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ABSTRACT

A Comparative Study on the Performance of Gamma Kernels for Nonpara-

metric Imputation

Mianbo Wang

The problems with using the symmetric kernels for nonparametric density and regres-

sion estimators for nonnegative data have been widely discussed. The use of asymmetric

kernels for nonparametric regression, focusing on gamma kernels, have been recently pro-

posed based on two different angles: one by Chaubey et al. (2010) and the other one by

Shi and Song (2013). These estimators are based on the density estimators proposed by

Chaubey et al. (2012) and Chen (2000). In the present thesis, we explore the performance

of these estimators in the context of nonparametric imputation method under strongly

missing at random assumption that has not been investigated yet in the literature. It is

found that under certain assumption on the regression function, the estimator of Chaubey

et al. (2010) may have a slight advantage over Shi and Song (2013) estimator whereas in

other cases the comparison is not conclusive and further investigation may be needed.
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Chapter 1

Introduction

The boundary problem when a symmetric kernel is applied to estimate nonnegative data

has been discussed in Wand et al. (1991), Marron and Ruppert (1994), Bagai and Rao

(1996), and Chaubey and Sen (1996), especially in the context of density estimation. To

alleviate these problems, some asymmetric kernel estimators have been proposed recently

in the literature (see Chen (2000) and Scaillet (2004)). Asymmetric kernels are also sug-

gested in the method of Chaubey et al. (2012) that is based on a stochastic approximation

of the distribution function. These estimators may be adapted for nonparametric regres-

sion for nonnegative data. Chaubey et al. (2010) focus on the use of gamma kernels for

nonparametric regression by adopting the density estimator proposed in Chaubey et al.

(2012), whereas Shi and Song (2013) consider nonparametric regression based on gamma

kernels by adopting the density estimator developed in Chen (2000). The method by

Chaubey et al. (2012) is based on the kernel:

Qx+εn,vn(t) =
t1/v

2
n−1

v2n(x+ εn)1/v
2
nΓ(1/v2n)

exp

(
− t

v2n(x+ εn)

)
(1.1.1)

where both vn and εn are smoothing parameters.

Whereas the kernel proposed in Shi and Song (2013) is given by,

Kx,h(t) = tx/h exp (−t/h) (1.1.2)

where h represents the smoothing parameter.
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In their paper, Shi and Song (2013) compared the finite sample performance of the

gamma kernel regression estimate between both aforementioned estimators and implied

that their estimator is a bit better than that of Chaubey et al. (2010). However, Shi and

Song (2013) set the parameter vn and εn = v2n and used two exponential functions, both

of which were not equal to 0 at x = 0, ignoring other cases.

The methods to handle missing data depend on the missing data mechanisms. Miss-

ing completely at random(MCAR), missing at random(MAR) and not missing at ran-

dom(NMAR) are common missing data patterns proposed by Little and Rubin (2002).

Two main approaches could be used to handle missing data: parametric imputation and

nonparametric imputation, the latter of which will be discussed further under the strongly

ignorable missing at random (MAR) assumption introduced by Rosenbaum and Rubin

(1983).

The goal of this thesis is to compare the performance of both gamma kernels by apply-

ing them into the procedure of nonparametric imputation under strongly ignorable MAR

assumption. Three nonparametric imputation methods will be applied: kernel-weighted

regression method (see Cheng and Wei (1986), Cheng (1994)), Horvitz-Thompson inverse

weighting method (see Horvitz and Thompson (1952)) and double-robustness HT method

(see Scaillet et al. (1999)). Furthermore, the CLS estimator will be discussed in two sit-

uations: εn = 0 and εn �= 0 through both simulation study and empirical study, in which

the regression functions are different from previous research.

In chapter 2, a brief introduction of kernel functions and different asymmetric kernels

will be given. The origin of two gamma kernels will be demonstrated in detail. A series of

nonparametric imputation methods will be shown in Chapter 3 based on the background

of missing data mechanism. In chapter 4, both gamma kernels will be applied into the

nonparametric imputation methods in a simulation study, together with the orthodontic

growth data in a empirical study. Besides, some conclusions and related future topics are

also summarized in this chapter.
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Chapter 2

Gamma kernel estimators

2.1 A brief introduction about kernel function

Let X1, . . . , Xn be a random sample drawn from a distribution with unknown probability

density function fX . A common kernel estimator (see Silverman (1986), Wald and Jones

(1995)) is used to estimate fX as follows:

f̂X(x) =
1

n

n∑
i=1

Kh(x−Xi) (2.1.1)

where Kh(u) = 1
h
K(u/h). Here K(·) is a symmetric function satisfying

∫
K(x)dx = 1,

which is called the kernel. h is a positive number, usually called the bandwidth or

window width, which is very important to determine the smoothing applied. Usually

K(·) is chosen to be symmetric about zero but not necessarily positive function, which

ensures f̂X(x) is itself also a density. Several types of kernel functions are commonly used

as follows:

Uniform

K(u) =
1

2
I(|u| ≤ 1),

Triangular

K(u) = (1− |u|)I(|u| ≤ 1),
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Quartic

K(u) =
15

16
(1− u2)2I(|u| ≤ 1),

Tricube

K(u) =
70

81
(1− u3)3I(|u| ≤ 1),

Epanechnikov

K(u) =
3

4
(1− u2)I(|u| ≤ 1),

Gaussian

K(u) =
1√
2π

e−
1
2
u2

.

2.2 From symmetric kernels to asymmetric kernels

The major disadvantage of applying a symmetric kernel estimator to a nonnegative data

is that it puts positive weights outside the density support [0,∞) and may cause the

boundary problem that the expected value of f̂(x) could not consistently estimate f(0),

especially when f(0) > 0 such as the Exponential density (see Silverman (1986), Wand

et al. (1991) for detail discussion).

Different approaches are proposed to solve this problem such as the transformation

method. For example, if log t denotes the transformation function, then we take f̂n(x) =

(1/x)ĝn(log x), where ĝn is the kernel density estimator on the transformed data.

Wand et al. (1991) used the ”back-transform” approach to estimate the density func-

tions of the nonnegative random variables, which changes the variables of the global win-

dow width while Marron and Ruppert (1994) proposed a three-step computation-intensive

transformation method.

Bagai and Rao (1996) proposed a kernel type estimator for f(x), replacing the sym-

metric kernel by a bounded density function with nonnegative support, which is given

by

fn(x) =
1

nhn

n∑
i=1

K

(
x−X(i)

hn

)
(2.2.1)
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where X(1) ≤ X(2) ≤ · · · ≤ X(n) are ordered statistics. However, only the first r order

statistics are used for estimating the density function f(x), where Xr < x ≤ X(r+1), which

has an obviously undesirable feature for estimation because it does not include the whole

data.

In contrast to the proposal by Bagai and Rao (1996), Chaubey and Sen (1996) pro-

posed a new smooth density estimator

S̃n =
n∑

k=0

wnk(x, λn)Sn(k/λn), x ∈ R
+ (2.2.2)

where the nonnegative array wnk(s, t) is

wnk(s, t) = {(st)k/k!}{
n∑

i=0

(st)i/i!}

and
n∑

k=0

wnk(s, t) = 1, ∀ s, t ∈ R
+

for nonnegative random variables based on Hille’s lemma (see Hille (1948)) as follows.

Lemma 2.2.1. If u(t) is a bounded, continuous function on R
+, then as λ→∞,

e−λt
∑
k≥0

u(k/λ)(tλ)k/k!→ u(t)

uniformly in any finite interval contained in R
+;

A series of asymmetric kernels estimators were proposed to solve the problem caused

by symmetric kernels. The first gamma kernel estimator which was considered by Chen

(2000) has the following form:

f̂(x) = n−1
n∑

i=1

Kρh(x)(Xi) (2.2.3)

where

Kρh(x),h(t) =
tρh(x)−1e−t/h

hρh(x)Γ(ρh(x))
(2.2.4)

For the function ρh(x), two options were given and compared. One is

ρh(x) = x/h+ 1 (2.2.5)
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which leads to the first estimator f̂1(x) given by Chen (2000). The other estimator f̂2(x)

is led by

ρh(x) =

⎧⎪⎪⎨
⎪⎪⎩
x/h, if x ≥ 2h;

1
4
(x/h)2 + 1, if x ∈ [0, 2h).

(2.2.6)

which showed smaller MISE properties as that of f̂1(x).

By utilising the inverse Gaussian density

KIG(m,λ)(y) =

√
λ√

2πy3
exp

(
− λ

2m

(
y

m
− 2 +

m

y

))
, y > 0. (2.2.7)

and reciprocal inverse Gaussian density

KRIG(m,λ)(z) =

√
λ√

2πz
exp

(
− λ

2m

(
mz − 2 +

1

mz

))
, z > 0. (2.2.8)

as kernels, Scaillet (2004) suggested two estimators of the probability density function

f̂IG(x) = n−1
n∑

i=1

KIG(x,1/h)(Xi), (2.2.9)

and

f̂RIG(x) = n−1
n∑

i=1

KRIG(1/(x−h),1/h)(Xi), (2.2.10)

However, the estimators of Scaillet are not consistent at x = 0 (see Chaubey et al. (2010).

2.3 Different modified gamma kernel estimators

2.3.1 Gamma kernel proposed by Chaubey, Läıb and Sen (2010)

In order to extend the results in Chaubey and Sen (1996), Chaubey et al. (2012) pro-

posed a new density estimator generated from gamma function by using the following

generalization of the Hille’s lemma (see Feller (1965)).

Lemma 2.3.1. Let u be any bounded and continuous function. Let Gx,n,n = 1, 2, . . . be

a family of distributions with mean μn(x) and variance h2
n(x) then we have as μn(x)→ x

6



and hn(x)→ 0

ũ(x) =

∫ ∞

−∞
u(t)dGx,n(t)→ u(x)

The convergence is uniform in every subinterval in which hn(x) → 0 and u is uniformly

continuous.

The density estimators suggested by Chaubey et al. (2012) are obtained from the

derivatives of estimators of F (x) via smoothing the empirical distribution function. Adapt-

ed from this method, Chaubey et al. (2010) (CLS is short for the method by Chaubey, Läıb

and Sen) proposed a generalized kernel smoothing technique to estimate the regression

function in a class of nonnegative stationary ergodic processes.

To avoid the possible inconsistency at 0, their regression estimator used a perturbation

term to a Gamma kernel as follows:

m̃n(x) =

∑n
i=1 Qx+εn,vn(Xi)Yi∑n
i=1 Qx+εn,vn(Xi)

. (2.3.1)

Here the modified gamma kernel is

Qx+εn,vn(t) =
tαn−1

βαn
x+εnΓ(αn)

exp

(
− t

βx+εn

)
(2.3.2)

where

αn = 1/v2n and βx+εn = v2n(x+ εn)

The quantity vn and εn are two smoothing parameters, and εn is a positive real number

that goes to 0 at an appropriate rate as n→∞.

In this paper, a simpler form of the modified gamma kernel in (2.3.2) may be used, as

given by

Qx+εn,vn(Xi) = X
1/v2n−1
i exp

(
− Xi

v2n(x+ εn)

)
(2.3.3)

The proof of the uniform strong consistency of the regression estimator m̃n is given in

the following theorem (see Chaubey et al. (2010)), which holds true even for x = 0.

7



Theorem 2.3.1. In addition to some necessary assumptions (see Chaubey et al. (2010)

for detail), suppose that there exist sequences of real numbers Mn → ∞ and vn → ∞ as

n→∞ that satisfy

a−2n bαn−1
n α7/2

n Mnv
−1
n → 0 as n→∞

and ∑
n≥1

vn exp(−πλ2a2nnM
−2
n v2n) <∞

where, λ > 0 and αn is defined in (2.3.2).Then we have

sup
x∈[a,b]

|m̃n(x)−m(x)| = oa.s.(1) as n→∞.

The asymptotic normality of the regression estimator is given by the following theorem

(see Chaubey et al. (2010)).

Theorem 2.3.2. Assume that some necessary conditions hold (see Chaubey et al. (2010)

for detail). Let Zi = (Xi, Yi) be a R
+×R+-valued strictly stationary ergodic process defined

on a probability space and let φ be a Borel function of R+ into R such that E(|φ(Y1)|) <∞.

W2(X) is the conditional expectation of φ2(Yi) given Xi−1. Let F be the σ-field generated

by (Xk, Yk), k = 1, . . . , i and the centralizing conditional parameter is defined as:

B̃n(x) =
[h̄n(x+ εn)− h(x)]−m(x)[f̄n(x+ εn)− f(x)]

f̄n(x+ εn)

where

h̄n(x+ εn) =
1

n

n∑
i=1

E[φ(Yi)Qx+εn,vn(Xi)|Fi−1]

f̄n(x+ εn) =
1

n

n∑
i=1

E[Qx+εn,vn(Xi)|Fi−1].

(i) Let f(x) > 0 at given x ≥ 0 and let

σ2(x) =
1

2
√
π

W2(x)−m2(x)

xf(x)

Then, we have
√
nvn(m̃n(x)−m(x)− B̃n(x))

D→ N (0, σ2(x))

8



(ii) Suppose in addition the condition supy

∑∞
i=1 ‖P1f(y|Fi)‖2 <∞ is satisfied and that

nv5n → 0 and (nvn)
1
2 εn → 0 as n→∞

Then we have
√
nvn(m̃n(x)−m(x))

D→ N (0, σ2(x))

(iii) Let x = 0 and suppose moreover that

εnvn → 0, nv5nεn → 0, nvnε
3
n → 0 and nvnεn →∞ as n→∞

Then
√
nvnεn(m̃n(0)−m(0))

D→ N (0, σ2
0(0))

where

σ2
0(0) =

1

2
√
π

W2(0)−m2(0)

f(0)

whenever f(0) > 0.

2.3.2 Gamma kernel proposed by Shi and Song (2013)

Different from the gamma kernel density used in CLS, f̂(x) defined in (2.2.3) has the

definition at x = 0 and this feature makes the estimators free from suffering from the

boundary bias. Also Chen (2000) generated a different way to obtain the density estimator

from CLS by directly using smooth underlying density. Shi and Song (2013) (SS stands

for Shi and Song’s method) extended Chen (2000) ’s idea to nonparametric regression

based on the kernel Kx/h+1,h by similar to the Nadaraya-Watson kernel regression (see

Nadaraya (1964) and Watson (1964)).

The Nadaraya-Watson (N-W) estimator was proposed by Nadaraya (1964) and Watson

(1964) to estimate mn(x) as a locally average function, which is weighted by a kernel

function:

m̂(x) =

∑n
i=1 Kh(x− xi)yi∑n
i=1 Kh(x− xi)

=
n∑

i=1

Wh(x, xi)yi

(2.3.4)

9



where the weighted function Wh(x, xi) =
Kh(x−xi)∑n
i=1 Kh(x−xi)

.

When the covariate X is nonnegative, the gamma kernel regression estimation of m(x)

as defined by Shi and Song (2013) is give by

m̂n(x) =

∑n
i=1 Kx/h+1,h(Xi)Yi∑n
i=1 Kx/h+1,h(Xi)

. (2.3.5)

A simpler expression for m̂n(x) in (2.3.4) could be derived from the definition of Kx/h+1,h

by using the constants:

Kx/h+1,h(Xi) = (Xi)
x/h exp (−Xi/h) (2.3.6)

The asymptotic normality of m̂n(x) is shown in the following theorem (see Shi and Song

(2013)).

Theorem 2.3.3. Assume E(ε|X) = 0; the second order derivative of f(x), f(x)m(x),

f(x)m2(x), σ2(x), f(x)σ2(x), E(|ε|2+δ|X = x) is continuous and bounded on [0,∞) for

some δ > 0, where σ2(x) = E(ε2|X = x); h → 0, n
√
h → ∞ as n → ∞. Then for any

x ∈ (0,∞) with f(x) > 0,

(
v(x)

n
√
h

)−1/2
[m̂n(x)−m(x)− hb(x) + op(h)]

d→ N(0, 1)

where b(x) and v(x) are defined as:

b(x) = m′(x) +
1

2
x′′(x) +

xm′(x)f ′′(x)
f(x)

, v(x) =
σ2(x)

2f(x)
√
πx

For x = 0, but f(0) > 0,

(
σ2(0)

2nhf(0)

)−1/2
[m̂n(0)−m(0)− hm′(0) + op(h)]

d→ N(0, 1)

If we further assume that log n/(n
√
h) → 0, then op(1) can be replaced by o(1) in the

above results.

The following theorem (see Shi and Song (2013)) has given the uniform consistency of

m̂n(x) to m(x) over the bounded sub-interval of (0,∞).

10



Theorem 2.3.4. In addition to the the assumptions in theorem 2.3.3, assume that

log n/(n
√
h)→ 0. Then for any constants a and b such that 0 < a < b <∞,

sup
x∈[a,b]

|m̂n(x)−m(x)| = O(h) + o(

√
log n√
n
√
h
), a.s.

11



Chapter 3

Nonparametric imputation methods

3.1 Missing data and imputation

3.1.1 Missing data mechanism

Missing data mechanisms are very important because the property of missing data meth-

ods depends very strongly on the nature of the dependencies in the mechanisms. Three

missing data mechanisms are defined by Little and Rubin (2002): Missing completely at

random (MCAR), missing at random (MAR) and not missing at random (NMAR).

Let Y = (yij) denote an (n × K) rectangular data set without missing values with

ith row yi = {yij}, j = 1, . . . , K where yij is the value of variable Yj for subject i. With

missing data, define the missing-data indicator matrix M = (mij), such that

mij =

⎧⎪⎪⎨
⎪⎪⎩
1, if yij is missing,

0, if yij is not missing,

(3.1.1)

so the pattern of missing data is defined by the matrix M .

The missing-data mechanism is characterized by the conditional distribution of M

given Y , say h(M |Y, φ), where φ denotes unknown parameters. A missing-data mechanism

is called missing completely at random (MCAR), if

h(M |Y, φ) = h(M |φ) ∀ Y & φ (3.1.2)

12



Here the missingness does not depend on the value of the data Y , no matter whether it

is missing or observed.

Let Ymis denote the missing components or entries of Y , and Yobs the observed com-

ponents. A missing-data mechanism is called missing at random (MAR) if

h(M |Y, φ) = h(M |Yobs, φ) ∀ Ymis & φ (3.1.3)

This is a less restrictive assumption than that of MCAR, where the missingness depends

only on the components Yobs of Y that are observed, and not on the components that are

missing.

The mechanism is called not missing at random (NMAR) if the distribution of M

depends on the missing values in the data matrix Y , that is

h(M |Y, φ) = h(M |Ymis, φ) ∀ Yobs & φ (3.1.4)

3.1.2 Strongly ignorable MAR assumption

A simple missing data pattern is created based on the well-known double (or two-stage)

sampling design, which was first proposed by Neyman (1938). Let X be a p-dimensional

vector of factors and Y be a response variable influenced by X. A random sample of

incomplete data is often denoted by

(Xi, Yi, δi), i = 1, 2, · · · , n (3.1.5)

where all the Xi’s are observed and δi=1 if Yi is observed, otherwise δi=0. Sometimes,

the two-stage sampling plan is used to take more observations on the covariate X if there

is lack of enough Y observation due to some special constraints.

A convenient nonparametric inference for the missing data was proposed by Rosen-

baum and Rubin (1983) based on the assumption that δ and Y are conditionally inde-

pendent given X, which was called ”strongly ignorable MAR” assumption. Without any

parametric inference on the joint distribution of (δ, X, y), it assumes that

P (δ = 1|Y,X) = P (δ = 1|X) = p(X) (3.1.6)

13



where p(X) is the response propensity score function given X, that is the missing pattern

function defined under MAR.

3.1.3 Different imputation approaches

There are two main parametric approaches employed in the missing data analysis: max-

imum likelihood (ML) and multiple imputation (MI), both of which are based upon the

ignorable MAR assumption defined in (3.1.6). Facilitated by the EM algorithm, the ML

procedure could be used for inference when a parametric model could be defined for all the

variables (see Dempster et al. (1977)). Multiple imputation is another popular parametric

approach to missing data problems proposed by Rubin (1987). In MI, by making random

draws from the predictive distribution, each missing value is replaced by a list of M > 1

values to produce M complete data sets. Then, each of the data sets is analyzed based

on a complete-data based inference method, all of which are combined to form a final

inference that reflects the uncertainty because of the nonresponse (see Little and Rubin

(2002)). In addition to the parametric model for the complete data, a prior distribution

for the parameters is used to generate the imputation that needs to be specified first.

And then the Bayesian arguments are applied to simulate independent draws from the

distribution of Ymis given Yobs, which is usually carried out by markov chain monte carlo

(MCMC) computational techniques.

Under more relaxed assumptions, Robin et al. (1994) used the inverse probability

weighting to estimate a semiparametric regression function with the parametrically es-

timated propensity scores, of which the efficiency bound for parameter estimation was

established by Robin and Rotnitzky (1995). A remarkable advantage is that this ap-

proach is more robust against model misspecification, although a correct model is often

needed to reach the semiparametric efficiency bound for the conditional distribution of

the missing variable given the observed variable.
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3.2 Nonparametric imputation method

There are two main nonparametric approaches with missing data. One is to extend com-

plete data rank testing procedures, which is only valid under rather restrictive MCAR

assumption (see Brunner et al. (1999) for detail). The other approach handles missing

data by relaxing the rigorous parametric assumption in the parametric approach through

different smoothing techniques. Titterington and Mill (1983) considered a nonparametric

estimation of the joint density (X, Y ) utilizing kernel method to generate the empirical

versions of the joint distribution. The smoothing process is done by using the observed

values of the incomplete case and the corresponding values of these variables in the com-

plete cases. Next, the following three nonparametric imputation methods in the vein will

be introduced and applied.

3.2.1 Kernel-weighted regression (KR) method

The kernel-weighted regression (KR) method is a basic nonparametric regression impu-

tation scheme, which was first introduced by Cheng and Wei (1986) and refined in the

literature by Cheng (1994). Let X and Y be a pair of real valued data defined in (3.1.5)

and m(x) = E(Y |X = x) be the regression function of Y given x. The parameter θ = EY

could be estimated using N-W estimator defined in (2.3.4). Let K(·) be a kernel function,

and h = h(n) be a bandwidth sequence and h → 0 as n → ∞. Using a local weighted

least squares, the following quantity should be minimized for each real x

n∑
i=1

Kh(Xi, x)δi(Yi −m(x))2

where Kh(u, x) = h−1K((u− x)/h). The minimizer of m(x) is

m̂(x) =
n∑

i=1

Kh(Xi, x)δiYi/
n∑

i=1

Kh(Xi, x)δi. (3.2.1)
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where δi is given in (3.1.5). An estimator of θ̂ considered by Cheng and Wei (1986) is the

sample average of all the regression estimates:

θ̂ = n−1
n∑

i=1

m̂(Xi) (3.2.2)

Alternatively, a natural approach to estimate θ is

θ̃ = n−1
n∑

i=1

[δiYi + (1− δi)m̂(Xi)] (3.2.3)

Estimators (3.2.2) and (3.2.3) were proved to be asymptotically equivalent by the following

theorem given by Cheng (1994).

Theorem 3.2.1. Assume equation (3.1.6) for the missing data in equation (3.1.5). Both

n1/2(θ̂ − θ) and n1/2(θ̃ − θ) have the same asymptotic normal distribution with mean 0

and variance

σ2 = E(σ2(X)/p(X)) + var(m(X))

where σ2(X) = var(Y |X) is the conditional variance of Y given X.

3.2.2 Horvitz-Thompson (HT) inverse weighting method

The Horvitz-Thompson (HT) inverse weighting estimator proposed by Horvitz and Thomp-

son (1952) is frequently applied in the analysis of stratified sampling to estimate a pop-

ulation parameter. By inverting the sampling weights to reflect the effective sample size,

the classical HT weighting scheme can be used to recover the missing data information.

Under MAR, the basic HT imputation estimator of θ̂ is defined by inverting the estimated

propensity score:

θ̂ = n−1
n∑

i=1

δiYi

wi

(3.2.4)

where

wi =

∑n
j=1 δjKh(Xj, Xi)∑n
j=1 Kh(Xj, Xi)

Here wi is used to estimate the propensity score of p(Xi) in (3.1.6) using the same kernel

smoothed estimate as defined by (3.2.1).

16



3.2.3 Double-robustness (DR) HT method

Double-robustness (DR) property refers to the advantage that a method is asymptotically

efficient when either the parametric regression model or the propensity score model is

correctly specified, which is defined by Scaillet et al. (1999) and has been extensively used

within the semiparametric model. The requirement of using the DR property into the

nonparametric regression is that both the regression function and the propensity score

should be ideally smooth functions (see Ning and Cheng (2012)). The double-robust HT

estimator, which is the modified form of the basic HT estimator in (3.2.4) is defined as:

θ̂ = n−1
n∑

i=1

[
m̂(Xi) +

δi(Yi − m̂(Xi))

wi

]
(3.2.5)

where m̂(x) and wi are defined in (3.2.1) and (3.2.4) respectively.

17



Chapter 4

Numerical study

4.1 Simulation study

A simulation study is used to evaluate the performance of the aforementioned gamma

kernels in (2.3.1) by Chaubey et al. (2010) and (2.3.5) by Shi and Song (2013) in the

context of three different imputation methods under strongly ignorable MAR assumption.

A common regression model is considered for each kernel in each imputation method

Y = m(X) + ε (4.1.1)

where the random error ε is a normal with mean 0 and variance 0.52, which is independent

of X. For m(X), the following 4 models were considered

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1(x) = 2x

m2(x) = 3− 12(x− 0.5)2

m3(x) = x+ 2 exp(−x2)

m4(x) = sin(2x) + 2 exp(−x2)

(4.1.2)

where X ∼ U(0, 1). The model 3 and model 4 are not equal to 0 at x = 0, used by Shi

and Song (2013). To compare with the aforementioned regression models, model 1 and

model 2 are chosen to be linear and quadratic, both of which are equal to 0 at x = 0. The
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response propensity score function p(x) is defined with a logistic function used by Ning

and Cheng (2012)

p(x) =
e2.5x

1 + e2.5x
. (4.1.3)

For each simulation, a random number ui ∈ [0, 1] is created and δi in (3.1.5) is defined as:

δi =

⎧⎪⎪⎨
⎪⎪⎩
1, if ui <

∫ 1

0
p(x)dx,

0, otherwise.

(4.1.4)

For CLS estimator defined in (2.3.1), the parameter εn is chosen in two different ways:

εn = v2n and εn = 0. The optimal h and vn values are searched from 200 equally spaced

grid points from [0.001, 1]. The sample sizes are selected to be 100, 150 and 200. For each

sample size, the simulation procedure is replicated for 200 times. The average values of

the minimum MSE are reported for each kernel within the different imputation methods

in Table 4.1.

From the simulation result, it is interesting to notice that for all the regression models,

SS estimator performs almost the same as the CLS estimator with parameter εn = v2n in

all of three imputation methods since they have the similar MSE values for any sample

size. In model 1 and model 2, for which m(0) = 0, the CLS estimator εn = 0 shows a bit

advantage over the other two estimators with both KR and DR method, although this

advantage is very limited. However, there is no preference among all three estimators for

model 3 and model 4, both of which are not equal to 0 when x = 0.

4.2 Empirical study

Both gamma kernels will be applied into the nonparametric imputation procedure for the

data set from Potthoff and Roy (1964) on the orthodontic growth measurements for 11

girls and 16 boys. The distance from the center of the pituitary to the maxillary fissure is

recorded at the age of 12 and 14 years for each child. We assume that the finite population
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mean of the 27 measures of all the boys and girls at age 14 is to be estimated under a

MAR design. The measures at age 14 are the response Y values, and those at age 12 are

the covariate X values. Our goal is to examine and compare the performance of applying

both gamma kernels into different imputation methods, such as bias and MSE values.

Some Y values will be deleted according to formulas (3.1.5) and (3.1.6) by defining a

propensity score (see Ning and Cheng (2012)) p(x) as

p(x) =

⎧⎪⎪⎨
⎪⎪⎩
0.9, if x < 25,

0.4, if x ≥ 25.

(4.2.1)

According to the propensity score, the expectation of the number of deletion is 7.7 for

each simulation. Because of the small data size n = 27, the deletion process was simulated

only 20 times. A typical simulated missing data set is presented in Table 4.2, where the

missing Y value are quoted in parentheses.

For the 20 simulated data sets, both SS and CLS kernel estimators are applied into 3

nonparametric imputation methods. The parameter εn is considered to be either equal to

v2n or 0 respectively as that in the simulation study. The results are summarized in Table

4.3.

The result of empirical study seems to be consistent as well as the simulation study.

When simulating the incomplete data, the HT method shows much larger bias and MSE

values than KR and DR methods. Moreover, CLS kernel estimator with εn = 0 has a

smaller bias and MSE values than SS estimator and CLS estimator with εn = v2n in KR

and DR imputation methods. We find the optimal bandwidth values for KR and DR

method to compare the performances of SS estimator and CLS estimator with εn = 0 by

splitting the interval [0.001,1] into 500 grids. The optimal h values are 0.149 and 0.067

for corresponding estimator.

Thus, the regression procedure is applied different imputated data sets to compare

the effects of using different kernels with the optimal bandwidth h. For convenience, the

orthodontic growth data at age 12 years X will be transformed to X1 = (X − 19)/2.8,
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Table 4.2: Orthodontic growth data for 11 girls and 16 boys

Age (in years) Age (in years)

Girl 12(X) 14(Y ) Boy 12(X) 14(Y )

1 21.5 23.0 1 29.0 (31.5)

2 24.0 25.5 2 23.0 26.5

3 24.5 26.5 3 24.0 27.5

4 25.0 (26.5) 4 26.5 (27.0)

5 22.5 23.5 5 22.5 26.5

6 21.0 22.5 6 27.0 (28.5)

7 23.0 (25.0) 7 24.5 26.5

8 23.5 24.0 8 24.5 25.5

9 22.0 21.5 9 31.0 26.0

10 19.0 19.5 10 31.0 (31.5)

11 28.0 (28.0) 11 23.5 (25.0)

12 24.0 28.0

13 26.0 29.5

14 25.5 26.0

15 26.0 30.0

16 23.5 25.0

1Data source:Potthoff and Roy (1964)
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Table 4.3: A result of simulating the incomplete growth data with different kernels

SS CLS1 CLS2

h Bias MSE Bias MSE Bias MSE

KR

0.05 -0.229 3.946 -0.225 3.855 -0.223 3.395

0.10 -0.226 3.738 -0.219 3.692 -0.195 3.074

0.15 -0.207 3.486 -0.210 3.413 -0.201 3.320

0.20 -0.247 3.813 -0.245 3.808 -0.231 3.792

0.25 -0.285 4.097 -0.281 3.998 -0.269 3.810

HT

1.05 -2.373 597.14 -2.465 600.11 -2.451 599.85

1.10 -2.342 597.03 -2.333 599.88 -2.321 599.77

1.15 -2.311 596.98 -2.302 599.70 -2.292 599.74

1.20 -2.282 596.96 -2.524 599.34 -2.646 599.79

1.25 -2.255 597.03 -2.249 599.65 -2.238 599.86

DR

0.05 -0.191 2.109 -0.195 2.112 -0.182 2.012

0.10 -0.178 1.953 -0.171 1.949 -0.139 1.848

0.15 -0.156 1.878 -0.157 1.859 -0.124 1.787

0.20 -0.210 2.302 -0.203 2.294 -0.176 2.108

0.25 -0.234 2.460 -0.229 2.402 -0.217 2.215

1CLS1: εn = v2n; CLS2: εn = 0
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where 19 is minimum of X and 2.8 is the standard deviation of X.

In Figure 4.1 and Figure 4.2, the solid line is the regression curve with normal kernel

and the dotted line is the regression curve with CLS estimator when εn = 0. we observe

that the dotted line seems to be less likely to be off from the solid line so that the

estimated curve for CLS kernel with εn = 0 captures a little more characteristic of the

data structure than both SS estimator and CLS estimator with εn = v2n in KR and DR

imputation methods.
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Figure 4.1: Regression of orthodontic growth data with KR method
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Figure 4.2: Regression of orthodontic growth data with DR method
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4.3 Conclusions and future research

4.3.1 Conclusions

• The KR and DR methods show a better performance than HT method when both

of the two Gamma kernels are applied into the nonparametric imputation. This is

consistent with the results in the literature by Ning and Cheng (2012), in which HT

method showed larger bias and MSE compared with both KR and DR methods.

• As the distribution of x is uniform, it is a bit more appropriate to choose εn = 0

when the function m(x) = 0 at x = 0. When m(x) �= 0 at x = 0, there is no

preference between two selections for εn with KR and DR imputation methods.

4.3.2 Future research

Based on the limited conclusions of this study, some topics would be proposed for future

research.

• More rigorous proof should be given to demonstrate the property on the application

gamma kernel estimators into the nonparametric imputation methods. Also, more

examples are needed to compare the performance of symmetric kernels with the

asymmetric ones.

• The performance of both gamma kernels, including the two circumstances about the

setting of the parameter εn in CLS, should be compared within more nonparametric

methods (e.g. nearest neighbor imputation) and different propensity score functions.

Due to the small data size of the orthodontic grow data, other examples with larger

data size are needed to observe the result.
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Appendix A

R Code for Simulation Study

S <- matrix(rep(0,12),nrow=3)

for (k in seq(200))

{

Smse=matrix(rep(0,12),nrow=3)

ri <- 1

for (n in c(100,150,200))

{

t <- runif(n,0,1)

delta <- seq(n)

for (i in 1:n)

{

if(t[i]<0.4*log(1+exp(2.5))-0.4*log(2))

delta[i] <- 1

else

delta[i] <- 0

}

ci <- 1
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for(model in c(1,2,3,4))

{

x <- runif(n,0,1)

y1 <- 2*x+rnorm(n,0,0.5)

y2 <- 3-12*(x-0.5)^2+rnorm(n,0,0.5)

y3 <- x+2*exp(-x^2)+rnorm(n,0,0.5)

y4 <- sin(2*x)+2*exp(-x^2)+rnorm(n,0,0.5)

y=y1*(model==1)+y2*(model==2)+y3*(model==3)+y4*(model==4)

#KR imputation method with SS kernel

smse <- function(h)

{

xij <- matrix(kronecker(x,x/h,"^"), nrow=n)

Xiy <- xij%*%diag(delta*y*exp(-x/h))

Xi <- xij%*%diag(delta*exp(-x/h))

Asum <- apply(Xiy,1,sum);

Bsum <- apply(Xi,1,sum);

mean((y-Asum/Bsum)^2)

}

#HT imputation method with SS kernel

smse=function(h)

{

xij <- matrix(kronecker(x,x/h,"^"), nrow=n)

Xiy <- xij%*%diag(delta*exp(-x/h))

Xi <- xij%*%diag(exp(-x/h))

Asum <- apply(Xiy,1,sum)

Bsum <- apply(Xi,1,sum)
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mean((y-delta*y/(Asum/Bsum))^2)

}

#DR imputation method with SS kernel

smse=function(h)

{

xij <- matrix(kronecker(x,x/h,"^"), nrow=n)

Xiy <- xij%*%diag(delta*y*exp(-x/h))

Xi <- xij%*%diag(delta*exp(-x/h))

Yi <- xij%*%diag(exp(-x/h))

Asum <- apply(Xiy,1,sum)

Bsum <- apply(Xi,1,sum)

Csum <- apply(Yi,1,sum)

Wi <- Bsum/Csum

MXi <- Asum/Bsum

mean((y-MXi-delta*(y-MXi)/Wi)^2)

}

#KR imputation method with CLS1 kernel, set en=0 for CLS2 kernel

smse <- function(aa)

{

vn <- aa;

en <- aa^2;

xij <- matrix(kronecker(x,vn^2*(x+en),"/"), nrow=n)

Xiy <- exp(-xij)%*%diag(delta*y*x^{1/vn^2-1})

Xi <- exp(-xij)%*%diag(delta*x^{1/vn^2-1})

Asum <- apply(Xiy,1,sum)

Bsum <- apply(Xi,1,sum)
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mean((y-Asum/Bsum)^2)

}

#HT imputation method with CLS1 kernel, set en=0 for CLS2 kernel

smse=function(aa)

{

vn <- aa;

en <- aa^2;

xij <- matrix(kronecker(x,vn^2*(x+en),"/"), nrow=n)

Xiy <- exp(-xij)%*%diag(delta*x^{1/vn^2-1})

Xi <- exp(-xij)%*%diag(x^{1/vn^2-1})

Asum <- apply(Xiy,1,sum)

Bsum <- apply(Xi,1,sum)

mean((y-delta*y/(Asum/Bsum))^2)

}

#DR imputation method with CLS1 kernel, set en=0 for CLS2 kernel

smse=function(aa)

{

vn <- aa

en <- 0

xij <- matrix(kronecker(x,vn^2*(x+en),"/"), nrow=n)

Xiy <- exp(-xij)%*%diag(delta*y*x^{1/vn^2-1})

Xi <- exp(-xij)%*%diag(delta*x^{1/vn^2-1})

Yi <- exp(-xij)%*%diag(x^{1/vn^2-1})

Asum <- apply(Xiy,1,sum)

Bsum <- apply(Xi,1,sum)

Csum <- apply(Yi,1,sum)

35



Wi <- Bsum/Csum

MXi <- Asum/Bsum

mean((y-MXi-delta*(y-MXi)/Wi)^2)

}

hseq <- seq(0.001,1,length=200);

fsmse <- rep(0,length(hseq))

i <- 1;

for(h in hseq)

{

fsmse[i]=smse(h)

i=i+1

}

Smse[ri,ci]=min(fsmse[fsmse!="NaN"&fsmse!="Inf"])

ci=ci+1

}

ri=ri+1

}

S=S+Smse

}

S/200

dimnames(S)=list(c(100,150,200),c("model 1","model 2","model 3","model 4"))

S
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