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ABSTRACT

Hardy Spaces and Differentiation of the Integral in the Product

Setting

Raquel de Montalvão Cabral

Concordia University, 2014

This work concerns strong differentiation and operators on product Hardy spaces.

We show, by counterexample, that strong differentiability of the integral fails even for

functions in the intersection of H1
rect (R× R) with L (logL)ε (R2) for all 0< ε < 1. Our

example is a modification of a function that appears in a work of J. M. Marstrand, where

he makes a claim concerning “approximately independent sets”. We generalize his claim

and, as a corollary, we obtain a version of the second Borel-Cantelli Lemma.

In addition, we prove that a function f , created by Papoulis to show that the strong

differentiability of
∫
f does not imply the same behavior for

∫
|f |, belongs to the product

Hardy space H1(R × R). The method that we develop to approach this example allows

us to relax the sufficient conditions of the Chang-Fefferman atomic decomposition. In

analogy with the proof of this result, we demonstrate that a theorem of R. Fefferman,

which concludes Hp → Lp, 0 < p ≤ 1, boundedness of two-parameter operators from

their behavior on rectangle atoms, can be generalized to settings with more parameters.

This generalization enables us to extend a theorem of Pipher concerning boundedness of

multiparameter Calderón-Zygmund operators from Hp to Lp.

Furthermore, we present variants of Journé’s Lemma, two of which hold for the prod-

uct of R with a metric measure space satisfying certain conditions.
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Chapter 1

Introduction

We describe here the ideas and the main results of this thesis. A more extensive histor-

ical background, as well as the definitions that will be used throughout this work, are

presented in Chapter 2. The precise statements of our results and their proofs can be

found in the subsequent chapters.

The Hardy-Littlewood maximal function maps L1 into weak L1, a property that im-

plies the classical Lebesgue differentiation theorem. Being related to averages of functions

on cubes (or convex sets with bounded eccentricity), these results are said to be in the

one-parameter setting. By contrast, in the multiparameter (or product) setting, we view

Rn as Rn1 × ...× Rnr , n = n1 + ...+ nr, and the cubes are replaced by sets of the form

R (x, t) :=
{
y = (y1, ..., yr) ∈ Rn1 × ...× Rnr : ‖xj − yj‖Rnj < tj

}
,

where xj ∈ Rnj , tj > 0 and ‖·‖Rnj denotes a norm in Rnj , 1 ≤ j ≤ r. We refer to these

sets as rectangles and we let R be the collection of all such rectangles.

In the product setting, the analogue of the Hardy-Littlewood maximal function, called

the strong maximal function, is defined [39] by

MS (f) (x) := sup

{
1

|R|

∫
R

|f (y)| dy : R ∈ R such that x ∈ R
}
, f ∈ L1

loc (Rn) , (1.1)

and the differentiability of the integral is considered with respect to rectangles in R and
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known as strong differentiability (see Definition 2.1).

The theory of strong differentiation of integrals was originally introduced by Saks in

1933 (see [60] for English translation). Surprisingly, a paper of his [58] and an example

by Busemann and Feller [3] showed that, unlike what happens in the one-parameter

setting, strong differentiability may fail for the integral of locally integrable functions.

Specifically, Saks proved that the set of locally integrable functions f for which strong

differentiation of
∫
f holds a.e. is of first category in L1, while Busemann and Feller

exhibited a counterexample which implies, in particular, that MS, viewed as an operator,

is not of weak-type (1,1). Later, Papoulis [53] build an integrable function f on R2 which

illustrates the fact that f and |f | may have dramatically distinct behaviors in terms

strong of differentiation of the integral. Our Theorem 1.3 is related to Papoulis’ example.

As we will see below, there are many results that hold in the one-parameter setting

but fail in the product setting. Also, in many cases, a näıve attempt to generalize one-

parameter entities to higher parameter settings does not work.

A famous work demonstrating the failure of the näıve approach to the multiparameter

theory is Carleson’s counterexample [9]. It consists of a measure such that Carleson’s

condition holds with respect to rectangles, but fails with respect to bounded open sets.

Positive results about the behavior of MS on the n-fold R× · · · ×R and about strong

differentiation in this setting were obtained by Jessen, Marcinkiewicz and Zygmund [39]:

MS, viewed as an operator, is bounded on Lp, for p > 1; MS (f) is in weak L1 whenever

|f | log (1 + |f |)n−1 is integrable; and the integral of a function f is strongly differentiable

a.e. whenever f is in Lploc, p > 1, or |f | log (1 + |f |)n−1 is in L1
loc. The results related

to the spaces L
(
log+ L

)n−1
were further generalized to products of higher dimensional

spaces (see [32]) and, as shown by Saks [59], are as good as possible in the sense that

the differentiability of the integral may fail for certain classes of functions satisfying

slightly weaker integrability conditions [59]. In particular, the latter showed that for each

0 < ε < 1, there exists f in L (logL)ε (R2) such that
∫
f is not strongly differentiable on a

set of positive measure. Our result (Theorem 1.1) shows that the strong differentiability

of the integral may fail even for function which are simultaneously in all these classes
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L
(
log+ L

)ε
(R2), 0 < ε < 1.

After its initial boom, many years elapsed before further successful attempts to extend

classical one-parameter results in harmonic analysis to the product setting were made.

Some considerable developments took place during the decades of the 1970’s and 1980’s,

with the works of S.Y. Chang [10], R. Fefferman [11], Gundy and Stein [30], Journé [42],

[43], and Pipher [54], among others. Other achievements only occurred more recently.

They comprise generalizations of results related to Hardy spaces, BMO, singular inte-

grals, flag kernels, etc. in product spaces of different levels of generality, varying from the

product of unit disks [55] and the product of Euclidean spaces [56], [47], to the product

of homogeneous groups [46], [18].

Since many results concerning boundedness of singular operators can be extended

from Lp, p > 1, to one-parameter Hardy spaces H1 [21], [62], the question arose as to

whether the strong differentiation of the integral would hold in the one-parameter real

Hardy space H1. Compared to the elements of L1, the functions in the Hardy space H1

satisfy stronger integrability conditions and, in addition, have cancellation properties.

While the Hardy spaces Hp originated in the 1920’s as spaces of certain complex-

valued homomorphic functions on the unit disc, or on the upper half-plane, we are inter-

ested in the more recent characterizations of these spaces, specifically in the real-variable

ones. The real variable theory of Hardy spaces Hp, 0 < p < ∞, began in 1971 with the

nontangential maximal function characterization, by Burkholder, Gundy and Silverstein

[2], of the class Hp on the upper half-plane R2
+. In 1972, their result was extended to

Rn+1
+ by R. Fefferman and Stein [21], who also established other equivalent definitions

for Hp
(
Rn+1

+

)
. The innovative aspect of those definitions is that they uncover the real-

variable meaning of the classes Hp. This freed the study of these classes from the need

to deal with holomorphic functions, Poisson integrals, and all the associated entities that

were present in previous definitions.

The extension of this real-variable one-parameter theory to the multiparameter setting

was first accomplished by Gundy and Stein [30] in 1979. Besides having characterized

the Hp spaces on the product of upper half-spaces Rn1+1
+ × ... × Rnk+1

+ in terms of the
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boundary behavior of the multiharmonic (also called multiply harmonic) functions, they

generalized the above mentioned real-variable characterizations to this setting. In par-

ticular, they showed that, for 0 < p < ∞, the multiparameter, or product, Hardy space

Hp (Rn1 × . . .× Rnr), can be defined by saying that a distribution f , in S ′ (Rn), belongs

to Hp (Rn1 × . . .× Rnr) if and only if its multiparameter radial maximal function,

Mϕ1,...,ϕr (f) (x) := sup
tj>0

∣∣∣∣∫ ϕ1
t1

(y1) ...ϕrtr (yr) f (x− y) dy

∣∣∣∣ , (1.2)

is in Lp (Rn1+...+nr), for some fixed Schwartz functions ϕj on Rnj with non-zero integral,

where ϕjtj (xj) := t
−nj
j ϕj

(
t−1
j xj

)
, j = 1, ..., r.

We consider that the multiparameter radial maximal function (1.2) is the simplest

type of multiparameter maximal function after the strong maximal function (1.1). The

action of the former depends on the absolute value of smooth averages, while that of

the latter is related to averages of the absolute value. This difference yields essentially

distinct behaviors.

When working with Hardy spaces Hp, 0 < p ≤ 1, it is often convenient to use a result

known as the atomic decomposition. In the one-parameter setting, this result (Theorem

2.4), proved by Coifman [15] and Latter [45], states that the elements of Hp are infinite

linear combinations of special functions, called atoms (Definition 2.2), with coefficients

in lp.

The intuitive way to extend this result to the multiparameter setting would tell us

that the product Hardy space Hp, 0 < p ≤ 1, consists of infinite linear combinations

of rectangle atoms (Definition 2.4) with coefficients in lp. Surprisingly this is false: the

space whose elements are those infinite linear combinations of rectangle atoms is a proper

subspace of product Hp. This subspace is called rectangular Hardy space [13] and is

denoted by Hp
rect. The fact that product Hp is strictly larger than Hp

rect came to light

due to the above mentioned counterexample of Carleson [9], which implies, by duality,

that H1
rect (R× R) ( H1 (R× R). The atomic decomposition for product Hardy spaces

was proved by S.-Y. Chang and R. Fefferman [11], [12]. They showed that Hp (R× R),

0 < p ≤ 1, consists of infinite linear combinations of product space atoms, called Chang-
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Fefferman atoms (Definition 2.6), with coefficients in lp, but here the definition of the

atoms is more sophisticated.

Combining the theory of Hardy spaces and of strong differentiation of the integral,

Stokolos [65] gave a negative answer to the question concerning strong differentiability

of the integral of functions in the real Hardy space H1 (R2). While he considers the

one-parameter Hardy space, his example actually belongs to H1 (R× R). Due to the

multiparameter aspect of the theory of strong differentiation of the integral, the prod-

uct Hardy spaces seem to be more naturally connected with it than the one-parameter

analogues.

The example of Stokolos [65] consists of a modification of a function created by J. M.

Marstrand [50]. By making suitable alterations on it, we give a constructive proof to the

following:

Theorem 1.1 ([4]). There exists a function in the rectangular Hardy space H1
rect (R× R)

which is also in all the Orlicz spaces L
(
log+ L

)ε
(R2) for 0 <ε< 1, whose integral is not

strongly differentiable almost everywhere on a square of sidelength 1.

This result, which is restated as Theorem 3.1 in Chapter 3, relies on a specific way

of evaluating the Orlicz norm of series of functions and it implies, in particular, that

R is not a differentiation basis (see definition in [32], [63], or [64]) for any Orlicz space

L
(
log+ L

)ε
(R2) with 0 < ε < 1.

In Marstrand’s work, the approximate independence (in the probabilistic sense) of

homothetic copies of certain “hyperbolic-cross” shaped sets:

{
(x1, x2) ∈ R2 : |x1x2| ≤ 1, x2

1 + x2
2 ≤ (n+ 1) (log (n+ 1))2} , n ∈ N, (1.3)

is claimed (see [50], page 210) without a proof. Would a rigorous proof of his claim rely

on the particular geometry of the hyperbolic-crosses? Which geometric aspects of the

sets are essential? We answer these questions by showing the following generalization of

Marstrand’s claim:
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Theorem 1.2 ([4]). Let {Ak}k∈N be a family of subsets of [−2−1, 2−1]
n ⊂ Rn satisfying

|Ak| > 0 and dimupper box

(
∂Ak

)
< n for all k. There exists {mk}k∈N, a sequence of

positive integers, such that if, for each index k, we partition [−2−1, 2−1]
n

into mn
k equal

sized cubes, and place inside each a homothetic copy of Ak, then denoting by Λk the union

of these homothetic copies, ∣∣∣∣ ∩k∈FΛk

∣∣∣∣ ∼∏
k∈F

|Λk| , (1.4)

for any finite subset F ⊂ N.

This result is restated in Theorem 3.2 and has a version of the Second Borel-Cantelli

Lemma as a corollary (Corollary 3.1). This illustrates how geometry can lead to results

of a probabilistic nature.

The example in [65] is built in the dyadic setting. It has motivated us to show that if

we restrict ourselves to sets which are finite unions of dyadic cubes, then we can obtain

(1.4) with an equality (Claim 3.2).

Another problem that we investigate in this thesis is the following question, which

was raised by Stokolos. Concerning the example created by Papoulis [53] of an integrable

function f on R2 such that the strong derivative of
∫
f exists a.e., but the upper strong

derivative of
∫
|f | is infinite on a set of positive measure, does such a function belong to

the Hardy space H1 (R× R)? The answer is positive:

Theorem 1.3 ([5]). The function created by Papoulis belongs to H1
rect (R× R), therefore

also to H1 (R× R).

This theorem is restated as Theorem 4.1 in Chapter 4. The content of this chapter

was submitted to a journal as a manuscript with the same title [5].

The search for the solution to the above mentioned problem raised other questions

and lead us to find a variety of other results. Our investigation is outlined below. We

present the results in more detail, as well as their proofs, in Chapter 4.

Our first approach to the problem concerning Papoulis’ example was to show directly

that its two-parameter radial maximal function is integrable. This was accomplished by

modifying the standard techniques used in the one-parameter setting. In the proof of
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Theorem 1.3, instead exhibiting our initial proof (see proof of Lemma 4.1), we present a

more elegant one. Namely, we show that Papoulis’ function, f , belongs to H1
rect (R× R)

by exhibiting a decomposition of f in terms of rectangle atoms (Definition 2.4) with

coefficients in l1. This means that f ∈ H1
rect (R× R). The method that we developed

in our initial approach, enables us to show some crucial estimates (Lemma 4.1) for the

action of the radial maximal operator on rectangles atoms on Rn1 × . . .× Rnr .

The key importance of the estimates of Lemma 4.1 is due to the fact that they allow

us to prove the uniform boundedness of the Lp-norm of the radial maximal function of

Chang-Fefferman atoms [12], without using all the hypotheses on the elementary particles

of these atoms. Specifically:

Theorem 1.4 ([5]). In to order for a tempered distribution f in S ′ (Rn1+...+nr) to be

in Hp (Rn1 × ...× Rnr), it suffices that f can be written as
∑∞

k=1 λkak, with the series

converging in S ′ (Rn1+...+nr), where {λk}k ∈ lp and the atoms ak’s are variants of Chang-

Fefferman atoms on Rn1 × ... × Rnr without smoothness hypotheses on their elementary

particles.

This result, which is restated in Theorem 4.5, provides new sufficient conditions for

tempered distributions to be in Hp (Rn1 × ...× Rnr). Since the essential difference be-

tween Chang-Fefferman atoms and the atoms of Theorem 1.4 is the that the latter do

not need smoothnesses nor continuity on their elementary particles, we denote them as

rough atoms (Definition 4.3). Note that, without smoothness conditions, an elementary

particle is simply a scalar multiple of a rectangle atom. In particular, this result tells us

that rectangular atoms are, in a sense, the building blocks of product Hardy spaces Hp.

For p = 1, it was already known [47] that the smoothness of the elementary particles was

a superfluous hypothesis for the sufficiency of the atomic decomposition.

Clearly, when one decomposes distributions in Hp as sums of functions, it is better to

have as much smoothness as possible. On the other hand, for sufficient conditions, it is

more convenient to have less hypotheses on those functions.

Many operators in harmonic analysis belong to the class of singular integral operators:

e.g. Riesz transforms, pseudo-differential operators, Cauchy integrals on Lipschitz curves.

7



The classical theory of singular integral operators began to take shape in the 1950’s when

Calderón and Zygmund [7] obtained Lp boundedness, 1< p <∞, for certain convolution

operators which generalize the Hilbert transform on the real line. In the beginning of the

1980’s, their result was extended in two ways: R. Fefferman and Stein [22] extended it to

multiparameter convolution operators; David and Journé [17] did it for it one-parameter

non-convolution operators (by proving the famous T (1)–Theorem). Later, in 1985,

Journé [43] obtained this type of boundedness by showing L∞ → product BMO bounded-

ness for multiparameter non-convolution type operators and using a generalization of the

T (1)–Theorem.

Concerning boundedness of singular integral operators on Hardy spaces, in 1978,

Miyachi [52] used the Coifman-Latter atomic decomposition to show boundedness from

H1 to itself. In 1986, using the Chang-Fefferman atomic decomposition and a lemma

proved by Journé [42] in the previous year, R. Fefferman [25] developed a way to conclude

Hp (Rn1 × Rn2) → Lp (Rn1+n2) boundedness of an operator from its action on rectangle

atoms.

The method that we use to prove Theorem 1.4 enables us to prove a seemingly slightly

different (but actually quite relevant) variant of the above mentioned result of R. Feffer-

man. Combining his proof with the main result in D.-C. Chang et al. [14] (who provided

some details which were omitted by him), we prove the result below, which is restated in

Theorem 4.2:

Theorem 1.5 ([5]). Given 0 < p ≤ 1, if T is a bounded operator on L2 (Rn1+n2) and

there exist δj > 0, j = 1, 2, such that

∫
(2kI1)

c
×Rn2

|T (a)|p ≤ C
(
2k
)−δ1

and

∫
Rn1×(2kI2)

c
|T (a)|p ≤ C

(
2k
)−δ2

,

for every k ∈ N and every rectangle atom a supported on I1 × I2 ⊂ Rn1 × Rn2, then T

admits a bounded extension from Hp (Rn1 × Rn2) to Lp (Rn1+n2).

There are two steps in the proof of theorems of this type:

(i) showing that the behavior of an operator T on rectangle atoms yields uniform bound-

8



edness of the Lp-norm of the action of T on product Hp-atoms;

(ii) proving that this uniform bound implies the existence of a bounded extension of T

from product Hp to Lp.

The essential aspect of our hypotheses is that, unlike the assumptions in [25], we have

distinct dilations on each factor of the product setting. These multiparameter dilations

are the essential aspect of our theorem, as they allow a direct extension of step (i) to

higher-parameter settings. In particular, they enable us to extend R. Fefferman’s result

to the three-parameter setting:

Theorem 1.6 ([5]). Fix 0 < p ≤ 1. If T is a bounded operator on L2 (Rn1+n2+n3) and

there exist δj > 0, j = 1, 2, 3, such that

∫
(2k1I1)

c
×(2k2I2)

c
×Rn3

|T (a)|p ≤ C
(
2k1
)−δ1 (

2k2
)−δ2

, (1.5)

for every k1, k2 ∈ N and every rectangle atom a supported on I1×I2×I3 ⊂ Rn1×Rn2×Rn3,

and similar inequalities with (1, 2, 3) replaced by (2, 3, 1) and (3, 1, 2) hold, then T admits

a bounded extension from Hp (Rn1 × Rn2 × Rn3) to Lp (Rn1+n2+n3).

Note that Theorem 1.6 (restated in Theorem 4.3) is not invalidated by Journé’s coun-

terexample [43]: our dilations have three parameters instead of one. His example seems

to indicate existence of a barrier preventing the extension of R. Fefferman’s argument

from the two- to the three-parameter setting. Journé [43] himself surpassed this obsta-

cle in the context of convolution operators on product BMO. Carbery and Seeger [8]

have overcome this difficult in Hp (Rn1 × ...× Rnr), by demonstrating that, under extra

assumptions on the operators, R. Fefferman’s reasoning is applicable in higher-parameter

settings. Working with Hilbert space valued operators and using the Littewood–Paley

square function characterization of the multiparameter Hardy spaces, Han et al. [35] ex-

hibited necessary and sufficient conditions for certain Calderón-Zygmund operators to be

bounded from Hp into Hp, 0 < p ≤ 1.

When a two-parameter operator T is of the type that is commonly known as Calderón-

Zygmund operator of Journé type [43] (and referred by Journé as Calderón-Zygmund

9



operator of type ε), we can obtain the hypotheses of Theorem 1.6 by imposing certain

conditions on the kernel. Our Theorem 4.4 shows that it is sufficient to assume an

appropriate Hörmander type condition. This result is similar to one of R. Fefferman [25],

which he called the “trivial lemma” and proved for values of p close to 1. We demonstrate

that it holds it for all values of p in (0, 1].

The extension of Theorem 4.4 to the three-parameter setting is presented in Theorem

4.6. It exhibits sufficient conditions on the kernel of a Calderón-Zygmund operator for

the assumptions of Theorem 4.3 to hold. Our proof of Theorem 4.6 is inspired by an

argument of Pipher [54], who showed this result for values of p close to 1 and settings

of the form R × ... × R (she also stated, without a proof, that this result holds for all

p ∈ (0, 1] if more smoothness is assumed on the kernel). Our result is more general: it

holds for any 0 < p ≤ 1 and on any multiparameter setting of the form Rn1 × ...× Rnr .

In order to prove Theorem 1.6, we adapt the proof of Theorem 1.5 to the three-

parameter setting. The original two-parameter discrete Journé’s Lemma [42], which is

a very useful tool to deal with Chang-Feffeman atoms and its variants, is replaced by a

suitable three-parameter variant of it (Lemma 4.4).

In [42], Journé stated that the discrete version of his lemma holds in the setting

Rn1 × Rn2 . This result is often used in the context of product Hardy spaces (e.g. [25]),

despite the fact that no proof of it can be found in the literature. We state this in Lemma

4.2 and, inspired by proofs found in [54] and [67], we prove it.

There are many variants of Journé’s Lemma in the literature: [54], [8], [44], [6] and

others. Among them, we find that Pipher’s [54] version is the most useful in the context

of the Hardy spaces that we deal with. Her result consists of an extension of the discrete

Journé’s Lemma to the setting R × R × R. The variant (Lemma 4.4) that we use in

the proof of Theorem 1.6 is an adaptation of her result to the higher-dimensional three-

parameter setting Rn1 × Rn2 × Rn3 . In addition, as she explains in her paper, her proof

can be extended, by induction, to the n-fold product R×· · ·×R. By the same reasoning,

our variant (Lemma 4.4) of Journé’s Lemma can be extended to Rn1 × ... × Rnr , and

therefore Theorem 1.6 can also be extended to this multiparameter setting.
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The deep understanding of Journé’s Lemma that we obtained through the study of

the variants mentioned above empowered us to extend it (Theorem 5.1) to a product

setting of the form X × R, with X being a metric measure space having certain proper-

ties. We extend both the non-discrete and the discrete versions of Journé’s Lemma. A

potential application of our discrete Journé-type lemma is in the context of Hardy spaces

on Heisenberg groups.

As we mentioned in the beginning of this chapter, the next one contains a more

detailed overview of the theory of strong differentiation of the integral and of Hardy

spaces. The content of Chapter 3 is a manuscript that was accepted for publication

[4]. It contains the counterexample in H1
rect ∩

[
∩0<ε<1L

(
log+ L

)ε]
and the results re-

lated to approximate independence of sets. Chapter 4 consists of a manuscript which

was submitted [5]. It has the proof that Papoulis’ function is in H1
rect; results about

Hp → Lp boundedness of multiparameter singular integral operators; new sufficient con-

ditions for the atomic decomposition on product Hp; and variants of Journé’s Lemma

for the product of higher-dimensional Euclidean spaces. In Chapter 5, we present the

variants of Journé’s Lemma which we mentioned in the previous paragraph.
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Chapter 2

Definitions and Background

This chapter is meant to serve as an overview of the background and notation required

for the understanding of subsequent chapters. To the interested reader who is unfamiliar

with the theory of real Hardy spaces, we would suggest poring over the first four chapters

of [62].

2.1 Product Spaces and Notation

Our work is on the n-dimensional Euclidean space Rn viewed as a Cartesian product

of the form Rn1 × ... × Rnr , n = n1 + · · · + nr. The points x in Rn are represented as

(x1, . . . , xr), with xj ∈ Rnj , j = 1, ..., r. We let ‖·‖Rnj denote a norm in Rnj , which will

be either the Euclidean or the maximum norm (where no confusion arises, we will denote

it by ‖·‖). We use the term rectangle for sets the form

R (x, t) :=
{
y = (y1, ..., yr) ∈ Rn1 × ...× Rnr : ‖xj − yj‖Rnj < tj

}
, (2.1)

where xj ∈ Rnj and tj > 0, j = 1, ..., r. We denote by R the set of rectangles of the form

(2.1). Given R (x, t) ∈ R and ε > 0, we define εR := R (x, εt).

The cubes in the collection

Dn :=
{

2−k (z + [0, 1]n) : k ∈ Z, z ∈ Zn
}

12



will be called dyadic cubes. In the literature, the dyadic cubes are often defined with

half-open intervals [0, 1) instead of closed [0, 1], but the fact that we choose them to be

closed will not make any difference in our computations. We say that a set R ⊂ Rn1+...+nr

is a dyadic rectangle in Rn1 × ...×Rnr if it has the form R = I1× ...× Ir, for some cubes

Ij ∈ Dnj , j = 1, ..., r. Thus, when we say that (the interior of) a dyadic rectangle is in

R, it means that for each j = 1, ..., r, the norm ‖·‖Rnj which we are considering in (2.1)

is the maximum norm.

We denote all constants either by c or by C, where c (or C) may vary from line to

line and may depend on the dimension of the space and other fixed entities. Sometimes

we will put a subscript on c (or C) to indicate on what it depends.

Given a measurable set A ⊂ Rn, we denote its n-dimensional Lebesgue measure by

|A| and its characteristic function by χA. Given a real number α, we use the standard

notation and denote its absolute value by |α| (this notation should not be confused

with the Lebesgue measure, which is used with sets, not with numbers) and its floor and

ceiling (also called roof) by bαc := max {n ∈ Z : n ≤ α} and dαe := min {n ∈ Z : n ≥ α} ,

respectively. Given α, β in [0,∞), we say that α and β are comparable, and write α ∼ β,

when there exist positive constants c, C, independent of α and β, such that cβ ≤ α ≤ Cβ.

Following the usual notation, when 1 ≤ p ≤ ∞, we denote the Lp space over Rn by

Lp (Rn), and we denote the Lp (Rn) norm by ‖·‖p. For 0 < p < 1, Lp (Rn) is defined

as the space of Lebesgue measurable functions f on Rn such that |f |p ∈ L1 (Rn). For

these values of p, the map f ∈ Lp (Rn) 7→ ‖f‖p :=
(∫
|f |p
)1/p

does not define norm: the

triangular inequality fails.

For each 0 < ε <∞, the Orlicz space L
(
log+ L

)ε
(Rn) [48], can be defined as the set

of Lebesgue measurable real-valued functions f on Rn such that

∫
Rn

∣∣∣∣f (x)

λ

∣∣∣∣ (log

(
1 +

∣∣∣∣f (x)

λ

∣∣∣∣))ε dx ≤ 1 for some λ > 0. (2.2)

The infimum over all λ > 0 such that (2.2) holds defines a norm in L
(
log+ L

)ε
. Endowed

with this norm, L
(
log+ L

)ε
is complete.

The Schwartz space, consisting of rapidly decreasing smooth functions on Rn, is de-
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noted by S (Rn). The dual of S (Rn), which is the space of tempered distributions, is

denoted by S ′ (Rn). In all other cases, V ∗ will denote the dual space of V .

The Hardy-Littlewood maximal function is defined by

M (f) (x) := sup

{
1

|Q|

∫
Q

|f (y)| dy : Q is a cube containing x

}
, f ∈ L1

loc (Rn) ,

where the supremum is taken over all cubes Q in R such that x ∈ Q. Its generalization

to the product setting is the so called strong maximal function, which is defined [39] by

MS (f) (x) := sup

{
1

|R|

∫
R

|f (y)| dy : R ∈ R such that x ∈ R
}
, f ∈ L1

loc (Rn) . (2.3)

Thus the strong maximal function is an operator. In many places in the literature, it is

referred to as the strong maximal operator.

Recall that in the one-parameter setting, the proof of the Lebesgue differentiation

theorem relies on the fact that the Hardy-Littlewood maximal function maps L1 into

weak-L1. In the multiparameter setting, the behavior of the strong maximal function is

also connected to the strong differentiability of the integral (see [32]). However, unlike in

the one-parameter setting, MS, viewed as an operator, is not of weak-type (1, 1): there

exists a function f in L1 such that |{x : MS (f) (x) =∞}| > 0 [2], [58]. This is one of the

many instances where the results of the classical theory do not carry over to the product

setting.

2.2 Strong Differentiation of the Integral

The strong differentiation of the (indefinite) integral was introduced by Saks [60] (this

reference is an English edition of “Théorie de l’intégrale”, published in 1933) and consists

on a generalization of the classical differentiation of the integral which was developed

by Lebesgue in the 1910’s. In the strong differentiation, instead of cubes (or balls or

convex sets of bounded eccentricity), the infinitesimal averages are taken with respect to

rectangles of the form (2.1). A more recent work about this theory a book by Guzmán
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[32]. We adopt the notation from it. Specifically:

Definition 2.1 ([60], [32]). Given a real-valued function f ∈ L1
loc (Rn), n ≥ 2 and a point

x ∈ Rn, the strong upper derivative and the strong lower derivative of
∫
f at x are defined

by

D

(∫
f, x

)
:= sup

{
lim sup
k→∞

1

|Rk|

∫
Rk

f (y) dy : {Rk}k∈N ⊂ R, Rk → x

}
and

D

(∫
f, x

)
:= inf

{
lim inf
k→∞

1

|Rk|

∫
Rk

f (y) dy : {Rk}k∈N ⊂ R, Rk → x

}
,

respectively, where Rk → x means that {Rk}k∈N satisfies:

x ∈ ∩
k∈N

Rk and lim
k→∞

diam (Rk) = 0.

If D
(∫
f, x
)

and D
(∫
f, x
)

coincide and are finite, then lim
k→∞
|Rk|−1 ∫

Rk
f (y) dy exists for

any {Rk}k∈N ⊂ R with Rk → x, is denoted by D
(∫
f, x
)

and is referred to as the strong

derivative of
∫
f at x. In this case we say that

∫
f is strongly differentiable at x.

Since every cube is a rectangle, if
∫
f is strongly differentiable at a point x, then

D
(∫
f, x
)

agrees with the derivative of
∫
f with respect to cubes at x. Thus, the classical

differentiation theorem of Lebesgue implies that the equality D
(∫
f, x
)

= f (x) holds for

almost every point x in the set where
∫
f is strongly differentiable.

In a well-known paper of Jessen, Marcinkiewicz and Zygmund, they proved the fol-

lowing: in the n-fold product R× ...× R,

(i) when p > 1, ‖MS (f)‖p ≤ c ‖f‖p for all f ∈ Lp;

(ii) if f ∈ Lploc, p > 1, then
∫
f is strongly differentiable a.e.;

(iii) MS (f) is in weak L1 whenever |f | log (1 + |f |)n−1 is integrable; and

(iv)
∫
f is strongly differentiable a.e. whenever |f | log (1 + |f |)n−1 is locally integrable.

By contrast, as shown by an example of Busemann and Feller [3], there exists an

integrable function whose integral fails to be strongly differentiable on a set of positive

measure. Actually, as demonstrated by Saks [58], the set of integrable functions f on

[0, 1]n, such that D
(∫
f, x
)
< ∞ for some point x ∈ [0, 1]n, is of the first category in
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L1 ([0, 1]n). Furthermore, working in the n-fold product R × ... × R, Saks showed that

for any measurable function σ : [0,∞) → (0,∞) satisfying lim inf
t→∞

σ (t) = 0, there exists

a function f such that σ (|f |) |f | (log (1 + |f |))n−1 ∈ L1 ([0, 1]n), but D
(∫
f, x
)

= ∞ for

almost every x ∈ [0, 1]n. This suggests that the positive results of Jessen et al. [39]

concerning the Orlicz spaces L
(
log+ L

)n−1
(Rn) are sharp.

The results (i) – (iv) of Jessen et al. [39], which we mentioned above, can be generalized

to Rn1 × ... × Rnr . The weak-type bound for the strong maximal function (item (iii))

is called the strong maximal function theorem. Here we state a version of it which was

shown by Zygmund [70] and by Guzmán (with a different proof which works in Rn1×Rn2)

[31].

Theorem 2.1 (Strong Maximal Function Theorem [70], [31]). In the multiparameter

setting Rn1 × ...× Rnr , with n1 ∈ N and n2 = ... = nr = 1,

|{x : MS (f) (x) > λ}| ≤ c

∫
Rn1+(r−1)

|f (x)|
λ

(
1 + log+

(
|f (x)|
λ

))r−1

dx,

for any λ > 0.

As stated by Guzmán (see [31], Section 3.3), in the product setting Rn1 × ... × Rnr ,

where the number of parameters is r, the result of Theorem 2.1 holds with a different

constant c. There are other versions of the strong maximal function theorem in the

literature. Some of them are presented in [32].

The behavior of the strong maximal function is connected with the strong differenti-

ation of the integral (see [32], Chapter III, Section 3).

2.3 Background on Hardy Spaces

Originally, the Hardy spaces Hp, 0 < p < ∞, were defined on the upper half of the

complex plane H := {z = x+ it ∈ C : t > 0} (or on the unit disc D := {z ∈ C : |z| < 1})
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as spaces of homomorphic functions F : H→ C satisfying

‖F‖pHp(H) := sup
t>0

∫ ∞
−∞
|F (x+ it)|p dx <∞ (2.4)

The map F ∈ Hp (H) 7→ ‖F‖Hp(H) defines a norm when 1 ≤ p < ∞, but not when

0 < p < 1. While for 0 < p < 1, Hp (H) is not a normed space, the map

(f, g) ∈ Hp (H)×Hp (H) 7→ dHp(H) (f, g) := ‖f − g‖pHp(H) .

defines a metric and Hp (F) is complete with respect to it (see [62], Chapter 3, Section

5.1). There exists also the space H∞, which consists of bounded holomorphic functions.

Since we are interested in the cases when 0 < p ≤ 1, we will not present results for H∞

here. The reader can find more information about complex Hardy spaces in [28] and in

most other books about harmonic analysis.

Recall that if a real-valued harmonic function u on R2
+ is the real part of a holomorphic

function F satisfying (2.4), then the boundary values of u are well defined (see [28]).

Specifically:

• (Case 0 < p < 1) If u = Re (F ) for some holomorphic function F satisfying (2.4),

then there exists a bounded distribution (see definition on page 89 of [62]) f in

S ′ (R) such that u (·, t) → f (·) as t → 0, and u (·, t) = (Pt ∗ f) (·) for all t > 0,

where Pt (x) = t
π(t2+x2)

is the Poisson kernel on the line.

• (Case 1 ≤ p < ∞) If u = Re (F ) for some holomorphic function F satisfying

(2.4), then there exists f in Lp (R) such that ‖(Pt ∗ f)− f‖p → 0 as t → 0, and

u (·, t) = (Pt ∗ f) (·) for all t > 0.

We would like to emphasize the main difference among the cases 0 < p < 1, p = 1

and 1 < p <∞. For 1 ≤ p <∞, if a real-valued function f is in Lp (R), then u (x, t) :=

(Pt ∗ f) (x) satisfies

sup
t>0

∫ ∞
−∞
|u (x, t)|p dx <∞, (2.5)

and u (·, t)→ f (·) in Lp as t→ 0. M. Riesz showed that, for 1 < p <∞, if a real-valued
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harmonic function u on R2
+ satisfies (2.5), then u = Re (F ) for some F satisfying (2.4),

i.e. F ∈ Hp (H). In this case, as t → 0, u (·, t) converges in Lp to an Lp function whose

Poisson integral is u. However, when p = 1, there are non-zero real-valued harmonic

functions u on R2
+ which satisfy (2.5) but u (·, t) → 0 pointwise as t → 0. In this case u

cannot be recovered from its boundary values. For 0 < p ≤ 1, in order for a real-valued

harmonic function u on R2
+ to be the Poisson integral of its boundary values it is necessary

and sufficient that u = Re (F ) for some F ∈ Hp (H).

2.3.1 One-parameter Real Hardy Spaces

The real variable theory of Hardy spaces Hp, 0 < p < ∞, begun in 1971 with a paper

of Burkholder, Gundy and Silverstein [2], where they proved that a real-valued harmonic

function u on the upper half-plane R2
+ := {(x, t) ∈ R2 : t > 0} (which, from a complex

variable perspective, is viewed as H) is the real part of some F in Hp (H) if and only if

the non-tangential maximal function

u∗ (x) := sup
(y,t)∈Γ(x)

|u (y, t)| (2.6)

is in Lp (R), where Γ (x) :=
{

(y, t) ∈ R2
+ : |y − x| < t

}
, and in this case, ‖F‖pHp(H) ∼

‖u∗‖pp . This result allows us say that the real Hardy spaceHp
(
R2

+

)
, 0 < p <∞, consists of

the harmonic functions u on R2
+ such that

∫
|u∗|p <∞, and we can endow this space with

the “norm” ‖u‖Hp(R2
+) := ‖u∗‖p (as explained above, this is a norm if and only if p ≥ 1).

Combining this result with the facts about boundary values that we mentioned above,

it possible to define Hp (R), 0 < p < ∞, as being the space of tempered distributions f

which arise as boundary values of functions u in Hp
(
R2

+

)
. On this space, we can define

‖f‖Hp(R) := ‖u‖Hp(R2
+).

It was only in 1972 that the real variable meaning of Hp, 0 < p < ∞, was brought

to light. This was achieved by C. Fefferman and Stein [21], who extended the result of

Burkholder et al. to the upper half-space Rn+1
+ := Rn×(0,∞) and, in addition, established

equivalent characterizations of Hp which do not depend on harmonic functions.
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We state some of the equivalent characterizations of Hp in Theorems 2.2 and 2.3

below. In particular, Theorem 2.3 characterizes Hardy spaces using only the behavior of

the boundary values.

Theorem 2.2 ([61] case 1 < p <∞; [21] case 0 < p ≤ 1). Let 0 < p <∞ and let u be a

harmonic function on Rn+1
+ . Then the following are equivalent:

(i) the non-tangential maximal function u∗ is in Lp (Rn), where u∗ is defined by (2.6),

except that, in the n dimensional case, Γ (x) :=
{

(y, t) ∈ Rn+1
+ : ‖y − x‖ < t

}
;

(ii) limt→∞ u (x, t) = 0 for all x ∈ Rn, and the Lusin square function S (u) (x) :=(∫
Γ(x)
|∇u (y, t)|2 t−n+1dydt

)1/2

is in Lp (Rn).

In this case, we say that u is in Hp
(
Rn+1

+

)
, we define ‖u‖Hp(Rn+1

+ ) :=‖u∗‖p and we have

‖u∗‖p ∼ ‖S (u)‖p.

While this theorem tells us a way to characterize the real Hardy spaces Hp
(
Rn+1

+

)
which is still dependent on harmonic functions, it enables us to define (as in the case

n = 1) Hp (Rn), 0 < p < ∞, as being the space of boundary values f of functions u in

Hp
(
Rn+1

+

)
. On this space, ‖f‖Hp(Rn) := ‖u∗‖p.

In what follows, for any function ϕ on Rn and any t > 0, we use the standard notation

ϕt (x) :=
1

tn
ϕ
(x
t

)
. (2.7)

Theorem 2.3 ([21]). Let 0 < p <∞ and let f ∈ S ′ (Rn). The following are equivalent:

(i) for some ϕ ∈ S (Rn), with
∫
ϕ = 1, the radial maximal function

Mϕ (f) (x) := sup
t>0
|(ϕt ∗ f) (x)|

is in Lp (Rn);

(ii) for some ϕ as in (i), the non-tangential maximal function

Nϕ (f) (x) := sup
(y,t)∈Γ(x)

|(ϕt ∗ f) (y, t)|
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is in Lp (Rn);

(iii) the grand maximal function

MA (f) (x) := sup
ϕ∈A

sup
(y,t)∈Γ(x)

|(ϕt ∗ f) (y, t)|

is in Lp (Rn), where

A :=

ϕ ∈ S (Rn) :

∫
Rn

(1 + ‖x‖)N
∑
|α|≤N

|Dαϕ (x)|2
 dx ≤ 1


and N = N(p, n) is a fixed positive number;

(iv) f is a bounded distribution (see definition on page 89 of [62]) and supt>0 |Pt ∗ f (·)|

is in Lp (Rn).

In this case, f ∈ Hp (Rn) and

‖f‖Hp(Rn) ∼ ‖Mϕ (f)‖p ∼ ‖Nϕ (f)‖p ∼ ‖MA (f)‖p ∼
∥∥∥∥sup
t>0
|Pt ∗ f (·)|

∥∥∥∥
p

.

For p > 1, Hp corresponds to Lp (see [62], Chapter 3, Section 1.2.1). To be more

precise, the action of each tempered distribution that arises as boundary value of a

harmonic function in Hp
(
Rn

+

)
can be represented as integration against a function in

Lp (Rn), and conversely, the Poisson integral of any function in Lp (Rn) is a harmonic

function in Hp
(
Rn

+

)
.

By contrast, when 0 < p ≤ 1, Hp is not equivalent to Lp. While H1 is a proper

subspace of L1, when 0 < p < 1, the elements of Hp are tempered distributions. The

same is true in the product Hardy spaces, which we define soon. Our work is focused on

the product Hardy spaces Hp, for 0 < p ≤ 1. To deal with these spaces, we decompose

their elements into infinite linear combinations of special functions.

The building blocks of the one-parameter real Hardy space Hp (Rn), 0 < p ≤ 1 are

functions known as (one-parameter) atoms.
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Definition 2.2 ([15], [45]). A function a on Rn is called a (one-parameter) p-atom on Rn

if a is supported on a cube Q in R and satisfies ‖a‖∞ ≤ |Q|−1/p and
∫
Rn a (x)xαdx = 0

for all multi-indices α ∈ (Z≥0)n of order |α| ≤ bn (p−1 − 1)c.

The next result, which is the well-known atomic decomposition, was shown by Coif-

man [15] and Latter [45]. The former showed the necessity, while the other proved the

sufficiency.

Theorem 2.4 ([15], [45]). Let 0 < p ≤ 1. A distribution f ∈ S ′ (Rn) belongs to Hp (Rn)

if and only if

f =
∞∑
k=1

λkak, (2.8)

where the series converges in S ′ (Rn), {λk}k ∈ lp and each ak is a p-atom on Rn. In this

case

‖f‖pHp ∼
∞∑
k=1

|λk|p .

When p = 1, the series in (2.8) converges in the L1 norm.

The atomic decomposition is especially useful in the study of the behavior of operators

on Hp. Still, one must be careful. Even in the case p = 1, where the convergence is in L1,

there are linear maps L such that the equality
∑∞

k=1 λkL (ak) = L (
∑∞

k=1 λk (ak)) does

not hold. This is explained in a paper of Bownik [1], where he gave an example of a

linear functional, defined on a dense subspace of H1, which maps all 1-atoms into scalars

bounded by 1, but cannot be extended to a bounded linear functional on H1.

The dual space of the one-parameter H1 (Rn) can be identified with the space of

functions of bounded mean oscillation, BMO. This result is the famous duality theorem

of C. Feffermam [20], which was proved using the following definition:

Definition 2.3 ([40], [20]). BMO (Rn) consists, up to additive constants, of locally in-

tegrable functions f on Rn such that

‖f‖BMO := sup
Q

1

|Q|

∫
Rn
|f (x)− fQ| dx <∞,

where the supremum is taken over all cubes Q in R and fQ := 1
|Q|

∫
Rn f (x) dx.
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2.3.2 Real Hardy Spaces in the Product Setting

The extension of the one-parameter real-variable theory of Hardy spaces to the product

setting was first accomplished by Gundy and Stein [30] in 1979. They characterized Hp

spaces, 0 < p < ∞, on the product of upper half-spaces Rn1+1
+ × ... × Rnr+1

+ in terms of

the boundary behavior of multiharmonic (also called multiply harmonic: the Laplacian

on each parameter is zero) functions. They also extended the equivalences stated in

Theorems 2.2 and 2.3 to the product setting. We state some of their results here. We

present them in the two-parameter setting, because this way, the notation is simpler. For

settings with more than two parameters, the characterizations are similar.

Theorem 2.5 ([30]). Let 0 < p < ∞. Then u ∈ Hp
(
Rn1+1

+ × Rn2+1
+

)
if and only if

the non-tangential maximal function u∗ (x1, x2) := sup(y,t)∈Γ(x1)×Γ(x2) |u (y1, t1, y2, t2)| is

in Lp (Rn1+n2). In this case, we define ‖u‖
Hp(Rn1+1

+ ×Rn2+1
+ ) := ‖u∗‖p.

In Theorem 2.5, we only mentioned one characterization of Hp
(
Rn1+1

+ × Rn2+1
+

)
.

Gundy and Stein [30] extended both equivalences of Theorem 2.3 to the product set-

ting. The characterization of Hp
(
Rn1+1

+ × Rn1+1
+

)
in terms of a multiparameter variant

of the Lusin area integral was first proved by M. P. Malliavin and P. Malliavin [49],

in 1977. They used a complicated algebraic method to show that the area integral is

controlled by the non-tangential maximal function.

Since the product space analogues of the facts about boundary values presented in

the beginning of Subsection 2.3 hold, Theorem 2.5 enables us to define the real Hardy

space in the product setting, Hp (Rn1 × Rn2), as the space of tempered distributions f

which arise as boundary values of functions u in Hp
(
Rn1+1

+ × Rn2+1
+

)
, and the “norm” in

Hp
(
Rn1+1

+ × Rn2+1
+

)
can be set as ‖f‖Hp(Rn1×Rn2 ) := ‖u∗‖p.

The following result, which is an extension of Theorem 2.3, provides a purely real

variable characterization of the real Hardy spaces in the product setting. In oder to state

it we need to introduce some notion.

For any ϕ ∈ S (Rn1), ψ ∈ S (Rn2), f ∈ S ′ (Rn1+n2) and any t1, t2 > 0, we define

((ϕt1 · ψt2) ∗ f) (x) :=

∫
Rn1

∫
Rn2

ϕt1 (y1)ψt2 (y2) f (x1 − y1, x2 − y2) dy1dy2,
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for x = (x1, x2) ∈ Rn1 × Rn2 , where ϕt1 and ψt2 are defined in (2.7).

Theorem 2.6 ([30] (i)⇔ (ii)⇔ (iii)⇔f ∈Hp). Let 0 < p <∞ and let f ∈ S ′ (Rn1+n2).

The following are equivalent:

(i) for some ϕj ∈ S (Rnj), with
∫
ϕj = 1, j = 1, 2, the radial maximal function

Mϕ1,ϕ2 (f) (x) := sup
tj>0, j=1,2

∣∣((ϕ1
t1
· ϕ2

t2

)
∗ f
)

(x)
∣∣

is in Lp (Rn1+n2);

(ii) for some ϕ1, ϕ2 as in (i), the non-tangential maximal function

Nϕ1,ϕ2 (f) (x) := sup
(y,t)∈Γ(x1)×Γ(x2)

∣∣((ϕ1
t1
· ϕ2

t2

)
∗ f
)

(y)
∣∣

is in Lp (Rn1+n2);

(iii) the grand maximal function

MA1,A2 (f) (x) := sup
ϕj∈Aj , j=1,2

[
sup

(y,t)∈Γ(x1)×Γ(x2)

∣∣((ϕ1
t1
· ϕ2

t2

)
∗ f
)

(y)
∣∣]

is in Lp (Rn1+n2), where

Aj :=

ϕ ∈ S (Rnj) :

∫
Rnj

(1 + ‖xj‖)Nj
 ∑
|α|≤Nj

|Dαϕ (xj)|2
 dxj ≤ 1


and Nj = N(p, nj), j = 1, 2, are fixed positive numbers;

(iv) f is a bounded distribution and suptj>0 |(Pt1 · Pt2) ∗ f (·)| is in Lp (Rn1+n2).

In this case, f ∈ Hp (Rn1 × Rn2),

‖f‖Hp(Rn1×Rn2 ) ∼ ‖Mϕ1,ϕ2 (f)‖
p

(2.9)
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and

‖Mϕ1,ϕ2 (f)‖
p
∼ ‖Nϕ1,ϕ2 (f)‖

p
∼ ‖MA1,A2 (f)‖p ∼

∥∥∥∥∥sup
tj>0
|(Pt1 · Pt2) ∗ f (·)|

∥∥∥∥∥
p

. (2.10)

In order to have the equivalences (2.9) and (2.10) (which were not included in [30]),

we need to add the hypothesis
∫
ϕj = 1, j = 1, 2, to items (i) and (ii). The proof of

(2.9) and (2.10), as well as the equivalence between item (iv) and the previous items, can

be done by adapting the argument presented in the proof of Theorem 11 in [21] (stated

above as Theorem 2.3) to the product setting. For p = 1, Theorem 2.6 holds [47].

Note that Theorem 2.6 implies that Hp (Rn1 × Rn2), 0 < p < ∞, can be defined by

fixing ϕj ∈ S (Rnj), with non-zero integrals, j = 1, 2, and saying that f , in S ′ (Rn1+n2), be-

longs to Hp (Rn1 × Rn2) if and only if Mϕ1,ϕ2 (f) ∈ Lp (Rn1+n2). In this case,

cϕ1,ϕ2 ‖f‖Hp(Rn1×Rn2 ) ≤ ‖Mϕ1,ϕ2 (f)‖
p
≤ Cϕ1,ϕ2 ‖f‖Hp(Rn1×Rn2 ), for some constants cϕ1,ϕ2 ,

Cϕ1,ϕ2 .

Although Hp (Rn1 × Rn2), 0 < p < 1, is not a Banach space, it is a complete space

with respect to the metric

dHp(Rn1×Rn2 ) (f, g) := ‖f − g‖pHp(Rn1×Rn2 ) . (2.11)

We now define the rectangle atoms in the two-parameter setting. The definition in

the case of more parameters can be found in Chapter 4 (Definition 4.1).

Definition 2.4 ([13] and [27] case q = 2; [5]). Let 0 < p ≤ 1 < q ≤ ∞. A function a

is called a rectangle (p, q)-atom on Rn1 × Rn2 if it satisfies supp (a) ⊂ R = I1 × I2 ∈ R;

‖a‖q ≤ |R|
1/q−1/p; and

∫
a (x1, y2)xα1

1 dx1 =

∫
a (y1, x2)xα2

2 dx2 = 0 (2.12)

for all (y1, y2) ∈ Rn1 × Rn2 and all αj =
(
αj,1, ..., αj,nj

)
∈ (Z≥0)nj , j = 1, 2, with

|αj| :=
nj∑
i=1

αj,i ≤ Nj :=

⌊
nj

(
1

p
− 1

)⌋
.
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For 0 < p ≤ 1, a subspace of Hp (Rn1 × Rn2) is the so called rectangular Hardy space.

This space is denoted by Hp
rect (Rn1 × Rn2). S.-Y. Chang and R. Fefferman [13] dealt with

H1
rect (Rn1 × Rn2), which consists of infinite linear combinations of the form

∑∞
k=1 λkak,

where the ak’s are rectangle (1, 2)-atoms, {λk} ∈ l1, and the series converges in the L1

norm. This definition can be adapted to the other values of p in (0, 1].

Definition 2.5 ([5]). Let 0 < p ≤ 1. The rectangular Hardy space Hp
rect (Rn1 × Rn2)

consists of tempered distributions f ∈ S ′ (Rn1+n2) which be written as

f =
∞∑
k=1

λkak,

where the series converges in the sense of distributions, {λk} ∈ lp and each ak is a

rectangle (p, 2)–atom on Rn1 × Rn2.

It is useful to note that the inclusion

Hp
rect (Rn1 × Rn2) ⊂ Hp (Rn1 × Rn2) (2.13)

is an immediate consequence of Theorem 1.4. This affirmation follows from the fact

that any rectangle (p, 2)-atom is a rough (p, 2)-atom with one elementary particle. How-

ever, the inclusion (2.13) is proper. This fact was first noticed for the case p = 1: the

counterexample of Carleson [9], the duality [11] BMO (R× R) ∼= (H1 (R× R))
∗

and

the characterization [10] of BMO (R× R) in terms of Carleson measures imply that

H1 (R× R) is strictly larger than H1
rect (R× R). For 0 < p ≤ 1, since the dual of

Hp (R× ...× R) can be characterized in terms of Carleson measures [51], the proper

inclusion Hp
rect (R× ...× R) ( Hp (R× ...× R) also holds.

While not every function in H1 (R× R) can be expressed as an infinite linear com-

bination of rectangle atoms (with coefficients in l1), the next theorem, known as the

Chang-Fefferman atomic decomposition, tells us that we can decompose any element of

Hp (R× R), 0 < p ≤ 1, as an infinite linear combination of special functions (with coef-

ficients in lp). The statement of this result demands the definition of Chang-Fefferman
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atoms [12], which requires some notation.

Given an open set Ω ⊂ Rn1+...+nr with finite measure, denote by M (Ω) the set of

maximal dyadic rectangles [42], [25] of Ω, where a dyadic rectangle I1 × . . . × Ir is said

to be maximal when, for any j = 1, ...r, if there exists Jj in Dnj such that Ij ⊂ Jj and

I1 × ...× Ij−1 × Jj × Ij+1 . . .× Ir ⊂ Ω, then Ij = Jj.

Now we are able to define Chang-Fefferman atoms.

Definition 2.6 ([12]). Let 0 < p ≤ 1. A function a in L2 (R2) is a Chang-Fefferman

p-atom on R× R if it satisfies:

(A) supp(a) ⊂ Ω for some open set Ω ⊂ R2 with |Ω| <∞;

(B) ‖a‖2 ≤ |Ω|
1/2−1/p,

(C) a can be expressed as a =
∑

R∈M(Ω) aR, where each aR is a function, called a Chang-

Fefferman p-elementary particle, such that

(C.1) supp(aR) ⊂ 3R for some distinct maximal dyadic rectangle R = I1 × I2 ∈

M (Ω);

(C.2) aR satisfies the vanishing moment conditions

∫
aR (x1, y2)xα1

1 dx1 =

∫
aR (y1, x2)xα2

2 dx2 = 0,

for all (y1, y2) ∈ R2 and all α = (α1, α2) ∈ (Z≥0)2 with |αj| ≤ k (p) :=
⌊

2
p
− 3

2

⌋
,

j = 1, 2;

(C.3) aR is of class Ck(p)+1 and satisfies

‖aR‖∞ ≤ dR and

∥∥∥∥∂maR∂xmj

∥∥∥∥
∞
≤ dR
|Ij|m

for 1 ≤ m ≤ k (p) + 1 and j = 1, 2;

(C.4) the constants dR’s of item (iii) satisfy
∑

R∈M(Ω) d
2
R ≤ |Ω|

1−2/p.

Now we state the original atomic decomposition for product Hardy spaces.
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Theorem 2.7 (Chang-Fefferman Atomic Decomposition [11], [12]). Let 0 < p ≤ 1. A

tempered distribution f ∈ S ′ (R2) belongs to Hp (R× R) if and only if

f =
∞∑
k=1

λkak,

where the series converges in S ′ (R2), {λk}k ∈ lp and each ak is a Chang-Fefferman

p–atom on R× R. In this case,

‖f‖Hp ∼
∞∑
k=1

|λk|p .

Note that the sufficiency in Theorem 2.7 was proved [12] without using Journé’s

Lemma [42].

The next definition is based on that of Chang-Fefferman atoms (Definition 2.6).

Definition 2.7 ([5]). Let 0 < p ≤ 1 < q < ∞. We say that a function a is a rough

(p, q)-atom on Rn1 × Rn2 if it satisfies

(A) supp(a) ⊂ Ω for some open set Ω ⊂ Rn1+n2 with |Ω| <∞;

(B) ‖a‖q ≤ |Ω|
1/q−1/p;

(C) a =
∑

R∈M(Ω) aR, where each aR is a function supported on 4R, for some distinct

maximal dyadic rectangle R ∈M (Ω), and satisfies (2.12), and

∑
R∈M(Ω)

‖aR‖qq ≤ |Ω|
1−q/p . (2.14)

Many variants of S.-Y. Chang and R. Fefferman’s product space atoms, and atomic

decomposition, exist in the literature. We list some works where one can find variants

of Theorem 2.7. An alternative way of decomposing an element of Hp (R× R), 0 <

p ≤ 1, into Chang-Fefferman atoms was developed by M. Wilson [68]. R. Fefferman

[24] presented atomic decompositions of H1 (R× R) with two alternative definitions of

product atoms. Li et al. [47] showed that the smoothness and the L∞-boundedness of the
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Chang-Fefferman elementary particles are superfluous for the sufficiency of the atomic

decomposition on product H1. Using a discrete Calderón identity, Han et al. [36] showed

that every element of Lp ∩ Hp can be decomposed into an infinite linear combination,

converging in the Lp norm, of variants of Chang-Fefferman p-atoms with coefficients

in lp.

The dual of H1 (Rn1 × . . .× Rnr) is the space known as product BMO [11], which

can be defined in terms of Carleson measures, among other characterizations. Below we

give a definition of product BMO which will clarify the relationship between Carleson’s

counterexample [9] and product H1. But first, we will present the counterexample. This

requires the following:

Definition 2.8. Given two intervals I1, I2 ⊂ R, the tent over the rectangle R = I1 × I2

is defined by S (R) := T (I1) × T (I2), where for any interval I ⊂ R, with center at x0

and length 2δ, T (I) := {(x, t) ∈ R2
+ : |x− x0| < δ − t} is the tent over I. We say that a

measure µ on R2
+ × R2

+ satisfies the Carleson condition with respect to rectangles if

sup
R∈R

µ (S (R))

|R|
<∞.

Definition 2.9 ([10], [23]). Given a non-empty connected open set Ω ⊂ R2, the Carleson

region over Ω is defined by

S (Ω) :=
⋃
R⊂Ω
R∈R

S (R) .

We say that a measure µ on R2
+ × R2

+ satisfies the Carleson condition on the product

space R2
+ × R2

+ if

sup
Ω

µ (S (Ω))

|Ω|
<∞,

where the supremum is taken over all non-empty connected open sets Ω ⊂ R2 with finite

measure.

Carleson’s example consists of a measure µ on R2
+ × R2

+ which satisfies the Carleson

condition with respect to rectangles, but does not satisfy it on the product space R2
+×R2

+.

From his example, it follows that BMO (R× R) is strictly larger than the space

28



rectangular BMO on R × R, which is denoted by BMOrect (R× R) [13]. In order to

explain this affirmation, we need to define these spaces.

Definition 2.10 ([10], [23]). BMOrect (R× R) consists of locally integrable functions f

on R2 such that

sup
R=I1×I2∈R

1

|R|

∫
R2

|f (x1, x2)− fI1 (x2)− fI2 (x1)|2 dx <∞,

where, for each I1 × I2 ∈ R,

fI1 (x2) :=
1

|I1|

∫
R
f (x1, x2) dx1 and fI2 (x1) :=

1

|I2|

∫
R
f (x1, x2) dx2.

This characterization (compare with Definition 2.3) facilitates the proof of the duality

BMOrect (R× R) ∼= (H1
rect (R× R))

∗
. In fact, this can be shown by adapting the proof of

the duality BMO ∼= (H1)
∗

in the one-parameter setting, presented in Chapter 4 of [62].

An equivalent way of characterizing BMOrect (R× R) is given by the following:

Theorem 2.8 ([10], [23], [13]). A function f in L1
loc (R2) belongs to BMOrect (R× R)

if and only if
∫

(1 + |x1|)−2 (1 + |x2|)−2 |f (x)| dx < ∞ and the measure µf , defined on

R2
+ × R2

+ by

dµf (x1, t1, x2, t2) := |∇1∇2u (x1, t1, x2, t2)|2 t1t2dx1dt1dx2dt2, (2.15)

satisfies the Carleson condition with respect to rectangles, where

u (x1, t1, x2, t2) := ((Pt1 · Pt2) ∗ f) (x1, x2) ,

and

|∇1∇2u|2 :=

∣∣∣∣ ∂2u

∂x1∂t1

∣∣∣∣2 +

∣∣∣∣ ∂2u

∂x1∂t2

∣∣∣∣2 +

∣∣∣∣ ∂2u

∂x2∂t1

∣∣∣∣2 +

∣∣∣∣ ∂2u

∂x2∂t2

∣∣∣∣2 .
Definition 2.11 ([10], [23]). A locally integrable function f on R2 is in BMO (R× R)

if and only if
∫

(1 + |x1|)−2 (1 + |x2|)−2 |f (x)| dx < ∞ and the measure µf , defined in

(2.15), satisfies the Carleson condition on R2
+ × R2

+.
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In the light of Carleson’s counterexample, the fact that BMO (R× R) (

BMOrect (R× R) becomes clear. On the other hand, BMO (R× R) is isomorphic to

the dual of H1 (R× R) [11]. So

(
H1 (R× R)

)∗ ∼= BMO (R× R) ( BMOrect (R× R) ∼=
(
H1
rect (R× R)

)∗
,

and this yields H1 (R× R) ) H1
rect (R× R).

2.4 Original Journé’s Lemmas

Motivated by the question of how to verify that a measure satisfies the Carleson condition

on R2
+ × R2

+, Journé proved a result which is known today as Journé’s Lemma (Propo-

sitions 1 in [42]). We refer to it as the discrete Journé’s Lemma. This result is a very

useful tool for working in the product setting. It tells us, in particular, that, among the

rectangles contained in a bounded open set Ω ⊂ R2, we can select a countable collection

with enjoys the two following properties: (i) the union of the rectangles in that collection

contains Ω, and (ii) if we multiply the area of each of the rectangles in that collection

by a suitable non-zero scalar and sum the results, the sum is controlled by c |Ω|. Instead

of proving the discrete Journé’s Lemma directly, he showed a non-discrete version of it

(Propositions 2 in [42]). We refer to this result as the non-discrete Journé’s Lemma. The

discrete version is a corollary of the non-discrete one.

We present the discrete Journé’s Lemma first, in the next lemma. This result is a

very useful tool for working in the product setting. We state and prove it in the setting

Rn1 × Rn2 later (Theorem 4.2). While Journé stated that it holds in this setting, he

proved it only in the case n1 = n2 = 1. Moreover, the proofs of it which are available in

the literature are also restricted to dimension one.

The statement of the discrete Journé’s Lemma requires the establishment of some

notation.

Given an open set Ω ⊂ R2 with |Ω| <∞, we denote byM1 (Ω) the set of dyadic rect-

angles R := I1× I2 ⊂ Ω which are maximal with respect to the x1-direction. Specifically,
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the elements of M1 (Ω) are dyadic rectangles R := I1 × I2 ⊂ Ω such that if I ′1 × I2 is a

dyadic rectangle in Rn1 × Rn2 with R ⊂ I ′1 × I2 ⊂ Ω, then I1 = I ′1. The set M2 (Ω) is

defined analogously. Then M (Ω) =M1 (Ω) ∩M2 (Ω).

For a set Ω, as described in the previous paragraph, let

Ω̃ := {x : MS (χΩ) (x) > 1/2}

and, to each R = I1 × I2 in M2 (Ω), let

Î1 × I2 ∈M1

(
Ω̃
)

be the unique rectangle inM1

(
Ω̃
)

such that its first component, Î1, contains I1 and its

second component is I2. In the literature, the number

γ1 (I1 × I2,Ω) := sup

{
|I ′1|
|I1|

: I ′1 ⊃ I1 and I ′1 × I2 ∈M1

(
Ω̃
)}

=

∣∣∣Î1

∣∣∣
|I1|

(2.16)

is often referred to as the stretching factor of R = I1 × I2 in the x1-direction.

Lemma 2.1 (Discrete Journé’s Lemma [42]). Let Ω ⊂ R×R be a bounded open set and

let φ : [0, 1]→ [0,∞) be an increasing function satisfying
∫ 1

0
φ (s) ds

s
<∞. Then

∣∣∣∣ ∪
I×J∈M2(Ω)

Î × J
∣∣∣∣ ≤ 8 |Ω| (2.17)

and ∑
I×J∈M2(Ω)

|I × J |φ


∣∣∣Î∣∣∣
|I|

 ≤ 2

(
∞∑
j=0

φ
(
2−j
))
|Ω| . (2.18)

This lemma is a corollary of the next one. In oder to state the next lemma, we need

to introduce some more notation.

For x ∈ R and t > 0, the open set Ex,t :=
{
y ∈ R : B (x, t)× {y} ⊂ Ω

}
can be written

as a countable union of disjoint open intervals, Jt,x,k, with the indices k in a subset of N,
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which we call Λ (x, t), i.e.

Ex,t = ∪
k∈Λ(x,t)

Jx,t,k. (2.19)

For each (x, t, k) ∈ R× (0,∞) such that Ex,t 6= ∅ and each k ∈ Λ (x, t), define

τ (x, t, k) := inf

{
s ≥ t :

|Ex,s ∩ Jx,t,k|
|Jx,t,k|

≤ 1

2

}
. (2.20)

Now we are able to present Journé’s Lemma in its non-discrete version.

Lemma 2.2 (Non-discrete Journé’s Lemma [42]). Let Ω ⊂ R×R be a bounded open set

and let φ : [0, 1]→ [0,∞) be an increasing function satisfying
∫ 1

0
φ (s) ds

s
<∞. Then

∣∣∣∣∣∣∣∣
⋃

x∈R, t>0
k∈Λ(x,t)

(x− τ (x, t, k) , x+ τ (x, t, k))× J(x,t,k)

∣∣∣∣∣∣∣∣ ≤ 8 |Ω| ,

and

∫ ∞
0

∫ ∞
−∞

∑
k∈Λ(x,t)

|Jx,t,k|φ
(

t

τ (x, t, k)

)
dx
dt

t
≤ 2

(∫ 1

0

φ (s)
ds

s

)
|Ω| , (2.21)

where Jx,t,k and τ (x, t, k) are defined in (2.19) and (2.20), respectively.
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Chapter 3

Marstrand’s Approximate

Independence of Sets

By modifying an example of J. M. Marstrand, we construct a function f belonging to the

product Hardy space H1 (R× R) and the Orlicz space L (logL)ε (R2) for all 0 < ε < 1,

such that
∫
f is not strongly differentiable almost everywhere on a square of sidelength 1.

In addition, we generalize the claim concerning “approximately independent sets”

that appears in J. M. Marstrand’s work in relation to hyperbolic-cross shaped sets on

the plane. Our generalization, which holds for any sets with boundary of sufficiently low

complexity in any Euclidean space, has a version of the second Borel-Cantelli Lemma as

a corollary.

3.1 Introduction

The one-parameter real Hardy space H1
(
Rd
)

[21] can be defined as the space of dis-

tributions f in S ′
(
Rd
)

such that supt>0

∣∣t−d (f ∗ ϕ) (t−1x)
∣∣ is integrable, for some fixed

ϕ ∈ S
(
Rd
)

with non-vanishing integral. The product Hardy space H1
(
Rd1 × Rd2

)
[30]

can be defined as the space of distributions f in S ′
(
Rd1+d2

)
such that, for some fixed

ϕ ∈ S
(
Rd1
)
, ψ ∈ S

(
Rd2
)

with non-vanishing integrals,

sup
tj>0

∣∣∣∣t−d1
1 t−d2

2

∫ ∫
ϕ
(
t−1
1 y1

)
ψ
(
t−1
2 y2

)
f (x1 − y1, x2 − y2) dy1dy2

∣∣∣∣
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is in L1
(
Rd1+d2

)
, where the points x in Rd1 × Rd2 are represented as x = (x1, x2), with

xj ∈ Rdj , j = 1, 2.

For each 0 < ε < 1, the Orlicz space L (logL)ε
(
Rd
)

[48], also denoted LΦε
(
Rd
)
, can

be defined as the set of f real-valued, measurable functions on Rd such that

∫
Rd

Φε

(
f (x)

λ

)
dx ≤ 1,

for some λ > 0, where Φε (t) := |t| (log (1 + |t|))ε, t ∈ R. The Luxemburg norm on

LΦε
(
Rd
)

is defined by

‖f‖Φε
:= inf

{
λ > 0 :

∫
Φε

(
f (x)

λ

)
dx ≤ 1

}
.

Endowed with the norm ‖·‖Φε
, LΦε

(
Rd
)

is a complete space.

While the integral of functions in Lploc
(
Rd
)
, p > 1, is strongly differentiable a.e. [39]

and this property also holds for the integral of functions which are locally in L logL (R2)

[39], it fails for certain classes of functions satisfying slightly weaker integrability condi-

tions [59]. In particular, it fails in L1
loc

(
Rd
)
. Since many results concerning boundedness

of singular operators can be extended from Lp
(
Rd
)
, p > 1, to the Hardy spaces H1

(
Rd
)

[62], the question arose as to whether the strong differentiation of the integral would hold

in H1
(
Rd
)
. This was answered negatively by Stokolos [65], who gave an example of a

function f in the real Hardy space H1 (R2) such that
∣∣D (∫ f, x)∣∣ =

∣∣D (∫ f, x)∣∣ =∞ for

almost every x in the unit square. We show that the answer is also negative for the space

H1 (R× R) ∩
(
∩

0<ε<1
L (logL)ε (R2)

)
. In particular, R is not a differentiation basis (see

definition in [32], [63], or [64]) for any Orlicz space L (logL)ε (R2) with 0 < ε < 1.

Theorem 3.1. There exists a function f in H1 (R× R)∩L (logL)ε (R2) for all 0 < ε < 1,

such that ∣∣∣∣D(∫ f, x

)∣∣∣∣ =

∣∣∣∣D(∫ f, x

)∣∣∣∣ =∞ (3.1)

for almost every x on
[
−1

2
, 1

2

]
×
[
−1

2
, 1

2

]
.

The proof of this theorem is in Section 3.3. In fact, we will, by modifying the example
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created by Marstrand [50], construct a function f that belongs to H1
rect (R× R) [13],

the proper subspace of H1 (R× R) which consists of sums of rectangular atoms with

coefficients in l1. Then we show that f is in L (logL)ε (R2) for all 0 < ε < 1. The almost

everywhere part relies on a variant of the second Borel-Cantelli lemma which extends the

version used in [50]. This is a corollary of the theorem below, proved in Section 3.2, which

illustrates how geometric properties can yield consequences of a probabilistic nature. In

the next result and throughout this text, the notation α ∼ β, for α, β ∈ [0,∞), means

that there exist constants c, C such that cα ≤ β ≤ Cα.

Theorem 3.2. Let S0 ⊂ Rd be the unit cube centered at the origin and let {An}n∈N be

a family of subsets of S0 satisfying |An| > 0 and δn := dimupper box

(
∂An

)
< d for all n.

There is a sequence {mn}n∈N of positive integers such that if, for each n, we partition

S0 into md
n cubes of same the size, and place inside each a homothetic copy of An, then

denoting by Λn the union of these homothetic copies, we have, for any finite subset F ⊂ N,

∣∣∣∣ ∩n∈FΛn

∣∣∣∣ ∼∏
n∈F

|Λn| . (3.2)

This result generalizes Marstrand’s statement ([50], p. 210), where he claims, without

proof, the approximately independence (in the probabilistic sense) of homothetic copies

of certain “hyperbolic-cross” shaped sets (e.g. 1.3)

Furthermore, we show that if the sets An are finite unions of dyadic cubes, then (3.2)

holds with an equality.

3.2 Approximately Independent Sets

Before we begin, let us fix some notation. By a cube we mean a closed cube with sides

parallel to the coordinate axes. Given a cube Q, we denote its sidelength by `(Q) and its

interior by Q◦. Adopting the terminology used in [62], we write that two cubes P and Q

intersect if P ◦ ∩ Q◦ 6= ∅ and are disjoint if P ◦ ∩ Q◦ = ∅. For a set A in Rd, we denote

its closure by A and its the upper box-counting dimension by dimupper box (A), where the
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latter can be defined [19] as

lim sup
m→∞

log
(
#
{
j ∈ Zd :

[
j1−1
m
, j1
m

]
× ...×

[
jd−1
m
, jd
m

]
∩ A 6= ∅

})
log (m)

.

Remark 3.1. It can be shown that, for any bounded set A ⊂ Rd, the following are

equivalent:

(i) dimupper box

(
∂A
)
≤ δA;

(ii) for any cube S in Rd containing A, there exist a constant CA,S > 0 and an integer

NA,S satisfying:

#{j ∈ {1, ...,md} : S◦m,j ∩ ∂A 6= ∅} ≤ CA,Sm
δA ∀m ≥ NA,S, (3.3)

where, for each m > 0, {Sm,j}m
d

j=1 is a partition of S into md equal sized cubes.

Lemma 3.1. Consider a cube S ⊂ Rd, centered at the origin, and a set A ⊂ S such that

|A| > 0 and dimupper box

(
∂A
)
≤ δA < d and let ε > 0. For any integer m satisfying

m ≥ max

{
NA,S,

(
CA,S |S|
ε |A|

)1/(d−δA)
}
,

where NA,S and CA,S are as in Remark 3.1, and for any measurable set E ⊂ S, the

following holds: if we partition S into md equal sized cubes Sm,j with center om,j, j =

1, ...,md and denote by Em,j the homothetic copies of E, namely

Em,j := om,j +
1

m
E, j = 1, ...,md, (3.4)

then

(1− ε)

∣∣∣∣md∪j=1
Em,j

∣∣∣∣
|S|

≤

∣∣∣∣A ∩ (md

∪
j=1
Em,j

)∣∣∣∣
|A|

≤ (1 + ε)

∣∣∣∣md∪j=1
Em,j

∣∣∣∣
|S|

. (3.5)

Proof. A counting argument yields

#{j : Sm,j ⊂ A} ≤ |A|
|Sm,1|

=
md

|S|
|A| ,
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while Remark 3.1 gives us

#{j : S◦m,j ∩ ∂A 6= ∅} ≤ CA,Sm
δA .

If |Sm,j ∩ A| > 0, then either |Sm,j ∩ A| = |Sm,j| or 0 < |Sm,j ∩ A| < |Sm,j|. Since

|Sm,j ∩ A| = |Sm,j| is equivalent to Sm,j ⊂ A, and since 0 < |Sm,j ∩ A| < |Sm,j| implies

S◦m,j ∩ ∂A 6= ∅, it follows that

Nm = Nm(A, S) := # {j : |Sm,j ∩ A| > 0} ≤ md

|S|
|A|+ CA,Sm

δA . (3.6)

Because the choice of m implies CA,S |S|mδA−d ≤ ε |A|, we get

Nm
|S|
md
≤ (1 + ε) |A| . (3.7)

As Emk,j ⊂ Sm,j for each 1 ≤ j ≤ md, the number of Em,j’s satisfying

|A ∩ Em,j| > 0 is at most Nm. So the proportion of A that lies inside
md

∪
j=1
Em,j is

∣∣∣∣A ∩ (md

∪
j=1
Em,j

)∣∣∣∣
|A|

≤
Nm

∣∣ 1
m
E
∣∣

|A|
=

Nm |E|
md |A|

≤ (1 + ε)

∣∣∣∣md∪j=1
Em,j

∣∣∣∣
|S|

,

where the last inequality follows by (3.7). Similarly,

∣∣∣∣A ∩ (md

∪
j=1
Em,j

)∣∣∣∣
|A|

≥
(
#
{
j : Sm,j ⊂ A

}) ∣∣ 1
m
E
∣∣

|A|
≥

(
md

|S| |A| −
CA,Sm

δA

|A|

) ∣∣ 1
m
E
∣∣

|A|

=

(
1− CA,S |S|

md−δA |A|

) ∣∣∣∣md∪j=1
Em,j

∣∣∣∣
|S|

≥ (1− ε)

∣∣∣∣md∪j=1
Em,j

∣∣∣∣
|S|

.

The example below illustrates a type of set for which the box-counting dimension of

the closure is equal to the dimension of the ambient space and (3.5) holds for infinitely

many integers m.
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Example 3.1. Let α ∈ (0, 1) and let F = Fα be the “fat” Cantor set constructed on [0, 1]

as the Cantor ternary set except that the 2k−1 intervals removed at step k have length α/3k

instead of 1/3k (see for example [57], p. 64). When α = p/q ∈ Q, the endpoints of the

intervals that remained after the k first steps of the building of F have the form n/
(
2k3kq

)
for some integer 0 ≤ n ≤ 2k3kq. Thus, when we partition [0, 1] into m := 2k3kq intervals

of the same length, the sum of the lengths of the intervals of that partition which intersect

F is exactly the measure of the union of the closed intervals that remained on [0, 1] after

the k-th step of the construction of F , i.e.

1

m
#

{
j ∈ N :

[
j − 1

m
,
j

m

]
∩ F 6= ∅

}
= 1−

(α
3

+ 2
α

32
+ ...+ 2k−1 α

3k

)
.

Defining A := F−1/2, it follows that, when we partition S := [−1/2, 1/2] into m intervals

Sm,j := [(j − 1) /m, j/m]− 1/2, j = 1, ...,m, we obtain

1

m
Nm = 1− α

3

k−1∑
i=1

(
2

3

)i
→ 1− α = |A| as k →∞,

where Nm is as in (3.6). Thus, given ε > 0, ∃k0 ∈ N such that (3.7) holds with m = 2k3kq

for all k ≥ k0. So the argument used to prove Lemma 3.1 yields (3.5).

In higher dimensions, if a subset A of S ⊂ Rd satisfies |A| > 0 and

lim inf
m→∞

(
|S|
md

Nm

)
= |A| , (3.8)

then (3.5) holds for infinitely many integers m. What (3.8) says is that we can approx-

imate the volume of A with a regular grid of boxes. When dimupper box

(
∂A
)
≤ δA < d,

(3.8) holds since (3.6) implies that |S|Nmm
−d converges to |A| as m→∞.

However, as shown by the example below, the result of Lemma 3.1 fails if

dimupper box

(
∂A
)

= d.

Example 3.2. Let G := Fα − 1/2, where Fα is as in Example (3.1) with α = 3/4. We
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define a set A (by filling the gaps in G) as follows

A := G ∪
{
∞
∪
m=1

[
m
∪
j=1

(
−1

2
+
j − 1/2

m
+

1

2mm
G

)]}
,

and note that A ⊂ S := [−1/2, 1/2] and 1/4 ≤ |A| ≤ 1/2. Moreover, Nm = m for any

m ∈ N, since, by construction,

∣∣∣∣[−1

2
+
j − 1

m
,−1

2
+

j

m

]
∩ A

∣∣∣∣ ≥ ∣∣∣∣ 1

2mm
G

∣∣∣∣ > 0 ∀1 ≤ j ≤ m, ∀m ∈ N.

Fix m ∈ N and let E := 2−mG. Then (3.5) fails for all 0 < ε < 1. Indeed, using

the notation in (3.4), Em,j = −1
2

+ j−1/2
m

+ 1
2mm

G ⊂ A, ∀j. So |A ∩ Em,j| = |Em,j| =

2−mm−1 |G|, ∀j, and it follows that

∣∣∣∣A ∩ ( m
∪
j=1
Em,j

)∣∣∣∣ =
m∑
j=1

|A ∩ Em,j| = m
1

2mm
|G| = |E| =

∣∣∣∣ m∪j=1
Em,j

∣∣∣∣ . (3.9)

By the choice of A, S and ε, we have 1
|A| >

1+ε
|S| , which, combined with (3.9), implies that

(3.5) does not hold.

Recall that in a probability space (Ω,F , P ), two events E1, E2 ∈ F are said to be

independent if P (E1 ∩ E2) = P (E1)P (E2). Letting Ω be S; F be the σ-algebra of

Lebesgue measurable subsets of S; and P (E1) := |E1| / |S| for E1 ⊂ S measurable,

Lemma 3.1 shows that for certain measurable sets A ⊂ S, there exist arbitrarily large

integers m such that, for any measurable set E ⊂ S,

P

(
A ∩

(
md

∪
j=1
Em,j

))
∼ P (A)P

(
md

∪
j=1
Em,j

)
,

where the Em,j’s are as in (3.4). We call this property “approximately independence”

and we extend it to infinitely many sets as is (3.2).

Proof of Theorem 3.2. We will construct a sequence {mn}n∈N ⊂ N with the following

property: if we partition S0 into md
n cubes Smn,j of same the size and denote the center
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of Smn,j by omn,j, j = 1, ...,md
n, then the sets

Λn :=
mdn∪
j=1

(
omn,j +

1

mn

An

)
, n ∈ N, (3.10)

satisfy (3.2). It suffices to show that we can choose {mn}n∈N such that

∏
i∈F

(
1− 1

4i2

)
|Λi| ≤

∣∣∣∣ ∩i∈FΛi

∣∣∣∣ ≤∏
i∈F

(
1 + 2−(i−1)

)
|Λi| ∀F ⊂ {1, ..., n} (3.11)

holds for all n ∈ N. Indeed, using the representation sin
(
π
2

)
= π

2

∏
j∈N

(
1− 1

4j2

)
and the

inequality 1 + t ≤ et ∀t ∈ [0, 1], we get from (3.11) that, for any finite set F ⊂ N,

2

π

∏
i∈F

|Λi| =
∏
j∈N

(
1− 1

4j2

)∏
i∈F

|Λi| ≤
∏
j∈F

(
1− 1

4j2

)∏
i∈F

|Λi|

≤
∣∣∣∣ ∩i∈FΛi

∣∣∣∣ ≤∏
i∈F

(
1 + 2−(i−1)

)
|Λi| ≤

∏
i∈F

e2−(i−1) |Λi| ≤ e2
∏
i∈F

|Λi| .

To construct {mn}n∈N, we use induction.

Choose m1 = 1. Then Λ1 = A1 and

(
1− 4−1

)
|Λ1| ≤ |Λ1| ≤

(
1 + 2−(1−1)

)
|Λ1| .

Now, assume that the integers m1, ...,mn are chosen such that (3.11) holds. By defini-

tion, Λk is composed of md
k homothetic copies of Ak. So dimupper box

(
∂Λk

)
= δk, since dimupper box is bi-Lipschitz invariant and finitely stable ([19], p. 48). For any

finite subset F ⊂ {1, ..., n}, the boundary of the closure of ΓF := ∩
i∈F

Λi satisfies

dimupper box

(
∂ΓF

)
≤ γn := max {δk : 1 ≤ k ≤ n} ,

because ∂ΓF ⊂ ∩
i∈F
∂Λi and dimupper box is finitely stable [19]. We claim that if

Cn :=
n∑
k=1

CΛk,S0 and Nn :=
n∑
k=1

NΛk,S0 , (3.12)
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then it is possible to take CΓF ,S0 = Cn and NΓF ,S0 = Nn in (3.3). Indeed, if we take

m ≥ Nn and partition S0 into md cubes Sm,j, j = 1, ...,md, then the number of cubes Sm,j

which intersect ∂Λk is not greater than CΛk,S0m
δk , 1 ≤ k ≤ n. Since ∂ΓF ⊂

n
∪
k=1

∂Λk, the

number of cubes Sm,j which intersect ∂ΓF is not greater than
∑n

k=1 CΛk,S0m
δk ≤ Cnm

γn ,

and we conclude that our claim holds.

We choose mn+1 to be an integer such that

mn+1 ≥ max

Nn max
I⊂{1,...,n},

∣∣∣∣ ∩i∈IΛi
∣∣∣∣>0


(

2nCn

∣∣∣∣ ∩i∈IΛi

∣∣∣∣−1
)1/(d−γn)


 , (3.13)

and we will show that, for any subset F ⊂ {1, ..., n} such that

∣∣∣∣ ∩i∈FΛi

∣∣∣∣ > 0,

∏
i∈F∪{n+1}

(
1 +

1

4i2

)
|Λi| ≤

∣∣∣∣ ∩
i∈F∪{n+1}

Λi

∣∣∣∣ ≤ ∏
i∈F∪{n+1}

(
1 + 2−(i−1)

)
|Λi|

holds. The case when

∣∣∣∣ ∩i∈FΛi

∣∣∣∣ = 0 is trivial.

Fix F ⊂ {1, ..., n} such that ΓF := ∩
i∈F

Λi has positive measure. We intend to use

Lemma 3.1 with

S = S0, A = ΓF , ε = 2−n, E = An+1, m = mn+1. (3.14)

But first let us verify that the hypotheses are satisfied. We have:

(i) A ⊂ S = S0 and S0 is a cube centered at the origin;

(ii) A satisfies (3.3) with CA,S = Cn and NA,S = Nn, since ΓF does;

(iii) |A| = |ΓF | > 0, by the choice of F ;

(iv) m = mn+1 ≥ max

{
Nn,

(
2nCn
|ΓF |

)1/(d−γn)
}

= max

{
NA,S,

(
CA,S |S|
ε|A|

)1/(d−γn)
}

.

So we can apply Lemma 3.1 to obtain

(1− ε)

∣∣∣∣md∪j=1
Em,j

∣∣∣∣
|S|

|A| ≤
∣∣∣∣A ∩ (md

∪
j=1
Em,j

)∣∣∣∣ ≤ (1 + ε)

∣∣∣∣md∪j=1
Em,j

∣∣∣∣
|S|

|A| . (3.15)
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Note that
md

∪
j=1
Em,j =

mdn+1

∪
j=1

(
omn+1,j +

1

mn+1

An+1

)
= Λn+1.

This, combined with (3.14) and (3.15), implies

(1− ε)
∣∣∣∣md∪j=1

Em,j

∣∣∣∣ |A||S| =
(
1− 2−n

)
|Λn+1| |ΓF | ≥

[
1− 1

4 (n+ 1)2

]
|Λn+1| |ΓF | ,

∣∣∣∣A ∩ (md

∪
j=1
Em,j

)∣∣∣∣ = |ΓF ∩ Λn+1| =
∣∣∣∣( ∩i∈FΛi

)
∩ Λn+1

∣∣∣∣ ,
and

(1 + ε)

∣∣∣∣md∪j=1
Em,j

∣∣∣∣ |A||S| =
(
1 + 2−n

)
|Λn+1| |ΓF | .

Thus, ∏
i∈F∪{n+1}

(
1− 1

4i2

)
|Λi| ≤

[
1− 1

4 (n+ 1)2

]
|Λn+1|

∣∣∣∣ ∩i∈FΛi

∣∣∣∣
=

[
1− 1

4 (n+ 1)2

]
|Λn+1| |ΓF | ≤

∣∣∣∣( ∩i∈FΛi

)
∩ Λn+1

∣∣∣∣ ≤ (1 + 2−n
)
|Λn+1| |ΓF |

=
(
1 + 2−n

)
|Λn+1|

∣∣∣∣ ∩i∈FΛi

∣∣∣∣ ≤ ∏
i∈F∪{n+1}

(
1 + 2−(i−1)

)
|Λi| ,

where the first and last inequalities are due to the induction hypothesis (3.11). We

conclude that (3.11) holds for every n ∈ N.

Corollary 3.1. Under the hypotheses of Theorem 3.2, if, in addition, the series∑
n |S0 ∩ Acn| diverges, then there is a sequence {mn}n∈N ⊂ N such that when we par-

tition S0 into md
n cubes Smn,j, j = 1, ...,md

n, of the same size and let omn,j denote the

center of Smn,j and

Kn :=
mdn∪
j=1

[
omn,j +

1

mn

(S0 ∩ Acn)

]
, n ∈ N,

the following holds: ∣∣∣ ∞∩
m=1

∞
∪

n=m
Kn

∣∣∣ = 1,

i.e. almost every point of S0 is contained in infinitely many Kn’s.
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Proof. Indeed, define Λn, n ∈ N, as in (3.10) and note that

S0 ∩Kc
n = S0 ∩

{
mdn∪
j=1

[
omn,j +

1

mn

(S0 ∩ Acn)

]}c

= S0 ∩
{
mdn∩
j=1

[
omn,j +

1

mn

(S0 ∩ Acn)

]c}
=

mdn∪
j=1

(
omn,j +

1

mn

An

)
= Λn.

Applying Theorem 3.2 to the family {An}n∈N, we obtain

∣∣∣∣k+l
∩
n=k

Λn

∣∣∣∣ ≤ e2
k+l∏
n=k

|Λn| for any

k, l ∈ N. Letting l → ∞, we get
∣∣∣ ∞∩
n=k

Λn

∣∣∣ ≤ e2
∞∏
n=k

|Λn|. We now use this inequality in

what is nearly the standard proof on the second Borel-Cantelli lemma:

1−
∣∣∣ ∞∩
m=1

∞
∪

n=m
Kn

∣∣∣ =
∣∣∣ ∞∪
m=1

∞
∩

n=m
Λn

∣∣∣ = lim
m→∞

∣∣∣ ∞∩
n=m

Λn

∣∣∣
≤ lim

m→∞

[
e2

∞∏
n=m

|Λn|

]
= e2 lim

m→∞

∞∏
n=m

(1− |Kn|)

≤ e2 lim
m→∞

∞∏
n=m

e−|Kn| = e2 lim
m→∞

exp

(
−
∞∑
n=m

|Kn|

)
= 0,

where the last equality holds because
∑

n |Kn| =
∑

n |S0 ∩ Acn| =∞.

As mentioned above, if we restrict ourselves to sets that are finite unions dyadic cubes,

i.e. cubes in the collection

D :=
{
z + 2−k [0, 1]d : k ∈ Z, z ∈ 2−kZd

}
,

then we have equality in (3.2). The example in [65] is built in the dyadic setting and has

motivated us to prove the claims below.

Claim 3.1. Let S =
[
−2k−1, 2k−1

]d
for some k ∈ Z and let A ⊂ S be a finite union of

dyadic cubes. Then, there exists i0 ∈ N such that, for i ≥ k − i0, and m = 2i, when we

partition S into md equal sized cubes Sm,j with center om,j, j = 1, ...,md, the following

holds: for any measurable set E ⊂ S, we have (3.5) with ε = 0.

Proof. By hypothesis, we can write A =
n
∪
i=1
Qi, for some n ∈ N and some disjoint cubes

43



Qi ∈ D. Choose

i0 := min
1≤i≤n

{log2 (` (Qi))} .

For any i ≥ k − i0, if we set m := 2i and partition S into md cubes Sm,j, j = 1, ...,md,

of the same size, then Sm,j ∈ D and ` (Sm,j) ≤ 2i0 . Since each Qi is a dyadic cube of

sidelength 2j for some j ≥ i0, it follows that each Qi is a disjoint union of some of the

Sm,j’s. Therefore so is A. Hence

Nm = #
{
j ∈

{
1, ...,md

}
: |Sm,j ∩ A| > 0

}
= |Sm,1|−1 |A| = md |S|−1 |A| .

Thus

∣∣∣∣A ∩ (md

∪
j=1
Em,j

)∣∣∣∣ = Nm

∣∣∣∣ 1

m
E

∣∣∣∣ = |S|−1 |A| |E| =
∣∣∣∣md∪j=1

Em,j

∣∣∣∣ |S|−1 |A| . (3.16)

Dividing (3.16) by |A|, we get (3.5) with ε = 0.

Claim 3.2. Let S0 = [−1/2, 1/2]d and let {An}n∈N be a family of measurable sub-

sets of S0 such that every An is a finite union of dyadic cubes. There is a sequence

of integers {kn}n∈N satisfying: if, for each n, we partition S0 into md
n := 2knd cubes

Smn,j, j = 1, ...,md
n, of the same size and let omn,j denote the center of Smn,j and

Λn :=
mdn∪
j=1

(
omn,j + 1

mn
An

)
, then for any finite subset F ⊂ N,

∣∣∣∣ ∩n∈FΛn

∣∣∣∣ =
∏
n∈F

|Λn| . (3.17)

Proof. By induction. Choose k1 = 0. Then m1 = 1 and Λ1 = A1.

Now, assume that k1, ..., kn are chosen such that, with the above notation,

∣∣∣∣ ∩i∈FΛi

∣∣∣∣ =
∏
i∈F

|Λi| ∀F ⊂ {1, ..., n} . (3.18)
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We will choose kn+1 such that

∣∣∣∣ ∩
i∈F∪{n+1}

Λi

∣∣∣∣ =
∏

i∈F∪{n+1}

|Λi| ∀F ⊂ {1, ..., n} . (3.19)

Fix F ⊂ {1, ..., n}. By construction, for each 1 ≤ i ≤ n, the set Λi is a finite union of

disjoint dyadic cubes. So, for each 1 ≤ i ≤ n, we can write Λi = ∪
l∈Ii
Qi,l, for some disjoint

dyadic cubes Qi,l. We choose

mn+1 := 2−in ,

where in := min {log2 (` (Qi,l)) : l ∈ Ii, 1 ≤ i ≤ n}. When we partition S into md
n+1 cubes

Smn+1,j, j = 1, ...,md
n+1, with `

(
Smn+1,j

)
= 2in , each S◦mn+1,j

is either contained in ∩
i∈F

Λi

or in its complement. Thus

#

{
j :

∣∣∣∣Smn+1,j ∩
(
∩
i∈F

Λi

)∣∣∣∣ > 0

}
=
∣∣Smn+1,1

∣∣−1

∣∣∣∣ ∩i∈FΛi

∣∣∣∣ = md
n+1

∣∣∣∣ ∩i∈FΛi

∣∣∣∣ .
So ∣∣∣∣( ∩i∈FΛi

)
∩ Λn+1

∣∣∣∣ =

(
md
n+1

∣∣∣∣ ∩i∈FΛi

∣∣∣∣) ∣∣∣∣ 1

mn+1

An+1

∣∣∣∣ = |Λn+1|
∣∣∣∣ ∩i∈FΛi

∣∣∣∣ .
This and the induction hypothesis (3.18) yield (3.19). Thus (3.17) holds.

3.3 A Counterexample

We divide the proof of Theorem 3.1 into two parts. In the first part we construct a

function f in H1
rec (R× R) ∩ L (logL)ε (R2) for all 0 < ε < 1; in the second, we show

that f satisfies (3.1). An analogous reasoning, with ρ (Xn) replacing Xn, shows that

D
(∫
f, p
)

= −∞ for almost every p in S.

Proof of Theorem 3.1 - Part I. We begin by choosing sequences of positive numbers,

{αn}n , {λn}n and {γn}n , which satisfy the following:

∑
n

λn
α4
n

<∞,
∑
n

γn <∞, (3.20)
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∑
n

logαn
α2
n

=∞, lim
n→∞

λn
α2
n

=∞, (3.21)

λ−1
n α4

n

λ−1
n+1α

4
n+1

≤ 1 (3.22)

and

λn
κεγnα4

n

(
log

(
1 +

λn
κεγn

))ε
≤ 1 ∀0 < ε < 1, (3.23)

for some constant κε > 0, depending on ε, but independent of n. A suitable choice is

described in the end of this section.

We define S :=
[
−1

2
, 1

2

]
×
[
−1

2
, 1

2

]
and we let {mn}∞n=1 ⊂ N be a sequence. The mn’s

are required to satisfy certain properties that will be specified later.

We partition S into m2
n squares Sn,j ∈ R, j = 1, ...,m2

n, of sidelength 1/mn. At the

center on,j of each Sn,j we place a smaller square

Qn,j :=

{
x ∈ R2 : ‖on,j − x‖∞ ≤

1

2mn dαne2

}
,

where here, and in what follows, dae := min {n ∈ Z : n ≥ a} for a ∈ R, and ‖·‖∞ denotes

the maximum norm ‖x‖∞ := max {|x1| , |x2|} for x = (x1, x2) ∈ R2.

For each j = 1, ...,m2
n, we partition Qn,j into 4 squares Qn,j,k ∈ R, 1 ≤ k ≤ 4, of

sidelength 1/
(
2mn dαne2

)
and we label the interiors of these 4 squares as black or white

in a chessboard pattern with the upper right square being white, as in Figure 3.1. The

union of all white squares in all squares Qn,j’s, 1 ≤ j ≤ m2
n will be denoted by Wn; that

of all black squares in all Qn,j’s, 1 ≤ j ≤ m2
n, by Bn. Now we define

fn := λnχWn − λnχBn , f :=
∞∑
n=1

fn,

where χE denotes the characteristic function of a set E. Note that
∑

n |fn| is integrable.

Thus the set W := {x :
∑

n |fn (x)| =∞} has measure zero, a fact the we will use in Part

II below.
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To see that f is in H1 (R× R), we write f =
∑∞

n=1

∑m2
n

j=1 γnm
−2
n an,j, where

an,j (x) := m2
nγ
−1
n fn (x)χQn,j (x) , 1 ≤ j ≤ m2

n, n ∈ N.

The an,j’s are rectangular atoms [13] in H1 (R× R) and, by (3.20), the series∑
n

(∑m2
n

j=1 γnm
−2
n

)
converges. Hence

∞∑
n=1

m2
n∑

j=1

γnm
−2
n an,j ∈ H1

rect (R× R) ⊂ H1 (R× R) .

Now, to show that f belongs to LΦε (R2), we write f =
∑∞

n=1 γngn, where

gn (x) := γ−1
n fn (x) =

m2
n∑

j=1

m−2
n an,j, n ∈ N.

Since
(
LΦε (R2) , ‖·‖Φε

)
is complete and the coefficients γn’s satisfy

∑
n |γn| <∞, to show

that f ∈ LΦε (R2), it suffices to prove that for each ε ∈ (0, 1) we can find a constant

κε > 0, independent of n, such that

‖gn‖Φε
≤ κε for all n ∈ N. (3.24)

In fact, we claim that (3.24) holds for any κε for which (3.23) holds. Indeed, to form each

gn, we gathered all the rectangular atoms that compose fn. So

|gn| = γ−1
n λnχWn∪Bn ,

and this yields

∫
Φε

(
gn (x)

κε

)
dx =

∫
|gn (x)|
κε

[
log

(
1 +
|gn (x)|
κε

)]ε
dx

=
γ−1
n λn
κε

[
log

(
1 +

γ−1
n λn
κε

)]ε
|supp (fn)| ≤ λn

κεγnα4
n

[
log

(
1 +

λn
κεγn

)]ε
≤ 1,

for all n ∈ N, where the last inequality follows from (3.23). This shows that κε is an
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uniform (on n) upper bound for the Luxemburg norms ‖gn‖Φε
, proving our claim.

Proof of Theorem 3.1 - Part II. The result relies on the construction a sequence {Kn}n∈N

of subsets of S such that ∣∣∣ ∞∩
m=1

∞
∪

n=m
Kn

∣∣∣ = 1, (3.25)

and therefore almost every point in S belongs to W c ∩
( ∞
∩
m=1

∞
∪

n=m
Kn

)
.

For each n ∈ N, we define the set (compare with (1.3))

Xn :=

{
(x1, x2) ∈ R2 : 0 ≤ x1x2 ≤

1

4 dαne2
,

1

2 dαne2
≤ ‖(x1, x2)‖∞ ≤

1

2

}
.

Since ∂Xn is union of two rectifiable curves, dimupper box (∂Xn) = 1.

Figure 3.1: Homothetic copy of Xn

By construction, the dilation of Xn by 1/mn is contained in the square of sidelength

1/mn centered at the origin. In Figure 3.1, we represent a set on,j +m−1
n Xn in gray and

the squares Qn,j,k, 1 ≤ k ≤ 4, in black and white at the center. So on,j + m−1
n Xn ⊂ Sn,j

for all 1 ≤ j ≤ m2
n. In addition, the area of Xn satisfies (in our proof here, we only need

the lower bound for |Xn|)

log dαne
2 dαne2

= 2

∫ 1/2

1/2dαne

1

4 dαne2 t
dt ≤ |Xn| (3.26)
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≤ 2

(∫ 1/2dαne

0

tdt+

∫ 1/2

1/2dαne

1

4 dαne2 t
dt

)
≤ log dαne
dαne2

.

For a fixed n ∈ N and j ∈ {1, ...,m2
n}, every point p = (p1, p2) in the set on,j +m−1

n Xn

lies in a rectangle Rp ∈ R satisfying p ∈ Rp,

|Rp| =
1

4m2
n dαne

2 and |Rp ∩Wn| − |Rp ∩ Bn| =
1

4
|Qn,j| . (3.27)

Indeed, let p ∈ on,j +m−1
n Xn. We will construct Rp. By symmetry, it suffices to consider

p with 0 ≤ p2 − (on,j)2 ≤ p1 − (on,j)1. One of the two cases happens:

(i) If 0 ≤ p2 − (on,j)2 ≤ 1/
(
2mn dαne2

)
, then we define

Rp := on,j +

([
0,

1

2mn

]
×
[
0,

1

2mn dαne2

])

and we observe that (3.27) holds.

(ii) If p2 − (on,j)2 > 1/
(
2mn dαne2

)
, then p1 − (on,j)1 > 1/

(
2mn dαne2

)
as well, and

we choose

Rp := on,j +

([
0, p1 − (on,j)1

]
×

[
0,

1

4m2
n dαne

2 (p1 − (on,j)1

)]) .
With this choice, p ∈ Rp, since

(
p2 − (on,j)2

) (
p1 − (on,j)1

)
≤ 1/ (2mn dαne)2. Also, Rp

satisfies (3.27).

Similarly, for every p ∈ on,j +m−1
n ρ (Xn), where ρ is the rotation by π/2 radians, there

exists Sp ∈ R such that

p ∈ Sp, |Sp| =
1

4m2
n dαne

2 and |Sp ∩ Bn| − |Sp ∩Wn| =
1

4
|Qn,j| .

How does λn |Qn,1| compare with
∑∞

i=1 λn+i |Qn+i,1|? The answer given is below and will

be used when we deal with the strong upper derivative of the integral of f . If

mn ≥ 24mn−1 ∀n, (3.28)
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then mn+i ≥ 24mn+i−1 ≥ ... ≥ 24imn ≥ 2i (23mn), ∀n. This and (3.22) yield

∞∑
i=1

λn+i |Qn+i,1| =
λn |Qn,1|

4

∞∑
i=1

4λn+i |Qn+i,1|
λn |Qn,1|

=
λn |Qn,1|

4

∞∑
i=1

4λn+i

(
4m2

n dαne
4)

λn
(
4m2

n+i dαn+ie4
) ≤ λn |Qn,1|

4

∞∑
i=1

22λn+im
2
n (2αn)4

λnm2
n+iα

4
n+i

=
λn |Qn,1|

4

∞∑
i=1

(
λ−1
n α4

n

λ−1
n+iα

4
n+i

)(
23mn

mn+i

)2

≤λn |Qn,1|
4

∞∑
i=1

(
2−i
)2

=
λn |Qn,1|

12
∀n.

Thus (3.28) implies

λn |Qn,1|
4

−
∞∑
i=1

λn+i |Qn+i,1|
2

≥
(

1

4
− 1

24

)
λn |Qn,1| =

5

24
λn |Qn,1| ∀n. (3.29)

For each n, we define

An := S ∩Xc
n and Λn :=

m2
n∪

j=1

[
on,j +

1

mn

An

]
. (3.30)

Each An is contained in S and satisfies |An| > 0 and dimupper box

(
∂An

)
= 1. Moreover,

since |S ∩ Acn| = |Xn|, estimate (3.26) yields

|S ∩ Acn| ≥
log dαne
2 dαne2

≥ logαn

2 (2αn)2 . (3.31)

Also, for each n, we define

Kn :=
m2
n∪

j=1

(
cn,j +

1

mn

Xn

)

and note that Kn =
m2
n∪

j=1

[
cn,j + 1

mn
(S ∩ Acn)

]
and S ∩Kc

n = Λn.

Now we will construct a sequence {mn}n∈N such that both (3.29) and

∣∣∣∣ ∩i∈FΛi

∣∣∣∣ ≤∏
i∈F

(
1 + 2−(i−1)

)
|Λi| ∀F ⊂ {1, ..., n} (3.32)
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hold for all n ∈ N, where the sets Λi are defined in (3.30). We must choose {mn}n∈N

satisfying (3.28) and (3.13). Condition (3.13) appears in the proof of Theorem 3.2, which

we apply to {An}n∈N. We build {mn}n∈N by the recurrence relation

m1 = 1, mn =

⌈
max

{
Nn,

2n−1Cn−1

θn−1

, 24

}⌉
mn−1 dαn−1e2 for n > 1,

where Cn Nn are as in (3.12), θn := min
I

{∣∣∣∣ ∩i∈IΛi

∣∣∣∣} and the minimum is taken over all

finite collections I ⊂ {1, ..., n} satisfying

∣∣∣∣ ∩i∈IΛi

∣∣∣∣ > 0. By construction, with this sequence

{mn}n∈N, both (3.28) and (3.13) hold. Hence both (3.29) and (3.32) hold for all n ∈ N.

From (3.31) and (3.21), we get

∞∑
n=1

|S ∩ Acn| ≥
1

8

∞∑
n=1

logαn
α2
n

=∞.

This, together with (3.32), implies (3.25), as shown in Corollary 3.1.

For each fixed p ∈ W c ∩
( ∞
∩
m=1

∞
∪

n=m
Kn

)
, we will show that D

(∫
f, p
)

= +∞. An

analogous reasoning, with ρ (Xn) replacing Xn, shows that D
(∫
f, p
)

= −∞. Indeed, let

{ni}i∈N be such that p ∈ Kni ∀i ∈ N. Then, it suffices to show that

lim
i→∞

[
∞∑
k=1

1

|Rni (p)|

∫
Rni (p)

fk (x) dx

]
=∞.

For each i ∈ N, p lies in one of the homothetic copies of Xni , say p ∈ Sni,j ∩ Kni . By

(3.27), p lies in a rectangle Rni (p) ∈ R satisfying

|Rni (p)| = 1

4m2
ni
dαnie

2 and |Rni (p) ∩Wni| − |Rni (p) ∩ Bni| =
1

4
|Qni,1| . (3.33)

Moreover, for any k ≥ 1, |Rni (p) ∩ Bni+k| − |Rni (p) ∩Wni+k| cannot be greater than the

area of 2 of the 4 black or white squares that compose each Qni+k,j, 1 ≤ j ≤ m2
ni+k

, i.e.

|Rni (p) ∩ Bni+k| − |Rni (p) ∩Wni+k| ≤ 2

(
|Qni+k,1|

4

)
∀k ∈ N. (3.34)
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From (3.33), (3.34) and (3.29), we get

∫
Rni (p)

fni (x) dx+
∞∑
k=1

∫
Rni (p)

fni+k (x) dx

≥λni (|Rni (p) ∩Wni| − |Rni (p) ∩ Bni|)

−
∞∑
k=1

λni+k (|Rni (p) ∩ Bni+k| − |Rni (p) ∩Wni+k|)

≥ λni
4
|Qni,1| −

∞∑
k=1

λni+k
|Qni+k,1|

2
≥ 5

24
λni |Qni,1| =

5

24

λni
m2
ni
dαnie

4 ∀i ∈ N.

Then

1

|Rni (p)|

∞∑
k=0

∫
Rni (p)

fni+k (x) dx

≥ C
1(

m2
ni
dαnie

2)−1

λni
m2
ni
dαnie

4 ∼
λni
α2
ni

→∞,

as i → ∞, by (3.21). It remains to control |Rni (p)|−1∑ni−1
k=1

∫
Rni (p)

fk (x) dx, i ∈ N.

By construction, for every i and every k ∈ {1, ..., ni − 1}, mni is an integer multiple of

4mk dαke2. This and the fact that the black and white squares Qk,l,v, 1 ≤ v ≤ 4, that

compose each Qk,l, 1 ≤ l ≤ m2
k, have sidelength 1/

(
2mk dαke2

)
, yield

Sni,j ∩Qm,l,v 6= ∅ ⇔ S◦ni,j ⊂ Qm,l,v ∀1 ≤ k ≤ ni − 1, 1 ≤ l ≤ m2
k, 1 ≤ v ≤ 4.

Hence either Rni (p)∩
(
supp

(∑ni−1
k=1 fk

))
= ∅ or Rni (p) ⊂ Qk,l,v for some 1 ≤ k ≤ ni− 1,

1 ≤ l ≤ m2
k, 1 ≤ v ≤ 4. In any of these cases,

1

|Rni (p) |

∫
Rni (p)

fk(x)dx = fk (p) ∀1 ≤ k ≤ ni − 1,

which implies that

∣∣∣∣∣
ni−1∑
k=1

1

|Rni (p) |

∫
Rni (p)

fm(x)dx

∣∣∣∣∣ ≤
ni−1∑
k=1

|fk (p)| ≤
∞∑
k=1

|fk (p)| <∞ ∀i ∈ N,
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where the last inequality holds due to the choice of p in W c. Therefore

1

|Rni (p)|

∫
Rni (p)

f (x) dx ≥ −
∞∑
k=1

|fk (p)|+ 1

|Rni (p)|

∞∑
k=ni

∫
Rni (p)

fk (x) dx→∞

as i→∞. Thus D
(∫
f, p
)

= +∞.

Here we present a choice of positive numbers satisfying (3.20)–(3.23). For each n ∈ N,

let

αn := 4n1/2 log (4n) (log (log (4n)))1/2 , (3.35)

λn := n (log (4n))2 (log (log (4n)))2 , (3.36)

γn :=
1

44n log (4n) (log (log (4n)))2 . (3.37)

In addition, let

κε := max

{
25, 9εmax

n∈N

{
(log (log (4n)))2

(log (4n))1−ε

}}
. (3.38)

To see that the sequences {αn}n , {λn}n and {γn}n, defined above, satisfy (3.20) and

(3.21), it suffices to observe that

λn
α4
n

∼ 1

n (log n)2 , γn ∼
1

n (log n) (log (log n))2 ,

logαn
α2
n

∼ 1

n (log n) (log (log n))
,

λn
α2
n

∼ log (log n) .

A direct substitution yields (3.22). The proof of (3.23) requires a bit more work. From

(3.35)–(3.38) we obtain

1 +
γ−1
n λn
κε

≤ 2γ−1
n λn
25

= (4n)2 (log (4n))3 (log (log (4n)))4 ≤ (4n)9 . (3.39)

Plugging (3.39) into the left-hand-side of (3.23), we get

γ−1
n λn
κε

[
log

(
1 +

γ−1
n λn
κε

)]ε
1

α4
n

≤ (log (log (4n)))2

κε log (4n)
[9 log (4n)]ε
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=
9ε (log (log (4n)))2

κε (log (4n))1−ε ≤ 1,

where the last inequality follows from the choice of κε.
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Chapter 4

Differentiation of the Integral,

Hardy Spaces and

Calderón-Zygmund Operators in the

Product Setting

The study that lead to the results of this chapter begun with our investigation on the

question as to whether the function created by Papoulis [53] can be in the Hardy space

H1 (R× R). The search for the answer raised many other questions and lead us to

develop a relaxed version of Chang-Fefferman p-atoms with a lower number of required

vanishing moments and no smoothness needed on the elementary particles. In analogy

with the proof of this result, we show a generalization of a theorem of R. Fefferman,

which concludes Hp → Lp, 0 < p ≤ 1, boundedness of multiparameter operators from

their behavior on rectangle atoms. In addition, we extend a result of Pipher concerning

boundedness of multiparameter Calderón-Zygmund operators from Hp to Lp.

4.1 Introduction and Statement of Results

In the multiparameter setting, we view Rn as Rn1 × . . .×Rnr , with n1 + ...+nr = n, and

the points x ∈ Rn are represented as (x1, . . . , xr), with xj ∈ Rnj , j = 1, ..., r. The multi-
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parameter, or product, Hardy space Hp (Rn1 × . . .× Rnr), 0 < p ≤ ∞, can be defined [30]

by fixing ϕj ∈ S (Rnj), j = 1, ..., r, with non-zero integral, and saying that a distribution

f , in S ′ (Rn), belongs to Hp (Rn1 × . . .× Rnr) if and only if the multiparameter radial

maximal function

Mϕ1,...,ϕr (f) (x) := sup
tj>0

∣∣((ϕ1
t1
...ϕrtr

)
∗ f
)

(x)
∣∣ (4.1)

is in Lp (Rn), where

((
ϕ1
t1
...ϕrtr

)
∗ f
)

(x) :=

∫
ϕ1
t1

(y1) ...ϕrtr (yr) f (x− y) dy,

ϕjtj (xj) = t
−nj
j ϕj

(
t−1
j xj

)
, j = 1, ..., r.

In this case, the quasi-norm of f is given by

‖f‖Hp(Rn1×...×Rnr ) := ‖Mϕ1,...,ϕr (f)‖
p
, (4.2)

and it is a norm if p ≥ 1. If the supremum in (4.1) is restricted to t1 = ... = tr, then we get

the one-parameter Hardy space Hp (Rn). Our investigation begins with a question from

A. Stokolos. He asked, concerning the example created by Papoulis [53] of an integrable

function f on R2 such that the strong derivative (defined in [32], [60]) of
∫
f exists a.e.,

while the upper strong derivative of
∫
|f | is infinite on a set of positive measure, whether

such a function can be in H1 (R2). We give a positive answer:

Theorem 4.1. There exists a function f in H1
rect (R× R) such that the strong derivative

of
∫
f exists a.e., but the upper strong derivative of

∫
|f | is infinite on a set of positive

measure, namely the function created by Papoulis.

We prove it by exhibiting a decomposition of the function f , created by Papoulis (here

and below this function will be called Papoulis’ f , in terms of rectangle (1, 2)-atoms (see

Definition 4.1) with coefficients in l1. This means that f ∈ H1
rect (R× R) and therefore

f is in H1 (R× R). In particular, Papoulis’ f belongs to H1 (R2).

For p ≤ 1, the space Hp
rect (Rn1 × . . .× Rnr) (see Remark 4.1) is included in

Hp (Rn1 × . . .× Rnr) and an example of Carleson [9] implies that H1
rect (R× R) is a proper
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subspace of H1 (R× R). It is useful to note that the inclusion Hp
rect (Rn1 × . . .× Rnr) ⊂

Hp (Rn1 × . . .× Rnr) is an immediate consequence of Theorem 4.5 below, as any rectangle

(p, 2)-atom on Rn1 × . . .×Rnr is an rough (p, 2)-atom on Rn1 × . . .×Rnr (see Definition

4.3) with one elementary particle.

By modifying the techniques used in the one-parameter setting, we are able to show

some crucial estimates for the action of the radial maximal function (see Lemma 4.1) on

rectangles (p, q)-atoms on Rn1 × . . .×Rnr . The key importance of these estimates is due

to the fact that they imply the uniform boundedness of the Lp (Rn1+...+nr)-norm of the

radial maximal function of rough (p, q)-atoms on Rn1 × . . .×Rnr , which yields the result

of Theorem 4.5, stated below. In the setting Rn1×Rn2 , this theorem follows from Lemma

4.1 and an argument that R. Fefferman [25] developed to prove that the behavior of an

operator on rectangle atoms implies boundedness from Hp (Rn1 × Rn2) to Lp (Rn1+n2).

The same techniques we use to prove Theorem 4.5 in Rn1 ×Rn2 , allow us to enhance

R. Fefferman’s result [25]. Combining his proof with the main result in D.-C. Chang et

al. [14] (who filled some missing steps from [25]), we show the following variant of a

theorem of R. Fefferman [25]:

Theorem 4.2 (Variant of R. Fefferman’s Theorem in [25]). Let 0 < p ≤ 1. Given a

linear operator T on L2 (Rn1+n2), if there exist δj > 0, j = 1, 2, such that

∫
(2kI1)

c
×Rn2

|T (a)|p ≤ C
(
2k
)−δ1

and

∫
Rn1×(2kI2)

c
|T (a)|p ≤ C

(
2k
)−δ2

, (4.3)

for any k ∈ {2, 3, 4, ...} and any rectangle (p, 2)-atom, a, on Rn1 × Rn2, supported on

I1×I2, then T can be extended to a bounded operator from Hp (Rn1 × Rn2) to Lp (Rn1+n2).

There are two steps in the proof of theorems of this type: (i) showing that the be-

havior of an operator T on rectangle atoms yields uniform boundedness of the Lp-norm

of the action of T on product Hp-atoms; (ii) proving that this uniform bound implies the

existence of a bounded extension of T from product Hp to Lp (see [1] for an example of

a linear map which does not admit a bounded extension to H1 despite being uniformly

bounded on atoms). Note that the assumptions of Theorem 4.2 are different than those
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in [25] because, in addition to only requiring dilations by dyadic scalars, we deal with

dilations on each factor of the product setting separately. These multiparameter dila-

tions are the essential aspect of our result, as they allow a direct extension of step (i) to

higher-parameter settings. In particular, they enable us to prove the following:

Theorem 4.3 (Three-parameter Variant of Theorem 4.2). Let 0 < p ≤ 1. Given an

operator T bounded on L2 (Rn1+n2+n3), if there exist δj > 0, j = 1, 2, 3, such that

∫
(2k1I1)

c
×(2k2I2)

c
×Rn3

|T (a)|p ≤ C
(
2k1
)−δ1 (

2k2
)−δ2

for all k1, k2 ∈ {2, 3, 4, ...}, (4.4)

for any rectangle (p, 2)-atom, a, on Rn1×Rn2×Rn3, supported on I1×I2×I3, and similar

inequalities with (1, 2, 3) replaced by (2, 3, 1) and (3, 1, 2) hold, then T can be extended to

a bounded operator from Hp (Rn1 × Rn2 × Rn3) to Lp (Rn1+n2+n3).

This result is not in conflict with Journé’s counterexample (see [43]) since our di-

lations have three parameters instead of one. That counterexample seems to suggest

the existence of an obstacle to passing R. Fefferman’s argument [25] from the two- to

the three-parameter setting. Journé [43] overcame this difficulty in the context of con-

volution operators on product BMO. Carbery and Seeger [8] have taken this step in

Hp (Rn1 × ...× Rnr) by showing that, with extra hypotheses on the operators, R. Feffer-

man’s reasoning [25] holds in higher-parameter settings. Han et. al. [35], working with

Hilbert space valued operators and using the Littewood–Paley square function character-

ization of Hp, established necessary and sufficient conditions for certain classes of singular

integral operators to be bounded from multiparameter (three or more parameters) Hardy

spaces Hp to Lp, 0 < p ≤ 1.

To prove Theorem 4.3, we follow the method used in [25], but instead of the original

two-parameter discrete Journé’s Lemma [42], we apply a three-parameter variant (Lemma

4.4) proved by Pipher [54]. The discrete Journé’s Lemma is a geometric result which can

be used to predict the behavior of operators on Chang-Fefferman atoms from their action

on rectangle atoms. As shown in Section 4.4, Pipher’s variant holds on Rn1 × Rn2 × Rn3

(not just R × R × R). In addition, it holds if the hypothesis that “Ω is bounded” is
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replaced by “Ω has bounded measure”, a fact which is used later in her paper. Since

Pipher’s variant on settings with more than three parameters follows by induction [54],

Theorem 4.3 can be extended to settings of the form Rn1 × ...× Rnr .

When we are dealing with Calderón-Zygmund operators, the inequalities (4.3) can be

obtained by imposing certain conditions on their kernels. Our next theorem presents some

sufficient conditions. The statement is similar to that of the so called “trivial lemma” in

[25], but we prove it for all values of p in (0, 1]; not just for p close to 1 as in [25].

Both the (ε1, ε2, n1, n2)-Calderón-Zygmund operators and the p-(ε1, ε2, n1, n2)-Cal-

derón-Zygmund operators that appear in Theorem 4.4 are precisely defined in Section

4.2 (see Definitions 4.7 and 4.8). When n1 = n2 = 1 and ε1 = ε2 = ε, the (ε1, ε2, n1, n2)-

Calderón-Zygmund operators are the “Calderón-Zygmund operators of type ε on R×R”

defined by Journé [41].

Theorem 4.4 (Variant of “trivial lemma” in [25]). Let 0 < p ≤ 1 and let T be a linear

operator on L2 (Rn1+n2).

If n1/ (n1 − 1) < p ≤ 1, assume that T is a (β1, ε2, n1, n2)-Calderón-Zygmund operator

for some β1 > n1 (1/p− 1) and ε2 > n2 (1/p− 1).

If 0 < p ≤ n1/ (n1 − 1), assume that T is a p-(ε1, ε2, n1, n2)-Calderón-Zygmund operator

for some ε2 > n2 (1/p− 1) and assume also that the [CZ (ε2, n2)]-(ε1, n1)-kernel K1,

associated with T as in Definition 4.7, satisfies

∥∥Dα
y1
K1 (x1, ξ1)

∥∥
CZ(ε2,n2)

≤ C ‖x1 − ξ1‖−N1−1−n1 (4.5)

for each α ∈ (Z≥ 0)n1 with |α| = N1 + 1 and for almost every x1 6= ξ1 ∈ Rn1. Under

these hypotheses, the first inequality in (4.3) holds for some δ1 > 0 and for any rectangle

(p, 2)-atom a on Rn1 × Rn2 supported on I1 × I2. By symmetry, the second inequality in

(4.3) can be obtained by interchanging the variables x2 and x1.

Observe that, by the definition of (ε1, ε2, n1, n2)-Calderón-Zygmund operator (Defini-

tion 4.7), if T is a such operator, then T is associated with [CZ(εj, nj)]-(εi, ni)-kernels
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(Definition 4.4) Ki, i ∈ {1, 2}, j ∈ {1, 2}\{i}, which satisfy the Hörmander type condition

∫
‖xi−ξi‖>2s‖yi−ξi‖

‖Ki (xi, yi)−K1 (x1, ξi)‖CZ(εj ,nj)
dxi ≤ C (2s)−εi for all s ∈ N. (4.6)

Theorem 4.6, stated and proved in Section 4.5, gives sufficient conditions on the kernel

of a Calderón-Zygmund operator for (4.4) to hold, thus extending Theorem 4.4 to the

three-parameter setting. The result of Theorem 4.6 was proved by Pipher [54] for values

of p close to 1 and settings of the form R × ... × R. She also stated (without a proof)

that this result holds for all p ∈ (0, 1] if more smoothness is assumed on the kernel.

With the crucial estimates of Lemma 4.1, we can relax the sufficient conditions for a

distribution to be in Hp (Rn1 × ...× Rnr). Specifically:

Theorem 4.5. Let 0 < p ≤ 1 < q < ∞ and r ∈ {2, 3}. Suppose that a distribution

f ∈ S ′ (Rn1+...+nr) can be written as f =
∑∞

k=1 λkak converging in S ′ (Rn1+...+nr), where

{λk}k ∈ lp and each ak is a rough (p, q)-atom on Rn1 × ...× Rnr . Then

f ∈ Hp (Rn1 × ...× Rnr) and ‖f‖pHp ≤ C
∞∑
k=1

|λk|p ,

for some constant c independent of f .

It is clear that when one decomposes distributions in Hp as sums of functions, it is

better to have as much smoothness as possible. However, for the sufficient condition, it

is preferable to have fewer requirements on those functions.

Contrasting with Chang-Fefferman atoms [12], our rough atoms do not have any re-

quirement related to smoothness of the elementary particles. Furthermore, the elementary

particles of our atoms do not need to be in L∞ either (this L∞ boundedness was used in

[12] to prove that Chang-Fefferman p-atoms are uniformly bounded in Hp (Rn1 × Rn2)).

The fact that, for p = 1, Chang-Fefferman elementary particles do not need to be smooth

nor in L∞ is known [47]. For 0 < p ≤ 1, it was proved [36] that if a function belongs

to Hp (Rn1 × Rn2) ∩ Lq (Rn1+n2), for some 1 < q < ∞, then it can be written as sum

of (p, q)-product-atoms with coefficients in lp, where the so called “(p, q)-product-atoms”
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[36] are rough (p, q)-atoms requiring some extra conditions. Unlike the results in [36],

which depend on a discrete Calderón’s identity, ours rely on variants of Journé’s Lemma.

In [12], it was asked whether it is possible to improve the requirement of vanishing

moments up to order b2/p− 3/2c on each coordinate factor of the elementary particles

of the atomic decomposition of Hp (R× R). By Theorem 4.5, the answer is affirmative:

for Hp (Rn1 × Rn2), it is sufficient to have vanishing moments up to order bnj (1/p− 1)c

on the j-the coordinate, j = 1, 2, of the elementary particles. In the case n1 = n2 = 1,

this result was obtained by Han [34]. The reason why we have these lower numbers is

that, by working with the radial maximal function instead of the square function (as in

[12]), we avoid an early use of Hölder’s inequality.

In Section 4.2, we introduce some necessary notation and prove technical results that

will be used in the subsequent sections. The proof of Theorem 4.1 is in Section 4.3,

where we present, for the sake completeness, Papoulis’ construction of a function that

proves this result. Section 4.4 is about Journé’s Lemma and contains two variants of

it. In Section 4.5, we prove Theorems 4.2, 4.3 and 4.4; we present Theorem 4.6 – a

three-parameter variant of Theorem 4.4 – and we show Theorem 4.5.

4.2 Definitions and Technical Results

We use the standard notation bxc := max {n ∈ Z : n ≤ x} for x ∈ R, and by |A| we denote

the Lebesgue measure of a measurable set A ⊂ Rn. We say that a set in Rn1 × ...× Rnr

is a rectangle if it has the form

R (x, t) :=
{

(y1, ..., yr) ∈ Rn1 × ...× Rnr : ‖xj − yj‖Rnj < tj, 1 ≤ j ≤ r
}
, (4.7)

for some xj ∈ Rnj , tj > 0, 1 ≤ j ≤ r, where ‖·‖Rnj denotes the maximum norm in

Rnj (where no confusion arises, we will denote it by ‖·‖). We denote by R0 the set of

rectangles of the form (4.7). Given R (x, t) ∈ R0 and ε > 0, we define εR := R (x, εt).

Given a cube I ⊂ Rnj and a scalar ε > 0, we denote by εI the cube concentric with I

and with edge-length ε times the edge-length of I.

61



The multiparameter theory differs from the one-parameter in many ways. For in-

stance, the analogue of Hardy-Littlewood maximal function, which is defined by

MS (f) (x) := sup

{
1

|R|

∫
R

|f (y)| dy : R ∈ R0 such that x ∈ R
}
, f ∈ L1

loc

(
Rn1+...+nr

)
,

(4.8)

and called strong maximal function [39], [62], is not [39] of weak-type (1, 1). The dif-

ferentiation of the integrals [60], [32] is considered with respect to rectangles in R0 and

known as strong differentiability, but the multiparameter equivalent of the classical dif-

ferentiation theorem of Lebesgue fails. This is a consequence of the fact that MS does

not map L1 into weak L1 [32].

On the other hand, MS is bounded on Lq, 1 < q ≤ ∞, and satisfies a weak-type

L (logL)r−1 inequality [39], [32]. We will refer to this fact as the strong maximal function

theorem.

The collection of dyadic cubes in Rnj will be denoted by Dnj . We say that a set

R ⊂ Rn1+...+nr is a dyadic rectangle in Rn1 × ...×Rnr if it has the form R = I1 × ...× Ir,

for some cubes Ij ∈ Dnj , j = 1, ..., r. Given an open set Ω ⊂ Rn1+...+nr with finite

measure, we letM (Ω) be the set of maximal dyadic rectangles of Ω [25], where a dyadic

rectangle I1× . . .× Ir is said to be maximal when, for any j = 1, ...r, if there exists Jj in

Dnj such that Ij ⊂ Jj and I1 × ...× Ij−1 × Jj × Ij−1 . . .× Ir ⊂ Ω, then Ij = Jj.

We denote all constants by c or C, where c (or C) may vary from line to line and may

depend on the dimension of the space and other fixed entities. Sometimes we will put a

subscript on c (or on C) to indicate these dependences.

Definition 4.1. Let 0 < p ≤ 1, 1 < q ≤ ∞. A function a is called a rectangle (p, q)-atom

on Rn1 × . . .× Rnr if it satisfies

supp (a) ⊂ R, where R = I1 × . . .× Ir (4.9)

for Ij :=
{
yj ∈ Rnj : ‖yj − oj‖Rnj < tj

}
, oj ∈ Rnj , tj > 0;

‖a‖q ≤ |R|
1/q−1/p ; (4.10)
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∫
a (x1, y2, . . . , yr)x

α1
1 dx1 = . . . =

∫
a (y1, . . . , yr−1, xr)x

αr
r dxr = 0 (4.11)

for all (y1, . . . , yr) ∈ Rn1 × . . .× Rnr and all αj =
(
αj1, ..., αjnj

)
∈ (Z≥0)nj with

|αj| :=
nj∑
i=1

αji ≤ Nj :=

⌊
nj

(
1

p
− 1

)⌋
. (4.12)

Remark 4.1. The definition above is based on that of rectangle atoms found in [13], [25],

[26] and [27]. On these works, ‖·‖Rnj is the maximum norm and q = 2. When q = ∞,

the term 1/q in (4.10) and in the proof of Lemma 4.1, is defined to be zero.

Definition 4.2. [13] By Hp
rect (Rn1 × . . .× Rnr), 0 < p ≤ 1, we denote the space whose

elements have the form
∑

k λkak, where {λk}k ∈ lp, each ak is a rectangle (p, 2)-atom on

Rn1 × . . .× Rnr and the series converges in S ′ (Rn1+...+nr).

The following lemma provides the essential estimates for the behavior of a radial

maximal function on rectangle (p, q)-atoms.

Lemma 4.1. Let 0 < p ≤ 1 < q ≤ ∞ and let a be a rectangle (p, q)-atom on Rn1×. . .×Rnr

supported on I1×....×Ir. For γ1, ..., γr ≥ 2 and 1 ≤ i ≤ r, if U = (γ1I1)×....×(γi−1Ii−1)×

Rni × (γi+1Ii+1)× ....× (γrIr), then

∫
Uc

(M (a))p ≤ cϕ1,..,ϕr,p,q

∏
1≤j≤r
j 6=i

γ
−(1−µj)p
j , (4.13)

where µj := nj (1/p− 1)−Nj and the multiparameter radial maximal function

M := Mϕ1,..,ϕr (4.14)

is defined as in (4.1), with each Schwartz function ϕj being nonnegative, radial (w.r.t.

the norm ‖·‖Rnj ), bounded by 1, supported on
{
yj : ‖yj‖Rnj ≤ 1

}
and having integral 1,

j = 1, ..., r.

Proof of Lemma 4.1. In order to simplify the notation, we prove the result in the case

i = r and r = 2. The modifications in the argument for the case r > 2 will be mentioned.
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Let M be as in (4.14) and let a be a rectangle (p, q)-atom on Rn1 × Rn2 supported on

R = I1 × I2. Since our goal is to show
∫

(γI1)c×Rn2
(M (a))p ≤ Cγ(µ1−1)p, we can assume

w.l.o.g. that Ij is centered at the origin of Rnj , j = 1, 2, respectively.

To estimate that integral, we divide (γI1)c × Rn2 into two sets: (γI1)c × 2I2 and

(γI1)c× (2I2)c (in the case r > 2, we divide (γ1I1)c× . . .× (γr−1Ir−1)c×Rnr into (γ1I1)c×

. . .× (γr−1Ir−1)c× 2Ir and (γ1I1)c× . . .× (γr−1Ir−1)c× (2Ir)
c; the rest of the argument is

analogous to the case r = 2). We will integrate (M (a))p on each of these sets separately.

Let x ∈ (γI1)c × 2I2 and note that

∣∣(ϕ1
t1
.ϕ2
t2

)
∗ a (x)

∣∣ ≤ ∫
I2

∣∣∣∣∫
I1

a (y1, y2)ϕ1
t1

(x1 − y1) dy1

∣∣∣∣ϕ2
t2

(x2 − y2) dy2. (4.15)

By (4.11), we can subtract from ϕ1
(
t−1
1 (x1 − y1)

)
the Taylor polynomial of order N1 of

ϕ1 at t−1
1 x1 evaluated at t−1

1 (x1 − y1) (in the case r > 2, we use the Taylor polynomial

of ϕj of order Nj to deal with the integral in each yj, j = 1, ..., r − 1). This yields

∣∣∣∣∫
I1

a (y1, y2)ϕ1
t1

(x1 − y1) dy1

∣∣∣∣ ≤ C
|I1|(N1+1)/n1

tn1+N1+1
1

∫
I1

|a (y1, y2)| dy1

for any t1 > ‖x1‖ /2. So, for 1 < q <∞,

∣∣∣∣∫ a (y1, y2)ϕ1
t1

(x1 − y1) dy1

∣∣∣∣ ≤ C
|I1|(N1+1)/n1+1−1/q

‖x1‖n1+N1+1

(∫
I1

|a (y1, y2)|q dy1

)1/q

=: F (x1, y2),

(4.16)

for any t1 > ‖x1‖ /2, and if q =∞, then

∣∣∣∣∫ a (y1, y2)ϕ1
t1

(x1 − y1) dy1

∣∣∣∣ ≤ C
|I1|(N1+1)/n1+1

‖x1‖n1+N1+1
‖a‖∞ =: F (x1, y2) , (4.17)

for any t1 > ‖x1‖ /2. Since M (a) (x) = supt1>‖x1‖/2; t2>0

∣∣((ϕ1
t1
.ϕ2
t2

)
∗ a
)

(x)
∣∣ for any

x ∈ (γI1)c × 2I2, plugging (4.16) into (4.15), we get

M (a) (x) ≤ sup
t2>0

∫
F (x1, y2)ϕ2

t2
(x2 − y2) dy2 ≤ CMϕ2 (F (x1, ·)) (x2) , (4.18)

for any x ∈ (γI1)c × 2I2, where Mϕ2 (g) (x2) := supt2>0

∣∣ϕ2
t2
∗ g (x2)

∣∣ for g ∈ S ′ (Rn2).
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Plugging (4.17) into (4.15), we also obtain (4.18). So, in the case 1 < q <∞,

∫
(γI1)c×2I2

(M (a) (x))p dx ≤ C

∫
(γI1)c

∫
2I2

(Mϕ2 (F (x1, ·)) (x2))p dx2dx1

≤ C

∫
(γI1)c
|I2|1−p/q

[∫
(Mϕ2 (F (x1, ·)) (x2))q dx2

]p/q
dx1

≤ C |I2|1−p/q
∫

(γI1)c

[∫
(F (x1, ·) (x2))q dx2

]p/q
dx1

= C |I2|1−p/q
∫

(γI1)c

|I1|(N1+1)p/n1+p−p/q

‖x1‖(n1+N1+1)p

[∫ ∫
I1

|a (y1, x2)|q dy1dx2

]p/q
dx1

= C |I2|1−p/q |I1|(N1+1)p/n1+p−p/q
(
γ |I1|1/n1

)−(n1+N1+1)p+n1

‖a‖pq

= C
(
γµ1−1 |R|1/p−1/q ‖a‖q

)p
, (4.19)

while, in the case q =∞,

∫
(γI1)c×2I2

(M (a) (x))p dx ≤ C |I2|
∫

(γI1)c
‖F (x1, ·)‖p∞ dx1 = C

(
γµ1−1 |R|1/p ‖a‖∞

)p
.

(4.20)

For x ∈ (γI1)c × (2I2)c, we use (4.11) to get

∣∣(ϕ1
t1
.ϕ2
t2

)
∗ a (x)

∣∣ ≤ C
|I1|(N1+1)/n1 |I2|(N2+1)/n2

tn1+N1+1
1 tn2+N2+1

2

∫
I2

∫
I1

|a (y1, y2)| dy1dy2

≤ C
|I1|(N1+1)/n1 |I2|(N2+1)/n2 |R|1−1/q ‖a‖q

‖x1‖n1+N1+1 ‖x2‖n2+N2+1
,

for all tj > ‖xj‖ /2, j = 1, 2. Since, when x is in (γI1)c × (2I2)c, M (a) (x)

= suptj>‖xj‖/2
∣∣((ϕ1

t1
.ϕ2
t2

)
∗ a
)

(x)
∣∣, we obtain

∫
(γI1)c×(2I2)c

(Ma)p ≤ C
(
γµ1−1 |R|1/p−1/q ‖a‖q

)p
. (4.21)

To conclude the proof of the case 1 < q < ∞, we combine the estimates (4.19) and

(4.21) and condition (4.10). In the case q =∞, the conclusion follows from (4.20), (4.21)

and condition (4.10).
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The definition below is based on that of Chang-Fefferman p-atoms on R×R [12], [25].

Definition 4.3. Let 0 < p ≤ 1 < q <∞. A function a is said to be a rough (p, q)-atom

on Rn1 × ...× Rnr if it satisfies

(A) supp(a) is contained in some open set Ω ⊂ Rn1+...+nr of finite measure,

(B) ‖a‖q ≤ |Ω|
1/q−1/p,

(C) a =
∑

R∈M(Ω) aR, where each aR is a function supported on 4R for some distinct

maximal dyadic rectangle R ∈M (Ω) and satisfying (4.11), and

∑
R∈M(Ω)

‖aR‖qq ≤ |Ω|
1−q/p . (4.22)

Note that, for each function aR defined above, |4R|1/q−1/p ‖aR‖−1
q aR is a rectangle

(p, q)-atom on Rn1 × ...× Rnr as in Definition 4.1.

Remark 4.2. Every f in Hp (R× R) can be expressed [12], [25] as a sum f =
∑∞

k=1 λkak

converging in S ′ (R2), where {λk}k ∈ lp and each ak is a Chang-Fefferman p-atom on

R× R (in particular, each ak is a rough (p, 2)-atom on R× R). The argument that was

used in [25] to prove this result also works in the setting Rn1 × ...×Rnr . Thus every f in

Hp (Rn1 × ...× Rnr) can be expressed as

f =
∞∑
k=1

λkak in S ′
(
Rn1+...+nr

)
, (4.23)

where {λk}k ∈ lp and each ak is a Chang-Fefferman p-atom on Rn1 × ... × Rnr , and the

norm Hp norm of f satisfies
∞∑
k=1

|λk|p ≤ c ‖f‖pHp , (4.24)

where c does not depend of f . We will use the decomposition (4.23) in the proofs of

Theorems 4.2 and 4.3. In those proofs, we do not need the smoothness of the elementary

particles of Chang-Fefferman p-atoms on Rn1 × ... × Rnr ; all that we need are the fact

every Chang-Fefferman p-atom on Rn1× ...×Rnr is a rough (p, q)-atom on Rn1× ...×Rnr

and the bound (4.24).

As we mentioned in the introduction, we will deal with Calderón-Zygmund operators
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that satisfy certain conditions which are similar to those which Journé [41] requires on

the definition of “Calderón-Zygmund operators of type ε”. The terminology that we use

in our definitions come from [29] and [41].

Definition 4.4 ([41]). A locally integrable function K, defined on the complement of

∆n := {(x, y) ∈ Rn × Rn : x = y} and taking values in a normed space V , is called an

V -(ε, n)-kernel if there exists ε > 0 and a constant λ > 0 such that

∫
‖x−ξ‖>2k‖y−ξ‖

‖K (x, y)−K (x, ξ)‖V dx ≤ λ
(
2k
)−ε

for all k ∈ N. (4.25)

We let

|K|V,ε := inf {λ > 0 : (4.25) holds} . (4.26)

Definition 4.5. A locally integrable function K, defined on [(Rn1 × Rn1) \∆n1 ]

× [(Rn2 × Rn2) \∆n2 ] and taking values in a normed space V , is called an V -(ε1, ε2, n1, n2)-

kernel if there exist ε1, ε2 > 0 and a constant λ > 0 such that

∫
‖x1−ξ1‖>2k‖y1−ξ1‖
‖x2−ξ2‖>2l‖y2−ξ2‖

‖K1,2 (x1, y1, x2, y2)−K1,2 (x1, ξ1, x2, ξ2)‖V dx ≤ λ
(
2k
)−ε1 (

2l
)−ε2

(4.27)

for all k, l ∈ N. We let

|K|V,ε1,ε2 := inf {λ > 0 : (4.27) holds} . (4.28)

We now introduce the definitions of the Calderón-Zygmund operators that we will

deal with. Our multiparameter operators will be of one-parameter in each variable. So

we begin with the definitions in the one-parameter setting.

Definition 4.6 ([41]). Let ε > 0. A continuous linear map T0 from C∞0 (Rn) into

[C∞0 (Rn)]′ is a singular integral operator (SIO) of type (ε, n) if there exists a C-(ε, n)-

kernel, K, such that for f, g in C∞0 (Rn) with disjoint supports

〈T0(f) , g〉Rn =

∫
Rn

∫
Rn
K (x, y) f (y) g (x) dxdy, (4.29)
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where 〈T0(f) , g〉Rn denotes the action of T0(f) on g.

Given a bounded linear operator T on L2 (Rn), we say that it is an (ε, n)-Calderón-

Zygmund operator if there exists a SIO of type (ε, n), T0, such that T extends T0. In this

case, we say that T is associated to the C-(ε, n)-kernel K, the kernel corresponding to T0,

as in (4.29).

We denote the space of (ε, n)-Calderón-Zygmund operators by CZ(ε, n) and we define

a norm on it as follows: if an operator T , in CZ(ε, n), is associated to a C-(ε, n)-kernel

K, then its CZ(ε, n)-norm [41] is

‖T‖CZ(ε,n) := ‖T‖L2→L2 + |K|C,ε . (4.30)

Endowed with this norm, the space CZ(ε, n) is a Banach space [41].

Remark 4.3. Note that, if an (ε, n)-Calderón-Zygmund operator T is associated to an

L1
loc (Rn\∆n) function K as in Definition 4.6, then T (f) (x) =

∫
Rn K (x, y) f (y) dy, for

all f ∈ L∞ (Rn) with compact support and almost every x /∈ supp (f), and this integral

representation is absolutely convergent. Note also that if, in addition,
∫
f = 0 and I is a

cube centered at the origin 0 of Rn such that supp(f) ⊂ I, then

T (f) (x) =

∫
I

(K (x, y)−K (x, 0)) f (y) dy

for almost every x /∈ I. This and (4.30) yield

∫
‖x‖>2k|I|1/n

|T (f) (x)| dx ≤
∫
I

(∫
‖x‖>2k‖y‖

|K (x, y)−K (x, 0)| dx
)
|f (y)| dy

≤
(
2k
)−ε ‖T‖CZ(ε,n) ‖f‖1 for all k ∈ N.

In the two-parameter settings, we have the following.

Definition 4.7 (Based on Definition 8 in [41]). Let εj > 0, j = 1, 2. We say that a

continuous linear operator T0 from C∞0 (Rn1)× C∞0 (Rn2) into [C∞0 (Rn1)× C∞0 (Rn2)]′ is

a SIO of type (ε1, ε2, n1, n2) if it satisfies:
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(1) there exists a [CZ(ε2, n2)]-(ε1, n1)-kernel, K1 such that

〈T0 (f ⊗ ϕ) , g ⊗ ψ〉Rn1+n2 =

∫
Rn1

∫
Rn1

〈[K1 (x1, y1)] (ϕ) , ψ〉L2(Rn2 ) f (y1) g (x1) dx1dy1

(4.31)

holds for f, g in C∞0 (Rn1) with disjoint supports and ϕ, ψ in C∞0 (Rn2), where the map

(x1, y1) ∈ (Rn1 × Rn1) \∆n1 7→ K1 (x1, y1)

is a [CZ(ε2, n2)]-valued function, [K1 (x1, y1)] (ϕ) denotes the evaluation of K1 (x1, y1) at

ϕ and 〈 · , · 〉L2(Rn2 ) represents the inner-product on L2 (Rn2);

(2) there exists a [CZ(ε1, n1)]-(ε2, n2)-kernel, K2, such that

〈T0 (ϕ⊗ f) , ψ ⊗ g〉Rn1+n2 =

∫
Rn2

∫
Rn2

〈[K2 (x2, y2)] (ϕ) , ψ〉L2(Rn1 ) f (y2) g (x2) dx2dy2

(4.32)

holds for f, g in C∞0 (Rn2) with disjoint supports, and ϕ, ψ in C∞0 (Rn1).

A bounded linear operator T on L2 (Rn1+n2) is said to be an (ε1, ε2, n1, n2)-Calderón-

Zygmund operator if there exists a SIO of type (ε1, ε2, n1, n2), T0, such that T extends T0.

In this case, we say that T is associated with K1 and K2.

We will also deal with operators whose kernels satisfy certain differentiability con-

dition. The order of the derivatives that we require depends on the numbers N1 and

N2, which are defined in (4.12). Note that Nj depends on the dimension nj and on the

exponent p, j = 1, 2.

Definition 4.8. Let 0 < p ≤ 1 and εj > 0, j = 1, 2. A bounded linear operator on

L2 (Rn1+n2), T , is called a p-(ε1, ε2, n1, n2)-Calderón-Zygmund operator if:

(i) T is an (ε1, ε2, n1, n2)-Calderón-Zygmund operator as in Definition 4.7;

(ii-1) the [CZ(ε2, n2)]-valued function

(x1, y1) ∈ (Rn1 × Rn1) \∆n1 7→ K1 (x1, y1)

such that (4.31) holds is of class CN1+1 in the variable y1 and for each multi-indice
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α ∈ (Z≥0)n1 with |α| ≤ N1 + 1, Dα
y1
K1 is a CZ(ε2, n2)-(ε1, n1)-kernel; and

(ii–2) item (ii–1) of this definition holds with the roles of 1 and 2 interchanged and the

α’s replaced by multi-indices β ∈ (Z≥0)n2 with |β| = N2 + 1.

We denote the space of (ε1, ε2, n1, n2)-Calderón-Zygmund operators by

CZ(ε1, ε2, n1, n2) and we define a norm [41] on it as follows: if an operator T in

CZ(ε1, ε2, n1, n2) corresponds to a pair (K1, K2) of a [CZ(ε2, n2)]-(ε1, n1)-kernel, K1,

and a [CZ(ε1, n1)]-(ε2, n2)-kernel, K2, as in (4.31) and (4.32) respectively, then the

CZ(ε1, ε2, n1, n2)-norm of T is defined [41] by

‖T‖CZ(ε1,ε2,n1,n2) := ‖T‖L2→L2 + |K1|V2,ε1
+ |K2|V1,ε2

,

where Vj denotes the space CZ(εj, nj), and |Ki|Vj ,εi is defined in (4.26), i = 1, 2, j ∈

{1, 2}\{1}.

Similarly, we denote the space of p-(ε1, ε2, n1, n2)-Calderón-Zygmund operators by p-

CZ(ε1, ε2, n1, n2) and we define the p-CZ(ε1, ε2, n1, n2)-norm of an operator T in

p-CZ(ε1, ε2, n1, n2) corresponding to a collection of kernels K1,α, K2,β, α ∈ (Z≥0)n1 with

|α| ≤ N1 + 1, β ∈ (Z≥0)n2 with |β| ≤ N2 + 1, as in Definition 4.8, by

‖T‖p-CZ(ε1,ε2,n1,n2) := ‖T‖L2→L2 +
∑

|α|=N1+1

∣∣Dα
y1
K1

∣∣
V2,ε1

+
∑

|β|=N2+1

∣∣Dβ
y2
K2

∣∣
V1,ε2

,

where here Vj is the space CZ(εj, nj), and the terms
∣∣Dα

y1
K1

∣∣
V2,ε1

,
∣∣Dβ

y2
K2

∣∣
V1,ε2

are defined

in (4.26).

Remark 4.4. If an (ε1, ε2, n1, n2)-Calderón-Zygmund operator T is associated with an

[CZ(ε2, n2)]-(ε1, n1)-kernel K1 as in Definition 4.7, then

〈T (u⊗ ϕ) , v ⊗ ψ〉Rn1+n2

=

∫
Rn1

∫
Rn1

〈[K1 (x1, y1)] (ϕ)− [K1 (x1, 01)] (ϕ) , ψ〉L2(Rn2 ) u (y1) v (x1) dx1dy1, (4.33)

for all u, v in C∞0 (Rn1) with disjoint supports, with u satisfying
∫
u = 0, and every ϕ, ψ
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in C∞0 (Rn2). Since the CZ (ε2, n2)-valued function

(x1, y1) ∈ (Rn1 × Rn1) \∆n1 7→ K1 (x1, y1)

is locally integrable on (Rn1 × Rn1) \∆n1, for any f in L∞ (Rn1 × Rn2) satisfying

supp(f) ⊂ I1 × I2 for some cubes I1 ⊂ Rn1, I2 ⊂ Rn2, with Ij centered at the origin

0j of Rn2, j = 1, 2, and for almost every (x1, x2) ∈ Rn1 ×Rn2 with x1 /∈ I1, the represen-

tation

T (f) (x1, x2) =

∫
I1

[K1 (x1, y1)] (f (y1, ·)) (x2) dy1 (4.34)

holds; here [K1 (x1, y1)] (f (y1, · )) (x2) denotes the evaluation at x2 of the operator

[K1 (x1, y1)] on the function y2 7→ f (y1, ·) (y2) := f (y1, y2). If, in addition,∫
f (y1, y2) dy1 = 0 for all y2 ∈ Rn2, then (4.33) and (4.34) yield

T (f) (x1, x2) =

∫
I1

([K1 (x1, y1)]− [K1 (x1, 01)]) (f (y1, · )) (x2) dy1, (4.35)

for almost every (x1, x2) ∈ Rn1 × Rn2 with x1 /∈ I1.

The analogue of Definition 4.7 for three-parameter settings is:

Definition 4.9 (Based on Definition 8 in [41]). Let εj > 0, j = 1, 2, 3. We say that a

continuous linear map

T0 : C∞0 (Rn1)× C∞0 (Rn2)× C∞0 (Rn3)→ [C∞0 (Rn1)× C∞0 (Rn2)× C∞0 (Rn3)]′

is a SIO of type (ε1, ε2, ε3, n1, n2, n2) if it satisfies:

(1) there exists a [CZ(ε3, n3)]-(ε1, ε2, n1, n2)-kernel, K1,2,

〈T0 (f1 ⊗ f2 ⊗ ϕ) , g1 ⊗ g2 ⊗ ψ〉Rn1+n2+n3

=

∫
Rn1

∫
Rn1

∫
Rn2

∫
Rn2

 〈[K1,2 (x1, y1, x2, y2)] (ϕ) , ψ〉L2(Rn3 ) f1 (y1)

.g1 (x1) f2 (y2) g2 (x2)

 dx2dy2dx1dy1

(4.36)
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holds for f1, g1 in C∞0 (Rn1) with disjoint supports, f2, g2 in C∞0 (Rn2) with disjoint sup-

ports and ϕ, ψ in C∞0 (Rn3);

(2) the analogue of item (1) of this definition holds with (2, 3, 1) instead of (1, 2, 3); and

(3) the analogue of item (1) of this definition holds with (3, 1, 2) instead of (1, 2, 3).

A bounded linear operator T on L2 (Rn1+n2) is said to be an (ε1, ε2, n1, n2)-Calderón-

Zygmund operator if there exists a SIO of type (ε1, ε2, ε3, n1, n2, n3), T0, such that T ex-

tends T0. In this case, we say that T is associated with K1,2, K2,3 and K3,1.

The analogue of Definition 4.8 for three-parameter settings is:

Definition 4.10. Let 0 < p ≤ 1 and εj > 0, j = 1, 2, 3. A bounded linear operator

on L2 (Rn1+n2+n3), T , is called a p-(ε1, ε2, ε3, n1, n2, n3)-Calderón-Zygmund operator if it

satisfies:

(i) T is an (ε1, ε2, n1, n2)-Calderón-Zygmund operator as in Definition 4.9;

(ii-1) the [CZ(ε3, n3)]-valued function

(x1, y1, x2, y2) ∈ [(Rn1 × Rn1) \∆n1 ]× [(Rn2 × Rn2) \∆n2 ] 7→ K1,2 (x1, y1, x2, y2)

such that (4.36) holds is of class CN1+1 in the variable y1 and for each multi-indice

α ∈ (Z≥0)n1 with |α| ≤ N1 + 1, Dα
y1
K1,2 is a CZ(ε3, n3)-(ε1, ε2, n1, n2)-kernel;

(ii–2) the analogue of item (ii–1) of this definition holds with (2, 3, 1) instead of (1, 2, 3),

and multi-indices β ∈ (Z≥0)n2 with |β| ≤ N2 + 1; and

(ii–3) the analogue of item (ii–1) of this definition holds with (3, 1, 2) instead of (1, 2, 3),

and multi-indices γ ∈ (Z≥0)n3 with |γ| ≤ N3 + 1.

In Definitions 4.9 and 4.10, we only have three of the six possible permutations of

{1,2,3} because those three are all we need.

We denote the space of (ε1, ε2, ε3, n1, n2, n3)-Calderón-Zygmund operators by

CZ(ε1, ε2, ε3, n1, n2, n3) and we define a norm [41] on it as follows: if an operator T

in CZ(ε1, ε2, ε3, n1, n2, n2) corresponding to a triplet (K1,2, K2,3, K3,1) of kernels as in
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Definition 4.9, then the CZ(ε1, ε2, ε3, n1, n2, n3)-norm of T is

‖T‖CZ(ε1,ε2,ε3,n1,n2,n3) := ‖T‖L2→L2 + |K1,2|V3,ε1,ε2
+ |K2,3|V1,ε2,ε3

+ |K3,1|V2,ε3,ε1
,

where Vk denotes the space CZ(εk, nk), and the terms |Ki,j|Vk,εi,εj ’s are defined in (4.28).

Similarly, we denote the space of p-(ε1, ε2, n1, n2)-Calderón-Zygmund operators by p-

CZ(ε1, ε2, n1, n2). The p-CZ(ε1, ε2, n1, n2)-norm of an operator T ∈ p-CZ(ε1, ε2, n1, n2)

corresponding to kernels K1,2, K2,3, K3,1, as in Definition 4.10, is given by

‖T‖p-CZ(ε1,ε2,ε3,n1,n2,n3) := ‖T‖L2→L2 +
∑

|α|=N1+1

∣∣Dα
y1
K1,2

∣∣
V3,ε1,ε2

+
∑

|β|=N2+1

∣∣Dβ
y2
K2,3

∣∣
V1,ε2,ε3

+
∑

|γ|=N3+1

∣∣Dγ
y3
K3,1

∣∣
V2,ε3,ε1

,

where Vj = CZ(εj, nj), and the terms
∣∣Dα

y1
K1,2

∣∣
V3,ε1,ε2

,
∣∣Dβ

y2
K2,3

∣∣
V1,ε2,ε3

,
∣∣Dγ

y3
K3,1

∣∣
V2,ε3,ε1

are defined in (4.28).

4.3 Papoulis’ Function Belongs to H1.

Let ε > 0. Papoulis used the construction below to build a function f on R2 such that

the upper strong derivative of
∫
|f | is equal to +∞ almost everywhere on a set of measure

greater than 11/15− ε. So any ε ∈ (0, 11/15) will yield a set of positive measure. Define

σ (N) :=
N∑
j=1

1

j
, θ (N) := 1− σ (N)

N
, N ∈ N,

and note that 0 < θ (N) < 1 and (log 2) (log2N) = logN < σ (N) ∀N ∈ N.

Step 1: Let S1 := (0, 1)×(0, 1), N1 := 16 and choose k1 ∈ N such that (θ (N1))k1 < ε/2.

On S1 we consider the following N1 rectangles

I
(1,j)
1 =

(
0,

j

N1

)
×
(

0,
1

j

)
, 1 ≤ j ≤ N1.

The union of all these I
(1,j)
1 ’s is the staircase set denoted by V

(1)
1 and shown in Figure
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1. It satisfies

∣∣∣V (1)
1

∣∣∣ =

∣∣∣∣∣
N⋃

1≤j

(
j − 1

N1

,
j

N1

)
×
(

0,
1

j

)∣∣∣∣∣ =

N1∑
j=1

1

N1

1

j
= |S1|

σ (N1)

N1

= |S1| (1− θ (N1)) ,

(4.37)

The set E1 (S1) := S1 − ∪jI(1,j)
1 will be called the remainder. Its area is |E1 (S1)| =

θ (N1) |S1|.

Figure 4.1: Figures 1, 2 and 3 of Papoulis’ example

Through the vertical sides of the rectangles I
(1,j)
1 we draw lines that are parallel to

the x2-axis and that divide E1 (S1) into the following (N1 − 1) rectangles

J
(1,m)
1 =

(
m− 1

N1

,
m

N1

)
×
(

1

m
, 1

)
, 2 ≤ m ≤ N1.

which satisfy
∣∣∣J (1,m)

1

∣∣∣ = 1
N1

(
1− 1

m

)
, 2 ≤ m ≤ N1. They are the non-shaded rectangles in

Figure 1 (of Figure 4.1), which represents the case where N1 = 16.

On each of these J
(1,m)
1 , 2 ≤ m ≤ N1, we perform the same process that we did on

S1, i.e. we consider the following N1 rectangles

I
(2,m,j)
1 =

(
m− 1

N1

,
m− 1

N1

+
j

N2
1

)
×
(

1

m
,

1

m
+

(1− 1/m)

j

)
, 1 ≤ j ≤ N1,

and we form the staircase set V
(2,m)

1 = ∪jI(2,m,j)
1 . By the same argument that yields
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(4.37), we obtain
∣∣∣V (2,m)

1

∣∣∣ =
∣∣∣J (1,m)

1

∣∣∣ (1− θ (N1)) and

∣∣∣R1

(
J

(1,m)
1

)∣∣∣ =
∣∣∣J (1,m)

1 − V (2,m)
1

∣∣∣ = θ (N)
∣∣∣J (1,m)

1

∣∣∣ .
Through the vertical sides of the rectangles I

(2,m,j)
1 we draw lines that are parallel to

the x2-axis and that divide E1

(
J

(1,m)
1

)
into (N1 − 1) rectangles. Figure 2 (of Figure

4.1), which represents the case where N1 = 16 and has different scales on the horizontal

and vertical axes, shows J
(1,m)
1 and the rectangles I

(2,2,j)
1 , 1 ≤ j ≤ N1, whose union, the

staircase set V
(2,2)

1 , is the shaded region.

After repeating the process on all the J
(1,m)
1 ’s, 2 ≤ m ≤ N1, we obtain (N1 − 1)

staircase sets V
(2,m)

1 and the new remainder

E2 (S1) := S1 − V (1)
1 −

N1⋃
m=2

V
(2,m)

1

that has area

|E2 (S1)| =
N1∑
m=1

∣∣∣J (1,m)
1 − V (2,m)

1

∣∣∣ = θ (N1)

N1∑
k=2

∣∣∣J (1,m)
1

∣∣∣ = (θ (N1))2 |S1| .

We proceed recursively, obtaining staircase sets

V
(1)

1 ,

V
(2,m)

1 , 2 ≤ m ≤ N1,

V
(3,m1,m2)

1 , 2 ≤ mi ≤ N1, 1 ≤ i ≤ 2,

...

V
(k1,m1,...,mk1−1)

1 , 2 ≤ mi ≤ N1, 1 ≤ i ≤ k1 − 1,

and a remainder, E (Sk1) := S1 − V (1)
1 − ∪k1

i=1 ∪k−1
mi=2 ∪N1

m1=2V
(k,m1,...,mi)

1 , that satisfies

|Ek1 (S1)| = (θ (N1))k1 , |S1| = (θ (N1))k1 <
ε

2
.
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Let

Γ1 := {1} ∪ {(k,m1, ...,mi) : 2 ≤ mi ≤ N1, 1 ≤ i ≤ k − 1, 2 ≤ k ≤ k1} .

For each γ ∈ Γ1, the staircase set V
(γ)

1 is the union of N1 rectangles I
(γ,j)
1 of equal area,

which are defined as in the case V
(γ)

1 = ∪jI(γ,j)
1 . The intersection of the I

(γ,j)
1 ’s forms the

rectangle

A
(γ)
1 :=

N1⋂
j=1

I
(γ,j)
1

By construction,
∣∣∣V (γ)

1

∣∣∣ =
∣∣∣J (γ)

1

∣∣∣σ (N1) /N1 and
∣∣∣I(γ,j)

1

∣∣∣ =
∣∣∣J (γ)

1

∣∣∣ /N1. So,

∣∣∣A(γ)
1

∣∣∣ =

∣∣∣I(γ,j)
1

∣∣∣
N1

=

∣∣∣V (γ)
1

∣∣∣
N1σ (N1)

≤
c
∣∣∣V (γ)

1

∣∣∣
N1 log2 (N1)

, ∀γ ∈ Γ1. (4.38)

We define

A1 :=
⋃
γ∈Γ1

A
(γ)
1 ,

and we obtain

|A1| ≤
∑
γ∈Γ1

∣∣∣A(γ)
1

∣∣∣ ≤∑
γ∈Γ1

c
∣∣∣V (γ)

1

∣∣∣
N1 log2 (N1)

≤ c |S1|
N1 log2 (16)

=
c

N122
,

using (4.38) and the fact that the staircase sets V
(γ)

1 ’s are disjoint and are all contained

in S1.

Step n, for n > 1: Let

mn−1 := min
γ∈Γn−1; 1≤i≤p−2

n−1

{length of smallest side of A
(γ)
i }

and choose pn s.t. 0 < pn < mn−1/N
2
n−1 and pn ∈ N. Divide S1 into p−2

n squares{
S

(n)
i

}
1≤i≤p−2

n

, each with side pn. LetNn := 222n
and choose kn ∈ N such that (θ (Nn))kn <

2−np2
nε.

Perform on each S
(n)
i , 1 ≤ i ≤ p−2

n , the procedure that we did in S1 to obtain a

set of disjoint rectangles
{
A

(γ)
i

}
γ∈Λn

and a remainder, Ekn

(
S

(n)
i

)
satisfying

∣∣∣A(γ)
i

∣∣∣ <
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∣∣∣S(n)
i

∣∣∣ /Nn log2 (Nn) and
∣∣∣Ekn (S(n)

i

)∣∣∣ = (θ (Nn))kn
∣∣∣S(n)

i

∣∣∣.
Defining

An :=
⋃

1≤i≤p−2
n

⋃
γ∈Γn

A
(γ)
i ,

we obtain

|An| <
c |S1|

Nn log2 (Nn)
=

c

Nn22n
,

Now, for every n ∈ N, we proceed as follows: For each A = I × J ∈
{
A

(γ)
i

}
γ∈Λn

,

we divide it into N4
n congruent rectangles of sides |I| /N2

n and |J | /N2
n. Then, we make

a chessboard pattern by calling half of these rectangles white and the other half black,

with the rectangle on the top left corner being white, as in Figure 3 (of Figure 4.1). The

set of all white rectangles on An will be denoted by Wn, the set of all black rectangles

on An, by Bn. Finally, we define

fn := 2nNn (χWn − χBn) , f :=
∞∑
n=1

fn. (4.39)

Since
∫
|fn (x)| dx = 2nNn |An| ≤ c2−n for all n, we conclude that f ∈ L1 (R2).

Proof of Theorem 4.1. Let f be the function defined in (4.39). It was shown [53] that

the strong derivative of
∫
f exists a.e. and the upper strong derivative of

∫
|f | is infinite

on a set of positive measure.

To see that f ∈ H1 (R× R), we write

f =
∑

n∈N; γ∈Γn; 1≤i≤p−2
n

2nNn

∣∣∣A(γ)
i

∣∣∣ fnχA(γ)
i

2nNn

∣∣∣A(γ)
i

∣∣∣ , (4.40)

and we note that ∑
n∈N; γ∈Γn; 1≤i≤p−2

n

2nNn

∣∣∣A(γ)
i

∣∣∣ <∞
and that each fnχA(γ)

i
/
(

2nNn

∣∣∣A(γ)
i

∣∣∣) is a rectangle (1, 2)-atom. So, by (4.40), f ∈

H1
rect (R× R). Thus f ∈ H1 (R× R).
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4.4 Higher Dimensional Journé’s Lemma.

A proof of the discrete version of Journé’s Lemma [42] in the setting R × R can be

found in [42] and [67]. As mentioned in [42], the discrete version holds in the setting

Rn1 × Rn2 and also for sets of finite measure. This known result, which is the content

of Lemma 4.2, is often used in the context of product Hardy spaces (e.g. [25]), despite

the fact that no proof of it can be found in the literature. Unlike what happens in

R×R, in the setting Rn1 ×Rn2 the discrete version is not an immediate corollary of the

original Journé’s Lemma (Proposition 1 in [42]). In higher-dimensional product settings,

a different argument is required.

For higher-parameter variants of Journé’s Lemma, one can look at [54] and [6]. In

Subsection 4.4.2, we show that the proof of Lemma 1.4 in [54] holds in the setting Rn1 ×

Rn2 × Rn3 and for sets of finite measure.

Some notation is necessary. Let I in Dnj and i ∈ N. To be consistent with [54] and

[67], the unique (i-th generation dyadic parent of I) Q in Dnj such that Q ∩ I = Q and

|Q| = 2inj |I| will be denoted by ∆i (I). The collection of 2inj cubes Q in Dnj such that

Q ∩ I = I and |Q| = 2−inj |I| will be denoted by ∆−i (I). Note, to avoid confusion, that

∆i (I) is cube, while ∆−i (I) is a set of cubes.

4.4.1 Two-parameter Setting

Given an open set Ω ⊂ Rn1+n2 with finite measure, we denote the set of dyadic rectangles

I1 × I2 ⊂ Ω which are maximal with respect to the x1-direction by M1 (Ω). Specifically,

the elements of M1 (Ω) are dyadic rectangles I1 × I2 ⊂ Ω such that if I ′1 × I2 is a dyadic

rectangle in Rn1 × Rn2 such that I ′1 × I2 ⊂ Ω, then I1 = I ′1. Define M2 (Ω) analogously

and note that M (Ω) =M1 (Ω) ∩M2 (Ω).

Define Ω1 := {MS (χΩ) > 1/2} and for each I1×I2 ∈M2 (Ω), let Î1×I2 be the unique

rectangle in M1 (Ω1) having the form I ′1 × I2 with I ′1 ⊃ I1.

Lemma 4.2 (Journé’s Lemma [42]). Let Ω ⊂ Rn1+n2 be an open set with finite measure

and let w be a nonnegative, nondecreasing function on (0,∞) satisfying
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∑∞
k=1 kw

(
2−n1k

)
<∞. Then

∣∣∣∣∣∣
⋃

I×J∈M2(Ω)

Î × J

∣∣∣∣∣∣ ≤ c |Ω| (4.41)

and ∑
I×J∈M2(Ω)

|I × J |w

 |I|∣∣∣Î ∣∣∣
 ≤ c |Ω| , (4.42)

where the constant C is independent of Ω.

The proof of this result follows a reasoning described in [67]. It requires the following

lemma:

Lemma 4.3 (Variant of Lemma 1.40 in [67]). Let Ω and w be as in Lemma 4.2 and, for

each I ∈ Dn1, consider the collection

EI (Ω) := {J ∈ Dn2 : I × J ⊂ Ω} .

Then ∑
I∈Dn1

|I|
∞∑
k=0

w

(
|I|

|∆k (I)|

) ∣∣∣∣∣∣
⋃

J∈EI(Ω)\E∆k+1(I)(Ω)

J

∣∣∣∣∣∣ ≤ c |Ω| . (4.43)

Proof of Lemma 4.3. Denote EI := EI (Ω). Since EI\E∆k+1(I) can be written as the

disjoint union (
EI\E∆1(I)

)
∪ ... ∪

(
E∆k(I)\E∆k+1(I)

)
,

the sum in (4.43) equals

∑
I∈Dn1

|I|

[
∞∑
k=0

w
(
2−n1k

)] ∑
I0∈Dn1 :I⊂I0⊂∆k(I)

∣∣∣∪J∈EI0\E∆1(I0)
J
∣∣∣

=
∞∑
k=0

w
(
2−n1k

) ∑
I0∈Dn1

 ∑
I∈Dn1 :I⊂I0⊂∆k(I)

|I|
∣∣∣∪J∈EI0\E∆1(I0)

J
∣∣∣
 . (4.44)
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For each fixed k ∈ {0, 1, ...} and I0 ∈ Dn1 ,

∑
I∈Dn1 :I⊂I0⊂∆k(I)

|I|
∣∣∣∪J∈EI0\E∆1(I0)

J
∣∣∣ =

∑
I∈Dn1 :I⊂I0⊂∆k(I)

|I0|
∣∣∣∪J∈EI0\E∆1(I0)

J
∣∣∣ |I||I0|

= |I0|
∣∣∣∪J∈EI0\E∆1(I0)

J
∣∣∣ k∑
j=0

2−n1j (# {I : I ∈ ∆−j (I0)}) = (k + 1) |I0|
∣∣∣∪J∈EI0\E∆1(I0)

J
∣∣∣ .

Therefore (4.44) is equal to

∞∑
k=0

(k + 1)w
(
2−n1k

) [ ∑
I0∈Dn1

|I0|
∣∣∣∪J∈EI0\E∆1(I0)

J
∣∣∣] . (4.45)

Note that ∑
I0∈Dn1

|I0|
∣∣∣∪J∈EI0\E∆1(I0)

J
∣∣∣ = |Ω| . (4.46)

This equality holds because Ω = ∪I∈Dn1

[
I ×

(
∪J∈EI\E∆1(I)

J
)]

and the union is disjoint.

To obtain (4.43), plug (4.46) into (4.45) and use the assumptions on w.

Proof of Lemma 4.2. The estimate (4.41) follows from the definition of Î and the strong

maximal function theorem.

To prove (4.42), we define

AI,k+1 := {J ∈ Dn2 : I × J ∈M2 (Ω) , ∆k (I)× J ∈M1 (Ω1)} ,

for each k ∈ N and each I ∈ Dn1 . Then we write the sum in (4.42) as

∑
I∈Dn1

|I|
∞∑
k=0

w
(
2−n1k

) ∑
J∈Dn2 :I×J∈M2(Ω), Î=∆k(I)

|J |



=
∑
I∈Dn1

|I|
∞∑
k=0

w
(
2−n1k

) ∑
J∈AI,k+1

|J |

 . (4.47)

We claim that for each k ∈ {0, 1, ...} and each I ∈ Dn1 , the following holds:

if J 6= J ′ ∈ AI,k+1, then J ∩ J ′ = ∅.
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To see this, note that whenever two distinct dyadic cubes have intersecting interiors,

one is properly contained in the other. This cannot happen in the case of J and J ′

because we are assuming that both I × J and I × J ′ belong to M2 (Ω). Hence the sum

in the brackets in (4.47) is equal to
∣∣∪J∈AI,k+1

J
∣∣. This yields

∑
I×J∈M2(Ω)

|I| |J |w

 |I|∣∣∣Î ∣∣∣
 ≤ ∑

I∈Dn1

|I|
∞∑
k=0

w
(
2−n1k

) ∣∣∪J∈AI,k+1
J
∣∣ .

Now, by Lemma 4.3, to finish the proof of (4.42), it suffices to show that

∣∣∪J∈AI,k+1
J
∣∣ ≤ c

∣∣∣∪J∈EI\E∆k+1(I)
J
∣∣∣ (4.48)

for all I ∈ Dn1 and k ∈ {0, 1, ...}. So fix I and k, and let J0 be in AI,k+1. Then

I × J0 ∈ M2 (Ω) and Î = ∆k (I). Since Î is the largest dyadic cube satisfying Î × J0 ⊂

{MS (χΩ) > 1/2} and Î ⊃ I, its dyadic parent ∆1

(
Î
)

, which is ∆k+1 (I), must satisfy

∣∣∣((∆1

(
Î
))
× J0

)
∩ Ω

∣∣∣ ≤ 2−1
∣∣∣(∆1

(
Î
))
× J0

∣∣∣ = 2−1
∣∣∣∆1

(
Î
)∣∣∣ |J0| (4.49)

By the definition of E∆k+1(I) (Ω), the set (∆k+1 (I)) ×
(
∪J∈E∆k+1(I)

J
)

is contained in Ω.

This inclusion and (4.49) yield

|∆k+1 (I)|
∣∣∣J0 ∩

(
∪J∈E∆k+1(I)

J
)∣∣∣ =

∣∣∣(∆k+1 (I))×
(
J0 ∩

(
∪J∈E∆k+1(I)

J
))∣∣∣

≤ |[(∆k+1 (I))× J0] ∩ Ω| ≤ 2−1 |∆k+1 (I)| |J0| .

This implies ∣∣∣J0 ∩
(
∪J∈E∆k+1(I)

J
)c∣∣∣ ≥ 2−1 |J0| . (4.50)

Since every cube in the collection to AI,k+1 is belongs to EI , we have J0 ⊂ ∪J∈EIJ . So

(4.50) yields

∣∣∣J0 ∩
(
∪J∈EI\E∆k+1(I)

J
)∣∣∣ =

∣∣∣J0 ∩ (∪J∈EIJ) ∩
(
∪J∈E∆k+1(I)

J
)c∣∣∣ ≥ 2−1 |J0| .
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Letting VI,k := ∪J∈EI\E∆k+1(I)
J , we obtain J0 ⊂

{
M
(
χVI,k

)
≥ 1/2

}
, where M is the

Hardy-Littlewood maximal function. Since J0 is an arbitrary element of AI,k+1, we con-

clude that ⋃
J∈AI,k+1

J ⊂
{
M
(
χVI,k

)
> 1/2

}
.

Then Hardy-Littlewood maximal function theorem yields that
∣∣∪J∈AI,k+1

J
∣∣ is bounded

above by c
∣∣∣∪J∈EI\E∆k+1(I)

J
∣∣∣, which shows that (4.48) holds with a constant c depending

only on n2.

4.4.2 Three-parameter Setting

Given an open set Ω ⊂ Rn1+n2+n3 with finite measure, we denote the set of dyadic

rectangles R = I1 × I2 × I3 ⊂ Ω which are maximal with respect to the x1-direction

by M1 (Ω). Define M2 (Ω) and M3 (Ω) analogously and note that M (Ω) = M1 (Ω) ∩

M2 (Ω) ∩M3 (Ω) .

Let

Ω1 := {x : MS (χΩ) (x) > 1/2} and Ω2 := {x : MS (χΩ1) (x) > 1/2}

and for each I1 × I2 × I3 in M3 (Ω), let Î1 × I2 × I3 be the unique rectangle in M1 (Ω1)

having the form I ′1 × I2 × I3 with I ′1 ⊃ I1. Similarly, to each I ′1 × I2 × I3 in M3 (Ω), let

I ′1 × Î2 × I3 be the rectangle in M3 (Ω2) having the form I ′1 × Î2 × I3 with Î2 ⊃ I2.

In the statement of Lemma 4.4 below, each rectangle Î × Ĵ ×K is constructed from

a rectangle I × J ×K in M3 (Ω) according to the following two steps method:

(i) Beginning with I × J ×K inM3 (Ω), we define Î × J ×K to be the unique rectangle

in M1 (Ω1) having the form I ′1 × J ×K with I ′ ⊃ I.

(ii) From Î × J × K, which is a rectangle in M1 (Ω1), we define Î × Ĵ × K to be the

unique rectangle in M2 (Ω2) having the form Î × J ′ ×K with J ′ ⊃ J .

Note that Î depends on I × J ×K, while Ĵ depends on Î × J ×K.

Lemma 4.4 (Variant of Pipher’s Lemma [54]). Let Ω ⊂ Rn1+n2+n3 be an open set with
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finite measure and let v and w be nonnegative nondecreasing functions on (0,∞) such

that
∑∞

k=1 kv
(
2−n1k

)
<∞ and

∑∞
k=1 kw

(
2−n2k

)
<∞. Then

∣∣∣∣∣∣
⋃

I×J×K∈M3(Ω)

Î × Ĵ ×K

∣∣∣∣∣∣ ≤ c |Ω| (4.51)

and ∑
I×J×K∈M3(Ω)

∣∣∣Î × Ĵ ×K∣∣∣ v
 |I|∣∣∣Î ∣∣∣

w

 |J |∣∣∣Ĵ ∣∣∣
 ≤ c |Ω| , (4.52)

where the constant c is independent of Ω.

As mentioned above, this result can be shown with the argument developed by Pipher

[54]. Its proof needs the following three-parameter analogue of Lemma 4.3:

Lemma 4.5 (Variant of Proposition B in [54]). Let Ω and w be as in Lemma 4.4 and,

for each I in Dn1, consider the collection

EI (Ω) := {J ×K ∈ Dn2 ×Dn3 : I × J ×K ⊂ Ω} .

Then ∑
I∈Dn1

|I|
∞∑
k=0

v

(
|I|

|∆k (I)|

) ∣∣∣∣∣∣
⋃

J×K∈EI(Ω)\E∆k+1(I)(Ω)

J ×K

∣∣∣∣∣∣ ≤ c |Ω| . (4.53)

Proof. Denoting EI := EI (Ω), we can express the sum in (4.53) as

∑
I∈Dn1

|I|

[
∞∑
k=0

v
(
2−n1k

)] ∑
I0∈Dn1 :I⊂I0⊂∆k(I)

∣∣∣∪J×K∈EI0\E∆1(I0)
J ×K

∣∣∣

=
∞∑
k=0

v
(
2−n1k

) ∑
I0∈Dn1

 ∑
I∈Dn1 :I⊂I0⊂∆k(I)

|I|
∣∣∣∪J×K∈EI0\E∆1(I0)

J ×K
∣∣∣
 . (4.54)

For each k ∈ {0, 1, ...} and I0 ∈ Dn1 , the sum in the brackets in (4.54) equals

∑
I∈Dn1 :I⊂I0⊂∆k(I)

|I0|
∣∣∣∪J×K∈EI0\E∆1(I0)

J ×K
∣∣∣ |I||I0|
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= |I0|
∣∣∣∪J×K∈EI0\E∆1(I0)

J ×K
∣∣∣ k∑
j=0

∑
I∈∆−j(I0)

2−n1j

= (k + 1) |I0|
∣∣∣∪J×K∈EI0\E∆1(I0)

J ×K
∣∣∣ .

Plugging it back in (4.54), we get that (4.54) is equal to

∞∑
k=0

(k + 1) v
(
2−n1k

) [ ∑
I0∈Dn1

|I0|
∣∣∣∪J×K∈EI0\E∆1(I0)

J ×K
∣∣∣] . (4.55)

Since Ω can be expressed as ∪I∈Dn1I×
(
∪J×K∈EI0\E∆1(I0)

J ×K
)

and this union is disjoint,

the sum in the brackets in (4.55) equals |Ω|. This fact and the assumptions on v imply

(4.53).

Proof of Lemma 4.4. The estimate (4.51) follows from the strong maximal function the-

orem.

To prove (4.52), define

AI,k+1 := {J ×K ∈ Dn2 ×Dn3 : I × J ×K ∈M3 (Ω) , ∆k (I)× J ×K ∈M1 (Ω1)} ,

AI,k+1 :=
⋃

J×K∈AI,k+1

J ×K,

for each k ∈ {0, 1, ...} and each cube I ∈ Dn1 . Note that if I × J ×K is in M3 (Ω) and

∆k (I) × J × K is in M1 (Ω1), then J × K ∈ M2 (AI,k+1) . Recall that M2 (AI,k+1) is

the set of dyadic rectangles in AI,k+1, a subset of Rn2 × Rn3 , which are maximal in the

x3-direction, i.e. maximal with respect to the second factor, which is Rn3 . Now we apply

Lemma 4.2 to the set AI,k+1. For each J × K ∈ M2 (AI,k+1), we let J ′ ∈ Dn2 be such

that

J ′ ⊃ J and J ′ ×K ∈M2

({
MS

(
χAI,k+1

)
> 1/2

})
.

Then ∑
J×K∈M2(AI,k+1)

|J ×K|w
(
|J |
|J ′|

)
≤ c |AI,k+1| . (4.56)

For any I × J ×K ∈M3 (Ω), if (i) ∆k (I)× J ×K ∈M1 (Ω1) and (ii) ∆k (I)× Ĵ ×K ∈
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M2 (Ω2) , then J ′ ⊂ Ĵ . This follows from the estimate

|(∆k (I)× J ′ ×K) ∩ Ω2| > |(∆k (I)× J ′ ×K) ∩ (∆k (I)×AI,k+1)|

= |∆k (I)| |(J ′ ×K) ∩ AI,k+1| > 2−1 |∆k (I)|
∣∣∣J ′ ×K∣∣∣ = 2−1

∣∣∣∆k (I)× J ′ ×K
∣∣∣ .

Since w is nondecreasing, the sum in (4.52) can be majorized by

∑
I×J×K∈M3(Ω)

|I × J ×K| v

 |I|∣∣∣Î ∣∣∣
w

(
|J |
|J ′|

)

≤
∑
I∈Dn1

∞∑
k=0

∑
I×J×K∈M3(Ω): Î=∆k(I)

|I| |J ×K| v
(
2−n1k

)
w

(
|J |
|J ′|

)

≤
∑
I∈Dn1

|I|
∞∑
k=0

v
(
2−n1k

) ∑
J×K∈M2(AI,k+1)

|J ×K|w
(
|J |
|J ′|

)

≤ c
∑
I∈Dn1

|I|
∞∑
k=0

v
(
2−n1k

)
|AI,k+1| , (4.57)

where the last inequality is due to (4.56).

Now, to finish this proof, it suffices to show that

|AI,k+1| ≤ c
∣∣∣∪J×K∈EI\E∆k+1(I)

J ×K
∣∣∣ , (4.58)

for all I ∈ Dn1 and k ∈ {0, 1, ...}, to plug (4.58) into (4.57) and to apply Lemma 4.5.

So fix I and k and define VI,k := ∪J×K∈EI\E∆k+1(I)
J × K. We will show that AI,k+1 ⊂

{MS (VI,k) > 1/2} and we will conclude, by the strong maximal function theorem, that

(4.58) holds. Given x ∈ AI,k+1, there exists R0 ∈ Dn2 ×Dn3 such that I × R0 ∈ M3 (Ω)

and ∆k (I)×R0 ∈M1 (Ω1). Thus

|∆k+1 (I)|
∣∣∣R0 ∩

(
∪J×K∈E∆k+1(I)

J ×K
)∣∣∣

=
∣∣∣[∆k+1 (I)×R0] ∩

[
∆k (I)×

(
∪J×K∈E∆k+1(I)

J ×K
)]∣∣∣
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≤ |(∆k+1 (I)×R0) ∩ Ω| ≤ 2−1 |∆k+1 (I)×R0| = 2−1 |∆k+1 (I)| |R0| ,

where the last inequality holds because ∆k (I)×R0 ∈M1 (Ω1). So

∣∣∣R0 ∩
(
∪J×K∈E∆k+1(I)

J ×K
)c∣∣∣ > 2−1 |R0| .

By the definitions of AI,k+1 and VI,k, it follows that R0 ⊂ AI,k+1 ⊂ VI,k. Hence

|R0 ∩ VI,k| =
∣∣∣R0 ∩ (∪J×K∈EIJ ×K) ∩

(
∪J×K∈E∆k+1(I)

J ×K
)c∣∣∣

=
∣∣∣R0 ∩

(
∪J×K∈E∆k+1(I)

∪J ×K
)c∣∣∣ > 2−1 |R0| ,

and we conclude that x ∈ {MS (VI,k) > 1/2}. Therefore (4.58) holds.

To finish the proof of (4.52), plug (4.58) into (4.57) and use the Lemma 4.5.

4.5 Multiparameter Operators on Hardy Spaces

We give a sketch of the proof of the variant of Fefferman’s Theorem (Theorem 4.2) just

so that it can be compared with the proof of its three-parameter analogue, Theorem 4.3.

Sketch of the proof of Theorem 4.2. By Theorem 1.1 in [14] and Remark 4.2 it suffices to

show that

‖T (a)‖p ≤ C for every rough (p, 2) -atom on Rn1 × Rn2 . (4.59)

In fact, the atoms of the statement of Theorem 1.1 in [14] are particular cases of rough

(p, 2)-atoms on Rn1 × Rn2 . So the desired conclusion follows from (4.59) and Theorem

1.1 in [14] (with q = p and Bq = Lp (Rn1+n2), where q and Bq are defined in [14]).

The proof of this inequality is due to R. Fefferman [25]. Let a =
∑

R∈M(Ω) aR be a

rough (p, 2)-atoms on Rn1 × Rn2 associated with a set Ω as in Definition 4.3. Let

Ω1 := {MS (χΩ) > 1/2} and Ω2 := {MS (χΩ1) > 1/2} ,

and for each I × J in M (Ω), let Î × J be the rectangle in M1 (Ω1) such that Î ⊃ I.
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Similarly, to each I ′ × J in M1 (Ω1), let I ′ × Ĵ be the rectangle in M2 (Ω2) such that

Ĵ ⊃ J . Finally, define

Ω̃ :=
⋃

R=I×J∈M(Ω)

16
(
Î × Ĵ

)
.

Here each rectangle Î × Ĵ is constructed from a rectangle I × J in M2 (Ω) as follows:

(i) Beginning with I×J inM2 (Ω), we define Î×J to be the unique rectangle inM1 (Ω1)

having the form I ′ × J with I ′ ⊃ I.

(ii) From Î×J , which is a rectangle inM1 (Ω1), we define Î×Ĵ to be the unique rectangle

in M2 (Ω2) having the form Î × J ′ with J ′ ⊃ J .

Thus Î depends on I × J , while Ĵ depends on Î × J . Note that
∣∣∣Ω̃∣∣∣ ≤ c |Ω|.

Using Hölder’s inequality, the L2 boundedness of T , item (B) of Definition 4.3, and

the upper bound for
∣∣∣Ω̃∣∣∣ we obtain

∫
Ω̃
|T (a)|p ≤ C. To show that

∫
(Ω̃)

c |T (a)|p ≤ C, it

suffices to prove that

∑
R=I×J∈M(Ω)

(∫
[(16Î)

c
×Rn2 ]

|T (aR)|p +

∫
[Rn1×(16Ĵ)

c
]
|T (aR)|p

)
≤ C.

This can be done with the reasoning described in [25].

Note that Lemma (4.2), which is needed to conclude this proof, only requires dila-

tions in one of the factors. This is why, in this setting, it does not matter whether the

hypotheses on the behavior of |T (aR)|p are stated with respect to integrals over sets of

the form
[
2k (I1 × I2)

]c
(as in [25]) or of the form

(
2kI1

)c × Rn2 and Rn1 ×
(
2kI2

)c
.

To see how Theorem [25] can be extended to higher-parameter settings, one should

examine the parallels between the sketch given above and the following:

Proof of Theorem 4.3. By Remark 4.2 and a three-parameter analogue of Theorem 1.1

in [14], it suffices to show that T is uniformly bounded on rough (p, 2)-atoms on Rn1 ×

Rn2×Rn3 . So let a be a such atom. By Definition 4.3, to a, there corresponds a set Ω and

a decomposition a =
∑

R∈M(Ω) aR, where each rough elementary particle aR is supported

on 4R for some distinct rectangle R in M (Ω).
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We intend to apply Lemma 4.4 with v (x) = xδi and w (x) = xδj for some fixed

δi, δj > 0 that will be chosen below. As we will see, the multiparameter dilations are

essential to allow the use of this lemma.

We consider

Ω1 := {MS (χΩ) > 1/2} and Ωi+1 := {MS (χΩi) > 1/2} , i = 1, 2, 3,

and to each I × J ×K in M (Ω), we let Î × J ×K be the unique rectangle in M1 (Ω1)

having the form I ′ × J × K with I ′ ⊃ I. Similarly, given I ′ × J × K ∈ M1 (Ω1),

let I ′ × Ĵ × K ∈ M2 (Ω2) be such that Ĵ ⊃ J ; given I ′ × J ′ × K ∈ M2 (Ω2), let

I ′ × J ′ × K̂ ∈ M3 (Ω3) be such that K̂ ⊃ K; and given I ′ × J ′ × K ′ ∈ M3 (Ω3), let

Î × J ′ ×K ′ ∈M1 (Ω4) be such that Î ⊃ I ′. Finally, we define

Ω̃ :=
⋃

R=I×J×K∈M(Ω)

16

(̂̂
I × Ĵ × K̂

)
.

Here each rectangle
̂̂
I × Ĵ × K̂ is constructed from a rectangle I × J ×K in M3 (Ω) as

follows:

(i) Beginning with I × J ×K inM3 (Ω), we define Î × J ×K to be the unique rectangle

in M1 (Ω1) having the form I ′1 × J ×K with I ′ ⊃ I.

(ii) From Î × J × K, which is a rectangle in M1 (Ω1), we define Î × Ĵ × K to be the

unique rectangle in M2 (Ω2) having the form Î × J ′ ×K with J ′ ⊃ J .

(iii) From Î × Ĵ × K, which is a rectangle in M2 (Ω2), we define Î × Ĵ × K̂ to be the

unique rectangle in M3 (Ω3) having the form Î × Ĵ ×K ′ with K ′ ⊃ K.

(iv) From Î × Ĵ × K̂, which is a rectangle in M3 (Ω3), we define
̂̂
I × Ĵ × K̂ to be the

unique rectangle in M1 (Ω4) having the form I ′ × Ĵ × K̂ with I ′ ⊃ Î.

Thus Î depends on I × J ×K; Ĵ depends on Î × J ×K; K̂ depends on Î × Ĵ ×K; and̂̂
I depends on Î × Ĵ × K̂.

Note that 16S ⊂ {MS (χΩ4) > 16−n1−n2−n3} for any rectangle S ∈ Dn1 × Dn2 × Dn3

contained in Ω. So 16

(̂̂
I × Ĵ × K̂

)
⊂ {MS (χΩ4) > 16−n1−n2−n3} for all I × J × K ∈
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M (Ω). This implies:
∣∣∣Ω̃∣∣∣ ≤ c |Ω|. As in the sketch of the proof of Theorem 4.2, we use

Hölder’s inequality, the L2 boundedness of T , item (B) of Definition 4.3, and the upper

bound on the measure of Ω̃, to conclude that
∫

Ω̃
|T (a)|p ≤ C.

Since 0 < p ≤ 1 and the inclusion
(

Ω̃
)c
⊂
(

16

(̂̂
I × Ĵ × K̂

))c
holds for any I×J ×

K ∈M (Ω), the proof will be concluded once we show

∑
R∈M(Ω)

∫
(16Î )

c
×(16Ĵ )

c
×Rn3

|T (aR)|p ≤ C, (4.60)

∑
R∈M(Ω)

∫
Rn1×(16Ĵ )

c
×(16K̂ )

c
|T (aR)|p ≤ C (4.61)

and ∑
R∈M(Ω)

∫
(

16
̂̂
I

)c
×Rn2×(16K̂ )

c
|T (aR)|p ≤ C. (4.62)

These three inequalities look similar but their proofs are not identical.

To prove (4.60), we first fix R = I × J ×K ∈M (Ω). The inclusions

4


∣∣∣Î ∣∣∣
|I|

1/n1

4I ⊂ 16Î , 4


∣∣∣Ĵ ∣∣∣
|J |

1/n2

4J ⊂ 16Ĵ , supp (aR) ⊂ 4R,

and hypothesis (4.4) yield

∫
(16Î)

c
×(16Ĵ)

c
×Rn3

|T (aR)|p ≤
∫
(

4

(
|Î|
|I|

)1/n1
4I

)c
×

4

( |Ĵ |
|J|

)1/n2

4J

c×Rn3

|T (a)|p

≤ C ‖aR‖p2 |R|
1−p/2


∣∣∣Î ∣∣∣
|I|

−δ1/n1 
∣∣∣Ĵ ∣∣∣
|J |

−δ2/n2

. (4.63)

Summing (4.63) over all R = I × J × K in M (Ω) and using Hölder’s inequality,

(4.22), and M (Ω) ⊂M3 (Ω), we conclude that the sum in (4.60) is majorized by

C
(
|Ω|1−2/p

)p/2  ∑
R=I×J×K∈M3(Ω)

|R|


∣∣∣Î ∣∣∣
|I|

−δ
′
1

∣∣∣Ĵ ∣∣∣
|J |

−δ
′
2


1−p/2

,

89



where δ′j := 2δj/ [nj (2− p)], j = 1, 2. By Lemma 4.4, the term in the brackets is bounded

by c |Ω| (note that this lemma would not be applicable if we had only one-parameter

dilations on hypothesis (4.4)). Thus (4.60) holds.

To show (4.61), we apply the reasoning that shows (4.63) to the integral∫
Rn1×(16Ĵ)

c
×(16K̂)

c |T (aR)|p, we sum over all R = I × J × K in M (Ω) and we conclude

that

C
(
|Ω|1−2/p

)p/2  ∑
R=I×J×K∈M(Ω)

|R|


∣∣∣Ĵ ∣∣∣
|J |

−δ
′
2

∣∣∣K̂ ∣∣∣
|K|

−δ
′
3


1−p/2

(4.64)

is an upper-bound for the left-hand-side of (4.61), where δ′3 := 2δ3/ [n3 (2− p)]. Since to

each I × J ×K in M (Ω) there is a unique rectangle I ′ × J ×K in M1 (Ω1) having the

form I ′ × J ×K with I ′ ⊃ I, the term in the brackets in (4.64) is not greater than

∑
I′×J×K∈M1(Ω1)

|I ′ × J ×K|


 |J |∣∣∣Ĵ ∣∣∣

δ′2
 |K|∣∣∣K̂ ∣∣∣

δ′3


1−p/2

,

which, by Lemma 4.4, is majorized by c |Ω1|. Since |Ω1| ≤ c |Ω|, (4.61) holds.

It remains to show (4.62). Applying to each term
∫(

16
̂̂
I

)c
×Rn2×(16K̂ )

c |T (aR)|p a

reasoning similar to that used in the proof of (4.60), we conclude that the sum in (4.62)

is bounded above by

C
(
|Ω|1−2/p

)2/p

 ∑
R=I×J×K∈M(Ω)

|R|


∣∣∣∣ ̂̂I ∣∣∣∣
|I|


−δ′1 

∣∣∣K̂ ∣∣∣
|K|

−δ
′
3


1−p/2

. (4.65)

Since |I| ≤
∣∣∣Î ∣∣∣, the term in the brackets in (4.65) is majorized by

∑
R=I×J×K∈M(Ω)

|R|


∣∣∣∣ ̂̂I ∣∣∣∣∣∣∣Î ∣∣∣


−δ′1 

∣∣∣K̂ ∣∣∣
|K|

−δ
′
3
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≤
∑

I′×J ′×K∈M2(Ω2)

|I ′ × J ′ ×K|


∣∣∣Î ∣∣∣∣∣∣Î ′ ∣∣∣

δ′1  |K|∣∣∣K̂ ∣∣∣
δ′3

, (4.66)

where the inequality in (4.66) holds because to each I×J×K inM (Ω), there corresponds

a unique rectangle of the form I ′× J ′×K inM2 (Ω2) satisfying: I ′× J ×K ∈M1 (Ω1),

I ′ ⊃ I, and J ′ ⊃ J , and in this case I ′ = Î and J ′ = Ĵ . So (4.62) follows from Lemma

4.4 applied to Ω2 and the fact that |Ω2| ≤ c |Ω|.

Proof of Theorem 4.4. Let γ = 2s for some s ∈ N. W.l.o.g. we can assume that the

center of Ij is the origin, 0j, of Rnj , j = 1, 2. We will prove the first inequality in (4.3),

by following a reasoning described in the beginning of the proof of the “trivial-lemma”

in [25]. The idea is to show that there exists θ > n1 (1/p− 1), which does not depend on

s nor on the rectangle (p, 2)-atom a, such that

∫
‖x1‖∼2kγ|I1|1/n1

‖x2‖∼2i|I2|1/n2

|T (a) (x)| dx ≤ c2−iε 2
(
2kγ
)−θ ‖a‖2 |R|

1/2 (4.67)

and ∫
‖x1‖∼2kγ|I1|1/n1

‖x2‖≤4|I2|1/n2

|T (a) (x)| dx ≤ c
(
2kγ
)−θ ‖a‖2 |R|

1/2 , (4.68)

hold for any integers i, k ≥ 2, where r ∼ t means r < t ≤ 2r for r, t ∈ (0,∞). Then,

by summing (4.67) and (4.68) over the appropriate indexes (1 ≤ k < ∞ and 1 ≤ l < ∞

for (4.67), 1 ≤ k < ∞ for (4.68)) and using Hölder’s inequality and (4.10), we get

the first inequality in (4.3) with δ1 = −n1 (1− p) + θp and the constant c depending

on the CZ(ε1, ε2, n1, n2)-norm of T (in the case n1/ (n1 − 1) < p ≤ 1) or on the p-

CZ(ε1, ε2, n1, n2)-norm of T (in the case 0 < p ≤ n1/ (n1 − 1)).

We first show (4.67) and (4.68) in the case n1/ (n1 + 1) < p ≤ 1. For p is within

this range, the reasoning used in the proof of the “trivial lemma” in [25] works for our

purposes.

Let {as}s∈N be sequence of functions such that as ∈ L∞ (Rn1+n2), lims→∞ ‖as − a‖2 =

0, and each as satisfies the cancellation conditions (4.11) and the support condition
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supp(as) ⊂ 2R. If we show that

∫
‖x1‖∼2kγ|2I1|1/n1

‖x2‖∼2i|2I2|1/n2

|T (as)| ≤c2−iε 2
(
2kγ
)−θ ‖as‖2 |2R|

1/2 (4.69)

and ∫
‖x1‖∼2kγ|2I1|1/n1

‖x2‖≤2|2I2|1/n2

|T (as)| ≤
(
2kγ
)−θ ‖as‖2 |2R|

1/2 , (4.70)

hold for any integers i, k ≥ 1, then we can conclude that (4.67) and (4.68) hold for a and

for any integers i, k ≥ 2. Indeed, let i, k ≥ 1. Then

∣∣∣∣∣∣
∫
‖x1‖∼2kγ|2I1|1/n1

‖x2‖∼2i|2I2|1/n2

|T (as)| −
∫
‖x1‖∼2k+1γ|I1|1/n1

‖x2‖∼2i+1|I2|1/n2

|T (a)|

∣∣∣∣∣∣ ≤
∫
‖x1‖∼2kγ|2I1|1/n1

‖x2‖∼2i|2I2|1/n2

| |T (as)| − |T (a)| |

≤
∫
‖x1‖∼2kγ|2I1|1/n1

‖x2‖∼2i|2I2|1/n2

|T (as)− T (a)|

≤
∣∣∣{(x1, x2) : ‖x1‖ ∼ 2kγ |2I1|1/n1 , ‖x2‖ ∼ 2i |2I2|1/n2}

∣∣∣1/2 ‖T (as)− T (a)‖2

≤
∣∣∣{(x1, x2) : ‖x1‖ ∼ 2kγ |2I1|1/n1 , ‖x2‖ ∼ 2i |2I2|1/n2}

∣∣∣1/2 ‖T‖L2→L2 ‖as − a‖2 → 0,

as s→∞, and similarly,

∫
‖x1‖∼2kγ|2I1|1/n1

‖x2‖≤2|2I2|1/n2

|T (as)| →
∫
‖x1‖∼2k+1γ|I1|1/n1

‖x2‖≤4|I2|1/n2

|T (a)| ,

as s → ∞. Since lims→∞ ‖as − a‖2 = 0, the right-hand sides of the inequalities (4.69)

and (4.70) converge to the right-hand sides of (4.67) and (4.68) (with a different constant

c), respectively, as s→∞.

To show (4.69), let x1 ∈ Rn1 be such that ‖x1‖ ∼ 2kγ |2I1|1/n1 . By (4.11), we have∫
as (y1, y2) dy1 = 0 for all y2 ∈ Rn2 . This, and the fact that for all y2 ∈ Rn2 , the support

of the function as (·, y2) is contained in 2I1, allow us to use the representation (4.35),

which yields ∫
‖x2‖∼2i|2I2|1/n2

|T (as) (x1, x2)| dx2
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=

∫
‖x2‖∼2i|2I2|1/n2

∣∣∣∣∫
2I1

([K1 (x1, y1)]− [K1 (x1, 01)]) (as (y1, ·)) (x2) dy1

∣∣∣∣ dx2

≤
∫

2I1

{∫
‖x2‖>2i|2I2|1/n2

|([K1 (x1, y1)]− [K1 (x1, 01)]) (as (y1, ·)) (x2)| dx2

}
dy1. (4.71)

Since for almost every y1 ∈ Rn1 ,
∫
as (y1, y2) dy2 = 0 and ([K1 (x1, y1)]− [K1 (x1, 01)]) is

an (ε2, n2)-Calderón-Zygmund operator, we can use Remark 4.3 to majorize the term in

the curly brackets in (4.71) by

(
2i
)−ε 2‖K1 (x1, y1)−K1 (x1, 01)‖CZ(ε 2,n2)

∫
2I2

|as (y1, y2)| dy2.

Therefore ∫
‖x1‖∼2kγ|2I1|1/n1

(∫
‖x2‖∼2i|2I2|1/n2

|T (as) (x1, x2)| dx2

)
dx1

≤ 2−iε 2

∫
2I1

{∫
‖x1‖>2k−1γ‖y1‖

‖K1(x1, y1)−K1(x1, 01)‖CZ(ε 2,n2) dx1

∫
2I2

|as (y1, y2)| dy2

}
dy1

≤ c2−iε 2
(
2kγ
)−β1 ‖as‖1 ≤ c2−iε 2

(
2kγ
)−β1 ‖as‖2 |2R|

1/2 .

This proves that (4.69) holds with θ = β1. So (4.67) holds with this value of θ.

Now we will verify that inequality (4.70) also holds with this θ. Let ‖x1‖∼ 2kγ |2I1|1/n1 .

Since for all y2 ∈ Rn2 , the function as (·, y2) satisfies
∫
as (y1, y2) dy1 = 0 and its support

is contained in 2I1, we can use (4.35) to get

∫
‖x2‖≤2|2I2|1/n2

|T (as) (x1, x2)| dx2

≤
∫

2I1

{∫
‖x2‖≤2|2I2|1/n2

|([K1 (x1, y1)]− [K1 (x1, 01)]) (as (y1, ·)) (x2)| dx2

}
dy1,

≤ ‖K1 (x1, y1)−K1 (x1, 01)‖CZ(ε2,n2) |2I2|1/2
∫

2I1

(∫
2I2

|as (y1, y2)|2 dy2

)1/2

dy1

≤ ‖K1 (x1, y1)−K1 (x1, 01)‖CZ(ε2,n2) ‖as‖2 |2R|
1/2 ,

where the penultimate inequality follows from Cauchy-Schwartz inequality and (4.30).
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This and hypothesis (4.6) yield

∫
‖x1‖∼2kγ|2I1|1/n1

(∫
‖x2‖≤2|2I2|1/n2

|T (as) (x1, x2)| dx2

)
dx1

≤ ‖as‖2 |2R|
1/2

∫
‖x1‖>2kγ‖y1‖

‖K1 (x1, y1)−K1 (x1, 01)‖CZ(ε2,n2) dx1

≤ c ‖as‖2 |2R|
1/2 (2kγ)−β1

.

Now we let 0 < p ≤ n1/ (n1 + 1) and we will show that both (4.69) and (4.70) hold

with θ = N1 + 1, and we will concluded that both (4.67) and (4.68) hold with this value

of θ. First we prove (4.67). Let ‖x1‖ ∼ 2kγ |2I1|1/n1 . Since for all y2 ∈ Rn2 , the function

as (·, y2) satisfies
∫
as (y1, y2) yα1 dy1 = 0 for all α ∈ (Z≥0)n1 of order |α| ≤ N1, and its

support is contained in 2I1, we can use the argument that proves (4.35) and Taylor’s

Theorem with Lagrange remainder, to conclude that there exists τ ∈ (0, 1) such that

T (as) (x1, x2) =

∫
2I1

[K1 (x1, y1)] (as (y1, ·)) (x2) dy1

=

∫
2I1

 ∑
|α|=N1+1

(−y1)α

α!

[
Dα
y1
K1 (x1, τy1)

]
(as (y1, ·)) (x2)

 dy1, (4.72)

for almost every x2 ∈ Rn2 . From (4.72), Remark 4.3 and hypothesis (4.5), it follows that

∫
‖x2‖∼2i|2I2|1/n2

|T (as) (x1, x2)| dx2

=

∫
‖x2‖∼2i|2I2|1/n2

∣∣∣∣∣∣
∑

|α|=N1+1

∫
2I1

{
(−y1)α

α!

[
Dα
y1
K1 (x1, τy1)

]
(as (y1, ·)) (x2)

}
dy1

∣∣∣∣∣∣ dx2

≤ c |2I1|(N1+1)/n1
∑

|α|=N1+1

∫
2I1

(∫
‖x2‖>2i‖y2‖

∣∣[Dα
y1
K (x1, τy1)

]
(as (y1, ·)) (x2)

∣∣ dx2

)
dy1

≤ c |2I1|(N1+1)/n1
(
2i
)−ε2 ∑

|α|=N1+1

∫
2I1

(
‖K1,α (x1, τy1)‖CZ(ε 2,n2)

∫
2I2

|as (y1, y2)| dy2

)
dy1

≤ c |2I1|(N1+1)/n1 2−iε 2

∫
2I1

(
‖x1 + τy1‖−N1−n1−1

∫
2I2

|as (y1, y2)| dy2

)
dy1
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≤ c2−iε 2 |2I1|(N1+1)/n1 ‖x1‖−N1−n1−1 ‖as‖1 .

Integrating this over the annulus ‖x1‖ ∼ 2kγ |2I1|1/n1 , we conclude that (4.69) holds with

θ = N1 + 1.

Now we will verify that inequality (4.70) holds with this same value of θ. Again, let

‖x1‖ ∼ 2kγ |2I1|. By (4.72) and hypothesis (4.5), we obtain

∫
‖x2‖≤2|2I2|1/n2

|T (as) (x1, x2)| dx2

=

∫
‖x2‖≤2|2I2|1/n2

∣∣∣∣∣∣
∑

|α|=N1+1

∫
2I1

{
(−y1)α

α!

[
Dα
y1
K1 (x1, τy1)

]
(as (y1, ·)) (x2)

}
dy1

∣∣∣∣∣∣ dx2

≤ c |2I1|(N1+1)/n1
∑

|α|=N1+1

∫
2I1

(∫
‖x2‖≤2‖y2‖

∣∣[Dα
y1
K (x1, τy1)

]
(as (y1, ·)) (x2)

∣∣ dx2

)
dy1

≤ c |2I1|(N1+1)/n1
∑

|α|=N1+1

∫
2I1

(∥∥Dα
y1
K1 (x1, τy1) as (y1, ·)

∥∥
2
|2I2|1/2

)
dy1

≤ c |2I1|(N1+1)/n1 |2I2|1/2
∑

|α|=N1+1

∫
2I1

∥∥Dα
y1
K1 (x1, τy1)

∥∥
CZ(ε2,n2)

‖as (y1, ·)‖2 dy1

≤ c |2I1|(N1+1)/n1 |2I2|1/2
∫

2I1

‖as (y1, ·)‖2 ‖x1 − τy1‖−N1−n1−1 dy1

≤ c |2I1|(N1+1)/n1 |2I2|1/2 ‖x1‖−N1−n1−1 ‖as‖2 ,

where τ ∈ (0, 1). Then we obtain (4.70) by integrating the above estimate over ‖x1‖ ∼

2kγ |2I1|1/n1 . Thus (4.68) holds with θ = N1 + 1.

Our next result is a three-parameter version of Theorem 4.4. We will deal with

(ε1, ε2, ε3, n1, n2, n2)-Calderón-Zygmund operators (Definition 4.9) and also with

p-(ε1, ε2, ε3, n1, n2, n2)-Calderón-Zygmund operators (Definition 4.10).

Theorem 4.6 (Three-parameter variant of Theorem 4.4). Let 0 < p ≤ 1 and let T be a

linear operator on L2(Rn1+n2+n3).

If n1/ (n1 − 1) < p ≤ 1, assume that T is a (β1, β2, ε3, n1, n2, n2)-Calderón-Zygmund

operator for some βj > nj (1/p− 1), j = 1, 2, and ε3 > n3 (1/p− 1).
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If 0 < p ≤ n1/ (n1 − 1), assume that T is a p-(ε1, ε2, n1, n2)-Calderón-Zygmund operator

for some εj > nj (1/p− 1), j = 2, 3, and assume also that the [CZ(ε3, n3)]-(ε1, ε2, n1, n2)-

kernel K1,2, associated with T as in (4.36), satisfies

∫
‖x2−ξ2‖>2kγ2‖y2−ξ2‖

∥∥∥∥∥∥∥
Dα
y1
K1,2 (x1, y1, x2, y2)

−Dα
y1
K1,2 (x1, ξ1, x2, ξ2)

∥∥∥∥∥∥∥
CZ(ε3,n3)

dx2 ≤c ‖x1 − ξ1‖−N1−n1−1(2kγ2

)−ε2
,

(4.73)

x1 6= ξ1, for each multi-indice α ∈ (Z≥0)n1 with |α| = N1 + 1, and for all k ∈ N and all

γ2 of the form 2s, s ∈ N. Under these hypotheses, (4.4) holds for some δ1, δ2 > 0 and for

any rectangle (p, 2)-atom a on Rn1 × Rn2 × Rn3 supported on I1 × I2 × I3.

The inequalities which are similar to (4.4), with (1, 2, 3) replaced by (2, 3, 1) and

(3, 1, 2), can be obtained by replacing (1, 2, 3) by (2, 3, 1) and (3, 1, 2), respectively.

Note that, in case 0 < p ≤ n1/ (n1 − 1), the hypotheses of Theorem 4.6 imply that

K1,2, the [CZ(ε3, n3)]-(β1, β2)-kernel associated with T as in (4.36), satisfies

∫
‖x1−ξ1‖>2k‖y1−ξ1‖
‖x2−ξ2‖>2l‖y2−ξ2‖

‖K1,2 (x1, y1, x2, y2) −K1,2 (x1, ξ1, x2, ξ2)‖CZ(ε3,n3) dx≤c
(
2k
)−β1

(
2l
)−β2

(4.74)

for all k, l ∈ N.

Proof of Theorem 4.6. Let γ1 = 2s1 , γ2 = 2s2 for some s1, s2 ∈ N and assume that Ij is

centered at the origin, 0j, of Rnj , j = 1, 2, 3. In analogy with the proof Theorem 4.4, our

goal is to show that there exists θ1, θ2 > 0, which does not depend on s1, s2 nor on the

rectangle (p, 2)-atom a, such that

∫
‖x1‖∼2kγ1|I1|1/n1

‖x2‖∼2lγ2|I2|1/n2

‖x3‖∼2i|I3|1/n3

|T (a) (x)| dx ≤ c2−iε3
(
2kγ1

)−θ1 (
2lγ2

)−θ2 ‖a‖2 |R|
1/2 (4.75)

and ∫
‖x1‖∼2kγ1|I1|1/n1

‖x2‖∼2lγ2|I2|1/n2

‖x3‖≤2|I3|1/n3

|T (a) (x)| dx ≤ c
(
2kγ1

)−θ1 (
2lγ2

)−θ2 ‖a‖2 |R|
1/2 , (4.76)

for any integers i, k, l ≥ 2. These inequalities imply that (4.4) holds with δj = −nj (1− p)
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+θjp, j = 1, 2.

We begin with the case p > n1/ (nj + 1). Again, the argument is analogous to that of

the proof of Theorem 4.4. We will omit some of the intermediary steps, that is, we will

assume w.l.o.g. that a is in L∞, just like the as’s of the proof of Theorem 4.4.

Take ‖x1‖ ∼ 2kγ1 |I1|1/n1 and ‖x2‖ ∼ 2lγ2 |I2|1/n2 . The vanishing moments of condi-

tion (4.11) and Remark 4.3 yield

∫
‖x3‖∼2i|I3|1/n3

|T (a) (x1, x2, x3)| dx3

=

∫
‖x3‖∼2i|I3|1/n3

∣∣∣∣∫
I1

∫
I2

[K1,2 (x1, y1, x2, y2)] (a (y1, y2, ·)) (x3) dy2dy1

∣∣∣∣ dx3

=

∫
‖x3‖∼2i|I3|1/n3

∣∣∣∣∣∣∣
∫
I1

∫
I2

 [K1,2 (x1, y1, x2, y2)]

− [K1,2 (x1, 01, x2, 02)]

 (a (y1, y2, ·)) (x3) dy2dy1

∣∣∣∣∣∣∣ dx3

≤
∫
I1

∫
I2


∫
‖x3‖>2i‖y3‖

∣∣∣∣∣∣∣
 [K1,2 (x1, y1, x2, y2)]

− [K1,2 (x1, 01, x2, 02)]

 (a (y1, y2, ·)) (x3)

∣∣∣∣∣∣∣ dx3

 dy2dy1

≤
(
2i
)−ε3 ∫

I1

∫
I2


∥∥∥∥∥∥∥

K1,2 (x1, y1, x2, y2)

−K1,2 (x1, 01, x2, 02)

∥∥∥∥∥∥∥
CZ(ε3,n3)

∫
I3

|a (y1, y2, y3)| dy3

 dx2dx1,

where by ([K1,2 (x1, y1, x2, y2)]− [K1,2 (x1, 01, x2, 02)]) (a (y1, y2, ·)) (x3) we denote the eval-

uation at the point x3 of the operator ([K1,2 (x1, y1, x2, y2)]− [K1,2 (x1, 01, x2, 02)]) on the

function y3 7→ a (y1, y2, ·) (y3) := a (y1, y2, y3). Therefore the left-hand side of (4.76) is

majorized by

2−lε3
∫
I1

∫
I2

∫
‖x1‖∼2kγ1|I1|1/n1

‖x2‖∼2lγ2|I2|1/n2

∥∥∥∥∥∥∥
K1,2 (x1, y1, x2, y2)

−K1,2 (x1, 01, x2, 02)

∥∥∥∥∥∥∥
CZ(ε3,n3)

dx1dx2

.

∫
I3

|a (y1, y2, y3)| dy3dy2dy1

≤ c2−lε3
(
2kγ1

)−β1
(
2lγ2

)−β2 ‖a‖2 |R|
1/2 ,

where the last inequality follows from (4.74). So (4.75) holds with θj = βj, j = 1, 2.
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Now we will verify that (4.76) holds with these values of θ1 and θ2. Let ‖x1‖ ∼

2kγ1 |I1|1/n1 and ‖x2‖ ∼ 2lγ2 |I2|1/n2 . Then

∫
‖x3‖≤2|I3|1/n3

|T (a) (x1, x2, x3)| dx3

=

∫
‖x3‖≤2|I3|1/n3

∣∣∣∣∣∣∣
∫
I2

∫
I1

 [K1,2 (x1, y1, x2, y2)]

− [K1,2 (x1, 01, x2, 02)]

 (a (y1, y2, ·)) (x3) dy1dy2

∣∣∣∣∣∣∣ dx3

≤
∫
I2

∫
I1

∫
‖x2‖≤2|I3|1/n3

∣∣∣∣∣∣∣
 [K1,2 (x1, y1, x2, y2)]

− [K1,2 (x1, 01, x2, 02)]

 (a (y1, y2, ·)) (x3)

∣∣∣∣∣∣∣ dx3

 dy1dy2,

≤

∥∥∥∥∥∥∥
K1,2 (x1, y1, x2, y2)

−K1,2 (x1, 01, x2, 02)

∥∥∥∥∥∥∥
CZ(ε3,n3)

|I3|1/2
∫
I2

∫
I1

(∫
I3

|a (y1, y2, y3)|2 dy3

)1/2

dy1dy2

≤ ‖K1,2 (x1, y1, x2, y2)−K1,2 (x1, 01, x2, 02)‖CZ(ε3,n3) ‖a‖2 |R|
1/2 .

So the left-hand side of (4.76) is bounded above by

‖a‖2 |R|
1/2

∫
‖x1‖>2kγ1‖y1‖
‖x2‖>2lγ2‖y2‖

‖K1,2 (x1, y1, x2, y2)−K1,2 (x1, 01, x2, 02)‖CZ(ε3,n3) dx1dx2

≤ c ‖a‖2 |R|
1/2 (2kγ1

)−β1
(
2lγ2

)−β2
,

where the last inequality is due to (4.74).

It remains to prove (4.75) and (4.76) in the case p ≤ n1/ (n1 + 1).

Let ‖x1‖ ∼ 2kγ1 |I1|1/n1 and ‖x2‖ ∼ 2lγ2 |I2|1/n2 . From (4.36), the vanishing moments∫
a (y1, y2, y3) yα1 dy1 = 0 for all |α| ≤ N1 and Taylor’s Theorem with Lagrange remainder,

it follows that there exists τ ∈ (0, 1) such that

T (a) (x1, x2, x3) =

∫
I1

∫
I2

[K1,2 (x1, y1, x2, y2)] (a (y1, y2, ·)) (x3) dy2dy1

=

∫
I1

∫
I2

 ∑
|α|=N1+1

(−y1)α

α!

[
Dα
y1
K1,2 (x1, τy1, x2, y2)

]
(a (y1, y2, ·)) (x3)

 dy2dy1
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for almost every x3 ∈ Rn3 . It follows that

T (a) (x1, x2, x3)

=

∫
I1

∫
I2


∑

|α|=N1+1

(−y1)α

α!

 [
Dα
y1
K1,2 (x1, τy1, x2, y2)

]
−
[
Dα
y1
K1,2 (x1, τy1, x2, 02)

]
 (a (y1, y2, ·)) (x3)

 dy2dy1

(4.77)

for almost every x3 ∈ Rn3 . Then

∫
‖x3‖∼2i|I3|1/n3

|T (a) (x1, x2, x3)| dx3

=

∫
‖x3‖∼2i|I3|1/n3

∣∣∣∣∣∣∣∣∣∣∣∣∣
∫
I1

∫
I2



∑
|α|=N1+1

(−y1)α

α!

.

 [
Dα
y1
K1,2 (x1, τy1, x2, y2)

]
−
[
Dα
y1
K1,2 (x1, τy1, x2, 02)

]


. (a (y1, y2, ·)) (x3)


dy2dy1

∣∣∣∣∣∣∣∣∣∣∣∣∣
dx3

≤ c |I1|(N1+1)/n1
(
2i
)−ε3 ∑

|α|=N1+1

∫
I1

∫
I2


∥∥∥∥∥∥∥

Dα
y1
K1,2 (x1, τy1, x2, y2)

−Dα
y1
K1,2 (x1, τy1, x2, 02)

∥∥∥∥∥∥∥
CZ(ε3,n3)

.
∫
I3
|a (y1, y2, y3)| dy3

 dy2dy1,

where the last inequality follows from Remark 4.3. So the left-hand side of (4.75) is not

greater than

∫
‖x1‖∼2kγ1|I1|1/n1

‖x2‖∼2lγ2|I2|1/n2



c |I1|(N1+1)/n1 2−iε3

.
∫
I1

∫
I2


∥∥∥∥∥∥∥

Dα
y1
K1,2 (x1, τy1, x2, y2)

−Dα
y1
K1,2 (x1, τy1, x2, 02)

∥∥∥∥∥∥∥
CZ(ε3,n3)

.
∫
I3
|a (y1, y2, y3)| dy3

 dy2dy1


dx2dx1
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≤ c |I1|(N1+1)/n1 2−iε3

.

∫
I1

∫
I2



∫‖x1‖∼2kγ1|I1|1/n1

‖x2‖>2lγ2‖y2‖

∥∥∥∥∥∥∥
Dα
y1
K1,2 (x1, τy1, x2, y2)

−Dα
y1
K1,2 (x1, τy1, x2, 02)

∥∥∥∥∥∥∥
CZ(ε3,n3)

dx2dx1


.
∫
I3
|a (y1, y2, y3)| dy3

 dy2dy1

≤c |I1|(N1+1)/n1 2−iε3
∫
I1

∫
I2


(∫
‖x1‖∼2kγ1|I1|1/n1‖x1 − τy1‖−N1−n1−1 (2lγ2

)−ε2 dx1

)
.
∫
I3
|a (y1, y2, y3)| dy3

dy2dy1

≤ c
(
2i
)−ε3 (2kγ1

)−N1−1 (
2lγ2

)−ε2 ‖a‖2 |R|
1/2 .

This proves that (4.75) holds with θ1 = N1 + 1, θ2 = ε2.

Now we will verify that (4.76) holds with these values of θ1 and θ2. Again, let ‖x1‖ ∼

2kγ1 |I1|1/n1 and ‖x2‖ ∼ 2lγ2 |I2|1/n2 . By (4.77), there exists τ ∈ (0, 1) such that

∫
‖x3‖≤2|I3|1/n3

|T (a) (x1, x2, x3)| dx3

=

∫
‖x3‖≤2|I3|1/n3

∣∣∣∣∣∣∣∣∣∣
∫
I1

∫
I2


∑

|α|=N1+1

(−y1)α

α!

 [
Dα
y1
K1,2 (x1, τy1, x2, y2)

]
−
[
Dα
y1
K1,2 (x1, τy1, x2, 02)

]


. (a (y1, y2, · )) (x3)

 dy2dy1

∣∣∣∣∣∣∣∣∣∣
dx3

≤ c |I1|(N1+1)/n1 |I3|1/2
∑

|α|=N1+1

∫
I1

∫
I2

∥∥∥∥∥∥∥∥∥∥

 [
Dα
y1
K1,2 (x1, τy1, x2, y2)

]
−
[
Dα
y1
K1,2 (x1, τy1, x2, 02)

]


.a (y1, y2, · )

∥∥∥∥∥∥∥∥∥∥
2

dy2dy1

≤ c |I1|(N1+1)/n1 |I3|1/2
∑

|α|=N1+1

∫
I1

∫
I2

∥∥∥∥∥∥∥
Dα
y1
K1,2 (x1, τy1, x2, y2)

−Dα
y1
K1,2 (x1, τy1, x2, 02)

∥∥∥∥∥∥∥
CZ(ε3,n3)

. ‖a (y1, y2, ·)‖2 dy2dy1

where the last inequality follows from (4.30). So the left-hand side of (4.76) can be
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majorized as follows

∫
‖x1‖∼2kγ1|I1|1/n1

‖x2‖∼2lγ2|I2|1/n2

∫
‖x3‖≤2|I3|1/n3

|T (a) (x1, x2, x3)| dx3dx2dx1

≤c |I1|(N1+1)/n1|I3|1/2
∫
‖x1‖∼2kγ1|I1|1/n1

‖x2‖∼2lγ2|I2|1/n2

∑
|α|=N1+1

∫
I1

∫
I2

∥∥∥∥∥∥∥
Dα
y1
K1,2 (x1, τy1, x2, y2)

−Dα
y1
K1,2 (x1, τy1, x2, 02)

∥∥∥∥∥∥∥
CZ(ε3,n3)

. ‖a (y1, y2, · )‖2dy2dy1dx2dx1

≤c |I1|(N1+1)/n1
(
2lγ2

)−ε 2|I3|1/2
∫
‖x1‖∼2kγ1|I1|1/n1

‖x1‖−N1−n1−1 dx1

∫
I1

∫
I2

‖a (y1, y2, ·)‖2 dy2dy1

≤ c
(
2kγ1

)−N1−1 (
2lγ2

)−ε 2 ‖a‖2 |R|
1/2 ,

and the proof of (4.76) is concluded.

Proof of Theorem 4.5. Let M = Mϕ1,...,ϕr be as in (4.14), r ∈ {2, 3}. By Lemma 4.1, M

satisfies (4.13).

In the case r = 2, (4.13) implies (4.3) with T = M and δj = (1− µj) p, j = 1, 2.

Similarly, when r = 3, (4.13) implies that (4.4) (and similar inequalities for the other

factors) holds with T = M and δj = (1− µj) p, j = 1, 2, 3. So the estimate

‖M (a)‖ ≤ c for all rough (p, 2)-atoms on Rn1 × ...× Rnr (4.78)

follows by the same argument that shows, in the proof Theorems 4.2 (case r = 2) and

4.3 (case r = 3), that ‖T (a)‖p is uniformly bounded on these atoms.

Now consider a collection {ak}k of rough (p, 2)-atoms Rn1 × ...× Rnr and a sequence

of scalars {λk}k ∈ lp. Using (4.78) and the reasoning that shows equality (30) on

page 107 of [62], we conclude that
∑∞

k=1 λkak converges in Hp (Rn1 × ...× Rnr) (hence

it also converges in S ′ (Rn1+...+nr)) and ‖
∑∞

k=1 λkak‖Hp(Rn1×...×Rnr )
is bounded above by

c
∑∞

k=1 |λk|
p.
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For larger values of r, an analogue of Theorem 4.5 holds. To prove it in Rn1× ...×Rnr ,

r ≥ 4, one can follow the reasoning described above, but a higher-parameter variant of

Lemma 4.4 is required to show (4.78) in this setting.
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Chapter 5

Journé-type Lemmas

In this chapter, we adapt the original lemmas of Journé [42] (the non-discrete and the

discrete versions) to the product of a metric measure space X and the real line.

5.1 Definitions and Notation

Adopting the conventions and the terminology from [37] and the notation from [66], we

consider a metric measure space (X, dX , µX), where

(i) dX is a metric on X;

(ii) the topology on X is the metric topology; and

(iii) µX is a regular, σ-finite, non-negative, doubling measure on the Borel σ-algebra (the

one generated by the open sets in the metric topology) on X, which we denote by BX .

The doubling property of µX means that for all x ∈ X and all r > 0,

0 < µX (B (x, r)) <∞ and µX (B (x, 2r)) ≤ cµXµX (B (x, r)) (5.1)

where cµX is a constant. The second inequality in (5.1) implies that

µX (B (x,R)) = µX
(
B
(
x, 2log2(R/r)r

))
≤ clog2(R/r)

µX
µ (B (x, r)) , for all 0 < r ≤ R. (5.2)

Being a metric space, X is a perfectly normal Hausdorff space (i.e. T6). We assume
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that X is proper and uniformly perfect. The former condition means that all closed balls

are compact, and the latter means that there exists a constant η ≥ 1 satisfying

for all r > 0, if X\B (x, r) 6= ∅, then B (x, t) \B
(
x, η−1r

)
6= ∅.

We take the Cartesian product of X and R, the real line, where in this chapter, we

view the line as a metric measure space (R, dY , µY ), where dY (y1, y2) := |y1 − y2| is the

distance on R and BY denotes the Borel σ-algebra on R.

The product topology on X×R can be defined as the coarsest topology for which the

projections

(x, y) ∈ X × R 7→ πX (x, y) := x and (x, y) ∈ X × R 7→ πY (x, y) := y

are continuous. Equivalently, among the topologies on X × R which contain all the

Cartesian products of an open set in X with an open set in R, the product topology is

the one that has the fewest open sets.

Now that we have defined the product topology, we let B be the Borel σ-algebra on

X × R, i.e. B is defined to be the σ-algebra on X × R generated by the open sets in the

product topology. Equivalently, B is the coarsest σ-algebra on X × R with the property

that if E ∈ BX and F ∈ BY , then E × F ∈ B.

Since both (X, dX , µX) and (R, dY , µY ) are σ-finite measure spaces, (by Proposition

1.7.11 in [66]) there exits a unique measure µ on the product σ-algebra B such that

µ (E × F ) = µX (E)× µY (F ) for every E ∈ BX , F ∈ BY . This measure µ is σ-finite (by

Theorem B in Secion 35 of [33] and the uniqueness of µ), non-negative and monotone.

The latter condition means that if Ω1,Ω2 ∈ B and Ω1 ⊂ Ω2, then µ (Ω1) ≤ µ (Ω1).

We say that a set R ⊂ X × R is a rectangle if it has the form

R = I × J, (5.3)
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with

I = B (x0, α) := {x ∈ X : dX (x0, x) < α} for some x0 ∈ X, α > 0;

J = {y ∈ R : |y − y0| < β} for some y0 ∈ R, β > 0.

In this chapter, we use the symbol R to denote the collection of all rectangles of the form

(5.3).

Let Ω ⊂ X × R be an open set with µ (Ω) <∞ and define

Ω̃ :=

{
(x, y) ∈ X × R : MS (χΩ) (x, y) >

1

2

}
;

here MS (f) is defined by

(x, y) ∈ X × R 7→MS (f) (x, y) := sup
(x,y)∈R

1

µ (R)

∫
R

|f | dµ, f ∈ L1
loc (X × R, µ) ,

where the supremum is taken over all rectangles R in R containing (x, y). Note that Ω̃

is open, thus measurable.

For x ∈ X and t > 0, let

Ex,t :=
{
y ∈ R : B (x, t)× {y} ⊂ Ω

}
. (5.4)

Since B (x, t) is compact, for every y in Ex,t, there exists δ > 0 such that B (x, t) ×

(y − δ, y + δ) is contained in Ω. This shows that Et,x is open.

Since Et,x is an open set of the real line, we can write it as a countable union of

disjoint open intervals, Jt,x,k, with the indices k in a subset of N, which we call Λ (x, t),

i.e.

Ex,t = ∪
k∈Λ(x,t)

Jx,t,k. (5.5)

The possibility that Ex,t = ∅ is been considered. In this degenerate case, the statements

above hold trivially: Λ (x, t) is also empty.

Note that, by the definition of Ex,t in (5.4), for each triple (x, t, k) ∈ X × (0,∞) ×

Λ (x, t), the set B (x, t)×Jx,t,k is contained in Ω, and for any other open interval J ′, with
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Jx,t,k $ J ′, the set B (x, t)× J ′ is not contained in Ω.

Define

τ (x, t, k) := inf

{
s ≥ t :

µY (Ex,s ∩ Jx,t,k)
µY (Jx,t,k)

≤ 1

2

}
(5.6)

and

τ̃ (x, t, k) := sup
{
s ≥ t : B (x, s)× Jx,t,k ⊂ Ω̃

}
, (5.7)

for all (x, t, k) ∈ X × (0,∞) such that Ex,t 6= ∅ and all k ∈ Λ (x, t).

5.2 Variant of Non-discrete Journé’s Lemma

The following result is a variant of Proposition 2 in [42], which we call the non-discrete

Journé’s Lemma.

Theorem 5.1 (Variant of Non-discrete Journé’s Lemma). Let Ω ⊂ X × R be a bounded

open set and let φ : R → R be a non-negative, non-decreasing function of class C1

satisfying
∫ 1

0
φ (s) ds

s
<∞. Then,

µ

(
∪

(x,t)∈X×R

(
∪

k∈Λ(x,t)
B (x, τ (x, t, k))× Jx,t,k

))
≤ cµ (Ω) (5.8)

and

∫ ∞
0

∫
x∈X

∑
k∈Λ(x,t)

µY (Jx,t,k)φ

(
t

τ (x, t, k)

)
dµX (x)

dt

t
≤ 2

(∫ 1

0

φ (s)
ds

s

)
µ (Ω) , (5.9)

where Jx,t,k and τ (x, t, k) are defined in (5.5) and (5.6), respectively.

In the proof this theorem we need the following lemma.

Lemma 5.1. For any measurable open set Ω ⊂ X × R, there exists a constant c, inde-

pendent of Ω, such that

µ
(

Ω̃
)
≤ cµ (Ω) . (5.10)

Proof of Lemma 5.1. We will apply Theorem I in Chapter 3 of [69] to the set Ω. First

we verify that the hypotheses of this theorem are satisfied.
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By Theorem 2.2 in Chapter 2 of [37], there exists a constant c > 0 such that, for any

measurable set U ⊂ X,

µX ({x ∈ X :M (χU) (x) > λ}) ≤ c

λ
µX (U) ,

for all λ > 0, where

M (f) (x) := sup
α>0

1

µX (B (x, α))

∫
B(x,α)

|f (u)| dµX(u) , f ∈ L1
loc (X,µX) . (5.11)

Inspired by an argument found in Chapter I of [62], we define an “uncentered” version

of M as follows

MX (χU) (x) := sup
x∈B

1

µX (B)

∫
B

|f (u)| dµX(u) , f ∈ L1
loc (X,µX) ,

where the supremum is taken over all open balls B (x0, α) ⊂ X containing x. We will

show that for any measurable set U ⊂ X,

MX (χU) ≥ cM (χU) , (5.12)

where the constant c is independent of U . To prove that (5.12) holds, we first note that,

since dX is a metric, for any two points x0, u0 ∈ X and any r > 0, if B (x0, r)∩B (u0, r) 6=

∅, then B (x0, r) ⊂ B (u0, 3r). Now fix x ∈ X and take a ball B (x0, α) containing x. On

the one hand, we have B (x0, α) ∩ B (x, α) 6= ∅, which implies B (x0, α) ⊂ B (x, 3α). So

the monotonicity of µX yields

µX (B (x0, α) ∩ U) ≤ µX (B (x, 3α) ∩ U) . (5.13)

On the other hand, we also have B (x0, 3α) ∩B (x, 3α) 6= ∅, and this implies B (x, 3α) ⊂

B (x0, 9α). So

µX (B (x, 3α)) ≤ µX (B (x0, 9α)) ≤ clog2(9)
µX

µX (B (x0, α)) . (5.14)
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Combining (5.13) and (5.14) we obtain

µX (B (x0, α) ∩ U)

µX (B (x0, α))
≤ clog2(9)

µX

µX (B (x, 3α) ∩ U)

µX (B (x, 3α))
. (5.15)

From (5.15) it follows that MX (χU) (x) > cM (χU) (x), where c = c
log2(9)
µX . So (5.12) is

proved.

Inequality (5.12) implies that

{x ∈ X : MX (χU) (x) > λ} ⊂
{
x ∈ X :M (χU) (x) > c− log2(9)

µX
λ
}

(5.16)

for any measurable set U ⊂ X and any λ > 0.

Using (5.16), the monotonicity of µX and (5.11), we get

µX ({x ∈ X : MX (χU) (x) > λ}) ≤ cXc
log2(9)
µX

λ
µX (U) (5.17)

for any measurable set U ⊂ X and any λ > 0.

On the real line, the standard Hardy-Littlewood maximal function theorem guarantees

that

µY ({y ∈ R : MY (χV ) (x) > λ}) ≤ cY
λ
µY (V ) , (5.18)

for any measurable set V ⊂ R and any λ > 0, where

MY (f) (y) := sup
y∈J

1

µX (J)

∫
J

|f (v)| dµY (v) , f ∈ L1
loc (R, µY ) ,

with the supremum taken over all open intervals J ⊂ R containing y.

The hypotheses of Theorem I in Chapter III of [69] are satisfied: (5.17) and (5.18)

hold. By this theorem,

µ ({(x, y) ∈ X × R : MS (χΩ) (x, y) > λ}) ≤ min
0<r<λ

[(
cXc

log2(9)
µX

r

)(
cY
λ− r

)]
µ (Ω) .
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In particular, when λ = 1/2, this inequality becomes

µ
(

Ω̃
)
≤ cXcY c

log2(9)
µX

16
µ (Ω) .

So (5.10) holds.

Proof of Theorem 5.1. Fix (x, t) ∈ X × (0,∞). Assume, w.l.o.g., that Ex,t 6= ∅ and fix

k ∈ Λ (x, t). If 0 < s < τ (x, t, k), then

µY (Ex,s ∩ Jx,t,k)
µY (Jx,t,k)

>
1

2
,

and also B (x, s)× Ex,s ⊂ Ω. Thus, for any 0 < s < τ (x, t, k), we have

µ ([B (x, s)× Jx,t,k] ∩ Ω) ≥ µ ([B (x, s)× Jx,t,k] ∩ [B (x, s)× Ex,s])

= µX (B (x, s))µY (Jx,t,k ∩ Ex,s)

>
1

2
µX (B (x, s))µY (Jx,t,k) .

This shows that B (x, s)× Jx,t,k ⊂ Ω̃ for all 0 < s < τ (x, t, k). From this, it follows that

B (x, τ (x, t, k))× Jx,t,k ⊂ Ω̃. (5.19)

Since (5.19) holds for all (x, t) ∈ X × (0,∞) such that Ex,t 6= ∅ and all k ∈ Λ (x, t), we

conclude that

∪
(x,t)∈X×R

(
∪

k∈Λ(x,t)
B (x, τ (x, t, k))× Jx,t,k

)
⊂ Ω̃. (5.20)

From (5.20) and Lemma 5.1, it follows that (5.8) holds.

Now we will show (5.9).

The Dini condition on φ implies that lims→∞ φ
(
t
s

)
= 0 for any t > 0. So, for any

u, t ∈ (0,∞),

φ

(
t

u

)
= −

∫ ∞
u

(
d

ds
φ

(
t

s

))
ds =

∫ ∞
u

φ′
(
t

s

)
ds

s2
. (5.21)
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Taking u = τ (x, t, k) in (5.21), we can re-write the left-hand-side of (5.9) as

∫ ∞
0

∫
x∈X

∑
k∈Λ(x,t)

µY (Jx,t,k)

[∫ ∞
τ(x,t,k)

φ′
(
t

s

)
ds

s2

]
dµX(x)

dt

t

=

∫ ∞
0

∫
x∈X

∑
k∈Λ(x,t)

[∫ ∞
τ(x,t,k)

µY (Jx,t,k)φ
′
(
t

s

)
ds

s2

]
dµX(x)

dt

t
. (5.22)

For a fixed triple (x, t, k) ∈ X × (0,∞) × Λ (x, t), if s > τ (x, t, k), then

µY (Ex,s ∩ Jx,t,k) ≤ 2−1µY (Jx,t,k), by the definition of τ (x, t, k) in (5.6). So, when s >

τ (x, t, k), we have

µY (Jx,t,k) = µY (Jx,t,k ∩ Ex,s) + µY
(
Jx,t,k ∩ Ec

x,s

)
≤ 2−1µY (Jx,t,k) + µY (Jx,t,k\Ex,s) ,

and from this we get µY (Jx,t,k) ≤ 2µY (Jx,t,k\Ex,s). Therefore (5.22) is majorized by

2

∫ ∞
0

∫
x∈X

∑
k∈Λ(x,t)

[∫ ∞
τ(x,t,k)

µY (Jx,t,k\Ex,s)φ′
(
t

s

)
ds

s2

]
dµX(x)

dt

t

= 2

∫
x∈X

∫ ∞
0

∑
k∈Λ(x,t)

[∫ ∞
τ(x,t,k)

(∫ ∞
−∞

χJx,t,k\Ex,s (y) dµY (y)

)
φ′
(
t

s

)
ds

s2

]
dt

t
dµX(x)

= 2

∫
x∈X

∫ ∞
−∞


∫ ∞

0

∑
k∈Λ(x,t)

[∫ ∞
τ(x,t,k)

χJx,t,k\Ex,s (y)φ′
(
t

s

)
ds

s2

]
dt

t

 dµY (y) dµX(x)

= 2

∫
x∈X

∫ ∞
0

F (x, y) dµY (y) dµX(x) , (5.23)

where

F (x, y) :=

∫ ∞
0

∑
k∈Λ(x,t)

[∫ ∞
τ(x,t,k)

χJx,t,k\Ex,s (y)φ′
(
t

s

)
ds

s2

]
dt

t
. (5.24)

We claim that F is identically zero outside Ω. To see that this holds, fix (x, y) /∈ Ω.

Then y /∈
{
v ∈ R : B (x, t)× {v} ⊂ Ω

}
= Ex,t for all t > 0. In particular, by (5.5),

y /∈ Jx,t,k for all t > 0 and all k ∈ Λ (x, t). Therefore χJx,t,k\Ex,s (y) = 0 for all t > 0 and

all k ∈ Λ (x, t). Thus, by the expression of F in (5.24), we conclude that F (x, y) = 0.
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Since F vanishes outside Ω, we can rewrite (5.24) as

F (x, y) = χΩ (x, y)

∫ ∞
0

∑
k∈Λ(x,t)

[∫ ∞
τ(x,t,k)

χJx,t,k\Ex,s (y)φ′
(
t

s

)
ds

s2

]
dt

t
. (5.25)

Given (x, y) ∈ Ω and t > 0 such that Ex,t is non-empty, since the intervals Jx,t,k’s,

k ∈ Λ (x, t), are disjoint, the point y cannot be in more than one interval Jx,t,k, k ∈ Λ (x, t).

We denote by K (x, y, t) the index k in Λ (x, t) such that y ∈ Jx,t,k. With this notation,

we can re-write (5.25) as

F (x, y) = χΩ (x, y)

∫ ∞
0

[∫ ∞
τ(x,t,K(x,y,t))

χJx,t,K(x,y,t)\Ex,s (y)φ′
(
t

s

)
ds

s2

]
dt

t
. (5.26)

Now we define T : Ω→ R by

T (x, y) := sup
{
s > 0 : B (x, s)× {y} ⊂ Ω

}
.

We affirm that if y ∈ Jx,t,K(x,y,t)\Ex,s for some s > τ (x, t,K (x, y, t)), then

t ≤ T (x, y) ≤ s. (5.27)

To see that (5.27) holds, note that

(i) if y ∈ Jx,t,K(x,y,t), then y ∈ Ex,t =
{
v ∈ R : B (x, t)× {v} ⊂ Ω

}
, which implies that

t ≤ T (x, y); and

(ii) if there exists s > τ (x, t,K (x, y, t)) such that y /∈ Ex,s, then B (x, s) × {y} 6⊂ Ω,

which implies that T (x, y) ≤ s.

Using the bounds in (5.27), we can re-write (5.26) as

F (x, y) = χΩ (x, y)

∫ T (x,y)

0

[∫ ∞
T (x,y)

χJx,t,K(x,y,t)\Ex,s (y)φ′
(
t

s

)
ds

s2

]
dt

t
,
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which is not greater than

χΩ (x, y)

∫ T (x,y)

0

[∫ ∞
T (x,y)

φ′
(
t

s

)
ds

s2

]
dt

t
.

So

F (x, y) ≤ χΩ (x, y)

∫ T (x,y)

0

[∫ ∞
T (x,y)

φ′
(
t

s

)
ds

s2

]
dt

t
= χΩ (x, y)

∫ T (x,y)

0

φ

(
t

T (x, y)

)
dt

t
,

(5.28)

where the equality follows from (5.21) with u = T (x, y). Now, we plug (5.28) into (5.23)

to get (5.9).

5.3 Variant of Discrete Journé’s Lemma

The next result is an adaptation of Proposition 1 in [42], which is the discrete version of

the lemma of Journé. It requires a generalization of the definition of dyadic rectangles

from Euclidean spaces to the product setting X × R. The non-Euclidean component of

X×R is the metric measure space (X, dX , µX). On this kind of metric measure spaces, it

is possible to build a collection of sets that imitates the standard system of dyadic cubes

of Rn. Some references for this type of construction are [16] and [38]. In the latter, the

“dyadic system” is described in Theorem 2.2.

As stated in [37] (Exercise 13.1), there exit constants C ≥ 1, γ > 0, depending on the

doubling constant and on the uniform perfectness constant, such that

µX (B (x, r))

µX (B (x,R))
≤ C

( r
R

)γ
for all 0 < r < R < diam (X) . (5.29)

Given open set Ω ⊂ X × R with µ (Ω) < ∞, while it makes sense define maximal

dyadic rectangles on Ω ⊂ X × R, the variant of Journé’s Lemma that we present below

does not explicitly need such a definition. Instead we will need a countable collection of

rectangles defined as follows:

{Ri,j,k} i∈Z,
j∈Θi,
k∈Λi,j

⊂ R

112



satisfies

(i) Ri,j,k = Ii,j × Ji,j,k ⊂ Ω for each i ∈ Z, j ∈ Θi, k ∈ Λi,j;

(ii) Ii,j = B (xj, 2
i) for each i ∈ Z, j ∈ Θi;

(iii) (bounded overlap) there exists a constant θ ≥ 1 such that, for each i ∈ Z,∑
j∈Θi

χIi,j ≤ θ;

(iv) for fixed i and j, each Ji,j,k is an open interval of the set

Ei,j := Exj ,2i =
{
y ∈ R : B (xj, 2i)× {y} ⊂ Ω

}
,

which we express, as in (5.5), as a countable union of disjoint open intervals Ji,j,k’s,

k ∈ Λi,j := Λ (xj, 2
i).

Claim 5.1. For each (x, t) ∈ X × (0,∞) such that Ex,t 6= ∅, and each k ∈ Λ (x, t), the

definitions of τ and τ̃ ((5.6) and (5.7), respectively) imply

τ̃ (x, t, k) ≥ τ (x, t, k) . (5.30)

Proof. Let s < τ (x, t, k). Then

µY (Ex,s ∩ Jx,t,k) >
µY (Jx,t,k)

2
. (5.31)

Using the inclusion B (x, s)× Ex,s ⊂ Ω and (5.31), we obtain

µ ([B (x, s)× Jx,t,k] ∩ Ω) ≥ µ ([B (x, s)× Jx,t,k] ∩ [B (x, s)× Ex,s])

= µ (B (x, s)× (Jx,t,k ∩ Ex,s)) = µX (B (x, s))µY (Ex,s ∩ Jx,t,k)

> µX (B (x, s))
µY (Jx,t,k)

2
=

1

2
µ (B (x, s)× Jx,t,k) ,

and we conclude that

B (x, s)× Jx,t,k ⊂ Ω̃. (5.32)
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Since (5.32) holds for all s < τ (x, t, k), it follows that B (x, τ (x, t, k))×Jx,t,k ⊂ Ω̃. So

τ (x, t, k) ≤ sup
{
s ≥ t : B (x, s)× Jx,t,k ⊂ Ω̃

}
= τ̃ (x, t, k) .

Theorem 5.2 (Variant of Discrete Journé’s Lemma). Let Ω ⊂ X ×R be a bounded open

set and consider a countable collection

{Ri,j,k} i∈Z
j∈Θi,
k∈Λi,j

⊂ R

satisfying the properties (i)–(iv) listed above. If φ : R → R is a non-negative, non-

decreasing function of class C1, such that
∫ 1

0
φ (s) ds

s
<∞, then

µ


⋃
i∈Z
j∈Θi
k∈Λi,j

Îi,j,k × Ji,j,k

 ≤ cµ (Ω) (5.33)

and ∑
i,j,k

µ (Ri,j,k)φ

 µX (Ii,j)

µX

(
Îi,j,k

)
 ≤ 4 θ cµX

γ

(∫ 1

0

φ (s)
ds

s

)
µ (Ω) , (5.34)

where

Îi,j,k := B
(
xj, τ̃

(
xj, 2

i, k
))

;

θ is described in (iii); cµX is the doubling constant of µX ; γ is a constant for which (5.29)

holds; and the constant c is independent of Ω and {Ri,j,k}i∈Z, j∈Θi, k∈Λi,j
.

Proof. To show that (5.33) holds, we first observe that, by the definition of τ̃ ,

Îi,j,k × Ji,j,k ⊂ Ω̃,
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for all i ∈ Z , j ∈ Θi, k ∈ Λi,j. Thus

µ


⋃
i∈Z
j∈Θi
k∈Λi,j

Îi,j,k × Ji,j,k

 ≤ µ
(

Ω̃
)

and, by Lemma 5.1, µ
(

Ω̃
)
≤ cµ (Ω). So (5.33) is proved.

Now we will show (5.34).

For each i ∈ Z, j ∈ Θi, t ∈ (2i−2, 2i−1), let

Si,j,t := {u ∈ Iij : B (u, t) ⊂ Iij} ,

and note that Si,j,t can be represented as B (xj, (2
i − t)).

Working with the left-hand-side of (5.34), we find suitable upper bounds for it. The

goal is to find an upper bound that allows us to use Theorem (5.1). We preceded as

follows: ∑
i∈Z
j∈Θi
k∈Λi,j

µ (Ri,j,k)φ

 µX (Ii,j)

µX

(
Îi,j,k

)


=
∑
i∈Z

∑
j∈Θi

µX (Ii,j)
∑
k∈Λi,j

µY (Ji,j,k)φ

 µX (Ii,j)

µX

(
Îi,j,k

)


=
∑
i∈Z

∑
j∈Θi

µX (Ii,j)
∑
k∈Λi,j

µY (Ji,j,k)φ

 µX (Ii,j)

µX

(
Îi,j,k

)
 2i−1 − 2i−2

2i−2

frist

≤ 2
∑
i∈Z

∫ 2i−1

2i−2

∑
j∈Θi

µX (Ii,j)
∑
k∈Λi,j

µY (Ji,j,k)φ

 µX (Ii,j)

µX

(
Îi,j,k

)
 dt

t

second

≤ 2
∑
i∈Z

∫ 2i−1

2i−2

∑
j∈Θi

µX (2Si,j,t)
∑
k∈Λi,j

µY (Ji,j,k)φ

 µX (Ii,j)

µX

(
Îi,j,k

)
 dt

t

third

≤ 2cµX
∑
i∈Z

∫ 2i−1

2i−2

∑
j∈Θi

µX (Si,j,t)
∑
k∈Λi,j

µY (Ji,j,k)φ

 µX (Ii,j)

µX

(
Îi,j,k

)
 dt

t
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≤ 2cµX
∑
i∈Z

∫ 2i−1

2i−2

∑
j∈Θi

µX (Si,j,t)
∑

k∈Λ(xj ,2i)

µY (Ji,j,k)φ

c2
µX
µX (B (xj, t))

µX

(
Îi,j,k

)
 dt

t
, (5.35)

where the first inequality holds because 1
2i−2 < 2

t
for any t ∈ (2i−2, 2i−1); the second

inequality holds because Si,j,t = B (xj, (2
i − t)) and t ∈ (2i−2, 2i−1) imply

2Si,j,t = B
(
xj, 2

(
2i − t

))
⊇ B

(
xj, 2

i
)

= Iij;

the third inequality is a direct consequence of the fact that

µX (2Si,j,t) ≤ cµXµX (Si,j,t)

which is true because µX is doubling and Si,j,t has the form B (xj, (2
i − t)); and finally

the last inequality holds because

µX (Ii,j) = µX
(
B
(
xj, 2

22i−2
))
≤ µX

(
B
(
xj, 2

2t
))
≤ c2

µX
µX (B (xj, t))

for any t ∈ (2i−2, 2i−1) and φ is non-decreasing.

We claim that for any i ∈ Z, j ∈ Θi, and k ∈ Λ (i, j),

Ji,j,k ⊂ Eu,t for all t ∈
(
2i−2, 2i−1

)
and all u ∈ Si,j,t. (5.36)

This holds because if t ∈ (2i−2, 2i−1) and u ∈ Si,j,t = B (xj, (2
i − t)), then B (u, t) ⊂

B (xj, 2
i) = Iij, and this inclusion yields

Ji,j,k = Jxj ,2i,k ⊂ Exj ,2i =
{
y : B (xj, 2i)× {y} ⊂ Ω

}
⊂
{
y : B (u, t)× {y} ⊂ Ω

}
= Eu,t.

Fixed i ∈ Z, j ∈ Θi, t ∈ (2i−2, 2i−1) and u ∈ Si,j,t, since the interval Jxj ,2i,k is

contained in Eu,t = ∪
l∈Λ(u,t)

Ju,t,l, there exists one, and only one, index l in Λ (u, t), such

that Jxj ,2i,k ⊂ Ju,t,l. We call that index by L (i, j, k, u, t), i.e.

L (i, j, k, u, t) is the unique element of
{
l ∈ Λ (u, t) : Ju,t,l ⊃ Jxj ,2i,k

}
. (5.37)
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For fixed i ∈ Z, j ∈ Θi, we have

µX (B (xj, τ (t, u, L (i, j, k, u, t)))) ≤ cµXµX

(
Îi,j,k

)
(5.38)

for any t ∈ (2i−2, 2i−1) and u ∈ Si,j,t. To see that (5.38) holds, first fix t ∈ (2i−2, 2i−1)

and u ∈ Si,j,t, and note that

u ∈ Si,j,t = B
(
xj,
(
2i − t

))
⊂ B

(
xj,
(
2i − 2i−2

))
⊂ B

(
xj, 2

i
)

= Iij.

Note also that the right-hand-side of (5.38) is cµXµX (B (xj, τ̃ (xj, 2
i, k))). So (5.38) will

be proved once we show that τ (u, t, L (i, j, k, u, t)) ≤ 2τ̃ (xj, 2
i, k). Suppose, to reach a

contradiction, that τ (u, t, L) > 2τ̃ (xj, 2
i, k), where here L := L (i, j, k, u, t). In this case,

there exists ε > 0, such that τ (u, t, L) = 2τ̃ (xj, 2
i, k) + ε, and then

B
(
xj, τ̃

(
xj, 2

i, k
)

+ ε
)
⊂ B (u, τ (u, t, L)) , (5.39)

where the inclusion holds because any x̃ in B (xj, τ̃ (xj, 2
i, k) + ε) satisfies dX (x̃, xj) <

τ̃ (xj, 2
i, k) + ε. This, combined with the fact that 2i ≤ τ̃ (xj, 2

i, k), implies

dX (x̃, u)≤ dX (x̃, xj) + dX (xj, u)< τ̃
(
xj, 2

i, k
)

+ ε+ 2i≤ 2τ̃
(
xj, 2

i, k
)

+ ε = τ (u, t, L) ,

which yields x̃ ∈ B (u, τ (u, t, L)). From (5.39) and the choice of L (= L (i, j, k, u, t),

defined in (5.37)), it follows that

B
(
xj, τ̃

(
xj, 2

i, k
)

+ ε
)
× Jxj ,2i,k ⊂ B (u, τ (u, t, L))× Jxj ,2i,k

⊂ B (u, τ (u, t, L))× Ju,t,L ⊂ Ω̃.

This contradicts the maximality of τ̃ (xj, 2
i, k) (see the definition of τ̃ in (5.7)). Hence

(5.38) is proved.
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The expression in (5.35) can be re-written as

2cµX
∑
i∈Z

∫ 2i−1

2i−2

∑
j∈Θi

∫
Si,j,t

 ∑
k∈Λ(xj ,2i)

µY
(
Jxj ,2i,k

)
φ

c2
µX
µX (B (xj, t))

µX

(
Îi,j,k

)
 dµX(x)

dt

t
.

(5.40)

Using (5.38) and the fact that φ is non-decreasing, we can majorize the term in the

brackets by

∑
k∈Λ(xj ,2i)

µY
(
Jxj ,2i,k

)
φ

(
c3
XµX (B (xj, t))

µX (B (xj, τ (x, t, L (i, j, k, x, t))))

)
. (5.41)

As shown in (5.36), for each i ∈ Z, j ∈ Θi, t ∈ (2i−2, 2i−1) and x ∈ Si,j,t, the inclusion

∪
k∈Λ(xj ,2i)

Jxj ,2i,k ⊂ Ex,t = ∪
l∈Λ(x,t)

Jx,t,l

holds. Since these are disjoint unions of intervals, (5.41) is not grater than

∑
l∈Λ(x,t)

µY (Jx,t,l)φ

(
c3
XµX (B (xj, t))

µX (B (xj, τ (x, t, l)))

)
. (5.42)

To assure that this is so, note that the worse that can happen is to have more than one

Jxj ,2i,k contained in the same Jx,t,l. To deal with this scenario, observe that

(i) by the choice of L (i, j, k, x, t), if Jxj ,2i,k ⊂ Jx,t,l, then L (i, j, k, x, t) = l; and

(ii) since the Jxj ,2i,k’s are disjoint,
∑
i,j,k

Jxj,2i,k
⊂Jx,t,l

µY
(
Jxj ,2i,k

)
≤ µY (Jx,t,l).

Plugging (5.42) into (5.40), we obtain that the latter is bounded above by

2cµX
∑
i∈Z

∫ 2i−1

2i−2

∑
j∈Θi

∫
Si,j,t

∑
l∈Λ(x,t)

µY (Jx,t,l)φ

(
c3
µX
µX (B (xj, t))

µX (B (xj, τ (x, t, l)))

)
dµX(x)

dt

t

≤ 2cµX
∑
i∈Z

∫ 2i−1

2i−2

∑
j∈Θi

∫
Ii,j

∑
l∈Λ(x,t)

µY (Jx,t,l)φ

(
c3
µX
µX (B (xj, t))

µX (B (xj, τ (x, t, l)))

)
dµX(x)

dt

t
. (5.43)

where the inequality follows from the fact that, for each i ∈ Z and t ∈ (2i−2, 2i−1), the

inclusion Si,j,t ⊂ Ii,j holds. Now we use will Property (iii) of the collection {Ri,j,k}i,j,k.
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This property says that, for each j ∈ Θi, the intervals Ii,j’s have bounded overlap. So

(5.43) is not greater than

2 θ cµX
∑
i∈Z

∫ 2i−1

2i−2

∑
j∈Θi

∫
X

∑
l∈Λ(x,t)

µY (Jx,t,l)φ

(
c3
µX
µX (B (xj, t))

µX (B (xj, τ (x, t, l)))

)
dµX(x)

dt

t
,

which is equal to

2 θ cµX

∫ ∞
0

∑
j∈Θi

∫
X

∑
l∈Λ(x,t)

µY (Jx,t,l)φ

(
c3
µX

µX (B (xj, t))

µX (B (xj, τ (x, t, l)))

)
dµX(x)

dt

t
. (5.44)

We intend to apply (5.29) to the balls that appear in the argument of φ in (5.44). Is

t < τ (x, t, l)? Yes, by the definition of τ (x, t, l). Combining (5.29) with the fact that φ

is non-decreasing, we obtain that (5.44) is not greater than

2 θ cµX

∫ ∞
0

∫
x∈X

∑
l∈Λ(x,t)

µY (Jx,t,l)φ

(
c3
µX
C

(
t

τ (x, t, l)

)γ)
dµX(x)

dt

t
.

By theorem 5.1, this can be majorized by

4 θ cµX

∫ 1

0

φ
(
c3
µX
Csγ

) ds
s
µ (Ω) ,

and a change of variables yields (5.34).
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