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ABSTRACT

Developing accurate and realistic models for Unmanned Aerial Vehicles (UAVs)

is a central task in effective controller design, autopilot design, and simulation model

validation. System identification methods have been extensively used as reliable and

less expensive alternatives for conventional analytical modeling for large-scale aircraft

in the past. Yet, there is limited work on the identification of mathematical models

for small-scale unmanned helicopters. This thesis focuses on development of a system

identification tool for rotary-wing UAVs based on frequency-domain non-parametric

and parametric identification methods. The tool, which is designed to be embedded

in the computer simulation software available for a UAV platform, employs nonlinear

parameter estimation and optimization techniques with the purpose of predicting

dominant dynamics of the UAV from measured responses and controls. The real flight

data acquired from the testbed have been used for testing and verifying the developed

system identification tool. The testbed is a commercially available radio-controlled

helicopter, Trex-700, equipped with MP2128G2Heli MicroPilot autopilot, and the

flight tests are conducted by MicroPilot in hover regime to excite attitude dynamics

of the vehicle. The identification results using the developed tool are validated with

CIFER� framework which is a highly reliable tool in aircraft system identification.

The results demonstrate excellent prediction capability of the developed tool for

model identification of the testing UAV platform.
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) are gaining more and more attention in recent

years for their wide range of applications, specially their ever growing application

in civil settings. The use of rotary-wing UAVs, compared to fixed-wing UAVs, is of

higher demand due to their high maneuverability and fast control response. How-

ever, highly unstable flight dynamics, great degree of inter-axis coupling, and high

sensitivity to control inputs, pose a great challenge in designing flight control sys-

tems for this type of UAVs, and additionally, make it difficult to find a mathematical

model which can accurately and reliably capture their complex dynamics.

A major challenge in composing analytical model of an aircraft is to accurately

characterize its aerodynamic behavior. The aerodynamic behavior of aircraft is char-

acterized by a set of coefficients, known as aerodynamic derivatives, which describe

the relationship between the aircraft motion variables and the aerodynamic forces

and moments acting on the vehicle. The traditional method to evaluate the aerody-

namic derivatives of an aircraft involves conducting the wind tunnel experiments on

a scaled vehicle [6]. Despite effectiveness of the method, high expense of the experi-

ments is the main barrier for the civilian UAV manufacturers to adopt it. In general,

developing an accurate and consistent model for UAVs using conventional analytical
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methods, where the contributions of structures, aerodynamics, and control systems

can be seen explicitly, is difficult. This is mostly because of quick design cycles which

does not allow enough time for developing such models during their production [7].

System identification has been examined and proved to be a reliable and less

expensive alternative for analytical modeling of large-scale aircraft in the past [8].

However, for the case of unmanned aerial vehicles, more specifically unmanned heli-

copters, system identification has been utilized just in recent years [9]. System IDen-

tification (SID) is basically a process that provides a model that best characterizes

the measured outputs to controls. In other words, identification techniques process

time-domain measurements obtained from identification experiment for efficiently

extracting accurate dynamic models of the system, whether parameterized or non-

parametric. In non-parametric model identification, the frequency-response function

of the system is estimated through time-frequency transformation and windowing

techniques. For obtaining parameterized model, parametric identification is accom-

plished through sophisticated estimation and optimization algorithms which search

the entire state space to extract aerodynamic coefficients that offer the best match

between the actual data and the predicted data from the analytical model [10,11].

The very first task in system identification is input design for flight test which

must satisfy the persistent excitation conditions. The excitation inputs are designed

to stimulate different modes of the aircraft and to provide rich information in output

measurements. Another important task for identifying a realistic and reliable model

is determination of model structure which requires some prior knowledge and insight

about the system dynamics. Finally, designing and implementing the optimization

algorithm is considered as the main challenge for an effective system identification.

The concept of system identification is depicted schematically against analytical mod-

eling in Figure 1.1.
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Figure 1.1: Schematic of system identification procedure

In general, system identification is classified into time-domain and frequency-

domain methods. Due to numerous reasons, frequency-domain methods found to be

particularly suitable to support the development of flight vehicle dynamics. Frequency-

domain methods preliminarily calculate non-parametric model of the system without

requiring a knowledge about the system dynamics, which provides an excellent in-

sight into the key aspects of the aircraft behavior and can be utilized in parametric

model identification. Besides, frequency-based methods are efficient in computations,

since the calculations are algebraic and do not involve integration or differentiation,

the number of data points to be processed are much less than time-domain meth-

ods, and the bias effects of noise in measurements and process noise are eliminated

so there is no need to identify the error due to noise. Moreover, frequency-domain

methods provide direct and independent measures for data quality and identifica-

tion accuracy. They are also capable of performing model fitting in a specified

frequency range. Time-domain methods, on the other hand, give more accurate and

optimistic estimates, are time-optimal in terms of excitation inputs which involves

shorter record length, and are well suited for nonlinear identification techniques.

Time- and frequency-domain methods are similar in a sense that they both require

satisfactory excitation to give a reasonable accuracy. Also, both methods deliver

parametric models in form of state-space and transfer function representation [12].
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There are few software tool developed for performing system identification for

aerial vehicle applications [8]. The best example is the Comprehensive Identification

from FrEquency Responses (CIFER) system identification facility which has been

developed by NASA Ames Research Center. CIFER is an integrated set of sys-

tem identification programs and utilities which supports frequency-domain identifi-

cation techniques for estimating non-parametric, transfer function, and state-space

models from a given dataset. CIFER, as a user-specified tool, is considered to be

one of the top resources for frequency analysis, and a reliable system identification

tool [12]. Another identification tool which has been used successfully for aerial

vehicle applications is the System IDentification Programs for AirCraft (SIDPAC)

developed at NASA Langley Research Center. SIDPAC is a consistent identification

facility which offers a variety of identification techniques and utilities in time- and

frequency-domain [13].

Original attempts for modeling small-scale helicopters using system identifi-

cation trace back to a study by Mettler in 1999 [1] in which model identification

methods for full-scale helicopters were adopted for smaller aerial vehicles using dy-

namic scaling techniques. Later, in some relevant works, Mettler employed different

identification methods to predict reliable hover and cruise models for Yamaha R-50

and X-Cell unmanned helicopters, with applications to flight control design and simu-

lation [9,14–16]. These works proved that system identification from flight data work

quite well for smaller unmanned helicopters provided that a proper model structure

has been developed in the first place [16].

To our knowledge, various identification methods have been used in order to

predict dynamic models for different types of small or miniature scale helicopters

up to now. Most of the works are concentrated on frequency-domain and linear

identification methods, and exploited CIFER as the SID tool. A state-space model

is identified for Nusix Radio-Controlled (R/C) helicopter in hover condition using
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Matlab System Identification Toolbox [17]. A comprehensive parametric model for

Honeybee miniature helicopter in hover regime is predicted using CIFER and SID-

PAC techniques [18, 19]. Yuan et al introduced a novel two-stage method for hover

model identification of Hirobo Eagle helicopter, in which high quality initial values for

parameters are determined through a pre-estimation process [20]. Chowdhary et al

examined a recursive identification method which utilizes different types of Kalman

filter for both state and parameter estimation of Artis unmanned helicopter in hover

regime [11]. Finally, a parametric state-space model for heave dynamics of Samara

miniature rotorcraft, with application to controller design, is determined from flight

test data [21].

Fewer researches have focused on transfer function identification of small-scale

helicopters, compared to state-space modeling techniques. Theodore et al developed

a rapid frequency-domain modeling method for UAV flight control applications [7].

Dominant dynamic modes of Ikarus miniature helicopter are characterized using a

novel transfer function identification technique introduced by Kim et al [22]. Al-

Radaideh et al compared usage of CIFER and Matlab for predicting a transfer

function model to capture attitude dynamics of Joker3 helicopter [23]. Cai et al

identified a low order transfer function model for augmented yaw dynamics of Helion

UAV helicopter using CIFER, based on which a flight control system for yaw channel

is designed [24].

1.1 Research Motivation

Simulation results of our computer simulation software exhibit discrepancy with re-

spect to the actual data from the flight tests of our rotary-wing UAV test-beds. A

significant portion of such dissimilarity is attributed to inaccuracies associated with

the aircraft analytical model within the simulation software. This reduces reliability
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level of any control design conducted based on the simulation software, and in turn

increases the need for further investigation, validation and tuning through the flight

tests which is expensive and time consuming. One solution to this problem is em-

ploying identification methods. Hence, the motivation of this work is to develop SID

tool for rotary-wing UAVs based on flight test measurements for the purpose of es-

tablishing more realistic and accurate simulation models, optimum system analysis,

and more efficient controller design.

The SID tool is designed to be embedded in the computer simulation software

available for the UAV platforms. This will help improving the reliability of simu-

lation by providing more accurate models for the aircraft, compared to analytical

models obtained from first principles. It is also considered as a preliminary stage in

developing a framework for online or in-flight system identification with applications

to fault-tolerant and adaptive control law design. Furthermore, the identified trans-

fer functions can be used in the control system design process to reduce number of

flight tests required for fine tuning the controllers on our UAV platforms.

The system identification tool, which is composed based on Matlab, gets the

input-output measurements, performs a data post-processing, and gives the best non-

parametric and parametric models of the system. This tool utilizes frequency-domain

Single Input/Single Output (SISO) identification techniques, namely frequency-response

and transfer function modeling, however with minimal modifications, it is extendable

for Multiple Input/Multiple Output (MIMO) state-space identification. In order to

verify its reliability, we tested the developed tool with real flight data, and compared

the results with CIFER, as a highly reliable tool in aircraft system identification.

The aircraft used for identification experiment is a Trex-700 commercially available

R/C helicopter designed by Align Corporation. The flight experiment is conducted

in hover regime for dominant dynamic modes, namely pitch and roll motions, by

MicroPilot Inc. The flowchart of Fig. 1.2 illustrates the logic behind our SID tool.
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Figure 1.2: Schematic of the developed identification tool

1.2 Thesis Outline

The outline of the thesis is as follows. Chapter 1 gives an introduction to the con-

cept of UAV system identification, reviews the recent literature, and describes the

motivation of this research. Chapter 2 covers our study on flight experiment design,

introduces our test-bed, and presents the flight test measurements. Chapter 3 deals

with theory, implementation, and results of frequency-response identification from

the measured data. Chapter 4 begins with our study about small-scale helicopter

flight dynamics and model structure determination. This chapter also explains esti-

mation and optimization techniques we have employed for parametric identification

of our target vehicle, and presents the identified transfer function models. Chapter 5

draws the conclusion and outlines the future extensions of this study.
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Chapter 2

Flight Experiment

From a technical point of view, this chapter summarizes flight experiment design for

model identification of a small-scale helicopter. Two types of excitation inputs are

designed, namely frequency sweep and doublet, in order to excite dominant attitude

dynamics of the flight vehicle. The frequency sweep excitation will be used for

model identification, and the doublet excitation will be employed in later flight tests

for model validation. Specifications of each input are summarized, and their minor

and major aspects are discussed. Moreover, our test-bed is introduced, and the key

practical considerations for conducting the identification flight test are elaborated.

Finally, the flight test results are presented, and the post-processing operations used

for conditioning the data is explained.

2.1 Introduction

Rotorcraft system identification is quite dependent upon acquired flight data as an

essential component of the identification. The richer the data, the more accurate and

reliable model can be identified. Hence, within all possible flight inputs which can

be used to excite the aircraft and collect the response data, those should be chosen

and designed that provide richer information about the system.
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R/C helicopters, because of their high maneuverability, agility, and smaller

scale, have a quite different dynamic compared to large-scale or manned helicopters.

This certainly affects the way the system should be excited in a general flight ma-

neuver, or in an identification flight test. Different types of flight input have been

examined and proved to be reliable in the past for the purpose of system identifi-

cation of large-scale aircraft; however, for the case of unmanned aerial vehicle, and

more specifically model scale helicopters, the literature does not offer a single or an

optimum solution. Therefore, designing the flight input, in an optimum manner, is

desirable and is of very high importance.

In general, the experiment design is conducted in an iterative procedure, through

which an initial design is refined using the information obtained from non-parametric

identification and model analysis. In other words, within the input design procedure,

a non-parametric model will be identified, in order to check how good the aircraft

has been excited. Based on a simple model analysis, the input design parameters will

be refined and the values are updated. This procedure is repeated until the design

parameters converge to an optimum value in a practical sense [25]. A schematic of

the input design procedure is shown in Fig. 2.1. This work focuses on the initial

stage of input design. In this stage, firstly, different types of identification inputs

are reviewed. Then, based on our identification requirements, theoretical design

rules, practical constrains, and pilot opinion, a detailed design for excitation inputs

is accomplished. Furthermore, an operational plan is outlined for flight test imple-

mentation. The results of the initial input design will be used in order to conduct

flight experiment and collect measurement data.

9



Figure 2.1: Iterative procedure of input design

2.2 Scope of Input Design

For system identification of fixed-wing and rotary-wing flight vehicles, input exci-

tation can be categorized under two classes, heuristic and non-heuristic inputs [26].

Heuristic inputs are those applied mostly in frequency-domain identification meth-

ods, which have been widely used in rotorcraft model identification, and do not

require a priori knowledge of system dynamics. Piloted (or automated) frequency

sweep, impulse, and multi-sine (such as Shroeder-Phase, Mehra, and DUT) inputs

are classified as heuristic inputs. In contrary, designing non-heuristic inputs requires

some prior knowledge of dynamic behavior of the system. In addition to optimal

inputs, conventional multi-step inputs (such as doublet, 3211, 211, etc.) are cat-

egorized as non-heuristic inputs. These inputs are commonly used in time-domain

identification methods, as well as model verification [27]. Table 2.1 summarizes iden-

tification input types. A schematic of different identification inputs is illustrated in

Fig. 2.2.

In order to design a proper input signal, we have to recognize input parameters
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first. Input shape or type is considered as the first variable in the design proce-

dure which is chosen in initial design step and is kept fixed during the design loop.

Frequency range, amplitude envelope, and maneuver time are the variables to be

adjusted during the iterative design procedure of the input after they have been

assigned a primary value in the initial design phase.

Table 2.1: Different types of excitation input used in aircraft system identification

Input Class Type Subcategory

Heuristic

Impulse One-sided Two-sided

Frequency Sweep Piloted Automated

Multi-Sine Shroeder-Phase Mehra DUT

Non-Heuristic
Multi-Step Doublet 3211 211

Optimal Inputs Estimation Error Engineering Approach

Figure 2.2: Conventional input types used in aircraft system identification

In order to choose a proper input shape, two basic considerations have to be

taken into account: excitation capability of the desired dynamic mode and pilot

implementation constraints. Hence, for choosing an input type among all conven-

tional and optimal options, specification of the different inputs should be known first,
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then a comparison has to be made, and finally the types that are in agreement with

identification requirements, which are capable of maximum excitation, and can be

practically applied by pilot, should be selected. By studying various identification

inputs, two types have been chosen. Piloted frequency sweep as well as doublet

multi-step input for model identification and verification, respectively. In the follow-

ing sections, specifications of these inputs are discussed. Also, the main reasons for

selecting these inputs are elaborated.

Frequency Sweep

Frequency sweep or frequency chirp is a class of control inputs having a quasi-

sinusoidal roughly symmetric shape with a positive frequency progression. Frequency

sweeps are considered as heuristic excitation as no prior knowledge of the system dy-

namics is required for them in design and implementation. Besides, frequency sweeps

have a very uniform distribution of spectral content which can guarantee persistent

excitation, and result in accurate frequency-response identification. A typical fre-

quency sweep for aircraft system identification generally starts from a trim condition,

continues with two cycles of lowest defined frequency, progresses with smoothly in-

creasing frequency pattern, reaches a predetermined high frequency, and finally gets

back to the trim condition from which it started [12] (see Fig. 2.3).

Figure 2.3: Example of two concatenated chirps applied on lateral stick of R-50 UAV

helicopter for model identification in hover regime [1]
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Having roughly symmetric time-history responses is a beneficial aspect of fre-

quency sweeps. It helps to maintain the aircraft centered around trim condition

and is important in determination of trim value in spectral analysis. In addition,

frequency sweep is a safe input from operational aspect as minimum and maximum

frequencies are predetermined which prevents overstressing aircraft modes such as

lightly damped structural modes. Key features for implementation of a piloted fre-

quency sweep are summarized in Table 2.2.

Table 2.2: Key specifications of piloted sweep for system identification

What is important What is NOT important

Start and end in trim Constant amplitude

Two complete long-period inputs Exact sinusoidal shape

Smooth increasing frequency progression Exact frequency progression

Rough symmetry about trim Exact repeatability

Non-swept inputs for off-axis channels Higher amplitude in high frequencies

However using frequency sweep can guarantee persistent and accurate identi-

fication results without having a priori knowledge of system, there are some minor

aspects regarding this class of input that should be considered. Having a wide band-

width can help enriching response information content; although, it can be critical

in minimum and maximum frequencies. In other words, it is hard to maintain flight

condition in low frequencies, and in higher frequencies, lightly damped structural

modes, or some aircraft system modes could be excited unintentionally. Besides,

for MIMO systems, using frequency sweep is not practical, so their usage is limited

to SISO systems. Moreover, frequency sweep requires considerably longer record

time compared to other identification inputs. Hence, using frequency chirp for cases

in which a short flight time is necessary (e.g. high-angle-of-attack aircraft) is not

feasible [12]. In Table 2.3, major and minor aspects for frequency sweeps are listed.
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Table 2.3: Frequency sweep minor and major aspects

Major Aspects Minor Aspects

Easy pilot implementation Not suited for MIMO systems

Prior knowledge is not required Not optimum SID results

Persistent and reliable SID results Unintentional high frequencies excitation

Accurate SID results Hard to keep flight condition in low ω

Large bandwidth Long duration record time

Multi-Step input

Multi-step inputs are a combination of simple step pulses with different pulse width in

positive and reverse directions. In a pulse signal, which is the simplest way to excite

the oscillatory motion of aircraft, the control input is active for a certain amount

of time, then released for the aircraft to freely respond about its trim condition.

Doublets, 3211, 1123, 211 are different types of multi-step signals used in system

identification. Herein, the specification of doublet and 3211 multi-step inputs are

discussed as popular inputs in aircraft model identification and validation.

Figure 2.4: Examples of actual multi-step input: Excited lateral and longitudinal

sticks of BO-105 helicopter used for hover model validation [2]

Doublet input is a symmetrical two-sided pulse in which the control stick is

moved abruptly from trim position and held fixed for a predetermined time step Δt.

Then, in a symmetric fashion, the control is moved abruptly again in the reverse
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direction and held fixed for the same amount of time, and finally, released quickly

to get back to its initial trim value. The 3211 multi-step input is similar to doublet

from two aspects: the sudden control reversal and the trim start and end points.

However, 3211 input composed of four linked pulses the width of which is varying

in a decreasing manner, i.e. 3Δt for the first pulse, 2Δt for the reversed pulse, and

two 1Δt for the doublet shape pulse at the end. Figure 2.4 depicts actual 3211 and

doublet inputs applied to helicopter system identification [25].

Doublet can be considered as square wave approximation of sine wave having

a broader bandwidth. However, its energy is more concentrated on the frequency

of the corresponding sine wave characterized by Δt. In designing doublet and 3211,

time step Δt is chosen based on the Eigen frequency of desired flight mode to be

excited which is known a priori. That is why these inputs are classified as non-

heuristic inputs. Time variations and multiple step reversals in 3211 input provide a

much broader bandwidth compared to the doublet input. Higher band width allows

for 3211 to adequately excite a band around natural frequency of the flight mode of

interest; however, doublet is more flight condition dependent. The 3211 input is also

called poor man’s frequency sweep for its similarity to frequency sweep in covering a

wide range of frequencies [28].

In helicopter system identification, doublet is generally used for model verifica-

tion, mainly because it is different enough from frequency sweep as a common input

for helicopter identification. This is good to assure that the identified model is not

dependent on a specific type of input. Doublets are also proved to be well suited as

directional input (rudder/pedal) in identification. Likewise, it has been proved that

3211 is more suitable as longitudinal input (elevator/cyclic pitch). Both doublet and

3211 are easier in execution than frequency sweep. Also, similar to frequency sweep,

in doublet and 3211, duration and exact shape is of second importance [12]. Com-

pared to doublet, 3211 is an asymmetrical input (4Δt positive pulse and 3Δt negative
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pulse), which will affect the spectral analysis in finding the spectral estimate of trim

values. Similar to frequency sweep, larger duration of initial pulses in 3211 can cause

the aircraft to deviate a lot from trim condition which is not desirable. These minor

aspects of 3211 can be overcome using modified 3211, or using two linked 3211 with

the second one having reversed polarity [28]. Minor and major aspects of doublet

and 3211 are summarized in Table 2.4.

Table 2.4: Major and minor aspects of multi-step input design strategies

Doublet 3211

Major

Aspects

Easier pilot implementation than frequency sweep

Exact shape and pulse duration is of second importance

Suitable as directional input Suitable as longitudinal input

Suited for model verification Suited for model identification

Symmetric Wide band input

Minor

Aspects

A priori knowledge is required

Shorter band than 3211 Unstable response in low frequencies

Flight condition dependent Asymmetric

2.3 Input Detailed Design

The main input type chosen for the identification problem is frequency sweep for

couple of reasons. Firstly, frequency sweep is recognized as a very reliable input in

large-scale helicopter model identification. The use of frequency sweep in unmanned

helicopter identification has been also examined in some works in the past resulting in

persistent and reliable models [1]. Besides, as there is not enough information about

the target helicopter, Trex-700, frequency sweep as a broadband input covering a

wide frequency spectrum can be the optimum (not time-optimal) choice. Applying
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frequency sweep requires a longer flight test, plus some consideration in execution

by pilot, which is not an issue in this work. Consulting with the pilot, some ideas for

implementation of the frequency sweep input are obtained, which are explained later

in this thesis (see section 2.5). Besides, optimal inputs are omitted from our choice as

they require an initial educated estimate of model parameters which is not available

in our case. Likewise, it is better to avoid using doublet inputs for identification

since doublets are more dependent on the flight mode being identified, and there is

not sufficient information about the system available. However, doublet can be used

for time-domain verification of the models identified using frequency sweep inputs,

because it is different enough from frequency sweep in shape and pattern, and it is

very simple and easy (easier than 3211 and frequency sweep) for pilot to apply.

2.3.1 Piloted Frequency Sweep

Design parameters of a piloted frequency sweep consist of frequency range of interest,

amplitude range, and record time. For determining frequency range, it is desired

to recognize minimum and maximum frequencies of interest to ensure acceptable

accuracy of the identification over the range of applicability of the model. Table 2.5

shows frequency range of interest for different aerial vehicle applications [10,12].

Table 2.5: Frequency range of interest for different applications

Application ωmin ωmax

Validation of simulation models 0.3 12

Flight control design 1 20

Typical pilot input 0.1 10

Handling quality specification 0.5 15

In the latter row of Table 2.5, minimum and maximum frequencies are re-

lated to bandwidth frequency ωBW and −180-deg phase frequency ω180 in a way
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that ωmin = 0.5 ωBW and ωmax = 2.5 ω180, both of which can be determined from

frequency-response function of the system. As an example, ωBW and ω180 for bare

airframe of a helicopter have typical values of 1 and 6 rad/s respectively [12]. In

selection of frequency range for the input, the domain of application in addition to

feasibility of execution by pilot should be considered. For example, for validation

of simulation models, lower frequencies are of high importance; however, for flight

control design application high end frequency is more important. According to the

identification requirements, following the general guidelines stated in Table 2.5, and

having considered that the pilot is capable of applying inputs up to the frequency

of 2 Hz (≈ 12.5 rad/s), the frequency range is selected as follows. These values are

selected as an initial guess and will be fine-tuned in the iterative procedure for later

flight tests.

0.3 ≤ ω ≤ 12 rad/s (2.1)

According to a general guideline [12], frequency sweep record time has to be

equal or greater than a certain value proportional to maximum period of excitation

as Trec ≥ 4.5Tmax. Considering the initial value for minimum frequency (maximum

period), the record time is obtained as Trec = 90 s. As mentioned previously, a piloted

frequency sweep used for identification purpose requires to start in trim condition,

follows with two cycles of minimum frequency (0.3 rad/s in our case), covers the

frequencies between ωmin and ωmax smoothly, and finally, ends also in trim condition.

For both start and end of the input signal, 3 seconds of trim input is considered with

two initial low frequency cycles having the period of 20 seconds.

The amplitude of identification input should be strong enough at each time

step to be able to excite the dynamic mode of interest, i.e. it should be greater

than a minimum value. Besides, it cannot be greater than a certain value because

it might corrupt the linearity assumptions of the model. Following a general rule

of thumb [12], the control input has to be within the range of ± 10 - 20% of input
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full range. From the aircraft response point of view, these lower and upper limits

for attitude angles should be ± 5 - 15 deg. In a same manner, angular rates should

lie within the range of ± 5 - 15 deg/s, and forward velocity should not exceed the

limits of ± 5 - 10 kn. The response of aircraft has to be kept within this predefined

envelope and inputs which might cause the response to exceed these ranges should

be avoided. This can be done with the help of data telemetry during flight test. It is

also recommended that signal amplitude starts and ends with a gradual phase-in and

phase-out respectively [12]. The results of the frequency sweep detailed design are

summarized in Table 2.6. Figure 2.5 illustrates a schematic of the designed frequency

sweep.

Table 2.6: Frequency sweep design specifications

Design Parameter Value Units

Frequency range 0.3 - 15 rad/s

Record time 90 s

Period of initial/final trim 3 s

Amplitude envelope ±10 - 20 %

Attitude response limitations ±10 - 15 deg

Angular rate limitations ±10 - 15 deg/s

Forward velocity limitations ±5 - 10 kn

2.3.2 Doublet Input

In designing the doublet input, the parameter to be selected is the time step of the

signal. Optimum range of frequencies of multi-steps is a range below and above the

natural frequency of the mode being excited. This frequency range is characterized

by the shape, duration, and time step of the multi-step. Based on a design rule of
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Figure 2.5: Schematic of the designed frequency sweep

thumb [28], the time step for the doublet is given in terms of natural frequency of

the desired mode in equation (2.2).

Δtdblt = 0.5 Tosc = 3.142/ωn (2.2)

By knowing the period of oscillations of the flight mode a priori (Tosc), the time

step of the doublet input for exciting that mode can be determined. In our design,

we decided on an initial educated guess for the time step by studying multi-steps

used for identification of various rotary-wing and fixed-wing aircraft. In order to

find an initial guess for the time steps, multi-steps used for identification of Yamaha

R-50 are considered [9]. In that research, a combination of doublets and 3211 inputs

are used for identification of different modes of R-50 helicopter in hover and cruise

flight regimes. The time step of 3211 used for collective pitch stick is about 0.5 sec.

The time step of the doublets (Δtdblt) applied to cyclic inputs as well as directional

input varies between 1 to 2 seconds. Moreover, in LOES identification of Tu-144LL

fixed-wing aircraft [29], a 211 type of multi-step is used for longitudinal stick with

the time step of about 1.5 seconds. In another application for identification of the

DLR BO-105 helicopter [2], doublets applied as cyclic input have the time step of
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about 1.5 seconds, and 3211 has the time step of approximately 1 second. Finally, a

series of linked doublets is used as the elevator input for identification of F-18 High

Alpha Research Vehicle [30] with the time step of roughly 0.75 s. A summary of

these information are collected in Table 2.7.

Table 2.7: Examples of multi-step inputs employed in aircraft system identification

Aircraft Input Type Δt sec

Yamaha R-50 UAV Helicopter
doublet 1-2

3211 0.5

DLR BO-105 Helicopter
doublet 1.5

3211 1

Tu-144LL Supersonic Aircraft 211 1.5

F-18 High Alpha Research Vehicle linked doublets 0.75

Finally, two linked doublets with reversed polarity are considered with a time

step adopted from similar aircraft data. Amplitude ranges will be the same as the

frequency sweep, i.e. ± 10 - 20% of the input full range. The results of the initial

design are summarized in Table 2.8. Figure 2.6 illustrates a schematic of the designed

doublet input.
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Figure 2.6: Schematic of the designed doublet input
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Table 2.8: Doublet design specifications

Design Parameter Value Units

Time step 2 s

Record time 20 s

Period of initial trim 3 s

Period of final trim 6 s

Amplitude envelope ±10 - 20 %

Attitude response limitations ±10 - 15 deg

Angular rate limitations ±10 - 15 deg/s

Forward velocity limitations ±5 - 10 kn

2.4 Introduction to the UAV Testbed

For flight test purpose of this research work, we have used a Trex-700 airframe

equipped with MP2128G2Heli MicroPilot autopilot. Trex-700 is a commercially

available unmanned helicopter designed by Align Corporation using a flybarless rotor

system, having approximate gross weight of 4200 g, main rotor diameter of 1602

mm, and tail rotor diameter of 281 mm, and utilizing a brushless electric motor,

and a collective-pitch rotor configuration [31]. Major dimensions of the vehicle are

illustrated in Fig. 2.7.

The autopilot is armed with 3 MEMS gyros to measure the angular rates of the

vehicle in the body-fixed frame. It is also equipped with 3 accelerometers to measure

translational accelerations, and a GPS and a Compass for navigation purpose. The

autopilot utilizes a Kalman filter to estimate the unknown and unmeasured states,

in order to compensate for the inaccuracies in the sensor measurements. Hence, the

angular rates as the output measurement extracted from the autopilot are not direct

sensor outputs, but corrected for bias error and sensor drift through an onboard
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Figure 2.7: Trex-700 dimensions based on its operating manual

algorithm. The autopilot also utilizes a yaw-rate feedback system to augment the

stability of yaw dynamics. Except for the yaw mode, which requires a mandatory

control system, a Pilot-In-Control (PIC) flight test is performed for identification

experiment. The pilot cyclic and collective commands as input measurements are

measured through an onboard radio receiver system. The autopilot is located almost

at the center of gravity of the vehicle, and the data are logged at sampling frequency

of 30 Hz. Figure 2.8 depicts the flight-test vehicle equipped with MP2128G2Heli

autopilot.

2.5 Flight Test Implementation

The flight test for the purpose of system identification are fundamentally different

from general flight maneuvers for which pilots are trained. Pilots tend to control
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Figure 2.8: Armed Trex-700 used for identification experiment, c© MicroPilot

the aircraft based on its response due to controls, however for identification flight

experiments pilot is not allowed to correct for controls based on the aircraft reaction.

There are some practical notes that must be taken into account by pilot when per-

forming the flight experiment so that a higher quality flight data can be acquired.

Here, the points that have a key role in system identification flight test, adopted from

references [4, 12], are discussed. An experienced pilot has conducted the identifica-

tion flight test, and these practical techniques are tried to be employed in execution

of the flight test.

What Is Not Important: It is not necessary to keep a constant amplitude, exact

sinusoidal shape, and exact frequency progression during a sweep excitation.

In fact, some irregularities in shape, frequency and amplitude are desired in

order to enrich the sweep input. In addition, as the sweep reaches higher

frequencies, it is not required to increase its amplitude in order to compensate

the naturally diminished rate-response. For the concatenated sweep maneuvers,

exact repeatability of input, again, is not important, as some roughness can

augment the information content of the recorded data. This is also the case

for the doublet input.
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What Is Important: Some irregularity in the piloted inputs are appreciated, how-

ever, there are some factors that are important and must be noted. Starting

from and finishing in the trim condition, emphasizing the higher periods (lower

frequencies) in first half of the record time, having a smooth frequency pro-

gression without rushing to higher frequencies, and not exceeding the high end

frequency are highly important in sweep excitation. The same rules apply for

doublet excitation.

Off-Axis Excitation: While the pilot is applying a sweep/doublet to one control

and monitoring the corresponding on-axis response, all other controls should be

kept roughly symmetrical to the reference flight condition in order to bound the

off-axis responses. For example, if the mode being excited is the short-period

pitch mode by applying a sweep to longitudinal cyclic control, it is desired to

keep lateral cyclic, collective and pedal controls symmetric with lowest possible

amplitude to maintain the off-axis responses within a reasonable range. In

other words, pilot should be advised to concentrate on the primary input, not

to correlate the on-axis responses with the secondary controls.

Task of the Copilot: Pilot-applied sweeps and doublets are best done when two

crews are involved, one in charge of the input and the other calling the tune.

The copilot should provide the timing indicators to assist the pilot in con-

ducting the flight test. The copilot can call out the time at certain times to

signal the pilot when the control stick should be at a certain position. For

the frequency sweep input, the pilot has to be signaled when the maximum

frequency is approached and when it is reached. Telemetry data are also useful

for monitoring the frequency progression in frequency sweep input.

Training, Practice, Safety: Experience has shown that pilots tend to increase the

amplitude while the frequency increases. It is also difficult for a pilot to judge
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about frequencies beyond 2Hz. It is recommended that the pilot practices while

the vehicle is on the ground in order to realize the feel about the hand and feet

motion required. Applying the inputs in a simulation environment is helpful

as well. During the flight test, it is suggested that the pilot starts with simple

sine waves with constant low amplitude, and then try to increase the frequency

incrementally. It is necessary for the pilot to start the implementation of the

designed inputs only when enough confidence has been gained to enhance the

safety of flight test execution.

2.6 Flight Test Results

The flight test results used in this study belong to the excitation of pitch and roll

on-axis responses only. Two frequency sweeps are applied to longitudinal and lateral

cyclic inputs, denoted as δlon and δlat, respectively. The vehicle direct responses to

these controls, namely pitch-rate q and roll-rate p, are measured accordingly. The

measured data are passed through an anti-aliasing filter, and also corrected for effect

of sensor drift. The post-processing procedure involves conditioning the data using

a second-order low-pass filter with cut-off frequency of 25 rad/s, and removing the

average value from all signals. Mean-removal operation will significantly increase the

accuracy of identification in lower frequencies. Input-output data for longitudinal

and lateral modes are illustrated in figures 2.9 and 2.10, respectively.
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Figure 2.9: Flight test results: measured input-output for longitudinal mode
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Figure 2.10: Flight test results: measured input-output for lateral mode
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Chapter 3

Frequency-Response Identification

In the previous chapter, the flight-test vehicle was introduced, and the procedure

for flight test execution and data collection is discussed. In this chapter, it is

aimed to estimate an accurate and reliable non-parametric model for longitudinal

and lateral dynamic modes of Trex-700 from the acquired flight data. This chapter

begins with an introduction on frequency-response system identification issue. Sec-

tions 3.2 and 3.3 shed light on the theoretical aspects of the techniques used in the

frequency-response identification. In Section 3.4, the identification results for Trex-

700 helicopter obtained using a developed Matlab code are acquired. The results

of the non-parametric models identified using CIFER toolbox are also given in this

section. Finally, Section 3.5 concludes this chapter by providing an analysis for the

identified models.

3.1 Introduction

Frequency-response system identification, also referred to as non-parametric model

identification, is a modeling approach which attempts to estimate frequency-response

function of a system from sampled input-output data. The frequency-response func-

tion is defined for any time-invariant system as the ratio of system output (response)

28



to system input (excitation) in frequency-domain. The term "frequency response"

is essentially referred to the steady-state response of a linear time-invariant system

when excited using a constant sine-wave input, which always results in a harmonic

response with the same frequency of the excitation, a certain phase shift, and a mag-

nified amplitude. This concept can be extended to a nonlinear time-invariant system

if the fact that any arbitrary input signal can be expressed in terms of its periodic

functions using Fourier series/transform is taken into account [32]. For a nonlin-

ear system, the frequency-response function is the best linear model of input-output

behavior which provides key information about the dynamic system characteristics.

The advantage of this representation of system dynamics is that no prior knowledge

and assumption for system structure or properties is required, except that the system

is time-invariant [12].

The frequency-response system identification is widely used for dynamic system

analysis, model validation for simulation, control system design, and more impor-

tantly, as a basis for parametric model identification [16] which is the main subject of

Chapter 4. In following sections, we will introduce the methods that are used for find-

ing an accurate estimate for the frequency-response function of a typical rotorcraft,

as a nonlinear system, from measured input-output data.

3.2 Time-Frequency Transformation

Finding frequency-response function from a time-history dataset, firstly requires for

the time-domain data to be transformed into the frequency-domain. The transfor-

mation methods commonly used in aircraft system identification are Discrete Fourier

Transform (DFT), Fast Fourier Transform (FFT), and Chirp Z-Transform (CZT).

The FFT is a quite faster method compared to the DFT, as it requires less data

29



points in calculations. However, the CZT is proved to be the most reliable and accu-

rate method for frequency-response estimation which provides high flexibility in the

selection of sample rates and frequency resolution [12].

The chirp z-transform of a sequence of N samples, xn, can be interpreted as a

general evaluation of z-transform over an arbitrary arc of the unit circle on z-plane

of the form:

zk = AW −k k = 0,1, · · · ,M −1 (3.1)

where M is an arbitrary integer and A and W are as A = ej2πθ0 and W = ej2πϕ0 . In

the definition for A and W , the corresponding angles, θ0 and ϕ0, are determined

using the following equations:

θ0 = fmin/fs (3.2)

ϕ0 = (fmax −fmin)/fs (3.3)

where [fmin,fmax] is the frequency range of interest, and fs is the sampling rate of

the sequence xn. An illustration of these angles in z-plane can be found in Fig. 3.1.

Having considered this, the chirp z-transform of a sequence of N samples xn is

determined from the following [3]:

Xk =
N−1∑
n=0

xn(AW −k)−n. (3.4)

A special case of the z-transform in which a set of N points are distributed

evenly around the entire unit circle in z-plane (rather than an arbitrary arc which is

the case for CZT), is called Discrete Fourier Transform (DFT). Point’s distribution

and definition of the DFT can be determined as [12]:

zk = ej2πk/N k = 0,1, · · · ,N −1 (3.5)

Xk =
N−1∑
n=0

xne−jnk 2π
N . (3.6)

The computation of the DFT requires N2 complex multiplications and additions,

however if N is a power of two, the computation will diminish to N log2N operations.
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This evaluation of the DFT, which is much more efficient in calculations, is called Fast

Fourier Transform (FFT) [3]. A high accuracy evaluation of finite Fourier transform

is used in SIDPAC for the time-frequency transformation [33]. Similar to CIFER,

the chirp z-transform is employed as the transformation method in this study.

Figure 3.1: Illustration of CZT in z-plane [3]

3.3 Frequency-Response Function

In order to find the frequency-response function from the time-frequency transforma-

tion results, three methods are examined. Firstly, rough estimate of the frequency-

response function H̃(f) is obtained from rough spectral estimates. Secondly, smooth

frequency-response estimate Ĥ(f) is determined from smooth spectral quantities us-

ing so-called overlapped windowing method. An improved estimation of the frequency-

response function Ĥc(f) is obtained from taking a weighted average from several

individual frequency-response functions each of which acquired from evaluating win-

dowing method with a distinctive window length. The later method is called compos-

ite windowing which mixes the averaging benefits of smaller windows with dynamic

range advantages of larger windows.
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3.3.1 Rough Estimation of Spectral Quantities

The outcomes of time-frequency transformation of a typical input signal u(t) and

output signal z(t), i.e. Fourier coefficients, U(f) and Z(f), introduce three important

spectral functions. These spectral functions, which are rough estimates of input

Power Spectral Density (PSD), output PSD, and input-output cross-spectrum (or

cross-PSD), are determined from the following equations, respectively.

G̃uu(f) = 2
Trec

|U(f)| (3.7)

G̃zz(f) = 2
Trec

|Z(f)| (3.8)

G̃uz(f) = 2
Trec

[
U †(f)Z(f)

]
(3.9)

where U(f)† denotes the complex conjugate of the input Fourier Coefficient U(f) [34].

The PSD magnitude can also be displayed in power decibels as follows:

G̃uudB
(f) = 10 log10(G̃uu(f)) (3.10)

After the rough estimates of spectral densities are found, the frequency-response

function H(f) can be estimated from either one of the following expressions:

H̃1(f) = G̃uz(f)
G̃uu(f)

(3.11)

H̃2(f) = G̃zz(f)
G̃zu(f)

(3.12)

These expressions are considered as unbiased estimations of the frequency-response

function provided that some assumptions about the measurement and process in-

put/output noise are taken into account. They require some assumptions about the

noises that might corrupted the time-domain signals. A general good assumption

for H̃1(f) expression in aerial vehicle applications accounts for the output noise i.e.

ν(t) �= 0, and neglects input measurement noise i.e. u(t) �= 0. The input noise asso-

ciated with unknown disturbances or unmeasured inputs, namely p(t), are indirectly

considered in the output noise ν(t) [12].
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Figure 3.2: Measurement noise in input and output signals

3.3.2 Overlapped Windowing

In frequency-response estimation, one practical method which highly reduces the

effects of random error in spectral estimates is called overlapped windowing or Peri-

odogram. In this method, time-domain data is divided into shorter overlapping time

segments or windows of length Twin. Each segment is then multiplied by a window

tapering function w(t) in order to reduce the error associated with side-lob leakage

in spectral estimates. Then, Fourier coefficients for each weighted time segment are

determined separately. Finally, smooth estimate for the input signal, also referred to

as input autospectrum denoted by Ĝuu(f), is obtained by averaging rough spectral

estimate of each individual window as expressed in the following:

Ĝuu(f) = (1/clnr)
nr∑

n=1
G̃uu,k(f) (3.13)

where nr is the number of windows and cl is the correction factor for the energy

loss due to window tapering which depends upon the type of the window tapering

function w(t). The output autospectrum and cross-spectrum Ĝzz(f) and Ĝuz(f) are

calculated similarly [12]. One tapering function that is commonly used in windowing

techniques is Hanning function, which is also the tapering function employed in

CIFER. A new research [35] shows that significant improvements in the results can

33



be achieved when a tapering function of the following form is used:

w(t) = sin(πt/Twin) (3.14)

which is referred to as half-sine function. Considering the aforementioned noise as-

sumption, in addition to considering that the existing output noise is uncorrelated to

input signal, one can determine the smooth frequency-response function from equa-

tion (3.5) by replacing rough spectral estimates with the smooth spectral estimates.

The challenge in the windowing technique is coming up with an optimum value

for the window length Twin. Because, larger windows provide good frequency res-

olution in expense of reducing the number of averages which causes an increase in

random error. While, shorter windows benefit from a lower random error in expense

of limiting the dynamic range. As per guideline [12], a window length selected for

time-domain data segmentation should be bounded in a range in which its lower and

upper limits are given as:

Trec

2 ≤ Twin ≤ 20 2π

ωmax
(3.15)

where ωmax is the maximum frequency of the excitation. In this study, an average

value is chosen for window length, that is Twin = (Trec/2+40π/ωmax)/2.

3.3.3 Composite Windowing

There is not an optimal single window length for estimating spectral quantities. The

larger window provides higher frequency resolution with a more accurate identifica-

tion in lower frequencies, while the smaller window increases the number of averages

and reduces the random error accordingly in higher frequencies. Composite window-

ing technique is a solution to the challenge of window size selection.

In this method, the estimation for spectral quantities are improved by taking

a weighted average of multiple spectral estimates each of which acquired from eval-

uating Periodogram method with a different value for the window length. In this
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study, 5 window sizes are chosen with equal spacing from one another in order to

cover the allowable range for Twin represented in equation (3.15).

In this approach, the smooth spectral quantities for each window size is cal-

culated separately, e.g. G̃uu,i for input autospecterum, and ith window size. Then,

they are combined in a weighted averaging manner in order to form a single accurate

and reliable composite response. The weighting function for each window i and each

frequency f is defined based on random error εr metric as follows (see section 3.3.4

for random error definition):

Wi =
[

(εr)i

(εr)min

]−4
(3.16)

where (εr)min is the minimum value for the random error of different windows length

at a certain frequency point.

As an example, the input composite autospectrum at each discrete frequency

is determined from:

Ĝuuc =

nw∑
i=1

W 2
i Ĝuu,i

nw∑
i=1

W 2
i

(3.17)

Having considered the aforementioned assumptions for input and output noise, the

composite frequency-response function can be calculated from the composite spectral

estimates as follows [12]:

Ĥc(f) = Ĝuzc(f)
Ĝuuc(f)

. (3.18)

3.3.4 Accuracy Metrics

Two important products of the smooth frequency-response function are Coherence

function and normalized random error. coherence function γ2, which gets a value

between 0 and 1, is defined at each frequency point and determines how much the

output spectrum is linearly attributable to the input spectrum. A mathematical
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expression for coherence function is given in equation (3.19). The expected normal-

ized random error in frequency-response magnitude and phase can be represented in

terms of the estimated coherence function as shown in equation (3.20).

γ2(f) = |Ĝuz(f)|2
|Ĝuu(f)||Ĝzz(f)| (3.19)

εr(f) = Cε

√√√√(1−γ2)
2ndγ2 (3.20)

The parameter Cε in equation (3.20) accounts for the window overlap, and nd shows

the number of independent time averages which is defined as nd = Trec/Twin [34].

Similarly, for composite windowing method, coherence function and random

error are determined from equations (3.19) and (3.20) by replacing the smooth esti-

mates with the composite estimates. However, in random error equation, the window

selection parameter nd is calculated at each frequency based on the weighted-average

window length at that frequency [12]:

T̂win(f) =

nw∑
i=1

W 2
i T̂wini

nw∑
i=1

W 2
i

. (3.21)

In order to facilitate the comparison of two different identification methods

or tools using the accuracy metrics such as coherence function and random error,

relative difference of these metrics is computed. Equations (3.22) and (3.23) show

the formulation of the relative difference between accuracy metrics calculated for two

different identifications, the later for random errors, and the former for coherence

functions.

Δγ2 = γ2
1 −γ2

2
max{γ2

1 ,γ2
2} (3.22)

Δεr = εr1 − εr2

min{εr1 , εr2} (3.23)

The denominator of the relative difference formulation is supposed to get the better

value (reference value), which corresponds to the higher accuracy in our case. Hence,

36



in equation (3.22), the difference between coherence functions is divided by the maxi-

mum coherence value. Also, in equation (3.23), the difference between random errors

is divided by the minimum random error value. This is due to direct and inverse

relations that coherence function and random error have with accuracy, respectively.

3.4 Identification of the Model

In order to find a nonparametric model for the flight vehicle, Trex-700, from flight

test data, a Matlab code is developed. The processed input-output time-domain

data for longitudinal and lateral modes are fed to the code. The program estimates

the frequency-response function by employing three different methods presented in

the previous section, i.e. rough estimation, overlapped windowing, and composite

windowing. The program is quite capable of estimating a SISO non-parametric model

for any set of input-output data, and it can be extended for MIMO identification. A

schematic of the non-parametric SID tool is illustrated in Fig. 3.3.

Figure 3.3: Schematic of non-parametric SID tool

The same set of data are fed to CIFER non-parametric identification packages

(namely FRESPID and COMPOSIT) to estimate a separate model for comparison.

The results from CIFER and the developed Matlab code are presented in this section

in the form of spectral functions, frequency-response function, and accuracy metrics.

In order to assist the results comparison, relative difference between the accuracy
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metrics obtained from CIFER and the developed SID tool are given in this section.

3.4.1 Longitudinal Dynamics

The dataset used for the identification of longitudinal mode consists of longitudinal

cyclic δlon as the input, and pitch-rate q as the output. The spectral functions, i.e.

input, output, and cross-PSDs for longitudinal short-period mode are illustrated in

Fig. 3.4. The results for frequency-response estimates from three aforementioned

methods in form of Bode plot are depicted in Fig. 3.5, along with the corresponding

accuracy metrics. Figure 3.6 shows the identification results obtained from the de-

veloped code and CIFER. Figure 3.7 provides the accuracy measures to be used for

validating each identified model, and comparing the results with one another.
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Figure 3.4: Estimated spectral functions for pitch motion
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Figure 3.6: Identification results for longitudinal mode
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Figure 3.7: Accuracy metrics for longitudinal mode identification
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3.4.2 Lateral Dynamics

The dataset used for the identification of lateral mode consists of lateral cyclic δlat as

the input, and roll-rate p as the output. The spectral functions, i.e. input, output,

and cross-PSDs for lateral roll mode are illustrated in Fig. 3.8. The results for

frequency-response estimation in form of a Bode plot are depicted in Fig. 3.9, along

with the corresponding accuracy metrics. Figure 3.10 shows the identification results

obtained from the developed code and CIFER. Figure 3.11 provides the accuracy

measures to be used for validating each identified model, and comparing the results

with one another.
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Figure 3.8: Estimated spectral functions for roll motion
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Figure 3.9: Estimated frequency-response function for roll motion
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Figure 3.10: Identification results for lateral mode
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Figure 3.11: Accuracy metrics for lateral mode identification
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3.5 Analysis and Discussion

As a general rule of thumb, γ2 ≥ 0.6 and εr ≤ 0.2 demonstrate acceptable accuracy

in frequency-response estimation [12]. It is worth mentioning that in the method

used for rough estimation of the frequency-response function, which can be also

interpreted as a windowing technique with one rectangular window (Twin = Trec),

coherence function gives a meaningless value of 1 for all frequency points. So, the

coherence function and random error estimation are only considered as accuracy

measures when a non-rectangular windowing technique is utilized.

Firstly, we consider the comparison between the results of three different tech-

niques exploited for frequency-response identification. For both longitudinal and lat-

eral dynamics, the PSD plots of Figs. 3.4 and 3.8 show the superiority of the smooth

and the composite spectral estimates over the rough estimation of spectral functions.

It can be translated into the ability of the windowing techniques in eliminating the

effects of random noise in spectral estimates. In magnitude plots of Figs. 3.5 and 3.9,

the rough estimation results follow the trend of two other techniques with some fluc-

tuations. However, for the phase plots of the same figures, the rough estimation is

unable to provide an acceptable estimate.

In order to compare the smooth and composite estimations of the frequency-

response function, we can refer to the accuracy metric plots of Figs. 3.5 and 3.9, for

longitudinal and lateral dynamics, respectively. For the pitch motion, in frequency

range of 1 − 2 rad/s, the overlapped windowing gives a slightly better result. For

everywhere else in the spectrum, composite windowing provides more accuracy, i.e.

more coherence and less random error. For the roll motion, composite windowing

is superior throughout the whole spectrum, and is significantly better in frequency

ranges of 0.3−2 and 7−9 rad/s. Hence, for both dynamic modes, identified models

obtained from the composite windowing technique are more reliable, hence chosen

for comparison with CIFER identified models.
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Next, we compare the non-parametric models acquired from the developed

SID tool and CIFER. The PSD plots for both dynamic modes depict a systematic

error between our results and CIFER’s, as can be seen in Figs. 3.6 and 3.10. In

the magnitude and phase plots of the same figures, the results of both tools closely

follow one another in mid and high frequencies (frequency range of 1 − 12 rad/s);

however, there is a considerable offset between low frequency results (frequency range

of 0.3−1 rad/s).

In order to verify the fidelity of the identified models, we refer to the accuracy

metrics of Figs. 3.7 and 3.11, for longitudinal and lateral modes, respectively. For

longitudinal dynamics, our results are more accurate in 0.3−0.5 rad/s, and CIFER

gives better results in 0.5 − 2 rad/s. For the mid and high frequencies (frequency

range of 2 − 12 rad/s) the results are only slightly different as can be seen in near-

zero values for Δγ2 and Δεr in that spectrum. For lateral dynamics, however, the

code provides higher coherence and lower random error in low and high frequencies

(0.3 − 1 and 2 − 12 rad/s), and CIFER results are inferior except for the range of

1−2 rad/s.

Overall, the acceptable accuracy is achieved in the frequencies beyond 0.7 rad/s

for the longitudinal mode, and 0.4 rad/s for the lateral mode. The coherence func-

tion and random error estimations for lateral dynamics in the range of 7 − 9 rad/s

are way beyond the acceptable range, which can be seen essentially in the poor ex-

citation of lateral cyclic input. According to the accuracy measures, and based on

the comparison with CIFER, it can be concluded that the developed Matlab code

can successfully estimate accurate non-parametric models for longitudinal and lateral

dynamics of Trex-700 in almost entire frequency range of interest.
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Chapter 4

Parametric Model Identification

This chapter addresses the techniques required for acquiring a minimal adequate

parametric model for dominant dynamics of the UAV helicopter testbed, Align Trex-

700, from flight test data. Previously, in Chapter 3, a non-parametric model identifi-

cation method was examined to find an unbiased estimate of the frequency-response

function for longitudinal and lateral dynamics. Similar to Chapter 3, the parametric

modeling techniques of this chapter are implemented in a SISO frequency-domain

identification for on-axis longitudinal and lateral responses.

This chapter is organized as follows. The opening Section 4.1 gives a brief

explanation for parametric model identification. Section 4.2 introduces Low Order

Equivalent System (LOES) model identification as a type of parametric identification

approach. Section 4.3 reviews first-principle modeling techniques used for developing

a proper model structure to capture the flight dynamics of small-scale helicopters.

In Sections 4.4 and 4.5, two parameter estimation techniques, plus two proposed

solution routines will be described from a theoretical point of view. Section 4.6

contains parametric model identification results for Trex-700. The last Section 4.7

concludes this chapter.
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4.1 Introduction

Parametric model identification of an aircraft aims to find an accurate and reliable

estimate of the unknown parameters, i.e. aerodynamic derivatives, based on which

the linear aircraft equations of motion are formulated. This can be implemented in

frequency-domain by fitting a known model structure with unknown parameters to

the frequency-domain transformation of the measured input-output data. The iden-

tification problem can be degraded to a parameter estimation problem if the model

structure, whether a state-space formulation or a transfer function representation, is

known a priori. The state-space formulation is dominantly used for finding a com-

plete model, including most of the aerodynamic derivatives, typically in a MIMO

identification procedure. A transfer function formulation, however, attempts to esti-

mate the key parameters of major dynamic modes, and mostly used in a SISO model

identification [10,12].

4.2 LOES Modeling

LOES modeling is a type of transfer function modeling which attributes system input

and output with a linear relation, including an exponential delay term associated with

the input. The concept of LOES was introduced originally in the 1970s for aircraft

handling quality purposes, where a low order transfer function was fitted to a high-

order frequency-response obtained from a high-order system [29]. An extension of

LOES models was later implemented in parametric system identification of flight

vehicles with a similar approach, in addition to including nonlinearities as well as

high-order effects in the delay term. A typical third-order LOES model is shown in

equation (4.1):

T (s) = b0s2 + b1s+ b2
a0s3 +a1s2 +a2s+a3

e−τs. (4.1)
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LOES modeling is considered as an intermediate step in the model identification

of an aircraft, as it provides information about fundamental dynamic characteristics,

and estimates parameters associated with dominant dynamic modes. A comprehen-

sive dynamic model, as an ultimate goal in modeling, accounts for all dynamic modes,

and requires many measurements of the aircraft states. The significance of LOES

models, however, lies in the ability to approximate a high-order complex aircraft

response to pilot input with minimum adequate parameters in the form of a transfer

function, which can be interpreted and analyzed more readily. Hence, they are found

to be quite sufficient for a wide range of applications, such as aircraft development,

subsystem modeling, structural mode determination, control law design validation,

flight mechanics characterization, and simulation [10,12].

The central task in LOES parametric model identification is to find a proper

model structure for desired dynamic modes with physically meaningful parameters.

The rest requires a parameter estimation technique to approximate those unknown

parameters. However, the truncation of highly complex and coupled helicopter dy-

namics into a low order model requires a thorough knowledge about flight dynamics

of rotorcraft, and is not an easy task. Hence, we need to shed light on principles

of rotorcraft dynamics before we proceed. An overview of model development of

small-scale helicopters, plus the model forms chosen for this work, are discussed in

the next section.

4.3 Rotorcraft Dynamics

The dynamical behavior of a conventional helicopter is dominated by main and tail

rotor systems, where aerodynamic forces and moments are produced and controlled

through angular and aeroelastic movements of the rotating blades. The resulting
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forces and moments will then act on the helicopter body, and cause the vehicle to

translate and rotate simultaneously in six degrees of freedom. The main rotor blades

are controlled through a swashplate mechanism which transmits the actuator move-

ments, fixed to the body, to the blades revolving at a very high speed. The actuators

are commanded by helicopter major controls, which consist of collective, longitudinal

and lateral cyclic, and tail rotor inputs. Fig. 4.1 illustrates the swash plate mecha-

nism of Align Trex-700 used as the testbed for this research work.

Figure 4.1: Swashplate mechanism of Align Trex-700, c© MicroPilot

The rotor system actuators aim to adjust pitch angle of the blades. The pitch

angle, also referred to as feathering angle, is the rotation of the blade around its span.

An increase in the pitch angle causes the rotating blades to face the air at a relatively

higher angle of attack and increases the lift accordingly. The collective control apply

the same pitch angle to all the blades simultaneously, and is the primary source of lift

and thrust forces. The cyclic controls adjust the pitch angle of the main rotor blades

different from one another in order to produce longitudinal and lateral moments.
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The tail rotor control regulates the pitch angle of the tail rotor blades similar to the

collective control in order to generate directional moment.

The helicopter responds to the controls in a multi-axis behavior, where a single-

axis control can change the position and attitude in multiple axes. Yet, a significant

weight of the controls is given to on-axis dynamics1. The rotor system also reacts to

the main rotor controls by adjusting coning and tilting angles of the rotor disk (also

referred to as tip-path plane) in multiple harmonics. Fig. 4.2 shows a schematic view

for the dominant harmonic of the rotor system response to the controls.

Figure 4.2: Rotor blades flapping motion [4]

4.3.1 Rigid-Body Model

A mathematical expression for helicopter flight dynamics can be developed from first

principles where the aircraft is modeled using fundamental laws of mechanics such

as Newton-Euler equations [4, 36, 37]. The nonlinear model obtained from generic

equations of motion is comprised of translational and rotational dynamics of the

rigid-body, which is exposed to external forces and moments due to aerodynamics,

propulsion, and gravity. The key task in identification of the model for flight vehi-

cles is finding an accurate expression for aerodynamic forces and moments in terms

of aircraft dynamic and control variables [38]. The collected equations of motion
1On-axis responses for collective, longitudinal and lateral cyclic, and tail rotor inputs are con-

sidered as vertical velocity, longitudinal, lateral, and directional attitudes, respectively.
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for rigid-body dynamics of a small-scale conventional helicopter are given in equa-

tions (4.2) to (4.10). These equations are derived with respect to the inertial reference

frame, with the principal variables expressed in a body-fixed reference frame located

at the center of gravity of the vehicle. Fig. 4.3 depicts body axes x,y,z, velocities

u,v,w, angular rates p,q,r, and external forces and moments, X,Y,Z and L,M,N ,

respectively.

Translational Dynamics:

u̇ = (−wq +vr)+X/m−gsinθ (4.2)

v̇ = (−ur +wp)+Y/m+gcosθsinφ (4.3)

ẇ = (−vp+uq)+Z/m+gcosθcosφ (4.4)

Rotational Dynamics:

ṗ = −qr(Iyy − Izz)/Ixx +L/Ixx (4.5)

q̇ = −pr(Izz − Ixx)/Iyy +M/Iyy (4.6)

ṙ = −pq(Ixx − Iyy)/Izz +N/Izz (4.7)

Rotational Kinematics:

φ̇ = p+ tanθ(qsinφ+ rcosφ) (4.8)

θ̇ = qcosφ− rsinφ (4.9)

ϕ̇ = secθ(qsinφ+ rcosφ) (4.10)

In equations (4.2) to (4.10), φ,θ,ψ are Euler angles used for describing the angular

orientation of the aircraft. The Euler angles refer to transformation from the in-

ertial reference frame to the body-fixed frame in a specific sequence, i.e. yaw (ψ),

pitch (θ), and roll (φ). Aircraft moments of inertia around the body axes are de-

noted as Ixx, Iyy, Izz, and aircraft mass is denoted as m. The products of inertia,

i.e. Ixy, Ixz, Iyz, are assumed to be small and therefore neglected [16].
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Figure 4.3: Helicopter body-fixed frame [4]

4.3.2 Extension of the Rigid-Body Model

The six Degree-Of-Freedom (6 DOF) rigid-body model does not suffice for capturing

the rotorcraft flight dynamics completely. Higher order effects, mostly due to rotor

blades aeroelasticity, must be considered in order to improve the model fidelity.

A well-known extension of the 6 DOF model, which accounts for simplified rotor

dynamics in addition to the rotor-body couplings, is called hybrid model [39]. The

hybrid model, which was originally developed for full-scale helicopters, was adopted

for model-scale rotorcrafts by Mettler [16]. This model aims to capture the dominant

dynamic modes of the rotor system by modeling the blades flapping motion through

the tilt angles of the tip-path-plane in the longitudinal and lateral directions, denoted

as a and b, respectively (see Fig. 4.2). This model is presented in following equations:

Simplified Rotor Dynamics:

ȧ = −γΩ
16 a+

kβ

2ΩIβ
b− q + γ

16p−Θa (4.11)

ḃ = −γΩ
16 b− kβ

2ΩIβ
a−p− γ

16p+Θb (4.12)

where Iβ is the moment of inertia of the blade about the flapping hinge, kβ is the

flapping hinge restraint spring constant, γ is the blade Lock number, Ω is the rotor

speed, and Θa and Θb are the blade pitch/feathering angles in longitudinal and
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lateral directions, respectively.

Along with modeling the rigid-body and the rotor dynamics, a feedback system

which is commonly used to augment the stability of the yaw channel has to be

modeled. It is quite well known that the yaw dynamics of rotorcrafts with tail rotor

configuration is highly sensitive to controls (see equation (4.7)). This is mainly due

to the large size of the tail beam, where small changes in rotational speed of the main

rotor, or pitch angle of the tail-rotor blades can produce a huge yawing moment (N).

This sensitivity is even more extreme for unmanned helicopters with faster dynamics

and smaller size, which makes their manual control quite challenging. Hence, it is

essential for most of small-scale helicopters to be equipped with a yaw-rate gyro in

order to enhance their yaw stability and handling qualities [24]. A simple first-order

model is used to capture the effect of this feedback system:

Yaw Damping System:

ṙfb = −Krfb
rfb +Krr (4.13)

where rfb is the yaw rate gyro feedback, and Krfb
and Kr are the feedback gains.

4.3.3 Model Linearization

The aforementioned set of nonlinear equations (4.2) to (4.10) can be linearized around

a reference/trim flight condition using small disturbance theory, where the states,

forces, and moments of the system are replaced by small perturbations around their

trim values [40]. For example, the vertical translational velocity w is replaced by

Δw according to w = w0 + Δw, in which w0 refers to the trim vertical velocity.

Hereafter, the Δ symbol is dropped from all variables for simplicity. Furthermore,

the aerodynamic forces and moments, denoted as X,Y,Z and L,M,N respectively,

can be expressed in terms of the aircraft states and control inputs by employing a

linear Taylor Series Expansion [41]. The basic helicopter control variables consist of
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the main rotor collective pitch δcol, the tail rotor collective pitch δped, the longitudinal

cyclic input δlon, and the lateral cyclic input δlat. As an example, for the longitudinal

moment component M one can get

M = ∂M

∂u
δu+ ∂M

∂w
δw + ∂M

∂q
δq + · · ·+ ∂M

∂δlon
δlon + · · · (4.14)

where the partial derivatives of M with respect to the states and controls are called

stability and control derivatives, or aerodynamic derivatives, which are abbreviated

as follows:
∂M

∂δlon
= Mlon. (4.15)

It should be noted that not all of the states and controls contribute in each aerody-

namic force and moment. Associating forces and moments to the variables by which

they are altered is the principle of the parametric system identification, which is also

referred to as model structure determination.

The complete linearized equations of motion for a flybarless small-scale heli-

copter is collected in a state-space form in equation (4.16). In this differential equa-

tion, the system matrix A contains the stability derivatives, and the input matrix B

contains control derivatives. Also, x and u are state and input vectors, respectively.

ẋ = Ax+Bu (4.16)

where the state vector is

x = [u,v,w,p,q,r,φ,θ,a,b,rfb]T (4.17)

and the input vector is

u = [δlat, δlon, δped, δcol]T (4.18)
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu 0 0 0 0 0 0 −g Xa 0 0

0 Yv 0 0 0 0 g 0 0 Yb 0

0 0 Zw 0 0 Zr 0 0 Za Zb 0

Lu Lv 0 0 0 0 0 0 0 Lb 0

Mu Mv 0 0 0 0 0 0 Ma 0 0

0 Nv Nw Np 0 Nr 0 0 0 0 Nrfb

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 −1
τf

Ab

τf
0

0 0 0 −1 0 0 0 0 Ba

τf

−1
τf

0

0 0 0 0 0 Kr 0 0 0 0 Krfb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.19)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 Zcol

0 0 0 0

0 0 0 0

0 0 Nped Ncol

0 0 0 0

0 0 0 0
Alat

τf

Alon

τf
0 0

Blat

τf

Blon

τf
0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.20)

This formulation is originally developed by Mettler [15] for model identification

of Yamaha R-50 helicopter in hover flight regime. A similar model for cruise flight
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regime is also addressed in reference [15]. This realization of rotorcraft dynamics

showed promise for modeling various model-scale helicopters as it is used extensively

in recent literature [1,7,14,18–20,42,43]. Other quantification of helicopter linearized

model accounting for higher order effects, such as rotor inflow dynamics, blade lead-

lagging motion, and stabilizer bar dynamics can be found in references [8,22,44,45].

The resulting simplified model is considered as local model, since it is only valid for

the specific flight condition about which the model is linearized. A general linear

model can be obtained by developing multiple set of local models in order to cover

the entire flight envelope [16].

4.3.4 LOES Model Structure

As mentioned earlier, the LOES identification of on-axis dynamics for our target

vehicle is desired in this chapter. With the insight gained from analytic modeling of

helicopter dynamics in Section 4.3, we are now able to determine physically meaning-

ful model structures for on-axis responses due to controls. Once the model structure

is established, in other words, once the decision about the inclusion of the effective

aerodynamic derivatives has been made, the model identification problem simply

becomes a parameter estimation problem. The on-axis dynamics for a conventional

helicopter composed of:

• Heave mode: Vertical velocity to main rotor collective, w/δcol

• Dutch-roll mode: Roll-rate response to lateral cyclic, p/δlat

• Short-period mode: Pitch-rate response to longitudinal cyclic, q/δlon

• Yaw mode: Yaw-rate response to tail rotor collective, r/δped

In order to obtain transfer function representation of these dynamic modes,

we require to further simplify the fully coupled hybrid model of equation (4.16),

which describes the fuselage, rotor, and feedback system dynamics. This can be
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accomplished if two major assumptions are made. First, we assume that airflow

around the rotor blades is quasi-steady2. This will allow us to break down the rotor

dynamics into transient and steady-state responses. We will then include the rotor

transient dynamics in an equivalent time delay associated with inputs, denoted as τ .

Moreover, the rotor steady-state dynamics will be modeled as equivalent stability

and control derivatives of the rigid-body [15].

The other assumption for simplifying the model of equation (4.16) is neglecting

cross-axis coupling in the rigid-body equations, and splitting them into longitudinal

and lateral/directional dynamics [12]. The resulting decoupled models are a good

approximation for capturing the dominant dynamic modes of the helicopter. It is

worth recalling that, during the identification flight experiment, the pilot commands

one control input at a time. The secondary controls will be kept in the lowest

allowable amplitude not to correlate on-axis and off-axis responses with one another.

In other words, except for the primary control and response, the rest of aircraft

states and controls will have small variations. Therefore, the terms corresponding to

off-axis dynamics can be dropped and the equations can be decoupled.

The longitudinal dynamics are described with state vector xlon, and control

vector ulon in equation (4.21). Similarly, the lateral/directional dynamics are ex-

pressed with state vector xlat, and control vector ulat in equation (4.22). System

matrices F lon and F lat, and input matrices Glon and Glat, contain the equivalent

aerodynamics derivatives for longitudinal and lateral modes.

ẋlon = F lonxlon +Glonulon (4.21)

ẋlat = F latxlat +Glatulat (4.22)

2Quasi-steady flow assumes that the airflow around the aircraft, as a result the aerodynamic
forces and moments, change instantaneously when the flight vehicle is disturbed from its trim
condition [46].
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where the state and control vectors are given as:

xlon = [u,w,q]T (4.23)

xlat = [v,p,r,rfb]T (4.24)

ulon = [δlon(t− τp), δcol(t− τh)]T (4.25)

ulat = [δlat(t− τr), δped(t− τy)]T (4.26)

in which τp, τr, τy, and τh are equivalent time delay for pitch, roll, yaw, and heave

motions. The system and input matrices are given in the following:

Flon =

⎡
⎢⎢⎢⎢⎢⎢⎣

Xu 0 Xq

0 Zw 0

Mu 0 Mq

⎤
⎥⎥⎥⎥⎥⎥⎦

Glon =

⎡
⎢⎢⎢⎢⎢⎢⎣

Xlon 0

0 Zcol

Mlon 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.27)

Flat =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Yv Yp 0 0

Lv Lp 0 0

Nv Np Nr Nrfb

0 0 Kr Krfb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Glat =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ylat 0

Llat 0

0 Nped

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.28)

The transfer function form of the dominant dynamic modes are obtained by

taking a Laplace Transform from equations (4.21) and (4.22).

Heave Mode:
w

δcol
= Zcol

s−Zw
e−τ2s (4.29)

Short-Period Mode:

q

δlon
= (Mlon)s+(XlonMu −MlonXu)

s2 − (Xu +Mq)s+(MqXu −XqMu)e−τ1s (4.30)

Dutch-Roll Mode:

p

δlat
= (Llat)s+(YlatLv −LlatYv)

s2 − (Yv +Lp)s+(LpYv −YpLv)e−τ3s (4.31)
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Closed-Loop Yaw Mode:

r

δped
=

(Nped)s+(NpedKrfb
)

s2 +(Krfb
−Nr)s+(Nrfb

Kr −Krfb
Nr)e−τ4s (4.32)

The LOES models of equations (4.29) to (4.32) give a meaningful representa-

tion of low order dynamics from a flight dynamics perspective. However, there are

two problems associated with these models from estimation point of view. First, the

second-order transfer functions are overparameterized, hence cannot be considered

minimal adequate models. In other words, the information content in the measured

flight data does not suffice for estimating all these parameters accurately. Second,

there is high correlation between the parameters in the numerator and denominator

of transfer functions. That is, in the estimation procedure, movement in one param-

eter can affect other parameter estimates significantly, which reduces the estimation

accuracy. Some improvements can be achieved if we re-parameterize the second-order

equations of pitch, roll, and yaw differently, as shown in the following [30]:

H = b1s+ b0
s2 +a1s+a0

e−τs (4.33)

where the relation between the aerodynamic derivatives and new parameters of equa-

tion (4.33) is found by straightforward comparison. These model structures are in

good agreement with the model structures suggested in references [12] and [22] for

the same application. Moreover, as discussed in Chapter 3, the composite frequency-

response estimates obtained from flight test data show a second-order behavior for

pitch, roll, and yaw modes. The final characterization of the LOES models obtained

for Align Trex-700 are listed in Table 4.1.
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Table 4.1: LOES model structure for on-axis responses

Mode H(s) LOES Model

Heave w

δcol

b0
s−a0

e−τs

Dutch-Roll p

δlat

b0
s2 +a1s+a0

e−τs

Short-Period q

δlon
b1s+ b0

s2 +a1s+a0
e−τs

Yaw r

δped

For simplicity, the same parameterization is used for all the transfer functions,

as bi for the numerator, ai for the denominator, and τ for the exponential term.

However, it is obvious that these parameters can be different in dimension and value.

4.4 Parameter Estimation Methods

The last step in the parametric identification is to estimate the unknown parameters

in the postulated model structures. In the frequency-domain, this procedure involves

a nonlinear parameter estimation, which should be solved with a nonlinear optimiza-

tion technique. In this section, we will shed light on the theory of the parameter

estimation methods used in this work. Moreover, a theoretical background is given

for the nonlinear optimization routines which we employed to solve the estimation

problem. First, a theoretical scheme is given for a general frequency-domain estima-

tion problem. Then, the formulations for a specific SISO identification is presented.

Finally, the derivations for the model structure of the short-period dynamics are

obtained, due to its generality over other model structures presented in Table 4.1.

The formulations for the other model forms can be simply derived following a similar

procedure.
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4.4.1 Maximum Likelihood Estimator

The nonlinear estimator used extensively in aircraft system identification is Maxi-

mum Likelihood estimator which is developed based on the Fisher model given as

follows:

y = h(θ)+ν (4.34)

where y is measurement vector, i.e. the Fourier transform of the time-domain mea-

sured data, ν is error vector which captures the model uncertainty, θ is a vector of

unknown parameters, and h(θ) is the model structure which nonlinearly relates the

model parameters to the measured data [10].

The maximum likelihood estimation is developed for a stochastic dynamic sys-

tem described by differential equations with process noise. The solution of such an

estimation problem requires a combination of a Kalman filter and a nonlinear param-

eter estimator. The Kalman filter is necessary because the states of the system are

random variables and must be estimated. A nonlinear estimator is needed because

the measurement and parameters are attributed by a nonlinear function, h(θ).

For practical applications, a simplified version of maximum likelihood estimator

is used, where an assumption of no process noise is made. The process noise can be

neglected if the flight test is executed in calm air, and if the maneuvers are performed

in a way to keep the linearity assumption of the model to be identified [10] (see

Chapter 2). In such a case, the states can be calculated deterministically using

simple algebraic calculations in the frequency domain, and there is no need for a

Kalman filter.

The simplified maximum likelihood estimator assumes that the system to be

identified is deterministic, and the input measurement data are free of noise; however,

it accounts for the noise in the output measurements. The problem will be then

reduced to the estimation of the unknown parameters of the known model structure,

h(θ). This can be done by minimizing a quadratic cost formulation obtained from
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the concept of a likelihood function3 and given in the following equation:

J(θ) = n
m∑

k=0
ν†

k(θ)S−1
νν νk(θ) (4.35)

where n and m are the number of data points in the time and frequency domains

respectively, k is the frequency index, νk(θ) is the error vector given at each frequency

point, ν†
k(θ) is the complex conjugate transpose of νk(θ), and S−1

νν is a weighting

matrix given as:

Ŝνν =
m∑

k=0
νk(θ)ν†

k(θ) (4.36)

in which θ̂ is an estimate of the vector of parameters θ. For the case of a SISO

identification problem in this work, nS−1
νν can be omitted from the cost without

affecting the parameter estimation results, so the cost function can be reformulated

as follows [30]:

J(θ) = 1
2

m∑
k=0

|νk(θ)|2 = ν†(θ)ν(θ)/2 (4.37)

In this work, two different approaches of the maximum likelihood estimator

are used in order to estimate the LOES models of dominant dynamic modes, namely

Output-Error (OE) method, and Frequency-response-Error (FE) method. In the

following subsections the theoretical background for these two approaches will be

discussed.

4.4.2 Output-Error Method

In the Fisher model of equation (4.34), if the measurement vector y is the system

output, the maximum likelihood estimator will minimize the sum of squared errors

between the estimated and measured outputs, and the estimation is called Output-

Error (OE) method [30]. For a known transfer function form H , the output can be
3In Fisher estimation theory, the likelihood function is defined as the conditional probability

density of the observation y, given the parameters θ, i.e. L(y;θ) = p(y|θ). The assumption of
Gaussian distribution for the probability density p(y) leads to the definition of a quadratic cost
function for the maximum likelihood estimator [34].
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estimated from the following:

ẑ = H(θ̂)u (4.38)

where u is the Fourier coefficient vector of the measured input and ẑ is the vector

of the estimated output. Then, the measurement equation can be formulated as:

z = ẑ +ν (4.39)

where z is the Fourier coefficient vector of the output measurements, and ν is the

error vector. Hence, the output error cost function can be given as:

JOE(θ) = 1
2

m∑
k=0

|zk − ẑk|2 (4.40)

As an example, for the longitudinal short-period mode approximated by a

second-order transfer function as given in Table 4.1, the pitch-rate estimate in terms

of the unknown parameters is given as:

ẑk(θ) = q̂k(θ) =
(

b1ωj + b0
−ω2 +a1ωj +a0

e−τωj

)
δlonk

(4.41)

where θ = [b1, b0,a1,a0, τ ]T is the vector of the unknown parameters, ω is the fre-

quency point at which the output is evaluated, and δlonk
is the Fourier coefficient of

the measurements for longitudinal cyclic input. In a similar fashion, the output esti-

mates can be developed for the other model forms of heave, roll, and yaw dynamics,

as given in Table 4.1.

4.4.3 Frequency-Response-Error Method

Another derivation of the maximum likelihood estimator, which is the basis of the

CIFER transfer function identification package (namely NAVFIT) and has been

extensively used in practice, attempts to adjust the unknown parameters by fitting

the model to the estimated Bode plot of the measured input-output data [12]. The

cost formulation used in this method is given as:

JF E(θ) = 20
m

m∑
k=0

wk

[(
|Hk|− |Ĥk(θ)|

)2
+wp

(
∠Hk −∠Ĥk(θ)

)2]
(4.42)
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where |Hk| and ∠Hk are magnitude4 and phase of the calculated frequency-response

from the spectral estimates (see Chapter 3), |Ĥk(θ)| and ∠Ĥk(θ) are magnitude

and phase of the estimated transfer function, and wk is a weighting function, all

of which are evaluated at frequency index k. The weighting coefficient wk depends

upon the value of the coherence function of the calculated frequency-response, in

order to emphasize the most reliable data (higher coherence) in the cost value. Also,

wp is a weighting constant used to balance the contributions of the magnitude and

the phase in the cost function. The value for wp and the expression for wk are given

in the following [12]:

wp = 0.01745 (4.43)

wk =
[
1.58

(
1− e−γ2

k

)]2
(4.44)

In this work, the composite frequency-response estimates obtained in Chap-

ter 3 will be used for evaluating |Hk| and ∠Hk variables. The transfer function

estimates |Ĥk(θ)| and ∠Ĥk(θ) are obtained from the model forms collected in Table

4.1 using complex algebra. As an example, magnitude and phase estimates of the

second-order transfer function for the short-period mode can be written as:

|Ĥk(θ)| = 10log10
(b1ω)2 + b2

0
(a0 −ω2)2 +(a1ω)2 (4.45)

∠Ĥk(θ) = −τω +arctan b1ω

b0
+arctan a1ω

a0 −ω2 (4.46)

where θ = [b1, b0,a1,a0, τ ]T is the vector of the unknown parameters, and ω is the

frequency point at which the output is evaluated. Similarly, the transfer function es-

timates can be developed for the other model forms of heave, roll, and yaw dynamics,

as given in Table 4.1.
4The transfer function magnitude is expressed in dB, i.e. H = 20log10(z/u).
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4.5 Nonlinear Estimation Routines

The nonlinear estimation methods derived from the maximum likelihood concept can

be solved using any nonlinear optimization technique. Among all possible solution

routines, two techniques are selected: Levenberg-Marquardt and Downhill Simplex,

as they are found to have a high convergence rate for aircraft system identification

applications [29, 34]. A quick theoretical background is given for these optimization

techniques in this section.

4.5.1 Levenberg-Marquardt Solution

The Levenberg-Marquardt method is developed from the popular Newton-Raphson

optimization technique. For a nonlinear estimator with unknown parameters vector

θ, and cost function J(θ), the Newton-Raphson technique adjusts the parameters

by minimizing the cost function in an iterative process. Firstly, a nominal value is

considered for the parameters as θ0. Next, the parameters are updated using the

following equation:

θ̂ = θ0 +Δθ̂ (4.47)

where Δθ̂ is given by

Δθ̂ = −
[

∂2J

∂θ∂θT

∣∣∣∣
θ0

]−1
∂J

∂θ

∣∣∣∣
θ0

(4.48)

The nominal value is then replaced by the parameter estimate (θ0 = θ̂) for the next

iteration. The iterations will continue until some convergence criteria are satisfied [5].

The first-order gradient of the cost function denoted as ∂J/∂θ is called sensitivity

matrix (S), and the second-order gradient denoted as ∂2J/∂θ∂θT is known as Fisher

information or Hessian matrix (M). The update equation can be also represented

as the following:

Δθ̂ = − [M |θ0 ]−1 S|θ0 . (4.49)
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The Levenberg-Marquardt method aims to augment the Newton-Raphson tech-

nique by improving the Hessian matrix in order to produce a more accurate inverse

in the update equation (4.48). According to this technique, the Hessian matrix is

augmented as:

M = M0 +λlI (4.50)

where M0 is the original Hessian matrix, I is the identity matrix, and λl is a positive

nonzero scalar, initially set to λl = 0.001. This modification is implemented in a

separate iterative procedure within the original iteration loop described with scrutiny

in reference [5]. Typical convergence criteria for Levenberg-Marquardt technique

involve one or more of the following:

1) Absolute values of the elements of the parameter update are small enough.

2) The elements in the cost gradient are close to zero.

3) Changes in the cost value for consecutive iterations are sufficiently small.

These criteria are quantified in the equations (4.51) to (4.53):

∣∣∣∣(θ̂j)k − (θ̂j)k−1

∣∣∣∣ < 1.0×10−5 ∀j, j = 1,2, · · · ,np (4.51)∣∣∣∣(∂J(θ)/∂θj)θ=θ̂k

∣∣∣∣ < 5.0×10−2 ∀j, j = 1,2, · · · ,np (4.52)
∣∣∣∣J(θ̂k)−J(θ̂k−1)

J(θ̂k−1)

∣∣∣∣ < 0.001 (4.53)

where np is the number of unknown parameters to be identified [10].

The accuracy of the estimation can be examined by evaluating the standard

deviation of the estimated parameters. The standard deviation can be obtained from

the diagonal elements of the covariance matrix, which follows the Cramer-Rao (CR)

inequality as:

Cov(θ̂) = E
[
(θ̂ −θ)(θ̂ −θ)T

]
≥ M−1 (4.54)
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where E is the operator for the expected value. In maximum likelihood method, the

inverse Hessian matrix and the covariance matrix are attributable with scale factor of

5 to 10, accounting for non-Gaussian noise and modeling errors in the identification,

as follows:

si =
√

(Cov(θ̂))ii = (5 to 10)
√

(M−1)ii ∀ i = 1, · · · ,n (4.55)

where si is the standard deviation of the ith parameter, also known as Cramer-Rao

bound [10]. It is usually evaluated in percentage of the identified parameter as the

following:

si = CRi = |CRi

θi
|×100 %. (4.56)

In this work, we have applied Levenberg-Marquardt solution for solving the

two aforementioned estimation techniques (OE and FE). For the OE method with

the cost formulation given in equation (4.40), the Levenberg-Marquardt calculates

the sensitivity and original Hessian matrices as:

S = −�
⎡
⎣ m∑

k=0

∂ẑk

∂θ
vk

⎤
⎦ (4.57)

M0 = �
⎡
⎣ m∑

k=0

(
∂ẑk

∂θ

)†
∂ẑk

∂θ

⎤
⎦ (4.58)

where � denotes the real elements in the first- and second-order gradients of the cost

function, and † is the denotation for complex conjugate transpose of a matrix with

complex elements.

Likewise, for the FE estimation method with the cost function of equation (4.42),

the Levenberg-Marquardt method provides the sensitivity and original Hessian ma-

trices as:

S = −40
m

m∑
k=0

wk

[
∂|Ĥk|

∂θ
vmk

+wp
∂∠Ĥk

∂θ
vpk

]
(4.59)

M0 = 40
m

m∑
k=0

wk

⎡
⎣

(
∂|Ĥk|

∂θ

)†
∂|Ĥk|

∂θ
+wp

(
∂∠Ĥk

∂θ

)†
∂∠Ĥk

∂θ

⎤
⎦ (4.60)
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where vmk
and vpk

are the estimation error in magnitude and phase given as:

vmk
= |Hk|− |Ĥk(θ)| (4.61)

vpk
= ∠Hk −∠Ĥk(θ) (4.62)

The first-order gradient matrices of the estimated output (∂ẑk/∂θ) and the

transfer function estimates (∂|Ĥk|/∂θ and ∂∠Ĥk/∂θ), presented in equations (4.57) to (4.60),

can be simply derived if the output equation and transfer function are known. In this

work, we have calculated these gradients for the model structures given in Table 4.1.

As an example, for the longitudinal short-period mode with output equation (4.41),

the corresponding first-order gradient matrix takes the following form

∂ẑk

∂θ
= ∂q̂k

∂θ
=

[
∂q̂k

∂b1
,

∂q̂k

∂b0
,

∂q̂k

∂a1
,

∂q̂k

∂a0
,

∂q̂k

∂τ

]
. (4.63)

If one takes all the derivatives, the resulting matrix will be:

∂q̂k

∂θ
= σ1

σ3
[jω, 1, jωσ2/σ3, σ2/σ3, − jωσ2] (4.64)

where σ1, σ2, and σ3 are the collected forms of

σ1 = δlonk
e−τωj (4.65)

σ2 = b1ωj + b0 (4.66)

σ3 = −ω2 +a1ωj +a0. (4.67)

The derivations for the transfer function gradients are obtained similarly. Again,

the formulation is derived for the longitudinal short-period mode as an example, with

the transfer function magnitude and phase given in equations (4.45) and (4.46). The

first-order gradients for the magnitude and the phase are found as:

∂|Ĥk|
∂θ

= 20
ln10

[
b1ω2

σ5
,

b0
σ5

,
−a1ω2

σ6
,

−σ4
σ6

, 0
]

(4.68)

∂∠Ĥk

∂θ
=

[
ω/b0
σ7

,
−b1ω/b2

0
σ7

,
−ω/σ4

σ8
,

a1ω/σ4
σ8

, −ω

]
(4.69)
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where σ4, σ5, σ6, σ7, σ8 are:

σ4 = a0 −ω2 (4.70)

σ5 = (b1ω)2 + b2
0 (4.71)

σ6 = (a1ω)2 +σ2
4 (4.72)

σ7 = (a1ω/σ6)2 +1 (4.73)

σ8 = (b1ω/b0)2 +1. (4.74)

In an analogous fashion, the first-order gradients in equations (4.57) to (4.60) are

calculated for other model structures as given in Table 4.1.

4.5.2 Downhill Simplex Solution

The other optimization routine employed in this work is called Downhill Simplex,

also referred to as Simplex method. This technique is developed for minimization of

a function that nonlinearly depends on more than one variable. It has a geometric

basis, and it only requires function evaluation in its way to find the solution, i.e. no

derivative is involved. Downhill Simplex method has a fast convergent rate among

other nonlinear optimization routines, and is very efficient in terms of the function

evaluations it needs [5].

In the nonlinear estimation problem, we have a vector of unknown param-

eters θ with np elements, an initial guess θ0, and an objective function or cost

function J(θ) to be minimized. In order to solve this problem, the Simplex method

defines a np-dimensional vector-space with np + 1 points or vertices. Each of these

points corresponds to a vector of parameters. One of the vertices (does not matter

which) takes the initial guess for parameters θ0, and the other np vertices take the

perturbed vector of parameters θi determined as the following:

θi = θ0 +dθi i = 1,2, · · · ,n (4.75)
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where dθi are perturbation matrices given as:

dθi(j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λsθ0(j) i = j

0 i �= j

(4.76)

in which λs is the perturbation in percent, usually set to λs = 0.01, and j = 1,2, · · · ,np

is the parameter index. The Simplex method then evaluates the cost function at each

vertex, and finds the minimum and maximum cost values (denoted as Jl and Jh) and

their corresponding vertices (denoted as θl and θh). The centroid of the points is

also found from the following equation:

θ =

np∑
k=0

θk

np
∀k �= h. (4.77)

After all these initializations, the Simplex method starts an iterative loop in

order to attain the minimum cost value. At each iteration, θh is replaced by a new

value after taking a series of steps in a specific sequence. There are four operations

used in these steps, namely reflection, expansion, contraction, and compression. In

the reflection, θh is reflected with respect to the centroid by factor of α > 0 and gives

θr. In the expansion, θr is expanded with respect to the centroid by factor of γ > 1

which yields to θe. In the contraction, θh is contracted with respect to the centroid

by factor of 0 < β < 1 and delivers θc. Finally, in the compression, all the vertices

are contracted along all dimensions towards the low point θl. These operations are

quantified in equations (4.78) to (4.81).

θr = θ −α(θh −θ) (4.78)

θe = θ +γ(θr −θ) (4.79)

θc = θ +β(θh −θ) (4.80)

θi = (θi +θl)/2 (4.81)

where α, β, γ are the algorithm coefficients with recommended values of α = 1,

β = 0.5, and γ = 2 [47]. The sequence in which these operations are performed is
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discussed with scrutiny in references [5,48]. In order to give a better understanding,

the aforementioned operations are illustrated graphically in Fig. 4.4 for a typical

three-dimensional simplex.

Figure 4.4: Possible outcomes of a step in Simplex method (adopted from [5])

At the end of the iteration, the new cost values are computed for the updated

vertices, minimum and maximum cost values are found again, and a termination or

convergence criteria is checked. The iterative loop is continued until the termination

criteria is satisfied. A typical convergence criteria requires the relative difference

between minimum and maximum cost value to be sufficiently small, that is:

∣∣∣∣Jh −Jl

Jh +Jl

∣∣∣∣ < 1.0×10−8. (4.82)

In this work, the Downhill Simplex technique is utilized in order to find the pa-

rameter estimates which minimize the cost functions of equations (4.40) and (4.42) for

short-period and roll model structures presented in Table 4.1. It is obvious that the

Simplex method has less complexity in its formulation and computation burden com-

pared to the Levenberg-Marquardt method introduced earlier.
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4.6 Identification of the Model

The model identification problem was decreased to a nonlinear estimation problem

after postulating a proper model structure in Section 4.3.4. For the transfer func-

tions presented in Table 4.1, two nonlinear estimation problems are formulated, i.e.

OE and FE, each of which is solved by employing two nonlinear optimization rou-

tines, i.e. Levenbverg-Marquardt and Downhill Simplex. A Matlab code is generated

for this reason. The Matlab program inputs the time-history data and delivers the

identified LOES models. A schematic of the developed tool is represented in Fig. 4.5

Figure 4.5: Schematic of the parametric SID tool

Beside identifying the models using our Matlab-based SID tool, the same time-

history data are fed to CIFER NAVFIT package for identifying another set of LOES

models for comparison. Since the longitudinal and the lateral cyclic inputs are the

only controls excited using frequency sweeps during the flight test, we are only able to

identify the LOES models for short-period and roll modes. However, the Matlab code

is quite capable for identifying the heave and yaw dynamics provided that the data is

available. The Matlab package could be easily adapted for any transfer function form

as well. In this section, we will provide the estimation results for longitudinal and

lateral low order models, and compare them with the results obtained from CIFER.
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4.6.1 Longitudinal Dynamics

The parameters to be estimated are b1, b0, a1, a0, and τ from the transfer function

given in Table 4.1. For the Levenberg solution, parameters τ and b0 are fixed during

the iterations. They are initially set to their corresponding values from CIFER,

however they are fine-tuned manually during multiple runs of the Matlab code. For

the Simplex solution, the only parameter kept fixed is time delay τ .

The results of the OE method for the short-period mode is given in Table 4.2

which includes: estimated parameters, calculated modal characteristics (ζ and ωn),

and estimation final cost value for both Levenberg and Simplex solutions. Likewise,

the FE estimation results are collected in Table 4.3, in addition to the results obtained

from CIFER. Figure 4.6 contains the pitch-rate estimates and measurements in both

frequency-domain (|q̃|) and time-domain (q). Also, Fig. 4.7 depicts the Bode plot

of the estimated model and measurement data, plus the time-domain verification of

the estimated pitch-rate.

Table 4.2: Identification results: OE method for short-period dynamics

Symbols
Parameter Estimates

Levenberg Simplex

b1 -14.18 -10.07

b0 -400.00 -391.07

a1 12.63 9.99

a0 368.22 406.36

τ 0.08 0.08

ζ 0.33 0.25

ωn 19.19 20.16

JOE 145.79 158.38
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Table 4.3: Identification results: FE method for short-period dynamics

Symbols
Parameter Estimates

Levenberg Simplex CIFER�

b1 -25.45 -10.05 -1.18

b0 -400.00 -407.37 -566.60

a1 15.28 10.04 9.41

a0 390.19 394.15 451.69

τ 0.08 0.08 0.06

ζ 0.39 0.25 0.22

ωn 19.75 19.85 21.25

JF E 18.43 20.72 44.42
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Figure 4.6: Identification results: OE method for short-period dynamics
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Figure 4.7: Identification results: FE method for short-period dynamics

4.6.2 Lateral Dynamics

The parameters to be estimated are b0, a1, a0, and τ from the transfer function

given in Tables 4.1. For the Levenberg and Simplex solutions, only time delay τ is

fixed during the iterations. It is initially set to its corresponding value from CIFER,

but fine-tuned manually during multiple runs of the Matlab code. Analogous to the
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longitudinal mode, Table 4.4 and 4.5 summarize the estimation results of the output-

error and frequency-response-error methods, respectively. Also, Fig. 4.9 and Fig. 4.8

illustrate the results of these two methods in time and frequency domains.

Table 4.4: Identification results: OE method for roll dynamics

Symbols
Parameter Estimates

Levenberg Simplex

b0 491.00 391.40

a1 9.44 9.90

a0 436.21 380.00

τ 0.05 0.05

ζ 0.23 0.25

ωn 20.89 19.49

JOE 410.74 496.76

Table 4.5: Identification results: FE method for roll dynamics

Symbols
Parameter Estimates

Levenberg Simplex CIFER�

b0 383.43 394.82 247.1

a1 6.13 9.86 9.84

a0 333.40 371.64 232.5

τ 0.07 0.05 0.01

ζ 0.17 0.26 0.32

ωn 18.26 19.27 15.25

JF E 66.72 132.86 147.73
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Figure 4.8: Identification results: FE method for roll dynamics

4.7 Analysis and Discussion

The accuracy of the estimation can be examined by evaluating the Cramer-Rao

bound for each parameter, as given in equations (4.55) and (4.56). The Cramer-Rao

bounds for the parameters which were kept free during the optimization are given
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Figure 4.9: Identification results: OE method for roll dynamics

in Table 4.6 for the short-period and the roll dynamics. According to reference [12],

a highly reliable model identification with proper predictive accuracy is achieved if

the cost value and Cramer-Rao bounds agree with the following guidelines:

JF E ≤ 100 (4.83)

CRF E ≤ 40%. (4.84)

It is also worth mentioning that due to the different definitions for the cost function of

the output-error and the frequency-response-error methods (equations (4.40) and (4.42)),

the resulting cost values, JOE and JF E , are incomparable. This also involves the

Cramer-Rao bounds, CROE and CRF E , as they result from the second-order gradi-

ent of the cost function according to equation (4.54).
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Table 4.6: Cramer-Rao bound for short-period dynamics

Mode Parameter CRF E % CROE %

Pitch

b1 36.709 0.018

a1 22.604 0.012

a0 4.046 0.032

Roll

b0 48.049 0.297

a1 52.036 0.788

a0 39.835 0.263

Overall, the identified LOES models for pitch and roll dynamics are very ac-

curate in mid and high frequencies, as can be seen in Figures 4.6 to 4.8. However,

the LOES model prediction of the low-frequency longitudinal and lateral dynamics

(lower than 0.8 rad/s for pitch, and 1 rad/s for roll motion) is relatively poor and not

acceptable. Besides, in the identified LOES models for the short-period mode using

OE and FE methods, the Levenberg solution gives a better fit with lower cost values

(see Tables 4.2 and 4.3). This is also consistent with the identified LOES models for

the roll dynamics (see Tables 4.4 and 4.5). Moreover, the LOES models for pitch

and roll dynamics obtained from OE and FE methods are superior compared to the

models identified using CIFER transfer function identification package, as they have

relatively lower cost values (see Tables 4.3 and 4.5).

From another point of view, the identified LOES model for the the longitudinal

mode is more accurate compared to the lateral model. This is consistent for all

methods and solutions, in other words:

(JF E)pitch < (JF E)roll (4.85)

(JOE)pitch < (JOE)roll (4.86)
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(CRF Ei
)pitch < (CRF Ei

)roll ∀ i = 1, · · · ,np (4.87)

(CROEi
)pitch < (CROEi

)roll ∀ i = 1, · · · ,np (4.88)

where n is the number of parameters kept free during the estimation. The better

results for longitudinal identified model can be essentially seen in the simpler lon-

gitudinal dynamics compared to the lateral dynamics which is highly coupled with

directional motion. In other words, the second-order LOES model might not be suf-

ficient for capturing the lateral dynamics completely. However, the most probable

reason is the poor excitation of the roll dynamics as can be seen in spectral estimates

of the lateral input presented and discussed in Section 3.5. These results can be fur-

ther augmented if a new set of flight test data, which is richer in frequency content,

is available [49].

From another point of view, the parameter estimates reflect a physically mean-

ingful prediction of the Trex-700 longitudinal and lateral dynamics, which is in agree-

ment with the identification results of R-50 small-scale helicopter presented in refer-

ence [16]. This can be seen in the calculated modal characteristics given in Tables 4.2

to 4.5. The modal characteristics of the longitudinal dynamics (ωn = 19.75 rad/s and

ζ = 0.39) shows a fast oscillatory moderately damped short-period mode. For the lat-

eral dynamics, the modal characteristics (ωn = 18.26 rad/s and ζ = 0.17) also reflect

a relatively fast lightly damped roll mode. Among various identified model for each

mode, the FE method with Levenberg solution gives the most accurate result. The

final results for the LOES transfer functions of the longitudinal and lateral on-axis

responses are presented in the following equations:

q

δlon
= −25.45s−400.00

s2 +15.28s+390.19e−0.08s (4.89)

p

δlat
= 383.43

s2 +6.13s+333.40e−0.07s. (4.90)
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Chapter 5

Conclusion

Finding an accurate mathematical model for expressing aerodynamic behavior of

small-scale aerial vehicles is a challenging task in model-based flight research. The

lack of accuracy in conventional analytical models calls for the need to use alternative

techniques for modeling these types of aircraft. System identification is considered

as a reliable and less expensive substitute approach which provides highly accurate

models in various forms, such as frequency-response, transfer function, state-space,

or nonlinear models from measured flight data.

This thesis provided an overview of frequency-domain identification approaches,

namely frequency-response and LOES methods, and their corresponding estimation

and optimization techniques. It also shed some light on flight experiment design,

and model structure determination as crucial prerequisites for a consistent model

identification. The primary purpose of this work is developing an identification tool

for rotary-wing UAVs which can automatically and efficiently interact with the flight

simulation software available for the test platforms. The developed tool can be used

as a groundwork for in-flight system identification applied to fault-tolerant and adap-

tive control. It can also optimize the control system design procedure by delivering

more realistic models.
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A Matlab-based tool is developed throughout this research. Real flight data

have been used to verify the merit of the developed tool for identifying persistent

and reliable models. This involved designing and conducting flight test for acquiring

measurement input-output data of a test vehicle. The aircraft selected for this reason

is a flybarless single-rotor R/C helicopter named Trex-700. The flight test is executed

by MicroPilot in hover regime by exciting longitudinal and lateral cyclic controls

using frequency sweep inputs. The resulting input-output pairs for pitch and roll

motions are fed to the identification tool as well as CIFER to obtain non-parametric

and transfer function models of the aircraft. Accuracy metrics and results comparison

depict an excellent match between CIFER models and the models extracted using

the SID tool in almost entire frequency range of interest. This demonstrates the

capability of the developed system identification tool for estimating accurate models

for unmanned helicopters.

One future direction of this research can be considered as extending the cur-

rent framework to MIMO state-space model identification. This developed code can

be also used for development and application of new theory and methodologies in

system identification. Also, an important extension of this research is considered

as in-flight identification which requires employing non-iterative methods which are

also capable of state estimation, such as filter-based recursive approaches. In another

future direction, the model identified for the test vehicle can be further analyzed and

validated by conducting additional flight experiments and acquiring more measure-

ments in order to include other dynamic modes such as heave and yaw. Also, the

doublet inputs designed in Chapter 2 can be utilized in future flight test to collect

data for time-domain model validation. Finally, in the frequency-response identifica-

tion, improved spectral estimates can be achieved if a nonlinear optimization is used

for the composite windowing technique.
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