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ABSTRACT

Hardy Spaces and Differentiation of the Integral in the Product

Setting

Raquel de Montalvao Cabral

Concordia University, 2014

This work concerns strong differentiation and operators on product Hardy spaces.
We show, by counterexample, that strong differentiability of the integral fails even for

functions in the intersection of H! , (R x R) with L (log L)‘ (R?) for all 0 <e < 1. Our

rect
example is a modification of a function that appears in a work of J. M. Marstrand, where
he makes a claim concerning “approximately independent sets”. We generalize his claim
and, as a corollary, we obtain a version of the second Borel-Cantelli Lemma.

In addition, we prove that a function f, created by Papoulis to show that the strong
differentiability of [ f does not imply the same behavior for [|f], belongs to the product
Hardy space H'(R x R). The method that we develop to approach this example allows
us to relax the sufficient conditions of the Chang-Fefferman atomic decomposition. In
analogy with the proof of this result, we demonstrate that a theorem of R. Fefferman,
which concludes H? — LP, 0 < p < 1, boundedness of two-parameter operators from
their behavior on rectangle atoms, can be generalized to settings with more parameters.
This generalization enables us to extend a theorem of Pipher concerning boundedness of
multiparameter Calderén-Zygmund operators from H? to LP.

Furthermore, we present variants of Journé’s Lemma, two of which hold for the prod-

uct of R with a metric measure space satisfying certain conditions.
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Chapter 1

Introduction

We describe here the ideas and the main results of this thesis. A more extensive histor-
ical background, as well as the definitions that will be used throughout this work, are
presented in Chapter 2. The precise statements of our results and their proofs can be
found in the subsequent chapters.

The Hardy-Littlewood maximal function maps L' into weak L', a property that im-
plies the classical Lebesgue differentiation theorem. Being related to averages of functions
on cubes (or convex sets with bounded eccentricity), these results are said to be in the
one-parameter setting. By contrast, in the multiparameter (or product) setting, we view

R™ as R™ x ... x R™, n =mny + ... + n,, and the cubes are replaced by sets of the form
R(z,t):={y=(y1,.,yp) ER™ x .. X R™ : ||zj — yjllgn; <1t;},

where z; € R™, ¢t; > 0 and ||-||[gn; denotes a norm in R™, 1 < j < r. We refer to these
sets as rectangles and we let R be the collection of all such rectangles.
In the product setting, the analogue of the Hardy-Littlewood maximal function, called

the strong maximal function, is defined [39] by

Mg (f) (x) ::sup{lim/R]f(y)]dy:ReR suchthatxeR}, ferL,, (R, (1.1)

and the differentiability of the integral is considered with respect to rectangles in R and



known as strong differentiability (see Definition 2.1).

The theory of strong differentiation of integrals was originally introduced by Saks in
1933 (see [60] for English translation). Surprisingly, a paper of his [58] and an example
by Busemann and Feller [3] showed that, unlike what happens in the one-parameter
setting, strong differentiability may fail for the integral of locally integrable functions.
Specifically, Saks proved that the set of locally integrable functions f for which strong
differentiation of [f holds a.e. is of first category in L', while Busemann and Feller
exhibited a counterexample which implies, in particular, that Mg, viewed as an operator,
is not of weak-type (1,1). Later, Papoulis [53] build an integrable function f on R? which
illustrates the fact that f and |f| may have dramatically distinct behaviors in terms
strong of differentiation of the integral. Our Theorem 1.3 is related to Papoulis’ example.

As we will see below, there are many results that hold in the one-parameter setting
but fail in the product setting. Also, in many cases, a naive attempt to generalize one-
parameter entities to higher parameter settings does not work.

A famous work demonstrating the failure of the naive approach to the multiparameter
theory is Carleson’s counterexample [9]. It consists of a measure such that Carleson’s
condition holds with respect to rectangles, but fails with respect to bounded open sets.

Positive results about the behavior of Mg on the n-fold R x - -- x R and about strong
differentiation in this setting were obtained by Jessen, Marcinkiewicz and Zygmund [39]:
Mg, viewed as an operator, is bounded on L?, for p > 1; Mg (f) is in weak L' whenever
| f|log (1 +|f])" " is integrable; and the integral of a function f is strongly differentiable

a.e. whenever f isin L”  p > 1, or |f|log (1 +|f])" " is in L.,. The results related

loc? loc*
to the spaces L (log+ L) "1 \ere further generalized to products of higher dimensional
spaces (see [32]) and, as shown by Saks [59], are as good as possible in the sense that
the differentiability of the integral may fail for certain classes of functions satisfying
slightly weaker integrability conditions [59]. In particular, the latter showed that for each
0 < e < 1, there exists f in L (log L) (R?) such that [ f is not strongly differentiable on a

set of positive measure. Our result (Theorem 1.1) shows that the strong differentiability

of the integral may fail even for function which are simultaneously in all these classes



L(log" L) (R?),0<e<1.

After its initial boom, many years elapsed before further successful attempts to extend
classical one-parameter results in harmonic analysis to the product setting were made.
Some considerable developments took place during the decades of the 1970’s and 1980’s,
with the works of S.Y. Chang [10], R. Fefferman [11], Gundy and Stein [30], Journé [42],
[43], and Pipher [54], among others. Other achievements only occurred more recently.
They comprise generalizations of results related to Hardy spaces, BM O, singular inte-
grals, flag kernels, etc. in product spaces of different levels of generality, varying from the
product of unit disks [55] and the product of Euclidean spaces [56], [47], to the product
of homogeneous groups [46], [18].

Since many results concerning boundedness of singular operators can be extended
from LP, p > 1, to one-parameter Hardy spaces H' [21], [62], the question arose as to
whether the strong differentiation of the integral would hold in the one-parameter real
Hardy space H!. Compared to the elements of L', the functions in the Hardy space H'
satisfy stronger integrability conditions and, in addition, have cancellation properties.

While the Hardy spaces HP? originated in the 1920’s as spaces of certain complex-
valued homomorphic functions on the unit disc, or on the upper half-plane, we are inter-
ested in the more recent characterizations of these spaces, specifically in the real-variable
ones. The real variable theory of Hardy spaces H?, 0 < p < oo, began in 1971 with the
nontangential maximal function characterization, by Burkholder, Gundy and Silverstein
2], of the class H? on the upper half-plane R2. In 1972, their result was extended to
R%™ by R. Fefferman and Stein [21], who also established other equivalent definitions
for HP (Rffl). The innovative aspect of those definitions is that they uncover the real-
variable meaning of the classes H?. This freed the study of these classes from the need
to deal with holomorphic functions, Poisson integrals, and all the associated entities that
were present in previous definitions.

The extension of this real-variable one-parameter theory to the multiparameter setting
was first accomplished by Gundy and Stein [30] in 1979. Besides having characterized

the HP spaces on the product of upper half-spaces RT“ X . X Ri‘““ in terms of the



boundary behavior of the multiharmonic (also called multiply harmonic) functions, they
generalized the above mentioned real-variable characterizations to this setting. In par-
ticular, they showed that, for 0 < p < oo, the multiparameter, or product, Hardy space
HP (R™ x ... x R™), can be defined by saying that a distribution f, in &’ (R™), belongs

to H? (R™ x ... x R™) if and only if its multiparameter radial mazimal function,

Mor e () (2) 7= sup

t;>0

/ o () il () f (& — y) dy] (1.2)

is in LP (R™ T for some fixed Schwartz functions ¢/ on R™ with non-zero integral,
where gpfj () =, (8 ), G = 1,7,

We consider that the multiparameter radial maximal function (1.2) is the simplest
type of multiparameter maximal function after the strong maximal function (1.1). The
action of the former depends on the absolute value of smooth averages, while that of
the latter is related to averages of the absolute value. This difference yields essentially
distinct behaviors.

When working with Hardy spaces HP, 0 < p < 1, it is often convenient to use a result
known as the atomic decomposition. In the one-parameter setting, this result (Theorem
2.4), proved by Coifman [15] and Latter [45], states that the elements of H? are infinite
linear combinations of special functions, called atoms (Definition 2.2), with coefficients
in [P.

The intuitive way to extend this result to the multiparameter setting would tell us
that the product Hardy space HP, 0 < p < 1, consists of infinite linear combinations
of rectangle atoms (Definition 2.4) with coefficients in [P. Surprisingly this is false: the
space whose elements are those infinite linear combinations of rectangle atoms is a proper
subspace of product HP. This subspace is called rectangular Hardy space [13] and is

denoted by H?

rect*

The fact that product H? is strictly larger than HZ

.+ came to light

due to the above mentioned counterexample of Carleson [9], which implies, by duality,

that H!

rect

(R xR) € H'(R x R). The atomic decomposition for product Hardy spaces
was proved by S.-Y. Chang and R. Fefferman [11], [12]. They showed that H? (R x R),

0 < p <1, consists of infinite linear combinations of product space atoms, called Chang-

4



Fefferman atoms (Definition 2.6), with coefficients in [P, but here the definition of the
atoms is more sophisticated.

Combining the theory of Hardy spaces and of strong differentiation of the integral,
Stokolos [65] gave a negative answer to the question concerning strong differentiability
of the integral of functions in the real Hardy space H'(R?). While he considers the
one-parameter Hardy space, his example actually belongs to H' (R x R). Due to the
multiparameter aspect of the theory of strong differentiation of the integral, the prod-
uct Hardy spaces seem to be more naturally connected with it than the one-parameter
analogues.

The example of Stokolos [65] consists of a modification of a function created by J. M.
Marstrand [50]. By making suitable alterations on it, we give a constructive proof to the

following:

Theorem 1.1 ([4]). There exists a function in the rectangular Hardy space H},., (R x R)

which is also in all the Orlicz spaces L (logJr L)E (R?) for 0 <e< 1, whose integral is not

strongly differentiable almost everywhere on a square of sidelength 1.

This result, which is restated as Theorem 3.1 in Chapter 3, relies on a specific way
of evaluating the Orlicz norm of series of functions and it implies, in particular, that
R is not a differentiation basis (see definition in [32], [63], or [64]) for any Orlicz space
L (log" L) (R?) with 0 < e < 1.

In Marstrand’s work, the approximate independence (in the probabilistic sense) of

homothetic copies of certain “hyperbolic-cross” shaped sets:
{(z1,22) € R : |z < 1, 2f + 25 < (n+ 1) (log (n + 1))2} , nmeN, (1.3)

is claimed (see [50], page 210) without a proof. Would a rigorous proof of his claim rely
on the particular geometry of the hyperbolic-crosses? Which geometric aspects of the
sets are essential? We answer these questions by showing the following generalization of

Marstrand’s claim:



Theorem 1.2 ([4]). Let {Ay},cy be a family of subsets of [-271,271" C R™ satisfying
|Ax] > 0 and dimypper box (8A_k) < n for all k. There exists {my},cy. a sequence of
positive integers, such that if, for each index k, we partition [—271 271" into m} equal
sized cubes, and place inside each a homothetic copy of Ay, then denoting by Ay the union

of these homothetic copies,

N A
keF k

keF

for any finite subset F© C N.

This result is restated in Theorem 3.2 and has a version of the Second Borel-Cantelli
Lemma as a corollary (Corollary 3.1). This illustrates how geometry can lead to results
of a probabilistic nature.

The example in [65] is built in the dyadic setting. It has motivated us to show that if
we restrict ourselves to sets which are finite unions of dyadic cubes, then we can obtain
(1.4) with an equality (Claim 3.2).

Another problem that we investigate in this thesis is the following question, which
was raised by Stokolos. Concerning the example created by Papoulis [53] of an integrable
function f on R? such that the strong derivative of [ f exists a.e., but the upper strong
derivative of [|f] is infinite on a set of positive measure, does such a function belong to

the Hardy space H' (R x R)? The answer is positive:

Theorem 1.3 ([5]). The function created by Papoulis belongs to H}

rect

(R x R), therefore
also to H' (R x R).

This theorem is restated as Theorem 4.1 in Chapter 4. The content of this chapter
was submitted to a journal as a manuscript with the same title [5].

The search for the solution to the above mentioned problem raised other questions
and lead us to find a variety of other results. Our investigation is outlined below. We
present the results in more detail, as well as their proofs, in Chapter 4.

Our first approach to the problem concerning Papoulis’ example was to show directly
that its two-parameter radial maximal function is integrable. This was accomplished by

modifying the standard techniques used in the one-parameter setting. In the proof of



Theorem 1.3, instead exhibiting our initial proof (see proof of Lemma 4.1), we present a

more elegant one. Namely, we show that Papoulis’ function, f, belongs to H' , (R x R)

rect
by exhibiting a decomposition of f in terms of rectangle atoms (Definition 2.4) with
coefficients in [*. This means that f € H' (R x R). The method that we developed
in our initial approach, enables us to show some crucial estimates (Lemma 4.1) for the
action of the radial maximal operator on rectangles atoms on R™ x ... x R"",

The key importance of the estimates of Lemma 4.1 is due to the fact that they allow
us to prove the uniform boundedness of the LP-norm of the radial maximal function of

Chang-Fefferman atoms [12], without using all the hypotheses on the elementary particles

of these atoms. Specifically:

Theorem 1.4 ([5]). In to order for a tempered distribution f in S’ (R™TT") to be
in H? (R™ x ... x R™), it suffices that f can be written as Y -, A\yay, with the series
converging in 8" (R™ ") where {\;},, € I’ and the atoms ay’s are variants of Chang-
Fefferman atoms on R™ x ... x R™ without smoothness hypotheses on their elementary

particles.

This result, which is restated in Theorem 4.5, provides new sufficient conditions for
tempered distributions to be in H? (R™ X ... x R™). Since the essential difference be-
tween Chang-Fefferman atoms and the atoms of Theorem 1.4 is the that the latter do
not need smoothnesses nor continuity on their elementary particles, we denote them as
rough atoms (Definition 4.3). Note that, without smoothness conditions, an elementary
particle is simply a scalar multiple of a rectangle atom. In particular, this result tells us
that rectangular atoms are, in a sense, the building blocks of product Hardy spaces HP.
For p = 1, it was already known [47] that the smoothness of the elementary particles was
a superfluous hypothesis for the sufficiency of the atomic decomposition.

Clearly, when one decomposes distributions in H? as sums of functions, it is better to
have as much smoothness as possible. On the other hand, for sufficient conditions, it is
more convenient to have less hypotheses on those functions.

Many operators in harmonic analysis belong to the class of singular integral operators:

e.g. Riesz transforms, pseudo-differential operators, Cauchy integrals on Lipschitz curves.
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The classical theory of singular integral operators began to take shape in the 1950’s when
Calderén and Zygmund [7] obtained L? boundedness, 1< p < oo, for certain convolution
operators which generalize the Hilbert transform on the real line. In the beginning of the
1980’s, their result was extended in two ways: R. Fefferman and Stein [22] extended it to
multiparameter convolution operators; David and Journé [17] did it for it one-parameter
non-convolution operators (by proving the famous 7' (1)-Theorem). Later, in 1985,
Journé [43] obtained this type of boundedness by showing L>* — product BM O bounded-
ness for multiparameter non-convolution type operators and using a generalization of the
T (1)-Theorem.

Concerning boundedness of singular integral operators on Hardy spaces, in 1978,
Miyachi [52] used the Coifman-Latter atomic decomposition to show boundedness from
H?' to itself. In 1986, using the Chang-Fefferman atomic decomposition and a lemma
proved by Journé [42] in the previous year, R. Fefferman [25] developed a way to conclude
HP (R™ x R"2) — LP (R™*"2) boundedness of an operator from its action on rectangle
atoms.

The method that we use to prove Theorem 1.4 enables us to prove a seemingly slightly
different (but actually quite relevant) variant of the above mentioned result of R. Feffer-
man. Combining his proof with the main result in D.-C. Chang et al. [14] (who provided
some details which were omitted by him), we prove the result below, which is restated in

Theorem 4.2:

Theorem 1.5 ([5]). Given 0 < p < 1, if T is a bounded operator on L? (R™""2) and

there exist 0; >0, j = 1,2, such that

Tap§02k751 and TangQ’f*‘SQ,
/<>' (@F <¢ @) Aﬂ,lx<2k12)cl @F <02

for every k € N and every rectangle atom a supported on Iy x Iy C R™ x R"2, then T

admits a bounded extension from HP (R™ x R"2) to LP (R™1"2),

There are two steps in the proof of theorems of this type:

(i) showing that the behavior of an operator T" on rectangle atoms yields uniform bound-



edness of the LP-norm of the action of T" on product HP-atoms;
(ii) proving that this uniform bound implies the existence of a bounded extension of T
from product H? to LP.

The essential aspect of our hypotheses is that, unlike the assumptions in [25], we have
distinct dilations on each factor of the product setting. These multiparameter dilations
are the essential aspect of our theorem, as they allow a direct extension of step (i) to
higher-parameter settings. In particular, they enable us to extend R. Fefferman’s result

to the three-parameter setting:

Theorem 1.6 ([5]). Fiz 0 < p < 1. If T is a bounded operator on L? (R™T"2t13) qnd

there exist §; >0, j =1,2,3, such that

|T(a)|P < C 2k1 —01 2k2 —62’ (15)
/(2k111)c><(2k212)ch”3 ( ) ( )

for every ky, ko € N and every rectangle atom a supported on Iy X Isx I3 C R™ xR™ xR"™3,
and similar inequalities with (1,2,3) replaced by (2,3,1) and (3,1,2) hold, then T admits

a bounded extension from HP (R™ x R™ x R™) to LP (R™M17m21n3),

Note that Theorem 1.6 (restated in Theorem 4.3) is not invalidated by Journé’s coun-
terexample [43]: our dilations have three parameters instead of one. His example seems
to indicate existence of a barrier preventing the extension of R. Fefferman’s argument
from the two- to the three-parameter setting. Journé [43] himself surpassed this obsta-
cle in the context of convolution operators on product BMO. Carbery and Seeger [8]
have overcome this difficult in H? (R™ X ... x R""), by demonstrating that, under extra
assumptions on the operators, R. Fefferman’s reasoning is applicable in higher-parameter
settings. Working with Hilbert space valued operators and using the Littewood-Paley
square function characterization of the multiparameter Hardy spaces, Han et al. [35] ex-
hibited necessary and sufficient conditions for certain Calderén-Zygmund operators to be
bounded from H? into H?, 0 < p < 1.

When a two-parameter operator 7' is of the type that is commonly known as Calderon-

Zygmund operator of Journé type [43] (and referred by Journé as Calderén-Zygmund



operator of type €), we can obtain the hypotheses of Theorem 1.6 by imposing certain
conditions on the kernel. Our Theorem 4.4 shows that it is sufficient to assume an
appropriate Hormander type condition. This result is similar to one of R. Fefferman [25],
which he called the “trivial lemma” and proved for values of p close to 1. We demonstrate
that it holds it for all values of p in (0, 1].

The extension of Theorem 4.4 to the three-parameter setting is presented in Theorem
4.6. It exhibits sufficient conditions on the kernel of a Calderén-Zygmund operator for
the assumptions of Theorem 4.3 to hold. Our proof of Theorem 4.6 is inspired by an
argument of Pipher [54], who showed this result for values of p close to 1 and settings
of the form R x ... x R (she also stated, without a proof, that this result holds for all
p € (0,1] if more smoothness is assumed on the kernel). Our result is more general: it
holds for any 0 < p < 1 and on any multiparameter setting of the form R™ x ... x R"".

In order to prove Theorem 1.6, we adapt the proof of Theorem 1.5 to the three-
parameter setting. The original two-parameter discrete Journé’s Lemma [42], which is
a very useful tool to deal with Chang-Feffeman atoms and its variants, is replaced by a
suitable three-parameter variant of it (Lemma 4.4).

In [42], Journé stated that the discrete version of his lemma holds in the setting
R™ x R". This result is often used in the context of product Hardy spaces (e.g. [25]),
despite the fact that no proof of it can be found in the literature. We state this in Lemma
4.2 and, inspired by proofs found in [54] and [67], we prove it.

There are many variants of Journé’s Lemma in the literature: [54], [8], [44], [6] and
others. Among them, we find that Pipher’s [54] version is the most useful in the context
of the Hardy spaces that we deal with. Her result consists of an extension of the discrete
Journé’s Lemma to the setting R x R x R. The variant (Lemma 4.4) that we use in
the proof of Theorem 1.6 is an adaptation of her result to the higher-dimensional three-
parameter setting R™ x R™ x R™. In addition, as she explains in her paper, her proof
can be extended, by induction, to the n-fold product R x - - - x R. By the same reasoning,
our variant (Lemma 4.4) of Journé’s Lemma can be extended to R™ x ... x R", and

therefore Theorem 1.6 can also be extended to this multiparameter setting.
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The deep understanding of Journé’s Lemma that we obtained through the study of
the variants mentioned above empowered us to extend it (Theorem 5.1) to a product
setting of the form X x R, with X being a metric measure space having certain proper-
ties. We extend both the non-discrete and the discrete versions of Journé’s Lemma. A
potential application of our discrete Journé-type lemma is in the context of Hardy spaces
on Heisenberg groups.

As we mentioned in the beginning of this chapter, the next one contains a more
detailed overview of the theory of strong differentiation of the integral and of Hardy
spaces. The content of Chapter 3 is a manuscript that was accepted for publication
[4]. Tt contains the counterexample in H' , N [ﬂo<€<1L (logJr L) 6} and the results re-
lated to approximate independence of sets. Chapter 4 consists of a manuscript which
was submitted [5]. It has the proof that Papoulis’ function is in H} ,; results about
H? — LP boundedness of multiparameter singular integral operators; new sufficient con-
ditions for the atomic decomposition on product H?; and variants of Journé’s Lemma

for the product of higher-dimensional Euclidean spaces. In Chapter 5, we present the

variants of Journé’s Lemma which we mentioned in the previous paragraph.
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Chapter 2

Definitions and Background

This chapter is meant to serve as an overview of the background and notation required
for the understanding of subsequent chapters. To the interested reader who is unfamiliar
with the theory of real Hardy spaces, we would suggest poring over the first four chapters

of [62].

2.1 Product Spaces and Notation

Our work is on the n-dimensional Euclidean space R™ viewed as a Cartesian product
of the form R™ x ... x R™, n = ny; + --- + n,. The points = in R™ are represented as
(1,...,2,), with z; € R%, j =1,...,r. We let ||-||gn; denote a norm in R™, which will
be either the Euclidean or the maximum norm (where no confusion arises, we will denote

it by [|-]]). We use the term rectangle for sets the form
R(z,t):={y=(y1,0,yp) ER™ x .. x R™ 1 ||zj — yllgn; <1t;}, (2.1)

where z; € R% and ¢t; > 0, j = 1, ...,7. We denote by R the set of rectangles of the form
(2.1). Given R (z,t) € R and € > 0, we define eR := R (x, et).

The cubes in the collection
D" :={27"(z+1[0,1]"): k€ Z, z€Z"}

12



will be called dyadic cubes. In the literature, the dyadic cubes are often defined with
half-open intervals [0, 1) instead of closed [0, 1], but the fact that we choose them to be
closed will not make any difference in our computations. We say that a set R C R™*F"r
is a dyadic rectangle in R™ x ... x R™ if it has the form R = I; x ... X I,., for some cubes
I; e D", j =1,..,r. Thus, when we say that (the interior of) a dyadic rectangle is in
R, it means that for each j =1,...,r, the norm ||-||zn;, which we are considering in (2.1)
is the maximum norm.

We denote all constants either by ¢ or by C, where ¢ (or C') may vary from line to
line and may depend on the dimension of the space and other fixed entities. Sometimes
we will put a subscript on ¢ (or C') to indicate on what it depends.

Given a measurable set A C R”, we denote its n-dimensional Lebesgue measure by
|A| and its characteristic function by x4. Given a real number «, we use the standard
notation and denote its absolute value by |a| (this notation should not be confused
with the Lebesgue measure, which is used with sets, not with numbers) and its floor and
ceiling (also called roof) by |a| :=max{n € Z :n < a}and [a] :==min{n € Z:n > a},
respectively. Given a, § in [0, 00), we say that o and § are comparable, and write o ~ f3,
when there exist positive constants ¢, C', independent of o and (3, such that ¢ < a < Cf.

Following the usual notation, when 1 < p < 0o, we denote the LP space over R" by
LP(R"), and we denote the LP (R") norm by |[|-||,. For 0 < p < 1, LP(R") is defined
as the space of Lebesgue measurable functions f on R™ such that |f|" € L!(R"). For
these values of p, the map f € L (R") — [[f[], :== (J1517) "7 does not define norm: the
triangular inequality fails.

For each 0 < € < oo, the Orlicz space L (log™ L) (R") [48], can be defined as the set

of Lebesgue measurable real-valued functions f on R™ such that

22

A A
The infimum over all A > 0 such that (2.2) holds defines a norm in L (log* L)“. Endowed

)) dx <1 for some A > 0. (2.2)

with this norm, L (1ogJr L)6 is complete.

The Schwartz space, consisting of rapidly decreasing smooth functions on R", is de-
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noted by S (R"™). The dual of & (R"), which is the space of tempered distributions, is
denoted by &' (R™). In all other cases, V* will denote the dual space of V.

The Hardy-Littlewood maximal function is defined by

M (f) (z) :=sup {rclﬂ/g |f (y)| dy : Q is a cube containing .CE} , feL,, (R,

where the supremum is taken over all cubes @) in R such that x € Q). Its generalization

to the product setting is the so called strong mazimal function, which is defined [39] by

Ms (f) (z) ::sup{|—;z|/R|f(y)|dy:R€R suchthathR}, ferL,. (R, (2.3)

Thus the strong maximal function is an operator. In many places in the literature, it is
referred to as the strong mazimal operator.

Recall that in the one-parameter setting, the proof of the Lebesgue differentiation
theorem relies on the fact that the Hardy-Littlewood maximal function maps L! into
weak-L!. In the multiparameter setting, the behavior of the strong maximal function is
also connected to the strong differentiability of the integral (see [32]). However, unlike in
the one-parameter setting, Mg, viewed as an operator, is not of weak-type (1,1): there
exists a function f in L' such that |[{z : Mg (f) (z) = oco}| > 0 [2], [68]. This is one of the
many instances where the results of the classical theory do not carry over to the product

setting.

2.2 Strong Differentiation of the Integral

The strong differentiation of the (indefinite) integral was introduced by Saks [60] (this
reference is an English edition of “Théorie de 'intégrale”, published in 1933) and consists
on a generalization of the classical differentiation of the integral which was developed
by Lebesgue in the 1910’s. In the strong differentiation, instead of cubes (or balls or
convex sets of bounded eccentricity), the infinitesimal averages are taken with respect to

rectangles of the form (2.1). A more recent work about this theory a book by Guzmén
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[32]. We adopt the notation from it. Specifically:

Definition 2.1 ([60], [32]). Given a real-valued function f € L} . (R"), n > 2 and a point
x € R", the strong upper derivative and the strong lower derivative of [ f at x are defined
by
E(/f,x) ;= sup {hmsup ! f W) dy : {Ri}en CR, Rk—>x}
| Bi| Jr, c

k—o0

and

D (/f, x> ;= inf {hmlnf ! f)dy:{Ri}en CR, Ry — x} ,

k—o0 | k‘l Ry,

respectively, where Ry, — x means that {Ry}, o satisfies:

x € ﬂRk and hm diam (Ry) = 0.

k—o00

IfD([f,x) and D ([ f,z) coincide and are finite, then klim |Ry|” fR y) dy exists for
—00
any {Ri}peny C R with Ry — x, is denoted by D (ff, x) and 1s referred to as the strong

derivative of [ f at x. In this case we say that [ f is strongly differentiable at x.

Since every cube is a rectangle, if [f is strongly differentiable at a point z, then
D ( [, 3:) agrees with the derivative of [ f with respect to cubes at z. Thus, the classical
differentiation theorem of Lebesgue implies that the equality D ( If x) = f(x) holds for
almost every point z in the set where f f is strongly differentiable.
In a well-known paper of Jessen, Marcinkiewicz and Zygmund, they proved the fol-
lowing: in the n-fold product R x ... x R,
(i) when p > 1, [Ms (), < cl|f, for all f € L7
(ii) if f € L}, p> 1, then [f is strongly differentiable a.e.;
(iii) Mg (f) is in weak L' whenever |f|log (1 + |f])" " is integrable; and
(iv) [f is strongly differentiable a.e. whenever |f|log (1 + |f])"" ! is locally integrable.
By contrast, as shown by an example of Busemann and Feller [3], there exists an
integrable function whose integral fails to be strongly differentiable on a set of positive
measure. Actually, as demonstrated by Saks [58], the set of integrable functions f on

[0,1]", such that D (ff, x) < oo for some point z € [0,1]", is of the first category in
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L' ([0,1]™). Furthermore, working in the n-fold product R x ... x R, Saks showed that
for any measurable function o : [0,00) — (0, 00) satisfying li%][_l> (i)glfa (t) = 0, there exists
a function f such that o (|f])|f] (log (1 + |f]))""" € L' ([0,1]"), but D ([ f,x) = oo for
almost every z € [0,1]". This suggests that the positive results of Jessen et al. [39]
concerning the Orlicz spaces L (log™ L)n_1 (R™) are sharp.

The results (i) — (iv) of Jessen et al. [39], which we mentioned above, can be generalized
to R™ x ... x R". The weak-type bound for the strong maximal function (item (iii))
is called the strong maximal function theorem. Here we state a version of it which was
shown by Zygmund [70] and by Guzmén (with a different proof which works in R™ x R"2)
[31].

Theorem 2.1 (Strong Maximal Function Theorem [70], [31]). In the multiparameter

setting R™ x ... x R with ny € N andny = ... =n, =1,
r—1
o : Mg () (z) > A} < c/ /(@) (1+1og+ (M)) dz,
Rn1+(r—1) )\ )\
for any A > 0.

As stated by Guzmén (see [31], Section 3.3), in the product setting R™ x ... x R
where the number of parameters is r, the result of Theorem 2.1 holds with a different
constant ¢. There are other versions of the strong maximal function theorem in the
literature. Some of them are presented in [32].

The behavior of the strong maximal function is connected with the strong differenti-

ation of the integral (see [32], Chapter III, Section 3).

2.3 Background on Hardy Spaces

Originally, the Hardy spaces HP, 0 < p < oo, were defined on the upper half of the

complex plane H := {z =z 4+ it € C: ¢ > 0} (or on the unit disc D :={z € C: |z| < 1})
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as spaces of homomorphic functions F' : H — C satisfying

o0

5o gy == stl>1g)/ |F (z+it)|" dz < oo (2.4)

—0o0

The map F' € H? (H) > [|F||g, g, defines a norm when 1 < p < oo, but not when

0 < p < 1. While for 0 < p < 1, H? (H) is not a normed space, the map

(f,9) € H" (H) x H? (H) = dpr) (f,9) = 1f = 9l

defines a metric and H? (FF) is complete with respect to it (see [62], Chapter 3, Section
5.1). There exists also the space H*, which consists of bounded holomorphic functions.
Since we are interested in the cases when 0 < p < 1, we will not present results for H>
here. The reader can find more information about complex Hardy spaces in [28] and in
most other books about harmonic analysis.

Recall that if a real-valued harmonic function u on R? is the real part of a holomorphic
function F' satisfying (2.4), then the boundary values of u are well defined (see [28]).

Specifically:

o (Case 0 < p < 1) If u = Re (F) for some holomorphic function F satisfying (2.4),
then there exists a bounded distribution (see definition on page 89 of [62]) f in
S’ (R) such that w(-,t) — f() ast — 0, and u(-,t) = (P, * f)(:) for all ¢ > 0,

where P, (z) = m is the Poisson kernel on the line.

e (Case 1 < p < o0) If u = Re(F) for some holomorphic function F' satisfying
(2.4), then there exists f in L? (R) such that ||(F* f) — f[|, = 0 as t — 0, and
u(-,t) = (Px f)(-) for all t > 0.

We would like to emphasize the main difference among the cases 0 < p < 1, p =1
and 1 < p < c0. For 1 < p < o0, if a real-valued function f is in L? (R), then u (z,t) :=
(P, * f) (x) satisfies

sup/ lu (z,t)|" dx < oo, (2.5)

t>0 —00

and u (-,t) — f(-) in L? as t — 0. M. Riesz showed that, for 1 < p < oo, if a real-valued
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harmonic function u on R% satisfies (2.5), then u = Re (F) for some F satisfying (2.4),
i.e. F' € HP (H). In this case, as t — 0, u (-, t) converges in L? to an LP function whose
Poisson integral is u. However, when p = 1, there are non-zero real-valued harmonic
functions v on R? which satisfy (2.5) but u (-,¢) — 0 pointwise as ¢ — 0. In this case u
cannot be recovered from its boundary values. For 0 < p < 1, in order for a real-valued
harmonic function v on R? to be the Poisson integral of its boundary values it is necessary

and sufficient that u = Qe (F) for some F € H? (H).

2.3.1 One-parameter Real Hardy Spaces

The real variable theory of Hardy spaces H?, 0 < p < oo, begun in 1971 with a paper
of Burkholder, Gundy and Silverstein [2], where they proved that a real-valued harmonic
function u on the upper half-plane R? := {(z,t) € R? : ¢t > 0} (which, from a complex
variable perspective, is viewed as H) is the real part of some F' in H? (H) if and only if

the non-tangential maximal function

u* (z) = sup |u(y,t)] (2.6)
(y,t)el'(2)

is in L7 (R), where T'(z) := {(y,t) € R} : |y — x| <t}, and in this case, ||F|[},q, ~
[Ju*[|}, . This result allows us say that the real Hardy space H” (R%), 0 < p < o0, consists of
the harmonic functions u on R% such that [ |u*[” < co, and we can endow this space with
the “norm” Hu||Hp<R2+) = |lu*||, (as explained above, this is a norm if and only if p > 1).
Combining this result with the facts about boundary values that we mentioned above,
it possible to define H? (R), 0 < p < 0o, as being the space of tempered distributions f
which arise as boundary values of functions v in H? (Ri) On this space, we can define
1y = Nl o)

It was only in 1972 that the real variable meaning of H?, 0 < p < oo, was brought
to light. This was achieved by C. Fefferman and Stein [21], who extended the result of
Burkholder et al. to the upper half-space R:ﬁ“ :=R"x (0, 00) and, in addition, established

equivalent characterizations of H? which do not depend on harmonic functions.
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We state some of the equivalent characterizations of H? in Theorems 2.2 and 2.3
below. In particular, Theorem 2.3 characterizes Hardy spaces using only the behavior of

the boundary values.

Theorem 2.2 ([61] case 1 < p < 00; [21] case 0 < p < 1). Let 0 < p < o0 and let u be a

harmonic function on R’fl. Then the following are equivalent:

(i) the non-tangential maximal function u* is in LP (R ), where u* is defined by (2.6),

except that, in the n dimensional case, I' (z) == {(y,t) € R : |ly — x| < t};
(i) limy oo u (x,t) = 0 for all x € R", and the Lusin square function S (u) () :=
1/2
<fr Vu(y,t) t‘"“dydt) is in LP (R™).
In this case, we say that u is in H? (R}), we define ||u||Hp(R1+1) = [lu*[|, and we have
[u (I, ~ 1S (W)l

While this theorem tells us a way to characterize the real Hardy spaces H” (R’ffl)
which is still dependent on harmonic functions, it enables us to define (as in the case
n=1) H? (R"), 0 < p < oo, as being the space of boundary values f of functions u in
HP (RY™). On this space, || fll ey = lu”]l,-

In what follows, for any function ¢ on R™ and any ¢ > 0, we use the standard notation

o (z) = ! —¢ (x) (2.7)

T \y
Theorem 2.3 ([21]). Let 0 < p < o0 and let f € §' (R™). The following are equivalent:

(i) for some ¢ € S (R™), with [ =1, the radial mazimal function

My, (f) (2) := sup (@1 * [) ()]

>0
is in LP (R™);

(ii) for some @ as in (i), the non-tangential mazximal function

N, (f) (x) == sup (e * ) (y,1)]

(y,t)el’(2)
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is in LP (R™);

(iii) the grand maximal function

My (f) (x) :==sup sup (¢ * f) (y,1)]

peA (y,t)el(x)

is in LP (R™), where

A= fpes®)s [ @l | X ) | <

- o] <N
and N = N(p,n) is a fized positive number;

(iv) f is a bounded distribution (see definition on page 89 of [62]) and sup,q |P: * f (-)|
is in LP (R™).

In this case, f € HP (R") and

p

1 1oy ~ 199 (O, ~ 119 (O, ~ M (P, ~ lsup [ B £

For p > 1, H? corresponds to LP (see [62], Chapter 3, Section 1.2.1). To be more
precise, the action of each tempered distribution that arises as boundary value of a
harmonic function in H? (Rﬁ) can be represented as integration against a function in
LP (R™), and conversely, the Poisson integral of any function in L? (R™) is a harmonic
function in H? (Ri)

By contrast, when 0 < p < 1, HP is not equivalent to LP. While H! is a proper
subspace of L', when 0 < p < 1, the elements of H? are tempered distributions. The
same is true in the product Hardy spaces, which we define soon. Our work is focused on
the product Hardy spaces H?, for 0 < p < 1. To deal with these spaces, we decompose
their elements into infinite linear combinations of special functions.

The building blocks of the one-parameter real Hardy space H? (R™), 0 < p < 1 are

functions known as (one-parameter) atoms.
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Definition 2.2 ([15], [45]). A function a on R™ is called a (one-parameter) p-atom on R
if a is supported on a cube Q in R and satisfies ||al|, < |Q|7YP and [y, a(x)az*dz =0

for all multi-indices o € (Z>o)" of order |a| < |n(p~' —1)].

The next result, which is the well-known atomic decomposition, was shown by Coif-
man [15] and Latter [45]. The former showed the necessity, while the other proved the

sufficiency.

Theorem 2.4 ([15], [45]). Let 0 < p < 1. A distribution f € S' (R™) belongs to H? (R")
if and only iof
k=1

where the series converges in S’ (R™), {\x}, € P and each ay, is a p-atom on R™. In this

case

o
L ~ D Il
k=1

When p = 1, the series in (2.8) converges in the L' norm.

The atomic decomposition is especially useful in the study of the behavior of operators
on HP?. Still, one must be careful. Even in the case p = 1, where the convergence is in L*,
there are linear maps L such that the equality Y ;- AL (ar) = L (D ey Ak (ax)) does
not hold. This is explained in a paper of Bownik [1], where he gave an example of a
linear functional, defined on a dense subspace of H', which maps all 1-atoms into scalars
bounded by 1, but cannot be extended to a bounded linear functional on H*.

The dual space of the one-parameter H'(R"™) can be identified with the space of
functions of bounded mean oscillation, BMO. This result is the famous duality theorem

of C. Feffermam [20], which was proved using the following definition:

Definition 2.3 ([40], [20]). BMO (R") consists, up to additive constants, of locally in-

tegrable functions f on R™ such that

1
llssio = s & [ 17 @) = folde < o,

where the supremum is taken over all cubes Q) in R and fg = ﬁ Jon [ () da.
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2.3.2 Real Hardy Spaces in the Product Setting

The extension of the one-parameter real-variable theory of Hardy spaces to the product
setting was first accomplished by Gundy and Stein [30] in 1979. They characterized H?
spaces, 0 < p < oo, on the product of upper half-spaces RTH X ... X RTH in terms of
the boundary behavior of multiharmonic (also called multiply harmonic: the Laplacian
on each parameter is zero) functions. They also extended the equivalences stated in
Theorems 2.2 and 2.3 to the product setting. We state some of their results here. We
present them in the two-parameter setting, because this way, the notation is simpler. For

settings with more than two parameters, the characterizations are similar.

Theorem 2.5 ([30]). Let 0 < p < oo. Then u € HP? (R} x R*™) if and only if
the non-tangential mazimal function u* (x1,22) = SUD(y p)er(ay)xI(zs) ¥ (Y15 t15 Y2, t2)| s

in LP (R™*"2). [In this case, we define ||u||Hp<R11+1XR12+1) = [|u*l,-

In Theorem 2.5, we only mentioned one characterization of H? (RTH X ]RTH).
Gundy and Stein [30] extended both equivalences of Theorem 2.3 to the product set-
ting. The characterization of H? (R x R in terms of a multiparameter variant
of the Lusin area integral was first proved by M. P. Malliavin and P. Malliavin [49],
in 1977. They used a complicated algebraic method to show that the area integral is
controlled by the non-tangential maximal function.

Since the product space analogues of the facts about boundary values presented in
the beginning of Subsection 2.3 hold, Theorem 2.5 enables us to define the real Hardy
space in the product setting, HP? (R™ x R"?), as the space of tempered distributions f
which arise as boundary values of functions u in H? (]RT}F1+1 X RTH), and the “norm” in
HP (R x R2*) can be set as [ o (e xmnzy == [lu*],-

The following result, which is an extension of Theorem 2.3, provides a purely real
variable characterization of the real Hardy spaces in the product setting. In oder to state
it we need to introduce some notion.

For any p € S (R™), v € S (R™), f € & (R™*") and any t1,ty > 0, we define

((on )= D)@ = [ [ )b () F o1 = .00 = ) i,
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for x = (z1,29) € R™ x R™, where ¢y, and v, are defined in (2.7).

Theorem 2.6 ([30] (i)< (ii) < (iit) < fE€HP). Let 0 < p < oo and let f € S’ (R™"2),

The following are equivalent:

(i) for some ¢! € S (R"), with [¢' =1, j = 1,2, the radial mazimal function

gﬁwlﬁpz (f) (‘r) = sup ’((SO%I Q0§Q> * f) (I‘)‘

t;>0, j=1,2
is in LP (R™*n2);

(11) for some p', ©* as in (i), the non-tangential mazimal function

mcpl,ch (f) (x) = sup ‘((30%1 90?2) * f) (y)‘

(yt) €l (z1) xI(22)
is in LP (R™M*n2).

(#i) the grand mazimal function

Moy, (f) () := sup [ sup |((f, - 2,) * f) ()]

pieA;, j=1,2 | (y,t)€l (z1)xT(x2)

is in LP (R™*"2)  where

A= does@): [ el | 3 107G | doy <1

R lal<N;
and N; = N(p,n;), j = 1,2, are fized positive numbers;
(iv) [ is a bounded distribution and supy, .o |(FP, - Ppy) = f ()] is in LP (R™M+72).

In this case, f € HP (R™ x R"2),

11l 2o s sy ~ (191,02 (S, (2.9)
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and

sup |(Fy, - Bi,) + f ()]

t;>0

1Mt (PN, ~ 1901 2 (D], ~ 1M a0 (D], ~ (2.10)

In order to have the equivalences (2.9) and (2.10) (which were not included in [30]),
we need to add the hypothesis [¢7 = 1, j = 1,2, to items (i) and (ii). The proof of
(2.9) and (2.10), as well as the equivalence between item (iv) and the previous items, can
be done by adapting the argument presented in the proof of Theorem 11 in [21] (stated
above as Theorem 2.3) to the product setting. For p = 1, Theorem 2.6 holds [47].

Note that Theorem 2.6 implies that H? (R™ x R"), 0 < p < oo, can be defined by
fixing ¢/ € S (R™), with non-zero integrals, j = 1,2, and saying that f, in S’ (R™"2), be-
longs to H? (R™ x R™) if and only if M, 2 (f) € LP(R™*™2). In this case,
Cotg [Nl ogns wgnay < 1M1 2 (], < Coor 2 (1] o s xmna)» for some constants ¢, 2,
Copt 2.

Although H? (R™ x R™), 0 < p < 1, is not a Banach space, it is a complete space

with respect to the metric

dHP(]R"l xRn2) (f; 9) = Hf - gHZ])'—[P(R"I xR"2) * (2-11)

We now define the rectangle atoms in the two-parameter setting. The definition in

the case of more parameters can be found in Chapter 4 (Definition 4.1).

Definition 2.4 ([13] and [27] case ¢ = 2; [5]). Let 0 < p <1 < q < co0. A function a
is called a rectangle (p,q)-atom on R™ x R™ if it satisfies supp(a) C R =11 X I € R;

lall, < [R[Y*Y7; and
/a (1, y2) 27 dxy = /a (y1, x2) x5*dxe = 0 (2.12)
for all (y1,y2) € R™ x R™ and all o = (Oéjy]_, ...,Oéj’nj) € (Zs0)", j =1,2, with

n; 1
’Oéj’::zaj,ig-/\/’j:: \‘n]’ (5—1)J
i=1

24



For 0 < p <1, a subspace of H? (R™ x R") is the so called rectangular Hardy space.

This space is denoted by H?

rect

(R™ x R™). S.-Y. Chang and R. Fefferman [13] dealt with
f{l

et (R™ x R"™), which consists of infinite linear combinations of the form > ;7| Agag,

where the a;’s are rectangle (1,2)-atoms, {\;} € ', and the series converges in the L'

norm. This definition can be adapted to the other values of p in (0, 1].

Definition 2.5 ([5]). Let 0 < p < 1. The rectangular Hardy space H

rect

(R™ x R"2)

consists of tempered distributions f € 8" (R™*"2) which be written as

= Z A,
k=1

where the series converges in the sense of distributions, {\x} € I and each aj is a

rectangle (p,2)—atom on R™ x R"2,

It is useful to note that the inclusion

P
}J}ect

(R™ x R™) C H? (R™ x R"?) (2.13)

is an immediate consequence of Theorem 1.4. This affirmation follows from the fact
that any rectangle (p,2)-atom is a rough (p, 2)-atom with one elementary particle. How-
ever, the inclusion (2.13) is proper. This fact was first noticed for the case p = 1: the
counterexample of Carleson [9], the duality [11] BMO (R x R) = (H!' (R x R))" and
the characterization [10] of BMO (R x R) in terms of Carleson measures imply that

H' (R x R) is strictly larger than H}

rect

(RxR). For 0 < p < 1, since the dual of
H? (R x ... x R) can be characterized in terms of Carleson measures [51], the proper

. . p
inclusion H,.,

(Rx..xR)C HP (R x ... x R) also holds.

While not every function in H! (R x R) can be expressed as an infinite linear com-
bination of rectangle atoms (with coefficients in /'), the next theorem, known as the
Chang-Fefferman atomic decomposition, tells us that we can decompose any element of
H? (R xR), 0 < p <1, as an infinite linear combination of special functions (with coef-

ficients in [P). The statement of this result demands the definition of Chang-Fefferman
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atoms [12], which requires some notation.

Given an open set 1 C R™T*" with finite measure, denote by M () the set of
mazximal dyadic rectangles [42], [25] of €, where a dyadic rectangle I} x ... x I, is said
to be maximal when, for any j = 1,...r, if there exists J; in D™ such that I; C J; and
L x ... xIiyxJyx1Tjy...x I, CQ, then I; = J;.

Now we are able to define Chang-Fefferman atoms.

Definition 2.6 ([12]). Let 0 < p < 1. A function a in L? (R?) is a Chang-Fefferman

p-atom on R X R if it satisfies:
(A) supp(a) C Q for some open set Q C R?* with |Q| < oo;
(B) llall, < |77,

(C) a can be expressed as a = ZReM(Q) ar, where each ag is a function, called a Chang-

Fefferman p-elementary particle, such that

(C.1) supp(ar) C 3R for some distinct mazimal dyadic rectangle R = I; x Iy €
M (Q);

(C.2) agr satisfies the vanishing moment conditions

/CLR (w1, 90) 27" dy = /CLR (Y1, 72) v5°dxy = 0,

for all (y1,y2) € R? and all o = (v, ovg) € (Zs0)® with || < k (p)

I
—
DI
|
N
| I

-

=12

(C.3) ag is of class C*P*1 and satisfies

8mCLR

d
TR < TR for1 <m<k(p)+1andj=12;
ox

o GT

larll, < dr and ‘

(C.4) the constants dg’s of item (iti) satisfy 3 pe v 43 < Q2

Now we state the original atomic decomposition for product Hardy spaces.
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Theorem 2.7 (Chang-Fefferman Atomic Decomposition [11], [12]). Let 0 < p < 1. A
tempered distribution f € S' (R?) belongs to H? (R x R) if and only if

f= Z Ak,
)

where the series converges in 8’ (R?), {\¢}, € I and each ay is a Chang-Fefferman

p—atom on R x R. In this case,

[e.o]

11l ~ D Il

k=1

Note that the sufficiency in Theorem 2.7 was proved [12] without using Journé’s
Lemma [42].

The next definition is based on that of Chang-Fefferman atoms (Definition 2.6).

Definition 2.7 ([5]). Let 0 < p < 1 < ¢ < oco. We say that a function a is a rough

(p, q)-atom on R™ x R™ if it satisfies
(A) supp(a) C Q for some open set Q@ C R™*"2 with |Q] < oo,
1/q=1/p,
(B) |lall, <19 ;

(C) a = ZReM(Q) agr, where each ag is a function supported on 4R, for some distinct

mazimal dyadic rectangle R € M (), and satisfies (2.12), and

> larlf < |0 (2.14)
REM(Q)

Many variants of S.-Y. Chang and R. Fefferman’s product space atoms, and atomic
decomposition, exist in the literature. We list some works where one can find variants
of Theorem 2.7. An alternative way of decomposing an element of H? (R x R), 0 <
p < 1, into Chang-Fefferman atoms was developed by M. Wilson [68]. R. Fefferman
[24] presented atomic decompositions of H' (R x R) with two alternative definitions of

product atoms. Li et al. [47] showed that the smoothness and the L>°-boundedness of the
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Chang-Fefferman elementary particles are superfluous for the sufficiency of the atomic
decomposition on product H'. Using a discrete Calderén identity, Han et al. [36] showed
that every element of LP N HP can be decomposed into an infinite linear combination,
converging in the LP norm, of variants of Chang-Fefferman p-atoms with coefficients
in [P,

The dual of H' (R™ x ... x R™) is the space known as product BMO [11], which
can be defined in terms of Carleson measures, among other characterizations. Below we
give a definition of product BM O which will clarify the relationship between Carleson’s
counterexample [9] and product H'. But first, we will present the counterexample. This

requires the following:

Definition 2.8. Given two intervals I, s C R, the tent over the rectangle R = I X I
is defined by S (R) := T (I1) x T (I3), where for any interval I C R, with center at xq
and length 26, T (I) := {(z,t) € R : |x — mo| < § — t} is the tent over I. We say that a
measure [t on Ri X ]Ri satisfies the Carleson condition with respect to rectangles if

p (S (R))

sup ———*~ < 0.
rer  |R)

Definition 2.9 ([10], [23]). Given a non-empty connected open set Q C R?, the Carleson

region over §2 is defined by

S(Q) = |JS(R).

RCQ
ReER

We say that a measure p on R% x R% satisfies the Carleson condition on the product

space RY x R% if

1 (S ()
T

< 00,

where the supremum is taken over all non-empty connected open sets @ C R? with finite

measure.

Carleson’s example consists of a measure g on R2 x R? which satisfies the Carleson
condition with respect to rectangles, but does not satisfy it on the product space Ri X Ri.

From his example, it follows that BMO (R x R) is strictly larger than the space
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rectangular BMO on R x R, which is denoted by BMO,. (R x R) [13]. In order to

explain this affirmation, we need to define these spaces.

Definition 2.10 ([10], [23]). BMO,cet (R X R) consists of locally integrable functions f

on R? such that

sup o 1 (erme) — i (@2) — fi (@) e < o0,

R=I XIzERﬁ R2

where, for each I; X Iy € R,

fr, (xe) = |I_11| /Rf (x1,x9) dxy and fr, (z1) := |[—12|/Rf (21, x2) dxo.

This characterization (compare with Definition 2.3) facilitates the proof of the duality
BMO,; (R x R) = (H}

rect

(R x R))". In fact, this can be shown by adapting the proof of
the duality BMO = (H')" in the one-parameter setting, presented in Chapter 4 of [62].

An equivalent way of characterizing BMO,... (R x R) is given by the following:

Theorem 2.8 ([10], [23], [13]). A function f in L} (R?) belongs to BM O, (R x R)

loc

if and only if [(1+ |21]) 2 (1 + |22]) 2 |f ()| dz < oo and the measure iy, defined on
R2 x R2 by

d,uf (.Z'l, tl, T, tg) = |V1V2U (Il, tl, 9, tg) |2 tltgdl’ldtldl'thg, (215)
satisfies the Carleson condition with respect to rectangles, where
u (xlu tla I27t2) = ((Ptl . Ptg) * f) (xth) 5

and
2

+

2
—+

2
+

2

0%u
8:(:28152

9%u
6.7728751

0%u
3x18t2

0%u
81318t1

|V1V2’U,’2 =

Definition 2.11 ([10], [23]). A locally integrable function f on R? is in BMO (R x R)
if and only if [(1+ |z1]) 2 (1+ |z]) " |f (z)|de < 0o and the measure piy, defined in

(2.15), satisfies the Carleson condition on R% x R3.
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In the light of Carleson’s counterexample, the fact that BMO (R xR) C
BMO,ee (R x R) becomes clear. On the other hand, BMO (R x R) is isomorphic to
the dual of H' (R x R) [11]. So

(EQ X Eg));ka

rect

(H'(RxR))" 2 BMO (R xR) C BMO,. (R xR) = (H)

and this yields H!' (R x R) 2 H}!

rect

(R x R).

2.4 Original Journé’s Lemmas

Motivated by the question of how to verify that a measure satisfies the Carleson condition
on R? x R?%, Journé proved a result which is known today as Journé’s Lemma (Propo-
sitions 1 in [42]). We refer to it as the discrete Journé’s Lemma. This result is a very
useful tool for working in the product setting. It tells us, in particular, that, among the
rectangles contained in a bounded open set ) C R?, we can select a countable collection
with enjoys the two following properties: (i) the union of the rectangles in that collection
contains 2, and (ii) if we multiply the area of each of the rectangles in that collection
by a suitable non-zero scalar and sum the results, the sum is controlled by ¢|€|. Instead
of proving the discrete Journé’s Lemma directly, he showed a non-discrete version of it
(Propositions 2 in [42]). We refer to this result as the non-discrete Journé’s Lemma. The
discrete version is a corollary of the non-discrete one.

We present the discrete Journé’s Lemma first, in the next lemma. This result is a
very useful tool for working in the product setting. We state and prove it in the setting
R™ x R™ later (Theorem 4.2). While Journé stated that it holds in this setting, he
proved it only in the case n; = ny = 1. Moreover, the proofs of it which are available in
the literature are also restricted to dimension one.

The statement of the discrete Journé’s Lemma requires the establishment of some
notation.

Given an open set 2 C R? with || < oo, we denote by M, (Q) the set of dyadic rect-

angles R := I; x I, C ) which are maximal with respect to the x;-direction. Specifically,
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the elements of M (£2) are dyadic rectangles R := I} x Iy C € such that if I] x I is a
dyadic rectangle in R™ x R™ with R C I] x I, C Q, then I; = I]. The set M5 () is
defined analogously. Then M (©2) = M; () N M ().

For a set €2, as described in the previous paragraph, let
Q= {z: Mg (xq) (z) > 1/2}
and, to each R = I} x Iy in M5 (Q2), let
I x I, € M, (ﬁ)

be the unique rectangle in M, <§> such that its first component, IAl, contains [; and its
second component is I. In the literature, the number
g

I]iD]l and ]iXIQGMl <§>}:I—| (216)
1

14

71(11 XIQaQ) ::Sup{|]—|
1

is often referred to as the stretching factor of R = I; X I3 in the xq-direction.

Lemma 2.1 (Discrete Journé’s Lemma [42]). Let Q@ C R x R be a bounded open set and

let ¢ :[0,1] — [0,00) be an increasing function satisfying fol ¢ (s) % < oo. Then

U
IxJeM2(R2)

I x J‘ < 8|9 (2.17)

and

Yoo IxJl¢ g <2 (igb(Z_j)) 9. (2.18)

IxJeM2(Q) =
This lemma is a corollary of the next one. In oder to state the next lemma, we need
to introduce some more notation.

Forz € Randt > 0, the open set E, ; := {y eR: B(x,t) x{y} C Q} can be written

as a countable union of disjoint open intervals, J; , x, with the indices k in a subset of N,
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which we call A (z,t), i.e

E:p,t - U Jx,t,k- (219)
keA(z,t)

For each (z,t,k) € R x (0,00) such that E,; # 0 and each k € A (x,t), define

(2.20)

E,sNJ, 1
T(x,t, k) ::inf{sZt:M<§}.

|Jx,t,k|

Now we are able to present Journé’s Lemma in its non-discrete version.

Lemma 2.2 (Non-discrete Journé’s Lemma [42]). Let Q@ C R x R be a bounded open set

and let ¢ : [0,1] — [0,00) be an increasing function satisfying fol ¢ (s) % < oco. Then

U @-r@th) o+7@tk) x Jeuwn| <819,

z€R,t>0
keA(x,t)

and

// Zletklaﬁ(( k>dx—<2(/¢ d8)|s2| (2.21)

OokGAmt

where Jy 14 and T (z,t, k) are defined in (2.19) and (2.20), respectively.

32



Chapter 3

Marstrand’s Approximate

Independence of Sets

By modifying an example of J. M. Marstrand, we construct a function f belonging to the
product Hardy space H! (R x R) and the Orlicz space L (log L) (R?) for all 0 < € < 1,
such that [f is not strongly differentiable almost everywhere on a square of sidelength 1.

In addition, we generalize the claim concerning “approximately independent sets”
that appears in J. M. Marstrand’s work in relation to hyperbolic-cross shaped sets on
the plane. Our generalization, which holds for any sets with boundary of sufficiently low
complexity in any Euclidean space, has a version of the second Borel-Cantelli Lemma as

a corollary.

3.1 Introduction

The one-parameter real Hardy space H* (Rd) [21] can be defined as the space of dis-
tributions f in &’ (R?) such that sup,.q [t7%(f * ¢) (t"'z)]| is integrable, for some fixed
¢ € S (R?) with non-vanishing integral. The product Hardy space H' (R" x R%) [30]
can be defined as the space of distributions f in &' (R**%) such that, for some fixed

pes (Rdl), Yves (RdQ) with non-vanishing integrals,

sup
t;>0

" //90 (6 ) ¥ (t2'y2) f (21 = y1, 0 — ) dyndys
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is in L' (Rd1+d2), where the points x in R% x R% are represented as x = (1, x2), with
.’L‘j € Rdj, ] = 1,2
For each 0 < € < 1, the Orlicz space L (log L) (Rd) 48], also denoted L% (Rd), can

be defined as the set of f real-valued, measurable functions on R? such that

/pre (fig:)) de <1,

for some A > 0, where @, (t) := [t| log(1+t|)), t € R. The Luzemburg norm on

L® (RY) is defined by

1fll o, ::inf{)\>0:/<be <@> dr < 1}_

Endowed with the norm ||-[|4,, L (R?) is a complete space.
While the integral of functions in L7 | (Rd), p > 1, is strongly differentiable a.e.[39]
and this property also holds for the integral of functions which are locally in Llog L (R?)

[39], it fails for certain classes of functions satisfying slightly weaker integrability condi-

1

loc

tions [59]. In particular, it fails in L (Rd). Since many results concerning boundedness
of singular operators can be extended from L (]Rd), p > 1, to the Hardy spaces H! (]Rd)
[62], the question arose as to whether the strong differentiation of the integral would hold
in H' (Rd). This was answered negatively by Stokolos [65], who gave an example of a
function f in the real Hardy space H' (R?) such that |D ([ f,z)| = |D ([ [, )| = oo for
almost every x in the unit square. We show that the answer is also negative for the space
H'(RxR)N <O<D<1L (log L) (Rz)). In particular, R is not a differentiation basis (see

definition in [32], [63], or [64]) for any Orlicz space L (log L) (R?) with 0 < € < 1.

Theorem 3.1. There exists a function f in H (R x R)NL (log L) (R?) for all0 < e < 1,

such that
‘E</f’x) :‘Q(/f’x> =0 (3.1)
for almost every x on [—%, %] % [_%’ %}

The proof of this theorem is in Section 3.3. In fact, we will, by modifying the example
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created by Marstrand [50], construct a function f that belongs to H!

rect

(R x R) [13],
the proper subspace of H! (R x R) which consists of sums of rectangular atoms with
coefficients in I'. Then we show that f isin L (log L) (R?) for all 0 < ¢ < 1. The almost
everywhere part relies on a variant of the second Borel-Cantelli lemma which extends the
version used in [50]. This is a corollary of the theorem below, proved in Section 3.2, which
illustrates how geometric properties can yield consequences of a probabilistic nature. In
the next result and throughout this text, the notation a ~ 3, for o, 5 € [0,00), means

that there exist constants ¢, C' such that ca < < Ca.

Theorem 3.2. Let Sy C R? be the unit cube centered at the origin and let {Ay}, o be
a family of subsets of Sy satisfying |A,| > 0 and §,, := dimypper box (GA_n) < d for all n.

There is a sequence {m,} of positive integers such that if, for each n, we partition

neN
Sy into m< cubes of same the size, and place inside each a homothetic copy of A,, then

denoting by A\,, the union of these homothetic copies, we have, for any finite subset F C N,

N A
‘nEF "

~ H |Anl - (3.2)

nel

This result generalizes Marstrand’s statement ([50], p. 210), where he claims, without
proof, the approximately independence (in the probabilistic sense) of homothetic copies
of certain “hyperbolic-cross” shaped sets (e.g. 1.3)

Furthermore, we show that if the sets A,, are finite unions of dyadic cubes, then (3.2)

holds with an equality.

3.2 Approximately Independent Sets

Before we begin, let us fix some notation. By a cube we mean a closed cube with sides
parallel to the coordinate axes. Given a cube ), we denote its sidelength by ¢(Q) and its
interior by °. Adopting the terminology used in [62], we write that two cubes P and @
intersect if P° N Q° # () and are disjoint if P° N Q° = . For a set A in RY, we denote

its closure by A and its the upper box-counting dimension by dimypper pox (A), where the
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latter can be defined [19] as

. d. [l i Ja—1 Jja
msup B U € 20 [B7 ] < < [ ] 0 A #0})

Remark 3.1. It can be shown that, for any bounded set A C R?, the following are
equivalent:

(1) dimpperbor (9A) < da;

(ii) for any cube S in RY containing A, there exist a constant Cag > 0 and an integer

Nas satisfying:
#{je{1,..., md} : S:n,j NoA #* (Z)} < CA“ngA VYm > NA,S, (3.3)

where, for each m > 0, {Sm,j};n:l is a partition of S into m? equal sized cubes.

Lemma 3.1. Consider a cube S C R?, centered at the origin, and a set A C S such that

|A| > 0 and dimypper box (82) < da < d and let e > 0. For any integer m satisfying

1/(d—da4)
m > max {NA,S, <C?’|i1||s|> } :

where Nag and Cas are as in Remark 3.1, and for any measurable set E C S, the

following holds: if we partition S into m? equal sized cubes S,,; with center o, ;, j =

1,...,m% and denote by E,, ; the homothetic copies of E, namely

1
Epj = 0pmj + EE, j=1,..,m% (3.4)
then
m’i md T)’Ld
U Em,j ‘A N ( U Emvj) ‘ U Em,]
j=1 j=1 =1
(10 P < " <+ g (3.5)

Proof. A counting argument yields

Al m?
[Smal 5]

#{j : Smj C A} < Al



while Remark 3.1 gives us
#{j: SN 0A £} < C’A,Sm‘SA

If |Sy,; NA| > 0, then either |S,,; NA| =[S, | or 0 < |S,,; NA| < |Sp, |- Since
1S MA| = |S,,4| is equivalent to S,,; C A, and since 0 < [S,,; N A| < |Sp, ;| implies

Sp i NOA 0, it follows that

Ny = MNn(A,8) =#{j: |Sm,; NA] >0} < ]A\ + Oy gm4 (3.6)

5]

Because the choice of m implies Ca g |S|m?4~4 < € |A], we get
‘ﬁ@<(1+e)\Al (3.7)
mmd — . .

As En,; C Spn, for each 1 < j < mf the number of E, ;s satisfying

md
ANE,, ;| > 0is at most M,,. So the proportion of A that lies inside U FE,, ; is
7‘7 ]:1 7‘7

md

U B,
J=1

S|

md
"‘m (UE’”)‘ M [LE] 1)

< = <(l+e€
A A miA )

where the last inequality follows by (3.7). Similarly,

md
\“(AEW)\ (#4025 c AY [2E _ (5141 257 [28
| Al - |Al - | Al

md

U Em ;
=(1- CaslSl ’ >(1—¢) b=t 71
mé=oa |4 ] S|

]

The example below illustrates a type of set for which the box-counting dimension of
the closure is equal to the dimension of the ambient space and (3.5) holds for infinitely

many integers m.
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Example 3.1. Let o € (0,1) and let F = F,, be the “fat” Cantor set constructed on [0, 1]
as the Cantor ternary set except that the 281 intervals removed at step k have length o /3*
instead of 1/3% (see for example [57], p. 64). When a = p/q € Q, the endpoints of the
intervals that remained after the k first steps of the building of F' have the form n/ (2k3kq)
for some integer 0 < n < 283%q. Thus, when we partition [0, 1] into m = 283kq intervals
of the same length, the sum of the lengths of the intervals of that partition which intersect
F is exactly the measure of the union of the closed intervals that remained on [0, 1] after

the k-th step of the construction of F, i.e.

3=

1 , j—1 3 e} a b1 O
— D F =1—(-+25+...+27 ).
m#{jGN { — }m #@} <3+ g Tt 3k>

Defining A := F—1/2, it follows that, when we partition S := [—1/2,1/2] into m intervals

Smj=1J—1)/m,j/m]—1/2, j =1,..,m, we obtain
k—1 i
1 e} 2
9, =1-2Y (2 1—a=]|A| ask - oo,
m‘ﬁ ‘ ()—) a=]A| ask — o

where Ny, is as in (3.6). Thus, given ¢ > 0, Ik € N such that (3.7) holds with m = 2*3%q

for all k > ko. So the argument used to prove Lemma 3.1 yields (3.5).

In higher dimensions, if a subset A of S C R? satisfies |A| > 0 and

lim inf (%‘ﬁm> = |A], (3.8)

m—0o0

then (3.5) holds for infinitely many integers m. What (3.8) says is that we can approx-
imate the volume of A with a regular grid of boxes. When dimyper pox (6%) <0y < d,
(3.8) holds since (3.6) implies that |S|91,,m~¢ converges to |A| as m — co.

However, as shown by the example below, the result of Lemma 3.1 fails if

dimypper bor (0A) = d.

Example 3.2. Let G := F, — 1/2, where F, is as in Example (3.1) with « = 3/4. We
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define a set A (by filling the gaps in G) as follows

A::Gu{i‘i {G (—1+*7_1/2+ ! G)H
m=1 |j=1 2 m 2mm

and note that A C S = [—1/2,1/2] and 1/4 < |A| < 1/2. Moreover, N, = m for any

m € N, since, by construction,

1 j—1 1
H2+ 5+

—}ﬂA’Z‘LG’>O V1i<j<m,VmeN.
m m 2mm,

Fix m € N and let E := 27™G. Then (8.5) fails for all 0 < € < 1. Indeed, using

the notation in (3.4), En; = —% + 24 g A, Vi So |[ANEn ;| = |En,| =

m 2Mmm,

2=mm~1G|, Vj, and it follows that

. (3.9

m = 1 m
‘Am (julEm,j>' = E 1 [ AN B = mor— |G = | B| = ‘leEm,j
]:

By the choice of A, S and €, we have I_ill > l‘gf, which, combined with (3.9), implies that

(3.5) does not hold.

Recall that in a probability space (2, F, P), two events F;, Ey € F are said to be
independent if P (E; N Ey) = P(E;) P (Es). Letting Q2 be S; F be the o-algebra of
Lebesgue measurable subsets of S; and P (FEy) := |Ey|/|S]| for By C S measurable,
Lemma 3.1 shows that for certain measurable sets A C S, there exist arbitrarily large

integers m such that, for any measurable set £ C .S,

ma ma
(a0 (En)) = pone (Tens).
7=1 7=1

where the E,, ;’s are as in (3.4). We call this property “approximately independence”

and we extend it to infinitely many sets as is (3.2).

Proof of Theorem 3.2. We will construct a sequence {m,},.y C N with the following

property: if we partition Sy into m? cubes S,,, ; of same the size and denote the center
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of Sy i BY O, gy 7 =1,...,m, then the sets

1
(Omn,j + m—An) , ne N, (310)

satisfy (3.2). It suffices to show that we can choose {m,,}, .y such that

<JJ@+27") Al VFC{L,...,n} (3.11)

el

1
- < .
-||(1 4l_2>|Al|_‘iQFAZ
1EF

holds for all n € N. Indeed, using the representation sm( ) =511 ( — #) and the
jJEN

inequality 1 +¢ < e’ Vt € [0,1], we get from (3.11) that, for any finite set FF C N,

IO =TT (1= ) T < T1 (1= 55 ) T

1€F jeN 1€EF jeF 1€EF

| <T@ +27 ) A < JTe 7 Il < T 1A

el el el

’LGF

To construct {m,,} we use induction.

neN?

Choose m; = 1. Then A; = A; and
(L—4 ) A < A < (T +2707D) Ay

Now, assume that the integers my, ..., m,, are chosen such that (3.11) holds. By defini-

tion, A, is composed of mz homothetic copies of Ay. S0 dimypper box (3A_k)

= O, since dimypperpor 18 bi-Lipschitz invariant and finitely stable ([19], p.48). For any

finite subset F' C {1,...,n}, the boundary of the closure of I'p := ﬂFAZ- satisfies
1€
dimupperbo:c (aﬁ) < VYn = IMax {5143 1<k < TL},

because L'y C .ﬂFaA_i and dimyppe, pos 1s finitely stable [19]. We claim that if
1€
Co=Y Cr.s, and N, :=> Ny g, (3.12)
k=1 k=1
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then it is possible to take Cr, s, = C, and Nt s, = N, in (3.3). Indeed, if we take
m > N, and partition Sy into m? cubes S,,, ;, j = 1, ..., m?, then the number of cubes S, ;
which intersect A is not greater than CAk750m5k, 1 <k <mn. Since OT'p C kLZJlaA_k, the
number of cubes S, ; which intersect Ol is not greater than ZZZI CAk,SOm‘Sk < C,m™,
and we conclude that our claim holds.

We choose m,,;1 to be an integer such that

_1\ V(d=m)
Mpyq > max N, max (Z"Cn ) , (3.13)

and we will show that, for any subset F' C {1,...,n} such that >0,

N A;
iEF

1
1+ —= ||\ <
T (1+g) s

i€FU{n+1}

N Ailg [T (+27¢9) A

ieFU{n+1} ieFUinA1}

holds. The case when | N A;

i€l

= ( is trivial.

Fix FF C {1,...,n} such that I'r := ﬂFAi has positive measure. We intend to use
S

Lemma 3.1 with
S:SO, AIFF, 622771, E:An+17 m = Myy1. (314)

But first let us verify that the hypotheses are satisfied. We have:

i) AC S =5, and S is a cube centered at the origin;

iii) |[A| = |I'r| > 0, by the choice of F;
ng, )4 1/(d=m)
iv) m = my,41 > max {Nm <%> } — max {NA,S, (Cé‘,i||5|> }

So we can apply Lemma 3.1 to obtain

(
(ii) A satisfies (3.3) with Cx s = C,, and Ny g = N, since ' does;
(
(
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Note that

d

3

I

J

mi 1
Emvj = U 0mn+17j + An+1 = ATL+1

1 j=1 Myt

This, combined with (3.14) and (3.15), implies

m |A] 1]
1—e)|UBn | =t =(1=2")[Apa| ITp| > |1 = ——— | [Ansa| [Tr],
=0 |G| f5f = =2 e e = [1= 1| Il I
md
‘Aﬂ(UEmJ>':]FFﬂAn+1|:‘(ﬂAz)ﬂAnH 5
j=1 i€EF
and
(1+0)|UE., @:(Hz-n)m | T 7|
=1 "] S E
Thus,
11 (1 1)|A|<{1 ! ]|A [INA
YY) il S| | el | DA
i€FUfn+1} 4 4(n+1) cF
1
= e — < ; < -
[~ g i< (@) 0 < 0o b

= (1+27) | | DA

< I @+27) A,

t€eFU{n+1}

where the first and last inequalities are due to the induction hypothesis (3.11). We

conclude that (3.11) holds for every n € N. O

Corollary 3.1. Under the hypotheses of Theorem 8.2, if, in addition, the series
> 0 1So MAS| diverges, then there is a sequence {my}, .y C N such that when we par-
tition Sy into md cubes Sy, j, 7 = 1,...,m<, of the same size and let o,,, ; denote the

) n’

center of Sy, ; and

the following holds:

o o0
n u K,

m=1 n=m

=1,

i.e. almost every point of Sy is contained in infinitely many K, ’s.
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Proof. Indeed, define A,,, n € N, as in (3.10) and note that

md 1 ¢
SoN Ky =S5 N { Y [Omn,j + (So N AZ)] }

- n

me 1 ¢ ms 1
= SO N { N |i0mn’j + — (SO N A701>‘| } = U (Omn,j + _An) = An
j=1 m =1 my

n J=

k+1
< e? I] |A,| for any
n=~k

Applying Theorem 3.2 to the family {A,} we obtain

k+1
N A,
n=k

neN?

o0
2T |As|- We now use this inequality in
n=~k

what is nearly the standard proof on the second Borel-Cantelli lemma:

m=1 n=m m=1 n=m m—oo [n=m

< i 2 =e? i —

< lim. [6 I_I lAnll e’ lim_ |_| (1= [Ka)

< —|Knl _ 2 —
e nllg;o | | =e hm exp( E | K, |> 0,

n=m

where the last equality holds because > |K,| =) [S N AS| = oo. O

As mentioned above, if we restrict ourselves to sets that are finite unions dyadic cubes,

i.e. cubes in the collection
D .= {z+2_k 0,1 kez, »¢ z—kzd},
then we have equality in (3.2). The example in [65] is built in the dyadic setting and has

motivated us to prove the claims below.

Claim 3.1. Let S = [—2’“*1,2]“*1}(1 for some k € Z and let A C S be a finite union of
dyadic cubes. Then, there exists igp € N such that, for i > k — iy, and m = 2¢, when we
partition S into m? equal sized cubes Sy, ; with center o, j, 7 = 1,...,m%, the following

holds: for any measurable set E C S, we have (3.5) with € = 0.

Proof. By hypothesis, we can write A = '[LJIQi, for some n € N and some disjoint cubes
1=
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Q; € D. Choose

io := min {log, (¢(Q:))}-

1<i<n

For any i > k — i, if we set m := 2' and partition S into m? cubes S, ;, j = 1,..., m%,
of the same size, then S,,; € D and ¢(S,,;) < 2. Since each Q; is a dyadic cube of
sidelength 27 for some j > i, it follows that each Q; is a disjoint union of some of the

Sm,;’s. Therefore so is A. Hence

N =#{j € {1,.,m?} S, NAl >0} =S, A =m?|S| 7 |A].

Thus
md 1 . md .
40 (B )| = 0| -] = 1517 b1 = |G| Is 141 310
Jj=1 m j=1
Dividing (3.16) by |A|, we get (3.5) with e = 0. O
Claim 3.2. Let Sy = [—1/2,1/2]* and let {An},en be a family of measurable sub-

sets of Sy such that every A, is a finite union of dyadic cubes. There is a sequence

of integers {ky},cn satisfying: if, for each n, we partition Sy into md = 2kd cybes

Spmis § = 1,...,ml, of the same size and let oy, ; denote the center of Sy, ; and
d

n

A, = 'Ul (ommj + miAn> , then for any finite subset F' C N,
]: n

N A
neF "

=] 1Al (3.17)

nel

Proof. By induction. Choose k; = 0. Then m; =1 and A; = A;.

Now, assume that ki, ..., k, are chosen such that, with the above notation,

N A;

i€EF

=[[Inl YFc{1,..n}. (3.18)

el
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We will choose k41 such that

i€FU{n+1} ‘ ) H | | { n} ( )
i€FU{n+1}
Fix F C {1,...,n}. By construction, for each 1 <i < n, the set A; is a finite union of
disjoint dyadic cubes. So, for each 1 < i < n, we can write A; = lUI Qi,1, for some disjoint
€l;
dyadic cubes @Q);;. We choose

—in

Mpy1 = 2 ’

where i,, := min {log, (¢ (Qi,)) : | € [;,1 <i < n}. When we partition S into mZ_ | cubes
Smmirgs =1, com 1, with € (S, ;) = 2™, each S5, . is either contained in N A;

Mnt1s ieF

or in its complement. Thus

. _ -1 _ d
# {] . Smn_H,j M (ZQFAZ) > O} = ‘Smn+171‘ zQFAZ =My zQFAl .
So
1
‘(z’QFAi) NApy1| = (miﬂ iQFAi ) 'mn+1An+1 = [Apqa] iQFAi .
This and the induction hypothesis (3.18) yield (3.19). Thus (3.17) holds. O

3.3 A Counterexample

We divide the proof of Theorem 3.1 into two parts. In the first part we construct a
function f in HY, (R x R) N L(log L) (R?) for all 0 < € < 1; in the second, we show

that f satisfies (3.1). An analogous reasoning, with p (X,) replacing X,,, shows that

D ([ f,p) = —oc for almost every p in S.

Proof of Theorem 3.1 - Part I. We begin by choosing sequences of positive numbers,

{an},, . { A}, and {7}, , which satisfy the following:

Yo Y (3.20)

n
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log a, An
Y B oo, lim 22 = oo, (3.21)

Ck% n—o0o (2
/\71 4
) (3.22)
)\n+1an+1
and
An An ‘
~ (log | 1+ <1 WVo<e<l, (3.23)
ReYnOp, KReVTn

for some constant k. > 0, depending on e, but independent of n. A suitable choice is
described in the end of this section.

We define S := [—%, %} X [—%, %} and we let {m,} ~, C N be a sequence. The m,,’s
are required to satisfy certain properties that will be specified later.

We partition S into m? squares S,,; € R, j = 1,...,m2, of sidelength 1/m,. At the

center o, ; of each S, ; we place a smaller square

Qnj = {f eR”: lop; — 2, < m}a
where here, and in what follows, [a] ;== min{n € Z : n > a} for a € R, and ||-||, denotes
the maximum norm |[|z|| := max {|z1]|, 22|} for = (21, 72) € R%

For each j = 1,...,m2, we partition @, ; into 4 squares Q,;x € R, 1 < k < 4, of
sidelength 1/ (2m,, fanf) and we label the interiors of these 4 squares as black or white
in a chessboard pattern with the upper right square being white, as in Figure 3.1. The
union of all white squares in all squares @, ;’s, 1 < j < m? will be denoted by W,; that

of all black squares in all Q,,;’s, 1 < j < m?, by B,,. Now we define

foi= daXw, = AuXsr = S
n=1

where y g denotes the characteristic function of a set E. Note that ) |f,| is integrable.
Thus the set W :={z : ) |f. (2)| = oo} has measure zero, a fact the we will use in Part

II below.
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To see that f is in H' (R x R), we write f = >, Z;njll Yo, 2an, j, where
ang () =may o (2) XQu, (@), 1<) <mj, neN

The a,;’s are rectangular atoms [13] in H' (R xR) and, by (3.20), the series

m2 -2
don (Zj:”l Ynm,, > ) converges. Hence

m3
Y yumtan; € HY .y (RxR) C H' (R x R).

n=1 j=1

Now, to show that f belongs to L®* (R?), we write f = > 7 | 7,gn, where

my,
Gn (1) =3 o (2) = Zm;Qanﬂ-, n € N.
j=1

Since (L (R?), ||-|l4,) is complete and the coefficients ,’s satisfy Y- |ya| < 00, to show
that f € L*® (R?), it suffices to prove that for each ¢ € (0,1) we can find a constant

ke > 0, independent of n, such that
|gnlls, < #e for allm e N. (3.24)

In fact, we claim that (3.24) holds for any x. for which (3.23) holds. Indeed, to form each

Jn, we gathered all the rectangular atoms that compose f,. So

90| = V0 A XwnuB, s

and this yields

/(I)6 (%ﬁ(ﬁﬂ) dr — /|gnﬁ(6x)! {log (1 N |9nl€(€x)|)rd$

I\ NN An A\
_ e {log (1 L )} lsupp (f)] < . [log (1 n >] <1,
Ke Ke ReVnC, ReVn

for all n € N, where the last inequality follows from (3.23). This shows that k. is an
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uniform (on n) upper bound for the Luxemburg norms |[g, ||, , proving our claim. ]

Proof of Theorem 3.1 - Part II. The result relies on the construction a sequence { K, }, o\
of subsets of S such that

x o0
n u K,

m=1 n=m

=1, (3.25)

and therefore almost every point in S belongs to W N ( AU Kn>.

m=1 n=m

For each n € N, we define the set (compare with (1.3))

1 1 1
X, = : R?:0 < < , < , < =%
{(Il :BQ) © =tz = 4 ’VOén—I2 2 [an—‘2 B ||(:B1 xZ)HOO N 2}

Since 0.X,, is union of two rectifiable curves, dimypper oz (0X5) = 1.

Figure 3.1: Homothetic copy of X,

By construction, the dilation of X,, by 1/m,, is contained in the square of sidelength
1/m,, centered at the origin. In Figure 3.1, we represent a set o, ; + m,'X,, in gray and
the squares @ jx, 1 < k <4, in black and white at the center. So o, ; + m X, C Sh.j
for all 1 < j < m?. In addition, the area of X, satisfies (in our proof here, we only need

the lower bound for |X,,|)

1 . 1/2 1
M - 2/ — _dt <X, (3.26)
2 [an| 1/2fan] 4[]
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1/2[an] 1/2 1 1
<2 / tdt + / 1) < s fanl
0 1/2[an] 4 [an] "t [ ]

For a fixed n € Nand j € {1,...,m2}, every point p = (p1, p2) in the set 0, ; + m, 1 X,

lies in a rectangle R, € R satisfying p € R,,

1 1

n

Indeed, let p € 0, ; + m,,' X,,. We will construct R,. By symmetry, it suffices to consider
p with 0 < py — (0n,5)5 < p1 — (0n,5),. One of the two cases happens:

(i) If 0 < po — (0ny), < 1/ (2my, [oznf), then we define

o= (o5 ¢ g

and we observe that (3.27) holds.

(i) If py — (0nj)y > 1/ (2my, (anf), then p; — (0,;), > 1/ (2my, [anf) as well, and

we choose

1
R, = On,j yP1 — \Onj)q X ) 2 ’
) =0 + ([O pr = (0n),] [0 o [T = (Ow‘)l)])

With this choice, p € R,, since (ps — (0,),) (p1 — (0n),) < 1/ (2m, [an])®. Also, R,
satisfies (3.27).
Similarly, for every p € o, ;+m,,'p(X,), where p is the rotation by /2 radians, there

exists S, € R such that
€S, 1S, = ——— and |S, 01 By| — S, N\ Wal = = Qi
— an ol — | = = |Qnjl -
p ps |Pp 4m%[ozn12 p p 1 J

How does A, |@y,1| compare with > A1 |Qnti1|? The answer given is below and will

be used when we deal with the strong upper derivative of the integral of f. If

m, > 2'm,_1  Vn, (3.28)
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then my, i > 24y, i1 > ... > 2%m, > 2 (23m,), ¥Yn. This and (3.22) yield

= )\n ‘inl = 4>\n+z ’Qn+i1’
Ati | @i ] = : :
; e 4 ; An [@nal

)‘ |Qn 1| Z 4)‘n+z 4mn I_Oén_|4) >‘ |Qn1| Z 22)‘71—}—2 2an)4

4mn+l [an+z—|4) n+z n+z
e |Qn1|z( Atad )(23mn)2
)\n+zan+z Mpi
An'@n1| i\ 2 )\len1|
<2 BenllN™ (9747 = 2] .
="y Z( ) 12 vn

Thus (3.28) implies

)\n |in| - >\n+i |Qn+i1| 1 1
D e . 2
1 2 i > {7~ A |@nt] = )\ |Qnal vn (3.29)

For each n, we define

m32 1
Ap = 85NX, and A, := U [onﬁj + —An] ) (3.30)

Jj=1 n

Each A, is contained in S and satisfies |4, | > 0 and dimypper pos (8A_n) = 1. Moreover,

since |S N A¢| = | X,|, estimate (3.26) yields

log [a,] _ loga,

ISNAT| > : (3.31)
2[en]” T 2(20,)°
Also, for each n, we define
mi, 1
Kn = U (ij + _Xn)
J=1 n
and note that K,, = TJ [cnj - (SN Ac)} and SN KS = A,.
]:
Now we will construct a sequence {m,,}, .y such that both (3.29) and
< =1 :
nA [J@+27) A VFC{1,...n} (3.32)

el
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hold for all n € N, where the sets A; are defined in (3.30). We must choose {m,,}

neN

satisfying (3.28) and (3.13). Condition (3.13) appears in the proof of Theorem 3.2, which

we apply to {A,} We build {m,},cy by the recurrence relation

neN”

on— 1 Cn—l

m =1, m,= [max {Nn, 7
n—1

,24}—‘ Mpy_1 (an_ﬂQ for n > 1,

NA;
i€l

1

where C,, N,, are as in (3.12), 6, := min{

} and the minimum is taken over all

finite collections I C {1,...,n} satisfying 'ﬂIAZ- > (. By construction, with this sequence
1€

{mn},ens both (3.28) and (3.13) hold. Hence both (3.29) and (3.32) hold for all n € N.
From (3.31) and (3.21), we get

i\smm z%ilbi;" — 50

This, together with (3.32), implies (3.25), as shown in Corollary 3.1.
For each fixed p € W¢n < AU Kn>, we will show that D (ff,p) = +oo0. An

m=1n=m

analogous reasoning, with p (X,,) replacing X,,, shows that D ( I, p) = —o0. Indeed, let

{ni},cy be such that p € K,,, Vi € N. Then, it suffices to show that

Z|R

7,*)00 | Rn

f (x) dx] = 0.

For each 7 € N, p lies in one of the homothetic copies of X,,,, say p € S,,; N K,,. By

(3.27), p lies in a rectangle R,, (p) € R satisfying

1
|an <p>| P — and ‘an (p) N Wm

’Qni,l

~|Re, ()N Ba| = (3.33)

Moreover, for any k > 1, |R,,, (p) N Bp,4x| — |Rn; (p) N Wi, +x| cannot be greater than the

area of 2 of the 4 black or white squares that compose each Q11 ;, 1 < j < miﬁk, ie.

By )0 Bal = 1R ) Wl <2 (95D e san

51



From (3.33), (3.34) and (3.29), we get

/ fo () dz+ Y / Foi () de
Rn;(p) k=1 “ Bn; (D)

>)‘m <|Rm (p) N an

- ‘Rm (p) N an

)

- Z Atk (|Rm (p) n Bﬂz+k| - ‘Rm (p) n Wm+k|)
k=1

|Qn +k, 1‘ 5 A _
)\n L n T - % @ v e N
Then
S
i k=0 7 Bn; (p)
1 M .
= 1 —7 ~ 5 09,

as i — o0, by (3.21). It remains to control |R,, (p ”1—1 fR 2)dz, i € N.

By construction, for every i and every k € {1,...,n; — 1}, my,, is an integer multiple of
4my, (ozkf. This and the fact that the black and white squares Q,, 1 < v < 4, that

compose each Q;, 1 <1 < mj, have sidelength 1/ (ka [aﬂz), yield
Snii N Qi 20 Sy CQuuw V1<k<n—1,1<I<mp, 1<v<4

Hence either R, (p) N (supp (355! fx)) =0 or Ry, (p) C Qpy for some 1 < k < n; — 1,

1<I< mi, 1 <wv < 4. In any of these cases,

1

—_— fe(x)dx = fi (p Vi<Ek<n;—1,
B )] S, oy = D1 0)

which implies that

nz_l ni—l
Z]R )] )m(fﬂ)dfﬂ §Z|fk |<Z|fk )| < oo VieN,
B ( k=1
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where the last inequality holds due to the choice of p in W¢. Therefore

1 s 1 00
T oy 2 ;m(p)w‘Rm(pﬂgi/m(p)fk(x) 2 - o0

as i — oo. Thus D ([ f,p) = +o0. O

Here we present a choice of positive numbers satisfying (3.20)—(3.23). For each n € N,

let
= 4n*?log (4n) (log (log (4n)))*/* | (3.35)
An == n (log (4n))* (log (log (4n)))?, (3.36)
1

T Y log (4n) (log (log (4n)))% (3.37)

In addition, let
Ke '= max {25, 9°“max { (log (log <471L))6)2 }} . (3.38)

el | (log (4n))

To see that the sequences {a,}, ,{A\}, and {y,},,, defined above, satisfy (3.20) and

(3.21), it suffices to observe that

An 1 1

~N — ~

ot n (logn)*’ n n (logn) (log (logn))*’

log v, 1

An log (logn)
a2 " u(logn) (log(logn))” a2~ ENOEM)

A direct substitution yields (3.22). The proof of (3.23) requires a bit more work. From
(3.35)—(3.38) we obtain

—1)\ 291\
/Yn n < /YTL n

1
+H€ - 25

= (4n)* (log (4n))” (log (log (4n)))" < (4n)”. (3.39)

Plugging (3.39) into the left-hand-side of (3.23), we get

Y [log (1 N u)} "1 (og(og(m)® gy oy

Ke Ke al Kelog (4n)




_ 9 (log (log (4n)))* _
ke (log (471))1_6

where the last inequality follows from the choice of k..
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Chapter 4

Differentiation of the Integral,
Hardy Spaces and
Calderén-Zygmund Operators in the

Product Setting

The study that lead to the results of this chapter begun with our investigation on the
question as to whether the function created by Papoulis [53] can be in the Hardy space
H'(R x R). The search for the answer raised many other questions and lead us to
develop a relaxed version of Chang-Fefferman p-atoms with a lower number of required
vanishing moments and no smoothness needed on the elementary particles. In analogy
with the proof of this result, we show a generalization of a theorem of R. Fefferman,
which concludes H? — LP, 0 < p < 1, boundedness of multiparameter operators from
their behavior on rectangle atoms. In addition, we extend a result of Pipher concerning

boundedness of multiparameter Calderén-Zygmund operators from H? to LP.

4.1 Introduction and Statement of Results

In the multiparameter setting, we view R as R™ x ... x R™ with n; 4 ... +n, = n, and

the points x € R™ are represented as (z1,...,x,), with x; € R™, j =1,...,r. The multi-
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parameter, or product, Hardy space H? (R™ x ... x R™) 0 < p < 0o, can be defined [30]
by fixing ¢/ € S (R™), j = 1,...,r, with non-zero integral, and saying that a distribution
f, in 8" (R™), belongs to HP (R™ x ... x R") if and only if the multiparameter radial

mazimal function

Mt,...or (f) (&) = sup | ((¢r,--01,) * f) ()] (4.1)

is in LP (R™), where
(1,01 ) = f) (x) == /wtﬂ (1) --2r, (ye) f (x —y) dy,

ol (@) =79 (1), G=1,...m

In this case, the quasi-norm of f is given by

1 W erm s x..xienry 2= 101, or (F, (42)

and it is a norm if p > 1. If the supremum in (4.1) is restricted to t; = ... = ¢,, then we get
the one-parameter Hardy space HP (R™). Our investigation begins with a question from
A. Stokolos. He asked, concerning the example created by Papoulis [53] of an integrable
function f on R? such that the strong derivative (defined in [32], [60]) of [f exists a.e.,
while the upper strong derivative of [|f| is infinite on a set of positive measure, whether

such a function can be in H! (R?). We give a positive answer:

Theorem 4.1. There exists a function f in H),, (R X R) such that the strong derivative
of [ exists a.e., but the upper strong derivative of [|f] is infinite on a set of positive

measure, namely the function created by Papoulis.

We prove it by exhibiting a decomposition of the function f, created by Papoulis (here
and below this function will be called Papoulis’ f, in terms of rectangle (1,2)-atoms (see
Definition 4.1) with coefficients in ['. This means that f € H' , (R x R) and therefore
fisin H' (R x R). In particular, Papoulis’ f belongs to H! (R?).

For p < 1, the space H?

rect

(R™ x ... xR"™) (see Remark 4.1) is included in

H? (R™ x ... x R") and an example of Carleson [9] implies that H}

rect

(R x R) is a proper
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subspace of H! (R x R). It is useful to note that the inclusion HE,, (R™ x ... x R™) C
H? (R™ x ... x R™) is an immediate consequence of Theorem 4.5 below, as any rectangle
(p,2)-atom on R™ X ... x R"™ is an rough (p, 2)-atom on R™ X ... x R™ (see Definition
4.3) with one elementary particle.

By modifying the techniques used in the one-parameter setting, we are able to show
some crucial estimates for the action of the radial maximal function (see Lemma 4.1) on
rectangles (p, ¢)-atoms on R™ x ... x R". The key importance of these estimates is due
to the fact that they imply the uniform boundedness of the LP (R™**")-norm of the
radial maximal function of rough (p, ¢)-atoms on R™ x ... x R™, which yields the result
of Theorem 4.5, stated below. In the setting R™ x R"2  this theorem follows from Lemma
4.1 and an argument that R. Fefferman [25] developed to prove that the behavior of an
operator on rectangle atoms implies boundedness from H? (R™ x R™2) to LP (R™*"2).

The same techniques we use to prove Theorem 4.5 in R™ x R™ allow us to enhance
R. Fefferman’s result [25]. Combining his proof with the main result in D.-C. Chang et
al. [14] (who filled some missing steps from [25]), we show the following variant of a

theorem of R. Fefferman [25]:

Theorem 4.2 (Variant of R. Fefferman’s Theorem in [25]). Let 0 < p < 1. Given a

linear operator T on L* (R™*"2) if there exist 6; > 0, j = 1,2, such that

(51 62

IT (a)]” < C(2%)™"" and IT (a)]” < C (2F), (4.3)
Joryone e e [ (2

or any k € {2,3,4,...} and any rectangle (p,2)-atom, a, on R™ x R™, supported on
Y Y gie \p pp

Iy x Iy, then T can be extended to a bounded operator from HP (R™ x R™2) to LP (R™*"2).

There are two steps in the proof of theorems of this type: (i) showing that the be-
havior of an operator 7' on rectangle atoms yields uniform boundedness of the LP-norm
of the action of 7" on product HP-atoms; (ii) proving that this uniform bound implies the
existence of a bounded extension of T" from product H? to LP (see [1] for an example of
a linear map which does not admit a bounded extension to H' despite being uniformly

bounded on atoms). Note that the assumptions of Theorem 4.2 are different than those
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in [25] because, in addition to only requiring dilations by dyadic scalars, we deal with
dilations on each factor of the product setting separately. These multiparameter dila-
tions are the essential aspect of our result, as they allow a direct extension of step (i) to

higher-parameter settings. In particular, they enable us to prove the following:

Theorem 4.3 (Three-parameter Variant of Theorem 4.2). Let 0 < p < 1. Given an

operator T bounded on L? (R™*"2773) 4f there exist §; > 0, j = 1,2,3, such that

/<2k R T (a))” < C(2%)7" (2%2)7  for all by, ks € {2,3,4,...},  (4.4)

for any rectangle (p,2)-atom, a, on R™ xR" xR"3 supported on I x Iy X I3, and similar
inequalities with (1,2, 3) replaced by (2,3,1) and (3,1,2) hold, then T can be extended to

a bounded operator from HP (R™ x R™ x R"3) to LP (R™*"2tns),

This result is not in conflict with Journé’s counterexample (see [43]) since our di-
lations have three parameters instead of one. That counterexample seems to suggest
the existence of an obstacle to passing R. Fefferman’s argument [25] from the two- to
the three-parameter setting. Journé [43] overcame this difficulty in the context of con-
volution operators on product BMO. Carbery and Seeger [8] have taken this step in
H? (R™ x ... x R™) by showing that, with extra hypotheses on the operators, R. Feffer-
man’s reasoning [25] holds in higher-parameter settings. Han et. al. [35], working with
Hilbert space valued operators and using the Littewood—Paley square function character-
ization of HP, established necessary and sufficient conditions for certain classes of singular
integral operators to be bounded from multiparameter (three or more parameters) Hardy
spaces HP to LP, 0 < p < 1.

To prove Theorem 4.3, we follow the method used in [25], but instead of the original
two-parameter discrete Journé’s Lemma [42], we apply a three-parameter variant (Lemma
4.4) proved by Pipher [54]. The discrete Journé’s Lemma is a geometric result which can
be used to predict the behavior of operators on Chang-Fefferman atoms from their action
on rectangle atoms. As shown in Section 4.4, Pipher’s variant holds on R™ x R™ x R"3

(not just R x R x R). In addition, it holds if the hypothesis that “Q is bounded” is
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replaced by “€2 has bounded measure”, a fact which is used later in her paper. Since
Pipher’s variant on settings with more than three parameters follows by induction [54],
Theorem 4.3 can be extended to settings of the form R™ x ... x R™.

When we are dealing with Calder6n-Zygmund operators, the inequalities (4.3) can be
obtained by imposing certain conditions on their kernels. Our next theorem presents some
sufficient conditions. The statement is similar to that of the so called “trivial lemma” in
[25], but we prove it for all values of p in (0, 1]; not just for p close to 1 as in [25].

Both the (€1, €2,n1,n9)-Calderén-Zygmund operators and the p-(ey, €9, 11, n2)-Cal-
deron-Zygmund operators that appear in Theorem 4.4 are precisely defined in Section
4.2 (see Definitions 4.7 and 4.8). When n; = ny = 1 and € = €3 = ¢, the (€1, €3, 11, n2)-
Calderén-Zygmund operators are the “Calderén-Zygmund operators of type € on R x R”
defined by Journé [41].

Theorem 4.4 (Variant of “trivial lemma” in [25]). Let 0 < p < 1 and let T be a linear
operator on L* (R™+"2),

Ifni/(ng — 1) < p <1, assume that T is a (B, €2,n1, no)-Calderon-Zygmund operator
for some 51 >ny (1/p—1) and €2 > ny (1/p — 1).

If 0 < p<ny/(ny—1), assume that T is a p-(€1, €2, 11, no)-Calderdn-Zygmund operator
for some €5 > ny(1/p—1) and assume also that the [CZ (€2, n2)]-(€1,m1)-kernel K,
associated with T as in Definition 4.7, satisfies

< Cllay — &)™ (4.5)

HD;‘1K1 (xlafl)ch(egm) -

for each o € (Z> 0)"" with |a] = N7 + 1 and for almost every xy # & € R™. Under
these hypotheses, the first inequality in (4.3) holds for some §; > 0 and for any rectangle
(p,2)-atom a on R™ x R"™ supported on Iy x Iy. By symmetry, the second inequality in

(4.3) can be obtained by interchanging the variables xo and x.

Observe that, by the definition of (e, €2, nq, ny)-Calderén-Zygmund operator (Defini-

tion 4.7), if T is a such operator, then T is associated with [C'Z(e;, n;)]-(€;, n;)-kernels
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(Definition 4.4) K;,i € {1,2}, j € {1,2}\{¢}, which satisfy the Hérmander type condition

/ ||Kz (ZEZ‘, yz) - Kl (x17§i)||CZ(ej,nj) dl’z S C (28)761. for all s € N. (46)
llzi—&ill>2° [lyi—&ill

Theorem 4.6, stated and proved in Section 4.5, gives sufficient conditions on the kernel
of a Calderén-Zygmund operator for (4.4) to hold, thus extending Theorem 4.4 to the
three-parameter setting. The result of Theorem 4.6 was proved by Pipher [54] for values
of p close to 1 and settings of the form R x ... x R. She also stated (without a proof)
that this result holds for all p € (0, 1] if more smoothness is assumed on the kernel.

With the crucial estimates of Lemma 4.1, we can relax the sufficient conditions for a

distribution to be in H? (R™ X ... x R™). Specifically:

Theorem 4.5. Let 0 < p < 1 < g < o0 and r € {2,3}. Suppose that a distribution
fe S (Rt can be written as f =Y po | Apay converging in &' (R™*-+1) where

{M\e}y € P and each ay, is a rough (p, q)-atom on R™ x ... x R™. Then
feH"(R™ x . x R™) and ||f|5, <C> [\l
k=1

for some constant ¢ independent of f.

It is clear that when one decomposes distributions in H? as sums of functions, it is
better to have as much smoothness as possible. However, for the sufficient condition, it
is preferable to have fewer requirements on those functions.

Contrasting with Chang-Fefferman atoms [12], our rough atoms do not have any re-
quirement related to smoothness of the elementary particles. Furthermore, the elementary
particles of our atoms do not need to be in L* either (this L boundedness was used in
[12] to prove that Chang-Fefferman p-atoms are uniformly bounded in H? (R™ x R"?)).
The fact that, for p = 1, Chang-Fefferman elementary particles do not need to be smooth
nor in L™ is known [47]. For 0 < p < 1, it was proved [36] that if a function belongs
to H? (R™ x R™) N L2 (R™*"2) for some 1 < ¢ < oo, then it can be written as sum

of (p, q¢)-product-atoms with coefficients in [P, where the so called “(p, ¢)-product-atoms”
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[36] are rough (p, q)-atoms requiring some extra conditions. Unlike the results in [36],
which depend on a discrete Calderén’s identity, ours rely on variants of Journé’s Lemma.

In [12], it was asked whether it is possible to improve the requirement of vanishing
moments up to order |2/p — 3/2] on each coordinate factor of the elementary particles
of the atomic decomposition of H? (R x R). By Theorem 4.5, the answer is affirmative:
for H? (R™ x R™), it is sufficient to have vanishing moments up to order [n; (1/p —1)]
on the j-the coordinate, j = 1,2, of the elementary particles. In the case ny = ny = 1,
this result was obtained by Han [34]. The reason why we have these lower numbers is
that, by working with the radial maximal function instead of the square function (as in
[12]), we avoid an early use of Holder’s inequality.

In Section 4.2, we introduce some necessary notation and prove technical results that
will be used in the subsequent sections. The proof of Theorem 4.1 is in Section 4.3,
where we present, for the sake completeness, Papoulis’ construction of a function that
proves this result. Section 4.4 is about Journé’s Lemma and contains two variants of
it. In Section 4.5, we prove Theorems 4.2, 4.3 and 4.4; we present Theorem 4.6 — a

three-parameter variant of Theorem 4.4 — and we show Theorem 4.5.

4.2 Definitions and Technical Results

We use the standard notation |x| := max{n € Z : n < z} for € R, and by |A| we denote
the Lebesgue measure of a measurable set A C R". We say that a set in R" x ... x R"

is a rectangle if it has the form

R(z,t):={(y1, ., yr) ER™ x .. X R™ ¢ ||zj — yjllpn; <t;,1 <j <}, (4.7)

for some z; € R%, ¢t; > 0, 1 < j < r, where [|-||gn, denotes the maximum norm in
R™ (where no confusion arises, we will denote it by ||-||). We denote by R, the set of
rectangles of the form (4.7). Given R (x,t) € Ry and € > 0, we define eR := R (x,¢t).
Given a cube I C R™ and a scalar ¢ > 0, we denote by e/ the cube concentric with I

and with edge-length € times the edge-length of I.
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The multiparameter theory differs from the one-parameter in many ways. For in-

stance, the analogue of Hardy-Littlewood maximal function, which is defined by

Ms (f) (z) := sup {|—;’/R|f (y)|dy : R € Rg such that z € R} , f€ Ly, (RmH-Fm)
(4.8)

and called strong mazimal function [39], [62], is not [39] of weak-type (1,1). The dif-
ferentiation of the integrals [60], [32] is considered with respect to rectangles in Ry and
known as strong differentiability, but the multiparameter equivalent of the classical dif-
ferentiation theorem of Lebesgue fails. This is a consequence of the fact that Mg does
not map L' into weak L' [32].

On the other hand, Mg is bounded on L7, 1 < ¢ < oo, and satisfies a weak-type
L (log L) ™" inequality [39], [32]. We will refer to this fact as the strong mazimal function
theorem.

The collection of dyadic cubes in R™ will be denoted by D". We say that a set
R C Rm** i a dyadic rectangle in R™ x ... x R™ if it has the form R =1; x ... x I,
for some cubes I; € D", j = 1,...,r. Given an open set 2 C R™™*" with finite
measure, we let M (€2) be the set of mazimal dyadic rectangles of 2 [25], where a dyadic
rectangle I; x ... x I, is said to be maximal when, for any j = 1, ...r, if there exists J; in
D" such that I; C Jyand Iy x ... x Iy x J; X Ij—y ... x I, C 2, then I; = J;.

We denote all constants by ¢ or C', where ¢ (or C') may vary from line to line and may
depend on the dimension of the space and other fixed entities. Sometimes we will put a

subscript on ¢ (or on C) to indicate these dependences.

Definition 4.1. Let 0 < p < 1,1 < ¢ < 00. A function a is called a rectangle (p, q)-atom

on R™ x ... x R"™ if it satisfies
supp (a) C R, where R=1; x ... X I, (4.9)
for I := {y; € R" : |ly; — 0j]lgn; < tj}, 0; € R™, t; > 0;

lall, < |R"/*77 (4.10)
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/a (T1,Y2y - yp) 2)day = .. = /a (Y1, Yre1, @) o da, = 0 (4.11)
for all (y1,...,y,) € R™ x ... x R™ and all a; = (Oéj]_7 ...,Oéjnj) € (Zso)"™ with
oy =) i SN = {nj (2—) - 1)J : (4.12)
i=1

Remark 4.1. The definition above is based on that of rectangle atoms found in [13], [25],
[26] and [27]. On these works, ||-

g 48 the maximum norm and g = 2. When q = oo,

the term 1/q in (4.10) and in the proof of Lemma 4.1, is defined to be zero.

Definition 4.2. [18/ By HE,, (R™ x ... x R™), 0 < p < 1, we denote the space whose
elements have the form Y, Agay, where {\;}, € 7, each ay, is a rectangle (p,2)-atom on

R™ x ... x R™ and the series converges in 8" (R™*+7r),

The following lemma provides the essential estimates for the behavior of a radial

maximal function on rectangle (p, ¢)-atoms.

Lemma 4.1. Let0 < p < 1 < q¢ < 00 and let a be a rectangle (p, q)-atom on R™ x. . . xR™
supported on Iy X ... X I.. For~yy,...,v >2and1 <i <r,ifU = (y1I1) X ... X (yi—1Li—1) X

R™ x (’7i+11i+1) X oo X ('77’]7‘); then

/ (M (@) < corrprpa [ %" "7 (4.13)

1<j<r
j#i

where p; :=n; (1/p — 1) — N; and the multiparameter radial maximal function
M= M1 (4.14)

is defined as in (4.1), with each Schwartz function ¢’ being nonnegative, radial (w.r.t.
the norm ||-||gn,; ), bounded by 1, supported on {y; : ||y;|lgn, <1} and having integral 1,

jg=1..r.

Proof of Lemma 4.1. In order to simplify the notation, we prove the result in the case

1 =r and r = 2. The modifications in the argument for the case r > 2 will be mentioned.
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Let 9 be as in (4.14) and let a be a rectangle (p, ¢)-atom on R™ x R" supported on
R = I x I,. Since our goal is to show f(’yIl)CXRW (M (a))’ < CyMm=YP we can assume
w.l.o.g. that I; is centered at the origin of R"/, j = 1,2, respectively.
To estimate that integral, we divide (/1) x R™ into two sets: (v[;) x 2[5 and
(v11) % (215)° (in the case r > 2, we divide (y111)" X ... X (yp—1L,—1)* X R™ into (y111)" X
X (Yp_1Lr—1) x 2@ and (y111) X ... X (y—1L,—1)° X (21,)); the rest of the argument is
analogous to the case r = 2). We will integrate (901 (a))” on each of these sets separately.

Let x € (v[1)¢ x 21, and note that

| (01, -5,) * a(z)| g/

P

/ a(y1,y2) ¢, (1 — y1) dyr | @, (22 — yo) dyo. (4.15)

Iy

By (4.11), we can subtract from ¢! (tl_l (r1 — yl)) the Taylor polynomial of order N; of
¢! at t;'z; evaluated at t;' (z; — y1) (in the case r > 2, we use the Taylor polynomial

of @7 of order N to deal with the integral in each y;, j = 1,...,r — 1). This yields

|] |/\f1+1 /n1
<C——— g /|a Y1, Y2)| dy

/ (11, 92) SOtl (1 —y1) din

Iy

for any t; > ||z1]| /2. So, for 1 < ¢ < o0,

|Il|(N1+1 /n1+1-1/q /a
S C H Hnl+N1+1 </ |CL y17y2 | dyl) = F(xl’y2)7

(4.16)

’/a (Y1, y2) 90%1 (z1 — 1) dyr

for any t; > ||z1]| /2, and if ¢ = oo, then

’ (N1+1)/n1+1

et o= wyan SCW lalle = Fenw),  (@17)

for any t; > |[z1] /2. Since M (a) () = SUP; <y j2: om0 | (01, -01,) * @) (x)| for any
x € (v[1)° x 215, plugging (4.16) into (4.15), we get

M (a) (x) < sup /F (21, 92) @3, (w2 — y2) dyo < O Mz (F (1,-)) (22) (4.18)

t2>0
for any x € (v[1) x 215, where Mz (g) (x2) = supy,~q |}, * g (x2)] for g € S’ (R™).
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Plugging (4.17) into (4.15), we also obtain (4.18). So, in the case 1 < ¢ < o0,

/(711)C><212 (M (a) (z))P do < C/wl)c/b(im@? (F (z1,-)) (22))? dwody

<c 1Bl | [ @0 (P @) ) " e,

p/q
g0|12|1—p/Q/ [/(F(ml,-)(xg))quz} d,
(v1)*©

-y ‘[1|(N1+1)p/n1+pfp/q p/q
= C |_[2| P q/ |:/ |CL (y17$2)|qdy1d$2:| d[L‘l
any fla| L

—(n1+N1+1)p+n
=C |IQ|1—p/q |]1|(N1+1)p/n1+p—p/q <7 |f1|l/nl) 1+N1 1

p
lallg
p
=C (3 R ) (419
while, in the case ¢ = oo,

p

/(I o (9 (a) (z))F dz < C || |F (x1,)|]", dzy = C (,yurl |R|/? HCLHOO>
vyi1) X2l2

(4.20)

(vI)°©

For x € (v1)° x (212)°, we use (4.11) to get

" [T ||
|(§0t1'gpt2) * a(m)‘ S C t?l+N1+1t§2+N2+l /[ ; ’CL (y17y2)| dyldyQ
2J I

|1 WD | N e g

Hxl”nl-l—/\/ﬁ-l sz”m—i—/\/ﬁ-l ’

for all t; > |lz;]|/2, 7 = 1,2. Since, when z is in (vL)° x (20)°, M(a) ()

= 5Py o, 2 | (1, 47,) * @) ()], we obtain

p
/ (Ma)f < € (27 RV all,) (4.21)
(vI1)x(212)°

To conclude the proof of the case 1 < ¢ < oo, we combine the estimates (4.19) and
(4.21) and condition (4.10). In the case ¢ = oo, the conclusion follows from (4.20), (4.21)
and condition (4.10). O

65



The definition below is based on that of Chang-Fefferman p-atoms on R x R [12], [25].

Definition 4.3. Let 0 <p <1 < g < 00. A function a is said to be a rough (p,q)-atom
on R™ x ... x R"™ if it satisfies

(A) supp(a) is contained in some open set @ C R™*" of finite measure,

(B) lall, < 107,

(C) a = ZREM(Q) agr, where each agr is a function supported on 4R for some distinct

mazximal dyadic rectangle R € M (QQ) and satisfying (4.11), and

Y larlg < 10", (4.22)
REM(Q)
Note that, for each function ap defined above, [4R|Y4~/" HaRH;1 ar is a rectangle

(p, q)-atom on R™ x ... x R™ as in Definition 4.1.

Remark 4.2. Every f in H? (R x R) can be expressed [12], [25] as a sum f =3, o | Mgy
converging in 8" (R?), where {\¢}, € " and each ay, is a Chang-Fefferman p-atom on
R x R (in particular, each ay, is a rough (p,2)-atom on R x R). The argument that was
used in [25] to prove this result also works in the setting R™ x ... x R™. Thus every f in

H? (R™ X ... x R™) can be expressed as

F=> MaginS (R4 (4.23)

k=1

where {\;}, € 1P and each ay, is a Chang-Fefferman p-atom on R™ x ... x R", and the

norm HP norm of f satisfies

oI < el I (4.24)
k=1

where ¢ does not depend of f. We will use the decomposition (4.23) in the proofs of
Theorems 4.2 and 4.53. In those proofs, we do not need the smoothness of the elementary
particles of Chang-Fefferman p-atoms on R™ x ... x R™; all that we need are the fact

every Chang-Fefferman p-atom on R™ x ... x R™ is a rough (p, q)-atom on R™ x ... x R™

and the bound (4.24).

As we mentioned in the introduction, we will deal with Calderén-Zygmund operators
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that satisfy certain conditions which are similar to those which Journé [41] requires on
the definition of “Calderén-Zygmund operators of type €”. The terminology that we use

in our definitions come from [29] and [41].

Definition 4.4 ([41]). A locally integrable function K, defined on the complement of
A, = {(z,y) e R" x R": x =y} and taking values in a normed space V', is called an

V'-(e,n)-kernel if there exists € > 0 and a constant A > 0 such that

/ 1K (2,9) — K (2,6)]ly de < A(2) ™ for all k € N. (4.25)
lz—¢&ll>2%[ly—¢]|

We let
| K|y, :==inf{\ > 0: (4.25) holds} . (4.26)

Definition 4.5. A locally integrable function K, defined on [(R™ x R™)\A,,]
x [(R™ x R™)\A,,| and taking values in a normed space V, is called an 'V -(€1, €2, n1,n2)-

kernel if there exist €1,€5 > 0 and a constant X\ > 0 such that

- < k) €1 1\ —€2
/x1£1>2ky1§1||||K1’2 (21,41, 02, y2) — K12 (21,81, 22, &) ||, do < /\(2 ) (2)
22 —&2(|>2"|y2—&2||

(4.27)
for all k1 € N. We let

Ky, ey = Inf{A >0 (4.27) holds} . (4.28)

We now introduce the definitions of the Calderén-Zygmund operators that we will
deal with. Our multiparameter operators will be of one-parameter in each variable. So

we begin with the definitions in the one-parameter setting.

Definition 4.6 ([41]). Let ¢ > 0. A continuous linear map Ty from C§° (R™) into
[Cs° (R™)) is a singular integral operator (SIO) of type (e,n) if there exists a C-(e,n)-
kernel, K, such that for f,g in C§° (R™) with disjoint supports

@) e = [ [ K lwn) g (@)dady, (1.20)
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where (Ty(f), g)gn denotes the action of To(f) on g.
Given a bounded linear operator T on L*(R"™), we say that it is an (e,n)-Calderdn-
Zygmund operator if there exists a SIO of type (e,n), Ty, such that T extends Ty. In this

case, we say that T is associated to the C-(e,n)-kernel K, the kernel corresponding to Ty,

as in (4.29).

We denote the space of (€, n)-Calderén-Zygmund operators by C'Z (e, n) and we define
a norm on it as follows: if an operator T', in CZ(¢,n), is associated to a C-(¢,n)-kernel

K, then its CZ(e,n)-norm [41] is
||T||GZ(e,n) =Tl o2 + |K|C,e' (4.30)

Endowed with this norm, the space C'Z(¢e,n) is a Banach space [41].

Remark 4.3. Note that, if an (e,n)-Calderdn-Zygmund operator T is associated to an
Lj,e RM\A,) function K as in Definition 4.6, then T(f) (z) = [z K (. y) f (y) dy, for
all f € L (R™) with compact support and almost every x & supp (f), and this integral
representation is absolutely convergent. Note also that if, in addition, [f =0 and I is a

cube centered at the origin 0 of R™ such that supp(f) C I, then

Tuxmz/uaaw—Kum»ﬂw@

1

for almost every x ¢ 1. This and (4.30) yield

QLMMWWW@WWSAM;MWm@@—K@@MQU@W@

< (2%) "INl czqem If1ly for all k € N.
In the two-parameter settings, we have the following.

Definition 4.7 (Based on Definition 8 in [41]). Let ¢; > 0, j = 1,2. We say that a
continuous linear operator Ty from Cg° (R™) x CF° (R"2) into [CF° (R™) x Cg° (R"2)]' is

a SI0 of type (€1, €2,n1,n9) if it satisfies:
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(1) there exists a [C'Z(eg,n2)]|-(€1,n1)-kernel, Ky such that

T (£ 2 )9 Dgesnns = [ [ @1m)] (), D)ganey £ () 9 (1) drdy
(4.31)

holds for f,g in C§° (R™) with disjoint supports and v, in C§° (R™?), where the map
(z1,71) € (R"™ x R")\A,, — Ky (71,11)

is a [CZ (€3, n9)]-valued function, [Ki (z1,y1)] (p) denotes the evaluation of Ky (x1,11) at
@ and (-, ) 2(gnoy Tepresents the inner-product on L? (R"2);

(2) there exists a [CZ(e1,ny)]-(€2,n2)-kernel, Ky, such that

(T 1) 0 ghgnns = [ [ (e (230)) (98 s, (00) 9 02 dial
o (4.32)
holds for f,g in C§° (R™) with disjoint supports, and ¢, in C§° (R™).
A bounded linear operator T on L*(R™1"2) s said to be an (€1, €2,n1,n2)-Calderdn-
Zygmund operator if there ezists a SIO of type (€1, €2,n1,n2), Ty, such that T extends Ty.

In this case, we say that T is associated with Ky and Ks.

We will also deal with operators whose kernels satisfy certain differentiability con-
dition. The order of the derivatives that we require depends on the numbers A; and
Ny, which are defined in (4.12). Note that A; depends on the dimension n; and on the

exponent p, j =1, 2.

Definition 4.8. Let 0 < p < 1 ande; > 0, j = 1,2. A bounded linear operator on
L2 (R™F2) T s called a p-(e1, €2, n1, na)-Calderdn-Zygmund operator if:
(i) T is an (e, €2,n1,n2)-Calderdn-Zygmund operator as in Definition 4.7;

(ii-1) the [CZ (e, n2)]-valued function
(z1,91) € R™ X R"™)\A,, = Ky (21,91)

such that (4.31) holds is of class CN'*' in the variable y, and for each multi-indice
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o € (Zxo)" with |a| <Ny 41, Dy Ky is a CZ(ez,m2)-(e1,n1)-kernel; and
(1i-2) item (1i—1) of this definition holds with the roles of 1 and 2 interchanged and the

a’s replaced by multi-indices B € (Zso)™ with |B] = Na + 1.

We denote the space of (e1,€9,n1,n9)-Calderén-Zygmund operators by
CZ(e1,€3,n1,n2) and we define a norm [41] on it as follows: if an operator T in
CZ(€1,€2,n1,n9) corresponds to a pair (Ki, Ks) of a [CZ(ez,ny)]-(€1,n1)-kernel, K,
and a [CZ(e1,n1)]-(€2,n2)-kernel, Ks, as in (4.31) and (4.32) respectively, then the

CZ (e, €3,m1,n9)-norm of 7' is defined [41] by

||T||CZ(51762,TL1777,2) = ||iz—'||L2—>L2 + |K1|VQ,€1 + |K2|V1,62 ’

where Vj denotes the space CZ(e;,n;), and |K;l,, . is defined in (4.26), i = 1,2, j €
{1211},

Similarly, we denote the space of p-(e1, €2, n1, ny)-Calderén-Zygmund operators by p-
CZ(€e1,€2,n1,n9) and we define the p-CZ(eq,€9,n1,n2)-norm of an operator T in
p-CZ (€1, €2,n1,n9) corresponding to a collection of kernels K ., Ko g, a € (Z>0)"" with

la] <N+ 1, B € (Z0)™ with |B] < N, + 1, as in Definition 4.8, by

||T||p—CZ(61,62,n1,n2) = ||T’||L2—>L2 + Z |D31K1|V2761 + Z |D52K2|V1,52 ’
la|=N1+1 |B|=N2+1

where here Vj is the space C'Z(€;,n;), and the terms ‘D;‘ K are defined

1

b, 16|
‘V2761’ Dy2K2 Vi,e2

in (4.26).

Remark 4.4. If an (e, €2,n1,n2)-Calderdn-Zygmund operator T is associated with an

([CZ(€e3,m2)]-(€1,n1)-kernel Ky as in Definition 4.7, then
<T (’LL ® 50) U ® w>R"1+n2

= [ )] (9) = [ (00, 00) () ey ) (o) i, (439

for all u,v in C§° (R™) with disjoint supports, with u satisfying [u =0, and every ¢,
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in C3° (R™). Since the CZ (€3, n2)-valued function
(z1,91) € R™ X R"™)\A,, = Ky (21,51)

is locally integrable on (R™ x R™)\A,,, for any f in L>®(R™ x R"?) satisfying
supp(f) C Iy x Iy for some cubes Iy C R™, I, C R™, with I; centered at the origin
0; of R™, j =1,2, and for almost every (x1,x2) € R™ x R" with x1 ¢ I, the represen-
tation

T(f) (1?1,4172):/[}(1 (1, 0] (f (1, -)) (22) dy (4.34)

I
holds; here [Ky(x1,y1)] (f (y1,)) (x2) denotes the evaluation at xs of the operator
(K1 (w1,51)] on the function yo v+~  f(y1,°) (y2) = [f,92). If, in addition,
[ f (y1,y2) dyr = 0 for all yo € R, then (4.83) and (4.54) yield

T(f) (w1, w2) = / (K (21, 91)] = [Ka (21,00)]) ( (91, -) (22) dyn, (4.35)

I
for almost every (xq1,xr2) € R™ x R™ with x1 ¢ I.
The analogue of Definition 4.7 for three-parameter settings is:
Definition 4.9 (Based on Definition 8 in [41]). Let e; > 0, j = 1,2,3. We say that a
continuous linear map

Ty O (R™) x CFF (R™) x C° (R™) — [C° (R™) x CF° (R™) x C° (R™)]

is a SIO of type (€1, €2, €3,M1, N9, N2) if it satisfies:

(1) there exists a [CZ(e3,n3)|-(€1, €2, 11, no)-kernel, K,

(To (f1® f2 @ ©), 91 ® g2 @ V) gnytnyins

:/ / / / (K12 (1,41, 22, 42)] () ) pageay 1 (1) daydyndaydy,
R71 JR™1 JR"™2 JR"2

91 (1) f2 (y2) g2 (22)
(4.36)
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holds for fi,g1 in C3° (R™) with disjoint supports, fa, g2 in CF° (R") with disjoint sup-
ports and ¢, in CF° (R™);

(2) the analogue of item (1) of this definition holds with (2,3, 1) instead of (1,2,3); and
(3) the analogue of item (1) of this definition holds with (3,1,2) instead of (1,2, 3).

A bounded linear operator T on L*(R™1"2) is said to be an (€1, €2,n1,n2)-Calderdn-
Zygmund operator if there exists a SIO of type (€1, €2, €3,n1,n9,13), Ty, such that T ex-

tends Ty. In this case, we say that T' is associated with Ko, K3 and Ks ;.
The analogue of Definition 4.8 for three-parameter settings is:

Definition 4.10. Let 0 < p < 1 and ¢; > 0, 7 = 1,2,3. A bounded linear operator
on L? (Rm*m2tn3) T s called a p-(e1, €2, €3, M1, N2, n3)-Calderdn-Zygmund operator if it
satisfies:

(i) T is an (e, €2,n1,n2)-Calderén-Zygmund operator as in Definition 4.9;

(7i-1) the [CZ(e3,n3)|-valued function

(x1,y1,T2,92) € [(R™ x R"™)\A,,,| x [(R" x R"™)\A,,] = K12 (21,91, %2, y2)

such that (4.36) holds is of class CM*1 in the variable y, and for each multi-indice
o € (Zxo)" with |a| <Ny 41, Dy K5 is a CZ(e3,n3)-(e1, €2, 01, n2)-kernel;

(1i-2) the analogue of item (ii—1) of this definition holds with (2,3,1) instead of (1,2,3),
and multi-indices 8 € (Z>0)"* with |8] < Na+ 1; and

(ii-3) the analogue of item (ii—1) of this definition holds with (3,1,2) instead of (1,2,3),

and multi-indices v € (Z>o)" with |y] < N3 + 1.

In Definitions 4.9 and 4.10, we only have three of the six possible permutations of
{1,2,3} because those three are all we need.

We denote the space of (ey,e€9,€3,n1,n9,ng)-Calderén-Zygmund operators by
CZ (€1, €9, €3,n1,n2,n3) and we define a norm [41] on it as follows: if an operator T

in CZ(ey, €3, €3,n1,n2,n2) corresponding to a triplet (K2, Ko3, K51) of kernels as in
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Definition 4.9, then the C'Z(ey, €3, €3, 11, ng, ng)-norm of 1" is

||T||CZ(51762,63,711,77/2,713) = ||T1||L2—>L2 + |K172|V3,61,62 + |K2=3|V1,62,63 + |K3’1|V2,63,61 ’

where Vj, denotes the space C'Z (e, ny), and the terms |K; ; 's are defined in (4.28).

|Vk,6i,€j
Similarly, we denote the space of p-(e1, €3, n1, ng)-Calderén-Zygmund operators by p-
CZ(€e1,€2,n1,n2). The p-CZ (€1, €2,n1,n2)-norm of an operator T' € p-CZ(ey, €2,n1,n2)

corresponding to kernels K o, K33, K31, as in Definition 4.10, is given by

||T||p—CZ(61,€2,63,n1,TLQ,ng) = ||T‘||L2—>L2 + Z ‘D;Klglv},,eheg

|Oé‘:./\/'1+1
E ’ B E Y
+ |Dy2 K2’3‘V1,62,63 + }Dng&l ‘V2753»51 ’
Bl=N2+1 Iy|=Ns+1

where V; = CZ(¢j,n ), and the terms ‘D;1K1=2‘V3,€1,62’

23| s
DyZKZ’?’ Vi,e2,e3’ Dy3K3’1 Va,€e3,€1

are defined in (4.28).

4.3 Papoulis’ Function Belongs to H'.

Let € > 0. Papoulis used the construction below to build a function f on R? such that
the upper strong derivative of f | f| is equal to +o00 almost everywhere on a set of measure

greater than 11/15 —e. So any € € (0,11/15) will yield a set of positive measure. Define

| —

Y\ A
U(N).—;,, O(N)=1-—- NEeN

<

and note that 0 < #(N) < 1 and (log2) (logy, N) =log N < o (N) VN € N.

Step 1: Let Sy := (0,1)%(0,1), Ny := 16 and choose k; € N such that (6 (N;))™ < €/2.

On S; we consider the following N; rectangles

(1,5) J 1 .
I =0, = 0, — 1 <3 <N,.
! (’N1>X(7j)’ =J =

The union of all these I {l’j Vs is the staircase set denoted by Vl(l) and shown in Figure
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1. It satisfies

N ) )

-1 1
U(‘]N T@)X(O"-)
1< 1 1 J

The set Fy (S;) = 51 — Ujll(l’j) will be called the remainder. Its area is |E; (S1)| =

11 o (Ny)

W] = =51l (1= 0 ().

(4.37)

0 (N1) |S1].
Figure 4.1: Figures 1, 2 and 3 of Papoulis’ example
{67) : . ’

Figure 1. /Jl( ) Figure 2. Zoom in on J1(1,2) Figure 3.
1 4 1

0.9

0.8

0.74

0.6

0.5 L :

0 1/16 1/8

Through the vertical sides of the rectangles ]l(l’j ) we draw lines that are parallel to

the zo-axis and that divide F; (S7) into the following (N7 — 1) rectangles

-1 m 1
gm — (2T ~1), 2<m<N,.
1 Nl JNI X m7 9 =M 1

Jl(l’m)’ = N% (1 — i), 2 < m < N;. They are the non-shaded rectangles in

m

which satisfy
Figure 1 (of Figure 4.1), which represents the case where N; = 16.

On each of these Jl(l’m), 2 < m < Nj, we perform the same process that we did on
Sy, i.e. we consider the following N; rectangles

: -1 m-1 1 1 (1-1/m) ,
J@ma) _ (1T O [P Sl 74 1<j<N
1 ) Nl + ng ) + . ) > 7>

Ny m m 7
and we form the staircase set V,*™ = Uj]fzm’j ). By the same argument that yields
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(4.37), we obtain ’\/1(2’7”)) = ‘Jl(l’m)’ (1—6(N;)) and

) - e oo

) we draw lines that are parallel to

Through the vertical sides of the rectangles [1(2’m’j
the xo-axis and that divide E; (Jl(lm)) into (V7 — 1) rectangles. Figure 2 (of Figure
4.1), which represents the case where N; = 16 and has different scales on the horizontal

), 1 < 7 < Ny, whose union, the

and vertical axes, shows Jl(l’m) and the rectangles [ fZ’Q’j
staircase set \/1(2’2), is the shaded region.
After repeating the process on all the Jl(l’m)’s, 2 < m < Nj, we obtain (N7 — 1)

staircase sets Vl(Q’m) and the new remainder
N1
By (81) =8 - — | v®™
m=2

that has area

N1 Nl
By (S1)] = > | =V =0 (i) 3 |1 = (0 ())? |51
m=1 k=2

We proceed recursively, obtaining staircase sets

and a remainder, E (Sy,) :== 5 — ;) — UM, Uk, Ui _ VEmeema) ihat satisfies
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Let

Fl = {1}U{(l{7,m1,,ml)QSTTLZSNl,lS’ZSk—l,2Sk§k’1}

For each ~ € I'y, the staircase set ‘/1(7) is the union of N rectangles ]1(%3' ) of equal area,

which are defined as in the case ;" = U, 177 The intersection of the I\"7)’s forms the

rectangle

N A
Agv) — ﬂ Ifw)
j=1

VI(V)) = ‘JI(V)’ o (Ny) /Ny and ‘Il(w)

By construction, = ‘JI(V)’ /Nj. So,

’A(’Y) [f’}’d) Vl(W) c ’Vl(’Y) v F (4 38)
pr— pr— 3 6 . .
! N, Nio(N) = Nilogy (M)’ S
We define
Al = U Agv),
vel
and we obtain
)
C’VI c|S,| c
Al < Y |0 < < S
’);1—‘1 1 '};Fl N1 10g2 (Nl) N1 10g2 (16) N122

using (4.38) and the fact that the staircase sets Vlm’s are disjoint and are all contained
in Sl'

Step n, for n > 1: Let

Mp—1 = min {length of smallest side of Al(»w}
Y€l n_1; 1<i<p, %

and choose p, s.t. 0 < p, < m, /N2 | and p, € N. Divide S; into p,? squares

{S-(n) , each with side p,,. Let N,, := 22" and choose k,, € N such that (6 (N,,))*" <

‘ }13i§pn2

27"p2e.
Perform on each Si(n), 1 < i < p,?, the procedure that we did in S; to obtain a

<

)

set of disjoint rectangles {A(V)} and a remainder, Ej, <Si(n)) satisfying ‘AZ(-W)
YEAR
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)S@ /N, log, (N,,) and ’Ek (SZ.(”))’ = (0(N,)* s,
Defining
A= U Ao
1<i<p,? 7€l
we obtain

c |5 c
nl < = )
Al < N o, (V) T W

Now, for every n € N, we proceed as follows: For each A = I x J € {Azm} o
we divide it into N congruent rectangles of sides |I| /N2 and |J| /N2. Then, we I;alZe
a chessboard pattern by calling half of these rectangles white and the other half black,
with the rectangle on the top left corner being white, as in Figure 3 (of Figure 4.1). The
set of all white rectangles on A,, will be denoted by W, the set of all black rectangles

on A,, by B,. Finally, we define
fo=2"No Oow, = X8.) 2 f =D fa (4.39)
n=1
Since [|f, ()| dz = 2"N, |A,| < 27" for all n, we conclude that f € L' (R?).

Proof of Theorem 4.1. Let f be the function defined in (4.39). It was shown [53] that
the strong derivative of [ f exists a.e. and the upper strong derivative of [|f] is infinite

on a set of positive measure.

To see that f € H' (R x R), we write

FaX 4
f= 3 2" N, | AL —A() (4.40)
neN; vely; 1<i<py? 2" N, ‘Aiv
and we note that
Z 2" N, [A"] < oo

neN; yelp; 1<i<p;,>

and that each f,x ¢/ (Z”Nn AEV)

) is a rectangle (1,2)-atom. So, by (4.40), f €

}{1

rect

(R x R). Thus f € H' (R x R). O
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4.4 Higher Dimensional Journé’s Lemma.

A proof of the discrete version of Journé’s Lemma [42] in the setting R x R can be
found in [42] and [67]. As mentioned in [42], the discrete version holds in the setting
R™ x R™ and also for sets of finite measure. This known result, which is the content
of Lemma 4.2, is often used in the context of product Hardy spaces (e.g. [25]), despite
the fact that no proof of it can be found in the literature. Unlike what happens in
R x R, in the setting R™ x R™ the discrete version is not an immediate corollary of the
original Journé’s Lemma (Proposition 1 in [42]). In higher-dimensional product settings,
a different argument is required.

For higher-parameter variants of Journé’s Lemma, one can look at [54] and [6]. In
Subsection 4.4.2, we show that the proof of Lemma 1.4 in [54] holds in the setting R™ x
R"2 x R™ and for sets of finite measure.

Some notation is necessary. Let [ in D™ and ¢ € N. To be consistent with [54] and
[67], the unique (i-th generation dyadic parent of 1) @ in D™ such that @ NI = @ and
|Q| = 27 |I| will be denoted by A; (I). The collection of 2% cubes @ in D™ such that
QNI=1Tand |Q|=2""|I] will be denoted by A_; (I). Note, to avoid confusion, that

A; (I) is cube, while A_; (1) is a set of cubes.

4.4.1 Two-parameter Setting

Given an open set  C R™*"2 with finite measure, we denote the set of dyadic rectangles
I x I, C Q which are maximal with respect to the z;-direction by M;j (). Specifically,
the elements of M (Q2) are dyadic rectangles I; x Iy C € such that if I x I is a dyadic
rectangle in R™ x R"2 such that I] x Iy C €2, then I; = I]. Define M5 (£2) analogously
and note that M () = My () N M ().

Define Q; := {Mg (xq) > 1/2} and for each I x I, € My (Q2), let fl x Iy be the unique

rectangle in M (€2;) having the form I} x I, with I D .

Lemma 4.2 (Journé’s Lemma [42]). Let Q C R™™2 be an open set with finite measure

and let w be a mnonnegative, mnondecreasing function on (0,00) satisfying
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oy kw (2*”1]“) < 00. Then

U TxJ/<clq (4.41)
IxJeM2(Q)
and
I
S w2 < el (4.42)
IxJeM2(Q) ‘I‘

where the constant C' is independent of €).

The proof of this result follows a reasoning described in [67]. It requires the following

lemma:

Lemma 4.3 (Variant of Lemma 1.40 in [67]). Let Q and w be as in Lemma 4.2 and, for

each I € D™, consider the collection

E (Q):={JeD=:1xJcCQ}.

Then

N I
> yuzw(mi(’[)’) JeE,m)U J| <cl9]. (4.43)

IED™ k=0 \Ea, 1 (n(Q)

Proof of Lemma 4.3. Denote E; := Er(§2). Since Ej\Ea,,,) can be written as the
disjoint union

(B\Eayn) U U (Bayn)\Eayn)

the sum in (4.43) equals

Z ‘I’ [ZU}(Q_HNC)] Z ‘UJGEIO\EAl(IO)J‘

JeDn1 k=0 Ip€D"1:ICIoCAR(T)

S w(emhy ¥ S |Ysemraa 7] |- (4.44)

oo
=0 IpeD™ \ IeD"1:ICTlyCAk(I)

k
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For each fixed k € {0,1,...} and I, € D™,

1]
Z |]| ‘UJEEIO\EAl(Io)J‘ - Z |]O| ’UJEEIO\EAMIO)J m

IeD™1:ICIoCAR(]) IeD™1:ICIaCAR(])

k
— Vol [Use\may | D027 AT 1€ Ay (1)) = Gk + Dol |[Uremm\a, 7
j=0

Therefore (4.44) is equal to
> (k+ 1w (27 [ DRI ‘uJeElo\EAl(IO)J‘] : (4.45)
k=0 IoeD™

Note that

Z [ o] ‘UJEEIO\EAI(I())J‘ =1Q]. (4.46)

IpeD™1

This equality holds because €2 = Ujcpni [I X (UJGE,\EAI(I) J)] and the union is disjoint.

To obtain (4.43), plug (4.46) into (4.45) and use the assumptions on w. O

Proof of Lemma 4.2. The estimate (4.41) follows from the definition of T and the strong
maximal function theorem.

To prove (4.42), we define
Af,k-‘rl = {JGD”Q 1 % JEMQ(Q), Ak(]) x J e My (Ql)},

for each k € N and each I € D™. Then we write the sum in (4.42) as

> \I!Zw (27) > 1]

IeDm™ JeDm2:IxJeMz(Q), T=Ag(I)

= > uyzw ™ > M- (4.47)

IEDnl JEA]’k+1

We claim that for each k € {0,1, ...} and each I € D™, the following holds:

if J?é J e Al,k+17 then JNJ' = 0.
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To see this, note that whenever two distinct dyadic cubes have intersecting interiors,
one is properly contained in the other. This cannot happen in the case of J and J’
because we are assuming that both / x J and I x J’ belong to Ms (£2). Hence the sum

in the brackets in (4.47) is equal to |Ujea, ,,,J|. This yields

IxJeM2(R) IeD™

SENHIE ﬁ < 3w e

Now, by Lemma 4.3, to finish the proof of (4.42), it suffices to show that

|UJeAI,k+1 J’ <c

UJGE]\EAk+1<I>J (448)

for all I € D™ and k € {0,1,...}. So fix I and k, and let Jy be in A;j4i. Then
I x Jy € My(£2) and I=A, (I). Since T is the largest dyadic cube satisfying I x Jo C
{Ms (xq) > 1/2} and I O 1, its dyadic parent A, (f), which is Agyq (1), must satisfy

‘((Al (f>) X Jo) HQ‘ <27 ((Al (f)) x JD‘ =91 )Al (f)‘ 1 Jo| (4.49)

By the definition of Ea,, () (2), the set (Agyi (1)) X <UJ6EAk+1(I) J) is contained in €.
This inclusion and (4.49) yield

At (Do 0 (Useray )| = |@kir (D) x (o1 (Ve 7))

< [(Aps1 (1) x Jo] N Q| < 27 [Appr (1)] | o]

This implies

o0 (Wersin) | 227 10l (4.50)

Since every cube in the collection to Ay x4 is belongs to Ej, we have Jy C Ujeg,J. So

(4.50) yields
’Jo N (UJEEI\EAk+1(I)J>’ = ‘Jo N (User,J) N (UJGEAk+1(I)J> ’ > 27 ol
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Letting Vi = UjeE‘I\EAk+1(I)J, we obtain J, C {M (XVI,k) > 1/2}7 where M is the
Hardy-Littlewood maximal function. Since Jj is an arbitrary element of Aj 41, we con-

clude that
U Jc{M(xw,)>1/2}.

JEAT k41
Then Hardy-Littlewood maximal function theorem yields that ‘U JeAr w1 | is bounded

, which shows that (4.48) holds with a constant ¢ depending

above by ¢ UJEEI\EAk+1(I)J

only on ns. ]

4.4.2 Three-parameter Setting

Given an open set 1 C R™™"2™ with finite measure, we denote the set of dyadic
rectangles R = [} X Iy x I3 C  which are maximal with respect to the x;-direction
by M (2). Define My (2) and M3 () analogously and note that M (2) = M (Q2) N
My ()N M3 (Q).

Let
Q= {x: Ms(xa) (z) >1/2} and Qg := {z: Mg (xq,) (z) > 1/2}

and for each I} x Iy x I3 in M3 (), let ]Al X I x I3 be the unique rectangle in M; (£24)
having the form I} x I, x I3 with I} D I;. Similarly, to each I] x Iy x I3 in Mj3(Q), let
I x I, x I3 be the rectangle in M3 (€22) having the form I] x Iy x I with I, O I.

In the statement of Lemma 4.4 below, each rectangle I x J x K is constructed from
a rectangle I x J x K in M3 (2) according to the following two steps method:
(i) Beginning with [ x J x K in M3 (Q), we define I x J x K to be the unique rectangle
in M; (1) having the form I} x J x K with I’ D I.
(ii) From T x Jx K, which is a rectangle in M, (£21), we define I x J x K to be the
unique rectangle in M, (Q,) having the form I x J' x K with J' O J.

Note that fdepends on [ x J x K, while jdepends onlxJxK.

Lemma 4.4 (Variant of Pipher’s Lemma [54]). Let Q C R™ 273 pe an open set with
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finite measure and let v and w be nonnegative nondecreasing functions on (0,00) such

that Y pe, kv (27™%) < oo and Y 3, kw (27"2%) < oo. Then

U IxJxK|<c|Q
IxJXxKeM3(Q)

and

3 ‘IxeK‘ M () <o,

IxIxKeMs3(Q) )f‘ )j‘

where the constant c is independent of €2.

(4.51)

(4.52)

As mentioned above, this result can be shown with the argument developed by Pipher

[54]. Its proof needs the following three-parameter analogue of Lemma 4.3:

Lemma 4.5 (Variant of Proposition B in [54]). Let ©Q and w be as in Lemma 4.4 and,

for each I in D™, consider the collection

Er(Q):={JxKeD”?xD":IxJxKCcCQ}.

Then

ZUlZ < ] >|) (U Jx K| <cl).

IeD™ Q\Ea,,,(1)(©)

Proof. Denoting E; := E; (), we can express the sum in (4.53) as

Z ‘I‘ [ U 2 nlk’)] Z ’UJXKGEIO\EAl(IO)J X K’
=0

IeD™ IoeD™1: ICIoCAL(I)

U n1k Z Z |]| ‘UJXKEEI()\EAl(IO)J X K‘

0 lo€D™1 | IeD™1:I1CIoCAL(I)

Mg

el
I

For each k € {0,1,...} and Iy € D™, the sum in the brackets in (4.54) equals

i

> Il

UJXKGEIQ\EAl(IO)J X K‘ ’
IeDm1:ICToCAR(I)
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k
= |lo| ‘UJXKGEIO\EAl(IO)J X K‘ Z Z 9-mj

J=0 IeA_;(Io)
= (k+1) |l )UJXKEEIO\EAl(Io)J X K‘ '

Plugging it back in (4.54), we get that (4.54) is equal to

D (k+1)v(27mF) [ DA ‘ijKGEIO\EAl(IO)J X K’] . (4.55)
k=0 IheD™

Since €2 can be expressed as Urepni I X (UJXKGEIO \Ea, (1) J % K) and this union is disjoint,
the sum in the brackets in (4.55) equals |2]. This fact and the assumptions on v imply
(4.53). O

Proof of Lemma /.4. The estimate (4.51) follows from the strong maximal function the-

orern.

To prove (4.52), define
AI,k—i—l IZ{JXKGDn2 XDn3ZIXJXK€M3(Q)7 Ak(]) X JXKEMl(Ql)}7

Af g1 = U J X K,

IXKEAL p11
for each k € {0,1,...} and each cube I € D™. Note that if I x J x K is in M3 (Q2) and
A (1) x J x K is in My (y), then J x K € My (Arxi1). Recall that My (A k1) 18
the set of dyadic rectangles in Aj 41, a subset of R™ x R, which are maximal in the
xr3-direction, i.e. maximal with respect to the second factor, which is R™. Now we apply
Lemma 4.2 to the set Aj 1. For each J x K € My (A g41), we let J' € D™ be such
that
J' D Jand J' x K € My ({Ms (xa,,.,) > 1/2})

Then
Z |J X K| w (%) < C|A]7k+1| . (456)
JXKEMQ(.A]’)C_Fl)
For any I x J x K € Ms (), if (i) Ay (I) x J x K € My () and (ii) Ap (1) x J x K €
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My (€3), then J' C J. This follows from the estimate
[(Ak (I) x J' x K)N Q] > |[(Ak (I) x J' x K) N (Ak (I) X Af 1)

= 1A (DT % K) N Apst] > 270 Ay (D] ‘J’ X K‘ — o1 ‘Ak ()% J x K|

Since w is nondecreasing, the sum in (4.52) can be majorized by

> I xJxKlv ﬂ w<|‘],|)
’I‘ ]

IxJIxKeMs3(9)

= Zi > |1||J><K|v(2—n1k)w<%)

I1eD™ k=0 [x Jx KeM3(Q): T=A(I)

<Y |1|Z k) > |J><K|w(’JI”)

IeD™ JXKGMZ(AI,k+1)

<c >y |]|Z VN ALkl (4.57)

Iep™
where the last inequality is due to (4.56).

Now, to finish this proof, it suffices to show that
|Arp+1| < c UJXKGE;\EAk+1(I)J x K|, (4.58)

for all I € D™ and k € {0,1,...}, to plug (4.58) into (4.57) and to apply Lemma 4.5.
So fix I and %k and define Vi, := UJxKEEI\EAkH(z)J x K. We will show that A1 C
{Ms (Vi) > 1/2} and we will conclude, by the strong maximal function theorem, that
(4.58) holds. Given = € Ay 41, there exists Ry € D™ x D™ such that I x Ry € M3 ()
and Ay (I) x Ry € M; (€4). Thus

|Agi1 (1)] ‘Ro N <UJxK€EAk+1(I)J X K)’

— |18 (1) % ol [ 1) x (U, % K|
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< (Aps1 (1) x Ro) N Q| <271 [Appy (I) X Rol = 27" |Agyr (1] |Rol

where the last inequality holds because Ay (I) X Ry € M; (£21). So
)RO N (UJXKEEA;CJA(I)J X K) ‘ > 2_1 ’R0| .
By the definitions of Aj k41 and Vi, it follows that Ry C Aj 41 C Viyg. Hence

[Ro (Vial = [Ro 0 (Upscer T x K) 0 (Upxicer,, 0 % K)

c
= ‘RO N (UJXKGEAk+1(I)UJ X K) ‘ > 21 ‘R0|,

and we conclude that x € {Mg (V) > 1/2}. Therefore (4.58) holds.
To finish the proof of (4.52), plug (4.58) into (4.57) and use the Lemma 4.5. O

4.5 Multiparameter Operators on Hardy Spaces

We give a sketch of the proof of the variant of Fefferman’s Theorem (Theorem 4.2) just

so that it can be compared with the proof of its three-parameter analogue, Theorem 4.3.

Sketch of the proof of Theorem 4.2. By Theorem 1.1 in [14] and Remark 4.2 it suffices to
show that

|7 (a)]|, < C for every rough (p,2)-atom on R™ x R". (4.59)

In fact, the atoms of the statement of Theorem 1.1 in [14] are particular cases of rough
(p,2)-atoms on R™ x R™. So the desired conclusion follows from (4.59) and Theorem
1.1 in [14] (with ¢ = p and B, = L? (R™2) where ¢ and B, are defined in [14]).

The proof of this inequality is due to R. Fefferman [25]. Let a = 3 .\ ) ar be a

rough (p,2)-atoms on R™ x R" associated with a set € as in Definition 4.3. Let
Q= {Ms (xa) >1/2} and Qo :={Ms(xq,) > 1/2},

and for each I x J in M (), let T x J be the rectangle in M; (©) such that I>1I
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Similarly, to each I’ x J in M (§), let I' x J be the rectangle in M, () such that
J O J. Finally, define

Q= 16<f><j>.

R=IxJEM(S)
Here each rectangle I x J is constructed from a rectangle I x .J in M, () as follows:
(i) Beginning with I x J in M5 (€2), we define T'x J to be the unique rectangle in M, ()
having the form I’ x J with I’ D I.
(ii) From T x J, which is a rectangle in M (), we define Tx J to be the unique rectangle
in M, (Q) having the form 1 x J' with J' O J.
Thus fdepends on I x J, while fdepends on I x J. Note that ’Q‘ < c|Q].

Using Holder’s inequality, the L? boundedness of T', item (B) of Definition 4.3, and

the upper bound for T(a)f <C, it

Q‘ we obtain f§|T(a)|p < C. To show that f@)

suffices to prove that

) T (ar)]” + ) IT(aR)lp> <C.
Z (/[(161)chn2] /[Rn1><(16J)C]

R=IxJEM(Q)

This can be done with the reasoning described in [25].
Note that Lemma (4.2), which is needed to conclude this proof, only requires dila-
tions in one of the factors. This is why, in this setting, it does not matter whether the

hypotheses on the behavior of |T (ag)[” are stated with respect to integrals over sets of

the form [2% (I} x I5)]" (as in [25]) or of the form (2F1;)° x R™2 and R™ x (2¢L,)°. O

To see how Theorem [25] can be extended to higher-parameter settings, one should

examine the parallels between the sketch given above and the following;:

Proof of Theorem 4.3. By Remark 4.2 and a three-parameter analogue of Theorem 1.1
in [14], it suffices to show that 7" is uniformly bounded on rough (p,2)-atoms on R™ X
R™ x R™. So let a be a such atom. By Definition 4.3, to a, there corresponds a set {2 and
a decomposition a = ) 5. M(@) OR; where each rough elementary particle ag is supported

on 4R for some distinct rectangle R in M (Q).
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We intend to apply Lemma 4.4 with v(z) = 2% and w(z) = 2% for some fixed
0;,0; > 0 that will be chosen below. As we will see, the multiparameter dilations are
essential to allow the use of this lemma.

We consider
O ={Ms(xa) >1/2} and Q1 :={Ms(xq,) >1/2}, i=1,2,3,

and to each I x J x K in M (Q), we let I x J x K be the unique rectangle in M; ()
having the form I’ x J x K with I’ D I. Similarly, given I’ x J x K € M, (),
let I'x J x K € M, (25) be such that J o Jygiven I' x J' x K € M, (Qs), let
I'x J x K € Ms(Q3) be such that K D K; and given I’ x J' x K' € Mj (), let
Ix.J x K€ M, (Q) be such that I D I’. Finally, we define

Q= U 16<?><f><[?).
R=IxJxKeM(Q)
Here each rectangle /_/f\\x J x K is constructed from a rectangle I x J x K in M3 () as
follows:
(i) Beginning with 7 x J x K in M3 (92), we define I x J x K to be the unique rectangle
in M (£2;) having the form I} x J x K with I’ D I.
(i) From I x J x K, which is a rectangle in M, (€;), we define I x J x K to be the
unique rectangle in My (£23) having the form Ix J x K with J' > J.
(iii) From I x J x K, which is a rectangle in M (9s), we define I x J x K to be the
unique rectangle in Mj (£23) having the form I xJx K with K’ D K.
(iv) From I x J x K, which is a rectangle in M3 (Q3), we define ?X J x K to be the
unique rectangle in M, (£24) having the form I” x Jx K with I' > T.
Thus fdepends on I xJx K, jdepends on I x J x K; K depends on TxJx K; and
?depends onl xJxK.

Note that 165 C {Mg (xq,) > 167"7"27"3} for any rectangle S € D™ x D" x D"3
contained in §2. So 16 (?x J x IA() C {Ms (xq,) >167m 2} for all I x J x K €
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M (§2). This implies: ’Q‘ < ¢|Q|. As in the sketch of the proof of Theorem 4.2, we use
Holder’s inequality, the L? boundedness of T', item (B) of Definition 4.3, and the upper
bound on the measure of €, to conclude that JGIT (@)" < C.

Since 0 < p < 1 and the inclusion (Q) c (16 (f x J x f()) holds for any I X J x

K € M (Q), the proof will be concluded once we show

T (ar)l” < C, (4.60)

2.

REM(Q

: /(16f)cx(16JA)°an3

T (ap)f < C (4.61)

/R”l x(167)cx(16f)c

REM(Q)
and

/ e . IT (ag)’ < C. (4.62)
REM(Q) (16] ) xR"2 x (16K )
These three inequalities look similar but their proofs are not identical.

To prove (4.60), we first fix R=1 x J x K € M (). The inclusions

1/n1 o~ 1/712
7]
4

4 H 4] C 16f7 |_J| 4] C 16j, supp (ar) C 4R,

and hypothesis (4.4) yield

« (T (a)

e

1]

~ —o1/m1 ~ —d2/n2
1-p/2 ‘] ‘ ‘J )
< Cllarlls R | S T (4.63)
: i 7

Summing (4.63) over all R = I x J x K in M (Q) and using Hdélder’s inequality,
(4.22), and M (Q2) C M3 (£2), we conclude that the sum in (4.60) is majorized by

T T
o ARG
¢ (lo=) 2. B 7]

R=IxJxKeM3(Q)

-5, 1-p/2
)
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where 0 := 26;/ [n; (2 — p)], j = 1,2. By Lemma 4.4, the term in the brackets is bounded
by ¢|Q| (note that this lemma would not be applicable if we had only one-parameter
dilations on hypothesis (4.4)). Thus (4.60) holds.

To show (4.61), we apply the reasoning that shows (4.63) to the integral

fRnlx(lﬁj)cX(lﬁf()c T (agr)|’, we sum over all R =1 x J x K in M () and we conclude

that

N b gy 8 P2
2\ TN\ (IF]
C (|Q| ) S IR o ol (4.64)

R=IxJxKeM(Q)

is an upper-bound for the left-hand-side of (4.61), where 05 := 243/ [n3 (2 — p)]. Since to
each I x J x K in M (Q) there is a unique rectangle I’ x J x K in M; (£1) having the
form I’ x J x K with I’ D I, the term in the brackets in (4.64) is not greater than
s sy 1P/
/1 K]

Z II'x Jx K| || — — ;
I'x IxKeMi1 (1) ‘J ‘ ‘K ‘

which, by Lemma 4.4, is majorized by ¢|€2;|. Since || < ¢|Q], (4.61) holds.

T (CLR)|p a

reasoning similar to that used in the proof of (4.60), we conclude that the sum in (4.62)

It remains to show (4.62). Applying to each term f(mf)c R (165 )"
xR™2 x

is bounded above by

2\ 9 s 1=p/2

I - 3

1-2/p 2/p ‘K‘

c(m\ ) S IR il vl . (4.65)
R=IXJxKeM(Q)

Since |I] < ‘f ‘, the term in the brackets in (4.65) is majorized by

Y
1 5

o (F]
E R | =
‘I’ K|

R=IXJxKeM(Q)
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’A 51 8%

< > I’ x J' x K| (4.66)

I'xJ' x KeM2(Q2)

— ‘ Y

where the inequality in (4.66) holds because to each I x J x K in M (2), there corresponds
a unique rectangle of the form I’ x J' x K in My () satisfying: I' x J x K € M (£)),
I' > 1, and J' O J, and in this case I’ = T and J' = J. So (4.62) follows from Lemma

4.4 applied to Q5 and the fact that [Qs] < ¢|Q]. O

Proof of Theorem 4.4. Let v = 2° for some s € N. W.lo.g. we can assume that the
center of [; is the origin, 0;, of R, j = 1,2. We will prove the first inequality in (4.3),
by following a reasoning described in the beginning of the proof of the “trivial-lemma”
in [25]. The idea is to show that there exists 6 > ny (1/p — 1), which does not depend on

s nor on the rectangle (p,2)-atom a, such that

—i€Q -0
/xlnfvzww T (a) (2)| do < 272 (2%9) " lall, |RI" (4.67)

2| ~2F| Io|*/ "2

and

—0
Aﬂﬂlllﬂkvlhl/"l T (a) (@)l dz < ¢ (2%9) " llall, R, (4.68)

]| <4l T2[/"2
hold for any integers i,k > 2, where r ~ ¢ means r < t < 2r for r,t € (0,00). Then,
by summing (4.67) and (4.68) over the appropriate indexes (1 <k <ooand 1 <! < o0
for (4.67), 1 < k < oo for (4.68)) and using Holder’s inequality and (4.10), we get
the first inequality in (4.3) with 9y = —n4y (1 — p) 4+ 0p and the constant ¢ depending
on the CZ(ey, €3, m1,n9)-norm of 7' (in the case ny/(n; —1) < p < 1) or on the p-
CZ(€1,€2,n1,n9)-norm of T' (in the case 0 < p < ny/(n; —1)).

We first show (4.67) and (4.68) in the case ni/(n; +1) < p < 1. For p is within
this range, the reasoning used in the proof of the “trivial lemma” in [25] works for our
purposes.

Let {as}sen be sequence of functions such that a;, € L (R™"2), lim, o ||las — all, =

0, and each ag satisfies the cancellation conditions (4.11) and the support condition
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supp(as) C 2R. If we show that

—i€ -0
Axllwszzu”m'T(as)'302 2 (2%9) 7 [lag|l, [2R]? (4.69)

llzal|~2?|212]"/ "2

and

-0
oz T @] < @) o[22 (1.70)

llwa]|<2[212|/ ™2
hold for any integers i, k > 1, then we can conclude that (4.67) and (4.68) hold for a and

for any integers i, k > 2. Indeed, let 7,k > 1. Then

oz T @1 = [ TN < [ | T (@) =17 @)

oz |~2[2L] /2 o[ ~20F I /2 o |~2¢[212] /72
< o pesesanpinl? (@) = T (@)
o |~2¢ 22| /"2

n i n 1/2
= ‘{(3?1,@) Al ~ 28 (201 o ~ 2020} IT (a0) = T (@)l

1/n i 1/n 1/2
<[t ) <l ~ 2y 207 ol ~ 2 257 T s s — all, =

as s — 00, and similarly,

T (as)| — T (a
Ax1||'\’2k7|211|1/n1| ( 5)| ||11HN2k+1’Y\11|1/"1| ( )l )
lz2||<2|2L| /"2 [E R

as s — 00. Since limy_,o ||as — al|, = 0, the right-hand sides of the inequalities (4.69)
and (4.70) converge to the right-hand sides of (4.67) and (4.68) (with a different constant
¢), respectively, as s — 00.

To show (4.69), let z; € R™ be such that ||z1]| ~ 28 |21|"™. By (4.11), we have
Jas (y1,y2) dyr = 0 for all y, € R™. This, and the fact that for all y € R"?, the support
of the function as (,y2) is contained in 217, allow us to use the representation (4.35),

which yields

[T el d
2| ~2|212] /"2
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dl’Q

/$2~2i|212|1/"2

K1 T1,Y1)| — K1 .Il,ol Qg 1,° T2 dSL’Q d 1. 4.71
séﬁﬁwmwﬂ[<yn[ (01,00 (0 ) (el do f ds. (471

/21 ([K1 (21, 91)] = [K1 (21, 00)]) (as (y1,-)) (22) dys

Since for almost every y; € R™, [as (y1,v2) dys = 0 and ([K; (z1,y1)] — [K1 (z1,01)]) is
an (e, ng)-Calderén-Zygmund operator, we can use Remark 4.3 to majorize the term in

the curly brackets in (4.71) by
(2) K (1, 40) — K ($1701)IICZ(62,n2)/ |as (Y1, y2)| dys.
21,

Therefore

/ (/ _ T (as) (z1, x2)]| dxg) dxy
[l |[~2ky|20y [/ ™1 NS || ||~2i]215] /™2

. 2_i€2/ {/ ||K1(g:1,y1) —K]_(x1701)”CZ(627n2) d.ﬁEl/ ’as (y17y2)’dy2}dyl
21y L s 528141l | .

—ie - —ie -8
< 27 (29) 7 al, < 27 (259) 7 Jlaull, 2RIV

This proves that (4.69) holds with 6 = 3;. So (4.67) holds with this value of 6.
Now we will verify that inequality (4.70) also holds with this 0. Let ||y || ~ 25y |21, ]"/™
Since for all y» € R™, the function as (-, y2) satisfies [as (y1,y2) dy; = 0 and its support

is contained in 2/;, we can use (4.35) to get

/ 7 (0 (12, 22)|
2] <2[272]'/"2

< LU U )] = (85 (o1 000 (o 01, ) s

1/2
< 1K1 (@1, 1) — K (21,000 26m0) |2[2|1/2/ ( |as (ylny)‘QdyZ) dy,
21

217

1/2
< 1K (21, 91) — K (21, 00) |0 z(egm0) sl [2R) 2,

where the penultimate inequality follows from Cauchy-Schwartz inequality and (4.30).
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This and hypothesis (4.6) yield

/ (/ IT (as) (1, x2)] da:2> dxy
[z |~2hy] 20 [V N\ ||| <2]212] 1/ 2

< [lasll |2R|1/2/ 1K (21, 91) = Ky (21, 00) |0 2ca o) @01

[z [[>25[lya |

< cllall, |12R]"? (254)

Now we let 0 < p < ny/(ny;+ 1) and we will show that both (4.69) and (4.70) hold
with & = N7 + 1, and we will concluded that both (4.67) and (4.68) hold with this value
of . First we prove (4.67). Let ||lz| ~ 25y |2,]"/™. Since for all y, € R, the function
as (+,y2) satisfies [as (y1,y2) y{'dyr = 0 for all a € (Zs)™ of order |a| < N, and its
support is contained in 2I;, we can use the argument that proves (4.35) and Taylor’s

Theorem with Lagrange remainder, to conclude that there exists 7 € (0,1) such that

T (a.) (21, 22) = / [ )] e () (o)

:/ > (_g,l) [Dy, K1 (2, 7y1)] (as (y1, ) (w2) ¢ dyn, (4.72)
Ol la=mr

for almost every x € R". From (4.72), Remark 4.3 and hypothesis (4.5), it follows that

[T e ds
lz2l|~2¢|21] /72

/, { S Do ks (1.7 G () <x2>} dn| dis

/Haczll~2il2121/n2 jal=A;+1 7 20

<elan 0 S5 (DG (o] o n, ) () )

|a]=N1+1

<clon MV T / <|mey1>||czw / \as<yl,y2>|dyz)dyl
26 21

la|=N1+1
< c|21, | M/ gies / (rm T Jag ()] d3/2> dy,
214 21>
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S 02—1‘52 |2]1|(N1+1)/n1 ||x1||—N1—nl_l ||as”

Integrating this over the annulus ||z1]| ~ 2%y [21;|"/™, we conclude that (4.69) holds with
0 =N +1

Now we will verify that inequality (4.70) holds with this same value of 6. Again, let
|z1]| ~ 2%~y |211|. By (4.72) and hypothesis (4.5), we obtain

/ 7 (@) (o1, 2] de
2] <2[272]"/ ™2

/11 {(—yl)a (D2 Ky (21, 701)] (as (1, -)) (ﬁz)}dyl i

- |
/fr2§2|212|1/n2 laj=N1+1 72 &

<cpnirm o[ (LHSZHWH‘[D;K(W“” (00109 (o) da )

la|=N1+1

<cl|2 |N1+1)/”1 Z / ‘D Ky (21, 7y1) as (v, - H |21, /2> dy;
la]=N1+1

<c|2h ‘N1+1)/n1 1215 \1/2 Z / HD Ky (z1, 791 HCZ (e2,m2) Has (W1, )l dyn
lal=N1+1

< c|2n, | W o 1 / las (g1, )l 1 = 7o)~V dyy
214

< |2 [NV 2L 2 g M ay

where 7 € (0,1). Then we obtain (4.70) by integrating the above estimate over ||z|| ~

2k [21; Y™ Thus (4.68) holds with 6 = A + 1. O

Our next result is a three-parameter version of Theorem 4.4. We will deal with
(€1, €2, €3, 11, N2, ng)-Calderén-Zygmund operators (Definition 4.9) and also with

p-(€1, €2, €3, 1, N, no)-Calderén-Zygmund operators (Definition 4.10).

Theorem 4.6 (Three-parameter variant of Theorem 4.4). Let 0 <p <1 and let T be a
linear operator on L?(R™MTn2tns),
If ny/(ny —1) < p < 1, assume that T is a (B1, B2, €3, 11, N2, ng)-Calderdn-Zygmund

operator for some B; > n; (1/p—1), j =1,2, and e > n3 (1/p — 1).
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If 0 < p<nyi/(ny— 1), assume that T is a p-(€1, €2, N1, no)-Calderén-Zygmund operator
for some €; >n; (1/p—1), j = 2,3, and assume also that the [CZ(e3,n3)]-(e1, €2, 11, n2)-

kernel K o, associated with T' as in (4.36), satisfies

D& K5 (x x _
/ y1 11,2 ( 1, Y1, T2, y2) dlEQ <c ||3§'1 o §1H—/\/1—n1—1 (2k’}/2) €2 7
le2—Eal|>2%~aly2—E2||

—D% Ki9(21,&1, 9,
v 12 (71,81, 72, 62) Zeams)

(4.73)
x1 # &1, for each multi-indice o € (Z>o)™ with |a] = N7 + 1, and for all k € N and all
Yo of the form 2°, s € N. Under these hypotheses, (4.4) holds for some 61,09 > 0 and for

any rectangle (p,2)-atom a on R™ x R™ x R" supported on I} X Iy X I3.

The inequalities which are similar to (4.4), with (1,2,3) replaced by (2,3,1) and
(3,1,2), can be obtained by replacing (1,2,3) by (2,3,1) and (3,1, 2), respectively.

Note that, in case 0 < p < ny/(n; — 1), the hypotheses of Theorem 4.6 imply that
K 5, the [CZ(e3,n3)]-(B1, B2)-kernel associated with 7" as in (4.36), satisfies

—B1 o1\ B
/xlsl>zk|y1&||”K1’2 (1,91, 22, 92) = Koz (01,61, 22, &)l e ey myy dr < (27) 7 (2)
|x2—&2(>2" ly2—&2|l

(4.74)

for all k,1 € N.

Proof of Theorem 4.6. Let v; = 2%, v, = 2°2 for some 51,52 € N and assume that [; is
centered at the origin, 0;, of R™, j = 1,2,3. In analogy with the proof Theorem 4.4, our
goal is to show that there exists #;,65 > 0, which does not depend on s1, sy nor on the

rectangle (p,2)-atom a, such that

—ie —0 —0
s [zt o [T (@) (@) da < 275 (2690) 7 (2192) ™ [lall, | BRI (4.75)

[[z2||~2lya T2 |/ ™2
l|s || ~27| 13|/ ™3

and

—6 —6,
sty e T (@) (@) da < e (2591) 7 (2492) 7 Jlall, [RIM, (4.76)

[[z2][~2ty2| T2/ ™2
sl <2|Z5|"/"3

for any integers ¢, k, [ > 2. These inequalities imply that (4.4) holds with §; = —n; (1 — p)
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+0,p, 7 =1,2.

We begin with the case p > n;/ (n; + 1). Again, the argument is analogous to that of
the proof of Theorem 4.4. We will omit some of the intermediary steps, that is, we will
assume w.l.o.g. that a is in L*, just like the a,’s of the proof of Theorem 4.4.

Take ||z1]| ~ 261 |I;[*™ and ||z2|| ~ 295 |I|"/™. The vanishing moments of condi-

tion (4.11) and Remark 4.3 yield

_ |T (a) (1, 9, x3)| drs
llzs]|~27|13]'/ ™

/"L"3|~2’|13|1/"3

(K12 (21,91, %2,y
/ // 12 (21, 41, 22, ) (a(y1, 2, ) (w3) dyadyy | ds
lesll~2 T3 | \ (K 5 (21, 01, 229, 05)]

// (K12 (1,91, 2, y2)] (a (y1, y2, -)) (z3) dyodys | das
Iy

(K12 (21,91, 22, 92)]
S// / (a (v, 12, )) (w3) | das p dysdy,
LJIp |z3]|>2%|ys | — [K12 (21,01, 22, 02)]

e Ko (21, y1,T2,Y2)
2) 3// la (Y1, Y2, y3)| dys p dxaday,
nJn

_K1,2 (x17017x2702> I3
CZ(e3,n3)

where by ([K1 2 (21, Y1, 22, Y2)] — [K12 (21,01, 22,02)]) (a (y1, Y2, -)) (x3) we denote the eval-
uation at the point 3 of the operator ([Ki 2 (21, y1, T2, y2)] — [K1.2 (21,01, 22,02)]) on the
function y3 — a (y1, 42, ) (y3) := a(y1,y2,y3). Therefore the left-hand side of (4.76) is

majorized by

les Kia (21,41, 22, 92)
& 1n d.ﬁlﬁld.l?z
LJI llz1[|~251 |11 !
142 _K1,2 (1’1,01,:62,02)

~2lyg| I |1/ 2
llz2]|~2"v2|I2| CZ(esns)

la (Y1, y2, y3)| dysdyady:
I3

< e (2) 7" (22) 7 fall, 1R,
where the last inequality follows from (4.74). So (4.75) holds with 6; = 3;, j = 1,2.
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Now we will verify that (4.76) holds with these values of 0; and 0y. Let ||z1] ~

2y [L]Y™ and ||| ~ 295 [ L]/, Then

/ 1T (0) (21, 79, 3)| s
sl <2|I5|"/ "3

Ky (21,91, 72,y
— / / / [ 1,2 ( 1, Y1, 42 2)] (CL (yh Yo, )) (xg) dyldy2 d.T3
H$‘3H<2|13|1/n3 IoJ 1 — [KLQ (:Eh 017 X, 02)]

[KLQ (mlaylax27y2)]
<[ [/ (@12 )) (a2)| daa |
I>J I |a:2H<2|[3|1/"3 _[KI,Q (ZE1701,ZE2,02)]

Kig (21,91, 72,92) 1/2
’]3’1/2// < |a (y17y273/3)|2 dyg) dyydys
I2J 1 I3

_KI,Q (xlu 017 X2, 02)
CZ(e3,m3)

<[ Kz (1,91, 2, 42) — K12 (21,01, 22, 02) | gy ltlly [ BRI

So the left-hand side of (4.76) is bounded above by

lall, ’R\W [ K12 (21,41, 22, y2) — K2 (21,01, 22, 02)”02(53,713) drydzy

llz |>2%y1 lya
llz2[|>2! 2|yl

< cllall, |RIY? (251) " (292) 7,

where the last inequality is due to (4.74).

It remains to prove (4.75) and (4.76) in the case p < ny/ (n1 + 1).

Let ||| ~ 26 [L])Y™ and ||| ~ 24, [ Io]*/"2. From (4.36), the vanishing moments
Ja(yr,y2,y3) yfdys = 0 for all |a| < N; and Taylor’s Theorem with Lagrange remainder,

it follows that there exists 7 € (0,1) such that

1

T (a) (21, 02, 75 / / Ky (21,90, %2, 92)] (a (31, 92, ) (3) dyadiy
1

/f /f !) (D5 Kz (@1, 791,02, 0)] (@ (01,9, )) (w3) o dyacdip

la N +1
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for almost every x5 € R". It follows that

T (a) (x1, 9, x3)

- « DQKIZ T1,TY1, T2, Y2
:/I/I Z ( yl) [ y1+ 1, ( Y y)] (a(yl’y%.)) (5[53) dysdy;

ol

la|=N1+1 ' - [D;(IKLZ (xla TY1, T2, 02)]
(4.77)
for almost every x3 € R™. Then
/ T (a) (21, %, x3)| dxs
s | ~27| 13"/ "3
( (_ a )
Z‘a|:./\/'1+l ol
D& Ky (21, TY1, T2, Y2)
= / . / / <. [ Y } dyadyy | dxs
leal~2 11l | J 2 — [Dy K2 (21, Ty, 2, 05)]
\ .(CL (ylayQa')) ("L‘3) )
D;Kl,Q (71, TY1, T2, 92)
< c|f|NHDm (2)" Z / / =Dy K12 (21, 7y1, 72,02) dyadyr,
| IL1JIs CZ(63,TL3)

al=N1+1
'f[3|a(y17y27y3)| dys

where the last inequality follows from Remark 4.3. So the left-hand side of (4.75) is not

greater than
c ’[1|(N1+1)/n1 9—ies
Dy Ky (21, TY1, 72, Y2)

o1 | ~2Rya [y D¢ K T
. — s xr 0 d Zd 1
HCE2||~2Z’}’2|12\1/"2 fhf]g 21,2 ( 1, TY1, T2, 2) CZ(esims) Yody

dIQdIEl

'f[3|a(y17y27y3)’dy3
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S c |Il|(N1+1)/n1 2—1‘63

L,

walHNZ’Wllh\”"l
llz2]|>2!v2|y2||

SC |]1’(N1+1)/n1 2—i€3/ / |‘1‘1||N2k71|11‘1/n1 ||$1 - 7‘?/1”
Ip)

c(2) " (2'n)

This proves that (4.75) holds with 6,

DglKl,Q ('rlv TY1, T2, y?)

d[lfgdl’l

_D;Klﬂ (xla TY1, T2, 02)

CZ(e3,m3)

-f13|a(y1,yz,y3)!dy3

-f13’a (1,92, 93)| dys

-N1—-1 —e 9
T (2%) 7 Hlall, 1B

=N +1, 60, = e

—ni1—1 (21,}/2) —€2 dZE1>

dyady,

dyodyy

Now we will verify that (4.76) holds with these values of 6; and 6,. Again, let ||zq|| ~

2k [LY™ and ||za|| ~ 24, ||, By (4.77), there exists 7 € (0,1) such that

/ T (a) (21, z2, x3)| das
|l wsl|<2|Is|"/ "3

(=y1)®

Z al
la|=N1+1
IJ 1y

/|5173||S213|1/n3

< c|n|MEm g N
|a|=N1+1

J.J,

<C|[|N1+1/n1|1|1/2 Z //

la|=N1+1

where the last inequality follows from (4.30).

[D;KL? (1‘1, TY1, T2, yQ)}

o [D;KIQ (z1, TY1, T2, 02)} dyady | drs
(a(y1,y2,)) (z3)
(D, K12 (21, 741, @2, )
a [D;KLZ (21, Ty, 2, 02)] dyadiy
a (yla Ya, - ) )
‘D K12 x177—y17x27y2>
=Dy K1 (21, 7Y1, 72, 02)
CZ(e3:n3)

. ||CL (y17 Y2, ) ||2 ddeyl
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majorized as follows

A11N2k7111|1/n1/ T (a) (x1, e, x3)| drsdredr;

z3||<2| 15|/ "3
|‘x2||’\‘2l72|]2‘1/n2 H H ‘ |

Dy K (x1, Y1, @ )
(N1+1)/n 1/2 1,2 (L1, TY1, T2, Y2
<C|I | 1 1| | ﬁx1~2k’ﬂh l/nl Z //

(03
e na =N +1 —Dy K12 (21,7Y1, T2, 02)
llz2l|~2" 2| I2| CZ(e3,m3)

Na (1, yo, )|l ydyadyr dvoday

eI (2 )2 /

1 [|~2k e 11 [P/ ™1

||x1||—N1—”1—1dx1/ la (g1, o, ), dysdy
I1JIs

-Ni-1 —e
< e (289) ™ (29) " al, [RIVZ,

and the proof of (4.76) is concluded. O

Proof of Theorem 4.5. Let M = M1 - be as in (4.14), r € {2,3}. By Lemma 4.1, M

satisfies (4.13).
In the case r = 2, (4.13) implies (4.3) with 7" = 9t and 0; = (1 —py;)p, j = 1,2.
Similarly, when r = 3, (4.13) implies that (4.4) (and similar inequalities for the other

factors) holds with 7" = 9t and 0; = (1 — ;) p, 7 = 1,2,3. So the estimate
|9 (a)|| < ¢ for all rough (p,2)-atoms on R™ x ... x R™ (4.78)

follows by the same argument that shows, in the proof Theorems 4.2 (case r = 2) and
4.3 (case r = 3), that || T (a)|, is uniformly bounded on these atoms.

Now consider a collection {ay}, of rough (p,2)-atoms R™ x ... x R™ and a sequence
of scalars {\;}, € . Using (4.78) and the reasoning that shows equality (30) on
page 107 of [62], we conclude that Y ° Ayay converges in H? (R™ x ... x R™) (hence

it also converges in &’ (R™*-*"r)) and ||> 7, Ne@kl| o (g1« xnry 18 bounded above by

622021 |)‘k|p- O
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For larger values of r, an analogue of Theorem 4.5 holds. To prove it in R"* x ... x R™",
r > 4, one can follow the reasoning described above, but a higher-parameter variant of

Lemma 4.4 is required to show (4.78) in this setting.
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Theorem 4.1; and Dr. Galia Dafni, my doctoral supervisor.
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Chapter 5

Journé-type Lemmas

In this chapter, we adapt the original lemmas of Journé [42] (the non-discrete and the

discrete versions) to the product of a metric measure space X and the real line.

5.1 Definitions and Notation

Adopting the conventions and the terminology from [37] and the notation from [66], we
consider a metric measure space (X, dx, jtx), where

(i) dx is a metric on X

(ii) the topology on X is the metric topology; and

(iii) px is a regular, o-finite, non-negative, doubling measure on the Borel o-algebra (the
one generated by the open sets in the metric topology) on X, which we denote by Bx.

The doubling property of ux means that for all x € X and all r > 0,
0 < px (B(z,r)) <ooand pux (B (z,2r)) < c, px (B(z,1)) (5.1)
where ¢, is a constant. The second inequality in (5.1) implies that
px (B (z,R)) = px (B (z, 21°g2(R/T)T)) < cf)g(?(R/r)u (B(x,r)), foral 0 <r < R. (5.2)

Being a metric space, X is a perfectly normal Hausdorff space (i.e. T5). We assume
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that X is proper and uniformly perfect. The former condition means that all closed balls

are compact, and the latter means that there exists a constant 1 > 1 satisfying

for all 7 > 0, if X\B (z,7) # 0, then B (z,t)\B (z,n 'r) # 0.

We take the Cartesian product of X and R, the real line, where in this chapter, we
view the line as a metric measure space (R, dy, uy ), where dy (y1,y2) := |y1 — y2| is the
distance on R and By denotes the Borel o-algebra on R.

The product topology on X x R can be defined as the coarsest topology for which the

projections

(z,y) € X xR 7x (x,y) == and (x,y) € X xR 7y (2,y) ==y

are continuous. Equivalently, among the topologies on X x R which contain all the
Cartesian products of an open set in X with an open set in R, the product topology is
the one that has the fewest open sets.

Now that we have defined the product topology, we let B be the Borel o-algebra on
X x R, i.e. B is defined to be the o-algebra on X x R generated by the open sets in the
product topology. Equivalently, B is the coarsest o-algebra on X x R with the property
that if £ € Bx and F' € By, then £ x F' € B.

Since both (X, dx, ux) and (R, dy, uy) are o-finite measure spaces, (by Proposition
1.7.11 in [66]) there exits a unique measure p on the product o-algebra B such that
w(E x F)=pux (E) x uy (F) for every E € Bx, F' € By. This measure y is o-finite (by
Theorem B in Secion 35 of [33] and the uniqueness of x), non-negative and monotone.
The latter condition means that if Qy,Qs € B and Q; C Qy, then p (1) < ().

We say that a set R C X x R is a rectangle if it has the form

R=1xJ, (5.3)
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with

I = B(xg,a) :=={x € X : dx (x0,2) < a} for some 2y € X, a > 0;
J={yeR:|y—uyo| < B} for some yo € R, 5> 0.

In this chapter, we use the symbol R to denote the collection of all rectangles of the form
(5.3).

Let 2 C X x R be an open set with 1 () < co and define

Q= {(x,y) € X xR : Ms(xq) (2,y) > %}

here Mg (f) is defined by

1

(#.9) € X xR Ms (f) (w9) = swp s /R fldun, feLl, (X xR.p),

where the supremum is taken over all rectangles R in R containing (z,y). Note that Q
is open, thus measurable.

For x € X and t > 0, let
By, = {y €R:B(x,) x {y} C Q} . (5.4)

Since m is compact, for every y in E,;, there exists 0 > 0 such that m X
(y — d,y + d) is contained in Q. This shows that E;, is open.

Since E;, is an open set of the real line, we can write it as a countable union of
disjoint open intervals, J; , , with the indices k in a subset of N, which we call A (z,1),
ie.

For= U o (5.5)
keA(x,t)

The possibility that E,; = () is been considered. In this degenerate case, the statements
above hold trivially: A (z,?) is also empty.
Note that, by the definition of E,; in (5.4), for each triple (x,¢,k) € X x (0,00) X

A (z,t), the set B (x,t) X J, 11 is contained in €2, and for any other open interval J', with
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Jerk & J', the set B (x,t) x J' is not contained in €.

Define
: MY(Exstxtk) 1}
T(x,t, k) :=inf<s >t : ol < — 5.6
( ) { vy (Joik) 2 (56)
and
T (x,t, k) :== sup {s >t:B(x,8) X Jpp C ﬁ} : (5.7)

for all (x,t,k) € X x (0,00) such that E,; # () and all k € A (z,t).

5.2 Variant of Non-discrete Journé’s Lemma
The following result is a variant of Proposition 2 in [42], which we call the non-discrete
Journé’s Lemma.

Theorem 5.1 (Variant of Non-discrete Journé’s Lemma). Let Q@ C X x R be a bounded
open set and let ¢ : R — R be a non-negative, non-decreasing function of class C*

satisfying fol ¢ (s) % < co. Then,

< .
H ((m,t)gXx]R (kek%x,t)B (IL‘, T (J},t, k)) X Jm,t,k)) > Cl (Q) (5 8)

and

// Z 1y (Jain) ((ttk))dux(m)%SQ(/Olgb(s)%)u(Q), (5.9)

X ke
where Jy 1 and 7 (x,t, k) are defined in (5.5) and (5.6), respectively.
In the proof this theorem we need the following lemma.

Lemma 5.1. For any measurable open set 2 C X x R, there exists a constant c, inde-

pendent of ), such that

1 (ﬁ) <o (Q). (5.10)

Proof of Lemma 5.1. We will apply Theorem I in Chapter 3 of [69] to the set Q. First

we verify that the hypotheses of this theorem are satisfied.
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By Theorem 2.2 in Chapter 2 of [37], there exists a constant ¢ > 0 such that, for any

measurable set U C X,

px (o € X M(w) () > A}) < L ix (U),

for all A > 0, where

1 1
M@ =i [ IF @i, S LX) 11

Inspired by an argument found in Chapter I of [62], we define an “uncentered” version

of M as follows

My (xo) (z) = sup —

xeB WX (B) /;|f(u)|d/llx(u), f S Llloc (XnuX),

where the supremum is taken over all open balls B (z9, ) C X containing . We will

show that for any measurable set U C X,
Mx (xv) =2 eM (xv), (5.12)

where the constant ¢ is independent of U. To prove that (5.12) holds, we first note that,
since dy is a metric, for any two points g, up € X and any r > 0, if B (xg,r) N B (ug,r) #
(), then B (xg,7) C B (ug,3r). Now fix x € X and take a ball B (zg, @) containing x. On
the one hand, we have B (x¢, ) N B (z,«) # (0, which implies B (z9,«) C B (z,3a). So

the monotonicity of ux yields
px (B (zg,a) NU) < px (B(z,3a) N U). (5.13)

On the other hand, we also have B (xq,3a) N B (x,3a) # 0, and this implies B (x, 3a) C
B (z0,9a). So

px (B (z,3a)) < px (B (xo,9)) < cif}%?(g)ux (B (o, )) . (5.14)
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Combining (5.13) and (5.14) we obtain

Hx (B (.’Eo, O./) N U) < clog2(9) Hx (B (‘I? BQ) N U)
px (B (zo, ) = " px (B (z,3a))

(5.15)

From (5.15) it follows that Mx (xv) () > ¢M (xv) (z), where ¢ = cf§2(9). So (5.12) is
proved.
Inequality (5.12) implies that

{r€X: My (xw)(z)>A C{zeX: M) (z)>c, O} (5.16)

nx

for any measurable set U C X and any A\ > 0.

Using (5.16), the monotonicity of uyx and (5.11), we get

CXCf;gcz(g)
px ({z € X+ Mx (xv) (z) > A}) < ————ux (U) (5.17)

A
for any measurable set U C X and any A\ > 0.

On the real line, the standard Hardy-Littlewood maximal function theorem guarantees

that
Cy

py (ly € R: My (xv) (2) > A}) <

py (V) (5.18)

for any measurable set V' C R and any A > 0, where

My (f) () = sup ——

yed UX (J) [] |f (U)‘ dﬂy(’l)) ’ f € Llloc (Rv HY) s

with the supremum taken over all open intervals J C R containing y.
The hypotheses of Theorem I in Chapter IIT of [69] are satisfied: (5.17) and (5.18)

hold. By this theorem,

CXC,IL?;%Q(g) cy
u({(2.y) € X x R: Ms (xa) (2.) > \}) < min K )(A )]u(ﬁ)-

T 0<r<
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In particular, when A = 1/2; this inequality becomes

logs(9)

82

~ CxCyCux
< = .
O ()

So (5.10) holds. O

Proof of Theorem 5.1. Fix (x,t) € X x (0,00). Assume, w.lo.g., that E,; # () and fix
kelA(xt). If0<s<7(x,tk), then

Hy (Ex,s N Ja:,t,k)
wy (Jztr)

- 1
27
and also B (z,s) X E, s C Q. Thus, for any 0 < s < 7 (z,t, k), we have

p([B(z,8) X Jprr] NQ) > p([B(z,5) X Jprk) N [B(z,8) X Eys)
= pix (B (x,5)) py (S N Eys)

1

> o (B (2,5)) sy (Teg)

This shows that B (x,s) X Jy 1 C Q for all 0 < s < 7 (z,, k). From this, it follows that
Bz, 7 (z,t, k) X Jyer C Q. (5.19)

Since (5.19) holds for all (z,t) € X x (0,00) such that E,; # 0 and all k € A (z,t), we

conclude that

U < U Bz, 7(z,t,k)) x Ja:,t,k) c Q. (5.20)
(z,t)EXXR \ kEA(x,t)

From (5.20) and Lemma 5.1, it follows that (5.8) holds.
Now we will show (5.9).

The Dini condition on ¢ implies that limg o, @ (ﬁ) = 0 for any ¢t > 0. So, for any

RN RO R

u,t € (0,00),
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Taking u = 7 (x,t,k) in (5.21), we can re-write the left-hand-side of (5.9) as

/ /x Z ty (Jo.tk {/T:M)ﬁb (S) CSZS} dux (z )it

X ke(z,)
(L ds dt
[ [ e () S| 62

>

For a fixed triple (z,t,k) € X x (0,00) x A(z,t), if s > 7(x,t,k), then

€X keA(x

py (Eps N Jpsr) < 27wy (Joex), by the definition of 7 (x,¢, k) in (5.6). So, when s >

7 (x,t, k), we have

Ky (J:v,t,k) = Uy (Jx,t,k N Ex,s) + Ky (Jx,t,k: N E;’S) S 2_1,UY (Jar,t,k’) + %% (Jx,t,k\Ea:,s) )

and from this we get py (Joen) < 24y (Jox\Ers). Therefore (5.22) is majorized by

L5t (€) Ean
=2 > e @) 6 (L) B Lapn)
L [/m(/w )+ (1))

keA(z,t)
o ds| d
[ e o () S| b o

RIS

keh(z,t) B T(BLK) s/ s
=2 / / F (z,y) dpy (y) dpx (x) (5.23)
zeX JO
where
ds| dt
Pa= [T 5 |7 e (1) 5T 62
0 kEA(z,t) 7(x,t,k) s/ 8

We claim that F' is identically zero outside 2. To see that this holds, fix (z,y) ¢ Q.
Then y ¢ {v eR:B(z,0) x {v} C Q} — B,, for all t > 0. In particular, by (5.5),
Y & Juux for allt > 0 and all k € A (,t). Therefore x;, , ,\g,, (y) =0 for all £ > 0 and

all k € A(z,t). Thus, by the expression of F' in (5.24), we conclude that F' (z,y) = 0.
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Since F vanishes outside (2, we can rewrite (5.24) as

Flo=xobn) [ 3 | [ / f)x\E )¢ (t) ds] @ 5as)

0 s) s?| t
keA(x,t

Given (z,y) € 2 and t > 0 such that E,; is non-empty, since the intervals J, ;’s,
k € A (z,t), are disjoint, the point y cannot be in more than one interval J, ; 1, k € A (z,1).

We denote by K (x,y,t) the index k in A (x,t) such that y € J, ;. With this notation,

we can re-write (5.25) as

F(z,y) = xa (z,y) /0 [ / Xy ikt oop)\Eas () & (E) —S} Tt (5.26)

2
T(x7t7K(x7y7t)) S S

Now we define T : 2 — R by

T (z,y) ::sup{s>01mx{y}cﬂ}.

We affirm that if y € Jo 4 k(2,y) \Ear,s for some s > 7 (x,t, K (v,y,t)), then

t<T(x,y) <s. (5.27)

To see that (5.27) holds, note that

(i) ify € JotK(ayt), theny € Eyp = {v eR: B(x,t) x {v} C Q}, which implies that
t <T(x,y); and

(ii) if there exists s > 7 (z,t, K (z,y,t)) such that y ¢ E, ,, then B (x,s) x {y} ¢ Q,
which implies that T (z,y) < s.

Using the bounds in (5.27), we can re-write (5.26) as

Ty oo t\ ds] dt
F (1‘7 y) = Xa <I7 y)/ |:/ XJm,t,K(z,y,t)\Ex,s (y> Qb/ (_> _2:| T
0 T s) st

(z,y)
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which is not greater than

Ty oo t\ ds] dt
wen [ o()2)%
Q( )0 T(z,y) S 82 t

So

T (z,y) ) ) t\ ds] dt T(zy) t dt
Fan <t [ [0 (C) G = [0 (7)) T
(5.28)

where the equality follows from (5.21) with u = 7' (x,y). Now, we plug (5.28) into (5.23)
to get (5.9). O

5.3 Variant of Discrete Journé’s Lemma

The next result is an adaptation of Proposition 1 in [42], which is the discrete version of
the lemma of Journé. It requires a generalization of the definition of dyadic rectangles
from Euclidean spaces to the product setting X x R. The non-Euclidean component of
X xR is the metric measure space (X, dy, px). On this kind of metric measure spaces, it
is possible to build a collection of sets that imitates the standard system of dyadic cubes
of R™. Some references for this type of construction are [16] and [38]. In the latter, the
“dyadic system” is described in Theorem 2.2.

As stated in [37] (Exercise 13.1), there exit constants C' > 1, v > 0, depending on the

doubling constant and on the uniform perfectness constant, such that
g
<C (%) for all 0 < r < R < diam (X). (5.29)

Given open set 2 C X x R with u(2) < oo, while it makes sense define maximal
dyadic rectangles on 2 C X X R, the variant of Journé’s Lemma that we present below
does not explicitly need such a definition. Instead we will need a countable collection of

rectangles defined as follows:

{Rijr} icz, CR
JE€O,,
keEA; ;
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satisfies
(i) Rijx=1ij x Jije CQforeachi€Z, j€0O,;, kel
(ii) I;; = B(x;,2") for each i € Z, j € O;

(iii) (bounded overlap) there exists a constant # > 1 such that, for each i € Z,

Zjeei X1 ; <;

(iv) for fixed ¢ and j, each J; ; is an open interval of the set
Eij = Eyyp = {?/ eR: B(x,2") x{y} C Q}

which we express, as in (5.5), as a countable union of disjoint open intervals .J; ; ’s,

ke Ai,j =A (l’j,Ql)

Claim 5.1. For each (x,t) € X x (0,00) such that E,; # 0, and each k € A (x,t), the
definitions of T and T ((5.6) and (5.7), respectively) imply

T (2, t, k) > 7 (2,8, k). (5.30)
Proof. Let s < 7 (x,t, k). Then
Ju
py (Byy N Jyii) > w (5.31)

Using the inclusion B (z,s) x E, s C € and (5.31), we obtain
p([B(x,s) X Jprk] NQ) > p([B(x,s) X Jprp] N [B(z,s) X Eys)

= (B (z,s) x (Jx,t,k' N Ez,S)) = px (B (=, S)) Hy (Ea?,s N Jx,t,k‘)

Jy 1
> i (B () 2 _ 2 (0, 5) ).

and we conclude that

B(z,s) X Jypp C Q. (5.32)
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Since (5.32) holds for all s < 7 (x,t, k), it follows that B (z, 7 (z,t,k)) X Jyek C Q. So
7 (x,t, k) < sup {s >t:B(x,8) X Jpp C Q} =7 (z,t, k).

O

Theorem 5.2 (Variant of Discrete Journé’s Lemma). Let Q@ C X X R be a bounded open

set and consider a countable collection

{Rijr} icz CR
JE€O;,
keA; ;

satisfying the properties (i)—(iv) listed above. If ¢ : R — R is a non-negative, non-

decreasing function of class C*, such that fol o (s) df < 00, then

0 U fzgk X Jijr | <cp(Q) (5.33)
€L
JjE€O;
kGAi,j

and

ZM(Rz',j,k) o | X (AI”)> < 465‘”{ (/01¢(s) %) (), (5.34)

where

~

Ii,j,k =B (Zﬂj,%: (I‘j,2i, k)) 3

6 is described in (111); ¢, is the doubling constant of yux; 7 is a constant for which (5.29)

holds; and the constant c is independent of Q and {Rij1}icy ico. keAs,”

Proof. To show that (5.33) holds, we first observe that, by the definition of 7,

[i’j’k X Jl’]’k - Q’
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foralli€Z ,j€0O,;, ke,  Thus

M U fz]k X Jijk | S (ﬁ)
i€z
JEO;
keA; ;
and, by Lemma 5.1, u <§VZ> < cp (). So (5.33) is proved.
Now we will show (5.34).

For each i € Z, j € ©;, t € (272,2171), let
Sz',j,t = {u < [’L'j : B (U,t) - Iij}7

and note that S; j; can be represented as B (x;, (2° —t)).
Working with the left-hand-side of (5.34), we find suitable upper bounds for it. The
goal is to find an upper bound that allows us to use Theorem (5.1). We preceded as

follows:

S (R o | LX)

= px (L‘,j,k)
Jj€B;
ke ;
px (1ij)
:E E px (1ij) E py (Jijr) o | —7=%
i€l €O, kel px (L‘,j,k)

N i-1 _ oi—2
=3 nx (T Y () o | = (AIM) : 12i—22
HX ( )

i€Z jEO; keA; ; Ii,j7k

frist

< 22/:1 1 ZMX (13 ;) Z py (Jijw) ¢ % t

U
~

i1€Z JEO; keA; ; [i:j:k

second 2!
Hx (I ) dt
< 2 Z/ D oux (28i50) Dy (Jigw) ¢ | —=25 5
i€z V277 jeo, ke ; I j, k
third dt
S QC,MXZ/ ZMX ljt Z :uY ljk 7
1€Z Jj€o; keAs,; 7"7 k
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27, 1 C2 A
px (B (x,1) | dt
< 20 E / E tx (Sije) E y (Jijik) pxl2 — L (5.35)

i€Z J€O; keA(x;,2%) Hx (Ii,j,k>

where the first inequality holds because 211,2 < % for any ¢t € (272,2"71); the second

inequality holds because S; ;; = B (z;, (2" — t)) and t € (2°72,2""1) imply
QSi,j,t =B (I’j,2 (QZ - t)) 2 B (l’j, 22) = IZ],
the third inequality is a direct consequence of the fact that

x (28i54) < cuxpix (Sijit)

which is true because py is doubling and S;;; has the form B (z;, (2° —t)); and finally

the last inequality holds because

px (L) = px (B (25,2°27?)) < px (B (25,2°)) < &, pux (B (2;,1))

for any t € (2¢72,2°71) and ¢ is non-decreasing.

We claim that for any i € Z, j € ©;, and k € A (3, j),
Jijw C Eyy forallt e (2i*2, 21'*1) and all u € S; ;. (5.36)

This holds because if ¢ € (272,2"!) and u € S;;; = B(xz;,(2° —1t)), then B (u,t) C

B (z,2") = I;, and this inclusion yields

Jigh = Jayo © Bupo = {y: B (25,20 x {y} € @ < {y: Bw,) x {y} € O} = Fug

Fixed i € Z, j € ©;, t € (2772,27") and u € Sy, since the interval J, oy is

contained in F,; = AL(J )Ju7t7l, there exists one, and only one, index [ in A (u,t), such
leA(u,t

that J,, 2i x C Jury. We call that index by L (4, j, k, u, ), i.e

L (i,j,k,u,t) is the unique element of {l € A (u,t) : Jy ;s D Ju; 20 k e (5.37)
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For fixed i € Z, j € ©;, we have

px (B (25,7 (6, L, Ky, 6)))) < i (Lo (5.38)

for any ¢ € (272,2°"!) and u € S; ;. To see that (5.38) holds, first fix ¢t € (2°72,2"°1)

and u € S; ;, and note that
WE Sugu = B (5o (21 1)) C B (1 (21— 27)) € B (2,.2) = I

Note also that the right-hand-side of (5.38) is ¢, pux (B (2,7 (x4,2%, k))). So (5.38) will
be proved once we show that 7 (u,t, L (i, j, k,u,t)) < 27 (2;,2%, k). Suppose, to reach a
contradiction, that 7 (u,t, L) > 27 (z;,2%, k), where here L := L (4, j, k,u, t). In this case,

there exists € > 0, such that 7 (u,t, L) = 27 (z;,2%, k) + ¢, and then
B (2,7 (%j,2",k) +¢€) C B(u,7 (u,t,L)), (5.39)

where the inclusion holds because any Z in B (x;, 7 (2,2, k) + €) satisfies dx (Z, ;) <

7 (2,2, k) 4+ e. This, combined with the fact that 2° < 7 (z;, 2, k), implies
dx (Z,u) < dx (Z,x;) + dx (xj,u) < ?(x]-, 2 k) +e+20< 27 (xj,Qi, k) +e=r71(u,t, L),

which yields Z € B (u,7 (u,t,L)). From (5.39) and the choice of L (= L (i,j,k,u,t),
defined in (5.37)), it follows that

B (), 7 (25,2', k) 4+ €) X Jy, 016 C B (0,7 (0,1, L)) X Jy, 91 p

C B (u, 7 (u,t, L)) X Jusp C Q.

This contradicts the maximality of 7 (z;,2%, k) (see the definition of 7 in (5.7)). Hence
(5.38) is proved.
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The expression in (5.35) can be re-written as

2 B .
2¢,y Z/ Z / ) 5% (ij,zgk) 0 Cpx X (A (@;,8)) dux (z) %

i€Z JEO; keA(a; 21) Hx (Ii,jvk)
(5.40)

Using (5.38) and the fact that ¢ is non-decreasing, we can majorize the term in the

brackets by

>y (T 2ik) 6 ( Cxiix (B <$j.’ t.)) ) : (5.41)

keA(xj,2%) KX (B (xjaT(f%t,L(Z,],k,x,t))))

As shown in (5.36), for each i € Z, j € ©;, t € (2°72,2""1) and x € S, ;;, the inclusion

J:Bj,Zi,k - Ex,t = U J:(:,t,l

U
keA(z;,2%) leA(z,t)

holds. Since these are disjoint unions of intervals, (5.41) is not grater than

iy (B (2,.1))
2 v (ua (ux<B<xm<x,m>>>)' (5:42)

leA(z,t)
To assure that this is so, note that the worse that can happen is to have more than one
Ju, 21k contained in the same J; ;. To deal with this scenario, observe that
(i) by the choice of L (i, 4, k,,t), if Jo, 9ix C Juzg, then L (4,5, k, z,t) = I; and
(ii) since the J, 4i ;s are disjoint, >y (ij,gik) < py (Ju1)-

i7j7k
J, j72i’kCJ:L',t,l

T

Plugging (5.42) into (5.40), we obtain that the latter is bounded above by

B LR T e (R o

1€EZ JjEB; Sijt leA(z,t)

§2C#XEZZ/2jj2 Z/ > iy (Jaw) < CiXﬂX(B(xj’t)%)Qdux(w)%- (5.43)

I; ; leA(z,t) Hx (B (l’j,T(CL’,t,

where the inequality follows from the fact that, for each i € Z and t € (2072,2'71), the

inclusion S;;+ C I;; holds. Now we use will Property (iii) of the collection {R; ;x}i k-
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This property says that, for each j € ©;, the intervals I, ;’s have bounded overlap. So

(5.43) is not greater than

w1 3 [, 3 e (R Sy s

X leA(z,t)

which is equal to

200 [ 3 [ 3 s (B gy ) ) § G40

JEO; lEA(z,t)

We intend to apply (5.29) to the balls that appear in the argument of ¢ in (5.44). Is
t <7 (x,t,1)? Yes, by the definition of 7 (z,¢,1). Combining (5.29) with the fact that ¢

is non-decreasing, we obtain that (5.44) is not greater than

o [ 5 w0 (1 () Y

By theorem 5.1, this can be majorized by

! ds
40c, / o) (ciXCsv) <M (),
0

and a change of variables yields (5.34). O
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