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ABSTRACT

New Perspectives and Methods in Loss Reserving

Using Generalized Linear Models

by Jian Tao

Loss reserving has been one of the most challenging tasks that actuaries face since

the appearance of insurance contracts. The most popular statistical methods in the

loss reserving literature are the Chain Ladder Method and the Bornhuetter Ferguson

Method.

Recently, Generalized Linear Models (GLMs) have been used increasingly in in-

surance model fitting. Some aggregate loss reserving models have been developed

within the framework of GLMs (especially Tweedie distributions). In this thesis we

look at loss reserving from the perspective of individual risk classes. A structural

loss reserving model is built which combines the exposure, the loss emergence pattern

and the loss development pattern together, again within the framework of GLMs.

Incurred but not reported (IBNR) losses and Reported but not settled (RBNS) losses

are forecasted separately. Finally, we use out of sample tests to show that our method

is superior to the traditional methods.

In the third chapter we also extend the theory of limited fluctuation credibility

for GLMs to one for GLMMs. Some criteria and algorithms are given. This is a

byproduct of our work but is interesting in its own sake. The asymptotic variance of

the estimators is derived, both for the marginal mean and the cluster specific mean.

Keywords: GLMs, GLMMs, IBNR, RBNS, UMSEP, asymptotic variance, full cred-

ibility, loss reserving, individual risk classes.
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Glossary

Accident year (AY) the relative year to the beginning of the business or the be-

ginning of the data available (base year) in which a claim incurred, starting

from 1.

Case reserve an estimate of the amount for which a particular claim will ultimately

be settled or adjudicated.

Exposure the measurable extent of risk, for instance it could refer to the number of

insurance contracts in one accident year.

IBNR Incurred but not reported.

Loss reserve an estimate of the value of a claim or group of claims not yet paid.

Payment delay (PD) the relative year to the notification of a claim in which a

payment was made for that claim, starting from 0.

Payment year (PY) the relative year to the occurrence in which payments were

made for one claim, starting from 0.

RBNS Reported but not settled.

Reporting delay (RD) the relative year to the occurrence of a claim in which the

claim was reported, starting from 0.

Settlement delay (SD) the relative year to the notification of a claim in which the

claim was closed, starting from 0.

x



Settlement year (SY) the relative year to the occurrence in which one claim was

settled, starting from 0.

xi



Symbols

N
(k)
i,j number of claims in risk class k with AY = i, RD = j, k = 1, 2, . . . , K,

i = 1, 2, . . . ,m and j = 0, 1, . . . ,m− 1.

Si,j the cumulative paid losses of accident year i and up to payment year j for the

whole portfolio, i = 1, 2, . . . ,m and j = 0, 1, . . . ,m− 1.

Zi,j the incremental paid losses in accident year i and payment year j for the whole

portfolio, i = 1, 2, . . . ,m and j = 0, 1, . . . ,m− 1.

N the set {N (k)
i,j | k = 1, 2, . . . , K, i = 1, 2, . . . ,m and j = 0, 1, . . . ,m− 1}.

N(k) the set {N (k)
i,j | i = 1, 2, . . . ,m and j = 0, 1, . . . ,m− 1} for k = 1, 2, . . . , K.

Ni the set {N (k)
i,j | k = 1, 2, . . . , K, and j = 0, 1, . . . ,m− 1} for i = 1, 2, . . . ,m.

p
(k)
j probability for one specific claim in risk class k to be reported with RD = j,

k = 1, 2, . . . , K and j = 0, 1, . . . ,m− 1.

w
(k)
i exposure for risk class k in accident year i, k = 1, 2, . . . , K and i = 1, 2, . . . ,m.

x
(k)
p claim payment covariates for risk class k = 1, 2, . . . , K.

x
(k)
s claim severity covariates for risk class k = 1, 2, . . . , K.

x
(k)
f claim frequency covariates for risk class k = 1, 2, . . . , K.

x
(k)
r claim reporting delay covariates for risk class k = 1, 2, . . . , K.

βββf regression coefficient vector for claim frequency.

xii



βββp regression coefficient vector for claim payments.

βββr regression coefficient vector for claim reporting delay.

βββs regression coefficient vector for claim severity.

xiii



Chapter 1

Introduction to Loss Reserving

1.1 Introduction to Run-off Process

Figure 1.1 illustrates the run-off (development) process of a general insurance claim.

A claim occurs at a certain point t1, consequently it is reported to the insurer at t2

and one payment, several payments or no payment may follow until the settlement

of the claim at t6.

-
t1 t2 t3 t4 t5 t6

?

Occurrence

?

Notification

? ? ?

Loss payments

Closure

?

Reporting Delay (RD)
Settlement Delay (SD)

Figure 1.1: Development of a General Insurance Claim.
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Most of the time, we do not know the exact time point, but only the calendar

year (or month, quarter) these actions fall into. Suppose that the reference is year

2000 (base year), an accident happened in 2003, it was then reported to the insurer

in 2008, one payment was made in 2008 and another payment in 2010, settling the

claim in that same year. Then we know that for this specific claim that AY = 4,

RD = 5, SD = 2, and that there are two payment delays: PD1=0, PD2=2.

If we focus on the claim emergence and claim reporting patterns, Table 1.1 gives

us a general picture of the reporting process for all claims. The entries Ni,j denote

the number of reported claims in the portfolio that happened in accident year i and

notified to the insurer with a reporting delay of j. Most papers in the literature set the

upper-bounds on the accident year and the reporting delay to be equal (i.e. I = J),

so we are more familiar with the sub-table below the dash line, which is a right-angle

isosceles triangle, however Table 1.1 describes the general situation.

Accident Reporting Delay

Year 0 1 · · · j · · · J − 2 J − 1

1 N1,0 N1,1 · · · N1,j · · · N1,J−2 N1,J−1

2 N2,0 N2,1 · · · N2,j · · · N2,J−2 N2,J−1

...
...

...
...

...
...

...
...

I+1−J NI+1−J,0 NI+1−J,1 · · · NI+1−J,j · · · NI+1−J,J−2 NI+1−J,J−1

I+2−J NI+2−J,0 NI+2−J,1 · · · NI+2−J,j · · · NI+2−J,J−2

...
...

...
...

... . .
.

I−j NI−j,0 NI−j,1 · · · NI−j,j
...

...
... . .

.

I−1 NI−1,0 NI−1,1

I NI,0

Table 1.1: Aggregate Report Table

The core idea of our individual method is that in this portfolio, policyholders are

2



classified according to their attributes (covariates, predictive variables) into different

risk classes k = 1, 2, . . . , K. Hence we can draw the individual risk class version of

Table 1.1 by adding a superscript k to each Ni,j.

The claim payment process is a little more complicated than the reporting pro-

cess (frequency), since we are not dealing with count data, but continuous data that

usually exhibit a larger variance. One strategy is to first calculate the total losses

associated with each claim that has currently settled (i.e. at evaluation time). Pro-

jections of total losses for future reported individual claim are based on these settled

claims. Combined with the projection of future reported claim numbers, we can then

give IBNR losses for each risk class. Finally adding them up, we obtain the total

IBNR losses for the whole portfolio.

Some decision makers are also curious about the way future total losses are dis-

tributed to each payment year so reserves can be set year by year dynamically. Note

that at any given time there might be some claims that have been reported and may

have initiated some loss payments but that are not fully settled yet. That is another

reason for which we want to model the claim payment pattern and picture the RBNS

losses.

3



1.2 Literature Review

1.2.1 Chain Ladder Type Methods

1.2.1.1 Pure chain ladder method

The most widely used method for loss reserve projections is the chain ladder method,

due to its simplicity and the fact that it is distribution free. Here and henceforth for

the ease of exposition and without loss of generality, we set the accident year (AY)

i = 1, 2, . . . ,m and payment year (PY) j = 0, 1, . . . ,m − 1. If we refer to Si,j as the

cumulative paid losses of accident year i and up to payment year j, for the whole

portfolio (see Table 1.2), then the corresponding observed incremental losses are given

by

Zi,j =











Si,0 , if j = 0,

Si,j − Si,j−1 , if 1 ≤ j ≤ m− i.

(1.1)

The chain ladder technique estimates the corresponding development factors by

Accident Payment Year

Year 0 1 · · · j · · · m− i · · · m− 2 m− 1

1 S1,0 S1,1 · · · S1,j · · · S1,m−i · · · S1,m−2 S1,m−1

2 S2,0 S2,1 · · · S2,j · · · S2,m−i · · · S2,m−2

...
...

...
...

...

i Si,0 Si,1 · · · Si,j · · · Si+1,m−i
...

...
...

...

m− j Sm−j,0 Sm−j,1 · · · Sm−j,j
...

...
...

m− 1 Sm−1,0 Sm−1,1

m Sm,0

Table 1.2: Chain Ladder Triangle

D̂j =

∑m−j
i=1 Si,j

∑m−j
i=1 Si,j−1

, j = 1, 2, ...,m− 1 , (1.2)

4



then the projection up to the jth payment year of the total paid losses is given by:

Ŝi,j = Si,m−i · D̂m+1−i · D̂m+2−i · · · D̂j, i+ j > m, (1.3)

while the predictor of incremental paid losses is obtained by differences:

Ẑi,j =











Ŝi,m+1−i − Si,m−i, if j = m+ 1− i,

Ŝi,j − Ŝi,j−1, otherwise.

(1.4)

For a long time, no statistical model justified this method until Renshaw and Verrall

(1998) found that the chain ladder projection could be interpreted as the result of a

Poisson regression with categorical variables for accident years and payment years.

In their model, it is assumed that the incremental losses Zi,j ∼ Poisson with mean

µi,j, independently ∀i, j, where log µi,j = µ+ αi + βj. Here the reference parameters

satisfy: α1 = β1 = 0. Projections are done as follows:

Ẑi,j = eµ̂+α̂i+β̂j (1.5)

and

Ŝi,j = Si,m−i +

j
∑

l=m−i+1

eµ̂+α̂i+β̂l , (1.6)

where α̂i and β̂j are the maximum likelihood estimators (MLE) of the parameters αi

and βj.

At first sight it seems that explicit formulas for the predictor are impossible.

However, Renshaw and Verrall (1998) found that these predictors give the same result

as the chain ladder technique. The problem arises since Poisson regression is more

appropriate for count data, thus it is more reasonable to model the reported or paid

claim number Ni,j rather than total losses Zi,j as in (1.5).

Rosenberg (1990) developed a method for modelling the claim reporting or settle-

ment pattern. Denote p(i)j =
pj

∑m−i
k=0 pk

the conditional probability that a claim with

accident year i, known to have been reported or settled, is reported or settled with

RD = j. Rosenberg (1990) writes the likelihood function through the multinomial

distribution to get the MLEs p̂j:

Lc =
m
∏

i=1

{ Ci,m−i
∏m−i

j=0 Ni,j!

m−i
∏

j=0

p
Ni,j

(i)j

}

, (1.7)

5



where Ci,m−i =
m−i
∑

i=1

Ni,j . Then the projection for total claim number Ci,m−1 in

accident year i is given by:

Ĉi,m−1 =
Ci,m−i

1−
m−1
∑

j=m−i+1

p̂j

. (1.8)

The projected incremental claim number N̂i,j is given by:

N̂i,j = Ĉi,m−1 · p̂j, i+ j > m. (1.9)

This approach reproduces the chain ladder method (CLM) for claim number triangle,

that is to say it is equivalent if we replace the entry Si,j in the run-off triangle in

Table 1.2 with Ci,j and apply the chain ladder projection.

1.2.1.2 Bornhuetter Ferguson method

In the method of Bornhuetter and Ferguson (1972) (BF), it is assumed that there

exist parameters α1, α2, . . . , αm and γ0, γ1, . . . , γm−1, with γm−1 = 1, such that:

E[Si,j] = αiγj, for all i = 1, 2, . . . ,m and j = 0, 1, . . . ,m− 1. (1.10)

Thus αi = E[Si,m] represent the expectation of total losses in accident year i (row

effect), and γ0, γ1, . . . , γm−1 form the development pattern (column effect). This

method is based on the prior estimators α̂1, α̂2, . . . , α̂m and γ̂0, γ̂1, ..., γ̂m−1 where

γ̂m−1 = γm−1 = 1. These prior estimators could be obtained from internal infor-

mation which is contained in the run-off triangle and external information obtained

from market statistics for some other similar portfolios. In this sense, any complex

projection using external information belongs to the scope of the BF method. How-

ever, in their paper Bornhuetter and Ferguson considered the aggregate cumulative

run-off triangle, as in Table 1.2, and the cumulative losses projection ŜBFi,j is defined

straightforwardly as:

ŜBFi,j = Si,m−i + (γ̂j − γ̂m−i)α̂i, for all i = 1, 2, . . . ,m and j = 0, 1, . . . ,m− 1.

(1.11)

6



From this formula we can see that for those accident years that convey less informa-

tion, i.e. i is close tom, the prior information is dominant in the total losses projection.

Prior information is especially useful when we find that the data is poor and unreli-

able. So the BF method solves the well known weakness of the CLM against outliers

and it is more robust than the CLM which relies completely on the data contained

in the run-off triangle.

1.2.1.3 Munich chain ladder

Reserves for a portfolio are often calculated on the basis of a paid losses run-off

triangle for most of the methods. Sometimes we can also use case reserves to create a

reported losses run-off triangle. Most decision makers choose one between paid losses

and case reserves and neglect the information from the other or treat them separately.

Quarg and Mack (2008) criticize this separate chain ladder (SCL) for the following

reasons:

1. Most of the time the projection based on paid losses differs from the projection

from reported losses. There is no strong argument to select one triangle over

the other.

2. Projections based on paid losses triangles arbitrarily ignore the fact that large

reported losses will lead to large paid losses in the future.

3. Projections based on reported losses use case reserves (predictions of claim

amounts), not true paid losses, thus often leading to bias.

4. If we extrapolate both the paid and the reported triangles, denoted as P and

I (known as incurred), use the chain ladder method and create the associated

(P/I) quadrangle by dividing each term in these two quadrangles, then the

weakness of SCL becomes clearly apparent. Usually an above-average or below

average (P/I) will lead to an above-average or below average projection (P/I)

at the end of the quadrangle. Some years the projection (P/I) at time m will

7



be greater than 100%, other years the ratio will be far less than 100%. Both

cases contradict what is observed in practice.

Hence Quarg and Mack (2008) develop in their paper the Munich Chain Ladder

(MCL) method to correct the drawbacks of SCL. First, they plot Pi,j+1 against Qi,j =

Pi,j/Ii,j, and find a negative correlation. In plain words, a relative low P/I ratio is

followed either by relatively high development factors for paid losses P or relatively

low development factors for reported losses and vice versa. It is reasonable since if up

to now the paid losses are much less than the reported losses, then much larger paid

losses over reported losses ratios must come later, since in the end the paid losses

Pi,m−1 should be equal to the incurred Ii,m−1.

In the MCL method, regression is used. The development factor
Pi,j+1

Pi,j
becomes

a random variable and its conditional mean (given Qi,j) is a first-order polynomial in

terms of Qi,j, i.e. there exists a constant λP such that for all j = 0, 2, . . . ,m− 2 and

all i = 1, 2, . . . ,m:

E

(

Res
(Pi,j+1

Pi,j

∣

∣ Pi(j)
)

∣

∣ Bi(j)
)

= λP ·Res(Q−1
i,j

∣

∣ Pi(j)), (1.12)

where Pi(j) := {Pi,0, . . . , Pi,j} stands for the condition that the paid information is

given until the end of payment year j for accident year i, Bi(j) := {Pi,0, . . . , Pi,j,
Ii,0, . . . , Ii,j} stands for the knowledge of the development of both processes up to the

end of payment year j for accident year i, and the residual is defined as:

Res
(Pi,j+1

Pi,j

∣

∣ Pi(j)
)

:=

Pi,j+1

Pi,j
− E

[

Pi,j+1

Pi,j

∣

∣ Pi(j)
]

√

V

(

Pi,j+1

Pi,j

∣

∣ Pi(j)
)

. (1.13)

Quarg and Mack (2008) also give:

E

(

Res
(Ii,j+1

Ii,j

∣

∣ Ii(j)
)

∣

∣ Bi(j)
)

= λI ·Res(Qi,j

∣

∣ Ii(j)), for all i = 1, 2, . . . ,m,

and j = 0, . . . ,m−2,

(1.14)

where Ii(j) := {Ii,0, . . . , Ii,j} stands for the condition that the incurred development

of accident year i is given up to and including j. These mathematical equations are
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used to model the dependence of the paid and incurred development factors on the

preceding (I/P) and (P/I) ratios.

1.2.1.4 Merz-Wüthrich paid incurred chain

Aside from the MCL model, Merz and Wüthrich (2010) present a novel stochastic

model for claim reserving that addresses the paid or reported dilemma. They as-

sume that the ratio of any two neighbours in paid chain ladders or reported chain

ladders (also called incurred chain ladders) are log normal distributed. Figure 1.2

gives a sketch of the approach. Starting from Pi,−1 defined as 1, they successively

simulate ξi0, ξi1, . . . , ξim−1, alongside calculating Pi,0, Pi,1, . . . , Pi,m−1 according to

Pi,j = Pi,j−1 exp(ξij), finally to reach Pi,m−1 = Ii,m−1. The next step is a backward

recursion: Ii,j−1 = Ii,j exp(−ζij−1). This model overcomes the problem of SCL where

Pi,m−1 does not equal to Ii,m−1. Also the dependence between Pi,j+1/Pi,j and Pi,j/Ii,j

is automatically introduced due to the structure of multivariate normal distribution.

1
ξi0 - Pi,0

ξi1 - Pi,1
ξi2 - · · · ξim−2- Pi,m−2

ξim−1- Pi,m−1

Ii,0 � ζi0
Ii,1 � ζi1 · · · � ζim−3

Ii,m−2 �ζim−2 Ii,m−1

w

w

w

w

w

w

w

w

w

Figure 1.2: PIC Model

1.2.1.5 Double chain ladder

Miranda et al. (2012) derive a simple method for forecasting IBNR and RBNS claims

at the same time using the information of reported count data (in a triangular array

N) as well as the paid run-off triangle (∆). Both of these two triangles are usually

relatively easy to obtain.

The lifetime of a claim is divided into two: the IBNR delay and the RBNS de-

lay. Unlike most other reserving methods, these two separate sources of delay are

9



estimated separately.

The maximum reporting delay is m − 1. However, in Miranda et al. (2012),

the payment year may exceed m − 1 due to the settlement delay, see Figure 1.3.

Up to the evaluation time, we have the information of aggregated reported counts

N = {Ni,j | i = 1, 2, . . . ,m, j = 0, 1, . . . ,m − 1} and aggregated payments ∆ =

{Zi,j | i = 1, 2, . . . ,m, j = 0, 1, . . . ,m− 1}.

Payment year (j)
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m+d−1

I

J

T

Figure 1.3: Index Sets for Aggregate Claims Data, Maximum Delay Equals d.

The reported counts Ni,j are assumed to be independent random variables from

a Poisson distribution with multiplicative parametrization:

E[Ni,j] = αiβj, i = 1, 2, . . . ,m, j = 0, 1, . . . ,m− 1, (1.15)

where
∑m−1

j=0 βj = 1.

A new variable Npaid
i,j,l is introduced representing the components of Ni,j that have

settlement delay SD = l. Here the conditional distribution of Npaid
i,j,l given Ni,j is

supposed to follow a multinomial:

(Npaid
i,j,0 , . . . , N

paid
i,j,d ) ∼ Multi(Ni,j; p0, . . . , pd), i = 1, 2, . . . ,m, j = 0, 1, . . . ,m− 1,

(1.16)
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where p = (p0, p1, . . . , pd) denotes the settlement delay probabilities such that p0 +

p1 + · · ·+ pd = 1 with the maximum delay d ≤ m− 1.

In Miranda et al. (2012), it is assumed that for each claim there is only one

payment associated with it. The individual payments Y
(k)
i,j in Zi,j are mutually inde-

pendent with mean µi and variance σ2
i such that

µi := E[Y
(k)
i,j ] = µγi and σ2

i := V(Y
(k)
i,j ) = σ2γ2i , i = 1, 2, . . . ,m,

j = 0, 1, . . . ,m− 1,

(1.17)

with µ and σ2 being mean and variance factors, and i is the inflation over the accident

years.

Under the above assumptions the conditional mean of Zi,j becomes

E[Zi,j|N] =

min(j,d)
∑

l=0

Ni,j−l pl µγi = αi µγi

min(j,d)
∑

l=0

βj−lpl, for i = 1, 2, . . . ,m,

and j = 0, 1, . . . ,m− 1. (1.18)

Introduce α̃i = αi µ γi and β̃j =

min(j,d)
∑

l=0

βj−lpl. Then Zi,j has the same multiplicative

structure as Ni,j:

E[Zi,j] = α̃iβ̃j, i = 1, 2, . . . ,m, j = 0, 1, . . . ,m− 1. (1.19)

With these distributional assumptions, the likelihood function can be written as:

LN,∆ = LN · L∆|N. (1.20)

The likelihood function of N is maximised using the chain ladder method and the

other term L∆|N is approximated using an over-dispersed Poisson distribution. The

parameters here are:

1. Delay probabilities: p0, . . . , pd.

2. Individual payment parameters: µ, σ2, {γi | i = 1, . . . ,m}.

3. Claim counts parameters: αi, βj, for i = 1, . . . ,m, j = 0, . . . ,m− 1.

11



A shortcut is found by applying the standard chain ladder method (CLM) twice to

the set N of Ni,j values in (1.15) and to the set ∆ of Zi,j values in (1.19) to get the

estimates of αi, βj, α̃i, β̃j, then use formula (1.18) to get all the subsequent parameter

estimates.

The prediction of RBNS and IBNR reserves is done separately and finally grouped

into the forecast of Ẑi,j (for i+ j > m).

The IBNR component always uses:

Ẑibnr
i,j =

i−m+j−1
∑

l=0

N̂i,j−l p̂l µ̂ γ̂i, for i+ j > m. (1.21)

There are two possible estimates for the RBNS component:

Ẑ
rbns(1)
i,j =

j
∑

l=i−m+j

Ni,j−l p̂l µ̂ γ̂i, for i+ j > m, (1.22)

and

Ẑ
rbns(2)
i,j =

j
∑

l=i−m+j

N̂i,j−l p̂l µ̂ γ̂i, for i+ j > m, (1.23)

where N̂i,j = α̂iβ̂j. In the cases that l > d, then p̂l ≡ 0.

It is shown in Miranda et al. (2012) that with (1.23) for the RBNS component, the

estimate of outstanding claims using DCL will be exactly the same as the standard

CLM within the non-tail area J :

Ẑ
rbns(2)
i,j + Ẑibnr

i,j = ẐCL
i,j . (1.24)

However, differences appear when the real count formula in (1.22) is used. Unlike

CLM, which only produces forecasts over the region J , DCL also takes into account

the tail part T , which is omitted by CLM.

More than the point forecasts of the IBNR and RBNS reserves, Miranda et al.

(2011) introduce the bootstrapping procedure to the DCL model for the predictive

distributions of the IBNR and RBNS reserves.

A weak point of the DCL method is the lack of stability because the underwriting

year inflation near m might be estimated with significant uncertainty. Miranda et al.

(2013) propose a model close to DCL but with the inflation γi estimated from the

less volatile incurred data, then transfering these to the DCL model.
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1.2.2 Aggregate Loss Reserving Using GLMs

Wüthrich (2003) applied Tweedie’s compound Poisson model, represented as a mem-

ber of the exponential dispersion family by Jorgensen (1987), to the run-off problem.

He defines the model as:

1. The number of payments Ri,j in accident year i and payment year j (i.e. cell

(i, j)) are independent and Poisson distributed with parameter λi,jwi. The

weight wi > 0 is the exposure of each accident year.

2. The individual payments in Ri,j are independent and gamma distributed with

mean τi,j > 0 and shape parameter γ > 0.

3. Denote Zi,j the total incremental payments paid in cell (i, j), and Yi,j = Zi,j/wi.

If we skip the indices i and j. The distribution of Y is parametrized by three param-

eters λ, τ and γ:

fY (y;µ, φ/w, p) = c(y;φ/w, p) exp
{w

φ

(

y
µ1−p

1− p
− µ2−p

2− p

)}

, y ≥ 0. (1.25)

Here the new parameters µ, φ and p are chosen to be:

p = (γ + 2)/(γ + 1), p ∈ (1, 2),

µ = γ · τ,

φ = λ1−pτ 2−p/(2− p).

A multiplicative model is used to include row and column effects:

µi,j = α(i) · f(j). (1.26)

Compared to the Poisson regression model of Renshaw and Verrall (1998), which is

a special case for p = 1, it allows more freedom for the distribution of Zi,j.

Guszcza and Lommele (2006) also question the traditional methods using only

the summarized loss triangles. They point out that these methods can not incorpo-

rate the changes in the company’s business mix into their estimates of outstanding

losses. Another danger of using summarized loss triangles is that they could mask
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heterogeneous loss development patterns. Finally, traditional methods throw away a

large amount of information, prohibiting the use of predictive variables that might

determine the loss development. Considering these shortcomings and also for math-

ematical convenience, Guszcza and Lommele (2006) use a GLM for the development

factor in each individual risk class. It is assumed that:

S
(k)
i,j

S
(k)
i,j−1

= exp(βββx(k)) + σ, (1.27)

where x(k) represent predictive variables for risk class k and σ is an overdispersed

Poisson-distributed error term.

1.2.3 Micro Level Loss Reserving

Lately, a small stream of literature has appeared with a focus on micro-level loss

reserving.

In Antonio and Plat (2014) the claim process is treated as a position dependent

marked Poisson process. A monthly constant Poisson process is used to model the

claim occurrences. A mixture of one Weibull distribution and nine degenerate com-

ponents are used for the reporting delay. A multiple decrement process defines the

development process. The payments are fitted with Burr, gamma, and lognormal

distributions with covariate information of initial reserves and the development year

for each payment.

Pigeon et al. (2013) suggest the multivariate skew normal distribution for modeling

these development factors at a individual claim level.

Let the random variable Yikj(> 0) represent the jth incremental partial amount

for the kth claim (k = 1, . . . , Ki) from accident year i (i = 1, 2, . . . , I). Denote by uik

the number of period(s) with partial payment (> 0) after the first one. For a claim

(ik) with a strict positive value of uik, the vector Λikuik+1 of length uik + 1 gives the

development pattern:

ΛΛΛ
(ik)
uik+1 = [Yik1 λ

(ik)
1 . . . λ(ik)uik

]′, (1.28)
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where

λ
(ik)
j =

∑j+1
r=1 Yikr

∑j
r=1 Yikr

. (1.29)

Definition 1.1. Let µµµ = [µ1, µ2, . . . , µk]
′ be a vector of location parameters, ΣΣΣ a

(k×k) positive definite symmetric scale matrix and ∆∆∆ = [∆1,∆2, . . . ,∆k]
′ a vector of

shape parameters. The (k×1) random vector X follows a multivariate skew-symmetric

(MSS) distribution if its density function is of the form

MSS(x;µ,ΣΣΣ1/2,∆∆∆) =
2(k)

det(ΣΣΣ)1/2
g∗(ΣΣΣ−1/2(x− µ))

k
∏

j=1

H(∆je
′
jΣΣΣ

−1/2(x− µ)), (1.30)

where g∗(x) =
∏k

j=1 g(xj), g(·) is a density function symmetric around 0, H(·) is an

absolutely continuous cumulative distribution function with H(·) symmetric around 0

and e′j are the elementary vectors of the coordinate system R(k). The MSN distribution

is obtained from (1.30) by replacing g(·) and H(·) with the pdf and cdf of the standard

normal distribution, respectively.

For closed claims it is assumed that ln(ΛΛΛuik+1) is MSN distributed as:

MSN(ln(ΛΛΛuik+1);µµµuik+1,ΣΣΣ
1/2
uik+1,∆∆∆uik+1 | uik). (1.31)

A dependence structure between each partial payment associated with one claim is

introduced by this flexible multivariate distribution.
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Chapter 2

Full Credibility for GLMMs

In this chapter, we digress temporarily from loss reserve models and study the theory

of limited fluctuation credibility for generalized linear mixed models, also called full

credibility for GLMMs.

Generalized linear mixed models (GLMMs) are a particular type of mixed model.

It is also an extension to the generalized linear model in which the linear predictor

contains random effects in addition to the usual fixed effects. It is most widely used

for longitudinal data or clustered data analysis. The earliest application of GLMMs

in actuarial science could date back to Hachemeister (1975) credibility regression

model for U.S. data that showed linear inflation trends in claims. Recently, GLMMs

are gaining popularity as a statistical method for insurance data since they combine

credibility and GLM for premium rating. The GLMM empirical Bayesian estimator

(EBE) is nothing but Bühlmann’s Bayesian estimator. In this chapter we extend the

theory of limited fluctuation credibility for GLMs to the one for GLMMs. We test

the influence of three key factors on the limited fluctuation probability. These are the

number of clusters, number of subjects within each cluster and the variance of ran-

dom effects. Parametric bootstrapping is suggested to derive the limited fluctuation

probability with the marginal mean for a general link function.
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2.1 Introduction

In actuarial science, Mowbray (1914) first develops a full credibility formula for

worker’s compensation premium.

If the probability of a small difference between the estimator X̂ and the parameter

it estimates,m, is “high enough”, then the insurer may find X̂ credible as an estimator

of m. Statistically, this can be defined as

P{−rm ≤ X̂ −m ≤ rm} ≥ p, (2.1)

for a chosen tolerance level r > 0 and probability p.

Bühlmann (1967) derives a Bayesian credibility estimators which minimize the

square loss function. Jewell (1974) shows that linear credibility estimates are exact

when certain natural conjugates are governing the realizations of risk parameters.

Hachemeister (1975) worked on U.S data that showed linear inflation trends in claims.

This trend differed from one state to the other and also from the average national

inflation trend. After a long development of credibility theory, especially in the 60’s

and 70’s, Nelder and Verrall (1997) show how credibility theory can be encompassed

within the theory of GLMs. Frees et al. (1999) develop links between credibility theory

in actuarial science with longitudinal data models in statistics. They show that many

credibility models including Bühlmann, Bühlmann-Straub and the regression model

of Hachemeister can be expressed as special cases of the longitudinal data model.

More recently, Zhou and Garrido (2009a) study how the limited fluctuation prob-

ability of GLM estimators depend on the sample size, the distribution of covariates

and the link function. At the end of their paper, an extension to full credibility

for GLMMs is mentioned. However, the formula in Theorem 3.3 of that paper is

not strictly a full credibility criterion. We correct this omission and give a real full

credibility formula for GLMMs for two quantities: the marginal mean and the clus-

ter specific mean. We show how the limited fluctuation probability depends on the

number of clusters, number of subjects within cluster and magnitudes of variance

of random effect. Parametric bootstrapping is introduced to simulate the prediction

error for the marginal mean.
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The outline of this chapter is as follows: Section 2 introduces the notation and

numerous computational methods to fit GLMMs. Section 3 shows the application

of GLMMs in actuarial science and under which circumstances GLMMs should be

preferred over GLMs. Section 4 presents the full credibility results for the marginal

mean and also the cluster specific mean of GLMMs. Section 5 shows some numerical

experiments we do to inspect the key factors that influence the limited fluctuation

probability. Section 6 concludes our work.

2.2 Model and Notation for GLMMs

Generalized linear mixed models (GLMMs) are extensions of both generalized linear

models (GLMs) and linear mixed models (LMMs), where the linear predictors contain

random effects in addition to the usual fixed effects and the error is not restricted

to normal distributed. There are now various books on GLMMs and related topics,

see McCullogh and Searle (2001), Demindenko (2004) or Jiang (2007). Antonio and

Beirlant (2007) apply GLMMs to estimate and compute several actuarial statistics.

Suppose that data are collected from k different locations or k different years. Each

location or year is called a cluster. For the ith cluster we have response data yij, j =

1, 2, ..., ni. Let xij and zij denote the p and q dimension vectors representing fixed

effect covariates and random effect covariates associated with the response yij. Here

it is assumed that for each cluster there are random effects ui which are added into

the regression model to account for the correlation within cluster data. Conditional

on ui, yij is exponential dispersion distributed with density function of the form:

f(yij | ui;βββ, σ2
0) = exp

{wij
σ2
0

(yijθij − b(θij)) + c(yij, σ
2
0/wij)

}

, yij ∈ Hb, (2.2)

where wij is the weight associated with yij and the conditional expectation of yij is:

E(yij|ui;βββ, σ2
0) = b′(θij), i = 1, 2, . . . , k and j = 1, 2, . . . , ni. (2.3)

The regressor is connected with the expectation through a link function g:

g(b′(θij)) = ηij = x′
ijβββ + z′ijui, i = 1, 2, . . . , k and j = 1, 2, . . . , ni. (2.4)
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The random effects for different clusters are assumed to be i.i.d. random variables

distributed as π(ui|D), usually assumed to be q-variate normal random variables:

ui ∼ N(0,D), D = diag(σ2
1, σ

2
2, . . . , σ

2
q ). (2.5)

In the following discussion, we will always assume that D is in diagonal form. As

long as the distribution of random effects is completely specified, essentially it makes

no difference which distribution is assumed in the development of full credibility.

We use σ2σ2σ2 = (σ2
0, σ

2
1, . . . , σ

2
q )

′ to denote the unknown dispersion parameter σ0 and

those in the diagonal of D, and ψψψ to denote the unknown parameters for the whole

model: ψψψ = (βββ′, (σσσ2)′)′.

Generalized linear mixed models can be fitted through maximizing the marginal

likelihood function for ψψψ based on yyy (yij, i = 1, 2...k, j = 1, 2, ...ni):

ψ̂ψψ = argmax
ψψψ

L(ψψψ|y) = argmax
ψψψ

k
∏

i=1

[

∫

Rq

[

ni
∏

j=1

f(yij|ui,βββ, σ2
0)
]

π(ui|D)dui

]

, (2.6)

which involves a multidimensional integration over random effects. Usually these

integrals do not have closed-form expressions, with the exception of the normal case.

Various approximation methods have been developed for the ML estimator. The

Laplace approximation is one of them, and maybe the earliest one to approximate

the likelihood integral. However, Vonesh (1996) shows that under the Laplace ap-

proximation:

(β̂ββ − βββ) = Op(max{k− 1
2 , (min(ni))

−1}). (2.7)

Intuitively, the k−
1
2 term comes from standard asymptotic theory while (min(ni))

−1

comes from the Laplace approximation error of the integral. Thus the approximated

ML estimator β̂ββ will be consistent only when both k and min(ni) → ∞.

Almost at the same time, Wolfinger and O’Connell (1993) develop a pseudo-

likelihood estimation based on linearization. The advantages of their linearization

based method is that it includes a relatively simple linearization form that is well-

known and easily fit in linear mixed models (LMMs). Models with correlated errors,

a large number of random effects, crossed random effects, and multiple types of sub-

jects can resort to linearization methods. However, the same problem as with the
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Laplace approximation arises: the absence of a true objective function for the overall

optimization process results in potentially biased estimates, especially for binary data

when the number of observations per cluster is small, see Breslow and Lin (1995) and

Lin and Breslow (1996).

For these reasons, methods involving Gauss-Hermite quadrature (Liu and Pierce,

1994) and Markov chain Monte Carlo with Gibbs sampling (Zeger and Karim, 1991)

have increased in use with the increasing computing power and advancing numerical

methods. Both techniques are now available in some SAS and R packages.

After obtaining the estimator ψ̂ψψ, we can plug it into the joint likelihood function

to get empirical posterior mode estimator

ûEBM
i = argmax

ui

{

(

ni
∏

j=1

f(yij | ui, β̂ββ, σ̂2
0)
)

π(ui|D̂)
}

, (2.8)

or empirical posterior mean estimator

ûEBE
i =

∫

Rq

ui
(

ni
∏

j=1

f(yij | ui, β̂ββ, σ̂2
0)
)

π(ui|D̂) dui

∫

Rq

(

ni
∏

j=1

f(yij | ui, β̂ββ, σ̂2
0)
)

π(ui|D̂) dui

. (2.9)

For linear mixed model, the posterior mean estimator equals posterior mode esti-

mator, actually they are well known as best linear unbiased predictor (BLUP).

2.3 GLMMs in Actuarial Science

In the most recent decade, GLMMs are gradually adopted in actuarial analysis.

GLMMs extend GLMs by including random effects in the linear predictor. The

random effects not only determine the correlation structure between subjects in the

same cluster, but also take account of heterogeneity among clusters. In this section,

we will list some application of GLMMs in actuarial science and the advantages of

GLMMs over GLMs one by one.
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2.3.1 Bayesian estimator

The actuarial motivation to use GLMMs is that they provide a way of introducing

credibility into a generalized linear model setting for ratemaking. It is Bühlmann

(1967) that first developed these Bayesian credibility estimators. The Bayesian cred-

ibility estimator is the solution that minimize the square loss function.

Klinker (2010) uses GLMs to model the ratio of observed losses to expected losses

under current rating plan. He chooses a Tweedie distribution with exponent p between

1 and 2 for this experience ratio. His case study is based on real data from the

International Service Office (ISO). In the study, he finds that since there are poorly

populated levels in some effects, the standard errors of some estimates are quite

larger than for others. Then he applies a GLMM to this data by specify these effects

as random effects in SAS PROC GLIMMIX. Note that GLIMMIX should give the

estimates in (2.9). After comparing the estimates in these two methods, the evidence

of shrinkage to 0 in GLMM estimates compared to GLM estimates is revealed. He

also calculates Bühlmann-Straub form credibility estimates at the end of his article.

At least in his case study, GLMM estimates are very close to Bühlmann-Straub form

credibility estimates.

Jewell (1974) shows that exact credibility occurs (that means that Bühlmann’s

linear approximation equals the exact Bayesian estimate) when certain natural conju-

gates are governing the realizations of risk parameters. Thus the Bayesian estimator

is a linear combination of exogenous information and sample experience.

Ohlsson and Johansson (2006) extend this result, showing that the exact credi-

bility holds for a class of Tweedie models, including Poisson, gamma and compound

Poisson distributions with a special parametrization of random effects.

The Tweedie distribution is generally used in private motor car insurance. The

model of the car is an important rating factor, both for third-party liability, hull and

theft. Nevertheless, usually we are left with thousands of car models, some of which

represent top selling cars with sufficient data available, whereas most classes have

moderate or sparse data. In this case, car model can be modelled as random effect in
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Tweedie models.

Later on, Ohlsson (2008) demonstrates how to use Bühlmann Straub credibility

model in a multiplicative GLM environment and gives the iterative GLMC (GLMs

with credibility) algorithm to estimate the parameters.

2.3.2 Efficient estimators

Suppose that we organize data in different clusters, here one cluster could be the data

in one territory, in one year or one model of car. If you treat the cluster as a fixed

effect, i.e. a categorical variable in GLMs, we may end up drawing good inference

about the clusters in the sample. But for a new cluster where we have no experience,

we can not set a fair premium for that cluster. In addition, for that new cluster, the

value of a random effect would also be a mystery. The marginal mean for that cluster

is in the following form:

µM = E[y] = E
[

E(y | u)
]

= E
[

g−1(x′βββ + z′u)
]

=

∫

g−1(x′βββ + z′u) π(u | D) du.

(2.10)

The variance matrix D of random effects is only acquirable with GLMMs rather than

GLMs.

Another solution is simply averaging the estimators of the risk parameters u in

different clusters using GLMs to give the estimator of the marginal mean. This is

indeed a solution to the question. The average has the advantage of its unbiasedness

and consistency properties. However, it is not an efficient estimator, as is the GLMMs

maximum likelihood based estimator.

Recall that for Hachemeister credibility regression model, De Vylder (1981) proves

that

β̂ββ = (X′C−1X)−1X′C−1Y = (
k

∑

i=1

Mi)
−1

k
∑

i=1

Mi β̂ββi (2.11)

has the smallest covariance matrix among all the linear unbiased estimates for βββ (for

the definition of matrices C and M, see Appendix B). Frees et al. (1999) show that

Hachemeister credibility regression model can be interpreted as a linear mixed model
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where Zi = Xi. After a simple matrix transformation, we will find that β̂ββ in (2.11) is

identical to the best linear unbiased estimator (BLUE).

In other words, simply averaging the risk parameters in different clusters gives the

following estimate:

β̄ββ =

k
∑

i=1

β̂ββi

k
, (2.12)

which is not as efficient as the linear mixed model maximum likelihood estimate β̂ββ.

See Appendix B for the comparison of the covariance matrices of these two estimates

using matrix notation.

2.3.3 Correlation and over-dispersion

Another important feature of generalized linear mixed models is that the random

effects determine the correlation structure between observations in the same cluster,

since they share the same random effects ui.

We can write the covariance of yij1 and yij2 as two parts:

COV(yij1 , yij2) = COV[E(yij1 |ui),E(yij2 |ui)] + E[COV(yij1 , yij2 |ui)]

= COV[E(yij1 |ui),E(yij2 |ui)], (2.13)

therefore GLMMs allow for dependence among these observations. Note that in the

GLMs, COV(yij1 , yij2) = 0, the observations in the same cluster are independent.

For one observation yij1 ,

V(yij1) = COV[E(yij1 |ui)] + E[V(yij1 |ui)] ≥ E[V(yij1 |ui)]. (2.14)

We can see the inclusion of a random effect introduces over-dispersion. From the

above two points in this section, we can see that GLMMs have wider applications in

practice than GLMs.

2.3.4 Incidental parameter problem

Lastly, GLMMs are good solutions for the incidental parameter problem of GLMs

that usually brings asymptotic inconsistency.
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The incidental parameter problem is typically seen to arise with longitudinal data

models when the cluster specific intercepts are allowed in a regression model. The

problem is that maximum-likelihood estimates of the structural parameters need not

be consistent.

There are two famous examples in the literature:

Example 1. Let yij be distributed as:

f(yij) =
1√
2πσ

exp{−(yij − ui)
2/2σ2}, i = 1, 2, . . . , k, j = 1, 2, . . . , n.

ui is the cluster specific intercept. If we treat it as a linear regression model with

different intercept for each cluster, then maximum likelihood estimates of ui and σ
2

are:

ûi = ȳi,

σ̂2 =

∑k
i=1

∑n
j=1(yij − ȳi)

kn
.

It is known that σ̂2 ∼ σ2χ2
k(n−1)

kn
with expectation σ2(n − 1)/n. When k → ∞, but

n is constant, we see that the estimators of σ2 are not consistent. The bias is not

mitigated by increasing the number of clusters.

From a Bayesian point of view, it suggests a way of thinking about the construction

of a reasonable prior for the intercept ui. It is easy to see that if the intercepts ui are

i.i.d. and normally distributed, then the maximum likelihood estimators of σ2 in this

linear mixed model is consistent with the number of clusters.

Example 2. In a binary data model, suppose y to be binary with:

E(yij) = logit(ui + βxij), i = 1, 2, . . . , k, j = 1, 2, . . . , n.

For these models the maximum likelihood estimates is generally inconsistent as k →
∞ for β. For example, when n = 2, xi1 = 0, xi2 = 1 then β̂ → 2β (Andersen (1970)).

However, if ui are i.i.d. and normally distributed, then the maximum likelihood esti-

mates of β in this logit-normal model are consistent.

See Lancaster (2000) for a detailed survey of the history of incidental parameter

problems in statistics and in the econometrics literature.
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2.4 Full Credibility for GLMMs

Zhou and Garrido (2009a) study the limited fluctuation probability of GLM esti-

mators. At the end of their paper, an extension to full credibility for GLMMs is

mentioned.

They calculate the following variance function:

V(x′
ijβ̂ββ−ηij) = V(x′

ijβ̂ββ−x′
ijβββ−z′ijui) = V(x′

ijβ̂ββ)+V(z′ijui) = x′
ijΩΩΩxij+z′ijDzij, (2.15)

x′
ijβ̂ββ is the predictor for the fixed effect part. The linear component ηij = x′

ijβββ+z′ijui

is a random variable since it includes ui. ΩΩΩ = COV(β̂ββ) is the variance-covariance

matrix of the fixed-effects parameter estimator β̂ββ. D is the covariance parameter for

random effects, see equation (2.5).

However, in terms of credibility, we are not looking at the mean square difference

between a predictor and a random variable. What we really care about is the proba-

bility that an estimate falls into a small region around the fixed (the marginal mean)

or the realized value (the cluster specific mean). Then we can see how efficient and

credible the estimate is, and what the crucial factors are.

Note that V(z′ijui) = z′ijDzij, a value that does not converge to 0 with increasing

sample size, so using the formula in Zhou and Garrido (2009a) we cannot reach the

accepted truth that the limited fluctuation probability converges to 0 as observations

increase.

Next we give a more proper credibility criterion for the marginal mean and also

for the cluster specific mean.

2.4.1 Full credibility for marginal means

For insurance practice, we need to set fair premium for the next year based on previous

years data. An essential and indispensable value is the expectation of future losses. If

future losses depend on the realization of the random effect, then the total expectation
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(marginal mean) for the subject (x, z) is expressed as the following integral:

µM = E[y] = E
[

E(y | u)
]

= E
[

g−1(x′βββ + z′u)
]

=

∫

Rq

g−1(x′βββ + z′u) π(u | D) du,

(2.16)

here x, z are column vectors representing the covariates for the subject we considered.

2.4.1.1 The log link function

Lemma 2.1. The log-link function which is widely used in claim frequency and sever-

ity modeling to prevent the appearance of negative estimators, whereby µM has a closed

form formula:

µM =

∫

Rq

exp(x′βββ + z′u) (2π)−
q

2 |D|− 1
2 exp(−1

2
u′D−1u)du

= exp(x′βββ +
1

2
z′Dz). (2.17)

The integral here is similar to the moment generating function for a multivariate

normal distribution or the expectation of a log-normal distribution.

Lemma 2.2. Use µ̂M = exp(x′β̂ββ+ 1
2
z′D̂z) as the estimator of µM . Then for a chosen

tolerance level r > 0, the limited fluctuation probability

π = P{|µ̂M − µM | ≤ rµM} = P{(1− r)µM ≤ µ̂M ≤ (1 + r)µM}

= P{ln[(1− r)µM ] ≤ ln(µ̂M) ≤ ln[(1 + r)µM ]}

= P{ln(1− r) ≤ (x′β̂ββ +
1

2
z′D̂z)− (x′βββ +

1

2
z′Dz) ≤ ln(1 + r)}

= P{ln(1− r) ≤ x′(β̂ββ − βββ) +
1

2
z′(D̂−D)z ≤ ln(1 + r)} (2.18)

Lemma 2.3. The ML estimator ψ̂ψψ is a consistent and asymptotic normally distributed

estimator of ψψψ:

ψ̂ψψ −ψψψ ∼ N(0, I−1(ψψψ)), (2.19)

where I(ψψψ) is the fisher information matrix associated with the likelihood function in

(2.6).
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Booth and Hobert (1998) use this in an logistic-normal example. Jiang (2007)

is a good reference for the asymptotic properties of different inference approaches to

GLMMs.

Theorem 2.1. If we denote by

m =











x

0
1

2
z ◦ z











,

where z ◦ z is the element-wise product of z with itself, also known as Hadamard

product, and 0 is the coefficient for σ0 which is not used in the estimate µM , then we

have that:

x′(β̂ββ − βββ) +
1

2
z′(D̂−D)z ≈ N(0,m′ I−1(ψψψ) m). (2.20)

Denote by s = (m′ I−1(ψψψ) m)
1
2 , put it back into (2.18), and finally we get:

π ≈ Φ(
ln(1 + r)

s
)− Φ(

ln(1− r)

s
), (2.21)

where Φ is the cumulative distribution function of standard normal variable, and φ is

the corresponding probability density function.

2.4.1.2 The probit link function

Lemma 2.4. For the probit link function (g−1 = Φ) and normally distributed random

effects (D is not necessarily diagonal), we can simplify the integral in (2.16) as follows:

∫

Rq

Φ(x′βββ + z′u)(2π)−
q

2 |D|− 1
2 exp(−1

2
u′D−1u) du = Φ

( x′βββ√
1 + z′Dz

)

, (2.22)

which is the multi-dimensional version of the following result in the normal integral,

see Owen (1980):
∞
∫

−∞

Φ(a+ bx) φ(x) dx = Φ
( a√

1 + b2

)

. (2.23)
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Lemma 2.5. Use µ̂M = Φ
(

x′β̂ββ√
1+z′D̂z

)

as the estimator of µM for the probit link

function. Then for chosen tolerance level r > 0, the limited fluctuation probability

π = P{|µ̂M − µM | ≤ rµM}

= P{(1− r)µM ≤ µ̂M ≤ (1 + r)µM}

= P

{

(1− r)Φ
( x′βββ√

1 + z′Dz

)

≤ Φ
( x′β̂ββ
√

1 + z′D̂z

)

≤ (1 + r)Φ
( x′βββ√

1 + z′Dz

)}

.

(2.24)

It is hard to get a closed-form expression for π with the probit link function. How-

ever, parametric bootstrapping can help us solve this problem. The implementation

of parametric bootstrapping is quite similar to the nonparametric bootstrapping, the

only difference is that instead of simulating bootstrapped samples that are i.i.d. from

the empirical distribution, we choose to simulate bootstrap samples that are i.i.d. from

the estimated parametric model. This technique is especially useful in a regression

framework, since there we do not have i.i.d. samples. Since the estimates of regres-

sion coefficients and other scale parameters are available, finally we can give any

bootstrapped quantity of interest.

We start with the parametric bootstrapping method for limited fluctuation prob-

ability in GLMs, the notation here is the same to that in Zhou and Garrido (2009a).

1. Based on the sample data Y = {Y1, . . . , Yn}, get the coefficient estimator β̂ββ and

dispersion parameter φ̂. Plug β̂ββ into the mean estimator µ̂i = g−1(X′
iβ̂ββ).

2. Simulate samples Yk = {Y k
1 , . . . , Y

k
n } from the exponential dispersion distribu-

tions with the parameters β̂ββ and φ̂.

3. Recalculate the estimator β̂ββ
k
from the new sampling Yk, plug it into µ̂ki =

g−1(X′
iβ̂ββ
k
) and check the inequality |µ̂ki − µ̂i| ≤ rµ̂i. If it is hold, then ζk = 1,

otherwise ζk = 0.

4. Repeat step 2 to 3 for k = 1, 2, . . . ,m.

5. Estimate πi by π̂i =
1

m

m
∑

k=1

ζk.
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This algorithm can be greatly simplified if we apply the asymptotic distribution

of βk which is the normal distribution N(βββ, I−1(βββ)). Finally we will get the same

result as Theorem 3.2 in Zhou and Garrido (2009a).

Next we apply bootstrapping to formula (2.24):

1. Based on the given sample data Y = {yij | i = 1, 2, . . . , k, j = 1, 2, . . . , ni}, ob-
tain the maximum likelihood estimator ψ̂ψψ and the observed variance-covariance

function I−1(ψ̂ψψ).

2. Generate ψ̂ψψ
k
from the normal distribution N(ψ̂ψψ, I−1(ψ̂ψψ)).

3. Check the inequality (1−r)Φ
(

x′β̂ββ
k

√
1+z′D̂kz

)

≤ Φ
(

x′β̂ββ√
1+z′D̂z

)

≤ (1+r)Φ
(

x′β̂ββ
k

√
1+z′D̂kz

)

,

if the two-sided inequality holds, then ζk = 1, otherwise ζk = 0.

4. Repeat step 1 to 2 m times.

5. Estimate π by π̂ =
1

m

m
∑

k=1

ζk.

2.4.1.3 The general link function

The logit link function is widely used in the modeling of binary data. If we want

to give a limited fluctuation probability in this case, then the difficult task is the

evaluation of the following integral to determine the inequality |µ̂M − µM | ≤ rµM is

true or false. Note that this expression is the mean for the logit normal distribution,

and there is no analytical solution for it:

∫

Rq

exp(x′βββ + z′u)

1 + exp(x′βββ + z′u)
(2π)−

q

2 |D|− 1
2 exp(−1

2
u′D−1u)du (2.25)

The good news is that we can simplify this multivariate integral to a univariate

integral, since z′u enters into the logit function as a unit, we simplify it as:

L(βββ,D) =

∫

Rq

g−1(x′βββ + z′u)(2π)−
q

2 |D|− 1
2 exp(−1

2
u′D−1u)du

=

∞
∫

−∞

g−1(x′βββ + y) (2π)−
1
2 |z′Dz|− 1

2 exp
(

− y2

2z′Dz

)

dy , (2.26)
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thus significantly reducing the computation burden.

Finally, we summarize the parametric bootstrapping method to develop a full

credibility criterion for general link function:

1. Based on the given sample data Y = {yij | i = 1, 2, . . . , k, j = 1, 2, . . . , ni}, ob-
tain the maximum likelihood estimator ψ̂ψψ and the observed variance-covariance

function I−1(ψ̂ψψ).

2. Generate ψ̂ψψ
k
from the normal distribution N(ψ̂ψψ, I−1(ψ̂ψψ)).

3. Evaluate L(β̂ββ
k
, D̂k) and check the inequality |L(β̂ββk, D̂k)−L(β̂ββ, D̂)| ≤ rL(β̂ββ, D̂).

If it holds, then ζk = 1, otherwise ζk = 0.

4. Repeat Steps 1 to 2 m times.

5. Estimate π by π̂ =
1

m

m
∑

k=1

ζk.

For log link GLMMs, Theorem 2.1 will save the work of generating ψ̂ψψ
k
as well as the

evaluation of the integral (2.16) for each generated random ψ̂ψψ
k
. In terms of probit

link GLMMs, it is hard to avoid simulations to generate ψ̂ψψ
k
, but Lemma 2.4 saves the

trouble of evaluating the integral in (2.16).

Proposition 2.1. The limited fluctuation probability π in (2.21) is a generalization

of the one in Theorem 3.1 of Zhou and Garrido (2009a). If the model specification is

that there are no random effects, i.e. D = 0, then π in (2.21) is exactly the same to

that in (3.11) of Zhou and Garrido (2009a). Our full credibility criterion is applicable

for GLM model, random coefficient model (Bayesian GLM), random intercept model

and random effect model (generic GLMM).

2.4.2 Full credibility for cluster specific means

We know the random variables in GLMMs consist of two parts Y = {yij | i =

1, 2, . . . , k, j = 1, 2, . . . , ni} and U = {ui | i = 1, 2, . . . , k}. Here Y are observed while

U are latent variables.
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The cluster i specific mean for subject (xij, zij) is defined as:

µij = g−1(x′
ijβββ + z′ijui). (2.27)

We introduce two notation ûi and ˆ̂ui, where:

ûi = argmax
ui

L(ui | yi,ψψψ) = argmax
ui

ni
∏

j=1

f(yij | ui,βββ, σ2
0). (2.28)

and

ˆ̂ui = argmax
ui

L(ui | yi, ψ̂ψψ) = argmax
ui

ni
∏

j=1

f(yij | ui, β̂ββ, σ̂2
0), (2.29)

where β̂ββ and σ̂2 are estimated through (2.6).

Fitting ui with given ψψψ could be done using the GENMOD procedure in SAS with

yi as the observation, ui as the regression coefficient, zij as the covariate and x′
ijβββ

as the offset-that is, a regression variable with a constant coefficient of 1 for each

observation.

After all we can give an estimator for the cluster specific mean by the following:

η̂ij = x′
ijβ̂ββ + z′ij

ˆ̂ui. (2.30)

We do not use the empirical Bayesian estimator to derive the full credibility for cluster

specific mean estimators since we can not have a compact formula with full credibility

for EBE. Also for a fixed ui, asymptotically distributions of EBE and EBM converge

to the distribution for ˆ̂ui with large ni.

Note that our estimator η̂ij in (2.30) is a function on Y only. However, the target

value ηij which we want to see how credible the estimator η̂ij is has latent variables

U included.

We use P to denote the probability space of (Y,U). Since η̂ij is a function of Y,

it is also a random variable which we could denote as η̂ij(Y). Generally speaking,

ηij is still a random variable, since it includes U, and more precisely ui, thus we can

denote it by ηij(ui).

In Figure 2.1 we use the set on left side to denote the probability space P. (Y,U)

is an element in this space. It is mapped to two points on the real line R, η̂ij(Y)
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and ηij(ui) respectively. η̂ij(Y) is known while ηij(ui) is unknown, so we use dashed

arrow pointing to ηij(ui).

P

R

(Y,U) η̂ij(Y)

ηij(ui)

Figure 2.1: GLMM Random Variable and Estimate

A problem of credibility arises for our estimator η̂ij. In other words, in which

circumstance we could adopt η̂ij as an estimator of ηij with an acceptable error.

We suggest the conditional limited fluctuation probability P{|µ̂ij−µij| ≤ rµij | ui}
as a credibility criterion. In Figure 2.2, a subset in the probability space P is defined

as S = {(Y,U) | ui = u0
i }, where u0

i is the value of the random effect for cluster i in

the given sample. It is easy to see that each element of this subset should generally

map to different η̂ij, but they all map to the same ηij, that is ηij(u
0
i ).
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P

R

(Y0,U0)
η̂ij(Y

0)
ηij(u

0
i )

Figure 2.2: GLMM Random Variable Subset and Estimates

From the figure above we see that P{|µ̂ij − µij| ≤ rµij | ui} is a measure of

dispersion for the image set η̂ij(S) in the real line. In other words, we have no idea

about the exact distance between η̂ij and ηij in the given data set, but we do know

that our sample is an element for the subset S and luckily it is feasible to give the

dispersion rate of η̂ij(S) in R.

Lemma 2.6. Let g be a monotonic increasing link function. Then µij = E[yij | ui] =
g−1(ηij) = g−1(xtijβββ + ztijui). The conditional probability

πij(ui) = P{|µ̂ij − µij| ≤ rµij | ui} = P{(1− r)µij ≤ µ̂ij ≤ (1 + r)µij | ui}

= P{g[(1− r)µij]− g(µij) ≤ g(µ̂ij)− g(µij) ≤ g[(1 + r)µij]− g(µij) | ui}

= P{g[(1− r)µij]− ηij ≤ η̂ij − ηij ≤ g[(1 + r)µij]− ηij | ui}. (2.31)

In practice, g[(1 − r)µij] − ηij and g[(1 + r)µij] − ηij are replaced by their estimated

values. For a log link function, we can simplify these to log(1− r) and log(1 + r) as

found in Zhou and Garrido (2009a).
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Theorem 2.2. Asymptotically, η̂ij − ηij could be conditionally approximated, given

ui, by:

η̂ij − ηij ≈ N(0,A′
ijΩΩΩAij + z′ij (Z

′
iW0Zi)

−1zij). (2.32)

The technical derivations can be found in Appendix A. Similarly to Theorem 2.1, let

sij = (A′
ijΩΩΩAij + z′ij (Z

′
iW0Zi)

−1zij)
1
2 ,

and for a log link function, insert this into (2.31) to get

πij(ui) ≈ Φ
( ln(1 + r)

sij

)

− Φ
( ln(1− r)

sij

)

. (2.33)

Proposition 2.2. When the fixed effect covariates Xi is identical to the random

effect coefficient design matrix Zi, then in (2.32) we have Aij = 0, and A′
ijΩΩΩAij = 0,

therefore sij = (z′ij (Z
′
iW0Zi)

−1zij)
1
2 = (x′

ij (X
′
iW0Xi)

−1xij)
1
2 . It is easy to see that

our limited fluctuation probability in (2.33) is exactly the same to the one if we take

the responses in the ith cluster out, and apply the GLM credibility criteria in Zhou and

Garrido (2009a) to those data. Note that when Xi = Zi, this is a random coefficient

model. The implication of this proposition is that for a random coefficient model, all

the information useful to estimate the cluster specific mean bears in the cluster itself.

2.4.3 Unconditional mean square error of prediction

The conditional limited fluctuation probability πij(ui) is a criterion to determine

whether we should use η̂ij for ηij in this given sample. Not like full credibility with

GLM, since it is conditional on the random effect ui, it is inappropriate to use this cri-

terion again with the same covariates but for a different sample. Unconditional Mean

Square Error of Prediction (UMSEP) seems to be good solution for this problem.

Definition 2.1. UMSEP is defined as the expectation of the square error between our

predictor (estimator) η̂ij and ηij (the expectation of yij):

UMSEP ≡ E
[(

η̂ij − ηij
)2]
. (2.34)
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Lemma 2.7. Using the tower property of conditional expectation, we can write UMSEP

as:

UMSEP ≡ E
[(

η̂ij − ηij
)2]

= E

[

E
[(

η̂ij − ηij
)2 ∣

∣ ui
]

]

. (2.35)

If we replace E
[(

η̂ij−ηij
)2 ∣

∣ ui
]

with the asymptotic conditional varianceA′
ijΩΩΩAij + z′ij

(Z′
iW

0Zi)
−1zij in Theorem 2.32, then we have:

∫

Rq

(

A′
ijΩΩΩAij + z′ij (Z

′
iW

0Zi)
−1zij

)

(2π)−
q

2 |D|− 1
2 exp(−1

2
u′
iD

−1ui) dui. (2.36)

In Section 2.5.3 we apply a Gauss-Hermite Quadrature to this integral and compare

the approximation with Monte Carlo simulations.

2.5 Numerical Illustration

In this section we use a simulated Poisson-normal GLMM to detect the key factors

that influence the full credibility for the marginal mean and the cluster specific means.

In this example, the R side covariates (fixed effect covariates) are set to be x′
ij =

(1 bij), where the covariate bij is simulated from the normal distribution N(1, 0.252).

Fixed effect coefficient βββ′ = (β0 β1) are chosen to be (1 1). The G side effect

includes only the random intercept for each cluster, which is assumed to be distributed

as N(0, σ2
1).

After all the covariates and parameters are fixed, we first simulate a random

intercept effect:

ui ∼ N(0, σ2
1), for i = 1, 2, . . . , k. (2.37)

Then we continue to simulate the response yij as:

yij ∼ Pois(exp(x′
ijβββij + ui)), for i = 1, 2, . . . , k and j = 1, 2, . . . , ni. (2.38)

2.5.1 Marginal mean

The GLIMMIX procedure in SAS/STAT (2006) is a useful package. The Hessian

matrix is included in the output when we specify the “H” option. The covariance
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matrix

I−1(ψψψ) =











cov(β̂0, β̂0) cov(β̂0, β̂1) cov(β̂0, σ̂
2
1)

cov(β̂1, β̂0) cov(β̂1, β̂1) cov(β̂1, σ̂
2
1)

cov(σ̂2
1, β̂0) cov(σ̂2

1, β̂1) cov(σ̂2
1, σ̂

2
1)











(2.39)

is calculated by the observed inverse Fisher information matrix, which equals 2H−1.

First we fix the number of clusters k = 10, σ1 = 1 and allow the number of sub-

jects within clusters to vary. Using (2.20), we give 2H−1 and the limited fluctuation

probability for the subject with fixed coefficient (1 1):

ni = 20,











0.0590021 −0.01049 −0.000753

−0.01049 0.0098112 −0.000016

−0.000753 −0.000016 0.0461208











, π = 0.3050573.

ni = 200,











0.0524326 −0.000452 −0.000057

−0.000452 0.0004264 −1.71E − 6

−0.000057 −1.71E − 6 0.0540886











, π = 0.2930831.

ni = 2000,











0.0551134 −0.000099 −0.000017

−0.000099 0.0000936 1.8257E − 7

−0.000017 1.8257E − 7 0.0605255











, π = 0.282379.

We find that prediction error for x0 and σ1 can not be reduced when we increase the

number of subjects within clusters and full credibility is not assigned to the marginal

mean.

Next we keep the ni at 20, set k = 1000 and give the new 2H−1 :










0.0010455 −0.000073 −0.000019

−0.000073 0.0000685 −1.957E − 7

−0.000019 −1.957E − 7 0.0019003











, π = 0.9915864.

Prediction error is negligible and limited fluctuation probability is already at 99%.

Intuitively, as more clusters are included, more experience is added about the distri-

bution of the random effect, estimation of the random effect variance parameter σ1
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should be more accurate. Finally it will contribute to the precision of the marginal

mean estimator through formula (2.17).

Then we keep k = 10, n1 = 20, and compare the results with different σ1:

σ1 = 1,











0.0590021 −0.01049 −0.000753

−0.01049 0.0098112 −0.000016

−0.000753 −0.000016 0.0461208











, π = 0.3050573.

σ1 = 0.1,











0.0140964 −0.011708 0.0000476

−0.011708 0.0110104 −0.000064

0.0000476 −0.000064 0.0000523











, π = 0.9846788.

We find that the less variation the random effect has, the more credible our marginal

mean estimator is.

2.5.2 The cluster specific mean

Now we turn to the conditional limited fluctuation probability for the cluster specific

mean of the subject x′
11 = (1 1). We fix the random effect u1 = 0 and ni = 10 (i =

1, . . . , k), vary the number of clusters,

k = 2, ni = 10 k = 20, ni = 10 k = 200, ni = 10 k = 2000, ni = 10 k = 2, ni = 200

π̂11(u1) 0.6377517 0.6596258 0.6714299 0.6882975 0.9995769

Table 2.1: Cluster Specific Mean and ni

We find that increasing the number of clusters could increase π̂11(u1) to a certain

extent but this stops at some upper-limit. The reason is that increasing the number

of clusters will eliminate the first variance component in (2.32) but has no influence

on the second component.

However, increasing the number of subjects within cluster lets π̂11(u1) increase

to 1. Since we will have enough experience in each cluster, intuitively we should
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trust the cluster specific mean estimator η̂11. Statistically we find that both variance

components in (2.32) diminish when we increase n1 to infinity.

We could also explain this phenomena in plain words. Since the linear predictor

η̂11 includes βββ and u1, adding more clusters will offer more experience only for βββ. But

adding more subjects in cluster 1 will provide more experience to infer about both βββ

and u1.

Next we show the extent to which the conditional limited fluctuation probability

π11(u1) is determined by u1. We set k = 50, ni = 20 and besides π̂11(u1) we also give

π∗
11(u1) from the Monte Carlo simulations.

u1 -3.0000 -2.0000 -1.0000 0.0000 1.0000 2.0000 3.0000

η11 -1.0000 0.0000 1.0000 2.0000 3.0000 4.0000 5.0000

η̂11 -1.1700 -0.1689 0.9001 1.9342 3.1041 3.9806 5.0146

V̂(η̂11 | u1) 0.1848 0.0583 0.0223 0.0059 0.0018 0.0008 0.0003

π̂11(u1) 0.1845 0.3222 0.4981 0.8076 0.9812 0.9995 0.9999

π∗
11(u1) 0.2720 0.3281 0.5210 0.8062 0.9661 0.9997 0.9999

Table 2.2: Conditional Variance and Random Intercept

Figure 2.3 plots η11 and η̂11 against u1. From the picture we see that when

the random intercept u1 takes negative values near −3, the difference between our

estimator η̂11 and the real value of η11 is relatively large. And as the random intercept

increases, η̂11 and η11 converge.

Therefore, we can say that the random effect on which our conditional limited

fluctuation probability in (2.31) is conditioned has a large impact on π̂11(u1) .
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Figure 2.3: η11 versus η̂11

2.5.3 Numerical approximation for UMSEP

Let UMSEP∗ denote the UMSEP calculated by integrating the conditional variance

over u1, and UMSEP? represent the estimates of UMSEP using Monte Carlo simula-

tions with 10, 000 iterations. Table 2.1 shows the results for different k and ni.
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k = 20, ni = 20 k = 50, ni = 20 k = 50, ni = 40

UMSEP∗ 0.011531 0.010366 0.005731

UMSEP? 0.012247 0.010958 0.005979

Table 2.3: Integration over Conditional Variance vs Monte

Carlo Simulation

We find that our algorithm for deriving UMSEP gives a good performance and

saves significant computation time compared to Monte Carlo simulations.

2.6 Summary

This chapter discusses the motivations to use GLMMs beyond GLMs. The inclusion

of random effects in the linear predictor not only offers the correlation structure within

clusters but also provides one way to combine credibility rate making with GLMs.

The important definitions and concepts on model formulation, numerical estima-

tion and prediction are summarized.

Then we study the credibility of the marginal mean and cluster specific mean

estimators obtained from generalized linear mixed risk models. Some closed forms of

full credibility criteria are given as well as a parametric bootstrapping algorithm for

approximating the limited fluctuation probability.

In addition to the sample size, the number and distribution of the covariates and

the link function that are noticed previously in the study of full credibility for GLMs,

the random effect is a new decisive factor in the full credibility for GLMMs.

Most of our work is based on previous research, we generalize their results to the

random effects case.
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Chapter 3

Individual Loss Reserving Using

GLMs and GLMMs

As we said in Chapter 1, most of the loss reserving methods are based on aggregate

loss development triangle and were created in an age when the computing power

was expensive. Each method has its advantages and disadvantages but cannot all

be applied simultaneously. These methods are not fully adequate to capture the

complexities of the stochastic reserving for general insurance. Verdonck et al. (2009)

illustrate that the outstanding claims reserves by the CLM are strongly affected by

outliers. Another potential danger is that they mask the heterogeneous loss develop-

ment patterns for different risk classes. Fuchs (2014) shows that generally the CLM

estimates applied to full portfolios are different from the sum of CLM estimates ap-

plied to sub portfolios. It seems that only a method based on individual risk class

level data could incorporate the changes in the company’s mix of business into the

estimates of outstanding losses.

Zhou and Garrido (2009b) establish a complete structural reserving method on

individual risk class level. They incorporate loss emergence and development patterns,

connecting frequency and severity, and embed them all in the framework of GLMs. In

this chapter, we refine their original work. First, several parametric functions are used

to fit the claim reporting delay in an interval censored and right truncated regression

model, similar to the method in Rosenberg (1990). Then we proceed to the loss
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emergence mechanism, using a Poisson regression model. Since real life count data

are frequently characterized by over-dispersion and excess zeros, we also apply the

zero-inflated negative binomial regression model. After that we estimate the future

reported claim numbers for each risk class. Claim severity and claim settlement delays

are modeled next. Finally, we give the estimates of the IBNR losses and RBNS losses

separately for each risk class, similarly to the method used in Miranda et al. (2012),

then add them up to get the estimates for the total loss reserve in the overall business.

3.1 Reporting Delay

3.1.1 Truncated data and interval censored data

Let Y denote a random response variable, and let y denote its observed value, T (l) and

T (r) denote the random variables for the left-truncation and right-truncation threshold

respectively, and let t(l) and t(r) denote their realized values for one observation.

If there is no left-truncation, then t(l) = τl, where τl is the smallest value in the

support of some given response distribution, so F (t(l)) = 0; similarly if there is no

right-truncation, then t(r) = τh, where τh is the largest value in the support of the

distribution, so F (t(r)) = 1.

Let C(l) and C(r) denote the random variables for the left-censoring and right-

censoring limit, respectively, and let c(l) and c(r) denote their values for an observation,

respectively. If there is no left-censoring, then c(l) = τh, so F (c
(l)) = 1. If there is no

right-censoring, then c(r) = τl, so F (c
(r)) = 0.

In SAS/STAT (2009), the set of input observations can be categorized into the

following four subsets:

1. E is the set of uncensored and untruncated observations. The likelihood of

an observation in E for a response that has a parametric distribution FΘ with

corresponding density fΘ is

l = Pr(Y = y) = fΘ(y).
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2. Et is the set of uncensored observations that are truncated. The likelihood of

an observation in Et is

lEt
= Pr(Y = y|t(l) < Y ≤ t(r)) =

fΘ(y)

FΘ(t(r))− FΘ(t(l))
.

3. C is the set of censored observations that are not truncated. The likelihood of

an observation in C is

lc = Pr(c(r) < Y ≤ c(l)) = FΘ(c
(l))− FΘ(c

(r)).

4. Ct is the set of censored observations that are truncated. The likelihood of an

observation in Ct is

lCt
= Pr(c(r) < Y ≤ c(l)|t(l) < Y ≤ t(r)) =

FΘ(c
(l))− FΘ(c

(r))

FΘ(t(r))− FΘ(t(l))
.

3.1.2 Distribution with scale parameter

We fit the reporting delay (RD) by a distribution family F(Θ) which has a scale

parameter or log-transformed scale parameter Θ. If the regression effects are not

modelled, then the distribution for response random variable RD is assumed to be:

RD ∼ F(Θ0),

for a particular “true” scale parameter Θ0. We add regression effects to the distri-

bution, then the shape of distribution of RD is spread out or compressed according

to:

RD ∼ exp
(

∑

βββ′
rx

(k)
r

)

F(Θ0).

If Θ is a scale parameter for the family F, then

exp
(

∑

βββ′
rx

(k)
r

)

F(Θ0) = F

(

exp
(

∑

βββ′
rx

(k)
r

)

Θ0

)

.

Table 3.1 gives the predefined distribution that could be used by the SEVERITY

procedure in SAS/ETS (2010b).
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Name Distribution Parameters Pdf (f) and Cdf (F)

BURR Burr θ > 0, α > 0 f(x) = αγzγ

x(1+zγ)(α+1)

γ > 0 F (x) = 1−
(

1
1+zγ

)α

EXP Exponential θ > 0 f(x) = 1
θ
e−z

F (x) = 1− e−z

GAMMA Gamma θ > 0, α > 0 f(x) = zαe−z

xΓ(α)

F (x) = γ(α,z)
Γ(α)

GPD Generalized θ > 0, ξ > 0 f(x) = 1
θ
(1 + ξz)−1−1/ξ

Pareto F (x) = 1− (1 + ξz)−1/ξ

IGAUSS Inverse Gaussian θ > 0, α > 0 f(x) = 1
θ

√

α
2πz3

e
−α(z−1)2

2z

(Wald) F (x) = Φ
(

(z − 1)
√

α
z

)

+ Φ
(

− (z + 1)
√

α
z

)

e2α

LOGN Lognormal µ (no bounds), f(x) = 1
xσ

√
2π
e
− 1

2

(

log(x)−µ

σ

)2

σ > 0 F (x) = Φ
(

log(x)−µ
σ

)

PARETO Pareto θ > 0, α > 0 f(x) = αθα

(x+θ)α+1

F (x) = 1−
(

θ
x+θ

)α

WEIBULL Weibull θ > 0, τ > 0 f(x) = 1
x
τzτe−z

τ

F (x) = 1− e−z
τ

Notes:

1. z = x/θ, wherever z is used.

2. θ denotes the scale parameter for all the distributions. For LOGN, log(θ) = µ.

3. Parameters are listed in the order in which they are defined in the distribution model.

4. γ(a, b) =
∫ b

0
ta−1e−tdt is the lower incomplete gamma function.

5. Φ(y) = 1
2

(

1 + erf
(

y√
2

)

)

is the standard normal cdf.

Table 3.1: Parametric Function for Reporting Delay
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3.1.3 Likelihood function for reporting delay parameters

Denote the likelihood function for reporting delay parameters βββr as Lr(βββr
∣

∣ N), we

can write it as the product of separate likelihoods for each risk class:

Lr(βββr
∣

∣ N) =
K
∏

k=1

Lr(βββr
∣

∣ N(k)). (3.1)

The contribution to Lr(βββr
∣

∣ N(k)) due to one reported claim in N
(k)
i,j is:

F (j+1 ; θk)− F (j ; θk)

F (m+1−i ; θk)
, (3.2)

where θk = exp
(
∑

βββ′
rx

(k)
r

)

· θ0, and θ0 is usually inside an exponential function as

the intercept.

Therefore combining with Table 3.2, we know that:

Lr(βββr
∣

∣ N(k)) =
m
∏

i=1

m−i
∏

j=0

(F (j+1 ; θk)− F (j ; θk)

F (m+ 1−i ; θk)
)N

(k)
i,j

. (3.3)

Accident Reporting Delay

Year 0 1 · · · j · · · m− i · · · m− 2 m− 1

1 N
(k)
1,0 N

(k)
1,1 · · · N

(k)
1,j · · · N

(k)
1,m−i · · · N

(k)
1,m−2 N

(k)
1,m−1

2 N
(k)
2,0 N

(k)
2,1 · · · N

(k)
2,j · · · N

(k)
2,m−i · · · N

(k)
2,m−2

...
...

...
...

...

i N
(k)
i,0 N

(k)
i,1 · · · N

(k)
i,j · · · N

(k)
i+1,m−i

...
...

...
...

m− j N
(k)
m−j,0 N

(k)
m−j,1 · · · N

(k)
m−j,j

...
...

...

m− 1 N
(k)
m−1,0 N

(k)
m−1,1

m N
(k)
m,0

Table 3.2: Claim Count Run-off Triangle

Other than the ready-made SEVERITY procedure in SAS, also the optimization

subroutines of the IML procedure in SAS/IML (2010) can be used to maximize the
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likelihood function Lr(βββr
∣

∣ N) for parameters βββr. These two methods give the same

result, but the interactive matrix language (IML) give us more freedom to specify

even some piecewise functions for reporting delay.

Based on the parameter estimates β̂ββr, we know that θ̂(k) = exp
(
∑

β̂ββ
′
rx

(k)
r

)

·θ0 and
the estimates of p

(k)
j can be written as:

p̂
(k)
j = F (j+1 ; θ̂(k))− F (j ; θ̂(k)), (3.4)

and

p̂
(k)
(i)j =

F (j+1 ; θ̂(k))− F (j ; θ̂(k))

F (m+ 1−i ; θ̂(k))
, (3.5)

where p
(k)
j and p

(k)
(i)j are the individual level pj and p(i)j , see Rosenberg (1990).

3.2 Claim Numbers

3.2.1 Poisson regression model

In Zhou and Garrido (2009b), a Poisson regression model is used to fit the claim counts

for different accident years. The overall incurred claim number in accident year i and

risk class k is assumed to be Poisson distributed with mean w
(k)
i exp(βββ′

fx
(k)
f ). A log

link function is used here to prevent negative numbers.

Lemma 3.1. In addition to the Poisson assumption for claim count, if we assume that

the reporting delay for each claim is independent, then we know N
(k)
i,j are independently

distributed as:

N
(k)
i,j ∼ Pois(w

(k)
i exp(βββ′

fx
(k)
f )p

(k)
j ), for i = 1, 2, . . . ,m and j = 0, 1, . . . ,m− 1.

(3.6)

In Zhou and Garrido (2009b), the parametric function F chosen for reporting

delay is either EXP or WEIBULL (see Table 3.1), p̂
(k)
j is then calculated according

to (3.4). Based on Lemma 3.1, the likelihood function for βββf is:

L(βββf ; N, p̂) =
K
∏

k=1

L(βββf ; N(k), p̂(k)) =
K
∏

k=1

m
∏

i=1

m−i
∏

j=0

L(βββf ; N
(k)
i,j , p̂

(k)
j ), (3.7)

46



here p̂ = {p̂(k)j | k = 1, 2, . . . , K, j = 0, 1, . . . ,m−1} and p̂(k) = {p̂(k)j | j = 0, 1, . . . ,m−
1}. L(βββf ; N

(k)
i,j , p̂

(k)
j ) is calculated based on (3.6).

There are also two methods to get the estimates of βββf , either by nonlinear opti-

mization or using the GENMOD procedure in SAS/STAT (2013). Note here if we

resort to the GENMOD procedure, ln(w
(k)
i p

(k)
j ) is set as the offset.

Estimates of INBR claim numbers are given by:

N̂
(k)
i,j = w

(k)
i exp(β̂ββ

′
fx

(k)
f )p̂

(k)
j , i+ j > m. (3.8)

This method seems to be the simplest method when applying GLMs to individual

level loss reserves and could be implemented easily with any statistical software.

3.2.2 Negative binomial and zero-inflated model

In some occasions, claim count data may not follow the usual Poisson distribution, in

particular if they are zero-inflated and over dispersed. The number of observed zeros

may exceed the number of expected zeros under the Poisson or the negative binomial

distribution assumptions.

We apply a zero-inflated negative binomial model to the claim frequency data

since it includes the Poisson model, negative binomial model, zero-inflated Poisson

model.

Let y denote the number of claims incurred in one accident year for one policy-

holder. The assumption of zero inflated negative binomial regression model is:

ZINB(y ; π0, λ, φ) =











π0 + (1− π0)NB(y ; λ, φ), if y = 0,

(1− π0)NB(y ; λ, φ) , if y ∈ Z+.

(3.9)

π0 = π0(γγγ
′z) is called zero-inflated link function. It relates γγγ′z, the multiplication

of zero inflated covariates vector z and regression coefficient γγγ to the probability of

excess zeros. Usually it is set as either a logistic function or the standard normal

cumulative distribution function (the probit function).

NB is negative binomial distribution as:

NB(y ; λ, φ) =
Γ(y + φ)

y!Γ(φ)

( φ

φ+ λ

)φ( λ

φ+ λ

)y

, y ∈ N, (3.10)
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where usually the mean λ is linked to βββ′
fxf through:

λ = exp(βββ′
fxf ).

Lemma 3.2. The mean and variance of the zero inflated negative binomial model

are:

E[y] = λ(1− π0), (3.11)

V[y] = λ(1− π0)(1 + λ(π0 + φ)). (3.12)

Notice that zero inflated negative binomial model exhibits overdispersion if at least

one of two parameters π0 and φ are greater than 0.

For the fitting of zero inflated models, we use the “COUNTREG” procedure in

SAS, see SAS/ETS (2010a).

See Appendix C for the use of the zero inflated negative binomial model for claim

frequency and how to give the estimates for the future reported claim numbers.

3.2.3 Hurdle model

The hurdle model is another interesting alternative to Poisson and negative binomial

models for the analysis of claims reported by an insured. It includes the zero inflated

model as well as models with less zeros than expected.

There are two processes controlling the hurdle model. The basic idea is that firstly

a Bernoulli probability governs the binary outcome of whether the count variate is a

zero or positive realization. Then if the realization is positive, the hurdle is crossed,

and the conditional distribution of the positive values is governed by a truncated-at-

zero count data model. Thus the hurdle model is formulated as:

H(y) =















π0, if y = 0,

(1− π0)
f(y)

1− f(0)
, if y ∈ Z+.

(3.13)

Lemma 3.3. The hurdle negative binomial distribution is defined as:

HNB(y ; π0, λ, φ) =















π0, if y = 0,

(1− π0)
NB(y ; λ, φ)

1−NB(0 ; λ, φ)
, if y ∈ Z+,

(3.14)
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where NB(y ; λ, φ) denotes the negative binomial distribution as in (3.10).

It could also be defined as a mixture of hurdle Poisson distributions:

HPois(y ; π0, λ, τ) =















π0, if y = 0,

(1− π0)
Pois(y ; λτ)

1−Pois(0 ; λτ)
, if y ∈ Z+,

(3.15)

where Pois(y ; λτ) denotes the Poisson distribution with rate equal to λτ and the

prior distribution for τ is:

g(τ ; φ, λ) =
1− exp(−λτ)
1−

(

φ
φ+λ

)φ

φφ

Γ(φ)
τφ−1 exp(−φτ), τ > 0. (3.16)

See Appendix D for the use of the hurdle negative binomial model for claim

frequency and how to give the estimates for the future reported claim numbers.

Boucher et al. (2007) present and compare different risk classification models for

the annual number of claims reported to the insurer. They choose the best distribution

describing the data based on several specification tests for nested or non-nested models

and goodness-of-fit test.

3.2.4 Accident year effect

In the Poisson model for claim numbers, the Poisson rate for the same risk class is

assumed to be constant over the accident years. However, it is possible that there are

some accident year effects which could inflate or deflate the expected claim numbers.

Note that in the double chain ladder model, a chain ladder method is applied to

the aggregated reported claim counts triangle N. Since the chain ladder method is

equivalent to a Poisson regression model with accident years and reporting delays as

categorical covariates, thus, there are m levels α1, α2, ...αm for accident year effects,

where αm is often set to 0 to prevent multicollinearity.

However, since N is a triangle, there are few data in the last few rows, therefore

there will be larger standard errors for the estimates of the accident year effect in

last few accident years than the estimates for the first few accident years. This is a

problem as the projection of future reserve is composed mostly of the entries in the

last few rows.

49



In other words, the introduce of the accident year effect may reduce the unbiased-

ness, but it will increase the variance of the reserve estimations. Instead of blindly

applying a chain ladder method to the reported claim triangle N, a statistical hy-

pothesis test on αi = 0 (i = 1, 2, . . . ,m− 1) should be done first. See Appendix F for

the simulation study on this issue.

Another way to grasp the year effect is to assume that for each accident year there

is a common prior for the random year effect ui.

Gigante et al. (2013) assume a hierarchical overdispersed Poisson model for the

incremental payments with gamma distributed risk parameters.

The overdispersed Poisson-gamma model estimated through the h-likelihood ap-

proach provides, for each origin year, a reserve estimate that is a mixture of two

reserves: one based on the run-off data, the other based on external data.

The advantage of the random effect model is that when the data is too scarce to be

credible in the last few rows, the random effect model will give a Bayesian credibility

estimate.

3.3 Future Reported Numbers

For future reported numbers, i.e. the numbers of the incurred but not reported claims,

we only need the reporting delay model and the claim frequency model. The first

step is to choose the best parametric distribution in Table 3.1, and get the estimators

p̂
(k)
j . Then we treat the estimates p̂

(k)
j as the real values, plug them into the claim

frequency modeling process. Finally we give the estimates of N̂
(k)
i,j (i + j > m) for

each risk class.

3.4 Claim Severity

For claim severity (total payments associated with one claim), Zhou and Garrido

(2009b) use a gamma GLM. Probability distributions of the response Y are parame-
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terized as follows, see SAS/STAT (2009):

f(y) =
1

Γ(v)y

(yv

µ

)v

exp
(

− yv

µ

)

, (3.17)

where E[Y ] = µ, V[Y ] =
µ2

v
and φ = v−1. Through a link function g, the expected

response µ = E[Y ] is related to the linear predictor η = βββ′x, that is g(µ) = η. Here v

is the “scale” parameter displayed in the standard output of the GENMOD procedure

in SAS.

In the fitted claim severity process, each payment is discounted first by an inflation

index before they are added up for each closed (settled) claim, then this sum Y is used

as the response. For each risk class, µ(k) is assumed to be related to the explanatory

variables x
(k)
s through:

µ(k) = exp(βββ′
sx

(k)
s ). (3.18)

For comparison, other distributions such as lognormal, or Burr could also be used to

model severity.

3.5 Incurred But Not Reported (IBNR)

So far, we have fitted the reporting delay, claim count and claim severity which is

sufficient for the projection of INBR losses. It is enough for us to get the IBNR losses

for risk class k:

ÎBNR
(k)

=
m
∑

i=1

m−1
∑

j=m+1−i
N̂

(k)
i,j µ̂(k). (3.19)

Summing up all the K equations in the whole portfolio, we get:

ÎBNR =
K
∑

k=1

ÎBNR
(k)

=
K
∑

k=1

m
∑

i=1

m−1
∑

j=m+1−i
N̂

(k)
i,j µ̂(k). (3.20)

3.6 Settlement Delay

The settlement delay (SD) is defined as the relative year to the notification of a claim

in which the claim was closed, starting from 0. We use the same method to model
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the settlement delay as for the reporting delay in Section 3.1. Finally we will get the

estimates of

q
(k)
j , k = 1, 2, . . . , K, j = 0, 1, . . . , d, (3.21)

where q
(k)
j denotes the probability for the claim in the risk class k to have the settle-

ment delay equal to j.

3.7 Reported But Not Settled (RBNS)

With the estimation of settlement delay probabilities, we can give the IBNR and

RBNS entries in the reserve matrix for the overall business.

The IBNR entries for the reserve matrix are given by:

Ẑibnr
i,j =

K
∑

k=1

i−m+j−1
∑

l=0

N̂
(k)
i,j−l µ̂

(k)q̂
(k)
l , for i+ j > m, (3.22)

N
(k)
i,0 N

(k)
i,m−i N̂

(k)
i,m+1−i N̂

(k)
i,m+2−i N̂

(k)
i,j−1 N̂

(k)
i,j

Ẑibnr
i,j

q̂
(k)
0

q̂
(k)

1

q̂ (k)i−
m
+
j−
2

q̂ (k)i−m
+j−1

N̂
(k)
i,m−1

Figure 3.1: IBNR Entries

and the RBNS entries for the reserve matrix are given by:

Ẑrbns
i,j =

K
∑

k=1

j
∑

l=i−m+j

N
(k)
i,j−l µ̂

(k)q̂
(k)
l , for i+ j > m, (3.23)

here q̂
(k)
l is defined as 0 if l > d.
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N
(k)
i,0 N

(k)
i,1 N

(k)
i,m−1−i N

(k)
i,m−i N̂

(k)
i,m+1−i N̂

(k)
i,m−1

Ẑrbns
i,j

q̂ (k)i−
m
+
j

q̂ (k)i−m
+j+1

q̂ (k)j−1
q̂ (k)
j

Figure 3.2: RBNS Entries

Finally, we can give the estimations of each entry for the lower-right half of the

reserve matrix:

Ẑi,j = Ẑibnr
i,j + Ẑrbns

i,j , for i+ j > m. (3.24)
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Chapter 4

Simulation Results

In this chapter, we use a Monte Carlo simulation method to compare different loss

reserve estimation methods, including the traditional chain ladder method (CLM),

the double chain ladder (DCL) by Miranda et al. (2013), the aggregate Tweedie GLMs

reserve method and our individual GLMs reserve method. Since the properties of the

estimators cannot be studied analytically, statistical simulation is a well-accepted

technique for comparing various methods of estimation. Our approach is similar to

those of Stanard (1985) and Narayan and Warthen (1997).

When we are estimating the reserves, only the top-left half of the loss triangle is

available to us as data, and is used to estimate the lower-right half of the triangle,

which represents the projection of ultimate losses.

We compute the deviations of the estimated reserves from the empirical reserves.

Finally, we use several criteria to compare the deviations of estimated versus empirical

under various reserving methods.

4.1 Simulation of Random Loss Triangles

Our loss triangles are simulated based on the ideas of Narayan and Warthen (1997).

Our method is described below:

1. Generate N
(k)
i , the frequency of claims for risk class k and accident year i as a

Poisson variate with mean w
(k)
i exp(βββ′

fx
(k)
f ), where w

(k)
i is the number of insured
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for risk class k and accident year i.

2. For each claim, generate Weibull distributed variates RD and SD for the re-

porting delay and settlement delay.

3. The claim amounts for a claim follow a gamma distribution with mean exp(βββ′
sx

(k)
s )

and scale parameter v.

4. Repeat the steps through for all the risk classes and accident years.

5. These claims are added up to create the aggregate reported claim counts matrix

and aggregate paid losses matrix.

See Appendix E for the detailed descriptions of parameters in this simulation method.

4.2 Comparison of Methods

We generate 1,000 realizations of hypothetical reserve data for this simulation method.

For each of the 1,000 sets of hypothetical data, the reserves were estimated by CLM,

DCL, aggregate Tweedie GLM, and our individual GLMs. The deviations of the

reserve estimates using different methods from the actual reserves are computed.

Then we give a table of the basic descriptive statistics for these deviations:

Individual GLMs CLM DCL Tweedie GLM

Min. -64,613.0 -97,128.0 -89,260.0 -97,097.0

1st Qu. -17,767.0 -24,095.5 -22,062.8 -24,171.5

Median -942.5 -459.5 765.5 -639.0

Mean -774.5 -419.8 1,378.6 -447.6

3rd Qu. 14,820.8 22,215.5 22,803.2 22,692.2

Max. 71,787.0 114,752.0 113,492.0 114,896.0

Variance 5.563E8 1.225E9 1.119E9 1.225E9

Table 4.1: Summary of Deviations
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We continue to produce a box plots of the calculated deviations:

Individual_GLMs CLM DCL Tweedie_GLM

−
1

e
+

0
5

−
5

e
+

0
4

0
e

+
0

0
5

e
+

0
4

1
e

+
0

5

Figure 4.1: Box Plot of Deviations

A box plot is a convenient way of graphically describing groups of numerical

data through their quartiles. The bottom and top of the box are the first and third

quartiles, and the band inside the box is the median. The ends of the whiskers

represent the lowest datum still within 1.5 Inter Quartile Range (IQR) of the lower

quartile, and the highest datum still within 1.5 IQR of the upper quartile.

The histograms of these 1000 deviations for each method are plotted below:
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Figure 4.2: Histograms of Deviations

Then we fit a density curve to each histogram using smooth kernel estimates, and

collect all the density curves in one picture:
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Figure 4.3: Kernel Density Plot of Deviation

From the statistics and plots above, we see that:

• The density function of our individual GLMs deviations are peaked, concen-

trated around 0 and have lighter tails. The word “lighter” is different from

light (heavy) tailed in probability theory. It only means to be lighter than the

traditional reserve methods.

• The deviations for the CLM and Tweedie aggregate reserve methods are very

close. The reason is that CLM is nothing but an aggregate Poisson GLM reserve

method, and the Poisson GLM is a member of Tweedie GLMs. For our simu-

lation parameter choices the differences between CLM and Tweedie aggregate
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reserve method are not significant enough to be noticed.

• The DCL method offers a better performance than CLM, but it is hard for it

to compete with our individual GLMs reserve method.

4.3 Changing Exposures

Next we let the weight w
(k)
i change with the accident year i, i.e. the weights of

different risk groups in the overall business change with time. A lognormal distributed

multiplicative factor is multiplied to the base weight w
(k)
0 to get the real weight for

each accident year:

w
(k)
i = w

(k)
0 lnN(−0.045, 0.3), i = 1, 2, . . . ,m, k = 1, 2, . . . , K.

We compare the fitted density curves of the reserves in the most recent accident year

with fixed exposures and changing exposures for each method:
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Figure 4.4: Comparison of Changing Exposures and Fixed Exposures

The blue lines represent the deviations when the exposures are fixed and the red

line represent the deviations when the exposures are changing with time. From the

above pictures, we see that our individual GLMs reserve method can deal with the

changing exposures, but the traditional methods do not work properly.

4.4 Excess Zeros for Claim Number

In this section, we make a minor change to the simulation method described in Section

4.1. Rather than using Poisson variates for claim counts, we use zero inflated Poisson
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variates for claim counts.

In the first scenario, we let the probability of extra zeros π0 = 0.2. We give the

histograms below:
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Figure 4.5: Densities of Poisson and Zero Inflated Poisson (π0 = 0.2)

The blue lines represent the deviations when a Poisson assumption is used for

claim counts and the red line represent the deviations when the Zero Inflated Poisson

assumption is used. We also calculate the variances of the new deviations and their

ratios to the original variances:
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Method Individual GLMs CLM DCL Tweedie GLM

VAR (Poisson) 5.563E8 1.225E9 1.119E9 1.225E9

VAR (ZIP) 4.327E8 9.420E8 8.885E8 9.423E8

Ratio 0.778 0.770 0.794 0.770

Table 4.2: Variances with Poisson and Zero Inflated Poisson (π0 = 0.2)

Then we do the same for π = 0.6:
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Figure 4.6: Densities of Poisson and Zero Inflated Poisson (π0 = 0.6)
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Method Individual GLMs CLM DCL Tweedie GLM

VAR (Poisson) 5.563E8 1.225E9 1.119E9 1.225E9

VAR (ZIP) 2.212E8 4.683E8 4.410E8 4.669E8

Ratio 0.398 0.382 0.394 0.381

Table 4.3: Variances with Poisson and Zero Inflated Poisson (π0 = 0.6)

From these two examples, we see that:

• With excess zeros, the variances of deviations for all the four methods decrease

simultaneously.

• The variances of deviations for all the four methods shrink at almost the same

rate.

• Since the original variance of the deviations using our individual GLMs reserve

method is smaller than the other three, after we add the excess zeros assumption

to the claim counts, it still offers a better performance then the other methods.

• The rates at which the variances shrink are approximately equal to 1− π0.

4.5 Conclusions of Simulation

Our individual GLMs reserve method provides an useful tool to structurally estimate

the loss reserve and also a stable and efficient way to improve the estimates of ultimate

loss reserve in actual applications.

Our model leverages the frequency and severity estimation, both in ratemaking

and loss reserving, making it more consistent and easier to interpret.

A reserve estimation method that incorporates some underlying assumptions about

the claim process will provide a better estimate of the loss reserve if those assumptions

are satisfied.

It is not suggested that actuaries blindly apply the chain ladder method to ag-

gregate data. Efficiency is lost by the throwing away of a great variety of detailed
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information on the actual claim process. The estimates of development factors in

CLM are vulnerable to outliers. The bias in one development factor will be passed

to the projections of losses in the subsequent development periods.

When the exposures of different risk groups are changing with accident years, the

weaknesses of traditional chain ladder methods are exacerbated.

Finally we really hope that the individual GLMs reserve method in the actuarial

field will become popular and used in the future.
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Appendix A

Derivation of Conditional Variance

For the approximation of πij(ui) in (2.31), we first decompose the difference η̂ij − ηij

into three parts:

η̂ij − ηij =
(

x′
ijβ̂ββ − x′

ijβββ
)

+
(

z′ij
ˆ̂ui − z′ijûi

)

+
(

z′ijûi − z′ijui

)

. (A.1)

The first term arises from the difference between the ML estimator β̂ββ and the true

fixed effect coefficient βββ. The third error term represents the difference between the

random effect estimator ûi and true random effect ui. Finally, the second error term

is a reflection of the difference between plugging the estimator β̂ββ in (2.28) or using the

true βββ (we find σ is not used here). However, the second term is not usually noticed.

Let `(ui,βββ, σ0|yi) =
∑ni

j=1 log
{

f(yij|ui,βββ, σ2
0)
}

. It is a log-likelihood function

with arguments ui, βββ and σ0. We know that:

∂

∂ui
`(ui,βββ, σ0|yi) =

ni
∑

j=1

wij
σ2
0

yij − µij
V (µij)

1

g′(µij)
zij, (A.2)

g(µij) = ηij = x′
ijβββ + z′ijui.

Notice here that ûi is the solution to
∂

∂ui
`(ui,βββ, σ0|yi) = 0 based on true βββ and σ0:

∂

∂ui
`
(

ui,βββ, σ0
∣

∣yi)
∣

∣

∣

ui=ûi

= 0,

and ˆ̂ui is the solution based on the MLE ψ̂ψψ:

∂

∂ui
`
(

ui, β̂ββ, σ̂0
∣

∣yi
)

∣

∣

∣

ui=ˆ̂ui

= 0,

here σ0 and σ̂0 are scale parameters so they are not used.

71



Lemma A.1. Applying the inverse function theorem, we have that:

ˆ̂ui − ûi

≈
[ ∂2

∂ui∂u′
i

`
(

ui,βββ, σ0|yi
)

∣

∣

∣
ui = ûi

]−1 [

− ∂2

∂ui∂βββ
′
i

`
(

ui,βββ, σ0|yi
)

∣

∣

∣
ui = ûi

]

(β̂̂β̂β − βββ),

(A.3)

where the approximation error is o(β̂̂β̂β − βββ).

From further calculations we get that:

∂2

∂ui∂u′
i

`(ûi,βββ, σ0|yi) = −Z′
iW1Zi, Zi = (zi1, zi2, . . . , zini

)′,

∂2

∂ui∂βββ
′
i

(ûi,βββ, σ0|yi) = −Z′
iW1Xi, Xi = (xi1, xi2, . . . , xini

)′,

and W1 = diag(w1
1, w

1
2, . . . , w

1
ni
) with

w1
j =

wij
σ2
0 V (µ1

ij)(g
′(µ1

ij))
2
+ wij(yij − µ1

ij)
V (µ1

ij)g
′′(µ1

ij) + V ′(µ1
ij)g

′(µ1
ij)

σ2
0 (V (µ1

ij))
2(g′(µ1

ij))
3

,

µ1
ij = g−1(xtijβββ + ztijûi).

Denote by

F1 = Z′
iW1Zi, F2 = Z′

iW2Zi and F0 = F = Z′
iW0Zi,

where W2 = diag(w2
1, w

2
2, ..., w

2
ni
), with

w2
j =

wij
σ2
0 V (µij)(g′(µij))2

+ wij(yi − µij)
V (µij)g

′′(µij) + V ′(µij)g
′(µij)

σ2
0 (V (µij))2(g′(µij))3

,

µij = g−1(xtijβββ + ztijui),

and W0 = diag(w0
1, w

0
2, ..., w

0
ni
), with w0

j =
wij

σ2
0 V (µij)(g′(µij))2

.

F is the information matrix in the GLM fitting process in (2.28) and let F
1
2 (F

1
2
′
) be

its left (respective right) square root.

Fahrmeir and Kaufmann (1985) studied the consistency and asymptotic normality

of maximum likelihood estimator in generalized linear models. They showed the

following results.
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Lemma A.2. Under some regularity conditions:

1. F
1
2
′
(ûi − ui)

d−→ N(0, I), I is the identity matrix.

2. E(F2) = F, and F2/ni converges to F/ni for large ni.

Using the first property, we could regard the asymptotic behavior of ûi − ui as

N(0,F−1), see Zhou and Garrido (2009a), and F−1 converges to 0 at a speed of O(
1

ni
).

This makes it possible to replace W1 in (A.3) by W2. We continue to replace W2

by W0 according to the second property. Finally we have:

Theorem A.1. Under some regularity conditions,

ˆ̂ui − ûi ≈ (−Z′
iW0Zi)

−1(Z′
iW0Xi)(β̂̂β̂β − βββ). (A.4)

The approximation error is

o(β̂ββ − βββ) +Op(n
− 1

2
i )(β̂ββ − βββ).

Proposition A.1. We list some special cases of formula (A.4):

1. When Xi = Zi, formula (A.4) gives ˆ̂ui − ûi ≈ −(β̂ββ − βββ), but obviously they

are equal. Since in this special case βββ + ûi enter into the regressor as a unit,

no matter if the real βββ or its ML estimator β̂ββ is used, the sum βββ + ûi is not

changed, thus equal to β̂ββ + ˆ̂ui.

2. When Xi is part of the columns of Zi, for example:

Xi = Zi





Ip

0(q−p)×p



 ,

then formula (A.4) turns into

ˆ̂ui − ûi ≈ −





Ip

0(q−p)×p



 (β̂ββ − βββ).

However, for the same reason we know they are actually equal.
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3. If the exponential dispersion distribution is normal and the link function is

canonical, then w0
j =

wij

σ2
0
and the model is:

yi = Xiβββ + Ziu+ εεεi, εij ∼ N(0, σ2
0/wij).

It is easy to see that the MLEs are:

ûi = (Z′
iW0Zi)

−1Z′
i W0(yi −Xiβββ),

ˆ̂ui = (Z′
iW0Zi)

−1Z′
i W0(yi −Xiβ̂ββ).

Subtracting these two equations, we will get the same result:

ˆ̂ui − ûi = (−Z′
iW0Zi)

−1(Z′
iW0Xi)(β̂ββ − βββ). (A.5)

Note here that given ui in (A.4) the term (−Z′
iW0Zi)

−1(Z′
iW0Xi) is constant in

value, as it does not depend on yi any more. It helps us easily derive the asymptotic

variance of ˆ̂ui− ûi as well as makes (x′
ijβ̂̂β̂β−x′

ijβββ+z′ij
ˆ̂ui−z′ijûi) independent of ûi−ui

conditional on ui (β̂ββ − βββ depends on y−i, ûi − ui depends on yi).

Combining (A.4) with the first term in (A.1), we have:

(

x′
ijβ̂ββ − x′

ijβββ
)

+
(

z′ij
ˆ̂ui − z′ijûi

)

≈
{

x′
ij + z′ij(−Z′

iW0Zi)
−1(Z′

iW0Xi)
}

(β̂ββ − βββ). (A.6)

If we denote by A′
ij = x′

ij + z′ij(−Z′
iW0Zi)

−1(Z′
iW0Xi), then

x′
ijβ̂ββ − x′

ijβββ + z′ij
ˆ̂ui − z′ijûi

∣

∣ ui ≈ N(0,A′
ijΩΩΩAij), (A.7)

Notice here the variance-covariance matrix ΩΩΩ of the fixed-effects parameter estimates

β̂ββ is a submatrix of I−1(ψψψ).

Lemma A.3. For ûi, we know that the asymptotic conditional behavior given ui is

the same to that in the GLMs:

ûi − ui ≈ N(0, (Z′
iW0Zi)

−1),

thus, conditionally on ui,

z′ijûi − z′ijui ≈ N(0, z′ij (Z
′
iW0Zi)

−1zij), (A.8)

see Lemma 2.1 in Zhou and Garrido (2009a).
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Note that (β̂̂β̂β − βββ) and (ûi − ui) are conditionally independent due to the leave

one out method, we add (A.7) and (A.8) to get that conditional on ui:

η̂ij − ηij ≈ N(0,A′
ijΩΩΩAij + z′ij (Z

′
iW0Zi)

−1zij). (A.9)
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Appendix B

BLUE in LMM and De Vylder’s Minimum Variance

Estimate

In linear mixed model, the response yij is distributed as:

yij = x′
ijβββ + z′ijui + εij, i = 1, 2, . . . , k and j = 1, 2, . . . , ni, (B.1)

where

ui ∼ N(0,D), D = diag(σ2
1, σ

2
2, . . . , σ

2
q ), (B.2)

and

εij ∼ N(0, σ2
0/wij). (B.3)

At the cluster level, the response is written in matrix form as:

Yi = Xiβββ + Ziui + εεεi, i = 1, 2, . . . , k, (B.4)

where

Yi =











yi1
...

yini
,











, Xi =











x′
i1

...

x′
ini











, Zi =











z′i1
...

z′ini











, εεεi =











εi1
...

εini











, (B.5)

and

εεεi ∼ N(0,Vi), Vi = diag
(

σ2
0/wi1, σ

2
0/wi2, . . . , σ

2
0/wini

)

. (B.6)

On the sample level, it is written in matrix form as:

Y = Xβββ + Zu+ εεε, (B.7)
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where

Y =











Y1

...

Yk,











, X =











X1

...

Xk,











, Z =

















Z1 0 · · · 0

0 Z2 · · · 0
...

...
. . .

...

0 0 · · · Zk

















, u =











u1

...

uk











,

εεε =











εεε1
...

εεεk











, εεε ∼ N(0,V), V =

















V1 0 · · · 0

0 V2 · · · 0
...

...
. . .

...

0 0 · · · Vk

















.

Lemma B.1. Let εεε∗ = Zu+ εεε, then the linear mixed model can be expressed as:

Y = Xβββ + εεε∗, εεε∗ ∼ N(0,C), (B.8)

where

C = ZGZ′ +V,

and

G =

















D 0 · · · 0

0 D · · · 0
...

...
. . .

...

0 0 · · · D

















.

Lemma B.2. The joint distribution of Y and u is multivariate normal distributed

as:




Y

u



 ∼ N









Xβββ

0



 ,





C ZG

GZ′ G







 . (B.9)

Lemma B.3. Using Lemma B.1, the MLE or weighted least square estimator of βββ

is:

β̂ββ = (X′C−1X)−1X′C−1Y. (B.10)

E[u|Y] = 0 + GZ′C−1(Y − Xβββ) = GZ′C−1(Y − Xβββ) is the best linear unbiased

predictor of u (BLUP).
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Hachemeister (1975) worked on U.S data that showed linear inflation trends in

claims. This trend differed from one state to the other and also from the average

national inflation trend.

Frees et al. (1999) show that Hachemeister credibility regression model is one

special case of linear mixed model where Zi = Xi, for i = 1, 2, . . . , k.

Lemma B.4. Suppose that Zi = Xi, for i = 1, 2, . . . , k. Define βββi as βββ + ui, then

the generalized least square estimator of βββi based on the data in ith cluster is:

β̂ββi = (X′
i V

−1
i Xi)

−1X′
iV

−1
i Yi. (B.11)

Lemma B.5 (Sherman-Morrison-Woodbury). If A and B are square and invertible

matrices, then:

(A+XBX′)−1 = A−1 −A−1X(B−1 +X′A−1X)−1X′A−1, (B.12)

|A+XBX′| = |B||A||B−1 +X′A−1X|. (B.13)

Lemma B.6. Following B.4, let Ci = XiDX′
i+Vi denote the unconditional covari-

ance matrix for Yi, then β̂ββi can be expressed as

β̂ββi = (X′
i C

−1
i Xi)

−1X′
iC

−1
i Yi. (B.14)

Proof. Apply Lemma B.5 to Ci

(X′
i C

−1
i Xi)(X

′
i V

−1
i Xi)

−1X′
i V

−1
i

=(X′
i (Vi +XiDX′

i)
−1Xi)(X

′
i V

−1
i Xi)

−1X′
i V

−1
i

=X′
i(V

−1
i −V−1

i X(D−1 +X′
i V

−1
i Xi)

−1X′
iV

−1
i )Xi(X

′
i V

−1
i Xi)

−1X′
i V

−1
i

=X′
i V

−1
i −X′

i V
−1
i Xi(D

−1 +X′
i V

−1
i Xi)

−1X′
i V

−1
i

=X′
i (V

−1
i −V−1

i Xi(D
−1 +X′

i V
−1
i Xi)

−1X′
i V

−1
i )

=X′
i C

−1
i ,

thus (X′
i V

−1
i Xi)

−1X′
iV

−1
i = (X′

i C
−1
i Xi)

−1X′
iC

−1
i .
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Lemma B.7. De Vylder (1981) shows that among all the linear combination of β̂ββi,

the minimum variance unbiased estimator for βββ is

(
k

∑

i=1

Mi)
−1

k
∑

i=1

Miβ̂ββi, (B.15)

where Mi = D X′
i(Xi D X′

i+Vi)
−1Xi = D(D+(X′

i V
−1
i Xi)

−1)−1 = cov(βββi) cov(β̂ββi)
−1

is the credibility factor for β̂ββi.

Lemma B.8. The MLE estimator β̂ββ in Lemma B.3 is exactly the minimum variance

estimator above:

β̂ββ = (X′C−1X)−1X′C−1Y = (
k

∑

i=1

Mi)
−1

k
∑

i=1

Miβ̂ββi, (B.16)

Proof. Use B.5, we know:

X′
i(Xi DX′

i +Vi)
−1Xi(D+ (X′

i V
−1
i Xi)

−1)

=X′
i(V

−1
i −V−1

i Xi(D
−1 +X′

iV
−1
i Xi)

−1X′
iV

−1
i )Xi(D+ (X′

i V
−1
i Xi)

−1)

=X′
iV

−1
i XiD+ I−X′

iV
−1
i Xi(D

−1 +X′
iV

−1
i Xi)

−1X′
iV

−1
i XiD

−X′
iV

−1
i Xi(D

−1 +X′
iV

−1
i Xi)

−1

=I+X′
iV

−1
i Xi(D− (D−1 +X′

iV
−1
i Xi)

−1(X′
iV

−1
i XiD+ I))

=I+X′
iV

−1
i Xi(D−D)

=I.

the rest of the proof is easy and left to the reader.

Let β̄ββ =

k
∑

i=1

β̂ββi

k
. It still has the consistency and unbiasedness properties as β̂ββ.

However, this estimator is not efficient. To show β̂ββ is superior to β̄ββ, we first calculate

the their covariance matrices:

Lemma B.9.

1. COV(β̂ββ) = (X′C−1X) = (
k
∑

i=1

X′
iC

−1
i Xi)

−1

2. COV(β̄ββ) =

∑k
i=1(X

′
iC

−1
i Xi)

−1

k2
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In order to compare the two covariance matrix, we use the matrix form harmonic-

geometric-arithmetic-mean inequality.

Lemma B.10 (harmonic-geometric-arithmetic-mean inequality). Let w1, . . . , wk be

positive numbers such that w1 + · · · + wk = 1, and let H1, . . . ,Hk be n × n positive

definite Hermitian matrices. Consider weighted power means of the matrices Hi,

defined by:

Ns = (w1H
s
1 + · · ·+ wkH

s
k)

1
s , s 6= 0, (B.17)

and

N0 = H
1/2
k (H

−1/2
k H

1/2
k−1 · · · (H

−1/2
3 H

1/2
2 (H

−1/2
2 H1H

−1/2
2 )u1H

1/2
2 H

−1/2
3 )u2 · · ·H1/2

k−1

H
−1/2
k )uk−1H

1/2
k , (B.18)

where ui = 1 − wi+1
∑i+1

j=1wk
for i = 1, . . . , k − 1. Sagae and Tanabe (1994) give the

inequalities:

N−1 ≤ N0 ≤ N1 (B.19)

Replacing Hi with (X′
i C

−1
i Xi)

−1, we will find that:

COV(β̂ββ) =
1

k
N−1

and

COV(β̄ββ) =
1

k
N1.

According to Lemma B.10, we know that COV(β̂ββ) ≤ COV(β̄ββ), the equality holds

when X′
1C

−1
1 X1 = X′

2C
−1
2 X2 = · · · = X′

kC
−1
k Xk.

For a new subject with covariates vector x, we can either use x′β̂ββ or x′β̄ββ as the

estimator for its marginal mean. However the above results tell us:

V[x′β̂ββ] = x′ COV(β̂ββ)x ≤ x′ COV(β̄ββ)x = V[x′β̄ββ]

Since x′β̂ββ has a smaller variance, the limited fluctuation probability for x′β̂ββ is larger

than x′β̄ββ for a given tolerance level.
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Appendix C

Zero Inflated Negative Binomial

Let ZINB(y ; π0, λ, φ) denote zero inflated negative binomial distribution as in (3.9),

and NB(y ; λ, φ) denote the negative binomial distribution as in (3.10).

Lemma C.1. Suppose y is zero inflated negative binomial distributed as ZINB(y ; π0, λ, φ),

and given y, the vector (y0, y1, . . . , ym−1) follows a multinomial distributed with prob-

ability mass function:
y!

y0!y1! · · · ym−1!
py0!0 · · · pym−1!

m−1 , (C.1)

where yj ∈ N, y = y0+. . .+ym−1 and p0, . . . , pm−1 are event probabilities (
∑m−1

j=0 pj = 1),

then yj is also distributed as zero inflated negative binomial distribution as ZINB(yj ; π0,

λpj, φ), for j = 0, 1, . . . ,m−1.

Lemma C.2. Following the assumption in Lemma C.1 and suppose we only observe

y0, . . . , yt, where t ≤ m − 1, then
t
∑

j=0

yj is a sufficient statistics for φ and λ. It is

distributed as ZINB(
t
∑

j=0

yj ; π0, λ
t
∑

j=0

pj, φ).

Lemma C.3. Following the assumptions in Lemma C.1 and Lemma C.2, the condi-

tional distribution of
m−1
∑

j=t+1

yj given y0, y1, . . . , yt is:

P(
m−1
∑

j=t+1

yj | y0, y1, . . . , yt) =



















ZINB(
m−1
∑

j=t+1

yj ; πc1, λc1, φc1), if
t
∑

j=0

yj = 0,

NB(
m−1
∑

j=t+1

yj ; λc2, φc2), if
t
∑

j=0

yj 6= 0,

(C.2)
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where

πc1 = π0

(

π0 + (1− π0)
( φ

φ+ λ
∑t

j=0 pj

)φ)−1

,

λc1 = λ
φ

λ
t
∑

j=0

pj + φ

m−1
∑

j=t+1

pj,

φc1 = φ,

and

λc2 = λ

t
∑

j=0

yj + φ

λ
t
∑

j=0

pj + φ

m−1
∑

j=t+1

pj,

φc2 = φ+
t

∑

j=0

yj.

When we fit a zero inflated negative binomial model to the claim frequency, we use

Lemma C.2 to fit the model to the truncated data, then use Lemma C.3 to estimate

the future reported numbers of claims, i.e. N̂k
i,j.
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Appendix D

Hurdle Negative Binomial Model

Let HNB(y ; π0, λ, φ) denote the hurdle negative binomial distribution as in (3.14),

and NB(y ; λ, φ) denote the negative binomial distribution as in (3.10).

Lemma D.1. Suppose y is hurdle negative binomial distributed as HNB(y ; π0, λ, φ),

and given y, the vector (y0, y1, . . . , ym−1) follows a conditional multinomial distributed

with probability mass function:

y!

y0!y1! · · · ym−1!
py0!0 · · · pym−1!

m−1 , (D.1)

where yj ∈ N, y = y0+. . .+ym−1 and p0, . . . , pm−1 are event probabilities (
∑m−1

j=0 pj = 1),

then yj is also distributed as the hurdle negative binomial distribution HNB(yj ; π0j,

λ0j, φ), for j = 0, 1, . . . ,m−1, where

π0j = π0 + (1− π0)

(

φ
φ+λpj

)φ −
(

φ
φ+λ

)φ

1−
(

φ
φ+λ

)φ
,

λ0j = λpj.

Lemma D.2. Following the assumption in Lemma D.1 and suppose we only observe

y0, . . . , yt, where t ≤ m − 1, then
t
∑

j=0

yj is a sufficient statistics for φ and λ. It is

distributed as HNB(
t
∑

j=0

yj ; πΣ, λ
t
∑

j=0

pj, φ), where

πΣ = π0 + (1− π0)

(

φ

φ+λ
∑t

j=0 pj

)φ −
(

φ
φ+λ

)φ

1−
(

φ
φ+λ

)φ
. (D.2)
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Lemma D.3. Following the assumptions in Lemma D.1 and Lemma D.2, the condi-

tional distribution of
m−1
∑

j=t+1

yj given y0, y1, . . . , yt is:

P(
m−1
∑

j=t+1

yj | y0, y1, . . . , yt) =



















HNB(
m−1
∑

j=t+1

yj ; πd1, λd1, φd1), if
t
∑

j=0

yj = 0,

NB(
m−1
∑

j=t+1

yj ; λd2, φd2), if
t
∑

j=0

yj 6= 0,

(D.3)

where

πd1 =
(1−

(

φ
φ+λ

)φ
) π0

(1−
(

φ
φ+λ

)φ
) π0 +

(

(

φ

φ+λ
∑t

j=0 pj

)φ −
(

φ
φ+λ

)φ
)

(1− π0)
,

λd1 = λ
φ

λ
t
∑

j=0

pj + φ

m−1
∑

j=t+1

pj,

φd1 = φ,

and

λd2 = λ

t
∑

j=0

yj + φ

λ
t
∑

j=0

pj + φ

m−1
∑

j=t+1

pj,

φd2 = φ+
t

∑

j=0

yj.

When we fit a hurdle negative binomial model to the claim frequency, we use Lemma

D.2 to fit the model to the truncated data, then use Lemma D.3 to estimate the future

reported numbers of claims, i.e. N̂k
i,j.
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Appendix E

Assumptions and Parameters in Simulations

The claim number and claim severity assumptions for different risk classes comes from

Table E.1. There are 12 accident years in our simulations.

The reporting delay is assumed to be Weibull distributed, which is widely used

in survival analysis. The probability of reporting delay for different risk groups are

displayed in Table E.2, the maximum reporting delay is assumed to be 9.

The settlement time is assumed to be exponential distributed, unlike reporting

delay, the maximum settlement delay is assumed to be 2, see Table E.3.

“Merit” and “Category” are used as regression covariates.
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Risk Class Merit Category Claim Count Rate Claim Severity Rate

1 3 1 0.084 296

2 3 2 0.109 318

3 3 3 0.129 297

4 3 4 0.137 344

5 3 5 0.100 270

6 2 1 0.106 289

7 2 2 0.138 311

8 2 3 0.163 291

9 2 4 0.174 336

10 2 5 0.126 264

11 1 1 0.115 289

12 1 2 0.149 311

13 1 3 0.177 291

14 1 4 0.189 337

15 1 5 0.137 264

16 0 1 0.133 310

17 0 2 0.172 333

18 0 3 0.204 312

19 0 4 0.217 361

20 0 5 0.158 283

Table E.1: Exposure, Claim Number and Severity
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Risk Class d0 d1 d2

1 0.60 0.24 0.16

2 0.63 0.23 0.14

3 0.67 0.22 0.11

4 0.71 0.21 0.09

5 0.74 0.19 0.07

6 0.56 0.25 0.19

7 0.60 0.24 0.16

8 0.63 0.23 0.14

9 0.67 0.22 0.11

10 0.71 0.21 0.09

11 0.52 0.25 0.23

12 0.56 0.25 0.19

13 0.60 0.24 0.16

14 0.63 0.23 0.14

15 0.67 0.22 0.11

16 0.49 0.25 0.26

17 0.52 0.25 0.23

18 0.56 0.25 0.19

19 0.60 0.24 0.16

20 0.63 0.23 0.14

Table E.3: Probability of Settlement Delay
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Appendix F

Simulation Study on Incurred But Not Reported Claim

Number Estimation

Here we use the same assumptions and parameters as in Appendix E. Rather than

focusing on the total reserve, we are mainly concerned with the estimates of the

incurred but not reported claim numbers using double chain ladder and our individual

chain ladder method. We give the summary table for the simulated deviations between

the estimates and the empirical ones:

Individual GLMs DCL SDCL

Min. -292.00 -361.00 -367.00

1st Qu. -47.00 -53.00 -50.00

Median -2.00 -0.50 5.00

Mean -0.86 -1.05 2.88

3rd Qu. 48.00 53.00 56.25

Max. 203.00 242.00 243.00

Variance 5,010.40 6,349.75 6,540.58

Table F.1: Summary of Deviations

“SDCL” represents the sum of the double chain ladder estimates based on each

individual class.

We also draw the histogram, the kernel density plot and the box plot of the
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simulated deviations.
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Figure F.1: Histograms and Kernel Density Plot of Deviations
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Figure F.2: Box Plot of Deviations

From the above plots, we see that DCL estimates of total incurred but not reported

claim numbers have greater variance than our individual GLM estimates.

As we say in Section 3.2.4, one important reason is that the parameter αi for the

accident year effects are used in the double chain ladder method. It is over-fitted since

in the assumption of our simulations, the policyholders in each class are assumed to

have fixed accident rates over the accident years.
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