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We study theoretically dc and ac transport on the surface of a three-dimensional topological insula-

tor when its time-reversal symmetry is broken. Starting with a Kubo formula, we derive an explicit

expression for the dc Hall conductivity, valid for finite temperatures. At zero temperature this

expression gives the dc half-quantum Hall conductivity, provided the Fermi level lies in the gap.

Corrections when the Fermi level is outside the gap and scattering by impurities are quantified. The

longitudinal conductivity is also examined. At finite frequencies, we find a modified Drude term in

rxx(x) and logarithmic, frequency-dependent corrections in ryx(x). The ac Hall conductivity exhib-

its a robust logarithmic singularity for excitation energies equal to the gapwidth. For these energies,

we also find that the power spectrum, which is pertinent to optical experiments, exhibits drastic

increase. The Hall conductivity remains almost unaffected for temperatures up to approximately

300 K. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4892892]

I. INTRODUCTION

A strong three-dimensional (3D) topological insulator

(TI) is a novel quantum state of matter, which possesses sur-

face conducting states in the bulk energy gap.1–7 The surface

states are topologically protected and can be well described

at low energies as helical Dirac fermions. Angle-resolved

photoemission spectroscopy experiments confirmed the exis-

tence of Dirac-like surface states in Bi2Se3,8 Bi2Te3,9 and

Sb2Te3.9 The helical Dirac fermions in the surface states of a

TI reveal a lot of unconventional properties such as the topo-

logical magnetoelectric effect10 and the image magnetic

monopole effect.11

As far as transport phenomena are concerned, theoretical

investigations have focused mostly on the effects of the char-

acteristic spin-momentum locking of the helical TI surface

states, which has an obvious potential in spintronics.12–16

There have been also studies of transport and optical proper-

ties of thin-film TIs.17,18 However, some topics have

received only a limited attention, for instance, disorder, and

ac transport.

The purpose of this paper is to study dc and ac transport

on the surface of a 3D TI, when its time-reversal symmetry

(TRS) is broken. Once a TRS-breaking perturbation is intro-

duced, a gap is induced at the Dirac points of the TI, and the

system enters a half-quantum Hall phase6 regardless of the

detailed form of the perturbation. The surface half-quantum

Hall effect is a unique property of the surface states of 3D

TIs and has been discussed previously6,10 but has not been

directly observed yet. In particular, when the Fermi level lies

inside the gap, it has been predicted that the Hall conductiv-

ity is quantized as 6e2/(2h). Up to now though we are not

aware of any explicit derivation of the surface half-quantum

Hall effect and of any corrections to it resulting, e.g., from

scattering. In this paper, besides providing an explicit deriva-

tion, we also quantify the corrections when the Fermi level is

outside the gap and take into account weak, elastic scattering

by impurities, for which the topological states are very ro-

bust.19 In addition, we study the longitudinal conductivity

and its dependence on the carrier density and type of impu-

rity potential. We also evaluate the finite-frequency conduc-

tivities ryx(ix) and rxx(ix) including scattering, and analyze

the power spectrum which is relevant to optical experiments.

Interestingly, we find a robust logarithmic singularity in the

ac Hall conductivity when the photon energy reaches the gap

energy. For this energy, the power spectrum exhibits sharp

increase. For both dc and ac transport, we take into account

finite temperatures. All calculations are carried out in the

framework of linear response theory.

The rest of the paper is organized as follows. In Sec. II,

we present one-electron properties and the relevant conduc-

tivities. In Sec. III, we discuss dc transport while ac transport

and the power spectrum are discussed in Sec. IV. In Sec. V,

we assess the influence of finite temperatures, and a sum-

mary of our results is presented in Sec. VI.

II. FORMALISM

A. One-electron attributes

The helical metallic surface states of a 3D TI are

described by a Dirac-like Hamiltonian

HsðkÞ ¼ �hvF½rxky � rykx� þ Dzrz; (1)

where rl, l¼ x, y, z are the Pauli matrices that act on the

spin degrees of freedom and kx and ky are the components of

the electron’s wave vector k. The first term in the

Hamiltonian captures the gapless Dirac-cone energy spec-

trum of the surface states. The influence of a TRS-breaking

perturbation is captured by the mass term Dzrz, which opens

a gap at the Dirac point. An obvious physical source for the

mass term is the Zeeman interaction between spins and an

external magnetic field. Another possibility is to cover the

surface of a 3D TI with magnetically ordered spins.
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In order to diagonalize Hs(k), we first write k6

¼ 6ike7iuk , where tan uk ¼ ky=kx and k¼jkj ¼ðk2
xþk2

yÞ
1=2

.

We also set �k¼ðD2
z þ �h2v2

Fk2Þ1=2; cosh ¼ Dz=�k, and sin h
¼ �hvFk=�k. Then, Eq. (1) takes the form Hs(k)¼ �kh(k) with

hðkÞ ¼
cos h sin h e�iu0

k

sin h eiu0
k �cos h

0
B@

1
CA; (2)

where u0k ¼ uk � p=2. Since the matrix h(k) is hermitian, it

has real eigenvalues and its eigenfunctions, corresponding to

different eigenvalues, are orthogonal. It is also unitary, i.e.,

its eigenvalues are of unit magnitude. They are k¼61,

which entails that those of Hs(k) are

Ek;k ¼ k�k ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

z þ �h2v2
Fk2

q
: (3)

The index k represents the valence (k¼�1) and conduction

(k¼þ1) bands, respectively. The energy spectrum is plotted

in Fig. 1 as a function of b ¼ �hvFk=jDzj for Dz¼ 5 meV

(solid curve). The dashed (red) curve is for Dz¼ 0. Note that

the spectrum is the same as that of graphene in the presence

of a mass term.

The eigenstates of Hs(k) are two-component spinors and

can be obtained following a standard diagonalization proce-

dure. They are given by

Wk;k rð Þ ¼ 1ffiffiffiffiffi
2S
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kdk

p

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kdk

p
eiu0

k

0
@

1
Aeik�r; (4)

where dk¼Dz/�k and S is the area of the of the TI. We notice

that in the limit Dz! 0 we obtain the eigenstates in graphene

if we consider only one of its two valleys.20

1. Density of states

An important property is the density of states D(E),

which is obtained from DðEÞ ¼
P

f dðEf � EÞ with

jfi � jk; ki. Replacing the d function by a Lorentzian of

width C, i.e., dðEk;k � EÞ � ðC=pÞð1=½ðEk;k � EÞ2 þ C2�Þ,
and transforming the sum over k to an integral over the

energy, we obtain

D Eð Þ ¼ gjEj
2p2�h2v2

F

½p� tan�1Eþ þ tan�1E� þ C=2jEjð Þlnfð1þ E2
þÞ=ð1þ E2

�Þg�H jEj � jDzjð Þ; (5)

with E6 ¼ ðjEj6jDzjÞ=C and H(x) the Heaviside function.

The factor g takes into account the degeneracy due to inter-

nal degrees of freedom. In contrast to graphene, where g¼ 4

due to the four Dirac cones (2 valley� 2 spin), it turns out

that g¼ 1 on the surface of a TI.5,6 In fact, the number of

Dirac cones is a key difference between the surface-state

theory for 3D TIs and graphene or any 2D Dirac system. In

the limit C! 0, we obtain the simpler, unbroadened density

of states DðEÞ ¼ gjEj=ð2p�h2v2
FÞ with jEj > jDzj. The density

of states as a function of the energy is shown in Fig. 2 for

C¼ 0 (solid lines) and C 6¼ 0 (dashed, red lines). Notice that

for jDzj ! 0, the density of states is identical in form to that

in gapless graphene as shown in Fig. 2 by the (blue) long-

dashed lines. However, since valley and spin degeneracies

are absent on the surface of a TI, the slope of D(E) is only

one fourth of the corresponding value of gapless graphene.

We also note that the density of states is zero for energies

smaller than the gap 2jDzj and experience a jump from zero

to a finite value ðjDzj=2p�h2v2Þ at the energy jEj ¼ jDzj.

2. Matrix elements of the velocity operator

In order to evaluate the various conductivities, we need

the matrix elements of the velocity operator, i.e.,

FIG. 1. Energy spectrum Ek,b as a function of the dimensionless parameter

b ¼ �hvFk=jDzj for vF¼ 6.2� 105 m/s and Dz¼ 5 meV. The dashed curve is

for Dz¼ 0.

FIG. 2. Density of states D(E) (in units of 1=2p�h2v2
F) as a function of the

energy. The solid curve is for C¼ 0 and the dashed (red) one for C 6¼ 0. The

long-dashed (blue) curve is for Dz¼ 0. The values of the parameters are the

same as in Fig. 1.
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hWk;kjv� jWk0;k0 i ¼ v�;ff0 , where �¼ x, y, and f, f0 stand for

(k, k) and ðk0; k0Þ, respectively. They are readily evaluated

and read

vx;ff0 ¼ ðivF=2ÞV�; vy;ff0 ¼ ðvF=2ÞVþ; (6)

where

V6 ¼ ½k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kdkÞð1� k0dkÞ

q
eiuk0

6k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� kdkÞð1þ k0dkÞ

q
e�iuk0 �dkk0 : (7)

B. Linear-response conductivity expressions

We adopt the formalism developed in Ref. 21. We con-

sider a many-body system described by the Hamiltonian

H ¼ H0 þ HI � R � FðtÞ, where H0 is the unperturbed part,

HI is a binary-type interaction (e.g., between electrons and

impurities or phonons), and �R � FðtÞ is the interaction of

the system with the external field F(t). For conductivity

problems F(t)¼ eE(t), where E(t) is the electric field, e is the

electron charge, R ¼
P

ri
, and ri is the position operator of

electron i. In the representation in which H0 is diagonal the

many-body density operator q¼qdþ qnd has a diagonal part

qd and a nondiagonal part qnd. Further, for weak electric

fields and weak scattering potentials, for which the first Born

approximation applies, the corresponding conductivity tensor

has a diagonal part rd
l� and a nondiagonal part rnd

l� , i.e.,

rl� ¼ rd
l� þ rnd

l� , where l, �¼ x, y.

Now, in general, there are two kinds of currents, diffu-

sive and hopping, but usually only one of them is present. In

this work, with no magnetic field present, there is only diffu-

sive current since the hopping contribution vanishes identi-

cally, see Eq. (2.65) in Ref. 21. Then, for quasi-elastic

scattering

rd
l� ixð Þ ¼ be2

S

X
f

ff 1� ffð Þ
v�f vlf sf

1þ ixsf
; (8)

where sf is the momentum relaxation time, x is the fre-

quency, and vlf ¼ hfjvljfi are the diagonal matrix elements

of the velocity operator with l¼ x, y and jfi ¼ jk; kx; kyi.
Further, ff ¼ ½1þ exp bðEf � EFÞ��1

is the Fermi-Dirac dis-

tribution function with b¼ 1/kBT, T is the temperature, and

EF is the Fermi level.

Regarding the contribution rnd
l� one can use22 the iden-

tity ffð1� ff0 Þ½1� exp bðEf � Ef0 Þ� ¼ ff � ff0 and cast the

original form21 in the more familiar one

rnd
l� ixð Þ ¼ i�he2

S

X
f 6¼f0

ff � ff0
� �

v�ff0 vlf0f

Ef � Ef0ð Þ Ef � Ef0 þ �hxþ iCf
� � ; (9)

where v�ff0 ¼ hfjv�jf0i and vlf0f ¼ hf0jv�jfi are the nondiago-

nal matrix elements of the velocity operator. The sum runs

over all quantum numbers jfi ¼ jk; kx; kyi and jf0i ¼
jk0; k0x; k0yi provided f 6¼ f0. The infinitesimal quantity � in the

original form21 has been replaced by Cf to account for the

broadening of the energy levels.

It is convenient and rather instructive to first present the

results for dc transport (x¼ 0) and then those for ac trans-

port (x 6¼ 0).

III. DC TRANSPORT

A. Hall conductivity

We consider now the dc Hall conductivity. We set

rnd
yx ð0Þ � rnd

yx in Eq. (9) and we consider first the case with

no level broadening C¼ 0. Because the matrix elements of

the components vx and vy of the velocity operator v are diag-

onal in k the only elements that contribute to Eq. (9) are

vl;þ;� ¼ hþ; kjvlj�; k0i and vl;�;þ ¼ h�; kjvljþ; k0i and

their complex conjugates. With the help of Eqs. (6) and (7),

we obtain

vx;þ;� ¼ �ðivF=kÞðky � idkkxÞ;
vy;þ;� ¼ ðivF=kÞðkx þ idkkyÞ:

(10)

Substituting Eq. (10) in Eq. (9), we obtain

rnd
yx ¼ ði�he2=SÞ

X
k

ðf�;k � fþ;kÞ=4�2
k

� ½vx;�;þvy;þ;� � vx;þ;�vy;�;þ�
¼ ð2�hv2

Fe2Dz=SÞ
X

k

ðf�;k � fþ;kÞ=4�3
k: (11)

The sum over k is transformed to an integral, using the pre-

scription
P

k ! ðS=4p2Þ
Ð

d2k, and the integral is carried out

in polar coordinates. This gives the dc Hall conductivity for

nonzero temperatures. For zero temperature and the Fermi

level in the gap between E�;k and Eþ;k, the Fermi functions

reduce to f�;k ¼ 1 and fþ;k ¼ 0. With 0� k�1 this gives

the result of Ref. 6,

rnd
yx ¼

Dz

jDzj
e2

2h
: (12)

The derivation of the half-quantum Hall conductivity is valid

if the continuum Hamiltonian in Eq. (1) applies. In particu-

lar, deviations from the Dirac fermion model at large

momenta, which are necessary in the case of 2D systems,5,6

are not included in the above calculation. However, on the

surface of a 3D TI such contributions from large momenta

vanish,10 which makes them different from all 2D systems.

Therefore, the half-quantum Hall effect is a unique property

of the surface states of 3D TIs, which distinguishes them

from all pure 2D systems.

When the Fermi level lies in the electron band, with

0� k� kF and for relatively low temperatures, we obtain

rnd
yx ¼

e2

2h

Dz

EF
H EF � Dzð Þ; (13)

with the H(…) function reminding EF	Dz. Thus, when the

Fermi level lies outside the gap, the Hall conductivity is not

half-quantized anymore. We plot rnd
yx , given by Eq. (13), ver-

sus the (dimensionless) Fermi energy �F¼EF/Dz in Fig. 3.

As can be seen, for �F> 1, the Hall conductivity decreases
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inversely proportional to �F. We have verified by a numerical

evaluation of Eq. (11) that the Hall conductivity is very ro-

bust against the temperature, as shown in Fig. 7 in Sec. V for

a¼ 0. Similar result has been obtained in Ref. 23 for the

case in which the mass is replaced by the strength of perpen-

dicular magnetization.

We now consider the case with nonzero level broaden-

ing (C 6¼ 0) and assume C 
 EF. A straightforward calcula-

tion yields

rnd
yx ¼

ie2

2h

Dz

C
ln

1� ic
1þ ic

� �
¼ e2

2h

tan�1c
c

; (14)

where c ¼ C=2jDzj is the (dimensionless) level broadening.

Expanding the logarithms for c< 1, we obtain

rnd
yx ¼

Dz

jDzj
e2

2h
1� c2

3
þ c4

5
þ � � �

� �
: (15)

It can be seen from Eq. (15) that the leading-order correction

to the usual result is c2/3.

We now turn to the component rnd
xx , which is evaluated

in the same manner as rnd
yx . If we neglect C, we find that rnd

xx

vanishes identically. If we do not neglect C the result is very

unwieldy but very small and therefore it will be neglected.

B. Longitudinal conductivity

We consider now the diagonal components rd
yx and rd

xx

which are given by Eq. (8) for x¼ 0. The component rd
yx

vanishes identically because hfjrljfi ¼ 0. As for rd
xx, using

hk; kjvljk; ki ¼ k�hklv2
F=�k; l ¼ x; y; we obtain

rd
xx ¼

b�h2v4
Fe2

S

X
kk

k2
x=�

2
k

	 

fk;k 1� fk;kð Þsk;k: (16)

In general, the integral over k can be evaluated numerically.

However, we can obtain an approximate analytic result by

assuming a constant relaxation time sþ;k � s�;k � sF and

consider very low temperatures for which the approximation

bfþ;kð1� fþ;kÞ � dðEþ;k � EFÞ holds. After integration over

k, we obtain

rd
xx �

e2

2h

sF E2
F � D2

z

� �
�hEF

H EF � Dzð Þ: (17)

The relaxation time is calculated in the Appendix for short-

range and long-range impurity scattering. We also notice

that in the limit Dz! 0, Eq. (17) agrees with the result

obtained in Ref. 24 to within a factor of 2.

For finite C and very low temperatures, we make the

same approximations as above. Even with a constant relaxa-

tion time the result is unwieldy. However, for C 
 EF it is

given by

rd
xx �

e2

2h

sF E2
F � D2

z

� �
p�hEF

p
2
þ tan�1 EF � Dz

C

� �
�H EF � Dzð Þ: (18)

As can be easily verified, Eq. (18) reduces to Eq. (17) in the

limit C! 0.

It is appropriate to consider the dependence of rd
xx on

the carrier density ne, through that on kF, and the impurity

density ni through that of s, cf. Eq. (A1). In a 2D system, sur-

face roughness may give rise to short-range scattering.25 The

corresponding rate 1/s is given in Eq. (A3) for Dz¼ 0 and

leads to a constant rd
xx.25 The situation is different for long-

range Coulomb potentials. For charged impurities screened

by the conduction electrons, we may identify ks (see the

Appendix) with the Thomas-Fermi wave vector

ks ¼ ð2pe2=�ÞDðEFÞ; (19)

where � is the relative dielectric constant and D(EF) is the

density of states at the Fermi level. With the help of Eq.

(A4), we plot rd
xx in Fig. 4 versus the ratio ne/ni of the carrier

density to the impurity density for �¼ 100, a value appropri-

ate to Bi2Se3, and �¼ 80, with ni¼ 4� 1013 cm�2 and

�hvF ¼ 4:1 eV Å. Note that rd
xx increases linearly with the car-

rier density. This is also the case for Dz¼ 0 (Ref. 7) and that

of graphene.26 However, the large value of the dielectric

constant implies a large reduction in the Coulomb potential

yielding a smaller scattering rate which can account for the

faster increase of the conductivity in TIs than in graphene.

FIG. 4. Conductivity rd
xx for screened Coulomb scatterers as a function of

the surface carrier density ne for �¼ 100 (solid curve) and �¼ 80 (solid

curve). Both curves are for ni¼ 4� 1013 cm�2 and �hvF ¼ 4:1 eV Å.

FIG. 3. Hall conductivity rnd
yx as a function of the dimensionless Fermi

energy �F¼EF/Dz. When EF lies in the gap between �jDzj and jDzj, we have

rnd
yx ¼ ðDz=jDzjÞðe2=2hÞ. For EF outside this gap, rnd

yx decreases inversely

proportional to �F, see Eq. (13).

063713-4 V. Vargiamidis and P. Vasilopoulos J. Appl. Phys. 116, 063713 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

132.205.102.152 On: Fri, 29 Aug 2014 20:07:38



IV. AC TRANSPORT

A. Conductivities

We now consider the finite-frequency conductivity

rnd
yx ðixÞ, which is given by Eq. (9), and its evaluation follows

that of rnd
yx ð0Þ. With the help of the matrix elements in Eqs.

(6) and (7), we can express Eq. (9) as

rnd
yx ixð Þ ¼ 2�hv2e2Dz=S

� �X
k

f�;k � fþ;kð Þ=4�2
k

� 2�k þ �hxþ iC

2�k þ �hxð Þ2 þ C2
þ 2�k � �hx� iC

2�k � �hxð Þ2 þ C2

" #
:

(20)

The sum over k is converted to an integral and the integral is

carried out in polar coordinates with 0� k� kF. In addition,

we remark that �hx and C are at least one order of magnitude

smaller than EF, i.e., �hx
 EF and C 
 EF. Accordingly,

terms of order C/EF and �hx=EF can be safely neglected. At

zero temperature and with EF in the gap between E�;k and

Eþ;k, we obtain

rnd
yx ixð Þ ¼ Dz

jDzj
e2

4h

aþ ic
a2 þ c2

� �
ln

1þ a� ic
1� aþ ic

� �
; (21)

where a ¼ �hx=2jDzj. Note that in the limit a ! 0 Eq. (21)

reduces to Eq. (14). We also notice that in the limit c! 0,

the real part of rnd
yx ðixÞ has a logarithmic divergence for

a¼ 1, i.e., for frequency such that the photon energy equals

the width of the gap �hx ¼ 2jDzj. The corresponding peak

though is broadened with increasing C, as shown in Fig. 5,

where we plot separately the real (upper) and imaginary

(lower) parts of rnd
yx ðixÞ. The imaginary part influences the

behaviour of the power spectrum, as discussed in Sec. IV B.

The appearance of the singularity for a¼ 1 is related to the

onset of particle-hole excitations27 for �hx > 2jDzj; namely,

for �hx > 2jDzj, the electrons can absorb photons from the

external ac field and create particle-hole pairs, whereas this

effect is forbidden for �hx < 2jDzj.
The logarithmic singularity in the real part of rnd

yx ðixÞ is

very robust over a wide range of temperatures as discussed

in Sec. V. Its position is determined only by the width of the

gap. This is remarkable because it means that the singularity

can be useful for the experimental determination of the gap

in TIs by studying the ac Hall conductivity.

We further notice that for c¼ 0, Eq. (21) agrees with the

recent result of Ref. 27, as well as that of Ref. 28, and is

referred to as the optical Hall conductivity. However, for

c 6¼ 0 only numerical results were given in Refs. 27 and 28.

We now consider the component rnd
xx ðixÞ. Neglecting C

a straightforward calculation yields

rnd
xx ixð Þ ¼ ie2

2h

1

2a
þ 1

4
þ 1

4a2

� �
ln

1� a
1þ a

� �" #
: (22)

Evidently this result diverges in the limit a ! 1 or �hx!
2jDzj and was also noticed in Ref. 28. For �hx
 2jDzj, we

can expand the logarithms and obtain, to leading order in a,

the simple result

rnd
xx ixð Þ ¼ � ie2

h

�hx
8jDzj

: (23)

The evaluation of the component rd
xxðixÞ for C¼ 0 fol-

lows verbatim that of rd
xxð0Þ and the approximations stated

after Eq. (16). Corresponding to Eq. (17), we obtain

rd
xx ixð Þ ¼ e2

2h

sF

1þ ixsF

E2
F � D2

z

�hEF
H EF � Dzð ÞH �hx� 2jDzjð Þ:

(24)

The result (24) is similar to the semiclassical one of Ref. 28

that is valid only in the collisionless limit.

Now for C 6¼ 0 and very low temperatures, we make the

replacement dðEþ;k � EFÞ � ðC=pÞð1=½ðEþ;k � EFÞ2 þ C2�Þ.
With a constant relaxation time and C 
 EF, the result for

rd
xxðixÞ is given by Eq. (18) with sF replaced by sF/

(1þ ixsF).

B. Power spectrum

One important issue is the frequency dependence of the

power absorbed in TIs, which is relevant to optical experi-

ments. In our discussion below, we focus on the right-

handed circularly polarized light.

Within linear response theory, the average power

absorbed from light of frequency x and electric field strength

E is given by

P xð Þ ¼ 1

2
E2 Re rxx ixð Þ þ ryy ixð Þ þ iryx ixð Þ � irxy ixð Þ

� �
:

(25)

We remark that ryyðixÞ ¼ rxxðixÞ and rd
yxðixÞ

¼ �rd
xyðixÞ ¼ 0. Also, rnd

xy ðixÞ ¼ �rnd
yx ðixÞ. Then, Eq. (25)

takes the form

PðxÞ ¼ E2 Refrd
xxðixÞ þ rnd

xx ðixÞ þ irnd
yx ðixÞg: (26)

We show P(x) in Fig. 6 versus a for two values of the broad-

ening c. The power spectrum vanishes for �hx < 2jDzj, but

we notice a sharp onset for excitation energies equal to the

gapwidth of the TI, i.e., for �hx! 2jDzj. However, the sharp

FIG. 5. The real (upper) and imaginary (lower) part of rnd
yx ðixÞ vs a ¼

�hx=2jDzj in units of e2/2h. The solid (dashed) curves are for c¼ 0.01

(c¼ 0.03), c ¼ C=2jDzj, and Dz> 0. Notice the dc limit rnd
yx ð0Þ ¼ e2=2h.
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increase of the power spectrum for c! 0 is smeared out as c
increases.

V. FINITE TEMPERATURES

We consider now the influence of finite temperatures.

The real part of rnd
yx ðixÞ in Eq. (20) is evaluated numerically

and plotted in Fig. 7(a) as a function of a, for increasing val-

ues of temperature. The Fermi energy is EF¼ 0.1 eV, while

Dz¼ 0.012 eV and C¼ 0.001 eV. We notice that the proper-

ties of the ac Hall conductivity do not change over a wide

range of temperatures and the logarithmic singularity is ro-

bust. This effect can be used to determine the gap within a

transport measurement. The overall behaviour is similar to

that in Ref. 27, where even higher temperatures were consid-

ered, and rests on the tacit assumption that at these elevated

temperatures other factors, e.g., phonons, are unable to sig-

nificantly weaken this divergence or put into question the

applicability of the formalism. In our case such factors are

somewhat taken into account through the use of c.

In Fig. 7(b), the real part of rnd
yx ðixÞ is plotted as a func-

tion of temperature for two values of the frequency. The rest

of the parameters have the same values as in Fig. 7(a). Note

that both dc (a¼ 0) and ac (a¼ 0.3) Hall conductivities

remain unaffected with increasing temperature up to

T� 300 K.

VI. SUMMARY

Summarizing, we have systematically studied dc and ac

transport on the surface of a TI with TRS-breaking perturba-

tion represented by a mass term Dz, which opens a gap 2jDzj
at the Dirac point. At zero temperature, we obtained the dc

half-quantum Hall conductivity, ryx ¼ ðDz=jDzjÞðe2=2hÞ,
provided the Fermi level EF lies in the gap and corrections

due to scattering by impurities, which to our knowledge are

new. We also obtained the expression ryx¼ (Dz/EF)(e2/2h)

when the Fermi level lies in the conduction band. In addi-

tion, the longitudinal conductivity, for scattering by screened

Coulomb impurities, was shown to depend linearly on the

carrier density.

For ac transport, we obtained a modified Drude term in

rxx(x) and logarithmic, frequency-dependent corrections in

ryx(x). Interestingly, there is a logarithmic singularity in the

ac Hall conductivity when the photon energy equals the

width of the gap of the TI. This singularity survives over a

wide range of temperatures and could be used to measure

experimentally the gap. We also studied the power absorp-

tion spectrum, pertinent to optical experiments, and showed

that it increases drastically for �hx! 2jDzj. This last finding

could be tested experimentally and help in the identification

or observation of the ac half-quantum Hall conductivity.29

We also assessed the influence of finite temperatures

and showed that the optical Hall conductivity and its peak,

as well as its dc limit, remain almost unaffected up to

approximately 300 K.
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APPENDIX: RELAXATION TIME

Below we briefly present the results for the relaxation

rate 1/s assuming elastic scattering by short-range and long-

range impurities. Within the first Born approximation the

standard formula takes the form

1=sf � 1=skk ¼ ð2p=�hÞni

�
X
k0k0

jhkkjUðrÞjk0k0ij2dðEkk � Ek0k0 Þð1� cos hÞ;

(A1)

FIG. 6. Power spectrum vs a ¼ �hx=2jDzj in units of E2e2/2h. A relaxation

time s¼ 7� 10�14 s, a Fermi level EF¼ 100 meV, and a mass term

Dz¼ 0.2EF were assumed. The curves are marked as in Fig. 5. The drastic

increase for c! 0 weakens as c increases.

FIG. 7. (a) Real part of rnd
yx ðixÞ as a function of a ¼ �hx=2jDzj, in units of

e2/2h, for increasing values of temperature. (b) Real part of rnd
yx ðixÞ as a

function of temperature T for zero (solid curve) and finite (dashed-dotted

curve) frequencies.
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where U(r) is the impurity potential, ni is the impurity den-

sity, and h ¼ hk;k0 is the angle between the initial k and final

k0 wave vectors.

Since the scattering is elastic, we have k0 ¼ k. A direct

evaluation then gives the intermediate result

1

skk
¼ ni

2h
D2

z þ �h2v2
Fk2

	 
1=2
=�h2v2

F


 �

�
ð

1þ cos hþ d2
k 1� cos hð Þ

h i
jV qð Þj2 1� cos hð Þdh;

(A2)

where V(q) is the Fourier transform of U(r), evaluated at

q ¼ jk� k0j ¼ 2k sinðh=2Þ. Notice that, for Dz / dk! 0, the

integrand takes the form ð1� cos2hÞjVðqÞj2 and vanishes for

small- and long-angle scattering as in the case of graphene

without any mass term.26

(i) Short-range impurities. We have UðrÞ ¼ V0dðr� riÞ
with r; ri the position vectors of an electron and an

impurity, respectively, and V0 the constant strength of

the potential. In this case, V(q)¼V0 and the final

result is

1

skk
¼ ni

2h

V2
0

�h2v2
F

4D2
z þ �h2v2

Fk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

z þ �h2v2
Fk2

q : (A3)

For Dz¼ 0, this results agrees with that for graphene

given in Ref. 26.

(ii) Long-range impurities. We assume a screened

Coulomb potential UðrÞ ¼ eQ e�ksr=4p�0�r, where ks

is the screening wave vector, Q is the charge of the

impurity, and � is the dielectric constant. In this case,

jVðqÞj2 ¼ 4p2U2
0=ðq2 þ k2

s Þ with q ¼ 2k sinðh=2Þ and

U0 ¼ eQ=4p�0�. Again for Dz / dk! 0, the integrand

vanishes for small- and long-angle scattering. The in-

tegral in Eq. (A2) is evaluated by contour integration.

With s ¼ k2
s =2k2

F the result for 1/skk is

1

skk
¼ ni

2h

2p3U2
0

�h2v2
Fk2

F

½ð1þ d2
kÞð1� 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=s

p
Þ

þð1� d2
kÞ ½s� ð1þ sÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2=s

p
��: (A4)
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