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Abstract

On Imputation Techniques in Survey Sampling

Hui Rong Zhu

Some nonparametric imputation techniques, including two

categories: single imputation and multiple imputation, are in-

troduced and studied. Some properties of the estimators such

as the bias, the variance, and the mean squared error are pre-

sented. Finally, some imputation techniques are applied to a

real case. These methods are compared in order to assess their

advantages, disadvantages, and applicabilities.
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Chapter 1

Introduction

In sample surveys, missing responses occur frequently,resulting

in incomplete sample. These incomplete samples are called as

missing data. Missing data may be caused by sensitive ques-

tions, improper data collection and so on. If the incomplete

data occupy only a small portion of the dataset, the data dele-

tion may be a good way to the missing-data problem. However,

in most cases, if we ignore these missing data during the statis-

tical analysis, the results may not be representative. In order to

form a complete dataset for the standard analysis, imputation is

introduced and it has become one of the most popular techniques

used to resolve missing data problems in sampling survey data

analyses. Imputation is to replace missing data with a plausible

value based on other available informations.
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1.1 Mechanisms for Missing Data

Little and Rubin in [17] defined three classes of missing data.

These three general missing mechanisms are presented here with

examples.

• Missing Completely at Random(MCAR)

The missing data occurs randomly and doesn’t depend on

both of observed data and unobserved data. In a sample

survey setting, MCAR is sometimes called uniform non-

response. For example, If a laboratory sample is dropped,

the resulting observation is missing. We can say this is

MCAR.

• Missing at Random (MAR)

Given the observed data, the missingness is not related to

the unobserved data. For example, in a survey of relation

between property tax band and income, usually these peo-

ple with higher salary and lower salary may omit to answer

the income questions. So given the property tax band, non-

response to the income questions is random.

• Observed at Random(OAR)

Given the observed and unobserved data, the missingness is

not related to the observed data. For example, in a survey

to examine the effect of education on income, these non-

response to income is not OAR if income is a related to

education.
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Apart from these, there are some other missing mechanisms.

• Missing Not at Random (MNAR)

If the data is neither MCAR nor MAR, we can say the data

is MNAR.

• Not Missing at Random (NMAR)

The data is missing due to the particular reason.

1.2 Imputation Methods

In general, the imputation methods are divided into two cat-

egories: Model-based Imputation and Nonparametric Imputa-

tion. The simple imputation methods and the multiple imputa-

tion methods are included in these two categories.

In [26], Rubin compares both of the single imputation and mul-

tiple imputation methods. He comments on the of these advan-

tage and disadvantage as follow.

i) Simple Imputation: This type of method replaces the miss-

ing data once by a randomly selected response value.

• Advantage:

- The standard complete-data methods of statistical analysis

can be used if the missing values have been imputed.

- Data collector’s knowledge can be incorporated.

3



• Disadvantage:

- The inference based on the imputed data set may be too

sharp as the extra variability due to the unknown missing

values is not being taken into account.

ii) Multiple Imputation

Multiple imputation is a statistically principled and com-

monly used method. The idea of multiple imputation is to

repeat the process of assigning several (say m between 2

to 10) values for each missing data. The m imputations

for each missing data will create m sets of complete data.

Hence, the standard complete-data analysis is conducted

for each completed data sets.

• Advantage:

- Multiple imputation increases the efficiency of estimation.

• Disadvantage:

- More work and space are needed to analyze a multiply-

imputed data set.

1.3 Imputation Problems

An imputation technique might cause its own problems. In [27],

Sande listed out some general problems such as:

4



• Since the imputed value of the field has to satisfy the rea-

sonable constraints which is known as edits to ensure that

the completed data is consistent as well as it will reduce

the applicability of the imputation procedure.

• It is hard to determine whether the method of imputation

is specified properly and precisely.

• Imputation does not solve the specific problems of esti-

mation better than the tradition estimation techniques for

missing data.

The evaluation of imputation technique is, in general, to com-

pare the bias, the variance, and the mean squared error of those

estimators.

In this thesis, we focus on the nonparametric imputation meth-

ods.

In Chapter 2, some linear single and multiple imputation tech-

niques will be introduced.

In Chapter 3, the kernel smoothing techniques will be reviewed

for the nonparametric imputations.

Finally, we have given an application to a real sampling case

5



in Chapter 4 for some imputation techniques presented in the

previous chapters. Then we compare these imputation tech-

niques with their applications.

6



Chapter 2

Linear Imputation Approaches

2.1 Single Imputation Approaches

There are several methods to handle the problem of incomplete-

ness or nonresponse in a census or a sample survey. One kind

of them is called Hot-Deck imputation. Hot-Deck imputation is

a common technique to deal with missing data in survey sam-

pling. The major idea of Hot-Deck imputation is to replace the

missing data by observable and measurable values from a sim-

ilar group. By this idea, some specific methods are developed.

In this chapter, we introduce some approaches of imputation

under two-phase sampling described in [30]. That says, one has

two sets of sampling data: Y and X, strongly correlated. The

set Y is incomplete, i.e., there are some nonresponse data in Y .

The set X is complete, i.e., all the elements in X are observed

or measured. The approaches under two-phase sampling Y and

X are to establish a relation of elements between these two sets

7



Y , X and then replace the nonresponse data by the relationship.

Consider a sample survey in a finite population of N units:

Ω = {1, 2, · · · , N}. Denote yi, i ∈ Ω the outcome statistical

variable that gives a characteristic of the individual i. In order

to estimate the mean ȳ = 1
N

∑N
i=1 yi, one draws a random sam-

ple without replacement of n units S = {1, 2, · · · , n} ⊆ Ω from

this population, where the number of the responding units in

this sample is r. Denote the set of the outcome variables from

this sample as

YS = {y1, · · · , yn} = {yk : k ∈ S}

Defines the response indicator

R =
(
R1, R2, . . . , RN

)
that indicates which values are respondent or nonrespondent in

the survey, where

Ri =

1 if yi is respondent

0 if yi is nonrespondent.
(2.1)

Then, S = SR ∪ SNR, where SR and SNR are the sets of respon-

dent units and nonrespondent units respectively:

SR = {k ∈ S : Rk = 1}

SNR = {k ∈ S : Rk = 0}

8



In order to estimate the nonrespondent values, one needs an-

other phase sampling data, the covariates X = {xi : i ∈ Ω},
that describe a characteristic of individuals fully observed or

measured. Similarly, denote the set of the covariates from the

sample S as

XS = {x1, · · · , xn} = {xk : k ∈ S}

For the nonrespondent units {k ∈ S : Rk = 0}, one assumes

that yk is a function of XS:

yk = hk(XS), if Rk = 0 (2.2)

Then, one makes the imputation:

yIk =

yk if Rk = 1

hk(XS) if Rk = 0
(2.3)

The estimation of ȳ is given by

ȳimp =
1

n

n∑
k=1

yIk (2.4)

For using this imputation, one defines some means from the

9



sample and the responding values:

x̄n =
1

n

∑
k∈S

xk

x̄r =
1

r

∑
k∈SR

xk

ȳr =
1

r

∑
k∈SR

yk

and the estimators of variance and the covariance:

sxy =
1

r − 1

r∑
k=1

(xk − x̄r)(yk − ȳr)

s2
x =

1

r − 1

r∑
k=1

(xk − x̄r)2

s2
y =

1

r − 1

r∑
k=1

(yk − ȳr)2

(2.5)

where

r =
n∑
i=1

Ri

In practice, the relation in (2.2) may be assumed linear:

h(xk) = A+Bxk, if Rk = 0 (2.6)

Then, the imputation becomes

yIk =

yk if Rk = 1

A+Bxk if Rk = 0
(2.7)

10



To analyze the errors, one defines

ε =
ȳr
ȳ
− 1, δ =

x̄r
x̄
− 1, η =

x̄n
x̄
− 1

where,

x̄ =
1

N

N∑
i=1

xi

Suppose that the expectations E(xk) = µX = x̄ and E(yk) =

µY = ȳ for every k ∈ Ω. Then, one sees immediately that

E(ȳr) = ȳ, E(x̄r) = E(x̄n) = x̄, and thus,

E(ε) = 0, E(δ) = 0, E(η) = 0 (2.8)

and one has

E(ε2) = E((
ȳr
ȳ
− 1)2) =

1

ȳ2
E((ȳr − ȳ)2) =

1

ȳ2
E(ȳ2

r − 2ȳrȳ + ȳ2)

=
1

ȳ2
[E(ȳ2

r)− 2E(
1

r

r∑
i=1

yi)ȳ + ȳ2] =
1

ȳ2
[E(ȳ2

r)− ȳ2]

=
1

ȳ2
[V ar(ȳr) + (E(ȳr))

2 − ȳ2] =
1

ȳ2
V ar(ȳr)

=
1

ȳ2
S2
ȳr

=
s2
y

ȳ2r
(1− r

N
).

(2.9)
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Similarly,

E(δ2) = E((
x̄r
x̄
− 1)2) =

1

x̄2
E((x̄r − x̄)2) =

1

x̄2
E(x̄2

r − 2x̄rx̄+ x̄2)

=
1

x̄2
[E(x̄2

r)− 2E(
1

r

r∑
i=1

xi)x̄+ x̄2] =
1

x̄2
[E(x̄2

r)− x̄2]

=
1

x̄2
[V ar(x̄r) + (E(x̄r))

2 − x̄2] =
1

x̄2
V ar(x̄r)

=
1

x̄2
S2
x̄r

=
s2
x

x̄2r
(1− r

N
)

(2.10)

E(η2) =
S2
x

x̄2n
(1− n

N
) ≈ s2

x

x̄2n
(1− n

N
) (2.11)

where

S2
x =

1

n− 1

n∑
i=1

(xi − x̄n)2

and one has

E(εη) = E((
ȳr
ȳ
− 1)(

x̄n
x̄
− 1)) =

1

ȳx̄
E(ȳrx̄n − ȳrx̄− ȳx̄n + ȳx̄)

=
1

ȳx̄
E[(ȳr(x̄n − x̄)− ȳ(x̄n − x̄)]

=
1

ȳx̄
E[(ȳr − ȳ)(x̄n − x̄)]

=
1

ȳx̄
Cov(ȳr, x̄n)

=
1

ȳx̄
sȳrx̄n ≈

sxy
nȳx̄

(1− n

N
).

(2.12)

Similarly,

E(εδ) =
1

ȳx̄
Cov(ȳr, x̄r) =

1

ȳx̄
sȳrx̄r ≈

sxy
rȳx̄

(1− r

N
) (2.13)

E(δη) =
1

x̄2
Cov(x̄r, x̄n) =

1

x̄2
sx̄rx̄n ≈

s2
x

nx̄2
(1− n

N
) (2.14)

12



2.1.1 Mean Method of Imputation

This is the simplest method of imputation. All missing values

yk are just replaced by the mean of responding values ȳr, i.e.,

A = ȳr and B = 0 in (2.6). Thus (2.7) gives

yIk =

yk if Rk = 1

ȳr if Rk = 0
(2.15)

This method effectively ignores all nonresponse data and simply

represents the nonresponse data by the mean of responding data,

as (2.4), in this case, becomes

ȳmean = ȳimp =
1

n

n∑
k=1

yIk

=
1

n
(

r∑
i=1

yi + (n− r)ȳr) =
1

r

r∑
i=1

yi = ȳr

(2.16)

In a survey, the nonresponse data might have a different view

from the responding data for some specific reasons. Conse-

quently, such representation would not be correct. It risks to lose

or distort the true image. This implies that the mean method

could not resolve the imputation that problems by nonresponse

that we mentioned in Chapter 1.

13



The estimator (2.16) can be written in terms of ε:

ȳmean =
ȳr
ȳ
ȳ = ȳ(1 + ε) (2.17)

Thus, the variance of ȳmean is given by

V ar(ȳmean) = V ar(ȳ(1 + ε)) = ȳ2V ar(ε) = ȳ2[E(ε2)− (E(ε))2]

= ȳ2E(ε2) = ȳ2
s2
y

ȳ2r
(1− r

N
) =

s2
y

r
(1− r

N
)

(2.18)

and the mean squared error of ȳmean is given by

MSE(ȳmean) = E[(ȳmean − ȳ)2] = ȳ2E[(
ȳr − ȳ
ȳ

)2]

= ȳ2E(ε2) = ȳ2
s2
y

ȳ2r
(1− r

N
) =

s2
y

r
(1− r

N
).

(2.19)

2.1.2 Ratio Method of Imputation

This method improves the mean method by introducing a ratio
xk
x̄r

for every missing unit k ∈ SNR. The missing values yk are

replaced by the ratio of the mean of responding values: yk =

14



xk
x̄r
ȳr, i.e., A = 0 and B = ȳr

x̄r
in (2.6). Thus (2.7) gives

yIk =

yk if Rk = 1

ȳr
x̄r
xk if Rk = 0

(2.20)

The estimator (2.4) becomes

ȳr = ȳimp =
1

n

n∑
k=1

yIk

=
1

n
(

r∑
i=1

yi +
ȳr
x̄r

n∑
i=r+1

xi) =
ȳr
nx̄r

(rx̄r +
n∑

i=r+1

xi)

=
ȳr
nx̄r

n∑
k=1

xk = ȳr(
x̄n
x̄r

)

(2.21)

The estimator (2.21) can be written in terms of ε, δ, and η:

ȳr =
ȳr
ȳ
ȳ(
x̄n/x̄

x̄r/x̄
) = (1 + ε)

1 + η

1 + δ
ȳ = ȳ(1 + ε)(1 + η)[

∞∑
i=0

(−1)iδi]

= ȳ(1 + ε)(1 + η)(1− δ + δ2 + · · · ) = ȳ(1 + ε+ η + εη)(1− δ + δ2 + · · · )

= ȳ[1 + ε+ η − δ + δ2 + εη − εδ − δη +O(εηδ)]

(2.22)

15



Thus, the variance of ȳratio is given by

V ar(ȳr) = V ar{ȳ[1 + ε+ η − δ + δ2 + εη − εδ − δη +O(εηδ)]}

= ȳ2[V ar(1 + ε+ η − δ + δ2 + εη − εδ − δη +O(εηδ))]

≈ ȳ2[V ar(ε) + V ar(η) + V ar(δ)]

= ȳ2[E(ε2)− (E(ε))2 + E(η2)− (E(η))2 + E(δ2)− (E(δ))2]

= ȳ2[E(ε2) + E(η2) + E(δ2)]

(2.23)

and the mean squared error of ȳratio to the first order of approx-

imation is given by

MSE(ȳr) = E[(ȳratio − ȳ)2]

= ȳ2E[(ε+ η − δ + δ2 + εη − εδ − δη +O(εηδ))2]

≈ ȳ2E[(ε+ η − δ)2]

= ȳ2E(ε2 + η2 + δ2 + 2εη − 2εδ − 2δη)

≈ (
1

r
− 1

N
)s2
y + ȳ2(

1

n
− 1

N
)
s2
x

x̄2
+ ȳ2(

1

r
− 1

N
)
s2
x

x̄2

+ 2ȳ2(
1

n
− 1

N
)
sxy
ȳx̄2
− 2ȳ2(

1

r
− 1

N
)
s2
xy

ȳx̄2
− 2ȳ2(

1

n
− 1

N
)
s2
x

x̄2

= (
1

r
− 1

N
)s2
y + (

1

r
− 1

n
)(
ȳ

x̄
)2s2

x − 2(
1

r
− 1

n
)
ȳ

x̄
sxy

(2.24)
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Note that if ȳ
x̄ < 2

sxy
s2
x

,

MSE(ȳr) = (
1

r
− 1

N
)s2
y + (

1

r
− 1

n
)(
ȳ

x̄
)2s2

x − 2(
1

r
− 1

n
)
ȳ

x̄
sxy

< (
1

r
− 1

N
)s2
y + (

1

r
− 1

n
)(4

s2
xy

s4
x

s2
x − 4

s2
xy

s2
x

)

= (
1

r
− 1

N
)s2
y = MSE(ȳmean)

It follows that the ratio method of imputation is better than the

mean method of imputation if

ȳ

x̄
< 2

sxy
s2
x

(2.25)

2.1.3 Regression Method of Imputation

In (2.6), choosing A = ȳr − sxy
s2
x
x̄r and B =

sxy
s2
x

, one obtains the

regression method of imputation:

yIk =

yk if Rk = 1

ȳr − sxy
s2
x
x̄r +

sxy
s2
x
xk if Rk = 0

(2.26)

17



The estimator (2.4) becomes

ȳreg = ȳimp =
1

n

n∑
k=1

yIk

=
1

n
[
r∑

k=1

yk +
n∑

k=r+1

(ȳr −
sxy
s2
x

x̄r +
sxy
s2
x

xk)]

=
1

n
[rȳr + (n− r)(ȳr −

sxy
rs2

x

r∑
k=1

xk) +
sxy
s2
x

n∑
k=r+1

xk]

= ȳr −
sxy
rs2

x

r∑
k=1

xk +
sxy
ns2

x

(
r∑

k=1

xk +
n∑

k=r+1

xk)

= ȳr −
sxy
s2
x

x̄r +
sxy
s2
x

x̄n

(2.27)

The estimator (2.27) can be written in terms of ε, δ, and η:

ȳreg =
ȳr
ȳ
ȳ +

sxy
s2
x

(
x̄n
x̄
− x̄r
x̄

)x̄

= ȳ(1 + ε) + x̄
sxy
s2
x

(η − δ)
(2.28)
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Thus, the mean squared error of ȳregression is given by

MSE(ȳreg) = E[(ȳregression − ȳ)2]

= E[(ȳε+ x̄
sxy
s2
x

(η − δ))2]

= E[ȳ2ε2 + 2ȳx̄
sxy
s2
x

ε(η − δ) + x̄2(
sxy
s2
x

)2(η − δ)2]

= ȳ2E(ε2) + 2ȳx̄
sxy
s2
x

[E(εη)− E(εδ)]

+ x̄2(
sxy
s2
x

)2[E(η2)− 2E(ηδ) + E(δ2)]

≈ ȳ2(
1

r
− 1

N
)
s2
y

ȳ2
+ 2ȳx̄

sxy
s2
x

[(
1

n
− 1

N
)
sxy
x̄ȳ
− (

1

r
− 1

N
)
sxy
x̄ȳ

]

+ x̄2(
sxy
s2
x

)2[(
1

n
− 1

N
)
s2
x

x̄2
− 2(

1

n
− 1

N
)
s2
x

x̄2
+ (

1

r
− 1

N
)
s2
x

x̄2
]

= (
1

r
− 1

N
)s2
y − (

1

r
− 1

n
)
s2
xy

x̄2

(2.29)

Comparing (2.29) with (2.24) and (2.19), one sees that the re-

gression method of imputation is better than the mean and ratio

methods of imputation.

2.1.4 Power Transformation Method of Imputation

In (2.6), choosing A = 0 and B = ȳr
n( x̄nx̄r )α−r
nx̄n−rx̄r , where α is a

chosen constant, one obtains the power transformation method
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of imputation:

yIk =

yk if Rk = 1

ȳr
n( x̄nx̄r )α−r
nx̄n−rx̄r xk if Rk = 0

(2.30)

The estimation (2.4) becomes

ȳpower = ȳimp =
1

n

n∑
k=1

yIk

=
1

n
[
r∑

k=1

yk +
n∑

k=r+1

ȳr
n( x̄nx̄r )

α − r
nx̄n − rx̄r

xk]

=
rȳr
n

+ ȳr
n( x̄nx̄r )

α − r
nx̄n − rx̄r

(
nx̄n − rx̄r

n
)

= P ȳr +B(x̄n − Px̄r)

(2.31)

where the response rate P = r
n

In [29], Singh and Deo declared that the power transformation

method is as good as the regression method of imputation.So

we have more choice for the imputation.

2.1.5 Optimal Method of Imputation

The optimal method of imputation is to find the coefficients A

and B in (2.7) so that the mean squared error of the proposed

estimator ȳimp is minimized.
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By (2.7), the estimator (2.4) can be written as

ȳimp =
1

n

n∑
k=1

yIk =
1

n
[
r∑

k=1

yk +
n∑

k=r+1

(A+Bxk)]

=
1

n
[rȳr + (n− r)A+B(

r∑
k=1

xk +
n∑

k=r+1

xk)−B
r∑

k=1

xk]

=
r

n
ȳr + (1− r

n
)A+B(x̄n −

r

n
x̄r)

(2.32)

Noting that E(ȳr) = ȳ, E(x̄r) = x̄ and E(x̄n) = x̄, one obtains

the bias of the estimator ȳimp:

Bias(ȳimp) = E(ȳimp)− ȳ

=
r

n
E(ȳr) + (1− r

n
)A+B(E(x̄n)−

r

n
E(x̄r))− ȳ

=
r

n
ȳ + (1− r

n
)A+Bx̄(1− r

n
)− ȳ

= (1− r

n
)(A+Bx̄− ȳ)

(2.33)

This implies that under the assumption r < n, the method (2.7)

is unbiased if

A+Bx̄− ȳ = 0 (2.34)
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The estimator (2.32) can be written in terms of ε, δ, and η:

ȳimp =
r

n

ȳr
ȳ
ȳ + (1− r

n
)A+B(

x̄n
x̄
x̄− r

n

x̄r
x̄
x̄)

=
r

n
(1 + ε)ȳ + (1− r

n
)A+B[(1 + η)x̄− r

n
(1 + δ)x̄]

=
r

n
(1 + ε)ȳ + (1− r

n
)A+Bx̄(1− r

n
+ η − r

n
δ)

(2.35)

The mean squared error of ȳimp is given by

MSE(ȳimp) = E[(ȳimp − ȳ)2]

= E[(
r

n
(1 + ε)ȳ + (1− r

n
)A+Bx̄(1− r

n
+ η − r

n
δ)− ȳ)2]

= E[(
r

n
ȳε+Bx̄(η − r

n
δ) + U)2]

= E[(
r

n
ȳε+Bx̄(η − r

n
δ))2 + 2U(

r

n
ȳε+Bx̄(η − r

n
δ)) + U 2]

= E[(
r

n
)2ȳ2ε2 + 2B

r

n
x̄ȳε(η − r

n
δ) +B2x̄2(η − r

n
δ)2]

+ E[2U(
r

n
ȳε+Bx̄(η − r

n
δ)) + U 2]

= (
r

n
)2ȳ2E(ε2) + 2B

r

n
x̄ȳE(εη)− 2B(

r

n
)2x̄ȳE(εδ)

+B2x̄2E(η2)− 2B2x̄2 r

n
E(ηδ) +B2x̄2(

r

n
)2E(δ2) + U 2

(2.36)

where

U = U(A,B) = (1− r

n
)(A+Bx̄− ȳ)
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Putting

0 =
∂MSE(ȳimp)

∂A

= 2U
∂U

∂A
= 2(1− r

n
)2(A+Bx̄− ȳ)

and

0 =
∂MSE(ȳimp)

∂B

= 2Bx̄2[E(η2)− 2r

n
E(ηδ) + (

r

n
)2E(δ2)]

+
2r

n
x̄ȳE(εη)− 2(

r

n
)2x̄ȳE(εδ) + 2U

∂U

∂B

= 2A(1− r

n
)2x̄+ 2Bx̄2[E(η2)− 2r

n
E(ηδ) + (

r

n
)2E(δ2)]

+ 2B(1− r

n
)2x̄2 +

2r

n
x̄ȳE(εη)− 2(

r

n
)2x̄ȳE(εδ)− 2(1− r

n
)2x̄ȳ

one obtains the optimal solution:

A = ȳ −Bx̄ (2.37)

and

B =
( ȳx̄)[( rn)2E(εδ)− r

nE(εη)]

E(η2)− 2r
nE(ηδ) + ( rn)2E(δ2)

(2.38)

It follows

B =
( rn)2(1

r −
1
N )sxy − r

n( 1
n −

1
N )sxy

( 1
n −

1
N )s2

x − 2r
n ( 1

n −
1
N )s2

x + ( rn)2(1
r −

1
N )s2

x

=
( rn)2(1

r −
1
N )− r

n( 1
n −

1
N )

( 1
n −

1
N )− 2r

n ( 1
n −

1
N ) + ( rn)2(1

r −
1
N )

(
sxy
s2
x

)

(2.39)
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(2.37) and (2.39) give the optimal coefficients A and B. How-

ever, noting ȳ is the value that one just wants to estimate, it re-

mains unknown during an imputation procedure. Consequently,

since the optimal coefficient A is a function of ȳ, this method

is not applicable theoretically. In practice, one can replace ȳ by

other estimation ȳimp in (2.4), for instance, by ȳmean in (2.16),

or by ¯̂y = 1
n

∑n
i=1 m̂(xi) found in Chapter 3.

2.2 Multiple Imputation Approach

Multiple imputation is a technique that tries to improve the

single imputation method to resolve the problems of nonre-

sponse data. In such an approach, one has a incomplete set

of sample values Y and several complete sets of sample values

X(1), · · · , X(m) from the same population. As in Chapter 2.1,

one has established the relations between the element in Y and

the elements in each X(k), k = 1, · · · ,m. Now, one has interest

to estimate a quantity Q, a function of the value set Y , in the

survey. For each k ∈ {1, · · · ,m}, one obtains the corresponding

estimator Q̂X(k) from Xk by a single imputation method. Then,

one evaluates Q as a function, for instance, the mean, of these

Q̂X(k).

In this chapter, we will give summary of the statistical theo-

ries given by Rubin [26] for the multiple imputation approach
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to nonresponse in the census or survey.

2.2.1 Variables in the Multiple Imputation Approach

Here one defines four variables in the finite population of N

individuals: X, covariates; Y, outcome variables; I, sampling in-

dicators; and R, response indicators.

The covariates X describe characteristics of individuals that are

fully observed or measured. X are written in the form:

X =


X1

X2

...

XN

 =


X11 X12 . . . X1q

X21 X22 . . . X2q

...
... . . . ...

XN1 XN2 . . . XNq

 (2.40)

where (Xi) =
(
Xi1 Xi2 . . . Xiq

)
is a row vector that corre-

sponds to the q components of covariate X, on the individual i,

i = 1, 2, . . . , N

The outcome variables Y describe characteristics of individu-

als that are not fully observed or measured in the population.

Y is written in the form:

Y =


Y1

Y2

...

YN

 =


Y11 Y12 . . . Y1p

Y21 Y22 . . . Y2p

...
... . . . ...

YN1 YN2 . . . YNp

 (2.41)
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where (Yi) =
(
Yi1 Yi2 . . . Yip

)
is a row vector corresponding

to p components of characteristics of interest on the individual i.

The sampling indicators I describe which values are included

or excluded in the survey. I can be written in the form:

I =


I1

I2

...

IN

 =


I11 I12 . . . I1p

I21 I22 . . . I2p

...
... . . . ...

IN1 IN2 . . . INp

 (2.42)

where (Ii) =
(
Ii1 Ii2 . . . Iip

)
is a row vector. Each Iij is

defined by

Iij =

1 if Yij recorded,

0 if Yij not recorded.

One assumes that the value of Iij is known for all i and all j.

The response indicators R describe which values are respondent

or nonrespondent in the survey. R can be written on the form:

R =


R1

R2

...

RN

 =


R11 R12 . . . R1p

R21 R22 . . . R2p

...
... . . . ...

RN1 RN2 . . . RNp

 (2.43)

26



where (Ri) =
(
Ri1 Ri2 . . . Rip

)
is a row vector. Each Rij is

defined by

Rij =

1 if Yij respondent

0 if Yij nonrespondent.

One assumes that the value of Rij is known whenever Iij = 1

and unknown whenever Iij = 0.

In this thesis, we only consider the case p = 1, i.e., for every

individual i ∈ S, the single response variable Yi = yi ∈ R.

2.2.2 Analysis of Repeated Imputation

Let n be the sample size. Consider Q, be the quantity of interest

in the survey. In order to estimate Q, one measures m complete

sets of sample values X(1), · · · , X(m). This yields m correspond-

ing imputations Y (1), · · · , Y (m) and thus m corresponding esti-

mators Q̂(1), · · · , Q̂(m) of Q. Assume that

Q− Q̂(k) ∼ N(0, U (k)) k = 1, · · · ,m (2.44)

where U (k) is the variance of the estimator associated with Q̂(k)

and N(0, U (k)) is the kth normal distribution with mean 0 and

variance U (k). The estimates and associated variances for m sets

of completed data can be combined as below.

27



The estimator for Q for multiple imputation is given by

Q̄ =
1

m

m∑
k=1

Q̂(k) (2.45)

The within-imputation variance is defined by

Ū =
1

m

m∑
k=1

U (k) (2.46)

and the between-imputation variance is defined by

B =
1

m− 1

m∑
k=1

(Q(k) − Q̄)t(Q(k) − Q̄) (2.47)

The total variance of Q− Q̄ is given by

T = Ū + (1 +
1

m
)B (2.48)

Then, the statistic T−1/2(Q − Q̄) is approximately distributed

as the Student t distribution on ν degree of freedom:

Q− Q̄
T 1/2

∼ tν (2.49)

with

ν = (m− 1)(1 +
1

rm
)2 (2.50)

where rm, called the relative increase in variance due to nonre-

sponse, is given by

rm =
(1 +m−1)B

Ū
(2.51)
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A 100(1 − α)% confidence interval of estimate Q is then found

as

Q̄± tν(α/2)T 1/2 (2.52)

2.2.3 Multiple Imputation Efficiency

One notes, by (2.50), that the degrees of freedom ν depends on

the repeated number m and the ratio rm. When m increases or

rm decreases, the degrees of freedom ν increases and thus, the

statistic T−1/2(Q− Q̄) tends to be distributed as a normal dis-

tribution. When there are no missing data about Q, by (2.47),

one sees that B = 0, hence, rm = 0, the distribution in (2.49)

will be normal as previewed.

Another estimate of the fraction of missing data about Q due to

nonresponse, derived by Rubin ([26] p.77), is the rate of missing

information:

γm =
rm + 2/(ν + 3)

rm + 1
(2.53)

Rubin showed that the efficiency, in units of variance, of finite-

m imputation estimator relative to the infinite-m imputation
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estimator is approximately given by ([26] p.114)

RE = (1 +
γ0

m
)−1 (2.54)

where γ0 is the population fraction of missing information.

By calculating ([26] p.114) the efficiency RE in terms of dif-

ferent values of m and γ0, Rubin claimed that m = 2 to 10

imputations may be proper.

2.2.4 Evaluation of Multiple Imputation Method

One should note that no technique can be perfect or unimpor-

tant for the nonresponse problem. The multiple imputation

technique has its own advantages and inconveniences.

Conditions of Advantage

Multiple imputation retains the ability of single imputation to

use the complete data method of analysis. And it enhances the

ability of single imputation to incorporate the data collector’s

knowledge because the data collectors are allowed to use their

knowledge to reflect uncertainty about which values will be im-

puted. Multiple Imputation always produces estimates which

are more representative of the population than other popular

methods of handling mising data. In addition to the shared
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advantage with single imputation, there are some distinct ad-

vantages.

• Multiple Imputation increases the efficiency of estimation.

• Valid inference which reflect the additional variability due

to missing values can be simply obtained by straightforward

combining completed data inferences under a model.

Conditions of Inconvenience

Obviously there are some disadvantages of multiple imputation

relative to single imputation.

• More work is required to produce sets of completed data.

• More storage space is needed to store these multiple im-

puted data sets.

• Extra work is required to analyze these multiple imputed

data sets.
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Chapter 3

Nonparametric Imputation

Approaches

As in Section 2.1 and Section 2.2, one has two correlated sets

of independent and identically distributed random vectors: the

complete set X and the incomplete set Y from a sample survey

S = {1, · · · , n} ⊆ Ω, the set of the population. The object here

is to establish a regression curve by these two sets which pro-

vides a reasonable estimation to the representation of Y . We

call such regression technique as a smoothing.

Let ZS = {(Xi, Yi) : Xi ∈ XS, Yi ∈ YS}, whereXS = {X1, · · · , Xn}
and YS = {Y1, · · · , Yn} are the set of the covariates and the set

of outcome variables respectively from the sample S defined in

Section 2.1 and Section 2.2.

In this thesis, we only consider the case where for every in-

dividual i ∈ S, the single response variable Yi = yi ∈ R and the
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predictor variable Xi ∈ Rq.

Let RS = {Ri : i ∈ S} be the response indicator defined by

Ri =

1 if Yi respondent,

0 if Yi nonrespondent.
(3.1)

The nonparametric imputation assumes an appropriate regres-

sion relationship

Y = m(X) + ε (3.2)

so that ,

Yi = m(Xi) + εi, i = 1, · · · , n (3.3)

To obtain the regression curve m(x), one defines an estimator

of m(x) by

m̂(x) =
1∑n
i=1Ri

n∑
i=1

Wi(x)RiYi (3.4)

where Wi(x), depending on the vectors X1, · · · , Xn, is the weight

of Yi to the individual i ∈ S. We call such regression es-

timator m̂(x) as a smoother and the corresponding outcome

{Ŷi = m̂(Xi) : i ∈ S} as the smooth value. Thus, the smoothing

of ZS = {(X1, Y1), · · · , (Xn, Yn)} becomes a procedure of how to

find these weights Wi(x) for every individual i ∈ S.

In this chapter, we will summarize some smoothing techniques
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given by Härdle [12].

3.1 Kernel Smoothing

In this section, the predictor variables Xi ∈ R, i.e., x is one-

dimensional real scalar.

In order to find the weight sequence {W1(x), · · · ,Wn(x)}, one

introduces a continuous, bounded and symmetric real function

K called the Kernal function, such that∫
R
K(t)dt = 1 (3.5)

The idea of the kernel smoothing is motivated from the proper-

ties of a probability density function f(x). The equation (3.5)

is, in fact, a feature that a probability density function must

satisfy. Let F (x) = P (X ≤ x) be the cumulative distribution

function of X.

f(x) =
dF

dx
= lim

h→0

P (x− h < x < x+ h)

2h
(3.6)

This gives an idea to estimate f(x), from the n observations
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X1, · · · , Xn, by ([8] p.324)

f̂n(x)
def
=

1

2h

[number of observations falling in(x− h, x+ h)

n

]
=

1

hn

n∑
i=1

w
(x−Xi

h

)
(3.7)

where w the weight function defined by

w(x) =
1

2
I{|x|≤1} (3.8)

Note that if K(x) is the density function of the random variable

X, then

Kh(x)
def
=

1

h
K(

x

h
) (3.9)

is the density function of the random variable hX. With the

kernel equation (3.5), Rosenblatt and Parzen ([8] p.331) defined

a kernel density estimator for the density function of X by

f̂h(x) =
1

hn

n∑
i=1

K
(x−Xi

h

)
(3.10)

Since K is continuous, bounded, symmetric about the origin on

real line, and integrated to unity by (3.5), then for a small h, the

regression relation m at some point x0 in (3.2) can be written
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approximately as

m(x0) ≈
∫ ∞
−∞

m(t)Kh(t− x0)dt

= E
[m(X)Kh(X − x0)

f(X)

]
= E

[Y Kh(X − x0)

f(X)

] (3.11)

From the equation (3.11), a kernel estimator can be obtained

as:

m̂h(x) =
1∑n
i=1Ri

n∑
i=1

[Kh(Xi − x)RiYi]

f(Xi)
(3.12)

Usually the density function of f(x) is unknown. Note that

the kernel density (3.10) is enlightened by the naive density

estimator (3.7). For very small h, these f(Xi) in (3.12) can

be replaced by f̂h(x). Thus, the estimator (3.12) becomes

m̂h(x) =
1∑n
i=1Ri

n∑
i=1

[Kh(x−Xi)RiYi]

f̂h(x)
(3.13)

Consequently, Nadaraya and Watson ([12] p.25) proposed the

weight sequence of the kernel smoother as

Wi(x) =
Kh(x−Xi)

f̂h(x)
=

Kh(x−Xi)
1
n

∑n
j=1Kh(x−Xj)

=
K(x−Xi

h )
1
n

∑n
j=1K(

x−Xj

h )

(3.14)
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where the size of the weight h is called the bandwidth. This gives

the Nadaraya-Watson estimator by (3.4):

m̂h(x) =
1∑n

k=1Rk

n∑
i=1

[ Kh(x−Xi)RiYi
1
n

∑n
j=1Kh(x−Xj)

]
=

∑n
i=1[K(x−Xi

h )RiYi]∑n
k=1Rk
n

∑n
j=1K(

x−Xj

h )

(3.15)

We note that if Ri = 1 for all i ∈ S, i.e., all Yi are respon-

dent, (3.15) becomes

m̂h(x) =
1

n

n∑
i=1

[ Kh(x−Xi)Yi
1
n

∑n
j=1Kh(x−Xj)

]
=

∑n
i=1[K(x−Xi

h )Yi]∑n
j=1K(

x−Xj

h )

(3.16)

The above equation implies a reasonable estimator in the case

of missing data, introduced by Cheng and Wei [5],

m̂h(x) =
n∑
i=1

[ Kh(x−Xi)RiYi∑n
j=1Kh(x−Xj)Rj

]
=

∑n
i=1K(x−Xi

h )RiYi∑n
j=1K(

x−Xj

h )Rj

(3.17)

That is obtained by taking account of only these variables Xi for

Ri = 1, i.e., the kernel density estimator (3.10) for the density

function of X becomes

f̂h(x) =
1

h
∑n

i=1Ri

n∑
i=1

K
(x−Xi

h

)
Ri (3.18)
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and thus the weight sequence of the kernel smoother (3.14) be-

comes

Wi(x) =
Kh(x−Xi)

f̂h(x)
=

Kh(x−Xi)
1∑n

k=1Rk

∑n
j=1Kh(x−Xj)Rj

=
K(x−Xi

h )
1∑n

k=1Rk

∑n
j=1K(

x−Xj

h )Rj

(3.19)

Substituting (3.19) into (3.4), we obtain (3.17).

3.2 Selection of Kernel Function

In this section, we suppose that Ri = 1 for all i ∈ S, i.e., all Yi

are respondent.

Let

• K be the kernel function as defined in Section 3.1.

• X be a one-dimensional predictor variable.

• m be the regression model defined by (3.2).

• f be the density function of the random variable X.

• σ2(x) be the variance of the random variable X at the point

x.

Then one has the following theorem ([12] p.29).
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Theorem 3.1 Assume:

1.
∫
R|K(t)|dt <∞;

2. lim|t|→∞ tK(t) = 0;

3. E[Y 2] <∞;

4. for n→∞, then, h→ 0 and nh→∞.

Then, for each x ∈ R with f(x) > 0 such that m, f and σ2 are

continue at the point x, one has

1

n

n∑
i=1

Wi(x)Yi
P→ m(x).

The theorem 3.1 ensures that the kernel smoother m̂h(x) con-

verges in probability to response curve m(x). Based on the

Theorem 3.1, one can propose several kernel functions K to es-

timate the response variable Y .

Example 3.2.1 Polynomial kernels

(1) K(t) =
3

4
(1− t2)I(|t| ≤ 1)

(2) K(t) =
15

32
(3− 10t2 + 7t4)I(|t| ≤ 1)

(3) K(t) =
15

4
(−t+ t3)I(|t| ≤ 1)

(4) K(t) =
105

32
(−5t+ 14t3 − 9t5)I(|t| ≤ 1)

(5) K(t) =
105

16
(−1 + 6t2 − 5t4)I(|t| ≤ 1)

(6) K(t) =
315

64
(−5 + 63t2 − 135t4 + 77t6)I(|t| ≤ 1)

(3.20)
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In [12], Härdle listed some polynomial kernels ([12] p.135. (1)

is also called as the Epanechnikov kernel). All of these kernel

functions in Example 3.2.1 have support [-1, 1] and were derived

by Gasser, Müller and Mammitzsch [1985] from some optimalily

consideration.

Example 3.2.2 The Gaussian kernel

K(t) =
1√
2π
e−

t2

2 (3.21)

In fact, is the density of a standard normal distribution.

Example 3.2.3 The gamma kernel

K(t) =
1

βαΓ(α)
e−

t
β tα−1 t ≥ 0 (3.22)

is, in fact, the density of the gamma distribution. Note that in

Example 3.2.3, the gamma kernel K is not symmetric to the ori-

gin 0. Ignoring the condition of symmetry, the density function

f(x) is a kernel function of the continuous random variable X,

where α and β have to be chosen appropriately.

Note that the function K in Example 3.2.3 does not satisfy the

condition of symmetry for a kernel. Thus, for using (3.22) as a

kernel function, it should have some special consideration.
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3.3 Selection of Bandwidth

In this section, we suppose that Ri = 1 for all i ∈ S, i.e., all Yi

are respondent.

Let

dM(x, h) = E[m̂h(x)−m(x)]2

be the mean squared error of the kernel smoothing model at a

point x of the random variableX. For the regression method (3.2),

assuming, without loss of generality, that Xi is taken from the

interval [−1, 1], Gasser and Müller ([12] p.29) in 1984 showed

the following theorem .

Theorem 3.2 Let

cK =

∫
R
K2(t)dt <∞

dK =

∫
R
t2K(t)dt <∞

Take the kernel weight sequence {Whi}, proposed by Gasser and

Müller( [12] p.28), as

Whi = n

∫ Si

Si−1

Kh(x− t)dt (3.23)

where Xi−1 ≤ Si−1 ≤ Xi is chosen from the ordered set {X0 <

X1 <, · · · , < Xn} with X0 = −1.

Assume:

1. K has support [-1, 1] with K(−1) = K(1) = 0;

2. m ∈ C2;
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3. maxi|Xi −Xi−1| = O(n−1);

4. var(εi) = σ2, i = 1, · · · , n;

5. for n→∞, then, h→ 0 and nh→∞. Then, for each x ∈ R
with f(x) > 0 such that m, f and σ2 are continue at the point

x, one has

dM(x, h) ≈ (nh)−1σ2cK + h4d2
K(m′′(x))2/4.

The optimal bandwidth hopt can be found by setting

∂dM(x, h)

∂h
= 0

3.4 Kernel Smoothing for Non-negative Sta-

tionary Ergodic Processes

In this section we suppose that Ri = 1 for all i ∈ S, i.e., all Yi

are respondent.

In Section 3.1, we have shown the idea how to get the Nadaraya-

Watson (NW ) estimator (3.15):

m̂h(x) =

∑n
i=1 YiKh(x−Xi)∑n
i=1Kh(x−Xi)

(3.24)

where Kh, represents the density function of the random vari-

able hX, is given by (3.9). In this section, we summarize the

kernel smoothing, proposed by Chaubey, Läıb and Sen in [3],
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to give a rigor and solid reason to the generalized NW estima-

tor from (3.24) for non-negative data sampled from a station-

ary, ergodic process. This says that for every individual i ∈ S,

the single response variable Yi ∈ R+ and the predictor vari-

able Xi ∈ R+q, and furthermore, every Zi = (Xi, Yi) ∈ ZS =

{(Xi, Yi) : Xi ∈ XS, Yi ∈ YS} is sampled from a stationary, er-

godic process.

Define the conditional mean function

m(x) = E(φ(Y1)|X1 = x) (3.25)

where φ : R+ → R, is a Borel function such that E(|φ(Y1)|) <∞,

in addition, m(x) = E(φ(Y1)|X1 = x) <∞ for any x ∈ XS. The

goal in this section is to construct an estimator for the mean

function m.

3.4.1 1-Dimensional Case

Here we consider Xi ∈ R+ for every i ∈ S, i.e., q = 1.

In order to construct the estimator of m in (3.25), Chaubey,

Läıb and Sen presented the following theorem ([3] p.975), origi-

nally shown in [11], Chapter VII ([11] p.219).
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Theorem 3.3 For n = 1, 2, · · · , consider a family of distribu-

tions fx,hn, where hn denotes the bandwidth for each sample Sn,

with mean µn(x) and variance σ2
n(x). Let u be a bounded and

continuous function on R. If µn(x)→ x and σ2
n(x)→ 0 for each

x ∈ R, then∫ ∞
−∞

u(t)fx,hn(t)dt→ u(x) as n→∞ (3.26)

The convergence is uniform in every finite interval in which

σ2
n(x)→ 0 uniformly and u is uniformly continuous.

Let u(t) = m(t)f(t), where f , bounded and continuous on R+, is

the common density function of Xi ∈ XS. Then, (3.26) becomes

Ef(φ(Y1)fx,hn(X1)) =

∫ ∞
−∞

m(t)f(t)fx,hn(t)dt→ m(x)f(x) as n→∞

(3.27)

(3.27) motivates an estimator of m for each sample Sn given by

:

m̂n(x) =
ûn(x)

f̂n(x)

for x ∈ R+, where ûn is the estimator of Ef(φ(Y1)fx,hn(X1)):

ûn(x) =
1

n

n∑
i=1

φ(Yi)fx,hn(Xi) (3.28)

and f̂n is the estimator of f :

f̂n(x) =
1

n

n∑
i=1

fx,hn(Xi) (3.29)

i.e., the estimator of m for each sample Sn is constructed by

m̂n(x) =

∑n
i=1 φ(Yi)fx,hn(Xi)∑n

i=1 fx,hn(Xi)
(3.30)
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We note that the Nadaraya-Watson estimator m̂h in (3.24) is a

special case of the estimator m̂n given in (3.30) by taking the

bandwidth hn = h and

fx,hn(t) = Kh(x− t) =
1

h
K
(x− t

h

)
where K is the kernel described in Section 3.1.

Chaubey, Läıb and Sen indicated ([3] p.975) that the estima-

tor in (3.30) may not be defined at x = 0 except in cases where

m̂n(0) = limx→0+ m̂n(x) exists. For this situation, Chaubey,

Läıb and Sen modified the estimator in (3.30) to construct a

perturbed version of estimator of m ([3] p.976):

m̂n(x) =

∑n
i=1 φ(Yi)fx+εn,hn(Xi)∑n

i=1 fx+εn,hn(Xi)
(3.31)

where εn ∈ R+ tends to 0 as n→∞ in an appropriate rate.

3.4.2 q-Dimensional Case

Here we consider Xi ∈ R+q with q > 1 for every i ∈ S. In this

case, the estimator of m is still given by (3.31), i.e.,

m̂n(x) =
ûn(x+ εn)

f̂n(x+ εn)
=

∑n
i=1 φ(Yi)fx+εn,hn(Xi)∑n

i=1 fx+εn,hn(Xi)
(3.32)

In this multi dimensional case, usually these estimators of dis-

tributions fx,hn can be calculated by
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fx,hn(t) =

q∏
k=1

fxk,hn(t)

where x = (x1, · · · , xq) ∈ R+q, and fxk,hn denotes the distri-

bution described in the theorem 3.3 for the element xk, k ∈
{1, · · · , q}.

In [3], Chaubey, Läıb and Sen studied the specific kernel es-

timator given by a Gamma distribution. They showed, under

certain conditions, the results of asymptotic normality for the

estimator and evaluated the mean squared errors (MSE).

3.5 Nearest Neighbor Estimates

The nearest neighbor imputation is to use a k-nearest neighbor

(k-NN) sequence {(Xi, Yi)}ni=1, introduced by Loftsgaarden and

Quesenberry [1965], to estimate the smoother m(x) at the point

x in the regression relationship (3.2). In order to calculate the

smoother m(x) by the k-NN imputation, the k observations Xi

closest to x are chosen for the index set

Jx = {i : Xi is one of the k nearest observations with Ri = 1 to x}

and the k-NN weight sequence is constructed by ([12] p.42)

Wki(x) =

1/k if i ∈ Jx,

0 otherwise .
(3.33)
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Then, the k-NN smoother is found by (3.4):

m̂k(x) =
1∑n
i=1Ri

n∑
i=1

Wki(x)RiYi (3.34)

Let X be a one-dimensional predictor variable. Suppose that

Ri = 1 for all i ∈ S, i.e., all Yi are respondent. For the k-NN

estimate, one has the following theorem ([12] p.43).

Theorem 3.4 Let k → ∞, k/n → ∞, n → ∞. The bias and

variance of the k-NN estimate m̂k with weights as in (3.34) are

given by

E[m̂k(x)−m(x)] ≈ 1

24f(x)3
[(m′′f + 2m′f ′)(x)](k/n)2

var{m̂k(x)} ≈ σ2(x)

k

where m is the regression model defined by (3.2), f is the density

function of the random variable X, and σ2(x) is the variance of

the random variable X at the point x.

3.6 Horvitz-Thompson Estimate

Let Zi = (Xi, Yi) ∈ ZS = {(Xi, Yi) : Xi ∈ XS, Yi ∈ YS}. The

population total is defined by

τ =
N∑
i=1

Yi (3.35)
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In 1952, Horvitz and Thompson proposed an inverse weighting

estimator of the population total τ ([6] p.259):

τ̂ =
n∑
i=1

RiYi
πi

(3.36)

where πi is the probability that the ith unit Yi is in the sample:

πi = P(Ri = 1|Xi ∈ XS) (3.37)

Theorem 3.5 If πi > 0, i = 1, · · · , n,

τ̂ =
n∑
i=1

Yi
πi

is an unbiased estimator of τ , with variance

var(τ̂) =
n∑
i=1

1− πi
πi

Y 2
i + 2

n∑
i

n∑
j>i

πij − πiπj
πiπj

YiYj

where πij is the probability that the ith and jth units Yi, Yj are

both in the sample:

πij = P(Ri = 1, Rj = 1|Xi, Xj ∈ XS) (3.38)

3.7 Nonparametric Regression Imputation Method

to Estimate the Population Mean

The nonparametric regression weighting approach is a common

way to impute the missing values for the analysis of nonparamet-
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ric imputation in sampling techniques. The regression approach

includes :

• Kernel regression imputation

• Nearest neighbor imputation

Here we summarize some kernel smoothing estimators, proposed

by Ning and Cheng in [20].

3.7.1 Kernel Regression Weighting Method

By (3.17), Cheng and Wei [5] introduced an estimator to the

population mean for Yi:

µ̂ =
1

n

n∑
k=1

m̂h(Xk)

=
1

n

n∑
k=1

∑n
i=1Kh(Xk −Xi)RiYi∑n
j=1Kh(Xk −Xj)Rj

=
1

n

n∑
k=1

∑n
i=1K(Xk−Xi

h )RiYi∑n
j=1K(

Xk−Xj

h )Rj

(3.39)

A reasonable estimator to the population mean for Yi is

µ̂KR =
1

n

n∑
i=1

[RiYi + (1−Ri)m̂h(Xi)] (3.40)

where m̂h(x) is given by (3.17). In (3.40), the nonrespondent Yi

are replaced by m̂h(Xi).
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3.7.2 Nearest Neighbor Regression Weighting Method

The nearest neighbor (NN) regression weights is an another ba-

sic approach to nonparametric imputation. For a finite positive

interger k,a k-NN imputation estimator is defined as

µ̂NN =
1

n

n∑
i=1

[RiYi + (1−Ri)m̂k(Xi)] (3.41)

where m̂k is the k-NN smoother given by (3.34). Similar to (3.40),

in (3.41) the nonrespondent Yi are replaced by m̂k(Xi).

3.7.3 Horvitz-Thompson(HT) Inverse Weighting Method

According to (3.36), the HT estimator of the population mean

µ is defined by

µ̂HT =
τ̂

n
=

1

n

n∑
i=1

RiYi
πi

(3.42)

By similar reasoning to construct the estimator of population

total (3.36) ([6] p.259), one can replace n in (3.42) by a ratio

estimator:

n̂ =
n∑
i=1

Ri

πi
(3.43)

Then the HT estimator of the population mean (3.42) becomes

µ̂HT =
1∑n
i=1

Ri
πi

n∑
i=1

RiYi
πi

(3.44)
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According to (3.37), πi is a conditional probability. By the law

of conditional probability and the kernel density estimator f̂h(x)

for the density function of X (3.10), one obtains an estimator

of πi:

π̂i =
f̂h(Ri = 1, Xi)

f̂h(Xi)
=

∑n
j=1RiKh(Xi −Xj)∑n
j=1Kh(Xi −Xj)

(3.45)

where Kh is the kernel given by (3.9).

3.8 Multiple Imputation

In this sections, we consider the case where the predictor vari-

able X is p−dimensional, i.e., Xi = (Xi1, · · · , Xip) for every

individual i ∈ S = {1, · · · , n}. In such multi dimensional case,

the kernel function can be defined as

K(t1, · · · , tp) =

p∏
k=1

K(tk) (3.46)

where K(tk) is the one-dimensional kernel function defined in

Section 3.1.

Then the kernel weights can be found by

Wi(x) =

∏p
k=1Khk(xk −Xik)

f̂h(x)
(3.47)
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where Kh is defined by (3.9), and f̂h is the Rosenblatt-Parzen

density estimator defined by

f̂h(x) =
1

n

n∑
i=1

(

p∏
k=1

Khk(xk −Xik)) (3.48)

By (3.4), one obtains an estimator for Y :

m̂h(x) =

∑n
i=1

∏p
k=1Khk(xk −Xik)RiYi∑n

i=1Ri
n

∑n
i=1(
∏p

k=1Khk(xk −Xik))

=

∑n
i=1

∏p
k=1K(xk−Xik

hk
)RiYi∑n

i=1Ri
n

∑n
i=1(
∏p

k=1K(xk−Xik

hk
))

(3.49)

Similarly with (3.17), one can construct another reasonable es-

timator for Y :

m̂h(x) =

∑n
i=1

∏p
k=1Khk(xk −Xik)RiYi∑n

i=1(
∏p

k=1Khk(xk −Xik))Ri

=

∑n
i=1

∏p
k=1K(xk−Xik

hk
)RiYi∑n

i=1(
∏p

k=1K(xk−Xik

hk
))Ri

(3.50)
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Chapter 4

Application

In this chapter, we apply these approaches introduced in Chap-

ter 2 and Chapter 3 to a real example: a coast to coast chain

of stores and their supplies in Canada (The data, given by Pro-

fessor Wei Sun of Department of Mathematics and Statistics of

Concordia University, are quoted from the author’s report of the

B Sc.Honors project in 2011).

The data table in Appendix A consists of the work hours and

sales in the first week and fifth week of a year by 287 divisions of

the stores in the chain. We believe that the work hours of differ-

ent weeks, the work hours and sales in same week, the sales of

different weeks are strongly correlated. The data in Appendix A

are completed. We delete almost 100 data of sales in the fifth

week. Then, we use the methods introduced in Chapter 2 and

Chapter 3 to estimate these missing data and verify the appli-

cability of those methods.
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The programs we made here (The programs were made by Mat-

lab). can be used for the similar general cases. For instance, the

heights and weights of a groups of boys at age 15 in a certain

region were measured, the approaches applied here can be used

to estimate the missing data of heights and weights for the same

groups at age 20 and predict the average height and weight for

the 20-year-order boys in the same region.

4.1 Single Imputation

In this section, XS = {X1, · · · , Xn } is the sample of work hours

in week 1, YS = {Y1, · · · , Yn } is the sample of work hours in

week 5 for these divisions of the stores, where n = 287, and

R = {R1, · · · , Rn} is the response indicator set defined in (2.1).

4.1.1 Ratio Method of Imputation

The estimator of Yk is given by (2.20):

Ŷk = m̂(Xk) =

Yk if Rk = 1

Ȳr
X̄r
Xk if Rk = 0

(4.1)
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where

X̄r =
1∑n

j=1Rj

n∑
j=1

RjXj

Ȳr =
1∑n

j=1Rj

n∑
j=1

RjYj

The estimator is illustrated in Fig. 4.1.

Figure 4.1: Ratio estimator
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The estimation of mean Ȳ is given by (2.21):

Ȳratio =
1

n

n∑
k=1

Ŷk

= Ȳr(
X̄n

X̄r
)

(4.2)

where X̄n is the average value of the sample XS:

X̄n = X̄ =
1

n

n∑
j=1

Xj

We obtain:

Ȳratio ≈ 100.8651 hours

and

Error = |Ȳratio − Ȳ | ≈ 0.9783 hours

Relative error = |Ȳratio − Ȳ
Ȳ

| ≈ 0.0096

where

Ȳ =
1

n

n∑
i=1

Yi ≈ 101.8434 hours (4.3)

is the average of the work hours in the fifth week from the sam-

ple given by the data table in Appendix A.

4.1.2 Regression Method of Imputation

The estimator of Yk is given by (2.26):

Ŷk =

Yk if Rk = 1

Ȳr − sXY
s2
X
X̄r + sXY

s2
X
Xk if Rk = 0

(4.4)
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where sX , sY , sXY are given by (2.5):

sXY =
1

r − 1

n∑
k=1

(RkXk − X̄r)(RkYk − Ȳr)

s2
X =

1

r − 1

n∑
k=1

(RkXk − X̄r)
2

s2
Y =

1

r − 1

n∑
k=1

(RkYk − Ȳr)2

with

r =
n∑
j=1

Rj

The estimator is illustrated by Fig. 4.2.

The estimation of mean Ȳ is given by (2.27):

Ȳregression =
1

n

n∑
k=1

Ŷk

= Ȳr −
sXY
s2
X

X̄r +
sXY
s2
X

X̄n

(4.5)

We obtain:

Ȳregression ≈ 101.3384 hours

and

Error = |Ȳregression − Ȳ | ≈ 0.5050 hours

Relative error = |Ȳregression − Ȳ
Ȳ

| ≈ 0.0050
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Figure 4.2: Regression estimator

4.1.3 Optimal Method of Imputation

The estimator of Yk is given by (2.32):

Ŷk =

Yk if Rk = 1

A+BXk if Rk = 0
(4.6)

where
B =

sXY
s2
X

A = ˆ̄Y −BX̄ = Ȳr −BX̄
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The estimator is illustrated by Fig. 4.3.

Figure 4.3: Optimal estimator

The estimation of mean Ȳ is given by (2.32):

Ȳoptimal =
1

n

n∑
k=1

Ŷk

=
r

n
Ȳr + (1− r

n
)A+B(X̄n −

r

n
X̄r)

(4.7)
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We obtain:

Ȳoptimal ≈ 104.2080 hours

and

Error = |Ȳoptimal − Ȳ | ≈ 2.3646 hours

Relative error = |Ȳoptimal − Ȳ
Ȳ

| ≈ 0.0232

4.1.4 Kernel Smoothing Method

In this section, we apply those approaches introduced in Sec-

tion 3.2 to estimate the work hours in the fifth week. The esti-

mator of Yk is given by (3.17):

Ŷk = m̂h(Xk) =

∑n
i=1K(Xk−Xi

h )RiYi∑n
j=1K(

Xk−Xj

h )Rj

(4.8)

where h is the bandwidth of the kernel K.

The estimation of mean Ȳ is given by (3.39):

µKR1 =
1

n

n∑
k=1

m̂h(Xk)

=
1

n

n∑
k=1

∑n
i=1K(Xk−Xi

h )RiYi∑n
j=1K(

Xk−Xj

h )Rj

(4.9)

or by (3.40):

µKR2 =
1

n

n∑
i=1

[RiYi + (1−Ri)m̂h(Xi)] (4.10)
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where m̂h(x) is given by (4.8).

1. Epanechnikov Kernel

The Kernel is given in (3.20):

K(t) =
3

4
(1− t2)I(|t| ≤ 1) (4.11)

The estimator (4.8) for the Epanechnikov Kernel is illustrated

by Fig. 4.4.

Using the estimator (4.9), we obtain:

ȲEpanechnikov ≈ 101.2395 hours

and

Error = |ȲEpanechnikov − Ȳ | ≈ 0.6039 hours

Relative error = |ȲEpanechnikov − Ȳ
Ȳ

| ≈ 0.0059

Using the estimator (4.10), we obtain:

ȲEpanechnikov ≈ 101.3955 hours

and

Error = |ȲEpanechnikov − Ȳ | ≈ 0.4479 hours
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Figure 4.4: Epanechnikov kernel estimator (h = 4)

Relative error = |ȲEpanechnikov − Ȳ
Ȳ

| ≈ 0.0044

2. Polynomial Order-4 Kernel

The Kernel is given in (3.20):

K(t) =
15

32
(3− 10t2 + 7t4)I(|t| ≤ 1) (4.12)
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The estimator (4.8) for the Polynomial Order-4 Kernel is illus-

trated by Fig. 4.5.

Figure 4.5: Polynomial Order-4 kernel estimator (h = 10)

Using the estimator (4.9), we obtain:

ȲPolyOrder4 ≈ 101.6475 hours

and

Error = |ȲPolyOrder4 − Ȳ | ≈ 0.1959 hours
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Relative error = |ȲPolyOrder4 − Ȳ
Ȳ

| ≈ 0.0019

Using the estimator (4.10), we obtain:

ȲPolyOrder4 ≈ 101.3957 hours

and

Error = |ȲPolyOrder4 − Ȳ | ≈ 0.4477 hours

Relative error = |ȲPolyOrder4 − Ȳ
Ȳ

| ≈ 0.0044

3. Gaussian Kernel

The Kernel is given by (3.21):

K(t) =
1√
2π
e−

t2

2 (4.13)

The estimator (4.8) for the Gaussian Kernel is illustrated by

Fig. 4.6.

Using the estimator (4.9), we obtain:

ȲGauss ≈ 101.7062 hours

and

Error = |ȲGauss − Ȳ | ≈ 0.1373 hours
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Figure 4.6: Gaussian kernel estimator (h = 0.9)

Relative error = |ȲGauss − Ȳ
Ȳ

| ≈ 0.0013

Using the estimator (4.10), we obtain:

ȲGauss ≈ 101.8267 hours

and

Error = |ȲGauss − Ȳ | ≈ 0.0167 hours
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Relative error = |ȲGauss − Ȳ
Ȳ

| ≈ 1.6400e− 004 = 0.000164

4.2 Multiple Imputation

Here we apply the kernel smoothing methods for multiple im-

putation described in Section 3.8 to estimate the missing data

of sales in the fifth week Y provided that the sample of sales in

the first week X1 and the sample of work hours in the fifth week

X2 are complete.

Let X1s = {X11, · · · , Xn1} be the sample of sales in week 1,

X2S = {X12, · · · , Xn2} be the sample of work hours in week 5,

YS = {Y1, · · · , Yn } be the sample of sales in week 5 for these

divisions of the stores, where n = 287, and R = {R1, · · · , Rn}
be the response indicator set defined by (2.1). The estimator of

Yj is given by (3.49):

Ŷj = m̂h(Xj1, Xj2) =

∑n
i=1K(

Xj1−Xi1

h1
)K(

Xj2−Xi2

h2
)RiYi∑n

i=1Ri
n

∑n
i=1K(

Xj1−Xi1

h1
)K(

Xj2−Xi2

h2
)

(4.14)
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The estimation of mean Ȳ is given by

µ̂1 =
1

n

n∑
j=1

m̂h(Xj1, Xj2)

=
n∑
j=1

∑n
i=1K(

Xj1−Xi1

h1
)K(

Xj2−Xi2

h2
)RiYi

(
∑n

i=1Ri)
∑n

i=1K(
Xj1−Xi1

h1
)K(

Xj2−Xi2

h2
)

(4.15)

or

µ̂2 =
1

n

n∑
i=1

[RiYi + (1−Ri)m̂h(Xi1, Xi2)] (4.16)

where m̂h(Xj1, Xj2) is given by (4.14).

Before we delete some data from the sample Y of sales in the fifth

week, the average of Y , given by the data table in Appendix A,

is

Ȳ =
1

n

n∑
i=1

Yi ≈ 53888 $ (4.17)

4.2.1 Epanechnikov Kernel

The Kernel is given by (4.11). The estimators of Yk for the single

imputation, Ŷk = m̂h1
(Xk1) with h1 = 4000 and Ŷk = m̂h2

(Xk2)

with h2 = 15, are given by (4.8), that are illustrated by Fig. 4.7

and Fig. 4.8, respectively.
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Figure 4.7: Epanechnikov kernel estimator – single imputation by X1

Using the estimator (4.9), we obtain:

ȲEpanechnikov(X1) ≈ 54744 $

Error = |ȲEpanechnikov(X1)− Ȳ | ≈ 856.8022 $

Relative error = |ȲEpanechnikov(X1)− Ȳ
Ȳ

| ≈ 0.0159

and

ȲEpanechnikov(X2) ≈ 54773 $

Error = |ȲEpanechnikov(X2)− Ȳ | ≈ 885.4971 $
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Figure 4.8: Epanechnikov kernel estimator – single imputation by X2

Relative error = |ȲEpanechnikov(X2)− Ȳ
Ȳ

| ≈ 0.0164

Using the estimator (4.10), we obtain:

ȲEpanechnikov(X1) ≈ 54742 $

Error = |ȲEpanechnikov(X1)− Ȳ | ≈ 854.4287 $

Relative error = |ȲEpanechnikov(X1)− Ȳ
Ȳ

| ≈ 0.0159
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and

ȲEpanechnikov(X2) ≈ 54902 $

Error = |ȲEpanechnikov(X2)− Ȳ | ≈ 1014.0 $

Relative error = |ȲEpanechnikov(X2)− Ȳ
Ȳ

| ≈ 0.0188

By the estimator (4.15) for the multiple imputation method, we

obtain:

ȲEpanechnikovMul(X1, X2) ≈ 57583 $

Error = |ȲEpanechnikovMul(X1, X2)− Ȳ | ≈ 3695.1 $

Relative error = |ȲEpanechnikovMul(X1, X2)− Ȳ
Ȳ

| ≈ 0.0686

4.2.2 Polynomial Order-4 Kernel

The Kernel is given by (4.12). The estimators of Yk for the single

imputation, Ŷk = m̂h1
(Xk1) with h1 = 10000 and Ŷk = m̂h2

(Xk2)

with h2 = 20, are given by (4.8), that are illustrated by Fig. 4.9

and Fig. 4.10, respectively.

Using the estimator (4.9), we obtain:

ȲPoly4(X1) ≈ 54715 $

Error = |ȲPoly4(X1)− Ȳ | ≈ 826.9704 $
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Figure 4.9: Polynomial Order4 Kernel estimator – single imputation by X1

Relative error = |ȲPoly4(X1)− Ȳ
Ȳ

| ≈ 0.0153

and

ȲPoly4(X2) ≈ 55092 $

Error = |ȲPoly4(X2)− Ȳ | ≈ 1204.8 $

Relative error = |ȲPoly4(X2)− Ȳ
Ȳ

| ≈ 0.0224
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Figure 4.10: Polynomial Order4 Kernel estimator – single imputation by X2

Using the estimator (4.10), we obtain:

ȲPoly4(X1) ≈ 54767 $

Error = |ȲPoly4(X1)− Ȳ | ≈ 879.3035 $

Relative error = |ȲPoly4(X1)− Ȳ
Ȳ

| ≈ 0.0163

and

ȲPoly4(X2) ≈ 55090 $
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Error = |ȲPoly4(X2)− Ȳ | ≈ 1202.1 $

Relative error = |ȲPoly4(X2)− Ȳ
Ȳ

| ≈ 0.0223

By the estimator (4.15) for the multiple imputation method, we

obtain:

ȲPoly4Mul(X1, X2) ≈ 57735 $

Error = |ȲPoly4Mul(X1, X2)− Ȳ | ≈ 3847.0 $

Relative error = |ȲPoly4Mul(X1, X2)− Ȳ
Ȳ

| ≈ 0.0714

4.2.3 Gaussian Kernel

The Kernel is given by (4.13). The estimators of Yk for the single

imputation, Ŷk = m̂h1
(Xk1) with h1 = 100 and Ŷk = m̂h2

(Xk2)

with h2 = 0.9, are given by (4.8), that are illustrated by Fig. 4.11

and Fig. 4.12, respectively.

Using the estimator (4.9), we obtain:

ȲGauss(X1) ≈ 55160 $

Error = |ȲGauss(X1)− Ȳ | ≈ 1272.8 $

Relative error = |ȲGauss(X1)− Ȳ
Ȳ

| ≈ 0.0236
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Figure 4.11: Gaussian Kernel estimator – single imputation by X1

and

ȲGauss(X2) ≈ 54232 $

Error = |ȲGauss(X2)− Ȳ | ≈ 344.1465 $

Relative error = |ȲGauss(X2)− Ȳ
Ȳ

| ≈ 0.0064

Using the estimator (4.10), we obtain:

ȲGauss(X1) ≈ 55170 $
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Figure 4.12: Gaussian kernel estimator – single imputation by X2

Error = |ȲGauss(X1)− Ȳ | ≈ 1282.4 $

Relative error = |ȲGauss(X1)− Ȳ
Ȳ

| ≈ 0.0238

and

ȲGauss(X2) ≈ 54155 $

Error = |ȲGauss(X2)− Ȳ | ≈ 367.2215 $

Relative error = |ȲGauss(X2)− Ȳ
Ȳ

| ≈ 0.0050
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By the estimator (4.15) for the multiple imputation method, we

obtain:

ȲGaussMul(X1, X2) ≈ 57961 $

Error = |ȲGaussMul(X1, X2)− Ȳ | ≈ 4073.5 $

Relative error = |ȲGaussMul(X1, X2)− Ȳ
Ȳ

| ≈ 0.0756

4.3 Summary

The following tables show the results that we obtained in Sec-

tion 4.1 and Section 4.2. We will compare these mothods and

discuss their applicability.

4.3.1 Single Imputation

In Section 4.1, we used some specific methods to estimate the

missing data of the work hours in the fifth week by the complete

sample of work hours in the first week. The table 4.1 shows the

relative errors of those modes that we used in Section 4.1.

We see that, in general, these kernel smoothing methods are

better than non-kernel methods.
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Modes Relative error (%)

Ratio Method 0.96

Regression Method 0.50

Optimal Method 2.32

Epanechnikov Kernel 0.59

Polynomial Order4 Kernel 0.19

Gaussian Kernel 0.13

Table 4.1: Relative errors of the methods for single imputation

We note, as predicted, that the optimal method is the worst

one among these methods in Table 4.1. As mentioned in Sec-

tion 2.1.5, for estimating the mean Ȳ , this method needs an

another estimation of Ȳ to optimize the optimal coefficients A

and B.

Table 4.1 also shows that the Gaussian kernel smoothing method

is better than those polynomial kernel smoothing methods. Since

for the polynomial kernel smoothing methods, the kernel K(t) =

0 when t > 1, the chosen bandwidth h could not be very small,

while for Gaussian kernel, h can be chosen to be enough small

to optimize the procedure. This is why the Gaussian kernel

smoothing method is the best one among these methods in Ta-

ble 4.1.
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4.3.2 Multiple Imputation

In Section 4.2, we used some specific multiple imputation meth-

ods to estimate the missing data of the sales in the fifth week

Y by the complete samples of the sales in the first week X1 and

the work hours in the fifth week X2. The following tables show

the relative errors of those modes that we used in Section 4.2.

Modes Relative error (%)

Simple Imputation Y(X1) 1.59

Simple Imputation Y(X2) 1.64

Multiple Imputation Y(X1, X2) 6.86

Table 4.2: Epanechnikov Kernel

Modes Relative error (%)

Simple Imputation Y(X1) 1.53

Simple Imputation Y(X2) 2.24

Multiple Imputation Y(X1, X2) 7.14

Table 4.3: Polynomial Order4 Kernel

Modes Relative error (%)

Simple Imputation Y(X1) 2.36

Simple Imputation Y(X2) 0.64

Multiple Imputation Y(X1, X2) 7.56

Table 4.4: Gaussian Kernel
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We see, from Table 4.2, Table 4.3, and Table 4.4, that the

multiple imputation methods used here are much worse than

the corresponding simple imputation methods. Note that for a

multiple imputation kernel smoothing method, the choice of an

optimal bandwidth h is very difficult. This might cause the poor

accuracy for the multiple imputation kernel smoothing method.

In order to avoid such poor performance of the multiple im-

putation kernel smoothing method, we can simply use the esti-

mator (2.45) to estimate Ȳ , i.e.,

ˆ̄Y (X1, X2) =
ˆ̄Y (X1) + ˆ̄Y (X2)

2
(4.18)

This gives

ȲEpanechnikovMul(X1, X2) ≈
54744 + 54733

2
≈ 57583 $

Error = |ȲEpanechnikovMul(X1, X2)− Ȳ | ≈ 870.5 $

Relative error = |ȲEpanechnikovMul(X1, X2)− Ȳ
Ȳ

| ≈ 1.62%

ȲPoly4Mul(X1, X2) ≈
54715 + 55092

2
≈ 54904 $

Error = |ȲPoly4Mul(X1, X2)− Ȳ | ≈ 1015.5 $

Relative error = |ȲPoly4Mul(X1, X2)− Ȳ
Ȳ

| ≈ 1.88%
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ȲGaussMul(X1, X2) ≈
55160 + 54232

2
≈ 54696 $

Error = |ȲGaussMul(X1, X2)− Ȳ | ≈ 808.0 $

Relative error = |ȲGaussMul(X1, X2)− Ȳ
Ȳ

| ≈ 1.50%

Then the situation is much more improved as shown in Table 4.5.

Modes Relative error (%)

Epanechnikov Kernel 1.62

Polynomial Order4 Kernel 1.88

Gaussian Kernel 1.50

Table 4.5: Relative errors of the methods for multiple imputation

Furthermore, it verifies the conclusion in the section 4.3.1, i.e.,

the Gaussian kernel smoothing method is the best one among

these methods listed here.
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Chapter 5

Conclusion

In this thesis, we reviewed several single imputation and multi-

ple imputation techniques to deal with the problem of missing

data in a census or a sample survey. Also we present some esti-

mators for the missing data and the theories about the variance

and mean squared error of those estimators. Finally, with some

examples, we compare those modes to find their advantages, dis-

advantages, and applicabilities.

For a single imputation problem, the estimator of an element

Yk from the sample YS is given by a function m̂ of the sample

XS:

Ŷk = m̂k(XS) (5.1)

Usually, there are two classifications for the estimation func-

tions m̂: single depended and linear: Ŷk = A + BXk, multiple

depended and nonlinear: Ŷk = m̂(k,XS).
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Those single depended and linear functions m̂ are introduced

in Chapter 2. We present and discuss in Section 2.1 the mean

method, the ratio method, the regression method, the power

transformation method, and the optimal method for imputa-

tion.

Those multiple depended and nonlinear functions m̂ are intro-

duced in Chapter 3. We present and discuss in Chapter 3 the

kernel smoothing method, the k-nearest neighbor method, etc.

We introduce some theories for the selection of kernel function

and bandwidth. The application in Chapter 4 shows how im-

portant about the choice of the bandwidth h.

For a multiple imputation problem, the estimator of an element

Yk is also represented by (5.1), where every element Xk in the

sample XS is a real vector in stead of a real number.

In Section 2.2, we introduce the estimator (2.45) of the mul-

tiple imputation problem: an average of all single imputations.

In Section 3.8, we introduce another estimator (3.49): the mul-

tiple kernel smoothing. The application in Chapter 4 shows that

the estimator (2.45) is simple and applicable, while the estima-

tor (3.49) is complicated and needs more works to optimize the

bandwidth h.
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In Chapter 4, we apply these modes introduced in Chapter 2

and Chapter 3 to a real case. We calculate the estimators by sin-

gle imputation techniques and multiple imputation techniques,

then compare those imputation methods and conclude their ad-

vantages, disadvantages, and applicabilities.

In practice, all of these imputation techniques used in this the-

sis work well for the missing data problem. For the case of

Chapter 4, those kernel smoothing methods are better than the

linear imputation methods. According to results of the appli-

cation, the Gaussian kernel smoothing method is a very good

approach to the missing data problem.

In general, every specific missing data problem has a most ap-

propriate specific approach for it. Choosing a proper mode is

very important to resolve the problem. For a kernel smoothing

method, the choice of an optimal bandwidth h tends to become

the critical to success.
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Appendix A

Data Table

The following tables contain the data using for the application

in Chapter 4. The data, given by Professor Wei Sun of Depart-

ment of Mathematics and Statistics of Concordia University, are

quoted from the author’s report of the B Sc.Honors project in

2011.
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