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Abstract

An Evaluation of the Influence of a Document’s Text-Type on the Use of Discourse

Relations

Félix-Hervé Bachand

In this thesis, we will discuss the work we have conducted on the relationship between discourse

relations in English documents and their associated text-types. Obtaining an understanding of the

text-type of a given document is a step towards identifying its larger discourse schema which, in

turn, is instrumental in effectively identifying discourse relations. In order to study the relationship

between discourse relations and discourse structures, and the text-type of a document, we have

created a corpus of documents belonging to seven distinct text-types, from which we extracted

discourse relation annotations using already existing parsers. Utilizing the data obtained, we have

studied various ways in which discourse relations and text-types are linked in an effort to better

understand how discourse schemas can be identified and subsequently utilized in the automatic

extraction of discourse relations. Our experiments have shown that the classification of documents

within our seven text-types is still better performed with a bag-of-words approach, but the results

obtained with the automatically extracted discourse relations suggest that there is in fact a link

between text-types and the use of specific discourse relations. We also found that the various text-

types are identified with varying accuracy, with text-types such as explanation and report being

harder to identify, regardless of the methods used. Finally, our results also show that the cue phrases

used to identify explicitly stated discourse relations are amongst the more informative features of

our better performing bag-of-words model, and can be utilized to reduce the feature space of this

particular model.
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4.17 Accuracies of Text-Type Classifications Using Näıve Bayes with explicit Discourse
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Chapter 1

Introduction

1.1 Motivation

Consider the simple discourse: Obtaining a Master’s degree takes time, I have taken two years to

complete mine. In a coherent text, textual units are not understood in isolation but in relation

with each other through discourse relations that may or may not be explicitly marked. The fact

that “I” have taken two years to complete my Master’s illustrates that obtaining such a degree

takes time. Research on discourse analysis tries to model the coherence relations that hold between

textual units, and these allow us to interpret the text and understand the communicative purpose

of its units. This, in turn, is useful for many Natural Language Processing (NLP) applications such

as automatic summarisation, question answering and text simplification. The objective of our work

is to uncover ways that would allow for better performing automatic extraction of discourse level

rethorical structures.

The task of automatic discourse relation extraction is a particularly difficult one. One important

difficulty stems from the need for the system to be aware of the rhetorical purpose of the discourse on

several levels. The rhetorical structure of a document can be divided into several levels of abstraction,

from the general, down to the more specific. Discourse parsers available today (eg. (Soricut & Marcu,

2003; Hernault et al. , 2010a; Feng & Hirst, 2012; Lin et al. , 2012; Faiz & Mercer, 2014)) attempt

to extract rhetorical relations between Elementary Discourse Units (EDUs) without trying to build

structures to the highest level of discourse relations schemas. The notion of schema is based on

the description of the Rhetorical Structure Theory described in (Mann & Thompson, 1987). For

our purpose, we consider the highest level of abstractions related to rhetorical structures: the text-

type. We argue that in order to extract discourse relations effectively, a system should consider

the higher level rhetorical structures that we describe here as text-types, or at the least, that the

text-type provides some indications on the highest level of discourse structures which are useful to

the overall extractions of the rhetorical structures studied. By text-types we mean that texts can

have a variety of communicative goals (Swales, 1990). Examples of text-types include: instructional

texts, reviews, reports, etc. Our claim is that each text-type makes a particular usage of discourse

schemas. When dealing with a document from a particular text-type, we expect that the usage of

1



discourse relations should be similar to those seen in other documents of the same text-type, while

documents of different text-types should vary more widely. This is in line with the hierarchical

view of discourse analysis presented in (Mann & Thompson, 1987). Schemas, which can be seen

at a higher level as being related to text-types are therefore important features to consider when

performing automatic extraction of discourse relations. In our work, we attempted to construct a

corpus that contains documents that share the same text-type, while varying as much as possible

in genre1. This was done in order to argue that the structure of the text itself should suffice in

identifying the text-type, no matter what specific vocabulary is used, which we believe to be defined

by the genre. For example, a newspaper article, which we would classify as a document of the recount

text-type, could be political in nature, or describe a sporting event. It should not matter which of

these two genres is at play. Instead we are mainly interested in how the clauses created from these

terms are related to each other through discourse structures. It is our belief that discourse structures

should be studied at various levels, from the more abstract concept of a document’s overall schema,

described here as the text-type, down to the relationship between single clauses composed of phrasal

structures, in order to fully understand textual structures on a semantic level.

Currently, most work on the automatic extraction of discourse relations focuses on the lowest level

of discourse relations, that is, discourse relations holding between two clauses. We believe, however,

that an important part of obtaining a semantic understanding of documents on a structural level

requires the structures to be extracted on several levels, from the lowest level to the highest, namely

the text-type of a given document. Our claim is that by first identifying the highest discourse

structure of a text, we can subsequently improve the identification of the finer grained discourse

relations which hold between the various clauses that make up the document. Overall, the question

this thesis attempts to answer is whether the identification of text-types can be used as a first step

towards detecting larger discourse schemas which in turn should improve the extraction of the lower

levels of the overall discourse structure of a document. For example, knowing that a document

describes a procedural discourse, we would expect certain large schemas to occur, such as a list of

items required for the procedure, and the steps of the procedure itself.

1.2 Key Linguistic Concepts

1.2.1 Syntactic Structures

With the first publication, in 1957, of Noam Chomsky’s work on syntactic structures (Chomsky,

1957), the scientific field of linguistics as we know it today was created (Chomsky, 2002). An im-

portant point introduced by Chomsky is the distinction between semantics and syntax. With the

now famous example of the sentence “Colorless green ideas sleep furiously”, he demonstrates that

grammatically correct sentences do not equate sense or meaning. In other words, the sentence itself

makes a correct use of syntax, but it does not provide any intelligible semantics. Still, syntactic

structures are employed in our everyday usage of natural languages in order to convey the ideas and

1See Section 1.2.3 for a more formal description of these concepts.
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concepts we wish to communicate. The syntactic structures we create, as we communicate, link con-

cepts together by forming larger and larger structures which eventually form complete presentations

of our ideas. Consider the syntactic tree structure of Figure 1.1 created by parsing the example

sentence:

(1) I like this food because it is tasty.

with the Stanford parser (De Marneffe et al. , 2006). The Stanford parser uses the Penn Treebank

corpus (Marcus et al. , 1993) set of tags, which are listed in Appendix A.

S

VP

SBAR

ADJP

JJ

tasty

VP

VBZ

is

S

PRP

it

IN

because

NP

NN

food

DT

this

VBP

like

NP

PRP

I

Figure 1.1: Example Syntax Tree Generated Using the Stanford Parser (De Marneffe et al. , 2006)

Figure 1.1 shows that the sentence provided as an example can first be broken down into a noun

phrase (NP) and a verb phrase (VP). The NP simply contains the pronoun “I”, which becomes

the subject that attaches to the VP. Further down the tree, we find that the object of the VP is

realized as an embedded NP. For our present purpose, however, we are mainly interested on how

the two spans of text “I like this food” and “because it is tasty” are connected to each other. We

will see in more detail, in Section 2.3.2.1, how the information provided by such a syntax tree can

help us better identify similar structures (tree structures as with the syntactic ones), but at the

discourse level. For now, suffice to say that the appearance of the SBAR2 structure within the VP

is interesting considering that it happens to occur at the beginning of a span of text that denotes

causality.

1.2.2 Semantics

The study of semantics focus on the concept of meaning. In order to understand a text, we must

first understand its parts. Because of this, semantics is interested in meaning on several levels:

1. word level

2the concept of SBAR comes from x-bar theory presented in Jackendoff (1977) and serves to create a new syntactic

structure containing the Sentence node and which can be extended with specifiers. That is, the SBAR is the root of

an embedded clause with a sentential structure.

3



2. phrasal level

3. discourse level

For the purpose of our current research, we are interested in discourse level semantics. That is,

the meaning conveyed by a combination of clauses. While a clause is understood as the smallest

possible portion of a discourse that expresses an idea that can stand on its own, the combination of

such clauses creates more complex meaningful units we call discourse structures. In order to gather

some understanding of this higher level of semantics, however, we must rely on our understanding of

the smaller parts. In order to better explain how these various levels of meaning are used, consider

again the following simple sentence:

(2) I like this thesis because it is interesting.

If we first consider the meaning of the words of the sentence, independently of each other, several

interpretations could be found for some of these words. Much like the higher level phrasal structures,

the words themselves can be composed of several parts. Take for example the word “interesting”,

which is itself the noun “interest” with an affix “-ing” which turns the original noun into an adjective.

However, the words, and the parts of which they are composed, are sometimes insufficient to produce

an accurate interpretation of the meaning that is being communicated. For example, the word “like”,

without any more context could be understood as a preposition meaning “similar to” or as a verb to

signify an affinity for something. If we take the context surrounding the word, we can look into the

phrase structure in which the term “like” is used. By using this specific term with the first person

pronoun to produce “I like...”, the meaning becomes clearer. Using the term “like” to mean “similar

to” in such a context is ungrammatical and therefore rejected as a possible meaning of the word.

Moving further up in our structures, if we look into the constituents where the term is found, we see,

as mentioned in Section 1.2.1, that the verb phrase headed by “like” embeds another constituent,

the SBAR from the right-hand side of the syntax tree of Figure 1.1. As we have mentioned in

Section 1.2.1, we are interested in the relation between both phrasal structures which in turn form

a complete sentence. The way by which such phrasal structures are related to each other form a

larger entity which we can describe as the discourse structures. We will call these larger phrasal

structures Elementary Discourse Units (EDU). Once these phrasal structures are joined into larger

discourse structures, the EDUs, these EDUs relate to each other, thus creating even larger discourse

structures. Eventually, all of the EDUs of a document join together to form the overall discourse

schema. Much like how words are composed of smaller parts, and phrasal structures are composed

of words, which themselves turn to larger phrasal structures or sentences, a discourse is composed of

these discourse level constituents, or EDUs, which are connected to each other. Similar to syntactic

trees, we can build tree structures that show the relation holding between these EDUs. Figure 1.2

depicts such a representation of discourse level schemas. Our present work is concerned with the

existence of the relations holding between EDUs, namely attribution and enablement in Figure 1.2.
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[The bank also says]1

1 [2,3]

[it will use its network]2

2

[to channel investments]3

3

attribution

enablement

Figure 1.2: Example of Three EDUs and Their Relationships Using the RST Framework (Soricut

& Marcu, 2003)

1.2.3 Text Types vs. Genres

The notions of text-type and genre are highly related, and often seem to be the source of some

confusion. For this reason, we feel the need to define both concepts in more detail at this point.

According to (Lee, 2001), text-type is defined as the communicative purpose of the document,

and how that purpose is achieved through linguistic constructs that are detectable at the discourse

level. Examples of text-types are: procedure, recount, narrative, etc. On the other hand, genre

takes the definition of the subject matter of the document. As such, a document has a particular

purpose, identified by its text-type, and deals with a particular subject, identified by its genre. For

example, different genres could be: food, biology, politics, sports, etc. To define intuitively these

two concepts, consider the following simple examples: consider two narrative texts, each detailing

the adventures of a hero of their own respective genre. A very common way of building narratives is

based on a three act structure (Lavandier, 2007). The first act typically depicts the hero content with

his situation, until tragedy strikes. The second act shows the hero’s fall following this tragedy and

struggle to recover his position. The final and third act shows the hero’s final battle against adversity

and subsequent victory. Using this same basic template, it does not matter if the hero is an astronaut,

as befitted for science-fiction genre, a cowboy, as expected of an adventure narrative, or a private

detective, typical of mystery stories, the same basic structure can be used. The genre will define

what type of hero the narrative calls for (e.g. science-fiction, adventure narrative, etc.), while the

text type will define the overall structure of the document (i.e. our three acts structure.) As another

example, compare two procedural texts on different genres: a cooking recipe, and instructions on

assembling a piece of furniture. The first of these two will typically start by giving a list of ingredients

required for the completion of the recipe, while the second will provide a list of parts that should

be packaged in order to assemble your brand new piece of furniture. Typically, the recipe will then

provide a list of steps on how to mix the ingredients, while the instruction manual will similarly give

a series of steps to be performed in the assembly process. Again, the genre defines the type of tools

that are to be listed (e.g. ingredients, parts, etc.), while the text type provides a template composed

first of a list of those tools followed by the steps requiring those tools in order to obtain the final

product.
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David Lee’s attempt at explaining this distinction (Lee, 2001) is used as the basis of the con-

struction of our working corpus. The important distinction noted by Lee which distinguishes both

concepts are internal and external criteria. The external criteria are expected to give insights on

the genre of a given document. These criteria include: intended audience (e.g. a research paper

is intended to be read by scholars of a specific field), purpose (e.g. the same research paper would

serve to present experiments and findings), and activity type, (e.g. if the experiments were properly

performed in a lab with specific guidelines or done more informally as an early investigation on a

subject). It is expected that these criteria will manifest themselves through the usage of specific vo-

cabulary, rather than through the form of a given document. For example, the term “bread” might

appear in a restaurant review or a cooking recipe. Both documents are within the same genre, but

differ in their text-type (the first is of the recount text-type, and the second is of the procedure

text-type. More detail on the various text-types we considered can be found in Section 3.1). What

we mean by this is that in essence, the genre is determined by the specialized vocabulary used. For

example, given two documents, both fictional narratives, one in the adventure genre, the other in the

science-fiction genre, it seems more likely that the word “stampede” would occur in the first of these

documents, while “spaceship” seems more appropriate in the latter. On the other hand, the form of

a document is related to the internal criteria. These are described as the linguistic characteristics

of a text. For our purpose, we consider that discourse structures should form an adequate basis for

this classification and therefore consider this as our internal criteria.

For the purpose of our thesis, we created a corpus that contains documents from various text-

types, with various genres covered within these different text-types. What we wish to show

through this is that the vocabulary used in these documents is generally shared within genres, while

the structures are shared within text-types. As such, we hope that the genres are represented

widely enough within the various text-type classification so that it will no play a role in the

classification tasks performed, putting more importance on the discourse structures associated with

text-types instead. Although some corpora do exist with discourse level annotations, we found that

these were insufficient to properly gather the type of data needed to investigate the phenomenas at

hand, for this reason we opted to build our own corpus.

1.3 Methodology and Results

In order to evaluate our claim that text-types are closely related to discourse relations and can

therefore be used in the process of automatic extraction of those discourse relations, we have designed

a classification task. In order to do achieve this, we have put together a corpus comprised of 3,769

documents from seven different text-types. We then extracted information related to discourse

relations using two automatic discourse relation parsers currently available (Lin et al. , 2012; Faiz

& Mercer, 2014). Using the information obtained from the outputs of these parsers, we attempted

to classify the documents into our seven text-type categories (exposition, explanation, recount,

report, response, procedure, narrative), using ten-fold cross validation. We have performed the

classification task using three well known classifier algorithms, namely Multinominal Näıve Bayes,
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Decision Trees, and Support Vector Machines. With each of these classifiers, we have obtained

results of our text-type classification task using a number of features sets: bag-of-words, explicitly

stated discourse relations, implicitly stated discourse relations, both types of discourse relations

at once, discourse connectives, and all discourse relations and discourse connectives. The results

obtained from these various experiments show that, although the baseline produced by studying

the documents through the bag-of-words model produces the best overall results, the much more

computationally manageable approach (in the sense that smaller feature spaces involve less factors

to include in our calculation) of concentrating on discourse relations and their related vocabulary

items (i.e. discourse connectives) allow for results that point to a relationship between text-types

and discourse relations.

1.4 Contributions

A number of practical and theoretical contributions are made within this thesis:

1. the creation of a corpus of documents classified across seven text-types,

2. the creation of evaluation methods that can be used in classification tasks based on this corpus,

3. insights on the relation between the highest level of discourse structures (i.e. the text-type)

and the lower level of such discourse structures (i.e. the relations between clauses),

4. the evaluation of a number of features for the automatic classification of documents according

to the overall schema of the document.

In this chapter, we have introduced the motivation behind our work, provided some context

related to the linguistic concepts that are important to our research, and introduced the methodology

used and the results obtained related to our claims, and we have outlined the scientific contributions

presented by this thesis. The remainder of this thesis is organized in four Chapters. Chapter 2 covers

some of the previous work published on the subject of discourse relations. We begin by presenting

the theory of discourse rhetoric from the level of discourse units and how such units related to

one another, thus creating discourse structures. We then discuss some of the resources currently

available that were helpful to us in our research. Namely, we discuss the various corpora annotated

for discourse relations, as well as the different discourse relation parsers currently available. Finally,

we discuss some of the work currently available through various publications which pertain to the

subjects of discourse rhetoric and text-types. In Chapter 3, we provide a detailed explanation of the

steps undertaken in order to build and perform our experiments. To do so, we begin by describing the

process of building our corpus by using a number of corpora that are currently available, secondly, we

discuss briefly the discourse relations framework we have decided to use for our experiments, we then

describe how we used this framework to annotate our corpus for discourse relations, and finally, we

discuss the various classification tasks performed by enumerating and describing the various feature
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sets and classifiers used. In Chapter 4, we present the results of our experiments. We begin by

providing a short overview of the final results of the various experiments. We then go into further

details by studying the results obtained with each of our feature sets. We finally provide further

discussions on the most informative features uncovered throughout our experiments. Finally, in

Chapter 5, we provide a discussion of the findings provided by the analysis of our experiments in

relations to the influence of the feature sets used, the influence of the classifiers used, the variations

in performance observed across text-types, and the reasoning behind the most informative features

observed. We conclude by discussing the avenues that now present themselves to us as possible

future projects.
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Chapter 2

Previous Work

In this chapter, we explore the various research efforts that have been published in the past in

relation to the problems we have undertaken to address. We begin in Section 2.1 by defining some

of the commonly used metrics that will become useful in subsequent chapters. In Section 2.2, we

give an account of the theories of discourse rhetoric and describe the frameworks that have been

used for the purpose of studying these. We then provide further details, in Sections 2.2.1 and 2.2.2,

about some of the theories used to describe discourse rhetoric, more specifically, the base unit of

discourse structures used, and how these base units can be used to form an intelligible picture of

discourse structures. In Section 2.3, we explore the resources currently available for the purpose

of our experiments. These include, in Section 2.3.1, an overview of the corpora available with

annotation pertaining to discourse relations, and in Section 2.3.2, an overview of the state if the

art parsers available for the automatic extraction of discourse relations. In Section 2.4, we give an

overview of previously published works which deal with some of the problems related to text-types

and discourse rhetoric.

2.1 Metrics Used

Several metrics are used to describe various implementations and classification tasks throughout this

thesis. We will describe the more commonly used metrics here, while less common metrics will be

described when appropriate within the thesis. For now, we provide a description of the following

metrics: precision, recall, accuracy, and F -score.

In order to understand the metrics used for the evaluation of the various systems presented in

Chapters 2 and 4, we must first describe a few key concepts. During a task such as classification,

four outcomes are possible for every item that is classified: true position, false positive, true negative,

and false negative (Olson & Delen, 2008). If an item is correctly classified, it is considered a true

positive, while if an item is wrongly classified, it is considered a false positive for that class. Likewise,

if an item is correctly identified as not being part of a class, it is considered a true negative, while

an item being wrongly associated with a class is considered a false negative. Consider the simple

data presented in Table 2.1.
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Class Expected True Positive False Positive True Negative False Negative

A 10 8 8 12 2

B 10 5 4 16 5

C 10 3 2 18 7

Table 2.1: Example Distribution for a Classification Task

Each class contains 10 items. For class A, we correctly identify 8 items; for class B, 5 items are

classified correctly; and 3 of class C’s items are classified correctly. These values are our true positive.

The false positive column indicates the number of items of a certain class that is categorised as a

different class. For example, class A has 8 false positive instances. This could mean, for example,

that 3 items of class A were classified as class B, and 5 more items of class A were classified as class

C. The sum of all true positives and false positives is the total of all items, which in our example

is 30 items. If an item is not classified as a certain class, and it is not expected to be classified as

such, it counts towards true negative values. For example, our example shows that 12 items are true

negative for class A. This means that 12 items of class B or C were not classified as A. If, on the

other hand, an item is expected to be a different class but is classified of that class anyway, it is a

false negative value. The count of false negative values for class A is of 2, meaning that two items

that should have been classified as A were misclassified as either B or C.

Out of these values, we can obtain our first three metrics: precision, recall, and accuracy. Pre-

cision represents the number of items classified that are relevant, that is, how many of the items

were classified correctly. In order to calculate this metric, we simply apply the formula presented in

Equation 2.1.

precision =

∑
true positive∑

true positive+
∑

false positive
(2.1)

Given the example of Table 2.1, we find that 16 items are true positives (8 + 5 + 3). We obtain

the precision simply by dividing this value by the total number of items in our population, which is

30, or (10 + 10 + 10). Therefor, the precision of our example is (16/30)× 100 = 53.3̄%.

Our second metric is the recall, which represents the number of items that were correctly identified

in respects to how many were expected to be identified. In order to obtain this metric, we use the

formula presented in Equation 2.2.

recall =

∑
true positive∑

true positive+
∑

false negative
(2.2)

Once again, the example of Table 2.1 shows a total of 16 true positive. The sum of true positive

and false negative gives us a total of 30. Applying the formula provided in Equation 2.2, we obtain

a recall score of 53.3̄%.

Accuracy is simply the number of correctly classified values, whether it be correctly identified as

being of a certain class or as correctly identified as not being part of a certain class, over the total

number of values and can be obtained with the formula presented in Equation 2.3.
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Accuracy =

∑
true positive+

∑
true negative∑

true positive+
∑

false positive+
∑

true negative+
∑

false negative
(2.3)

In the case of the example given in Table 2.1, we would obtain a total of 16 true positive, a total

of 46 true negative, and total of 90 (which is the sum of all true positive, false positive, true negative,

and false negative). The final accuracy measure is then 69%.

Finally, a last commonly used metric is the F -measure, or F -score. Such a metric combines

both the precision and recall measures typically through an harmonic mean. Typically, the simple

F1-score is used to evaluate systems and classification tasks. With the F -score metric, it is possible

to give more weight to either precision or recall. Using the F1-score, we give equal amount of weights

to both of these metrics. Equation 2.4 presents the formula used to obtain the F1-score (note that

throughout the rest of this thesis, all F -scores should be assumed to be the F1-score).

F = 2×
precision× recall

precision+ recall
(2.4)

Using this formula, we can obtain the F -score of the data presented in Table 2.1. Our precision

and recall were both calculated at approximately 0.53. We can simply divide the product of these

two values by the sum of these same values, and obtain an F -score of 0.265.

2.2 Theories of Discourse Rhetoric

The idea of discourse rhetoric is an important one when it comes to parsing a document in an attempt

to understand it. In fact, an interesting problem with semantics is the apparent need to understand

the documents on several levels, such as discourse types, topics, phrasal structures, and lexical items.

What makes this problem particularly challenging is the interdependance of these various levels. For

example, the meaning of particular words are better identified within their context, as John Rupert

Firth famously stated: “you shall know a word by the company it keeps” (Firth, 1957). The problem

here is that each word is thought to find its meaning based on the context and the context itself is

defined by the combination of each word. Following a similar logic, we believe that semantics at the

discourse level functions in a similar fashion. A document holds a specific intended meaning, but

this meaning can be identified by looking at smaller portions of the documents, such as sections or

topics. By sections or topics, we mean the various portions of the document, such as an abstract, a

methodology section and a discussion section in a scientific article. These sections themselves can

be broken down into smaller portions, each having a specific rhetorical purpose. For the time being,

let us simply think of those smaller portions as the phrasal structures of sentences. These phrasal

structures are typically related to one another which allows us to better identify their rhetorical

meaning based on context, much like with lexical semantics. For example, consider the following

simple statement:

(3) I enjoy my work because I find it fulfilling.
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The first part of this sentence, “I enjoy my work”, is supplemented by the second, “because I find it

fulfilling”, through a causality relation. Being able to identify such rhetorical relationships not only

allows us to identify which phrasal structures are related to one another, but also gives us information

on how these are related. In turn, this information allows us to build larger structures which will,

once again, be related and contextualized within a greater scheme. Based on these observations, a

number of researchers, notably (Mann & Thompson, 1988) have attempted to build frameworks to

be utilized in the study of such problems. Bill Mann, Sandy Thompson, and Christian Mathiessen,

of the University of Southern Carolina, have been working on the problem of the computational

approach to discourse rhetoric since 1983.

2.2.1 Elementary Discourse Units

In order to discuss how discourse is structured, we must first segment the discourse into units which

can be related to one another. A first choice for such units might be sentences, but using such a

basis, we quickly realize that discourse structures can exist within sentences themselves. A more fine

grained analysis could then make use of phrasal structures, but (Mann & Thompson, 1988) find this

to be insufficient as well. For this reason, rather than limiting ourselves to phrasal structures, texts

can be understood in terms of Elementary Discourse Units (EDU). EDUs cover spans of text which

serve a specific rhetorical purpose. In their description of such units, (Mann & Thompson, 1988)

claim that their sizes are arbitrary. The constraint they rely on instead is that each of these units

should hold independent functional integrity, that is, each unit should hold a particular independent

meaning which can be understood from the unit alone. For their purpose, these authors simply state

that the basis of their units is essentially clauses. On the other hand, identifying discourse units has

been noted time and time again to be a rather difficult task. Daniel Marcu of the Information Science

Institute at the University of Southern California, and his research team, have been studying the

problem of discourse rhetoric since the late 1990’s. In the first portion of the annotation guidelines

of Discourse Structure by (Marcu, 1999), this difficulty is attributed to the fact that the boundaries

between syntactic, semantic and rhetorical information is blurry. This difficulty makes it so that

properly identifying discourse units can easily become a matter of controversy. Fortunately, there

is some level of agreement to be found. The idea of clauses being the most frequent basis for

discourse units is shared by Mann and Thompson, and Marcu. In Marcu’s guidelines, it is stated

that fully fleshed clauses are always discourse units. The minimal requirements for a span of text

to be considered a clause is to contain a verb and its obligatory argument. The following example,

borrowed from the guidelines, demonstrates this:

(4) [As the play ended,][the body would return to its reliance on the

aerobic metabolic system][while the capacities of the other energy

systems regenerated themselves.]

This example features three discourse units separately bracketed. Each of these units contain a

clause with a verb and their associated obligatory argument (as stated by (Marcu, 1999)). A series

of 12 rules are also described in the guidelines in order to properly identify EDUs (Marcu, 1999).

It should be noted, however, that some of these rules allow for EDUs to be identified even in cases
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where they are not fully fledged clauses. For example, titles and headings are to be treated as EDUs

by (Marcu, 1999), restrictive and non-restrictive modifiers (modifiers that add information that is

not essential to the clause it modifies) that use a finite verb are embedded EDUs, appositive clauses

using finite verbs are also embedded EDUs, and so on. For the purpose of understanding the theory

presented here, understanding EDUs as being essential clauses, should be sufficient. For essential

clauses, the description provided by (Marcu, 1999) explains such clauses convey a single idea and

can stand on their own, without the need to be associated with another.

2.2.2 Discourse Theories

As we have mentioned in Section 2.2, our understanding of a text relies on the fact that EDUs

are related to one another in some manner. In order to achieve some sort of coherence, authors

put together several EDUs which are logically linked in some fashion or other, forming a single

coherent structure. Detecting discourse relations has become an important step in many Natural

Language Processing (NLP) tasks over the years. Several applications, for instance summarization

and machine translation systems, rely on the automatic extraction of these Elementary Discourse

Units and their relationships. For example, (Marcu, 2000) describes such a system for the purpose

of text summarization and (da Cunha & Iruskieta, 2010) study discourse structures in relation to

machine translation. However, there exists different theories of discourse structures. In this section,

we provide an account of the Rhetorical Structure Theory of (Mann & Thompson, 1987, 1988) and

the Penn Discourse Tree Bank Framework described by (Prasad et al. , 2007, 2008) while noting

the current state and use of both of these approaches.

2.2.2.1 Rhetorical Structure Theory

A number of observations are made by (Mann & Thompson, 1987) leading to the creation of the

Rhetorical Structure Theory (RST). (Mann & Thompson, 1987) first find that texts are constructed

through hierarchically organized clauses related to one another in various ways. They also note that

the most common of these organizations is the one they decided to call the nucleus-satellite relation.

Such an organization is described as follows: given two distinct non-overlapping text spans, the

nucleus and its satellite, a relation can be noted as the source of the coherence between the two.

For example, a span of text A can be noted as denoting evidence for the claims from a span of

text B. They observe that such relations are for the most part asymmetric. That is to say, the fact

that text span A is evidence for the claims of text span B does not mean that B is evidence to A.

Because of this, it can be assumed that certain text spans are to be considered more central, thus

creating a hierarchy within the relations observed. Once relations can be observed, the authors then

define a schema as sets of relations. The simplest possible schema is a single relation, while the

most complete schema is the set of all relations found throughout the text. For example, the first

half of this sentence forms a simple schema, while the entire thesis, composed of clauses organized

in a specific fashion form the highest schema. With these basic principles, Mann and Thompson

suggest that all texts can be described within this framework. The schemas which are implicitly

perceived by human readers serve as identifying the various functions of the observed text spans.
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To better clarify what relations and schemas are exactly, consider the following examples borrowed

from Daniel Marcu’s annotation guidelines (Marcu, 1999). Our first example denotes an antithesis

relation between two elementary units:

(5) [He tried hard,][but he failed.]

The leftmost EDU presented here is the nucleus, while the rightmost EDU is the associated

satellite. It should seem obvious and intuitive to readers how the two units are linked to each other

showing that there is in fact a coherence that exists between such EDUs. The nucleus EDUs are

generally capable of standing by themselves, regardless of the presence of their associated satellite

EDUs. On the other hand, these associated satellite EDUs do not need to make sense by themselves.

In other words, the core idea expressed by the nucleus is independent of its satellite which itself

serves to provide further details related to the core idea of the nucleus. This can be observed by

simply changing the satellite of our example:

(6) [He tried hard,][but he came in second.]

The core idea remains the same, but the added information from this new satellite provides

different details to our nucleus. It should also be noted that relations are hierarchical in nature.

For example, consider the following graphical representation of three EDUs and their relations from

(Soricut & Marcu, 2003):

[The bank also says]1

1 [2,3]

[it will use its network]2

2

[to channel investments]3

3

attribution

enablement

Figure 2.1: Example of Three EDUs and Their Relationships Using the RST Framework (Soricut

& Marcu, 2003)

In this example, we find two relations. The enablement relation holds between EDU3, the nucleus,

and EDU2, its satellite. The other relation represented here, attribution, holds between EDU1, in

this case the nucleus, and the projection of EDUs 2 and 3, which are now the satellite. As can be seen

graphically, there is a hierarchy between these relations since the enablement relation links EDUs

2 and 3 together while the attribution relation links EDU1 with the combination of the remaining

EDUs and their relation.

Relations, within the RST framework, were originally grouped into 3 classes (Mann & Thompson,

1987). We provide here these 3 classes with their associated relations and a short description on

why they are grouped together.
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Presentational Relations (Antithesis, Background, Concession, Enablement, Evidence, Justify,

Motivation, Preparation, Restatement, Summary)

With these relations, the satellite EDU presents new information about the nucleus EDU.

Subject Matter Relations (Circumstances, Condition, Elaboration, Evaluation, Interpretation,

Means, Non-volitional Cause, Non-volitional Result, Otherwise, Purpose, Solutionhood, Un-

conditional, Unless, Volitional Cause, Volitional Result)

With these relations, the satellite EDU provides some context on the subject matter of the

nucleus EDU.

Multinuclear Relations (Conjunction, Contrast, Disjunction, Joint, List, Multinuclear Restate-

ment, Sequence)

With these relations, multiple EDUs are linked without putting the focus on any particular

one.

For our purpose, however, RST’s set of relations has been somewhat expanded. This expanded

version forms the basis of the annotation guidelines used to produce the RST Discourse Treebank

corpus (Carlson et al. , 2002). The guidelines described in (Marcu, 1999) will be used as the basis of

our description of what is referred to as the RST framework. Another competing set of guidelines,

following a very similar approach to the same problem but resulting in a different set of discourse

relations, was created by, and is described in (Prasad et al. , 2007, 2008). We describe both of these

frameworks in the following section.

2.3 Resources

2.3.1 Manually Annotated Corpora

A number of corpora manually annotated for discourse relations have been produced in the past few

years. Two frameworks have typically been used in the creation of these corpora, the Rhetorical

Structure Theory framework (RST), and the Penn Discourse Tree Bank framework (PDTB). Each

of these frameworks make a number of assumptions that differ, but the overall idea of discourse

relations is shared between the two. Sections 2.3.1.1 and 2.3.1.2 describe corpora using the RST

framework, while Sections 2.3.1.3 and 2.3.1.4 describe corpora using the PDTB framework.

2.3.1.1 Rhetorical Structure Theory - Discourse Treebank

The Rhetorical Structure Theory - Discourse Treebank (RST-DT) (Carlson et al. , 2002) is a corpus

of 385 documents in American English. The texts were selected from the Wall Street Journal articles

of the Penn Treebank (Marcus et al. , 1993). The documents range from 31 to 2124 words. The

objectives of the creation of this corpus was to provide annotations grounded within a specific

framework, in this case Rhetorical Structure Theory (Mann & Thompson, 1988), and to create a

corpus large enough to allow for linguistic analysis, training of statistical models of discourse, and

other such computational linguistics applications. In total, 21,789 EDUs are tagged within the
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corpus, with an average of 56.59 EDUs per document. EDUs contain on average 8.1 words. Within

the RST framework, the discourse structures of this corpus are described as trees describing the

following four aspects:

1. The leaves of the tree are the EDUs, which are the minimal units of discourse.

2. The internal nodes of trees are continuous text spans.

3. Each node is either a nucleus, containing the more essential unit, or a satellite, containing the

supporting unit.

4. Each node is characterized by a rhetorical relation.

Other characteristics worthy of mention are that the annotations are designed to be read from left-

to-right. This means that EDUs and their relations are to be considered sequentially. Because of

this, only consecutive spans of text can be linked together though rhetorical relations.

To better illustrate these annotations, consider the a simple tree taken from the corpus presented

in Figure 2.2.

( Root (span 1 3)

( Nucleus (leaf 1) (rel2par span)

(text _!Spencer J. Volk, president and chief operating

officer of this consumer and industrial products

company, was elected a director._!)

)

( Satellite (span 2 3) (rel2par elaboration-additional)

( Nucleus (leaf 2) (rel2par span)

(text _!Mr. Volk, 55 years old, succeeds Duncan Dwight,_!)

)

( Satellite (leaf 3) (rel2par elaboration-additional-e)

(text _!who retired in September._!)

)

)

)

Figure 2.2: Example of the RST Annotation Style

In the example shown in Figure 2.2, the two sentences are split into three distinct leaves containing

the smallest EDUs. The first leaf is of type Nucleus and is connected to the EDU containing leaves

2 and 3 with a relation elaboration-additional. This EDU itself is split into two smaller EDUs, leaf

2, the Nucleus and leaf 3, the Satellite. The last of these leaves is related to leaf 2 with the relation

elaboration-additional-e, where the “E” signifies “Embedded”1.

1Note that the relations provided in Figure 2.2 are some of the finer grained relations, as opposed to the 18

meta-relations discussed.
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In total, 118 discourse relations are defined, but they are used to form 18 more broadly defined

relations. The 18 meta-relations are described in Table 2.2. The meta-relations were based on those

provided in (Mann & Thompson, 1987), but have since then evolved into those described in Table 2.2.

These modifications lead to the creations of the guidelines described in (Marcu, 1999). The full set

Relation Description

Attribution The information provided by an EDU is attributed to a given speaker

Background An EDU provides background information related to another EDU

Cause A situation presented in an EDU is caused by a situation presented in another EDU

Comparison Two situations from two EDUs are compared

Condition An EDU presents conditions necessary to achieve the situation of the related EDU

Contrast Two EDUs are compared in a contrasting manner

Elaboration An EDU is provided to elaborate on the situation described in another EDU

Enablement An EDU presents a situation enabling the situation of another EDU

Evaluation An EDU provides an assesment of the situation presented in another EDU

Explanation An EDU provides explanation on the situation presented in another EDU

Joint Two or more EDUs are linked in list, such as an enumeration

Manner-means An EDU provide details on the manner or the means by which the situation of another EDU was achieved

Same-unit Pseudo-relation used to link spans of text that form an EDU but are not continuous

Summary An EDU serves as a summary of the situation presented in another EDU

Temporal EDUs are presented in relation to the order of the occurrences of situations in time

Textual-organization Pseudo relation used to connect a title or sub-heading to a text

Topic-change Marks a shift in subject between EDUs. Usually between large spans of text

Topic-comment An EDU answers or comments on questions presented in another EDU

Table 2.2: List of the 18 Meta-Relations of the RST Framework (Carlson et al. , 2002)

of 118 discourse relations and their associated meta-relations are provided in Appendix B.

The annotation of the Rhetorical Structure Theory Discourse Treebank was performed manu-

ally by nine different annotators. These annotators were selected on the basis of being professional

language analysts who had prior experience in other types of data annotation. Each of these an-

notators went through a training period prior to their performance of the annotation task. During

this training period, the annotators followed three training phases. First, they were introduced to

the Rhetorical Structure Theory framework and to the annotation tool provided for the task (Marcu

et al. , 1999). Second, the annotators were asked to independently tag a short document and sub-

sequently compare and discuss their results. The sessions during which the annotators compared

their results served to enhance and improve the annotation guidelines. During these sessions, inter-

annotator agreement was tracked regularly. Finally, during a final training phase, the annotators

settled on heuristics for handling higher levels of discourse structure.

After the initial training period, the actual annotation task went underway. The first step to

building the RST-DT was to segment the texts into EDUs. The guidelines for the annotations used

for the creation of the RST-DT asks annotators to treat clauses as the basis for EDUs. This follows

the recommendations made in (Mann & Thompson, 1988). In order to allow for a balance between

granularity of tagging and consistency of tagging on a large scale, some further instructions were

provided to the annotators:

1. Clauses that are subjects, objects or complements of a main verb were not to be treated as

EDUs.

2. Relatives clauses, nominal post-modifiers, or clause that break up another EDU were treated

as embedded discourse units.

17



3. A small number of phrasal EDUs were allowed (that is, an EDU composed of a single con-

stituent such as an Noun Phrase or Verb Phrase), so long as the phrase began with a strong

discourse marker (e.g. “Because”, “In spite of”, “As a result of”, “According to”).

Once the EDUs have been identified, the second step involved linking adjacent spans via rhetorical

relations. There are two possible types of such relations: mononuclear and multinuclear. In the case

of mononuclear relations, one span is annotated to be the nucleus and holds the more important

information, while the other is annotated to be the satellite and holds the supporting information.

In the case of multinuclear relations, two or more spans are noted as nucleus and hold information of

equal importance in the discourse structure. The annotation guidelines provided to the annotators

featured 53 mononuclear relations and 25 multinuclear relations.

The relation annotation process was performed in three phases: First, for about four months,

the annotators were tasked to annotate a first set of 100 documents. Once these documents were

annotated, the team went through a reassessment phase during which agreement was measured and

the annotation guidelines were refined. Finally, the first 100 documents were annotated again with

the new improved guidelines, subsequently the rest of the corpus was annotated in the same manner.

It was noted in (Carlson et al. , 2002) that the various annotators opted to use a number of

tagging strategies during the annotation process. The two most frequently used strategies can be

described as follows: The first strategy involves first segmenting the text into EDUs, one unit at

a time. The annotators then incrementally built the discourse trees by immediately attaching the

current node to the previous node. It was noted that this method required annotators to anticipate

the upcoming discourse structure. This need for anticipation grows as the text grows, making this

method ill suited for larger texts. It was noted that annotators did in fact prefer the second strategy

for such texts. The second strategy involves segmenting the text multiple units at a time. Annotators

would then build the discourse sub-trees for each sentence. Once the sentences have been graphed,

they are linked together in larger trees, and finally these large chunks are linked together to build

the final tree representation of the text. It was noted that this approach allows to see the emerging

discourse structure more globally. What can be noted from this is that it seems that approaching

discourse structures from the top down is more effective than starting from a specific EDU, especially

given larger texts. In the end, an annotated text span for example (7) below can be represented as

in Figure 2.3.

(7) [Still, analysts don’t expect the buy-back to significantly alter

per-share earning in the short term]16 [The impact won’t be that

great,]17 [said Graem Lidgerwood of First Boston Corp.]18 [This is

in part because of the effect]19 [of having to average the number of

shares outstanding,]20 [she said.]21 [In addition,]22 [Mrs. Lidger-

wood said,]23 [Norfolk is likely to draw down its cash initially]24 [to

finance the purchases]25 [and thus forfeit some interest income.]26

Using the annotation software provided to the annotators (Marcu, 1999), the previous example

is stored in the corpus in a LISP-like format to the short example provided in Figure 2.2.
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Figure 2.3: Annotated Text Span Example (7) from (Carlson et al. , 2001)

Quality assurance was performed on the corpus in two ways: by checking the structural validity

of the resulting trees and by tracking inter-annotator consistency. The tree validation process was

performed using a discourse parser and a tree traversal program in order to verify that the entire

text was part of the tree, that it contained a single root node, that nuclearity was assigned properly

and that relations attached to the proper types of nodes. Inter-annotator consistency was checked

using Kappa statistics (Carletta, 1996) over hierarchical structures. Using the method described in

(Marcu, 1999), an agreement measure larger than 0.8 is considered to represent very high agreement,

while a measure between 0.6 and 0.8 is considered to represent good agreement. Table 2.3 details the

inter-annotator agreement from the various annotation tasks performed by six of the nine annotators.
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B,E 0.96 0.89 0.85 0.78 0.81 7 88.29

A,E 0.98 0.90 0.84 0.76 0.78 6 57.67

A,B 1.00 0.93 0.88 0.79 0.82 5 58.20

A,C 0.95 0.84 0.78 0.68 0.71 4 116.50

A,F 0.95 0.78 0.69 0.60 0.62 4 26.50

A,D 1.00 0.87 0.80 0.72 0.77 4 23.25

Table 2.3: Inter-Annotator Agreement – Final Result for Six Taggers From (Carlson et al. , 2002)

Table 2.3 reports the final inter-annotator agreement for all pairs of annotators who double-

annotated four or more documents. Out of the 385 documents, 53 of these were double-annotated.

As can been seen in these results, inter-annotator agreement is generally quite high. Identifying
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EDUs and the spans of text of the leave nodes appears to yield very high agreement overall. The

exception here is found between annotators A and F, with an average Kappa measure slightly under

the 0.8 cutoff. Relations extraction appears to be the more difficult task when it comes to consistency.

For this reason, the “Fewer-Relations” measure shows agreement between annotators using the 18

broad classes of relations of the RST framework. In the end, it is noted that the greatest sources of

inconsistency came from the fact that the RST relation set is quite large with 118 distinct relations,

and the concept of nuclearity is somewhat interpretive. Because of these reasons, the annotators

received more leeway in their interpretation of discourse structures. This is noted to be the case

especially with larger text spans where building the tree structures were noted to be a cognitive

challenge for those involved.

In the end, the RST-DT was developed by over a dozen people working on full-time or part-time

basis for a period of a year.

2.3.1.2 Rhetorical Structure Theory Review Corpus

The Rhetorical Structure Theory (RST) Review Corpus was created by and described in (Taboada

et al. , 2006; Taboada & Grieve, 2004) for the purpose of using discourse relation identification for

the task of sentiment analysis. It comprises 400 documents obtained from epinions.com, an online

resource of user generated reviews on various products. Eight categories of products were selected

and 50 reviews, with 25 negative and 25 positive reviews, on each subject were chosen. These

categories are: books, cars, computers, cookware, hotels, movies, music, and phones. On average,

these reviews have a length of 1615 tokens. Discourse relations were annotated by Maite Taboada

and Montana Hay using the RST Tool created by Michael O’Donnel (O’Donnell, 1997). The

annotation were made using the set of discourse relations from the RST framework. Only relations

found within sentences were noted, those holding between sentences or through larger portions of

the text were ignored.

2.3.1.3 Penn Discourse Tree Bank

The Penn Discourse Tree Bank (PDTB) (Prasad et al. , 2007) is a corpus of 2159 documents

annotated for discourse relations which was released in February 2008. It covers the entire span of

theWall Street Journal articles found in the Penn Treebank (Marcus et al. , 1993). These documents,

once again, are written in American English and range from 31 to a little over 2000 words in length.

The authors of the PDTB created a framework which they claim to be theory neutral when it comes

to the task of discourse annotations. Within this framework, relations are meant to be held between

two and only two arguments (or what we have thus far referred to as EDUs).

One major difference between the RST framework and the PDTB framework is the emphasis

made on explicit and implicit relations. Within the PDTB corpus, relations are noted to be either

explicit if they are made through the use of a cue phrase, and implicit in the absence of such a cue

phrase. For example, a cause relation could be made explicitly as:

(8) I like this shirt, because it is blue.
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The appearance of the cue phrase “because” makes this relation explicit, and therefore much easier

to identify. On the other hand, simply removing this cue phrase from our sentence to create the new

sentence:

(9) I like this shirt, it is blue.

still denotes the same relation of cause between the two EDUs of the sentence. This relation, however,

is considered to be implicit, as no cue phrase appears to identify the relation itself. Instead, the

reader is expected to understand the causality implied by the juxtaposition of both clauses found

in the sentence. It should come as no surprise that implicit relations are generally much harder

to identify. Another important note to consider is that cue phrases are not limited to single word

expressions like “because”, although many are, but could also be composed of expressions such as:

only because, if and when, either [...] or, etc. In total, the PDTB corpus denotes 100 different cue

phrases, some of which have modified forms. The annotations made on the Penn Treebank corpus

generated 18,459 instances of explicit discourse relations and 16,224 instances of implicit discourse

relations. This goes to show that the distribution of these relations on the basis of this distinction

splits discourse relations fairly evenly. This suggests that identifying cue phrases alone will not be

sufficient for properly identifying discourse relations in an adequate fashion.

The PDTB framework defines four broad classes of discourse relations, which themselves are split

into two to six more fine grained relation types, some of which are further refined into even more

specific relation subtypes. These classes and discourse relations types are shown in Figure 2.4.

A particular relation that can also be found is the attribution relation, not mentioned in Fig-

ure 2.4. Unlike with the RST framework, the PDTB framework gives a special importance to this

particular discourse relation. The authors argue that the nature of the discourse relation holding

between two arguments is, in part at least, determined by the attribution of these arguments. That

is, having an argument attributed to a source other than the author of a document means that

the discourse of this external source should be considered separately during the identification of

discourse relations (Prasad et al. , 2008).

The annotation produced for the PDTB corpus provides information on explicit and implicit

relations, as well as what is referred to as AltRel, EntRel and NoRel relations. In the case of

explicit relations, both the arguments (or EDUs), the sense of the relation and the connective (or

cue phrase) are noted by the annotators. In the case of implicit relations, both the arguments (or

EDUs), the sense of the relation and an implicit connective are noted by the annotators. The

implicit connective is a cue phrase that can be inserted in the original text to turn the implicit

relation into an explicit one without changing its sense. In the cases where such a connective cannot

be added by the annotators, AltRel, EntRel and NoRel relations where identified. In the case of

AltRel, the insertion of such a cue phrase would have been redundant as an non-connective alternate

expression was used for this purpose. Consider the following example from (Prasad et al. , 2008):
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Figure 2.4: List of Relations in the PDTB Framework from (Prasad et al. , 2007)

(10) Ms. Bartlett’s previous work, which earned her an international

reputation in the non-horticultural art world, often took gardens

as its nominal subject. Mayhap this methaphorical connec-

tion made the BPC Fine Arts Committee think she had a literal

green thumb.

In this last example, the bolded portion of the text is perceived as the non-connective alternate

expression (it restates what is described in the portion of the document that preceeds it). In the

case of EntRel, only entity based coherence can be perceived between the two arguments (or EDUs).

That is, a relation between the two arguments seems to exist, but no relation (as defined within

the framework) add to the semantics of this relationship. In the case of NoRel, neither a discourse

relation or an entity based relations could be perceived between the two arguments (or EDUs).

The PDTB corpus was annotated by two annotators and inter-annotator agreement was com-

puted for all three levels of discourse relations: classes, types, and subtypes (see figure 2.4). Dis-

agreement was calculated at the class level when the two annotators picked a subtype, type or class

of different classes, at the type level when they picked different types within the same class, and at

subtype level when both annotators picked different subtypes. The accuracy for each of these levels

of agreement is shown in Table 2.4.

As mentioned earlier, the attribution relation is given a special consideration whithin the PDTB
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Level % agreement

Class 94%

Type 84%

Subtype 80%

Table 2.4: PDTB Corpus Inter-Annotator Agreement

framework. Unlike the RST framework which features such a discourse relation no different than the

rest, the authors of the PDTB framework decided to treat the attribution relation as a special case,

outside of the discourse annotation itself. Given the special considerations made to attributions,

these were treated separately by a single expert.

2.3.1.4 Biomedical Discourse Relation Bank

The Biomedical Discourse Relation Bank (BioDRB) was created by and described in (Prasad et al.

, 2011). It consists of 24 open-access full-text articles in the field of biomedicine obtained from the

GENIA corpus (Kim et al. , 2003). Each article is formatted in the way research papers are typically

expected to be structured. They can be separated into sections such as: abstract, methodologies,

discussions, results, etc. The guidelines used for the annotation task of these articles is based on the

ones created for the creation of the PDTB corpus. Some changes were made to the definitions of

a few relations while others were rearranged within the hierarchy of senses defined by the original

PDTB framework. First, the authors of the BioDRB corpus decided to completely eliminate the

class level, originally defined as the four classes: contingency, temporal, comparison, and expansion.

Only the temporal class was kept, but now as a type. With this change, the hierarchy of the

PDTB framework used for the annotation of the BioDRB corpus is on two levels, rather than three.

A second change noted by the authors is the collapsing of certain subtypes. For example, the

original PDTB framework defined a factual-present and factual-past relation, the BioDRB version

of the framework label both these relations as factual. A third change is the addition of a few

new discourse relation senses: purpose, similarity, continuation, background, and reinforcement. In

the case of background and continuation, these are noted by the authors as being reformulations

of the EntRel type of relations. AltLex and NoRel still exist within this new version of the PDTB

framework. The other three new senses were created to give better precision to certain discourse

relations that were believed to be compounded with these new ones. For example, relations noted to

be purpose would have been identified as result in the original PDTB framework. Finally, pragmatic

cause became a subtype of cause, while pragmatic condition became a subtype of condition.

The BioDRB corpus contains the annotations for 5859 discourse relations, including all relation

types: explicit, implicit, AltLex, and NoRel. The distribution of these relations is shown in Table 2.5.

For the purpose of annotating the 24 articles with discourse relations, annotators were first given

the original list of discourse connectives (or cue pharses) from the original PDTB corpus, but were

also encouraged to identify new instances of such connectives. The task of annotating the discourse
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Relation Type No. of Tokens Distribution

Explicit 2636 45.0%

Implicit 3001 51.2%

AltLex 193 3.3%

NoRel 29 0.5%

Total 5859 100%

Table 2.5: Distribution of Relation Types in the BioDRB Corpus

relations was then performed in five steps, for every sentence:

1. Identify, if it exists, discourse connectives relating this sentence to the context via a discourse

relation and mark it as explicit.

2. If no explicit relation can be identified, attempt to insert a connective in order to infer the

implicit relation and mark it as such.

3. If the insertion of an implicit connective leads to redundancy, note the relation as AltLex.

4. If the sentence does not seem to relate in a coherent manner to the context, mark the relation

as NoRel.

5. After relating the sentence to the previous context, identify and annotate any discourse rela-

tions found within the sentence itself.

The annotation task was performed by two pre-medical students at the University of Pennsylvania.

Given the highly specialised nature of the documents annotated, the expertise provided by these

annotators was a crucial point in their selection. The authors of (Prasad et al. , 2011) then proceeded

to train the two annotators on linguistic theories of syntax, semantics, and discourse. Following this

initial training, they were also given a training on the guidelines for this specific annotation task. The

annotation task took over three years of work. Agreement between the two annotators was calculated

on the basis of connective (or cue phrase) identification, argument (or EDU) identification, and sense

labelling. The authors note an agreement of 82% on the identification of discourse connectives.

For the identification of arguments (or EDUs), the authors calculated the accuracy of the exact

match between the two annotators for relations that are explicit or AltRel and for relations that

are implicit. The accuracies were then calculated for both arguments of each annotated discourse

relations. Table 2.6 gives some details on the accuracy of these agreements.

Finally, agreement of sense labelling is given through Kappa scores. As noted in (Prasad et al.

, 2011), the use of Kappa scores is used since the categorization task is multinominal, with several

sense labels to chose from when annotating discourse structures. The results of these calculations is

provided in Table 2.7.

After these agreement measures were calculated, the disagreements found were re-evaluated and

fixed by an expert. Further reviews were also performed by the authors to fix remaining guideline

related errors.
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Relation Type Argument Agreement

Explicit, AltLex First Argument 81%

Second Argument 85%

Implicit First Argument 75%

Second Argument 88%

Table 2.6: Agreement on the Identification of EDUs in the BioDRB Corpus

Relation Type Kappa

Explicit, AltLex 0.71

Implicit 0.63

Table 2.7: Sense Labelling Agreement in the BioDRB Corpus

2.3.2 Discourse Relation Parsers

Over the past decade, several discourse relation parsers have been developped. Some of the earlier

ones were trained using the RST framework and associated corpora, while others appearing later

made use of the PDTB framework and associated corpora. Both frameworks are still actively used

in the creation and improvement of automatic discourse parsers.

2.3.2.1 SPADE

Radu Soricut and Daniel Marcu were the first to present two probabilistic models for the purpose of

identifying EDUs and building sentence-level discourse parse trees (Soricut & Marcu, 2003). These

models were subsequently used to build the SPADE (Sentence-level PArser for DiscoursE) parser.

The first of these models is used to split a text into leaf nodes representing the smallest EDUs. The

second of these models attempts to build sentence-level discourse trees using these EDUs. In the

end, the authors report what they describe as “near-human levels of performance” in extracting

sentence-level parse trees from unannotated text. We now describe the two models proposed by the

authors.

The first model, the discourse segmentation model, takes a raw text and splits it into spans

that will become the leaf nodes of the parse trees, the EDUs. It does so by identifying discourse

boundaries. The first step of the process of identifying EDUs is to split the text at the sentence

level. In order to select the appropriate location to insert these discourse boundaries, the authors

find that this is best achieved by considering lexicalized syntactic structures. The approach first

takes into account words and determines if it is a boundary word or a non-boundary word. In order

to reach such a goal, the approach works in two steps: sentence segmentation and sentence-level

discourse segmentation. The first step relies on already established approaches described in (Palmer

& Hearst, 1997) and (Ratnaparkhi, 1998). Using the methods described by these authors, texts

can effectively be split into sentences. The sentence boundaries are always considered to be EDU

boundaries. The later step of splitting these sentences into the actual EDUs which will become the
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leaf nodes is performed by two components. The first of these components is a statistical model

which calculates the probability of a boundary to occur after every word of the sentence. The second

component selects the most likely location determined by the first model and inserts the boundary

separating the text into EDUs. To do so, the method relies on creating a syntactic parse tree for the

sentence. This is achieved using Charniak’s syntactic parser (Charniak, 2000). Using the syntactic

trees obtained as the output of the Charniak parser, canonical lexical head projection (Magerman,

1995) is applied in order to retrieve the syntactic trees in a lexicalized form. Every word that is the

lexical head of a constituent and that has a right sibling constituent is a possible candidate for a

EDU boundary. In order to better illustrate this, consider the parse tree presented in Figure 2.5,

reproduced from (Soricut & Marcu, 2003).
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Figure 2.5: Example Syntactic Tree from (Soricut & Marcu, 2003)

The approach determines that the text span “The bank also says” constitutes an EDU while

“it will use its network to channel investments” constitutes another. It should also be noted that

this second EDU can be further split into two smaller EDUs: “it will use its network” and “to

channell investments”. The beginning of the first EDU is determined by the sentence boundary.

“The” is therefore classified as a boundary word. In order to determine that “says” is the last word

of this EDU and should therefore be classified as a boundary word, the system looks at the following

features: the node Nw, its parent node Np and its sibling node Nr. Given that the nodes presented

here are Nw = VBZ(says), Np = VP(says) and Nr = SBAR(will), the system calculates the likelihood
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of a boundary to occur based on the lexical and syntactic information provided. In other words,

we are interested in the probability of a syntactic structure VBZ with a lexical head “says” being a

boundary word considering that it is part of a larger syntactic structure VP with lexical head “says”

and has a right sibling with a syntactic structure SBAR with a lexical head “will”. The probability is

computed by these authors by training their system on the RST-DT corpus (Carlson et al. , 2002).

Table 2.8 shows the results obtained by the SPADE algorithm in terms of precision, recall and

F-score when it comes to identifying EDU boundaries. Note that in order to asses the impact of

Syntactic Parse Recall Precision F-score

Using Charniak 82.7 83.5 83.1

Using Penn Treebank 85.4 84.1 84.7

Human Performance 98.2 98.5 98.3

Table 2.8: Evaluation of the SPADE Discourse Segmenter

errors produced by the Charniak parser, the authors also carry an evaluation based on the gold

standard syntactic trees provided from the Penn Treebank. The results show a slight improvement.

Finally, the human performance is evaluated using the doubly annotated texts from the RST-DT

(see Section 2.3.1.1), that is, texts that were annotated by two annotators and then compared.

Once discourse boundaries have been successfully identified, that is agreement between annotator

was deemed satisfactory, both these and the lexicalized syntactic trees (trees in which constituents

are labelled with the lexical items found at their heads) are used as input to the discourse parser.

This is done in two steps: the parsing model assigns the probability of each possible parse tree given

the specified input, while the discourse parser is an algorithm used to determine which of these

possible parse trees is the better choice.

The parsing model extracts a set of tuples from the input. These tuples can be described as

R[i,m, j] where:

- R is the relation holding between two spans of text,

- i is the first EDU found in the text span considered,

- m is the first EDU found in the second of our text spans, and

- j is the last EDU of the second of our text spans.

In other words, the tuple R[i,m, j] denotes the relation R between the text span from EDUs i to m

and the text span from EDUs m to j. For example, take sentence 11 showing a text span made of

three EDUs.

(11) [The bank also says]1 [it will use its network]2 [to channel

investments]3.

In this example, an attribution relation was annotated to hold between EDU1 and the span from

EDU2 to EDU3. The tuple would then be: attribution[1, 2, 3]. Given the input, every possible pair

of text spans is to be considered for the basis of one of these tuples. For example, consider a text

separated into four EDUs: (1, 2, 3, 4). The following spans should be considered as candidates for the

27



basis of a relation: R[1, 2, 2], R[1, 2, 3], R[2, 3, 3], R[2, 3, 4], R[3, 4, 4] This method allows to identify

rhetorical relations between leaf nodes as well as between larger spans of text. On the other hand,

it assumes that all relations are binary relations. This assumption is noted by the authors as being

justified by the fact that 99% of the nodes in the RST-DT are binary nodes. Using two methods

rel() and ds() which can be applied to tuples R[i,m, j] and yielding the relation R and the discourse

structure [i,m, j] respectively, the authors suggest the formula of Equation 2.5.

P (DT |Θ) =
∏

c∈DT

Ps(ds(c)|Θ)× Pr(rel(c)|Θ) (2.5)

This formula should be understood as computing the probability of a discourse structure DT given

a set of parameters Θ. This is determined by calculating the product of the probability of every

tuple c in DT in terms of discourse structure and relation given the parameters Θ. The first of these

probability measures (Ps) aims at finding the most likely hierarchical structure for the discourse tree.

For example, given a text containing three leaves, it determines which of the following two structure

is more likely: (1, (2, 3)) or ((1, 2), 3). The second of these probability measures (Pr) identifies the

type of relation that is most likely to appear in the leaves.

The features used to determine the probabilities Ps and Pr are based around what is described as

the “attachment points” of EDUs. First, for each EDU, a head word is selected. Given the lexicalized

parse tree used as input, the head word H is defined as the word with the highest occurrence as a

lexical head within the lexicalized syntactic structure of the EDU. The node where the head word

appears highest in the parse tree of the given EDU is called the head node of the EDU and is denoted

NH . The EDU in which the root node is present is called the exception EDU. For every NH that

is not part of the exception EDU, there exists a node that is the parent of NH . This parent node

is called the attachment node and is denoted NA. For every EDU to be considered, the feature set

{H,NH , NA} is used to build the D set, called the Dominance Set. An example of such a set is

shown in Equation 2.6, which shows the Dominance Set of the sentence of Figure 2.5.

D = {(2, SBAR(will)) < (1, V P (says)), (3, S(to)) < (2, V P (use))} (2.6)

The set D should be understood as: there is a head node of type SBAR with lexical head “will” in

EDU 2 which is dominated by a head node of type V P with a lexical head “says” in EDU 1 and a

head node of type S with a lexical head “to” in EDU 3 which is dominated by a head node of type

V P with a lexical head “use” in EDU 2. The discourse parse tree (DT ) is computed based on the

dominance set D with Equation 2.7.

P (DT |D) =
∏

c∈DT

Ps(ds(c)|filters(c,D))× Pr(rel(cs)|filterr(c,D)) (2.7)

Equation 2.6 should be understood as the probability of a discourse parse tree DT given the domi-

nance set D as the product of the probability of every tuple c in DT in terms of discourse structure

and relation given the dominance set D. In both of these two probabilities, a filter is applied in

order to ensure that only the information in D related to the EDUs in the current c are considered.

With filters, only the syntactic labels and an identifier of the EDU in which they are found are

considered, and the lexical heads are discarded. With filterr, both the lexical heads and syntactic
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labels are considered, but only for the nodes which connect the two EDUs. To better illustrate this,

consider the example provided in Figure 2.6.

Figure 2.6: EDU Segmentation at the Syntactic Level

c =enablement-ns[2, 2, 3] is a potential discourse parse for the example sentence of Figure 2.6.

Recall that this structure means that the text “it will use its networks to channel investments”

can be parsed as R[i,m, j] =enablement-ns[2, 2, 3] reflecting the relation of enablement-ns between

the second and third EDUs of the full sentence. For filters(c,D) we obtain the set {(2, SBAR) <

(1, V P ), (3, S) < (2, V P )}. In simple terms, the SBAR node at the head of EDU2 is dominated by

the V P node of EDU1 and the S node at the head of EDU3 is dominated by the V P node of EDU2.

For filterr(c,D) we obtain the set {S(to) < V P (use)} which indicates the node S lexicalized by

“to” is dominated by the node V P lexicalized by “use”.

In the case of relation extraction, SPADE’s discourse parser obtains the results shown in Table 2.9

in terms of F -score based on a standard Parseval metric (Abney et al. , 1991). The scores given

in Table 2.9 show the F -score when leaving the relations unlabelled, by using the set of 18 higher

level relation labels described in Section 2.3.1.1 and finally by using the 118 relation labels found in

the training corpus. As a basis of comparison, the human performance measures are based on the

doubly-annotated texts of the RST-DT.

Although human performance is clearly better than what can be achieved with SPADE, at the

time it was first published, SPADE was the most complete and best performing system. Since then,

a few others have been developed using richer sets of features that allow for better performance.
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SPADE Human Performance

Unlabelled 70.5% 92.8%

18 Labels 49.0% 77.0%

118 Labels 45.6% 71.9%

Table 2.9: F -scores for SPADE Discourse Parser Evaluation Using the Parseval Metric, from (Soricut

& Marcu, 2003)

2.3.2.2 HILDA

In 2010, (Hernault et al. , 2010b,a, 2011) presented another discourse parser, HILDA (HIgh-Level

Discourse Analyser) which reuses some of the methods described by (Soricut & Marcu, 2003) and

used in the SPADE parser. One distinct improvement of HILDA over SPADE is that it performs

text-level discourse extractions as well, as opposed to sentence-level extraction alone.

A few working assumptions are considered by the authors. First, they acknowledge the specific

characteristic of RST as being presented in a left-to-right linear order. Second, they chose to use the

simpler set of 18 meta-relations (see Section 2.3.1.1) as opposed to the 118 relations available in the

RST-DT. Finally, although the RST allows for multi-nuclear relations, the authors chose to treat

those as nested binary trees. For example, the list relation which would normally be represented

as multi-nucleic relation becomes several nested trees. Figure 2.7 illustrates how such a change is

produced.

List

4321

→ List

List

List

43

2

1

Figure 2.7: Binarization of Multi-Nuclear Relations

The reason why this conversion became necessary is due to the fact that the HILDA system uses

a Support Vector Machine (SVM) classification approach (Vapnik, 1999). Using such a classifier,

HILDA proceeds in four steps:

1. Segment the text into EDUs.

2. Find the most likely relation between each pair of consecutive EDUs, select the one with the

highest probability and insert the new span with its relation to replace the two original EDUs.

3. Relabel all consecutive EDUs and repeat the previous step.

4. Continue until all text spans have been merged into one.

30



Much like SPADE, HILDA separates the tasks of discourse structure extraction into two broad

steps: discourse segmentation and relation labelling. Both steps make use of an SVM classifier with

different sets of features extracted from the input. For the purpose of detecting boundaries between

EDUs, the authors opt to use a method similar to SPADE and use the same feature set: lexical

items, part-of-speech tags and lexicalized heads.

The second task of HILDA is to perform relation labelling. Again, a number of features are

extracted or derived from the input. (Hernault et al. , 2010a) use the following types of features in

their labelling process:

1. textual organization features,

2. lexical features,

3. dominance sets as described by (Soricut & Marcu, 2003), and

4. structural features.

Textual organization features are summarized in Table 2.10, where they are classified as either (S)pan

features which are extracted from both right and left spans of text separately and (F)ull which are

extracted from the entire span of both EDUs as a single text span.

Feature Name Scope

Belong to same sentence F

Belong to same paragraph F

Number of paragraph boundaries S

Number of sentence boundaries S

Length in tokens S

Length in EDUs S

Distance to beginning of sentence in tokens S

Size of span over sentence in EDUs S

Size of span over sentence in tokens S

Size of both spans over sentence in tokens F

Distance to beginning of sentence in EDUs S

Distance to beginning of text in tokens S

Distance to end of text in tokens S

Table 2.10: Features Encoding Textual Organization Used in HILDA

Lexical features are noted as being good indicators of discourse relations (Soricut & Marcu,

2003; Hernault et al. , 2010a, 2011). The appearance of specific cue phrases provide powerful clues

pertaining to the underlying discourse relations used. For example, the use of the term “because”

is a good indicator of relation of causality between two clauses. The presence of specific cue words

makes the use of pre-defined dictionaries of cue words a possible approach. With HILDA, the authors

instead opt to use 3-grams built from the tokens (found in the RST-DT corpus) at the beginning
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and end of every EDU. (Hernault et al. , 2010a) note that their approach performs less well than the

dictionary approach, but has the advantage of not being reliant on a cue-phrase dictionary, making

it more flexible (that is, new cue phrases that were not found in the training data do not cause an

issue but remaining unidentified). In an effort to improve the performance of this approach, HILDA

uses part-of-speech tags on the tokens of these 3-grams, allowing a slight increase in performance.

The third set of features considered by the HILDA system during relation extraction is dominance

sets. Again, these are built from the lexicalized heads of the syntactic tree of EDUs and concentrate

on the point where EDUs are linked together syntactically. A detailed list of these features is

presented in Table 2.11 where, again, the scope is noted to hold across both spans separately or

across the full text span of both EDUs.

Feature Name Scope

Distance to root of the syntax tree S

Distance to common ancestor in the syntax tree S

Delta of distance to common ancestor F

Dominating node’s lexical head in span S

Common ancestor’s POS tag F

Common ancestor’s lexical head F

Dominating node’s POS tag F

Dominating node’s lexical head F

Dominated node’s POS tag F

Dominated node’s lexical head F

Dominated node’s sibling’s POS tag F

Dominated node’s sibling’s lexical head F

Relative position of lexical head in sentence S

Table 2.11: Features Encoding Dominance Sets Used in HILDA

Finally, structural features are considered by HILDA during the labelling process. (Hernault

et al. , 2010a) notice that there seems to exist a correlation between relations at different levels

of the tree. A trivial example would be the appearance of a list relation which, now that these

have been converted to binary relations, is more likely to be followed by the same type of relation.

The structures of the discourse trees from the RST-DT training set are encoded as features in a

breath-first, flat list representation of the binary tree. This can then be used to better identify a

series of relations. Although the features used by SPADE and HILDA are the same, it appears that

HILDA outperforms SPADE due to its use of SVM when it comes to identifying EDU boundaries.

Table 2.12 shows the F -score recorded by (Hernault et al. , 2010a). Similarly to the results shown

in Table 2.8 (see Section 2.3.2.1), note that the authors record these measures by using both the

syntactic trees obtained from the Penn Treebank and by deriving those tress using the Charniak

parser. Again, the human agreement measures are provided as a basis of comparison.

Finally, (Hernault et al. , 2010a) note the performance measures using the set of 18 discourse
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System Trees Precision Recall F-score

SPADE-Seg Penn 84.1 85.4 84.7

HILDA-Seg Penn 95.5 94.5 95.0

SPADE-Seg Charniak 83.5 82.7 83.1

HILDA-Seg Charniak 94.7 93.4 94.0

Human Agreement 98.5 98.2 98.3

Table 2.12: Performance of Discourse Segmenters from (Hernault et al. , 2010a)

relations, evaluated on 21 documents from the RST-DT. This is shown in Table 2.13.

Structure Nuclearity Relations

Precision 76.0 61.4 51.2

Recall 75.6 61.2 50.6

F -score 75.8 61.3 50.9

Table 2.13: Performance of HILDA from (Hernault et al. , 2010a)

2.3.2.3 Feng & Hirst Parser

More recently, the HILDA parser was improved by Vanessa Feng and Graham Hirst of the University

of Toronto (Feng & Hirst, 2012). In order to achieve this, rich linguistic features were used to

improve the tree building step of the discourse relation extraction process. Some of the new features

incorporated are based on the work described in (Lin et al. , 2009) while others are novel. Four new

approaches were investigated and used to improve the HILDA parser. Contextual features takes

into account that a coherent text typically uses particular sequences of discourse relations. Given

this observation, the new parser attempts to better identify discourse relations based on which

relations precede and succeed the one currently observed. This is noted to be somewhat tricky

as the RST framework does not produce linear series of features, but rather tree structures where

different discourse relations are embedded inside one another. An idealized solution is described

in (Feng & Hirst, 2012) to obtain the full context of any given discourse relation, but given the

bottom-up approach implemented by HILDA, such an ideal situation is not always feasible. A

second new feature investigated by (Feng & Hirst, 2012) is the use of discourse production rules.

Much like syntactic production rules (e.g. S → NP + V P ), such rules take into account the

tree like structures of discourse relation schemas within the RST framework. These production

rules were derived from the RST-DT corpus which annotated multilevel discourse structures. A

third new feature compares semantic similarities of verbs and nouns across the EDUs linked by

a discourse relation. The similarity between these various tokens is computed using VerbNet and

WordNet (Fellbaum, 1999; Schuler, 2005). Finally, cue phrases are used to better identify discourse

relations by determining if the cue phrases appear in the begining, middle or end of a span of

text. Another important strategy adapted from the work of (Lin et al. , 2009) is to perform feature
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selection prior to classification in an effort to reduce the total number of feature dimensions. This

was done by making an analysis of the most informative features through experimental work. By

computing the information gain provided by each of the features used by the parser, whether they are

part of the original features set of HILDA, or some of the new ones introduced by Feng & Hirst, the

authors reduced the total number of selected features to 21,410 (the total number of features before

applying feature selection is not mentioned in (Feng & Hirst, 2012), but those features did include

all possible word pairs from all text spans and is therefore expected to be quite high). Table 2.14

shows a comparison of the performance of the Feng & Hirst parser against the HILDA results on the

identification of discourse structures, assuming the ideal situation allowing for the contextual feature,

in terms of accuracy, precision, recall, and F -score score. In all cases, the F -score recorded by (Feng

& Hirst, 2012) shows an improvement over HILDA. In fact, the Feng & Hirst parser improves

discourse relation extractions within sentences for all measures observed: accuracy, precision, recall

and F -score. A drop in precision is noticeable when it comes to identifying discourse relations across

sentences, but the recall rate for these same discourse relations is noted to be considerably higher.

Table 2.15 shows a similar comparison on the performance of discourse relation classification in

terms of Macro-Average F-scores (MAFS)2, and Weighted-Average F-scores (WAFS)3, as well as

the accuracy. (Feng & Hirst, 2012) notes that MAFS is not influenced by the number of instances

that exist in each relation class by equalling weighting those classes. That way, this measure is not

biased by the much larger appearance of certain discourse relations in comparison to others. The

WAFS measure weights the performance of each class by the count of instances. Using these metrics,

the Feng & Hirst parser is shown in Table 2.15 to improve slightly on HILDA in all observed cases.

Within sentences Across sentences All structures

Feng HILDA Feng HILDA Feng HILDA

Accuracy 91.04 83.74 87.49 89.13 95.64 87.04

Precision 92.71 84.81 49.60 61.90 94.77 79.41

Recall 90.22 84.55 63.95 28.00 85.92 58.15

F 1 91.45 84.68 55.87 38.56 89.51 67.13

Table 2.14: Feng & Hirst vs HILDA Parser Performance on Structure Classification

2The Macro average F -score (MAFS) is the harmonic mean of the average of the recorded precision and recall

measures. Given two precision values (P1 and P2), and two recall values (R1 and R2), the MAFS would be calculated as

the standard F -measure (see Section 2.1) but using the average precision P = (P1+P2)/2 and recall R = (R1+R2)/2.
3The Weighted-Average F -score (WAFS) takes into consideration that not all classes might be equally represented.

If, for example, class C1 has 100 instances with a precision score of 30%, while class C2 has 2 instances with a

precision score of 100%, the average precision would become 65%. This is problematic as the score is inflated by

class C2. In order to avoid this misleading situation, the number of instances for each class determines how much

each class weights on the overall score. To obtain the weighted precision used to calculate the WAFS, we would use

P = (100× 65) + (2× 100)/102 = 31.4%.
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Within sentences Across sentences All relations

Feng HILDA Feng HILDA Feng HILDA

MAFS 0.490 0.446 0.194 0.127 0.440 0.379

WAFS 0.763 0.740 0.607 0.588 0.607 0.588

Accuracy 78.06 76.42 65.30 64.18 65.30 64.18

Table 2.15: Feng & Hirst vs HILDA Parser Performance on Relation Classification

Figure 2.8: Pseudo Code for the Discourse Parsing Algorithm of the End-to-end PDTB Parser

(Taken from (Lin et al. , 2012))

2.3.2.4 End-to-End PDTB Parser

The End-to-End parser created by and described in (Lin et al. , 2012) differs from those described

above in the fact that it makes use of the PDTB framework (see Section 2.3.1.3), as opposed to the

RST framework (see Section 2.3.1.1). The authors describe the parser as an attempt to mimic the

procedure used by human annotators in the creation of the PDTB corpus. Figure 2.8 provides a

simple pseudo-code explanation of the algorithm used by the parser described in (Lin et al. , 2012).

The pseudo-code shows that the extraction process is performed in three steps: first identifying

explicit relations, then identifying implicit, AltLex, EntRel, and NoRel relations, and finally iden-

tifying attribution relations. In order to achieve the parsing task following the steps described in

Figure 2.8, five components were created. First a connective classifier attempts to identify 100 cue

phrases, and modified versions of these, described within the PDTB framework. This component

also identifies the context in which cue phrases occur, as well as the part-of-speech tags associated

with the cue phrases in order to improve performance. The second component is an argument labeler
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which attempts to identify the spans of text covering both arguments, or EDUs, which are to be

related. In order to achieve this, the cue phrases are again used as features, as well as some con-

textual features within the sentence and adjacent sentences. The argument extractor also attempts

to determine whether the arguments, or EDUs, are ordered with the main argument first, second,

or split in two by the second argument. A third component used is an explicit relation classifier.

Using the discourse connectives, or cue phrases, identified by the first component, the explicit re-

lations are identified. In order to do so accurately, the cue phrases, their part-of-speech tags, and

the word preceeding them are used as features. A fourth component attempts to classify implicit,

AltLex, EntRel, and NoRel relations. In order to achieve this, four features are used: the occurrence

of surrounding relations in the context, constituent parse features, dependency parse features, and

word-pair features. Finally, an attribution span labeler component is used to identify the attribution

relations. This is done by splitting the text into clauses and determining which of these clauses are

attribution spans. In order to classify clauses as being attribution spans or not, the current, previous

and next clauses are evaluated in terms of unigrams, verbs, first and last terms, positions of the

clauses in the sentence, and production rules extracted from the current clause.

In order to evaluate the overall system, each component is tested using input devoid of errors.

This is acheived using gold standard annotations rather than the input of the previous component.

Although the original paper describing the parser provides results obtained through various experi-

mental settings (Lin et al. , 2012), Table 2.16 provides a summary of the highest and most relevant

results, note that only the F -score is provided for all components: precision, recall, and accuracy

are provided only when available.

Component F-score

Connective classifier 93.57

Argument labeler 97.94

Arg1 identifier 86.67

Arg2 identifier 99.13

Explicit classifier 86.77

Non-explicit classifier 39.63

Table 2.16: End-to-End PDTB Parser Evaluation

As can be seen in Table 2.16, identifying connectives (or cue phrases) is achieved fairly efficiently.

The argument labeler component, which determines which EDUs should be considered the nucleus,

likewise seems to achieve excellent results. When it comes to identifying the EDUs themselves, it

appears that the second argument is typically easier to identify. Still, the reported F -score suggests

that this task can be achieved fairly well. Finally, the results associated with the identification of

the discourse relations themselves shows, unsurprisingly, that identifying explicit discourse relations

is much easier than non-explicit ones. Obviously, the presence of cue phrases in the case of explicit

relations makes the task immensely more obvious to the classifier. In the end, it seems that we

can rely on the extraction of explicit relations to be performed automatically, while non-explicti
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relations still pose a number of problems. Finally, (Lin et al. , 2012) reports overall system F -scores

for partial matching of 46.80% with gold standard parses, and of 38.18% with full automation.

2.3.2.5 Faiz & Mercer Parser

Yet another parser using the PDTB framework that we have decided to use for a set of complementary

experiments was developed at the University of Western Ontario (Faiz & Mercer, 2013, 2014). A

few key elements need to be addressed in order to make proper usage of this particular parser.

Firstly, this particular parser only performs automatic extraction of explicit discourse relations, and

will not identify implicit, AltLex, and NoRel discourse relations. The parser itself relies highly on

the appearances of cue phrases in order to achieve this task. One interesting added feature of the

Faiz & Mercer Parser, and the reason why we opted to use it, is that it provides models trained

with the PDTB corpus, the same corpus used by the end-to-end PDTB parser, and one trained

with the BioDRB corpus (see details on both of these corpora in Sections 2.3.1.3 and 2.3.1.4). This

allows to perform the automatic extraction task of discourse relations using models trained with

one or the other of these corpora. The parser itself is noted to make use of two sets of features for

the purpose of extracting explicit discourse relations: surface level features, and syntactic features.

Some of the more important surface level features are cue phrases and their neighboring terms, and

chunk tags. It was experimentally determined by the authors of the parser that, in addition to

identifying cue phrases themselves, the extraction of discourse relations was improved by observing

the terms that occur directly before and after the cue phrases. It was noted that the appearance

of certain terms before or after various candidates for cue phrases is helpful in avoiding to mislabel

some occurrences of the cue phrase’s string when used in a way that is not marking a discourse

relation. For example, it was noted that if a candidate is followed by “of” or “to”, it is less likely

to be a discourse connective (e.g. “as a result of ”, or “in addition to” are noted to usually not be

used as cue phrases). The chunk tags, that is phrasal level tags such as VP (verb phrase) or NP

(noun phrase), are also noted to provide interesting information for the task at hand. Again, this is

noted as being helpful in avoiding mislabeling cue phrase candidates in situations where the string

of the cue phrase occurs, but is not used as such by the author of the document. For example, if

“when” is directly followed by a verb phrase, it is noted to be less likely to be an actual cue phrase.

A second set of features that are noted by (Faiz & Mercer, 2014) to be helpful in discourse relation

extraction are syntactic features. Some of the more useful syntactic features noted consider the

syntactic siblings of the constituent being considered as the candidate to be a span of text using a

specific discourse relation. It was determined that the best results can be achieved by considering

all the parent constituents of the one currently being considered, combined to their distance to this

same constituent. Another feature use is the part-of-speech tag and syntactic head of the right

sibling of the constituent. Finally, a category assigned to the cue phrase is used as a syntactic

feature. The cue phrase can be categorize as: subordinating conjunction, coordinate conjunction,

discourse adverbial, prepositional phrase, and a phrase taking sentence complements.

In our experiments (see Chapter 3), we have found that the performances, in terms of accuracy,

precision, recall, and F -Scores, are comparable to those we have obtained by using only the
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explicit discourse relations extracted with the end-to-end PDTB discourse parser (Lin et al. , 2012).

The parser’s use of a reimplementation of some of the same methods described in (Lin et al. ,

2012), combined with our own observations of the output of the parser lead us to believe that the

accuracy of both parsers are comparable for the task of explicit discourse relation extractions. In

their evaluation of cross-domain discourse relation parsing, (Stepanov & Riccardi, 2014) mention

this parser as being the only effort, to their knowledge, available with models trained on both the

PDTB and the BioDRB corpora. Unfortunately, and as noted in (Stepanov & Riccardi, 2014), very

little cross-domain evaluation is available for either of the models. Regardless, the assumption is that

using models built from the data available in these two corpora should influence the performance of

the parsers, relatively to the type of document that is being parsed. Our own assumption is that

extracting discourse relations using the model created from the PDTB corpus should yield better

results in the case of documents similar to those of this corpus (namely, newspaper articles), while

using the model created from the BioDRB corpus should yield better results in the case of documents

similar to those of this latter corpus (namely, research papers).

The results of testing the parser are presented in Table 2.17. Since it is possible to use data from

either the PDTB or the BioDRB corpus, results are shown using the PDTB training data on the

same corpus, the PDTB training data on the BioDRB corpus, and the BioDRB training data on

the same corpus, using cross-validation when using the same corpus for training and testing.

Accuracy Precision Recall F -score

PDTB to PDTB 97.53 95.11 96.52 95.81

PDTB to BioDRB 91.43 86.16 75.00 80.19

BioDRB to BioDRB 94.34 85.17 79.80 82.36

Table 2.17: Results of Cross-Validation Evaluation of the Faiz & Mercer Parser

The authors of the parser notice a slight improvement, specifically in terms of recall, when using

the same corpus as the basis of their training and testing data (Faiz & Mercer, 2014). This results in

a small improvement in terms of F -score. Based on this, they conclude that tailoring the training

data used by the parser according to the type of documents from which discourse relations are to

be extracted does in fact play a role in improving performance.

2.4 Discourse Rhetoric and Text-types

As it stands now, some work has been performed in order to evaluate the relationship between

discourse level rhetoric and either genres or text-types, but, to our knowledge, no parsers have

used implementations leveraging such relations. To some extend, the HILDA and Feng & Hirst

parsers (Hernault et al. , 2010a; Feng & Hirst, 2012) estimate the influence of textual organization

by using the distance between a relation and the beginning of the text. Still, a number of papers

have already been published discussing the relationship between discourse relations and higher level

discourse structures, such as text-types.
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Bonnie Webber’s investigation of the distinctions of texts of different genres (Webber, 2009)

shows that genre does in fact appear to play a role in the distribution of discourse relations. This

conclusion is reached through a frequency analysis of the distribution of discourse relations across

the PDTB corpus (Prasad et al. , 2008). Since the PDTB corpus is composed of documents from

the printed press, these were categorized by the author in four different text-types. The bulk of

the documents used are labelled as news, with 1902 documents. The remaining 208 documents of

the corpus are labelled as essays, summaries, and letters. The author observed that in the case of

labelling implicit relations, especially when such relations appear in between sentences, the genre

appears to be a worthwhile feature to investigate. This observation is based on the fact that implicit

discourse relations are much harder to identify, as can be seen in the evaluation of the PDTB end-

to-end Parser (see Section 2.3.2.4). Gaining knowledge about the context in which such discourse

relations occur is expected by Webber to provide important clues that should help the extraction of

such relations. The author also notes that the various genres appear to share discourse structures

across documents. For example, a news article might start by giving an effective summary of its

contents, while an essay is less likely to do so. This leads to the hypothesis that we should not only

consider the distribution of relations one at a time, but we should also consider sequences of such

relations and the influence of genre on the observed patterns.

Another research conducted by the creators of the RST review corpus described in Section 2.3.1.2

studies documents in terms of “stages” (Taboada, 2011). Using the sub-section of the RST review

corpus dealing with film reviews, as well as a number of other similar documents from sources such

as Rotten Tomatoes and Epinions, the authors found that such review texts make use of a typical

structure. Such reviews are typically organized in five sections: subject matter, plot description,

character descriptions, background and evaluation. The authors then argue that these sections could

be segmented in two larger communicative goals: description and evaluation, that usually appear in

this order. Through their analysis, the authors found that the evaluative sections tend to contain

more evaluative and subjective words. The description sections typically contain more temporal

connectives, as well as more causal-type connectives. Although they do not study the distribution

of discourse relations themselves, the appearance of these particular types of connectives and cue

phrases is a good indication that discourse relations are used in particular manners given texts of

certain text-types or genres.

Yet another research conducted by (Cardoso et al. , 2013) argues that discourse relations can

be used as a feature to segment documents on various topics. The conclusion reached in (Cardoso

et al. , 2013) suggests once again a relationship between discourse relations and overall discourse

structures. In order to evaluate their hypothesis, the authors constructed a corpus of 140 texts in

Brazilian Portuguese picked from a number of sections of mainstream news agencies. These were

selected from the CSTNews corpus (Cardoso et al. , 2011), where the same authors performed their

own annotation using the RST framework. The 140 documents were then split into topics. To

ensure proper annotation of these splits, groups of trained annotators indicated possible boundaries

and the ones indicated by the majority of the annotators were selected. The conclusions reached

indicate that some relations are more frequent around topic boundaries, while others were never
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recorded to occur around these same boundaries. Based on this observation, the authors tested the

influence of discourse relations as a feature in the task of automatic topic boundary detection and

noted an improvement over the baseline.

In our own work (Bachand et al. , 2014), we performed an investigation on the relationship

between discourse relations and both the genre and the topics found across documents. To do so,

we compared, using log likelihood ratio (Rayson & Garside, 2000), the distribution of discourse

relations across various corpora. In an effort to reduce errors as much as possible, we opted to

use manually annotated corpora (Carlson et al. , 2002; Taboada et al. , 2006; Taboada & Grieve,

2004; Prasad et al. , 2008, 2011). Since the first three (Carlson et al. , 2002; Taboada et al. , 2006;

Taboada & Grieve, 2004) use the RST framework, while the last two (Prasad et al. , 2008, 2011) use

the PDTB framework, we also opted to compare corpora based on which of these frameworks they

used. Using the original RST-DT corpus, and the RST review corpus, we compared documents of

the news type to documents of the review type. Using the PDTB corpus and the BioDRB corpus,

we compared, once again, documents of the news type but this time to research papers. Through

our work, we found that certain discourse relations are more likely to occur in certain types of

documents, and further down, in certain sections of these specific documents. For example, news

items are more likely to contain attributions then documents that can be classified as reviews. On

the other hand, we noticed that background relations are statistically more frequent within reviews.

When performing a similar analysis using the PDTB corpus and the BioDRB corpus, we found that

circumstance and background relations are more commonly used in research papers while contrast

relations are typically used in news items to compare opinions. Overall, the analysis showed that

the discourse relations used across various different text-types are used in a manner that can be

described as intuitive. As such, we believe that the extraction of discourse relations should provide

a good enough feature to properly identify various text-types.

At the moment, most focus on the automatic extraction of discourse relations is on the lowest

level of the discourse schema, and attempts to extract discourse relations that hold between two

single EDUs. We believe that the ultimate goal of discourse relation extraction should be to identify

the entire schema of a document’s discourse, rather than being limited to the lowest level, which

most of the current research as so far focused on. What we are currently interested in is the

possibility of identifying text-types using automatically extracted discourse relations, as opposed

to manually identified discourse relations, as we studied in (Bachand et al. , 2014). By doing

this, we wish to move towards the automatic identification of those larger discourse schemas. We

believe that identifying the text-type, which represents the highest level of the discourse structure,

can later help in the identification of finer grained discourse structures, all the way down to the

lowest level of the overall discourse tree. We believe that this could be especially beneficial to the

identification of implicit discourse relations, which have been shown to be much more difficult to

accurately identify, both in the case of manually annotated corpora (Prasad et al. , 2008), and

automatic extraction (Lin et al. , 2012). A method of automatically identifying discourse relations

could, for example, begin by extracting explicitly stated discourse relations, which can be done fairly

accurately with current discourse relation parsers (for example, the End-to-End PDTB Discourse
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Relation Parser can identify them with an F -score of 86.77% (see Section 2.3.2.4)), and subsequently

use this information to identify the text-type of the document in order to improve the accuracy of

the extraction of implicit discourse relations, which the End-to-End Discourse Relation Parser can

identify with an F -score of 39.63% (See Section 2.3.2.4 for further details).

In this chapter, we have described some of the commonly used metrics that are used throughout

this thesis, discussed the theories of discourse relations, from the concept of EDUs to the way such

units relate to one another forming discourse relation structures. We have then described some of the

resources currently available in terms of corpora annotated with discourse relations, and automatic

discourse relation parsers, and we concluded by discussing some of the currently available work on

the relationship between discourse rhetorics and text-types. In the next chapter, we will present

the steps undertaken in order to put together and perform the experiments necessary to discuss our

claims. We will begin by describing the corpora used to build our own corpus, then we will shortly

discuss the discourse relations framework we have decided to employ for our task, we will then

describe how we have annotated our corpus with discourse relations as described by this framework,

and finally we will describe the various classifying tasks we have performed, both in terms of the

feature sets used, and the classifiers that have performed these tasks.

41



Chapter 3

Experimental Design

In this chapter, we describe our experiments in order to answer our research question of whether

text-types can be used as a first step towards detecting larger discourse level schemas in the process

of automatic extraction of discourse relations. In order to evaluate the relationship between discourse

relations and a document’s text-type, we designed a number of classification tasks. To do so, we

have gathered documents from various sources in order to build a corpus of over 3,500 documents

which are split into seven text-type classes. By using features related to discourse relations, we

then attempted to accurately identify the text-type to which each document belongs. It should be

noted that some documents may exhibit features that are shared across text-types (e.g. a document

could be of the response text-type, provide a review, while doing so in a manner that gives it the

appearance of a document of the narrative text-type, for stylistic reasons), for the sake of simplicity,

we assumed that each document has a single classification. In Section 3.1, we describe the corpus we

have built for our experiments by giving details related to the various sources used to build our final

working corpus. In Section 3.3, we provide a short description of the set of discourse relations used

for the annotation of our final working corpus. In Section 3.4, we describe the steps performed in

order to obtain the annotations of our final working corpus. In Section 3.5, we describe the various

classification tasks we performed for the purpose of determining the relationship between text-types

and discourse relations. To do so, we first give a description of the feature sets used in Section 3.5.1,

and then a description of the classifiers used in Section 3.5.2.

3.1 Text-Types

We defined seven distinct types to be classified during our experimentation. It should be noted that

these text-types were inspired by the description of such concepts from (Rotter & Bendl, 1978), but

were subsequently expanded to accommodate for various corpora considered during our research.

The definitions of the text-types themselves are based on the work of (Lee, 2001). The text-types

are as follows:
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Explanation: The explanation text-type is composed of documents which give specialized expla-

nations in a specific field of study. Documents such as research papers, academic theses, and

studies are included in this category. These type of documents are typically segmented into

distinct sections, such as abstract, methodologies, discussion, and results, which each make use

of various discourse structures. For example, temporal relations are more likely to appear in

the methodologies section, which would describe steps taken in a specific order, while circum-

stance relations are typical of the results section, which provide an explanation of the results

obtained (Bachand et al. , 2014). As described in the next sections, for our investigation, we

used the learned section of the Brown corpus (Francis & Kucera, 1979) and the BioDRB

corpus (Prasad et al. , 2011) in order to represent this text-type.

Exposition: The exposition text-type is defined as documents used to argue a point of view on

a given subject. Documents such as argumentative essays or political speeches are a good

example of this particular text-type. In such documents, speakers are expected to state a

number of facts in order to build a case over which they can later argue. To represent these,

we used the American English portions as well as the A-Level essays from British pupils of the

Louvain Corpus of Native English Essays (Granger, 2003).

Procedure: The procedure text-type is composed of documents which detail instructions on how

to perform a task. Documents such as cooking recipes and instructional manuals are examples

of this particular text-type. For this text-type, we have gathered cooking recipes freely available

online.

Narrative: The narrative documents are those that follow a fictional story. These can span across

any genre, while retaining the same general structure. It should be noted, however, that the

structure of narrative fiction is not necessarily very strict. In fact, one only has to look at the

works of almost any modernist author in English to find examples that defy the conventional

“narrative structure” that can be expected from documents of the narrative text-type. For

our purpose, we limit ourselves to more structurally traditional works of fiction. During our

classification task, we used the fiction, mystery, sci-fi, adventure, romance, and humour sections

of the Brown corpus (Francis & Kucera, 1979).

Recount: The recount text-type contains documents which retell series of events. These are

typically news items, recaps of sporting events, or political editorials. Typically, we expect

attribution relations to appear in such documents, as newspaper articles often report speech

that is then attributed to it’s authors (Bachand et al. , 2014). To account for this, we used the

news section of the Brown corpus (Francis & Kucera, 1979) and a subsection of the Reuters

corpus (Rose et al. , 2002).

Report: The report text-type is defined as documents which give an impartial account of facts.

These are typically documents produced by governments or large international agencies such

as the United Nations. Unlike with the exposition text-type, such documents should not

make subjective claims, but rather state facts which can be subsequently tested or verified.
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As described in the next sections, to account for these we use the report section of the Brown

corpus (Francis & Kucera, 1979) and a subsection of the Open American National Corpus (Ide

& Suderman, 2007).

Response: Finally, the response text-type contains documents which give a judgemental account

on a given subject. Documents such as consumer reviews and art criticism are examples of this

text-type. In such documents, we expect relations such as background, which would be used

by the author to provide background information on claims made to review something either

positively or negatively. For our purpose, we consider the review section of the Brown corpus

(Francis & Kucera, 1979) and the RST review corpus (Taboada & Grieve, 2004; Taboada et al.

, 2006).

Note that the distinction between text-types is sometimes blurry. For example, a thesis may

exhibit characteristics of a report as well as an exposition. For the sake of simplicity, however, we

have assumed a single-class classification for all the documents selected as part of our corpus.

3.2 Corpora

In order to account for our seven text-types, we have gathered seven different corpora which have

been rearranged and distributed in our seven text-type categories. The next section provides details

on each of these corpora, as well as details on which portions from these were used to be representative

of our seven text-types in the final corpus used in our experiments.

3.2.1 Brown Corpus

The Brown corpus (Francis & Kucera, 1979) is composed of 500 documents of roughly 2,000 words

each. This corpus was built using documents published in 1961 in the United States. The 500

documents totalling roughly one million words was then separated into 15 categories, each describ-

ing a certain genre. The original categories used are: news, editorial, reviews, religion, skill and

hobbies, popular lore, belles-lettres, government, learned, fiction, mystery, science-fiction, adven-

ture, romance, and humour. It should be noted that the first nine genres are non-fiction, while the

remaining six are fiction. We used these categories in order to split sections of this corpus into the

various text-types we are interested in. Five of our seven text-types are represented, in part or in

full, by documents of this corpus. Details of which of these documents are used in each one of these

categories are shown in Table 3.1.

It should be noted that the narrative text-type uses documents from six of the Brown corpus’

original genres. Since our hypothesis is that discourse structures are what makes the text-type, while

the genre should be established through the use of specialized vocabulary, merging these portions

of the corpus together should pose no problem. Within some of the original split on genre from

the Brown corpus, we can also witness the occurrence of sub-genres. For example, the news section

contains items related to the genres of politics, sports, society, finance, culture, etc. Likewise, the

reviews section contains documents on the subject of theater, music, books, and dance. It therefore
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Corpus Text-Type No. of Docs No. of Words

Brown learned Explanation 80 181,888

Brown fiction Narrative 29 68,488

Brown mystery Narrative 24 57,169

Brown sci-fi Narrative 6 14,470

Brown adventure Narrative 29 69,342

Brown romance Narrative 29 70,022

Brown humour Narrative 9 21,695

Brown news Recount 44 100,554

Brown government Report 30 70,117

Brown reviews Response 17 40,704

Total 3,593 2,070,638

Table 3.1: Categorization of Brown Corpus into Text-Types

seems that the definition of genre used by the Brown corpus authors is somewhat unclear, showing

once again a difficulty at defining genre against text-type. Thankfully, for our purpose, this seems

to work to our advantage as we do not want to separate documents on the basis of genre. In fact,

we would rather observe documents of given text-types spanning across a number of genres.

3.2.2 Reuters Corpus

In order to supplement our recount text-type, we use a subset of the Reuters Corpus (Rose et al.

, 2002), specifically, the first 1,250 documents of the corpus. This corpus is composed of 10,788

documents totaling 1.3 million words. These documents were originally categorized in 90 different

topics. Again, we choose to ignore the variance in topics as we are interested in the text-type, which

we hypothesize should not be influenced by genres or topics. In that respect, the documents are

all news items which we associate with the recount text-type, regardless of topic. We use the first

1250 documents of the Reuters Corpus in order to obtain adequately equal distributions in terms of

numbers of words for each text-type category. Table 3.2 shows the number of documents and words

considered in our investigation.

Corpus Text-Type No. of Docs No. of Words

Reuters Recount 1250 201,155

Table 3.2: Categorization of Reuters Corpus into Text-Types

3.2.3 Open American National Corpus

The Open American National Corpus (Ide & Suderman, 2007) is composed of documents of spoken

and written English totalling over 14 million words. For our purpose, we are only interested in a
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subset of the government section in order to complement our report text-type. The documents of

this section were gathered online from various American governmental agencies. We used the first

50 documents of this section, as detailed in Table 3.3.

Corpus Text-Type No. of Docs No. of Words

OANC Government Report 50 252,852

Table 3.3: Categorization of OANC Corpus into Text-Types

3.2.4 Louvain Corpus of Native English Essays

The Louvain Corpus of Native English Essays (LOCNESS) (Granger, 2003) is composed of argu-

mentative essays authored by British and American university level students, and British A-level

students. It is composed of a total of 324,304 words from 322 essays on various topics such as liter-

ary analysis and argumentation on controversial subjects like abortion, homosexuality, and animal

testing. For our purpose, we used a subset of this corpus in order to account for documents of the

exposition text-type. In particular, we are using the “American Argumentative Essays”, “Ameri-

can Literary Mixed Essays”, and “British A-Level Essays” sections. Table 3.4 gives some details on

the number of documents and words procured from this corpus.

Corpus Text-Type No. of Docs No. of Words

LOCNESS US arg Exposition 175 161,331

LOCNESS US mixed Exposition 33 20,125

LOCNESS British A-level Exposition 114 63,592

Table 3.4: Categorization of LOCNESS Corpus into Text-Types

3.2.5 RST Review Corpus

The RST Review Corpus, as described in Section 2.3.1.1, is composed of 400 documents gathered

from Epinions, a website aggregating customer reviews on a variety of products. The corpus contains

reviews on: books, cars, computers, cookware, hotels, movies, music, and phones. Each of these

categories contains 50 documents, half being positive reviews, and half being negative reviews.

Again, we assume that the overall structure associated with our response text-type should not be

influenced by either the sentiment of the review or the product it is reviewing. For these reasons,

using a corpus spanning across 8 genres and including equal portions of negative and positive reviews

should help us avoid over-fitting issues in that respect. In fact, we once again rely on the variance in

vocabulary caused by these aspects of the documents to argue that the structure of the text itself is

sufficient in identifying the text-type. For this reason, we are using all 400 documents of this corpus

in an effort to represent our text-type as abstractly as possible. Originally, this corpus was manually

annotated for discourse relations within the RST framework. We do not use these annotations, but
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instead extract them automatically in order to ensure that all information on discourse relations

were obtained in the same fashion, regardless of the availability of humanly annotated information.

All of the documents found in this corpus are used to represent the response text-type. Table 3.5

provides further details on the corpus.

Corpus Text-Type No. of Docs No. of Words

RST Review Corpus Response 200 303,289

Table 3.5: Categorization of RST Review Corpus into Text-Types

3.2.6 Biomedical Discourse Relation Bank Corpus

The Biomedial Discourse Relation Bank (BioDRB) is yet another corpus of documents manually

annotated with discourse relations (Prasad et al. , 2011) (see Section 2.3.1.4). Unlike the RST review

corpus (see Section 3.2.5), these documents were not annotated within the RST framework. Once

again, however, for uniformity purposes, we rely on automatically extracted information to perform

our work. The BioDRB corpus is composed of 24 open-access documents. These are biomedical

articles acquired from the GENIA corpus (Kim et al. , 2003). Each of these documents are separated

into sections. These sections are what we would typically expect from research oriented articles, such

as: abstract, methodologies, results, discussion, and conclusions. For our purpose, we ignore these

separations and take into account each document as a whole. Table 3.6 gives some statistics on this

corpus.

Corpus Text-Type No. of Docs No. of Words

BioDRB Explanation 24 112,483

Table 3.6: Categorization of BioDRB Corpus into Text-Types

3.2.7 Online Recipe Corpus

In order to account for the procedure text-type, we have gathered recipes from the website

epicurious.com. The documents obtained contain, on average, 135 words each. They are typi-

cally composed of two broad sections: the list of ingredients, and the steps required for the recipe.

For our purpose, we use 1250 of these documents in order to obtain an adequately equal distributions

in terms of numbers of words for this given category1. Table 3.7 provides statistics on this corpus.

3.2.8 Final Working Corpus

We provide in Table 3.8 a summary of the distribution of documents across our seven text-types.

As can be seen in Table 3.8, each of our seven text-types contain a comparable number of tokens,

1We would like to thank David Gurnsey for his work on gathering this corpus while working in our research lab

during the summer of 2013.
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Corpus Text-Type No. of Docs No. of Words

Recipes Procedure 1250 261,362

Table 3.7: Categorization of Online Recipe Corpus into Text-Types

between 250,000 and 350,000.

Text-Type Corpora No. of Docs Prop. No. of Words Prop.

Narrative Brown 126 3.51% 301,186 14.55%

Recount Brown, Reuters 1294 36.01% 301,709 14.57%

Report Brown, OANC 80 2.23% 322,969 15.60%

Procedure Cooking 1250 34.79% 261,362 12.62%

Exposition LOCNESS 322 8.96% 245,048 11.83%

Response Brown, RST Review 417 11.61% 343,993 16.61%

Explanation Brown, BioDRB 104 2.89% 294,371 14.22%

Total 3769 100% 2,119,219 100%

Table 3.8: Overall Distribution of Corpora per Text-Type

3.3 Discourse Relations

For the purpose of our current investigation, we opted to use the relations of the PDTB framework.

The full set of these relations and a description of the framework can be found in Section 2.3.1.3.

Using this particular set of relations and the associated framework, we are able to make a distinction

between explicit and implicit relations. This seems like a worthwhile distinction to make as implicit

discourse relations are much more difficult to identify and might create more noise than they are

worth. We also considered the overall performance of the PDTB End-to-End parser (Lin et al.

, 2012), described in Section 2.3.2.4. For our experiments, we used the 20 higher level discourse

relations used in (Prasad et al. , 2008), as well as the list of cue phrases used by the parser, as the

basis of our feature space. The complete list of cue phrases is listed in Appendix C.

3.4 Parsing Our Working Corpus

In order to build our working corpus, even as some of the corpora used were already annotated with

relations from either the PDTB framework or the RST framework, we opted to rely on automatic

extractions of discourse relations using the PDTB End-to-End parser (Lin et al. , 2012), described

in Section 2.3.2.4. Since only some portions of our final corpus includes manual annotations for

discourse relations, using these would have been troublesome. Instead, we relied solely on automati-

cally extracted discourse relations in order to obtain a corpus that was produced in the same fashion

throughout. Again, this was done in order to insure uniformity of the annotations used.
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Table 3.9 shows the distribution of discourse relations automatically extracted with the End-to-

End PDTB parser, both explicit and non-explicit. Overall, 46% of the relations extracted are explicit,

Relation Explicit Non-explicit Total Distribution

Alternative 1,013 154 1,167 1.43%

Asynchronous 5,485 1,155 6,640 8.18%

Cause 3,242 23,911 27,153 33.44%

Comparison 7 27 34 0.41%

Concession 982 55 1,037 1.28%

Condition 3,604 9 3,613 4.45%

Conjunction 10,912 7,659 18,571 22.88%

Contingency 0 1 1 0.00%

Contrast 7,025 2,846 9,871 12.16%

Exception 30 4 34 0.04%

Expansion 2 3 5 0.00%

Instantiation 275 2,150 2,425 2.99%

List 38 688 726 0.89%

Pragmatic cause 0 28 28 0.03%

Pragmatic concession 0 0 0 0.0%

Pragmatic condition 1 0 1 0.0%

Pragmatic contrast 0 0 0 0.0%

Restatement 234 5,003 5,237 6.45%

Synchrony 4,586 55 4,641 5.72%

Temporal 0 0 0 0.0%

Total 37,436 43,748 81,184 100%

Table 3.9: Distribution of Discourse Relations Across the Working Corpus

while the other 54% are non-explicit. This seems to mimic the distribution of discourse relations

across the PDTB corpus which contains a distribution of 45% for explicit relations and 55% for non-

explicit relations (see Section 2.3.1.3). The distribution of the relations themselves provide a few

interesting points that are worth discussing. Table 3.10 shows the distribution of discourse relations

according to text-types. First, some relations are clearly more commonly extracted than others. For

example, cause relations account for a third of all relations extracted, while conjunctions account for

another 22.88%. These two relations together therefore account for half of the overall distribution.

Some other relations, on the other hand, are seldom extracted. All of the pragmatic relations

(pragmatic cause, pragmatic concession, pragmatic condition, and pragmatic contrast) appear a total

of 29 times overall. This is not surprising, and the rarity of these relations was even noted by the

authors of the BioDRB corpus (Prasad et al. , 2011), who subsequently eliminated these relations

altogether from their adapted version of the framework. Some other relations seem more problematic

by their low distributions. The complete absence of extracted temporal relations is quite unfortunate
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Alternative 1.03% 1.09% 1.27% 3.08% 1.12% 2.18% 1.12% 1.56% 0.78%

Asynchronous 6.44% 3.98% 8.64% 25.81% 8.71% 4.92% 4.90% 9.06% 7.62%

Cause 30.82% 44.48% 34.45% 21.47% 17.97% 28.35% 37.77% 30.76% 9.19%

Comparison 0.09% 0.00% 0.00% 0.00% 0.00% 0.33% 0.00% 0.06% 0.12%

Concession 1.89% 1.46% 1.15% 0.13% 1.07% 1.13% 1.59% 1.20% 0.56%

Condition 3.73% 6.97% 3.06% 2.15% 4.53% 5.60% 4.96% 4.43% 1.62%

Conjunction 28.18% 19.25% 21.41% 20.96% 32.29% 27.36% 20.57% 24.29% 4.95%

Contingency 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00%

Contrast 13.55% 10.26% 12.03% 6.17% 16.57% 12.94% 13.98% 12.21% 3.29%

Exception 0.05% 0.02% 0.04% 0.00% 0.08% 0.08% 0.04% 0.04% 0.03%

Expansion 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.02% 0.01% 0.01%

Instantiation 2.62% 2.01% 2.88% 5.31% 3.54% 4.94% 2.00% 3.33% 1.34%

List 0.10% 0.11% 0.49% 5.53% 0.61% 0.50% 0.42% 1.11% 1.96%

Pragmatic cause 0.02% 0.02% 0.07% 0.01% 0.00% 0.08% 0.02% 0.03% 0.03%

Pragmatic concession 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pragmatic condition 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pragmatic contrast 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Restatement 5.48% 4.37% 7.95% 7.59% 6.13% 6.25% 6.59% 6.34% 1.22%

Synchrony 5.97% 5.98% 6.56% 1.79% 7.37% 5.30% 6.02% 5.57% 1.78%

Temporal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 3.10: Distribution of Discourse Relations Across Text-Types

as we would expect this particular type of relations to be commonly used in the procedure text-

type. This, however, is not too worrisome considering the fairly large distribution of asynchronous

discourse relations, which as we have seen in Section 2.3.1.3, are a sub-relation of the meta-relation

temporal. Unfortunately, since we are dealing with automatic extraction of discourse relations based

on the PDTB corpus (Prasad et al. , 2008) for training, we have to take into account that the parser

used was designed for a specific text-type, while we attempt to use its output to properly classify

several other text-types. In fact, as mentioned in Section 2.3.1.3, the PDTB corpus is composed of

documents from The Wall Street Journal, most of which are news items, with occasional editorials,

letters, and essays (Webber, 2009). Overall, the vast majority of the documents used as a training

set for our parser should be associated with the recount text-type. Due to such difficulties, we

decided to not only use the extracted discourse relations as features during our experiments, but we

also opted to attempt classification based on the set of cue phrases used by the End-to-End PDTB

parser (see Appendix C). Although using these will only give us an idea of the usage of explicit

relations, foregoing non-explicit relations altogether, we hoped that some of the errors attributed to

the limitations of the parser would be eliminated by this methodology.

In order to evaluate how the text-types of the documents used to train the automatic discourse

extractor influences the output of such extractors, we produced two more versions of the corpus

using the Faiz & Mercer Parser (see Section 2.3.2.5). This particular parser allows us to perform the

extraction of discourse relations with models based on the PDTB corpus or the BioDRB corpus (see

Sections 2.3.1.3 and 2.3.1.4). It should be noted that the Faiz & Mercer Parser uses the discourse

relations defined in (Prasad et al. , 2011), which were adapted from those found in the original

PDTB framework (Prasad et al. , 2008) (see Sections 2.3.1.4 and 2.3.2.5 for details).
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3.5 Classification Task

A number of experiments were designed to evaluate the influence of text-types on the usage of

discourse relations. All the experiments performed were done by extracting data using the End-to-

End PDTB parser (Lin et al. , 2012) described in Section 2.3.2.4, and various simple scripts written

in Python. The data gathered was then used to create properly formatted input to be used with

WEKA (Hall et al. , 2009), a machine learning workbench written in Java and typically used for

such classification tasks. WEKA allowed us to perform various experiments using different feature

sets and classifiers. In all cases, we performed 10-folds cross validation (Kohavi et al. , 1995) in order

to gather as precise an evaluation as possible using all the available data. Sections 3.5.1 and 3.5.2

provide further details on the features and classifiers used in our experiments.

3.5.1 Feature Sets

We have used seven different feature sets in order to evaluate our classifiers and provide enough data

to allow for discussion.

Bag Of Words: Our first set of features represents documents using the bag-of-words approach.

For each document, we extracted tokens after performing a number of preprocessing steps. The

preprocessing steps used were: case-folding, stemming, and digits and punctuations removal.

Case-folding, and the removal of digits and punctuation marks was straight forward and does

not warrant further explanation. Stemming was performed using the implementation of the

Porter stemmer (Porter, 1980) found in the Python NLTK package (Bird, 2006). After running

these preprocessing steps, we obtained a feature space of 32,346 word stems. This was used as

our baseline experiment.

All Relations: The second set of features used in our experiments is the complete set of the 20

discourse relations extracted by the End-to-End PDTB parser (Lin et al. , 2012) described

in Section 2.3.2.4. They include both the set of explicit, and non-explicit relations, which

include implicit, and altLex relations, whenever an actual discourse relation was extracted.

We rely solely on the identification of the relations, regardless of how these are realized in

the documents (that is, regardless of the appearance of a cue phrase or not). This leaves us

with 20 different features, as we do not distinguish whether the relations were explicitly stated

or not. Given the reported performance of our parser, as noted in Section 2.3.2.4, we expect

the use of non-explicit relations to create some amount of noise, as the reported performance

shows an accuracy of a little under 40% for these particular relations.

Explicit Relations: Our next feature set follows the same idea as we selected only the discourse

relations marked as explicit. As before, these result in 20 different features. We feel it is

important to observe how the use implicit and explicit discourse relations exclusively differs

from using both types in order to allow us to study the influence of the poorer performance

recorded in (Lin et al. , 2012) when it comes to extracting implicit discourse relations.
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Implicit Relations: In order to better understand the influence of this particular difficulty, we

used the implicit discourse relations as the basis of our third feature set. Using the same

extracted relations as with our previous feature set, we selected only the discourse relations

marked as implicit. Once again, we obtain 20 different features, each being a discourse relation

from the PDTB framework.

Cue Phrases: In an attempt to minimize the effects of mislabelled discourse relations, we selected

the list of cue phrases used by the End-to-End PDTB parser as the basis of our next features

set (see Appendix C). Some work has been published in identifying cue phrases automatically,

for example, (Laali & Kosseim, 2014) presents a method that relies on parallel corpora and

a number of filtering rules to induce a list of cue phrases. However, no method currently

available seems to produce perfect lists of cue phrases. For this reason, we decided to rely on a

manually created list of cue phrases in the creation of this features set, namely, those described

in the PDTB corpus (Prasad et al. , 2008) and used by the End-to-End PDTB Parser (Lin

et al. , 2012). Given that the 100 cue phrases described in the original PDTB corpus can take

many alternate forms, in some cases, we ended up with a set of 374 features. Obviously, these

cue phrases only give us an indication of the presence of explicit discourse relations without

actually labeling the relation. In fact, some cue phrases could be associated with more than

one discourse relation.

All Relations and Cue Phrases: Our final features set is simply the combination of all discourse

relations, explicit and non-explicit, with the set of cue phrases used by the End-to-End PDTB

parser. This gives us a final count of 394 features.

Faiz & Mercer Relations: An added feature set was produced in order to better support one

of our claims. Using the Faiz & Mercer Parser (Faiz & Mercer, 2014) (see Section 2.3.2.5),

we parsed our entire working corpus again twice, this time using the parser with models

built from the PDTB corpus (Prasad et al. , 2008) and the BioDRB corpus (Prasad et al. ,

2011) separately, thus producing two extra sets of automatically annotated discourse relations

on the entire working corpus. We then used the discourse relations extracted with each of

these models to perform our various classification tasks in order to evaluate the changes in

performance recorded. The discourse relations obtained using this parser are limited to the

explicitely stated discourse relations.

3.5.2 Classifiers

WEKA provides a number of classifiers which can be used to carry out experiments on our various

sets of input data. For our purpose, we selected three classifiers which were used to classify documents

on the basis of text-types using our six features set. The classifiers are Multinominal Näıve Bayes,

Decision Trees, and Support Vector Machine.
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3.5.2.1 Multinomial Näıve Bayes

Our first classifier is a multinomial Näıve Bayes classifier (McCallum & Nigam, 1998). This model

is typically used in tasks of document classification and constitutes a good starting point for our

experiments. In order to perform classification, the Näıve Bayes classifier follows Equations 3.1

and 3.2.

P (Ci|D) = P (Ci)× P (Ci|F )× P (Ci|F2)× ...× P (Ci|Fn) (3.1)

classify(D) = argmax
i

P (C|i)× P (Ci|F )× P (Ci|F2)× ...× P (Ci|Fn) (3.2)

where:

Ci is class i

D is a document

F are features

More precisely, with a multinomial Näıve Bayes model, the probability of a given document to

be of a certain class, in our case of a certain text-type, is given by the prior probability of the

class (P (Ci)) and the occurrence of certain features independently of each other. For each feature

studied within our classification task, the probability of such feature to occur at a certain frequency

is calculated for each possible class (P (Ci|Fn)). The calculation for each of these features is done

independently of any other feature. The probability of all of these features are combined, resulting

in a final probability for a document to be associated with each different class, in our case text-

types. The probability for each class to be associated with the given document are then compared

and the most likely class is selected (argmax). Unlike with the classic implementation of the Näıve

Bayes model where features are noted to appear or not in a given document, the multinomial model

takes into account the number of times each feature occurs in the same document. This seems

like an important distinction to take advantage of since certain text-types are expected to make

use of particular discourse relations at varying frequencies. For example, our previous investigation

(Bachand et al. , 2014) showed that the usage of contrast discourse relations occur in both documents

from our newspaper corpus (Prasad et al. , 2008) and our biomedical text corpus (Prasad et al. ,

2011), but such relations are statistically more likely to appear in the former. Given this observation,

it would seem insufficient to evaluate the appearances of features on a boolean level.

3.5.2.2 Decision Tree

The second classifier we used in our experiments is WEKA’s J48 decision tree classifier. The imple-

mentation provided by WEKA is based on the C4.5 algorithm developed by Ross Quinlan (Quinlan,

1993). A decision tree classifier relies on information gain ratio in order to build a tree model where,

at each branch, information on the features is used to select how to split the samples provided. At

each branch, a feature and a possible associated value is used to determine branching down based on

the information gain ratio that the appearance of such a value given this particular feature provides.
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of circles, black and white, in a linear separation. Instead of separating the data against the line

seen in Figures 3.1 and 3.2, we now delimit where our data is classified with a new hyperplane,

seen separating our three dimensional vector space in Figure 3.3. From the perspective of the

original two dimensional feature space, the separation is non-linear, but from the perspective of our

high-dimensional feature space, it becomes once again a linear classification task, which is much

easier to compute. In order to map our original data to their new locations in our high-dimensional

vector space, we apply a function that allows for the separation of the data along our newly created

separation hyperplane in a linear fashion without changing their location from the point of view of

our original vector space. The data points that provide the most information in relation to our newly

created separation hyperplane are the “support vectors” that the name of the classifier refers to.

The purpose of using these data points with high information gain is to optimize the classification

task, in other words, we only need to consider the most informative data points of our classification

system and ignore the less informative data points which might not provide enough information to

be worth the computational effort.

In this chapter, we have described our experimental setup. In particular, we described the corpora

we have used to build our own text-type corpus, we then discussed the discourse relations framework

we opted to use for our work, and we finally described the classification tasks performed in terms of

feature sets and classifiers used. In the next chapter, we will discuss the results of our experiments.

To do so, we begin by analysing the overall results of our experiments using the different feature

sets and classifiers. We then focus our discussion on a detailed analysis of the results obtained using

the different feature sets, and finally we discuss the most informative features found through our

experiments.
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Chapter 4

Results

In this chapter, we provide a discussion of the results obtained using the methodology detailed

in Chapter 3. In Section 4.1, we provide an overview of the results obtained through all of our

experiments. In Section 4.2, we provide a detailed analysis of some of the more interesting values

observed in our experiments. We do so by analysing the results of our baseline experiment in

Section 4.2.1, then the results obtained by using our 20 discourse relations in Section 4.2.2, and

explicit and implicit discourse relations separately in Section 4.2.3, then the results obtained using

cue phrases in Section 4.2.4, followed by the results of using both discourse relations and cue phrases

in Section 4.2.5. Finally we study which features are noted to be the most informative in our various

experiments in Section 4.2.7.

4.1 Experiments Overview

In order to perform the evaluation of the influence of a document’s text-type on the use of discourse

relations, we performed a number of classification tasks. Using the working corpus described in

Section 3.2.8, we attempted to classify our documents among the seven text-types defined. To do

so, we used the feature sets described in Section 3.5.1 in order to train the three classifiers described

in Section 3.5.2 (Multinominal Näıve Bayes, Decision Tree, and Support Vector Machine). Table 4.1

describes the results obtained for each of these combinations in terms of accuracy, precision, recall,

and F -score (see Section 2.1 for the definition of these measures).

As can be seen in Table 4.1, the best results are obtained using the bag of words set of features.

Although the 25% drop in performance between the bag of words model compared to using discourse

relations comes as somewhat of a disappointment, it is not altogether surprising. This particular

set of features is much larger, especially compared to our relations feature sets (32,346 vs. 20).

The relatively poor performance of our parser, especially with the extraction of implicit discourse

relations is another factor. Some issues with the corpus used are also contributing to this situation.

In the case of the Näıve Bayes classification experiments, we are in fact comparing vector spaces

of over 30,000 dimensions, to some composed of 20 dimensions in the case of our relations feature

sets. Similarly, it is not entirely surprising to find better results on the bag of words models over
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Classifier Features Used Features Count Accuracy Precision Recall F-score

Näıve Bayes BOW 32,346 0.974 0.975 0.974 0.973

All relations 20 0.718 0.708 0.718 0.707

Explicit relations 20 0.623 0.632 0.623 0.587

Implicit relations 20 0.578 0.614 0.578 0.551

Cue phrases 374 0.867 0.867 0.867 0.865

Relations and Cue phrases 394 0.866 0.868 0.866 0.866

Decision Tree BOW 32,346 0.866 0.955 0.955 0.954

All relations 20 0.737 0.732 0.737 0.734

Explicit relations 20 0.664 0.669 0.664 0.660

Implicit relations 20 0.712 0.698 0.712 0.703

Cue phrases 374 0.816 0.808 0.815 0.811

Relations and Cue phrases 394 0.837 0.833 0.836 0.834

Support Vector BOW 32,346 0.941 0.945 0.941 0.938

Machine All relations 20 0.733 0.730 0.733 0.720

Explicit relations 20 0.672 0.681 0.672 0.661

Implicit relations 20 0.718 0.699 0.718 0.703

Cue phrases 374 0.833 0.827 0.833 0.824

Relations and Cue Phrases 394 0.865 0.874 0.865 0.862

Table 4.1: Overall Results of Classification Tasks Using the End-To-End PDTB parser

the classification tasks performed using cue phrases since the cue phrases themselves are part of the

dimensions provided by the bag of words features. Some other cue phrases which appear in our

corpus and that are not found in the list of cue phrases used for our experiments would also appear

in our bag of words model. Again, we are comparing feature sets of different scales, namely over

30,000 features compared to just under 400 features, using all the cue phrases and their modified

versions as described in Section 3.5.1. With these differences of size in mind, it seems that our

classification tasks using discourse relations and cue phrases are not entirely a failure, even if they

are outperformed by the bag of words model. The fact that we do achieve some relatively good

results given that our feature sets are orders of magnitude smaller suggests that these particular

features provide very interesting information when it comes to the link between discourse relations

and text-types, but may not be enough. We will discuss the importance of these features in more

detail in Section 4.2.7.

As far as which classifier performs best, it appears that the multinominal Näıve Bayes model

either outperforms or is relatively close in terms of performance to both of our other classifiers.

This is not too surprising as, although it is quite a simple algorithm by comparison, the Näıve

Bayes model is noted to typically perform with the same level of accuracy as other more complex

models (Huang et al. , 2003), and this without applying any amount of fine tuning. Still, our

decision tree classifiers provide us with some important information that will allow us to better

identify the features that are most informative, as we will once again see in Section 4.2.7. The

Support Vector Machine classifier overall shows similar results as the Näıve Bayes classifier, with

the noteable exception that, similarly to the decision tree classifier, it performs better with implicit

discourse relations than with explicit discourse relations (the opposite is observed in the case of the
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Näıve Bayes classification task). This is quite surprising. We believe that due to the unreliable

performance of the discourse relation parser in the case of implicit discourse relation extraction, the

results seen here themselves are unreliable. Both our more complex classifiers also fare better in the

cases where only discourse relations are used. That is, we see a slight improvement in performance

without the näıve hypothesis inherited from our first classifier. When performing the classification

task using explicit relations, we see accuracy scores of 62.32%, 66.39%, and 67.24% for the Näıve

Bayes, decision tree, and support vector machine classifiers respectively. When performing the

classification task using explicit relations, we see accuracy scores of 57.81%, 71.16%, and 71.78% for

the Näıve Bayes, decision tree, and support vector machine classifiers respectively.

4.2 Detailed Analysis

In this section, we provide a detailed analysis of some of the more interesting findings from our

experiments. In order to perform an adequate analysis, we rely on the confusion matrices and the

details of the calculations of the accuracy per classes provided by WEKA. We first take a look

at the results of our baseline experiment in Section 4.2.1. We then discuss the results obtained

using discourse relations in Section 4.2.2. In Section 4.2.3, we discuss the differences observed when

comparing using explicit and implicit discourse relations as features. We then discuss the results of

our experiments using cue phrases in Section 4.2.4. In Section 4.2.5, we discuss the results of our

experiments using the set of features including both discourse relations, both explicit and implicit,

and cue phrases. Finally, in Section 4.2.7, we make an analysis of the most informative features

from our various experiments. In order to allow for better comparisons between experiments, for

the time we concentrate on the results obtained using the Näıve Bayes classifiers with the various

sets of features.

4.2.1 Bag of Words (BOW)

Our first analysis is based on the bag of words feature set, using the Näıve Bayes classifier. Tables 4.2

and 4.3 provide the confusion matrix and the details of the performance in terms of accuracy per

class for this particular classifier using these features. It should be noted that we chose to use the

results obtained with the Näıve Bayes classifier in the following sections in other to allow for better

comparison between feature sets and concentrate on issues unrelated to the choice of classifier.

As can be expected given our final accuracy of 97.38%, the confusion matrix of Table 4.2 shows

very good results overall, as can be noticed on the bolded results showing the number of accurately

identified documents. Still, we can already notice, once we concentrate on some of the details, that

certain text-types are more problematic than others, namely the explanation and report text-types.

In the case of explanation, although the precision is quite high, it falls short on recall. It appears

that this particular text-type received one of the lowest prior probabilities, with report coming in

last, as can be seen in Table 4.4.

We can see in Table 4.3 that the explanation text-type receives the lowest true positive score.

Looking into the details of how explanation documents are misclassified, we find that these are
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Observed Output

Text-Type Exposition Explanation Narrative Procedure Recount Response Report

Exposition 310 0 3 0 2 7 0

Explanation 20 62 3 0 3 3 13

Narrative 0 0 125 0 0 1 0

Procedure 0 0 0 1248 2 0 0

Recount 1 0 5 0 1282 3 3

Response 6 0 0 0 0 411 0

Report 9 1 0 0 8 1 62

Table 4.2: Confusion Matrix for Näıve Bayes Trained with BOW Features

Class True Positive False Positive Precision Recall F-score

Exposition 0.963 0.011 0.896 0.963 0.928

Explanation 0.596 0.000 0.984 0.596 0.743

Narrative 0.992 0.003 0.919 0.992 0.954

Procedure 0.998 0.000 1.000 0.998 0.999

Recount 0.991 0.007 0.988 0.991 0.990

Response 0.986 0.005 0.965 0.986 0.975

Report 0.765 0.005 0.795 0.765 0.780

Weighted Avg. 0.974 0.004 0.975 0.974 0.973

Table 4.3: Detailed Performance by Class for Näıve Bayes Trained with BOW Features

Class Prior Probability

Exposition 0.090

Explanation 0.029

Narrative 0.035

Procedure 0.347

Recount 0.360

Response 0.116

Report 0.022

Table 4.4: Prior Probability of Text-Types Using a Multinominal Näıve Bayes Classifier

most commonly mistaken for documents of the exposition or report text-types (see Table 4.2). The

explanation text-type features documents such as research papers. On the other hand, the exposition

text-type features argumentative essays while the report text-type features governmental reports (see

Section 3.1 for further details). In both cases, the mistake seems somewhat logical. If we are to

compare explanation documents to exposition, and report documents, in all three cases we expect

some fairly specialized vocabulary which could easily be shared across all three text-types given
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the same or similar genres. For example, classifying a research paper from the bio-medical field, a

governmental report on the use of a certain drug, or an argumentative essay discussing the use of a

drug could easily cause confusion using our bag of word features set. This problem stems from the

fact that the parser’s training data is small and only contains documents of the recount text-type.

The report text-type itself is our second source of problems. We can see that such documents are

typically misclassified, once again, as exposition, and in other cases as recount. The documents

labelled as recount are, once again, newspaper articles. Again, it does not seem too far fetched that

governmental reports and newspaper articles could share some of the same vocabulary, especially

when dealing with similar subjects or genres.

4.2.2 Discourse Relations

We now turn our attention to the classification of text-types using the discourse relations extracted

using the End-to-End Discourse Relation Parser described in Section 2.3.2.4. We begin by looking

at the details of our experiment using all discourse relations, both explicit and implicit. Again, we

provide the confusion matrix and details of the accuracy calculations in Tables 4.5 and 4.6.

Observed Output

Text-Type Exposition Explanation Narrative Procedure Recount Response Report

Exposition 174 2 9 1 44 90 0

Explanation 19 16 8 1 29 26 5

Narrative 4 8 72 0 13 28 1

Procedure 6 0 1 985 219 13 0

Recount 7 2 2 160 1112 10 1

Response 117 10 11 7 78 189 5

Report 7 3 1 2 46 10 11

Table 4.5: Confusion Matrix for Näıve Bayes Trained with All Discourse Relations

Class True Positive False Positive Precision Recall F-score

Exposition 0.544 0.049 0.521 0.544 0.532

Explanation 0.154 0.007 0.390 0.154 0.221

Narrative 0.571 0.009 0.692 0.571 0.626

Procedure 0.805 0.073 0.852 0.805 0.828

Recount 0.859 0.189 0.722 0.859 0.784

Response 0.453 0.056 0.516 0.453 0.483

Report 0.138 0.003 0.478 0.138 0.214

Weighted Avg. 0.718 0.105 0.708 0.718 0.707

Table 4.6: Detailed Performance by Class for Näıve Bayes Trained with All Discourse Relations

As expected, given the lower overall accuracy of 71.18%, the confusion matrix shown in Table 4.5

61



depicts a more noticeable number of problems. By looking at the details provided in Table 4.6, we

once again notice that the most problematic text-types appear to be explanation and report. If we

look at the prior probabilities for the text-types, shown in Table 4.4, we find once again that both

these text-types rank the lowest, providing part of the answer. On the other hand, we can notice

the narrative text-type has a similarly low independent probability, while still being identified far

more accurately by our classifier. Another possible source of confusion could also stem from the fact

that the distinction between text-types is blurry, and a document may in fact exhibit features that

can be associated with several types. For example, a document of the response text-type could have

the appearance of a document of the narrative text-type, for stylistic reasons.

If we once again investigate how our documents of the explanation text-type are misclassified,

we notice that they tend to be labelled as recount, response, and exposition.

4.2.3 Explicit and Implicit Relations

We now discuss the differences in performance between our experiments using only the explicit and

implicit discourse relations as our feature sets. By doing this, we hope to identify the problems

encountered in the classification discussed in Section 4.2.2

We first begin by looking at the confusion matrix obtained through our experiment attempting

to identify text-types with a Näıve Bayes model classifier using explicit discourse relations. These

results can are shown in Tables 4.7 and 4.8.

Observed Output

Text-Type Exposition Explanation Narrative Procedure Recount Response Report

Exposition 122 27 12 7 139 6 7

Explanation 19 27 19 1 26 7 5

Narrative 16 5 62 11 21 3 8

Procedure 4 1 0 808 411 0 0

Recount 17 8 12 69 1184 2 2

Response 65 50 35 8 236 15 8

Report 10 7 6 6 46 1 6

Table 4.7: Confusion Matrix for Näıve Bayes Trained with Explicit Discourse Relations

A first observation of one of the more problematic points presented by this data, is the high

number of false positives obtained by the recount text-type. This is especially true in the case of the

documents from the response, procedure, and exposition text-types. It appears to be especially prob-

lematic with the response text-type, where the difference between the number of properly identified

documents (15) and documents wrongfully identified as being of the recount text-type (236) is quite

high. Looking into the details of the classification task provided in Table 4.8, we see that in fact,

the recount text-type receives the highest proportions of both true positive and false positive.

These results seem like they should be expected, to some degree, if we again consider the prior

probabilities of the various text-types, given in Table 4.4. The recount text-type is, in fact, the most
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Class True Positive False Positive Precision Recall F-score

Exposition 0.381 0.040 0.482 0.381 0.426

Explanation 0.260 0.028 0.216 0.260 0.236

Narrative 0.492 0.024 0.425 0.492 0.456

Procedure 0.660 0.044 0.888 0.660 0.757

Recount 0.915 0.387 0.574 0.915 0.705

Response 0.036 0.006 0.441 0.036 0.067

Report 0.050 0.009 0.118 0.050 0.070

Weighted Avg. 0.623 0.162 0.632 0.623 0.587

Table 4.8: Detailed Performance by Class for Näıve Bayes Trained with Explicit Discourse Relations

probable class, but is followed closely by the procedure text-type. The procedure text-type, on the

other hand, receives a much more reasonable amount of False Positive values, as can be seen again in

Table 4.8. Even as the amount of False Positives for this particular class is the second largest, coming

after the recount text-type, this more problematic class is the only one that truly seems to stick out

in that respect. If we compare this to the numbers obtained in our experiment with all discourse

relations, we find from Table 4.6 that the recount text type was similarly problematic, although not

in such a pronounced fashion (compare a False Positive rate of 18.9% using all discourse relations

to 38.7% using only explicit discourse relations). This can be attributed in part to the length of

the documents in the recount section of our corpus. For example, document 14,929 of the Reuters

corpus is a document of around 200 words on which the PDTB end-to-end Parser identified a single

explicit discourse relation.

If we turn our attention to the classification task using a Näıve Bayes model classifier with the

implicit discourse relations as a feature set, we discover a similar pattern concerning the recount

text-type. This can be seen, once again, from a confusion matrix, given in Table 4.9. Again, we

find from this data that the misidentification of documents as being part of the recount text-type is

especially problematic in the case of documents from the procedure text-type.

Observed Output

Text-Type Exposition Explanation Narrative Procedure Recount Response Report

Exposition 174 8 8 4 62 60 4

Explanation 25 13 6 7 37 12 4

Narrative 13 12 31 4 12 43 11

Procedure 105 0 0 509 588 22 0

Recount 17 2 1 40 1218 16 0

Response 156 11 10 24 92 112 12

Report 13 1 3 15 28 15 4

Table 4.9: Confusion Matrix for Näıve Bayes Trained with Implicit Discourse Relations
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Likewise, the details provided in Table 4.10 show once again that the recount text-type obtains

the highest amount of False Positives, which again contrasts with the results obtained with other

text-types.

Class True Positive False Positive Precision Recall F-score

Exposition 0.544 0.101 0.346 0.544 0.423

Explanation 0.125 0.010 0.271 0.125 0.171

Narrative 0.246 0.008 0.525 0.246 0.335

Procedure 0.416 0.040 0.844 0.416 0.557

Recount 0.941 0.361 0.598 0.941 0.731

Response 0.269 0.053 0.400 0.269 0.321

Report 0.050 0.009 0.114 0.050 0.070

Weighted Avg. 0.578 0.161 0.614 0.578 0.551

Table 4.10: Detailed Performance by Class for Näıve Bayes Trained with Implicit Discourse Relations

Seeing as that this particular text-type is more frequently falsely classified in all three of the

experiments we are currently concerned with (all discourse relations, explicit discourse relations,

implicit discourse relations, all using a Näıve Bayes classifiers), we are lead to believe that this

problem is independent from our current concern. Instead, our first assumption is to believe that

the root of this problem is with the automatic extraction of the discourse relations. Since our parser is

trained on documents from The Wall Street Journal (see Section 2.3.2.4 for details), the vast majority

of which are of the recount text-type (with a few notable exceptions, as noted in (Webber, 2009)),

it seems likely that it would favor the type of discourse relations that are expected of this particular

text-type during the automatic extraction process. The fact that documents of the procedure text-

type are the most likely to be erroneously identified and confused for recount documents could also be

explained by some of the problems encountered with our parser. Referring back to the distribution

of discourse relations across our working corpus from Table 3.9 (in Section 3.4), we find that the

temporal discourse relation is never extracted. This is very unfortunate, especially in the case of

documents from the procedure text-type where we would expect such discourse relations to be used

in a statistically significant manner. In fact, we would expect procedures to include a sequential

list of steps. In fact, this was one of our conclusion in our previous effort at investigating the link

between text-types and discourse structures (Bachand et al. , 2014). In order to see the effects of

prior probabilities on the false positive rate, compare the results obtained using the Näıve Bayes

classifier to the SVM classifier, show in Table 4.11. As can be seen, when using either a decision

tree or SVM classifiers, the rate of false positives drops in the identification of the recount text-

type. Although it remains somewhat high (in fact, the false positive rate for the recount text-type

is still the highest with all three classifiers), it does lower by half with both explicit, and implicit

discourse relations. This leads us to the conclusion that the prior probability, which is used with

a Näıve Bayes classification, plays a fairly significant role in the misidentification of this particular

text-type.
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Explicit Implicit

True Positive False Positive True Positive False Positive

Näıve Bayes 0.915 0.387 0.941 0.361

Decision Tree 0.848 0.213 0.872 0.120

SVM 0.806 0.232 0.896 0.126

Table 4.11: True and False Positive Measures on the Classification of the Recount Text-Type Using

the Three Different Classifiers

4.2.4 Cue Phrases

As we have seen from Table 4.1 (see Section 4.1), using cue phrases as our set of features in order

to train our models generally provides us with better results, in terms of accuracy, precision, recall

and F -score, over the models trained with discourse relations themselves. We can clearly see an

improvement overall in the classification from the data provided in Table 4.12, which provides us

with the confusion matrix of the classification task using a Näıve Bayes model trained with cue

phrases (see Sections 3.5.1 and 3.5.2.1).

Observed Output

Text-Type Exposition Explanation Narrative Procedure Recount Response Report

Exposition 78 15 3 0 16 38 3

Explanation 12 67 0 0 5 11 9

Narrative 0 1 111 0 0 14 0

Procedure 0 1 0 1228 16 0 5

Recount 9 8 11 76 1130 33 27

Response 5 8 28 0 55 314 7

Report 3 10 1 0 23 4 40

Table 4.12: Confusion Matrix for Naive Bayes Trained with Cue Phrases

Although the bag-of-words model remains the most accurate, as can be seen by comparing the

results detailed in Section 4.2.1, the numbers obtained using cue phrases are still telling. Considering

that all of the terms used as “cue phrases” are also available in the bag-of-word set of features, it is

interesting to see that the model does not perform considerably worse, even while using a very small

subset of the features from the baseline model (32,346 words vs. 374 cue phrases, see Section 3.5.1).

If we analyse the details of the accuracy measurements provided in Table 4.13 and compare them

to those of our baseline model in Table 4.3 (see Section 4.2.1), we can identify which text-types are

more problematic.

Given the data provided in Table 4.13, it appears that the exposition and report text-types are

the main contributors to our overall loss in performance. We can notice a drop in the number of

true positive for both of these text-types, when compared with the data gathered from the bag-

of-word model (51% vs. 96% for exposition and 49% vs. 77% for report). With both text-types,
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Class True Positive False Positive Precision Recall F-score

Exposition 0.510 0.009 0.729 0.510 0.600

Explanation 0.644 0.013 0.609 0.644 0.626

Narrative 0.881 0.013 0.721 0.881 0.793

Procedure 0.982 0.035 0.942 0.982 0.962

Recount 0.873 0.054 0.908 0.873 0.890

Response 0.753 0.033 0.758 0.753 0.756

Report 0.494 0.015 0.440 0.494 0.465

Weighted Avg. 0.867 0.039 0.867 0.867 0.865

Table 4.13: Detailed Performance by Class for Näıve Bayes Trained with Cue Phrases

we also notice a loss in performance in terms of precision (73% vs. 90% for exposition and 44% vs.

80% for report) and recall (51% vs. 96% for exposition and 49% vs. 77% for report). Obviously, the

F -score suffers from a similar loss given that it is directly dependent on these two previous metrics

(see Section 2.1). One interesting difference when comparing the loss of performance with these

two text-types is that the exposition class suffers more in terms of recall, while precision remains

relatively high, while the report class suffers equaly in terms of precision and recall.

Considering our text-types and the documents which are identified by them, exposition being

argumentative essays and report being governmental reports (see Section 3.1 for details), we can try

to argue some of the factors that might influence the results obtained by our experiments. As we

have noted, the exposition text-type suffers from a loss in performance mostly in terms of recall,

while the precision still remains relatively high. If we investigate this a bit further by examining

the data provided by the confusion matrix of Table 4.12, the highest false positive value obtained

while classifying documents as being of the exposition class is obtained by documents of the response

class. If we look at the prior probability for these classes, as provided in Table 4.4, we see once again

the same patterns with an advantage given to the procedure and recount text-types. The response

text-type comes in third place, behind those two, while the exposition text-type is part of our least

probable classes, alongside explanation and narrative. For the case of documents of the report text-

type, the highest number of false positive encountered while classifying report documents is seen with

recount documents. Turning to Table 4.4, we find that the prior probabilities of the response and

recount text-types give an advantage to such false classifications. However, given the similar data

to the prior probabilities seen using our various feature sets, it does not seem like prior probability

plays an important role in the issue at hand. It seems instead that when we trim down on the tokens

used for our classification task, moving from the bag-of-word model to the cue phrases model, we

remove too many of the distinctive tokens for these particular classes to be properly identified.

It seems that the identification of our text-types is influenced by the fact that many of the

documents we use as part of our working corpus are arranged not only by text-type, but tend to

share related genres as well (see Section 3.1 for details). In order to better support this claim, we

would require a corpus composed of documents within the same genre but with different text-types
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(such as restaurant reviews, cooking recipes, news item and governmental reports related to the food

industry, research papers on food chemistry, and so on). Unfortunately, building such a corpus is a

difficult task given the need for very specific types of documents. Instead, we opted at attempting

to use as wide of a range of genres to be present in the documents for each text-type. Still, the

documents that comprise our final working corpus tend to share similar genres across text-types

which we believe to be the cause of some of the more striking loss in performance we notice with

the model trained on cue phrases, compared to our baseline model. Overall, however, the relatively

small loss in performance considering the drastic drop in the number of features considered when

comparing both of these models suggests that cue phrases are an important feature to consider for

this particular classification task.

4.2.5 All Relations and Cue Phrases

We finally come to our final experiment, using both cue phrases and discourse relations (both explicit

and implicit) in order to classify our documents in classes representing text-types. Once again, we

look at the details provided by our Näıve Bayes model. Looking at the confusion matrix built

from using this model, shown in Table 4.14, the details related to the accuracy seen in Table 4.15,

and the prior probability for each text-types, seen in Table 4.4, we notice that the performances

observed compared with those seen in Section 4.2.4, using cue phrases alone, are very similar. When

comparing the model using cue phrases alone, to the model using both cue phrases and discourse

relations, we notice very few differences, in fact. The one more striking difference comes with the

exposition text type. As we have seen in Section 4.2.4, using only the set of cue phrases as features

cause a significant drop in the performance of our model. Adding the automatically extracted

discourse relations in our feature space helps with obtaining better performance with this particular

classification. Compare the results in terms of true positives, we obtain 96% using our baseline

experiment, which drops to 51% once we use the cue phrases alone, but finally goes back up to 72%

by adding the discourse relations to our model.

Observed Output

Text-Type Exposition Explanation Narrative Procedure Recount Response Report

Exposition 231 18 7 0 9 48 7

Explanation 19 59 1 0 7 6 12

Narrative 0 2 112 0 0 12 0

Procedure 1 0 0 1196 19 0 8

Recount 14 11 3 84 1153 12 17

Response 42 15 37 0 17 301 5

Report 7 10 0 0 27 1 35

Table 4.14: Confusion Matrix for Näıve Bayes Trained with All Discourse Relations and Cue Phrases

If we look at the confusion matrix from Table 4.14, we can see that the errors obtained in relation

to the exposition text-type are mostly associated with the response text-type. In fact, the highest
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Class True Positive False Positive Precision Recall F-score

Exposition 0.722 0.026 0.736 0.722 0.729

Explanation 0.567 0.016 0.513 0.567 0.539

Narrative 0.889 0.014 0.700 0.889 0.783

Procedure 0.977 0.036 0.934 0.977 0.955

Recount 0.891 0.035 0.936 0.891 0.913

Response 0.722 0.025 0.792 0.722 0.755

Report 0.438 0.014 0.417 0.438 0.427

Weighted Avg. 0.866 0.031 0.868 0.866 0.866

Table 4.15: Detailed Performance by Class for Näıve Bayes Trained with Cue Phrases and All

Discourse Relations

number of false negative values when classifying exposition documents identifies them as response.

Likewise, the highest number of documents wrongfully identified as being of the exposition text-type

are documents which should have been classified as response text-types. If we compare this to the

results obtained with some of our previous experiments, namely using explicit and implicit discourse

relations (see Section 4.2.3), we see that similar patterns were noticeable. The appearance of false

positives classified as exposition when response is expected occurs in a similar fashion in both

cases. It is somewhat more pronounced in the case of implicit relations, but we can account this to

the overall poorer performance of the classification task given this particular set of features. In the

case of false positives classified as response when the exposition is expected, however, it appears

that the use of implicit discourse relations alone is much more troublesome. This could account for

some of the loss in performance when comparing our current experiment, using cue phrases and all

discourse relations, to the baseline experiment. Again, the extraction of implicit discourse relations

is difficult, as can be understood by the recorded performance of the End-to-End Discourse Relations

parser (see Section 2.3.2.4). This explains in part the significant drop in performance in comparison

to the baseline experiment. What appears to be the issue in this particular instance is that, although

adding discourse relations to our model does in fact provide a boost in performance, the extraction

of implicit discourse relations is too difficult of a task and generates some noise. Considering this,

it seems that our experiment performs relatively well, suggesting that in fact discourse relations are

helpful to our specific classification task.

4.2.6 Summary of the Classification Tasks

Finally, we provide in Table 4.16 an overview of the results described in the previous sections. We

provide the F -score obtained in the classification of the seven text-types using the different feature

sets considered. Table 4.16 shows that text-types are generally harder to identify accurately than

others. For example, the Explanation, and Report text-types generally obtain lower F -scores.

One particularly low score that is noted is related to the identification of Response documents using

explicit discourse relations. While the F -score for this particular text-type is quite high using the

68



B
O
W

A
ll
R
el
at
io
ns

E
xp
lic
it
R
el
at
io
ns

Im
pl
ic
it
R
el
at
io
ns

C
ue

P
hr
as
es

C
P
an
d
R
el
at
io
ns

Exposition 0.928 0.532 0.426 0.423 0.600 0.729

Explanation 0.743 0.221 0.236 0.171 0.626 0.539

Narrative 0.954 0.626 0.456 0.335 0.793 0.783

Procedure 0.999 0.828 0.757 0.557 0.962 0.955

Recount 0.990 0.784 0.705 0.731 0.890 0.913

Response 0.975 0.483 0.067 0.321 0.756 0.755

Report 0.780 0.214 0.070 0.070 0.465 0.427

Weighted Avg. 0.973 0.707 0.587 0.511 0.865 0.866

Table 4.16: Summary of F -scores for All Text-Types and Feature Sets Using Näıve Bayes Classifiers

BOW model (0.975), we notice that it has obtained the lowest F -score when it comes to classifying

it using the explicit relations (0.067), followed closely by the Report text-type, which appears to

cause difficulties across the board.

4.2.6.1 Classification Task Using Different Training Sets

In order to further support our claim that the text-types present in the training set used to model our

parser will allow for a better extraction of discourse relations, we attempted the following experiment:

using the Faiz & Mercer Parser (Faiz & Mercer, 2014), we performed the automatic extraction of

discourse relations on our entire working corpus (see Section 3.2.8) with the parser’s training data

based on the Penn Discourse Treebank (Prasad et al. , 2008) and the BioDRB corpus (Prasad et al. ,

2011). Based on the comparable performance in terms of accuracy (see Section 2.3.2.5) we assume its

performance to be comparable to that of the extraction of explicit discourse relations using the End-

to-End PDTB parser. We reach this conclusion after comparing the performances of our classifying

tasks using all three data sets, the explicit discourse relations obtained from the End-to-end PDTB

parser and those obtained from the Faiz & Mercer parser with the PDTB and BioDRB models, as

can be seen in Table 4.17.

Accuracy Precision Recall F -score

End-to-end PDTB parser 0.623 0.632 0.623 0.587

Faiz & Mercer Parser (PDTB) 0.620 0.602 0.620 0.562

Faiz & Mercer Parser (BioDRB) 0.655 0.674 0.655 0.633

Table 4.17: Accuracies of Text-Type Classifications Using Näıve Bayes with explicit Discourse Re-

lations Extracted from the End-to-end Parser and the Faiz & Mercer Parser
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As can be seen from Table 4.17, the results obtained from using the End-to-End PDTB parser

and the Faiz & Mercer parser with the PDTB model obtain very similar results, while using the

BioDRB model for extraction of discourse relations results in a slight increase in accuracy in our

classification task. Since the PDTB corpus is composed of documents of the recount text-type,

while the BioDRB corpus is made up of documents of the explanation text-type, we propose that

using these two models yield extraction results of varying performances. That is, we expect that

extracting discourse relations using the PDTB training set to be done more effectively on documents

of the recount text-type, while using the BioDRB training corpus allows for better extractions of

discourse relations on the documents of the explanation text-type. Because of this, performing the

subsequent classification tasks between our seven text-types using the relations extracted using the

PDTB training model is expected to perform better on the documents of the recount text-type, while

the data obtained using the BioDRB training set is expected to perform better on our explanation

documents. Table 4.18 details the performances recorded using these two data sets.

Explanation Trained on PDTB Trained on BioDRB

Precision Recall F -score Precision Recall F -Score

Näıve Bayes 0.000 0.000 0.000 0.621 0.173 0.271

J48 Decision Tree 0.272 0.269 0.271 0.438 0.471 0.454

SVM 0.387 0.279 0.324 0.412 0.519 0.460

Recount Trained on PDTB Trained on BioDRB

Precision Recall F -score Precision Recall F -Score

Näıve Bayes 0.514 0.964 0.670 0.567 0.907 0.698

J48 Decision Tree 0.666 0.886 0.761 0.666 0.809 0.730

SVM 0.675 0.884 0.765 0.674 0.833 0.803

Table 4.18: Accuracy of explanation and recount Text-Types Classification Using explicit Discourse

Relations Extracted with the Faiz & Mercer Parser Using Both Models

Table 4.18 shows the accuracy scores obtained using discourse relations extracted using the both

the PDTB model and the BioDRM model. Again, the documents of the PDTB corpus are of the

recount text-type. As expected, the classification of documents of the explanation text-type is much

more difficult than it is for the documents of the same text-type as our training model. In fact, when

it comes to using the Näıve Bayes classifier, our experiment was unable to correctly identify any

of the documents from that particular text-type. This can be partially attributed to the low prior

probability of this particular text-type, as can be seen in Table 4.19, detailing the probability

distribution of the various text-types using the Faiz & Mercer parser trained on the PDTB model.

Using our other two classifiers, the J48 decision tree and the Support Vector Machine (see

Section 3.5.2), we still appear to obtain rather low results, with F -Scores of 0.271 and 0.324,

respectively. In the case of classifying documents of the recount text-type, we obtain much better

results, both in terms of recall and precision, and as a result, F -Scores.

Turning to Table 4.18 again, which details the accuracy of our classification task on documents of
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Class Prior Probability

Explanation 0.029

Exposition 0.090

Narrative 0.035

Procedure 0.347

Recount 0.360

Report 0.023

Response 0.116

Table 4.19: Prior Probability of Text-Types Using Multinominal Näıve Bayes Classifier with the

Faiz & Mercer Parser Trained on PDTB

the explanation and recount text-types, we can find the results of the classification task in terms of

precision, recall, and F -score obtained while using data trained on the BioDRB model. While the

accuracy of the classification task of documents of the explanation text-type is still not that high, we

do notice a clear improvement. The Näıve Bayes classification task improves from 0.000 to 0.271,

while the J48 decision tree classification task nearly doubles its F -Scores, and the Support

Vector Machine classification task sees an imporovement from 0.324 to 0.460. The classification

of documents from the recount text-type, on the other hand, does not seem to vary much. In some

cases, we notice a slight gain or loss in precision or recall, but there does not seem to be any

statistically significant change.

Although an improvement on the classification of the documents of the recount text-type when

using the discourse relations extracted with the PDTB training set would have better supported our

claims, the clear improvement noted in the classification of documents of the explanation text-type

using the discourse relations parsed with the BioDRB training set does show the results we were

expecting. This leads us to believe, once again, that knowing which text-type the document from

which discourse relations are extracted will improve the extraction process. As a result, thanks to

a fewer errors in identifying discourse relations, the subsequent task of identifying the text-type of

documents is done more accurately.

4.2.7 Most Informative Features

We now investigate in further detail the influence of the various features in terms of how informative

they are in the process of our classification tasks. It should be noted that the data discussed in this

section is once again based on the classification tasks made using the End-to-End PDTB parser (see

Section 2.3.2.4 for details). For each feature evaluated, a information gain ratio1 value allows to

sort the features from most informative to least informative. The information gain ratio value

is provided by WEKA’s information gain attribute evaluator function (Hall et al. , 2009) It should

1Several other measures could have been used such as mutual information gain, or cross entropy, but we chose

information gain ratio as it was readily available in WEKA, provides us with enough information to perform an

analysis, and is typically used in Decision Tree classifiers, such as the ones we have used in some of our experiments.
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also be noted that the information gain ratio provided and calculated by WEKA provides a very

similar overall image as the one that can be seen by investigating the decision trees computed by the

J48 decision tree algorithm, also provided by WEKA (Hall et al. , 2009) (see Section 3.5.2.2). This is

not surprising, as decision trees rely on similar information gain metrics to determine the ordering,

and therefore, the importance of the various features used in classification tasks (see Section 3.5.2.2

for further details). The calculation of information gain ratio we use in this section seemed

like a better choice as far as evaluating the relevant information, compared to reproducing entire

decision trees which can be rather difficult to interpret, especially given large numbers of features.

In order to further discuss and justify some of the findings presented in Section 4.2, we look at

the most informative features obtained when considering our baseline model and cue phrases in

Section 4.2.7.1, and using discourse relations in Section 4.2.7.2.

4.2.7.1 Bag-of-Words and Cue Phrases

We began our detailed exploration of nost informative features by investigating the importance of

the appearance of cue phrases in our classification tasks. In order to evaluate this, we considered the

experiments involving the feature sets of cue phrases and our bag-of-words model (see Section 3.5.1).

In Table 4.20, the 100 most informative cue phrases are listed, from most informative to least

informative; while Table 4.21 provides the list of the top 100 most informative tokens using our

bag-of-words model. It should be noted that some amount of preprocessing was used in the creation

of our list of features for the bag-of-words model, such as stemming (see the full list of steps in

Section 3.5.1), and that the bag-of-words model only considers single tokens, whereas some cue

phrases contain expressions composed of several words. Still, it is possible to find within our bag-of-

words model some of the cue phrases considered with our other feature set. Those particular tokens

are identifiable as the values in bold in Table 4.21.

If we compare the values presented in Tables 4.20 and 4.21, we find that a number of cue

phrases are present within our top 100 most informative tokens. Again, the features used in the

bag-of-words model are single tokens, which means that some more cue phrases might still play an

important role in the classification tasks performed. For example, the cue phrase “that is” is the

39th most informative feature using our cue phrase model, while the single token “that” ranked 4th

in our bag-of-words model. It should also be noted that some tokens found to be very informative

in our bag-of-words model seem to suggest, once again, that the working corpus used could benefit

from having a more even distribution of particular genres. That is, each text-type category should

have documents that are related to the same set of genres in order to avoid the classification to be

influenced by genres. This problem explains the appearance in Table 4.21 of tokens such as “cup”

in the 6th most informative feature, “tablespoon” as the 7th, “salt” as the 25th, and “teaspoon” as

the 26th (the tokens related to cooking are displayed in italic throughout Table 4.21). It appears

that these particular tokens where very informative in identifying documents related to the genre of

food. As it turns out, our working corpus contained much more documents related to this particular

genre in our procedure class, which contained cooking recipes (see Section 3.1).

Setting aside this issue, we find that a number of tokens that can be associated with cue phrases
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Rank Info. Gain Cue Phrase Rank Info. Gain Cue Phrase Rank Info. Gain Cue Phrase

1 0.77 and 34 0.14 yet 67 0.06 whereas

2 0.75 as 35 0.14 however 68 0.05 indeed

3 0.69 or 36 0.14 as well 69 0.05 otherwise

4 0.65 so 37 0.12 rather 70 0.05 certainly

5 0.61 until 38 0.12 thus 71 0.05 now that

6 0.59 for 39 0.12 that is 72 0.05 anyway

7 0.55 not 40 0.11 therefore 73 0.05 unless

8 0.54 if 41 0.11 further 74 0.05 earlier

9 0.44 now 42 0.11 else 75 0.05 this time

10 0.44 but 43 0.11 although 76 0.05 just as

11 0.4 when 44 0.1 next 77 0.05 fortunately

12 0.39 only 45 0.1 second 78 0.04 at the same

time

13 0.38 though 46 0.1 of course 79 0.04 as though

14 0.34 too 47 0.1 later 80 0.04 at that

15 0.33 where 48 0.1 true 81 0.04 obviously

16 0.29 then 49 0.09 in that 82 0.04 at once

17 0.29 even 50 0.09 actually 83 0.04 specifically

18 0.29 also 51 0.09 except 84 0.04 at first

19 0.27 back 52 0.09 last 85 0.04 in fact

20 0.26 just 53 0.09 you know 86 0.04 overall

21 0.26 because 54 0.08 finally 87 0.04 even though

22 0.25 nor 55 0.08 at least 88 0.03 merely

23 0.24 after 56 0.08 soon 89 0.03 the moment

24 0.23 well 57 0.08 for example 90 0.03 at last

25 0.22 once 58 0.08 so that 91 0.03 besides

26 0.22 again 59 0.07 suppose 92 0.03 much as

27 0.21 first 60 0.07 suddenly 93 0.03 lest

28 0.19 before 61 0.07 as if 94 0.03 after all

29 0.18 still 62 0.07 instead 95 0.03 even if

30 0.18 since 63 0.07 not only 96 0.03 in turn

31 0.18 till 64 0.06 clearly 97 0.03 third

32 0.17 either 65 0.06 in addition 98 0.03 with that

33 0.17 while 66 0.06 previously 99 0.03 whenever

100 0.03 moreover

Table 4.20: 100 Most Informative Cue Phrases Ordered by Information Gain

are ranked in our top 100 tokens, within the bag-of-words feature set. This indicates that these cue

phrases do play an important role in identifying our text-types. Our top cue phrase in Table 4.20,

“and”, is ranked second in Table 4.21, only below “the” which has an almost identical ranking score

(note that the scores were rounded to two decimal points in both tables). The simple token “the”

actually appears in some of our cue phrases (“at the same time”, “the moment”), and so do many
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Rank Info. Gain Token Rank Info. Gain Token Rank Info. Gain Token

1 0.77 the 34 0.45 on 67 0.36 more

2 0.77 and 35 0.46 one 68 0.36 chop

3 0.73 to 36 0.44 t 69 0.36 who

4 0.71 that 37 0.44 which 70 0.36 mixtur

5 0.7 of 38 0.44 all 71 0.36 than

6 0.68 cup 39 0.44 had 72 0.35 inch

7 0.66 tablespoon 40 0.44 would 73 0.35 do

8 0.65 in 41 0.44 had 74 0.35 heat

9 0.65 thi 42 0.43 been 75 0.35 even

10 0.62 have 43 0.43 when 76 0.35 lt

11 0.61 a 44 0.42 or 77 0.34 mani

12 0.61 with 45 0.42 said 78 0.34 out

13 0.6 is 46 0.42 an 79 0.34 get

14 0.59 i 47 0.41 no 80 0.34 hi

15 0.59 until 48 0.41 they 81 0.34 larg

16 0.59 wa 49 0.41 these 82 0.33 also

17 0.58 be 50 0.41 their 83 0.33 into

18 0.56 as 51 0.4 if 84 0.32 way

19 0.55 minut 52 0.4 what 85 0.32 he

20 0.55 it 53 0.4 onli 86 0.32 over

21 0.54 not 54 0.4 at 87 0.32 go

22 0.54 for 55 0.39 were 88 0.31 me

23 0.52 but 56 0.39 other 89 0.31 most

24 0.51 s 57 0.39 apo 90 0.31 becaus

25 0.51 salt 58 0.39 stir 91 0.31 were

26 0.49 teaspoon 59 0.38 my 92 0.3 then

27 0.48 there 60 0.37 can 93 0.3 up

28 0.47 you 61 0.37 time 94 0.29 how

29 0.46 so 62 0.37 pepper 95 0.29 see

30 0.46 are 63 0.37 add 96 0.29 look

31 0.46 bowl 64 0.37 peopl 97 0.29 now

32 0.46 like 65 0.37 from 98 0.28 some

33 0.45 by 66 0.36 could 99 0.28 just

100 0.28 much

Table 4.21: 100 Most Informative Tokens Using the Bag-of-Words Model Ordered by Information

Gain

of the most informative tokens presented in Table 4.21. The fourth most informative token, “that”,

appears in the cue phrases “that is” and “at that”, the fifth most informative token, “of”, appears

in the cue phrase “of course”, the eighth most informative token, “in”, appears in the cue phrases

“in that” and “in fact”, and so on. In total, 16 of the 100 tokens are an actual cue phrases composed
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Figure 4.1: Count of Full and Partial Cue Phrases Found in the BOW Features, Ordered by Infor-

mation Gain.

of a single word (or a stemmed version of that word), while another 36 are sub-strings found in

our full list of cue phrases (such as “the”, “that”, “of”, etc). On the other hand, we find that 8 of

these tokens are clearly related to cooking. Looking over Table 4.21, it actually appears that, for

the notable exception tokens clearly related to the genre of food, many of the tokens that are highly

ranked in terms of information gain are words that could be used to mark discourse relations, within

certain contexts at least. In fact, if we count the number of tokens that are full or partial cue phrases

that appear within each slice of 100 most informative features, we notice that cue phrases are often

very informative. Table 4.1 shows the count of the full and partial cue phrases found within the first

2,500 most informative features.

4.2.7.2 Discourse Relations

We provide the list of all discourse relations (see Section 3.3 for details), sorted according to their

information gain ratio, the distribution of each discourse relations for each one of our text-types,

and the average distribution across text-types, along with the standard deviation. These

sets of values are presented for all discourse relations in Table 4.22, for explicit discourse relations

in Table 4.23, and for all non-explicit discourse relations in Table 4.24. It should be noted that

non-explicit discourse relations include implicit, and altLex discourse relations (see Section 3.5.1 for

further details).

We begin by providing in Table 4.22 the distribution of each discourse relation, whether it be

explicit or otherwise, for each of our text-types ordered by information gain. If we study the data

provided in Table 4.22, we first find that cause is the most informative feature. This is not very
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Cause 0.92 30.82% 44.48% 34.45% 21.47% 17.97% 28.35% 37.77% 30.76% 9.19%

Conjunction 0.67 28.18% 19.25% 21.41% 20.96% 32.29% 27.36% 20.57% 24.29% 4.95%

Contrast 0.60 13.55% 10.26% 12.03% 6.17% 16.57% 12.94% 13.98% 12.21% 3.29%

Synchrony 0.51 5.97% 5.98% 6.56% 1.79% 7.37% 5.30% 6.02% 5.57% 1.78%

Asynchronous 0.47 6.44% 3.98% 8.64% 25.81% 8.71% 4.92% 4.90% 9.06% 7.62%

Restatement 0.47 5.48% 4.37% 7.95% 7.59% 6.13% 6.25% 6.59% 6.34% 1.22%

Condition 0.39 3.73% 6.97% 3.06% 2.15% 4.53% 5.60% 4.96% 4.43% 1.62%

Concession 0.26 1.89% 1.46% 1.15% 0.13% 1.07% 1.13% 1.59% 1.20% 0.56%

Instantiation 0.25 2.62% 2.01% 2.88% 5.31% 3.54% 4.94% 2.00% 3.33% 1.34%

Alternative 0.16 1.03% 1.09% 1.27% 3.08% 1.12% 2.18% 1.12% 1.56% 0.78%

List 0.11 0.10% 0.11% 0.49% 5.53% 0.61% 0.50% 0.42% 1.11% 1.96%

Pragmatic cause 0.02 0.02% 0.02% 0.07% 0.01% 0.00% 0.08% 0.02% 0.03% 0.03%

Comparison 0.01 0.09% 0.00% 0.00% 0.00% 0.00% 0.33% 0.00% 0.06% 0.12%

Exception 0.01 0.05% 0.02% 0.04% 0.00% 0.08% 0.08% 0.04% 0.04% 0.03%

Expansion 0.01 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.02% 0.01% 0.01%

Contingency 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00%

Temporal 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pragmatic concession 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pragmatic contrast 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pragmatic condition 0.00 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 4.22: Distribution of All Discourse Relations Across Text-Types Ordered by Information Gain

surprising when considering that the standard deviation for this particular discourse relation is

the highest. It appears that the usage of cause discourse relations is very frequent in our documents

of the exposition text-type, while they are much less frequent, with less than half the distribution,

in documents of the recount and procedure text-types. A second observation that can be made by

the data provided in Table 4.22 is that many of the discourse relations used seem to have very

little influence on the classification tasks. It is not surprising for some of these relations which were

rarely or never extracted by our parser (see Section 3.4 for details), which certainly explains the

last nine discourse relations presented which all have average distributions below 1%, the last five

being completely absent from our working corpus. Some of these discourse relations were in fact

noted by (Prasad et al. , 2011) to be problematic and were subsequently reclassified or rearranged in

the creation of the BioDRB corpus (see Section 2.3.1.4). A few more detailed observations can also

be made using the data presented in Table 4.22 in relation to which discourse relations are likely

the most helpful at identifying particular text types. A very clear example of this is seen in the

distribution of the asynchronous discourse relation. It appears that this particular discourse relation

is much more frequently used in the documents of the procedure text-type, with a distribution of over

25%, compared to a little under 9% in documents of the recount text-type, the class with the second

highest frequency of this discourse relation. This suggests that particular discourse relations can be

utilised to identify particular text-types, but might not be as relevant when attempting to classify

documents with less statistically interesting usage of these particular discourse relations. This again

follows the findings of our previous investigation (Bachand et al. , 2014). This is unfortunate, in a

way, considering that some of the discourse relations we would expect to be very informative are

badly indentified by our parser. For example, we would expect the temporal discourse relation to

have a higher distribution in documents of the procedure text-type, but due to the performance

of the End-to-End PDTB parser, such relations are never extracted. Another problem we have

encountered with the End-to-End PDTB parser is that implicit relations are inherently more difficult
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to identify. In order to better evaluate the influence of this drawback, the next paragraph will study

the distribution of discourse relations and their associated information gain for discourse relations

expressed explicitly and implicitly separately.

Table 4.23 provides the same set of discourse relations as Table 4.22, once again sorted according

to their information gain ratio, with the most informative features on top, but this time we

only consider explicit discourse relations. A first observation we can make from the data presented
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Synchrony 0.50 10.51% 13.14% 15.88% 4.91% 11.25% 12.74% 12.19% 11.52% 3.38%

Contrast 0.46 20.75% 18.33% 20.19% 0.89% 23.54% 15.21% 21.60% 17.22% 7.66%

Condition 0.39 6.61% 15.31% 7.55% 6.37% 7.05% 13.51% 10.00% 9.49% 3.61%

Conjunction 0.38 29.06% 28.98% 32.33% 10.39% 32.22% 31.32% 30.57% 27.84% 7.81%

Asynchronous 0.33 9.64% 7.72% 15.09% 67.56% 12.08% 8.58% 8.64% 18.47% 21.79%

Concession 0.25 3.39% 3.15% 2.46% 0.04% 1.60% 2.72% 3.10% 2.35% 1.18%

Alternative 0.11 1.84% 2.25% 1.77% 8.86% 1.72% 5.03% 1.97% 3.35% 2.70%

Cause 0.09 16.18% 8.73% 3.64% 0.96% 9.21% 7.56% 10.80% 8.15% 4.92%

Instantiation 0.08 1.24% 1.88% 0.19% 0.00% 0.18% 1.44% 0.34% 0.75% 0.75%

Restatement 0.03 0.62% 0.39% 0.70% 0.00% 0.80% 1.54% 0.54% 0.66% 0.47%

Exception 0.01 0.06% 0.05% 0.11% 0.00% 0.06% 0.19% 0.09% 0.08% 0.06%

Pragmatic cause 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pragmatic condition 0.00 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pragmatic contrast 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00 0.00% 0.00%

Expansion 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.01% 0.01% 0.01%

Temporal 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Contingency 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pragmatic concession 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

List 0.00 0.02% 0.07% 0.08% 0.04% 0.30% 0.06% 0.15% 0.10% 0.10%

Comparison 0.00 0.09% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 0.02% 0.04%

Table 4.23: Distribution of Explicit Discourse Relations Across Text-Types Ordered by Information

Gain

in Table 4.23 is that the cause discourse relation provides much less information when we only

consider explicitly stated occurrences of this particular discourse relation. In fact, it appears that

this discourse relation tends to be used implicitly far more often. The data in Table 4.23 shows that

the cause discourse relation as an average distribution of 8.15% when explicitly stated, compared to

50.26% when implicitly stated, as can be seen from Table 4.24. Considering that the cause discourse

relation is the most informative feature when using all discourse relations, regardless of whether

or not they were explicitly stated, and that implicit discourse relations are noted to be far more

difficult to identify (see Section 2.3.2.4 for details), the appearance of the cause discourse relation as

the most informative overall (explicit or otherwise) is somewhat problematic. Given that implicitly

stated cause discourse relation account for more than half of the implicit discourse relations obtained

by parsing the documents with the End-to-End PDTB parser (Lin et al. , 2012), and that, according

to (Prasad et al. , 2008), the manually annotated Penn Discourse Treebank only has around 25%

of its implicit relation in the contingency meta-category, of which cause is only one of the discourse

relations (see Section 2.3.1.3), it is clear that the output of the End-to-End PDTB parser is faulty

to some some extent. Such errors are sure to create some difficulties in the task at hand, and can be

argued to explain some of the loss in accuracy observed when comparing the results obtained from

our baseline experiments to those made using discourse relations feature sets.

Investigating once again the data provided by Tables 4.22, 4.23, and 4.24, we can see how
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Cause 0.83 49.21% 74.37% 55.41% 31.90% 33.76% 43.07% 64.10% 50.26% 15.61%

Restatement 0.42 11.60% 7.69% 12.88% 11.45% 15.76% 9.59% 12.49% 11.64% 2.55%

Conjunction 0.31 27.08% 11.11% 13.98% 26.33% 32.43% 24.55% 10.82% 20.90% 8.75%

Instantiation 0.19 4.35% 2.12% 4.71% 8.01% 9.62% 7.41% 3.62% 5.69% 2.69%

Contrast 0.18 4.52% 3.52% 6.48% 8.86% 4.01% 11.34% 6.54% 6.47% 2.83%

List 0.11 0.21% 0.15% 0.78% 8.32% 1.18% 0.82% 0.68% 1.73% 2.93%

Asynchronous 0.09 2.42% 0.86% 4.24% 4.59% 2.62% 2.34% 1.25% 2.62% 1.39%

Alternative 0.05 0.02% 0.11% 0.93% 0.14% 0.05% 0.16% 0.28% 0.24% 0.32%

Pragmatic cause 0.02 0.05% 0.03% 0.12% 0.02% 0.00% 0.14% 0.04% 0.06% 0.05%

Concession 0.02 0.00% 0.04% 0.26% 0.18% 0.11% 0.00% 0.11% 0.10% 0.10%

Comparison 0.01 0.09% 0.00% 0.00% 0.00% 0.00% 0.52% 0.00% 0.09% 0.19%

Condition 0.00 0.12% 0.00% 0.00% 0.00% 0.00% 0.00% 0.04% 0.02% 0.05%

Pragmatic condition 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Exception 0.00 0.05% 0.00% 0.00% 0.00% 0.11% 0.00% 0.00% 0.02% 0.04%

Synchrony 0.00 0.28% 0.00% 0.22% 0.20% 0.37% 0.02% 0.00% 0.16% 0.15%

Pragmatic contrast 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Pragmatic concession 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Contingency 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.01%

Temporal 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Expansion 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.02% 0.01% 0.01%

Table 4.24: Distribution of Non-explicit Discourse Relations Across Text-Types Ordered by Infor-

mation Gain

some discourse relations can be used to identify specific text-types. For example, considering all

discourse relations (Table 4.22), it appears that the cause discourse relation is much more frequently

used in documents of the exposition text-type than documents of the recount text-type (44.48%

vs. 17.97%). This seems intuitively right considering that the exposition documents argue in favor

or against a point of view and would naturally use causality as a means of proving a point, while

documents from the recount text-type should be expected to state facts in a more straight forward

fashion. This same observation can probably explain the distribution of the conjunction discourse

relations which appear with a distribution of 19.25% in the exposition documents and 32.29% in the

recount documents. The documents of the procedure text-type stand out with their high distribution

of asynchronous discourse relations. The Penn Discourse Treebank annotation guidelines (Prasad

et al. , 2008) describe this specific discourse relations as describing situations that are ordered through

time. This is expected in a document of the procedure text-type, as the steps of such procedures

should typically be performed in sequence. We can also notice a lower distribution of contrast

discourse relations which do not seem to be very useful in the case of documents of the procedure

text-type. Similarly, if we look at the data related to explicit discourse relations from Table 4.23, we

find that asynchrony is significantly more frequently used in documents of the procedure text-type,

while contrast discourse relations are significantly more rare compared to the text-types. When still

considering explicit discourse relations, we also find the documents of the procedure text-type to

stand out in their less frequent usage of synchrony, conjunction, and concession discourse relations.

Yet another discoure relation, but this time stated in a non-explicit manner that helps identify

documents of the procedure text-type is the list discourse relation. With a distribution of 8.32%

compared to an average of 1.73% for documents of all text-types, as can be seen in Table 4.24,

this discourse relation is used in an intuitive manner given this particular text-type. We would, in

fact, expect lists to occur in procedural texts, with such discursive schemas as lists of ingredients
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in the case of cooking recipes, or lists of tools and parts in assembly manuals, etc. Still looking

at implicit discourse relations of Table 4.24, we find that cause discourse relations are significantly

more frequent in documents of the exposition text-type. This explains the higher distribution we

have already observed in Table 4.22 for this particular discourse relation. For this same text-type,

we also find that implicitly stated conjunction discourse relations are more rare than with most

other text-types, but particularly compared to documents from the recount text-type. This can be

explained intuitively, once again, as documents of the first of these two text-types tend to argue in

greater length, while documents of the report text-type are expected to state facts in a more straight

forward fashion. Similar distributions can be seen as ways of better identifying text-types, although

they might not stand out as much. For example, looking at the explicit distributions of Table 4.23,

we find that the condition discourse relations are more common in documents of the exposition, and

report text-types, while also more rarely used in documents of the explanation, narrative, procedure,

and recount text-types. This distribution does not stand out as clearly as some of the others we

have previously discussed, but should still provide information that is helpful to our classification

tasks. Similarly, the non-explicit use of conjunction discourse relations appear more frequently in

documents of the explanation, procedure, recount, and report text-types, while being noticeably less

frequent in documents of the exposition, narrative, and response text-types.

Overall, our investigation of the distribution of discourse relations, and their ranking according

to the amount of information gain they provide in our classification tasks, seem to indicate that,

although some amount of errors are present due to a number of factors (genre is unevenly represented

across the corpus, the automatic extraction of implicit discourse relations is difficult, the automatic

parser used is only using training data from documents we classify in some of our text-types),

discourse relations provide an interesting avenue in identifying a document’s text-type. A more

subtle selection of which discourse relations should be used as features might allow to reduce the

feature space, while conserving the accuracy achieved with all the discourse relations. If, for example,

we were to select discourse relations for which the information gain ratio is above 0.09, based on

the data provided in Table 4.22, it seems we could limit ourselves to using only the top eleven most

informative features. Looking back at the numbers provided by Tables 4.23 and 4.24, we find that

the top seven and six features are above this same threshold. Obviously, some further investigation

should be performed in order to determine exactly where the threshold should lie.

In this chapter, we have discussed the results of our experiments. More precisely, we began by

providing a general overview of the results obtained throughtout the different classification tasks

performed. We then focused on a detailed analysis of the results obtained with each of the feature

sets we chose to employ, and finally we discussed the most informative features discovered through

our investigations. In the next chapter, we will discuss the conclusions and findings in some more

details, namely, we will discuss the influence of the feature sets used on the classification tasks,

the influence of the classifiers used on those same classification tasks, the variance in performance

observed across text-types, and finally discuss the most informative features. We will then conclude

by discussing the possible future avenues that now present themselves to us in light of our current
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research.
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Chapter 5

Conclusions and Future Work

In this final chapter, we summarize in Section 5.1 the findings and claims made from studying the

data acquired during our various experiments, and subsequently discuss in Section 5.2 the future

work that could be undertaken in light of these findings.

5.1 Findings

Our various classification experiments (see Chapter 4) allow us to state a number of findings. These

findings can be separated in four broad categories. We first present findings related to the influence

of using our various feature sets over the classification tasks, we then present findings related to the

influence of the classifier used to perform these experiments, we then present the findings related to

the influence of the text-types themselves on those same classification tasks, and finally we present

the findings uncovered based on the most informative features in terms of information gain.

5.1.1 Influence of Feature Sets Used in the Classification Tasks

We now discuss the findings related to the feature sets used in our various experiments. A first

of these findings, and perhaps the most unfortunate, is that the text-type classification task is

performed with the highest accuracy when using the baseline bag-of-words model. This can be

clearly seen as the accuracy recorded throughout our various experiments is consistently higher with

the our bag-of-words model. Still, we find that the bag-of-word model provides the most informative

features for our classification task at this point. This is not exactly surprising, however, as using

such a model not only covers, at least in part, the cue phrases used to identify discourse relations,

but also allows to consider a number of other features that might play a role in our classification

tasks. For example, the fact that the genre of the text from our working corpus varies widely across

text-types, but not necessarily in an even fashion, is believed to influence the results observed. This

influence can be seen in Table 4.21 as many terms directly related to cooking are noted to be very

informational. Ideally, we would like to avoid such a situation altogether by representing genre

across our different text-types more evenly. Once again, we believe that such terms are helpful
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at identifying genre while the way the clauses in which those terms are found through discourse

relations tell us about the text-type itself. The fact that we are also considering a feature space

of over 30,000 features in the case of our bag-of-words model with one of 20 features when using

discourse relations (explicit or otherwise), is sure to play a role in classification tasks. It is also

important to acknowledge that the extraction of discourse relations is performed automatically, we

are therefore certain that at least some noise is introduced to our systems, making the classification

tasks more difficult. Knowing this, we find that discourse relations still provide an interesting amount

of information related to text-types. Given that we are using a feature space that is several orders of

magnitude smaller then the one used in our baseline experiments (20 features when using discourse

relations vs. over 30,000 when using the BOW model), data that is inherently noisy due to the

automatic extraction of discourse relations, and a discourse relation framework that has its own

flaws, we find that the accuracy of our classification tasks are satisfying. We believe that the loss in

accuracy observed, in light of these limitations, is justifiable, and we therefore believe that the data

presented supports our claim of a link between the concepts of text-types and discourse structures.

Given a feature space that is, by comparison, very limited, we find that the accuracy of above 70%

in all of our experiments using discourse relations to classify text-types is very promising. Another

finding we observed is how adding cue phrases directly into our feature space, as opposed to simply

using them to identify explicit discourse relations, is helpful in regaining some of the accuracy lost

compared to our baseline experiments. However, we find that the baseline still remains to be the

most accurate of our experiments. We believe that the use of particular cue phrases within certain

text-types, in our working corpus at least, makes these particular cue phrases very valuable in terms

of information gain. In other words, two different cue phrases might be used to identify a single

discourse relation, but one might be more commonly used within documents identified in our working

corpus of a certain text-type, while the other is more commonly used in documents of another text-

type. We also find that using a combination of discourse relations and cue phrases does not provide

a noticeable change in the accuracy of our classification task. This is not surprising, once again, as

the cue phrases themselves are instrumental in the identification of explicit discourse relations, and

implicit discourse relations are noted to be much more difficult to identify automatically. For these

reasons, we believe that whatever gain, in terms of information, is provided by adding discourse

relations to our cue phrases feature space is offset by some of the issues that are introduced at

the same time, such as mislabelled discourse relations which are noted to occur frequently when

identifying implicit discourse relations. Finally, the corpus itself is problematic in the sense that

the separation of documents across text-types also often follows a separation across genres. Since

we expect particular genres to share vocabulary items, having documents of distinct genre in the

various text-type categories gives an unfair advantage to the BOW model.

5.1.2 Influence of Classifiers in the Classification Tasks

We now discuss the observations made in relation to the types of classifiers used during our various

experiments. As far as which of the three classifiers is better suited for our specific task, we find

that the multinominal Näıve Bayes classifier yields competitive results, regardless of the fact that
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it is the simplest method utilized in our experiments. It should be noted, however, that the prior

probability of each text-type can influence the classification task using the multinominal Näıve

Bayes classifier. This was noted to be the source of a few issues related to specific classes, for

example the recount text-type obtained half as many false positives when using a Decision Tree

or SVM classifier, compared to the use of the multinominal Näıve Bayes classifier. The difference

in performances recorded using a Decision Tree classifier were, for the most part, not statistically

significant. One observation that could be argued is that the use of a Decision Tree does show

a slight improvement in accuracy, compared to the use of our Näıve Bayes classifier, when using

discourse relations. This could be used to argue that discourse relations need to be considered as

part of greater schemas, rather than by relying on the näıve assumption of conditional independence

between features. However, a Decision Tree does not exactly identify such schemas, but only suggests

that the appearance of certain discourse relations together, at some point in the document, and not

necessarily in sequence, are likely to provide information that is useful to our classification task. In

other words, although the fact that relation R1 is more likely to appear in a document that also

contains a higher number of relations R2, it does not tell us anything about the specific sequence

of these two relations, we still treat our documents as a bag of relations. Still, the improvement

recorded could be argued to suggest that the identification of schemas is helpful in the automatic

extraction of discourse relations. However, since the improvement recorded when using a Decision

Tree classifier with discourse relations as a feature set is somewhat minimal (see Table 4.1), such a

claim remains to be further supported. It would be much more interesting, in fact, to attempt the

classification task using bigrams of discourse relations. Such bigrams should describe sequences of

discourse relations that occur one after the other. On the other hand, building these bigrams can

prove problematic as the discourse schemas are tree structures, as opposed to linearly represented,

which makes things problematic in the case of embedded discourse relations. Another finding we

observe is that the Support Vector Machine classification tasks we have performed show similar

results to the Decision Tree classification tasks. The overall performance seems to be closer to those

seen with the Näıve Bayes classification when it comes to the baseline experiment using the bag-of-

words model, but the experiments using discourse relations outperform, once again, the Näıve Bayes

classifier. The results for both the Decision Tree and Support Vector Machine classification tasks

are very close.

5.1.3 Variance in Performance Across Text-Types

We now discuss our findings related to the differences observed in the classification of specific text-

types, that is, how the text-type itself influences the performance of our various systems. Results

show that certain text-types are harder to identify or differentiate from others, regardless of the

classifiers or the feature sets. For example, our experiments have shown that documents of the

explanation and report text-types are always more problematic to identify, as can be seen in their

various precision, recall and F -score measures. For example, the documents of the response text-type

appear to be significantly more difficult to identify using explicit discourse relations. It would be

interesting at this point to test whether these same difficulties are shared amongst human annotators
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in a manual task of text-type classification. On the other hand, some text-types see their classification

affected more greatly by the use of specific feature sets. The same observation cannot be made based

on the data gathered using implicit discourse relations, where the relative accuracy seems to follow

the same pattern observed with our baseline experiments. As far as the automatic extraction of

discourse relations is concerned, we find that knowing the text-type in advance of the extraction task

can be helpful. By comparing the accuracy recorded while classifying documents of the explanation

and recount text-types with discourse relations extracted with a parser that can be tailored to

extracting discourse relations from documents associated with these text-types, we find that the

classification of documents of the explanation text-type are more easily identifiable when obtaining

the data based on a model built from documents of this same text-type. This leads us to claim that

knowing which text-type the document falls under is helpful in improving the automatic extraction

of discourse relations. This claim, however, relies on the assumption that discourse relations do in

fact provide enough information to perform our text-type classification task adequately. We believe

that some of our other findings justify this assumption.

5.1.4 Most Informative Features

We now discuss the findings related to the most informative features discovered throughout our

various experiments. A first finding worth mentioning is that, when comparing the most informative

features of our bag-of-words model to those of our cue phrases model, many of the words making up

cue phrases rank in the top 100 most informative tokens of the bag-of-words experiments. Due to the

various pre-processing steps employed to extract the tokens that make up our bag-of-words model,

the cue phrases themselves seldom appear as is in our bag-of-words feature set, but they are visible

enough to support the claim that explicit discourse relations, at least, are helpful in our task. For

example, the token “that”, which can be used to produce the cue phrase “that is” is noted as being

significantly informative in our bag-of-words model. Some cue phrases that are unigrams, on the

other hand, can be found in both the bag-of-words model and the cue phrase model. For example,

the words “and” and “because” both appear as part of our top 100 most informative features, for

the bag-of-words and cue phrase models. In the end, 16 cue phrases clearly represented in the

top 100 tokens provide the most information gain, and an extra 38 that could become cue phrases

if associated with other tokens. This suggests that, although the larger amount of information

made available through the bag-of-words model helps in making the baseline experiments the most

accurate of the experiments, it remains that the cue phrases themselves play an important role in

properly identifying the text-types.

Another finding related to information gain is that some discourse relations are more likely to

occur explicitly, while others are more likely to occur implicitely. This can be problematic, as we find

that the overall most informative discourse relation is cause, but when comparing the information

gain provided by this particular discourse relation as it is expressed explicitely or otherwise, we find

that it is much more informative when done implicitly. This, in itself should not be too problematic

if it was not for the fact that the automatic extraction of implicit discourse relations is a particularly

difficult one, and we therefore expect a fair amount of errors to incur in the process.
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As far as which of the discourse relations are the most informative, a number of interesting

observations need to be noted. We found through our experiments that the usage of the cause

discourse relation is very frequent in documents of the exposition text-type, while they are less then

half as frequent in documents of the recount, and procedure text-types. We also found that many of

the discourse relation types are not very helpful in identifying the text-type of a document. In fact,

it appears that only considering the ten most informative of these features would suffice.

5.2 Future Work

In order to identify some of the possible future avenues that our work has identified, we considered

the various findings detailed in Chapter 4 and summarized in Section 5.1.

5.2.1 Using Text-Types to Tailor Discourse Parsers

Our first set of findings are related to the influence of the feature sets used on the accuracy of the

text-type classification task. Since the classification task itself performs better using our baseline

experiment, as seen in Section 4.1, there seems to be little advantage in going through the task

of extracting discourse relations for this particular classification task. On the other hand, the re-

sults recorded has shown a relation between the text-type of documents and the usage of discourse

relations. For this reason, we believe that identifying the text-type of a document could become

an important step in subsequently extracting the discourse relations. An approach that could be

attempted is to identify the text-type through the use of cue phrases, which can be achieved fairly

easily and accurately given the smaller feature space employed compared to the bag-of-words model,

and subsequently using this information to better identify the discourse relations of the document.

We feel that this information could be helpful, especially when identifying implicit discourse rela-

tions, which have been noted in Section 2.3.2 to be much more difficult to identify than explicit

discourse relations.

5.2.2 Identifying n-grams of Discourse Relations Across Text-Types

We also believe that an interesting avenue of research, as far as feature sets used, is the appearence of

n-grams of discourse relations. Currently, we have studied the distribution of discourse relations with

what we would describe as a bag-of-relations model. We believe that the distribution of bigrams of

discourse relations should show an even stronger difference in their usage across text-types. Given

the tree structure of discourse schemas, however, defining how exactly these bigrams should be

created remains to be studied.

5.2.3 Identification of Higher Level Discourse Schemas

Based on some of our observations, we believe that the automatic extraction of discourse relations

can be improved through the identification of larger discourse schemas, as original described in

(Mann & Thompson, 1987) with the original Rhetorical Structure Theory. We believe that, much
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like with the problem of understanding the meaning of a word depends both on the word itself

and the context in which it occurs, the full understanding of a discourse structure requires an

understanding of the discourse schema in which it occurs. When it comes to the automatic extraction

of discourse relations, we believe that classification should take into account context. That is, we once

again believe that discourse schemas (such as n-grams of discourse relations) should be considered

during the identification of discourse relations. Because of this, research could take into account

the importance of these schemas during the automatic extraction of discourse relations. We believe,

once again, that this would be helpful mostly in the case of implicit discourse relations, since explicit

discourse relations are already fairly easy to identify, given an appropriate list of cue phrases. One

important factor to consider for such a task, however, is that the discourse schemas are complex tree

structures, with further schemas and discourse relations embedded within one another. Because of

this, using methods such a Hidden Markov Models, as described in (Eddy, 1996), would most likely

be inadequate, as it assumes a linear sequence of discourse relations. In reality, the tree structures

formed with discourse relations are too complex to be properly identified through such a model,

but the idea of considering context during the extraction process is a worthwhile avenue for future

endeavors. Still, some of our own preliminary work on the topic shows that this is a promising

avenue, as we noticed that (parent, child) bigrams of discourse relations tend to vary quite a bit

across documents of various sources. Unfortunately, the corpora used at the time did not exactly

consider text-type as the deciding factor for the classification of these documents, and the variances

observed could not be used to further argue effectively the relation between discourse relations and

text-types.

In a practical sense, the ability to identify larger discourse schemas could be useful in identifying

portions of a discourse where relevant information to a task might occur. For example, if were to

perform discourse analysis on a research paper, being able to identify sections such as the method-

ology section due to it’s resemblance to a text of procedure text-type could help an application in

honing in on relevant information.

5.2.4 Prior Identification of Text-Types

Concerning the variances in performances when comparing text-types and how effectively they are

being identified, we feel that once again, the results observed suggest that the overall performance of

automatic discourse relation extraction could benefit from having some understanding of the text-

type of a document. We believe that ideally having an understanding of the larger discourse schemas

at play within a document is really the key to achieving a full understanding of the document on a

discourse level. The idea of being able to identify text-types is a step in that direction. Future work

should then be aimed at utilizing this information, which seems reasonably easy to obtain, in order

to move towards identifying larger discourse schemas. These discourse schemas should themselves be

composed of discourse relations which appear with varying distributions. This information should

then be used in the automatic extraction of the discourse relations. In other words, knowing that

a document is of a given text-type should allow us to assume that the document is composed of

some distinct discourse schemas, which themselves are more or less likely to be composed of specific

86



discourse relations. We believe that the Faiz & Mercer Parser (see Section 2.3.2.5) is taking a

step in the right direction in that sense, as it allows to use training data from the two currently

available manually annotated corpora for PDTB styled discourse relations. We also feel that an

interesting avenue that should be tested with future discourse relation parsers is to consider sequences

of discourse relations, as opposed to treating the documents as a bag-of-relations. By that, we mean

that studying the occurrence of n-grams of discourse relations will most likely be helpful in the

future as better performing automatic discourse relation parsers are created.

5.2.5 Corpus

Another source of issues that deserves to be addressed in the future is related to the corpus used.

One of the reasons we believe the baseline bag-of-words model to be so effective is that the genres of

the documents found in our corpus are not evenly distributed enough. That is, while we attempt to

classify our documents according to text-types, the particular use of specific vocabulary terms, which

we would associate with a particular genre, provides better clues during the classification task due to

the fact that documents from the various text-type categories also share the same genre (e.g. many

documents of the recount text-type category are news paper articles related to politics). In order

to get around this issue, it would be necessary to either extend the corpus by adding documents

from all possible genres to each text-type category, or limit the corpus to documents of a single

genre. Ideally, to do this if our procedure text-type category contains cooking recipes, we should

find restaurant reviews under the response text-type category, research papers related to diets in

the explanation text-type category, and so on. This, unfortunately, is quite an undertaking, which

we have attempted to achieve during the construction of our corpus, however, the task proved very

difficult and we still believe that there is quite a bit of room left for improvement in this area. A

future work should be to create a new corpus, either from scratch or by expending the one used in

our investigation, in order to make sure all documents classified in the various text-types show a

large variety of genres, alleviating the advantage given to the bag-of-words model. We also feel that

the some problems could be caused by the assumption that all documents in our corpus can only

be associated with a single text-type. In fact, it is possible that certain documents exhibit features

that could be attributed to several text-types, for example, a document providing the review of a

customer product could also be presented as a narrative, detailing the consumer’s experience with

the product.

Finally, our analysis of the most informative features in the task of classification of documents

according to their text-types shows that cue phrases are still an interesting feature available when it

comes to dealing with discourse relations. Given that, once a list of cue phrases has been obtained,

finding occurrences of these cue phrases is a trivial task, it seems logical that future endeavors

should utilize this inexpensive feature whenever appropriate. In the end, the identification of higher

level discourse structures, such as the ones represented by text-types, in the task of automatically

extracting discourse relations seem to be beneficial in that respect. However, this thesis has only

explored this nascent field of study with the few currently available tools and resources available.

However, much more work should be performed and much more data should be shared within
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the scientific community for this fascinating field to be developed. This why we wholeheartily

thank (Marcu et al. , 1999; Soricut & Marcu, 2003; Hernault et al. , 2010a; Feng & Hirst, 2012;

Lin et al. , 2012; Faiz & Mercer, 2014; Carlson et al. , 2002; Taboada et al. , 2006; Prasad et al. ,

2008, 2011; Taboada et al. , 2006) for their work, the tools, and the data they have made available

publicly through the years.
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Appendix A

Penn Treebank Tag Set

Appendix A provides the list of tags used in the Penn Treebank (Marcus et al. , 1993), and produced

by the Stanford parser (De Marneffe et al. , 2006).

Clause level

S simple declarative clause, i.e. one that is not introduced by a (possible empty) subordinating

conjunction or a wh-word and that does not exhibit subject-verb inversion.

SBAR Clause introduced by a (possibly empty) subordinating conjunction.

SBARQ Direct question introduced by a wh-word or a wh-phrase. Indirect questions and relative

clauses should be bracketed as SBAR, not SBARQ.

SINV Inverted declarative sentence, i.e. one in which the subject follows the tensed verb or modal.

SQ Inverted yes/no question, or main clause of a wh-question, following the wh-phrase in SBARQ.

Phrasal Level

ADJP Adjective Phrase.

ADVP Adverb Phrase.

CONJP Conjunction Phrase.

FRAG Fragment.

INTJ Interjection. Corresponds approximately to the part-of-speech tag UH.

LST List marker. Includes surrounding punctuation.

NAC Not a Constituent; used to show the scope of certain prenominal modifiers within an NP.
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NP Noun Phrase.

NX Used within certain complex NPs to mark the head of the NP. Corresponds very roughly to

N-bar level but used quite differently.

PP Prepositional Phrase.

PRN Parenthetical.

PRT Particle. Category for words that should be tagged RP.

QP Quantifier Phrase (i.e. complex measure/amount phrase); used within NP.

RRC Reduced Relative Clause.

UCP Unlike Coordinated Phrase.

VP Verb Phrase.

WHADJP Wh-adjective Phrase. Adjectival phrase containing a wh-adverb, as in how hot.

WHAVP Wh-adverb Phrase. Introduces a clause with an NP gap. May be null (containing the 0

complementizer) or lexical, containing a wh-adverb such as how or why.

WHNP Wh-noun Phrase. Introduces a clause with an NP gap. May be null (containing the 0

complementizer) or lexical, containing some wh-word, e.g. who, which book, whose daughter,

none of which, or how many leopards.

WHPP Wh-prepositional Phrase. Prepositional phrase containing a wh-noun phrase (such as of

which or by whose authority) that either introduces a PP gap or is contained by a WHNP.

X Unknown, uncertain, or unbracketable.

Word level

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

95



JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

PRP$ Possessive pronoun (prolog version PRP-S)

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun (prolog version WP-S)

WRB Wh-adverb
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Appendix B

Full Set of RST Discourse

Relations

Appendix B provides the set of 118 discourse relations from the RST framework described in Sec-

tion 2.3.1. Note that certain relation names contain one or two affixes. Their meanings are:

-e embedded: the relation is embedded within another relation

-n nucleus: the EDU identified with this relation is the nucleus of the relation

-s satellite: the EDU identified with this relation is the satellite of the relation

For each of the 18 meta-relations described in Section 2.3.1, a number of lower level discourse

relations are available. We provide here the meta-relations and their associated lower level relations:

Attribution attribution, attribution-e, attribution-n, attribution-negative

Background background, background-e, circumstance, circumstance-e

Cause cause, cause-result, result, result-e, consequence, consequence-n-e, consequence-n, consequence-

s-e, consequence-s

Comparison comparison, comparison-e, preference, preference-e, analogy, analogy-e, proportion

Condition condition, condition-e, hypothetical, contingency, otherwise

Contrast contrast, concession, concession-e, antithesis, antithesis-e

Elaboration elaboration-additional, elaboration-additional-e, elaboration-general-specific-e, elaboration-

general-specific, elaboration-part-whole, elaboration-part-whole-e, elaboration-process-step, elaboration-

process-step-e, elaboration-object-attribute-e, elaboration-object-attribute, elaboration-set-member,

elaboration-set-member-e, example, example-e, definition, definition-e

Enablement purpose, purpose-e, enablement, enablement-e
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Evaluation evaluation, evaluation-n, evaluation-s-e, evaluation-s, interpretation-n, interpretation-

s-e, interpretation-s, interpretation, conclusion, comment, comment-e, comment-topic

Explanation evidence, evidence-e, explanation-argumentative, explanation-argumentative-e, rea-

son, reason-e

Joint list, disjunction

Manner-Means manner, manner-e, means, means-e

Topic-Comment problem-solution, problem-solution-n, problem-solution-s, question-answer, question-

answer-n, question-answer-s, statement-response, statement-response-n, statement-response-s,

topic-comment, comment-topic, rhetorical-question

Summary summary, summary-n, summary-s, restatement, restatement-e

Temporal temporal-before, temporal-before-e, temporal-after, temporal-after-e, temporal-same-

time, temporal-same-time-e, sequence, inverted-sequence

Topic-Change topic-shift, topic-drift

Textual-organization textual-organization

Same-unit same-unit
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Appendix C

Full List of Cue Phrases

Appendix C provides the complete list of cue phrases as used in the End-to-End PDTB Discourse

Parser (Lin et al. , 2012):

I mean

above all

accordingly

actually

additionally

admittedly

after

after all

after that

afterward

afterwards

again

all in all

all the same

also

alternatively

although

always assuming that

and

and/or

another time

anyway

apart from that

as

as a consequence

as a corollary

as a result

as an alternative

as if

as it happened

as it is

as it turned out

as long as

as luck would have it

as soon as

as though

as well

at any rate

at first

at first blush

at first sight

at first view

at last

at least

at once

at that

at the moment when

at the outset

at the same time

at which point
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back

because

before

before and after

before long

before then

before...ever

besides

but

but then

by all means

by and by

by comparison

by contrast

by the same token

by the time

by the way

by then

certainly

clearly

come to think of it

consequently

considering that

conversely

correspondingly

despite the fact that

despite this

each time

earlier

either

either..or

else

equally

especially because

especially if

especially when

essentially, then

even

even after

even before

even if

even so

even then

even though

even when

eventually

ever since

every time

everywhere

except

except after

except before

except if

except insofar as

except when

failing that

finally

first

first of all

firstly

following this

for

for a start

for another thing

for example

for fear that

for instance

for one thing

for one,

for that matter

for the simple reason

for this reason

fortunately

from then on

further

furthermore

given that

having said that

hence

however
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if

if and when

if ever

if not

if only

if so

if..then

in a different vein

in actual fact

in addition

in any case

in case

in conclusion

in contrast

in doing this

in fact

in other respects

in other words

in particular

in short

in so doing

in spite of that

in sum

in that

in that case

in that respect

in the beginning

in the case of X

in the end

in the event

in the first place

in the hope that

in the meantime

in this way

in truth

in turn

in which case

inasmuch as

incidentally

indeed

initially

insofar as

instantly

instead

it follows that

it is because

it is only because

it might appear that

it might seem that

just

just as

just then

largely because

last

lastly

later

lest

let us assume

likewise

luckily

mainly because

meantime

meanwhile

merely

merely because

mind you

more Xly

moreover

most Xly

much as

much later

much sooner

naturally

neither is it the case

neither..nor

nevertheless

next

next time

no doubt

no sooner than
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nonetheless

nor

not

not because

not only

not that

notably

notwithstanding that

notwithstanding that,

now

now that

obviously

of course

on balance

on condition that

on one hand

on one side

on the assumption

that

on the contrary

on the grounds that

on the one hand

on the one hand..on

the other hand

on the one side

on the other hand

on the one hand..on

the other hand

on the one side

on the other hand

on the other side

on top of this

once

once again

once more

only

only after

only because

only before

only if

only when

or

or again

or else

originally

otherwise

overall

particularly because

particularly if

particularly when

plainly

plus

presently

presumably because

previously

provided that

providing that

put another way

rather

reciprocally

regardless

regardless of that

regardless of whether

second

secondly

seeing as

separately

similarly

simply because

simultaneously

since

so

so that

soon

specifically

still

subsequently

such that

suddenly

summarising

summing up

suppose
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suppose that

supposing that

sure enough

surely

that is

that is to say

that’s all

that’s how

that’s when

that’s why

the fact is that

the first time

the moment

the more often

the next time

the one time

the thing is

then

then again

thereafter

thereby

therefore

third

thirdly

this means

this time

though

thus

till

to be precise

to be sure

to begin with

to conclude

to make matters

worse

to start with

to sum up

to summarise

to take an example

to the degree that

to the extent that

too

true

ultimately

undoubtedly

unfortunately

unless

until

until then

we might say

well

what is more

when

when and if

whenever

where

whereas

wherein

whereupon

wherever

whether or not

which is why

which means

which reminds me

while

whilst

with that

yet

you know
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