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Abstract 

Aspergillus niger is a commercially important producer of enzymes and organic acids. In 

this study, I have examined the distribution of trimethylated lysine 4 of histone H3 (H3K4me3) 

in the A. niger genome. I performed chromatin immunoprecipitation followed by sequencing 

(ChIP-seq) to determine the genomic regions enriched for nucleosomes with this histone 

modification. I have conducted an analysis of the resulting peaksets to determine the optimal 

peak finding parameters for use in the detection of H3K4me3 ChIP-enriched regions in A. niger. 

As H3K4me3 was previously widely reported to mark actively transcribed genes, genome-wide 

ChIP-seq maps for maltose and xylose growth were compared with transcriptome data generated 

under the same growth conditions. Almost all genes that contained H3K4me3 are actively 

transcribed. However, nearly a third of all actively transcribed genes are not associated with 

H3K4me3. In addition, H3K4me3 is not associated with the majority of genes differentially 

expressed on maltose or xylose growth. Chromosomal maps revealed that this histone 

modification is non-randomly distributed in the genome. In particular, H3K4me3 is enriched at 

pericentromeric regions, but absent at the centromere and at regions proximal to the telomeres. 

Finally, H3K4me3 occasionally localized to actively transcribed regions not predicted to contain 

a gene model. The results of this study suggest that H3K4me3 is positively correlated with 

transcriptional activity, but is not a definitive marker of active gene expression. Furthermore, this 

modification is highly locally organized along A. niger chromosomes. Epigenetic phenomena in 

A. niger warrant further study to determine their significance in genome regulation. 
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Section 1: Introduction 

1.1 The epigenetic regulation of genomes 

 Despite the availability of a wide variety of whole genome sequences, biologists are still 

unable to resolve differences in biological characteristics of different cell types, individuals or 

species based solely on heritability of gene sequence or DNA mutations. It has become clear that 

certain phenomena are governed by other determinants not contained within the DNA sequence. 

The term “epigenetics” (derived from the Greek “epi”, meaning “above” or “on top”), 

coined by the British biologist Conrad Waddington (Waddington, 1942), is the study of clonally 

heritable alterations that direct expression in genomes, unrelated to primary DNA sequence. 

These differences include, among others, DNA methylation, paramutation, DNA damage, and 

histone modifications.  

The biological consequences of epigenetic phenomena, seen in all eukaryotes, are varied. 

In mammals, totipotent cells are guided to a differentiated state via epigenetic changes (Boyer et 

al. 2006). Once a cell is fully differentiated into a specific cell type, the genome needs to be 

stabilized to realize long-term stable gene expression patterns, achieved here again by imparting 

epigenetic changes (Ng and Gurdon, 2008). Changes in the epigenome are linked to various 

types of cancer and have led to targets for therapeutics (Højfeldt et al. 2013). Epigenetic 

modifications have also been implicated in the mediation of DNA repair mechanisms (Li et al. 

2013; Tang et al. 2013). In the plant genome, epigenetic mechanisms are involved in 

developmental processes, stress-responses and phytohormone signaling (Chen and Zhou, 2013). 

In filamentous fungi, the epigenome has become important in the study of secondary metabolite 

synthesis (Gacek and Strauss, 2012). For example, the sterigmatocystin gene cluster in 

Aspergillus nidulans is regulated by competition between an activating epigenetic modification 

that promotes gene expression and a repressing epigenetic marker that mediates genome 

silencing (Reyes-Dominguez et al. 2010).  

The study of epigenetics has moved to the forefront of molecular biology and has been a 

dynamic and productive area of research in the last decade. Advances in epigenetics hold 

multiple implications for understanding previously inexplicable changes in eukaryotic gene 

expression and chromosome structure. 
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1.2 Organization of chromatin  

The basic packaging unit of DNA in nuclear chromatin is the nucleosome. Crystal 

structure analysis has revealed that the nucleosome is formed by a core particle consisting of 146 

base pairs of DNA superhelix wrapped around the histone octamer, which is made up of two 

H2A/H2B heterodimers and two H3 and H4 dimers (Luger et al. 1997). These are immediately 

followed by short stretches of linker DNA, which complex with H1 and H5 linker histones. The 

nucleosome particles wrapped in DNA form 10 nm linear “beads-on-a-string” structures, known 

as chromatin “fibers”. Linear chromatin can assemble into larger 30 nm fibers and even higher 

order structures, a phenomenon termed “chromatin compaction”. The properties and fundamental 

structure of these arrangements is still controversial (Grigoryev and Woodcock, 2012). Although 

many aspects of chromatin biology remain ambiguous, there is clear evidence that the chromatin 

fiber is a dynamic and flexible structure that moves inside living cells (Lanctot et al. 2007). 

Furthermore, some chromatin loci are more mobile than others and this can depend on their 

location within the nucleus.  

1.3 Epigenetic modifications of histones 

The histones that assemble into nucleosomes and chromatin fibers are subject to a 

number of modifications and mediate the epigenetic process. Most histone modifications occur 

in the first 25 N-terminal amino acids protruding from the nucleosome core. Several types of 

histone modifications have been identified, including phosphorylation of serine, threonine and 

tyrosine residues; lysine acetylation, ubiquitylation and sumoylation; and lysine and arginine 

methylation (Bannister and Kouzarides, 2011). 
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Figure 1. Post-translational modifications on histones 

A depiction of the histone “code”, made up of DNA methylations and other post-translational 

histone modifications, read by chromatin binding proteins. (Image source: Scharf and Imhof, 

2011) 
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The “histone code” theory proposes that combinations of post-translational covalent 

modifications on nucleosomal histones distributed along chromatin (Figure 1) confer a particular 

regulatory state or functional properties for that region (Strahl and Allis, 2000; Gardner et al. 

2011). Chromatin-binding molecules can recognize this histone “barcode” and facilitate the 

recruitment of other factors to alter the chromatin structure (Taverna et al. 2007).  

However, due to the lack of experimental support, the “histone code” theory has been 

questioned (Henikoff and Shilatifard, 2011). The central question is whether histone 

modifications cause a biological response or occur as a result of dynamic cellular processes. In 

other words, it has not yet been shown whether histone modifications dictate chromatin changes 

that result in a defined output, such as transcriptional activation or repression.   

1.4 Epigenetic regulation of gene expression 

Two general concepts of possible signaling by histone modifications and their effect on 

chromatin structure and transcriptional control have been proposed: direct (or cis) and indirect 

(or trans). An overview of these mechanisms is shown in Figure 2 (review of Greer and Shi, 

2012).  

In cis regulation, histone modifications influence higher order structures of chromatin, 

which impact nucleosome positioning, stability and assembly. One theory suggests the 

occurrence of chromosomal “looping” by interacting histone modifications (Figure 2, Panel a), 

physically bringing together separate, non-adjacent compartments of chromatin (Dekker et al. 

2002), which could include gene activating enhancer elements or repressing insular regions 

(Deng and Blobel, 2010). The phenomenon known as “gene kissing”, in which distant regulatory 

elements and target genes co-localize (occasionally between different chromosomes) has been 

demonstrated in Drosophila, mouse and human cells (Lanctot et al. 2007). Precisely how histone 

methylations mediate this process remains thus far untested (Allis and Muir, 2011).  

In trans regulation, histone modifications facilitate the recruitment or release of specific 

binding proteins, such as chromatin remodeling complexes, which mediate their function. One 

proposed mechanism suggests that inaccessible chromatin domains can be “opened” by DNA 

sequence-specific “pioneering” transcription factors (Cirillo et al. 2002) such as forkhead box 

proteins (Figure 2, Panel b). After this binding event, DNA methylation and other histone  
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Figure 2. Suggested modes of genome regulation by histone modifications.                  

A representation of proposed mechanisms for transcriptional regulation by histone methylations. 

Panel a) depicts a cis model and various proposed trans models are shown in Panels b)-d).  

(Image source: Greer and Shi, 2012) 
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modifications participate in making the chromatin more accessible to other transcription factors, 

the pre-initiation complex and RNA polymerase II (Serandour et al. 2011). Stretches of certain 

histone methylation patterns may be a requirement for the binding of transcription factors 

(Figure 2, Panel c), as has been demonstrated for the human Myc transcription factor binding to 

promoter regions (Guccione et al. 2006), although the mechanism for this is unclear. Finally, 

histone modifications can facilitate recruitment of chromatin remodeling complexes (Fuda et al. 

2009) to potentially regulate transcriptional efficiency and/or elongation (Figure 2, Panel d). 

Despite recent advances made in understanding indirect regulation by histone modifications, 

much remains to be understood about the precise functions and order of events that link them to 

transcription control (Greer and Shi, 2012). 

1.5 Histone methylations as epigenetic markers 

Post-translational modifications on histones H1, H2A, H2B, H3 and H4 have been 

experimentally correlated with diverse biological functions and processes, including 

development and differentiation, cell-cycle regulation, DNA repair, RNA splicing and 

transcriptional processes (Kouzarides, 2007; Pederesen and Helin, 2010; Greenberg, 2011; 

Eissenberg and Shilatifard, 2010).  

As reviewed by Fischle (2013), the most complex epigenetic modification is histone 

methylation. Histones are mainly methylated on their arginines and lysines, and rare methylation 

of histidines has been described (Gershey et al. 1969, Borun et al. 1972). All methylations of 

lysines occur on the ε-amine group, which can be mono- (me), di- (me2) or tri-methylated (me3). 

Peptidylarginine methyltransferases methylate arginines once or twice, the latter either 

asymmetrically (both methyl groups on one terminal nitrogen) or symmetrically (one methyl 

group on each terminal nitrogen). Table 1 summarizes the epigenetic effects of histone 

methylations that have been experimentally characterized to date. Methylations of histones have 

been implicated in both activation and silencing of global gene expression.  The most studied 

methylations are those occurring on histones H3 and H4. In general, transcriptional activation is 

associated with symmetrical dimethylation of arginine 2 on histone H3 (H3R2me2), H3K4me3,  
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Table 1. Proposed regulatory functions of histone methylations 

*'s': symmetrical methylation; 'a': asymmetrical methylation 

Histone 

and 

modified 

residue 

Methyl 

(me) 

groups Organism(s) Proposed function(s) 

References 

(PMID) 

H1.4K26 me2 H. sapiens transcriptional silencing 
16127177 

15099518 

H2AR3 me2 H. sapiens regulation of DNA repair response 22761421 

H2BK5 me1 H. sapiens transcriptional activation 17512414 

H3R2 me2a* H. sapiens, S. cerevisiae transcriptional repression 
17898714  

17898715 

H3R2 me2s* 

M. musculus,                      

D. melanogaster, X. laevis,  

S. cerevisiae 

transcriptional activation 22720264 

H3K4 me1 H. sapiens 
transcriptional repression;  

maintenance of promoter structure 
24656132 

H3K4 me1 D. melanogaster transcriptional activation 
23166019 

23560912 

H3K4 me1 C. reinhardtii transcriptional repression 16100335 

H3K4 me1 S. cerevisiae transcriptional repression 15949446 

H3K4 me2 H. sapiens transcriptional activation 17512414 

H3K4 me2 S. cerevisiae transcriptional repression 23028359 

H3K4 me2 H. sapiens 
establishment of transcription factor 

binding regions 
24530516 

H3K4 me2 D. melanogaster transcriptional de-repression 
15031712 

15175259 

H3K4 me3 
H. sapiens, O. sativa,          

S. cerevisiae 
transcriptional activation 

 

17043231 

17512414 

20086188 

12060701  

12353038  

14636589 

 

H3K4 me3 D. melanogaster transcriptional de-repression 
15031712 

15175259 

H3K4 me3 S. cerevisiae 
establishment of repressive chromatin 

structure 
23028359 

H3K4 me3 A. thaliana transcriptional elongation 23284292 

H3R8 me2 H. sapiens transcriptional repression 

15485929  

17043109  

17627275  

18694959  

21447565 

H3K9 me1 H. sapiens transcriptional activation 17512414 
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Histone 

and 

modified 

residue 

Methyl 

groups Organism(s) Proposed function(s) 

References 

(PMID) 

H3K9 me3 
M. musculus,  

H. sapiens 

propagation of heterochromatin;  

transcriptional silencing 

11242053  

17512414 

H3K9 me3 H. sapiens transcriptional repression 11959841 

H3K9 me3 N. crassa, A. thaliana DNA methylation 
11713521  

12194816 

H3K9 me3 N. crassa 
normal distribution of centromeric histone 

variant 
21505064 

H3K9 me3 D. melanogaster transcriptional activation 12397363 

H3R17 me1 H. sapiens transcriptional activation 

11747826  

11751582  

12498683 

H3R17 me2a* H. sapiens transcriptional de-repression 22723830 

H3R17 me2a* H. sapiens transcriptional activation 22451921 

H3R26 me2a* H. sapiens transcriptional de-repression 22723830 

H3K27 me1 H. sapiens transcriptional activation 17512414 

H3K27 me3 H. sapiens transcriptional repression 17512414 

H3K36 me2 
S. cerevisiae, S. pombe, 

D. melanogaster  

transcriptional elongation;  

chromatin deacetylation 

15798214  

16087749  

18007591  

24004944 

H3K36 me3 D. melanogaster 
transcriptional elongation;  

chromatin deacetylation 
18007591 

H3K36 me3 H. sapiens regulation of DNA repair response 23622243 

H3K79 me2 S. cerevisiae inhibition of heterochromatin propagation 
15920479 

12574507 

H3K79 me2 
D. melanogaster,  

M. musculus 
transcriptional activation 

15175259 

18285465  

H3K79 me2 H. sapiens transcriptional elongation 
17135274 

17855633 

H3K79 me3 D. melanogaster transcriptional activation 20203130 

H4R3 me2s* H. sapiens regulation of DNA repair response 22761421 

H4R3 me2s* H. sapiens DNA methylation; transcriptional silencing 19234465 

H4K16 me1 H. sapiens unknown 21925322 

H4K20 me1 D. melanogaster transcriptional silencing 12086618 

H4K20 me1 H. sapiens DNA replication 20953199 

H4K20 me2 
S. pombe, H. sapiens, 

M. musculus 
regulation of DNA repair response 

15550243 

23377543 

H4K20 me3 M. musculus transcriptional silencing  15145825 

*'s': symmetrical methylation; 'a': asymmetrical methylation 
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H3K9me1 and H3K79me3. Transcriptional repression is correlated with H3K9me3 and 

H3K27me3. H3K9me3 is also involved in genome silencing by heterochromatin formation and 

H3K79me2 inhibits heterochromatin formation. H3K36me2/3 and H3K79me2 function in 

transcriptional elongation.  Other proposed functions of histone methylations include DNA repair 

(H2AR3me2, H3K36me3 and H4K20me2), DNA methylation (H3K9me3 and H4R3me2s) and 

DNA replication (H4K20me1). Some histone methylations were shown to behave differently 

between species or to have dual roles. For example, H3K4me1 is an activating marker in fruit 

fly, but is correlated with transcriptional repression in yeast and human. The best-studied 

chromatin modification, tri-methylation of lysine 4 of histone 3 (H3K4me3), is in yeast 

associated with active transcription, but has also been implicated in transcriptional repression. 

 

1.6 Trimethylation of lysine 4 on histone H3 (H3K4me3) 

H3K4me3 is a well-conserved modified histone found universally in eukaryotes (Strahl et 

al. 1999; Fuchs et al. 2006). In yeast, the Set1/COMPASS complex is responsible for catalyzing 

methylations on H3 and was the first histone methylase to be identified (Miller et al. 2001).  

These modifications were first thought to be irreversible, due to the thermodynamic stability of 

the N-CH3 bond. The discovery of H3K4 demethylases (Shi et al. 2004, Trewick et al. 2005, 

Christensen et al. 2007) changed this perception. It has since been demonstrated that histone 

methylation, including trimethylation of H3K4me3 (Maltby et al. 2012), is a biochemically 

dynamic modification. 
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Several different proteins with a variety of biological functions can bind H3K4me3. 

These include transcriptional activators, chromatin remodeling factors, histone acetylation 

proteins, chromatin silencing factors, and proteins involved in splicing efficiency (reviewed by 

Vermeulen and Timmers, 2010). An important question is how specific recruitment of these 

factors is achieved, given their functional diversity and sometimes opposing effects. Currently, it 

is thought that this can be achieved by the interaction of H3K4me3 with specific transcription 

factors to recruit the appropriate binding molecule (Vermeulen et al. 2007). Another model 

suggests that H3K4me3 stabilizes the interaction between transcription factors and other proteins 

or facilitates the interaction of the H3K4me3 binding complexes with the DNA sequence (Tu et 

al. 2008). Finally, the proteins that can bind H3K4me3 have varying levels of affinity for this 

histone modification, which may also play a role in recruitment specificity (Sims and Reinberg, 

2006; Huang et al. 2006; Vermeulen et al. 2007). 

In general, H3K4me3 is localized to promoter regions or 5’ regions of genes and binding 

sites decrease in number over the next few kilobases (Schneider et al. 2004; Bernstein et al. 

2005; Barski et al. 2007). This pattern is specific to trimethylation of lysine 4, as di- and 

monomethyl K4 modifications show distinct distributions.  In yeast, H3K4me2 marks were 

shown to localize to the middle of gene coding regions and H3K4me1 is found at the end of 

genes (Pokholok et al. 2005).  

Over the past decade, a number of studies investigating a role for H3K4 methylation in 

gene expression have been published for a wide range of eukaryotic species (Table 1). The first 

studies to describe a role for H3K4me3 reported that this histone modification was characteristic 

of genes undergoing transcriptional activation in yeast (Bernstein et al. 2002; Santos-Rosa et al. 

2002). This finding was subsequently echoed for many other species in (reviewed by Sims et al. 

2003).  In metazoans, H3K4me3 was proposed to play a role in active gene transcription by 

serving as a high affinity binding platform for the general transcription initiation factor TFIID, 

which is shown to interact directly with the TAF3 subunit (Vermeulen et al. 2007, Lauberth et al. 

2013). As a result, it has been suggested that H3K4me3 stabilizes the pre-initiation complex at 

the promoter and increases the probability of transcription initiation.  

H3K4me3 is thought to function differently in yeast, as its TAF3 subunit lacks the PHD 

finger domain (Gangloff et al. 2001). There is emerging evidence supporting alternative 
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explanations for the relationship between H3K4me3 and gene expression in yeast. For instance, 

the yeast Set1p methyltransferase, responsible for the methylation of histone H3, was shown to 

bind to the initiating form of RNA polymerase II, suggesting that H3K4me3 could occur as a 

consequence rather than a cause of transcription (Ng et al. 2003). In addition, more recent studies 

exploring the role of H3K4me3 in yeast transcription have described a role for H3K4me3 in both 

active and repressed subsets of genes, suggesting that the role of histone modifications in gene 

expression may be context-dependent (Guillemette et al. 2011; Margaritis et al. 2012).  

 In filamentous fungi, studies describing the role and patterns of H3K4me3 are limited. To 

date, there have been two reports: in Neurospora crassa (Smith et al. 2011) and Trichoderma 

reesei (Seiboth et al. 2012). Each of these studies performed chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) to describe the DNA binding sites of H3K4me3. 

Descriptions for the role of H3K4me3 in these studies are brief and the authors did not explore 

the link between this histone modification and gene expression. A list of all ChIP-seq 

publications describing genome-wide patterns of histone modifications in fungi is shown in 

Table 2. 

 

1.7 Chromatin immunoprecipitation followed by sequencing: ChIP-seq 

Chromatin immunoprecipitation (ChIP) followed by sequencing, known as ChIP-seq, 

generates a genome-wide binding map of a given transcription factor, modified histone or DNA 

binding protein. This method employs the pull-down of a target protein using an antibody 

specific for a DNA binding protein, followed by massively parallel sequencing of the DNA 

fragments bound to the protein of interest (originally described by Barski et al. 2007, Johnson et 

al. 2007 and Roberston et al. 2007.) A summary of the steps of a ChIP-seq experiment is 

illustrated in Figure 3.  

 ChIP-seq experimental design requires some key considerations. Most importantly, 

specificity and sensitivity of antibodies, including commercially available ChIP-grade antibodies 

are required to be validated. According to the ENCODE and modENCODE consortia, which  
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Figure 3. Summary of a ChIP-seq experiment 
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Table 2. Published histone modification ChIP-seq studies in fungi 

A list of publications (derived from PubMed), which have reported histone modification data 

from a ChIP-sequencing (ChIP-seq) experiment. This list includes all published ChIP-seq studies 

to-date from yeast (Saccharomyces cerevisiae) and filamentous fungi.  

Species 
Histone 

modification 
Year Authors Major findings 

S. cerevisiae 

H3K36me2 

H3K36me3 

H2BK123Ub 

2011 Batta et al.  

H3K36me2 is more frequent in the genome 

than H3K36me3; H3K36 methylation is not 

linked to transcription frequency; H3K36 

methylation contributes indirectly to 

nucleosome stability in transcribed regions 

S. cerevisiae H3K4me3 2012 Maltby et al.  

H3K4me3 is dependent on histone H3 

acetylation; H3K4 demethylation is 

negatively regulated by histone H3 

acetylation 

S. cerevisiae H3K4me3 2014 Thornton et al.  

H2B ubiquitylation protein complexes play 

a context-dependent role in the deposition 

of H3K4me3 

S. cerevisiae H4K16Ac 2014 
Thurtle and 

Rine 

Telomeres contain a continuous domain of 

hypoacetylated H4K16; H4K16 is 

uniformly hypoacetylated at the mating-

type loci 

Neurospora 

crassa 

H3K9me3 

H3K4me3 

H3K4me2 

2011 Smith et al.  

H3K9me3 co-localizes with centromeric 

histone variants; H3K4me3 and H3K4me2 

are not enriched at centromeric DNA  

Cryptococcus 

neoformans 
H3K9Ac 2011 Haynes et al.  

Ada2 acetylates K9 on H3; H3K9Ac is 

proximal to transcription start sites 

Trichoderma 

reesei 

H3K9me3 

H3K4me3 

H3K4me2 

2012 Seiboth et al.  

The heterochromatin methyltransferase 

LaeA is not involved in the methylation of 

H3K4 or H3K9 

Fusarium 

fujikuroi 

H3K4me2 

H3K9me3 

H3K9Ac 

2013 Wiemann et al.  

Presence of H3K4me2 and H3K9Ac is 

correlated with gene expression in 

secondary metabolism gene clusters; 

presence of H3K4me2 and H3K9Ac 

correlates poorly with gene expression 

overall 
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have independently performed over 140 experiments in more than 100 cell types in four different 

organisms (ENCODE Project Consortium, 2004, 2011; Celniker et al. 2009, Landt et al. 2012), 

antibodies against histone modifications are required to pass two separate tests in order to be 

considered appropriate for use in ChIP: validation on immunoblot and another secondary test, 

such as a peptide-binding assay. Background controls for ChIP-seq are critical. A mock 

immunoprecipitation using non-specific immunoglobulin could be performed; but as suggested 

Kidder et al. (2011), sonicated genomic DNA from the same experimental source is preferred as 

this control provides a more appropriate background for subtraction of biased chromatin regions 

that are preferentially sheared during the sonication process and consequently overrepresented in 

the genome. Other technical considerations are sufficient sequencing depth of 

immunoprecipitated DNA, and the use of a minimum of two biological replicates. 

 

1.8 ChIP-seq data analysis to determine significantly enriched regions 

Following the ChIP-sequencing procedure, the resulting mapped reads can then be 

viewed in a genome browser, which provides a first impression of enriched regions in the 

genome. This is an important step in the process and it provides the end-user with a preliminary 

idea of the quality of the experiment and of the tag distribution in relation to genomic features 

(Kidder et al. 2011). An analysis is then performed to identify the presence of significant 

“peaks”. As programs may differ in how they detect peaks, it is important to choose a ChIP-seq 

“peak-calling” algorithm appropriate for the type of DNA binding protein being studied (broad 

regions typically associated with histone modifications and sharp regions with transcription 

factors). In general, all software for peak finding include the following components: 1) defining a 

signal profile along the genome, 2) determining or modeling the background signal, 3) 

establishing peak calling criteria, 4) filtering of artifacts and 5) significance ranking or scoring of 

individual peaks (Pepke et al. 2009). Although new programs for peak finding in ChIP-seq 

experiments are being developed at a very rapid rate, only a few have been demonstrated for 

their effectiveness in histone modification data. Peak callers were initially largely developed for 

use in detection of peaks at transcription factor binding sites, which are short (<50bp) and sharp 

in appearance and sparsely located throughout the genome (Chen et al. 2008; Valouev et al. 

2008; Jothi et al. 2008; Kharchenko et al. 2008; Zhang et al. 2008; Rozowsky et al. 2009). 
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Furthermore, different peak callers have, in various benchmarking studies, shown unequal 

performances on different data sets (Laajala et al. 2009; Wilbanks and Facciotti, 2010; Micsinai 

et al. 2012), emphasizing the importance of testing different peak callers and comparing the 

results.  

 

1.9 Aspergillus niger, a cell factory  

Aspergillus niger is a black spored, mitosporic filamentous fungal organism known for its 

efficient production of citric acid and other primary metabolites. It is sometimes referred to as a 

microbial cell factory for production of gluconic and citric acid (Rujiter et al. 2002), the latter 

considered to be one of the most efficient and highest yield industrial bioprocesses (Baker, 

2006). Aspergillus niger is also known for producing high quantities of commercially important 

proteins, due to its inherent high enzyme secretion capacity. In addition, A. niger is a host for 

production of a number of heterologous proteins (Punt et al. 2002; Archer and Turner, 2006). 

Other important enzymes secreted by A. niger include cellulases, hemicellulases, pectinases and 

proteases, which are involved in plant cell wall and complex biomass decomposition. Some of 

these enzymes are of interest for their applications in use for degrading non-edible plant matter 

in the emerging market of second-generation biofuels research (Galbe and Zacchi, 2007).  

Today, commercial enzyme production is a multi-billion industry (Novozymes, 2008) and 

applications include the production of high fructose corn syrup and clarification of cider, wine, 

and juice. 

Owing to its role in industry as a highly efficient protein and metabolite producer and the 

availability of its sequenced genome, A. niger has become an important model organism for the 

study of expression systems and industrial protein production (Baker, 2006). However, precisely 

how A. niger is able to produce protein at a high and efficient rate is unclear. Upon genomic 

comparison of the elements of the secretory pathway between A. niger and Saccharomyces 

cerevisiae, no significant differences could be found to explain how A. niger is a better secretor 

of extracellular proteins than S. cerevisiae (Pel et al. 2007).  

Experimental omics research, in combination with the availability of sequenced genomes, 

has resulted in fostering A. niger strain and process improvements. For example, Jacobs et al. 
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(2008) integrated proteomics and transcriptomics data to select protein targets for modulation, 

which resulted in increased production of the model β-glucuronidase gene. Together with the 

availability of other fully-sequenced genomes and data published from a variety of ‘omics 

studies, the research community is provided with a basis for comparing the evolution of cellular 

processes in the filamentous fungi, including their versatile primary carbon metabolic systems 

(Flipphi et al. 2008). 

Recently, Tsang et al. have generated a new assembly for the A. niger NRRL3 (N400) 

strain (unpublished data). The assembled eight telomere-to-telomere chromosomes have seven 

gaps corresponding to seven of the eight centromeres. The NRRL3 genome contains 34.5 Mbp 

and a thorough manual curation has defined 11,846 protein-coding genes. 

 

1.10 Rationale for studying comparative ChIP-seq of A. niger H3K4me3 in growth on 

maltose and xylose  

In the catabolism of biomass, filamentous fungi liberate monomeric sugars, which are 

efficiently metabolized by cells. The Aspergilli have become the most widely studied group of 

filamentous fungi for their potential in degrading complex plant polysaccharides from biomass 

(Culleton et al. 2013). Thus, primary carbon metabolism in Aspergillus niger and other 

filamentous fungi has been the subject of a number of investigations. The monosaccharide xylose 

is a product of degradation of xylan, the most abundant hemicellulose structure in the cellulosic 

microfibril of plant cell walls (Ebringerova and Heinze, 2000). Starch, one of the most common 

plant polysaccharides, is cleaved by amylases into maltose, a disaccharide. Both xylose and 

maltose can be used by A. niger as sole carbon substrates, but each of these sugars are 

catabolized by different metabolic routes (Figure 4). Unmodified xylose is taken up by the cell 

and subsequently reduced to xylitol by xylose reductase (Hondmann and Visser, 1994). Xylitol is 

converted to L-xylulose, which is subsequently phosphorylated and degraded in the pentose 

phosphate pathway. During growth on maltose, the glucoamylase gene is strongly induced and 

secreted for cleavage of maltose to glucose (Yuan et al. 2008; Vongsangnak et al. 2009). Glucose 

is then taken up by subsequent catabolic degradation by glycolysis or via the pentose phosphate 

pathway (Hondmann and Visser, 1994). Alternatively, glucose can be extracellularly  
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Figure 4. Representation of xylose and maltose metabolic pathways in Aspergillus niger.  

(Image source: Lu et al. 2010) 

 

 

 

 

 

 



 18 

oxidized to gluconic acid by glucose oxidase, and further metabolized in the pentose phosphate 

pathway. 

There are notable differences in gene expression for metabolism of maltose and xylose, 

as determined by analyses of the transcriptome (Yuan et al. 2008; Jorgensen et al. 2009) and 

proteome (Lu et al. 2010; Ferreira de Oliveira, 2011). At the transcriptional level, metabolism of 

different carbon sources is regulated by a variety of transcriptional activators and repressors. 

Growth on maltose induces the expression of glucoamylase (transcriptionally repressed during 

growth on xylose) by the transcription factor AmyR (Petersen et al. 1999). The transcription 

factor XlnR has been shown to regulate nearly all genes involved in the xylan and cellulose 

degradation pathway (de Vries and Visser, 2001). The carbon catabolite repressor CreA, 

represses genes involved catabolism of other carbon sources in the presence of its preferred 

source, glucose.  

As described above, H3K4me3 has been implicated in changes in global gene expression. 

The genome of A. niger NRRL3 is the first filamentous fungal genome with a fully, manually 

curated set of genes. This genome resource, combined with the well-characterized metabolism of 

xylose and maltose, provides an excellent system to investigate the role of H3K4me3 

modification in gene activity. In the present study, the genome-wide status of H3K4me3 

modification was investigated in A. niger. First, I optimized a procedure to efficiently obtain a 

nuclear-enriched fraction from A. niger for use in the chromatin immunoprecipitation step. I 

performed chromatin immunoprecipitation followed by sequencing (ChIP-seq) of A. niger shake 

flask cultures grown on maltose or xylose for two hours. Immunoprecipitated DNA bound to the 

H3K4me3 chromatin modification was mapped to the NRRL3 A. niger genome. I performed a 

peak finding analysis to determine significantly H3K4me3-enriched sites. I obtained 

transcriptome data for A. niger growth on maltose and growth on xylose to investigate the 

relationship between active gene transcription and the presence of H3K4me3. Finally, I 

examined the distribution of H3K4me3 in the chromosomes to determine patterns of localization 

of this modified histone in the A. niger genome.  
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Section 2: Methods 

2.1 Aspergillus niger strains, media and growth conditions 

Aspergillus niger strain N402 (FGSC A733) was obtained from the Fungal Genetics 

Stock Center (Kansas City, Missouri, USA).  The A. niger strain N402 (cspA1) is a 

morphological mutant with short conidiophores derived from the wild-type N400 (NRRL3, CBS 

120.49). Conidia for this experiment were generated by plating on potato dextrose agar and 

harvesting after 5 days of incubation at 30°C.  Conidia were collected in a saline/Tween solution, 

counted using a hemacytometer and stored at 4°C. 

All media were based on the Aspergillus minimal media (MM) of Pontecorvo et al. 

(1953), with differing carbon sources. Primary cultures were grown on 250 mL MM containing 

2% (w/v) fructose as a carbon source at 2 x 10
6 
spores/mL. All cultures were incubated at 30°C 

in a rotary shaker at 250 rpm. Mycelia were collected by filtration under suction on Miracloth 

(EMD Millipore) and briefly washed with sterile water. Aliquots of 2 g of mycelia were 

transferred to each secondary culture flask containing 60 mL of MM with 25 mM xylose or 25 

mM maltose as carbon sources. Cultures were further incubated for two hours at 250 rpm and 

30°C, then collected by filtration, flash frozen in liquid nitrogen and stored at -80°C until further 

processing.  

 

2.2 Formaldehyde crosslinking of A. niger mycelia 

For mycelia used in the chromatin immunoprecipitation experiments, cultures were 

crosslinked as follows: after the two hour secondary culture incubation on either xylose or 

maltose, formaldehyde (Molecular Biology Grade, Fisher) was added directly to the culture flask 

to a final concentration of 0.75%. Cultures were incubated at room temperature for 8 minutes 

with occasional mixing. The crosslinking reaction was quenched with 1M glycine added directly 

to the culture to a final concentration of 0.125M. The cross-linked mycelia were harvested and 

kept frozen as described in Section 2.1. 
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2.3 Cell lysis and crude separation of cytosolic and nuclear fractions 

To isolate a fraction enriched for nuclei to use in chromatin immunopreciptation from the 

A. niger cross-linked and frozen mycelia, a protocol modified from those previously described 

for use in the filamentous fungus Neurospora crassa (Loros and Dunlap 1991; Luo et al. 1998; 

Hong et al. 2008) was employed. First, frozen 1.5 g of mycelia were ground in liquid nitrogen to 

a fine powder using a mortar and pestle . Ground mycelia was transferred to a 7-mL beadbeating 

tube (Biospec Bioproducts) with 2.5 mL acid-washed 0.5 mm glass beads (Sigma) and 5 mL of 

Buffer A (1 M sorbitol, 7% Ficoll, 20% glycerol, 5 mM MgOAc, 3 mM calcium chloride, 3 mM 

DTT, 50 mM Tris-HCl pH 7.5) containing freshly added protease inhibitors (Complete Protease 

Inhibitor Tablet, EDTA-free, Roche) and 1mM PMSF. Beadbeating was performed using the 

Mini-Beadbeater 8 (Biospec Bioproducts) at 3200 rpm for 16 x 30s cycles. Samples were kept 

cool by placing on ice every 60s. After beadbeating, samples were transferred to 50-mL tubes 

and 10 mL of Buffer B (10% glycerol, 5 mM MgOAc, 25 mM Tris-HCl) containing protease 

inhibitors, taking care to rinse the beadbeating tubes with Buffer B to maximize sample recovery. 

Samples were gently mixed by inverting and centrifuged at 3000xg for 7 minutes in a swinging 

bucket rotor at 4°C to pellet mycelial debris, glass beads and unbroken mycelia. The resulting 

crude whole cell extract was carefully transferred to a clean, clear 30-mL ultra-centrifuge tube, 

taking care not to disturb the pelleted material, and centrifuged at 9400xg for 15 minutes at 4°C. 

Fractions of the resulting supernatant (crude cytosolic proteins) were retained for SDS-PAGE 

and determination of protein concentration. The resulting pelleted material (crude nuclear 

extract) was washed three times by carefully resuspending in 1 mL of wash buffer (5 mM 

MgOAc, 25 mM Tris-HCl), transferring to a 2-mL microfuge tube, centrifuging at 16000xg for 5 

minutes and discarding the supernatant.  
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2.4 Determination of DNA in pellet and supernatant fractions 

 Phenol/chloroform/isoamyl alcohol (PCI, 25:24:1) DNA extractions were performed for 

the resulting cytosolic and pelleted material to determine DNA content. Pellet fractions were 

resuspended in lysis buffer and were twice purified with PCI and nucleic acid was precipitated 

using ethanol. Precipitated DNA pellets were resuspended in TE buffer (1mM EDTA, 10 mM 

Tris-HCl, pH8.0) and treated with RNase A at 30°C for 30 min. Samples were purified once 

more with PCI, ethanol precipitated and resuspended in TE buffer.  

To determine whether any significant amount of DNA and nuclei were being lost to the 

supernatant fraction during the beadbeating step, samples of supernatant were subjected to 

phenol/chloroform/isoamyl alcohol DNA purification.  In total, 6 x 500 μL fractions (3 mL total, 

or 20% of the whole supernatant fraction) were combined in order to concentrate them.  

Four microlitres from each sample from the pellet and supernatant fractions were loaded 

in each lane of a 2% agarose gel for electrophoresis, followed by staining with ethidium 

bromide. For nuclei enriched fractions, DNA concentration was also evaluated using the 

PicoGreen assay (Invitrogen) following the manufacturer’s instructions.  

 

2.5 Assessment of formaldehyde crosslinking  

To determine the appropriate formaldehyde concentration for chromatin crosslinking, 

cultures were treated as described previously (Section 2.2) with increasing final concentrations 

of formaldeyde (0%, 0.5%, 0.75%, 1%).  To determine whether formaldehyde crosslinking of 

chromain was sufficient, or if material was over-crosslinked, purified DNA from crosslinked and 

reverse crosslinked samples were visualized on a 2% agarose gel with ethidium bromide staining 

(see Section 2.4 for DNA purification procedures).  
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2.6 Protein digestion 

Following the pelleting and wash steps, the composition of the resulting supernatant 

liquid collected after the beadbeating step and washed pellet fraction were prepared for analysis 

by mass spectrometry.  

Protein sample determination was carried out with the RCDC kit assay (BioRad, 

Mississauga, Ont).  For in-gel digestions, samples containing 75 of μg of protein were loaded 

onto a 4-12% SDS-PAGE gradient gel and stained with Coomassie Blue. Whole lanes were 

evenly cut into 15 bands, subsequently destained, reduced, cysteine-alkylated, and in-gel 

digested with sequencing grade modified trypsin (Promega, Madison, WI) as previously 

described (Wasiak et al. 2002).  Peptides were extracted from the gel pieces through multiple 

incubations in solutions of 1% formic acid (FA) and increasing concentration of acetonitrile 

(ACN).  The extracts were dried in a speedvac and resuspended in 60 μl 5% ACN:0.1% FA.  

 

2.7 LC-MS/MS analysis 

Peptide digest (5 μL) was loaded onto a 15 cm x 75 mm i.d PicoFrit column (New 

Objective, Woburn, MA) packed with Jupiter 5 mm, 300 Å, C18 resin (Phenomemex, Torrance, 

CA) connected in-line with a Velos LTQ-Orbitrap mass spectrometer (Thermo-Fisher, San Jose, 

CA). Peptide separation was done using a linear gradient generated by an Easy-LC II Nano-

HPLC system (Thermo Fisher) using a mixture of solvent A (3% ACN:0.1% FA) and solvent B 

(99.9% ACN:0.1%FA). The gradient started at 1% B, was set to reach 27% B in 21 min, ramped 

to 52 % B in 7 min and 90% B in 2 min, then held at 90% for 5 min.    

The capillary voltage on the nanospray source was adjusted to get the best spraying 

plume at 10% B and typically ranged from 1.9 to 2.1 kV. MS survey scan spanning the 350 to 

2000 m/z range was done at 60000 resolution. The top 10 doubly, triply or quadruply charged 

ions with intensity higher that 5000 counts were considered candidates to undergo CID MS/MS 

fragmentation in the LTQ-Velos ion trap. Optimal accumulation times were set automatically 

using adaptive Automatic Gain Control with a maximum accumulation time of 150 msec. 

Selected ions were put in a dynamic exclusion list for 15 sec and reacquired again if still detected 

within a 30 sec window. MS/MS scan range was automatically adjusted based on precursor m/z 
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and charge state. Selected ions were fragmented using a normalized collision energy set at 35% 

and an isolation window of 2 m/z. 

 

2.8 Mass spectrometry bioinformatics data processing 

Raw mass spectrometric data were processed for generation of peaklists using Mascot 

Distiller version 2.3.2.0. The peaklist data was searched against the A. niger protein sequence 

database using Mascot version 2.3.01 followed by X!Tandem version 2007.01.01.1 on the subset 

of identified proteins. Mascot and X!Tandem searches were done using a fragment ion mass 

tolerance of 0.80 Da and a parent ion tolerance of 10.0 ppm. Iodoacetamide derivative of 

cysteine was specified in Mascot and X!Tandem as a fixed modification. Dehydration of the N-

terminus, loss of ammonia of the N-terminus, deamidation of asparagine and glutamine, 

methylation of aspartic acid, glutamic acid and the C-terminus, oxidation of methionine and 

acrylamide adduct of cysteine were specified in X!Tandem as variable modifications. Oxidation 

of methionine was specified in Mascot as a variable modification. Scaffold (version 

Scaffold_4.1.1, Proteome Software Inc.) was used to validate MS/MS based peptide and protein 

identifications. In order to ensure a false discovery rate of less than 1% at the peptide level, 

peptide identifications were accepted if they could be established at greater than 90.0% 

probability as specified by the Peptide Prophet algorithm (Keller et al. 2002). Protein 

identifications were accepted if they could be established at greater than 95.0% probability and 

contained at least 2 identified peptides. Protein probabilities were assigned by the Protein 

Prophet algorithm (Nesvizhskii, 2003). Proteins that contained similar peptides and could not be 

differentiated based on MS/MS analysis alone were grouped to satisfy the principles of 

parsimony. 

 

2.9 Lysis of crude nuclei enriched pellet and determination of sonication conditions  

After the final wash step of the crude nuclear preparation procedure, the pellet was 

resuspended in 600μL Buffer C (50mM HEPES-KOH pH7.5, 140mM NaCl, 1mM EDTA 

pH8.0, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 1mM PMSF and protease 

inhibitor cocktail).  



 24 

To determine optimal nuclei fraction sonication conditions for use in ChIP-seq, 

formaldehyde-crosslinked crude nuclear extracts were prepared as described above (Section 2.3). 

The lysed nuclear extracts were pooled and subjected to sonication trials on an ultrasonic 

homogenizer fitted with a microtip (Biologics, Inc.) performed with increasing numbers of 10-

second cycles (3x10s, 4x10s, 5x10s, 6x10s). All sonications were performed at 20% output and 

tubes were incubated on ice throughout the sonication procedure with 15s breaks between each 

cycle.  Following sonication, samples were reverse-crosslinked overnight by incubating in lysis 

buffer (Buffer C) at 65°C and purified using the phenol/chloroform method. For average size 

estimation, purified DNA was visualized by electrophoresis on a 2% agarose gel with ethidium 

bromide staining.  

 

2.10 Chromatin immunoprecipitation (ChIP) 

Aliquots of 150 μL of enriched nuclei, formaldehyde crosslinked and sonicated lysate 

were transferred to tubes for either DNA purification as control DNA, chromatin 

immunoprecipitation with 4 μg anti-H3K4me3 antibody (Ab 8580, Abcam) or incubation with 

beads only (no-antibody control). For ChIP, lysates were incubated with the antibody for 1.5 hrs 

with rotation at 4°C before the addition of 30 μL of PureProteome Protein A magnetic beads 

(Millipore). All samples were further incubated overnight with gentle rotation on a tube rotator at 

4°C. Immunoprecipitates were washed once by addition of 1 mL Buffer C, twice using 1 mL 

LiCl wash buffer (0.25M LiCl, 0.5% NP-40, 0.5% sodium deoxycholate, 1 mM EDTA, 10 mM 

Tris-HCl pH 8.0) and once with 1 mL TE buffer, each performed for 5 minutes with rotation at 

4°C. Immunoprecipitated DNA was eluted by adding 120 μL 1% SDS, 0.1M NaHCO3 and 

incubating for 1 hour at 65°C, mixing gently every 15 minutes. The eluate was transferred to a 

fresh tube and further incubated with at 65°C overnight to reverse DNA crosslinks and with 2 μL 

0.5 mg/mL RNase A. Immunoprecipitates were subsequently purified using a QIAquick PCR 

Purification Kit (Qiagen) according to the manufacturer’s specifications. DNA concentration was 

determined for all purified samples using the PicoGreen method (Invitrogen).  
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One microgram RNase A (Invitrogen) was added to control DNA aliquots and incubated 

overnight at 65°C to reverse DNA crosslinks.  Control DNA was purified twice using one 

volume phenol/chloroform/isoamyl alcohol, precipitated using two volumes 99% ethanol, and 

resuspended in 10mM Tris buffer, pH 8.5.  Input DNA was visualized with ethidium bromide 

staining for average size estimation by electrophoresis on a 2% agarose gel. 

2.11 Immunoblotting to determine the reactivity of the anti-H3K4me3 antibody and 

sequencing of immunoprecipitated chromatin 

To determine the reactivity and specificity of the commercial H3K4me3 antibody, 

immunoblotting was performed on the immunoprecipitated chromatin. As negative control, 

crosslinked, total sonicated chromatin not subjected to immunoprecipitation was also examined. 

Briefly, proteins were separated on a 12% SDS-PAGE gel wet-transferred to a nitrocellulose 

membrane, then incubated with a 5% non-fat milk PBS solution containing 0.1% Tween-20 at 

room temperature with agitation for 1 hour. Anti-H3K4me3 antibody (Abcam, Ab8580) diluted 

1:2000 was added to the milk solution and incubated overnight at 4°C with agitation. The 

membrane was then washed 3 times for 5 minutes using the milk solution. Secondary antibody 

incubation was performed for 1 hour at room temperature with horseradish-peroxidase 

conjugated mouse anti-rabbit light chain specific monoclonal IgG (Jackson ImmunoResearch 

Laboratories, Inc. 211-052-171). Blots were developed using the ECL Plus kit (GE Healthcare) 

and imaged on a Typhoon Trio Scanner (GE Healthcare). 

The libraries were prepared and sequenced at the Innovation Centre at McGill University 

(Montreal, QC, Canada) according to the High Sample (HS) protocol (Illumina, Inc.) and with 

the following modifications: the fragmentation step was omitted and the preparation began 

instead at the end repair step of the workflow; gel purification was performed on library 

molecules in the range of 250-400 bp using the Sage PippinPrep system with at 1.5% gel 

cassette, and the enrichement PCR step consisted of 17 cycles rather than 10. Sequenced read 

data from ChIP and control libraries were were mapped to the NRRL3 A. niger genome using the 

Genomic Short-read Nucleotide Alignment Program (Wu and Nacu, 2010). 
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2.13 Identification of H3K4me3 peaks 

Significant histone modification peak detection was performed using SICER (Zang et al. 

2009). SICER software was downloaded from http://home.gwu.edu/~wpeng/Software.htm and 

the Python compilers Numpy and Scipy were obtained for running the package. Gaps are used to 

allow for read-count fluctuations, repetitive regions and unmodified nucleosomes. Gap size can 

be adjusted to the nature of the chromatin modification and the length of the gap is a bp-multiple 

of the window size. The following parameters were chosen to perform peak finding with SICER:  

1) Window size 200 bp, gap size 200 bp (W200-G200), 2) W100-G100, 3) W40-G40, 4) W20-

G20, 5) W20-G40, 6) W20-G60, 7) W20-G80 

For all trials, read redundancy threshold was set to include all reads, effective genome size was 

set to 1, and FDR was set to 0.05.  

Peak splitting with the peaksets generated with SICER was performed using the 

PeakSplitter utility from the PeakAnalyzer program (Salmon-Divon et al. 2010; available at 

http://www.ebi.ac.uk/research/bertone/software). Parameters for the peak splitting operation 

were set to separation float= 0.6 and minimum height = 5.  

 Identification of significant peaks from sequenced and mapped ChIP-seq reads was 

performed using the Control-based ChIP-seq Analysis Tool (or CCAT, Xu et al. 2010; available 

at http://cmb.gis.a-star.edu.sg/ChIPSeq/paperCCAT.htm) peak finding method and three trials 

were performed with the following sliding window sizes:  

1) 1000 bp (as suggested by the package manual and default parameter for histone 

modifications), 2) 500 bp, 3) 100bp  

Peak finding with Qeseq (Micsinai et al. 2012; available at 

http://sourceforge.net/projects/klugerlab/files/qeseq/) with the algorithm default parameters and a 

cutoff of 0.05.  

  

 

http://home.gwu.edu/~wpeng/Software.htm
http://www.ebi.ac.uk/research/bertone/software
http://sourceforge.net/projects/klugerlab/files/qeseq/
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2.14 Peakset and differential binding analysis with the DiffBind package for R 

Bioconductor 

 Differential H3K4me3 sites were identified using the DiffBind package for R 

Bioconductor (Stark and Brown, 2011) available at 

http://bioconductor.org/packages/2.13/bioc/html/DiffBind.html 

 Pearson correlations of peaksets were calculated and consensus binding sites for maltose 

or xylose replicates were determined using the overlap function in DiffBind. Reads were counted 

in the genomic intervals from consensus peaksets. Identification of differentially bound sites was 

performed using the EdgeR method (Robinson et al. 2010). DiffBind plot functions were used to 

draw correlation heatmaps, Venn diagrams, and MA plots. 

 

2.17 File conversions, ChIP peak intersections, annotation and analysis of peaksets 

 File type conversions, gene model annotation of the resulting peaksets and in-depth 

analysis for counting intersecting features for peaksets was performed using the BEDTools Suite 

package (Quinlan and Hall, 2010, available at http://code.google.com/p/bedtools/). A minimum 

overlap fraction of 15% of the gene model feature was imposed for performing annotation of 

ChIP peaksets. 

 

2.19 Statistical testing of differences between distributions of FPKM values 

 Mann-Whitney tests (Bauer, 1972; Hollander and Wolfe, 1973, 1999) were performed in 

R Bioconductor using the two-sample Wilcox.test{stats} function.  

 

2.20 Data visualization 

Peaksets and raw reads were visualized in the IGV Genome Browser, downloaded from 

the Broad Institute (available at http://www.broadinstitute.org/igv/).  

 

http://bioconductor.org/packages/2.13/bioc/html/DiffBind.html
http://code.google.com/p/bedtools/
http://www.broadinstitute.org/igv/
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Section 3: Results 

3.1 Protocol development for ChIP-seq in Aspergillus niger  

 Methods for ChIP-seq have not been described for Aspergillus. Based on ChIP-seq 

protocols established for other organisms, I have established the experimental parameters for 

isolation, crosslinking, sonication, immunoprecipitation and de-crosslinking of chromatin for 

ChIP-seq for A. niger as described below. 

 

3.1.1 Enrichment of nuclear fraction for ChIP-seq analysis 

I developed and validated a quick method for obtaining an enriched nuclear fraction from 

A. niger mycelia for use in ChIP-seq. The protocol was adapted from that of Loros and Dunlap 

(1991) for isolation of nuclei in Neurospora crassa. Briefly, 2 g of mycelial mats recovered from 

A. niger cultures were subjected to repeated, short cycles of beadbeating with glass beads in a 

viscous Ficoll buffer, followed by dilution in aqueous buffer and centrifugal removal of 

unbroken mycelia, glass beads and debris, as described in the Methods. The resulting supernatant 

containing the whole cell extract was then centrifuged at high speed to pellet nuclei.  

To determine potential loss of nuclei and DNA to the cytosolic fraction prior to pelleting, 

six fractions of 500 μL from the supernatant fraction were combined and DNA was extracted 

using phenol/chloroform extraction and ethanol precipitation. The precipitates were pooled and 

DNA was visualized on an ethidium bromide stained agarose gel. No visible band was detected 

in the supernatant, and strongly stained bands were seen in undiluted, 1:10 and 1:20 diluted 

fractions from the pellet (Figure 5). This suggested that DNA was enriched in the pelleted 

fractions.  
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Supernatant 
 fractions 

  1     2     3  

 

Figure 5. DNA content of nuclear and cytosolic fractions. Following centrifugation of the 

disrupted mycelia, the pellet and supernatant fractions were resolved on 2% agarose gel and 

stained with ethidium bromide. Lanes for the pelleted fractions show the undiluted extract, 1:10 

and 1:20 dilutions (right to left for three biological replicates). Lanes for the supernatant 

fractions represent undiluted samples of three biological replicates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Distribution of marker proteins in pelleted and supernatant fractions. Supernatant 

and pelleted fractions were characterized by mass spectrometry to identify proteins and their 
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relative abundance. Spectral counts for the pelleted fraction (red bars) and for the supernatant 

fraction (blue bars) are shown for five protein markers specific for subcellular locations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To further evaluate the enrichment, proteins from the supernatant and pellet fractions 

were analyzed by mass spectrometry. Experimentally determined, subcellular protein markers 

Total spectrum count 
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(Andreyev et al. 2010) were used for comparing LC-MS/MS spectra matched to the protein 

sequences of A. niger. Figure 6 shows the relative abundance in the nuclear and supernatant 

fractions of five marker proteins specific for the nucleus, plasma membrane, cytoplasm, 

endoplasmic reticulum and mitochondrion. The results from mass spectrometric analysis suggest 

that although some proteins from other subcellular compartments were found in the pellet, this 

fraction contained a relatively high proportion of nuclear proteins. These data provide additional 

evidence that the pelleting procedure was successful in enriching nuclear materials. 

 

3.1.2 Demonstration of suitable crosslinking conditions  

Optimal chromatin crosslinking needs to be determined since insufficient crosslinking 

may result in loss of protein-DNA complexes and over-crosslinking will render the chromatin 

insoluble, unavailable for antibody capture and /or irreversible (Das et al. 2004; Haring et al. 

2007).  I generated chromatin samples crosslinked for a fixed time and with increasing 

formaldehyde concentrations. The samples were de-crosslinked (incubated overnight at 65°C in 

elution buffer) and resolved on an agarose gel for visualization of the DNA fragments. The 

starting material is over-crosslinked and irreversible if it is not recovered with the de-

crosslinking step. Similarly, chromatin is under-crosslinked if recovered without de-crosslinking. 

Panel A of Figure 7 shows that at 1.0% formaldehyde, the crosslinking is irreversible and 0.75% 

formaldehyde is the highest concentration where crosslinked chromatin can be reversed. Panel B 

of Figure 7 shows that 0.75% formaldehyde is sufficient for crosslinking because at this 

concentration, DNA can only be recovered following de-crosslinking. Therefore, crosslinking 

with 0.75% formaldehyde was used for subsequent experiments. 

 

 

 

 

Figure 7. Chromatin crosslinking and de-crosslinking 
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Panel A) Chromatin was crosslinked for a fixed time (8 minutes) with increasing formaldehyde 

concentrations (at 0%, 0.5%, 0.75% and 1% final concentration), subjected to a de-crosslinking 

step, then resolved on a 2% agarose gel stained with ethidium bromide. Panel B) Recovery of 

crosslinked and de-crosslinked chromatin. Lane 1, chromatin crosslinked at 0.75% 

formaldehyde; Lane 2, de-crosslinked chromatin following crosslinking at 0.75% formaldehyde; 

and Lane 3, chromatin that had not been subjected to crosslinking.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.3 Determination of sonication conditions for crosslinked chromatin  
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To perform chromatin immunoprecipitation, it is necessary to obtain fragments of an 

appropriate size for downstream library size selection and sequencing. Resulting fragments from 

sonication should fall within the 200 – 600 bp range (Park, 2009).  Using a microtip sonicator, I 

performed a sonication trial with increasing numbers of 10-second cycles. The sonicated DNA 

was resolved on an agarose gel and stained with ethidium bromide. Panel A of Figure 8 shows 

that sonication at 20% power output yielded fragments in the desired size range. Although the 

overall sizes of the fragments did not change significantly compared to those observed with 

fewer sonication cycles, the presence of the high molecular genomic DNA band was 

significantly reduced with more cycles. As a result, I selected six cycles of 10s for chromatin 

fragmentation by sonication for downstream sequence library preparation (Figure 8, Panel B).  

 

3.1.4 H3K4me3 chromatin immunoprecipitation followed by sequencing (ChIP-seq) 

A chromatin immunoprecipitation protocol was adapted from those of Johnson et al. 

(2007; updated protocol available at http://www.hudsonalpha.org/myers-lab/protocols/) and 

Saleh et al. (2008). Reactivity and specificity of anti-H3K4me3 antibody was determined by 

Western blot (Figure 9). With the crude nuclear extract, the Western blot showed a band at about 

17 kDa, the expected molecular weight of the histone H3 protein and the signal increases with 

increasing amount of nuclear extract loaded. These results suggest that the anti-H3K4me3 

antibody reacts specifically with A. niger histone H3. I then used the antibody to react with 

crosslinked chromatin. Following immunoprecipitation, the chromatin was subjected to Western 

blot analysis. The results suggested that the anti-H3K4me3 antibody binds specifically when 

incubated with crosslinked chromatin. 

 To identify H3K4me3-marked chromatin, A. niger mycelia were cultured independently 

with maltose or xylose as carbon sources. Two biological replicates were performed. The 

crosslinked chromatin from each of the four samples was immunoprecipitated with anti-

H3K4me3 antibody and sequenced. Control DNA not subjected to immunoprecipitation from 

each of the four samples was sonicated to 200-600 bp and sequenced. Sequencing was performed 

at the Innovation Centre at McGill University (Montreal, QC, Canada) on an Illumina Hi-Seq  

http://www.hudsonalpha.org/myers-lab/protocols/
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Figure 8. Determination of sonication conditions. Chromatin fragmentation size was 

determined by performing a series of sonication trials with increasing number of 10s cycles at 

20% power output and visualizing the resulting DNA on an ethidium bromide stained agarose 

gel (Panel A). Sonicated chromatin from maltose and xylose growth replicates used for ChIP-seq 

in the current experiment is shown in Panel B. 
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Figure 9. H3K4me3 antibody specificity. An immunoblot was performed using increasing 

amounts of crude nuclear lysate (starting material) and proteins eluted from chromatin 

immunoprecipitation using the antibody against H3K4me3 (Abcam, Ab8580). The dark band is 

observed at 17 kDa, the expected molecular weight for H3K4me3.  
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Sequencing System. Sequenced reads were then aligned to the genome using the Genomic Short-

read Nucleotide Alignment Program (Wu and Nacu, 2010).  

3.2 H3K4me3 ChIP-seq data processing 

3.2.1 H3K4me3 peak finding  

To locate regions showing significant H3K4me3 enrichment (or “peaks”), I tested a 

number of peak finding algorithms. Peak finding was first attempted using the CCAT algorithm 

(Control based ChIP-seq Analysis Tool, Xu et al. 2010; available at http://cmb.gis.a-

star.edu.sg/ChIPSeq/paperCCAT.htm), reported as a reliable tool for identification of broad 

histone modification peaks (Kidder et al. 2011). I also used the Qeseq algorithm (Asp et al. 2011; 

available at http://sourceforge.net/projects/klugerlab/files/qeseq/). I examined results from 

CCAT and Qeseq by visualizing the peaks in the genome browser. Both CCAT and Qeseq failed 

to reliably identify peak regions that visually corresponded with the raw reads and instead 

identified intervals that bore no resemblance to the enriched mapped read regions (data not 

shown).  

Peak finding was then attempted using the SICER (spatial clustering approach for 

identification of ChIP-enriched regions) peak finding algorithm (Zang et al. 2009; available at 

http://home.gwu.edu/~wpeng/Software.htm). Visual examination in the genome browser 

confirmed that SICER reliably identified peaks in locations enriched for H3K4me3 seen in the 

raw read mapping to the genome. The SICER method takes into account the tendency of histone 

modification ChIP-seq peaks to form “clusters”.  First, the genome is partitioned into windows of 

read counts and identifies peaks as clusters of windows that are unlikely to appear by chance. 

Once candidate regions have been identified, SICER uses a control DNA library (generated from 

total sonicated chromatin not subjected to immunoprecipitation) to determine the significance of 

enrichment on each candidate. SICER scales control read count to account for size differences in 

the control and ChIP libraries. Visualization of the mapped reads in the genome browser 

revealed that some regions mapped to the genome from control DNA also formed peaks. These 

overrepresented regions were eliminated from the final peaksets after performing SICER 

analysis (Figure 10).   

   

http://cmb.gis.a-star.edu.sg/ChIPSeq/paperCCAT.htm
http://cmb.gis.a-star.edu.sg/ChIPSeq/paperCCAT.htm
http://sourceforge.net/projects/klugerlab/files/qeseq/
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Figure 10. Control sonicated DNA as a control for H3K4me3 ChIP-seq. 

The effect of normalization of H3K4me3 ChIP-seq reads with control ‘input’ DNA (total 

sonicated chromatin not subjected to immunopreciptation) on the final peakset as determined by 

SICER (SICER peaks) on the final peakset as determined by using window size = 20bp and gap 

size = 60bp. Panels A) and B) are examples representing two different regions of the genome.  

Predicted gene models are displayed in the lower track.  
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A key feature of SICER is the adjustable window and gap feature to account for read 

count fluctuations within an island and reliably separate distinct peaks. As the estimated size of a 

single nucleosome and its linker region is ~200bp, the authors recommended using a window 

size and gap size = 200 bp (W200-G200) for histone modification peak detection. As such, the 

first SICER peak finding trial was performed using these parameters. Visual examination in the 

genome browser for the W200-G200 data set in the genome browser revealed that some 

H3K4me3-enriched regions were missing in the final peakset. To determine whether this was 

occurring as a result of the choice in peak finding parameters, I attempted to use progressively 

smaller window and gap size (W100-G100, W40-40, W20-G20) and observed an increase in the 

numbers of peaks. I generated additional peaksets using the 20 bp windows with increasing gap 

sizes (W20-G40, W20-G60, W20-G80).  

 

3.2.2 Analysis of SICER peakset correlation between replicates 

 To determine the consistency in peak finding between biological replicates for the 

various SICER peaksets, Pearson correlation scores based on peak occupancy were calculated 

using the DiffBind package for R Bioconductor (Stark and Brown, 2011). As shown in the 

heatmap in Figure 11, peaksets for the biological replicates form a cluster by growth condition. 

Clustering by growth condition was also seen for all other peaksets using the increasing window 

and gap sizes (Table 3). Although correlation values were similar for all SICER trials with 

increasing window and gap sizes, the W20-G60 and W20-G80 peaksets yielded the highest 

correlation between the biological replicates cultured on maltose or xylose.  

 

3.2.3 SICER peakset analysis 

 When surveying each of the peaksets in the genome browser, I observed a number of 

issues, which could potentially affect the quality of the peaksets in downstream analyses. To 

address these issues, I further analyzed the peaksets to determine the following: 1) number of  
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Figure 11. Correlation heatmap of peaksets. Clustering of peaksets derived from biological 

replicates cultured on maltose (samples 1 and 2) and cultured on xylose (samples 3 and 4) as 

determined by Pearson correlation.  Shown here is the result for the W20-G60 peak finding trial.  
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Table 3. Pearson correlation values of SICER peaksets from sample replicates. Window size 

(in base pairs) is denoted by ‘W’ and gap size by ‘G’. Each table shows the correlation values 

between biological replicates (denoted by ‘1’ or ‘2’) from the various SICER peak finding trials.  

W20-G20     

 xylose 1 xylose 2 maltose 1 maltose 2 

xylose 1 1.00 0.82 0.66 0.69 

xylose 2 0.82 1.00 0.70 0.67 

maltose 1 0.667 0.70 1.00 0.83 

maltose 2 0.69 0.67 0.83 1.00 

 

 

W20-G40     

 xylose 1 xylose 2 maltose 1 maltose 2 

xylose 1 1.00 0.84 0.67 0.70 

xylose 2 0.84 1.00 0.71 0.69 

maltose 1 0.70 0.71 1.00 0.85 

maltose 2 0.70 0.69 0.85 1.00 

 

 

W20-G60     

 xylose 1 xylose 2 maltose 1 maltose 2 

xylose 1 1.00 0.86 0.70 0.66 

xylose 2 0.86 1.00 0.68 0.73 

maltose 1 0.70 0.68 1.00 0.86 

maltose 2 0.66 0.73 0.86 1.00 
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W20-G80     

 xylose 1 xylose 2 maltose 1 maltose 2 

xylose 1 1 0.86 0.68 0.72 

xylose 2 0.86 1 0.74 0.71 

maltose 1 0.68 0.74 1 0.86 

maltose 2 0.72 0.71 0.86 1 

 

W40-G40     

 xylose 1 xylose 2 maltose 1  maltose 2 

xylose 1 1 0.84 0.67 0.71 

xylose 2 0.84 1 0.72 0.70 

maltose 1 0.67 0.72 1 0.83 

maltose 2 0.71 0.70 0.83 1 

 

W100-G100     

 xylose 1 xylose 2 maltose 1  maltose 2 

xylose 1 1 0.85 0.67 0.71 

xylose 2 0.85 1 0.75 0.70 

maltose 1 0.67 0.75 1 0.84 

maltose 2 0.71 0.70 0.84 1 

 

 

W200-G200     

 xylose 1 xylose 2 maltose 1  maltose 2 

xylose 1 1 0.86 0.68 0.73 

xylose 2 0.86 1 0.75 0.71 

maltose 1 0.68 0.75 1 0.84 

maltose 2 0.73 0.71 0.84 1 
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genes intersecting peaks; 2) number of individual peaks overlapping more than one gene and      

3) number of genes associated with more than one peak. Since decreasing the window and gap 

size increased the overall number of peaks, it was important to determine whether more peaks 

also corresponded to more genes containing H3K4me3. When using smaller window and gap 

sizes, the overall number of H3K4me3 modified genes increased (Figure 12, Panel A). Among 

peaksets generated with 20 bp windows and increasing gap sizes, the number of peaks 

intersecting with gene models was similar, although a notable drop was seen when gap size was 

80 bp (Figure 12, Panel B). Regions that were omitted with larger window sizes were usually 

minor peaks and/or located next to another major peak (Figure 13). 

I also evaluated the peaksets to determine the number of peaks that overlapped multiple 

gene models. Visual assessment of the peaks in the genome browser revealed that some peaks 

were not appropriately split between distinct gene models. I used the “count” feature from the 

BEDTools Suite Package (Quinlan and Hall, 2010, available at 

http://code.google.com/p/bedtools/) to determine the number of gene models overlapping single 

peak regions. The number of peaks that overlapped more than one gene model was significantly 

higher when window and gap sizes were larger (data not shown). However, even the smallest 

window and gap size peak finding parameters (W20-G20) were not able to perfectly split all 

ChIP enriched regions so that single peaks were coupled to single gene models. To resolve this 

issue, I employed PeakSplitter (Salmon-Divon et al. 2010; 

http://www.ebi.ac.uk/research/bertone/software), a utility of the PeakAnalyzer program. This 

tool performs a subdivision of aggregate peak regions (areas containing more than one peak 

“summit”) into discrete subpeaks. The splitting operation is performed using a user-defined 

parameter, which can be adjusted for sequencing read depth. I examined the results from the 

application of PeakSplitter in the genome browser. I observed that PeakSplitter introduced a 

20bp gap in regions where read depth decreased between gene models but were not split by the 

initial SICER peak finding. Finally, I re-evaluated the number of peaks overlapping more than 

one gene following the peak splitting operation. From this analysis, I determined that by using 

the PeakSplitter tool, I was able to reduce the number of ChIP regions overlapping more than 

one gene model from 673 regions to 57. 

http://code.google.com/p/bedtools/
http://www.ebi.ac.uk/research/bertone/software
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Figure 12. Peak finding parameters and the number of H3K4me3 modified genes detected. 

The number of peaks with intersecting gene models identified for maltose (red) and xylose (blue) 

peaksets as a function of window size (Panel A) and gap size (Panel B).  
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Figure 13. The effect of smaller window and gap sizes on peak detection. Panels A and B 

show two regions of the genome. Numbers 1 and 2 represent results from two biological samples 

cultured on xylose. The top two tracks show the mapping of raw reads; the third and fourth 

tracks, SICER peaks called with window size of 20 bp and gap size of 60 bp (W20-G60-1 and -

2); the fifth and sixth tracks, SICER peaks called with window size and gap size of 200 bp 

(W200-G200-1 and -2); and the bottom track shows the positions of the gene models in the two 

regions. 
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 Finally, for the peaksets generated with 20 bp windows, I determined the number of 

fragmented or “split” peaks, where more than one peak was reported for a single gene model. 

These regions occasionally arose as a result of read fluctuations within a single peak. The 

number of split peaks was determined by counting the number of peak features overlapping each 

predicted gene model (here again with the BEDTools Suite package).  The results from this 

analysis showed that the number of split peaks was largest when gap size was 20 bp, and the 

fewest were seen when gap size was 60 bp and 80 bp (Figure 14).  

 The results from the various analyses showed that, among the various peak finding trials, 

W20-G60 was the best performer. These parameters yielded a resulting peakset with few peaks 

overlapping multiple gene models, a minimal number of split peak regions, while maintaining 

maximum sensitivity in detecting H3K4me3 modified genes. As a result, the data set containing 

enriched intervals determined using W20-G60 was used for further analysis. 
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Figure 14. Effects of gap size on fragmented peak regions. The number of split or fragmented 

peak regions as a function of gap size. 
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3.3 H3K4me3 patterns and distribution in the Aspergillus niger genome 

3.3.1 A majority of actively transcribed genes contain H3K4me3 

To examine the relationship between gene expression and presence of H3K4me3, I 

obtained RNA-seq data generated using the same growth conditions as the ChIP-seq experiment 

(data provided by Vanessa Blandford, unpublished). I plotted the log2 FPKM (fragments per 

kilobase of exon per million reads mapped) values from maltose growth against the log2 FPKM 

values of xylose growth and highlighted gene models containing an H3K4me3 peak (Figure 15, 

Panels A, B, C). As shown in the scatter plots, the presence of H3K4me3 correlates positively 

with active gene expression. Nearly all genes that have H3K4me3 peaks have FPKM values > 4 

(Figure 15, Panel C). However, 1971 genes with FPKM > 4 were not marked with an H3K4me3 

peak (Figure 15, Panel B), which suggests that the H3K4me3 chromatin modification is not 

necessarily required for gene expression.  

While there is a strong trend for highly expressed genes to be epigenetically marked by 

H3K4me3 (median FPKM values for genes containing H3K4me3 are 40.8 and 41.4 for growth 

on xylose and maltose, respectively, compared with 1.1 and 1.3 for genes without H3K4me3), 

the correlation is not perfect. I therefore examined whether there is a correlation between gene 

function and H3K4me3 markers. Functional annotation of the predicted genes was described by 

Pel et al. (Pel et al. 2007). I compared genes with and without H3K4me3 in the following 

functional classes: genes encoding glycosyl hydrolases, components of the secretory pathway, 

enzymes of the central metabolism, fungal transcription factors and secondary metabolite genes. 

The genes from these functional classes are highlighted in the gene expression scatter plots in 

panels A-J of Figure 16. Median FPKM, mean FPKM, standard deviation, maximum and 

minimum FPKM values for these gene classes are listed in Table 4. In all cases, the correlation 

between gene activity and presence of the H3K4me3 modification is similar to that of the entire 

gene set. Due to the high variance seen in each of the functional classes, a Mann-Whitney rank 

sum test (suitable for non-normal distributions: Bauer, 1972; Hollander and Wolfe, 1973, 1999) 

was performed to determine the significance of differences between the FPKM distributions. For 

all protein function categtories, p values were <.0001, which indicates that the difference in 

distributions of the FPKM values between genes with and without H3K4me3 are significant.   
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Figure 15. Comparing gene expression of A. niger and presence of H3K4me3 for growth on 

maltose and xylose.  Scatter plots of log2 FPKM values for all genes in A. niger for 2h growth 

on maltose vs. xylose is shown in Panel A). Panels B) and C) represent the genes without 

H3K4me3 and with H3K4me3, respectively. 
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Figure 16. Comparing expression and presence of H3K4me3 across functional categories. 

Genes derived from various functional gene subsets without H3K4me3 are highlighted in orange. 

The panels on the left show genes without H3K4me3 (A,C,E,G,I) and those on the right show the 

genes with H3K4me3 (B,D,F,H,J). 
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Fungal transcription factors 

Genes without H3K4me3           Genes with H3K4me3 
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Table 4. Genes marked or unmarked by H3K4me3 as categorized by protein function.  

For each protein function category (glycosyl hydrolases, central metabolism, secretory pathway, 

secondary metabolism, fungal transcription factors) the following are reported: median FPKM, 

mean FPKM, standard deviation (SD), minimum FPKM and maximum FPKM. The results from 

a Mann-Whitney U test (to determine whether the distributions of FPKM values differed 

between genes with H3K4me3 and genes without H3K4me3) are also reported. U value: product 

of the sample sizes for the two samples; p value: the probability that the distributions between 

the two groups, genes with H3K4me3 and genes without H3K4me3, are similar.  

                          Genes with H3K4me3           Genes without H3K4me3        

Protein 

Function 

No. 

genes 

Median 

FPKM 

Mean 

FPKM SD 

Min. 

FPKM 

Max. 

FPKM 

No. 

genes 

Median 

FPKM 

Mean 

FPKM SD 

Min. 

FPKM 

Max. 

FPKM 

Glycosyl 

hydrolases 
38 62.7 258 409 4.00 1620 207 1.38 21.3 222 0 4470 

Central 

metabolism 
37 131 202 217 6.92 1019 33 4.63 46.5 138 0 917 

Secretory 

pathway 
272 56.7 97.2 134 5.37 1435 44 3.93 19.4 54.3 0 397 

Secondary 

metabolism 
19 48.6 101 131 1.04 616 87 0.32 8.38 43.9 0 800 

Fungal TF 20 17.7 29.2 34.5 2.32 188 309 3.87 5.71 5.22 0.05 23.3 

All genes 5058 41.1 109 314 0 8847 6788 1.21 12.8 98.4 0 5475 

Mann-Whitney U two sample rank-sum test outcomes 

Glycosyl hydrolases U  =  23454; p <.0001 (one-tailed), p <.0001 (two-tailed) 

Central metabolism U  =  454; p <.0001 (one-tailed), p <.0001 (two-tailed) 

Secretory pathway U  =  4105; p <.0001 (one-tailed), p <.0001 (two-tailed) 

Secondary metabolism U  =  22058; p <.0001 (one-tailed), p <.0001 (two-tailed) 

Fungal transcription factors U  =  5540; p <.0001 (one-tailed), p <.0001 (two-tailed) 

All genes U = 127335486; p <.0001 (one-tailed), p <.0001 (two-tailed) 
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I also examined the distribution of H3K4me3 in genes expected to be constitutively 

expressed.  With one exception, all aminoacyl tRNA synthetase genes contained H3K4me3 

peaks (Figure 17, Panel A). Similarly, all but one of the ribosomal protein genes were marked 

with H3K4me3 (Figure 17, Panel B). The mitochondrial ribosomal protein genes, transcribed at 

considerably lower levels than their cytoplasmic counterparts, are all marked by H3K4me3 

(Figure 17, Panel C).  

The integrated transcriptome and ChIP-seq data presented here demonstrate that although 

the majority of actively transcribed genes contained H3K4me3, the presence of this histone 

modification is not required for transcription of all A. niger genes.  

 

3.3.2 Differential H3K4me3 binding analysis  

 To identify sites with significantly different levels of H3K4me3 binding, I performed 

an analysis using the DiffBind package for R Bioconductor (Stark and Brown, 2011). The 

package determines differential read counts in bound genomic intervals using a statistical model 

and builds on R graphics routines to generate plots and diagrams to support the binding analysis. 

DiffBind works with previously defined peaksets and then calculates a binding matrix based on 

scores generated by counting reads within the peaksets. Differentially bound sites are identified 

by counting the reads in overlapping intervals for each unique sample group to generate a 

normalized read count for each site, then re-clusters the samples using affinity rather than 

occupancy data. Using the SICER peaksets from the four samples (two from xylose growth and 

two from maltose growth) as an input, DiffBind identified 34 sites (0.7% of the total number of 

ChIP enriched sites) as differentially bound by H3K4me3 when comparing growth on maltose or 

xylose. The MA plot in Figure 18 (a representation of differences in log H3K4me3 read counts 

on maltose and xylose growth as a function of average log read concentration) shows sites with 

differential H3K4me3 binding and highlights those that also have a false discovery rate of <0.05. 

A list of these sites with their respective fold differences and associated gene models are listed in 

Table 5. Five of the sites identified as differentially bound did not intersect with a gene model. 

The sites were classified into categories based on the type of differential binding exhibited:  
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Figure 17. Presence of H3K4me3 in constitutively transcribed genes. Scatter plots 

representing the log2 FPKM values from growth on maltose vs growth on xylose and highligting 

the genes predicted to be constitutively expressed (orange). Aminoacyl tRNA synthetase proteins 

are shown in Panel A and ribosomal genes in Panel B. Panel C shows the log2 FPKM values for 

the cytoplasmic (orange) and mitochondrial (blue) ribosomal proteins. Genes highlighted in 

black did not contain H3K4me3. 
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H3K4me3 enrichment occurring uniquely during growth on one of the carbon sources (“peaks 

exclusively detected in growth on xylose”, “peaks exclusively in growth on maltose”) or 

significantly higher H3K4me3 binding (read counts) during growth on one of the carbon sources 

(“higher counts in growth on maltose”, “higher counts in growth on xylose”).   

 I then compared the results from the differential binding analysis with a peak 

occupancy analysis. The Venn diagram in Figure 19 shows the number of sites that were 

uniquely occupied (as determined by the peak caller) by H3K4me3 for growth on maltose and 

growth on xylose. In total, 36 sites uniquely occupied sites on maltose growth and 124 sites on 

xylose growth. By using the DiffBind affinity analysis, associated with significance statistics, 

only 5 sites were determined as unique to maltose growth and 12 sites to xylose growth. Finally, 

the DiffBind analysis returned 17 sites that display significantly different binding affinities 

(Table 5). These results indicated that the binding affinity analysis is indispensable for the 

identification significantly differentially bound sites.  

3.3.3 Comparison of differential H3K4me3 binding and levels of transcript accumulation 

The next logical analysis is to compare the differential H3K4me3 binding results with the 

differentially expressed genes from the maltose and xylose growth. The differential gene 

expression analysis was provided by Vanessa Blandford (data unpublished) and was generated 

using the DESeq algorithm (Anders and Huber, 2010). The comparison of the two data sets 

revealed that the majority of genes determined as differentially expressed (188/233) do not 

contain an H3K4me3 peak, highlighted in the scatter plot shown in Panel A of Figure 20. Of the 

45 genes that contain a ChIP peak (Figure 20, Panel B), only 11 genes (listed in Table 6) have 

significantly differential levels of H3K4me3. For these 11 genes, higher levels of transcription 

are associated with increased H3K4me3. Similarly, genes that have lower expression levels also 

have lower levels of H3K4me3. The GH31 alpha-glucosidase gene (NRRL3_07700) was the 

single exception to this trend: a lower transcript level is accompanied by an increase in 

H3K4me3 at this gene locus. These results demonstrated that genes differentially transcribed on 

maltose and xylose growth correlate weakly with the presence of H3K4me3 or with respective 

increases and decreases in H3K4me3 modification.  
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Figure 18. Visual representation of significantly differentially bound sites. 

An MA plot was generated using the DiffBind package. The points on the plot represent 

individual sites that exhibited fold changes in H3K4me3 ChIP-seq read counts between maltose 

and xylose growth conditions. Sites determined as significantly differentially bound by 

H3K4me3 (highlighted in red) are those that have a log fold change of at least 2 and an FDR rate 

of <0.05 

  

 

.  



 57 

Table 5. Differentially bound sites identified in DiffBind. Significantly differential H3K4me3 

ChIP regions and associated gene models, as determined by the DiffBind analysis. Genome 

coordinates are provided for regions where no gene model is predicted. 

 

Gene model Mean log2 
read depth 
- maltose  

Mean log2 
read depth 
- xylose  

 Predicted protein 

Peaks exclusively detected in growth on xylose 

NRRL3_07563 -0.086 14.536  unknown 

NRRL3_09251 -0.086 13.718  Bifunctional protein gal10 

NRRL3_04471 -0.086 13.133  D-xylulose kinase A 

NRRL3_01952 -0.086 12.673  NAD(P)H-dependent D-xylose reductase xyl1 

NRRL3_02450 -0.086 12.009  Uncharacterized protein YxeQ 

NRRL3_07698 -0.086 11.773  Transcriptional activator of proteases prtT 

NRRL3_05970 -0.086 11.470  Galactose-1-phosphate uridylyltransferase 

NRRL3_02451 -0.086 11.166  beta-xylosidase GH3 

NRRL3_04473 -0.086 11.085  Transaldolase 

NRRL3_02937 -0.086 10.328  unknown 

NRRL3_07700 -0.086 10.285  alpha-glucosidase GH31 

NRRL3_09050 -0.086 8.594  Lactose regulatory protein LAC9 

Peaks exclusively detected in growth on maltose 

NRRL3_01770 10.653 0.087  unknown 

NRRL3_09399 10.285 0.087  Vacuolar calcium ion transporter 

NRRL3_05625 9.722 0.087  Linoleate 10R-lipoxygenase 

NO MODEL 7.267 0.087  chr_5_2:182420-182559  

NO MODEL 6.157 0.087  chr_7_2:237680-237759  

Higher counts in growth on xylose 

NRRL3_09204 13.479 15.233  D-xylulose reductase A 

NRRL3_10884 10.754 13.281  Uncharacterized oxidoreductase 

MexAM1_META1p0182 
NRRL3_02934 11.292 12.860  unknown 

NRRL3_01478 9.739 12.014  Putative NADP-dependent oxidoreductase YfmJ 

NRRL3_03187 6.831 11.468  Initiation-specific alpha-1,6-mannosyltransferase 

NRRL3_06477 5.227 8.349  UPF0187 protein sll1024 

Higher counts in growth on maltose 

NRRL3_07785 11.413 9.121  unknown 

NRRL3_04106 10.952 7.265  unknown 

NO MODEL 10.759 8.753  chr_3_2:368420-368939  

NRRL3_02744 10.371 7.725  unknown 

NO MODEL 10.109 7.580  chr_2_2:1645480-1646119  

NRRL3_01410 10.083 2.526  Putative succinate-semialdehyde dehydrogenase C 

[NADP(+)] 
NRRL3_00397 9.668 6.553  60 kDa lysophospholipase 

NRRL3_03297 9.535 5.804  Siderophore iron transporter mirB 

NRRL3_04956 9.500 6.295  Maleylacetate reductase 

NRRL3_02279 9.280 6.729  unknown 

NO MODEL 7.953 4.799  chr_4_1:1132420-1132519 
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Figure 19. Maltose growth and xylose growth peak occupancy analysis 

The number of H3K4me3-bound sites exclusive to maltose and xylose, based on peak occupancy 

data as determined by SICER peak calling.  
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Figure 20. Comparison of differentially expressed genes and H3K4me3 modification. A 

scatter plot of log2 FPKM values for all genes in A. niger for growth on maltose vs. xylose. The 

genes determined to be differentially expressed by the DESeq method are highlighted in orange. 
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Table 6. Differentially transcribed genes with differential H3K4me3. Genes that display 

positive correlation in the differential RNA-seq and ChIP-seq analyses for growth on maltose 

and growth on xylose. 

 

Gene model 
Xylose 
FPKM 

Maltose 
FPKM 

Xylose        
log2 
H3K4me3 
mapped 
ChIP 
reads  

Maltose     
log2 
H3K4me3 
mapped 
ChIP 
reads Predicted protein 

Peaks exclusively detected in growth on xylose 

NRRL3_09251 373.00 12.64 13.72 -0.086 Bifunctional protein gal10 

NRRL3_04471 386.73 16.66 13.13 -0.086 D-xylulose kinase A 

NRRL3_01952 3153.43 13.39 12.67 -0.086 NAD(P)H-dependent D-xylose reductase xyl1 

NRRL3_02450 99.45 3.89 12.01 -0.086 Uncharacterized protein YxeQ 

NRRL3_05970 221.65 56.86 11.47 -0.086 Galactose-1-phosphate uridylyltransferase 

NRRL3_02451 1620.04 4.00 11.17 -0.086 beta-xylosidase GH3 

NRRL3_04473 42.40 1.13 11.09 -0.086 Transaldolase 

NRRL3_07700 62.65 1408.08 10.29 -0.086 alpha-glucosidase GH31 

Peaks exclusively detected in growth on maltose 

NRRL3_05625 30.49 139.67 0.087 9.722 Linoleate 10R-lipoxygenase 

Higher counts in growth on xylose  

NRRL3_09204 880.46 37.54 15.23 13.479 D-xylulose reductase A 

NRRL3_10884 105.16 10.98 13.28 10.754 Uncharacterized oxidoreductase MexAM1 
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3.3.4 Genes with and without H3K4me3 are not randomly distributed along the 

chromosome 

The eight A. niger chromosomes and the distribution of gene models with and without 

H3K4me3 along their lengths are plotted in Figure 21. In general, H3K4me3 distribution is not 

even throughout the length of the chromosome. At the centromere regions, H3K4me3 peaks 

were completely missing. H3K4me3 distribution abruptly ends on either side of this region, 

which also coincides with the last coding gene model predicted. In addition, H3K4me3 is not 

evenly distributed along the chromosome arms. This is particularly noticeable at the gene-coding 

regions near the centromeres and telomeres. A magnified view of the centromeric and telomeric 

regions of chromosomes 4 and 6 is shown in Figure 22 to illustrate the non-random distribution 

of H3K4me3 peaks. Table 7 summarizes the number of gene models in the 100-kb regions 

adjacent to the telomeres and centromeres associated with H3K4me3 peaks. At the regions near 

the telomeres, H3K4me3 is almost completely absent. The opposite is seen at the 

pericentromeric regions, where peaks appear at nearly every gene model. These observations 

suggest a preferential localization of H3K4me3 along the chromosome length.  
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Figure 21. Chromosomal distribution of H3K4me3. 

Genes with H3K4me3 peaks (red) and without H3K4me3 (blue) were mapped to the eight A. 

niger chromosomes. The figure also shows a map of genes that are differentially expressed on 

maltose growth and xylose growth: black triangles represent the genes that were marked by 

H3K4me3 peaks and black circles represent the genes that did not contain H3K4me3.  
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Figure 22. Genes with and without H3K4me3 in regions near the centromeres and 

telomeres. Gene models with H3K4me3 (red) and without H3K4me3 (blue) are represented in 

the boxed regions displaying the 100 kb closest to the centromeres and telomeres. 
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Table 7. H3K4me3 distribution at regions proximal to the centromeres and telomeres. 

Summarized here is the number of genes with H3K4me3 peaks in the 100 kb intervals closest to 

centromere and telomere regions of each of the eight A. niger chromosomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Genes with 

H3K4me3 at 

centromeres 

% of genes 

with 

H3K4me3 

peaks 

Genes with 

H3K4me3 at 

telomeres 

% of genes 

with 

H3K4me3 

peaks 

chromosome 1 59/71 83.1 10/74 13.5 

chromosome 2 44/58 75.9 1/77 1.30 

chromosome 3 58/72 80.6 5/71 7.04 

chromosome 4 66/77 85.7 1/73 1.37 

chromosome 5 55/71 77.5 5/81 6.17 

chromosome 6 54/72 75.0 2/70 2.86 

chromosome 7 55/64 85.9 3/74 4.05 

chromosome 8 57/81 70.4 1/72 1.39 
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3.3.5 H3K4me3 is associated with potential non-coding RNA 

The peak finding analysis returned 60 H3K4me3-enriched ChIP sites that did not 

associate with a predicted gene model. I investigated the possible significance of these H3K4me3 

peaks. In particular, I examined whether transcription may be occurring at these regions in the 

genome, a phenomenon that has been reported in yeast (van Dijk et al. 2011). I observed most of 

the ChIP peaks not associated with gene models are present at regions where there is transcript 

coverage, an example of which is shown in Figure 23. Five of these ChIP peaks were determined 

as differentially bound by H3K4me3 on maltose and xylose (shown in Table 5). A protein-

coding gene model could not be predicted in the genomic sequence of any of these regions. 

Therefore, the transcription seen in these regions may be generating non-coding RNA species 

and their genomic loci contain the H3K4me3 chromatin modification. 
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Figure 23. H3K4me3 marks regions of non-coding transcripts 

The H3K4me3 peak shown in the upper track (in green) was mapped to a genomic interval from 

chromosome 7 not predicted to contain a protein- or rRNA-coding gene. The lower track shows 

mapped RNA reads (red), generated by RNA-sequencing. 
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Table 8. Genome coordinates for ChIP-enriched regions not intersecting with a known 

gene model.  

 

 Start End 

chr_1_1 926740 926919 

chr_1_1 1223000 1224279 

chr_1_1 1388040 1388279 

chr_1_1 1596500 1597179 

chr_1_2 1333260 1333419 

chr_1_2 1339860 1340819 

chr_2_1 263280 263759 

chr_2_2 344720 345739 

chr_2_2 1068560 1069259 

chr_2_2 1361280 1362759 

chr_2_2 1362960 1363079 

chr_2_2 1401440 1401579 

chr_2_2 1445640 1446159 

chr_2_2 1645480 1646119 

chr_2_2 2027360 2027759 

chr_2_2 2941980 2942899 

chr_2_2 3073640 3073999 

chr_2_2 3266360 3266539 

chr_3_1 230940 231699 

chr_3_1 595900 597059 

chr_3_1 1323700 1324459 

chr_3_1 1324680 1325039 

chr_3_1 1921080 1921799 

chr_3_2 348360 349239 

chr_3_2 368420 368939 

chr_3_2 1689820 1691079 

chr_3_2 1875560 1877419 

chr_4_1 1132420 1132519 

chr_4_1 1520140 1520319 

chr_4_1 2282620 2282939 

chr_4_2 239480 240799 

chr_4_2 318480 319159 

chr_4_2 1561780 1562019 

chr_4_2 2550260 2551219 

chr_4_2 3649080 3649279 

chr_5_1 815380 815659 

chr_5_1 925180 925719 

chr_5_2 41020 41639 

chr_5_2 182420 182559 
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chr_5_2 1044200 1044479 

chr_5_2 1083100 1083519 

chr_5_2 1404020 1404279 

chr_5_2 1750740 1752279 

chr_5_2 1885480 1886859 

chr_5_2 2382060 2382899 

chr_6_1 6560 6739 

chr_6_1 1031260 1031879 

chr_6_1 2433540 2433859 

chr_7_1 745140 745799 

chr_7_1 879400 880099 

chr_7_2 237680 237759 

chr_7_2 1501500 1501919 

chr_7_2 1824800 1825119 

chr_7_2 2404700 2405499 

chr_8_1 423600 423959 

chr_8_1 996880 997779 

chr_8_2 419460 420599 

chr_8_2 718020 718199 

chr_8_2 1099480 1100379 

chr_8_2 1584960 1586359 
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Section 4: Discussion 

4.1 Development of a method for enrichment of nuclei in Aspergillus niger 

I developed a method to obtain a nuclei-enriched cellular extract of A. niger for use in 

downstream chromatin immunoprecipitation experiments. The method was adapted from others 

previously described for use in Neurospora crassa with two modifications: 1) volumes in the 

protocol were scaled down for use with the smaller 2 g mycelial mats (the N. crassa protocol was 

for use with 7g of mycelia) and 2) centrifugation with the sucrose gradients was omitted to 

decrease the number of steps required to minimize loss. I validated the nuclei enrichment by 

determining the DNA content of the fractions generated and by mass spectrometry to detect 

marker proteins of various cellular compartments. The cellular fractionation procedure described 

here yields a pellet containing a high concentration of DNA. In addition, mass spectrometric 

analysis revealed a relatively high level of marker proteins specific for the nuclear compartment 

in the enriched extract. These included proteins located in the nuclear envelope (nucleoporins), 

soluble nuclear proteins (topoisomerases) and chromatin bound proteins (histones), suggesting 

that whole, intact nuclei were pelleted. The separation method was crude, as the nuclei-enriched 

fraction also contained some proteins from the mitochondrion, endoplasmic reticulum and 

cytoplasm. However, other previously described procedures for organelle fractionation, even 

those reporting high purity, have shown varying degree of contamination of proteins from other 

cellular compartments (Mootha et al. 2003; Taylor et al. 2003; Andreyev et al. 2010). Although 

other membrane bound organelles (endoplasmic reticulum, mitochondria) were co-purified along 

with the nuclear fraction in the current experiment, their presence did not affect the chromatin 

immunoprecipitation: only a single, specific band was detected in the immunoblot performed 

with the anti-H3K4me3 antibody. Overall, this protocol is a fast and efficient method for the 

isolation of an enriched nuclei fraction from A. niger mycelia for use in chromatin 

immunoprecipitation.  

4.2 Technical considerations for A. niger ChIP-sequencing and data analysis 

The results from the ChIP-seq experiment performed here in A. niger highlight the 

importance of technical issues to consider for obtaining high quality data. First, it is important to 

select an appropriate control for sequencing normalization.  I selected total “input” DNA 

(chromatin not subjected to immunoprecipitation) as negative control for ChIP-seq, in favour of 
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performing a mock immunoprecipitation with non-specific IgG. Native genomic DNA is 

regarded as a more effective negative control than a mock immunoprecipitation (Kidder et al. 

2011) for two reasons. First, since IgG from the same animal used to produce the antibody 

against the target protein is not usually available. Thus, DNA immunoprecipitated in this way 

cannot be considered as a “true” background. Secondly, the mock immunoprecipiation method is 

often ineffective in pulling down enough DNA for sequencing.  In the current experiment, I 

witnessed that the using the input DNA control was important for eliminating peaks in regions 

where sheared chromatin was overrepresented (Figure 13). These regions likely arise from open 

chromatin or nucleosome-free structures that can fragment more easily during the sonication 

process. These peaks were seen in the ChIP samples and could have otherwise been considered 

as true ChIP peaks. This suggests that native genomic DNA was an effective control for 

chromatin immunoprecipitation in A. niger.  

In the data analysis step of the ChIP-seq experiment, choices of peak finding algorithm 

and parameters for determining significant peaks are also important factors. I attempted peak 

finding with three programs that have been reviewed in the literature as reliable for this purpose. 

Two of these methods were unable to accurately identify peaks that corresponded to ChIP 

enriched regions, which was confirmed by comparing the results in the genome browser. The 

SICER algorithm (Zang et al. 2009) was an effective method for detecting significant H3K4me3 

enrichment with this data set, as the results corresponded well to peaks seen in the raw reads 

mapped to the genome. SICER has been reviewed as suitable for the detection of broad regions 

characteristic of certain histone modifications (Kidder et al. 2011). This method is also among 

the best performers in a recent study of several algorithms developed over the past several years 

in an unbiased evaluation of algorithmic performance selectivity and sensitivity (Micsinai et al. 

2012). To my knowledge, the ChIP-seq experiment performed in the current experiment is the 

first report of the application of this peak finding algorithm in a non-mammalian genome.  

An in-depth analysis for each generated peakset using different window and gap sizes in 

SICER was useful for determining which parameters were suitable for peak finding in this 

experiment. I demonstrated that reducing window size from the recommended 200bp to 20bp 

was essential for detecting a greater number of genes containing H3K4me3 peaks. The regions 

that were undetected with larger window and gap sizes were regions with smaller peaks and 
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lower levels of mapped ChIP reads. By performing peak finding with smaller windows, these 

less prominent peak regions could be detected as significant by the algorithm. Along with the use 

of smaller windows, I determined the effects of modifying gap size in SICER peak finding. As 

expected, a smaller gap size increased the sensitivity to fluctuations in read density. Peaksets 

generated using small gap sizes had the highest number of fragmented peaks associated with a 

single gene model. When window size was 20bp and gap size was 60bp, peaksets between 

biological replicates showed the highest levels of correlation, a maximum number of ChIP 

enriched genes was detected, and fragmented peak regions were kept to a minimum. However, 

there were still a number of regions in this peakset that overlapped more than one gene. This was 

a potential concern, since some smaller, less highly enriched regions could be obscured as a 

result of being merged with another broader or taller peak. The issue was resolved by using a 

peak splitting program, which effectively detected the vast majority of significant read 

fluctuations that occurred between gene models that were not detected as gaps in the original 

peak finding with SICER. The peak splitting method introduced a gap in these regions and the 

resulting peakset contained distinct peaks for individual gene models. Taken together, the 

analysis demonstrated that the choice of methods for data analysis is important to consider in 

ChIP-seq analysis. The genome of A. niger is densely packed, with a mean spacing of ~1 gene 

per 3 kbp (close together when compared with that of higher eukaryotes like human and mouse, 

which have an average spacing of 1 gene per ~ 144 kbp and ~130 kbp, respectively; Ensembl 

Genome Reference Consortium, 2013). This provides a rationale for determining optimal peak 

finding parameters that may differ from those recommended by the authors of a peak finding 

algorithm. Moreover, the application of another data analysis tool (for example, an application 

for peak splitting) was useful in further improving the resulting peakset. This suggests that 

integration of multiple methods for generating peaksets from ChIP-seq data could be a useful 

approach for obtaining optimal results.  

 

4.3 H3K4me3 is not a definitive marker of active gene transcription in A. niger 

H3K4me3 has been reported to correlate positively with actively transcribed genes. To 

examine the relationship between gene expression and presence of H3K4me3 in A. niger, I 

integrated the results from the ChIP-seq experiment with RNA-seq data generated using the 
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same growth conditions. The results obtained in the current study are only somewhat similar to 

reports of patterns and distribution of H3K4me3 for other species. One study in rice (Oryza 

sativa) reported that H3K4me3 modified 61.4% of all non-transposable element genes and 

82.6% of all transcribed genes (He et al. 2010). In mouse, H3K4me3 mapped to 68% and 74% of 

genes in cerebrum and testis tissues, respectively, and 15% of actively transcribed genes lacked 

H3K4me3 (Cui et al. 2012). A recent report of H3K4me3 in CD4+ regulatory T cells reported 

the presence of this histone modification in 76% of all genes (He et al. 2014). In yeast the 

presence of H3K4me3 is associated with as many as 87% of all genes (Guillemette et al. 2011) 

and at most +1 nucleosome sites (occuring at gene transcription start sites in the yeast genome; 

Weiner et al. 2012). Notably, there is mounting evidence that H3K4me3 is also associated with 

transcriptional repression by promoting antisense transcription (van Dijk et al. 2011; Weiner et 

al. 2012; Margaritis et al. 2013). The complex picture of H3K4me3 in the yeast genome is an 

active area of ongoing investigation  

Other studies have integrated genome-wide expression data and shown a positive 

correlation of H3K4me3 with increase in gene activity in response to changes in experimental 

treatments. In rice, in response to dehydration stress 89.3% of genes that are up-regulated also 

have increased levels of H3K4me3 and 90.6% of the down-regulated genes have lower levels of 

H3K4me3 (Zong et al. 2013). These results were similar to those from a dehydration stress 

experiment performed in Arabidopsis thaliana (van Dijk et al. 2010). In human mammary cells 

undergoing epithelial-mesenchymal transition, a gain of H3K4me3 is associated with increased 

mRNA accumulation (Malouf et al. 2013).  

I show in the present study that in A. niger H3K4me3 is not associated with all active 

gene loci. Though the majority of actively transcribed regions (5058 genes) were associated with 

H3K4me3, 1971 genes that are actively transcribed (28% of all actively transcribed genes) from 

the maltose and xylose growth RNA-seq data sets do not contain an H3K4me3 peak. In total, 

H3K4me3 modified regions are mapped to 42.7% of all known coding regions in the A. niger 

genome. When compared with the reports in other species, H3K4me3 appears less frequently in 

the genome of A. niger. In addition, the analysis from the current experiment shows that only 10 

out of 255 genes with increased expression on either growth condition is accompanied by an 

increase in H3K4me3. In fact, the majority of genes differentially transcribed between growth on 
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maltose and growth on xylose do not contain H3K4me3 on either carbon source, as this modified 

histone marks only 45 of the 233 differentially regulated genes. Amongst the differentially 

regulated genes not marked by H3K4me3 during growth on maltose or xylose, there were some 

highly expressed genes. These included the glucoamylase gene, known to be strongly repressed 

during growth on xylose and strongly induced during growth on maltose (Barton et al. 1972). 

The analysis of transcription on maltose or xylose growth in relation to H3K4me3 

resulted in other notable observations. Though nearly a third of all actively transcribed genes do 

not contain H3K4me3, there is nonetheless an apparent relationship between the presence of the 

H3K4me3 modification and genes with higher levels of transcription in A. niger. Although the 

threshold values differ, this pattern is conserved in classes of genes with different functional 

properties. For example, mean transcript levels for the central metabolic genes containing 

H3K4me3 (202±217) are much higher than for fungal transcription factors containing H3K4me3 

(29.2±34.5). I examined the presence of H3K4me3 at ribosomal genes and aminoacyl tRNA 

synthetases, classes of genes that are predicted to be highly and constitutively expressed. Nearly 

all of these loci contained the H3K4me3 modification. These results indicate that although 

H3K4me3 does not appear to be required for transcription of nearly a third of the genome, there 

may be a role for H3K4me3 for highly expressed genes, including constitutively transcribed 

genes. 

Interestingly, there are some regions (23 in total) that exhibit differential levels of 

H3K4me3 between maltose and xylose growth, but are not differentially transcribed. The reason 

for these differential levels of H3K4me3, or the possible significance of the proteins coded at 

these loci, is not clear. Another exception is the presence of H3K4me3 at 57 gene loci that are 

not actively transcribed on either growth condition. There are reports of similar occurrences in 

the literature from other species. One explanation is the suggestion that H3K4me3 can mark 

genes “poised” for transcription (Black et al. 2012). Another reason could be that H3K4me3 is 

acting in combination with other epigenetic modifications: studies in pluripotent cells have 

reported that activating marks can occur alongside a repressive mark, such as H3K27me3, in 

what are termed “bivalent promoters” (Bernstein et al. 2006; Azuara et al. 2006). Expression of 

genes with bivalent promoters can be repressed despite the presence of the activating H3K4me3 

mark. Yet another possibility is that gene expression is silenced by way of H3K4me3 promotion 
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of anti-sense transcription, a phenomenon that has been observed in yeast (Margaritis et al. 

2012). H3K4me3 has also been shown to be involved in a type of epigenetic “memory” of recent 

transcriptional activity, transmittable through generations in yeast from mother to daughter cells 

(Ng et al. 2003; Muramoto et al. 2010) and could explain the presence of this histone 

modification at silent genes. Given that a significant number of genes undergoing active 

expression do not contain any H3K4me3, these scenarios are difficult to predict. The results I 

obtained in this study suggest that the epigenome of A. niger requires further exploration to 

better understand the role of H3K4me3 in A. niger gene expression.  

Taken together, the comparisons made with reports from other species suggest that there 

are differences in the function and distribution of H3K4me3 in the A. niger genome. In 

particular, the data suggest that H3K4me3 does not function as a characteristic transcription 

activating marker, as demonstrated in other species. To further examine a possible cause for 

these differences, I mined the A. niger genome for proteins that make up this protein complex 

responsible for tri-methylation of lysine 4 on histone H3 (Set1/COMPASS). The sequences used 

for comparison were obtained from well-characterized genes that make up this complex in the 

yeast S. cerevisiae. The A. niger genome contains proteins with sequence similarity to six of the 

seven Set1/COMPASS complex subunits, but I was not able to locate an ortholog for the Shg1 

gene. Although this subunit is not apparently essential for H3K4me3 deposition, Shg1 may 

influence efficiency or accuracy of K4 trimethylation (Krogan et al. 2002; Nagy et al. 2002; 

Mersman et al. 2012). The possible effects of the lack of a Shg1 ortholog in A. niger should be 

further examined.  

4.4 Non-random distribution of H3K4me3 in the chromosome 

H3K4me3 density increases at the pericentromeric region, where nearly every gene 

model contains an H3K4me3 peak. The opposite is seen in the regions preceding the telomeres, 

and this occurs independently of gene density or GC content. As well, H3K4me3 is not evenly 

distributed over the lengths of the chromosome arms. An interesting observation that requires 

further investigation is the appearance of many differentially expressed genes in intervals where 

H3K4me3 is largely depleted both on maltose and xylose. Patterns in chromosomal distribution 

are not yet well understood, although some models have been hypothesized. For example, the 

“genome compartmentalization” theory (Naumova and Dekker, 2010) proposes that the local 
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state of chromatin, including patterns of histone modifications along the chromosome, can be 

integrated with three-dimensional chromatin folding and spatial co-localization of other factors 

to gain a full understanding of genome regulation. The uneven distribution of H3K4me3 in A. 

niger chromosomes, sometimes over long intervals of the genome in gene-dense regions and in 

regions proximal to the telomeres and centormeres, raises the possibility that regions in 

chromosomes in A. niger are compartmentalized. This result could provide an interesting avenue 

for investigating the role of higher order chromatin structures in A. niger gene expression.  

4.5 H3K4me3 supports the annotation of genomic features 

The H3K4me3 map of A. niger chromosomes also reveals that this histone modification 

is completely absent in the centromere region. The lack of H3K4me3 peaks observed in 

centromeric regions, typically associated with heterochromatin, is consistent with findings by 

Smith et al. (2011), which demonstrated a lack of H3K4 di- and tri-methylation in centromere 

regions of the filamentous fungus N. crassa. In N. crassa, canonical H3 is replaced by a 

centromere-specific histone variant, CenH3. Although centromeric regions are typically 

associated with heterochromatin, other euchromatic markers generally associated with 

transcriptionally active genes have been found in human centromeres (Lam et al. 2006; Sullivan 

et al. 2004). Euchromatic modifications, including H3K4me3, are not seen in the N. crassa 

centromeres. This raises the possibility that similar to N. crassa, the A. niger centromere 

boundaries occur where an abrupt discontinuation of H3K4me3 peaks is observed, and thereby 

marking the precise location of the A. niger centromeres.   

A number of H3K4me3 peaks do not intersect with a predicted gene model, but may 

mark a previously unrecognized coding region or other genomic features. Indeed, during a recent 

manual curation of the newly assembled NRRL3 A. niger genome, the H3K4me3 ChIP-seq data 

is useful in supporting the presence of gene models (data unpublished). A similar approach was 

recently used in improving the rice genome (Du et al. 2013). As shown in the current 

experiment, in rare instances H3K4me3 marks regions where coding gene models cannot be 

predicted but where there is transcript coverage. This observation suggests that H3K4me3 could 

be a marker for regions of non-coding RNA. Several studies have demonstrated the co-

localization of histone modifications, including H3K4me3, with non-coding RNA. These 

observations, combined with the availability of RNA sequencing data, have facilitated the 
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annotation of non-coding RNA species in the genome (Marchese and Huarte, 2013). An analysis 

of the location of peak summits of H3K4me3 regions have been useful in annotating 

transcription start sites in a number of organisms, including mouse (Mikkelsen et al. 2007), 

Arabidopsis (van Dijk et al. 2010), and Rhesus macaque (Liu et al. 2011). Precise locations of 

transcription start sites in A. niger have not been widely identified in the genome, although a 

number of highly transcribed and well-assembled full-length transcripts are available from 

several expression data sets. This relationship is currently being investigated.  

  

 

Section 5: Conclusion 

 In the present study, I have generated a map of H3K4me3 distribution in a high-quality 

assembly of the Aspergillus niger genome. H3K4me3 marks genes undergoing active 

transcription, but a significant number of expressed genes do not contain H3K4me3. These 

include the majority of genes that are differentially expressed between growth on maltose and 

xylose. Overall, distribution of H3K4me3 is non-random along the length of the chromosome, 

with high levels at pericentromeric regions and low levels near the telomeres. The results 

presented here also highlight the considerations involved in ChIP-seq data analysis and the 

importance of relating epigenetic information with gene expression data. The integration of 

transcriptome and epigenome data can reveal novel trends and targets for further investigation.  
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