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Abstract

On Imputation Techniques in Survey Sampling

Hui Rong Zhu

Some nonparametric imputation techniques, including two
categories: single imputation and multiple imputation, are in-
troduced and studied. Some properties of the estimators such
as the bias, the variance, and the mean squared error are pre-
sented. Finally, some imputation techniques are applied to a
real case. These methods are compared in order to assess their

advantages, disadvantages, and applicabilities.
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Chapter 1

Introduction

In sample surveys, missing responses occur frequently,resulting
in incomplete sample. These incomplete samples are called as
missing data. Missing data may be caused by sensitive ques-
tions, improper data collection and so on. If the incomplete
data occupy only a small portion of the dataset, the data dele-
tion may be a good way to the missing-data problem. However,
in most cases, if we ignore these missing data during the statis-
tical analysis, the results may not be representative. In order to
form a complete dataset for the standard analysis, imputation is
introduced and it has become one of the most popular techniques
used to resolve missing data problems in sampling survey data
analyses. Imputation is to replace missing data with a plausible

value based on other available informations.



1.1 Mechanisms for Missing Data

Little and Rubin in [17] defined three classes of missing data.
These three general missing mechanisms are presented here with

examples.

e Missing Completely at Random(MCAR)
The missing data occurs randomly and doesn’t depend on
both of observed data and unobserved data. In a sample
survey setting, MCAR is sometimes called uniform non-
response. For example, If a laboratory sample is dropped,

the resulting observation is missing. We can say this is

MCAR.

e Missing at Random (MAR)
Given the observed data, the missingness is not related to
the unobserved data. For example, in a survey of relation
between property tax band and income, usually these peo-
ple with higher salary and lower salary may omit to answer
the income questions. So given the property tax band, non-

response to the income questions is random.

e Observed at Random(OAR)
Given the observed and unobserved data, the missingness is
not related to the observed data. For example, in a survey
to examine the effect of education on income, these non-
response to income is not OAR if income is a related to

education.



Apart from these, there are some other missing mechanisms.

e Missing Not at Random (MNAR)
If the data is neither MCAR nor MAR, we can say the data
is MNAR.

e Not Missing at Random (NMAR)

The data is missing due to the particular reason.

1.2 Imputation Methods

In general, the imputation methods are divided into two cat-
egories: Model-based Imputation and Nonparametric Imputa-
tion. The simple imputation methods and the multiple imputa-

tion methods are included in these two categories.

In [26], Rubin compares both of the single imputation and mul-
tiple imputation methods. He comments on the of these advan-

tage and disadvantage as follow.

i) Simple Imputation: This type of method replaces the miss-

ing data once by a randomly selected response value.
e Advantage:

- The standard complete-data methods of statistical analysis

can be used if the missing values have been imputed.

- Data collector’s knowledge can be incorporated.



e Disadvantage:

- The inference based on the imputed data set may be too
sharp as the extra variability due to the unknown missing

values is not being taken into account.

ii) Multiple Imputation
Multiple imputation is a statistically principled and com-
monly used method. The idea of multiple imputation is to
repeat the process of assigning several (say m between 2
to 10) values for each missing data. The m imputations
for each missing data will create m sets of complete data.
Hence, the standard complete-data analysis is conducted

for each completed data sets.
e Advantage:
- Multiple imputation increases the efficiency of estimation.
e Disadvantage:

- More work and space are needed to analyze a multiply-

imputed data set.

1.3 Imputation Problems

An imputation technique might cause its own problems. In [27],

Sande listed out some general problems such as:



e Since the imputed value of the field has to satisfy the rea-
sonable constraints which is known as edits to ensure that
the completed data is consistent as well as it will reduce

the applicability of the imputation procedure.

e It is hard to determine whether the method of imputation

is specified properly and precisely.

e Imputation does not solve the specific problems of esti-
mation better than the tradition estimation techniques for

missing data.

The evaluation of imputation technique is, in general, to com-
pare the bias, the variance, and the mean squared error of those

estimators.

In this thesis, we focus on the nonparametric imputation meth-

ods.

In Chapter 2, some linear single and multiple imputation tech-

niques will be introduced.

In Chapter 3, the kernel smoothing techniques will be reviewed

for the nonparametric imputations.

Finally, we have given an application to a real sampling case

5



in Chapter 4 for some imputation techniques presented in the
previous chapters. Then we compare these imputation tech-

niques with their applications.



Chapter 2

Linear Imputation Approaches

2.1 Single Imputation Approaches

There are several methods to handle the problem of incomplete-
ness or nonresponse in a census or a sample survey. One kind
of them is called Hot-Deck imputation. Hot-Deck imputation is
a common technique to deal with missing data in survey sam-
pling. The major idea of Hot-Deck imputation is to replace the
missing data by observable and measurable values from a sim-
ilar group. By this idea, some specific methods are developed.
In this chapter, we introduce some approaches of imputation
under two-phase sampling described in [30]. That says, one has
two sets of sampling data: Y and X, strongly correlated. The
set Y is incomplete, i.e., there are some nonresponse data in Y.
The set X is complete, i.e., all the elements in X are observed
or measured. The approaches under two-phase sampling Y and

X are to establish a relation of elements between these two sets



Y, X and then replace the nonresponse data by the relationship.

Consider a sample survey in a finite population of N units:
Q= {1,2,--- ,N}. Denote y;,i € € the outcome statistical
variable that gives a characteristic of the individual 7. In order
to estimate the mean y = % Zf\i 1 Ui, one draws a random sam-
ple without replacement of n units S = {1,2,--- ,n} C Q from
this population, where the number of the responding units in
this sample is . Denote the set of the outcome variables from

this sample as
Ys =1y, ,yn} ={m : k€ S}
Defines the response indicator

R: (Rl,RQ;---aRN>
that indicates which values are respondent or nonrespondent in

the survey, where

1 if y; is respondent
R, = (2.1)
0 if y; is nonrespondent.

Then, S = Sp U Syg, where Sp and Sypr are the sets of respon-

dent units and nonrespondent units respectively:
SR:{kESZRk:1}
SNRZ{kESZRkZO}

8



In order to estimate the nonrespondent values, one needs an-
other phase sampling data, the covariates X = {z; : 1 € Q},
that describe a characteristic of individuals fully observed or
measured. Similarly, denote the set of the covariates from the

sample S as

XS:{xh”')xn}:{xk:kES}

For the nonrespondent units {k € S : R, = 0}, one assumes

that y, is a function of Xg:

yr = hix(Xs),if Ry =0 (2.2)

Then, one makes the imputation:

Yk if Rk =1
Yk = (2.3)
hi(Xg) if R, =0

The estimation of 7 is given by

_ 1
Yimp = E Z Y1k (24)
k=1

For using this imputation, one defines some means from the



sample and the responding values:

_ 1
n
keS
B 1 Z
SU7 = — xk
T
keSg
_ 1
Yr = — E Yk
r
keSgr

and the estimators of variance and the covariance:

r

1

Sxy = r—1 Z(xkj - fr)(yk - gr)
k=1
2= 3 (o — 7,)?
ol k=1
= )
vy or—1 p

where

In practice, the relation in (2.2) may be assumed linear:

h(ﬂ?k) =A+ Buzxy, if R, =0

Then, the imputation becomes

Yk lka:1
Yrk =
A+ Bx, if R,=0

10
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To analyze the errors, one defines

e:yf—l, 52&—1, nzx—_n—l
] z z

where,

Suppose that the expectations E(zy) = px = T and E(y,) =
pwy = y for every k € (). Then, one sees immediately that
E(y.) =y, E(z,) = E(Z,) = %, and thus,

E(e)=0, E©®)=0, E@n) =0 (2.8)

E(e*) = E((; ~-1)%) = EE((‘% —9)%) = ?E(yf - 24,9 +§°)
— SIEG) ~2B Y wy+ ) = SIE@) - 7
= SVar(s) + (B — 7] = 5;Var(s)
Lo _ Sy T
?Sﬂr gj2r<1 N)'

(2.9)

11



Similarly,

N @_2_i —_—2_i 2 s a2
B) = B(Z ~ 1)) = S B(( — 7)) = B - 20,7 + )
= LB@) - 2BC Y w7+ 7 = = [B@) - )

g2 r ' g2
i=1
1 1
= ﬁ[Var(fr) + (BE(z,))? — 7] = ﬁvar(i:r)
1 S?E r
ﬁS@ fzr(l_ﬁ)
(2.10)
S? n 52 n
E(n) =" (1—-—)~—2(1-—— 2.11
()= (- me(l-1)  (21)
where
1 n
2 _ ) — \2
S n_lizzl(xz Tn)
and one has
Yr Ty r ..
E :E ——1)(— -1 :_E rdn — YrL — n
(en) ((g (:7; ) oz (JrZn — Gr® — Y2 + YT)
1 _ L _
= ﬁE[(g/r(ajn —7) = y(Zn — )]
1 N N _
— ﬁE[(yr — ) (T — 7))
1
= ﬁCov(gr,xn)
1 Szy n
= — 8. ; A -
g:z*syr " ngf( N
(2.12)
Similarly,
1 1 S r
E(ed) = — Up, Tp) = — S5 7~ —2L (1 — — 2.1
(6 ) gfcov(y 73: ) gfsyr r rgf( N) ( 3)
1 1 52 n
E == Ty, Tp) = —585,2, ~ —=(1 — — 2.14
(51) = —5CovlTr T) = ys0s, ~ —5(1- 1) (2.14)

12



2.1.1 Mean Method of Imputation

This is the simplest method of imputation. All missing values

Y are just replaced by the mean of responding values ¥, i.e.,

A=y, and B =0 1in (2.6). Thus (2.7) gives

Yk if Rk =1
Yrk = (2.15)
yr if Ry =20

This method effectively ignores all nonresponse data and simply
represents the nonresponse data by the mean of responding data,

as (2.4), in this case, becomes
1 n
Ymean = Yimp = ﬁ kz_; Yrk

o y (2.16)
= E(Zyi +(n—=r)y) = ;Zyi = Ur
1=1 i=1

In a survey, the nonresponse data might have a different view
from the responding data for some specific reasons. Conse-
quently, such representation would not be correct. It risks to lose
or distort the true image. This implies that the mean method
could not resolve the imputation that problems by nonresponse

that we mentioned in Chapter 1.

13



The estimator (2.16) can be written in terms of e:

Ny

i =15(1+¢) (2.17)

gmecm —

< |

Thus, the variance of ¥,cqn is given by

Var(@mean) = Var(g(l+ ¢€)) = 7?°Var(e) = 3°[E(e*) — (E(€))?]

__2E2__2551 T_Szl r
= (6)_y%(_ﬁ)_?(_ﬁ)
(2.18)
and the mean squared error of ¥,,cqn is given by
MSEGmean) = El(mean — 7)7) = FE(Z—2))
mean mean g
2 2
S r s r
(@) = P - 5) = 20— 5
(2.19)

2.1.2 Ratio Method of Imputation

This method improves the mean method by introducing a ratio
=& for every missing unit k € Syp. The missing values y; are

T

replaced by the ratio of the mean of responding values: y; =

14



Lt ie., A=0and B =% in (2.6). Thus (2.7) gives

Yk if Rk =1
Yk = (2.20)

g—T:Uk if Rk =0

The estimator (2.4) becomes

k=1
1 T :]]r n y B n
= Qu+ T Y m) = E 4 Y wm) (221)
1=1 1=r+1 1=r+1
Ur ~ Ty,
N nfr ;xk _yr<_r)

The estimator (2.21) can be written in terms of €, §, and 7:

D) — (1 Oy = 51+ L+ (-1

Yr

Yr _
T?J(
Y

l+et+n—05+62+en—ed—dn+ O(end)]
(2.22)

15

Jl+e)l+n1—0+6+-)=yg(l+e+n+en(l—56+68+--
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Thus, the variance of ¥4, is given by

Var(g,) = Var{g[l +e+n— 6+ 0% +en—ed — on+ O(end)|}
FVar(l+e+mn—6+6*+en—es —dn+ O(end))]

~ 7 [Var(e) + Var(n) + Var()]

=7 [B() = (B()* + E(r°) — (En))* + E(0°) — (E(9))"]
= 7[B(¢*) + E(*) + E(5%)]

(2.23)

and the mean squared error of ¥4, to the first order of approx-
imation is given by
MSE(y,) = El(Yratio — 9)°]
= PPE[(e +n— 6+ 6>+ en — ed — dn + O(end))?]
~ P E[(e+n—0)
P E(® +n? + 6% + 2en — 2e5 — 20n)

L1 1.2 .1 1.8
WG RE T )
1 1.s 1 1.5 1 1.5
07 (= — — 3w _gp22 _ 2\Zwy gm0t N5
MR i = R A ety v R U el
1 1., 1 1. §4,, 1 1.7
— (2 - — — <2 —2(= — ) Zs,
-+ =@ -2 - s,
(2.24)

16



Note that if % < Q%

2
S$

_ 11 1 1.3 1 1.9
E 1 2 oY o2 -0
MSE@) = (- - D)+ (- = )Lt — 2 - )Ls,,
1 1., 1 1. s 52
<(=-—= - - )4 g
(7’ N)Sy+(r n)( sisx 5925)
1 1., )
= (= = )8y = MSE(Gnean)

It follows that the ratio method of imputation is better than the

mean method of imputation if

< 2% (2.25)

SRS

2.1.3 Regression Method of Imputation

In (2.6), choosing A = g, — 2%, and B = =%, one obtains the

regression method of imputation:

Yk if Rk =1
Yk = (2.26)

_ Spy — Sy .
Yr — 3T+ Fap iR =0

17



The estimator (2.4) becomes

o IR
Yreg = Yimp = H ;ylk

1 « i S S

= NSk 3 - )
k=1 k=r+1 X z
Suy N Suy N 2.97)
= [Tyr_f'(n_r)(yr_j )_|__2y Ty (2.
T k=1 T k=r+1

Sy S1y O -

D I a1 DL I DD
T k= T k=1 k=r+1

. Sy _ Sy _
=Yr — g r S% In

- Yr _  Szy,Tn Ty
yreg =Y + SQy(E - ?)x
4 z (2.28)
=yl + e +25(n=9)

18



Thus, the mean squared error of ¥,egression 1S given by

MSE(@TGQ) = E[(gregression - §)2]
= Bl(ge + 722 (n — )]

x

~ S, Y Sy
= E[y*e’ + 2gz—5'e(n = 0) + xQ(S—f)Z(n —6)%

= PE(?) + 2@5:%[15(677) — E(ed)]

X

+ P (ZLR(E(P) - 2E(nd) + E(5)

s3
1 1.8 Sev 1 1.5 1 1.s
2 Y — XY Ty Ty
~ _ )\ Z 2 I I (R WA (P Sl
( N)g2 ygjsi[(n N)gzg o N)azy]
o, Spyror, 1 182 1 1.8 1 1.8
ZTYNI(Z 29 2 =
T (3%)[(71 N)EQ (n N)_2 (r N)Q_UQ]
1 1., 1 1.3,
_(F_N)Sy_(i_ﬁ)?

(2.29)

Comparing (2.29) with (2.24) and (2.19), one sees that the re-
gression method of imputation is better than the mean and ratio

methods of imputation.

2.1.4 Power Transformation Method of Imputation

In (2.6), choosing A = 0 and B = g M) here a is a

" nx,—rx, "’

chosen constant, one obtains the power transformation method

19



of imputation:

Yk if Rk =1
ylk’ = n(@)a_r . (230)
Yy n:fx:—ri'r xr if R,=0
The estimation (2.4) becomes
_ _ 1
Ypower = Yimp = E ; Yrk
1 T n n(:?_n)a —r
= —[Z Yr + Z Yr—————11y]
im e M T T (2.31)
L TYr _ n(%)a—r(n:in—rfr)
T on " NTy, — Ty n

= Py, + B(z, — P7,)

where the response rate P =

In [29], Singh and Deo declared that the power transformation
method is as good as the regression method of imputation.So

we have more choice for the imputation.

2.1.5 Optimal Method of Imputation

The optimal method of imputation is to find the coefficients A
and B in (2.7) so that the mean squared error of the proposed

estimator ¥, is minimized.

20



By (2.7), the estimator (2.4) can be written as

k=1 k= r+1
1 T
ﬁ[ryr (n—r)A+ B ZM‘F Zxk BZxk]
k=r+1 k=1
r r
= —7 1——)A+ B(z, — -7,
Lyt (- DA B, - La,)

(2.32)

Noting that E(y,) =y, FE(Z,) = T and E(Z,) = T, one obtains

the bias of the estimator jp,:

B?jas(gimp) — E(gzmp) -y

= HE@T) +(1- H)A + B(E(7,) — EE(Q?%)) -y
= %y+(1—ﬁ)A+Bx(1——) _3
= (1= 2)(A+ Bz - 7)

(2.33)
This implies that under the assumption r < n, the method (2.7)

is unbiased if

A+Bz—j5=0 (2.34)

21



The estimator (2.32) can be written in terms of ¢, §, and 7:

T Yr Ty _ X,

Yimp = _Zy + (1 o E)A T B(?x B E;x)
n(1 g+ (1— %)A+B[(1 + )z 2(1 +90)7]
:%(1+e)g+(1—£)A+Bi’(1—5“7—%5)

(2.35)

The mean squared error of ¥, is given by

M SE(Gimp) = E[(Fimp — §)°]
— BI(-(1+ g+ (1= D)A+ Ba(l = = +n——8) = )
= E|(ge + Ba(n — -0) + UV
= El(=ge + Bi(y — ~6))* + 2U(~5e + Ba(n — —0)) + U]
= B[(2)*¢ + 2B—zjie(n - Z5) + B2 (n — %5)2]

- E[2U( ye + Bx(n — —5)) + U?
= (-7 B(e)) + 2B=&gE (en) — 2B(~)* 25 E(ed)

+ B*#’E(n*) — 2Bz 72l (n5)+32 2( V2E(8%) + U?
mn
(2.36)
where

U=U(AB)=(1-)(A+ Bz —7)

22



Putting

0— 8MSE(gzmp)
- 0A
oUu r
=2U—=2(1—-)’(A+ Bz —y
U ( n)( + Bz — )
and
0— 8MSE(gzmp)
N 0B
_9 2 2r T\2 2
= 2B [B(*) = —E(09) + () E(5*)]

“zyE(en) — 2(—)’zyE 2U —
+ na:y (en) (n) TyE(ed) + U(?B

—24(1 — %)2:5 + 2BZ*[E(n?) — ZTL—TE(né) + (%)QE@Q)]

2
+2B(1 - D)%% + wgBlen) — 2= EFE(ED) - 2(1 - 2%

one obtains the optimal solution:

P (2.37)
and . (D[(L)E(ed) — LE(en)] (2.38)
E(?) — 2 End) + (£)*E(6?)
It follows
o <—N(>)(——EV)——_>(+ <_>Nz— V5 )
e e e e
G-—¥ -G +EPGE—%) s



(2.37) and (2.39) give the optimal coefficients A and B. How-
ever, noting y is the value that one just wants to estimate, it re-
mains unknown during an imputation procedure. Consequently,
since the optimal coefficient A is a function of g, this method
is not applicable theoretically. In practice, one can replace i by
other estimation ¥y, in (2.4), for instance, by ¥mean in (2.16),

or by g =13 7ii(w;) found in Chapter 3.

2.2 Multiple Imputation Approach

Multiple imputation is a technique that tries to improve the
single imputation method to resolve the problems of nonre-
sponse data. In such an approach, one has a incomplete set
of sample values Y and several complete sets of sample values
XM ... X0 from the same population. As in Chapter 2.1,
one has established the relations between the element in Y and
the elements in each X®, k =1,---,m. Now, one has interest
to estimate a quantity @), a function of the value set Y, in the
survey. For each k € {1,--- ,m}, one obtains the corresponding
estimator Q v from X} by a single imputation method. Then,

one evaluates () as a function, for instance, the mean, of these

Qxw.

In this chapter, we will give summary of the statistical theo-

ries given by Rubin [26] for the multiple imputation approach
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to nonresponse in the census or survey.

2.2.1 Variables in the Multiple Imputation Approach

Here one defines four variables in the finite population of N
individuals: X, covariates; Y, outcome variables; I, sampling in-

dicators; and R, response indicators.

The covariates X describe characteristics of individuals that are

fully observed or measured. X are written in the form:

X, X X ... Xy )
X Xo1 Xoo ... X
X - .2 _ .21 .22 .2q (2.40)
Xy X1 Xny ... Xy
where (X;) = (Xi X ... X, ) is a row vector that corre-

sponds to the ¢ components of covariate X, on the individual 1,

i=1,2,...,N

The outcome variables Y describe characteristics of individu-
als that are not fully observed or measured in the population.

Y is written in the form:

Y, Yii Yis ... Vi)
Y- Y- Y- ... Y-

o R T R YY)
Y Ywi Yae ... Yay)
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where (Y;) = (Y; Yo ... Y, ) is a row vector corresponding

to p components of characteristics of interest on the individual .

The sampling indicators I describe which values are included

or excluded in the survey. I can be written in the form:

n\ ([ e o...oI
I Iy Iy ... 1
=7 =™ ?p (2.42)
]N/ Int Ina ... Inp
where (I;) = ([Z- Lo ... ]Z-) is a row vector. Each I;; is
defined by
1 if Y} recorded,

0 if Yj; not recorded.

One assumes that the value of I;; is known for all 7 and all j.

The response indicators R describe which values are respondent

or nonrespondent in the survey. R can be written on the form:

Rl RH R12 N Rlp
R R Ry ... R

R — .2 _ '21 .22 | .2p (2'43)
Ry Ryi Rya ... Ruy
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where (R;) = ( Ry Rp ... Rip) is a row vector. Each R;; is
defined by
1 if Y;; respondent
Ri; = ’

0 if Y;; nonrespondent.

One assumes that the value of R;; is known whenever I;; = 1

and unknown whenever I;; = 0.

In this thesis, we only consider the case p = 1, i.e., for every

individual ¢ € S, the single response variable Y; = y; € R.

2.2.2 Analysis of Repeated Imputation

Let n be the sample size. Consider (), be the quantity of interest
in the survey. In order to estimate (), one measures m complete
sets of sample values X ... X (™) This yields m correspond-
ing imputations YV, ... Y™ and thus m corresponding esti-

mators Q) - - - ,Q(m) of (). Assume that
Q-QW ~N©OU®)  k=1,--.m (2.44)

where U®) is the variance of the estimator associated with Q(k)
and N(0,U™) is the kth normal distribution with mean 0 and
variance U®). The estimates and associated variances for m sets

of completed data can be combined as below.
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The estimator for () for multiple imputation is given by

QW) (2.45)

NE

1
m

Q =

_ 1 &
= — (k) 2.4
U=—>U (2.46)

and the between-imputation variance is defined by

m

B=——> Q" -Q)(@Q" -Q) (2.47)

m— 1
k=1

The total variance of () — Q is given by

T=U+(1+—)B (2.48)

Then, the statistic 77/2(Q — Q) is approximately distributed
as the Student ¢ distribution on v degree of freedom:

Q-Q
with

v = (m— 1)1+ —)? (2.50)

'm
where r,,, called the relative increase in variance due to nonre-

sponse, is given by
(1+mHB
U

rm—

(2.51)
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A 100(1 — «)% confidence interval of estimate @) is then found
as
Q £ t,(a)2)T"? (2.52)

2.2.3 Multiple Imputation Efficiency

One notes, by (2.50), that the degrees of freedom v depends on
the repeated number m and the ratio r,,. When m increases or
rn decreases, the degrees of freedom v increases and thus, the
statistic 771/2(Q — Q) tends to be distributed as a normal dis-
tribution. When there are no missing data about @, by (2.47),
one sees that B = 0, hence, r,, = 0, the distribution in (2.49)

will be normal as previewed.

Another estimate of the fraction of missing data about () due to
nonresponse, derived by Rubin ([26] p.77), is the rate of missing

information:
T+ 2/(v+3)

rm + 1

(2.53)

m

Rubin showed that the efficiency, in units of variance, of finite-

m imputation estimator relative to the infinite-m imputation
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estimator is approximately given by ([26] p.114)

RE=(1+ %)—1 (2.54)

where 7y is the population fraction of missing information.

By calculating ([26] p.114) the efficiency RE in terms of dif-
ferent values of m and 7y, Rubin claimed that m = 2 to 10

imputations may be proper.

2.2.4 Evaluation of Multiple Imputation Method

One should note that no technique can be perfect or unimpor-
tant for the nonresponse problem. The multiple imputation

technique has its own advantages and inconveniences.

Conditions of Advantage

Multiple imputation retains the ability of single imputation to
use the complete data method of analysis. And it enhances the
ability of single imputation to incorporate the data collector’s
knowledge because the data collectors are allowed to use their
knowledge to reflect uncertainty about which values will be im-
puted. Multiple Imputation always produces estimates which
are more representative of the population than other popular

methods of handling mising data. In addition to the shared
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advantage with single imputation, there are some distinct ad-

vantages.
e Multiple Imputation increases the efficiency of estimation.

e Valid inference which reflect the additional variability due
to missing values can be simply obtained by straightforward

combining completed data inferences under a model.

Conditions of Inconvenience

Obviously there are some disadvantages of multiple imputation

relative to single imputation.
e More work is required to produce sets of completed data.

e More storage space is needed to store these multiple im-

puted data sets.

e Extra work is required to analyze these multiple imputed

data sets.
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Chapter 3

Nonparametric Imputation

Approaches

As in Section 2.1 and Section 2.2, one has two correlated sets
of independent and identically distributed random vectors: the
complete set X and the incomplete set Y from a sample survey
S=A{1,--- ,n} CQ, the set of the population. The object here
is to establish a regression curve by these two sets which pro-
vides a reasonable estimation to the representation of Y. We

call such regression technique as a smoothing.

Let ZS = {(XZ,Y;) : XZ - Xs,Y; - YS}, where XS = {Xl, v ,Xn}
and Yg = {Y1,---,Y,} are the set of the covariates and the set
of outcome variables respectively from the sample S defined in

Section 2.1 and Section 2.2.

In this thesis, we only consider the case where for every in-

dividual ¢+ € S, the single response variable Y; = y; € R and the
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predictor variable X; € RY.

Let Rs = {R; :i € S} be the response indicator defined by

1 if Y; respondent,
R; = (3.1)
0 if Y; nonrespondent.

The nonparametric imputation assumes an appropriate regres-
sion relationship

Y=m(X)+e (3.2)

so that ,
Yi=m(X;)+e, i=1,---,n (3.3)

To obtain the regression curve m(z), one defines an estimator

of m(zx) by

n

_ Z;R > W)Y, (3.4)

=1

where W;(z), depending on the vectors X, - - - , X, is the weight
of Y; to the individual ¢ € S. We call such regression es-
timator m(x) as a smoother and the corresponding outcome
{V; = m(X;) : i € S} as the smooth value. Thus, the smoothing
of Zg ={(X1,Y1), -+, (Xy, Y,)} becomes a procedure of how to
find these weights W;(x) for every individual i € S.

In this chapter, we will summarize some smoothing techniques
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given by Hardle [12].

3.1 Kernel Smoothing

In this section, the predictor variables X; € R, i.e., x is one-

dimensional real scalar.

In order to find the weight sequence {Wi(x),---,W,(z)}, one
introduces a continuous, bounded and symmetric real function

K called the Kernal function, such that

/ K(t)dt =1 (3.5)
R

The idea of the kernel smoothing is motivated from the proper-
ties of a probability density function f(x). The equation (3.5)
is, in fact, a feature that a probability density function must
satisfy. Let F(z) = P(X < z) be the cumulative distribution
function of X.

f(x)_d_F:hmP(x—h<:I:<x—l—h)

N dx h—0 2h

(3.6)

This gives an idea to estimate f(z), from the n observations

34



Xy, , X, by ([8] p.324)

~ . def 1 number of observations falling in(x — h,x + h)
fa(z) = _[
2h n
~ 2_1: w( h )
(3.7)
where w the weight function defined by
1
w(z) = 5 ljei<n) (3.8)

Note that if K(z) is the density function of the random variable

X, then

K(r) < S K () (3.9)

is the density function of the random variable hX. With the
kernel equation (3.5), Rosenblatt and Parzen ([8] p.331) defined

a kernel density estimator for the density function of X by

fu(z) = % zn; K(x _hX> (3.10)

Since K is continuous, bounded, symmetric about the origin on
real line, and integrated to unity by (3.5), then for a small h, the

regression relation m at some point z( in (3.2) can be written

35



approximately as

m(xg) ~ _OO m(t)Kp(t — xq)dt
(X)) KR(X — x0)
- [ 2003 } (3.11)
Y Ky (X — )
==

From the equation (3.11), a kernel estimator can be obtained

as:
n

S _ 1 [Kn(X; — 2) ;Y]

(3.12)

Usually the density function of f(x) is unknown. Note that
the kernel density (3.10) is enlightened by the naive density
estimator (3.7). For very small h, these f(X;) in (3.12) can
be replaced by fj,(x). Thus, the estimator (3.12) becomes

n

) = s R; ful(@)

(3.13)

Consequently, Nadaraya and Watson ([12] p.25) proposed the

weight sequence of the kernel smoother as

(1) — Kh(il?—Xz) _ Kh(a:—XZ)
Wi(x) (@) IS Ki(z — X)) -
K5 |

n J)—Xj
w2 K(57)
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where the size of the weight h is called the bandwidth. This gives
the Nadaraya-Watson estimator by (3.4):

n

A 1 Kp(x — X))R;Y;
i - gyt SR
S (=) RY)

- nflR n l‘—Xj
D D (=)

(3.15)

We note that if R; = 1 for all ¢ € 5, i.e., all Y; are respon-
dent, (3.15) becomes

n

() = %; [% g?i(le;éi)_ygﬁ)}

YLK ()Y
S K ()

(3.16)

The above equation implies a reasonable estimator in the case

of missing data, introduced by Cheng and Wei [5],

) = 30 [l X

1=1

_ YL KRy
> K(5)R;

(3.17)

That is obtained by taking account of only these variables X; for
R; =1, i.e., the kernel density estimator (3.10) for the density

function of X becomes

ful@) = ﬁ zn; K(x _hX")Ri (3.18)
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and thus the weight sequence of the kernel smoother (3.14) be-

comes

Ku(x — X;) Ky(x — X;)
Wiz) = — = 0
) () s 21 K@ — X)) R,

G

n r—X;
ﬁZj:lK( h )Rj

(3.19)

Substituting (3.19) into (3.4), we obtain (3.17).

3.2 Selection of Kernel Function

In this section, we suppose that R; =1 for all 7 € S, i.e., all Y;

are respondent.

Let
e K be the kernel function as defined in Section 3.1.
e X be a one-dimensional predictor variable.
e m be the regression model defined by (3.2).
e f be the density function of the random variable X.

e o%(z) be the variance of the random variable X at the point

x.

Then one has the following theorem ([12] p.29).
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Theorem 3.1 Assume:

1. [R|K(t)|dt < oo,

2. im0 tK (1) = 0;

3. E[Y?] < oo;

4. for n — oo, then, h — 0 and nh — oo.

Then, for each v € R with f(x) > 0 such that m, f and o are

continue at the point x, one has

% > W)Y B mia)

The theorem 3.1 ensures that the kernel smoother my(x) con-
verges in probability to response curve m(x). Based on the
Theorem 3.1, one can propose several kernel functions K to es-

timate the response variable Y.

Example 3.2.1 Polynomial kernels

(1) K@) =202 < 1)

2) K1) = (3~ 107 + 7)1 < 1)

(3) K1) = 2t +£)1(] < 1)

@) K(t) = 3025( 5t -+ 1465 — 96) I(|t] < 1)

(5) K(t) = 11065( 14 62— 5N I(t] < 1)

(6) K(t)—36145( 5+ 63t — 135t + 77t I(|t| < 1)

(3.20)
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In [12], Hérdle listed some polynomial kernels ([12] p.135. (1)
is also called as the Epanechnikov kernel). All of these kernel
functions in Example 3.2.1 have support [-1, 1] and were derived
by Gasser, Miiller and Mammitzsch [1985] from some optimalily

consideration.

Example 3.2.2 The Gaussian kernel

K(t) = \/12_7Te_t22 (3.21)

In fact, is the density of a standard normal distribution.

Example 3.2.3 The gamma kernel

1
- peT(a)

is, in fact, the density of the gamma distribution. Note that in

K(t) e 5t >0 (3.22)

Example 3.2.3, the gamma kernel K is not symmetric to the ori-
gin 0. Ignoring the condition of symmetry, the density function
f(x) is a kernel function of the continuous random variable X,

where o and S have to be chosen appropriately.
Note that the function K in Example 3.2.3 does not satisfy the

condition of symmetry for a kernel. Thus, for using (3.22) as a

kernel function, it should have some special consideration.
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3.3 Selection of Bandwidth

In this section, we suppose that R; =1 for all « € S, i.e., all Y;

are respondent.

Let
dy (2, h) = Elrivy(x) — m(z))*

be the mean squared error of the kernel smoothing model at a
point x of the random variable X. For the regression method (3.2),
assuming, without loss of generality, that X, is taken from the

interval [—1,1], Gasser and Miiller ([12] p.29) in 1984 showed

the following theorem .

Theorem 3.2 Let
Cx = / K%(t)dt < oo
R
dy =/t2K(t)dt < 00
R

Take the kernel weight sequence {Wp;}, proposed by Gasser and
Miller( [12] p.28), as

Si
Whi = Tl/ Kh(:c - t)dt (323)
Si—1

where X;—1 < S;—1 < X; is chosen from the ordered set { Xy <
Xi <, < X} with Xog = —1.

Assume:

1. K has support [-1, 1] with K(—1) = K(1) = 0;

2. me C?%
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3. max;| X; — X;_1| = O(n™1);

4. var(e) =02 i=1,--- n;

5. formn — oo, then, h — 0 and nh — oo. Then, for each v € R
with f(z) > 0 such that m, f and o* are continue at the point

x, one has
dy(z,h) = (nh) 'ocx + hids(m"(x))? /4.

The optimal bandwidth h,, can be found by setting

oh

3.4 Kernel Smoothing for Non-negative Sta-

tionary Ergodic Processes

In this section we suppose that R; = 1 for all : € S, i.e., all Y]

are respondent.

In Section 3.1, we have shown the idea how to get the Nadaraya-

Watson (NW) estimator (3.15):

_ > i Yil(z — X))
> i1 Kz — X;)

where K}, represents the density function of the random vari-

() (3.24)

able hX, is given by (3.9). In this section, we summarize the

kernel smoothing, proposed by Chaubey, Laib and Sen in [3],
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to give a rigor and solid reason to the generalized NW estima-
tor from (3.24) for non-negative data sampled from a station-
ary, ergodic process. This says that for every individual ¢ € S,
the single response variable Y; € R' and the predictor vari-
able X; € R™ and furthermore, every Z; = (X;)Y;) € Zg =
{(X:,Y)) : X; € Xg,Y; € Yg} is sampled from a stationary, er-

godic process.

Define the conditional mean function
m(z) = E(¢(Y1)| X1 = 2) (3.25)

where ¢ : RT — R, is a Borel function such that E(|¢(Y1)|) < oo,
in addition, m(z) = E(¢(Y1)| X1 = x) < oo for any € Xg. The
goal in this section is to construct an estimator for the mean

function m.

3.4.1 1-Dimensional Case

Here we consider X; € R for every i € S, i.e., ¢ = 1.
In order to construct the estimator of m in (3.25), Chaubey,

Laib and Sen presented the following theorem ([3] p.975), origi-
nally shown in [11], Chapter VII ([11] p.219).
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Theorem 3.3 For n = 1,2,---, consider a family of distribu-
tions fy.n,, where hy, denotes the bandwidth for each sample S,
with mean p,(x) and variance o2(x). Let u be a bounded and
continuous function on R. If p,(x) — = and o2(x) — 0 for each
r € R, then

/Oo u(t) fon, (t)dt = u(x) as n — oo (3.26)

.¢]

The convergence is uniform in every finite interval in which

o2(z) — 0 uniformly and u is uniformly continuous.

Let u(t) = m(t) f(t), where f, bounded and continuous on R* is
the common density function of X; € Xg. Then, (3.26) becomes

o0

B (01, (60) = [ )] (0o, (it > mlx)f () as o0
- (3.27)

(3.27) motivates an estimator of m for each sample S, given by

my(z) = —
for € R, where 4, is the estimator of E(¢(Y1) fon, (X1)):

Z S(Y3) fren, (X (3.28)

and fn is the estimator of f:

=3 (X (3.29)
=1

i.e., the estimator of m for each sample S,, is constructed by

o i O3 fa (X0)
my(z) = ST o (X (3.30)
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We note that the Nadaraya-Watson estimator 7y, in (3.24) is a
special case of the estimator m, given in (3.30) by taking the
bandwidth h,, = h and

fon () = Ky(z —t) = %K(:c }: t>

where K is the kernel described in Section 3.1.

Chaubey, Laib and Sen indicated ([3] p.975) that the estima-
tor in (3.30) may not be defined at x = 0 except in cases where
m,(0) = lim, o+ m,(z) exists. For this situation, Chaubey,
Laib and Sen modified the estimator in (3.30) to construct a

perturbed version of estimator of m ([3] p.976):

A o Z?:l ¢(}/i)fx+e”,hn(Xi)
() = S )

where ¢, € RT tends to 0 as n — oo in an appropriate rate.

(3.31)

3.4.2 g-Dimensional Case

Here we consider X; € R with ¢ > 1 for every i € S. In this
case, the estimator of m is still given by (3.31), i.e.,

~ . fl/n(x + en) . Z?:l Qb(}/;)f:v-i-en,hn (Xz)

(@) = fn(:c + €,) Y farenn (X0) (3.32)

In this multi dimensional case, usually these estimators of dis-

tributions f,;, can be calculated by
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q
Fon @) = T Forn (®)
k=1

where © = (z1,---,2,) € R™ and f,, 5, denotes the distri-

bution described in the theorem 3.3 for the element xzp, k €

{1’... ,q}'

In [3], Chaubey, Laib and Sen studied the specific kernel es-
timator given by a Gamma distribution. They showed, under
certain conditions, the results of asymptotic normality for the

estimator and evaluated the mean squared errors (MSE).

3.5 Nearest Neighbor Estimates

The nearest neighbor imputation is to use a k-nearest neighbor
(k-NN) sequence {(X;,Y;)}",, introduced by Loftsgaarden and
Quesenberry [1965], to estimate the smoother m(z) at the point
x in the regression relationship (3.2). In order to calculate the
smoother m(x) by the k-NN imputation, the k observations X;

closest to x are chosen for the index set

Jy = {i: X; is one of the k nearest observations with R; = 1 to x}

and the k-NN weight sequence is constructed by ([12] p.42)
W) = 1/k ifie J,, (3.33)

0 otherwise .
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Then, the k-NN smoother is found by (3.4):

1 n
T = — - Y. .34
me(z) TR ;Wm(az)Rz g (3.34)

Let X be a one-dimensional predictor variable. Suppose that
R, =1 foralli € S, ie., all Y; are respondent. For the k-NN
estimate, one has the following theorem ([12] p.43).

Theorem 3.4 Let k — oo, k/n — 00, n — oo. The bias and

variance of the k-NN estimate my, with weights as in (3.34) are

given by
B{i(2) = m(@)] & s l(m'f + 2 ) @)k )’
var{mg(z)} ~ ? ]ix)

where m is the regression model defined by (3.2), f is the density
function of the random variable X, and o?(z) is the variance of

the random variable X at the point z.

3.6 Horvitz-Thompson Estimate

Let Z; = (X;,Y;) € Zg = {(X,,Y)) : X; € Xg,Y; € Ys}. The
population total is defined by

N
T=YY (3.35)
=1
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In 1952, Horvitz and Thompson proposed an inverse weighting

estimator of the population total 7 ([6] p.259):

n

= RZ’YZ’ (3.36)

T
i=1 v

where 7; is the probability that the th unit Y; is in the sample:

T = P(RL = 1‘XZ € X5> (337)

Theorem 3.5 I[fm; >0,i1=1,--- ,n,
n

. Y;

T = —

7T.

i=1 "

15 an unbiased estimator of T, with vartance

n

var(7) = Z ! ;_me + 226 2”: %KY]
] L)

i=1 i >

where 7;; is the probability that the ¢th and jth units Y;, Y; are
both in the sample:

3.7 Nonparametric Regression Imputation Method

to Estimate the Population Mean

The nonparametric regression weighting approach is a common

way to impute the missing values for the analysis of nonparamet-
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ric imputation in sampling techniques. The regression approach

includes :
e Kernel regression imputation
e Nearest neighbor imputation

Here we summarize some kernel smoothing estimators, proposed

by Ning and Cheng in [20].

3.7.1 Kernel Regression Weighting Method

By (3.17), Cheng and Wei [5] introduced an estimator to the

population mean for Y;:

k;—l
Kn( Xy — X;)R;Y;
_ Z 2ot Kn(Xy — Xi) (3.30)
> i1 Kn(Xi — X)) R,
_ Z ZZ 1 K(Xk )R Y
- X
> K(Z57) R,
A reasonable estimator to the population mean for Y; is
1 n
HER= — Z[ + ( )i (X)) (3.40)

i=1
where my,(z) is given by (3.17). In (3.40), the nonrespondent Y;
are replaced by my,(X;).
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3.7.2 Nearest Neighbor Regression Weighting Method

The nearest neighbor (NN ) regression weights is an another ba-
sic approach to nonparametric imputation. For a finite positive

interger k,a k-NN imputation estimator is defined as

n

ANN = %Z[Riyi + (1 = Ry)mu(X5)] (3.41)

where my, is the k-NN smoother given by (3.34). Similar to (3.40),
in (3.41) the nonrespondent Y; are replaced by mg(X;).

3.7.3 Horvitz-Thompson(HT) Inverse Weighting Method

According to (3.36), the HT estimator of the population mean
1 is defined by

7 1< R)Y;
S — = 3.42
fnr = - nz - (3.42)

=1

By similar reasoning to construct the estimator of population
total (3.36) ([6] p.259), one can replace n in (3.42) by a ratio

estimator:

n =

(3.43)

n
R;
7'('.
=1 ¢

Then the HT estimator of the population mean (3.42) becomes

n

R 1
HHT = Zn R;

R;Y;
3.44
= (5.4
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According to (3.37), m; is a conditional probability. By the law
of conditional probability and the kernel density estimator fh(a:)
for the density function of X (3.10), one obtains an estimator
of m;:

o ARi=1X) i RiG(X - X))
Ay XL KX X))

where K, is the kernel given by (3.9).

(3.45)

3.8 Multiple Imputation

In this sections, we consider the case where the predictor vari-
able X is p—dimensional, ie., X; = (X;1,---,X;y) for every
individual ¢ € S = {1,--- ,n}. In such multi dimensional case,

the kernel function can be defined as
K(ty, - tp) = [ [ K(t) (3.46)
k=1
where K(t;) is the one-dimensional kernel function defined in

Section 3.1.

Then the kernel weights can be found by

_ ey Ko (n — Xig)
filz)

Wi(z) (3.47)
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where K, is defined by (3.9), and fj is the Rosenblatt-Parzen
density estimator defined by

Z Hth Xir)) (3.48)

zlkl

By (3.4), one obtains an estimator for Y

mh(x) — ZZT'LZI 2:1 th (xk - sz)RzY;
7'11 R; n
ZZ_T 2 iz Zzl K, (vp — X)) (3.49)
_ > e e K(”;—?)RzYZ :

1R L — Nk
Zefoson ([T, K(2%e))

Similarly with (3.17), one can construct another reasonable es-

timator for Y:

- > i 1Hk Ko (2 — Xap) R;Y;
mpl
We) = S (T Ky (ke — Xik)) R (3.50
_ >y [Ty K (2575 Ry, '

S (e K(2574) Ry
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Chapter 4

Application

In this chapter, we apply these approaches introduced in Chap-
ter 2 and Chapter 3 to a real example: a coast to coast chain
of stores and their supplies in Canada (The data, given by Pro-
fessor Wei Sun of Department of Mathematics and Statistics of
Concordia University, are quoted from the author’s report of the

B Sc.Honors project in 2011).

The data table in Appendix A consists of the work hours and
sales in the first week and fifth week of a year by 287 divisions of
the stores in the chain. We believe that the work hours of differ-
ent weeks, the work hours and sales in same week, the sales of
different weeks are strongly correlated. The data in Appendix A
are completed. We delete almost 100 data of sales in the fifth
week. Then, we use the methods introduced in Chapter 2 and
Chapter 3 to estimate these missing data and verify the appli-
cability of those methods.
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The programs we made here (The programs were made by Mat-
lab). can be used for the similar general cases. For instance, the
heights and weights of a groups of boys at age 15 in a certain
region were measured, the approaches applied here can be used
to estimate the missing data of heights and weights for the same
groups at age 20 and predict the average height and weight for

the 20-year-order boys in the same region.

4.1 Single Imputation

In this section, Xg = {Xy, -+, X}, } is the sample of work hours
in week 1, Yg = {Y7,---,Y,, } is the sample of work hours in
week 5 for these divisions of the stores, where n = 287, and

R ={Ry,---,R,} is the response indicator set defined in (2.1).

4.1.1 Ratio Method of Imputation

The estimator of Y}, is given by (2.20):

~ . Y if Ry =1
Yk = m(Xk) = _ (41)
X, if R, =0
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where

The estimator is illustrated in Fig. 4.1.
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Figure 4.1: Ratio estimator
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The estimation of mean Y is given by (2.21):

_ 1 e -
K‘atioz ﬁ;}/}f

(4.2)
_ X
=Y, (=
)
where X, is the average value of the sample Xg:
_ 1
X, =X=- X
" -2.%
j=1
We obtain:
Y, utio &~ 100.8651 hours
and
Error = |Y,aio — Y| = 0.9783 hours
}_/;“a 0 )_/
Relative error = ‘tT’ ~ 0.0096
where
1 &
Y =— Y; ~ 101.8434 h 4.3
- Z ours (4.3)

i=1
is the average of the work hours in the fifth week from the sam-

ple given by the data table in Appendix A.

4.1.2 Regression Method of Imputation
The estimator of Y}, is given by (2.26):

Y it Ry, = 1
V=4 " ’ (4.4)

Y, = 20X, 420X i Ry =0
X X
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where sy, sy, sxy are given by (2.5):

1 n

SXy = -—7 (RiXi — Xo) (ReYr — Y,)
k=1
1 n
2 2
= X — X
SY = ;Zl(Rk E— Xr)
1 n
2
_ Y, — Y,
Sy =7 gl(Rk k= Yr)

with

The estimator is illustrated by Fig. 4.2.

The estimation of mean Y is given by (2.27):

1 n
Y;egression = — E Yk
n
k=1

(4.5)
Sx Sx
We obtain:
Yyegression ~ 101.3384 hours
and

Error = |Y,egression — Y| & 0.5050 hours

}_/;“egression - Y
i | &~ 0.0050

Relative error = | v

o7



'45[' T T T T T T T T T

400

a0

300

(haurs)

~ 200

2 Sample data
Estimated data

150

100

alll

1 | 1 | | 1 | |
0 A0 100 150 200 250 300 350 400 450 500
# (hours)

Figure 4.2: Regression estimator
4.1.3 Optimal Method of Imputation

The estimator of Y} is given by (2.32):

. Y. if R, =1
Y, = (4.6)
A+BX, ifR.=0
where <
Pt
Sx
A=Y - BX =Y, - BX



The estimator is illustrated by Fig. 4.3.
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Figure 4.3: Optimal estimator
The estimation of mean Y is given by (2.32):
1 n
}/optimal = - Z Yk
" (4.7)
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We obtain:
Yoptimal & 104.2080 hours

and

Error = |Y,ptima — Y| & 2.3646 hours

Relative error = |%\ ~ 0.0232

4.1.4 Kernel Smoothing Method

In this section, we apply those approaches introduced in Sec-
tion 3.2 to estimate the work hours in the fifth week. The esti-
mator of Yy is given by (3.17):

O X ZZ 1 K(Xk )R Y

Y = mp(Xy) = < (4.8)
> K(F5)R,
where h is the bandwidth of the kernel K.
The estimation of mean Y is given by (3.39):
1 n
= — np(X
KK R1 n Z i (Xk)
4.9
_ Z Zz 1 K Xk )R Y ( )
o X
Z] 1K k )R]
or by (3.40):
1 n
=—> [RY;+ (1 — R)mp(X; 4.10
HER2 = Z[ +( )i (X)) (4.10)

i=1
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where my,(z) is given by (4.8).

1. Epanechnikov Kernel

The Kernel is given in (3.20):

K(t) = 2(1 — (e < 1) (4.11)

The estimator (4.8) for the Epanechnikov Kernel is illustrated
by Fig. 4.4.

Using the estimator (4.9), we obtain:
Y Epancehnikon = 101.2395 hours

and
Error = |}7Epanechmkou — Y| ~ 0.6039 hours

YEpanechnikov -
Y

Y
Relative error = | | = 0.0059

Using the estimator (4.10), we obtain:
YEpanechnikov ~ 101.3955 hours

and

Error = |YEpanechmk0U — Y| ~ 0.4479 hours
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Figure 4.4: Epanechnikov kernel estimator (h = 4)

Y anechnikov — Y/
Relative error = |—2 hYk | =~ 0.0044
2. Polynomial Order-4 Kernel
The Kernel is given in (3.20):
15
K(t) = 5(3 — 108> + 7tHI(]t] < 1) (4.12)
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The estimator (4.8) for the Polynomial Order-4 Kernel is illus-
trated by Fig. 4.5.
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Figure 4.5: Polynomial Order-4 kernel estimator (h = 10)

Using the estimator (4.9), we obtain:
Yporyorders = 101.6475 hours

and
Error = |YPolyOrder4 — Y‘ ~ 0.1959 hours
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YPolyOrdeM -

Y
~ 0.0019
%z |

Relative error = |

Using the estimator (4.10), we obtain:
Ypolyordera = 101.3957 hours

and

Error = |Ypoyorders — Y| & 0.4477 hours

Y 0 rderd — Y
Relative error = | lyO;_l/ ! | = 0.0044
3. Gaussian Kernel
The Kernel is given by (3.21):
1 2
K(t) = e 2 (4.13)

The estimator (4.8) for the Gaussian Kernel is illustrated by
Fig. 4.6.

Using the estimator (4.9), we obtain:
Yeauss &~ 101.7062 hours

and
Error = |Ygauss — Y| = 0.1373 hours
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Figure 4.6: Gaussian kernel estimator (h = 0.9)

YGauss -

Y
Relative error = | 7 | ~ 0.0013

Using the estimator (4.10), we obtain:
Yeauss ~ 101.8267 hours

and
Error = |Ygauss — Y| = 0.0167 hours
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YGauss -

Y
Relative error = | | ~ 1.6400e — 004 = 0.000164

4.2 Multiple Imputation

Here we apply the kernel smoothing methods for multiple im-
putation described in Section 3.8 to estimate the missing data
of sales in the fifth week Y provided that the sample of sales in
the first week X; and the sample of work hours in the fifth week

Xy are complete.

Let X1s = {Xi1,---, X1} be the sample of sales in week 1,
X2g¢ = {Xi2, -+, X2} be the sample of work hours in week 5,
Ys = {Y1,---,Y, } be the sample of sales in week 5 for these
divisions of the stores, where n = 287, and R = {Ry,--- , R,,}
be the response indicator set defined by (2.1). The estimator of
Y; is given by (3.49):

n Xji—Xa Xjo—Xio
v (X1, X o) Zile(h—l)K( hs JR;Y;
j = A1, Aj2) = R n Xi1—Xin Xjo—Xio
Zl_TZile( I VK ( M2 )
(4.14)
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The estimation of mean Y is given by

1 n
== (X, X,
fn =~ mn( X1, Xj2)

J=1

) zn: s K(Xﬂi;xﬂ)K(Xﬂ};Xm)RiY; (4.15)
S R X K (R (R
or .
fiy = %Z[RiYi + (1 = Ri)mp(Xin, Xio)] (4.16)
i1

where My, (X1, Xj2) is given by (4.14).

Before we delete some data from the sample Y of sales in the fifth
week, the average of Y, given by the data table in Appendix A,
is

_ 1 <&
Y = — Y, ~ 53888 4.17
nz; $ (4.17)

4.2.1 Epanechnikov Kernel

The Kernel is given by (4.11). The estimators of Y}, for the single
imputation, Y, = mp, (Xk1) with hy = 4000 and Vi = M, (Xk2)
with hy = 15, are given by (4.8), that are illustrated by Fig. 4.7
and Fig. 4.8, respectively.
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Figure 4.7: Epanechnikov kernel estimator — single imputation by X3
Using the estimator (4.9), we obtain:
YEpanechnikov (Xl) ~ 54744 $

Error = |Ygpaneemiros(X1) — Y| A~ 856.8022 $

YEpanechnikgv (Xl ) -
Y

Y
Relative error = | | = 0.0159

and
YEpanechm'kov (XQ) ~ 54773 $
8

Error = |Yepanechnikoo(X2) — Y| ~ 885.4971 $
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Figure 4.8: Epanechnikov kernel estimator — single imputation by X,

YEpanechnikgv(X2) _ Y| ~ 0.0164
2 .

Relative error = |

Using the estimator (4.10), we obtain:
YEpanechm‘kov(Xl) ~ 54742 $

Error = |Yepancchnikoo(X1) — Y| ~ 854.4287 $

YEpanechnikov (Xl ) -

Y|~00159
Y ~ .

Relative error = |
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and

YEpanechnikov(X2) ~ 54902 $
Error = |YEpanechnikov(X2> - Y‘ ~ 1014.0 $

YEpanechmkgv (XZ ) -

Y|~00188
Y ~~ .

Relative error = |

By the estimator (4.15) for the multiple imputation method, we
obtain:
YEpanechm'kovMul(Xla XQ) ~ 57583 $

Error = ‘YEpcmechm'kovMul(le XQ) - Y| ~ 3695.1 $

YEpanechnikouMul (Xl ) X2) -

Y
~ 0.0686
% |

Relative error = |

4.2.2 Polynomial Order-4 Kernel

The Kernel is given by (4.12). The estimators of Y}, for the single
imputation, Y, = mp, (Xk1) with Ay = 10000 and Vi, = M, (Xk2)
with hy = 20, are given by (4.8), that are illustrated by Fig. 4.9
and Fig. 4.10, respectively.

Using the estimator (4.9), we obtain:
Ypoly4(X1) ~ 54715 $
Error = ‘Ypoly4(X1) — Y‘ ~~ 826.9704 $
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Figure 4.9: Polynomial Order4 Kernel estimator — single imputation by X3

and

Ypoa(Xi1) — Y
Poiyt(X1) | ~ 0.0153

Y

Relative error = |

Yporya(Xa) ~ 55092 $

Error = |Yp4(Xa) — Y| ~ 1204.8 $

YPolyél (XQ) -
Y

Y
Relative error = | | = 0.0224

71

I I I I I I I I
2 Sample data
i Estirnated data A
1 | 1 | | | 1 |
O 2 4 5] 8 10 12 14 16 18
108 <10t



25 T T T T T T T T
2 L _
1681 -
)
-
1 | _
5 2 Sample data =
Estimated data
8]
I:l 1

| 1 | | | 1 |
0 alll 100 150 200 250 300 350 400 450
#2 (hours)

Figure 4.10: Polynomial Order4 Kernel estimator — single imputation by X»

Using the estimator (4.10), we obtain:
Ypoly4(X1) ~ 54767 $

Error = |Ypoyu(X1) — Y| & 879.3035 $

YPolyél (Xl) -
Y

1%
| ~ 0.0163

Relative error = |

and
Yeorya(Xa) ~ 55090 $
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Error = |Ypoya(Xa) — Y]~ 1202.1 $

YPolyél()_(Q) —

Y
~ 0.0223
- |

Relative error = |

By the estimator (4.15) for the multiple imputation method, we
obtain:

YPozy4Muz(X1,X2) ~ 57735 $

Error = |Yp01y4Mul(X1,X2) — 5_/‘ ~ 3847.0 $

57Poly4Mul()_( 1, Xo) =Y

Y
~ 0.0714
% |

Relative error = |

4.2.3 Gaussian Kernel

The Kernel is given by (4.13). The estimators of Y}, for the single
imputation, Y, = mp, (Xk1) with Ay = 100 and Y, = M, (Xk2)
with hy = 0.9, are given by (4.8), that are illustrated by Fig. 4.11
and Fig. 4.12, respectively.

Using the estimator (4.9), we obtain:
?Gauss(Xl) ~ 55160 $

Error = |Yauss(X1) — Y|~ 1272.8 $
?Gauss(Xl) - Y
Y

Relative error = | | = 0.0236

73



¥ 10

1.6F

1.4F

e
(mn]
T

=
(]
T

2 Sample data
Estimated data

=
T
T

e
]
T

Figure 4.11: Gaussian Kernel estimator — single imputation by X;

and

}_/Gauss(X2) ~ 54232 $

Error = |Ygauss(Xa) — Y| ~ 344.1465 $

YGauss (X2) —Y
Y

Y
Relative error = | | =~ 0.0064

Using the estimator (4.10), we obtain:

YGauss(Xl) ~ 55170 $
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Figure 4.12: Gaussian kernel estimator — single imputation by X,

Error = |Yauuss(X1) — Y|~ 12824 $

YGauss ({(1) -

Y|~OO238
Y ~~ .

Relative error = |

?Gauss(X2) ~ 54155 $

Error = |Ygauss(X2) — Y| ~ 367.2215 $

YGauss (XQ) -
Y

Y
Relative error = | | = 0.0050
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By the estimator (4.15) for the multiple imputation method, we
obtain:

YGaussMul(le X2> ~ 57961 $

Error = |Ygaussaru (X1, Xo) — Y| ~ 4073.5 $

YGaussMul()_(la XQ) -
Y

Y
Relative error = | | ~ 0.0756

4.3 Summary

The following tables show the results that we obtained in Sec-
tion 4.1 and Section 4.2. We will compare these mothods and

discuss their applicability.

4.3.1 Single Imputation

In Section 4.1, we used some specific methods to estimate the
missing data of the work hours in the fifth week by the complete
sample of work hours in the first week. The table 4.1 shows the

relative errors of those modes that we used in Section 4.1.

We see that, in general, these kernel smoothing methods are

better than non-kernel methods.
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Modes Relative error (%)
Ratio Method 0.96
Regression Method 0.50
Optimal Method 2.32
Epanechnikov Kernel 0.59
Polynomial Order4d Kernel 0.19
Gaussian Kernel 0.13

Table 4.1: Relative errors of the methods for single imputation

We note, as predicted, that the optimal method is the worst
one among these methods in Table 4.1. As mentioned in Sec-
tion 2.1.5, for estimating the mean Y, this method needs an
another estimation of Y to optimize the optimal coefficients A

and B.

Table 4.1 also shows that the Gaussian kernel smoothing method
is better than those polynomial kernel smoothing methods. Since
for the polynomial kernel smoothing methods, the kernel K (t) =
0 when t > 1, the chosen bandwidth A could not be very small,
while for Gaussian kernel, h can be chosen to be enough small
to optimize the procedure. This is why the Gaussian kernel

smoothing method is the best one among these methods in Ta-
ble 4.1.
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4.3.2 Multiple Imputation

In Section 4.2, we used some specific multiple imputation meth-
ods to estimate the missing data of the sales in the fifth week
Y by the complete samples of the sales in the first week X7 and
the work hours in the fifth week X5. The following tables show

the relative errors of those modes that we used in Section 4.2.

Modes Relative error (%)
Simple Imputation Y(X;) 1.59
Simple Imputation Y(X5) 1.64
Multiple Imputation Y(X;, X5) 6.86

Table 4.2: Epanechnikov Kernel

Modes Relative error (%)
Simple Imputation Y(X;) 1.53
Simple Imputation Y(X5) 2.24
Multiple Imputation Y (X3, X5) 7.14

Table 4.3: Polynomial Order4 Kernel

Modes Relative error (%)
Simple Imputation Y(X7) 2.36
Simple Imputation Y (X5) 0.64
Multiple Imputation Y(X;, X5) 7.56

Table 4.4: Gaussian Kernel
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We see, from Table 4.2, Table 4.3, and Table 4.4, that the
multiple imputation methods used here are much worse than
the corresponding simple imputation methods. Note that for a
multiple imputation kernel smoothing method, the choice of an
optimal bandwidth A is very difficult. This might cause the poor

accuracy for the multiple imputation kernel smoothing method.

In order to avoid such poor performance of the multiple im-
putation kernel smoothing method, we can simply use the esti-

mator (2.45) to estimate Y, i.e.,

Y (X)) + Y(Xo)
2

Y (X1, Xs) = (4.18)

This gives

_ 54744 + 54733
YEpanechnikovMul(Xla XQ) ~ 5 ~ 57583 $

Error = |YEpanechnikovMul(Xla X2) - Y‘ ~ 870.5 $

YEpanechm'kovMul(Xla XQ) -

Y
= |~ 1.62%

Relative error = |

- 54715 + 55092
Ypoiyaniu (X1, Xa) ~ 5 ~ 54904 $

Error = |Yp01y4Mul(X1,X2) — Y‘ ~ 1015.5 $
Yporyanu (X1, X2) =Y

T ~ 1.88%

Relative error = |
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= 55160 + 54232
YGaussMul(Xla XZ) ~ 9 ~ 54696 $
Error = |Yaaussaru (X1, Xo) — Y| ~ 808.0 $
YGaussMul()_(ly XQ) -

Y

Y
| ~ 1.50%

Relative error = |

Then the situation is much more improved as shown in Table 4.5.

Modes Relative error (%)
Epanechnikov Kernel 1.62
Polynomial Order4 Kernel 1.88
Gaussian Kernel 1.50

Table 4.5: Relative errors of the methods for multiple imputation

Furthermore, it verifies the conclusion in the section 4.3.1, i.e.,
the Gaussian kernel smoothing method is the best one among

these methods listed here.
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Chapter 5

Conclusion

In this thesis, we reviewed several single imputation and multi-
ple imputation techniques to deal with the problem of missing
data in a census or a sample survey. Also we present some esti-
mators for the missing data and the theories about the variance
and mean squared error of those estimators. Finally, with some
examples, we compare those modes to find their advantages, dis-

advantages, and applicabilities.

For a single imputation problem, the estimator of an element
Y: from the sample Yy is given by a function m of the sample

Xg:

Yy, = mi(Xs) (5.1)

Usually, there are two classifications for the estimation func-
tions m: single depended and linear: Ve = A+ BXj., multiple
depended and nonlinear: Y;, = r(k, Xg).
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Those single depended and linear functions m are introduced
in Chapter 2. We present and discuss in Section 2.1 the mean
method, the ratio method, the regression method, the power
transformation method, and the optimal method for imputa-

tion.

Those multiple depended and nonlinear functions m are intro-
duced in Chapter 3. We present and discuss in Chapter 3 the
kernel smoothing method, the k-nearest neighbor method, etc.
We introduce some theories for the selection of kernel function
and bandwidth. The application in Chapter 4 shows how im-
portant about the choice of the bandwidth h.

For a multiple imputation problem, the estimator of an element
Y is also represented by (5.1), where every element X in the

sample Xg is a real vector in stead of a real number.

In Section 2.2, we introduce the estimator (2.45) of the mul-
tiple imputation problem: an average of all single imputations.
In Section 3.8, we introduce another estimator (3.49): the mul-
tiple kernel smoothing. The application in Chapter 4 shows that
the estimator (2.45) is simple and applicable, while the estima-
tor (3.49) is complicated and needs more works to optimize the

bandwidth h.
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In Chapter 4, we apply these modes introduced in Chapter 2
and Chapter 3 to a real case. We calculate the estimators by sin-
gle imputation techniques and multiple imputation techniques,
then compare those imputation methods and conclude their ad-

vantages, disadvantages, and applicabilities.

In practice, all of these imputation techniques used in this the-
sis work well for the missing data problem. For the case of
Chapter 4, those kernel smoothing methods are better than the
linear imputation methods. According to results of the appli-
cation, the Gaussian kernel smoothing method is a very good

approach to the missing data problem.

In general, every specific missing data problem has a most ap-
propriate specific approach for it. Choosing a proper mode is
very important to resolve the problem. For a kernel smoothing
method, the choice of an optimal bandwidth A tends to become

the critical to success.
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Appendix A

Data Table

The following tables contain the data using for the application
in Chapter 4. The data, given by Professor Wei Sun of Depart-
ment of Mathematics and Statistics of Concordia University, are
quoted from the author’s report of the B Sc.Honors project in

2011.

WK StorelD Divisior Position Hours Sales |WK StorelD Division Position WorkHours Sales | WK StorelD Division Position Hours Sales WK StorelD DivisionPosition Hours Sales
1 NO.100 NO.1 1 6214 2735278 | 3 N NO.1 1 6996 26087.2 1 NO.205 1 49607.16 3 NO205 NO2 1 8806 40393.84
1 NO.10l NO.1 1 105.64 2416336 || 3 NO.L 1 136 64364.36 1 NO.206 1 163457.24 5 NO206 NO2 138124 164203
1 NO102 1 10983 487341 5 NO1 1 7718 4366344 1 NO207 1 2407058 5 NO20T NO2 1 4058 208806
1 NO.104 1 5844 3689184 rd NO.1 1 24 4198558 1 NO:208 1 7661824 5 NO208 NO2 1 16798 5272778
1 NO.105 1 64.06 1880134 rd NO.1 1 26394.12 1 NO209 1 116461 46 5 NO209 NO2 1 19774 1145974
1 NO.106 1 14816 10473056 5 NO.1 1 1010168 1 NO210 1 466794 5 NO210 NO2 1 999 478306
1 NoO.107 1 %49 382213 3 NO.L 1 62778.94 1 Noaii 2 1 48140.72 5 NO2i1 NO2 1 1551 108344.1
1 NO.103 1 3886 3508812 || 3 NO.L 1 3184212 1 No212 2 1 106927.6 3 1 18866 1174043
1 NO109 1 13246 7392376 rd NO.1 1 8146038 1 NO213 2 1 75725.1 5 1 16192 8023568
1 NO110 1 4432 2782052 rd 1 251314 1 NO214 2 1 149549 42 5 1 37432 1519722
1 NO.1102 1 9336 378616 rd 1 36836.14 1 NO215 2 1 34304 14 5 1 4148 3569506
1 NO.1103 1 3958 16296.1 3 1 1228828 1 NO216 2 1 44061.6 3 1 8464 31605.46
1 NO.1107 1 3416 3073876 || 3 1 m1242 1 No217 2 1 9379874 3 1 1508 9371134
1 'NO.1108 1 7656 2040182 || 3 1 17027.42 1 No2is 2 1 65122.88 3 1 13856 73986.72
1 NQ.1109 NO.11 1 4026 27017.52 rd 1 2318344 1 NO219 2 1 129238 66 5 1 240 1078782
1 NO111 NO1 1 4774 2633834 4 1 3135884 1 NO220 2 1 76516.58 5 1 16134 75146.12
1 NO1111 NO.11 1 11112 2767166 4 1 28511.16 1 NO21 2 1 436927 5 1 9362 505625
1 NO.1116 NO.11 1 3316 1411466 || 3 1 13263.88 1 NO222 2 1 9431036 3 1 16336 9729636
1 NOI12 NO.1 1 3236 237069 5 1 21683.58 1 NO223 2 1 74033.7 3 1 13574 1082859
1 'NO1128 'NO.11 1 7588 3820808 || 3 1 40573.78 1 NO224 2 1 6027432 b] 1 12094 581931
1 NQ113 NO1 1 4508 3069622 rd 1 1 NO2S5 2 1 106929.02 5 1 17576 9678952
1 NO115 NO1 1 14768 826381 rd 1 1 NO6 2 1 7589628 5 1 9798 75499.1
1 NO116 NO1 1 5252 20069.18 4 1 1 NO227 2 1 4729652 5 1 100358 4307486
1 NO117 NO.1 1 3276 2462708 || 3 1 1 NO.2A 2 1 47863.96 3 1 8398 370419
1 NO113 NO.1 1 9066 6220572 || 3 1 1 No2x9 2 1 43931.62 5 NO29 NO2 1 817 42706.86
1 NO119 NO1 1 31822 1641969 rd 1 1 NO230 2 1 132899 5 NO230 NO2 1 M7 1193543
1 NO120 NO1 1 5294 3034504 5 NO120 » 1 1 NO231 2 1 69649 68 5 NO231 NO2 1 77 66093 68
1 NO.1200 NO.12 1 4912 316731 5 NO.1200 » 1 1 NO232 2 1 7886938 5 NO2 1 18308 878274
1 NO.1201 1 #4n 42117.84 | 5 NO.1201 NO.12 1 1 NO233 2 1 165.36 1489306 5 NO233 NO2 1 13396 1423133
1 NO.1202 B 1 10226 5042074 || 3 NO.1202 NO.12 1 1 NO.234 2 1 1352 86639.3 5 NO234 NO2 1 18334 8732024
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WK StorelD Dirisior Position Hours  Sales |WK StorelD Division Position WorkHours Sales | WK StorelD Dirision Position Hours Sales | WK StorelD DivisiowPosition Hours Sales
1 NO.I203 NO.a2 1 9112 5199042 [ 5 NO.J203 NO.12 1 15496 504096 | 1 NO233 NO2 1 M4 3291936 5 NO23) NO2 | 1 (6766 52689.18
1 NO.I206 NO.2 1 3736 3041234 | 5 NO.1206 NO.12 1 4126 336383 | 1 NO236 NO2 1 4472 2351396 5 NO2i6 NO2 1 1038 3681504
1 NOI208 NO.2 1 789 5805864 | 5 NO.1208 NO.12 1 6636 768169 | 1 NO233 NO2 1 10344 6591164 5 NO238 NO2 1 9562 5668238
1 NO.I209 NO.I2 1 3966 3044042 | 5 NO.1209 NO.12 1 3736 303671 || 1 NO239 NO2 1 13654 893472 5 NO23® NO2 1 26032 1806327
1 NOI21 NO1 1 9988 5363034 | 5 NO.I2 NO1 1 892 670871 || 1 NO241 NO2 1 14062 5711138 5 NO241 NO2 1 13862 6271596
1 NO.A211 NO.a2 1 3276 2164042 | 5 NO.211 NO.12 12178 202464 | 1 NO242 NO2 1 16994 3390654 5 NO2&2 NO2 1 22034 (5657484
1 NO.A212 NO.A2 1 3602 3061508 | 5 NO.212 NO.12 1381 4330742 | 1 NO243 NO2 1 13346 46607.46 5 111184 (3738436
1 NOI213 NO.2 1 613 5066696 | 5 NO.213 NO.A2 1 6213 6355838 | 1 NO244 NO2 1 8828 3713942 5 1 8336 5647008
1 NO.A214 NO.I2 1 4208 1621038 | 5 NO.214 133 264625 || 1 NO245 NO2 19918 4209 5 110106 3547918
1 NO1215 NO12 1 8732 2306622 | 5 NO1215 15088 3328874 | 1 NO246 NO2 12661 1194791 5 1 31926 1302982
1 NO.A216 NO.a2 1 4292 3839232 | 5 NO.J216 1 4974 4407538 | 1 NO248 NO2 1 4594 176285 5 1 5474 1897834
1 NOI21§ NO.2 1 5478 3216632 | 5 NO.213 L |274 2040448 | 1 NO249 NO2 1 1936 10014036 | 3 1 19368 1276526
1 NOI23 NO1 1 9576 5833692 | 5 NO.23 19 5343496 | 1 NO250 NO2 1 20672 8106468 5 120074 (8399292
1 NOI24 NO1 1 8942 327518 | 5 NOI24 1846 3816894 | 1 NO251 NO2 1 4556 1120376 || 5 1447 1265623
1 NO125 NO1 1 5572 2037534 | 5 NO.125 15396 3365096 | 1 NO252 NO2 11272 630542 5 1817 4027078
1 NO1Z7 NOa1 1 7106 273361 | 3 NOI2T 1 4688 2799144 | 1 NO253 NO2 1 12512 3381838 5 1 13352 4952802
1 NOI28 NO. 1 196 13739696 3 NO.28 116822 1402497 | 1 NO254 NO2 1 4313 1930346 5 1 436 (202022
1 NOI2§ NO1 1 9428 81735742 | 5 NO.29 [RREEY 7 3749362 | 1 NO255 NO2 1 7336 3278956 5 110012 3387408
1 NOI30 NO. 1 16172 560652 | 5 NO.130 12469 753591 | 1 NO256 NO2 1 12036 7404098 5 116043 7443962
1 NO.1301 NO.13 1 7192 47576 5 NO.1301 NO.3 1 [587 4672638 | 1 NO257 NO2 1 661 580577 5 1 12263 9780166
1 NOI302 NOI3 1 16278 8900338 | 5 NO.302 NO.3 117076 8654698 | 1 NO238 NO2 1 18358 8374148 5 11936 94326
1 NO.I303 NOU3 1 1448 7253016 | 5 NO.1303 NO.I3 117938 7730384 | 1 NO25® NO2 1 4092 3300184 5 1782 (2599622
1 NOI305 NOI3 1 9256 4931218 | 5 NO.1305 NO.I3 17694 56647.76 | 1 NO260 NO2 1 10618 8272612 5 11464 (9240214
1 NO.I306 NOI3 1 3382 2580292 | 5 NO.1306 NO.I3 13854 2657456 | 1 NO261 NO2 1 12048 6286474 5 112702 6937546
1 NOI311 NOI3 1 10564 5205768 | 5 NO.1311 NO.13 1863 4463014 | 1 NO262 NO2 1 3928 2642636 5 1374 3583384
1 NOI312 NOI3 1 5962 4311416 | 5 NO.312 NO.3 157 2747596 | 1 NO263 NO2 1 406 210 5 14438 12000792
1 NOI313 NOI3 1 8592 300874 | 3 NO.I3I3 NOU3 15748 207385 || 1 NO264 NO2 16042 7741962 5 16026 6522212
1 NOI34 NOU3 1 3834 1533766 | 5 NO.314 NO.A3 1 2938 1149684 | 1 NO265 NO2 1230 12065338 | 5 1 2375 8960098
1 NOI31S NOI3 1 1948 12767512 5 NO.I315 NO.I3 1 5 83530.38 | 1 NO266 NO2 1 35228 1749 | 5 1 33456 183615

1 NOI319 NOI3 1 3766 200887 || 5 NO.1319 NO.I3 1 349 30536.36 | 1 NO267 NO2 1 15436 9264809 5 1 16028 (976847
WK StorelD Divisior Psition Hours  Sales |WK StorelD Dirision Position WorkHours Sales | WK StorelD Diision Position Hours  Sales | WK StorelD DivisionPosition Hours  Sales
1 NOI320 NO13 1 [7148 22403 5 NO.1320 NO.13 1 6294 2779806 | 1 NO268 NO2 1 1966 12301342 | 5 NO268 NO2 | 1 17384 1261002
1 NO1321 NO13 1 (7222 (6112524 | 5 NO.1321 NO.13 110416 91437 | 1 NO2I0 NO2 1 2075 11908686 [ 5 NO270 NO2 | 1 22008 1346866
1 NO1322 NO.3 1 3308 2709004 | 5 NO.1322 NO.L3 1527 37912 | 1 NO2Tl NO2 133 2900746 5 NO271 NO2 | 1 4624 2981414
1 NO1325 NOI3 1 491  27808%6 | 5 NO.1325 NO.13 13608 2142062 | 1 NO272 NO2 1 19764 13709332 [ 5 NO272 NO2 | 1 16786 1324259
1 NO1326 NOI3 1 8852 4327624 | 5 NO.1326 NO.I3 1 9984 426464 | 1 NO2T3 NO2 1 4476 3422844 5 NO273 NO2 | 1 7006 328569
1 NO1327 NO13 1 23028 64849.36 | 5 NO.1327 NO.3 12372 6019408 | 1 'NO274 NO2 1 12276 5151422 5 NO274 NO2 | 1 13894 64918
1 NO118 NO3 1 5534 330402 | 5 NO.1328 NO.U3 12846 26827.02 | 1 NO275 NO2 1 421 207364 5 NO275 NO2 | 1 4114 200032
1 NO1329 NO.3 1 4858 2476618 | 5 NO.1329 NO.L3 15468 200198 | 1 NO2I6 NO2I 1 11288 82673.84 5 NO2%6 NO2 | 1 1453 8101L02
1 NO133 NOI 1 7584 3341482 | 5 NO133 NoO1 1719 3200446 | 1 NO2TT NO2 124 (4758388 5 NO277 NO2 | 1 8176 6940102
1 NO1330 NO13 1 5536 3626566 | 5 NO.1330 NO.3 1 13938 6384156 | 1 NO278 NO2 1 2508) 10465544 | 5 NO278 NO2 | 1 3918 1253979
1 NO1331 NO13 1 24 287215 | 5 NO.1331 NO.13 19 3698034 | 1 NO278 NO2 112768 3774338 5 NO219 NO2 | 1 11664 6382304
1 NO1332 NO3 1 381 413054 | 5 NO.1332 NO.U3 1 9674 4630634 | 1 NO281 NO2X 1 12792 11374042 | 5 NO281 NO2 | 1 24304 1553797
1 NO1333 NOI3 1 (17082 5940506 | 5 NO.1333 NO.I3 119622 6519364 | 1 NO282 NO2 1 12504 7384838 5 NO282 NO2 | 1 16832 7399104
1 NO1334 NOI3 1 9424 4266572 | 5 NO.1334 NO.13 18342 36369.58 | 1 NO283 NO2 1 8254 8071164 5 NO283 NO2 1 3274 39186
1 NO1336 NO13 1 3956 1531L76 | 5 NO.1336 NO.13 1313 1511486 | 1 NO284 NO2 1 8698 31468 5 NO284 NO2 | 1 7324 3424906
1 NO1338 NO13 1 412 2890632 | 5 NO.1338 NO.13 13574 2976436 | 1 NO285 NO2 1 4008 3904486 5 1 4204 2840004
1 NOl134 NOl 1 27308 |12330352| 5 NO.114 NoOl 116616 8880496 | 1 NO.287 NO2 1 13678 80657.74 5 17974 383318
1 NO1342 NO13 1 8078 7325724 | 5 NO.1342 NO.3 1143 6352664 | 1 NO289 NO2 1 3492 3417422 5 19344 2962384
1 NO1345 NOA3 1 34 18017.02 || 5 NO.1345 NO.13 1 3008 1468344 | 1 NO290 NO2 1 5118 374728 5 13144 454314
1 NO1347 NO13 1 3018 2481578 | 5 NO.1347 NO.3 1 2774 3300314 | 1 NO291 NO2 1 1605 11963916 | 5 120282 1284936
1 NO1330 NO.3 1 (7474 (90297.36 | 5 NO.1330 NO.L3 17196 7160566 | 1 NO.292 NO2 18694 3232968 5 1 12124 3639644
1 NO135L NO.3 1 [12026 5102084 | 5 NO.1351 NO.L3 1 183 4975462 | 1 NO293 NOZ 1 8146 4510472 5 1 5446 2218704
1 NO132 NOU3 1 (13284 (1931722 | 5 NO.1352 NO.3 110736 1923072 | 1 NO294 NO2 19176 538931 5 14576 219072
1 NO1333 NOI3 1 483 2440844 | 5 NO.1353 NO.3 1 4971 1839798 | 1 'NO287 NO2 1 9474 574798 5 19568 519647
1 NO1337 NO13 1 5512 2680124 | 5 NO.1357 NO.13 1 78 1843318 | 1 NO.298 NO2 1 11838 3631272 5 114944 9126

1 NO1338 NO.3 1 4538 2454074 | 5 NO.1338 NO.L3 14002 258264 | 1 NO299 NO2Z 1 15336 7474106 5 1 1135 5371006
1 NO1363 NOU3 1 [15706 5151894 | 5 NO.1363 NO.3 112642 7333038 | 1 NO407 NO4 1847 3495846 5 1 6698 3831156
1 NOI364 NOI3 1 879 2516118 | 5 NO.1364 NO.13 1 348 2304734 | 1 NOSI2 NOS 1 11506 1625536 s 1 11848 1506104
1 NO1366 NO13 1 615 29021134 | 5 NO.1366 NO.13 17912 2744038 | 1 NO339 NOS 1 2404 11310 5 1283 1081908
1 NO1367 NO13 1 24 224985 | 5 NO.1367 NO.A3 1 (24 2012444 | 1 INOJ0O5 NO.J 1 646 143219 5 1 4918 225572
WK StorelD Divisior Position Hours  Sales |WK StorelD Disision Position WorkHours Sales | WK StorelD Division Position Hours  Sales | WK  StorelD DivisiorPosition Hours  Sales
1 NO.I369 1 8536 28918 | 3 NO.I368 NO.I3 230823 | 1 NOJ08 NOJ 1 3234 1252564 5 NO709 NOJ | 1 4916 1778068
1 No.137 1 8146 5592578 | 5 NO.A37 No.d 7624258 | 1 NO.727 NO.J 136 1149396 5 NOTI NOJ | 1 322 2193264
1 No.1370 1|2 2656676 | 5 NO.1370 NO.I3 4787386 | 1 NOJ34 NOJ 1 3334 2010584 5 NOT NOJ | 1 2738 2896604
1 NOI3TL NO.A3 1 4374 3837396 | 5 NO.I371 NO.I3 4814596 | 1 NOJ70 NOJ 17052 2119866 5 NOTI0 NOJ | 1 1024 28362
1 NO.I376 NO.A3 1 4256 2336316 | 5 NO.1376 NO.I3 1690594 | 1 NOJI1 NOJF 1 723 4262698 5 NOTIL NOT | 1 24 39744.58
1 NO.1371 16202 (4004608 [ 5 NO.1377 NO.3 3460302 | 1 NO.712 NOJ7 13608 1574472 5 NOTR2 NOJ | 1 3098 190215
1 No.138 110294 366386 | 5 NO.A33 NO.I 741005 | 1 NO.713 NO.J 17196 510637 5 NOTI3 NOJ | 1 6736 4051402
1 No.138l 1 9468 2239408 | 5 NO.381 NO.I3 2509122 | 1 NOJ7I5 NOJ 19592 440634 5 NOTI3 NOJ | 1 671 434294
1 NO.1383 15228 29153 || 5 NO.383 NO.I3 1788034 | 1 NO.JI6 NO.J 1 6576 54369.04 5 NOTI6 NOJ | 1 605 6108336
1 NOI389 NO.3 1 3836 2455628 | 5 NO.1389 NO.I3 188424 | 1 NO.J79 NOJ7 1 3433 2904288 5 NOTI® NOJ | 1 3244 3535304
1 No.13® 1 10366 6670068 | 5 NO.139 NO.1 5197048 | 1 NO.780 NOJ7 1 10344 2246584 5 NO7S0 NOJ | 1 8586 2493556
1 NO.1383 15235 2695478 || 5 NO.1393 NO.I3 2668554 | 1 NOJ81 NOJ 1 3036 2124956 5 NO781 NOJ | 1 3626 2380308
1 NO.13%6 1528 2687578 | 5 NO.1396 NO.I3 2717742 | 1 NOJ82 NOJ 1209 436738 5 NO72 NoJ | 1 3294

1 NO.1397 1 4304 1777936 | 5 NO.1397 NO.I3 2447474 || 1 NOJ85 NOJ 19926 4515342 5 NO78 NOJ | 1 974

1 No.143 1389 228874 | 5 NO.a43 NO.I 2458942 | 1 NO.J87 NOJ 1378 2445474 5 NO78T NOJ | 1 3878

1 No.1# 13692 247374 | 5 NO.d44 NO.1 2633042 | 1 NOJ89 NOJ 1 4413 2786008 5 NO789 NOJ | 1 6308

1 NO.145 1668 4489872 | 5 NO.145 NO.1 47369 1 Noj® Noji 1972 544933 5 NO® NOT | 1 13764

1 NO.149 1 413 215294 | 5 NO.a49 Noi 2423334 | 1 NOJ98 NOJ 1 5798 2131786 5 NO78 NOJ | 1 663

1 NO.131 19182 156199 | 3 NOUAsL NO.I 2282846 | 1 NO.802 NOS 157 2239 5 NOSI2 NO8 | 1 8384

1 No.1s2 1 4552 331202 | 5 NoUds2 Nod 3368736 | 1 NO.S04 NOS 1 10276 6329374 5 NOSM4 NOS | 1 1481

1 No.153 11353 3654122 | 5 NOUAS3 Nod 5300058 | 1 NO.S05 NO. 1 5392 (5230342 5 NOS0s No8 | 1 9142

1 No.1s4 1 6368 6840454 | 5 NO.AS4 NO.I 8915054 | 1 NO.0S NO3 1756 506555 5 NOS0S NOS8 | 1 8224 5892646
1 No.15s 1 8744 374397 | 5 NO.A55 NO.1 5303464 | 1 NO.809 NO3 110418 44708.08 5 NOS0® NO8 | 1 10342 615413
1 NO.156 11073 5348388 | 5 NO.AS6 NO.1 7145398 | 1 NOSIl NOS 110286 38044.42 5 NOSII NOS | 1 10290 4283026
1 NO.157 1 11668 7487316 | 5 NO.A57 NO.1 1041718 | 1 NOSI12 NOS 1 8888 2929378 5 NOSI2 NO8 | 1 6682 416431
1 1 (794 2764434 | 5 NO.A33 NO. 4846 | 1 NOSI3 NOS 1992 3232064 5 NOSI3 NO8 | 1 977 50233
1 1 23598 12853678 5 No.d62 No.d 1323018 | 1 NO.SM4 NO3 17276 3629854 5 NOSM NO8 | 1 702 4813192
1 1 11562 4483346 | 5 NO.A64 NO.1 4428938 | 1 NOSI6 NOS 16032 205511 5 NOSI6 NO8 | 1 60338 2048108
1 NO165 NO. 1 24544 13081918 5 NO.I65 NO.I 1158186 | 1 NOS817 NOS 1 4394 3238692 5 NOSIT NO8 | 1 7516 2827112
1 NO166 NO. 1 135628 4601838 | 5 NO.166 NO.I 4930096 | 1 NO.£20 NOS 1 3472 1330284 5 NOS20 NO8 | 1 2046 1113944
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WK StorelD Divisior Position Hours Sales " WK StorelD Division Position WorkHours ~ Sales H WK StorelD Division Position Hours Sales H WK StorelD DivisionPosition Hours Sales
1 NO.168 NO.1 1 3994 4264738 3 NO.168 NO1 i 80354 3800828 1 NOS82 NOSB 1 6602 315582 5 NOS8 1 7664 3200418
1 NO.I70 NO.1 127504 16592416 5 NO.170 NO.I 1 23294 163253 1 NO.824 NOS& 1 9218 449753 ] No.§ 1 10726 5038254
1 NO.I71 NO.1 1 6032 4167434 [ 5 NO.ATL NO.1 1 3518 33584.13 1 NO.828 NO.8 1 7386 17499.96 i No.g 1 %032 1466046
1 NO.173 NO1 1 382 3449628 5 NO.173 NO1 1 4494 3430148 1 NOS830 NOS 1 3354 2030232 5 NO38 1 323 26366.22
1 NO.174 NO.1 1 4728 2155034 | 5 NO.174 NO1 ¥ 75.06 2136632 1 NO832 NOS8 1 3802 30276.74 5 NO=8 1 3174 39462 36
1 NO.I75 NO.1 1 17412 8054938 3 NO.173 NO1 ¥ 1519 8202468 1 NOS835 NOSB 1 3598 2502324 5 NO=8 1 7576 256453
1 NO.I76 NO.1 1 89.82 4931238 | 5 NO.I76 NO.1 1 5114 4979364 | 1 NOB37 NO.S 1 3688 17174 ] No.g 1 5964 243397
1 NO.77 NO.1 123044 917304 3 NO.177 No.d 1 1327 8442264 | 1 NOB42 NOS 1 4214 3200314 i} NOo.g 1 831 47270.28
1 NOI79 NO1 1 M 203192 5 NOI79 NOI1 1 1343 2899843 1 NO847 NO8 1 3548 1856564 5 NO38 1 3694 21877.06
1 NO.180 NO.1 1 4158 3752718 5 NO.180 NO1 1 3884 4301136 1 NOB848 NOS 1 86.72 151987 5 NO=8 1 11798 1404616
1 NO.181 NO1 1 36.54 3114576 | 5 NO.181 NO1 ¥ 563 3342724 1 NO%s5 NOJ9 1 3048 2836544 5 NO2 1 3006 23313.04
1 NO.182 NO1 1 25402 10877042 5 NO.182 NOI1 ¥ 178.04 114663 3 1 NOS6 NOI9 1 3546 345702 5 NO9 1 3096 3170268
1 NO.I83 NO.1 1 9374 7472186 [ 5 NO.183 NO.I 1 17676 78133 1 NO919 NOJ9 1 4646 379474 ] No.g 1 4n 41517.92
1 NO.13§ NO.1 120094 333309 3 NO.1% NO.1 1 199.08 448444 1 NO.920 NO.9 1 1246 4768436 i} No.g 1 8826 41363.08
1 NO.137 NO1 1 16736 7037678 || 5 NO.187 NO1 1 31758 1158278 1 NO922 NOS 1 3894 4875272 5 NOS 1 3742 3934164
1 NO.188 NO.1 1 236.7 96858 6 5 NO.188 NO1 1 20104 1227285 1 NO930 NO9 1 8522 3579638 5 NO9 1 7036 2836884
1 NO.194 NO.1 1 12016 6154782 | 5 NO.194 NO1 1 25214 6794796 1 NOJ938 NOJI 1 374 3207884 5 NOg 1 4144 22934.66
1 NO.1%5 NO1 1 7384 3030116 | 5 NO.1%5 NO1 ¥ 8552 3384564 1 NO9%6 NO9 1 3802 2820166 i NOg 1 486 262044
1 NO200 NO2 121742 928338 3 NO200 No2 1 2496 101213 1 NO.947 NO.9 1 3434 19150.6 i} No.g 1 4866 21930.34
1 NO201 NO2 1 11908 7647322 || 5 NO201 NO2 1 4634 4063216 | 1 NO.953 NO.9 1 3264 3069224 i No.g 1 323 22080.38
1 NO202 NO2 1 25726 966485 5 NO202 NO2 ¥ 17048 1114819 1 NOg98 NOS9 1 9348 4892326 5 NO¢ 1567 3341478
1 NO203 NO2 1 18244 680195 5 NO203 NO2 ¥ 19722 6724002 1 NO9%S5 NO9 1 3542 4012456 5 NO9 1 4738 2440044
1 NO204 NO2 1 131 8471976 | 5 NO204 NO2 1 u72 1092521 1 NOJ9%8 NOJI 1 8054 6821784 5 NO9 1 8978 5541874

1 NO96 NO.9 1 3338 2722396 ] No.g 1 3338 17069.62
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