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ABSTRACT

Van Der Corput’s Lemma in Number Theory and Analysis and its Applica-

tions to Abelian Varieties with Prescribed Groups

Valentine Chiche-Lapierre, Master

Concordia University, 2014

Let A be an Abelian variety over a finite field F,. We are interested in knowing the
distribution of the groups A(F,) of rational points on A as we run over all varieties defined
over F,. In particular, we want to show that they are in general not too “split”. For the
case of dimension 1 (elliptic curves) and dimension 2 (Abelian surfaces), there are some
theoretical results due to David and her collaborators, but the general case is open.

We are interested in Abelian Varieties of dimension 3. We use Rybakov’s criterion,
which relates the existence of a given abstract group as the group of points of some
Abelian variety to properties of the characteristic polynomial of the variety. We can use
it to derive precise properties and then we use the fact that some sequence of monomials
of five variables is uniformly distributed modulo one to obtain stronger results that will
hold with probability one.

By Weyl’s criterion, equidistribution follows by bounding exponential sums, and in
order to do so, we will use a combination of different methods. We are particularly
interested in Van Der Corput’s lemma. It has a continuous version that exhibits the
decay of oscillatory integrals and a discrete version that gives a bound for exponential
sums. We will see the relation between these two versions and how they apply to the

original problem of Abelian varieties.
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NOTATION

symbol meaning

e(z) 27

f the Fourier transform of f, [*_ f(z)e(—z€)dx

o f directional derivative, that is 881% e %f of order |a| = oy + -+ + ay,
where oo = (o, ..., )

c* functions of real variables with continuous derivatives of order k

Cc*= functions of real variables whose derivatives of any order are continuous

f=0(g) there exists an absolute constant ¢ > 0 such that |f] < c|g|

f<yg same as f = o(g)

<59 f < g, where the implied constant is allowed to depend on ¢

f=olg) flg—0

f~g both f < gand f>g¢g

nx=xN N <n<2N
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Chapter O

Introduction

Let A be an Abelian variety of dimension 3 over a finite field [y, for some prime power
q. Previous results about the dimension 1 (elliptic curves) and the dimension 2 (Abelian
surfaces) will be stated at the beginning of Chapter 4. Let A(F,) be the group of rational

points on A. It is well known that A(FF,) form an Abelian group of rank at most 6 i.e.

A(F,) >~ Z/nZ X Z/nineZe X L)ninansZ X Z/ninensnaZ X Z/nyngngnansZ X Z/ninengninsneZ,
(1)
for some positive integers nq, no, n3, nyg, N5, ng. We are interested in knowing which groups
can occur for A(F;). In fact, we will show that the group A(F,) tends to be not too
“split”. This is compatible with the general philosophy of the Cohen-Lenstra heuristics,
which predict that random Abelian groups naturally occur with probability inversely
proportional to the size of their automorphism groups.
Using Rybakov’s criterion, we first find the following, which is an analogue of Theorem

1.1 in [DGS*13].

Theorem 0.0.1. Suppose that
G >~ Z/mZ x Z]ninoZe X ZL)ninensZ X Z/ningnsnaZ X Z/nynongngnsZ X Z/ninsnsninsneZ

is the group of points of an Abelian variety of dimension 3.



If 15n3/2n§/3n4n§/3né/3 ¢ 7, then
ny < 2800n5/6n§0/3ni/2n§/3ng/ﬁ.

We want to get a stronger result that will hold with probability one.For some large inte-
gers Ny, Na, N3, Ny, N5, Ng, let S(Ny, No, N3, Ny, N5, Ng) be the set of sextuples
(n1,n2,n3, ng, ns,ng), for which N; < n; < 2N; for each j = 1,2,3,4,5,6, and there
exists a prime power ¢ and an Abelian variety A/F, of dimension 3 such that (1) holds.

Let us now state our main result, which is an analogue of Theorem 1.2 in [DGS*13].

Theorem 0.0.2. Suppose that
log Ny < (NoN3N5Ng)' /10,

If
NN,/

— 0
N2 NI NIE N7

as NoN3NsNg — o0, then
#S(N1>N2, N3, Ny, N5, NG) = 0(N1N2N3N4N5N6)

as N2N3N5N6 — Q.

We will give the proof of this theorem in Chapter 4. The main steps of this proof can
be considered analogous to the steps provided in [DGS™*13]. We will see that an important
step of this proof involves the fact that a specific sequence of several variables is uniformly
distributed modulo one. By an analogue of Weyl’s criterion for higher dimension (that
we will prove in Chapter 4), it is enough to find a bound that beats the trivial one in
all the variables for a specific family of exponential sums. Chapter 3 is a proof of the

existence of such a bound. Let

Ek = Ek(N27N37N4aN57NG) = Z 6(15kn§/3n§/3n4n§/3né/3)

2



be the exponential sum that we need to bound in order to prove that the sequence

1502343 /3 1/3

5 Mg n4n§ né is equistributed modulo one. We will show the following:

Proposition 0.0.3. Suppose that
log Ny < (N3 N5 N5Ng)/100, (2)
then for all non zero integer k,
Ei = o(NaN3NyN5Ng) as NoN3N5Ng — 00.

We will use a combination of methods to bound exponential sums and see that the
most important of these is Van Der Corput’s lemma.

Van Der Corput’s lemma has a discrete version that gives a bound for exponential
sums and a continuous version that gives a bound for oscillatory integrals. In general an

oscillatory integral is one of the form

() = / Oy (),

for some variable positive parameter A\, some phase function ¢ and some amplitude func-
tion v. All the results that we will state and prove rely on the fact that if the phase is
smooth then the main contribution of I(\) comes from the points = where the gradient
of the phase is vanishing. This is called the stationary phase principle. Note that we
will show an interest in the asymptotic behaviour of these integrals for large values of A
because it is important for other applications in analysis.

Reading some of the seminal works that use Van Der Corput’s methods, we note that
they do not seem to agree on what Van Der Corput’s lemma is. To avoid any confusion
we will state and give names to the two versions of Van Der Corput’s lemma that we will

be interested in.



Theorem 0.0.4. (Analytic /Continuous Van Der Corput’s lemma)

1) If |¢/(x)| > A > 0 for all x € [a,b] and ¢'(x) is monotonic then

b .
/ (@) I

2) If k> 2 and |¢¥)(z)| > X\ > 0 for all x € [a,b] then

b .
/ (@)

We will prove this in Chapter 1, using the book of Stein and Shakarchi [SS11| as a

<3\ L

< 2k N1k,

reference, while also proving several other key results relating to bounds on oscillatory

integrals.

Chapter 2 is the important link between bounds on oscillatory integrals and bounds on
exponential sums. We now state the result from Chapter 2 that we will need in Chapter

3.

Theorem 0.0.5. (Discrete Van Der Corput’s Lemma / kth derivative test) Let
k be an integer with k > 3. Suppose f € C* and |f(k)(a:)’ ~AN>0 forallz < N. Let
Q =2%2 then

Z e(f(n)) < NATVUE=D provided N~9/C9-D « N,

n=N

where the implied constants in each < are allowed to depend on the implied constants in

~
~.,

Note that we are no longer interested in large values of A but in large intervals. The
main references for this are [Mon94| that makes the link between oscillatory integrals and
exponential sums and [Ten95|, which gives a property equivalent to the case k = 3 for
Theorem 0.0.5. Even though the proof of this is original, it is a well known fact that can

easily be deduced from a stronger but more complicated theorem that can be found in

|GKKO1].



When we are looking for bounds on exponential sums, the idea is mainly to use suc-
cessive kth derivative tests. Using this and Weyl’s criterion, we can show the well known
fact that for all non-integer positive real numbers «, the sequence n® is equidistributed
modulo one. We also believe that a similar result can be obtained for a multi-variable
sequence of monomials. In fact, we were able to show it for bi-variate sequences of

monomials.

Proposition 0.0.6. Let f(ny,ny) = rni'ng?, with oy, as non integer positive real num-

bers, be a bi-variate sequence, then f(ni,ns) is equidistributed modulo one.



Chapter 1

Oscillatory integrals and stationary

phase

Our only reference for this chapter is the book of Stein and Shakarchi [SS11]. We are

interested in a special kind of integral called an oscillatory integral that we define by

I(\) = /Rd @) (z)da,

where ¢ and 1 are two functions that map R? to R and are called the phase and the
amplitude, respectively, and X is a positive real number that can vary. We are interested

in particular in the behaviour of I(\) when A is large.

We will usually need ¢ and 1 in C*, for some k. For simplicity we will assume that
they are in C*°, but the value of k will be clear in each situation. We also assume 1) has

compact support so that we do not have to worry about the convergence of the integral.

We will note that if the phase is smooth with non-vanishing gradient then we have a
lot of cancellations and the above integral decreases very fast in A. So we have that if
the phase is smooth then the main contribution of I(\) comes from the points x where

the gradient of the phase is vanishing; this is called the stationary phase principle.



Also note that given & € R?, if we take ¢ = QW%ZE and A\ = [£] we get

1) = [ empta)dn = be).

which is the Fourier transform of the amplitude, and then the stationary phase prin-
ciple is in fact the decay of the Fourier transform. We recall that if v € C* then
H®) &) = (—27ri£)k¢(k) (€) and since ¢E’“)(§) is bounded we have that ‘zﬂ(ﬁ)’ < Gy ]5\%.

Note that we will sometimes give bounds that depends on constants that we do not
give explicitly. We will then often rename them from line to line without specifying. As

an example we may write 2¢ < ¢ by implicitly taking our new ¢ to be half of the old c.

1.1 Dimension one and Van Der Corput’s lemma in
analysis

Let us first consider the case d = 1. The amplitude and the phase are then simply

functions that map R to itself and the gradient of the phase is now just its derivative.

Proposition 1.1.1. If |¢/(z)| > 1 for all z € supp(v), then for each positive integer N,
we have that

1IN < exA Y.

Proof. For a function f € C*, we define the operator

1 d
L(f) = —a
and its transpose
T 1 d
L (f) = —a%(af%
with
1
a(x) = )



So if f,g € C* then integration by parts gives

/OO L(f)g = /Z fL (g) + {—a(m)gx)ﬂ@]w

[ [

If in addition g € C°, then we have

| wne= [ 1t

Also, this operator is useful here because L(e"?) = € and then LY (e**?) = ¢ for all

—0o0

N eN.

Thus

eiA¢ x) (LT>N

10 = [ 1¥)i(a)da
= [T o)

Now for each N, (LT)N (¢(z)) is ()" times a function that is continuous and supported

in supp(e)). This function is then integrable and does not depend on A.

So we get

|]()\)| S CN/\_N,

where for each N the constant C'y depends on the phase and the amplitude but not on
A. Hence as A\ goes to infinity, the decay of the integral is very fast and is in fact as fast

as the decay of the Fourier transform mentioned above. O]

Remark: For each N we said that (L)Y (¢(z)) = (5)Vhy(z), for some function
hx(x) that is integrable and does not depend on A. In the proof of this proposition we do
not need to be more precise about what hy(z) looks like, but because it will be important
later, we decide to describe it now. A simple product rule gives that

L &2

2
—)1/1+——+ w+ el



and by induction, we get that for each N, hy is a finite sum whose terms are products
of N derivatives of a of orders between 0 and N, and a derivative of ¢ of order between
0 and N. Now a derivative of a of any order will always be a quotient of continuous
functions, and its denominator will have absolute value at least one, since |¢/(z)| > 1 for
all z in the support of 1. For x not in the support of ¢, multiplication by 1(z) makes

everything zero. Hence hy is continuous and supported in supp(v)).

We will see in Chapter 2 that this proposition can be easily extended to higher di-

mensions.

Now if we take 1)(z) = X[o)(2) and define

b
Il()\):/ @) dy,

then 1) has indeed compact support but is not continuous so we cannot use Proposition
1.1.1. In fact, we will no longer be able to get such a fast decay as A approaches infinity.

We will only get a bound of the form
I\ < O

for some constant C', which is only the special case N = 1 in the Proposition 1.1.1.
However, the advantage is that we will be able to make the constant C' absolute. We
especially insist on the fact that C' will not depend on the length of the interval [a, b],

which will be important later when we will be interested in large intervals.

Proposition 1.1.2. (Van Der Corput lemma with k=1) If |¢'(z)] > 1 for all

x € [a,b] and ¢'(x) is monotonic, then
L) < 3A7L

Proof. We use the same operator as in the proof of Proposition 1.1.1 but now when we



do the integration by parts we get

b
Il()\):/ L(e?*®)dz

b ixp(z) 10
_ N(@) [T (1 € .
[ [ o).

The second term is obviously bounded by % and the first term is bounded by

[rote=s [z (5is)

1

dx (1.1)

is
1

A

1
< Z
A

and since ¢/(z) is monotonic and continuous, - <—> does not change sign. Then (1.1)
1 1 1

¢ (x)
/di (gb@)dx\ =375~ 7@l <3 |70

where the last inequality holds because ¢'(a) and ¢'(b) have the same sign, and this is of

9

course bounded by % Putting the two terms together, we get the result. O]

Note that if we replace the condition |¢'(x)| > 1 by |¢'(x)| > p > 0 then we can

“transfer” a factor of u to A in the following way: # > 1 so by Proposition 1.1.2 we
have that
" () 1
/ e T < 3(Ap) T

This is a simple trick that we will often use to derive this kind of conclusion from other

propositions without re-explaining.

Note that the proof of this proposition involves the evaluation of single integrals and

cannot be extended non-trivially to higher dimension.

Now what if ¢(x) is allowed to have a critical point?

Proposition 1.1.3. (Van Der Corput lemma with k=2) If |¢"(x)] > 1 for all
x € [a,b] then

I1,(N)] < 2V3A 712,

10



Proof. By taking the complex conjugate, we may assume that ¢"(x) > 1, so ¢'(x) is
monotone increasing. Now suppose that ¢ has a critical point and note that the fact that

¢’ is monotone increasing forces this point to be unique; we call it x.

For any § > 0 we can break [a, b] into three subintervals. Two of them that are 6 away
from xy, for which we will be able to use the Proposition 1.1.2, and one that contains x

but whose length is bounded by 2.

X0

2delta

Figure 1.1: break [a, b] into three subintervals

Then for all x > xy + § we have ¢'(z) > ¢'(x¢ + 0) since ¢’ is increasing, and by the
Mean Value Theorem, there is some & € (zg, 2o + J) such that

¢'(xo +0) — ¢'(x0)

5 =¢"(§) > 1.

Using the fact that ¢/(zg) = 0 and rearranging this we obtain

qf)/(l“() + 5) > 0.

So we have ¢'(x) > 6 on [z + d, b], which allows us to use the Proposition 1.1.2 to get

b
/ M@ dr| < 3(60)71,
:E0+§
and similarly ¢'(x) < =6 on [a, o — d], so
) 4
/ @ x| < 3(5N)71

11



Now by talking the trivial bound on the interval containing xy we get

xo+0
/ eiz\(j)(a:) dr
zo—0

and putting everything together gives

< 26,

L (N < 6(0N) 7 + 2.
To optimize this bound, we want to choose ¢ such that

6(0N) " = 26,

3
o

IT,(N)] < 2V3A7Y2,

or equivalently

and taking this o we get

To complete the proof, if ¢ has no critical point we can take xg to be any point and

the rest of the proof still works. O

In fact, using induction this proof extends to the general Van Der Corput lemma.

Proposition 1.1.4. (Van Der Corput Lemma for k > 2) If |¢®)(z)| > 1 for all
x € [a,b] then

| (\)| < 28AVE, (1.2)

Proof. Let k = 2. By Proposition 1.1.3 we have
[L(A)] < 2vBAT2 < 222712

which is (1.2) for k = 2.

Now let k£ > 3 and suppose (1.2) holds for £ — 1. Take § > 0 and follow the same

12



steps as the case k = 2. We get

II(\)| < 2(28H)(6X) "+ 426

(k=1)2

The optimal choice of § being 2~ & ~A~"* which is less that 2°~"A\~'/*_ we get the desired

result. O

Note that one could probably improve the constant 2¥ but the point is that it only

depends on k and not on the length of the interval [a, b].

These last three propositions were with no amplitude, and they are the ones we will be
interested in for an application to number theory that has to do with uniform distribution
modulo 1, for which by Weyl’s theorem we need to bound an exponential sum, as we will

see in the next chapter.

The Proposition 1.1.1 was with amplitude in the case k£ = 1; now let us consider the

case k = 2.

Proposition 1.1.5. If |¢"(z)| > 1 for all x € supp(v)) then
[T(A)] < epA™2,

where ¢y, =4 [ |¢/(x)] d.

Proof. Since 1 has compact support we can find a and b so that v is supported in the

interval [a,b]. Let J(z) = [7e?*™du, so that J(a) = 0. Then integration by parts gives

[ @@= @k - [ s

and then

b
umz—/memm+ﬂmmx

since the first term vanishes since supp(1) C [a,b]. By Proposition 1.1.4 we know that

13



|J(x)| < 4X\~Y2 for all z > a, so

b
(V)] < 4712 / /()] do.

1.2 Higher dimensions

Now we want to bound integrals of the form

where d can be greater than one. The nice results of Van Der Corput that give a bound
with an absolute constant is not extendible to higher dimensions, but we see that we can
still bound these integrals in some way.

The following theorem is an extension of Proposition 1.1.1 in the previous section.

Theorem 1.2.1. Suppose ¢ and ¢ are two C™ functions and v has compact support. If

Vol > 1 for all x € supp(y) then for any integer N > 0,
IT(N)] < exnA™.

Proof. The proof here is quite similar to the proof of Proposition 1.1.1, which is actually

just the special case d = 1 of what we are about to do. Consider the vector field L defined

on f € C* by
z)\za (9xk
1
= aa.V.ﬂ
with
a=(a aq) Ve
=(a1,..,04) = =3
Vol

14



Note that for each k and for all = € supp(v),

Jolo3 a¢
oxy,
ay(z)] < < |2
oulo)] < 25 < [

which is uniformly bounded since supp(v) is compact and ¢ € C*. In fact, we can
see that all the a;’s and all their partial derivatives are bounded on supp(¢)), and these

bounds depend on partial derivatives of ¢.

We know L has a transpose

F() =5 3 g () = =39 (af)

and that L(e??) = €%, So for all integers N > 0, we have

1) = [ e = [ (),

Now as it was explained in the remark after Proposition 1.1.1, extended to higher dimen-

sions we have that

1

(L)Y (@ (x) = (=5)" Y (Day@).(Daya)(Dat))

finite

where each (D,,a) corresponds to a partial derivative of a of order between 0 and N and
(D,1)) corresponds to a partial derivative of ¢ of order between 0 and N. Therefore, this

sum is bounded by f—% and supported in supp(v), and

Q

I < =X
|()!_)\,

as desired. ]

Note that the constant C'y depends on the support of ¢ and on partial derivatives of
¢ and .

15



The following is now an extension of Proposition 1.1.5 in the previous section.

Theorem 1.2.2. Suppose 1 has compact support. Let V¢ = {ajiisk} be the d x d
J

Hessian matriz of ¢. If det {V?¢} # 0 on supp(¢) then
[I(N)] < CA92,

Proof. Take € > 0 to be arbitrary for now. We need to control the support of ¢/ but since
it is compact we can cover it by finitely many e-balls. We will see that the choice of €
eventually depends on ¢ and not on the support of 1, so that we will be able to do this.

We write

J
supp(¢) € | B; = B,
j=1

so there exists a smooth partition of unity {n;}7_, with, 7; smooth, supp(n;) € B; for

each j and 37 n; = 1 on supp(¥)).

We can then write v as finitely many C* functions supported in e-balls in the following
way:

J

Y(x) = b)),

j=1
So it is enough to prove the theorem replacing 1(x) by ¢ (z)n;(x) for any of these j. Then

without loss of generality we may assume that the support of ¢ is included in an e-ball.

We use the fact that |I(\)]* = I(\)I()) to write

IV = / / N~ (VT dydr.
R2 JR4

Fix x and change the variable in the inner integral: v = y — x, and then swap the two

integrals. Then the above becomes

IV = / (),

16



where

Ta(u) = /R PN (o, )

and ¥ (z,u) = (x4 u)(x) is C* and has compact support. In particular it is supported

in |u| < 2e.
We will show that

|y (u)] < Cy(Au)™ for all N >0, (1.3)

and then by taking simultaneously N = 0 and N = d + 1, this will imply that

/ |J)\(U)|du/ < min{Cy, Cypq (Ju| )~} du
R4 R4

1 d+1
< — = ) 4
—0/ <1+|u|A) !
<
C/ 1+r)\ d+1

o] td 1
>\d / d+1 dt.
o (1+1)

The second to last integral is obtained by passing from Cartesian to spherical coordinates,
and the last integral is obtained by the change of variable ¢t = r A and is known to converge.

This implies that

which proves the theorem.

To see that (1.3) is true, we fix u and use the usual vector field L(f) = = (a- Vf) and

its transpose L (f) = =4V - (af), where

with

17



and all the derivatives are taken with respect to the variable x. As usual we want use

the fact that LV (eAle(ut2)=¢(@)]) = giAlé(utz)=6(@)] which gives that

D) = [ | [ s ) )

for all integer N > 0. So we are looking for an upper bound on (L)Y (¢(z,u))|. Now
as it was explained in the remark after Proposition 1.1.1 and already extended to higher

dimensions in the proof of Theorem 1.2.1, we have that

(L)Y () = (—%)N Y (Daya)-.(Daya)(Dat)) (1.4)

finite
where each (D,,a) corresponds to a partial derivative of a of order between 0 and N and
(D,1) corresponds to a partial derivative of ¢ of order between 0 and N. We know that
1 is smooth so all its partial derivatives are bounded on its support, which is compact,
so we are actually looking for a bound of the partial derivatives of the a;’s. In fact, we

want to show that for each multi-index «,
|0%al < Colul ™, (1.5)

for some constant C,,.
We claim that |b] = |V [o(z +u) — ¢(z)]| = |ul.

To see that |b| < c|u| we simply use the fact that ¢ is smooth so V,¢(x) is differ-

Vad(z+u)—Va(2)
[ul

entiable and then has a limit as |u| — 0. Then for |u| small enough, we

have % < O, for some C' > 0 and then |b| < C'|u|. Now we need to pick e small enough

to control |u| and this choice only depends on the function ¢ and not on v or its support.

On the other hand, to see that |b] > c|u| we fix = and use the Taylor expansion of ¢

as a function of u about u = 0. We get

Volg(@ +u) = d(x)] = 0+ Vo) - u+ O(|u”) (1.6)

18



We will need the following simple lemma from linear algebra.

Lemma 1.2.3. Let A be an invertible matriz; then there exists a constant C' > 0 such

that for all vectors x we have that

|Az| > C|x|.

Proof. Suppose for contradiction that for all C' > 0 there exists a vector x such that

|Az| < C'|z|.

By dividing both sides by |z| we can take x such that |x| = 1. Then we can construct a

sequence {x,} with the property that for each n, |z,| = 1 and

|Az,| < 1/n,
which tells us that
lim Ax, = 0.
n—oo
Since A is invertible we have that
lim x, =0,
n—oo
which contradicts the fact that |z,| = 1 for all n. O

In our situation we have that V?¢(z) has a non-vanishing determinant, so it is invert-
ible, and by Lemma 1.2.3
‘VQ(Z)(QU) u‘ > C |ul,

for some C' > 0. Using this and (1.6) we get that, for |u| small enough so that the
term O(|u|®) is negligible (and again we need to choose e small enough depending on the
function ¢), |b] ~ |ul.

In order to complete the proof of (1.5), note that in showing that |b| < ¢ |u| we used
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the fact that ¢ is smooth but in the same way we can use the fact that 9“¢ is smooth for
each multi-index « and get that V[0*¢(x +u) — 0%¢(z)] < C, |u|, and then by swapping
0 and V we get that |0%b| < C, |u|. Now using this with the fact that |b| ~ |u| we obtain
(1.5), that we now recall:

0% < Cy |u| ™",

Plugging this in (1.4) we get that

(L)Y ()| < Cw(ful )7

and then
| Ia(u)| < /Rd CN(|U|N /\)_NXsupp(w(%U))(x)dx
< Cn(lul )77,
which completes the proof of (1.3) and then the proof of the theorem. ]

The next theorem is what we can get if allow the Hessian to be vanishing.

Theorem 1.2.4. Suppose 1 has compact support. If rank{V?¢(x)} > m for all
x € supp(¢) then
II(\)| < CA™/2,

Proof. Taking zy € supp(¢), we have that V2¢(x) has rank at least m, so we can introduce
a new coordinate system x = (2/,2”) € R™ x R4"™ such that H’, the Hessian restricted
to R™, is non-vanishing at x, where xy = (2, x(). Now since ¢ € C*, H' is also non-
vanishing on a small ball around xj,. More precisely, there exists ¢ > 0 (that depends only
on ¢) such that H' is non-vanishing on B := B(x(,¢). For the same reasons as in the
previous theorem, we may assume that the support of ) restricted to the first coordinate,

suppg,, () is contained in B. This allow us to use Theorem 1.2.2 to get that

< ONT2,

/ ei)\qb(x’)wdx/
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Then we have

1I(N)] < C’/ ()@ dy’| da”
Rd—m Rm
< C/ Xsum?(iﬁ))‘immdx”
Rd—m

< C«)\—m/2’

where the constant C, that we rename at each step, eventually depends on the implied
constant from Theorem 1.2.2, the number of e-balls needed to approximate v, which

depends on supp(), and on ¢ (more precisely on the Hessian of ¢). ]
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Chapter 2

Van Der Corput’s methods to bound

exponential sums

2.1 Process B

Let f be a real valued function. We are interested in sums of the form

§:=3e(f(n)),

n

where n varies in some range that we will specify later. We will be particularly interested

in ranges such as N <n < 2N as N gets very big.

We will use results from Chapter 1, Section 1 from a different point of view. We
used to fix the phase ¢ and have the variable parameter A\ that multiplied ¢ and we were
interested in the behaviour of the integral for large values of A\. This was the analytic
point of view of this. Now A will no longer be a varying parameter but will be included in
the phase in the following way. Let us call § our new phase and suppose that |¢'| > A > 0.
Then if we let ¢ = /X we get that |¢'| > 1 and the phase is our usual A¢. Then we can
write the Analytic Van Der Corput’s lemma (Propositions 1.1.2 and 1.1.4) in a slightly

different way:

Theorem 2.1.1. (Analytic /Continuous Van Der Corput’s lemma)
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1) If |¢/(x)| > A > 0 for all x € [a,b] and ¢'(x) is monotonic then

b .
/ ()

2) If k > 2 and |¢¥)(z)| > X > 0 for all x € [a,b] then

b .
/ £i9(2) o

The following theorem can be found in the book [Mon94| by Montgomery.

<3\ L

< kN1,

Theorem 2.1.2. Strong analytic Van Der Corput’s lemma for k=1
Let ¢(x) and 0(x) be real-valued functions on |a,b] such that ¥(x) and 0'(x) are contin-
uous. Suppose that 0'(z) /1 (x) is positive and monotonically increasing on this interval.

If 0 < A\ <0 (x)/9(x) then

< = (2.1)

Proof. The proof of this is very similar to the regular analytic Van Der Corput’s lemma

- and its

for k =1, which is Proposition 1.1.2 above. We use the operator L(f) = 5= - &

transpose LT (f) = —55 - £ (L) then

271
b L [¢@e@@)]”, [*;r
U(x)L(e(0(z)))dr = o— o | T L7 (4p(x))e(0(x))de,
where the first term is bounded by A%ﬂ, and the second term is bounded by

2 (b,

which, using the conditions on ¢'(z)/1(x), is bounded by ﬁ%\l in the same way as in the

1 b

21 J,

proof of Proposition 1.1.2. Note that the conditions on 6'(z)/v(x) force its reciprocal to

be continuous, which allows us to use the Fundamental Theorem of Calculus. O
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The next corollaries are not in [Mon94] but we believe they are necessary to make the

details work in the next theorem.

Corollary 2.1.3. Let ¢(x) and 0(x) be real-valued functions on [a,b] such that ¥(z) and
0'(x) are continuous. Suppose that §'(x)/¢(x) does not change sign and is monotone on

this interval. If 0 < Xy <| @' (z)/¢(x) | then

/ (a)e(8(x))dz| < % (2.2)

Proof. Replacing # by —6 changes the sign of 0'(z)/v(x) and is taking the complex
conjugate of the integral, which does not change its norm. So without loss of generality

we may assume 6'(z)/1(z) > 0.

Now if ¢'(x)/¢(x) is monotone decreasing, we can do the change of variable u = —z

and

| v@ev)is

_ ‘/_ba¢(—u)e(0(—u))du , (2.3)

for which we can get a bound that does not depend on the interval of integration. So by re-
placing 0’ (x) /¢(z) by 0'(—z) /1 (—x) without loss of generality we may assume ¢'(z)/1(x)

is monotone increasing. O

Corollary 2.1.4. Let o(x) and 0(x) be real-valued functions on [a,b] such that ¥(x)
and 0'(x) are continuous. Suppose that 0'(x)/v(x) is monotone on the intervals whose
endpoints are a,b and the possible m points of discontinuities (of any type) of 0'(x) /1 (x).
If 0 < A\ <| 0'(z)/9(x) | then

/ W(@)e(O@))dz| < "1 (2.4)

- 7T/\1'

Proof. We prove the case m = 1 and the general case will follow similarly. Suppose there
is a unique point xy € [a,b] such that ¢ (x)/¢(z) has a discontinuity at x = zy. Since ¢’

and v are continuous, we must have ¢ (zy) = 0.
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For any e positive and small enough so that |¢(z)| < 1 for all = € [z — €, ¢ + €], we
have that the conditions of the previous corollary are satisfied on the intervals [a, xy — €]

and [xo + €, b], thus

b

b To—€ To+e
/ P(w)e(B(x))de| < / P()e(B(x))de| + / b)e@@)dz| +| [ w@)e@@)ds
a a xro—E€ xo+e€
< 2 2
> 7r_>\1 + 2Ze
and the result follows by letting ¢ — 0. 0

The next theorem can also be found in [Mon94| but we added some details in the
proof and believe they are necessary. To avoid keeping track of constants while they are
not really important we use the notation f = O(g) or equivalently f < g to say that
there exists an absolute constant C' > 0 such that |f| < C'|g|. We insist on the fact that
the constant cannot depend on anything, it is just a number that we could compute but

we avoid to do so only for convenience.

Theorem 2.1.5. (Truncated Poisson Theorem) Let f be a real-valued function, and
suppose that f' is continuous and increasing on [a,b]. Write o = f'(a) and B = f'(b).

Then
b

b
de(fn) = > / e(f(z) — va)dz 4+ O(log(2 + 8 — ). (2.5)

a a—1<v<p+1

Proof. Let N be an integer such that such that ‘N — %ﬂ < % If we replace f(x) by
fo(x) = f(x)— Nz then (2.5) does not change and f is still continuous and increasing but
then fj(a) =a — N and f{(b) = 8 — N so |fi(a) + f5(b)| = |o +  — 2N| < 1. Therefore
without loss of generality we may assume that |« + §| < 1. Note that since a < ( this

forces f > —1/2 and a < 1/2.

Define 7(x) = e(f(x))Xa,) Then r has bounded variation, since it is continuous except

for a possible jump-discontinuity at a and b, and is obviously integrable, so we can use
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the Poisson summation formula. This is explained in [Hel95]. We then have

S e = 30 M) o
= Zf(u) +0(1

where 7(v) = ff e(f(x) — vx)dz is the Fourier transform of r. Note that the implied
constant is absolute (at most 2). The idea is that when v is away from the interval [a, (],
the integral that defines 7(v) has no stationary phase, so it will be small. So the main
contribution of the sum ) 7(r) comes from the v’s that belong to [a, 5]. In fact, we will

show that Zugz[aq,ml] 7(v) < log(2 +  — ), which proves of the theorem.

Take v ¢ [ — 1, 8 + 1]. By integrating by parts we can express 7(v) as

/ e(f(z))e(—vx)dx = e(f(a) — va) _ el/(b) — vb) / f'(z —vz)dz. (2.6)

2Ty 27rw

Note that 0 € (o — 1,8+ 1) since | @ + 5 |< 1, so v cannot be zero and then

_ %/ f/(lt)e(f(x) — VJ])dl’ + 0(1),

where the implied constant is absolute (at most <).

We want to show that
Z / f(x —vx)dr < log(2+ f — ).
vé[a—1,8+1]

Take v > f + 1. We want to use Theorem 2.1.2 with ¢» = f" and ¢(z) = f(z) — zv. We

know that

(55) = 7 > &
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SO % has no more than one point of discontinuity, is monotone increasing and
fl—v , a—v| |f—v
> man ,
I o B
, b—v| |-V
> min )
i[53
V PR—
= b >0
B+1

since v is closer to  than is it to « and 5 > —1/2.

Then by Theorem 2.1.2 with \; = 22

B+17
b B_i_ 1
/ f(z)e(f(x) —vr)dr < —t (2.8)
where the implied constant is absolute.
Now if 5 > 1 then (8 +1) < 28, so
’ s
! —vx)d
P @el@) - e < L
and
Z B Z ( 1 1)
vop VT B v>B+1 -8 v
> m)
PRl L
= lim i o i L
AR Wi Pl L B

<1+ log([A])

< 3log(B +2),
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and if —1/2 < 8 < 1 then using 2.8, we have

b
| r@etse) - vyt <

v+1/2
and
11 — 1 n?
- < — = — < 5log(3/2 1 2).
ST S D e = g < Slea(3/2) <log (542
v>F6+1 v=1
We treat the case v < a — 1 in the same way. But now % is monotone decreasing and

v is closer to « than it is to 3 so

V—«u

f—v -
T a+1

f‘/

0,

which, using the strong analytic Van der Corput’s lemma, that is Theorem 2.1.2 with

A = &=, gives

a+1?
b
a+1
! —vx)d
Afmwm ) < S
and
1 1
_at < log(—a + 2).
v<al vyrv —uo

Putting everything together, we get

Z % / f'(x)e(f(z) — vo)dr < log(B + 2) + log(—a + 2)

vé[a—1,8+1] @

< log (max {8 + 2, + 2})

< 1Og(/6 —a+ 2)a

where the last inequality is clear for « < 0 and § > 0. If —1/2 < 5 < 0 then using

la+ Bl <1and a < 8, we get —1 < @ < 0 and then max {8 + 2, + 2} < 3. Then
log (max {f + 2, +2}) < log3 < 3log3/2 < 3log (8 — a + 2),

since § —a + 2 > 3/2. O
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The following result can be found in the book [Ten95| of Tenenbaum.

Theorem 2.1.6. (2nd derivative test) Let f € C?[a,b] and suppose there exists ¢ > 1

such that for all t € (a,b) we have
0< A< |f"(t)] < e

then
N P A

a<n<b

Here we use the notation <. to indicate that the implied constant depends on c.

Proof. The condition on f” forces f’ to be monotone (increasing or decreasing). By
taking complex conjugates on both sides, we may assume f’ is monotone increasing. So

we can use the Truncated Poisson Theorem to get that

b
Seim)= Y [ elf@) - vade+ Oog2+ G- ) (29)

a a—1<v<p+1

where a = f'(a) and g = f'(b). Now for each v € [a— 1,5+ 1], let g(t) = f(t) — vt; then

g'(t) = f'(t) —vand ¢"(t) = f"(t). So we have
0< A< |g"(®)] <A
and we can use Van der Corput’s lemma for £ = 2 to get that
b
/ e(g(x))de < \7V2.

So the sum over v is bounded by this times the length of the interval [ — 1, 5 + 1], and

using the Mean Value Theorem,

B—a=f(b)—fla)=(b—a)f"(§) < (b—a)eh < (b—a). (2.10)

The length of the interval [a — 1, 84 1] is then bounded by a constant times (b —a)\ + 1
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(the +1 is necessary to ensure that the implied constant does not depend on A). The sum
on the right hand side of (2.9) is then, up to a constant that depends only on ¢, bounded
by

[(b—a)A+ 1A Y2 = (b — a) A2 4 A7V/2,

and whenever a # b, we use (2.10) to see that
log (24 8 — @) < log (2+ (b —a)A) < (b—a)A'"?,

so we do not need to consider log (2 + 5 — «) in (2.9). O

2.2 Combining process A and process B

We want to get bounds using higher derivatives. The following lemma is a classical trick
that will enable us to deduce information about the kth derivative of a function from

information about its (k 4 1)st derivative. The next result can also be found in [Ten95].

Lemma 2.2.1. (Process A) Let fi(z) = f(x + h) — f(x) be a discrete derivative of f

where f is a real-valued function on [a,b]. Let H be an integer such that 1 < H <b— a,

>1/2

then
H

Ze(f(n))‘ <D 4 <b;]“ S elum)

h=1 |n=a

|S] ==

Proof. Let F(n) =e(f(n))- Xqy- Then we can write

S= Y F(n)

m=1n=—o0
H 00
1

- Z Z F(n +m) by changing the variable n — n + m for each m

m=1n=—o0

1 00 H
== Z <mZ:1F(n+m)>

n=—oo
Note that what is inside the parenthesis is only non-zero when n is such that there exist
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at least one m such that 1 < m < H and a < n+ m < b, which is only the case for

(a—H—1)<n<(b—1). So we can restrict the sum over n and write

1 b—1 H
S:E <ZF(n—|—m)>,
n=a—H-1 \m=1

and use the Cauchy-Schwartz inequality to get

n=a—H-1 n=a—H—1m,m/'=1

\S|2§%( i )( Z Z F(n+m)F n—l—m’)). (2.11)

Now the first factor here is at most b —a+ H < 2(b—a). Let us look at the inner sum in
the second factor. When m = m’ we have F'(n+m)F(n+m’) =1 so we can isolate this
case that happens exactly H times. Now since we do not change the terms by exchanging

m and m’ and we know this sum is real, we can write it as

H + 2Re Z F(n+m)F(n+m).

1<m<m/<H

So we see that the second factor in (2.11) is at most

2H(b—a)+2 Z ZFn—l—m F(n+m')|. (2.12)

1<m<m/<H n€Z

Then we perform the change of variables v = n +m and r = m — m’ then v runs over
7Z and r takes the values 1,..., H — 1. Moreover, for each fixed v and r there are exactly
H — r solutions for {n,m,m'}, namely {v —j —r,j 4+ r,j}, where 1 < j < H —r, so

(2.12) becomes

H-1
2H(b— a) + 2 Z(H—TZF Flv—r)
r=1 VEZ
<2H(b—a) +2HZ ZF V—T
r=1 |veZ
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Pugging our upper bound for the first and the second product in (2.11) we obtain

)

> Fw)F(v—r)

vEZ

Now we know that for all z,y > 0, x +y > /22 + y?) and thus |S| is at most the sum of

|S|2§%-2(b—a)-2}] ((b—a)+2_:

_ (2(1\9/—?@)>Q+4 (b;[aHX:l _

r=1

Y F(W)F(v—r)

VEZL

the square root of each term, which gives the result, noting that F(v)F (v —r) # 0 only

fa<v<b-r. ]

Remark 2.2.2. Process A (Lemma 2.2.1) implies the following that will be useful later.
Let fr(x) = f(z+h)— f(z) be a discrete derivative of f where f is a real-valued function
on |a,b]. Let H be an integer such that 1 < H <b—a and

b—

Ze(fh<n))

n=a

H
Z < b-—a.

h=1

Then

For simplicity and because this is what we will eventually be interested in, we will

take the special case [a,b] = [N, 2N], for some big integer N. So we redefine

S:=>e(f(n)).

n=N

Also, we want to weaken a little bit the condition 0 < X < |f”(¢)] < ¢ in Theorem 2.1.6
to f(t) =~ g(t). Following the proof of the 2nd derivative test, it is not hard to see that

we can extend it in the following way.

Theorem 2.2.3. (2nd derivative test) Let f € C*([a,b]) and suppose that

|f"(x)] = XA >0 for all x < N; then
S < NAVZ2 4 \712,
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where the implied constant in < is allowed to depend on the implied constants in ~.

As we will see in Chapter 3, we are interested in getting a bound that beats the trivial
one for exponential sums where the phase f is a monomial like n®. In this case, we have
that the kth derivative of f, f*)(x) ~ 2°7* so the main term in the 2nd derivative test,
which is NA!/2, beats the trivial bound if and only if %2 + 1 < 1, which is only true for
« small. For bigger o, we need a bigger k to decrease the exponent of N in A\. We are
then looking for a higher derivative test. In order to do so, we will combine processes A
and B and see that an induction process is possible. The following result can be found

in [Ten95|, page 94.

Theorem 2.2.4. (3rd derivative test version 1) Suppose |f"”(x)| = X > 0 for all
r =< N; then

S < NAYO 4 NV2)\~1/6,
where the implied constant in < is allowed to depend on the implied constants in =.

Proof. Let H be an arbitrary (for now) integer such that 1 < H < N. By Lemma 2.2.1

(Process A), we know that

o\ N[N 1/2
15| < Te 2 g Z Z e(fu(n)) : (2.13)
h=1 | n=N

It follows from Taylor’s Theorem and the fact that | f"”(x)| ~ A that |f//(x)| = hA. So we
can use the 2nd derivative test on f;, for each h from 1 to H to get that
2N—h

Z e(fu(n)) < (BMA)YVA(N = h) + (hA)~'/2

n=N

< (RA)YVEN + (RA) V2,

Plugging this into (2.13) and using, as in the proof of Lemma 2.2.1, the fact that

xr+y > \/x? + y?, we obtain

|S’ < NH_1/2—|—NH1/4)\1/4—|—N1/2H_1/4)\_1/4.
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Now we need to choose H optimally. The choice H = |A™'/3| makes the first two terms

of the same order of magnitude and gives

S| < NAVE 4 N1/2)\~1/6, (2.14)

Note that this choice of H is only possible if 1 < A8 < N, but if A > 1 then the
first term in (2.14) is greater than N and if A™'/3 > N then the second term in (2.14) is

greater than N. In both cases, the theorem is trivially true. O]

Remark 2.2.5. An important step in the proof of Theorem 2.2.J is the choice of H.
We saw that choosing H such that the first two terms have the same order of magnitude
works perfectly. If instead we want the first and last terms or the second and last term
to have the same order of magnitude, we need H ~ N?X and H ~ (NX)™!, respectively,
which is possible when N and A are such that 1 < H < N, but this time there is nothing

we can do with the other cases.

In the application of this that we will interested in, the first term in the bound of
Theorem 2.2.4 usually has a bigger order of magnitude that the second term. We will
then call the first and second terms the main and error terms respectively. To make the
induction process easier and get higher derivative test, we will state the following, which

is a consequence of Theorem 2.2.4, and prove it in a different way.

Theorem 2.2.6. (3rd derivative test version 2) Suppose |f"(x)] ~ X > 0 for all
x =< N, then

S < NAYS  provided N2/ < N,

where the implied constants in each < are allowed to depend on the implied constants in

~
~.

Proof. We saw in the proof of Theorem 2.2.4 that we may assume that A < 1.
Suppose that A=%% < N. This, together with the fact that A < 1, immediately gives
us that A~Y/3 < N, which allow us to pick H to be a positive integer with H ~ A/ and

H < N.
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Just like in the proof of Theorem 2.2.4, it follows from Taylor’s Theorem that if
|f"(x)] = A then |f/(z)| & hA. So we can use the 2nd derivative test on f, for each h
from 1 to H to get that

2N—h

Z e(fu(n)) < (BMA)YA(N = h) + (hA)~'/2

n=N

< (AA)Y2N + (hX) 72,
which gives

H H
< )\I/QNZ h1/2 + )\—1/2 Z h—1/2

h=1 h=1

< N 4+ X723,

>

h=1

S e(fa(n)

n=N

2N—h ‘

since H ~ A/3. Now the fact that A=%% < N gives

H |2N—h
SIS elulm)| < N,
h=1 | n=N

so we can use Remark 2.2.2 to get that

S < < N)'/S,

H1/2
O

Theorem 2.2.6 will be the starting point of our induction process and we will proceed
in a similar way. Graham gives an explicit but somewhat complicated bound in [GKK91],

from which we can deduce the following theorems that we will prove in an easier way.

Theorem 2.2.7. (kth derivative test) Let k be an integer with k > 3. Suppose f € C*

and ‘f(k)(a:)} ~A>0 forallz < N. Let Q =2%=2). Then

S < NAVWUR=2) provided A\~9/P9Y « N,

35



where the implied constants in each < are allowed to depend on the implied constants in

~
~.

Proof. We proceed by induction on k, the case k& = 3 being covered by Theorem 2.2.6.
We suppose that k£ > 3 and that the theorem holds for (kK — 1). We may again assume
that A\ < 1.

Let H be an arbitrary (for now) integer such that 1 < H < N. It follows from Taylor’s

Theorem that } (k 2

)‘ = hA since |f®)(z)| < A, so we can use the (k-1)st derivative
test on f, for each h from 1 to H with A\, = h\ then the condition for the kth derivative

with the fact that h > 1 implies that

)\;(Q/Z)/(Q(Qﬂ)*l) < A~Q/(2Q-1) N,

which is the condition for the (k — 1)st derivative test, so we can use it to get that
ON—h
Z e(fn(n)) < N(\h)Y/CQ=2),

n=N

We would like to pick H ~ X Y/(@-D and we can do so because the condition

A~Q/2Q-1) « N implies that A~1/(29~1) « N¥/@ < N, which also gives that

b—

>

>

h=1

< \/(2Q-2) Nzhl/@@ 2)
h=1

< NAV@-2) (2-1)/(2Q-2)

n

Il
8

< N.

So by Remark 2.2.2 (Process A),

< N)\V/(4Q-2)

S<< H1/2 -
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2.3 Application: uniform distribution of sequences of
monomials

Now we can use this to get a bound on an exponential sum where the phase is a single
variable monomial. By Weyl’s criterion, a sequence f(n) is equidistributed modulo one

if and only if for each integer m # 0,

S = Ze(mf(n)) =o(N)as N - o0

n=<N

Proposition 2.3.1. Suppose a > 0 and o ¢ Z. Then for all non zero real numbers r,

the sequence {rn®} is equidistributed modulo 1.

Proof. Take an integer m # 0 and let f(z) = mrz®. By Weyl’s criterion, we need to
show that S = o(N) as N — co.

Take k = |a] 4+ 1. Then for all z < N, we have
| mf®(z) |= mr(a)(a—1)..(a — k+ 1)1‘(0‘/_1) ~ N1

where o is the fractional part of a.

/ .- _Q .
So taking A = N~ and Q = 272, we see that the condition \"20=T < N is always
satisfied since —(a/ — 1) and 2@% are both less than 1. So we can use the kth derivative
test to get that

S < NAia—z,

and since A = o(1) as N — oo we conclude that S = o(N) and then the sequence is

equidistributed modulo one. O]

We now consider the case of two variables. Let f(x1,25) = ra"z3* with oy as non

integer positive real numbers and some non-zero real number s. We say that the sequence
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f(n1,n9) is equidistributed modulo one if

1. #Zf(NlaNQ;Oéaﬁ)
11m
N1,Na—o0 N1 N,

:ﬂ_aa

where Z¢(Ny, Noj o, B)) = {(n1,n2) : nqy < Ny,ng < Noyao < {f(n1,n2)} < B}. In fact,
the method that we use gives us this limit by only letting the product N; Ny go to infinity,

that is

li #Zf(NbNQvOéaB)
1m
NiNa—o00 NlNQ

=B8—a. (2.15)

To avoid re-writing (2.15) every time, we decide, in this chapter, to say that the sequence
f(n1,n2) is equidistributed if (2.15) holds.

In Chapter 4, we will see that there is some Weyl’s criterion for higher dimension, see
Theorem 4.0.36 and Corollary 4.0.37, for the case of five variables, but in fact the same

proof can easily be adapted to any number of variables.

Theorem 2.3.2. (Weyl’s criterion for two variables) Let f(ni,ns) be a sequence of

real numbers. If for each integer m # 0 we have that

Z Z (mf(ni,ng)) = o(N1N3) as NNy — 00

n1<N1 nox<No
then f(ni,n9) is equidistributed modulo one.

Proposition 2.3.3. Suppose oy, a0 > 0 and ¢ Z. If a1 + ag < 2 then the sequence

{f(n1,n2)} is equidistributed modulo 1.

Proof. By the 2nd derivative test we have

S < (M2Ny 4+ AN,

S < (A2Ny + A, 2Ny,
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where \; = N 72N$2 and Ay = N N5272. So we have

S <« NMENJree/2 o yl-ea npme2/2

S <« Nit2Nge/2 4 Nl npmee/?

and by averaging these inequalities with respective weights ¢ and (1 —¢), we get

S < Ny 2Ny min (NP NG Tee? e Nge /2y
< Nllfoq/ZNQlfag/Q + Nfa1/2+(17t)(1+a1/2)N$(1+a2/2)+(17t)a2/2.
Now the first term is obviously o(/N;Nz), and the average of the exponents in the second

, which is smaller that 1, since a; 4+ as < 2. So by choosing the optimal

term is 2*“}%

t, we can make the second term beat the trivial bound in all the variables. O

Using the same technique as for single variable monomials, there should be a way to

extend this to bigger oy and aw.

Proposition 2.3.4. Let k be an integer with k > 3 and let Q = 282, If

a2 @
NFTmTTE o o (2.16)
and
)@ Q-
N oy (2.17)
then

§  NIHEI/(IQ-2) T (an—(1-08)/(40-2)
for all t € [0, 1].
Proof. Conditions (2.16) and (2.17) are precisely the conditions for the kth derivative
test with variables Ny and N, respectively, for which the value of X is N**N$? and
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N N2k respectively. Applying these two kth derivative tests simultaneously, we get

1+ 535 152
Z e(mf(ni,ng)) < Ny N,
TllXNl

1+a27k

S elmf(niny)) < N2 N, 0,

no=<No

which trivially gives

a)—k ag
S << N11+4Q72N21+4Q72
aq

o ag—k
S << N11+4Q—2N21+4Q72

Now, as it is will be explained in Chapter 3 (Lemma 3.0.11), for all ¢ € [0,1], we can

average these two inequalities with respective weights ¢t and 1 — ¢ to get the result. [J

Proposition 2.3.5. Let k = |ay + ay + 1] and Q = 2872, Suppose that k > 3. If

A i

and

S
then the sequence is equidistributed modulo 1.

Proof. Follows directly from Proposition 2.3.4 since the average of the exponents is
W which is strictly less that one since £ > a; + as. So by choosing the opti-

mal ¢ € [0, 1], we get a bound that beats the trivial one in all the variables. O

Note that the two conditions in Proposition 2.3.5 are not very restrictive since the
power on the left hand side is less than the power in the right hand side. In particular

they are satisfied if Ny &~ Ns.

Proposition 2.3.6. For all integers k > 3, if the condition for the (k + 1)st derivative

test with Ny as a variable fails, then the kth derivative test with Ny as a variable, under
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its weaker condition, can be re-arranged get
S = O(NlNQ) as N1 Ny — .,

Proof. Fix k > 3 and let Q = 282, Suppose that the condition for the (k+1)st derivative

test with N; as a variable fails. Then we have that

2Q

k+l—a)-29 — a
NI g T (2.18)

Note that the exponent on the right hand side is positive, so (2.18) is only possible if the

exponent in the left hand side is also positive:

—1>0. (2.19)

Now, under its condition which is weaker, the kth derivative test with respect to N; gives

a)—k a9
S « N, N, (2.20)

which for all ¢ > 0, we can re-arrange using (2.18) to obtain

R (ke 1—a1) 22— —1]

ag 2Q
S < N1+4Q’2 11 U\ o e g
1 .

N, (2.21)

If possible, the optimal choice for ¢ is such that both exponents are the same, that is

ktay—a 1

t = .
4Q) — 2 (k:+1—041—|—oz2)4§2—?1—1

(2.22)

Now using (2.19), we see that the right hand side in (2.22) is positive and then we can
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choose this ¢, for which both exponents in (2.21) are

7:1_’_ (6] _k—i-CkQ—Oél 1 s 2@
4Q_2 4Q_2 (k+1—a1+a2)4é%—1 4@—1
_1+ [6%) (1_ (k?+(12—061)2Q )
4@—2 (k+1—0&1+0&2)2@—(4@—1)
14 (0%)] (1_ (k+012—6¥1)2@ >
<1

Now we state our result about bi-variate sequences of monomials.

Proposition 2.3.7. Let f(x1,x5) = ra{*x5? with aq, ag non integer positive real numbers

and some non-zero real number r, then the sequence 1s equidistributed modulo one.

Proof. If a; + as < 2 then we can use Proposition 2.3.3 to get the result. Now assume
a;+ag > 2. Let k= [ag +ay+ 1], then k > 3. If the two conditions of Proposition 2.3.5
holds then we’re done. If the first condition, that is the condition of the kth derivative
test with respect to the variable Ny, fails, then we can use Proposition 2.3.6 to use lower
derivative tests to get the result under weaker and weaker conditions, until we use the
3rd derivative test.

Suppose that the condition of the 3rd derivative test fails. Recall the 2nd derivative

test gives without any condition that
S <« NN AY2 4 NpA~V2, (2.23)

where A\ = NM?N§2. Note that the first term in (2.23) is precisely what we get if we
plug k£ = 2 in the bounds that we usually get in the higher derivative tests, so the proof
of Proposition 2.3.6 gives us that the first term in (2.23) is o(N;Ny) as Ny Ny — oo. Now
the second term in (2.23) can be written as Nll_al/2N21_a2/2, which is also o(N;Ns) as

NlNQ — OQ.
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Similarly if the second inequality in Proposition 2.3.5 fails, then we can go through

the same process swapping N7 and N, to complete the proof. O]

Note that this gives an algorithm that we can apply similarly to sequences of mono-
mials with more than two variables, and even though we do not show it, we suspect that
it would be successful most of the time. We will see in Chapter 4 a particular case with

five variables.
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Chapter 3

Application: Finding a bound that
beats the trivial one for a specific

family of exponential sums

. . _ 9.2/3.4/3  2/3 1/3
In this chapter we consider the sequence f(ng,ns, n4,ns,ng) = 3ny' "ny' “ngn:’ "ng " of

five variables. The choice of this specific sequence and notation (no variable n;) will be
motivated in Chapter 4. Our goal is to show that this sequence is uniformly distributed
modulo one with the most general possible range of the variables and, as we will explain
in Chapter 4 (Theorem 4.0.36 and Corollary 4.0.37), it is enough to find a bound for a
family of exponential sums that beat the trivial one in all of the variables. We now define

the family of exponential sums that we are interested in: for some non zero integer k, let

Ej, := Ep(Na, N3, Ny, N5, Ng) := Z e(3kn2*nPnmi*ni?).

nijj
Let us state the main result of this chapter;
Proposition 3.0.8. Suppose that
lOgN4 <K (N2N3N5N6)1/100, (31)
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then for all non zero integer k,
E, = O(N2N3N4N5N6) as NoN3N5Ng — 0.

The rest of this chapter is the proof of this proposition.

Consider the following 5 conditions:

1) NP < (NANBN2N)?

2) N#3 <« (NZN3NZNg)®

4) N7 <«

(1) ( )
(2) ( )
(3) N < (N3NyNFNo)®
(4) (N3 Ny NNZ)®
() (

5) NP < (NyN3NsNg)?

Let us first assume that (1)-(4) hold.

The following is just a special case Theorem 2.2.7 and it also stated as such in the

introduction of [Sar00].

Theorem 3.0.9. (5th derivative test) If f®)(z) ~ X\ and M > \=%/15 then

D e(f(m)) < MAVP,

m=M

where the implied constant in < is allowed to depend on the implied constant in ~.

Corollary 3.0.10. If (1)-(4) holds, then

(1) => E(Ny, N, Ny, N5, Ng) < (NITNIANPB NN /0 (3.2)
(2) = Ej(Ny, N, Ny, N5, Ng) < (NPNIPNPBNPZNI)/0 (3.3)
(3) = Ej(Ny, N3, Ny, N5, Ng) < (NPNIANPBNIT NI/ (3.4)
(4) = E(Ny, N, Ny, N5, Ng) < (NZNIANPENPZNT6)/0, (3.5)
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Proof. To get (3.2), we fix ng, n4, n5, ng and use Theorem 3.0.9 with m = ny and M = N,
that is f(z) = 15k2¥3ns nan®n® and A = Ny NP NNZPNYE. Condition (1)

being equivalent to M > A\~%/15_ we get that
Ek’<N27N3aN47N57N6) < (N;7N§N2N512N6)1/90

Now taking the trivial bound for all the remaining variables, we obtain the first inequality
of the corollary.

Inequalities (3.3), (3.4), (3.5) are obtained in the same way using Theorem 3.0.9 simul-
taneously with m = n3,m = ns,m = ng respectively and A\ = N22/3N3_11/3N4N52/3N61/3,
A= N2ENGBNGNTBENYS N = NPNGPB NN NG ™ respectively. Then the condi-

tion (2),(2) and (4) are equivalent to M > A~%1% for each case. O

Inequalities (3.2),(3.3),(3.4),(3.5) are bounds on Ej that beat the trivial bound for
the variable Ny, N3, N5, Ng, respectively. The idea now is to combine these four bounds

to get only one that beats the trivial bound in the variables Ny, N3, N5, Ng together.

Lemma 3.0.11. Let f(x1,...,74) be a function that maps R? to R. Suppose we have a
finite set of functions { A} with

< A,

for each m, then

F<TAw
for all sets {~n} of positive real numbers, with Y v, = 1.

Proof. Fix x € R? and evaluate the functions at this point. Without loss of generality

we may assume that A; < Ay for each k. Then

f<A =114 <[4

46



We will refer to this process as “averaging the inequalities with respective weights
VigeoosVs -
Now by averaging the four inequalities in Corollary 3.0.10 with respective weights

7/30,11/30,7/30 and 5/30, we obtain

Ejp(Na, Ny, Ny, N5, No) < (N7 N5 T NGPONGTTNGT) V10, (3.6)

and these weight are optimal in the sense that they give a bound that is equally strict in
all the variables that we are working with.

Here we specify the optimal weights but in fact we can simply note that the average
of the exponents of Ny, N3, N5, Ng in the right hand side of the inequalities in Corollary
3.0.10 is always 1ZI. Tt is then clear that (3.6) is the optimal bound that we get by
averaging these inequalities and the weights are not important. In the future, we will
directly deduce the optimal bound from the inequalities.

In addition, if (5) holds, then N, is small relative to the other variables. The bound
given by (3.6) is then less than another bound that we can obtain by “transferring” powers

of N4 to the other variables. We will often say that we “re-arrange” a bound to refer to

this process. So we can re-arrange (3.6) to get

Ex(Ny, N3, Ny, N5, Ng) < (N2N3N4N5N6>179.8/1807

which beats the trivial bound in all the variables.

Else, if (5) fails, then we have

N} > (NyN3N5Ng)?,

which implies that
Ny > (NyN3N5Ng ).

In order to use this, we want a bound for which the exponent of N, is small. For this, we
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need Lemma 5.2 in [DGS™13], that we now state.

Lemma 3.0.12. Let g(t) be a real, continuously differentiable function on the interval

la,b], with | ¢'(t) |> A >0, and let N > 0. Then

> min{N.1/ || g(n) [[} < (| g(b) = g(a) | +1)(N + %log(b— a+2)).

a<n<b
Proof. See page 77 of [Kra89|. O
We also need the following, that is an analogue of Lemma 5.3 in [DGST13|.

Lemma 3.0.13. For every 6 > 0,
Ey(Na, N3, Nu, N5, No) <5 Nt NyTHINI NG NG+

+N22/3+25N§1/3+46NiN52/3+25N61/3+5

Proof. Fix 6 > 0. For some positive integer n, let

-Y T Y Y

HQXNZ n3XN3 n5XN5 nngG

24,2,
nananENg=n

and note that b, < d(n)?, where d(n) is the number of divisors of n. Now it is well known
that d(n) <; n°, refer to page 296 of [Apo76] for a proof. We then have that b, <5 n%/2,

We recall the well-known bound

> elan) < min{N,1/ || a ||},

n=N

that can be found in [IK04] page 199.

Applying Lemma 3.0.12 with N = Ny, g(t) = 3kt'/3) which is continuously differen-
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tiable on the interval [N2NjN2Ng, 512N2N{N2Ng| so A = (NZN§N2Ng)~%/3 we have

Ey(Na, N3, No, Ns, No) = 3wz gz g <nss1angngvgny On S, €(3kn'na)
<5 (N3 Ny NZNg)*/? ZN§N§N52N6§n§512N22N§N52N6 min{Ny, W}
< (N3 N§NENo)** (N3 N3 N3 Ng) '/ (N
+(N2N§N2Ng)?31og(511N2NEN2Ng + 2))
< (NFN$NZNs)°[(NFN3NNZN6)' ' + (N3 N3 NENg)).

O

Taking (3.3) from Corollary 3.0.10 and Lemma 3.0.13 with respective weights 10/11

and 1/11, we get

Ek <5 N22/3+25N§/3+45N4N52/3+25N61/3+6
+min{<N292N379N23N§2Né)1)1/907 N21.12+26N31.17+46N£.94N§.12+25Né.02+5}

2/3425 »4/3+468 2/3428 ~71/345
< N2/ + Ng/ + N4N5/ + NG/ + + N21.12+25N31.17+45N£.94Ng.12+25Né.02+5

Y

and using the fact that (5) fails, that is IV, is large relative to the other variables, we can

re-arrange the second term of the bound above to get

Ex(Ny, N3, Ny, N5, Ne) <5 Ng/> " Ng/# T4 N N2 20 NG5 1 (N Ny Ny N Ng )9+,
(3.7)
The exponent of Nj is still greater than one. In order to fix this, we want to combine this
with a bound that is “good” for the variable N3 and whose exponent for N is not more
that one. We will need the following theorem by Fouvry and Iwaniec that can be found

in [FI89], Theorem 3, for which we will omit the proof.

Theorem 3.0.14. Let o, oy, ag be real constants such that o # 1 and aciag # 0. Let

M, My, My, x > 1. We then have
memitmy?
> > > clegmymm) <
mx=M mlle mQXMQ 1 2

[$1/4M1/2(M1M2)3/4
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+M7/10M1M2 + M(M1M2)3/4
+a VAMO M M) (log 2M My Ms)?.

Corollary 3.0.15. Without any assumption on the variables, we have that
Ej(Na, N3, Na, N5, Ng) < (N§1/12N§/6N4N57/6N53/12

+N, Ny N, N, N, + N&/* Ny NP NN
NGNS N NG NG ) (log ).

Proof. Applying Theorem 3.0.14 with x = 15kM*M"* M3*nsng, m = ns, my; = na,
mg = ny, and of course M = N3, My = Ny, My = N4, with their corresponding exponent
in the sequence i.e. o« =4/3, ay = 2/3, ay = 1 and the trivial bound on the two remaining

variables ns and ng, we get
Ek:(NQa N37 N47 N57 NG) < (N211/12N§)/6N4Ng/6N613/12

7/10 3/4 3/4
+ NNV N, Ny Ny + N3N NS NN
NN NI NSO N2 (105 2N, N3N, )2,

Now note that
(log 2N3N3N,)? < (log Ny + log N3 +log Ny)? < (max{log Ny, log N3, log N4})?, (3.8)
and since we are in the case where (5) fails, we have
N> (NaN3N;Ng)? > N2,

which implies that
log Ny > log Ns, (3.9)
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and similarly, we have

log Ny > log Ns. (3.10)

Now plugging (3.9) and (3.10) in (3.8), we obtain

(log 2Na N3Ny )? < (log Ny)2.

Corollary 3.0.16. Without any assumption on the variables, we have that
Ey(No, N3, Ny, Ny, Ng) < (N3/°Ng/° N, NG /2 Nt

+N2N37/10N4N5N6 + N2N3Nj/4N§/4N6
ENZONPIN TN g N,

Proof. Since ny and nj have the same exponent, we can just swap them from Corollary

3.0.15. 0

Now note that if N3 <« (N2N5N6)1/3 then we can re-arrange (3.7) to get a bound
of the form (NaN3NsNg)' "N, as desired. Otherwise, we have that Ny > (NoN;Ng)'/3
that we can use to re-arrange the second terms in Corollary 3.0.15 and 3.0.16 to get
Ny NN, N NG (1og Ng)2. Now recall we initially assumed (see (3.1)) that
log Ny < (N2N3N5N6)1/100. so the second terms in each corollaries are actually bounded
by (N2N3N5N6)1_6N4. Also, for both those corollaries, the third terms can be re-arranged
using the fact that (5) fails to beat the trivial bound in all the variables and the last term
already beats the trivial bound.

In our situation, we can then rewrite Corollary 3.0.15 and 3.0.16 as

Ej, < N3V NS Ny (log N4 )2NTC NI 4+ (Ny N3 N5 Ng)'™ Ny

o1



and

Ep < NJ°N3/® Ny(log Nu)?Ng /2 Ng** 4 (NaNy N5 Ng) '~ N,

Averaging these inequalities with weights 1/2, we obtain
By < N NGO N, (log Ny)2 N2 NG 4 (Ny N3 N5 Ng) '~ Ny
Now combining this and (3.7) with respective weights 3/4 and 1/4, we get

B, < min{N225/24N§’/6N4(log N4)2N525/24N53/127 N22/3+25N§/3+45N41 N§/3+25Né/3+5}
+ (No N3Ny N5 Ng)* 94 4 (Na N3N Ng)' <N,
< N291/96+6/2N323/24+6N4(10g N4)2N591/96+5/2Né13/48+6/4

+ (No N3N, N5 Ng) 99149 1 (N, Ny N5 Ng) = N.

Now we use again the fact that log Ny < (NoN3N5Ng)'/1% and fix § small enough so that

the above gives

Ek = O<N2N3N4N5N6) as N2N3N5N6 — OQ.

So everything works when (1)-(4) hold, but we still have 4 cases to consider, namely
if (1) fails, if (2) fails, if (3) fails and if (4) fails. The idea will be to use some lower
derivative tests that give weaker bounds but under weaker conditions. We will see that
these weaker bounds will be enough to beat the trivial bound precisely because we assume
that the conditions for the 5th derivative test fails, which gives us a specific range of the

variables and allow us to re-arrange the bounds from lower derivative tests.

The following is a special case of Theorem 2.2.7 and is stated as such in the introduc-

tion of [RS02].

Theorem 3.0.17. (4th derivative test) If f(Y(z) =~ X and M > \~/7 then

D e(f(m)) < MAVM

mx=M

52



Corollary 3.0.18. If NJ° < (N{N?NZNg)* then
Ek‘(N27 N37 N47 N57 NG) < (N232N§16N4115N§4N33)1/42'

Proof. This is Theorem 3.0.17 with m = na, f(z) = 3kz?3n3*nm*n/* so we have

A= N, BNIEN,NIENL?, 0

So if (1) fails but the condition for Corollary 3.0.18 1is satisfied i.e.

(N3 N}NZN)3/% <« Ny < (N§NjNZNg)*19, we have
N> (NINENZNG)'2
since 9 - 8/59 > 1.2, so we can use Corollary 3.0.18 and re-arrange it to get
Ej(Na, N3, Ny, N5, Ng) < (N32N3ON P NSANG3)YA2

< (N232+9N§674.8N3573.6N§472.4Ng371.2)1/42
_ (N§1N§11.2N£11‘4N511‘6Nél1.8)1/42’ (3.11)
which beats the trivial bound in all the variables.

Corollary 3.0.19. If N3' < (N3N} NZNg)* then
Ei(Na, N3, Ny, N5, Ng) < (NJANZENPNFNGS) /A2,

Proof. This is Theorem 3.0.17 with m = ng, f(z) = 3kn2243n,m*n® so we have

A= NZBNTSBNNIENYE. 0

So if (2) fails but the condition for Corollary 3.0.19 is satisfied i.e.

(NZNJN2NG)¥/* < N3y < (NZNJN2Ng)¥1, we have

N> (NENINENG)
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since 7-8/43 > 1.3, so we can use Corollary 3.0.19 and re-arrange it to get
Ek‘(N27 N3a N47 N57 NG) < (N§4N§4NE5N§4N33)1/42

< (N§L4—2.6N§4+7Nf5—3.9N§4—2.6Né13—1.3)1/42
_ <N241.4N§11Nfl.lNgllANéllY)1/42’
which beats the trivial bound in all the variables.

Corollary 3.0.20. If N3° < (NZNiN3}Ng)* then
Ey(Na, N3, Nu, N5, No) < (Ny* N NP NS NGV,

Proof. This is Theorem 3.0.17 with m = ns, f(z) = 3k;n2/3n4/3n x ”né/g so we have

A= N;PNGP NGNS P NG O

So if (3) fails but the condition for Corollary 3.0.20 is satisfied i.e.
(NZNEN}NG)3/%® < N5 < (N2NFN3}Ng)¥' by swapping the exponents of N, and Nj

n (3.11), since Ny and N; have the same exponent in the sequence, we get
Ey(Na, N3, Ny, N5, Ng) < (N3 Ny 2N NGHONG#)He2,

which beats the trivial bound in all the variables.

Corollary 3.0.21. If N?* < (NZN{N3NZ)* then
Ek‘(N27 N3a N47 N57 N6) < (N§4N§16NEBN§4N§1)1/42'

Proof. This is Theorem 3.0.17 with m = ng, f(z) = 3kn2*ny*nun??2/% so we have

A= N2BNSBNG NN, 0

So if (4) fails but the condition for Corollary 3.0.21 1is satisfied i.e.

o4



(NZNEINJIN2)B/OT <« Ny < (N2ZNFNFN2)Y23 we have
Ng? > (NJNy NN
since 10 - 8/67 > 1.1, so we can use Corollary 3.0.21 and re-arrange it to get
Ey,(Na, N3, Ny, N5, Ng) < (N3* NN NGNS

< (N;A‘_mN§16_4'4Nf5_3'3N§4_2‘2N5’1+10)1/42
— <N241'8N§1'6Nf1'7Ng1'8Ng1)1/42,
which beat the trivial bound in all the variables.

We still need to consider individually the cases the conditions for corollaries 3.0.18,

3.0.19, 3.0.20 and 3.0.21 fail.

Let us recall the statement Theorem 2.2.4 from Chapter 2.
Theorem 3.0.22. (3rd derivative test) If f®)(z) ~ \ then
D e(f(m)) < MAVS + MVEATVE,
mx=M
Corollary 3.0.23. Without any assumption on the variables, we have that

Ek<N27 N37 N47 N57 N6) < (N211N§2N51N§0N619>1/18

+(N216N§4N415N§6Né7>1/18.
Proof. This is Theorem 3.0.22 with m = ny, M = Ny, A= Ny PNy NNZENGE O

So if the condition for Corollary 3.0.18 fails, we have that

Ng > (NININZNG)
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since 6 -4/19 > 1.1 so we can re-arrange the bound of Corollary 3.0.23 to get that
Ek;(N27 Ng, N4, ]\757 NG) < (N211+6N§2—4.4Nfl—3.3NgO—Q.QNéQ—1.1)1/18

+(N216N§4Ni5N516Né7)1/18
< (N217N317.6N417.7N;7.8N617.9)1/18 + <N216N314Ni5N516N(}7)1/187 (312)
which beats the trivial bound in all the variables.

Corollary 3.0.24. Without any assumption on the variables, we have that
Ey(Na, N3, Ny, N5, N) < (N3°Ng* N3 NZONGo)H18

+(N216N§4N415N§6N617)1/18.
Proof. This is Theorem 3.0.22 with m = ng, A = Ny/*Ny/> NyN; 9P N/2, 0

So if the condition for Corollary 3.0.19 fails, we have that
N3 > (NENINENG)
since 4 - 4/11 > 1.1 so we can re-arrange the bound of Corollary 3.0.24 to get that
Ew(Na, N3, Ny, Ns, Ng) < (N20-22 N 13+4 yj21-33 \y20-22 \y19-1.1y1/18

+(N216N?}4N415N§6N617)1/18
< (N217.8N§7N417.7N;7.8Né?.Q)1/18 4 <N216N§4N415N§6N617)1/187
which beats the trivial bound in all the variables.

Corollary 3.0.25. Without any assumption on the variables, we have that

Ek(N27 N3a N47 N57 NG) < (N220N322N21N§1N619)1/18
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+(N216N314N415N516N617)1/18.
Proof. This is Theorem 3.0.22 with m = ns, A = Ny/* N> NyN; P N/2, 0

So if the condition for Corollary 3.0.20 fails, and using Corollary 3.0.25, we get the

same as in swapping Ny and Nj in (3.12) since they have the same exponent, that is
Ek(NQ, Ng, ]\/’47 ‘2\757 Nﬁ) < (N217.8N317.6N417.7N517N617.9)1/18

—|—(N216N314N415N516N617)1/18,
which beats the trivial bound in all the variables.

Corollary 3.0.26. Without any assumption on the variables, we have that
Ey,(Na, N3, Ny, N5, Ng) < (N3O N2 N NZONGO)/18
HNENINE NSNS
Proof. This is Theorem 3.0.22 with m = ng, A = Ny/*Ny/* N,NZP N %%, 0
So if the condition for Corollary 3.0.21 fails, we have that
N7 > (NENININD
since 7-4/23 > 1.1 so we can re-arrange the bound of Corollary 3.0.26 to get that
Ej,(Na, Na, Ny, Ns, Ng) < (N2-22 2244 21-33 \j20-22 \10+T)1/18

+(N216N§4N415N516Né7>1/18
< (N217.8N§7.6Ni7.7N517.8Né7>1/18 + (N216N§4Ni5N16N617)1/18
5 )
which beats the trivial bound in all the variables.

Then we covered all the possibles ranges of the variables!
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Chapter 4

Abelian varieties over a finite field of

dimension 3 with prescribed groups

In this chapter we present the results about Abelian varieties over finite fields of dimension
3 that we can prove using the bound on the exponential sum of five variable found in
Chapter 3. These results are actually extensions of the results in [DGS'13] for Abelian

surfaces.

In general an Abelian variety of dimension g over [, is an algebraic variety, that is the
set of solutions of some polynomial equations with coefficients in F,, with the structure
of an Abelian group. For example an elliptic curve is an Abelian variety of dimension 1.

Silverman gives more precise definitions in [Sil92].

We then denote by A(FF,) the group of points of A with coordinates in F,. Then A(F,)

is a finite Abelian group of rank at most 2¢. In fact we have that
A(]Fq) ~ Z/m1Z X X Z/m2gZ
with unique integers my, . .., mg, such that m;|m;4; foralli =1,...,2¢g—1, or equivalently

A(Fq) ZZ/WQZ X Z/nanZ X X Z/n1n2-~nggZ
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with unique integers ny, ..., ny,. We will use both notations.

The qth-power-Frobenius is the map that raises each coordinates of the elements of the
variety to its gth power. Note that because A is defined over I, the image of every point
of A under the gth-power-Frobenius will still be in A and then the gth-power-Frobenius
is in fact an endomorphism of A. An important property of the gth-power-Frobenius

endomorphism is that it fixes A(F,).

An isogeny between two Abelian varieties is a morphism that is surjective and has a

finite kernel.

Let fa(T) be the characteristic polynomial of the variety, that is the characteristic
polynomial of its Frobenius endomorphism (acting on some f¢-adic finite dimensional

space).

A g-Weil number 7 is an algebraic number such that its absolute value and the absolute
value of all its Galois conjugates on the extension Q/Q is v/q and a ¢g-Weil polynomial is
a monic polynomial with integer coefficients whose roots are g-Weil numbers. We know

that if A is an Abelian variety over I, then f4(7") is a g-Weil polynomial.

We say that two Abelian varieties are isogenous if there exists an isogeny between
them. We know that A; and A, are isogenous if and only if they have the same charac-

teristic polynomial, that is fa, (7)) = fa,(T).

Abelian varieties over a finite field I, are classified by the Tate-Honda theory which
asserts that there is a one-to-one correspondence between the F-isogeny classes of simple
Abelian varieties and conjugacy classes of Weil numbers. There is an obvious correspon-
dence between conjugacy classes of Weil numbers and Weil polynomials so we get the

following correspondence

[A] = fa(T) = Pa(T)*
where [A] is the isogeny class represented by the Abelian variety A and Ps(T) is an
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irreducible polynomial whose roots are Weil numbers and e is an integer. Also it is

known that e = 1 if and only if Endp,(A4) ® Q is a field.

Let E be an elliptic curve over the finite field F,. Then E(IF,) is a finite Abelian group

of rank at most 2 such that
E(]Fq> ~ Z/mZ X Z/nﬂLQZ, (41)

for some positive integers nj,ns.  Let S(Ni, N3) be the set of pairs of integers
ny < Ni,ng < Ny such that (4.1) holds, for some prime p. Banks, Pappalardi and
Shparlinski in [BPS12| conjectured that very “split” groups (when n; is large compared
to ng) occur with density zero. This was proven by Chandee, David, Koukoulopoulos and

Smith in [CDKS12|, who showed that if Ny > exp(Ny/*™), for some fixed € > 0, then
#S(N1, N2) = o(N1 V)

as N; — oo.

Let A be an Abelian surface over the finite field F,. Now the group of rational points

on A is a finite Abelian group of rank at most 4 such that
A(Fq) ~ Z/TLlZ X Z/anLQZ X Z/n1n2n3Z X Z/n1n2n3n4Z. (42)

David, Garton, Scherr, Shankar, Smith, Thompson showed in [DGS*13] (Theorem 1.1)
that (4.2) do not occur if n; is very large compared to ns,ng,ns. More precisely, if

ni,ng, n3, ny are positive integers such that (4.2) holds, for some prime power ¢ then

ny < 60n/*nd*nd* + 1.

They also showed (Theorem 1.2) that (4.2) occur with density zero in a wider range of

the variables. Let S(NNy, Ny, N3, Ny) be the set of quadruples (n, ng, ng, ng), that satisfies
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4.2), for which N; < n; < 2N, for j = 1,2,3,4. They showed that if
J J J

NNy

— = — 0
NN

as NoN, — oo, then

#S(Nh N2>N3, N4) = 0(N1N2N3N4)
as NoNy — oo.

We will follow their ideas to get some similar results for the case of Abelian varieties
of dimension 3. Starting now and for the rest of this chapter we let ¢ be a prime power,
[F, be a finite field with ¢ elements and A be an Abelian variety of dimension 3 defined

over [F,.

Our first tool to study groups of points of Abelian varieties over finite fields is the

following elegant criterion of Rybakov’s that can be found in [Ryb10].

Theorem 4.0.27. Let A be an Abelian variety over a finite field F, with characteristic
polynomial fo(T). Suppose that Endg (A) ® Q is a field. Let G be an Abelian group with
#G = fa(1). Then

G:Z/mIZX--~XZ/m2gZ, m1]m2|...|mgg

is the group of points on some variety in the isogeny class of A if and only if

29—k (k)
1
H m; divides thfork:O,...,Qg—l

i=1

Remark 4.0.28. In fact, only looking at one direction of the theorem, Rybakov proves
that if G is as above and is the group of points of some Abelian variety A(F,) with
characteristic polynomial fa(T) then #G = fa(1) and

29—k (k)
1
H m; divides ATP fork=0,...,29g — 1,

i=1
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and we do not need the condition that Endy (A) ® Q is a field.

We apply Remark 4.0.28 to the case ¢ = 3 and change the notation of the group to

get rid of the divisibility condition that we have on the m;’s.

Corollary 4.0.29. Suppose that

G~ Z/?’LlZ X Z/nanZ X Z/n1n2n3Z X Z/n1n2n3n4Z X Z/n1n2n3n4n5Z X Z/n1n2n3n4n5n6Z

is the group of points of an Abelian variety of dimension 3 with characteristic polynomial

fa(T) =T6 +ayT5 + asT* + azT? + axqT? + a1¢°T + ¢*. Then following system must be

satisfied:

(a) q*ar +ar  +qaz +ax +az +¢ +1 = nfninjnining =: N

(b) ¢*a; +Har +2qay +4as +3as +6 = 0 mod ninininins

(c) 10a; +qas +6as +3as +15 = 0 mod nin3nin,

(d) 10a, +4as +as +20 = 0 mod ninins

(e) 5ay +as +15 = 0 mod n3ny

(f) a +6 = 0 mod n

Proof. This follows directly by computing the derivatives of f4(7T). O

We call those congruences (a)-(f) because we will use them a lot and refer to them

as Rybakov’s equations or Rybakov’s congruences.

Proposition 4.0.30. (Key Proposition) Suppose that

G >~ Z/mZ x Z]nineZe X Z)ninensZ X Z/ninonsnaZ X Z/nynongngnsZ X Z/ninsnsninsneZ

is the group of points of an Abelian variety of dimension 3 with characteristic polynomial

fa(T) = T° + aiT° + aoT* + a5T® + aqT? + a1®T + ¢* and that 155" ¢ Z. Let
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5= )‘155;42 ) be the distance between 152@%2 and ils nearest integer then
1 R/Z 1
6
nln;/6 < ?ng/?’nimné/?’ném.
Proof. The first step is to show that 5a; = —15(¢ + 1) mod n?n,. By adding and

subtracting the congruences in Corollary 2.7, we find that

a; = —q3 —5 mod n%ng
as =10+ 5¢° mod n%ng

az = —10 — 10¢>  mod nin,

Lemma 4.0.31. 5(¢ — 1)> =0 mod n?n,

Proof. Our goal is to imitate the proof of (¢ —1)> =0 mod nin, for Abelian surfaces in

[DGS*13]. So we need an equation of the form

(¢ — 1)(nPnoa+ (£5)(¢ — 1)*) =0 mod nin2, (4.3)

for some integer a. We want to work modulo n3n2 so we can only use Rybakov’s equation

(a)-(d). By taking —(a) +2(b) — 2(c) + (d) we get

(q—1)(=1+a+ay—q+aqg—q¢°) =0 mod niny. (4.4)

Now respecting their equivalences modulo n3n, we let

a; = —q3 -5+ kln%ng
Ay = 5q3 + 10 + an%ng

as = —10q3 — 10+ kgn%ng,
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for some integers ky, ko and k3. Plugging those into (4.4) we obtain
(¢ = D(nina(ki(g+1) +k2) — (¢ = 1)*(=4 = 2¢ +¢°)) =0 mod nin3.

In order to get something like (4.3) we need to reduce the powers of ¢ in the second term.
The next step is to get information about ¢ modulo n?ny (and not only modulo n$n3).
Replacing a;,as and a3 by their equivalence modulo n3n, and taking 5(a) + (¢ — 3)(c) we
get that

5(¢—1)*=0 mod nin,. (4.5)

Now —(a) + 5(q — 1)3 gives

(g—1)°>=0 mod niny, (4.6)
so using (4.5) and (4.6) it is easy to see that

(¢—1)*=0 mod nin,.

We can then write (¢ — 1)* = knin,, for some integer k. Now by adding

0=(q—1)((qg—1)* — kniny) to (4.4) we get
(¢ — 1D)(m3ng(—k + ko + (1 4+ q)k1) +5(g — 1)*) =0 mod ninj, (4.7)

which matches (4.3) that is what we were looking for. We can then continue in more or

less the same way as in [DGS*13].

Take a prime ¢ dividing niny. Let r = vy(n?n,) and suppose for a contradiction that

ve(5(q — 1)?) < r. Tt is obvious that vy(n?ny(—k + ke + (1 + q)k1)) > 7 so

ve((q — 1) (nina(—k + k2 4+ (L4 q)k1) +5(q — 1)%)) = ve(5(qg — 1)%) < gr,
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and using (4.7) we get that
3
3ve(ny) + 2v(ng) < 5(205(711) + ve(ns)),
which gives that v,(n2) < 0 and contradict the fact that ny is an integer. O

This lemma allow us to reduce the power of ¢ in the congruence of a; modulo n?n,

in the following way:
as =10+ 5¢° = (10 + 5¢°) + (—q — 2)5(¢ — 1)* = 15¢  mod n3ns,.
Now plugging this into Rybakov’s equation (e) we obtain

5a; = —ay — 15 = —15(¢ +1) mod n3n,.

The next step is to use this to write ba; explicitly. We write
5a; = —15(q + 1) + knin,, (4.8)

for some integer k.
Now we want to use bounds on a; and on N to limit what &£ can be. Haloui provides

more precise bounds in [Hall0] but the following two lemmas are enough for this situation.

Lemma 4.0.32. If fo(T) = T® + a,T° + aoT* + a3T? + asT? + asT + ag is a Weil

polynomial then

|CL1| S 6\/6

Proof. We know f4(T') is a monic polynomial whose roots are Weil numbers so we can

write it as
6

fa(T) = H(T — f;) with |3;| = /g for all i.

=1

By expanding this we get that a, is the sum of 6 numbers with norm /g and then triangle
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inequality gives

|CL1| S 6\/6
O

Lemma 4.0.33. If fa(T) is the characteristic polynomial of an Abelian variety of di-
mension 8 over a finite field F,, let N = #A(F,), then we have

(Va-1° <N < (yg+1)"

Proof. We know that f, is a Weil polynomial, so we can write

6
fa(T) = H(T — B;) with |B;| = /q for all 7,
i=1

and then

N = fa() = [fa)] = T T17 = 51l (4.9)

Now for each 4, |3;| = /g, which implies that 1 — /g < |1 — ;| <1+ ,/q. Plugging this

into (4.9) gives the result. O

By Lemma 4.0.32, |5a;| < 30,/q and using (4.8), we get
—30,/q < —15(q + 1) + kniny < 304/q.
Rearranging this we get
15(y/q — 1) < kniny < 15(/q + 1)?,

and combining this with the bound from Lemma 4.0.33,

N3 —1\? N/3 +1)°
15— (\/_ ) <k <155 (\/6 ) . (4.10)
nine \/q+1 Va—1
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Note that as ¢ — oo the above inequality forces that £ — 15%, which can only happen
1

if 1522 is an integer. Assuming it is not an integer, the next question is how big does
ning

q need to be in order to squeeze k between two consecutive integers.

Let m = 15272172. If m—0 <k <m+ 46 then k belongs to an interval that contains no
1
integer so we get a contradiction. We then using (4.10) have that one of the two following

bound holds

m(1+d/m) <k <m (\/a+1)2

or equivalently

14+ +/1—=3d/m

Vi s 1—+/1=09/m
< V1i+d6/m+1

T J/1-0/m—-1

Now combining those with Lemma 4.0.33, we get

N §1—v1—5/m+1 (4.11)
V3i+d/m+1
< Tl +1. (4.12)

So if (4.11) holds then since 1 — /1 —x > x/2 for all = € (0, 1) we have

<
5
A

N6 < % (1++/1-6/m)+

and using the value of m this implies that

/— TL 712
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Now (1 + 4/d6/m) < 2 and % < n2ny < N6 < %/6 <

16
ning < ?Nlm,

and similarly if (4.12) holds then since v/1+xz —1 > x/3 for all x € (0,1) we have

NY6 < %(\/1 +6/m+1)+1
15 N1/3

+1
~ 0 ningy

and then
2 1/6 ning
ning < ?N N1/
4
< SN 1/6
In both cases we have
ning < ?(n?ngnéningw)lm,

which implies the result. O

This already gives an intuition that the group is not too “split” since n; and ns are
small compared to the other n;’s. But we would like a formula that does not involve
since we do not know how small it can be at first sight.

The following lemma will allow us to get a strict bound on § so we can replace it
in Proposition 4.0.30. It has been done more generally by Alex in his generalization to

Abelian varieties of any dimension.

Lemma 4.0.34. If x be a positive integer with /> ¢ 7, then

1

1/3
HJZ ”R/Z > Qy2/3"

Proof. First, we write

v = (2] + (o))
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that we then expand and re-arrange to get

T — Lx1/3J3
Lx1/3J2 + 3|_:1:1/3J {xl/S} + {$1/3}2‘

{213} = ; (4.13)

Now because, /% ¢ 7Z, we have that [2'/3]|% < z and since both sides are integers, we
actually have that [2'/3|3 + 1 < x so the numerator in the right hand side of (4.13) is at

least 1. Now since {#'/3} < 1, the denominator is less than 3|2'/3|2 + 3| 2'/3] + 1, which

gives
{23} > = (4.14)
(] 17 = [ |
Similarly, we can write
3
= (e 1) - e e))
and the same process gives
1= {213} > ! (4.15)
[T+ 17 = [ |
Now combining (4.14) and (4.15) we obtain
1
3| >
I =
and since |#'/%] +1 < 23+ 1 and |2'/3] > '/ — 1, we have that
1
1/3
2] > (213 + 1)3 — (z/3 — 1)
B 1
C2(3223 + 1)
S 1
- 8:[,'2/3’
since x > 1. 0
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So this applied to x = m® and ¢ = ||z|| where m and ¢ are as before gives

o> ——
8m?2’

which together with Proposition 4.0.30 (Key Proposition) gives the following theorem

that is an analogue of Theorem 1.1 in [DGS*13].

Theorem 4.0.35. Suppose that

G >~ Z/mZ x L/nino X ZL)ninansZ X Z/ningnsngZ X Z/ninongngnsZ X Z/ninsnsninsneZ

is the group of points of an Abelian variety of dimension 3. If 15 ggﬁ ¢ 7, then
1

ny < 2800n;/6néo/gniﬂng/gngm.

We will see later that 15% is equidistributed modulo one as a sequence on 5 vari-
1

ables. We then know that this number will usually not be an integer.

Now we would like to get a stronger bound but in a probabilistic sense. That is getting

an analogue of Theorem 1.2 in [DGS*13].

_ 2/3 4/3  2/3 1/3
= 15n5 "ng’ "nang’ "ng

The idea is to look at m = f(ng, ng, ng, ns, ng) as a sequence
of 5 variables and to show that this sequence is equidistributed modulo 1 to say that

“most of the time” § will not be too small.

Let
T (Ns, N3, Ny, N5, Ng) = {(na, ns, ng, ns, ng) : n; < N; for all i}

and for 0 < a < g <1, let

Z¢(N2, N3, Ny, N5, Ng; o0, B) = {(n2,n3,n4,15,n6) € T (N2, N3, Ny, N5, Ng) :

a < A{f(n2,n3,ng,ns5,n6)} < B}
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where { f(na, n3, n4, ns,ng) } denote the fractional part of f(ns, ns, ng, ns,ng). We say that

the sequence f(ng, ng, ny, ns,ng) is equidistributed modulo one if

lim Zf(N27N3,N4,N5,N6;Oé,/6)
No,N3,N4,N5,Ng—00 NoN3 Ny N5 Ng

=0 —-a.

Note that this limit is letting all the variable one by one go to infinity. The method that
we will use actually gives this limit by only letting the product NoN3N5Ng of all the
variables but N4 go to infinity, which is indeed a stronger statement. But will see that
we need to assume a small condition on the relative size of the variable. Our goal is then

to show that for a region of the 5 dimensional plane as large as possible, we have that

lim Zf<N27N37N47N57N6;a76)
N2N3N5N6—>OO N2N3N4N5N6

= B8—a. (4.16)

For a single variable sequence f(n), it is well known (Weyl’s criterion) that equiditri-

bution modulo one in equivalent to

> e(kf(n)) = o(N) (4.17)

n=N

for each integer £ # 0. The same can be done to prove the equidistribution of a multi-
variable sequence. The next theorem is explained in Chapter 1 of [Mon94]| for a sequence
of one variable and an analogue of this for three variables has been done in [DGS*13]
(Theorem 5.1) and in fact their proof can easily be extended to any number of variables.

We will state it for our case which is five variables.
Theorem 4.0.36. Let f(ng,ng,ng,ns,ng) be a sequence of real numbers, and let
0<a<pB<1 then

#Zf(N27N37N4aN57N6;&75) - (6 - a)#T(N27N37N47N5aN6)‘

T (N, N3, Ny, Ns, N, s 1 . 1
S # ( 2 [(:3_{_14 5 6)+22 (K—_H+m1n (5—(1/7 7'(_]{;)) |Ek<N2,N3,N4,N5,N6)|

k=1

71



for any positive integers No, N3, Ny, N5, Ng and K.

Proof. For each positive integer K, let

Skm)=Y  Sk(k)e(kn)

—K<k<K

be the Selberg polynomial upper bounding x[. g the characteristic function of [o, f] as

defined in [Mon94| and its Fourier transform S7.. Then

Zf(N27N3aN47N57N6;a7B) = Z X[a,ﬁ](f(nQan37n4an57n6))

nixNi

S Z Slt(f(n27n37n47n57n6>>
TLZ'XNi

= Z Sft(k) Z €<kf(n27n37n47n57n6)>
—K<k<K n;<N;

= Z glt(k)Ek(N27N3aN4>N57N6)-
—K<k<K

Now we know that

and

Eo(Ns, N3, Ny, N5, Ng) = #7T (N2, N3, Ny, N5, Ng),

so we have

Zf<N27N3>N47N5aN6;a75) - (ﬂ - a)#T<N27N37N47N57N6) S

#T<N27 N37N47N57 NG)
_I_
K+1

> Si(k)Ep(Na, N3, Ny, Ns, No).

1<|k|<K

It follows by properties of Selberg polynomials (upper or lower) that for 1 < |k| < K we

have

A 1 . 1
SK(]C)‘ S K+1 + min (ﬁ_ajﬂ'|k‘|)’
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which implies that

Z¢(Ng,N3, Ny, N5, Ng; o, ) — (B — a)#T (N2, N3, Ny, N5, Ng) <

#T<N27N37N47N5)N6)
K+1

1 : 1
2 ), (K——H o (ﬂ - W)) | Ex (N2, N3, Ny, N5, No)| .

1<k<K

Now using Sy the Selberg polynomial lower bounding the characteristic function of [«, 5],

we get that
Zf(N27N37N47N57N6;a75) 2 Z S’;(<k)Ek(N27N37N4JN57N6>7

and this time we have

which gives

Zf(N27N3aN47N57N6;a7/6> - (/8 - a)#T(N27N37N47N57N6) 2

#T(N27N37N47N57N6) AN
_ T - MZ@( S (k) Ex(Na, Ny, Ny, N5, No).

The other inequality follows similarly. 0

Corollary 4.0.37. (Weyl’s criterion for five variables) Let f(nga, ns, ny,ns,ng) be a

sequence of real numbers, and let 0 < o < B < 1.If for each integer k # 0 we have that
Ek(N27 Ng, N4, N5, N6) = O(N2N3N4N5N6) as P — o0,

where P = P(Ny, N3, Ny, N5, Ng), then

lim Zf<N27 N37 N47 N57 N67 «, ﬂ)
P—oo N2N3N4N5N6

=0 - a.

Proof. Dividing the inequality of Theorem 4.0.36 by NoN3N4N5Ng, we get that for any
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positive integer K,

Zf<N27N37N47N5)N6;a76> —(6—06)
No N3Ny N5 Ng
K
1 1 . 1 |Ex (N2, N3, Ny, N5, Ng)|
< — 42 - - o, — ) 4.18
SErL T ; (K T (5 “ wk)) NaN3 N, N; N (4.18)
Note that

1 1
- ; o <
<K+1+mm<5 O"wk»—l’

so the sum in (4.18) is bounded by

|Ek(N27 N37 N47 N5a N6)|
Ny N3Ny N5 Ng

K

Thus if Ej (N, N3, Ny, N5, Ng) = o(NaN3N;N5Ng) as P — 0o, then there exist a function
g = g(Ny, N3, Ny, N5, Ng) such that

g — 00 as P — oo,

but
|Ek‘(N27N37N47 N57N6)’

P .
Ny NaN,NoNe — as P — o0

Take K = [g¢] then all the terms in (4.18) vanish as P — oo, which implies the result. [

In Chapter 3, we considered the sequence f(ng, ns, ng,ns, ng) = 15n§/3n§/3n4n§/3né/3
and showed the following.
Proposition 4.0.38. Suppose that
lOg Ny < (N2N3N5N6)1/1OO, (419)

then for all non zero integer k,

Ek = 0(N2N3N4N5N6) as N2N3N5N6 — Q.
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From now we will assume that (4.19) holds. By Corollary 4.0.37 and the Proposition

4.0.38, we have
lim Zf(N27N37N47N57N6;a7/8)

=45 — 4.20
N2N3N5N6—)OO N2N3N4N5N6 5 “ ( )

This allows us to prove the following theorem, which is an analogue of Theorem 1.2

in [DGS*13].

Theorem 4.0.39. Suppose that
log Ny < (NoN3N5Ng)' /100,

If
NN,/

N32/3Ni/2N51/3N61/6

— 00

as NoN3NsNg — o0, then
#S(NLN% N3, Ny, N5, Na) = 0(N1N2N3N4N5N6)

as N2N3N5N6 — OQ.

Proof. Let F' = F(Ns, N3, Ny, N5, Ng) be a function that tends to infinity with Ny N3 N5 Ng

and satisfying the bound
N, N6
F< 2/3 11/22 1/3 771/6°
52N3"" N, “N;'” Ng

Without loss of generality, we may assume that Ny N3 N5 N is large enough so that F' > 1.

Hence we may write

S = #51 + 952

where

Sl = {(nlan27n37n4an57n6) S S : ||3n§/3n§/3n4n§/3né/3|| S 1/F}

Sy 1= {(n1,m2, n3,n4,n5,m6) € S ¢ 3050 *nun*ng| > 1/F}.

It follows from (420) that #Sl = 0(N1N2N3N4N5N6) as N2N3N5N6 — oo and if
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4/3

(n1,n2, ng, ng, n5,ng) € Sy then 15n§/3n3 /3

n4n§ né/g’ cannot be an integer so by the Key

Proposition

2/3 1/2 1/3 1/6
16n5 "n, "ns' "ng
2/3_4/3 2/3 1/3,| 1/6

(|35 Ng N4Ns Ng |72

- 16(2N3)%/3(2N,)/2(2N5) /3 (2Ng) /6

N1§n1<

(1/F)N,®
N32/3N41/2N51/3N61/6
< B2F N21 76

which contradicts the choice of F. We then conclude that S is empty and therefore
S = O(N1N2N3N4N5N6) as N2N3N5N6 — OQ. ]
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