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ABSTRACT 

 

A New CAD/CAM/CAE Integration Approach to Modelling Flutes of Solid End-mills 

Li Ming Wang, PhD. Candidate 

Concordia University, 2014 

 

Milling is used widely as an efficient machining process in a variety of industrial 

applications, such as the complex surface machining and removing large amounts of material.  

Flutes make up the main part of the solid end-mill, which can significantly affect the tool’s life 

and machining quality in milling processes. The traditional method for end-mill flutes design is 

using try-errors based on cutting experiments with various flute parameters which is time- and 

resources-consuming. Hence, modeling the flutes of end-mill and simulating the cutting 

processes are crucial to improve the efficiency of end-mill design.  Generally, in industry, the 

flutes are ground by CNC grinding machines via setting the position and orientation of grinding 

wheel to guarantee the designed flute parameters including rake angle, relief angle, flute angle 

and core radius. However, in previous researches, the designed flute profile was ground via 

building a specific grinding wheel with a free-form profile in in the grinding processes. And the 

free-form grinding wheel will greatly increase the manufacturing cost, which is too complicated 

to implement in practice.  In this research, the flute-grinding processes were developed with 

standard grinding wheel via 2-axis or 5-axis CNC grinding operations.  

For the 2-axis CNC flute-grinding processes, the flute was modelled via calculating the 

contact line between the grinding wheel and cutters. The flute parameters in terms of the 
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dimension and configuration of grinding wheel were expressed explicitly, which can be used to 

planning the CNC programming.  

For the 5-axis CNC flute-grinding processes, the flute was obtained with a cylinder 

grinding wheel via setting the wheel’s position and orientation rather than dressing the 

dimension of grinding wheel. In this processes, optimization method was used to determine the 

wheel’s position and orientation and evaluating the machined flute parameters. Beside, based on 

the proposed flute model, various conditions for grinding wheel’s setting were discussed to avoid 

interference of flute profile. 

A free-form flute profile is consequently generated in its grinding processes. However, in 

the end-mill design, the flute profile is simplified with some arcs and lines to approximate the 

CAD model of end-mills, which would introduce errors in the simulation of cutting processes. 

Based on the proposed flute-grinding methods, a solid flute CAD model was built and a 

CAD/CAM/CAE integration approach for the end-mill was carried out to predict the cutting 

forces and tool deflection. And also, the prediction results with various methods are verified to 

demonstrate the advantage of proposed approach. This work lays a foundation of integration of 

CAD/CAM/CAE for the end-mill design and would benefit the industry efficiently. 
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Chapeter 1. Introduction 

 

Milling is used widely as an efficient machining process in a variety of industrial 

applications wherever the complex surface machining, removing large amounts of material. 

According to the International Institution of Production Research (CIRP), cutting tools nearly 

make up 30% of all the manufacturing cost [1, 2]. Due to its flexible operation, large material 

removing rate and high surface quality, cutting tool is one of the most important economic 

considerations in metal cutting process [3]. However, because of the complex structures of 

milling cutters, it is difficult to develop its accurate geometric model.  

1.1 Basics of end-mills 
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Figure 1.1 Illustration of solid end-mills. 
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The milling cutter is generally manufactured using the CNC grinding machine through 

the specific commercial CAM software in industry. A typical end milling cutter is shown in 

Figure 1.1. It consists of four basic features: shank, flute, tooth and gash.  

Shank is the primitive shape of end-mill with a rotation features, such as cylindrical, cone, 

and it can be mounted on the tool holder with some specific and standard connection. Generally, 

the basic shape of shank was made by power metallurgy and then ground with CNC machine to 

guarantee the design tolerance and surface quality. Flute is the most important feature of the 

milling cutters. It formed the most important tool parameters in the flute structures including 

rake angle, relief angle, core radius, flute angle and helix angle, which will be elaborated in the 

following introduction and research. Tooth and gash are located at the bottom of milling cutter, 

which form the bottom cutting edge and enable the face milling at the bottom.  According to the 

number of flutes or teeth, the end-mills are classified as 2, 3, 4-tooth cutters commonly.  

Generally, the more tooth, the high feed rated can be applied in the machining processes and also 

the better surface quality would be obtained. 

It is obvious that flutes make up the main part of the body. And the space of the flute will 

greatly affect the chip evacuation and dynamic performance. It is helpful to design flute shape to 

get suitable cutting performance [4-7]. Besides, with the advance of CNC technology, the 

precision of cutter is increasing, and it also brings kinds of features such as, the gashes, variable 

pitch and etc. In this thesis, we focus on modeling of the flute shape and flute parameters via 

modeling its manufacturing processes with different methods. 
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1.11 Mechanism of milling processes 

The performance of milling process is determined by the mechanism between the cutting 

tools held in a high-speed rotating spindle and the work-piece. A four-tooth down milling 

operation is shown in Figure 1.2.The milling cutter is in process with a varying and periodic chip 

thickness, which produces various cutting forces. Based on different cutting condition, one or 

more teeth are in cut with the work-piece [1, 8]. Therefore, the milling operation is an 

intermittent cutting process, which will result in the varying cutting forces. 

Tool
Holder

Workpiece

Feed

Cutting
Speed

End-mill

Table
 

Figure 1.2 Application of end mill in the milling processes. 
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Two basic problems in metal cutting are the cutting process efficiency and output quality 

such as the tool deflection, surface roughness. In order to balance the two aspects, continual 

researches have been done for centuries. A significant improvement in process efficiency may be 

obtained by optimizing the process parameters [9] including the cutting speed, feed-rate, cutting 

depth. Another method is to optimize the tool geometry, such as rake angle, relief angle, tool tip 

radius and so on. In this research, we will emphasis on the tool geometry, in other words, we will 

try to evaluate the cutting performance integrating the tool geometry with FEA method. However, 

for end milling cutter, aforementioned, it has a complex geometric structure. In the literature 

review, most of the researchers applied the simplified geometric models which use the lines and 

arcs to approximate the basic cutting angles. And the approximation differences between the 

simplified models and the real cutter model would introduce errors to the predictive results in the 

milling process. Besides, some researcher also pointed out that the predictive results depend on 

the accuracy of geometrical models [10]. Therefore, modeling the accurate geometrical features 

of end milling cutter is perquisite for the predicting cutting performance during milling process. 

1.1.2 Flute of end-mills 

As mentioned, the flue is the main part in the milling cutter body. The geometric model is 

shown in Figure 1.3. It forms the important parameters such as rake angel , core diameter cr , 

flute (pitch) angle , and helix angle . In practice, the flute is machined by the grinding 

wheel moving with a helix motion, which will be discussed in the literature review section. 
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Figure 1.3 Flute model of end mills. 

The profile of flute plays important roles in the chip evacuation during the milling 

process. Generally, larger flute space is useful for the chip flowing, however, that will decrease 

the tool stiffness. Especial for the high strength material which will reach high temperature and 

larger cutting forces in the cutting process, this problem would be much more serious [11]. 

Therefore, in practice, the tool core radius is usually limited to no less than 0.6 times of the tool 

radius based on the engineering experience. In the literatures, especial in the tool deflection 

calculation, the flute is generally estimated as a cylinder with an equivalent radius as 0.8 times of 

tool radius [8]. With the CNC technology developing, a lot of new flute shapes appear, and this 

estimation is not suitable for all the shapes. Therefore, it is necessary to develop an accurate flute 

model to predict the dynamic behavior and improve tool design. 

Five or four axis CNC grinding machine is employed to program the grinding processes 

of end-mills and the NC programming is generated automatically through the specific 

commercial CAM software in industry.  Figure 1.4 shows a general setting of grinding end-mills. 

The grinding wheel is mounted above the tool bar with a specific position and orientation 

relative to the grinding wheel in the machine coordinate system. With the intersection between 
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the grinding wheel and the tool bar, the flute shape of end-mill is formed based on the kinematics 

of the moving grinding wheel and cutter at each operation. It is difficult to model the exact three 

dimensional shapes of end mills, because a certain part of the shape is not determined until the 

actual machining operation [9]. Therefore, the accurate geometrical model of end-mill can only 

be developed via simulating and modeling its grinding processes.  Besides, the flute parameters 

are also required to be guaranteed in the flute-grinding processes with a specific dimension and 

setting for the grinding wheel.   

Base

Grinding 
Wheel

Tool bar

 

Figure 1.4. Illustration of grinding end-mills 
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As mentioned, the flute shape is closely related with the profile of grinding wheel applied 

in the grinding process. The grinding wheel is composed of a layer of abrasive diamond particle 

bonded together to formed its profile. Before using, the profile of grinding wheel should be 

measured and ground to guarantee its dimension. This operation is called dressing the grinding 

wheel. To reduce the cost of manufacturing end-mill, standard grinding wheel is always applied 

in industry. There are several types of standard grinding wheel with a basic geometrical profile: 

cylinder, cone and combination of both shown in Figure 1.5. In this research, standard grinding 

wheels are applied to modeling the flute-grinding processes. 

Abrasive

Abrasive

Abrasive

D

H

D

D

H1

H2

H

 

Figure 1.5 Illustration of standard grinding wheels and dimensions. 

 

1.2 Literature review 

In this section, the related literature on the geometric model of end milling cutter, 

manufacturing process of flute, cutting forces  prediction with milling processes are 

comprehensively reviewed. Besides, the comparison between linear cutting force model and 
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exponential cutting force model is presented. Through the reviews, we found the gaps in current 

methods and propose the objectives of this research. 

1.2.1 Geometric model of end milling cutter 

As we mentioned, the structure of solid end-mill is very complex, for simplification, 

some early researches using cylinder model [12] to estimate the end milling cutter. This model is 

easy calculation for prediction of dynamic performance based on cantilever beam theory. 

Because of the effect of flute, an equality cylinder beam is recommended as 0.8 times [8] of the 

tool radius.  However, such assumption ignored the flute shape of end-mill, such as the variation 

of core radius and the length of flutes. Therefore, the method is not accurate enough for 

calculating the deflection especially for slender tools.   

In order to raising the accuracy, another model is to assume the tool as a step beam with 

two sections. One section is for the shank and another for the flute. And the flute section is 

approximated with a two-arc profile shown in Figure 1.6 (a). Basically, the accuracy of this two 

section model is related with the difference of the approximated model and real flutes. Besides, 

taking 2-flute cutter for example, the area moment inertia of cross-section is not symmetrical in 

different directions; therefore, it cannot be modeled as a cylinder with uniform area moment 

inertia. 

From the above discussion, the only solution is to represent the real shape of the flute. 

Arcs [10, 13] are used as the approximation of the flute. As shown in Figure 1.6(a), the cross-

section of 4-flute end mill is defined as two simple arcs ( ). The profile is governed by 

two key parameters: the flute depth fd and the BC’s radius r . Kivanc [10] represent this model 
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using an equivalent radius Req in terms of the radius r and the arc position. This model cannot 

reveal all the information of end mill, especially missing the key parameters: rake angle and 

relief angle. Besides, based on this structural model, Kivanc derived the area moment inertia to 

predict the static and dynamic properties of tools with different geometry and material via finite 

element analysis. A two section general equation for two-step cantilever beam deflection is 

formulated. And also the mode shape and natural frequencies of end-mills were predicted using 

the Euler-Bernoulli equations.  However, the profile of the tool is far different to the real end 

mill in industry, and it ignored the most important flute parameters such as rake angle, relief 

angle, which will introduce errors to the predictive results. 

AB

C

fd

r

rc

fd : flute depth r : arc BC’s radius  rc core radius

rc

A

C

D

E

F
α

γ : rake angle α : relief angle rc : core radius

B

(a) (b)
γ

γ

 

Figure 1.6 Cross-section of 4-flute end mills: (a) Kivanc’s model (b) Improved model. 

An improved model is proposed in Tsai’s [14] research shown in Figure 1.6 (b). The 

profile comprise of five connected segments: three lines and two arcs for each flute. The basic 

parameters, such as tool radius rake angle , relief angle , the corresponding relief width  FE 
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and EF (flank surface), rake width AB and core radius rc are also illustrated in the figure. The 

parametric representation of flute was derived a piecewise equations with five segments.  

Nevertheless, for the real end mill, the rake length is not a straight line, and the flute 

profile is free-form curve which is manufactured using grinding wheel. Therefore, the flute curve 

can be obtained through the kinematic relation of flute-grinding process. 

There are some papers focusing on the grinding methods of end mill, mainly building the 

flute shape [7,14-20]. Kaldor [15] first discussed two basic geometric problems in the flute-

grinding processes:  

1) The Direct Problem: the determination of the resulting flute profile for a given 

grinding wheel cross-section;  

2) The Inverse Problem: the determination of the wheel profile for a desired flute cross-

section.  

And also, in this research, the grinding wheel and cutter were defined with a 

mathematical representation. The result flute profile is obtained via CAD approach (image 

processes) which is to calculate the extreme point on the flute to form the contour of the flute 

with iteration processes.  A programing package was developed in the research first to verify the 

direct problem and cited most in the following research. However, the accuracy of the flute 

model greatly depends on the iteration number. Due to the limitation of computer technology, the 

indirect problem was not discussed in the paper. 
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Figure 1.7 Geometry and kinematics of the flute grinding operation.[16] 

 

Following the above research, Ehmann [16] developed a program and presented a well 

solution for the indirect problem based on the principles of differential geometry. The kinematics 

of flute-grinding processes was elaborated via three frameworks: tool frame, machine frame, and 

the work-piece frame. The fundamental relationship between grinding wheel and cutter was 

established through the contact theory, that is the common normal at the contact point between 

the wheel surface and flute surface must intersect the axis the tool. Besides, he also pointed out 

that there is one unique relationship between the desired geometry of the flute cross-section and 

grinding wheel profile for a fixed machine setup and machine condition.  This major contribution 

for this work was that the principle foundation for the contact points was deduced and solved. 

Kang [17, 18] gave a series papers on the detail calculation of the grinding processes base 

on the kinematics of grinding processes via CAD approach. A generalized mathematical model 
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for the inverse and direct problem for disk and axial-type tools was investigated in Kang’s 

research. And the analytical solution for the resulting flute profile was provided. For the second 

part of this research [18], numerical solutions were developed with a calculation program and 

also the sensitivity analysis of the result flute profile in terms of the machining setting and 

grinding wheel profile errors were first investigated to identify the most sensitive parameters.  

 

 

Figure 1.8. Boolean operation in flute-grinding processes [19]. 

Recently, Kim [19] develop a more sophisticated CAD method (direct method) to obtain 

the machined shape of an end milling cutter using Boolean operations between a given grinding 

wheel and a cylindrical work-piece. The flute shape is obtained shown in Figure 1.8: a 

successive intersection between the work piece and wheel is iterated to get the final solid model, 

which is exactly the same with real cutter. The developed model can be used to verify the 

manufacture of rake angle and inner radius before the real grinding program implemented. 
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Furthermore, the solid CAD model can be accepted by most common software that would be 

used to FEA simulation to evaluate the cutting performance. 

In the following work, Kim and Ko [20] proposed a manufacturing model of flute-

grinding processes (direct method), and gave the mathematical expression of the flue cross-

section curve based on the envelope theory. The basic idea is discretize the grinding wheel as 

finite thin disk. Each disk would intersect with the cross-section after sweeping a volume. The 

swept disk is modeled using coordinate transformation. The program was integrated with the 

CAD/CAM system to generate the NC code, which was used to grind the end-mill for machining 

hardened steel. 

Chen [21] presented a method to grind rake face of taper end mill using a novel spherical 

grinding wheel for ball-end mill. In this work, the normal rake angle and helix cutting edge are 

ground uniformly via adjust the position and orientation of grinding wheel. And also, the cutting 

edge transition from the ball end to cone neck was guaranteed. Rather than previous research 

dedicated to the flute profile, the paper focused on the desired flute parameters-rake angle, which 

will greatly affect the cutting performance in the milling processes. Ren [22] developed a 

CAD/CAM integration method to grinding the flutes of end-mills with 2-axis CNC grinding 

machine. 

Nevertheless, most of those researches focus on shaping the helix flutes without 

considering modeling tool parameters including rake angle, core radius, flute angle and cutting 

edges (relief angle), which will affect the cutting performance most. It is difficult to model the 

exact three dimensional shape of an end mill because a certain part of the shape is not 

determined until the actual machining stage [20]. 
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Besides, in engineering, the flute-grinding processes cannot be simplified as the indirect 

or direct problem. Actually, in the CNC grinding processes, the grinding wheel is generally 

standardized, which means the shape of grinding wheel is constrained with some parameters. 

And the wheel position and location are required to be determined to guarantee the designed 

flute parameters. Until now, to the author’s knowledge, there has been little work about 

modeling the flute parameters including rake angle, core radius, flute angle and cutting edges, 

and to determine the wheel’s position and orientation. 

In order to solve the above problem, In this thesis, a parametric CAD model is provided 

base on the grinding processes including the helix flute, flank surfaces using the design 

parameters and grinding parameters based on modeling the kinematic of the grinding processes, 

that is CAD/CAM integration for end-mill. 

1.2.2 Cutting forces in milling processes 

Cutting forces play an important role in the machining processes, such as the deformation 

of cutting tools, surface finish, tool wear, etc. Therefore, for decades, lots of research has been 

done on the mechanism of cutting processes so as to predict and optimize the cutting forces. In 

this work, cutting forces generated in milling processes will be considered as the criterion to 

evaluate the cutting performance of end-mills. 

The progress in formulating model of the milling processes must be based on the 

understanding of the mechanics of milling. Several models have been developed to derive cutting 

force, which can be classified into three types: 1) the experimental model, 2) the analytical 

model and 3) FEA model.  
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 The early predictive models relied on empirical data to establish the forces. Obviously, 

this method will need much more experiments for different materials, cutters, and operating 

conditions. Sometimes, it cannot lead to a general predictive model for most of the conditions. 

However, because of its easy operation, it is still used widely in the field of engineering. 

Generally, for the experimental model, the cutting forces are considered as function of cutting 

processes parameters [23, 24], in terms of feed rate, cutting depth and cutting width shown in Eq. 

(1.1). 

F x y z
p eC a a f       (1.1) 

Where, C is the cutting coefficients, and x, y, z is the exponential index, which should be 

determined experimentally; ap is the cutting depth and f is the feed rate. 

As mentioned in the introduction, the performance of milling process is determined by 

the mechanism between the cutting tools held in a high-speed rotating spindle and the work-

piece. The cutting forces in the milling process can be predicted based on the analytical cutting 

force model [8, 25-30]. The milling forces is resolved into two direction: the tangential cutting 

force tf  and the radial cutting force  rf , which are respectively corresponding to the tangential 

and radial cutting forces in orthogonal cutting model. 

The major problem for analytical milling process is how to calculate the uncut chip 

thickness. In this research, a piecewise sinusoidal function is usually applied to estimate the chip 

thickness [8]:  

entry exitsin ,
0,

f
h

others
 ,     (5.2) 
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where, f  is the feedrate per teeth; ф is the immersion angle shown in Fig. 2 and entry , exit  are 

the entry and exit angle. 

There are two basic methods to calculate the cutting force with analytical model along the helix 

cutting edges: Numerical method and Integrate method [1,2,8,25-30]. 

A) Numerical method 

The milling cutter is divided into finite slides along the tool rotation axis. Using the linear 

cutting force model, the cutting force for each slide is represented in the matrix form: 

1

N
tc tet

j rc rer

k h kf
dz

k h kf
,      (5.3) 

where, dz  is the discrete size in the rotation axis direction;  N is the tooth number. 

In order to apply the cutting forces to predict the machining result, such as deflection, 

surface roughness, etc., normally, the cutting forces are resolved into X, Y direction via a 

transformation matrix:  

1

cos sin
sin cos

N
x tc te

jy rc re

f k h k
dz

f k h k
.    (5.4)

 

The total cutting force would be obtained by summing all the ‘M’ element forces in Eq.(5.5). 

1

M
x x

iy y

F f
F f

 .       (5.5) 
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B) Integrate method 

The integrate method is trying to get an analytical expression of the cutting forces 

through integrating the triangle function regarding to the immersion angle at different conditions. 

pa

1z=0

cos sin
sin cos

N
x tc te

jy rc re

F k h k
dz

F k h k
,   (5.6) 

where, pa  is the axial cutting depth.  

One important step for this method is to determine the effective boundary for the 

integration. It is summarized by Y. Altintas and E. Budak [1, 8] into six different cases based on 

the immersion angle with the rotation of end-mill.  

There are still other scientists using ANN [31-34] (Xu et al., 1994, Radhakrishnan 2005, 

Cus, et al., 2006, Zheng, 2008,) to estimate and control the forces in milling processes. The ANN 

approach requires neither rigorous knowledge of cutting mechanics nor the long development 

time. It is easy to get the result without considering the milling process based on complicated 

mathematical modeling approach. And in some cases, the results are acceptable as the theoretical 

approach. In this processes, the cutting forces considering the milling processes as a black box 

using neural network. In the black box system, the cutting parameters, tool parameters and work-

piece properties as the input, while the outputs are cutting forces.  Besides, the surface quality 

can also be discussed with the similar processes. The advantage of the neural network algorithm 

is greatly reducing the time-consuming of calculation work for the analytical method. But it also 

needs a training of the network with some experimental data. 
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In order to give some accurate and general model, some researchers simulated the milling 

processes via Finite element analysis (FEA) and the conventional cutting theory was used to 

predict the forces. A lot of researches [35-39] applied 2D simulation metal cutting with 

orthogonal cutting to predict cutting forces and temperature, but that does not exist physically. 

And all the milling processes are 3D cutting processes with oblique cutting in practice.  Wu [40] 

used 3D FEA model to simulate the complex milling processes of titanium alloy (Ti6Al4V) with 

considering the dynamic effects, thermo-mechanical coupling, and material damage law and 

contact criterion with the software ABAQUS. The cutting forces, temperature, chip formation 

can be predicted. It was noted that the simulation processes can be fed back to improve the 

milling processes. 

Maurel-Pantel [41] developed an analytical finite element technique for simulation of 

shoulder milling operation on SISI 304L with end-mills. The approach was based on Lagrangian 

formulation using a penalty contact method. The prediction cutting forces by FEA was compared 

with experimental cutting force to show the validation of FEA. In the conclusion, the research 

pointed out that accurate tool geometry can be reconstructed and used in the simulation processes 

to improve the predictive results. But lot difficulties appear to exist in defining a complex CAD 

model, which will be a major topic in our research. 

 Tool deflection caused by cutting forces in the milling processes will greatly affect the 

surface quality, especially for some slender tool or low-rigidity part. FEA is an efficient 

technology to predict the tool deflection. Ratchev and Liu, [42, 43] presented a virtual 

environment using 3D finite element technology for low-rigidly part system, which was able to 

compute cutting forces and the result surface error due to the tool deflection. It provided a 
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potential prospect of NC verification that considering of dynamic behavior of the cutters and part, 

which can be used in the optimization of tool path planning. 

Besides, the FEA results for cutting processes can also be used to improve the cutting 

performance of cutters. Abele [44] first presented a representation of twist drill geometry 

including all the design parameters which related to the drilling processes. A GA method was 

used to optimize the geometry of drill. The most novel and historic contribution is that the 

torsional stiffness, torsional stability, drilling torque, coolant flow and chip evacuation are 

quantized with mathematical expression and integrated with a fitness function. The FEA method 

was implemented in the research to calculate the drill stiffness and stability. And also the flute 

grindabiltiy was used as a constraint to check the validation of optimization results. Similarly, a 

3D representation of flat end-mill include flutes in terms of surface patches and shank was 

proposed by Tandon [45] with CAD algorithm. The modelled end-mill was used to study the 

cutting flutes under static and transient dynamic load conditions.  This research offered an 

efficient way for the design of flat end-mill in the concept stage. However, the geometry used in 

above FEA simulation is simplified, which has a great effect on the accuracy of the predication. 

And, the analysis process is also very time-consuming. Therefore, the software which can 

provide accurate information for end mill geometry and performed calculation and simulation of 

milling processes is in a great need nowadays. 

1.3 Research Problems & Objectives 

According to reviewing the prior literatures, the geometry and mechanical model of end-

mill has been studied by many researchers. Those studies provided us a general direction in 

theory and technology: 
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1. The accurate geometric model of end-mill can be obtained from modeling its 

manufacturing (grinding) processes, which is the CAD/CAM integration technology; 

2. Flutes as the major part of end-mill is determined by the shape of grinding wheel and the 

orientation and position in the grinding operation. The mathematical models of flute faces 

and curves of end-mill can be calculated via vectors and analytic geometry. 

3. Modeling and FEA simulation of the milling processes is critical and efficient for the 

cutting force estimation. And accurate geometric model of end-mill in the machining are 

required. 

However, for current researches, there are three problems to be solved in this research: 

With the CNC technology advances, the grinding process of end-mill becomes easy to 

operate and more versatile. The profile of flute is determined by the shape grinding wheel and 

operation in grinding process (position and orientation). Although, the direct and inverse 

methods for has been developed by some pioneers’ researches, the flute is made by standard 

grinding wheel, which imply that the shape of the grinding wheel cannot be modified randomly. 

Therefore, to grind the designed flute with standard grinding wheel is a great challenge in this 

dissertation.  

As mentioned, the flute involves many key parameters such as rake angle, relief angle, 

core radius, which complicate the calculation of modeling the geometry. To the author 

knowledge, there are few literatures to formulate of the flute parameters generated from the 

grinding processes.  
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Some research used some arc and lines to represent in the geometry models of flutes in 

the CAD system which is different with the real cutter. Besides, the geometrical difference 

inevitably introduce errors in the prediction of cutting performance with FEA simulation, such as 

cutting forces and tool deflection. And, this model cannot combine the grinding process 

effectively.  

 

1.3.1 Proposed objectives 

In order to solve the proposed problem, the following objectives are set to contribute in 

the end-mill research field. 

The first objective is to develop the kinematic model of the grinding processes of flutes 

and formulate the design parameters including rake angle, relief angles, core radius, and flute 

angle via differential geometry and coordinate transformation. Hereto, a solid CAD model of 

end-mills can be proposed with the CAD/CAM technology. 

The second objective is to determine position and orientation of standard grinding wheel 

for the designed flutes with CNC grinding operation. First, the designed flute is defined by the 

flute parameters in the first objective. And then an automatic CNC programing is required to 

determine the operation of grinding wheel via solving the representation of flute parameters in 

terms of wheel position and orientation. 

The third objective to implement CAD/CAM/CAE in the simulation of milling processes 

to improve the accuracy of cutting force and tool deflection prediction. 
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1.3.2 Overview of proposed technical route 

To achieve the above mentioned objectives, following technical route is proposed.     

The major work is to develop the 3D flute model of end-mill based on the kinematic 

grinding processes with integration of the CAD/CAM system. As mentioned, five axes CNC 

grinding machine is generally employed to construct the grinding processes of end mill and the 

NC programming is generated automatically through the grinding wheel operation planning. The 

shape of end mill is formed through intersection between cutting tool and grinding wheel. Thus 

proper wheel geometries must be determined prior to machining the helical flute for the end 

mills designed.  

The basic procedure shown in Figure 1.9 can be described as: inputting the design 

parameters and determining the grinding operation referring to the position and orientation, 

while, outputting the result shape through the calculation of operation of the grinding wheel.  

The key point in this step is to determine the wheel position and orientation. To solve this 

problem, first, the kinematic relation is required to build up for each operation. Then, based on 

the envelope theory to find out the contact curve or envelope profile generated by the grinding 

wheel, that is, for each point located on the wheel, the velocity is perpendicular to the normal of 

the wheel surface. As a result, the formulation for the designed parameters will be deduced from 

the result surface within the cross-section. In addition, the above method can also be reversed to 

adjust the grinding wheel dimension and operations. 
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Figure 1.9. Modeling the grinding processes of solid end-mills. 

 

In the literature review, the simulation-based milling processes are introduced briefly. In 

this research, the advantage of proposed CAD/CAM integration approach is combined with the 

FEA simulation to predict the cutting forces and tool deflection in milling processes. First the 

cutting coefficients are obtained through the cutting simulation for different cutting depth and 

feed rate with the developed CAD model of end-mill. The distribution of milling forces can be 

predicted with the cutting coefficients under machining condition. The tool can be regards as a 

cantilever beam with different cross-section while calculating the tool deflection. And the area 

moment inertia has been obtained from the developed CAD model. According to the unit-loading 

beam theory, the tool deflection is derived through summing the affect caused by distribution 

forces. 
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1.3.3 Dissertation Organization 

In this chapter, a basic introduction and comprehensive review were carried out on the 

end-mills modeling and its application. For the following sections, the basic structure of this 

dissertation is organized as follows. Chapter 2 developed a flute model with the 2-axis CNC 

grinding processes via calculating its contact line in the 3D space, which can be used to 

modeling the flute profile and program the CNC grinding processes. Chapter 3 discussed the 

effect of moment initial with various flute profile based on the CAD/CAM integration proposed 

in Chapter 2. However, for the 2-axis CNC grinding, there will be some limits such as, wheel-

dressing and interference-checking. Hence, Chapter 4 presented a 5-axis CNC grinding processes 

and also a novel method is proposed to determine the wheel position and orientation in the 

grinding processes. In Chapter 5, based on the proposed flute-grinding model, a 

CAD/CAM/CAE integration approach was implemented to evaluate the cutting forces and tool 

deflection in the milling processes. Finally, Chapter 7 contains the summary and future work of 

this work. 
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Chapeter 2.  2-axis CNC flute-grinding with standard grinding wheel 
 

 

2.1 Introduction 

End-mills are widely used in CNC machining, and their helical flutes are crucial to their 

cutting performance. In industry, these flutes are usually defined with four parameters: the 

helical angle, the (radial) rake angle, the flute angle (pitch angle), and the core radius; and they 

are specified in the end-mill design.  To grind the flutes, two-axis CNC tool grinding machines 

are often employed.  During the 2-axis flute grinding, the wheel self-rotates in high speed and 

moves forward along the tool axis in a specified feed, while the tool bar rotating in a specified 

angular velocity.  It is required that the flute parameters specification should be guaranteed after 

grinding.  Since the wheel parameters ─ the grinding wheel dimensions and the wheel set-up 

angle ─ determine the machined flute parameters, the wheel parameters should be determined 

according to the flute specifications, which is conducted in the flute CNC programming prior to 

grinding.  Unfortunately, the relationship between the wheel parameters and the flute parameters 

is very difficult; as a result, the wheel parameters are currently approximated on trial-and-error.  

This method is quite time-consuming and in-accurate.  To improve quality of cylindrical end-

mills, it is in high demand that a new approach to determining the wheel parameters in CNC 

programming.  Technically, it could be an effective solution to derive explicit formulae of the 

flute parameters with regard to the wheel. 

The main stream of the research on grinding flutes of end-mills and drills could be 

classified into two groups, the direct and the inverse (or indirect) methods which has been 

introduced in the Chapter 1. As mentioned, the direct method is to compute the flute shape 
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generated in the 2-axis or the 5-axis CNC grinding, based on the machining parameters of the 

given wheel And, the inverse method is to calculate the curved profile of a non-standard wheel 

based on the given flute of an irregular end-mill, which will be ground with this wheel in the 2-

axis grinding.  Ehmann and DeVrise [16] and Kang et al. [17, 18] proposed a direct method of 

modeling the flute shape generated with a given wheel in the 2-axis grinding.  The principle of 

these methods is that, at any point of the 3-D contact curve between the wheel and the flute at a 

moment of grinding, the wheel velocity is perpendicular to the wheel surface normal.  Hsieh [46] 

extended the above methods from the 2-axis to the 5-axis flute grinding.  It should be noted that 

these direct methods are for the drill flutes.  Different from the above methods, Pham and Ko 

[47] tried to find 2-D cross-sectional profiles of end-mill flutes ground on 2-axis machines.  The 

mechanism of this method is to regard the wheel as a pile of thin disks, to find the profiles of the 

material on the cross-section cut by the disks, and to compute the envelope of the profiles, which 

is the flute profile.  Unfortunately, Pham and Ko did not provide the equation of the flute profile 

for end-mill modeling.   

Besides the aforementioned direct methods, the existing indirect (inverse) methods are to 

find the profile of a wheel according to the profile of an end-mill flute and the wheel position in 

the 2-axis grinding.  The principle of these methods is that, at any point of the contact curve 

between the wheel and the flute, the flute surface normal passes through the wheel axis.  The 

research of the articles [48-53] applied the principle on different end-mills.  In general, the 

calculated wheel profiles are complicate curves, and thus, the wheels are irregular and non-

standard.  Moreover, some researchers [45, 54] have used the Boolean operations in CAD 

software to construct solid models of end-mills in order to predict their cutting performance in 

machining simulation.  Unfortunately, all the above methods cannot be used in CNC 
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programming for the 2-axis grinding of the end-mill flutes with their parameters specified.  Here, 

the CNC programming is to determine the dimensions of a standard wheel, its location and 

orientation to ensure the prescribed flute parameters.  Although Kim et al. [19] proposed a CNC 

programming method, they used the Boolean operations to construct end-mill solid models, 

which is time-consuming, less accurate, and with large file size.  Chen and Bin [21] rendered a 5-

axis CNC programming method for grinding the rake face of a tapered end-mill.  

 To establish an effective and accurate approach to CNC programming for the 2-axis 

grinding of cylindrical end-mill flutes, our work adopts a standard wheel and derives closed-form 

equations of the radial rake angle and the flute angle in terms of the wheel parameters, the wheel 

dimensions and the wheel set-up angle.  By applying these equations, the wheel parameters can 

be efficiently and accurately determined in the CNC programming.  In this work, first, the basics 

of the 2-axis CNC grinding of cylindrical end-mill flutes are introduced.  Second, the 

mathematical model of the flute is established.  Third, the closed-form equations of the rake 

angle and the flute angle are derived. Then, the relationships between the flute and the wheel 

parameters are discussed for CNC programming.  Finally, several examples are rendered to 

demonstrate the validity and advantages of this new approach. 

 

2.2 Basics of the 2-axis CNC grinding of end-mill flutes 

 

2.2.1 Parametric representation of a standard grinding wheel  

In industry, there are many types of standard grinding wheel available, and a popular wheel 

type is selected in this work.  Figure 2.1 illustrates this type of standard grinding wheel and its 
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dimension notations.  The wheel radius R  and thickness 2H  refer to the wheel size, and the 

dimensions, 1H  and , refer to the wheel profile.  Grinding wheels with different dimensions 

generate different rake and flute angles and different flute shapes in the 2-axis flute grinding.  

Thus, the wheel dimensions should be determined in the CNC programming.  Referring to 

practice, the wheel radius and thickness are chosen according to the available wheel size, and the 

1H  and  are two parameters of the wheel in this work.   
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Figure 2.1 Illustration of the dimensions of the standard grinding wheel selected in this work and 
the wheel coordinate system. 

 

To represent the wheel’s revolving surface in a parametric form, a wheel coordinate system 

g g g gX Y Z O  is established shown in Figure 2.1.  The origin gO  is at the center of the larger end of 

the wheel, and the gZ  axis is along the wheel axis from the larger end to the smaller end.  The gX  

and gY  axes are on the larger end and perpendicular with each other.  In the wheel coordinate 

system, the parametric representation of the wheel g ,hW  can be derived as 
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The equation of the normal vector of the wheel surface is derived as following, 

g
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N ,                                                             (2.3) 

where  
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h
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h
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2.2.2 The flute machining configuration 

Currently, a lot of tool manufacturers produce cylindrical end-mills on 2-axis CNC tool 

grinding machines.  To machine the end-mill helical flutes, the grinding wheel is set up so that it 

is right above the tool bar with the distance between the wheel and the tool axes (denoted as d) 

and these axes form angle .  This angle is called the wheel set-up angle in this work, and it is 

fixed during machining.  Figure 2.2 illustrates the machining configuration of the 2-axis flute 

grinding.  In this machining, the wheel rotates swiftly and moves along the tool axis in a 
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specified feed v.  Simultaneously, the tool bar rotates in a specified speed .  In this 

configuration, distance d is equal to the core radius Cr  plus the wheel radius R .  The wheel set-

up angle  determines the rake angle of the machined tool, hence, it is a wheel parameter.  To 

ensure the prescribed rake angle, this angle is not equal to the flute helical angle and should be 

accurately calculated in the CNC programming. 
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Figure 2.2 Illustration of the wheel position in terms of the tool bar in the 2-axis flute grinding. 

 

2.3 Mathematical model of the machined flute 

To determine the above-mentioned wheel parameters for a flute design, the wheel 

dimensions, H1 and , and its set-up angle, , the conventional way is to grind end-mill flutes 
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by trial and error.  However, it is costly and time-consuming.  Now, an effective solution is to 

establish the mathematical model of the machined helical flute by using the parametric 

representation of the grinding wheel and the kinematics of the flute machining configuration.  

Based on this configuration, from a geometrical point of view, the wheel sweeps an imaginary 

volume during machining, and the external surface of this volume is in the same shape as the 

machined flute surface.  Theoretically, the external surface can be modeled using the envelope 

theory.  At any moment of the machining, the external surface of the volume contacts the flute at 

a curve, which is called the contact curve at this moment.  According to the envelope theory, the 

wheel surface normal at any point of the contact curve is perpendicular to the corresponding 

wheel velocity with respect to the tool bar.  Therefore, the flute geometry consists of all of the 

contact curves during machining.  To establish the mathematical model of the contact curve, the 

grinding wheel should be represented in the tool coordinate system, which is established in the 

following. 

 

Figure 2.3 Simulation of the 2-axis flute grinding with a standard wheel. 
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To establish the tool coordinate system T T T TX Y Z O , the origin TO  is at the center of the 

tool bottom, the TZ  axis is along the tool axis and pointing to the tool shank, and the TX  and TY  

axes are perpendicular to each other and on the tool bottom plane (see Figure 2.2).  The TX  axis 

is horizontal and the TY  axis is vertical.  According to the aforementioned wheel set-up in the 2-

axis flute grinding, the parametric representation of the grinding wheel in the tool coordinate 

system can be found.  First, the wheel coordinate system is assumed to coincide with the tool 

coordinate system.  Second, the grinding wheel is translated along the TY  axis by the distance d.  

Then, the grinding wheel is rotated around the TY  axis by the wheel set-up angle .  Therefore, 

the equivalent transformation matrix is 

C
1

cos 0 sin 0
0 1 0

sin 0 cos 0
0 0 0 1

R r
M .                                            (2.5)  

In the 2-axis flute grinding, the grinding wheel moves along the tool axis in feed rate v, and, 

at the same time, the tool bar is rotated in angular velocity,  (clockwise in terms of the TZ  

axis.  The kinematics of this grinding is equivalent to that the tool bar is stationary and the wheel 

moves along a helix of the same helical angle as  with the feed rate v along the tool axis and 

the angular velocity  in counter-clockwise.  The equivalent kinematics is useful to find the 

instantaneous velocity at any point on the wheel during machining.  Due to the helical angle , 

the relationship between the feed rate v and the angular velocity  is 
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T

cot v
r

.                                           (2.6) 

From a geometric point of view, the value of  can be simply set as 1, so the feed rate v 

is T cotr .  The corresponding matrix of the kinematics represented in the tool coordinate 

system is 
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t t
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M                                    (2.7)                        

where t represents the machining time.  Therefore, the grinding wheel can be represented at any 

machining time t in the tool coordinate system as 
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According to the above equation, the instantaneous velocity of the wheel in the tool 

coordinate system can be calculated as 

CT
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r

R h t h t tV .

(2.9) 

To formulate the machined flute in this work, it is necessary to find the envelope of the 

wheel in machining with the envelop theory.  At any moment of machining, the grinding wheel 

contacts the flutes at a curve, which is on the envelope surface.  The main feature of this contact 
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curve is that, at any point of the contact curve, the wheel surface normal is perpendicular to the 

instantaneous velocity.  Here, the wheel surface normal in the tool coordinate system is denoted 

as TN , and the equation of the contact curve is 

T T 0N V .                                                            (2.10) 

For a helical flute of cylindrical end-mills, the contact curves at different machining time 

are the same in shape.  Therefore, the flute surface can be generated by sweeping the contact 

curve at the beginning 0t  along the helical side cutting edge.  Assume the points of the 

contact curve are represented as , ,h t , which is , ,0h here.  It is not difficult to find the 

equation of this contact curve as 

T

C

sin cos cos cot sin cot sin cos cos

cot sin cos cos sin 0

h R h r h

R r R h h
. (2.11) 

By solving this equation, the relationship between h  and  of the contact curve points 

can be found as follows. 

If 10 Hh , 

T Ccot cot coth r R r ;   (2.12) 

and, if 1 2H Hh , 

c 1*
2

T cos cot cot cot cot cos cot cot sin

1 cot s

o

in

c t R r R H
h

r . (2.13) 
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Now, the contact curve can be partially found in the tool coordinate system by substituting 

Eq. (2.12), Eq. (2.13), and 0t  into Eq. (2.8).  Specifically, the two segments C2C3 and C4C5 of 

this contact curve on the two revolving surfaces of the wheel can be found (see Figure 2.4).  In 

addition, the coordinate 
5 5 5T, T, T,, ,x y zC C C  of the point C5 satisfies an equation 

5 5

2 2

T, T, Tx y rC C .  Thus, the parameters of the points C2, C3, C4, and C5, which are 

2 2
, ,0hC C , 

3 3
, ,0hC C ,

 4 4
, ,0hC C , and 

5 5
, ,0hC C , respectively, are known.

 
 Since these 

surfaces are not continuous in terms of their first derivatives, the segments C2C3 and C4C5 are 

disconnected.   

Moreover, in the helical fluting, the wheel circular edges, E1 and E2, grind part of the flute.  

In some cases, the wheel circular edge E3 could generate the flute shape, which is not discussed 

here.  Unfortunately, the envelope theory cannot be applied on finding the contact curve in the 

flute grinding with the edges.  It is evident that an arc on each of the edges, E1 and E2, are 

contact curve segments.  In  Figure 2.4, the arc C3C4 of the edge E2 is a contact curve segment 

connecting C2C3 and C4C5; and the arc C1C2 of the edge E1 is a contact curve segment.  The 

representations of C1C2 and C3C4 can be found easily. 
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Figure 2.4 Illustration of the contact curve between the grinding wheel and the flute. 

 

According to Eq. (2.8) of the wheel representation in the tool coordinate system, the 

equation of the contact curve segment C1C2 on the edge E1 is derived with t as zero and h as zero, 

which is 

1 2 C

cos cos
sin

sin cos

R
R r R

R
C  , and 

1 2
,C C .                            (2.14) 

where the parameter 
1C  of the point C1 is 

1

22 2
T C 2C

2 2 2

*

22 2
T C 2C

2 2 2

cot
arcsin cot ,  and 0

sin sin

cot
arcsin cot ,  and 0

sin sin

r R rR r
R R

r R rR r
R R

C .        (2.15) 
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Similarly, the equation of the contact curve segment C3C4 on the edge E2 can be found by setting 

t as zero and h as 1H , which is 

1

3-4 c

1

H sin cos cos
sin

H cos sin cos

R
R r R

R
C , and 

3 4
,C C .                    (2.16) 

After finding all the points , ,0h  of the contact curve, the flute surface tF  is generated by 

sweeping the contact curve along the helical movement of the wheel.  So the equation of the flute 

surface is 

C

C

T

cot cos cos cos cot sin sin sin cos sin

cot cos cos sin cot sin cos sin sin

co

cos

cos cot sin cos t

R h t R h t h t t

R h t R h t h t t

R r

t R r

h trR h

F
. (2.17) 

 

2.4 Formulation of the rake and the flute angles  

As convention, the rake and the flute angles of a cylindrical end-mill flute are defined on 

the flute profile within the cross-section.  Since the flute profiles on different cross-sections are 

the same in shape, the cross-section of Tz  as zero is taken in this work.  To find the flute profile 

P on this cross section, first, the following equation is obtained.  

Tcos cot sin cos cot 0h R h r t . (2.18) 

Then, by solving this equation, the machining time t is calculated as 

T

cot sin cos co

co

s

t
,

R h

r

h
t h .                        (2.19) 
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Finally, the flute profile equation is found by substituting Eq. (2.19) into Eq. (2.17).  It is 

easy to understand that this profile consists of several segments, which are co-related to the 

contact curve segments on the revolving surfaces and the circular edges of the wheel.  Figure 2.5 

shows four segments of the flute profile, P1P2, P2P3, P3P4, and P4P5, which are co-related to the 

four contact curve segments, C1C2, C2C3, C3C4, and C4C5, respectively.  The parameters of the 

points, P1, P2, P3, P4, and P5, are 
2 2 2
, ,h tC C P , 

3 3 3
, ,h tC C P ,

 4 4 4
, ,h tC C P , and 

5 5 5
, ,h tC C P , 

respectively. 

 

Ф

γ

P1

P5

P4 P3 P2

OT

 

Figure 2.5 The segments of the flute profile on the cross section. 

 

To formulate the rake angle of the side cutting edge, the equation of the flute profile 

segment P1P2 should be derived.  Since the points of the flute profile P1P2 are on the edge E1, 
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their parameter h  is zero.  According to Eq. (2.19), the equation of the machining time for the 

flute profile segment P1P2 is  

1 2
T

sin cos
cot

Rt
rP .                                  (2.20) 

And the equation of the profile segment P1P2 is 

1-2 1-2 1-2

1-2 1-2 1-2

C

1-2

C

cos cos cos sin sin sin

sin cos cos cos sin cos

R t R t R r t

R t R t R r t

P P P

P P P

P , 

(2.21) 

where 
1 2
,C C .  Thus, the machining time 

1
tP  of the point P1 is 

1 2 1
tP C , and the position 

vector of the point P1 is 
11 2 CP .  Then, according to Eq. (2.21), the tangent vector 

1 2 1P CT

of P1P2 at the point P1 is 

1

1 1

1 2 1 1

1

1 1

*
2 C* *

c 1 1 C 2 C 1
T*

C *
1 C* *

c 2 2 C 1 C 2
T

cot1 sin cos cos cot
cot sin

sin sin
cot1 sin cos cos cot

cot sin

R r R R
r

R

R r R R
r

P CT

, (2.22) 

where 

1

1
T

sin cos
cos

cot

R

r
C , and 1

2
T

sin cos
sin

cot

R

r
C .                  (2.23) 

Therefore, the rake angle can be calculated as 

1 1 2 11 2arccos C P CP T .          (2.24)                        

 

To formulate the flute angle  of the flutes, the position vector of the point 5P  on the cross 

section of T 0z  should be found.  According to Eq. (2.19), the machining time 
5

tP  of this point 
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is 
5 5
,t hC C .  By substituting the parameter 

5 5 5
, ,h tC C P  

of the point 5P  into Eq. (2.17), its 

position vector of 5P  is the Tx  and Ty  coordinates of 
5 5 5
, , Ph tC CF .  Hence, the formula of the 

flute angle  is 

1

*
1 2 5arccos CP P .       (2.25)                           

 

2.5 CNC programming for wheel parameters determination 

The main objective of CNC programming is to determine the wheel parameters to ensure 

the pre-specified values of the flute parameters after machining.  Basically, the CNC 

programming is an iterative process of modifying the wheel dimensions and its position (its 

location and its set-up angle) and evaluating the machined flute parameter values.  In this work, 

the wheel of standard shape with the dimensions, R , 1H , 2H , and  shown in Figure 2.1, is 

employed in the 2-axis grinding of the cylindrical end-mill flutes.  It is practical that the wheel is 

made by dressing an existing wheel, of which the R  and 2H  are often kept the same and the 1H  

and  are changed to the values that are calculated by using the flute angle equation derived in 

above section.   

The location of the wheel can be easily determined according to the configuration of the 2-

axis flute grinding.  To ensure the core radius, the distance between the wheel and the tool axes 

is CR r ; therefore, the origin of the wheel coordinate system is an offset of the origin of the tool 

coordinate system along the TY  axis by Cr .  The wheel set-up angle is determined according to 

the rake angle equation derived in Section 2.4.  The closed-form equations of the rake and the 
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flute angles are crucial to determining the wheel parameters more efficiently and accurately, 

compared to the prior direct methods.  For better CNC programming, the relationships of the 

wheel parameters and the flute parameters are discussed in the following. 

2.5.1 Relationship between the flute rake angle and the wheel parameters 

According to the equation of the rake angle , it is related to the wheel set-up angle , the 

wheel radius R , the tool radius Tr , the core radius Cr , and the helical angle .  Usually, the 

grinding wheel radius R  and thickness 2H are often determined according to an existing grinding 

wheel available in the company.  Thus, for a flute with the Tr , Cr , and  specified, the wheel 

set-up angle can be determined for the specified .  It is worth to mention that the wheel 

parameters 1H  and do not affect the rake angle.   Four examples are provided to demonstrate 

the relationship between the rake angle and the wheel parameters.  For these examples, the flute 

parameters, the helical angle , the tool radius Tr , and the core radius Cr , are 35 degrees, 10 

mm, and 6 mm, respectively.   

 

In the first example, the wheel dimensions are provided in Table 2.1, and the wheel set-up 

angle varies between 10 to 80 degrees.  By Eq. (2.24), the rake angles are calculated with 

different wheel set-up angle, and the plot of the rake angles is shown in Figure 2.6.  It is evident 

that the rake angle varies dramatically, changing from -28 to 58 degrees.  In the second example, 

the wheel radius R  increases from 20 to 150 mm, and the other wheel parameters are listed in 

Table 2.1.  On the contrary, the rake angle decreases from 15.5 to 9.5 degrees. The plot of the 

rake angle is shown in Figure 2.6(a) and Figure 2.6(b).  In the third and the forth examples, the 
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wheel dimensions, 1H  and  are changed, respectively.  But, the rake angle remains unchanged, 

and the plots are displayed in Figure 2.6(c) and Figure 2.6(d). 

 

Table 2.1 The values of the flute and the wheel parameters of the examples. 

 Example 1 Example 2 Example 3 Example 4 

Wheel radius R  
(mm) 50 20 - 150 50 50 

Wheel dimension 

2H  (mm) 
20 20 20 20 

Wheel dimension 1H  
(mm) 

2 2 0 - 10 2 

Wheel angle  
(Degree) 50 50 50 20 - 80 

Wheel set-up angle 
 (Degree) 10 - 80 45 45 45 
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Figure 2.6 Plots of rake angles in terms of the wheel set-up angle and its dimensions. 
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2.5.2 Relationship between the flute angle and the wheel parameters 

For the flute angle  of the flute, it is mainly related with the wheel parameters, R , 1H , , 

and .  To demonstrate the relationship between the flute angle and the wheel parameters, the 

flute angles are calculated in the aforesaid examples 1 to 4, and the corresponding flute angle 

curves are plotted in Figure 2.7.  It can be observed that the flute angle decreases while  

increases in Example 1, and the flute angle increases while R , 1H , and  increase in Example 2, 

3, and 4, respectively. 
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Figure 2.7 Plots of the flute angles in terms of the wheel set-up angle and its dimensions. 

 

In CNC programming, first, R  and 2H  are determined based on an available grinding 

wheel.  Second, according to the prescribed rake angle, the wheel set-up angle  can be 

determined.  Then, by Eq. (2.25), the flute angles can be calculated in terms of different values of 

1H  and .  For the prescribed flute angle, a group of solutions of 1H  and  can be found.  

Among these solutions, one pair of 1H  and   can be determined according to the available 

grinding wheel.  To illustrate this practical approach, an example is rendered here.   In this 

example, the tool radius Tr  is 10 mm, the core radius Cr  is 6 mm, the rake angle  is 10 

degrees, and the helical angle  is 35 degrees.  Suppose a wheel with R  as 50 mm and 2H  as 
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20 mm is available and it is to be dressed for grinding the flute.  According to the rake angle, the 

wheel set-up angle should be 45 degrees.  Then, by changing 1H  between 0 to 10 mm and  

between 25 to 90 degrees, the flute angles can be computed, and the flute angle surface is plotted 

in Figure 2.8.  Since the flute angle should be 80 degrees, the red curve on the flute angle surface 

represents the options of 1H  and .  According to the shape of the available wheel, one pair of 

1H  and  on the red dash curve that is close to the actual wheel size is chosen to dress the wheel 

into the required wheel in order to grind the flute.  

 

1H

Solutions to flute 
angle of 80

 

 

Figure 2.8 The plot of the flute angles of the flute in terms of the wheel dimensions, 1H  and . 
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2.6 Applications 

To demonstrate validity of this new CNC programming approach to determining the 

dimensions and position of a standard wheel for the 2-axis flute grinding of a cylindrical end-

mill, a practical example is provided and the results are discussed.  In this example, the flute is 

designed with its parameters specified and is to be machined on a 2-axis CNC grinding machine.  

The tool radius Tr  is 10 mm, the core radius Cr  is 5.5 mm, the flute helical angle  is 35 

degrees, the rake angle  is 15.5 degrees, and the flute angle  is 80 degrees.  This example 

shows the details of the CNC programming of wheel parameters determination. 

 

Suppose a grinding wheel of radius R  as 50 mm and thickness 2H  as 20 mm is available 

in the machine shop.  Here, it is employed to machine the flute.  Thus, its dimensions, 1H  and , 

and its location and set-up angle  should be determined in the CNC programming.  Then, the 

wheel is dressed according to the values of 1H  and .  Before the 2-axis flute grinding, the 

wheel is set up according to its location and the set-up angle in terms of the tool bar.  In this 

approach, the wheel is offset along the TY  axis so that the distance between the wheel and the 

tool axes is CR r .  To ensure the prescribed rake angle (15.6 degrees), the wheel set-up angle 

can be calculated as 45 degrees.  To ensure the flute angle (80 degrees), many pairs of  1H  and 

 are the solutions, five of which are selected and listed in Table 2.2. 
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Table 2.2 Five selected solutions of 1H  and  to the flute angle (80 degrees). 

Wheel parameters 
Solution1 

1 

Solution2 

2 

Solution3 

3 

Solution4 

4 

Solution5 

5 

Wheel dimension H1 (mm) 0 1 2 3 6 

Wheel angle  (degree) 69.4 67.3 64.9 61.6 52.3 

 

In practice, suppose the available grinding wheel can be dressed with one of the solutions.  

After dressing, the wheel can be used to grind the flute on a 2-axis CNC grinding machine.  In 

this work, the flute grinding process is simulated in CATIA, and the solid models of the flutes 

generated with the wheel of different 1H  and  are attained, which are shown in Figure 2.9.  

The rake and the flute angles of the solid flute models are measured in CATIA.  The results are 

listed in Table 2.3, and it is clear that the errors of the rake and the flute angles are very small. 

Besides, the acceptable tolerance for the flute parameters in engineering is around 1 degree for 

angle and 0.1 mm for length. The main reason of these errors, we believe, is the error of 

constructing the solid flute models.  Therefore, the CNC programming to wheel parameters 

determination is accurate. 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Figure 2.9 The solid flute models (a) to (e) by using the wheel dressed with the solution 1 to 5, 
respectively. 

 

 

 

 

 Table 2.3 The measured rake and flute angles of flute models in simulation and their errors. 

Flute parameters 
Solution 

1 

Solution 

2 

Solution 

3 

Solution 

4 

Solution 

5 

Specified rake angle  

(degree) 
15.6 15.6 15.6 15.6 15.6 

Measured rake angle 

(degree) 
15.55 15.62 15.58 15.50 15.40 

Rake angle error 0.3% 0.1% 0.1% 0.6% 1.2% 

Specified flute angle  

(degree) 
80 80 80 80 80 
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Measured flute angle 

(degree) 
79.977 80.135 80.151 80.039 79.753 

flute angle error 0.03% 0.1% 0.1% 0.04% 0.3% 

 

2.7 Summary 

This work has proposed a new approach for automated and accurate CNC programming to 

determine the dimensions and orientation of a standard wheel in the 2-axis flute grinding of 

cylindrical end-mills.  The main contribution of this work is the formulation of the rake and the 

flute angles in terms of the wheel parameters and the practical method of determining the wheel 

dimensions according to a wheel available in machine shops.  Using this approach, the CNC 

programming is automated and accurate, instead of trial and error.  Examples have demonstrated 

the validity of this approach, which can be implemented in tool manufacturers. This approach 

provided and integration approach for CAD/CAM  of cylindrical end-mill. 
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Chapeter 3. Research on the moment of inertia of end-mill flutes 
with the CAD/CAM integration model 

 

3.1 Introduction 

The performance of the milling process is determined by the mechanism between the 

end-mill held in a high-speed rotating spindle and work-pieces [3,8,25]. Consequently, tool 

deflection and vibration are caused in this process. Generally, End-mill is regarded as the most 

flexible part in the machine structure, which makes the largest contribution to the tool deflection 

and dynamic behavior. In industry, the core radius is usually limited to no less than 0.5 times of 

the tool radius to guarantee proper rigidity. Hereto, the tool stiffness would greatly determine 

machining accuracy and surface quality.  

Shank Flute

Cylindrical beam

rT

0.8∙rT

A-A
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B
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(b)

rc
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Figure 3.1. The deflection model of solid end-mill: (a) cylindrical beam model (b) real model. 



56 
 

In most studies [10,55-59], the solid end-mill is generally assumed as a cantilever 

cylindrical beam rigidly supported by the tool holder. Base on the cantilever beam model, Kline 

[55] predicted the surface error caused by the static deflection in the milling processes. To 

improve the accuracy of deflection prediction, Kops [56] proposed that the equivalent diameter 

of the cylindrical beam is approximately 80% of the cutter diameters shown in Figure 3.1(a). In 

Elbestawi‘s research [57], the tool stiffness was calculated using the cantilever beam bending 

theory and a dynamic milling model was presented. Recently, Xu [58] developed a more 

sophisticated dynamic milling model with considering the cutter flexibility to predict not only 

the tool deflection but also the dynamic surface errors. Clearly, all of these models is based on 

the cantilever beam with a cycle cross-section (Figure 3.1 (a) A-A), which ignores the variety of 

flute shapes. Hence, it inevitably introduces errors in the following deflection or surface error 

prediction.   

Core
radius

Core
radius

Solid area
Flute space

 

Figure 3.2. Illustration of 2-flute and 4-flute shapes. 

In practice, as shown in Figure 3.1(b), the solid end-mill consists of two geometrical parts: 

the shank and the flutes. As one major part of end-mills, flutes have significant effect on the tool 

stiffness. With advances of manufacturing of end-mill, the flute shapes are designed with a 

variety of structures, such as 2-flute and 4-flute shapes illustrated in Figure 3.2.  Therefore, the 
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flute shapes should be considered in the evaluation of tool stiffness, especially for the variety of 

core radius.  A detail investigation about the flute shape models will be elaborated in the 

following section. 

According to the beam bending theory, the tool stiffness can be evaluated through the 

moment of inertia. In order to investigate the effect of flute shapes, the inertias of flute cross-

section are discussed in this work. For simplification, the inertia of the moment is simplified as 

inertia in the following description. 

In this chapter, an efficient and exact solution of calculating the inertia of solid end-mill 

flute was introduced, which can contribute to the accuracy of prediction of tool deflection and 

dynamic behavior. The outline of this work is organized as follows. Section 2 discusses two 

different geometrical flute shape models. Section 3 presents a finite method of calculating the 

inertia of flute cross-section. Besides, through fitting the inertia data for various flute shapes, an 

efficient power model in term of tool radius and core radius is proposed to predict the inertia. 

The proposed approach is compared with current model to show the accuracy.  Finally, an 

application is undertaken. 

3.2 Representation of flute shape 

Since flutes are critical for the tool geometry, developing of the mathematical 

representation of flute shape is the first step of calculating the moment of inertia. Throughout the 

literature reviews [7,10,17,19,60], according to the representation of flute cross-section, the flute 

model can be classified into two groups: the two-arc model which consists of two connected arcs 

and the free-form model deduced from the flute-grinding processes.  
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3.2.1 Two-arc model 

For the two-arc model, the flute shape was examined in E. Budak‘s research [10] to 

predict the dynamic properties. As shown in Figure 3.3, two arcs (AB and BC) are used to 

represent the flute in the cross-section. The mathematical representation for the arc BC of 2-flute 

and 4-flute end-mill is derived in the polar coordinate system shown in Eq. (3.1) and Eq. (3.2): 

2 2 2
eR sin cosq a r a ,  where 0, / 2 .                    (3.1) 

2 2 2
eR cos cosq a r a ,  where 0, .                     (3.2) 

A
B

C

r

rc

fd
a

Req

fd

rc

R eq
r

a

fd : flute depth   r : arc BC’s radius  rc : core radius  

 

Figure 3.3. Two-arc models for 2-flute and 4-flute end-mill. 

Base on the two-arc model, Kivanc derived the area moment inertia to predict the static and 

dynamic properties of tools. The inertia for the 4-flute and 2-flue end-mill about the X and Y 

axis in the cross-section can be written as follow: 
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4eq( )/2
3 2

4x 4y
0 0

1I =I 4 cos
8 2

R fdd d  ,                              (3.3) 

4eq( )
3 2

2x 2y
0 0

1I =I 2 cos
8 2

R fdd d ,                                (3.4) 

However, this model cannot reveal all the information of end mill, especially missing the 

key parameters: rake angle and relief angle. The profile of the tool is far different to the real end 

mill in industry. For the real end-mill, the flute profile is free-form curve which is manufactured 

using grinding wheel. Therefore, the flute shapes can only be obtained through the kinematic 

relation of flute-grinding process. 

3.2.2 Free-form model 

In practice, the flute is machined using a grinding wheel moving with a helix motion. The 

result flute is generally assumed as the conjugate surface of the moving grinding wheel surface. 

In chapter 2, the flute shape of peripheral end-mill was derived through modeling kinematics of 

flute-grinding process with a parametric standard grinding wheel. The modeling procedures are 

conducted with four steps illustrated in chapter 2. First, the grinding wheel is represented with a 

parametric equation with respect to the parameters: wheel width H1, H2 and wheel angle α, which 

are called wheel shape parameters. Second, the grinding wheel is configured in the machining 

coordinate system with a setting angle β and a translating distance d, which are denoted as 

configuration parameters. Third, the kinematic of flute-grinding process is governed by a helix 

motion, which is resolved into a translation v and rotation ω about the tool axis. Fourth, the 

representation of flute profile is deduced based on the surface conjugate theory, and the 

representation of rake angle, flute angle, core radius are also obtained.  
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To summarize, mathematically, the flute shape is a function of the grinding system 

regarding to the grinding wheel shape, machine configuration and kinematic motion of the 

grinding processes represented in Eq. (3.5). Various flute shapes would be obtained via 

combination of parameters of Eq. (3.5). In those parameters, the wheel shape parameters α and 

H1 has a great influence on the flute profile. The configuration parameters are closely related to 

the rake angle and core radius. And grinding processes parameters are determined by the flute 

helix angle λ.  

1 2H , H , ,, , ,F f d v   ,       (3.5) 

where, α, H1 and H2 are the wheel shape parameters; β and d are the configuration parameters; v 

and ω are the grinding processes parameters. 

With the above method, various flute shapes with different tool radius and core radius are 

obtained shown in Figure 3.5 and Figure 3.9.  

3.3 Calculation of area and moment of inertia 

3.3.1 The discritised method  

As aforementioned, the flutes of end-mill play an important role in the chip evacuation 

and tool stiffness. In this work, the 4-flute and 2-flute end-mills are evaluated through the 

calculation of the moment of inertia of the solid area in the cross-section.  

 As shown in Figure 3.4, the 4-flute and 2-flute end-mills are developed base on the 

grinding model introduced in last section and the flute spaces are identified with the number. The 
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flute space is discritised into a group of finite rectangular elements. Hereto, the inertia of the 

flute space would be approximated summing up all the finite rectangular elements. For the 

rectangular element, the inertia about X and Y axis are represented in the following equations: 

23

exI =
12 2i
bh hbh y ,      (3.6) 

3
2

eyI =
12 i
hb bhx  ,       (3.7) 

where b  and h are, respectively,  the width and height of rectangular element which are 

governed by Eq.(3.8).  

1 1,  , =2 3 ...... Mi i i ih x x b y y i ,     (3.8) 

where M is the total number of discritised elements. 
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Figure 3.4 Calculation of area and moment of inertia 
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As shown in Figure 3.4, for the 4-flute end-mill, the inertia of the flute space in region 1 

can be obtained by summing up all the elements:  

M

4x-1
1

I = Iex ,       (3.9) 

M

4y-1
1

I = Iey ,       (3.10) 

where, 4x-1I and 4y-1I are the inertia of 4-flute in region 1 about X and Y axis, respectively. 

Because of its symmetrical geometry of 4-flute end-mill, the inertia of region 1 is the 

same with region 3, and region 2 equals region 4. Besides, through transformation of the inertias, 

it is also found that the inertia of region 1 about X axis equals the inertia of region 2 about Y axis, 

and the inertia of region 1 about Y axis equals the inertia of region 2 about X axis. Therefore, the 

total inertias are represented as follows: 

4x 4y 4x-1 4y-1I =I 2 I I .          (3.11) 

 Similarly, the formulation of inertia for the 2-flute end-mill can be written as: 

2x 2x-1I 2I ,       (3.12) 

2y 2y-1I 2I ,       (3.13) 

where, 2x-1I and 2y-1I are the inertia of 2-flute in region 1 about X and Y axis, respectively. 

3.3.2 Statistical formulation of the inertia with various flute shapes 
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In the above section, a discritised method is proposed to calculate inertia with various 

flute shape obtained from the grinding-based method. However, the prerequisite for this method 

is to get the flute shape, which is too complex to be followed in practice. Therefore, a more 

efficient method of calculating the moment of inertia is required without resorting to the 

complicated flute shapes. Intuitively, the tool radius and core radius are two important factors to 

influence the flute inertia. In Kops’ research [56], an equivalent cylinder with 0.8 times of the 

tool radius is proposed to estimate the inertia but without considering the core’s effect.  

In order to investigate the relationship between the moment of inertia and tool radius and 

core radius, a group of flute shapes developed from the grinding-based method are tested 

statistically. In the grinding processes of flute shapes, the grinding wheel used in the tests is 1V1 

type (H1 = 0 mm, H2 = 10 mm) with radius 50mm. The result flutes have the common 

parameters: rake angle 5 degrees, flute angle 80 degrees, but various tool radius range from 2mm 

to 10mm with step 1mm,  and core radius ratio ζ (the ratio between core radius and tool radius 

shown in Eq. (3.14) ) from 0.5 to 0.75 with step 0.05.  

c

T

r
r ,       (3.14) 

where, rc is core radius and rT is the tool radius. 

As described in  Figure 3.5, it is important to highlight that the flute shapes are similar for 

the same core ratio and the size of flute is increasing with the tool radius. Therefore, it is 

assumed that the moment of inertia is a function related to the core radius and tool radius. In 

order to identify the relationship, the inertia for each flutes are calculated using the presented 

discretized method. And the result data are classified into 6 groups according to the core ratio. 
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For each group, the inertia is increasing dramatically with the tool radius raising; therefore the 

power model shown in Eq. (3.15) is used to fit the data.  

by cx ,      (3.15) 

Where, c is noted as scaling factor and b is the power. 

The result data and fitting equations are plotted in Figure 3.6(a), which shows a 

significant fitness with R-square more than 0.95. It is observed that the power values in the 

fitting equations are very close to 4, which is consistence with the definition of inertia with the 

unit: mm4.In order to develop a generalized model for the prediction of inertia, the power 

equation in Eq. (3.15) is revised as: 

4y cx .        (3.16) 

And Eq. (3.16) is used to re-fit the inertia data shown in  Figure 3.6(b), which also presents a 

good fitness. 
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Figure 3.5. 4-flute shapes with different tool radius and core radius.  
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(a) 

 

(b) 

Figure 3.6. Variation of inertia regarding to tool radius with different core ratio for 4-flute shapes. 
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Whereas, it is also noted that the scaling factors in the power equations given in Figure 

3.6(b) varies with the core ratios. In order to develop the relationship between the core rations 

and the scaling factors, they are plotted in Figure 3.7. A linear equation is applied to fit the data, 

which also shows a significant fitness. Consequently, the inertia of flutes can be represented 

regarding to the tool radius and core ratio with the combination of power equation and linear 

equation shown in Eq. (3.17), 

4
4x 4y TI =I 0.914 0.195 r .                                          (3.17) 

It should be noted that the equation comes up with the statistical data and only available 

while 0.5 0.75  and  . 

 

 

Figure 3.7. Variation of scaling factor in 4-flute power equations with the core ratios. 
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Figure 3.8. Various 2-flute shapes with different tool radius and core radius.  

 

Similarly, the inertia of 2-flute shapes is also developed with various tool radius and core 

ratios. Respectively, the inertias about the X and Y direction are calculated using the finite 

elements method. In the same way, the data of inertia are plotted, and the power equations with 

4th power are used to fit the inertia data as shown in Figure 3.9 and Figure 3.11. And the scaling 

factors are predicted using linear equations shown in Figure 3.10 and Figure 3.12. Finally, the 

inertias about X and Y axis for 2-flute shape is presented as: 



69 
 

4
2x TI 0.517 0.0863 r ,      (3.18) 

4
2y TI 0.707 0.139 r ,     (3.19) 

where, 0.5 0.75  and  . 

 

Figure 3.9. Variation of inertia about X axis regarding to tool radius with different core ratios for 

2-flute shapes. 
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Figure 3.10. Variation of scaling factors in 2-flute power equations with the core ratios. 

 

Figure 3.11 Variation of inertia about Y axis regarding to tool radius with different core ratios 

for 2-flute shapes. 
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Figure 3.12 Variation of scaling factors in 2-flute power equations with the core ratios. 

3.3.3 Model Verification 

To demonstrated the accuracy of proposed power equation model, sseveral cutters were 

generated to verify the proposed equations shown in Table 3.1. The cutters were provided by one 

CAD/CAM software for cutting tool design, which is developed based on the VB and CATIA 

program. The flute inertias of those cutters were measured in the cross-section with the measure 

function with CATIA.  Those nomenlences are defined for Table 3.1: 

I1 is the flute inertia mesearued by CATIA , I2 is the flute inetia calculated from the proposed 

power model and  I3 is calculated by the two-arc model. Δ1 is the difference between I1 and I2 

and Δ2 is the difference between I1 and I3. 
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Table 3.1 Comparison of measured and predicted flute inertia 

Flutes  rT (mm) rc (mm) I1 (mm4) I2 (mm4) I3 (mm4) Δ1 (%) Δ2 (%) 

4 10 6 3469.4 3534.0 3681.2 1.9% 6.1% 

4 9 6 2635.2 2718.4 2818.5 3.2% 7.0% 

4 5 2.5 155.9 163.8 177.4 5.1% 13.8% 

4 3 1.95 31.5 32.3 33.5 2.5% 6.4% 

2 6 3.2 335.6/492.6 308.5/469.2 348.6/348.6 8.0%/4.7% 3.9%/29.2% 

2 4 2 59.8/96.9 55.1/88.3 62.8/62.8 7.8%/8.9% 5.1%/35.2% 

2 3 2.1 27.7/33.4 28.8/36.3 33.2/33.2 7.2%/6.2% 23.5%/2.8% 

 

3.4 Application  

As mentioned, the area inertia of end-mill is an indication of tool stiffness, which can be used to 

predict the static and dynamic behavior of end-mill in milling processes. In this section, a group 

of examples are demonstrated to calculate the tool deflection with the proposed moment inertia 

formula.  According to the beam bending theory, the end-mill is regard as a two-step cantilever 

beam with cutting forces applied at the end. And the maximum deflection can be calculated 

using the following formula provide by Ref [10].    

     (3.20) 

Where,  is the moment inertia of the flute,  is the moment inertia of the shank,  is the 

suspended tool length and is the flute length shown in Figure 3.1. 

For the two-flute end-mill, as we mentioned, the flute inertias are varying at different direction. 

Therefore we use the root mean square of inertias in the X and Y direction as the value of flute 

inertia in Eq. (3.20) while calculating the two-flute tool deflection. The material of end-mills are 
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high speed steel (HSS) with modulus of elasticity 250GPa, and the cutting forces are assumed as 

300N applied at the bottom of end-mill. The tool parameters, moment inertia are listed in Table.2, 

and also the tool deflections are calculated in Eq. (3.20) taking advantage of the proposed inertia 

formula. Figure 3.13(a)-(c) shows the effect of various flutes number, core ratio, tool radius and 

suspended length on the tool deflection.   

Table 3.2. Deflection of end-mills with various geometrical features 

NO. Flutes L1 (mm) L2(mm) rT (mm) rC (mm) I1(mm4) I2 (mm4) d (um) 

1 4 20 30 4 2.00 67.1 201.1 85.51 
2 4 20 30 4 2.20 78.8 201.1 78.42 
3 4 20 30 4 2.40 90.5 201.1 73.17 
4 4 20 30 4 2.60 102.2 201.1 69.12 
5 4 20 30 4 2.80 113.9 201.1 65.90 
6 4 20 30 4 3.00 125.6 201.1 63.28 
6 2 20 30 4 2.00 73.5 201.1 81.33 
7 2 20 30 4 2.20 80.9 201.1 77.35 
8 2 20 30 4 2.40 88.4 201.1 73.99 
9 2 20 30 4 2.60 95.9 201.1 71.14 
10 2 20 30 4 2.80 103.6 201.1 68.69 
11 2 20 30 4 3.00 111.3 201.1 66.56 
12 4 20 30 5 3.75 306.6 490.9 25.92 
13 4 20 30 6 4.50 635.7 1017.9 12.50 
14 4 20 30 7 5.25 1177.7 1885.7 6.75 
15 4 20 30 8 6.00 2009.1 3217.0 3.96 
16 4 20 30 9 6.75 3218.2 5153.0 2.47 
17 4 20 50 9 6.75 3218.2 5153.0 10.08 
18 4 20 60 9 6.75 3218.2 5153.0 17.14 
19 4 20 70 9 6.75 3218.2 5153.0 27.00 
20 4 20 80 9 6.75 3218.2 5152.997 40.12 

 

 



74 
 

 

(a) 

 

(b) 

 

(c) 

Figure 3.13. Deflection of end-mill with various geometrical parameters: (a) Core ratio, (b) Tool 

radius and (c) suspended length. 
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In Figure 3.13, by comparing the amplitude of tool deflection variation, it is observed that the 

tool radius and suspended length contribute the most to the tool deflection with a larger range of 

variation, whereas core ratio and flute number can further affect the tool deflection. Therefore, in 

engineering practice it is generally to apply the shortest tool to reduce the surface error caused by 

tool deflection. Without compromising chip evacuation, larger core ratio tools are also 

recommended. Besides, in Figure 3.13(a), it is noted that we cannot always conclude that 2-flute 

end-mill is flexible than the 4-flute end-mill, due to the effect of core radius.  

3.5 Summary 

End-mill flute plays important roles in static and dynamic properties of milling processes. 

Generally, approximate models, such us two arc models, are used to estimate the flute shapes, 

which cannot provide accurate information. In this chapter, the inertia of end-mill flute is 

calculated based on the flute shapes generated from the kinematics of the flute-grinding 

processes. Further, an efficient formula for calculating flute inertia of end-mills was deduced 

from various real flute shapes.  In order to demonstrate the difference, comparison between 

proposed model and the approximation model was carried out. Using the proposed model, the 

tool deflections with different combination of end-mill geometrical structures was discussed.   

Besides, since the flute shapes are obtained from the grinding processes, the approach presented 

here shows an example of using CAD/CAM/CAE integration for end-mills flutes design to 

evaluate the tool stiffness. 
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Chapeter 4. Wheel position and orientation determination for 5-
axis CNC flute-grinding processes 

 

4.1 Introduction 

As mentioned, in industry, the flute is ground using standard grinding wheel via adjust 

the position and orientation in the flute-grinding process. However, in previous researches 

[14,16,18,21], the position and orientation is fixed, and the grinding wheel is dressing with a 

free-form profile in advance to guarantee the designed flute parameters, which is high-cost and 

impractical. In chapter 2, a 2-axis CNC flute-grinding method was proposed to generate the 

design flute with standard grinding wheel. The basic idea for 2-axis flute-grinding is to grind the 

designed flute parameters including rake angle, core radius and flute angle by dressing the 

grinding wheel with a specific profile and also configured with a specific position (translation 

along Y axis) and orientation (rotation about Y axis). For this method, the wheel position in X 

axis is fixed and setting as zero. Therefore, there are only 2-axis motions in the configuration 

operation, which are translation along Y axis and rotation about Y axis.  Due to the limitation of 

2-axis configuration, the grinding wheel is required pre-dressed with specific profile (not free-

form) which is defined by the wheel shape parameters: wheel width and wheel angle. And also, 

the dressed grinding wheel can only be used for the specific flute of end-mills, which will 

increase the manufacturing cost of end-mill. Hereto, in this research, a 5-axis CNC grinding 

algorithm is proposed to grind the flute with standard grinding wheel without pre-dressing. 

In the grinding processes (helix motion), the flute surface was generally obtained through 

calculating the contact line between the grinding wheel and tool bar with the conjugate theory 
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that is the velocity of grinding wheel is normal to the wheel surface at the contact points. 

However, for some specific position and orientation of grinding wheel, interference would 

happen, which result in the destruction of the flute surface (See Figure 4.5). For this case, the 

contact line method cannot be used to predict the interference. In this research, the flute profile is 

directly investigated in the cross-section using the envelope theory, and also the conditions for 

avoiding interference were also discussed. Besides, the tool parameters in the cross-section 

including rake angle, core radius and flute angle were re-defined directly in the envelope flute 

profile.  

As mentioned, for the given standard grinding wheel, the tool parameters are related with 

the position and orientation of grinding wheel in its grinding processes. The wheel position and 

orientation in this research refer to translation along X, Y axis, and rotation about Y axis (See 

Figure 4.2), which means 3 parameters are required to be determined in the grinding processes. 

In this research, the relation between the wheel’s position and orientation parameters and tool 

parameters is converted to an optimization problem based on the envelope flute model, and it 

finally proved to be solved efficiently. 

4.2 Flute profile modeling with 5-axis CNC grinding 

4.2.1. Grinding wheel modeling 

The helix flute is generated with intersection between the grinding wheel and the cutter 

with a helix motion. The working area of grinding wheel occurs at the wheel edge and wheel 

surface shown in Figure 4.1.  A standard cylindrical grinding wheel is applied in this research, 

which consists of two functional parts: the peripheral surface and the wheel edge. The wheel 

model is governed by the parameters: wheel radius R, wheel width H. A wheel coordinate 
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system noted as Og is fixed at the center of wheel edge. As described in Fig.1, Zg axis is pointing 

from the left plane to the end plane; Yg axis is in the vertical direction and Xg axis is horizontal.  

A parameterized representation of the grinding wheel referencing to Og is deduced regarding to 

the variable h and θ in Eq. (4.1).  The wheel edge can be represented by setting h = 0, that is 

g 0,W .  

g

R cos
R s, inh

h
W ,      (4.1) 

where  R is the wheel radius, h is wheel width and 0,Hh , 0, 2 . 

Peripheral
surface

Og
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Yg
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R

Og
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Figure 4.1  Illustration of the cylindrical grinding wheel. 

4.2.2 5-aixs flute-grinding processes 

In order to describe the flute-grinding processes, a tool coordinate system noted as OT is 

established illustrated in Figure 4.2, of which the origin OT is located at the center of left end of 
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the cutter. As described in Figure 4.2, ZT axis is the tool axis pointing from the left to the end 

plane; YT axis is in the vertical direction and XT axis is horizontal.  

dy

Yg

Zg

Xg

Og

OT

ZT

YT
XTdx

dz

β

Grinding
Wheel

Tool bar

v

 

Figure 4.2 5-axis CNC flute-grinding processes. 

The 5-axis flute-grinding processes can be implemented with two operations: 1) Machine 

configuration (also called Machining setting) and 2) the relative helix motion between the cutter 

and grinding wheel. Initially, the grinding wheel is configured with a specified position and 

orientation represented by the wheel center coordinated value dx dy dz  and set-up angle β 

shown in Figure 4.2. The configuration processes can resolve into several motions reference to 

OT: rotating about Y axis by β; translation along X, Y and Z axis by dx, dy and dz respectively. 

The configuration operation is expressed in OT using the homogeneous coordinate 
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transformation in Eq. (4.2). As mentioned in Chapter 2, the translation in Z axis will not affect 

the final flute profile and flute parameters, therefore, dx dy and β (3 parameters) are required to 

be determined in the flute-grinding processes.  For simplification, in the following calculation, dz 

is set as zero. 

T T T T(Z , ) (Y , ) (X , ) (Y , )
cos 0 sin

0 1 0
=

sin 0 cos
0 0 0 1

trans dz trans dy trans dx rot
dx
dy
dz

1M

 (4.2) 

After machine configuration, the grinding wheel will moving with a translation along ZT 

axis ( the tool axis ) v  while the cutter rotate with a specific angular velocity  to generate the 

helix flute surface. This operation can be represented in the tool coordinate system using another 

homogeneous matrix in Eq. (4.3) : 

( , ) ( , )
1 0 0 0cos sin 0 0
0 1 0 0sin cos 0 0
0 0 10 0 1 0
0 0 0 10 0 0 1

cos sin 0 0
sin cos 0 0

0 0 0
0 0 0 1

rot z t trans z v t

t t
t t

v t

t t
t t

v t

2M

   (4.3) 

Integrating Eq. (4.1), Eq. (4.2) and Eq. (4.3), the representation grinding wheel in the 5-axis 

flute-grinding processes at any instant is obtained in the tool coordinate system shown in Eq. 

(4.4): 
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T
g2 1

cos sin sin cos R sin sin R cos cos cos
sin cos sin sin R sin cos R cos cos sin

cos +v R

, ,
1

sin cos
1

dx t dy t h t t t
dx t dy t h t t t

h t

h tW
WM M

    (4.4) 

And also the rotation velocity and translation velocity is governed by the helix angle  using the 

following equation: 

Trtan =
v

     (4.5) 

Where, Tr is he tool radius and is the helix angle. 

Also, for simplifying the calculation, the angular velocity is setting as unit value: 1. 

As aforementioned, geometrically, the flute is generated between intersection of the 

grinding wheel and cutter in 3D space. In chapter 2, the intersection is expressed as the contact 

curve deduced with the conjugate theory. And then, the 3D flute surface is obtained through 

sweeping the contact curve with a helix motion. However, in this research, the Eq. (4.4) is first 

truncated within the cross-section to obtain the flute profile by setting Z element as a constant 

shown in Eq. (4.6).  

cos + R sin cos Ch vt dz      (4.6) 

Where, C 0,L  and L is the flute length along the ZT direction. 

Solving Eq. (4.6),  get the expression :  * R sin cos C - cosh dzt
v

. 
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And the flute profile generated by the intersection grinding wheel within tool’s cross-

section is expressed in terms of  *t  in Eq. (4.7). 

* * * *

* * *T *

cos sin sin cos R sin sin R cos cos cos
sin cos sin sin R sin cos R cos cos sin

,
dx t dy t h t t t
dx t dy t h t t t

hF . (4.7) 

As shown in Figure 4.3, the flute profile denoted by TF  is generated by a family of curves, 

which can be regarded as discretizing the grinding wheel into a group of disks and each disk is 

swept and intersected with the cross-section. Consequently, the flute profile in the cross-section 

is enveloped by the family curves. The result flute profile consists of two parts: 1) the curve 

generated by swept wheel edge and 2) the curve generated by envelope curves. The first part can 

be calculated through setting h=0 in Eq. (4.8). 

* * * *

* * * *T
cos sin R sin sin R cos cos cos
sin cos R sin cos R cos cos s

0,
in

dx t dy t t t
dx t dy t t t

F   (4.8) 

According to the envelope theory, the enveloped part of flute profile is obtained by Eq. 

(4.7) with the condition in Eq. (4.9). Eq. (4.9) is solved easily via numerical methods (golden 

search method) and verified in Figure 4.3 with the envelope points which located in the envelope 

curve. 

0

x y

x y
h h

.       (4.9) 

Mathematically, we can represent the relationship between *  and h for the envelope 

points with a general solution denoted as: *= envelopef h . 
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Figure 4.3 Flute profile generated by envelope of grinding wheel. 

 

4.2.3 Flute parameters formulation within the cross-section 

Generally, the flute parameters including rake angle, core radius and flute angle are 

defined within the cross-section. As shown in Figure 4.3, the flute profile is described in the 

reference of the tool coordinate system TO . In order to define the flute parameters, two key 

points are illustrated as following: The start point SP  and end point EP  are the intersection of 

flute profile with the tool boundary (tool circle), which are located in the flute profile curve with 

the geometric relation: T S T E TO P = O P r . Here, the point  SP  and point EP can be expressed by 

recalling Eq. (4.7) and Eq. (4.8) using the following equation: 
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* * * ** *
* S S

S * * ** *
S

*S
S

cos sin R sin sin R cos cos cos
sin cos R sin cos R cos cos sin

P 0,
dx t dy t t t
dx t dy t t t

.(4.10) 

And *
S  satisfy the following condition: 

2 2 2 * * 2 2 2 * 2
S S S TR +2R sin +2R cos cos R sin cosdx dy dy dx r (4.11) 

The solution for *
S  will be introduced in the following section. 

* * * ** * *
* * E E E

E E E * * *
E E E

*

* * * * *

cos sin sin cos R sin sin R cos cos cos
sin cos sin sin R sin cos R cos cos sin

P
dx t dy t h t t t
dx t dy t h t t

h
t

(4.12) 

Similarly *
E  is governed by the following equation: 

2 2 2 * * *2 2 2 2 * 2
E E E E

2
T

* *
E E

sR +2R sin +2R cos cos R sin cos

=

in

envelope

dx dy dy dx h r

f h
, (4.13) 

Where, *
E 0 Hh . 

And also, Golden search method was used to solve Eq. (4.11) and Eq. (4.13) within the search 

range: *
s 0 2  and *

E 0 Hh . 

Since the two points  SP  and EP  were deduced with the above equations, the flute angle 

 refers to the open angle S T EP O P  between the start point SP  and end point EP , which can be 

expressed using the vector form in Eq. (4.14). 
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T T E

T S T E

O P O Pcos
O P O P

Sa     (4.14) 

The core radius cr  is the minimum distance from the flute curve to origin OT, which can 

be calculated using the following expression in Eq. (4.15).  

2 2
c ( )r min sqrt x y , where T, Fx y .    (4.15) 

Besides, the rake angle  is also calculated as the angle between the tangent TPS  shown 

in Eq. (4.16) and radius direction E TP O  at point SP  . 

* * * * *
S S S S S

* * *
* S S S

s S
S

* * * *
S S S

* * *
* * * *

*
* *

*
* *

S

*
*

sin cos R cos sin R sin cos

R cos sin cos R cos cos sin

cos sin R cos cos R cos

F 0,
TP

s

dt dt dtdx t dy t t t
d d d

dtt t
d

dt dtdx t dy t

d
d

t
d d

*
*
S

* ** * *
S S

*

S

*in

R cos sin sin R cos cos cos

dtt
d

dtt t
d

(4.16) 

Where, 
* R sin sin= -dt

d v
. 

Hereto, the expression of rake angle  is obtained with the vector angle with the following 

expression Eq. (4.17): 

E T

E T

TP P Ocos
TP P O

S

S

a .    (4.17) 

With the above deduction, the flute parameters are related with the grinding wheel shape, 

wheel positions and orientation. As mentioned, in practice, the grinding wheel is scandalized 
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with a fixed shape, which means the grinding wheel parameters are constant. Therefore, in this 

research, for a given cylindrical grinding wheel, the flute parameters are expressed in a general 

function in terms of wheel position dx dy  and orientation β in Eq. (4.18) :   

rake

flute

c core

f dx dy
f dx dy

r f dx dy
    (4.18) 

where cr ,  and  represent the flute parameters: core radius, flute angle and rake 

angle respectively.  

4.3 Investigation of wheel’s position and orientation on flute profile 

Based on the above flute-grinding model with envelope theory, the flute profile is closely 

related with the setting of grinding wheel’s position and orientation. With different combination 

setting parameters, there will be various flute shapes generated. A proper initial wheel setting 

parameters are required to guarantee the flute shape. Otherwise, interference of flute profile will 

happen as shown in the following figures. In this section, the geometrical relation between the 

grinding wheel and the cutter is investigated considering the engineering practice based on 

proposed envelope flute profile within the cross-section to avoid the flute interference. 

4.3.1 Contact area for the grinding wheel and cutter 

Physically, the flute is machined by intersection between grinding wheel and cutter. 

Therefore, in the flute-grinding processes, the grinding wheel should always contact with the 

cutter in space. Besides, in order to avoid over-cut of core radius, the intersection part should not 
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exceed the boundary of core radius. This condition can be modeled through projecting the 

profiles of cutter and grinding wheel edge in the cross-section (XTYT Plane) shown in Figure 4.4. 

Og

XT

YT

Pc
rc

rT

a

bGrinding
wheel

Cutter

dy

dx

re

Ps

Ps’

OT

rc0

 

Figure 4.4 Projection of cutter profile and wheel edge within cross-section. 

 

In Figure 4.4, the cutter profile is simplified by a circle with a tool radius Tr  and core 

radius cr . And the grinding wheel edge is represented by an ellipse which is the projection of 

wheel edge in the cross-section. And Og is the center of ellipse with the wheel location dx dy  

in the tool coordinate system. The ellipse of grinding wheel projection can be determined by 

wheel’s position and orientation expressed in Eq. (4.19): 

e
e

e

cos
sin

dx a
r

dy b
,     (4.19) 
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where a, b are the radius on the x and y axes respectively, and e is the parameters range from 0 

to 2 . cos  and .a R b R  

In addition, the contact point Pc  (see Figure 4.4) with coordinate value c cx y  is the 

minimum distance from the wheel ellipse to point OT. In order to keep that the wheel ellipse is 

intersecting with the cutter circle while not exceeding the core circle, the point Pc should be 

located inside of annulus area which is bounded between the core and tool radius denoted by a 

set S in Eq (4.20).  

c c c0 c T|r r r rS     (4.20) 

The area S is feasible set for wheel and cutter to guarantee intersection with each other.  

As shown in Figure 4.4, the ellipse is tangent with a specific circle at the contact point Pc. The 

geometrical equation between contact point Pc and Og is deduced as following: 

c 0er r ,       (4.21) 

where cr  is the vector OTPc, er  is the derivative of er   expressed in Eq. (4.21) at point Pc. 

Solving Eq. (4.21), we get the expression: *
e c carctan( , )b y a x , where c

c
c

=
x

r
y

 and 

c cx y S .  

Substituting *
e into Eq. (4.19),  the expression of wheel position Og in term of the contact 

point Pc referring to tool coordinate system is obtained in Eq. (4.22) : 
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*
c e

*
c e

cos
sing

dx x a
O

dy y b
     (4.22) 

Through the above geometrical relation between wheel location Og and contact point Pc, 

the intersection area S can be mapping to a feasible set as the constraint of the wheel setting 

parameters. In practice, the cutter and grinding wheel are only contact in the first quadrant area 

of S, that is c 0
2

. Therefore, in this research various initial wheel position points in the 

first quadrant area of S are investigated to test the flute shape.  

4.3.2 Interference of flute profile 

In the flute-grinding processes, the wheel trajectory is typically defined with a helix 

motion related with the helix angle and wheel configuration parameters. Improper wheel position 

and orientation in the grinding processes would result in the interference between the grinding 

wheel and machined flute surface. In practice, interference generally happened in the rake face of 

flute, which is ground by the wheel edge. As shown in Figure 4.5, an example is given to 

demonstrate the interference of flute-grinding processes. The cylindrical grinding wheel with 

parameters: width 20mm and radius 75mm is employed in this case. The wheel position and 

orientation parameter are described as following:  dx = 8.766 dy = 79.426 and and the 

cutter is modeled with a radius 10mm and helix angle 45 deg. The machined flue is shown in the 

following figure. The dotted line in the cross-section is the rake face of designed flute profile and 

the solid line is the machined flute profile. It is observed that interference happened on the rake 

face of designed flute. The rake face profile is destroyed by the succeeding grinding of wheel 

edge in the grinding processes, which generally caused by a larger setup angle. In practice, the 
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value of wheel setup angle is recommended setting around the helix angle to avoid 

interference.  

Designed
Flute
curve

Machined
Flute curve

Grinding
Wheel

Cutter

Wheel
edge

Wheel
surface

Flute
surface

Cross-section

 

Figure 4.5 Simulation for the interference in the flute-grinding processes. 

 

In this section, in order to avoid the interference, for a given wheel position, a limit range 

for wheel orientation β was investigated through modeling the rake face profile generated by the 

wheel edge grinding. Recalling the flute envelope modeling in above section, a group of flute 

profiles are generated and plotted in Figure 4.6. It is observed that the interference happened in 

the last two plots with wheel setup angle: 56 and 60 deg, which is coinciding with the fact that 

larger set up angle tend to result in interference.  
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Figure 4.6 Flute shapes with various position and orientation. 
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Figure 4.7 Interference for flute profile within cross-section. 

As shown in Figure 4.7, the red twist curve shows the envelope curve generated by the 

wheel edge. Point SP  and SP  in the figure are the intersections between the twist curve and the 

cutter profile. The point SP  has been introduced in above section and the point SP  also satisfy the 

following geometrical condition: T S TO P r . Recalling Eq. (4.10), the corresponding solution for 

point SP and SP  is denoted as : *
S  and *

SS . Golden search method is used to search the 

solutions for Eq. (4.10) and the searching range for  is setting as:  

* *
S c0  for point SP , and * *

SS c 2  for point SP , 
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where, *
c  is the parameter for point cP  and can be calculated by minimizing the distance from 

point OT to the twist curve S SP P , which will be explained in the following section. 

Hereto, the solution for the corresponding poinsts SP and SP  is denoted as following: 

*
S S dx dy  and *

SS SS dx dy . 

Substituting *
S  and *

SS . into Eq. (4.10), the point SP and SP  can be expressed as: 

* * * *
* S S

S S * * * *
S S

cos sin R sin sin R cos cos cos
sin cos R sin cos R cos cos sin

dx t dy t t t
dx t dy t t t

P  (4.23) 

* * * *
* SS SS

S SS * * * *
SS SS

cos sin R sin sin R cos cos cos
sin cos R sin cos R cos cos sin

dx t dy t t t
dx t dy t t t

P (4.24) 

In Figure 4.7, the rake flute curve of segment c SP P  is intersected by the other part of the 

segment c SP P . It can be explained that the flute profile generated by wheel edge c SP P  is ground 

by wheel edge c SP P  in the segment succeeding grinding processes. In order to avoid the 

interference, the curve c SP P  should not cross the curve c SP P . From the geometrical point of 

view, it should satisfy the following condition: 

S S 0T T TO P O P Z ,`    (4.25) 

Where and STO P  and STO P  are the vectors shown in Figure 4.8. 
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Figure 4.8 Flute grinding with various condition : (a) non-interference, (b) critical 
condition and (c) interference condition. 
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As shown in Figure 4.8, the inequality for point sP  and sP  can be applied to check 

interference. And s s 0T T TO P O P Z  is the critical condition for the interference. For the 

given wheel position dx dy , the critical setup angle *  can be calculated with the critical 

interference condition. And the setup angle should satisfy the condition: * . Figure 4.8 

shows an example for the avoidance of interference with the proposed condition  

1) Figure 4.8(a) is the normal condition for the enveloping flute with the condition: 

s s 0T T TO P O P Z  

2) Figure 4.8(b) is the critical condition for the enveloping flute with the condition: 

s s =0T T TO P O P Z  

3) Figure 4.8(c) is the interference condition for the enveloping flute with the 

condition: s s 0T T TO P O P Z  

 

4.4 Solution for the wheel’s position and orientation 

4.4.1 Modeling the optimization problem 

The flute-grinding processes can be stated as following in its generalized form: 

rake

flute

c core

f dx dy
f dx dy

r f dx dy
     (4.26) 

where cr ,  and  represent the tool parameter core radius, flute angle and rake angle 

respectively.  
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Figure 4.9 Illustration of flute-grinding model. 

 

As shown in Figure 4.9, the flute-grinding model is illustrated integrating all the 

conditions with the input-output form. Mathematically, the flute-grinding model can be regarded 

as a black-box with the inputs (wheel position and orientation) and outputs are the tool 

parameters cr ,  and . The conditions introduced in last section can be used in the model to 

check the validity of input. However, in engineering, the problem is always described in the 

reverse direction, that is given the tool parameters denoted by 0 0 0cr   to calculate the 

wheel’s position and orientation denoted by dx dy . According to the generalized form of 

flute-grinding processes, this problem can be transferred into solving three equations with three 

independent variables: 

0

0

0

=rake

flute

core c

f dx dy
f dx dy
f dx dy r

,    (4.27) 

where, 0 0 0cr  is the known variable provided by the tool designer, and dx dy  is the 

unknown variables which is required to be calculated. 
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In this research, the solution for the equations is transferred into an optimization problem 

through the following steps: 

Step I. Normalize the designed flute parameters: 

Physically, the flute parameters are measured with different units (mm and deg.) and 

scale. In order to evaluate the calculated results in the same level, a normalization processes is 

proposed in this research shown in (4.28). normf x  is a normalized function, which can be used 

to define the flute parameters in the unit level so as to eliminate the effect of units and scales 

mentioned above. 

min

max min
norm

x xf x
x x      (4.28) 

We define the minima ( minx ) and maxima ( maxx ) for the flute parameters based on the 

engineering practice: T0,cr r , 20, 30  and 0, 180 . 

Step II. Integrating the normalized outputs as one value: 

After normalizing the tool parameters, the output for flute-grinding model can be 

represented with one point in 3D space, which is called output-point. And also the normalized 

designed tool parameters are represented as the designed point. Thus, the solution for the flute-

grinding model in Eq. (4.27) can be transferred into solving the equivalent equation in Eq. (4.29).  

22

0 0

2

0

=0
norm rake norm norm flute norm

norm core norm c

f f dx dy f f f dx dy f

f f dx dy f r
    (4.29) 
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If the solution exists, it can be regarded as minimizing the distance of between the 

output-point and designed point: 

22

0 0

2

0

norm rake norm norm flute norm

norm core norm c

f f dx dy f f f dx dy f
min

f f dx dy f r
 (4.30) 

And also, in order to avoid the interference mentioned above, the valid solution should 

satisfy the following conditions  

S S 0
dx dyT T TO P O P Z    (4.31) 

It is obvious that the solution for Eq. (4.29) is equivalent to the minimized result of Eq. 

(4.30) while the objective function is infinitesimal. A Matlab program was developed to 

implement the proposed the flute-grinding processes integrating with the constraint conditions in 

Eq. (4.31). The general calculation processes is demonstrated in the following flowchart in 

Figure 4.10: First, an initial point Pc in term of c  and wheel orientation  are given, which can 

be used to calculate the wheel’s location dx dy  through the contact constraint. Afterwards, the 

inequality constraints are used to check the validity of the initial value; if invalid, a NaN value 

will be returned. Then, the flute parameters (rake angle, flute angle and core radius) can be 

calculated based on the provided wheel’s position and orientation through the proposed envelope 

theory for flute-grinding processes. After normalizing the calculated and designed tool 

parameters with Eq. (4.28), the distance between the designed point and out-point is evaluated 

through the difference of the two points value.  
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Figure 4.10 Flowchart of calculation of 5-aixis flute-grinding model. 
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Step III. Initial points for objective function 

In the first two steps, the flute-grinding model is converted to an equivalent optimization 

problem. fminsearch is a common search function in Matlab used for nonlinear optimization 

technique based on the ‘Nelder-Mead simplex direct search’ algorithm. This method often 

handle discontinuity problem without providing any derivative information. Hereto, fminsearch 

is used to solve the optimization problem. And also, a group of initial points were investigated in 

the contacting area ( ) to test the validity and efficiency of solution. Besides, based on the 

engineering experience the initial value for orientation parameter β is generally setting as the 

same value as helix angle  in this research. 

4.4.2 Verification 

An example was given in this research. The parameters for the grinding wheel and cutter 

are provided in Table 4.1. As recommended previous, the initial value for the wheel orientation 

is setting as 45 degree the same as helix angle. The solution for the wheel’s position and 

orientation are obtained with various initial points deduced from the contact area shown in 

Figure 4.11. The optimized results are described with different markers: the circle marks 

represent the optimized results can satisfy the solution with acceptable tolerance (1e-3), while the 

star makers means not. 

It is observed that the solution mainly exists while the initial points are set in the first 

quadrant contact area S. Figure 4.12 shows that all the solutions converge within a tolerance area, 

which means that there is only one solution exists in the feasible area for the objective function. 

The average value for the solutions is substitute into the flute-grinding program and verified in 

Figure 4.13 with Matlab.   
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Table 4.1 Parameters for flute-grinding process. 

Parameters for flute-grinding Value 

Designed 

end-mill 

parameters 

Tool radius (mm) 10 

Core radius (mm) 7 

Rake angle (deg.) 8 

Flute angle (deg.) 75 

Helix angle (deg.) 45 

Grinding 
wheel 

arameters 

Wheel width (mm) 30 

Wheel radius (mm) 75 

 

Figure 4.11 Initial points for the optimization. 
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Figure 4.12 Solution for the wheel positon and orientation. 

 

Figure 4.13 Flute proflie and parameters with the solution  : (21.585, 76.823,43.437). 
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It is also noted that, for the cylindrical wheel, the solution reflected on the contact point  

*
cP   is located on the core radius boundary. In other words, the ellipse circle (wheel edges of 

cylindrical grinding wheel) should always keep tangent with the core circle in the flute-grinding 

processes. This can be expressed with an equality constraint for point Pc: c c0rTO P  and it is 

elaborated in matrix form shown in Eq. (4.32). 

*
c0 c e

*
c0 c e

r cos R cos cos
r sin R sin

dx
dy b

   (4.32) 

With the above equation, the wheel location can be calculated with respect to the two 

parameters c  and , which are regard as substitute of input form as described in Figure 4.14. 

The calculation program for the cylindrical grinding wheel is rearranged in the following 

diagram: the actual input are c and wheel orientation . The wheel location dx dy  is 

intermediately determined with the equality equation in Eq. (4.32) , which would be substituted 

into the following flute-grinding model. Next, the output is normalized and evaluated via the 

algorithm proposed in Step II. Based on the Eq. (4.32), the core radius rc0 can be directly 

guaranteed in the output. And the optimization results for c  and  can be feedback to the 

determination of wheel position and orientation through the contact point Pc introduced in last 

section. 
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Figure 4.14 Equality constraints in the input processes.  

 

Through the above analysis, in a summary, the flute-grinding model is resorting to 

solving the model in terms of two design variables c and  with the given design requirements

0 0 c0γ r , which are formulated in the following Eq. (4.33):  

22

0 0

2

c0

c γ c

c r

norm rake norm norm flute norm

norm core norm

f f f f f f
min

f f f
, (4.33) 

S.T.  
c

S S 0T T TO P O P Z .  
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Figure 4.15 Plot of the objective function: (a) 3D surface (b) Contour. 

As shown in Figure 4.15, the objective function is a convex surface in term of two design 

parameters: c  and . The contour of the objective function was also plotted in  Figure 4.15 (b), 
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which implies that there is only one solution within the constraint field. And the solution is 

located at the minima of the level approaching to zero. The constraints were used to check the 

validity of the flute profile in this research. The solution for parameters: c  and  can be 

feedback with Eq. (4.32) to calculate the wheel position and orientation. Hereto, fminsearch is 

also applied to solve the optimization problem proposed in Eq. (4.33) and several examples are 

given in Table 4.2 to prove the validity of the method. Besides, the model was also simulated in 

the CAD/CAM software CATIA via Boolean operation, and the flute parameters were measured 

with CAITA ‘measure’ function which also shows a good agreement with the calculation results 

illustrated in Figure 4.16 . 

Table 4.2 Verification of optimized model. 

 

NO. 
Grinding parameters  

(dx, dy, β) 

Machined flute 
parameters ( , , r

c
) 

Required End-mill 
parameters   (

0
, 

0
, r

c0
, r

T
) 

Difference  

1 (29.984,69.913,44.859) (7.994,74.999,6.000) (8, 75, 6, 45, 10) 1.2e-4 

2 (16.978,78.629,45.598) (15.001,80.001,7.000) (15, 80, 7, 45, 10) 2.3e-5 

3 (4.806, 81.760, 42.177) (15.002, 159.994,7.000) (15, 160, 7, 45, 10) 7.8e-5 

4 (5.875, 78.476, 51.490) (10.008 79.992, 3.000) (10, 80, 3, 38, 5) 1.8e-4 

5 (2.743, 78.406, 45.630) (5.002 170.001, 3.500) (5, 170, 3.5, 35, 5) 4.2e-5 

6 (6.485, 78.125, 58.729) (-5.000,50.001, 4.000) (-5, 50, 4, 38, 5) 1.1e-5 
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Figure 4.16 The solid flute model simulated by CATIA. 
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4.5 Summary 

In this chapter, a novel approach for 5-axis CNC flute grinding model was developed to 

grinding the design flute parameters. The machined flute profile was directly deduced in the 

cross-section through envelope of intersection of the grinding wheel and the end-mill with a 

helix motion. And also, the corresponding flute parameters including rake angle, core radius, and 

flute angle are defined related with the flute profile. On the basis of presented 5-axis CNC 

grinding algorithm, the interference of flute in the flute-grinding processes were investigated. In 

order to meet the requirement of designed flute, the difference between machine flute parameters 

and designed requirements was optimized to determine the wheel position and orientation in the 

5-axis grinding processes. It is noted that, comparing with present approach, the key advantage 

of presented work is to grind the designed flute parameters with the standard grinding wheel 

rather than modifying the grinding wheel shape, which could facilitate the grinding operations. 
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Chapeter 5. Application of CAD/CAM/CAE integration to predict 
cutting forces and tool deflection of end-mills 

 

5.1 Introduction 

Milling is used widely in manufacturing industry due to its large material removal rate 

and high surface quality. Thus, it has great importance to improve the design efficiency and 

reduce the manufacturing cost of end-mill. In the traditional design procedure, some design 

parameters are specified, such as rake angle, relief angle, core radius, etc. And then, the designed 

solid end-mills are manufactured using the CNC grinding machine through the specific 

commercial CAM software. The manufactured end-mills are tested through cutting experiments, 

which time- and resources-consuming. In order to improve the efficiency of tool-design, the 

CAD/CAM/CAE integration approach was investigated in this chapter. 

The cutting forces play an important role in the tool deformation, surface finish, tool wear 

and etc., and thus are generally used as an important criterion to evaluate cutting performance in 

milling processes. As mentioned, it can be measured from experiments with expensive 

dynamometer connected with computer described in Figure 5.11. Besides, Tool deflection 

caused by cutting forces is also a common problem in manufacturing processes, which would 

greatly affect the machining efficiency and quality [3, 8, 25, 55-69]. As the most flexible part in 

machine structure, end-mills generally contribute the most to the tool deflection in the milling 

processes. Trial-and-errors experiments are often applied to select the proper end-mills and 

machining parameters [63], which cost a lot. In this research, the cutting forces and tool 

deflection were predicted based on the CAD/CAM/CAE integration approach. 
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The organization for this chapter is described as following: First, the parametric CAD 

model of end-mill including the helix flutes, and flank surface was developed based on 

CAD/CAM integration of end-mills via the prosed kinematics of the grinding processes. To 

demonstrate the application of developed CAD model, cutting simulation was conducted through 

finite element analysis (FEA) of milling processes to evaluate cutting forces comparing with 

experiments. And then cutting coefficients for the developed cutter is calculated to predict the 

distributed cutting forces. Finally, the tool deflection is obtained and validated using the unit 

loading algorithm with the predicted distributed cutting forces.  

5.2 CAD/CAM Integration for modeling end-mill 

Five or four axis CNC grinding machine is generally employed to construct the grinding 

processes of end mills and the NC programming is generated automatically with the commercial 

CAM software in industry [7]. The shape of end-mill is formed based on the kinematics between 

the moving grinding wheel and cutter at each operation [4, 15, 20]. It is difficult to model the 

exact three dimensional shapes of end mills, because a certain part of the shape is not determined 

until the actual machining operation [19]. Therefore, the geometrical model of end-mill can only 

be developed via simulating and modeling its grinding processes. In previous section, the most 

important part flute has been developed with 2- or 5- axis CNC grinding. In this chapter, the 

flank surface was modeled via modeling its grinding processes. 
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Figure 5.1 CAD/CAM integration for end-mill. 

 

In this chapter, a three layers framework of CAD/CAM integration system is proposed 

illustrated in Figure 5.1. The first layer is the design parameters, including the basic information 

of the end-mills, such as, tool radius, rake angles, relief angle, and etc., whose values should be 

provided by the designers. The second layer is the CAM system which is aimed to program the 

planning of grinding processes to satisfy the requirement of the design parameters provided by 

the first layer. In the second layer, the main task is to determine the proper geometry of grinding 

wheel and develop the kinematics of grinding processes. The third layer is the CAD system, 

which is used to generate the CAD model of end-mill through calculation of the swept volume of 

the grinding wheel at different position and orientation provided by the second layer. Finally, the 

integration of CAD/CAM for end-mills is accomplished through the data transmitted layer by 

layer. 
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5.2.1 Flute modeling 

As aforementioned, flute plays an important role in the milling processes, of which the 

rake and relief angle will determine the cutting forces and the core radius will greatly affect the 

rigidity of end-mills. The manufacturing processes of the flute have been introduced in detail in 

previous Chapters. In Chapter 4, a CAD/CAM integrated approach for the flute-grinding is 

modeled, which can be used to develop the CAD model of flutes. Recalling the flute-modeling in 

chapter 4, the flute profiles are calculated with the grinding parameters: wheel position

28.963 64.716 , and orientation 49.20 deg. as well as the parameters of a standard grinding 

wheel radius 75mm and width 20mm. The result tool parameters of the flutes are tabulated in 

Table 5.1. The CAD models were developed with CATIA via sweeping the profiles with the 

helix motion. 

 

5.2.2 Flank surface modeling 

Basically, the cutting edge is formed by the rake surface and flank surface. For each flute, 

there are two flank surfaces, called the first flank surface and the second flank surface which are 

defined by the corresponding relief angles (αp1, αp2) and land widths (Wp1, Wp2) shown in Figure 

5.2, the flank surface are ground by the wheel edge.  Initially, the grinding wheel is configured 

with an angle αp and then grinding via helix motion which is result from the translation of the 

grinding wheel and the rotation of the cutter. In the cutting-edge-grinding process, the 

configuration angle αp is determined by corresponding relief angles: αp1, αp2. Similarly with the 

flute-grinding, the helix motion is governed by the transformation matrix in Eq. (5.1). In this 
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process, the relief angles and land widths are obtained. The mathematical expression of the first 

and second land surfaces are derived using a general form of equation shown Eq. (5.2). 

XT

YT

OT

αp

Wp1 Wp2

αp1
G1

G2 αp2

 

Figure 5.2 Illustration of the cutting-edge-grinding process. 
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where, ω is the rotation angle,  is the helix angle of cutter and rT is the tool radius. 
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where 0,1 , p is the relief angle , pW is the land width, pr  is the radius from the tool origin 

OT to the grinding point G1 or G2 corresponding to the first and second land surface described in 

the break view in Figure 5.2. 

5.2.3 Validation of the proposed CAD model 

To demonstrate the validity of proposed CAD/CAM integration approach, the end-mill 

model was simulated with the volume-sweep function in software CATIA. In this example, a 4-

flute end-mill was designed and the corresponding parameters are specified in Table 5.1. In order 

to guarantee the design parameters, the CAM processes were developed to machine the flute. In 

the flute-grinding simulation, the grinding wheel dimension and its location, as well as setting-up 

angle β are illustrated in section 5.2.1. And the solid flute model with different parameters is 

described in Figure 5.3. The first and second relief angles and relief widths list in Table 5.1 are 

used to model the flank surfaces while controlling the its grinding processes proposed in last 

section. Finally, the solid CAD models with various flute parameters were obtained from the 

grinding processes. As shown in Figure 5.3, the geometrical features of end-mills including flute 

surfaces, flank surfaces and tool bar are rendered with different colors.  

Besides, an end-mill was manufactured with Walter CNC grinding machine with the 

proposed grinding parameters shown in Figure 5.4. The real cutter parameters were measured 

and listed in Table 5.1. It shows that the parameters of proposed model have a good agreement 

with the measured cutter. Besides, the moment of inertias of the flute was investigated from the 

developed CAD model shown in Figure 5.5, which will be used in the following tool deflection 

prediction. This CAD/CAM integration method laid a foundation for the modeling of end-mills 
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which can be used to evaluate the cutting performance of end-mills via FEA cutting simulation 

that will be introduced in the following section. 

 

 

Figure 5.3 Solid CAD model of the end-mill generated by CATIA. 

 

 

Figure 5.4 End-mill manufactured with CNC grinding machine.  
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Table 5.1 Tool parameters of the developed CAD model and manufactured cutter  

(length unit: mm, angle unit: deg.). 
 

Tool parameters 
Designed 

cutter  

Developed 

CAD model 

Manufactured 

cutter  

Total length 60.000 60.000 60.030 

Flute length 18.000 18.000 18.120 

Tool diameter 6.000 6.000 6.010 

Helix angle 45.00 45.00 45.12 

Rake angle  5.00 5.04 5.38 

Core diameter 3.600 3.600 3.610 

1st Relief angle 9.00 8.98 9.82 

2nd Relief angle 30.00 30.19 30.68 

1st Land width 0.550 0.571 0.595 

 

 

Figure 5.5 Moment of inertia Iy along the tool axis. 

5.3 Cutting Forces prediction  

The cutting forces are generated in the milling processes while the rotating cutter 

removing the material and the cutting forces play an important role in the tool deformation, 
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surface finish, tool wear and etc.  In order to evaluate the cutting performance with the developed 

solid cutter models in the milling processes, finite element analysis for the peripheral milling are 

conducted to predict the cutting force in milling processes. The FEA software used in this 

research is ThirdWave AdvantEdge, which is a powerful commercial CAE software devoted on 

metal cutting simulation including turning, milling, drilling, hobbing and so on. 

AISI4140 alloy steel is a typical high strength material applied widely in industry, such 

as gear, automotive connecting rod and etc. Due to its high hardness, larger cutting forces are 

always produced. In this research, AISI4140 was used as an experimental material to predict the 

cutting forces in the milling processes. The properties of the materials and cutting tools are pre-

defined by the software in its database shown in Table 5.2. 

Table 5.2 Material properties of the end-mill and work-piece. 

Material properties End-mill Work-piece 

Material Tungsten carbide AISI4140 Alloy steel 

Modulus of elasticity 690 Gpa 200 Gpa 

Poisson’s ratio 0.24 0.3 

Density 14800 kg/m3 7850 kg/m3 

Hardness, Brinell 2570 N/mm2 1049 N/mm2 

Yield strength --- 821 Mpa 

Ultimate tensile 
strength --- 1073 Mpa 

 

In order to save simulation time, the 3D cutter models are truncated with the effective 

cutting lengths (5mm) and imported to the software with stp format. Because of the symmetrical 
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structures of 4-flute end-mills, one quarter of rotation is enough to evaluate the cutting process, 

that is, 90 degree rotation angle. Figure 5.6 shows the meshing cutter-workpiece and the 

machining parameters. The CAD model is assigned with tetrahedral elements and refined along 

the cutting edge with size 0.02mm. The corresponding value for the machining parameters is 

listed in Table 5.4. The cutting simulation results with curled chips are shown in Figure 5.7 and 

also the temperature are predicted with a maximum 885 Celsius degrees. Figure 5.7 showed that 

the temperature concentrated on the chips that agree with the facts that heat is taken away by the 

chip in cutting processes. The predicting cutting forces (Fx, Fy and Fz) varied with rotation angle 

(0-90) plotted in Figure 5.8. It can be observed that, in this case, the cutting force produced in Y 

direction dominate and also will caused larger tool defection which will be investigated in the 

following research.  

Table 5.3 Machining parameters  

Cutting depth 
(mm) 

Cutting width 
(mm) 

Spindle speed 
(RPM) 

Feed rate 
(mm/tooth) 

2.5 3 8000 0.10 
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Figure 5.6 Meshing of the cutter-workpiece.  

 

End-mill

Workpiece

Chips

 

Figure 5.7 Cutting simulation with ThirdWave. 
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Figure 5.8 Cutting forces prediction with the developed CAD model. 

 

As mentioned, the cutting forces will cause the tool deflection which closely related to the 

machining quality.  The maximum tool deflection will happen while the cutting force reaches the 

maximum. Therefore, in this research, the maximum cutting forces are regarded as a criterion to 

evaluate the cutting performance and predict the maximum tool deflection. The maximum 

cutting forces in this simulation processes is listed in the following table. 

Table 5.4 Maximum cutting forces with proposed model 

Max Cutting 
force Fx (N) 

Max Cutting 
force Fy (N) 

Max Cutting 
force Fz (N) 

Resultant Force 
(N) 

571.5 645.2 359.2 933.8 

 

Generally, the cutting prediction results are related with the geometrical feature of the cutters. 

Figure 5.9 shows the developed model with proposed CAD/CAM integration method and the 

approximation model used in previous researches. The approximation model represents the cutter 

with some straight line and arcs which is quite different with the real cutter whose flute is a free-
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from curve. Those differences for approximation model and proposed model would introduce 

error in the cutting forces prediction via FEA simulation. To demonstrate the advantage of 

proposed model, the cutting simulation with the approximation models were also carried out with 

the same flute parameters and machining parameters. And the simulation cutting forces are 

shown in Figure 5.10 and maximum cutting force listed in Table 5.5.  

Developed model 
with CAD/CAM 

integration 

Approximation 
model 

 

Figure 5.9 Comparison of proposed model and approximation model. 

 

 

Figure 5.10 Cutting forces prediction with the approximation model. 

 

Table 5.5 Maximum cutting forces with the approximation model. 
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Max Cutting 
force Fx (N) 

Max Cutting 
force Fy (N) 

Max Cutting 
force Fy (N) 

Resultant Force 
(N) 

707.7 843.5 504.4 1211.1 

 

Besides, a group of cutting experiments were also conducted as the reference to compare 

with the cutting forces prediction by the two models proposed CAD/CAM integration model and 

approximation model)  with FEA simulation. The cutter manufactured was used in this 

experiments and the Machining condition is illustrated in Table 5.6. The cutting parameters are 

the same as Table 5.3.  As shown in Figure 5.11, a common measure system was used to 

measure the cutting forces: the dynamometer is mounted at the bottom of workpiece so as to 

inspect the pressure from workpiece that caused by cutting forces, and transform the forces into 

electronic signal. Then after amplifying the electronic signal, it's converted to digital information 

by the A/D converter, which can be processed by computer. 

Tool holder

Workpiece

Kistler Dynamometer

 Table

End-mill

Amplifier A/DKistler 9255B  

Figure 5.11 Illustration of cutting forces measurement. 

 

Table 5.6 Machining condition for experiment 
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Experiment Description 

Machined material AISI 4140 

Machine tool 3 aixs CNC machining 

Milling type Peripheral down milling 

Dynamometer Kistler 9255B dynamometer 

Coolant air 

Tool suspended length 30mm 

 
Figure 5.12 Cutting forces measured by experiment. 

The cutting force measured from experiments is shown in Figure 5.12. It is observed that 

the cutting forces in X and Y direction are positive which is different with the FEA simulation. 

That is because the X, Y axis in the measured coordinate system for the experiments is opposite 
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with the coordinate axis in FEA simulation (see Figure 5.6). Because the cutting forces are 

periodically varying with the rotation of cutter in the milling processes, for each rotation, the 

cutting forces reach maximum four times. Hereto, for the experiment data, there are numerous 

maximum cutting forces periodically occurs. And in this research, in order to comparing with the 

FEA simulation, the average value of the maximum cutting forces from experiment data were 

deduced and listed in Table 5.7. It is also noted that there is around 100N zero drifting in the 

measurement of Fz, which need to be eliminated while calculating the cutting forces Fz.  

Table 5.7 Maximum cutting forces with experiments 

Max Cutting 
force Fx (N) 

Max Cutting 
force Fy (N) 

Max Cutting 
force Fz (N) 

Resultant Force 
(N) 

572.3 598.4 301.6 881.2 

 

Figure 5.13 Cutting forces prediction with different methods. 

 

The maximum cutting forces predicted by CAD/CAM integration model, approximation model 

and measured from experiment were plotted in Figure 5.13. It shows that the forces predicted by 

approximation model are over-predicted than the CAD/CAM model. And the maximum forces 
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predicted by CAD/CAM model is around 5% difference with the experiments, which can be 

acceptable as an estimation to evaluate the cutting performance for the end-mill design.  

5.4 Tool deflection prediction  

5.4.1  Distribution of cutting forces 

In previous researches [55-58,67,69], the tool deflection is predicted through modeling 

the end-mill as a cantilever cylindrical beam rigidly supported by the tool holder, subjected to a 

concentrated force at the end or evenly distributed loads along its axis. In those researches, the 

cylindrical diameter was first proposed as 80% of the tool’s diameter. And also, the surface 

quality is investigated via calculating the tool deflection base on the cylindrical model [55, 58]. 

However, as shown in Figure 5.1, the end-mill is formed with complex helix flutes. The flute 

space will greatly affect the static and dynamic properties of end-mills [10]. What’s more, the 

cutting forces are unevenly distributed along the cutting edges and varying with cutting rotation 

in the milling processes. Therefore, those assumptions of the cylindrical models ignore the 

variation of flute shape, such as various core radius and flute length, and thus would introduce 

errors for the predicted results, especially for some slender tools with long flutes. To improve the 

machining efficiency and accuracy, it is in high demand that a new and accurate approach to 

determining the tool deflection in milling processes. Regardless of the above algorithms, 

developing the geometrical model of end-mill and predicting the unevenly distributed milling 

forces along the tool axis are two major problems to improve the accuracy of predicting the 

tool’s deflection. In this section, an approach is developed to predict the tool deflection 

considering the geometrical model of end-mill and distribution of cutting forces based on the 

CAD/CAM/CAE integration. 
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Generally, the cutting forces are regarded as a linear function with respect to the feed rate 

and uncut chip thickness using cutting coefficients [8, 61]. In the milling processes, the cutting 

forces are distributed along the cutting edges with varying magnitudes and directions. Although 

the FEA method can be used to predict cutting forces; it cannot get the distribution of forces 

along the tool axis, which is required to calculate the tool deflection. In order to predict the 

distribution of the cutting forces, the end-mill is divided into finite segments along the tool axis 

shown in Figure 5.14(a). For each segment, the elemental cutting forces are resolved into two 

directions and calculated by Eq. (5.3). The total cutting forces could be obtained by summing up 

all the elemental forces.  

N
tc te

1 rc re

K Kcos sin
K Ksin cos

x

jy

f h
z

f h
,     (5.3) 

where, z  is the discrete cutting depth along the tool axis; N  is the tooth number; and tcK , teK , 

rcK , reK  are called cutting coefficients which are related to the tool geometry and machined 

material; h  is the uncut chip thickness expressed in Eq. (5.4). 

entry exitsin ,
0,

c
h

others
y exity e        (5.4) 

where, c is the feed rate per tooth;  is the immersion angle shown in Figure 5.14 (b) and entry , 

exit  are the entry and exit angle. 

Besides, the position where the corresponding elemental cutting forces are applied is also 

represented in the coordinate system of Figure 5.14 with the following matrix: 
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where, L is the suspended tool length and n is the segment sequence number. 
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(b) 

Figure 5.14 Cutting forces in the milling processes. 
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Figure 5.15 Cutting forces prediction flowchart. 

 

In summary, as shown in the flowchart Figure 5.15, the milling process is discretized in 

two aspects: in the time domain, it is examined angle by angle through discretizing the rotating 

immersion angle; in the space domain, it is divided along the tool axis and the elemental cutting 
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forces are calculated based the above equations slides by slides. Finally, a Matlab program is 

developed to simulate the milling process. In the program, not only the total cutting forces are 

obtained, but also the distributing elemental cutting forces are recorded.  

 

As mentioned, large cutting forces are always produced while machining AISI4140 alloy 

which cause corresponding larger tool deflection. In workshop, the lower cutting depth and short 

tools are generally recommended to get higher machining accuracy [69]. But that would cost the 

machining efficiency to some extent. In this research, AISI4140 is used as the experimental 

material to predict the tool deflection for the developed end-mill in last section.  

As described in Eq. (5.3), the cutting forces are linear function of four cutting coefficients 

which are generally determined experimentally under various cutting condition. In this research, 

in order to get the cutting coefficients integrating with the developed end-mill model, the full 

immersion milling experiments are carried out via FEA simulation using ThirdWave AdvantEdge. 

The corresponding machining parameters are described in Table 5.8. The estimated average 

cutting forces are approximated from the simulation results using the least square method also 

shown in Table 5.8. According to Ref [8], the average cutting forces for full immersion milling 

can be expressed as following: 

rc re

tc te

N NK K
4

N NK K
4

x

y

a aF c

a aF c
,                               (5.6) 

where, N is the tooth number; a is the axial cutting depth; c is the feed rate. 
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As shown in Figure 5.16, the linear functions are applied to fit the test data. Finally, 

integrating Eq. (5.6) and the fitting functions, the cutting coefficients can be derived and 

presented in Table 5.9. 

Table 5.8 Machining parameters and average cutting forces with ThirdWave 

NO. 
Cutting 
Speed 

(m/min) 

Feed rate c 
(mm/tooth) 

Axial cutting 
depth ap 

(mm) 
 xF (N) yF  (N) 

1 160 0.03 3.00 -454.4 373.9 

2 160 0.06 3.00 -732.3 471.7 

3 160 0.10 3.00 -1094.7 505.4 

4 160 0.12 3.00 -1271.1 557.9 

5 160 0.15 3.00 -1519.9 606.0 

 

 

Figure 5.16 Cutting forces measured for AISI4140. 
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Table 5.9 Cutting coefficients of AISI4140. 

Cutting Coefficient Value (MPa) 

Ktc 607.1 

Kte 87.8 

Krc 2969.8 

Kre 51.0 

 

Since the cutting coefficients have been obtained through FEA simulation, cutting forces 

can be predicted under any cutting condition via substituting the cutting coefficients into the 

force prediction program. An example is given to predict the cutting forces with a non-full-

immersion case. As shown in Figure 5.17, the total cutting forces within one rotation (360 

degrees) for AISI 4140 are calculated with the cutting parameters: axial cutting depth 3.5mm, 

radial cutting width 2.00mm, cutting speed 160m/min, feed rate 0.07mm/tooth. Other than full-

immersion cutting simulation, the engagement between cutting tool and work-piece in this 

example is diverse which will present different cutting forces. And it is observed that Fy is much 

larger than Fx, thereby tool deflection in the Y direction dominates in the milling process. 

Besides, the elemental cutting forces (Fy-max) along the tool axis are also predicted in Figure 

5.18, which will be used in the following tool deflection calculation. 
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Figure 5.17 Predicted milling forces for AISI4140. 

 

 

Figure 5.18 Elemental cutting forces (Fy-max) distributed along the tool axis. 

 

5.4.2 Cantilever beam model for tool deflection 

In this work, the end-mill is modeled as a cantilever beam with different cross-sections to 

calculate the tool deflection using the unit loading theory. According to the beam deflection 
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superposition principle, the deflection indicated by d z  can be calibrated via summing up the 

effect caused by the elemental cutting forces shown as the following equation: 

M

1
i

i
d z d z ,     (5.7) 

Where, id  called elemental deflection which caused by each elemental cutting force. 
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Figure 5.19 Unit loading algorithm for predicting the tool deflection. 

 

As described in Figure 5.19, the elemental deflection at point jz  can be derived using 

energy method applying unit loading and expressed in Eq. (5.8): 

0

L

i j
m Md z dl
E I ,     (5.8) 
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Where m is the torque caused by the unit force and can be represented as: 
,     

0,             
j j

j

z l l z
m

l z and 

M is the torque caused by the elemental force and expressed as:
,   

0,                
i i i

i

f l l l l
M

l l , and I is the 

area moment inertia for the corresponding cross-section. 

Generally, the integration formula of Eq. (5.8) can be calibrated through numerical 

method by discretizing the beam into finite segments shown in Eq. (5.9), which could be easily 

programmed using computer. 
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n

i j
i

m Md z l
E I

    (5.9) 

With Eq. (5.7) and Eq. (5.9), the deflection caused by the elemental cutting forces can be 

obtained at any point along the beam axis.  

5.5 Validation and application  

In this research, the developed CAD model of end-mill in Figure 5.3 is used to verify the 

proposed deflection model. The suspended tool length in this example is truncated as 30mm and 

the corresponding material properties have been described in Table 3. And also the moment of 

inertia of end-mill is provided in Figure 5.5. With all the above information, A Matlab program 

is developed to calculate the maximum tool defection in Y direction under elemental cutting 

forces Fy-max with the unit loading algorithm. The prediction result is shown in Figure 5.21. In 

order to evaluate the accuracy of the prediction results, a FEA simulation is conducted with the 

elemental cutting forces applied along the tool axis shown in Figure 5.18. The CAD model is 

partitioned into shank and flute to improve the meshing quality. And the FEA result is export 
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with a dataset and plot in Figure 5.21. The result shows a rather good agreement between the 

proposed analytical approach and the FEA simulation result. However, the running time for FEA 

(25 minutes) is much longer than the proposed approach (1.9 seconds) with the same computer. 

Besides, the proposed approach is also compared with the cylindrical model and two-arc model, 

which shows that the tool deflection with cylindrical model and two-arc model are both over-

predicted. 

As aforementioned, the tool deflection will affect the machining efficiency and quality. A 

deflection diagram with various cutting depth for the developed end-mill is described in Figure 

5.22, which can be applied to select the proper machining parameters in workshop. Furthermore, 

based on the proposed CAD/CAM/CAE approach, the prediction results can be fed back to 

improve the end-mill design, such as increasing the core radius to enforce the rigidity or sharping 

the rake angle to reduce cutting forces. 

 

Figure 5.20 Tool deflection prediction with FEA. 

 



137 
 

 

Figure 5.21 Tool deflection prediction with different models. 

 

 

Figure 5.22 Tool deflection with various cutting depth. 

 

5.6 Summary 

In this chapter, a parametric CAD model of end-mills including the flutes and flank was 

developed and verified with the proposed CAD/CAM integration model in previous chapter. 

Using this model, FEA cutting simulation is carried out to predict the cutting forces of AISI 4140 
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alloy steel. Besides, comparisons between the proposed model, approximation model and 

experiments were implemented, which shows that the proposed model has good prediction 

results than the approximation model. Following, the cutting coefficients for AISI 4140 alloy 

steel and the distribution of cutting forces are calculated with the proposed model. The tool 

defection can be accurately predicted using the unit loading algorithm integrated with the CAD 

model and distributed elemental cutting forces. In addition to predicting the tool deflection, the 

developed CAD/CAM model can be further used to improve the design of end-mills via FEA 

simulation. 
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Chapeter 6. Conclusions and future work 

 

In this work, the flute-grinding process was modeled via 2-axis and 5-axis CNC grinding 

technology. And also, the flute parameters were defined with a explicit mathematical expression 

from flute file. The major contributions of this work were concluded as following: 

1) An automatic 2-axis CNC flute-grinding model was proposed.  Based on the 

kinematics of flute-grinding processes, the mathematical model of the flute profile in 

terms of the wheel parameters including the dimensions of a standard grinding wheel 

and its machining set-up angle was established. These parameters can be determined 

to ensure the prescribed flute parameters in machining. In the flute-grinding processes, 

the contact line between the grinding wheel and tool bar is deduced based on the 

conjugate theory, which is stated that the normal of flute surface is normal to the 

velocity of grinding wheel at the contact point. Then, the flute profile is calculated via 

truncated the flute surface within the cross-section. This method provided an 

automated and accurate CNC programming to determine the dimensions and 

orientation of a standard wheel in the 2-axis flute grinding of cylindrical end-mills.   

2) The flute parameters including the rake angle, flute angle and core radius were 

defined analytically from the flute profile within the cross-section, which is original 

in current research.  

3) A novel method was proposed to determine the wheel’s position and orientation for 

5-axis flute-grinding. Rather than 2-axis grinding, the wheel’s dimension is fixed, and 

the flute profile and flute parameters were determined by the wheel’s position and 

orientation during the grinding processes. The flute profile is deduced directly from 
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the envelope of the grinding wheel within the cross-section via modeling the 5-axis 

CNC grinding kinematics. Based on the developed model, the interference in the 

grinding processes was investigated with various wheel conditions. Finally, an 

optimization method is applied to solve the formula of flute parameters in terms of 

the wheel’s position and orientation. The grinding simulation in the CATIA shows 

the validation of proposed method. 

4) A CAD/CAM/CAE integration approach was applied to predict the flute inertia, 

cutting forces and tool deflection in peripheral milling processes. With the established 

flute-grinding model, the solid CAD model of end-mills can be developed efficiently. 

The cutting forces and tool deflection predicted by cutting simulation with the 

developed CAD model are more close to the experiments results than the 

approximation CAD model. The CAD/CAM/CAE integration approach provided a 

low-cost and efficient way for the end-mill design, instead of cutting experiments. 

 

For future work, the following topics are suggested to expand the current research: 

1) 5-axis CNC flute-grinding for variable flute cross-section such as taper end-mill; 

Taper end-mill with variable flute cross-section shown in Figure 6.1 is used in 

machining of aerospace parts such as, moulds, turbine blades. With the variation of 

flute profile, the core radius is generally increased linearly, but the rake angle and 

flute angle are recommended to design with a constant value to get uniform cutting 

forces. And also, it is challenged to avoid interference between the grinding wheel 

and cutters in the grinding processes. 
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Figure. 6.1 Taper end-mill with variable flute cross-section. 

 

2) Flute parameters optimization with the CAD/CAM/CAE integration approach; 

With the FEA cutting simulation, the cutting forces, the distribution of cutting forces 

and temperature can be predicted. The prediction results can be used to improve the 

design of end-mill based on investigation of various structure of flute profile. 
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