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ABSTRACT

On variational formulas on spaces of quadratic differentials

Shahab Azarfar

We study the variational formulas for the normalized Abelian differentials and matrix of b-
periods on Hurwitz spaces, the moduli spaces of holomorphic Abelian differentials and quadratic

differentials over compact Riemann surfaces. As the main result of the thesis, we find a complete

set of local vector fields on the non-hyperelliptic connected component of the principal stratum of

the moduli space of holomorphic quadratic differentials preserving the moduli of the base Riemann

surface.
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Chapter 1

Introduction and Background Material

1.1 Introduction

The goal of this thesis is to study the variational formulas of Ahlfors-Rauch type for the nor-

malized Abelian differentials and the matrix of b-periods on Hurwitz spaces, the moduli spaces of

holomorphic 1-forms and holomorphic quadratic differentials over compact Riemann surfaces.

Consider a compact Riemann surface C of genus g. Denote by B the matrix of b-periods of C

(see Sect. 1.2 below). Consider a Beltrami differential µ ∈ Γ
(
KC ⊗K−1

C

)
on C, where KC is the

canonical line bundle of C and µ is a smooth section of the line bundle KC ⊗K−1
C . The Beltrami

differential µ represents a tangent vector to the Teichmuller space Tg of marked compact Riemann

surfaces of genus g, at the point C. The classical Ahlfors-Rauch variational formula gives the

directional derivative of B at C in direction µ.

Let {(Ui, zi)} be a holomorphic atlas on C, where zi : Ui → C is the local coordinate on the

open neighbourhood Ui ⊂ C. The local expression of the Beltrami differential µ on Ui is given by

µ|Ui
= µi(zi)

dzi
dzi

, (1.1)

where {µi ∈ C∞(Ui)} is a collection of local smooth complex-valued functions satisfying

µi(zi) = µj(zj)

(
dzj
dzi

)/(
dzj
dzi

)
on Ui ∩ Uj . (1.2)

Let {ζi ∈ C∞(Ui)} be a collection of local diffeomorphisms defined as solutions of the follow-

ing Beltrami equation:

µi =

(
∂ζi
∂zi

)/(
∂ζi
∂zi

)
on Ui . (1.3)

By substituting (1.3) into (1.2), we get

(
∂ζi
∂zi

)/(
∂ζi
∂zi

)
=

(
∂ζj
∂zi

)/(
∂ζj
∂zi

)
on Ui ∩ Uj . (1.4)
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According to (1.4), the complex dilatation of the transition map ζj ◦ ζ−1
i is equal to one, i.e. the

mapping ζj ◦ ζ−1
i is holomorphic on ζi(Ui ∩ Uj) ⊂ C. Therefore, each Beltrami differential µ on

C (modulo the infinitesimally trivial Beltrami differentials) corresponds to a Riemann surface Cµ

given by the holomorphic atlas {(Ui, ζi)}.

Let {vα}α=1,··· ,g and {ṽα}α=1,··· ,g be the normalized basis of the space of holomorphic 1-forms

on C and Cµ, respectively. Notice that each vα and ṽα is a smooth, complex-valued, closed 1-form

on the underlying smooth surface X of C, since they are each holomorphic with respect to some

complex structure on X (i.e. the holomorphic atlases {(Ui, zi)} and {(Ui, ζi)}, respectively).

Denote by B = [Bαβ] and B̃ = [B̃αβ] the matrices of b-periods of C and Cµ, respectively. To

compare Bαβ with B̃αβ , we apply the Riemann’s bilinear relation to the closed 1-forms vβ and

(ṽα − vα). So we get

B̃αβ − Bαβ =

∫

bβ

ṽα −
∫

bβ

vα =

∫∫

C

vβ ∧ (ṽα − vα) (1.5)

=

∫∫

C

vβ ∧ ṽα ,

since vβ ∧ vα ≡ 0.

Let z : U → C and ζ : U → C be the local coordinates in an open neighbourhood U ⊂ X

induced by the complex structure of C and Cµ, respectively. The local expression of the 2-form

vβ ∧ ṽα on U is given by

vβ ∧ ṽα = [vβ(z)dz] ∧ [ṽα(ζ)dζ] (1.6)

= [vβ(z)dz] ∧
[
ṽα(ζ)

(
∂ζ

∂z
dz +

∂ζ

∂z
dz

)]

=

[
vβ(z)ṽα(ζ)µ

∂ζ

∂z

]
dz ∧ dz

= [vβ(z)vα(z)µ] dz ∧ dz

+

[
vβ(z)

(
ṽα(ζ)µ

∂ζ

∂z
− vα(z)µ

)]
dz ∧ dz .

Thus (1.5) can be written in the following form:

B̃αβ − Bαβ =

∫∫

C

(vα ⊗ vβ)µ+ Eαβ , (1.7)
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where the “error term" Eαβ is given by

Eαβ =

∫∫

C

vβ ⊗
(
ṽα
∂ζ

∂z
− vα

)
µ . (1.8)

It can be shown that Eαβ = O
(
(||µ||∞)2

)
as ||µ||∞ tends to zero [11]. So we get the following

classical Ahlfors-Rauch variational formula:

dBαβ

∣∣
C
([µ]) =

∫∫

C

(vα ⊗ vβ)µ . (1.9)

The variation of matrix of b-periods under variation of the local homological coordinates on the

strata of the moduli space Hg of holomorphic Abelian differentials over Riemann surfaces of genus

g is investigated in [5]. Our primary aim is to study the variational formula for matrix of b-periods,

similar to (1.9), on the principal stratum Qg ([1
4g−4]) of the moduli space of holomorphic quadratic

differentials, i.e. the space of pairs (C, q), where C is a compact Riemann surface of genus g ≥ 2

and q is a holomorphic quadratic differential on C with simple zeros.

Corresponding to each pair (C, q) ∈ Qg ([1
4g−4]), there exists a canonical 2-sheeted branched

covering π : Ĉ → C such that the pullback quadratic differential π∗q has 4g − 4 zeros of multiplic-

ity 4 on the Riemann surface Ĉ of genus 4g − 3. Therefore, the holomorphic Abelian differential
√
π∗q on Ĉ can be constructed such that

√
π∗q ⊗√

π∗q = π∗q . (1.10)

The 1-form
√
π∗q has 4g − 4 zeros of multiplicity 2 on Ĉ so, the pair (Ĉ,

√
π∗q) is in the stratum

H4g−3 ([2
4g−4]). Considering the above-mentioned correspondence between (C, q) ∈ Qg ([1

4g−4])

and (Ĉ,
√
π∗q) ∈ H4g−3 ([2

4g−4]), we have the following local embedding:

S : Qg

([
14g−4

])
→ H4g−3

([
24g−4

])
. (1.11)

(C, q) 7→ (Ĉ,
√
π∗q)

The spaces Qg ([1
4g−4]) and H4g−3 ([2

4g−4]) are of dimension 6g − 6 and 12g − 11, respectively.

There exists a biholomorphic involution µ : Ĉ → Ĉ on Ĉ which interchange the points in each

fiber of π : Ĉ → C. The pullback µ∗ of the involution µ : Ĉ → Ĉ is an isomorphism on the space

3



Λ1
Ĉ
= H0(Ĉ,Ω1

Ĉ
) of holomorphic Abelian differentials on Ĉ. The (4g − 3)-dimensional vector

space Λ1
Ĉ

splits into two eigenspaces Λ+ and Λ− corresponding to the eigenvalues ±1 of µ∗.

The involution µ : Ĉ → Ĉ induces an isomorphism

µ∗ : H1(Ĉ;C) → H1(Ĉ;C) (1.12)

on the complex homology group H1(Ĉ;C) of Ĉ. The (8g − 6)-dimensional complex vector space

H1(Ĉ;C) splits into two eigenspaces H+ and H− corresponding to the eigenvalues ±1 of µ∗.

Let

{aj, a∗j , ãk, bj, b∗j , b̃k}, j = 1, · · · , g ; k = 1, · · · , 2g − 3 (1.13)

be a symplectic basis of H1(Ĉ;C) such that

µ∗aj = a∗j , µ∗bj = b∗j , µ∗ãk + ãk = µ∗b̃k + b̃k = 0 .

We construct the symplectic bases {α+
j , β

+
j }j=1,··· ,g and {α−

l , β
−
l }1=1,··· ,3g−3 for the eigenspaces

H+ and H−, from the basis (1.13), respectively.

Let

{uj, u∗j , ũk} , j = 1, · · · , g , k = 1, · · · , 2g − 3 (1.14)

be the normalized basis of Λ1
Ĉ

associated with the canonical basis (1.13). Consider the following

vectors

U =




u

u∗

ũ


 ∈

(
H1(Ĉ;C)

)4g−3

; A =




a

a∗

ã


 , B =




b

b∗

b̃


 ∈

(
H1(Ĉ;C)

)4g−3

. (1.15)

The basis (1.14) is normalized by the following condition on its periods over the 1-cycles {aj, a∗j , ãk}
(see Sect. 1.2 below):

Π(U,A) = I4g−3 . (1.16)

The matrix of b-periods B̂ of {uj, u∗j , ũk} with respect to the homology basis (1.13) is given by

B̂ = Π(U,B) . (1.17)
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We construct the normalized bases {u+j }j=1,··· ,g and {u−l }l=1,··· ,3g−3 for the eigenspaces Λ+ and

Λ−, from the basis (1.14), respectively, such that

Π




u

+

u−


 ,


α

+

α−




 =


Ig 0

0 I3g−3


 . (1.18)

Since

Π
(
u+j , β

−
l

)
= Π

(
µ∗u+j , β

−
l

)
= Π

(
u+j , µ∗β

−
l

)
= −Π

(
u+j , β

−
l

)
, (1.19)

we have

Π




u

+

u−


 ,


β

+

β−




 =


B

+ 0

0 B
−


 , (1.20)

where B
+ ∈ M(g,C) and B

− ∈ M(3g − 3,C) are called the matrices of β-periods.

To shorten the notation, we denote the basis {α−
l , β

−
l } for the eigenspaceH− by {ri}i=1,··· ,6g−6,

where

rl = α−
l , r3g−3+l = β−

l , l = 1, · · · , 3g − 3 . (1.21)

The periods of
√
π∗q on the cycles {ri}i=1,··· ,6g−6 , i.e.

ηi := Π
(√

π∗q, ri
)
, i = 1, · · · , 6g − 6 , (1.22)

provide a system of local homological coordinates on S (Qg ([1
4g−4])). Let {ζn}n=1,··· ,12g−11 be

the set of natural homological coordinates on the stratum H4g−3 ([2
4g−4]). Let B be the matrix of

b-periods of the base Riemann surface C. Using the chain rule and the formula for variation of

B̂ with respect to {ζn}n=1,··· ,12g−11 , we derive the formula for variation of B under variation of

{ηi}i=1,··· ,6g−6.

The difference between the dimensions of Qg ([1
4g−4]) and the moduli space of compact Rie-

mann surfaces of genus g ≥ 2 is equal to 3g − 3. Therefore, there must exist 3g − 3 local indepen-

dent vector fields {Wl}l=1,··· ,3g−3, defined on a neighbourhood of the point (C, q) ∈ Qg ([1
4g−4]),

which preserve the complex structure of the Riemann surface C, i.e.

Wl(B) = 0g×g , l = 1, · · · , 3g − 3 . (1.23)

As the main result of the thesis, we find the following expression for Wl , l = 1, · · · , 3g − 3,

as a linear combination of the vector fields {∂/∂ηi}i=1,··· ,6g−6, on the non-hyperelliptic connected
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component of Qg ([1
4g−4]) :

Wl =
∂

∂ηl
+

3g−3∑

k=1

B
−
lk

∂

∂η3g−3+k

, l = 1, · · · , 3g − 3 , (1.24)

where B
− is the matrix of β−-periods given by (1.20).

The thesis is organized as follows. In Section 1.2 we review the basic concepts from the theory

of compact Riemann surfaces which are necessary in the sequel. In Section 2.1 we introduce the

Hurwitz space H (d; r1, · · · , rn) as the space of branched coverings f : C → CP
1 of a fixed com-

binatorial type (d; r1, · · · , rn) of the Riemann sphere or, equivalently, the space of meromorphic

functions on Riemann surfaces C of fixed genus. In Section 2.2 we study the variation of the nor-

malized Abelian differentials and matrix of b-periods of the Riemann surface C under the variation

of one of the branch points of the meromorphic function f : C → CP
1 [4].

In Section 3.1 we introduce the set of homological coordinates on the strata of the moduli

space of holomorphic Abelian differentials over Riemann surfaces of fixed genus. In Section 3.2

we study the variational formulas, given in [5], for the normalized Abelian differentials and matrix

of b-periods with respect to these homological coordinates.

In Section 4.1 we introduce the canonical 2-sheeted branched covering π : Ĉ → C correspond-

ing to a pair (C, q) ∈ Qg ([1
4g−4]) . The main objective of this section is to discuss the decompo-

sition of the (co)homology group of Ĉ into invariant and anti-invariant subspaces under the action

of the involution µ : Ĉ → Ĉ. In Section 4.2 we introduce the induced homological coordinates on

Qg ([1
4g−4]) and derive the variational formulas for matrix of b-periods of C and Ĉ under variation

of these coordinates. In addition, we find a complete set of local vector fields in a neighbourhood

of the point (C, q) ∈ Qg ([1
4g−4]) which preserve the complex structure of C.
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1.2 Basic Objects on Compact Riemann Surfaces

Let C be a compact Riemann surface of genus g. Let {al, bl}l=1,··· ,g be a canonical basis of the

integral homology group H1(C;Z) of C. The intersection numbers of these 1-cycles are given by

ai ◦ bj = δij, ai ◦ aj = bi ◦ bj = 0 , i, j = 1, · · · , g . (1.25)

The relations (1.25) can be represented in the following matrix form:


a
b


 ◦

[
a b

]
=


 0 Ig

−Ig 0


 ,

(we denote the n× n identity matrix by In).

Let Ω1
C be the sheaf of holomorphic 1-forms on C. Denote by H0(C,Ω1

C) the g-dimensional

vector space of holomorphic 1-forms on C. Let {vk}k=1,··· ,g be the basis of H0(C,Ω1
C) normalized

by
∮
al
vk = δkl. The matrix of b-periods B = [Bkl] of C is defined by

Bkl :=

∮

bl

vk , k, l = 1, · · · , g . (1.26)

Let Ak(C,C) , k = 0, 1, 2 be the space of smooth complex-valued k-forms on C. Consider the

following two subspaces of A1(C,C):

Z1(C;C) =
{
α ∈ A1(C,C)| dα = 0

}
= {smooth closed 1-forms onC} ,

B1(C;C) =
{
df ∈ A1(C,C)| f ∈ A0(C,C)

}
= {smooth exact 1-forms onC} .

The De Rham cohomology group H1(C;C) of C is a (2g)-dimensional complex vector space

defined in the following way:

H1(C;C) =
Z1(C;C)

B1(C;C)
. (1.27)

Let α be a closed 1-form on C and γ be a closed path in C. The period Π(α, γ) of α on γ is

defined [8] by

Π(α, γ) :=

∮

γ

α . (1.28)
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The integral
∮
γ
α depends only on the cohomology class [α] ∈ H1(C;C) of α and the homology

class [γ] ∈ H1(C;C) of γ. Therefore, there exists a bilinear period mapping

Π : H1(C;C)×H1(C;C) → C , (1.29)

defined by Π([α], [γ]) :=
∫
γ
α.

Let (H1(C;C))
n

and (H1(C;C))
n

be the Cartesian product of n copies of H1(C;C) and

H1(C;C), respectively. Consider the vectors

X =




α1

...

αn


 ∈

(
H1(C;C)

)n
and Y =




γ1
...

γn


 ∈ (H1(C;C))

n . (1.30)

We define the bilinear period mapping

Π :
(
H1(C;C)

)n × (H1(C;C))
n → M(n,C) (1.31)

in the following way:

Π(X,Y) :=




Π(α1, γ1) . . . Π(α1, γn)
...

...

Π(αn, γ1) . . . Π(αn, γn)


 , (1.32)

where M(n,C) denotes the vector space of n× n complex matrices.

Definition 1. A meromorphic differential on C is called an Abelian differential of the second kind

if the residues at all of its poles are equal to zero.

The normalized Abelian differential of second kind, denoted by ω
(n)
p , has only one singularity

at p ∈ C that is of the form

ω(n)
p

∣∣
U
=

(
1

zn
+O(1)

)
dz, (1.33)

where z : U → C is the local coordinate on U ⊂ C with z(p) = 0. It satisfies the normalization

condition
∮
al
ω
(n)
p = 0 l = 1, · · · , g.

Denote by E(x, y) the prime form on C. The Bergman bidifferential B(x, y) is defined by

B(x, y) = dx dy logE(x, y). (1.34)
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The bidifferential B(x, y) is symmetric, i.e. B(x, y) = B(y, x), and B(x, y0) is a differential on C

with a single pole of order 2 at y0 for each fixed y0 ∈ C.

Let U be an open subset of C with local coordinate z : U → C. The Bergman bidifferential

restricted to the open subset C × U ⊂ C × C is given by

B(x, y)|C×U = π∗
1(ω

(2)
p )⊗ π∗

2(dz), (1.35)

where ω
(2)
p is the normalized Abelian differential of second kind on C with a double pole at p ∈ U .

The b-period of ω
(2)
p is given by

∮

bk

ω(2)
p = 2πi

( vk
dz

)
(p), (1.36)

where {vl}l=1,··· ,g is the normalized basis of the space of holomorphic 1-forms on C. So we have

∮

bk

B(x, p) :=

(∮

bk

ω(2)
p (x)

)
dz(p) = 2πivk(p) , (1.37)

∮

ak

B(x, p) :=

(∮

ak

ω(2)
p (x)

)
dz(p) = 0 . (1.38)

The differential ω
(n)
p can be expressed in terms of Bergman bidifferential as follows. Let

ι∗pB be the pullback of the Bergman bidifferential B by the map ιp : C ↪→ C × C defined by

ιp(q) = (q, p). Let V be an arbitrary open subset of C with local coordinate y : V → C. The

1-form ω
(n)
p restricted to V satisfies the following equality:

ω(n)
p

∣∣
V
=

1

(n− 1)!

[(
∂

∂x

)n−2(
ι∗xB

dy

) ∣∣∣
x=p

]
dy. (1.39)

We can rewrite (1.39) in a more concise way as follows:

ω(n)
p =

1

(n− 1)!

[(
∂

∂x

)n−2

(ι∗xB)
∣∣
x=p

]
. (1.40)

The Bergman bidifferential has the following asymptotics near the diagonal divisor on C × C:

B(p, q) =

(
1

(ζ(p)− ζ(q))2
+O(1)

)
dζ(p)dζ(q) (1.41)

as p→ q, where ζ : W → C is a local coordinate in the neighbourhood W ⊂ C containing both p

and q.
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Chapter 2

Variational Formulas on Hurwitz Spaces

In this chapter, we introduce the Hurwitz space H (d; r1, · · · , rn) as the space of d-sheeted

branched coverings f : C → CP
1 of a fixed combinatorial type (d; r1, · · · , rn) of the Riemann

sphere or, equivalently, the space of meromorphic functions on Riemann surfaces C of fixed genus.

In addition, we study the variational formulas for the normalized Abelian differentials and matrix

of b-periods of the Riemann surface C, given in [4], under the variation of one of the branch points

of the meromorphic function f : C → CP
1.

2.1 Hurwitz Spaces

Let (C, f) be a d-sheeted branched covering of the Riemann sphere CP1, where C is a compact

Riemann surface and f : C → CP
1 is a non-constant holomorphic mapping. The critical points

{pi}i=1,··· ,n of f are the points where df(pi) = 0. These points are called the ramification points of

f and we call their images λi = f(pi) the branch points of f . We assume that none of the branch

points coincide with {∞} ∈ CP
1 and λi 6= λj for i 6= j. The natural local coordinate xi(q) of a

point q ∈ C in a neighbourhood Vi of the ramification point pi ∈ Vi is given by:

xi(q) = (f(q)− f(pi))
1/ri = (λ− λi)

1/ri , q ∈ Vi, (2.1)

where ri is the ramification index of pi.

Let C̃P1 = CP
1 \ {λi}i=1,··· ,n and C̃ = C \ {f−1(λi)}i=1,··· ,n. Consider a fixed point λ0 ∈ C̃P1.

The mapping f induces a topological covering map f̃ : C̃ → C̃P1 of degree d which is a local

homeomorphism. In addition, the d-sheeted branched covering (C, f) induces a representation of

the fundamental group of C̃P1, called the monodromy map, µ : π1(C̃P1, λ0) → Sd where Sd is

the symmetric group on d letters.
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Theorem 2.1.1. (Riemann’s Existence Theorem [3]) LetB = {pi}i=1,··· ,n be a finite subset of CP1

and λ0 ∈ C̃P1 = CP
1 \B . Then for each positive integer d the following sets are in natural one-

to-one correspondence:

(i) the set of equivalence classes of d-sheeted branched coverings of CP1 with branch points lo-

cated at B;

(ii) the set of equivalence classes of topological coverings of degree d of C̃P1;

(iii) the subset of Hom(π1(C̃P1, λ0),Sd) represented by homomorphisms whose images are tran-

sitive subgroups of Sd.

Let {λi}i=1,··· ,n be the set of branch points of the d-sheeted branched covering (C, f). There

exist loops γ1, · · · , γn ⊂ C̃P1 based at λ0 ∈ C̃P1, satisfying the following conditions:

(i) The homotopy classes [γi] of γi’s generate π1(C̃P1, λ0) ;

(ii) Their homotopy classes satisfy the relation [γ1][γ2] · · · [γn] = 1 ;

(iii) Each γi is homotopic to a small loop around λi .

The corresponding monodromy map µ : π1(C̃P1, λ0) → Sd is defined by the permutations

µ([γi]) = σi ∈ Sd , i = 1, · · · , n , (2.2)

where σ1σ2 · · · σn = 1. The cycle type of the permutation σi is (1d−ri , ri).

Let U = (U1, · · · , Un) be a tuple of small open disksUi ⊂ CP
1 \ {∞} centred at λi, i = 1, · · · , n

such that Ui ∩ Uj = ∅ for i 6= j. Fix a representation µ : π1(C̃P1, λ0) → Sd of the fundamen-

tal group of C̃P1 = CP
1 \ {λi}i=1,··· ,n , corresponding to the monodromy map of the d-sheeted

branched covering (C, f). If we allow the λi’s to vary in Ui’s, then we get the set ∆U ,µ(C, f)

of d-sheeted branched coverings (C̃, f̃) with the branch points λ̃i ∈ Ui , i = 1, · · · , n and mon-

odromy map µ. The set ∆U ,µ(C, f) is an open neighbourhood of (C, f) in the Hurwitz space

H (d; r1, · · · , rn) [12].

2.2 Variational Formulas

Let (C0, f 0) be a d-sheeted branched covering of CP
1 with branch points {λ0i }i=1,··· ,n and

monodromy map µ. Consider a small open disk Um ⊂ CP
1 \ {∞} of radius R centered at λ0m

11



such that

λ0i ∈ C \ Um , i 6= m, 1 ≤ i ≤ n . (2.3)

Consider a parameter ε ∈ C such that |ε| < R . Using the fixed monodromy map µ, we construct

a set of d-sheeted branched coverings
{
(Cε, f ε)

}
⊂ ∆U ,µ(C

0, f 0) , where the branch points of

(Cε, f ε) are {λ01, · · · , λεm, · · · , λ0n} and λεm = λ0m + ε. The complex structure of the Riemann

surface Cε depends on the parameter ε.

According to the Riemann-Hurwitz formula, the genus g of the underlying smooth surface of

Cε’s is given by

g = 1− d+
n∑

i=1

ri − 1

2
. (2.4)

Denote by {vεk}k=1,··· ,g the normalized basis of the space of holomorphic 1-forms on the Rie-

mann surface Cε. Let Bε = [Bε
kl] be the matrix of b-periods of Cε, where

B
ε
kl =

∮

bl

vεk , k, l = 1, · · · , g . (2.5)

We want to investigate the variation of vεk and B
ε
kl under variation of ε.

Let KCε := T ∗ (1,0)Cε be the canonical line bundle over Cε. The exact form df ε is a meromor-

phic section of KCε , while vεk are holomorphic sections of KCε . Therefore, vεk = φε
k . df

ε, where

φε
k is a meromorphic function on Cε. The derivative of the basic holomorphic differential vk with

respect to the position of the branch point λm is defined as follows [5]:

(
∂

∂λm
vk

)
(q) :=

(
∂

∂ε

∣∣∣∣
ε=0

(
φε
k(q)

∣∣∣
fε(q)=const

))
df 0. (2.6)

Theorem 2.2.1. Let {sm}m=1,··· ,n be small loops with positive orientation around the ramification

points {pm}m=1,··· ,n of the branched covering (C0, f 0). The following variational formulas hold:

(
∂

∂λm
vk

)
(p) =

1

2πi

∮

sm

vk(q)B(p, q)

df(q)
(2.7)

∂

∂λm
Bkl =

∮

sm

vk vl
df

, (2.8)

where m = 1, · · · , n.

Proof. Let xi : Vi → C be the natural coordinate, defined in (2.1), on a neighbourhood Vi of the

ramification point pi with ramification index ri. We find the local expression for φε
k = vεk/df

ε

12



restricted to Vi for each i ∈ {1, · · · , n}. Let λ := f ε(q) for q ∈ Vi. The 1-form vεk is a holomorphic

differential on Cε. So we have

vεk(xi) =

(
∞∑

j=0

cεj(xi)
j

)
dxi =

(
∞∑

j=0

cεj(λ− λεi)
j/ri

)
dxi, (2.9)

where the coefficients cεj are holomorphic functions of the parameter ε. Using

dxi = d
(
(f ε(q)− f ε(pi))

1/ri
)
= d

(
(λ− λεi)

1/ri
)
=

1

ri
(λ− λεi)

1−ri
ri dλ, (2.10)

we get

φε
k|Vi

=
1

ri

(
∞∑

j=0

cεj(λ− λεi)
j+1−ri

ri

)
. (2.11)

Now we calculate the derivative of φε
k|Vm

with respect to ε, while λ is kept constant:

∂

∂ε

∣∣∣
ε=0

(
φε
k(xm)

∣∣
λ=const

)
=

1

rm

(
∞∑

j=0

c0j

(
rm − 1− j

rm

)
(λ− λ0m)

j+1−2rm
rm

)

+
1

rm

(
∞∑

j=0

(
dcεj
dε

∣∣∣
ε=0

)
(λ− λ0m)

j+1−rm
rm

)
. (2.12)

Therefore, according to the definition (2.6), the 1-form ∂
∂λm

vk restricted to the open neighbourhood

Vm of the ramification point pm has the following form:

(
∂

∂λm
vk

)
(xm) =

[(
rm−2∑

j=0

c0j

(
1− j + 1

rm

)
1

xrm−j
m

)
+O(1)

]
dxm (2.13)

If i 6= m, then

∂

∂ε

∣∣∣
ε=0

(
φε
k(xi)

∣∣
λ=const

)
=

1

ri

(
∞∑

j=0

(
dcεj
dε

∣∣∣
ε=0

)
(λ− λ0i )

j+1−ri
ri

)
. (2.14)

Therefore, with similar calculations, it can be shown that
(

∂
∂λm

vk

) ∣∣
Vi

is holomorphic on the neigh-

bourhood Vi of the ramification point pi.

Hence, the 1-form ∂
∂λm

vk is a meromorphic differential on C0 with only one pole of order rm

at the point pm. Its principal part at pm is given by (2.13). Since
∮
al
vεk = δkl, we have

∮

al

∂

∂λm
vk = 0 , l = 1, · · · , g . (2.15)
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Thus, ∂
∂λm

vk can be expressed in terms of normalized Abelian differentials of second kind ω
(j)
pm as

follows:

∂

∂λm
vk =

rm−2∑

j=0

c0j

(
1− j + 1

rm

)
ω(rm−j)
pm . (2.16)

Note that

c0j =
1

j!

(
d

dxm

)j (
v0k
dxm

) ∣∣∣
xm=0

. (2.17)

According to (1.40), we have

ω(rm−j)
pm =

1

(rm − 1− j)!

[(
∂

∂xm

)rm−2−j(
ι∗xm

B
) ∣∣

xm=0

]
. (2.18)

So, using the general Leibniz rule 1 , we can rewrite (2.16) in the following form:

∂

∂λm
vk =

1

rm(rm − 2)!

{(
∂

∂xm

)rm−2 [(
v0k
dxm

)(
ι∗xm

B
)] ∣∣∣

xm=0

}
. (2.19)

There is an alternative way to rewrite (2.16) in terms of Bergman bidifferential. After substi-

tuting (2.18) into (2.16), we have

∂

∂λm
vk =

1

2πi

rm−2∑

j=0

∮

sm

1

rm(rm − 2− j)!

(
c0j
xm

)[(
∂

∂xm

)rm−2−j(
ι∗xm

B
) ∣∣

xm=0

]
dxm . (2.20)

Now, we can use “integration by parts" to get the following relation

∂

∂λm
vk =

1

2πi

rm−2∑

j=0

∮

sm

1

rm

(
c0j

xmrm−1−j

)
(ι∗xm

B) dxm

=
1

2πi

∮

sm

1

rm

(∑rm−2
j=0 c0jx

j
m

xmrm−1

)
(ι∗xm

B) dxm

=
1

2πi

∮

sm

(
v0k
df 0

) ∣∣∣
Vm

(ι∗xm
B) dxm, (2.21)

1 Let f and g be two smooth functions. The n-th derivative of their product is given by

Dn(fg) =
n∑

k=0

(
n

k

)
(Dkf)(Dn−kg),

where
(
n
k

)
are the binomial coefficients.
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which, after omitting the upper index 0, can be written in a coordinate-independent form as follows:

(
∂

∂λm
vk

)
(p) =

1

2πi

∮

sm

vk(q)B(p, q)

df(q)
, (2.22)

where q ∈ Vm.

To get (2.8) it suffices to integrate (2.21) over the b-cycle bl and use the following relation

∮

bl

ι∗qB =

∮

bl

ω(2)
q = 2πi

(
vl
dxm

)
(q), q ∈ Vm. (2.23)
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Chapter 3

Variational Formulas on Spaces of Abelian Differentials over Compact Riemann Surfaces

3.1 Space of Holomorphic Abelian Differentials

For integer g ≥ 2 the space Hg of holomorphic Abelian differentials over compact Riemann

surfaces of genus g is the moduli space of pairs (C, ω), where C is a compact Riemann surface

of genus g and ω is a holomorphic 1-form on C which is not identically equal to zero. The

space Hg is a fiber bundle over the moduli space Mg of compact Riemann surfaces of genus g.

Its fiber over [C] ∈ Mg is the punctured vector space of holomorphic 1-forms on C, denoted by

H0(C,Ω1
C) \ {0} [6]. It is well known that the dimension of Mg andH0(C,Ω1

C) is equal to 3g−3

and g, respectively. So Hg is a complex orbifold of dimension 4g − 3.

Let (ω) be the divisor of a holomorphic 1-form ω on C. As a known corollary of the Riemann-

Roch theorem, we have

deg(ω) = 2g − 2 . (3.1)

The space Hg is stratified according to multiplicities of zeroes of ω. Let k1, · · · , kn be a sequence

of positive integers with
∑n

i=1 ki = 2g − 2. We denote by Hg(k1, · · · , kn) the stratum of Hg con-

sisting of pairs (C, ω) where ω has exactly n zeroes {p1, · · · , pn} such that their multiplicities are

equal to k1, · · · , kn. The principle stratum Hg(1, 1, · · · , 1) is of dimension 4g − 3. For an arbitrary

stratum Hg(k1, · · · , kn) we have

dimCHg(k1, · · · , kn) = (4g − 3)−
n∑

i=1

(ki − 1) = 2g + n− 1 . (3.2)

Let Z = {pi}i=1,··· ,n be a finite set of points pi ∈ C. Let {al, bl}l=1,··· ,g be a canonical ba-

sis of the absolute homology group H1(C;Z). We assume that all the simple closed curves

{al, bl}l=1,··· ,g pass through one point p0 ∈ C. Let the “fundamental polygon" C̃ be the simply

connected open subset of the compact Riemann surface C that we get after cutting C along the

curves {al, bl}l=1,··· ,g. We choose n− 1 paths γm ⊂ C̃ which connect the point p1 ∈ Z to the other
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points pm ∈ Z m = 2, · · · , n. The following set of paths gives a basis of the relative homology

group H1(C,Z;Z):

{al, bl, γm} l = 1, · · · , g; m = 2, · · · , n. (3.3)

We can use the basis {al, bl, γm} to get a set of local coordinates {Al, Bl, zm} on Hg(k1, · · · , kn)
defined as follows (see [6], [5]):

Al :=

∮

al

ω, Bl :=

∮

bl

ω, zm :=

∫

γm

ω, (3.4)

l = 1, · · · , g; m = 2, · · · , n.

To shorten the notations, we denote the basis {al, bl, γm} by {sj}j=1,··· ,2g+n−1, where

sl := al , sg+l : = bl , l = 1, · · · , g ,

s2g+m−1 : = γm , m = 2, · · · , n. (3.5)

Also the local coordinates {Al, Bl, zm} are denoted by {ζj}j=1,··· ,2g+n−1, where

ζj :=

∫

sj

ω. (3.6)

Let {γ̃m}m=2,··· ,n be a set of small loops γ̃m with positive orientation around the point pm ∈ Z,
m = 2, · · · , n. The following set {s∗j}j=1,··· ,2g+n−1

gives a basis, dual to (3.5), of the homology

group H1(C \ Z;Z) :

s∗l := −bl , s∗g+l : = al , l = 1, · · · , g ,

s∗2g+m−1 : = γ̃m , m = 2, · · · , n . (3.7)

The intersection numbers of the bases (3.5) and (3.7) are given by

s∗i ◦ sj = δij, i, j = 1, · · · , 2g + n− 1 . (3.8)
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3.2 Variational Formulas

Let {ζj}j=1,··· ,2g+n−1 be the set of local coordinates in a neighbourhood of the point

(C, ω) ∈ Hg(k1, · · · , kn). The complex structure of C generically changes under the variation of

ζj . We want to investigate the variation of the normalized basis {vα}α=1,··· ,g of the space of holo-

morphic 1-forms on C and the matrix of b-periods B = [Bαβ] under the variation of the coordinate

ζj .

Let Z = {pi}i=1,··· ,n be the set of zeroes of the holomorphic Abelian differential ω, where pm

is a zero of multiplicity km , m = 1, · · · , n. The Abelian integral z(p) =
∫ p

p1
ω is a well-defined

function on the fundamental polygon C̃. For each point q ∈ C̃ \ Z , there exists an open neighbour-

hood Ṽ ⊂ C̃ such that the function z(p) =
∫ p

q
ω, p ∈ Ṽ is univalent and provides a local coordi-

nate on Ṽ . The local coordinate xi : Vi → C on a neighbourhood Vi ⊂ C̃ of pi ∈ Z , i = 1, · · · , n
is given by

xi(p) =

(∫ p

p1

ω −
∫ pi

p1

ω

)1/(ki+1)

= (z(p)− zi)
1/(ki+1), p ∈ Vi. (3.9)

Consider the local universal family π : X → Hg(k1, · · · , kn). Its fiber over the point

(C, ω) ∈ Hg(k1, · · · , kn) is the Riemann surface C. The local coordinates on X \ (ω) are given

by the set {z(p) :=
∫ p
ω, ζ1, · · · , ζ2g+n−1}. A vicinity of a point ((C, ω), p) in the level set

Hz(p) := {x ∈ X |z(x) = z(p)} (3.10)

is biholomorphically mapped onto a vicinity of the point (C, ω) ∈ Hg(k1, · · · , kn) via the projec-

tion π : X → Hg(k1, · · · , kn).
The 1-forms vα and ω are two global sections of the canonical line bundle KC . So there exists

a function

φα :=
vα
ω

: X → CP
1 (3.11)

such that
(
(π|Hz(p)

)−1
)∗ (

φα|Hz(p)

)
is a local holomorphic function on the stratum Hg(k1, · · · , kn).

The derivative of the normalized Abelian differential vα with respect to ζj is defined as follows [5]:

∂vα(p)

∂ζj

∣∣∣
z(p)

: =

{
∂

∂ζj

[(
(π|Hz(p)

)−1
)∗ (

φα|Hz(p)

)]}
ω(p)

=

[
∂

∂ζj

∣∣∣
z(p)=const

φα

]
ω(p) (3.12)
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Note that the map p 7→ z(p) is not globally defined on C. Therefore, the 1-forms ∂vα(p)/∂ζj

are local meromorphic differentials defined within C̃. They do not necessarily correspond to global

1-forms on C itself.

Theorem 3.2.1. The following variational formulas hold:

∂vα(p)

∂ζj

∣∣∣
z(p)

=
1

2πi

∮

s∗j

vα(q)B(q, p)

ω(q)
; (3.13)

∂Bαβ

∂ζj
=

∮

s∗j

vαvβ
ω

, (3.14)

where j = 1, · · · , 2g + n− 1. We assume that the local coordinate z(p) =
∫ p
ω is kept constant

under differentiation.

Proof. We start with the proof of formulas (3.13) for j = 1, · · · , 2g. For example, consider the

derivative of vα with respect to the coordinate Bl (defined in (3.4)). First, we analyse the 1-form

∂vα/∂Bl on the fundamental polygon C̃. Let Z = {pi}i=1,··· ,n be the set of zeroes of ω, where pi is

a zero of multiplicity ki , i = 1, · · · , n. Let xi(p) = (z(p)− zi)
1/(ki+1)

be the local coordinate,

defined in (3.9), on a neighbourhood Vi ⊂ C̃ of pi ∈ Z , i = 1, · · · , n. The holomorphic 1-forms

ω and vα restricted to Vi have the following local expressions:

ω(xi) = (ki + 1)xkii dxi , (3.15)

vα(xi) =

(
∞∑

r=0

cr(xi)
r

)
dxi , (3.16)

where the coefficients cr are holomorphic functions of the moduli parameters {ζj}. So we get

φα|Vi
:=

vα(xi)

ω(xi)
=

1

ki + 1

(
∞∑

r=0

cr(xi)
r−ki

)
. (3.17)

Thus, according to (3.12), the local expression of the 1-form ∂vα/∂Bl restricted to Vi ⊂ C̃ is given

by

(
∂vα
∂Bl

)
(xi) =

[
∂

∂Bl

∣∣∣
z(p)=const

(
∞∑

r=0

cr(xi)
r−ki

)]
(
xkii dxi

)

=

(
∞∑

r=0

(
dcr
dBl

)
xri

)
dxi, (3.18)
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which is a local holomorphic 1-form on Vi. Furthermore, similar calculations show that ∂vα/∂Bl

restricted to an open neighbourhood Ṽ ⊂ C̃ of an arbitrary point q ∈ C̃ \ Z is holomorphic on Ṽ .

Therefore, the 1-form ∂vα/∂Bl is holomorphic on C̃.

To understand global properties of ∂vα/∂Bl on C, we should analyse how it behaves near

the boundary ∂C̃. Let π̂ : U → C be the universal covering of C. Let G be the group of deck

transformations of U . Let T : π1(C, p0) → G be the group isomorphism of the fundamental group

π1(C, p0) ontoG. The fundamental group π1(C, p0) is generated by simple closed curves {al, bl}l=1,··· ,g

based at p0 ∈ C. Denote by Tal and Tbl the deck transformations which correspond to al and bl,

respectively. The sides a+l and a−l of the fundamental cell C̃ ⊂ U are “glued" together by the deck

transformation Tbl .

The mapping z(p) :=
∫ p
ω is single-valued on U . Consider an open neighbourhood D ⊂ C̃

of an arbitrary point q ∈ C̃ \ Z such that the function z(p) =
∫ p
ω, p ∈ D is univalent on D.

Denote by D̃ the image of D under the mapping p 7→ z(p). Consider the domain Tbl [D] lying in

the fundamental cell Tbl [C̃] as well as its image in the z-plane D̃bl = {z +Bl|z ∈ D̃}. We can

always take sufficiently small domain D such that D̃ ∩ D̃bl = ∅.

Let v̂α := π̂∗(vα) and ω̂ := π̂∗(ω) be the pull-back of vα and ω under the covering map π̂ : U → C,

respectively. Consider the meromorphic function φ̂α := v̂α/ω̂. Since the deck transformation Tbl

is a fiber-preserving biholomorphic map of U to itself, i.e. π̂ ◦ Tbl = π̂, we have

T ∗
bl
φ̂α =

T ∗
bl
v̂α

T ∗
bl
ω̂

=
v̂α
ω̂

= φ̂α . (3.19)

The local expression of (3.19), restricted to the open neighbourhood D ⊂ C̃, in terms of coor-

dinate z is as follows::

φ̂α(z +Bl) =
(
T ∗
bl
φ̂α

)
(z) = φ̂α(z) , z ∈ D̃ . (3.20)

Note that in the right hand side of (3.20), the function φ̂α and its argument z +Bl both depend

on the moduli parameter Bl. Thus, if we differentiate (3.20) with respect to Bl while z is kept

constant, then we get:

∂φ̂α

∂Bl

(z +Bl) =
∂φ̂α

∂Bl

(z)− ∂φ̂α

∂z
(z) , z ∈ D̃ , (3.21)
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where we use the equality
(
∂φ̂α/∂z

)
(z +Bl) =

(
∂φ̂α/∂z

)
(z) as a corollary of (3.20). The local

expression of ω̂ restricted to D is given by ω̂|D = dz. So we can rewrite (3.21) in the following

form:

T ∗
bl

(
∂φ̂α

∂Bl

(z)dz

)
=

(
∂φ̂α

∂Bl

(z)dz

)
−
(
∂φ̂α

∂z
(z)dz

)
, z ∈ D̃ . (3.22)

Denote by Φα the derivative of v̂α with respect to Bl. The holomorphic 1-form Φα on U is

given by

Φα(p) :=
∂v̂α(p)

∂Bl

∣∣∣
z(p)

=

[
∂

∂Bl

∣∣∣
z(p)=const

φ̂α

]
ω̂(p) , p ∈ U . (3.23)

Using (3.23), the equality (3.22) can be written in the following coordinate-independent form:

(
T ∗
bl
Φα

)
(p) = Φα(p)− dφ̂α(p) , p ∈ D . (3.24)

Let sj ∈ {ai, bi}i=1,··· ,g, j 6= g + l be one of the generators of the fundamental group π1(C, p0)

which is not homotopic to bl. Since φ̂α is invariant under the deck transformation Tsj , we have

φ̂α(z + ζj) =
(
T ∗
sj
φ̂α

)
(z) = φ̂α(z) , z ∈ D̃ , (3.25)

where ζj :=
∫
sj
ω. Differentiating (3.25) with respect to Bl assuming z to be constant, we get:

∂φ̂α

∂Bl

(z + ζj) =
∂φ̂α

∂Bl

(z) , z ∈ D̃ . (3.26)

Therefore, we have

(
T ∗
bi
Φα

)
(p) = Φα(p) , i ∈ {1, · · · , g} and i 6= l , p ∈ D (3.27)

and
(
T ∗
ai
Φα

)
(p) = Φα(p) , i ∈ {1, · · · , g} , p ∈ D . (3.28)

Since the formulas (3.24), (3.27) and (3.28) are valid on a neighbourhoodD of any point of C̃ \ Z ,

and the differential Φα is holomorphic on C̃, we conclude that these formulas are valid on C̃.

Since Φα is not invariant under the group of deck transformations of U, the 1-form ∂vα/∂Bl is

not globally defined on C. Indeed, we can consider ∂vα/∂Bl as a 1-form which is holomorphic

everywhere except the cycle al, where it has the additive jump given by the exact form −d (vα/ω).
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Consider the cycle ai, i 6= l. Consider a finite number of open sets Ṽr ⊂ C, r = 1, · · · , k such

that ai ⊂
⋃k

r=1 Ṽr, and zr(p) =
∫ p
ω, p ∈ Ṽr provides local coordinate on Ṽr. There exists a

finite set of smooth functions {ψr}r=1,··· ,k, called partition of unity, with the following properties

(see [10], p.54):

(i) 0 ≤ ψr(p) ≤ 1 for all r ∈ {1, · · · , k} and all p ∈ ai ,

(ii) supp(ψr) ⊂ Ṽr ,

(iii)
∑k

r=1 ψr(p) = 1 for all p ∈ ai .

On each Ṽr, the local expression of ω and vα is given by

ω|Ṽr
= dzr and vα|Ṽr

= φαr dzr . (3.29)

Now we can compute the ai-period of ∂vα/∂Bl as follows:

∮

ai

∂vα
∂Bl

=

∮

ai

(
∂

∂Bl

∣∣∣
z(p)=const

(vα
ω

))
ω(p)

=
k∑

r=1

∫

ai∩Ṽr

(
∂

∂Bl

∣∣∣
z(p)=const

(ψrφαr)

)
dzr

=
∂

∂Bl

(
k∑

r=1

∫

ai∩Ṽr

(ψrφαr) dzr

)

=
∂

∂Bl

(∮

ai

vα

)
=

∂

∂Bl

(δiα) = 0. (3.30)

The integral of the “jump differential" −d (vα/ω) over any closed loop is equal to zero. Therefore,

all the ai-periods i = 1, · · · , g of ∂vα/∂Bl are well-defined and equal to zero.

To write down an explicit formula for ∂vα/∂Bl, we recall the Plemelj formula on the com-

plex plane C. Let γ be a positively oriented simple closed curve in the complex plane. Let

f(x) be a holomorphic function defined on a tubular neighbourhood of γ. Define the function

F (y), y ∈ C \ γ by the following contour integral taken in positive direction of γ:

F (y) :=

∮

γ

f(x)

(x− y)2
dx . (3.31)

Denote by F (R)(y) and F (L)(y) the function F (y) restricted to the exterior and the interior of γ,

respectively. The boundary values of holomorphic functions F (R)(y) and F (L)(y) are related by
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the following Plemelj formula [5]:

lim
y→x

(
F (R)(y)− F (L)(y)

)
= −df

dy
(x) . (3.32)

Consider the 1-form Ψ defined as follows:

Ψ(p) :=
1

2πi

∮

al

φα(q)B(q, p) , (3.33)

whereB(q, p) is the Bergman bidifferential, and φα := vα/ω. Consider a small strip A ⊂ C around

al in the shape of an annulus. Let a
(R)
l and a

(L)
l be the right and left parts of A \ al. Denote by Ã

the biholomorphic image of A in the complex plane. The local expression of Ψ restricted to A is

given by

Ψ(y) =

(∮

al

φα(x)

(x− y)2
dx

)
dy , x, y ∈ Ã . (3.34)

Thus, according to Plemelj formula (3.32), the 1-form Ψ(p) has a “jump" equal to −dφα on al as p

moves from a
(L)
l to a

(R)
l . In addition, according to (1.38), all the ai-periods i = 1, · · · , g of Ψ are

equal to zero.

The 1-forms ∂vα/∂Bl and Ψ are holomorphic on C̃ and have the same discontinuity on al.

Also, all of their a-periods are equal to zero. So their difference Υ := Ψ− (∂vα/∂Bl) is a global

holomorphic 1-form on C. Since all the a-periods of Υ are equal to zero, we have Υ = 0. There-

fore, the 1-form ∂vα/∂Bl is given by

∂vα(p)

∂Bl

∣∣∣
z(p)

=
1

2πi

∮

al

vα(q)B(q, p)

ω(q)
. (3.35)

Formula (3.35) implies (3.13) for j = g + 1, · · · , 2g.

With similar calculations, we find that the 1-form ∂vα(p)/∂Al has a “jump" equal to −d(vα/ω)
on the cycle bl as p moves from b

(R)
l to b

(L)
l . Also, all of its a-periods are equal to zero. So, we have

∂vα(p)

∂Al

∣∣∣
z(p)

=
1

2πi

∮

−bl

vα(q)B(q, p)

ω(q)
. (3.36)

Note that, according to (3.32), we should take the corresponding integral along −bl. Indeed, the

interchange of “right" and “left" in this case is due to the asymmetry of the intersection number of

al and bl, i.e.

al ◦ bl = −(bl ◦ al) = 1 . (3.37)
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Let us now prove the formulas (3.13) for j = 2g + 1, · · · , 2g + n− 1. The proof is parallel to

the proof of (2.7). For example, consider the derivative of vα with respect to the coordinate zm

(defined in (3.4)). First, we analyse the 1-form ∂vα/∂zm on the fundamental polygon C̃. Using

(3.17), the function φα := vα/ω restricted to the open neighbourhood Vm ⊂ C̃ of the point pm ∈ Z
is given by

φα|Vm
=

1

km + 1

(
∞∑

r=0

cr(xm)
r−km

)
=

1

km + 1

(
∞∑

r=0

cr(z − zm)
r−km
km+1

)
(3.38)

If we differentiate (3.38) with respect to zm for fixed z(p), then we get:

∂φα(xm)

∂zm

∣∣∣
z(p)=const

=
1

km + 1

(
∞∑

r=0

cr

(
km − r

km + 1

)
(z − zm)

r−1−2km
km+1

)

+
1

km + 1

(
∞∑

r=0

(
dcr
dzm

)
(z − zm)

r−km
km+1

)
. (3.39)

Therefore, according to (3.12), the 1-form ∂vα/∂zm restricted to Vm has the following form:

(
∂vα
∂zm

)
(xm) =

[(
km−1∑

r=0

cr

(
1− r + 1

km + 1

)
1

xkm+1−r
m

)
+O(1)

]
dxm . (3.40)

With similar calculations, we find that ∂vα/∂zm is holomorphic on a neighbourhood Ṽ ⊂ C̃ of

each point q ∈ C̃ \ {pm}.

Now we analyse the boundary behaviour of ∂vα/∂zm near ∂C̃. Let sj ∈ {ai, bi}i=1,··· ,g be one

of the generators of the fundamental group π1(C, p0). Since the function φ̂α := (π̂∗ vα)/(π̂
∗ ω) is

invariant under all of the deck transformations Tsj , we have

φ̂α(z + ζj) =
(
T ∗
sj
φ̂α

)
(z) = φ̂α(z) , z ∈ D̃ ⊂ C̃ , (3.41)

where ζj :=
∫
sj
ω , j = 1, · · · , 2g. By differentiating (3.41) with respect to zm while z(p) is kept

constant, we get:

∂φ̂α

∂zm
(z + ζj) =

∂φ̂α

∂zm
(z) , z ∈ D̃ . (3.42)

Therefore, ∂vα/∂zm is a meromorphic global 1-form on C with only one pole of order km + 1 at

pm. Similarly to (3.30), we find that all the a-periods of ∂vα/∂zm are equal to zero. Thus, the

1-form ∂vα/∂zm can be expressed in terms of normalized Abelian differentials of second kind ω
(r)
pm
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as follows :

∂vα
∂zm

=
km−1∑

r=0

cr

(
1− r + 1

km + 1

)
ω(km+1−r)
pm . (3.43)

Using (1.40), we can rewrite (3.43) in the following way:

∂vα
∂zm

= (3.44)

1

2πi

km−1∑

r=0

∮

γ̃m

1

(km + 1)(km − 1− r)!

(
cr
xm

)[(
∂

∂xm

)km−1−r(
ι∗xm

B
) ∣∣

xm=0

]
dxm ,

where γ̃m is a small loop with positive orientation around the point pm. Now using “integration by

parts" in the same way as (2.21), we get:

∂vα
∂zm

(p) =
1

2πi

∮

γ̃m

(vα
ω

) ∣∣∣
Vm

(
ι∗xm

B
)
(p) dxm

=
1

2πi

∮

γ̃m

vα(q)B(q, p)

ω(q)
, (3.45)

which implies (3.13) for j = 2g + 1, · · · , 2g + n− 1.

According to (1.37), if we integrate (3.13) over the cycle bβ and change the order of integration,

we get (3.14).
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Chapter 4

Variational Formulas on the Space of Quadratic Differentials over Compact Riemann

Surfaces

Let C be a compact Riemann surface of genus g. Let KC be the canonical line bundle of

C. A global holomorphic section of the line bundle KC ⊗KC is called a holomorphic quadratic

differential on C. The set of all holomorphic quadratic differentials on C forms a complex vector

space denoted by QD(C). As a corollary of the Riemann-Roch theorem, we have

dimC QD(C) = 3g − 3, g ≥ 2 . (4.1)

Let Z = {pi}i=1,··· ,n be the set of zeroes of a holomorphic quadratic differential

q ∈ QD(C) \ {0}, where pi ∈ C is a zero of multiplicity ki , i = 1, · · · , n. According to (3.1), the

degree of the canonical divisor on C is equal to 2g − 2; thus
∑n

i=1 ki = 4g − 4.

For integer g ≥ 2 the space Qg of holomorphic quadratic differentials over compact Riemann

surfaces of genus g is the moduli space of pairs (C, q), where C is a compact Riemann surface

of genus g and q ∈ QD(C) is a holomorphic quadratic differentials on C. The space Qg is the

cotangent bundle of the Teichmuller space Tg of marked compact Riemann surfaces of genus g.

The space Qg is stratified according to the multiplicities of zeroes of holomorphic quadratic

differentials. Let k1, · · · , kn be a sequence of positive integers such that
∑n

i=1 ki = 4g − 4. We

denote by Qg(k1, · · · , kn) the stratum of Qg consisting of pairs (C, q) where q has exactly n zeroes

{p1, · · · , pn} with multiplicities k1, · · · , kn.

4.1 Geometry of the canonical double covering

Consider an arbitrary holomorphic quadratic differential q ∈ QD(C) \ {0} on C. In gen-

eral, there is no global holomorphic Abelian differential v ∈ H0(C,Ω1
C) such that q = v ⊗ v.
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To represent q as a square of an Abelian differential, we construct a canonical double covering

π : Ĉ → C of C provided with a holomorphic Abelian differential ω ∈ H0(Ĉ,Ω1
Ĉ
) on Ĉ such that

π∗(q) = ω ⊗ ω [1].

Let Z = {pi}i=1,··· ,n be the set of zeroes of q, where pi ∈ C is a zero of multiplicity ki ,

i = 1, · · · , n. Consider an atlas {(Uj, zj)}j∈J on the punctured Riemann surface C \ Z , where

zj : Uj → C is a local coordinate on the connected and simply-connected open neighbourhood

Uj ⊂ C \ Z . The quadratic differential q restricted to Uj is given by q|Uj
= fj(zj)(dzj)

2, where

the nonzero holomorphic functions fj ∈ O∗(Uj) satisfy the following relation:

fj(zj(zl))

(
dzj
dzl

)2

= fl(zl) , zl ∈ Uj ∩ Ul . (4.2)

Denote by h
(k)
j (zj), k = 1, 2 the two branches of

√
fj(zj). Consider two copies U

(k)
j , k = 1, 2

of each open neighbourhoodUj . For each j, consider the local holomorphic 1-forms h
(k)
j dzj, k = 1, 2

defined on the open neighbourhoods U
(k)
j , k = 1, 2. Now identify the part of U

(1)
j corresponding

to Uj ∩ Ul with the part of one of U
(k)
l , k = 1, 2 corresponding to Uj ∩ Ul in such a way that

h
(1)
j (zj(zl))

(
dzj
dzl

)
= h

(k)
l (zl) , zl ∈ U

(1)
j ∩ U (k)

l , (4.3)

for either k = 1 or k = 2. Apply the similar identification to all the open neighbourhoods

{U (1)
j , U

(2)
j }

j∈J . We get a Riemann surface Ĉ0 with punctures provided with a holomorphic

Abelian differential ω0 on it, where the local expression of ω0 on U
(k)
j is given by h

(k)
j dzj . By

construction we have a double covering π0 : Ĉ0 → C \ Z .

After “filling" the punctures lying over Z ⊂ C, we obtain a compact Riemann surface Ĉ and

a (possibly ramified) double covering π : Ĉ → C. The covering map π has a ramification point

over each zero pm ∈ Z of odd multiplicity km = 2r + 1, r ∈ N ∪ {0} of the quadratic differential

q. In addition, the 1-form ω0 extends to a holomorphic Abelian differential ω on Ĉ such that

π∗(q) = ω ⊗ ω. The 1-form ω is commonly denoted by
√
π∗q.

Let µ : Ĉ → Ĉ be the biholomorphic involution of Ĉ which interchanges the points in each

fiber of π : Ĉ → C. The fixed points of µ are the preimage of the zeroes of odd multiplicity

of q under π. According to the above-mentioned construction, the holomorphic 1-form
√
π∗q is
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anti-invariant under µ, i.e.

µ∗ (√π∗q
)
= −√

π∗q . (4.4)

Henceforth, we only consider the pairs (C, q) in the principal stratum Qg ([1
4g−4]) of the moduli

space of holomorphic quadratic differentials. In other words, we shall study the space of holomor-

phic quadratic differentials with simple zeroes on compact Riemann surfaces of genus g.

Let Z = {pi}i=1,··· ,4g−4 be the set of zeroes of the holomorphic quadratic differential q ∈ QD(C).

The canonical double covering π : Ĉ → C defined by q has exactly 4g − 4 ramification points

{p̂i}i=1,··· ,4g−4, where p̂i = π−1(pi). Using the Riemann-Hurwitz formula, we find that the com-

pact Riemann surface Ĉ is of genus ĝ = 4g − 3.

Let ξi : Di → C be the local coordinate on an open neighbourhoodDi ⊂ C of pi ∈ Z such that

ξi(pi) = 0 and the quadratic differential q restricted to Di has the following local expression:

q|Di
= ξi(dξi)

2 , (4.5)

for i = 1, · · · , 4g − 4. The natural local coordinate xi : D̂i → C on the open neighbourhood

D̂i = π−1(Di) ⊂ Ĉ of p̂i ∈ Ĉ is given by

xi =
√
ξi . (4.6)

The local expression of the double covering map π : Ĉ → C restricted to D̂i has the following

form:
(
ξi ◦ π ◦ x−1

i

)
(y) = y2 , y ∈ xi

(
D̂i

)
⊂ C . (4.7)

So we have

π∗ (q|Di
) = π∗ (ξi(dξi)2

)
(4.8)

= (xi)
2(d(xi2)

)2

= 4(xi)
4(dxi)

2 .

Therefore, the holomorphic 1-form
√
π∗q has a zero of multiplicity two at each p̂i ∈ Ĉ. Since the

degree of the canonical divisor on Ĉ is equal to 2ĝ − 2 = 8g − 8, the set Ẑ of all the zeroes of
√
π∗q is equal to {p̂i}i=1,··· ,4g−4 .
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Thus, the correspondence between a pair (C, q) ∈ Qg ([1
4g−4]) and the canonical double cov-

ering π : Ĉ → C defined by q induce a mapping

S : Qg

([
14g−4

])
→ H4g−3

([
24g−4

])
(4.9)

(C, q) 7→ (Ĉ,
√
π∗q)

which is a local embedding. According to (3.2), the stratum H4g−3 ([2
4g−4]) is of dimension

12g − 11 . Locally, the space S (Qg ([1
4g−4])) forms a subspace of codimension 6g − 5 in

H4g−3 ([2
4g−4]).

Denote by Λ1
Ĉ

the space H0(Ĉ,Ω1
Ĉ
) of holomorphic Abelian differentials on Ĉ. The pullback

µ∗ of the involution µ : Ĉ → Ĉ is an isomorphism on Λ1
Ĉ

. The (4g − 3)-dimensional vector space

Λ1
Ĉ

splits into two eigenspaces Λ+ and Λ− corresponding to the eigenvalues ±1 of µ∗.

Let z : U → C be the local coordinate on an arbitrary connected and simply-connected open

subset U ⊂ C \ Z . Let ẑ := z ◦ π : U (k) → C be the induced local coordinate on the k-th con-

nected component U (k) ⊂ Ĉ of π−1(U) for k = 1, 2. Consider an open neighbourhood D̂i ⊂ Ĉ

of the ramification point p̂i of π : Ĉ → C. Let xi : D̂i → C be the natural local coordinate on D̂i

defined in (4.6). Consider an arbitrary holomorphic 1-form α̂ on Ĉ which is invariant under µ, i.e.

α̂ ∈ Λ+ ⊂ Λ1
Ĉ

. Consider the following local expressions of α̂ on U (k) and D̂i :

α̂|U(k) = g(k)dẑ , g(k) ∈ O(U (k)) , k = 1, 2 , (4.10)

α̂|D̂i
=

(
∞∑

r=0

cr(xi)
r

)
dxi , cr ∈ C . (4.11)

Since µ(D̂i) ⊂ D̂i and xi ◦ µ = −xi, we have

µ∗
(
α̂|D̂i

)
= −

(
∞∑

r=0

cr(−1)r(xi)
r

)
dxi . (4.12)

From the relation µ∗α̂ = α̂, we deduce that g(1) = g(2) ◦ µ and

c2m = 0, m ∈ N ∪ {0} . (4.13)

Thus, the local expressions (4.10) and (4.11) are simplified in the following way:

α̂|U(k) = π∗ (φ(z)dz) , k = 1, 2 , φ ∈ O(U) , (4.14)

29



α̂|D̂i
=

(
∞∑

s=0

c2s+1(xi)
2s

)
(xidxi)

= π∗

((
∞∑

s=0

c2s+1

2
(ξi)

s

)
dξi

)
. (4.15)

According to (4.14) and (4.15), each 1-form α̂ ∈ Λ+ ⊂ Λ1
Ĉ

is the pullback of a holomorphic

1-form α ∈ H0(C,Ω1
C) under the canonical double covering map π : Ĉ → C, i.e. α̂ = π∗α. On

the other hand, since π ◦ µ = π, for each α̃ ∈ H0(C,Ω1
C) we have

µ∗ (π∗α̃) = (π ◦ µ)∗α̃ = π∗α̃ . (4.16)

Therefore, the canonical double covering map π : Ĉ → C induce the following linear isomor-

phism:

π∗ : H0(C,Ω1
C) → Λ+ ⊂ Λ1

Ĉ
(4.17)

α̃ 7→ π∗α̃

Considering the isomorphism (4.17), since

dimCH
0(C,Ω1

C) = g and dimCH
0(Ĉ,Ω1

Ĉ
) = 4g − 3 , (4.18)

we have

dimCΛ− = 3g − 3 = dimC QD(C) . (4.19)

Consider an arbitrary holomorphic 1-form β ∈ Λ− ⊂ Λ1
Ĉ

. Consider the following local expres-

sions of β on D̂i and U (k):

β|D̂i
=

(
∞∑

r=0

c̃r(xi)
r

)
dxi , c̃r ∈ C , (4.20)

β|U(k) = t(k)dẑ , t(k) ∈ O(U (k)) , k = 1, 2 . (4.21)

From the relation µ∗β = −β, we deduce that t(1) = −
(
t(2) ◦ µ

)
and

c̃2m+1 = 0, m ∈ N ∪ {0} . (4.22)
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Let q|U = f(z)(dz)2, f ∈ O∗(U) be the local expression of the quadratic differential q on

U ⊂ C. Let h(k) ∈ O∗(U (k)), k = 1, 2 be the two branches of
√
f . Using (4.8), we get the fol-

lowing local expressions of the 1-form
√
π∗q on D̂i and U (k):

√
π∗q|D̂i

= 2(xi)
2dxi , (4.23)

√
π∗q|U(k) = h(k)dẑ , k = 1, 2 , (4.24)

where h(1) = −
(
h(2) ◦ µ

)
.

So the local expression of the quadratic differential (β ⊗√
π∗q) ∈ QD(Ĉ) on D̂i and U (k) are

given by:

(
β ⊗√

π∗q
)
|D̂i

= 2

(
∞∑

s=0

c̃2s(xi)
2s

)
(xidxi)

2
(4.25)

= π∗

((
∞∑

s=0

c̃2s
2
(ξi)

s

)
(dξi)

2

)

and

(
β ⊗√

π∗q
)
|U(k) =

(
t(k)h(k)

)
(dẑ)2 (4.26)

= π∗ (ψ(z)(dz)2
)
, k = 1, 2 , ψ ∈ O(U) ,

respectively. According to (4.25) and (4.26), for each 1-form β ∈ Λ− ⊂ Λ1
Ĉ

, there exists a unique

quadratic differential Ψ ∈ QD(C) such that

β ⊗√
π∗q = π∗Ψ . (4.27)

Therefore, considering (4.19), there is an isomorphism between QD(C) and Λ− ⊂ Λ1
Ĉ

given by:

L : QD(C) → Λ− (4.28)

Ψ 7→ π∗Ψ√
π∗q

.

The involution µ : Ĉ → Ĉ induces an isomorphism

µ∗ : H1(Ĉ;C) → H1(Ĉ;C) (4.29)
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on the complex homology group H1(Ĉ;C) of Ĉ. The (8g − 6)-dimensional complex vector space

H1(Ĉ;C) splits into two eigenspaces H+ and H− corresponding to the eigenvalues ±1 of µ∗.

Let

{aj, a∗j , ãk, bj, b∗j , b̃k}, j = 1, · · · , g ; k = 1, · · · , 2g − 3 (4.30)

be a set of 8g − 6 cycles on Ĉ providing a canonical basis of H1(Ĉ;C) such that

µ∗aj = a∗j , µ∗bj = b∗j , µ∗ãk + ãk = µ∗b̃k + b̃k = 0 ,

and their intersection matrix is given by




a

a∗

ã

b

b∗

b̃




◦
[
a a∗ ã b b∗ b̃

]
=


 0 I4g−3

−I4g−3 0


 .

Using the symplectic basis (4.30) of H1(Ĉ;C), we construct a symplectic basis of the (2g)-

dimensional eigenspace H+ ⊂ H1(Ĉ;C) in the following way:

α+
j =

1

2
(aj + a∗j) , β+

j = bj + b∗j , j = 1, · · · , g , (4.31)

where 
α

+

β+


 ◦

[
α+ β+

]
=


 0 Ig

−Ig 0


 .

In addition, the following 1-cycles form a symplectic basis of the (6g − 6)-dimensional eigenspace

H− ⊂ H1(Ĉ;C) :

α−
l =

1

2
(al − a∗l ) , β−

l = bl − b∗l , l = 1, · · · , g , (4.32)

α−
l = ãl−g , β−

l = b̃l−g , l = g + 1, · · · , 3g − 3 .
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Let {uj, u∗j , ũk} , j = 1, · · · , g , k = 1, · · · , 2g − 3 be the normalized basis of Λ1
Ĉ

associated

with the canonical basis (4.30). To shorten the notations, we consider the following vectors:

U =




u

u∗

ũ


 ∈

(
H1(Ĉ;C)

)4g−3

; A =




a

a∗

ã


 , B =




b

b∗

b̃


 ∈

(
H1(Ĉ;C)

)4g−3

. (4.33)

According to the definition of the bilinear period mapping

Π :
(
H1(C;C)

)n × (H1(C;C))
n → M(n,C) , (4.34)

given by (1.32), we have

Π(U,A) = I4g−3 . (4.35)

The action of µ∗ on the vector A ∈ (H1(C;C))
4g−3

is given by µ∗A = SA, where

S =




0 Ig 0

Ig 0 0

0 0 −I2g−3


 . (4.36)

Suppose the action of µ∗ on the vector U ∈ (H1(C;C))
4g−3

is given by

µ∗U = S̃U . (4.37)

Since

Π(µ∗U,A) = Π (U, µ∗A) , (4.38)

we have

S̃ Π (U,A) = Π
(
S̃U,A

)
= Π(U, SA) = Π (U,A) St . (4.39)

Therefore, using (4.35), we get

S̃ = St = S . (4.40)
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So the holomorphic 1-forms u+j = uj + u∗j , j = 1, · · · , g provide a basis of the eigenspace

Λ+ , whereas a basis of Λ− is given by {u−l }l=1,··· ,3g−3 , where

u−l =




ul − u∗l , l = 1, · · · , g ,

ũl−g , l = g + 1, · · · , 3g − 3 .

(4.41)

Considering (4.35), the 1-forms {u+j , u−l } are normalized with respect to the 1-cycles {α+
j , α

−
l },

i.e.

Π




u

+

u−


 ,


α

+

α−




 =


Ig 0

0 I3g−3


 . (4.42)

Since

Π
(
u+j , β

−
l

)
= Π

(
µ∗u+j , β

−
l

)
= Π

(
u+j , µ∗β

−
l

)
= −Π

(
u+j , β

−
l

)
, (4.43)

we have

Π




u

+

u−


 ,


β

+

β−




 =


B

+ 0

0 B
−


 , (4.44)

where B
+ ∈ M(g,C) and B

− ∈ M(3g − 3,C) are called the matrices of β-periods [7]. Let

B̂ = Π(U,B) (4.45)

be the matrix of b-periods of {uj, u∗j , ũk} with respect to the canonical homology basis (4.30). We

have 
u

+

u−


 = TU and


β

+

β−


 = TB , (4.46)

where the matrix T is given by

T =




Ig Ig 0

Ig −Ig 0

0 0 I2g−3


 . (4.47)

So the matrix B̂ is related to B
+ and B

− in the following way:

B̂ = Π(U,B) = Π


T−1


u

+

u−


 ,T−1


β

+

β−




 (4.48)
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= T−1 Π




u

+

u−


 ,


β

+

β−




(T−1

)t

= T−1


B

+ 0

0 B
−


(T−1

)t
.

Consider the mapping π∗ : H1(Ĉ;C) → H1(C;C) induced by the canonical double covering

map π : Ĉ → C. Let {am, bm}m=1,··· ,g be the canonical basis of the homology group H1(C;C) of

C given by

am = π∗(am) = π∗(a
∗
m) and bm = π∗(bm) = π∗(b

∗
m) , m = 1, · · · , g . (4.49)

Let the holomorphic 1-forms {vn}n=1,··· ,g be the basis of the g-dimensional vector spaceH0(C,Ω1
C)

normalized by
∮
am
vn = δnm.

According to (4.16), the 1-forms π∗vn , n = 1, · · · , g are invariant under µ, i.e. π∗vn ∈ Λ+ ⊂ Λ1
Ĉ

.

So each π∗vn has a unique expansion in the following way:

π∗vn =

g∑

j=1

cnj u
+
j , cnj ∈ C . (4.50)

Using (4.42), the period of r.h.s. and l.h.s. of (4.50) over the 1-cycle α+
m , m = 1, · · · , g are given

by

Π

(
g∑

j=1

cnj u
+
j , α

+
m

)
=

g∑

j=1

cnjΠ
(
u+j , α

+
m

)
= cnm (4.51)

and

Π
(
π∗vn, α

+
m

)
= Π

(
vn, π∗α

+
m

)
= Π(vn, am) = δnm , (4.52)

respectively. Thus, we have

π∗vn = u+n , n = 1, · · · , g . (4.53)

Let B = [Bnm] be the matrix of b-periods of {vn} with respect to the homology basis {am, bm},

where Bnm = Π(vn, bm) , n,m = 1, · · · , g . The matrix of β+-periods B
+ is related to B in the

following way:

B
+
nm = Π

(
u+n , β

+
m

)
= Π

(
π∗vn, β

+
m

)
= Π

(
vn, π∗β

+
m

)
(4.54)

= 2Π (vn, bm) = 2Bnm .
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4.2 Variational Formulas

For integer g ≥ 2, consider the stratum H4g−3 ([2
4g−4]) consisting of the pairs (X,ω), where X

is a compact Riemann surface of genus 4g − 3 and ω is a holomorphic 1-form on X with 4g − 4

zeroes {p̃i}i=1,··· ,4g−4 of multiplicity 2. Denote the set {p̃i}i=1,··· ,4g−4 of zeros by Z̃ . Let

{aj, a∗j , ãk, bj, b∗j , b̃k}, j = 1, · · · , g ; k = 1, · · · , 2g − 3 (4.55)

be a canonical basis, i.e.




a

a∗

ã

b

b∗

b̃




◦
[
a a∗ ã b b∗ b̃

]
=


 0 I4g−3

−I4g−3 0


 ,

of H1(X;C) which, in the case of the pairs (X,ω) = (Ĉ,
√
π∗q) ∈ S (Qg ([1

4g−4])) in the image

of the local embedding (4.9), coincide with the basis (4.30). Consider the paths {γm}m=2,··· ,4g−4

connecting p̃1 to p̃m , m = 2, · · · , 4g − 4 , and not intersecting the cycles (4.55). The paths

{aj, a∗j , ãk, bj, b∗j , b̃k, γm}, j = 1, · · · , g ; k = 1, · · · , 2g − 3 ; m = 2, · · · , 4g − 4 (4.56)

form a basis of the relative homology group H1(X, Z̃;C).

To shorten the notations, we denote the basis (4.56) by {sn}n=1,··· ,12g−11 , where

sj := aj , s4g−3+j := bj ,

sg+j := a∗j , s5g−3+j := b∗j , j = 1, · · · , g ,
s2g+k := ãk , s6g−3+k := b̃k , k = 1, · · · , 2g − 3 ,

s8g−7+m := γm , m = 2, · · · , 4g − 4 .

(4.57)

The set of local homological coordinates {ζn}n=1,··· ,12g−11 on the stratum H4g−3 ([2
4g−4]) is given

by

ζn :=

∫

sn

ω , n = 1, · · · , 12g − 11 . (4.58)
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Now consider the pairs (Ĉ,
√
π∗q) in the image of the local embedding

S : Qg

([
14g−4

])
→ H4g−3

([
24g−4

])
, (4.59)

(C, q) 7→ (Ĉ,
√
π∗q)

where π : Ĉ → C is the canonical double covering defined by the quadratic differential q ∈ QD(C).

The canonical basis of H1(Ĉ;C) is given by (4.30). Let Ẑ = {p̂i}i=1,··· ,4g−4 be the set of zeros of

the holomorphic 1-form
√
π∗q. Consider 4g − 5 curves

γm : [0, 1] → Ĉ , m = 2, · · · , 4g − 4 (4.60)

such that γm(0) = p̂1 , γm(1) = p̂m and they do not intersect the loops (4.30). The curve

ϕm(t) =




γm(t) t ∈ [0, 1]

µ (γm(2− t)) t ∈ [1, 2]

(4.61)

represents a 1-cycle in the absolute homology group H1(Ĉ;C) of Ĉ for each m = 2, · · · , 4g − 4.

Indeed, each 1-cycle ϕm can be decomposed into a linear combination of {ãk, b̃k}k=1,··· ,2g−3.

Using (4.4), we get

∮

ϕm

√
π∗q =

∫

γm

√
π∗q −

∫

µ(γm)

√
π∗q (4.62)

=

∫

γm

√
π∗q +

∫

µ(γm)

µ∗ (√π∗q
)

= 2

∫

γm

√
π∗q .

Thus, for pairs (Ĉ,
√
π∗q) ∈ S (Qg ([1

4g−4])), the local homological coordinates {ζ8g−7+m}m=2,··· ,4g−4

are linear combinations of {ζ2g+k, ζ6g−3+k}k=1,··· ,2g−3 with half-integer coefficients.

Furthermore, we have

Π
(√

π∗q, a∗j
)
= Π

(√
π∗q, µ∗aj

)
= Π

(
µ∗√π∗q, aj

)
= −Π

(√
π∗q, aj

)
, (4.63)

Π
(√

π∗q, b∗j
)
= Π

(√
π∗q, µ∗bj

)
= Π

(
µ∗√π∗q, bj

)
= −Π

(√
π∗q, bj

)
.
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So the homological coordinates {ζj, ζg+j, ζ4g−3+j, ζ5g−3+j}j=1,··· ,g of each point in S (Qg ([1
4g−4]))

satisfy the following relations :

ζg+j = −ζj , ζ5g−3+j = −ζ4g−3+j , j = 1, · · · , g . (4.64)

According to (4.64), the period Π(
√
π∗q, %) of

√
π∗q on any invariant 1-cycle % ∈ H+ ⊂ H1(Ĉ,C)

is equal to zero.

Let {α−
l , β

−
l } be the symplectic basis of the (6g − 6)-dimensional eigenspaceH− ⊂ H1(Ĉ;C)

given by (4.32). Put for brevity

rl = α−
l , r3g−3+l = β−

l , l = 1, · · · , 3g − 3 . (4.65)

The set of complex parameters

ηi := Π
(√

π∗q, ri
)
, i = 1, · · · , 6g − 6 (4.66)

provides a system of local coordinates on S (Qg ([1
4g−4])) [7]. Our next goal is to study the varia-

tion of the matrices of β-periods B+ and B
− under the variation of the coordinate ηi.

Let γ̃m be a small loop with positive orientation around the point p̂m ∈ Ẑ for each

m = 2, · · · , 4g − 4. The following set {s∗n}n=1,··· ,12g−11 gives a basis, dual to (4.57), of the ho-

mology group H1(Ĉ \ Ẑ;C) :

s∗j := −bj , s∗4g−3+j := aj ,

s∗g+j := −b∗j , s∗5g−3+j := a∗j , j = 1, · · · , g ,
s∗2g+k := −b̃k , s∗6g−3+k := ãk , k = 1, · · · , 2g − 3 ,

s∗8g−7+m := γ̃m , m = 2, · · · , 4g − 4 .

(4.67)

The intersection numbers of the bases (4.57) and (4.67) are given by

s∗n ◦ sl = δnl , n, l = 1, · · · , 12g − 11 . (4.68)

Furthermore, the following set {r̃i}i=1,··· ,6g−6 gives a basis, dual to (4.65), of the eigenspace

H− ⊂ H1(Ĉ;C) :

r̃l = −β−
l , r̃3g−3+l = α−

l , l = 1, · · · , 3g − 3 , (4.69)
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where

r̃i ◦ rj = δij , i, j = 1, · · · , 6g − 6 . (4.70)

Lemma 4.2.1. The following variational formula holds:

∂

∂ηi


B

+ 0

0 B
−


 =

∫

r̃i

1√
π∗q


u

+(u+)
t

0

0 u−(u−)
t


 , (4.71)

where i = 1, · · · , 6g − 6.

Proof. According to (3.14), the derivative of the matrix of b-periods B̂ with respect to ζn is given

by

∂

∂ζn
B̂ =

∮

s∗n

1√
π∗q

UUt , (4.72)

where U =




u

u∗

ũ


 ∈

(
H1(Ĉ;C)

)4g−3

.

Using (4.48), (4.72) and (4.46), we get

∂

∂ηi


B

+ 0

0 B
−


 = T

(
∂

∂ηi
B̂

)
Tt = T

(
12g−11∑

n=1

∂ζn
∂ηi

(
∂

∂ζn
B̂

))
Tt (4.73)

= T

(
12g−11∑

n=1

∂ζn
∂ηi

∮

s∗n

1√
π∗q

UUt

)
Tt

=

12g−11∑

n=1

∂ζn
∂ηi

∮

s∗n

1√
π∗q

(TU) (TU)t

=

∫

νi

1√
π∗q


u

+(u+)
t

0

0 u−(u−)
t


 ,

where

νi =

12g−11∑

n=1

∂ζn
∂ηi

s∗n (4.74)

is a 1-cycle in H1

(
Ĉ \ Ẑ;C

)
.

39



Each entry of the matrices
u+(u+)

t

√
π∗q

and
u−(u−)

t

√
π∗q

is an anti-invariant 1-form under the action of

µ, whereas the small loop γ̃m can be chosen invariant under µ. Therefore, we have

∮

γ̃m

1√
π∗q


u

+(u+)
t

0

0 u−(u−)
t


 =

[
0
]

(4.75)

for each m = 2, · · · , 4g − 4.

Furthermore, the coordinates {ζn}n=1,··· ,8g−6 depend to {ηi}i=1,··· ,6g−6 in the following way:

ζj = −ζg+j = ηj ,

ζ4g−3+j = −ζ5g−3+j =
1
2
η3g−3+j , j = 1, · · · , g ;

(4.76)

ζ2g+k = ηg+k ,

ζ6g−3+k = η4g−3+k , k = 1, · · · , 2g − 3 .
(4.77)

Thus, the 1-cycles {νi}i=1,··· ,6g−6 can be simplified to the following form:

νj = b∗j − bj ,

ν3g−3+j =
1
2
(aj − a∗j) , j = 1, · · · , g ;

(4.78)

νg+k = −b̃k ,
ν4g−3+k = ãk , k = 1, · · · , 2g − 3 .

(4.79)

The relations (4.73), (4.78) and (4.79) leads to (4.71) for i = 1, · · · , 6g − 6.

The dimensions of the space Qg ([1
4g−4]) and the moduli space Mg of compact Riemann sur-

faces of genus g ≥ 2 are equal to 6g − 6 and 3g − 3, respectively. Therefore, there must exist

3g − 3 local independent vector fields {Wl}l=1,··· ,3g−3, defined on a neighbourhood of the point

(C, q) ∈ Qg ([1
4g−4]), which preserve the complex structure of the Riemann surface C. We use the

same notation {Wl}l=1,··· ,3g−3 for their image under the local embedding (4.9).

According to Torelli’s theorem [11], the vector field Wl preserve the complex structure of C

if and only if Wl(B) = 0g×g, where B is the matrix of b-periods of C. Using (4.54), we get the

following condition for Wl which is equivalent to Wl(B) = 0g×g :

Wl

(
B
+
nk

)
= 0 , n, k = 1, · · · , g ; l = 1, · · · , 3g − 3 . (4.80)
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According to [9], the stratum Qg ([1
4g−4]) may have a hyperelliptic connected component. In

what follows, we only consider the non-hyperelliptic connected component of Qg ([1
4g−4]). The

following theorem, as the main result of the thesis, provide an expression forWl , l = 1, · · · , 3g − 3 ,

as a linear combination of the local vector fields {∂/∂ηi}i=1,··· ,6g−6 , on the non-hyperelliptic con-

nected component of Qg ([1
4g−4]).

Theorem 4.2.2. Let (C, q) ∈ Qg ([1
4g−4]) be a point in the non-hyperelliptic connected component

of the stratum Qg ([1
4g−4]), where C is a non-hyperelliptic compact Riemann surface of genus

g ≥ 2 and q is a holomorphic quadratic differential with simple zeroes on C. Let {ηi}i=1,··· ,6g−6

be the local homological coordinates, given by (4.66), in a neighbourhood of the point (C, q). The

local vector fields

Wl =
∂

∂ηl
+

3g−3∑

k=1

B
−
lk

∂

∂η3g−3+k

, l = 1, · · · , 3g − 3 (4.81)

preserve the complex structure of C, where B
− is the matrix of β−-periods given by (4.44) .

Proof. Let Wl , l = 1, · · · , 3g − 3 be the local vector fields on S (Qg ([1
4g−4])) which preserve

B
+. Consider the following expression of Wl in terms of the local vector fields {∂/∂ηi}i=1,··· ,6g−6 :

Wl =

6g−6∑

i=1

Fli
∂

∂ηi
, l = 1, · · · , 3g − 3 , (4.82)

where F = [Fli] is a (3g − 3)× (6g − 6) matrix of rank 3g − 3. Using (4.71), we can rewrite the

condition (4.80) in the following way:

0 = Wl

(
B

+
nk

)
=

6g−6∑

i=1

Fli
∂B+

nk

∂ηi
=

6g−6∑

i=1

Fli

∫

r̃i

u+nu
+
k√

π∗q
, (4.83)

where n, k = 1, · · · , g and l = 1, · · · , 3g − 3 .

Let {vj}j=1,··· ,g be the normalized basis of the space of holomorphic 1-forms on C. Since

u+j = π∗vj , j = 1, · · · , g, considering the isomorphism (4.28), we have

u+nu
+
k√

π∗q
=
π∗ (vnvk)√

π∗q
∈ Λ− ⊂ Λ1

Ĉ
. (4.84)
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Since the Riemann surface C is non-hyperelliptic, the quadratic differentials

vnvk , n, k = 1, · · · , g (4.85)

span the whole space of holomorphic quadratic differentials on C [2]. So we deduce from equali-

ties (4.83) and (4.84) that each holomorphic 1-form w ∈ Λ− satisfy the following relation:

Π

(
w,

6g−6∑

i=1

Fli r̃i

)
=

6g−6∑

i=1

Fli

∫

r̃i

w = 0 , l = 1, · · · , 3g − 3 . (4.86)

Therefore, we have

Π

(
u−m,

6g−6∑

i=1

Fli r̃i

)
= 0 , l,m = 1, · · · , 3g − 3 , (4.87)

where {u−m}m=1,··· ,3g−3 is the basis of Λ− given by (4.41).

Since F is a full-row-rank matrix, we may assume, without loss of generality, that

F =
[
I3g−3 G

]
, (4.88)

where I3g−3 is the identity matrix and G ∈ M(3g − 3,C). Thus, using (4.42) and (4.44), we can

rewrite (4.87) in the following form:

Π

(
u−m,

6g−6∑

i=1

Fli r̃i

)
= Π

(
u−m,−β−

l

)
+Π

(
u−m,

3g−3∑

k=1

Glk α
−
k

)
(4.89)

= −B
−
lm +

3g−3∑

k=1

Glk δmk = 0 ,

where l,m = 1, · · · , 3g − 3. So we have G = B
− and, by (4.88), we get (4.81).
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Chapter 5

Summary and Outlook

The main results of this thesis are related to the variational formulas for the matrix of b-periods

on the moduli space of holomorphic quadratic differentials over compact Riemann surfaces.

We study the variational formulas of Ahlfors-Rauch type for the normalized Abelian differen-

tials and the matrix of b-periods on Hurwitz spaces and the moduli space of holomorphic Abelian

differentials.

We introduced the canonical 2-sheeted branched covering π : Ĉ → C corresponding to a pair

(C, q) in the principal stratum Qg ([1
4g−4]) of moduli space of holomorphic quadratic differentials.

The decomposition of the homology and cohomology groups of Ĉ into invariant and anti-invariant

subspaces under the action of the natural involution µ : Ĉ → Ĉ was discussed.

We derived the variational formulas for matrix of b-periods of C and Ĉ under variation of

the induced homological coordinates {ηi}i=1,··· ,6g−6 on Qg ([1
4g−4]). Also, we found a complete

set of local vector fields {Wl}l=1,··· ,3g−3 , in terms of vector fields {∂/∂ηi}i=1,··· ,6g−6 , on the non-

hyperelliptic connected component of Qg ([1
4g−4]) preserving the moduli of the base Riemann

surface C.

The first open problem is to find the set of 3g − 3 vector fields on the hyperelliptic connected

component of Qg ([1
4g−4]) which preserve the complex structure of the base Riemann surface C.

The second question is whether there exists a set of local functions {ξl}l=1,··· ,3g−3 on Qg ([1
4g−4])

such that the vector fields {Wl}l=1,··· ,3g−3 have the following local expression:

Wl =
∂

∂ξl
, l = 1, · · · , 3g − 3 . (5.1)

In other words, the problem is whether the local coordinates on Qg ([1
4g−4]) can split into natural

3g − 3 coordinates on moduli space Mg of Riemann surfaces and the coordinates {ξ1, · · · , ξ3g−3}
in the fiber of Qg ([1

4g−4]) over [C] ∈ Mg.
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