5
4 � (N2N3N5N6)

2

Let us �rst assume that (1)-(4) hold.

The following is just a special case Theorem 2.2.7 and it also stated as such in the

introduction of [Sar00].

Theorem 3.0.9. (5th derivative test) If f (5)(x) ≈ λ and M � λ−8/15 then

∑
m�M

e(f(m))�Mλ1/30.

where the implied constant in � is allowed to depend on the implied constant in ≈.

Corollary 3.0.10. If (1)-(4) holds, then

(1) =⇒ Ek(N2, N3, N4, N5, N6)� (N77
2 N

94
3 N

93
4 N

92
5 N

91
6 )1/90 (3.2)

(2) =⇒ Ek(N2, N3, N4, N5, N6)� (N92
2 N

79
3 N

93
4 N

92
5 N

91
6 )1/90 (3.3)

(3) =⇒ Ek(N2, N3, N4, N5, N6)� (N92
2 N

94
3 N

93
4 N

77
5 N

91
6 )1/90 (3.4)

(4) =⇒ Ek(N2, N3, N4, N5, N6)� (N92
2 N

94
3 N

93
4 N

92
5 N

76
6 )1/90. (3.5)
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Proof. To get (3.2), we �x n3, n4, n5, n6 and use Theorem 3.0.9 with m = n2 andM = N2

that is f(x) = 15kx2/3n
4/3
3 n4n

2/3
5 n

1/3
6 and λ = N

−13/3
2 N

4/3
3 N4N

2/3
5 N

1/3
6 . Condition (1)

being equivalent to M � λ−8/15, we get that

Ek(N2, N3, N4, N5, N6)� (N77
2 N

4
3N

3
4N

2
5N6)

1/90.

Now taking the trivial bound for all the remaining variables, we obtain the �rst inequality

of the corollary.

Inequalities (3.3), (3.4), (3.5) are obtained in the same way using Theorem 3.0.9 simul-

taneously with m = n3,m = n5,m = n6 respectively and λ = N
2/3
2 N

−11/3
3 N4N

2/3
5 N

1/3
6 ,

λ = N
2/3
2 N

4/3
3 N4N

−13/3
5 N

1/3
6 , λ = N

2/3
2 N

4/3
3 N4N

2/3
5 N

−14/3
6 respectively. Then the condi-

tion (2),(2) and (4) are equivalent to M � λ−8/15 for each case.

Inequalities (3.2),(3.3),(3.4),(3.5) are bounds on Ek that beat the trivial bound for

the variable N2, N3, N5, N6, respectively. The idea now is to combine these four bounds

to get only one that beats the trivial bound in the variables N2, N3, N5, N6 together.

Lemma 3.0.11. Let f(x1, . . . , xd) be a function that maps Rd to R. Suppose we have a

�nite set of functions {Am} with

f � Am,

for each m, then

f �
∏
m

Aγmm

for all sets {γm} of positive real numbers, with
∑

m γm = 1.

Proof. Fix x ∈ Rd and evaluate the functions at this point. Without loss of generality

we may assume that A1 ≤ Ak for each k. Then

f � A1 =
∏
m

Aγm1 ≤
∏
m

Aγmm .
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We will refer to this process as �averaging the inequalities with respective weights

γ1, . . . , γs�.

Now by averaging the four inequalities in Corollary 3.0.10 with respective weights

7/30,11/30,7/30 and 5/30, we obtain

Ek(N2, N3, N4, N5, N6)� (N177
2 N177

3 N186
4 N177

5 N177
6 )1/180, (3.6)

and these weight are optimal in the sense that they give a bound that is equally strict in

all the variables that we are working with.

Here we specify the optimal weights but in fact we can simply note that the average

of the exponents of N2, N3, N5, N6 in the right hand side of the inequalities in Corollary

3.0.10 is always 177
180

. It is then clear that (3.6) is the optimal bound that we get by

averaging these inequalities and the weights are not important. In the future, we will

directly deduce the optimal bound from the inequalities.

In addition, if (5) holds, then N4 is small relative to the other variables. The bound

given by (3.6) is then less than another bound that we can obtain by �transferring� powers

of N4 to the other variables. We will often say that we �re-arrange� a bound to refer to

this process. So we can re-arrange (3.6) to get

Ek(N2, N3, N4, N5, N6)� (N2N3N4N5N6)
179.8/180,

which beats the trivial bound in all the variables.

Else, if (5) fails, then we have

N5
4 � (N2N3N5N6)

2,

which implies that

N0.5
4 � (N2N3N5N6)

0.2.

In order to use this, we want a bound for which the exponent of N4 is small. For this, we
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need Lemma 5.2 in [DGS+13], that we now state.

Lemma 3.0.12. Let g(t) be a real, continuously di�erentiable function on the interval

[a, b], with | g′(t) |≥ λ > 0, and let N > 0. Then

∑
a≤n≤b

min{N, 1/ || g(n) ||} � (| g(b)− g(a) | +1)(N +
1

λ
log(b− a+ 2)).

Proof. See page 77 of [Krä89].

We also need the following, that is an analogue of Lemma 5.3 in [DGS+13].

Lemma 3.0.13. For every δ > 0,

Ek(N2, N3, N4, N5, N6)�δ N
2+2δ
2 N4+4δ

3 N0
4N

2+2δ
5 N1+δ

6

+N
2/3+2δ
2 N

4/3+4δ
3 N1

4N
2/3+2δ
5 N

1/3+δ
6

Proof. Fix δ > 0. For some positive integer n, let

bn =
∑
n2�N2

∑
n3�N3

∑
n5�N5

∑
n6�N6

n2
2n

4
3n

2
5n6=n

1

and note that bn ≤ d(n)3, where d(n) is the number of divisors of n. Now it is well known

that d(n)�δ n
δ, refer to page 296 of [Apo76] for a proof. We then have that bn �δ n

δ/2.

We recall the well-known bound

∑
n�N

e(αn)� min{N, 1/ || α ||},

that can be found in [IK04] page 199.

Applying Lemma 3.0.12 with N = N4, g(t) = 3kt1/3, which is continuously di�eren-
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tiable on the interval [N2
2N

4
3N

2
5N6, 512N

2
2N

4
3N

2
5N6] so λ = (N2

2N
4
3N

2
5N6)

−2/3, we have

Ek(N2, N3, N4, N5, N6) =
∑

N2
2N

4
3N

2
5N6≤n≤512N2

2N
4
3N

2
5N6

bn
∑

n4�N4
e(3kn1/3n4)

�δ (N
2
2N

4
3N

2
5N6)

δ/2
∑

N2
2N

4
3N

2
5N6≤n≤512N2

2N
4
3N

2
5N6

min{N4,
1

||3kn1/3||}

� (N2
2N

4
3N

2
5N6)

δ/2(N2
2N

4
3N

2
5N6)

1/3(N4

+(N2
2N

4
3N

2
5N6)

2/3 log(511N2
2N

4
3N

2
5N6 + 2))

� (N2
2N

4
3N

2
5N6)

δ[(N2
2N

4
3N

3
4N

2
5N6)

1/3 + (N2
2N

4
3N

2
5N6)].

Taking (3.3) from Corollary 3.0.10 and Lemma 3.0.13 with respective weights 10/11

and 1/11, we get

Ek �δ N
2/3+2δ
2 N

4/3+4δ
3 N4N

2/3+2δ
5 N

1/3+δ
6

+min{(N92
2 N

79
3 N

93
4 N

92
5 N

91
6 )1/90, N1.12+2δ

2 N1.17+4δ
3 N0.94

4 N1.12+2δ
5 N1.02+δ

6 }

� N
2/3+2δ
2 N

4/3+4δ
3 N4N

2/3+2δ
5 N

1/3+δ
6 +N1.12+2δ

2 N1.17+4δ
3 N0.94

4 N1.12+2δ
5 N1.02+δ

6 ,

and using the fact that (5) fails, that is N4 is large relative to the other variables, we can

re-arrange the second term of the bound above to get

Ek(N2, N3, N4, N5, N6)�δ N
2/3+2δ
2 N

4/3+4δ
3 N4N

2/3+2δ
5 N

1/3+δ
6 + (N2N3N4N5N6)

0.99+4δ.

(3.7)

The exponent of N3 is still greater than one. In order to �x this, we want to combine this

with a bound that is �good� for the variable N3 and whose exponent for N4 is not more

that one. We will need the following theorem by Fouvry and Iwaniec that can be found

in [FI89], Theorem 3, for which we will omit the proof.

Theorem 3.0.14. Let α, α1, α2 be real constants such that α 6= 1 and αα1α2 6= 0. Let

M,M1,M2, x > 1. We then have

∑
m�M

∑
m1�M1

∑
m2�M2

e(x
mαmα1

1 m
α2
2

MαMα1
1 Mα2

2

)�

[x1/4M1/2(M1M2)
3/4
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+M7/10M1M2 +M(M1M2)
3/4

+x−1/4M11/10M1M2)](log 2MM1M2)
2.

Corollary 3.0.15. Without any assumption on the variables, we have that

Ek(N2, N3, N4, N5, N6)� (N
11/12
2 N

5/6
3 N4N

7/6
5 N

13/12
6

+N2N
7/10
3 N4N5N6 +N

3/4
2 N3N

3/4
4 N5N6

+N
5/6
2 N

23/30
3 N

3/4
4 N

5/6
5 N

11/12
6 )(logN4)

2.

Proof. Applying Theorem 3.0.14 with x = 15kMαMα1
1 Mα2

2 n5n6, m = n3, m1 = n2,

m2 = n4, and of course M = N3,M1 = N2,M2 = N4, with their corresponding exponent

in the sequence i.e. α = 4/3, α1 = 2/3, α2 = 1 and the trivial bound on the two remaining

variables n5 and n6, we get

Ek(N2, N3, N4, N5, N6)� (N
11/12
2 N

5/6
3 N4N

7/6
5 N

13/12
6

+N2N
7/10
3 N4N5N6 +N

3/4
2 N3N

3/4
4 N5N6

+N
5/6
2 N

23/30
3 N

3/4
4 N

5/6
5 N

11/12
6 )(log 2N2N3N4)

2.

Now note that

(log 2N2N3N4)
2 � (logN2 + logN3 + logN4)

2 � (max{logN2, logN3, logN4})2, (3.8)

and since we are in the case where (5) fails, we have

N4
4 � (N2N3N5N6)

2 � N2
2 ,

which implies that

logN4 � logN2, (3.9)
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and similarly, we have

logN4 � logN3. (3.10)

Now plugging (3.9) and (3.10) in (3.8), we obtain

(log 2N2N3N4)
2 � (logN4)

2.

Corollary 3.0.16. Without any assumption on the variables, we have that

Ek(N2, N3, N4, N5, N6)� (N
7/6
2 N

5/6
3 N4N

11/12
5 N

13/12
6

+N2N
7/10
3 N4N5N6 +N2N3N

3/4
4 N

3/4
5 N6

+N
5/6
2 N

23/30
3 N

3/4
4 N

5/6
5 N

11/12
6 )(logN4)

2.

Proof. Since n2 and n5 have the same exponent, we can just swap them from Corollary

3.0.15.

Now note that if N3 � (N2N5N6)
1/3 then we can re-arrange (3.7) to get a bound

of the form (N2N3N5N6)
1−εN4 as desired. Otherwise, we have that N3 � (N2N5N6)

1/3

that we can use to re-arrange the second terms in Corollary 3.0.15 and 3.0.16 to get

N
1/15
2 N

9/10
3 N4N

1/15
5 N

1/15
6 (logN4)

2. Now recall we initially assumed (see (3.1)) that

logN4 � (N2N3N5N6)
1/100. so the second terms in each corollaries are actually bounded

by (N2N3N5N6)
1−εN4. Also, for both those corollaries, the third terms can be re-arranged

using the fact that (5) fails to beat the trivial bound in all the variables and the last term

already beats the trivial bound.

In our situation, we can then rewrite Corollary 3.0.15 and 3.0.16 as

Ek � N
11/12
2 N

5/6
3 N4(logN4)

2N
7/6
5 N

13/12
6 + (N2N3N5N6)

1−εN4
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and

Ek � N
7/6
2 N

5/6
3 N4(logN4)

2N
11/12
5 N

13/12
6 + (N2N3N5N6)

1−εN4.

Averaging these inequalities with weights 1/2, we obtain

Ek � N
25/24
2 N

5/6
3 N4(logN4)

2N
25/24
5 N

13/12
6 + (N2N3N5N6)

1−εN4.

Now combining this and (3.7) with respective weights 3/4 and 1/4, we get

Ek �δ min{N25/24
2 N

5/6
3 N4(logN4)

2N
25/24
5 N

13/12
6 , N

2/3+2δ
2 N

4/3+4δ
3 N1

4N
2/3+2δ
5 N

1/3+δ
6 }

+ (N2N3N4N5N6)
0.99+4δ + (N2N3N5N6)

1−εN4

� N
91/96+δ/2
2 N

23/24+δ
3 N4(logN4)

2N
91/96+δ/2
5 N

43/48+δ/4
6

+ (N2N3N4N5N6)
0.99+4δ + (N2N3N5N6)

1−εN4.

Now we use again the fact that logN4 � (N2N3N5N6)
1/100 and �x δ small enough so that

the above gives

Ek = o(N2N3N4N5N6) as N2N3N5N6 →∞.

So everything works when (1)-(4) hold, but we still have 4 cases to consider, namely

if (1) fails, if (2) fails, if (3) fails and if (4) fails. The idea will be to use some lower

derivative tests that give weaker bounds but under weaker conditions. We will see that

these weaker bounds will be enough to beat the trivial bound precisely because we assume

that the conditions for the 5th derivative test fails, which gives us a speci�c range of the

variables and allow us to re-arrange the bounds from lower derivative tests.

The following is a special case of Theorem 2.2.7 and is stated as such in the introduc-

tion of [RS02].

Theorem 3.0.17. (4th derivative test) If f (4)(x) ≈ λ and M � λ−4/7 then

∑
m�M

e(f(m))�Mλ1/14.

52



Corollary 3.0.18. If N19
2 � (N4

3N
3
4N

2
5N6)

4 then

Ek(N2, N3, N4, N5, N6)� (N32
2 N

46
3 N

45
4 N

44
5 N

43
6 )1/42.

Proof. This is Theorem 3.0.17 with m = n2, f(x) = 3kx2/3n
4/3
3 n4n

2/3
5 n

1/3
6 so we have

λ = N
−10/3
2 N

4/3
3 N4N

2/3
5 N

1/3
6 .

So if (1) fails but the condition for Corollary 3.0.18 is satis�ed i.e.

(N4
3N

3
4N

2
5N6)

8/59 � N2 � (N4
3N

3
4N

2
5N6)

4/19, we have

N9
2 � (N4

3N
3
4N

2
5N6)

1.2

since 9 · 8/59 > 1.2, so we can use Corollary 3.0.18 and re-arrange it to get

Ek(N2, N3, N4, N5, N6)� (N32
2 N

46
3 N

45
4 N

44
5 N

43
6 )1/42

� (N32+9
2 N46−4.8

3 N45−3.6
4 N44−2.4

5 N43−1.2
6 )1/42

= (N41
2 N

41.2
3 N41.4

4 N41.6
5 N41.8

6 )1/42, (3.11)

which beats the trivial bound in all the variables.

Corollary 3.0.19. If N11
3 � (N2

2N
3
4N

2
5N6)

4 then

Ek(N2, N3, N4, N5, N6)� (N44
2 N

34
3 N

45
4 N

44
5 N

43
6 )1/42.

Proof. This is Theorem 3.0.17 with m = n3, f(x) = 3kn
2/3
2 x4/3n4n

2/3
5 n

1/3
6 so we have

λ = N
2/3
2 N

−8/3
3 N4N

2/3
5 N

1/3
6 .

So if (2) fails but the condition for Corollary 3.0.19 is satis�ed i.e.

(N2
2N

3
4N

2
5N6)

8/43 � N3 � (N2
2N

3
4N

2
5N6)

4/11, we have

N7
3 � (N2

2N
3
4N

2
5N6)

1.3
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since 7 · 8/43 > 1.3, so we can use Corollary 3.0.19 and re-arrange it to get

Ek(N2, N3, N4, N5, N6)� (N44
2 N

34
3 N

45
4 N

44
5 N

43
6 )1/42

� (N44−2.6
2 N34+7

3 N45−3.9
4 N44−2.6

5 N43−1.3
6 )1/42

= (N41.4
2 N41

3 N
41.1
4 N41.4

5 N41.7
6 )1/42,

which beats the trivial bound in all the variables.

Corollary 3.0.20. If N19
5 � (N2

2N
4
3N

3
4N6)

4 then

Ek(N2, N3, N4, N5, N6)� (N44
2 N

46
3 N

45
4 N

32
5 N

43
6 )1/42.

Proof. This is Theorem 3.0.17 with m = n5, f(x) = 3kn
2/3
2 n

4/3
3 n4x

2/3n
1/3
6 so we have

λ = N
2/3
2 N

4/3
3 N4N

−10/3
5 N

1/3
6 .

So if (3) fails but the condition for Corollary 3.0.20 is satis�ed i.e.

(N2
2N

4
3N

3
4N6)

8/58 � N5 � (N2
2N

4
3N

3
4N6)

4/19, by swapping the exponents of N2 and N5

in (3.11), since N2 and N5 have the same exponent in the sequence, we get

Ek(N2, N3, N4, N5, N6)� (N41
2 N

41.2
3 N41.4

4 N41.6
5 N41.8

6 )1/42,

which beats the trivial bound in all the variables.

Corollary 3.0.21. If N23
6 � (N2

2N
4
3N

3
4N

2
5 )

4 then

Ek(N2, N3, N4, N5, N6)� (N44
2 N

46
3 N

45
4 N

44
5 N

31
6 )1/42.

Proof. This is Theorem 3.0.17 with m = n6, f(x) = 3kn
2/3
2 n

4/3
3 n4n

2/3
5 x1/3 so we have

λ = N
2/3
2 N

4/3
3 N4N

2/3
5 N

−11/3
6 .

So if (4) fails but the condition for Corollary 3.0.21 is satis�ed i.e.
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(N2
2N

4
3N

3
4N

2
5 )

8/67 � N6 � (N2
2N

4
3N

3
4N

2
5 )

4/23, we have

N10
6 � (N2

2N
4
3N

3
4N

2
5 )

1.1

since 10 · 8/67 > 1.1, so we can use Corollary 3.0.21 and re-arrange it to get

Ek(N2, N3, N4, N5, N6)� (N44
2 N

46
3 N

45
4 N

44
5 N

31
6 )1/42

� (N44−2.2
2 N46−4.4

3 N45−3.3
4 N44−2.2

5 N31+10
6 )1/42

= (N41.8
2 N41.6

3 N41.7
4 N41.8

5 N41
6 )1/42,

which beat the trivial bound in all the variables.

We still need to consider individually the cases the conditions for corollaries 3.0.18,

3.0.19, 3.0.20 and 3.0.21 fail.

Let us recall the statement Theorem 2.2.4 from Chapter 2.

Theorem 3.0.22. (3rd derivative test) If f (3)(x) ≈ λ then

∑
m�M

e(f(m))�Mλ1/6 +M1/2λ−1/6.

Corollary 3.0.23. Without any assumption on the variables, we have that

Ek(N2, N3, N4, N5, N6)� (N11
2 N

22
3 N

21
4 N

20
5 N

19
6 )1/18

+(N16
2 N

14
3 N

15
4 N

16
5 N

17
6 )1/18.

Proof. This is Theorem 3.0.22 with m = n2,M = N2, λ = N
−7/3
2 N

4/3
3 N4N

2/3
5 N

1/3
6 .

So if the condition for Corollary 3.0.18 fails, we have that

N6
2 � (N4

3N
3
4N

2
5N6)

1.1
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since 6 · 4/19 > 1.1 so we can re-arrange the bound of Corollary 3.0.23 to get that

Ek(N2, N3, N4, N5, N6)� (N11+6
2 N22−4.4

3 N21−3.3
4 N20−2.2

5 N19−1.1
6 )1/18

+(N16
2 N

14
3 N

15
4 N

16
5 N

17
6 )1/18

� (N17
2 N

17.6
3 N17.7

4 N17.8
5 N17.9

6 )1/18 + (N16
2 N

14
3 N

15
4 N

16
5 N

17
6 )1/18, (3.12)

which beats the trivial bound in all the variables.

Corollary 3.0.24. Without any assumption on the variables, we have that

Ek(N2, N3, N4, N5, N6)� (N20
2 N

13
3 N

21
4 N

20
5 N

19
6 )1/18

+(N16
2 N

14
3 N

15
4 N

16
5 N

17
6 )1/18.

Proof. This is Theorem 3.0.22 with m = n3, λ = N
2/3
2 N

4/3
3 N4N

−5/3
5 N

1/3
6 .

So if the condition for Corollary 3.0.19 fails, we have that

N4
3 � (N2

2N
3
4N

2
5N6)

1.1

since 4 · 4/11 > 1.1 so we can re-arrange the bound of Corollary 3.0.24 to get that

Ek(N2, N3, N4, N5, N6)� (N20−2.2
2 N13+4

3 N21−3.3
4 N20−2.2

5 N19−1.1
6 )1/18

+(N16
2 N

14
3 N

15
4 N

16
5 N

17
6 )1/18

� (N17.8
2 N17

3 N
17.7
4 N17.8

5 N17.9
6 )1/18 + (N16

2 N
14
3 N

15
4 N

16
5 N

17
6 )1/18,

which beats the trivial bound in all the variables.

Corollary 3.0.25. Without any assumption on the variables, we have that

Ek(N2, N3, N4, N5, N6)� (N20
2 N

22
3 N

21
4 N

11
5 N

19
6 )1/18
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+(N16
2 N

14
3 N

15
4 N

16
5 N

17
6 )1/18.

Proof. This is Theorem 3.0.22 with m = n5, λ = N
2/3
2 N

4/3
3 N4N

−7/3
5 N

1/3
6 .

So if the condition for Corollary 3.0.20 fails, and using Corollary 3.0.25, we get the

same as in swapping N2 and N5 in (3.12) since they have the same exponent, that is

Ek(N2, N3, N4, N5, N6)� (N17.8
2 N17.6

3 N17.7
4 N17

5 N
17.9
6 )1/18

+(N16
2 N

14
3 N

15
4 N

16
5 N

17
6 )1/18,

which beats the trivial bound in all the variables.

Corollary 3.0.26. Without any assumption on the variables, we have that

Ek(N2, N3, N4, N5, N6)� (N20
2 N

22
3 N

21
4 N

20
5 N

10
6 )1/18

+(N16
2 N

14
3 N

15
4 N

16
5 N

17
6 )1/18.

Proof. This is Theorem 3.0.22 with m = n6, λ = N
2/3
2 N

4/3
3 N4N

2/3
5 N

−8/3
6 .

So if the condition for Corollary 3.0.21 fails, we have that

N7
6 � (N2

2N
4
3N

3
4N

2
5 )

1.1

since 7 · 4/23 > 1.1 so we can re-arrange the bound of Corollary 3.0.26 to get that

Ek(N2, N3, N4, N5, N6)� (N20−2.2
2 N22−4.4

3 N21−3.3
4 N20−2.2

5 N10+7
6 )1/18

+(N16
2 N

14
3 N

15
4 N

16
5 N

17
6 )1/18

� (N17.8
2 N17.6

3 N17.7
4 N17.8

5 N17
6 )1/18 + (N16

2 N
14
3 N

15
4 N

16
5 N

17
6 )1/18,

which beats the trivial bound in all the variables.

Then we covered all the possibles ranges of the variables!
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Chapter 4

Abelian varieties over a �nite �eld of

dimension 3 with prescribed groups

In this chapter we present the results about Abelian varieties over �nite �elds of dimension

3 that we can prove using the bound on the exponential sum of �ve variable found in

Chapter 3. These results are actually extensions of the results in [DGS+13] for Abelian

surfaces.

In general an Abelian variety of dimension g over Fq is an algebraic variety, that is the

set of solutions of some polynomial equations with coe�cients in Fq, with the structure

of an Abelian group. For example an elliptic curve is an Abelian variety of dimension 1.

Silverman gives more precise de�nitions in [Sil92].

We then denote by A(Fq) the group of points of A with coordinates in Fq. Then A(Fq)

is a �nite Abelian group of rank at most 2g. In fact we have that

A(Fq) ' Z/m1Z× · · · × Z/m2gZ

with unique integersm1, . . . ,m2g such thatmi|mi+1 for all i = 1, . . . , 2g−1, or equivalently

A(Fq) ' Z/n1Z × Z/n1n2Z × · · · × Z/n1n2 · · ·n2gZ
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with unique integers n1, . . . , n2g. We will use both notations.

The qth-power-Frobenius is the map that raises each coordinates of the elements of the

variety to its qth power. Note that because A is de�ned over Fq, the image of every point

of A under the qth-power-Frobenius will still be in A and then the qth-power-Frobenius

is in fact an endomorphism of A. An important property of the qth-power-Frobenius

endomorphism is that it �xes A(Fq).

An isogeny between two Abelian varieties is a morphism that is surjective and has a

�nite kernel.

Let fA(T ) be the characteristic polynomial of the variety, that is the characteristic

polynomial of its Frobenius endomorphism (acting on some `-adic �nite dimensional

space).

A q-Weil number π is an algebraic number such that its absolute value and the absolute

value of all its Galois conjugates on the extension Q/Q is
√
q and a q-Weil polynomial is

a monic polynomial with integer coe�cients whose roots are q-Weil numbers. We know

that if A is an Abelian variety over Fq then fA(T ) is a q-Weil polynomial.

We say that two Abelian varieties are isogenous if there exists an isogeny between

them. We know that A1 and A2 are isogenous if and only if they have the same charac-

teristic polynomial, that is fA1(T ) = fA2(T ).

Abelian varieties over a �nite �eld Fq are classi�ed by the Tate-Honda theory which

asserts that there is a one-to-one correspondence between the Fq-isogeny classes of simple

Abelian varieties and conjugacy classes of Weil numbers. There is an obvious correspon-

dence between conjugacy classes of Weil numbers and Weil polynomials so we get the

following correspondence

[A]←→ fA(T ) = PA(T )
e

where [A] is the isogeny class represented by the Abelian variety A and PA(T ) is an
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irreducible polynomial whose roots are Weil numbers and e is an integer. Also it is

known that e = 1 if and only if EndFq(A)⊗Q is a �eld.

Let E be an elliptic curve over the �nite �eld Fq. Then E(Fq) is a �nite Abelian group

of rank at most 2 such that

E(Fq) ' Z/n1Z× Z/n1n2Z, (4.1)

for some positive integers n1, n2. Let S(N1, N2) be the set of pairs of integers

n1 ≤ N1, n2 ≤ N2 such that (4.1) holds, for some prime p. Banks, Pappalardi and

Shparlinski in [BPS12] conjectured that very �split� groups (when n1 is large compared

to n2) occur with density zero. This was proven by Chandee, David, Koukoulopoulos and

Smith in [CDKS12], who showed that if N1 ≥ exp(N
1/2+ε
2 ), for some �xed ε > 0, then

#S(N1, N2) = o(N1N2)

as N1 →∞.

Let A be an Abelian surface over the �nite �eld Fq. Now the group of rational points

on A is a �nite Abelian group of rank at most 4 such that

A(Fq) ' Z/n1Z× Z/n1n2Z× Z/n1n2n3Z× Z/n1n2n3n4Z. (4.2)

David, Garton, Scherr, Shankar, Smith, Thompson showed in [DGS+13] (Theorem 1.1)

that (4.2) do not occur if n1 is very large compared to n2, n3, n4. More precisely, if

n1, n2, n3, n4 are positive integers such that (4.2) holds, for some prime power q then

n1 < 60n
1/4
2 n

3/2
3 n

3/4
4 + 1.

They also showed (Theorem 1.2) that (4.2) occur with density zero in a wider range of

the variables. Let S(N1, N2, N3, N4) be the set of quadruples (n1, n2, n3, n4), that satis�es
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(4.2), for which Nj ≤ nj ≤ 2Nj for j = 1, 2, 3, 4. They showed that if

N1N
1/4
2

N
1/2
3 N

1/4
4

→∞

as N2N4 →∞, then

#S(N1, N2, N3, N4) = o(N1N2N3N4)

as N2N4 →∞.

We will follow their ideas to get some similar results for the case of Abelian varieties

of dimension 3. Starting now and for the rest of this chapter we let q be a prime power,

Fq be a �nite �eld with q elements and A be an Abelian variety of dimension 3 de�ned

over Fq.

Our �rst tool to study groups of points of Abelian varieties over �nite �elds is the

following elegant criterion of Rybakov's that can be found in [Ryb10].

Theorem 4.0.27. Let A be an Abelian variety over a �nite �eld Fq with characteristic

polynomial fA(T ). Suppose that EndFq(A)⊗Q is a �eld. Let G be an Abelian group with

#G = fA(1). Then

G ' Z/m1Z× · · · × Z/m2gZ, m1|m2| . . . |m2g

is the group of points on some variety in the isogeny class of A if and only if

2g−k∏
i=1

mi divides
f
(k)
A (1)

k!
for k = 0, . . . , 2g − 1

Remark 4.0.28. In fact, only looking at one direction of the theorem, Rybakov proves

that if G is as above and is the group of points of some Abelian variety A(Fq) with

characteristic polynomial fA(T ) then #G = fA(1) and

2g−k∏
i=1

mi divides
f
(k)
A (1)

k!
for k = 0, . . . , 2g − 1,
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and we do not need the condition that EndFq(A)⊗Q is a �eld.

We apply Remark 4.0.28 to the case g = 3 and change the notation of the group to

get rid of the divisibility condition that we have on the mi's.

Corollary 4.0.29. Suppose that

G ' Z/n1Z × Z/n1n2Z × Z/n1n2n3Z × Z/n1n2n3n4Z × Z/n1n2n3n4n5Z × Z/n1n2n3n4n5n6Z

is the group of points of an Abelian variety of dimension 3 with characteristic polynomial

fA(T ) = T 6 + a1T
5 + a2T

4 + a3T
3 + a2qT

2 + a1q
2T + q3. Then following system must be

satis�ed:

(a) q2a1 +a1 +qa2 +a2 +a3 +q3 +1 = n6
1n

5
2n

4
3n

3
4n

2
5n6 =: N

(b) q2a1 +5a1 +2qa2 +4a2 +3a3 +6 ≡ 0 mod n5
1n

4
2n

3
3n

2
4n5

(c) 10a1 +qa2 +6a2 +3a3 +15 ≡ 0 mod n4
1n

3
2n

2
3n4

(d) 10a1 +4a2 +a3 +20 ≡ 0 mod n3
1n

2
2n3

(e) 5a1 +a2 +15 ≡ 0 mod n2
1n2

(f) a1 +6 ≡ 0 mod n1

Proof. This follows directly by computing the derivatives of fA(T ).

We call those congruences (a)-(f) because we will use them a lot and refer to them

as Rybakov's equations or Rybakov's congruences.

Proposition 4.0.30. (Key Proposition) Suppose that

G ' Z/n1Z × Z/n1n2Z × Z/n1n2n3Z × Z/n1n2n3n4Z × Z/n1n2n3n4n5Z × Z/n1n2n3n4n5n6Z

is the group of points of an Abelian variety of dimension 3 with characteristic polynomial

fA(T ) = T 6 + a1T
5 + a2T

4 + a3T
3 + a2qT

2 + a1q
2T + q3 and that 15N

1/3

n2
1n2

/∈ Z. Let
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δ =
∣∣∣∣∣∣15N1/3

n2
1n2

∣∣∣∣∣∣
R/Z

be the distance between 15N
1/3

n2
1n2

and its nearest integer then

n1n
1/6
2 <

16

δ
n
2/3
3 n

1/2
4 n

1/3
5 n

1/6
6 .

Proof. The �rst step is to show that 5a1 ≡ −15(q + 1) mod n2
1n2. By adding and

subtracting the congruences in Corollary 2.7, we �nd that

a1 ≡ −q3 − 5 mod n2
1n2

a2 ≡ 10 + 5q3 mod n2
1n2

a3 ≡ −10− 10q3 mod n2
1n2

Lemma 4.0.31. 5(q − 1)2 ≡ 0 mod n2
1n2

Proof. Our goal is to imitate the proof of (q− 1)2 ≡ 0 mod n2
1n2 for Abelian surfaces in

[DGS+13]. So we need an equation of the form

(q − 1)(n2
1n2α + (±5)(q − 1)2) ≡ 0 mod n3

1n
2
2, (4.3)

for some integer α. We want to work modulo n3
1n

2
2 so we can only use Rybakov's equation

(a)-(d). By taking −(a) + 2(b)− 2(c) + (d) we get

(q − 1)(−1 + a1 + a2 − q + a1q − q2) ≡ 0 mod n3
1n2. (4.4)

Now respecting their equivalences modulo n2
1n2 we let

a1 = −q3 − 5 + k1n
2
1n2

a2 = 5q3 + 10 + k2n
2
1n2

a3 = −10q3 − 10 + k3n
2
1n2,
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for some integers k1, k2 and k3. Plugging those into (4.4) we obtain

(q − 1)(n2
1n2(k1(q + 1) + k2)− (q − 1)2(−4− 2q + q2)) ≡ 0 mod n3

1n
2
2.

In order to get something like (4.3) we need to reduce the powers of q in the second term.

The next step is to get information about q modulo n2
1n2 (and not only modulo n3

1n
2
2).

Replacing a1, a2 and a3 by their equivalence modulo n2
1n2 and taking 5(a)+ (q− 3)(c) we

get that

5(q − 1)3 ≡ 0 mod n2
1n2. (4.5)

Now −(a) + 5(q − 1)3 gives

(q − 1)5 ≡ 0 mod n2
1n2, (4.6)

so using (4.5) and (4.6) it is easy to see that

(q − 1)4 ≡ 0 mod n2
1n2.

We can then write (q − 1)4 = kn2
1n2, for some integer k. Now by adding

0 = (q − 1)((q − 1)4 − kn2
1n2) to (4.4) we get

(q − 1)(n2
1n2(−k + k2 + (1 + q)k1) + 5(q − 1)2) ≡ 0 mod n3

1n
2
2, (4.7)

which matches (4.3) that is what we were looking for. We can then continue in more or

less the same way as in [DGS+13].

Take a prime ` dividing n1n2. Let r = v`(n
2
1n2) and suppose for a contradiction that

v`(5(q − 1)2) < r. It is obvious that v`(n2
1n2(−k + k2 + (1 + q)k1)) ≥ r so

v`((q − 1)(n2
1n2(−k + k2 + (1 + q)k1) + 5(q − 1)2)) = v`(5(q − 1)3) <

3

2
r,
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and using (4.7) we get that

3v`(n1) + 2v`(n2) <
3

2
(2v`(n1) + v`(n2)),

which gives that v`(n2) < 0 and contradict the fact that n2 is an integer.

This lemma allow us to reduce the power of q in the congruence of a2 modulo n2
1n2

in the following way:

a2 ≡ 10 + 5q3 ≡ (10 + 5q3) + (−q − 2)5(q − 1)2 ≡ 15q mod n2
1n2.

Now plugging this into Rybakov's equation (e) we obtain

5a1 ≡ −a2 − 15 ≡ −15(q + 1) mod n2
1n2.

The next step is to use this to write 5a1 explicitly. We write

5a1 = −15(q + 1) + kn2
1n2, (4.8)

for some integer k.

Now we want to use bounds on a1 and on N to limit what k can be. Haloui provides

more precise bounds in [Hal10] but the following two lemmas are enough for this situation.

Lemma 4.0.32. If fA(T ) = T 6 + a1T
5 + a2T

4 + a3T
3 + a4T

2 + a5T + a6 is a Weil

polynomial then

|a1| ≤ 6
√
q.

Proof. We know fA(T ) is a monic polynomial whose roots are Weil numbers so we can

write it as

fA(T ) =
6∏
i=1

(T − βi) with |βi| =
√
q for all i.

By expanding this we get that a1 is the sum of 6 numbers with norm
√
q and then triangle
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inequality gives

|a1| ≤ 6
√
q.

Lemma 4.0.33. If fA(T ) is the characteristic polynomial of an Abelian variety of di-

mension 3 over a �nite �eld Fq, let N = #A(Fq), then we have

(
√
q − 1)6 ≤ N ≤ (

√
q + 1)6.

Proof. We know that fA is a Weil polynomial, so we can write

fA(T ) =
6∏
i=1

(T − βi) with |βi| =
√
q for all i,

and then

N = fA(1) = |fA(1)| =
6∏
i=1

|T − βi| . (4.9)

Now for each i, |βi| =
√
q, which implies that 1−√q ≤ |1− βi| ≤ 1 +

√
q. Plugging this

into (4.9) gives the result.

By Lemma 4.0.32, |5a1| ≤ 30
√
q and using (4.8), we get

−30√q ≤ −15(q + 1) + kn2
1n2 ≤ 30

√
q.

Rearranging this we get

15(
√
q − 1)2 ≤ kn2

1n2 ≤ 15(
√
q + 1)2,

and combining this with the bound from Lemma 4.0.33,

15
N1/3

n2
1n2

(√
q − 1
√
q + 1

)2

≤ k ≤ 15
N1/3

n2
1n2

(√
q + 1
√
q − 1

)2

. (4.10)
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Note that as q →∞ the above inequality forces that k → 15N
1/3

n2
1n2

, which can only happen

if 15N
1/3

n2
1n2

is an integer. Assuming it is not an integer, the next question is how big does

q need to be in order to squeeze k between two consecutive integers.

Let m = 15N
1/3

n2
1n2

. If m− δ < k < m+ δ then k belongs to an interval that contains no

integer so we get a contradiction. We then using (4.10) have that one of the two following

bound holds

m(1 + δ/m) ≤ k ≤ m

(√
q + 1
√
q − 1

)2

m

(√
q − 1
√
q + 1

)2

≤ k ≤ m(1− δ/m)

or equivalently

√
q ≤

1 +
√

1− δ/m
1−

√
1− δ/m

√
q ≤

√
1 + δ/m+ 1√
1− δ/m− 1

.

Now combining those with Lemma 4.0.33, we get

N1/6 ≤
1 +

√
1− δ/m

1−
√

1− δ/m
+ 1 (4.11)

N1/6 ≤
√
1 + δ/m+ 1√
1 + δ/m− 1

+ 1. (4.12)

So if (4.11) holds then since 1−
√
1− x > x/2 for all x ∈ (0, 1) we have

N1/6 ≤ m

2δ
(1 +

√
1− δ/m) + 1

and using the value of m this implies that

n2
1n2 ≤

15

2δ
N1/6(1 +

√
δ/m) +

n2
1n2

N1/6
.
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Now (1 +
√
δ/m) < 2 and n2

1n2

N1/6 ≤ n2
1n2 ≤ N1/6 < N1/6

δ
so

n2
1n2 <

16

δ
N1/6,

and similarly if (4.12) holds then since
√
1 + x− 1 > x/3 for all x ∈ (0, 1) we have

N1/6 ≤ m

3δ
(
√

1 + δ/m+ 1) + 1

≤ 15

δ

N1/3

n2
1n2

+ 1

and then

n2
1n2 ≤

15

δ
N1/6 +

n2
1n2

N1/6

<
4

δ
N1/6.

In both cases we have

n2
1n2 <

16

δ
(n6

1n
5
2n

4
3n

3
4n

2
5n6)

1/6,

which implies the result.

This already gives an intuition that the group is not too �split� since n1 and n2 are

small compared to the other ni's. But we would like a formula that does not involve δ

since we do not know how small it can be at �rst sight.

The following lemma will allow us to get a strict bound on δ so we can replace it

in Proposition 4.0.30. It has been done more generally by Alex in his generalization to

Abelian varieties of any dimension.

Lemma 4.0.34. If x be a positive integer with x1/3 /∈ Z, then

‖x1/3‖R/Z >
1

8x2/3
.

Proof. First, we write

x = (bx1/3c+ {x1/3})3,
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that we then expand and re-arrange to get

{x1/3} = x− bx1/3c3

3bx1/3c2 + 3bx1/3c{x1/3}+ {x1/3}2
. (4.13)

Now because, x1/3 /∈ Z, we have that bx1/3c3 < x and since both sides are integers, we

actually have that bx1/3c3 +1 ≤ x so the numerator in the right hand side of (4.13) is at

least 1. Now since {x1/3} < 1, the denominator is less than 3bx1/3c2 +3bx1/3c+1, which

gives

{x1/3} > 1

(bx1/3c+ 1)3 − bx1/3c3
. (4.14)

Similarly, we can write

x =
( (
bx1/3c+ 1

)
−
(
1 + {x1/3}

) )3
,

and the same process gives

1− {x1/3} > 1

(bx1/3c+ 1)3 − bx1/3c3
. (4.15)

Now combining (4.14) and (4.15) we obtain

‖x1/3‖ > 1

(bx1/3c+ 1)3 − bx1/3c3

and since bx1/3c+ 1 < x1/3 + 1 and bx1/3c > x1/3 − 1, we have that

‖x1/3‖ > 1

(x1/3 + 1)3 − (x1/3 − 1)3

=
1

2(3x2/3 + 1)

≥ 1

8x2/3
,

since x ≥ 1.
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So this applied to x = m3 and δ = ‖x‖ where m and δ are as before gives

δ >
1

8m2
,

which together with Proposition 4.0.30 (Key Proposition) gives the following theorem

that is an analogue of Theorem 1.1 in [DGS+13].

Theorem 4.0.35. Suppose that

G ' Z/n1Z × Z/n1n2Z × Z/n1n2n3Z × Z/n1n2n3n4Z × Z/n1n2n3n4n5Z × Z/n1n2n3n4n5n6Z

is the group of points of an Abelian variety of dimension 3. If 15N
1/3

n2
1n2

/∈ Z, then

n1 ≤ 2800n
7/6
2 n

10/3
3 n

5/2
4 n

5/3
5 n

5/6
6 .

We will see later that 15N
1/3

n2
1n2

is equidistributed modulo one as a sequence on 5 vari-

ables. We then know that this number will usually not be an integer.

Now we would like to get a stronger bound but in a probabilistic sense. That is getting

an analogue of Theorem 1.2 in [DGS+13].

The idea is to look at m = f(n2, n3, n4, n5, n6) = 15n
2/3
2 n

4/3
3 n4n

2/3
5 n

1/3
6 as a sequence

of 5 variables and to show that this sequence is equidistributed modulo 1 to say that

�most of the time� δ will not be too small.

Let

T (N2, N3, N4, N5, N6) = {(n2, n3, n4, n5, n6) : ni � Ni for all i}

and for 0 ≤ α < β ≤ 1, let

Zf (N2, N3, N4, N5, N6;α, β) = {(n2, n3, n4, n5, n6) ∈ T (N2, N3, N4, N5, N6) :

α ≤ {f(n2, n3, n4, n5, n6)} ≤ β}
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where {f(n2, n3, n4, n5, n6)} denote the fractional part of f(n2, n3, n4, n5, n6). We say that

the sequence f(n2, n3, n4, n5, n6) is equidistributed modulo one if

lim
N2,N3,N4,N5,N6→∞

Zf (N2, N3, N4, N5, N6;α, β)

N2N3N4N5N6

= β − α.

Note that this limit is letting all the variable one by one go to in�nity. The method that

we will use actually gives this limit by only letting the product N2N3N5N6 of all the

variables but N4 go to in�nity, which is indeed a stronger statement. But will see that

we need to assume a small condition on the relative size of the variable. Our goal is then

to show that for a region of the 5 dimensional plane as large as possible, we have that

lim
N2N3N5N6→∞

Zf (N2, N3, N4, N5, N6;α, β)

N2N3N4N5N6

= β − α. (4.16)

For a single variable sequence f(n), it is well known (Weyl's criterion) that equiditri-

bution modulo one in equivalent to

∑
n�N

e(kf(n)) = o(N) (4.17)

for each integer k 6= 0. The same can be done to prove the equidistribution of a multi-

variable sequence. The next theorem is explained in Chapter 1 of [Mon94] for a sequence

of one variable and an analogue of this for three variables has been done in [DGS+13]

(Theorem 5.1) and in fact their proof can easily be extended to any number of variables.

We will state it for our case which is �ve variables.

Theorem 4.0.36. Let f(n2, n3, n4, n5, n6) be a sequence of real numbers, and let

0 ≤ α ≤ β ≤ 1 then

∣∣∣#Zf (N2, N3, N4, N5, N6;α, β)− (β − α)#T (N2, N3, N4, N5, N6)
∣∣∣

≤ #T (N2, N3, N4, N5, N6)

K + 1
+2

K∑
k=1

(
1

K + 1
+min

(
β − α, 1

πk

))
|Ek(N2, N3, N4, N5, N6)|
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for any positive integers N2, N3, N4, N5, N6 and K.

Proof. For each positive integer K, let

S+
K(n) =

∑
−K≤k≤K

Ŝ+
K(k)e(kn)

be the Selberg polynomial upper bounding χ[α,β] the characteristic function of [α, β] as

de�ned in [Mon94] and its Fourier transform Ŝ+
K . Then

Zf (N2, N3, N4, N5, N6;α, β) =
∑
ni�Ni

χ[α,β](f(n2, n3, n4, n5, n6))

≤
∑
ni�Ni

S+
K(f(n2, n3, n4, n5, n6))

=
∑

−K≤k≤K

Ŝ+
K(k)

∑
ni�Ni

e(kf(n2, n3, n4, n5, n6))

=
∑

−K≤k≤K

Ŝ+
K(k)Ek(N2, N3, N4, N5, N6).

Now we know that

Ŝ+
K(0) = β − α +

1

K + 1

and

E0(N2, N3, N4, N5, N6) = #T (N2, N3, N4, N5, N6),

so we have

Zf (N2,N3, N4, N5, N6;α, β)− (β − α)#T (N2, N3, N4, N5, N6) ≤
#T (N2, N3, N4, N5, N6)

K + 1
+

∑
1≤|k|≤K

Ŝ+
K(k)Ek(N2, N3, N4, N5, N6).

It follows by properties of Selberg polynomials (upper or lower) that for 1 ≤ |k| ≤ K we

have ∣∣∣ŜK(k)∣∣∣ ≤ 1

K + 1
+min

(
β − α, 1

π |k|

)
,
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which implies that

Zf (N2,N3, N4, N5, N6;α, β)− (β − α)#T (N2, N3, N4, N5, N6) ≤
#T (N2, N3, N4, N5, N6)

K + 1
+

2
∑

1≤k≤K

(
1

K + 1
+min

(
β − α, 1

π |k|

))
|Ek(N2, N3, N4, N5, N6)| .

Now using S−K the Selberg polynomial lower bounding the characteristic function of [α, β],

we get that

Zf (N2, N3, N4, N5, N6;α, β) ≥
∑

−K≤k≤K

Ŝ−K(k)Ek(N2, N3, N4, N5, N6),

and this time we have

Ŝ−K(0) = β − α− 1

K + 1
,

which gives

Zf (N2,N3, N4, N5, N6;α, β)− (β − α)#T (N2, N3, N4, N5, N6) ≥

− #T (N2, N3, N4, N5, N6)

K + 1
+

∑
1≤|k|≤K

Ŝ−K(k)Ek(N2, N3, N4, N5, N6).

The other inequality follows similarly.

Corollary 4.0.37. (Weyl's criterion for �ve variables) Let f(n2, n3, n4, n5, n6) be a

sequence of real numbers, and let 0 ≤ α ≤ β ≤ 1.If for each integer k 6= 0 we have that

Ek(N2, N3, N4, N5, N6) = o(N2N3N4N5N6) as P →∞,

where P = P (N2, N3, N4, N5, N6), then

lim
P→∞

Zf (N2, N3, N4, N5, N6;α, β)

N2N3N4N5N6

= β − α.

Proof. Dividing the inequality of Theorem 4.0.36 by N2N3N4N5N6, we get that for any
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positive integer K, ∣∣∣∣Zf (N2, N3, N4, N5, N6;α, β)

N2N3N4N5N6

− (β − α)
∣∣∣∣

≤ 1

K + 1
+ 2

K∑
k=1

(
1

K + 1
+min

(
β − α, 1

πk

))
|Ek(N2, N3, N4, N5, N6)|

N2N3N4N5N6

. (4.18)

Note that (
1

K + 1
+min

(
β − α, 1

πk

))
≤ 1,

so the sum in (4.18) is bounded by

K
|Ek(N2, N3, N4, N5, N6)|

N2N3N4N5N6

.

Thus if Ek(N2, N3, N4, N5, N6) = o(N2N3N4N5N6) as P →∞, then there exist a function

g = g(N2, N3, N4, N5, N6) such that

g →∞ as P →∞,

but

g
|Ek(N2, N3, N4, N5, N6)|

N2N3N4N5N6

→ as P →∞.

Take K = dge then all the terms in (4.18) vanish as P →∞, which implies the result.

In Chapter 3, we considered the sequence f(n2, n3, n4, n5, n6) = 15n
2/3
2 n

4/3
3 n4n

2/3
5 n

1/3
6

and showed the following.

Proposition 4.0.38. Suppose that

logN4 � (N2N3N5N6)
1/100, (4.19)

then for all non zero integer k,

Ek = o(N2N3N4N5N6) as N2N3N5N6 →∞.
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From now we will assume that (4.19) holds. By Corollary 4.0.37 and the Proposition

4.0.38, we have

lim
N2N3N5N6→∞

Zf (N2, N3, N4, N5, N6;α, β)

N2N3N4N5N6

= β − α (4.20)

This allows us to prove the following theorem, which is an analogue of Theorem 1.2

in [DGS+13].

Theorem 4.0.39. Suppose that

logN4 � (N2N3N5N6)
1/100.

If

N1N
1/6
2

N
2/3
3 N

1/2
4 N

1/3
5 N

1/6
6

→∞

as N2N3N5N6 →∞, then

#S(N1, N2, N3, N4, N5, N6) = o(N1N2N3N4N5N6)

as N2N3N5N6 →∞.

Proof. Let F = F (N2, N3, N4, N5, N6) be a function that tends to in�nity with N2N3N5N6

and satisfying the bound

F ≤ N1N
1/6
2

52N
2/3
3 N

1/2
4 N

1/3
5 N

1/6
6

.

Without loss of generality, we may assume that N2N3N5N6 is large enough so that F ≥ 1.

Hence we may write

#S = #S1 +#S2

where

S1 := {(n1, n2, n3, n4, n5, n6) ∈ S : ‖3n2/3
2 n

4/3
3 n4n

2/3
5 n

1/3
6 ‖ ≤ 1/F}

S2 := {(n1, n2, n3, n4, n5, n6) ∈ S : ‖3n2/3
2 n

4/3
3 n4n

2/3
5 n

1/3
6 ‖ > 1/F}.

It follows from (4.20) that #S1 = o(N1N2N3N4N5N6) as N2N3N5N6 → ∞ and if
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(n1, n2, n3, n4, n5, n6) ∈ S2 then 15n
2/3
2 n

4/3
3 n4n

2/3
5 n

1/3
6 cannot be an integer so by the Key

Proposition

N1 ≤ n1 <
16n

2/3
3 n

1/2
4 n

1/3
5 n

1/6
6

‖3n2/3
2 n

4/3
3 n4n

2/3
5 n

1/3
6 ‖n

1/6
2

≤ 16(2N3)
2/3(2N4)

1/2(2N5)
1/3(2N6)

1/6

(1/F )N
1/6
2

< 52F
N

2/3
3 N

1/2
4 N

1/3
5 N

1/6
6

N
1/6
2

which contradicts the choice of F . We then conclude that S2 is empty and therefore

S = o(N1N2N3N4N5N6) as N2N3N5N6 →∞.
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