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ABSTRACT 

Performance Analysis of Simulation-based Multi-objective Optimization of Bridge 

Construction Processes Using High Performance Computing 

Shide Salimi 

Bridges constitute a crucial component of urban highways due to the complexity and 

uncertain nature of their construction process. Simulation is an alternative method of analyzing 

and planning the construction processes, especially the ones with repetitive and cyclic nature, and 

it helps managers to make appropriate decisions. Furthermore, there is an inverse relationship 

between the cost and time of a project and finding a proper trade-off between these two key 

elements using optimization methods is important. Thus, the integration of simulation models with 

optimization techniques leads to an advancement in the decision making process. In addition, the 

large number of resources required in complex and large scale bridge construction projects results 

in a very large search space. Therefore, there is a need for using parallel computing in order to 

reduce the computational time of the simulation-based optimization. Most of the construction 

simulation tools need an integration platform to be combined with optimization techniques. Also, 

these simulation tools are not usually compatible with Linux environment which is used in most 

of the massive parallel computing systems or clusters.  

In this research, an integrated simulation-based optimization framework is proposed within one 

platform to alleviate those limitations. A master-slave (or global) parallel Genetic Algorithm (GA) 

is used as a parallel computing technique to decrease the computation time and to efficiently use 

the full capacity of the computer. In addition, sensitivity analysis is applied to identify the 
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promising configuration for GA and analyzing the impact of GA parameters on the overall 

performance of the specific simulation-based optimization problem used in this research. Finally, 

a case study is implemented and tested on a server machine as well as a cluster to explore the 

feasibility of the proposed approach. 

The results of this research showed better performance of the proposed framework in comparison 

with other GA optimization techniques from the points of view of the quality of the optimum 

solutions and the computation time. Also, acceptable improvements in the computation time were 

achieved for both deterministic and probabilistic simulation models using master-salve parallel 

paradigm (8.32 and 20.3 times speedups were achieved using 12 cores, respectively). Moreover, 

performing the proposed framework on multiple nodes using a cluster system led to 31% saving 

on the computation time on average. Furthermore, the GA was tuned using sensitivity analyses 

which resulted in the best parameters (500 generations, population size of 200 and 0.7 as the 

crossover probability).  
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Highway infrastructures in North America are relatively old structures; therefore, there is a great 

necessity of reconstruction work on existing highways. These construction or renovation activities 

have great impact on traffic flow, workforces, business and other community functions (Li et al., 

2010; Shan et al., 2007; Yifu, 2005; Yuan & Ren, 1999). Due to different factors, such as change 

orders during the construction work because of detecting conflicts between project components, 

economic and social activities, the costly equipment and materials needed for construction 

processes, highway projects usually overrun in budget and time (Wu et al., 2005; Serag et al., 

2010; Vidalis & Najafi, 2002). Furthermore, traffic disruption during the construction operations 

results in dangerous work space for workers as well as drivers and passengers (Holt, 2008).  

Roads, tunnels, and bridges form the urban highways, in which bridges part is a crucial one due to 

the complexity and uncertain nature of their construction process. The main factors causing 

uncertainties associated with bridge construction operations are the lack of knowledge and 

experience about different construction methods, and the spatial-temporal environment that may 

have potential conflicts (Zhang & Hammad, 2005).  

On the other hand, construction processes become so complex and difficult to analyze and optimize 

recently (Martinez, 1996). Simulation is an alternative method of analyzing and planning the 

construction processes especially the ones with repetitive and cyclic nature (AbouRizk & Halpin, 

1990). Therefore, simulation of construction processes plays an important role in the modern world 

and helps managers to have better understanding of the condition and different levels of the 
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construction processes to make appropriate decisions when it is needed (AbouRizk & Hajjar, 

1998). Simulation is a procedure of imitating the behavior of some situations or a real-world 

processes over time by means of using simpler models. Simulation in construction can be used for 

different purposes such as productivity measurement, planning and resource allocation, risk 

analysis, site planning, and comparing the results of various construction methods (AbouRizk et 

al., 1992; Thomas, et al., 1990; Eshtehardian et al., 2008). Simulation of earthmoving operations 

(Halpin & Riggs, 1992; Marzouk & Moselhi, 2003), structural steel erection process (Al-Sudairi 

et al., 1999) and simulation of balanced cantilever bridges (Marzouk et al., 2008) are some 

examples of using simulation for construction processes. Some researchers used simulation 

particularly to investigate the performance of bridge construction methods. For example, Huang 

et al. (1994) simulated the construction of the deck of a cable-stayed bridge using balanced 

cantilever method, Marzouk et al. (2006) studied the simulation of the construction of concrete 

box girder bridge deck using cast-in place on false-work and stepping formwork, they continued 

their research by working on incremental launching method in 2007, and then, simulation of bridge 

deck construction using cast-in place on false-work and cantilever carriage methods in 2009 

(Marzouk et al., 2007; Said et al., 2009). Works done by Huang et al. (1994) and Mawlana et al. 

(2012) are other examples in this area with focus on cable-stayed bridges and the construction of 

precast concrete box girder using the full-span launching gantry method, respectively.  

1.2 Problem Definition 

Due to the large number of factors affecting the construction and rehabilitation processes of 

bridges, these processes are highly complex for decision makers especially in terms of minimizing 

the time and cost of the projects. They have to find the optimum strategy to complete the projects 
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successfully on time and within the budget considering all other constraints. Generally, there is an 

inverse relationship between the cost and time of a project; since, whenever the duration of a 

project is shortened, the cost of the project (i.e. the direct cost of labor, equipment, material etc.) 

will increase considerably. Hence, finding a proper trade-off between these two key elements using 

optimization methods has become a crucial issue for project managers (Feng et al., 2000).  

On the other hand, as stated earlier, simulation models are more and more needed in order to model 

the uncertainties associated with these projects (Yang et al., 2012). Therefore, the integration of 

simulation models with optimization techniques leads to an advancement in the decision making 

process. 

In addition, due to the large number of resources required in complex and large scale construction 

projects, such as bridge construction processes which results in a very large search space, there is 

a need for High Performance Computing (HPC) in order to reduce the computational time. There 

are several special purpose tools to implement the simulation of construction processes with 

different advantages, limitations, and capabilities. Although simulating construction processes 

using these tools is very easy to learn and to use, the combination of these tools with optimization 

techniques is difficult and an integration platform is needed. On the other hand, these simulation 

tools are not usually compatible with Linux environment which is used in most of the massive 

parallel computing systems or clusters. Therefore, the lack of easy interaction of simulation and 

optimization engines in the same integrated environment, which also supports their execution on 

the operating system of the clusters, is the main motivation of this research.  
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Finally, the values of the optimization parameters affect directly the performance of the 

optimization algorithm. Therefore, finding the promising configuration for optimization method 

and analyzing the impact of these parameter on the overall performance of a system is another 

challenge that researchers are facing when working with optimization algorithms.   

1.3 Research Objectives  

Given the above problems, the main objectives of this research are defined as follows: 

1. Simulating different construction methods of precast box girder bridge construction 

projects using a new simulation tool that can be used in a HPC environment. 

2. Investigating High Performance Computing of the integration of the simulation model with 

multi-objective optimization algorithm in a single platform in order to improve the 

performance of the proposed framework in HPC environment. 

3. Reducing the computational effort by performing sensitivity analysis to tune the 

optimization algorithm and to find the best number of cores used in parallel

1.4 Thesis Organization  

This thesis is organized as follows: 

Chapter 2 Literature Review: In this chapter the different bridge construction methods are 

discussed with emphasis on two methods that are used in this research. The features, advantages, 

and limitations of general- and special-purpose simulation tools are clarified, and construction 

simulation tools are discussed in detail. Also, optimization techniques focusing on multi-objective 
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genetic algorithms (MOGAs) and parallel computing capabilities of genetic algorithms (GAs) are 

reviewed.  

Chapter 3 Research Methodology: This chapter will explain the research methodology employed 

to develop a simulation-based multi-objective optimization model that can be used in HPC 

environment for the planning and scheduling of precast concrete box girder bridge construction 

projects.  

Chapter 4 Research Implementation and Case Study: The implementation and applicability of the 

proposed simulation-based optimization framework using HPC is investigated in this chapter. 

Then, the feasibility of the developed models will be demonstrated by considering a case study. 

This is followed by applying the HPC to investigate the time saving achieved in comparison with 

a regular PC computation platform. Then, sensitivity analyses of the GA parameters as well as the 

number of cores and nodes used to run the proposed framework are performed. 

Chapter 5 Summary, Conclusions, and Future Work: In this chapter, a summary of this research 

study is presented and its contributions are highlighted. Moreover, the limitations of the current 

work are investigated and finally the recommendations for the future research are suggested. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

This chapter presents the literature review of several subjects, including bridge construction 

techniques, Accelerated Bridge Construction (ABC), construction simulation, Discrete Event 

Simulation (DES), optimization, and High Performance Computing (HPC). The review 

commences with listing the different bridge construction methods with emphasis on two methods 

that are used in this research. The features, advantages, and limitations of general- and special-

purpose simulation tools are clarified, and construction simulation tools are discussed in detail. 

This is followed by the literature review of optimization techniques focusing on multi-objective 

genetic algorithms (MOGAs). Finally, parallel computing capabilities of genetic algorithms (GAs) 

are reviewed to support the proposed method in the next chapters.  

2.2 Bridge Construction Techniques 

Concrete bridges are mainly categorized into two groups: ordinarily reinforced and pre-stressed 

bridges. The former type is usually used for short spans and the latter is suitable for long spans. 

There are six main categories for box girder concrete bridge construction methods: (1) cast-in-situ 

on false work, (2) stepping framework, (3) cantilever carriage, (4) launching girder, (5) pre-cast 

balanced cantilever, and (6) incremental launching. In the methods (4) and (5), the fabrication and 

casting of different bridge segments are performed at a casting yard, which is located away from 

the main site, and then, the segments are transferred to the main site for erection and connecting 

the new parts to the previously cast parts to build the bridge superstructure. However, the bridge 

segments’ casting of the last method is performed on the construction site. Choosing each of these 
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construction methods depends on the experience of the designers and contractors, availability of 

resources, and technical restrictions. The incremental launching method has the benefits of less 

need for temporary false-work and other equipment required for cast-in-situ techniques (Marzouk 

et al. 2007).  

2.3 Accelerated Bridge Construction (ABC) 

Transportation plays an important role in the development of overall economy. Highway networks 

as one main part of the society infrastructure need innovative technologies to enhance their 

performance when they have been aging and reaching to their design life. Due to increasing traffic 

passing the highway networks, conventional construction methods are not anymore viable 

solutions to perform reconstruction works on these systems (Tang, 2014). 

Use of innovating planning, design, materials, and bridge construction methods to decrease the 

construction, replacing, and rehabilitating impacts on society is defined as ABC (Accelerated 

Bridge Construction, 2014). To reduce dependency on time consuming on-site activities and 

weather conditions tied to conventional construction techniques, the Federal Highway 

Administration pushes ABC as a proper replacement of conventional construction methods 

(Nielsen, 2013).  These two approaches can be compared from different aspects. As it is obvious 

from its name, ABC is much faster than conventional construction methods. On the other hand, 

considering the trade-off between the cost and time leads to cheaper processes for conventional 

methods. These costs include operational and maintenance costs of the bridges. For example, 

bridges constructed based on the ABC technique need more overlays through the years due to the 

amount of their deck joints which results in more maintenance costs for these types of bridges. 
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From safety point of view, ABC projects always are safer in comparison with conventional 

methods due to their shorter construction period which protects workforce from long periods of 

working on dangerous work sites which have traffic flow (Nielsen, 2013). Therefore, the main 

advantages of the ABC over conventional construction methods are building bridges faster and 

with minimum traffic disruption by shifting most construction activities into a precast yard or 

factory, better quality control of the bridge’s elements, higher safety during construction, and less 

environmental impacts. These advantages can be achieved by using innovative planning, design, 

materials and construction methods (Federal Highway Administration, 2013; Fowler, 2006). 

One of commonly used ABC methods is the use of precast concrete bridges which can be utilized 

for most bridge projects (WisDOT Bridge Manual, 2013). In this method, precast spans of the 

bridges can be erected by cranes standing on land or mounted on a barge, or by using cranes and 

gantries on the bridge structure (Gerwick, 1993). In this research, the focus is on the construction 

of concrete box girder bridges using the following construction methods: (1) precast full-span 

erection using launching gantry; and (2) precast segmental span erection using launching gantry. 

2.4 Selection of Construction Methods 

The selection of construction methods for construction projects has a high effect on the project 

productivity, quality and cost. Ferrada et al. (2013) proposed a knowledge management approach 

incorporating both knowledge management techniques and technologies to enhance the decision-

making process of construction methods. They generated a knowledge-based portal called 

Construction Methods Knowledge System (SCMC) to enable easy access and provide a decision-

making support system. The proposed system focuses mainly on the most influential decision 
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criteria for selecting construction methods include project duration, cost, product characteristics, 

construction method characteristics, and environmental characteristics. Based on interviews with 

some experts on construction methods selection, the performance of the system was validated from 

different aspects. Most of the respondents believed that the system works well and helps to make 

more informed decisions by gathering all the information needed in one place. In addition, they 

highlighted that using the system leads to the increase of the productivity by time saving achieved 

from easy access to information and search for alternative methods of construction. This system, 

also, reduces the dependency on individual knowledge by storing all the information and 

knowledge gained in organizational databases (Ferrada et al., 2013).  

2.4.1 Precast Full-Span Concrete Box Girder Construction Method 

This construction method is useful for elevated bridges placed in congested areas with many 

obstacles, and which have spans with similar length. The advantages of this construction method 

are: (1) minimizing traffic disruption (Mawlana, 2013); (2) improving construction quality due to 

quality control at the precast yard (Erdogan, 2009); (3) decreasing in the construction cost and 

time (Pan et al., 2008); (4) enhance the production rate (Mawlana, 2013); and (5) better safety due 

to less need for onsite activities (VSL International Ltd, 2013). On the other hand, the dependency 

on high level of technology, high equipment cost, being inapplicable for areas with difficult access, 

and the need for vast areas for casting and storing are disadvantages of this method (Hewson, 

2003). Figure 2-1 shows some examples of applying this construction method. Table 2-1 illustrates 

the properties of bridges constructed based on the precast full-span concrete box girder 

construction method. 
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Table 2-1: Usual properties of precast full-span concrete box girder bridges (NRS Bridge 

Construction Equipment, 2008; Hewson, 2003) 

Properties Span Length Span Weight Span Width 

Value of the Properties 30-55 m 600-1500 tons 5- more than 12 m 

There are two main stages in applying precast full-span concrete box girder bridge construction 

method, including fabrication of full-spans of concrete box girder at the pre-casting yard, and 

transporting prefabricated spans to the main site and erecting them using various techniques onsite. 

At first, the reinforcement and stressing ducts of the bottom slab and the webs of the span are 

erected, and then, the inner mold is installed followed by placing the reinforcement and stressing 

ducts of the top slab. After finishing reinforcement work, the rebar cage is put into an outer mold 

to do the casting. When the concrete cured and reached an acceptable strength, the inner mold is 

removed. Next, the first pre-stressing procedure is performed to make the full-span ready for 

transportation to the storage area where the full-span is completely cured and stored. After 

completing concrete curing, the second stage of pre-stressing process is done (Continental 

Engineering Corporation, 2006). Figure 2-2 illustrates the whole process of preparing precast full-

span concrete box girder. 

In second stage of this construction method, the precast full-span is transported to the main site by 

means of trailers for erection. Then, the girder is delivered along completed deck of bridge by 

trolley to its launching location. After that, the full-span is lift from trolley by means of gantry's 

lifting frames. The girder is moved forward to reach to its right position between two piers to be 

placed. In next step, the launcher repositions to lift next full-span (Continental Engineering 

Corporation, 2006; VSL International Ltd, 2013). 
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(a) Taiwan High speed Rail (2000-2004) 

 

(b) No. 2 Road Bridge – British Colombia (1993) 

Figure 2-1: Examples of precast full-span concrete box girder construction methods (VSL 

International Ltd, 2013) 

2.4.2 Precast Segmental Concrete Box Girder Construction  

Precast segmental concrete box girder construction method is based on casting short segments with 

high quality concrete which are in sizes that can be transported to the main construction site, and 

then erected to be connected to each other to form the full-span. 

In other words, the deck of the bridge is comprised of these small segments incrementally 

constructed on each pier. The segments are firstly reinforced with mild steel, and then connected 

by post-tensioning after erection (Lacey & Breen, 1969). This method results in fast delivery of 

the project by having the capability of building girders and piers simultaneously. Also, using this 

construction method without scaffolding in situ has less disruption to the traffic flow which makes 

this method very useful for crowded areas. Segmental method improves the construction quality 

due to factory production of segments which contains quality control on the segments by skilled 

workers (Continental Engineering Corporation, 2006; Erdogan, 2009).   
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(a) Erection of reinforcement and stressing ducts 

of the bottom slab and the webs 
(b) Inner mold installation and placing the 

reinforcement and stressing ducts of the top slab 
(c) Putting rebar cage into outer mold 

(d) Pouring concrete (e) Curing concrete (f) Removing inner mold 

(g) First stage of pre-stressing (h) Transporting completed span to the 

storage area 
(i) Second stage of pre-stressing 

 Figure 2-2: Steps of full-span casting procedure (Continental Engineering Corporation, 2006)



 

13 

 

 
(a) Transporting precast full-span to the main site 

 
(b) Delivering the girder to the launcher by trolley 

 

(c) Lifting the girder by lifting frame (d) Moving the girder forward 

(e) Locating the span in its right position (f) Reposition launcher to the next span 

Figure 2-3: Precast full-span launching procedure steps (Continental Engineering Corporation, 

2006) 

Like precast full-span box girder bridge construction method, this technique has two main stages. 

Firstly, concrete box girder segments should be casted at the casting yard, and then, they are 

transported to the main site for erection and building the full-spans. Match-casting technique is the 

most popular casting method in construction of the precast segmental concrete box girder bridges. 
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This technique is based on providing the matching face for the new segment; thus, there is always 

fresh concrete at the new segment to be casted against the already hardened concrete of the old 

segment (Hewson, 2003). The various match-casting methods used for pre-casting segments can 

be categorized into two basic methods, namely: short line casting and long line casting methods. 

Figure 2-4 shows these two methods. There is one fixed bed for all segments forming a span in 

long line casting method. The formwork moves along the bed for producing segments one after 

the other which takes place in the right position of segments on the long bed. While the casting 

operations proceed, the hardened segments are moved to the storage area (Figure 2-5) (Abendeh, 

2006). The main benefit of the long line casting method is its simplicity, due to performing 

geometric control during the segments production (Abendeh, 2006). On the other hand, the long 

bed needed for casting the segments requires large manufacturing area, mobile equipment, and 

resistant foundation that can carry the load of the casting bed. These factors can be considered as 

shortcomings of this method (Abendeh, 2006; Moreton & Janssen, 1995). 

 

(a) Long line casting method 

 

(b) Short line casting method 

Figure 2-4: Long and short line casting methods (Casseforme, 2013; Shimizu Corporation, 2013) 
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Figure 2-5: Long line casting method (Abendeh, 2006) 

Most match-cast segmental bridges use the short line method since it can be used for any shape of 

deck alignment (Benaim, 2008). In short line casting method, segments are casted by using fixed 

forms next to the previously cast segment to have complete fitting match-cast joint (Moreton & 

Janssen, 1995; Rotolone, 2008). This method needs smaller space in comparison with long line 

technique, and is more proper for horizontal and vertical curves as the long line method requires 

changes in soffit configuration from one span of the bridge to another (Abendeh, 2006; Moreton 

& Janssen, 1995). Precise adjustment of the match-cast segments is the major disadvantage of the 

short line match-casting technique (Abendeh, 2006). Figure 2-6 shows the front and side views of 

the short line match-casting method. 

 

Figure 2-6: Short line match-casting method (Maeda and Chun Wo Joint Venture, 1996) 

When the fresh segment is cured properly, its strength is controlled and the stripping process starts 

including removal of (a) the inflatable inner tubes from fresh cast connected to the match-cast, and 
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(b) all the top slab inserts, such as scaffold tubes, top temporary post-tensioned (PT) holes and 

temporary access (Figure 2-8(a) and (b)) (Maeda and Chun Wo Joint Venture, 1996). In the next 

Step, the internal formwork is removed (Figure 2-8(c)); then, the supporting rods on two sides and 

the external formwork is lowered down (Figure 2-8(d)).  

(a) Transport the match-cast to the storage area 

To transport the match-cast to the temporary storage area, the bulk head is retracted, and then the 

fresh cast with the bottom formwork is moved to the position of the match-cast by means of the 

cart. Figure 2-9 demonstrates this process.   

(b) Preparing to cast new segment 

In this step, new bottom formwork is placed, and the bulk head is moved inward again to be 

prepared for casting a new segment. After cleaning the whole set of formwork, the external 

formwork and supporting rods are raised to their position (Figure 2-10).  

(c) Production process of the new segment 

In order to produce the new segment, a steel cage, which is prepared in advance, is firstly placed 

inside the formwork; then, inflatable inner tubes and all the top slab inserts are installed. After that, 

the internal formwork is moved to its position within the external formwork. Finally, a new 

segment is produced after pouring and curing of concrete, and the whole process will be repeated 

(Figure 2-11) (Maeda and Chun Wo Joint Venture, 1996).  

In the second stage of precast segmental construction method, the precast segmental concrete box 

girders are transferred to the construction site by means of a trailer to be erected and form the full 

bridge spans. There are several erection methods for segmental box girder bridges, such as span-

by-span erection, balanced cantilever construction, progressive erection of precast segmental 

decks, and incremental launching (Benaim, 2008). The span by span erection method which is 
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suitable for the spans with the length of 50 m or less (Hewson, 2003) commences at one end of the 

bridge and continues to reach to the other end as shown in Figure 2-7. The span by span erection 

method can be applied by using different construction equipment including: (1) span by span 

erection by means of launching gantry, (2) span by span erection with false-work, (3) balanced 

cantilever erection with launching gantry, lifting frames, or cranes, and (4) span by span erection 

with under-slung girder (Figure 2-12) (VSL International Ltd, 2013). In this research, the span-by-

span erection method with launching gantry is investigated. After preparing the site and piers for 

the erection process, the launching gantry system is installed on the pier caps. The launching gantry 

is comprised of fabricated steel sections, lifting beams, winch trolley, supporting hydraulic jacks, 

launching bracket, etc. (Erdogan, 2009; Maeda and Chun Wo Joint Venture, 1996; Bridging by 

Segmental Box Girder, 2008). After transporting the segments to the main site by means of trailers, 

each segment is lifted by a winch trolley, and then, the segments are rotated and transferred from 

the trolley to the lifting beams (hangers). The segments between two piers are fixed in place by 

applying epoxy glue and installing temporary fixing cables until all segments are erected. After 

that, the erected segments are aligned, jointed, and longitudinally post-tensioned together to form 

a complete full-span (Lucko, 1999; Hewson, 2003).   

 

Figure 2-7: Span by span erection method using overhead gantry (Britt et al. 2014)  
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While launching gantry supports the whole segments, the span produced from connected segments 

is lowered down from launching girders to the pier caps to transfer load of span from gantry to 

caps. After this load transfer, the launching gantry moves forward to the next pier caps and a 

similar process is repeated to build the next span (Bridging by Segmental Box Girder, 2008; 

Erdogan, 2009).  

There are several examples of using span-by-span erection method with launching gantry in all 

around the word, such as Light Rail Transit Dubai, Deep Bay Link, West Rail, Penny’s Bay, 

Bangalore Hosur Elevated Expressway, and Bandra Worli as illustrated in Figure 2-13 (VSL 

International Ltd, 2013). The precast segmental bridge construction method has several advantages 

in comparison with cast in situ bridge construction methods. The main advantage of segmental 

concrete bridges is producing concrete segments in the pre-casting yard which is away from the 

main construction site. By pre-casting segments, the quality of products can be controlled which 

enhances the efficiency of bridge construction (Janssen, 1995). In addition, there is less formwork 

needed for this method, as well as less amount of steel and concrete due to the design criteria which 

leads to thin slabs and less dead load on piers (Maeda and Chun Wo Joint Venture, 1996).  

Also, it increases the speed of construction which finally results in reduction in the total 

construction cost. This method is based on localized workplace with limited impact on the ground, 

thus it would create less environment disturbance (Erdogan, 2009). However, performing this 

method requires expert workforce to accomplish pre-casting procedure which can make it limited 

for use in comparison with other methods (Maeda and Chun Wo Joint Venture, 1996). 
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(a) Stripping inflatable inner tubes 

 

(b) Removing all the top slab inserts 

 

(c) Removing internal formwork 

 

 

(d) Lowering down the supporting rods and external formwork 

Figure 2-8: Short line match-casting stripping process (Maeda and Chun Wo Joint Venture, 1996) 
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Figure 2-9: The moving process of the match-cast to the storage area and the fresh cast to the 

position of the match-cast (Maeda and Chun Wo Joint Venture, 1996) 

 

Figure 2-10: Preparing to cast new segment (Maeda and Chun Wo Joint Venture, 1996) 

 

Figure 2-11: Production process of the new segment (Maeda and Chun Wo Joint Venture, 1996) 
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2.5 Construction Simulation 

2.5.1 Need for Construction Process Planning Tools 

The Critical Path Method (CPM) is the most popular planning tool in construction industry which 

mainly considers the cost/time correlations among project activities. This technique is applicable 

at the corporate and project levels; however, due to the fact that CPM does not consider the actual 

interactions between resources at the process level, other techniques are required to show all the 

characteristics at the process level. The selection of the construction method, resource assignment, 

and obtaining maximum production are the main characteristics of the process planning level 

(Chang & Hoque, 1989). 

Mathematical or graphical methods such as equipment balancing, line-of-balance (LOB), and 

queuing models were used by researchers to evaluate and compare different process plans for 

simple construction processes (Halpin & Woodhead, 1976; Chang, 1986). However, most 

construction processes are very complex to be modeled using these methods. Hence, the lack of 

powerful construction planning tools became apparent. As a consequence, applying more 

sophisticated simulation methods, such a DES, which was firstly used by the manufacturing 

industry to imitate and analyze complex manufacturing processes, became necessary in the 

construction industry. General purpose simulation languages such as GPSS, SIMSCRIPT, SLAM-

, and SIMAN are used for manufacturing purposes. However, the nature of the construction 

processes in comparison with manufacturing systems and their complexity result in developing 

other specialized simulation tools for construction purposes (Chang & Hoque, 1989).  
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(a) Span by span erection with launching gantry 

 
(b) Balanced cantilever erection with launching gantry 

 
(c) Span by span erection with false-work 

 
(d) Balanced cantilever erection with lifting frames 

 
(e) Balanced cantilever erection with cranes 

 
(f) Span by span erection with under-slung girder 

Figure 2-12: Different erection methods for segmental concrete box girder bridges (VSL 

International Ltd, 2013) 



 

23 

 

 
(a) Light Rail Transit Dubai- UAE (2007-2009) 

 
(b) Deep Bay Link- Hong Kong (2004-2005) 

 
(c) West Rail- Hong Kong (1999-2002) 

 
(d) Penny’s Bay- Hong Kong (2003-2004) 

 
(e) Bangalore Hosur Elevated Expressway- India 

(2006-2009) 

 
(f) Bandra Worli- India (2002-2006) 

Figure 2-13: Examples of precast segmental concrete box girder construction methods (VSL 

International Ltd, 2013) 

2.5.2 Simulation of Construction Processes 

Due to the large number of factors affecting the construction processes, these processes are highly 

complex for decision makers especially in terms of analyzing the behavior of different components 

within these processes. Therefore, simulation becomes a necessary solution in order to deal with 
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these difficulties, and it was applied to model the uncertainties associated with the construction 

processes (Yang et al. 2012). Also, the graphical aspect of the simulation tools aid the decision 

makers to test the performance of the construction processes prior to implementation and to better 

analyze the behavior of the whole system (Nikakhtar et al. 2011). 

2.6 Construction Simulation Tools 

2.6.1 Characteristics of Simulation Tools 

Application purpose, simulation strategy, and flexibility are the main characteristics of a 

simulation tool which determine the capabilities of that tool in order to develop simulation models 

(Martinez & Ioannou, 1999).  

2.6.1.1 Application Purpose 

From the application purpose point of view, there are general- and special-purpose simulation 

tools. The former is used in a very broad domain of applications; while the latter is designed for 

specific processes such as ductile iron pipe installation (Martinez & Ioannou, 1999). 

2.6.1.2 Simulation Strategy 

Simulation strategy defines the way that the model is developed. Consequently, many researchers 

compared different simulation strategies to find out the power, and also, limitations of each of 

these strategies (Martinez & Ioannou, 1999). 

Process interaction (PI) and activity scanning (AS) are two main simulation strategies used in 

modeling construction processes. Event scheduling (ES) is another simulation strategy which is 

usually integrated with two above mentioned strategies. A PI model is comprised of different 
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entities that are used in the construction processes and move through the system and the scarce 

resources needed by those entities. The way of choosing the moving entities and scarce resources 

has the main impact on the modeling simplicity and the effectiveness of the simulation model 

outputs. Many commercial simulation tools, including GPSS, SIMAN, SLAM, ProModel, 

SIMSCRIPT, ModSim, Extend, etc. are developed based on this type of simulation strategy which 

is properly used in manufacturing, and the industrial and service industries with almost fixed 

processing patterns. On the other hand, the main parts of modeling an AS simulation model as an 

activity-oriented model are the identification of various activities of the simulation model and the 

relationships between them, the required resources to perform the activities, the outputs of the 

activities, and the workflow based on the actual order of the construction process (Nikakhtar et al., 

2011; Martinez & Ioannou, 1999). An activity-oriented network which is called activity cycle 

diagram (ACD) is usually used to represent the simulation models based on the AS simulation 

strategy. This networking diagram consists of rectangles and circles connected with links to 

represent the activities, queues, etc. In order to enhance the performance of AS modeling approach, 

the ES concepts are combined with AS to create three-phase AS. General Simulation Program 

(GSP) (Tocher & Owen, 1960), Control and Simulation Language (CSL) (Buxton & Laski, 1962), 

and Hand Or Computer Universal Simulator (HOCUS) (Hills, 1970) are some of the AS languages 

developed. When the interactions between resources increase, the selection of moving entities and 

scarce resources in PI simulation strategy becomes very difficult. Thus, the complexity associated 

with the PI tools makes the AS method more convenient for the simulation of the complex 

construction processes which usually contain a large number of details and interacting resources 

(Martinez & Ioannou, 1999).  
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2.6.1.3 Flexibility 

The flexibility of a simulation system is determined based on the programmability of that system 

which can be defined as the ability to either change or accept a new set of instructions that alter 

the behavior of that system. As a result, the simulation program design and its long term success 

and popularity in practice strongly depend on how the flexibility and simplicity of the simulation 

approach are integrated properly in the same simulation tool. Another important factor in choosing 

a proper simulation tool for modeling construction processes, aside from programmability and 

simulation strategy, is the features accessible through the simulation tool, such as the graphical 

user interface, tracing features, quality of presentation reports, and animation (Martinez & 

Ioannou, 1999).  

During the 1960s and 1970s, the advanced programmable AS systems were developed for 

construction purposes, with HOCUS as the best example of them (Halpin, 1973). Also, the 

advanced PI simulation tools were created since the 1960s and were widely used for manufacturing 

and service-oriented systems models, as well as some complex construction operations; however, 

it was a very time consuming procedure and large efforts were needed to develop those simulation 

models. Therefore, many researchers tried to use ACD-based tools for modeling complex 

construction processes and integrated with PI-based language to implement them and add 

flexibility to the simulation models. For example, Shi and AbouRizk (1997) developed a resource-

based modeling (RBM), where the concepts were explained using ACDs and SLAM- was used 

for the implementation part (Martinez & Ioannou, 1999). 
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2.6.2 General and Special-purposes Simulation Tools for Construction Applications 

Researchers developed general- and special-purposes simulation tools for construction processes 

(e.g., Mohieldin (1989) and Sagert (1995)). General-purpose simulation tools implement the 

simulation model of a system to investigate the feasibility of the proposed system. In the case that 

the project is unacceptable, a new alternative system is examined. Therefore, these tools have the 

capability of developing any simulation model. On the other hand, special-purpose simulation 

tools are used to simulate specific applications. The difference between these two approaches is 

that the modification in the latter is limited to the input parameters and not to the logic of the whole 

model (Marzouk et al., 2007). In other words, general-purpose simulation tools can be used to 

create a special simulation model for any particular application such as analyzing specific 

construction method. 

The oldest, simplest, and widely used general-purpose simulation tool is CYCLic Operation 

Network (CYCLONE) (Halpin & Woodhead, 1976) which is designed specifically for simulating 

cyclic and mostly simple construction processes based on AS simulation strategy. INSIGHT (Kalk 

& Douglas, 1980), RESource based QUEuing (RESQUE) (Chang, 1986), INSIGHT extension 

(Paulson Jr et al., 1987), UM-CYCLONE (Ioannou, 1989), Micro-CYCLONE (Halpin, 1990), 

Construction Operation and Project Scheduling (COOPS) (Liu, 1991), COST (Cheng et al., 2000), 

CIPROS (Odeh, 1992), and STROBOSCOPE (Martinez, 1996) are different implementations of 

CYCLONE. However, CYCLONE has a simple modeling methodology and is easy to learn, many 

simplifying assumptions should be made in order to simulate complex operations (Martinez & 

Ioannou, 1999). The main advantages of using CYCLONE are the simplicity of developing 

simulation models and the capability to assess different process configurations in order to find a 
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good balance between resources. On the other hand, the lack of proper control structure and 

resource representations are the major limitations of this simulation tool (Chang & Hoque, 1989).   

In order to alleviate these limitations, RESQUE simulation system is developed as an extension of 

CYCLONE. In this software, the complex interactions among resources are defined using the 

RESQUE’s Process Description Language (PDL) without making the graphical model very 

complicated. In spite of the RESQUE’s strength in modeling resource interactions and evaluating 

various control strategies, it is very prone to errors due to the need to use PDL statements which 

are batch oriented. Moreover, all the definitions are embedded within the batch definition which 

makes it difficult to reuse them for construction purposes (Chang & Hoque, 1989). Therefore, a 

knowledge-based simulation framework which uses object-oriented knowledge representation was 

developed by Chang and Hoque (1989). They reviewed the previous researches regarding the 

simulation tools for different purposes, and tried to develop a new system to simplify and enhance 

construction process planning simulation. There are two types of knowledge modules, namely 

construction process and construction resources in their proposed framework which were 

developed by some experts. The user, then, can select the process and the required resources based 

on her/his project from the predefined modules. Finally, the graphical simulation model is built 

using symbols similar to CYCLONE and RESQUE (Chang & Hoque, 1989). STROBOSCOPE is 

another widely used general-purpose simulation programming language designed for detailed 

development of complex construction processes (Martinez & Ioannou, 1999). 

On the other hand, simulation software systems developed by McCahill and Bernold (1993), Shi 

and AbouRizk (1997), Oloufa and Ikeda (1997), and Martinez (1997, 1998) are some examples of 

the special-purpose simulation tools (Martinez & Ioannou, 1999).  
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SIMPHONY, SDESA, ARENA 13, WITNESS 2004 Manufacturing Edition, etc. are other 

examples of useful simulation tools. Many researchers investigated the performance of these tools 

and compared their applicability. For example, Nikakhtar et al. (2011) compared two simulation 

software systems, namely ARENA 13 and WITNESS 2004 Manufacturing Edition, by developing 

a concrete pouring operation of beams and slabs using these tools. Their study showed that these 

tools produce very similar results for a given construction process. Also, they investigated different 

features and reports available via these systems.  

2.7 Discrete Event Simulation (DES) 

From the construction point of view, the simulation model contains a number of blocks indicating 

the required resources and activities with their durations to perform different tasks. Monte-Carlo 

simulation and DES are two popular methods to simulate construction processes. Monte-Carlo 

simulation is based on assigning random distributions to the activities’ durations based on the 

network diagram of activities required in a project. It generates the cost and time of the project 

without considering the interaction between activities and resources. Therefore, in order to 

consider the relationships between activities and resources DES is used. DES technique is used to 

model the behavior of a complex system by defining a sequence of events. By using this technique, 

an appropriate selection of resources can be determined by considering an acceptable level of 

details of the real system. While there is no change in the system between successive events, events 

progress at discrete points in time by assigning fixed durations or random distributions to the 

activities’ durations to consider uncertainty associated with the process; therefore, it is called 

“Discrete Event Simulation” (Halpin & Riggs, 1992). The contrast of DES with continuous 

simulation in which the system is continuously tracked over time makes this type of simulation 
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much faster than the continuous simulation models since there is no change in the system from 

one event to another (Robinson, 2004). Entities, queues, and events form DES models. Entities 

wait in queues to perform activities which may have durations with probability distributions. 

Therefore, the generation, movement, and processing of entities in the system cause events.  

DES is used by construction engineers to analyze and design different construction processes 

(Cheng et al., 2006). DES models are mainly categorized in two modes, namely deterministic and 

probabilistic modes, based on the definition of the activities’ durations, which are fixed for the 

former, while the latter is built by assigning random distributions to the activities’ durations to 

consider the uncertainty associated with the process. Thus, every time the probabilistic model is 

run, a different set of outputs will be obtained due to the distinct seed numbers used in the 

simulation. In order to assess the risk associated with the model, replications are performed for 

probabilistic simulation models. The concept of replications aims to run the simulation model for 

a large number of times (e.g., 1000 times); and therefore, each replication will have different 

performance outcomes. After having done the number of replications required, the means of the 

simulation outcomes are calculated (Nelson et al. 2001).  

Martinez and Ioannou (1999) reviewed the main characteristics of DES software systems in terms 

of application purpose, simulation strategy, and flexibility with emphasize on CYCLONE and 

STROBOSCOPE due to their wide range usage.  By developing a simulation model of a simple 

earth moving operation using these tools, they found that AS simulation strategy is more natural 

and effective simulation strategy in comparison with PI for modeling construction processes.   
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Marzouk et al. (2007) developed a special purpose DES model to mimic bridge construction 

processes using incremental launching technique in presence of uncertainties. Single form and 

multiple forms methods were examined as segments fabrication execution methods. They used 

STROBOSCOPE as a simulation tool and Visual Basic 6.0 for coding purposes. They validated 

the proposed model considering probabilistic distributions for real bridge activities’ durations. The 

results of a sensitivity analysis on the performance of the system demonstrated that this 

construction technique for bridges’ deck is very sensitive to the number of rebar crews.  

Lee et al. (2010) developed an integrated simulation system called (COOPS) to automate and 

integrate two separate DES-based operation model and DES-based project scheduling. Different 

kinds of information pertinent to resources, operation, and schedule (i.e., number of resources, 

time and cost associated with different operation models, timing and delay information related to 

various activities, respectively) are accessible via COPS. This system can be easily used in large 

projects with large number of activities by providing a user friendly tool which integrates two 

different levels in the construction projects.  

Mawlana et al. (2012) developed a modeling approach to plan reconstruction processes of elevated 

highways. They used DES to simulate demolition and construction operations of a box girder 

elevated highway and to determine the project duration and productivity rates. They also created 

the 4D model of the project to resolve constructability issues associated with the project.  

2.8 Optimization 

The process of making a solution or a set of solutions as fully perfect, functional, or as effective 

as possible is called optimization. This procedure is done based on the satisfaction of all specified 
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constraints and maximizing (or minimizing) one or more determined objective functions (Gen & 

Cheng, 2000). Optimization problems can be mainly categorized as single objective optimization 

problems or multi-objective optimization problems, where the former have only one objective 

function and the latter have more than one or multiple objective functions. These objective 

functions are usually in conflict with each other in engineering optimization problems, so that the 

improvement of one of them leads to worsening the others. Therefore, multi objective optimization 

offers the optimal set of solutions which are called Pareto points or Pareto front, rather than a 

single optimal solution. In this set, there is not any answer which dominants the others (Deb, 2001). 

Most of engineering problems are posed as problems with multiple objectives that should be 

considered simultaneously. In multi-objective optimization problems, the aim is to find an optimal 

vector 𝑋∗ = [𝑋1
∗, 𝑋2

∗, … , 𝑋𝑛
∗]𝑇 which can optimize k objective functions, fi, under m inequality 

constraints and p equality constraints, respectively. The multi objective optimization can be briefly 

expressed as: 
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Where 𝑋∗ ∈ 𝑅𝑛 is the optimal variables vector, 𝐹(𝑋) = [𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝑘(𝑋)]𝑇 is the vector of 

objective functions, so that, 𝐹(𝑋) ∈ 𝑅𝑘, 𝑔𝑖(𝑋) and ℎ𝑗(𝑋) are inequality and equality constraints, 

respectively (Nakayama et al., 2009). 
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2.8.1 Genetic Algorithms for Multi-objective Optimization 

Most of the engineering optimization problems are often very complex and difficult to solve 

without considering many simplifications. In recent years, the use of evolutionary algorithms is 

considered by many researchers in different optimization fields. Evolutionary algorithms as one 

of the most promising global optimizers comprise of three population based heuristic 

methodologies, namely GAs, evolutionary programming, and evolutionary strategies. GAs are the 

most popular one among these evolutionary algorithms (Deep & Thakur, 2007). GAs, as 

metaheuristic methods, have been widely used in different research areas to mimic the process of 

natural selection genetic mechanisms in order to find proper solutions of optimization problems 

based on the ideas and techniques from genetic and evolutionary theory laid by Charles Darwin 

(Mitchell, 1998; Lin et al., 2003; Deep & Thakur, 2007). They can be used for solving a variety of 

optimization problems that are not well suited for standard optimization algorithms, including 

problems in which the objective function is discontinuous, non-differentiable, stochastic or highly 

nonlinear (Niknam, 2010). GAs are very different from the traditional optimization methods; one 

of these differences is that GAs work with a population or a set of points at a certain moment, 

while traditional optimization methods use only a special point. This means that the GAs will be 

processing a large number of schemes at one time. Unlike conventional optimization methods that 

use derivative of function, GAs just use objective function values (Srinivas & Patnaik, 1994). In 

these algorithms, the design space should be converted to the genetic space; therefore, GAs work 

with a series of coded variables. The advantage of working with coded variables is that the codes 

have basically the capability to convert the continuous space to a discrete space. Another 

interesting point is that the GAs divide the search space to several zones and compare them 

randomly based on the performance of the system to eliminate the weak parts and dominate the 
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good solutions over the worse ones to get to the convergence. GAs firstly begin with random 

generation of initial population (individuals) based on the creation function specified in the 

optimization process. Then, the fitness value of each individual (solution) in the generated 

population is calculated based on the specified fitness function which determines the rank of that 

individual (Mitchell, 1998). The ranking procedure is followed by a series of operations including 

a selection, crossover, mutation, and replacement (Gen & Cheng, 2000). In each generation, 

specified number of children (offspring) which is equal to the initial population should be created. 

Selection is about the random choice of individuals within the population based on their fitness 

values. Based on Darwin’s theory of evolution, the best individuals are selected in order to have 

children; which means that the probability of the selection of the individuals with higher fitness 

values is more than the solutions with lower fitness values (Sivanandam & Deepa, 2008). Also, 

the same solution can be selected more than once as a parent, which is called replacement in the 

selection process (Mitchell, 1998; Deep & Thakur, 2007).  

Roulette wheel, random, rank, tournament, Boltzmann, and stochastic universal sampling are 

different methods of selection used in GAs. Although the selection enriches the population with 

better individuals, it does not create new solutions. Therefore, the crossover operator is carried out 

in the next step in order to create a new child (individual) from two parents (two individuals) for 

the next generation based on the crossover function defined in the optimization process. The 

simplest way to perform the crossover is by randomly selecting some crossover points of the two 

selected parents and the genes before these points are copied from the first parent and those after 

the points are copied from the other parent. There are various types of crossover functions such as 

the single point, two point, multi-point, uniform, three parent, shuffle, precedence preservative 
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(PPX), ordered, partially matched (PMX), and crossover with reduced surrogate (Sivanandam & 

Deepa, 2008).  

The crossover probability (𝑃𝑐) is the basic parameter in crossover operations which indicates the 

frequency of performing the crossover. The offspring are the precise copies of the parents when 

there is no crossover in the GA process (i.e., the crossover probability is equal zero). On the other 

hand, all children are created by crossover operation when the crossover probability is 100%. 

Crossover is usually used to increase the probability of having new individuals made from good 

parts of the old candidates. Since it is good to maintain some members of the old population in the 

new created population, it is better to have the crossover operator with the probability of less than 

100% (Sivanandam & Deepa, 2008). 

After performing the crossover function, the mutation operator takes place. The mutation operators 

randomly alter individuals in the population to provide genetic diversity, and also, to explore the 

whole search space in order to prevent being trapped in a local minimum (Deep & Thakur, 2007; 

Sivanandam & Deepa, 2008). It acts as a recover for lost genetic materials and creates new genetic 

structures by random modification of the generation’s building blocks. Flipping, interchanging, 

and reversing are three kinds of mutation operators usually used in the optimization procedure 

(Sivanandam & Deepa, 2008). 

Two important parameters in the mutation operators are the mutation probability (𝑃𝑚), and the 

strength of the mutation. The former defines the frequency of applying the mutation and the latter 

determines the disturbance produced in a chromosome (Deep & Thakur, 2007; Sivanandam & 

Deepa, 2008). One or more parts of a chromosome are changed by performing the mutation; thus, 
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if the mutation probability is 0%, nothing is changed. Similarly, all the members of the population 

are changed when there is a mutation operation with 100% probability. The frequency of applying 

the mutation should not be very often in order to distinguish the GA from random search methods 

(Sivanandam & Deepa, 2008). Therefore, the probability of the crossover occurrence is very often 

in comparison with that of the mutation (Cantú-Paz E. , 1997). 

In order to have a fixed size of population for each generation, the replacement operator determines 

which of the current individuals in the population, if any, should be replaced by newly created 

offspring. Generational updates and steady state updates are two methods of maintaining the 

population (Sivanandam & Deepa, 2008). The new created population of size N is completely 

replaced with the current population of the same size in the basic generational update method 

(Mitchell, 1998). (λ+µ)-update and (λ, µ)-update are two extension forms of this scheme. In these 

updates, children of size λ are produced from a parent population of size µ (i.e., λ ≥ µ). The µ best 

individuals are then selected either from the both parent and children population or the children 

population for (λ+µ)-update and (λ, µ)-update, respectively. In a steady state update, newly 

produced offspring are replaced by another population members as they are created. The selection 

of eliminated individuals can be based on the rank of the population members, which means the 

lower the fitness value of a member, the higher the likelihood for deleting the member. 

Tournament, random, weak parent, and both parents are some examples of replacement methods 

(Sivanandam & Deepa, 2008). Finally, these steps are repeated until the termination criterion (e.g., 

a specified number of generations) is reached.  

In optimization studies that include multi-objective optimization problems, the main objective is 

to find the global Pareto optimal solutions, representing the best possible objective values due to 
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the conflicts between the objective functions (Deb, 2005). In recent years, the application of GAs 

is increasing with more and more capability, flexibility and speed up. Routine methods in solving 

multi-objective optimization problems are conversion of the multiple objective functions into one 

objective function. For this purpose, different methods are presented in scientific reports, from 

which -perturbation (Douglas & Kosmas, 1989), weighted sum approach (Kim & De Weck, 

2005), Min-Max (Aissi et al., 2009), and non-sorting genetic algorithm (Guerra-Gómez et al., 

2009) are the most widely used methods. Practically, finding a good solution within an acceptable 

time frame is the main goal of applying optimization; hence, searching for convergence is critical 

mainly for multi-objective optimization problems which seek for Pareto solutions. On the other 

hand, the need to have faster convergence may result in being trapped in a local optimum instead 

of finding the global one (Wu et al., 2012). Therefore, new solution techniques are needed to solve 

multi-objective optimization problems. Various multi-objective evolutionary algorithms 

(MOEAs) have been addressed in related research works during the past decade (Fonseca & 

Fleming, 1993; Srinivas & Deb, 1994; Horn et al., 1994; Zitzler & Thiele, 1999). One of the first 

MOEAs was the Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas & Patnaik, 1994). 

In spite of the strength of this method in solving multi-objective optimization problems, its 

computational complexity, lack of elitism, and the need for sharing parameters are the main 

problems of the NSGA.  Therefore, a modified algorithm called NSGA- was introduced a few 

years later to alleviate some of these problems. The new algorithm performs better and faster to 

find the non-dominated solutions by providing a better distribution of the population (Deb et al. 

2002).  
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Optimizing construction operations has been important for decision makers during the last 

decades, and significant research works are done in this area to develop optimization models using 

various methods, such as linear programming, integer programming, dynamic programing, 

simulation techniques, and GAs (El-Rayes & Kandil, 2005). Among these methods GAs have 

become more popular recently. For example, Orabi et al. (2009 and 2010) developed a recovery 

planning model to optimize the post disaster reconstruction planning work for damaged 

transportation networks during the recovery efforts by simultaneously minimizing both the 

network performance loss and reconstruction costs. The proposed model, also, consists of a new 

resource allocation model which assigns the limited available reconstruction resources to the 

competing recovery projects based on the project prioritization, contractor assignment, and 

overtime policy. They used the NSGA-, proposed by Deb et al. (2002), as their multi-objective 

optimization engine.  

Eshtehardian et al. (2008) employed fuzzy logic theory in order to consider uncertainties effect the 

time and cost of the projects. They used multi-objective optimization GA to find non-dominated 

solutions for the time-cost trade-off problems based on the amount of risk considered using α-cuts 

methods in fuzzy logic theory. The results illustrated that higher cost and time are required in order 

to minimize the risk and vice versa. Another benefit of their model is that the direct and indirect 

costs are separated from each other; thus, different risk levels can be considered for the direct and 

indirect costs, separately.   
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2.9 Simulation-based Optimization of Construction Processes 

Due to the large number of factors affecting the construction processes, these processes are highly 

complex for decision makers especially in terms of minimizing the total time and cost of the 

projects. They have to find the optimum strategy to complete the projects successfully on time and 

within the budget considering all other constraints. Generally, there is an inverse relationship 

between the cost and time of a project; since, whenever the duration of a project is shortened, the 

cost of the project (i.e. the direct cost of labor, equipment, material etc.) will increase considerably. 

Hence, finding a proper trade-off between these two key elements has become a crucial issue for 

the project managers (Feng et al., 2000). Simulation can be used to perform sensitivity analysis on 

different resources used in a project in order to find how the resources interact with each other and 

how changes in the resources affect the performance of the simulation model. However, it cannot 

explore the whole search space of complex construction projects; therefore, optimization methods 

are required to fully investigate all possible different combinations of resources. 

The goal of the time- cost trade-off analysis of a project is finding the most economical solution 

of completing the project within its contractual time limits. Thus, according to the conflict between 

the time and cost in the construction processes, they cannot be simply combined with each other 

to form one objective function as it was done by researchers previously to reduce the complexity 

of optimization problems (single objective optimization). Therefore, the time-cost trade-off 

analysis is categorized as a multi-objective optimization problem.  

Considering various combinations of resources assigned to the activities lead to different options 

for the accomplishment of a project; therefore, finding the optimal resource assignments is 
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classified as a combinatorial search problem for decision makers in the construction industry. 

Traditionally, the duration and cost of the construction processes are assumed to be deterministic. 

In reality, however, construction processes are associated with many uncertainties (Feng et al., 

2000). Design changes in different phases of the project, inflation, execution mistakes of 

contractors, economic and social stresses, and natural problems like climate changes are some 

examples of those uncertainties (Eshtehardian et al., 2008).  Therefore, the time and cost of the 

construction processes follow a probabilistic distribution obtained based on historical data, which 

adds more complexity to the above mentioned combinatorial problem (Feng et al., 2000). 

Assuming deterministic values for the time and cost of activities, which are usually the mean 

values of the activities’ time and cost distributions, does not reflect the overlap between the 

distributions of activities’ cost and time, the relationship between cost and time, and also, the 

relationship between activities that require the same resources at both the activity and project levels 

(Feng et al., 2000). As a result, the traditional methods become insufficient when considering the 

distributions of the activities’ time and cost, which results in the recognition of the risk associated 

with different solutions (Feng et al., 2000).    

Heuristic, mathematical programming, and simulation-based optimization techniques are three 

main techniques for solving the construction time-cost trade-off problems. Heuristic methods, 

which are categorized into two types, namely serial heuristics and parallel heuristics, use rules of 

thumb to find good solutions with small computational effort. But, there is no guarantee that the 

solutions are the optimum ones in this method. Mathematical programming methods utilize linear 

programming, integer programming, or dynamic programming to solve mathematical models of 

the time-cost trade-off problems. Unlike the heuristic techniques, these methods require a great 
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computational effort, especially for complex systems (Feng, Liu, & Burns, 2000). According to 

Section 2.5.2, computer simulation as a powerful tool for modeling the construction processes is 

used in the construction industry in order to analyze, evaluate, and optimize the performance of 

construction processes (AbouRizk & Shi, 1994). Simulation is used for several purposes including 

the assessment the performance of a given system, comparison of different alternatives, sensitivity 

analysis to find the best combination of different factors affecting the system performance, finding 

the factors that lead to delays in the system, optimization to reach to the optimal response of the 

system, and recognition of correlations among the system factors (Marzouk et al., 2007).  

Each of these three techniques has its strengths and weaknesses. Heuristic methods are not very 

complex and need little computational efforts. Mathematical approaches, in contrast, suffer from 

complexity and high computational effort, and they cannot guarantee the optimal solutions for 

large-scale networks. Thus, considering the limitations of these methods, simulation techniques 

show promising behavior to find the optimal solutions for the construction processes; however, 

the need to develop more efficient algorithms to solve the time-cost trade-off problems with 

uncertainties is still a remaining challenge (Feng et al., 2000).   

2.9.1 Related Research 

Conventionally, the performance of simulation models was optimized by examining all possible 

resource combinations to find the best resource utilization which results in the best values for the 

outputs of the simulation model. On the other hand, if there are more than one option for a 

construction process which come from different configurations of shared queues within the 

simulation models for complex and large scale projects, the evaluation of all these available 

options based on different possible resource combinations is a very costly and time consuming 
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procedure due to the large number of iterations required to achieve the optimal resource 

combination. This also requires powerful computers with large memory capacity. Therefore, these 

limitations make this procedure not applicable for complex and large projects (Cheng et al., 2006). 

In order to overcome these difficulties, AbouRizk and Shi (1994) developed a heuristic algorithm 

(HA) to guide the simulation model in its search for the local optimal resource allocation to attain 

some particular construction simulation objectives. They introduced the term “DELAY” as a 

representation of the usage degree of a resource in a system to evaluate the performance of the 

system. Their research demonstrated that the HA helped to optimize the performance by selecting 

the optimum resource allocation. Applying the proposed algorithm on only one model and 

specifying the objective functions separately are the main limitations of their research. In addition, 

they showed that the HA can improve the performance of the simulation model by finding the 

local optimum solutions. 

Parmer et al. (1996) used computer simulation and GA to optimize peanut farm machinery 

selection. The simulation model determined the net returns above machinery costs for a given 

machinery set, but did not find an optimum machinery set. The optimum machinery set was 

determined using two search schemes: (1) an exhaustive search and (2) an artificially intelligent 

search. The exhaustive search scheme involved running the simulation model with all possible 

machinery sets, and then selecting the machinery set that produced the highest returns. 

Alternatively, GA was used as an intelligent search scheme to generate machinery sets for the 

simulation model. The GA found a near-optimal solution in 10% of the total time required by the 

exhaustive search. They concluded that modifications in the GA not only reduce the search time 

by half, but also improve the quality of the solutions. 
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Ugwa and Tah (1998) developed a hybrid GA as a Decision-Support System (DSS) component 

for the construction resource assignment problems by considering the physical characteristics of 

the resources in integration with the project database. They assumed that each resource 

combination results in a construction method. The resource allocation problem is defined as a 

single objective optimization to minimize the project cost which is constrained by project duration 

using Genetic State-Space Search (GSSS). Applying combinatorial optimization yields to not 

losing the information due to implementation of GA operators. The results showed the high 

capability of GAs in resource optimization, and also, integrating the GA with the project database, 

which is always accessible during the decision-making process, increases the robustness of the 

GA.  Similarly, Feng et al. (2000) developed a hybrid system of the combination of simulation 

methods with GAs to find the optimal solutions of the construction time-cost trade-off problems 

considering uncertainties. Also, they considered the stochastic distributions at the project level 

(i.e., distributions of the total duration and cost of the project).  

Hegazy and Kassab (2003) developed a flowchart based simulation tool called Process V3 

combined with a commercial GA-based tool (Evolver DLL Routines) as the GA engine within 

Microsoft Project platform to optimize resource allocation while minimizing the unit cost of large-

scale projects. The results of their case studies revealed that the developed integration method can 

find optimum resource assignments which result in the best benefit/cost ratio. Also, the GA-

optimized simulation models were integrated with the lower elements of the work breakdown 

structure (construction operations) to form a hierarchical planning environment in order to improve 

the planning and resource management in large-scale projects with large number of operations. 
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Cheng and Feng (2003) developed a simulation/GA-integrated mechanism to find the optimal 

resource combination leads to the best performance of the construction operations. They used 

CYCLONE to simulate the construction operations; and then, integrated that simulation model 

with a single objective GA to eliminate the resource assignments resulting in poor performance of 

the system. The proposed model showed very good performance for both objective functions (i.e., 

minimizing the unit cost and maximizing the production rate). They also provided a user interface 

called GACOST to assist the construction planner in analyzing and optimizing the construction 

operations. 

Cheng et al. (2005) combined the proposed HA algorithm by AbouRizk and Shi (1994) with GA, 

named heuristic GA (HGA), in order to take advantage of both algorithms and reach to the global 

optimum results. HGA outperformed the HA and GA for both objective functions (i.e., maximizing 

production rate and minimizing the unit cost). Cheng et al. (2006) proposed a similar GA-based 

modeling mechanism to optimize the resource allocation process as well as the modeling scheme 

which is mainly focused on the shared queue distribution within the simulation model. They 

concluded that their integrated model makes the resource allocation process fast and easy; and also 

enhances the performance of the simulation model by selecting the optimum modeling scheme. 

New efficiency methods which emphasize the quality of the construction processes lead to the 

development of a new multi-objective genetic algorithm model by El-Rayes and Kandil (2005) 

that quantified and considered the quality of the project as another objective function in addition 

to the traditionally two-dimensional time-cost trade-off analysis. They also visualized the three-

dimensional time-cost-quality tradeoff of the problem. 
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Mawlana and Hammad (2013a) presented a simulation based optimization framework for planning 

and scheduling the bridge construction projects. The proposed framework provides the evaluation 

of different construction methods and related decision variables. Project information input, 

database, optimization engine, simulation engine, and reporting and visualization are the main 

modules of their framework. They also modeled a precast box girder concrete bridge construction 

process using STROBOSCOPE and developed a module in order to combine the simulation model 

with the fast messy GA (fmGA) to optimize the construction cost and duration (Mawlana & 

Hammad, 2013b). However, the interoperability issues between the simulation and optimization 

tools make the integration procedure difficult and time consuming.  

2.10 High Performance Computing (HPC) 

While GAs are generally capable of finding optimal or near optimal solutions in acceptable time 

period, as the problem becomes more complex and bigger, such as complex or large-scale 

construction processes, the run time of the GAs will increase accordingly. Thus, there are many 

efforts to improve the GAs’ performance. Among these efforts, using parallel implementation is 

one of the most promising attempt (Cantú-Paz, 1997). The concept of using parallel programs is 

about dividing a problem into some discrete parts and solve them simultaneously using multiple 

processors to save time by reducing the processing time of the program, and also to take advantage 

of the large amount of memory that comes with them (Cantú-Paz, 1997). Parallel computing can 

be executed on a computer with multiple processors or a network of connected computers or a 

combination of both (Barney, 2013).  

Global single-population master-slave GAs, multiple-population coarse-grained GAs, single-

population fine-grained, and hierarchical parallel GAs are categorized as four main types of 
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parallel GAs. Either cluster or Massive Parallel Processor (MPP) are used in most of the 

implementation of the parallel GAs. Based on the statistics, about 74.6% and 21.4% of the world 

supercomputers are clusters and MPPs, respectively (Munawar et al., 2008).  

The efficiency of the parallel algorithms and the quality of solutions are strongly dependent to the 

parallel parameter settings. However, lots of empirical researches have been done to determine 

these parameters, but there is no generally acceptance on how to choose them (Li & Kirley, 2002).  

2.10.1 Global Single-population Master-slave GAs 

Global single population master-slave GAs work like simple GAs, as one processor called the 

master (manager) processor generates the initial population and performs GA operations on all 

population members. Then, the generated population of solutions will be broken down into 

subpopulations distributed equally among all other processors (slave processors) to be evaluated. 

The evaluated solutions will be back to the manager processor, and the next generation of solutions 

is generated by performing generation evolution by the manager processor. This procedure is 

repeated until the convergence criteria are met (Kandil & El-Rayes, 2006). Figure 2-14 illustrates 

this type of parallel GAs. Master-slave parallel GAs are also named global parallel GAs due to the 

implementation of crossover and mutation on the whole population by the master processor. 

Communication is necessary during receiving of the individuals by the slaves and returning them 

back to the master processor (Cantú-Paz, 1997).  

There are two types of master-slave GAs: synchronous and asynchronous. The former works 

similarly to the simple GA but faster. In this type of master-slave GAs, each population will be 

generated when the previous one is totally evaluated. On the contrary, the asynchronous master-
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slave GAs have some differences in their performance with the simple GA and synchronous 

master-slave GA, since they prevent impediment to the progress of the faster processors by the 

slower ones (Cantú-Paz, 1997; Kandil & El-Rayes, 2006).  

The effect of the configuration of the network of processors on the performance of the master-

slave GAs was examined by Fogarty and Huang (1991). They found that there is no considerable 

change in performance by changing the specification of the network. Although they improved the 

speed of the algorithm, they demonstrated that the communication overhead prevents more 

increase in speed. 

Worker Processor NWorker Processor 3Worker Processor 2Worker Processor 1

Manager Processor

 

Figure 2-14: Master-slave parallel GA (Kandil & El-Rayes, 2006) 

However, the research of Abramson and Abela (1992) showed limited improvement in speed of 

the GA by using a shared-memory computer. Abramson et al. (1993) made a significant speed-up 

by adding a distributed-memory machine with 16 processors to their tests. They also illustrated 

that any additional processors will lead to a significant degradation in speed because of the growth 

in communication overhead. Hauser and Männer (1994) compared the performance of three 

parallel computers with different number of processors and found that the computer with very low 



 

48 

 

communication overhead (6 processors) had the best speed (Cantú-Paz, 1997). The GA operators 

can be also paralyzed by dividing the population and distributing them among processors to 

implement crossover and mutation on them. However, sending and receiving individuals may take 

more time than performing these operations without using parallel processors due to the simplicity 

of their implementation (Cantú-Paz, 1997). The main advantages of these algorithms are the 

similarity with the simple GA, the easy implementation, and a major improvement in performance 

in many cases (Cantú-Paz & Goldberg, 2000). 

2.10.2 Multiple-deme Parallel GAs 

The most popular parallel GAs are multi-deme (or multiple population) parallel GAs which were 

firstly studied by Grosso (1985). In this type of parallel GAs the population is divided into 

subpopulations called demes, and each processor works independently in a nonhierarchical fashion 

to generate these subpopulations, then to evaluate and evolve them. Thus, there is no need for 

synchronized communications as they are important in the case of synchronous global parallel 

GAs, which results in more time saving by elimination of delay caused by slower processors that 

impede the progress of the faster processors. Figure 2-15 shows the multiple-deme parallel GAs 

paradigm. By sharing the best solutions in each deme with other neighboring processors, the 

independent evolution of the demes will be compensated, which is called migration process. The 

migration rate and the migration interval are two setup parameters of this process. The former 

determines what percentage of the top ranked solutions in each subpopulation should be exchanged 

with remaining processors, and the latter defines the frequency of the migration process (Kandil 

& El-Rayes, 2006). 
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Migration is used to keep diversity in demes to prevent early convergence; hence, the solutions 

generated by the algorithm are mature and with high quality. There are two types of migration in 

multi-deme parallel GAs, synchronous which determines the constant intervals for exchanging 

individuals between demes, and asynchronous to apply migration when some changes, such as 

convergence, occur. 

Processor 6

Processor 5

Processor 4Processor 3

Processor 1

Processor 2

 

Figure 2-15: Multiple-deme/population parallel GA (Cantú-Paz, 1997) 

The main three factors that affect the migration of individuals, and thus the performance of the 

parallel GAs are: the number and size of the subpopulations, the connectivity between demes 

which is called topology that affects the performance of the algorithm by defining the speed of 

broadcasting of good individuals among demes, the migration rate, and the frequency of migrations 

(Cantú-Paz, 1997). Grosso’s finding (1985) demonstrated that smaller demes spread good traits 

(better fitness values) faster than the larger ones. On the other hand, he found that the isolated 

demes produce low quality solutions in comparison with the single large panmictic population, 

which is a population with random mating within it, with no evidence of the selection for better 

fitness values. In the case that the migration rate is low, the demes behave like isolated islands and 
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probe independently all regions of the search space; thus, the quality of the solutions is same as 

the isolated demes. At intermediate migration rates, the solutions are similar to that of the 

panmictic population; therefore, all the individuals are potential recombination parents. Hence, 

there is a critical migration rate below which the isolation of demes block the performance of the 

algorithm, and above which the solutions will be the same as the panmictic population. These 

results were also confirmed by Tanese (1987). As a result, it is important to find this critical rate 

for the migration.   

Pettey et al. (1987) examined a parallel GA which copied the best individuals of each deme to all 

other neighbor demes to have a good mixture of individuals. They reached to the same results of 

Grosso (1985) that a high level of communication results in generating solutions of the same 

quality of the GA with the panmictic population. Tanese (1989) performed exhaustive tests to 

compare the performance of a serial GA and parallel GAs with and without communication. She 

concluded that the multi-deme GAs produce solutions with the same quality as a serial GA when 

there is no communication between demes. She also found that communication can considerably 

improve the quality of the finial population, and even better performance than a serial GA in some 

cases. Her findings were confirmed by the research of Belding (1995), which showed the impact 

of migration on better finding of the global optimum solutions in comparison with the completely 

isolated demes without any communication (Cantú-Paz, 1997).  

There are various names of the multiple-deme parallel GAs such as distributed that shows the 

distribution of the population on several processors, coarse-grained due to their high demand for 

communication, and island parallel GAs which refers to the usage of isolated demes (Munawar et 

al., 2008).  
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2.10.2.1 Multiple-population Coarse-grained GAs 

The coarse-grained parallel GA uses number of processors to perform the multi-objective 

optimization simultaneously without any need for the manager processor to manage them (Cantú-

Paz, 1997). Mühlenbein et al. (1991) matured the coarse-grained parallel GAs by using a local 

optimizer in these algorithms to find the global optimum solutions of very large problems and 

complex functions. Davis et al. (1994) found that the performance of the parallel GAs can be 

measured more accurately if the speed-up is to be measured based on the time required to reach a 

certain fixed quality rather than the time needed to hit a specified number of generations (Cantú-

Paz, 1997). 

The similarity and simplicity of converting serial (conventional) GAs to multi-deme GAs, and the 

availability of coarse-grained parallel computers are the main reasons of the popularity of these 

parallel algorithms. While the speed of these parallel GAs is higher than the simple GAs due to 

the fact that smaller demes converge faster, they generate less quality solutions (Cantú-Paz, 1997).  

2.10.3 Single Population Fine-grained Parallel GAs  

Fine-grained parallel GAs generate only one spatially-distributed population with limited 

interactions among individuals. The fitness evaluation is performed in parallel in discrete time 

steps. The GAs operations are limited to overlapping neighbors, subsequently, the good solutions 

are slowly shared within the entire population (Li & Kirley, 2002). One example of this type of 

parallel GAs is called ASPARAGOS (Asynchronous Parallel Genetic Algorithm Optimization 

Strategy) which was introduced by Gorges-Schleuter (1989a, 1989b) and Mühlenbein (1989a, 

1989b). ASPARAGOS was accepted as an effective optimization tool which was successful to 

http://www.sciencedirect.com/science/article/pii/S0167819105800523
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solve some difficult combinatorial optimization problems. Since most of parallel computers have 

the processing elements connected within a 2-Dimentional grid, it is usual to use this topology for 

placing individuals in fine-grained parallel GAs. Therefore, Manderick and Spiessens (1989) 

developed a fine-grained parallel GA with the 2-D grid topology. They discovered that the 

performance of the algorithm decreases by increasing the size of the neighborhood. This paradigm 

is shown in Figure 2-16. 

Different structures of the individuals of the fine-grained parallel GAs were tested by Schwehm 

(1992) and Andersson and Ferris (1994). Tamaki and Nishikawa (1992) used fine-grained parallel 

GAs to solve a very popular problem in GAs literature, the job shop scheduling problem, in order 

to examine the performance of these parallel algorithms in difficult application problems. In 

addition, some papers compared the fine- and coarse-grained parallel GAs. In some cases the 

former showed a better performance and in others the latter outperformed the fine-grained parallel 

GAs. This contradiction is due to the fact that the comparisons cannot be done under completely 

the same terms; hence, the two parallel algorithms should be compared for particular criteria such 

as the quality of the solutions or the processing time (Cantú-Paz, 1997).   

2.10.4 Hierarchical Parallel GAs 

The last type of the parallel GAs is called hierarchical parallel GAs which combines two methods 

of parallelizing GAs. One method increases the complexity of the already complicated parallel 

GAs and the other one maintains the same degree of complexity as one of their components. 

Multiple-population algorithms form the upper level of most of these parallel GAs, and, fine-

grained or master-slave GAs are used at the lower level of the hierarchical parallel GAs to take 

advantage of each of these parallel GAs in order to have better performance. 
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Figure 2-16: Fine-grained parallel GAs paradigm (Sivanandam & Deepa, 2008) 

For instance, the mixed parallel GA developed by Gruau (1994) has multiple demes; each of them 

works as a fine-grained parallel GA with 2-D grid topology. Lin et al. (1997) compared their 

proposed hybrid parallel GA with the simple GA, a fine-grained GA, and some multi-deme GAs. 

The hierarchical parallel GA outperformed all the other types of GA for the job shop scheduling 

problem (Cantú-Paz, 1997).  Also, for complex applications that need a great amount of 

computation time, the hybrid parallel GAs with master-slave GAs at their lower level result in less 

computation time in comparison with a master-slave parallel GA or a multi-deme GA (Bianchini 

& Brown, 1993). 

A third method of developing hybrid parallel GAs is based on using multi-deme GAs at both the 

upper and the lower levels (Sivanandam & Deepa, 2008). Cantú-Paz (1997) pointed out that the 

executation time needed for the hierarchical parallel GAs is less than any of their components 

alone. He mentioned that the speed-up reached by the hybrid parallel GAs is equivalent to the 

multiplication of the speed-up of each of their components when work separately.  
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2.11  Parallel and Distributed Simulation 

The main issue regarding the use of parallel and distributed simulation is about the execution 

distribution of the simulation program over multiple computers. In parallel simulation, the 

simulation program is executed on multiprocessor computing platforms with multiple Central 

Processing Units (CPUs) with frequent interaction between them. On the other hand, loosely 

coupled systems (i.e., geographically distributed computers which are interconnected by a wide 

area network such as the Internet) are used for simulation execution in distributed simulation; and 

in this case the interactions between systems are much slower than the parallel simulation method. 

These simulation systems are mainly used in two areas: first for analysis purposes such as assessing 

alternative design options or control policies of a complex system like air traffic network. The 

second use of these systems is for the creation of virtual environments with embedded humans 

and/or hardware devices. Training, entertainment (e.g., video games), and device evaluation tests 

are some examples of using distributed virtual environments. The main advantages of parallel and 

distributed simulation systems are (Perumalla, 2006; Nicol & Fujimoto, 1994): (1) Reduction of 

the execution time of analytic simulations by the simultaneous execution of many sub-

computations created of a large simulation computation division; (2) Real-time execution of 

simulations used for virtual environments to have realistic representation of the actual system; (3) 

Convenience in the creation and reduction in travel costs due to ability of humans and/or device 

interactions as they actually act via distributed virtual environments; (4) Easy interaction of 

simulators executing on machines from different companies; and (5) Increase in failures tolerance 

due to performing simulation on multi processors rather than only one processor in traditional 

simulation tools.  
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There are three separate research communities working in the parallel and distributed simulation 

systems area which are the HPC community, the defense community, and the Internet and 

computer gaming community. The goal of HPC community is to speed-up the simulation programs 

execution time by using multiple CPUs which can be achieved by performing synchronization 

algorithms. Conservative synchronization algorithms were proposed firstly by Bryant (1977), and 

Chandy and Misra (1979), and optimistic synchronization techniques such as the Time Wrap 

algorithm (Jefferson, 1985) are the main synchronization algorithms used in this area (Fujimoto, 

2001).  

2.11.1 Parallel Simulation of Construction Processes 

Little work is done regarding using parallel or distributed simulation techniques for construction 

processes. Kartam and Flood (2000) compared the impact of using different alternative 

approaches, including entity oriented parallel algorithm, recursive neural network method, and the 

conventional activity oriented serial algorithm, in order to speed-up the simulation procedure of 

construction processes within a multiprocessor computing environment. They investigated the 

performance of the above mentioned approaches by measuring the average time required to 

advance a construction simulation model from one state to the next state. The results showed that 

the neural network approach reached the maximum reduction in the simulation computation time 

among the alternatives. Although, the neural network implementation illustrated the best 

performance, 2100 parallel processors were needed to perform this method in comparison with 

only 9 processors used in the parallel-algorithmic approach. Therefore, they concluded that the 

parallel-algorithmic approach provides acceptable trade-off between expediting the simulation 

procedure of construction processes and the number of processors required.  
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2.11.2 Parallel Optimization of Construction Processes  

Kandil and El-Rayes (2006) investigated the efficiency and effectiveness of resource utilization 

optimization in large-scale construction projects by using parallel multi-objective GA. The 

proposed method contains four main modules, namely: (1) multi-objective optimization module, 

(2) global parallel GA module, (3) coarse-grained parallel GA module, and (4) performance 

evaluation module. The performance of the method was examined using the elapsed time and 

quality of solutions metrics. Their search demonstrated that the framework can improve the 

efficiency and effectiveness of the GA and significantly reduce the processing time achieved by 

using limited number of processors.  

In order to improve the efficiency and effectiveness of the multi-objective optimization algorithms 

(MOAs), Kandil et al. (2010) recommended some methods to enhance the robustness of MOAs by 

reviewing the work of other researchers in the field of construction multi-objective optimization. 

NSGA- as a multi-objective optimization GA and weighted integer programming as analytical 

optimization technique were compared in the first case study. The results illustrated the better 

performance of the weighted integer programming in comparison with the NSGA- in terms of 

efficiency (computation time) and quality of the optimal solutions. In the second case study of 

construction resource optimization for large-scale infrastructure projects, NSGA- was integrated 

with parallel computing paradigms including global and coarse-grained parallelization approaches. 

The effect of these parallel platforms on the performance of MOGA were analyzed for different 

number of processors (1 to 50 with an increment of 5 processors). Total computation time and the 

number of obtained optimum solutions are defined as efficiency and effectiveness of the parallel 

computing paradigms, respectively. However, the coarse-grained approach achieved a higher 
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efficiency in comparison with the global parallel paradigm. The research outcomes demonstrated 

a tradeoff between the efficiency and effectiveness of the global parallel approach when the 

number of parallel processors increases. On the other hand, the global parallel method showed 

constant effectiveness while increasing its efficiency. 

2.11.3 Parallel Simulation-based Optimization of Construction Processes 

Yang et al. (2012) combined Multi-Objective Particle Swarm Optimization (MOPSO) algorithm 

with Monte-Carlo simulation for the bridge maintenance planning and implemented the proposed 

framework in a parallel computing platform in order to reduce the computational burden associated 

with the problem. Master-slave, island, and diffusion are the three parallel programming paradigms 

used in their research. They created a stochastic simulation model of the bridge maintenance 

project and validated the proposed method by comparing the results obtained from the MOPSO 

algorithm with the NSGA- in terms of convergence and diversity of the Pareto front solutions by 

considering the hypervolume indicator. Research findings illustrated better performance for the 

proposed MOPOS algorithm over the NSGA- for all five independent runs. Also, they used 40-

core cluster to evaluate their parallel platforms. Super-linear speedups were attained using island 

and diffusion paradigms. In addition, all three parallel paradigms improved the solution quality 

when the number of cores was increased; however, the island platform outperformed the other two 

from the solution quality point of view within restricted time. 

2.12 Summary and Conclusions 

This chapter reviewed the concepts, techniques, and the main construction methods that are used 

in the current research. The literature review included details of two bridge construction methods, 
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and the information about several simulation tools and optimization techniques. Furthermore, the 

basics of HPC, including details about different parallel GAs paradigms were discussed.  

Based on the literature, the integration of simulation models with optimization techniques leads to 

an advancement in the decision making process. Therefore, DES is selected in this research as a 

simulation method due to its emerging popularity in the construction industry. Moreover, NSGA-

 is selected as the optimization engine for the calculation of the optimal values of the decision 

variables in the proposed method due to its capability to estimate the near optimum solutions. In 

addition, HPC is adopted to decrease the computational efforts required in the simulation-based 

optimization problems for bridge construction methods which is missing in previous research 

works.  
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CHAPTER 3 RESEARCH METHODOLOGY 

3.1 Introduction 

As mentioned in Chapter 2, there are several special purpose tools to implement the simulation of 

construction processes with different advantages, limitations, and capabilities. Although 

simulating construction processes using these tools is very easy to learn and to use, the combination 

of these tools with optimization techniques is difficult and an integration platform is needed. For 

example, Stroboscope as a Windows-based simulation tool needs developing a module to be 

combined with the optimization tools in order to solve simulation-based optimization problems. 

On the other hand, these simulation tools are not usually compatible with Linux environment 

which is used in most of the massive parallel computing systems or clusters. Therefore, the lack 

of easy interaction of simulation and optimization engines in the same integrated environment, 

which also supports their execution on the operating system of the clusters, is the main motivation 

of this research.  

In this chapter, the research methodology employed to develop a simulation-based multi-objective 

optimization model for precast concrete box girder bridge construction projects is presented. As 

discussed in the literature review, a multitude of studies have been conducted on the simulation of 

different bridge construction methods. This study focuses on two of those methods which are 

precast full span concrete box girder and precast segmental concrete box girder construction 

methods. The simulation models are created using SimEvents module of MATLAB Simulink 

Library which is a general purpose simulation tool. The integration procedure of the DES models 

with an optimization algorithm (NSGA-), and finally, the application of HPC are discussed in 
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the following sections. One of advantages of using MATLAB is its capability in parallel 

computing, which is not applicable in most of the special-purpose simulation tools. This parallel 

computing results in reducing the processing time in comparison with conventional integration 

solutions. The proposed model is also validated by comparing the optimal solutions obtained from 

NSGA- optimization algoritm with those obtained from fmGA which is another type of GAs 

(Mawlana & Hammad, 2013b). 

3.2 The Proposed Simulation-based Optimization Framework 

Decision makers are usually concerned with both the modeling methodology and finding the most 

appropriate way of resource usage to complete a project successfully within the budget and time 

constraints. Therefore, the integration of simulation and optimization is very important factor in 

the construction processes. Figure 3-1 depicts the integration procedure of the DES and NSGA-. 

The combination procedure is done by defining the simulation model’s resources as decision 

variables for the optimization program which selects the optimum value for each resource 

considering an acceptable range for the variables. The optimization algorithm starts with creating 

the initial population of size 𝑁 in the first generation. Each member of the population goes through 

the simulation model. In the probabilistic mode of the simulation model, 𝐾 replications are 

performed for each set of variables, and the mean values of the objective functions (i.e., the total 

cost and duration of the bridge construction processes) are calculated based on the results obtained 

from 𝐾 replications.  
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Figure 3-1: Integration of DES and NSGA-ΙΙ 

Direct and indirect costs of the equipment and crews, and mobilization cost are the main elements 

of the total cost of the project (Eq. 3.1). Eqs. 3.2, 3.3, 3.4, and 3.5 calculate these factors. The total 

duration of the construction process is equal to the time required for casting either the bridge spans 

or segments and erecting them to their final positions. The total number of working days and the 
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total project duration are estimated using Eq. 3.6 and Eq. 3.7, respectively (Mawlana & Hammad, 

2013b). 

Total cost of the project = Direct cost + Indirect cost + Mobilization cost (3.1) 

Mobilization cost = 2 × ∑  𝐸𝑖   ×   𝑁𝑖   
𝑛
𝑖=1 +  ∑  𝐶𝑘   ×   𝑀𝑘   𝑚

𝑘=1  (3.2) 

Direct cost of Crews = ∑ 𝑅𝐶𝑘  ×  𝐶𝑘 × 𝑇𝐶𝑘  × 𝐶𝑜𝑠𝑡 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟𝑚
𝑘=1  (3.3) 

Direct cost of Equipment = ∑ 𝑅𝐸𝑖  ×  𝐸𝑖   ×   𝑇𝐸𝑖   
𝑛
𝑖=1  (3.4) 

Indirect cost = Total project duration × Daily indirect cost (3.5) 

Total Working Days = 
𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 

𝑊𝑜𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 ×60 
 (3.6) 

Total Project Duration = Total Working Days + ⌊
𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 

𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘
⌋  × (7- 

Working Days per Week) 

(3.7) 

where n shows the total number of different equipment types used in the project; Ei is the number 

of equipment of type i used in the project; Ni is the mobilization cost of an equipment of type i; m 

shows the total number of different crew types used in the project; Ck is the number of crews of 

type k used in the project; Mk is the mobilization cost of a crew of type k; the hourly cost of an 

equipment of type i and a crew of type k are represented by REi and RCk, respectively; Also, the 

number of working hours of equipment of type i and crew of type k in the project are shown by 

TEi and TCK, respectively. ⌊
𝑇𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 

𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘
⌋ demonstrates the floor brackets which rounds 

number to the lower integer (Mawlana & Hammad, 2013b).  

Table 3-1 shows the overtime policy (OP) used in the simulation models adapted from (Orabi et 

al., 2009; RSMeans Engineering Department, 2011). These policies differ from each other based 
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on the number of working days per week and number of shifts per day. Working overtime affects 

the productivity and this effect is measured based on the average loss of productivity for a four-

week period (i.e., productivity adjustment factor). Also, working overtime has impact on the 

regular wages of the workers (i.e., cost adjustment factor). These factors are used to adjust the 

durations of different tasks and their associated cost based on the selected overtime policy (Golden, 

1998; Mawlana & Hammad, 2013b).   

Table 3-1: Overtime Policy (Mawlana & Hammad, 2013b; RSMeans Engineering Department, 

2011) 

Policy 

Working 

Calendar Shifts/Day 

Productivity 

Adjustment Factor (%) 

Cost Adjustment 

Factor (%) 

1 8 hours/5days 1 100.00 100.00 

2 9 hours/5days 1 96.25 111.10 

3 10 hours/5days 1 91.25 120.00 

4 11 hours/5days 1 81.25 127.30 

5 12 hours/5days 1 76.25 133.30 

6 8 hours/6days 1 96.25 116.70 

7 9 hours/6days 1 92.50 125.90 

8 10 hours/6days 1 87.50 133.30 

9 11 hours/6days 1 78.75 139.4 

10 12 hours/6days 1 73.75 144.40 

11 8 hours/7days 1 88.75 128.60 

12 9 hours/7days 1 83.75 136.50 

13 10 hours/7days 1 78.75 142.90 

14 11 hours/7days 1 72.50 148.10 

15 12 hours/7days 1 68.75 152.40 

After calculating the fitness values of all members of the population, the selection, crossover, and 

mutation operations are performed on the entire population. This procedure is repeated for all the 

members of the population in all generations until the convergence criterion is met (i.e., the 

specified number of generations, M). After that, the optimization terminates and the optimal 

solutions as a Pareto front are obtained. The same process is applicable in the deterministic mode 

with the difference that due to the nature of the deterministic mode, there are no replications in 

this mode.   
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3.3 Using DES within SimEvents 

As mentioned in Section 2.5.2, the need for simulation models is felt more and more in order to 

model the uncertainties associated with the construction projects (Yang et al. 2012). As a result, 

simulation-based optimization framework is developed in this study to enhance the decision 

making process of the bridge construction projects. According to Section 2.7, Monte-Carlo and 

DES simulations are two popular methods used for the simulation of construction processes. DES 

models can be either deterministic or probabilistic based on the definition of the activities’ 

durations within the simulation model. In this study, the simulation models are created using DES 

technique and both deterministic and probabilistic modes of the models are investigated.  

As stated in Section 2.5.2, there are several simulation tools to implement the simulation of 

construction processes with different advantages, limitations, and capabilities for a variety of 

purposes. In this research study, the simulation models are created by using the SimEvents module 

of the Simulink toolbox of MATLAB R2014a which is based on DES method.  

Simulink (MathWorks, 2014d) is a graphical block diagramming tool for modeling, simulating, 

and analyzing multi-domain systems. It consists of a set of customizable block libraries and solvers 

for modeling and simulating dynamic systems based on the required purposes (Reedy & Lunzman, 

2011). The main capabilities of Simulink are building models for different purposes, simulating 

the model, analyzing simulation results by debugging the simulation, managing projects, and 

connecting the model to the hardware for real-time testing. This tool is embedded within 

MATLAB which makes the integration with the rest of MATLAB environment easy in order to 

incorporate MATLAB algorithms into the Simulink models and export simulation results to the 
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MATLAB workspace for further analysis, such as optimization. Simulink is widely used for 

designing control systems and digital signal processing, simulating communications systems, 

image processing, modeling and simulating embedded systems, and designing/optimizing 

mechatronics systems. For instance, Figure 3-2 shows a wind turbine modeling using the 

SimPowerSystem tool in Simulink (MathWorks, 2014c). 

The SimEvents module of the Simulink toolbox (MathWorks, 2013b) is used as a DES engine to 

model event-driven communications between model components in order to analyze and optimize 

different characteristics of the system’s performance. This simulation tool is usually used for 

designing distributed control systems, hardware architectures, manufacturing systems, and 

communication networks for aerospace or transport systems, and electronics applications. Event-

driven processes, such as different stages of a manufacturing process, are also simulated using 

SimEvents to find the required resources and determine shortcomings (MathWorks, 2014b). 

Entities are used to represent discrete items within a SimEvents model, such as trains in a rail 

network. Data carried by entities are known as attributes which include various information about 

the entities, such as the number of the trucks, truck speed, etc. for an earthmoving simulation 

example. The generation, movement, and processing of entities cause events, such as the arrival 

of a truck to the dumping area (Valigura et al., 2009). 

SimEvents can be also used for simulating construction processes since it has the components 

required to model different elements of these processes (e.g., queues, activities, servers, etc.). The 

integration between SimEvents and Simulink/MATLAB enables SimEvents to take advantage of 

the wide capabilities of Simulink and MATALB such as visualization capabilities, optimization 

techniques, data processing, and computation tools (Clune et al., 2006). SimEvents libraries 
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include several predefined and customizable blocks with different functionalities which are used 

to precisely model various systems (MathWorks, 2013b). The communication among blocks is 

based on signals in Simulink, while it is based on both entities and signals in SimEvents (Clune et 

al., 2006). Figure 3-3 depicts the SimEvents components which are (Clune et al., 2006; 

MathWorks, 2013b): 

 

Figure 3-2: Simulink model of a wind turbine (MathWorks, 2014c) 

(1) Attributes: Blocks that assign data to the entities. Each attribute has its specified name and 

value; (2) Entity Management: Blocks that are used to create one entity of several entities arriving 

concurrently to the Entity Combiner block or to divide a composite entity to its components by 

Entity Splitter block; (3) Gates: Blocks that control the flow of the entities to certain blocks by 

enabling or disabling the entities’ access; (4) Gateways: Blocks that convert the event-based 

function call or signal to the time-based function call or signal and vice versa; (5) Generators: 
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Blocks that generate the entities, signals (random numbers form specified distributions), or 

function-calls (i.e., events that call Simulink blocks). The latter enables the communication 

between SimEvents and Simulink; (6) Queues: Blocks that store the entities in sequence until 

accessing to a resource; (7) Routing: Blocks that control the movement of the entities while 

accessing to the queues and servers; (8) Servers: Blocks that delay any number of entities, serve 

up to N entities, or serve one entity for a period of time using Infinite Server, N-Server, or Single 

Server blocks, respectively. In other words, they model different types of resources; (9) Signal 

Management: Blocks that manipulate the event-based signals to delay or resample them based on 

the events, not time; (10) SimEvents Ports and Subsystems: Blocks that represent a system 

containing a subset of blocks or code within another system; (11) SimEvents Sinks: Blocks that 

plot data from the attribute of entities, transfer event-based signal to the MATLAB workspace, 

terminate an entity path, and plot data from signals; and (12) Timing: Blocks that measure the 

elapsed time between events or events happening times by assigning Start Timer and Read Timer 

blocks to the entities.  

 

Figure 3-3: SimEvents components 
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3.3.1 Comparison of SimEvents and Stroboscope Simulation Tools 

Stroboscope is a general-purpose simulation system with high programming ability used for the 

detailed modeling of complex construction processes. This simulation language can also be used 

to develop special-purpose simulation tools. Stroboscope supports ACD and AS modeling 

paradigms, and creates simulation models at the conceptual level. Then, the details of the model 

are determined using its programming capabilities (Martinez & Ioannou, 1999). Stroboscope is 

one of the CYCLONE’s extensions, but it is not based on the assumptions considered for 

simplifying purposes in CYCLONE. In addition, there are five new nodes and four special types 

of links in Stroboscope in comparison with CYCLONE (Martinez & Ioannou, 1999). 

Simulation models created by Stroboscope consist of nodes connected by links which show the 

flow and the type of the resources in the model. There are two types of nodes, “Activities” and 

“Queues” where resources spend their time actively and passively, respectively. Queues are 

modeled as a circle with a slash. They store inactive resources to be used by activities. The building 

blocks used in creating the simulation models via Stroboscope and SimEvents are shown in 

Table 3-2. 

Combi, normal, and consolidator are the three types of activities which need resources for a period 

of time (i.e., the durations of activities) to accomplish their tasks. Combi activities are activated 

when the required resources are available in the preceding queues; therefore, combi activities are 

preceded only by the queues. However, the normal activities start immediately after finishing other 

tasks by obtaining resources from the preceding tasks. The former is represented by a trapezoidal 

shape and the latter by a rectangular shape in Stroboscope. When certain conditions are met, the 
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Queue 

Combi 

Normal 

consolidators are used to accumulate resources or block resources flow (Martinez, 1996; Martinez 

& Ioannou, 1994).  

Table 3-2: Building blocks used for modeling simulation models by Stroboscope and SimEvents 

(Martinez, 1996; Lee et al., 2010) 

Name Symbol Function 

 SimEvents Stroboscope  

Normal activity 

  Normal activity is activated 

immediately without any delay after 

finishing the preceding task. 

Combi activity 

  Combi activity is started when all 

required resources are available in 

the preceding queues. 

Queue 

   
Stores inactive resources to be used 

by the Combi activities. 

Consolidator 

activity 
N.A. 

 
Either accumulate or block the 

resources flow. 

Link 

  Links connect the network elements 

and show the logic of the entities 

flow. 

Each modeling element used in Stroboscope has attributes to define the behaviour of the element. 

The default implementation of each attribute specifies the most common behaviour of that element, 

which can be redefine by the user as a number or complex equations for special purposes. It also 

supports writing codes to tailor variables, arrays, and modeling elements. The programming 

capabilities of Stroboscope makes it possible to be integrated with other tools within a multi-tool 

decision support framework. This is done by embedding an interface which is written in high-level 

programming languages such as C++ (Martinez & Ioannou, 1999). 

3.3.2 Stroboscope Simulation Model for Earthmoving Operation  

A simple earthmoving operation model is developed in both Stroboscope and SimEvents to 

compare the modeling process in these two tools. This model was derived from the Stroboscope 

Link 
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quick reference manual (Loannou & Martinez, 2006) which is shown in Figure 3-4. The loaders 

are loaded with soil based on their capacity, haul for the specified distance, dump the soil in a 

specific location, and then return to be loaded again. This cyclic procedure continues until a 

specified amount of soil is transported. 

Table 3-3: Input entities of the simulation model with their corresponding values 

Input Entities Value 

Quantities of Soil 100,000 m3 

Number of Loaders 3 

Number of Haulers 11 

3.3.3 SimEvents Model of Earthmoving Operation 

An earthmoving operation was selected to be created using SimEvents because of the simplicity 

of the model which helps to be familiar with the modeling procedure and capabilities of the 

SimEvents toolbox.  

 
Figure 3-4: Earth-moving operation model in Stroboscope (Adopted from Loannou & Martinez, 

2006) 

In this process, loaders and haulers are used to move a certain amount of soil from one place to 

another; therefore, soil, loaders, and haulers are the three input entities to be defined. These entities 

should wait in the queues to be used when they are needed. The way of defining queues in 
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SimEvents is totally different from other common simulation tools such as Stroboscope. For 

example, there is no need to have the soil queue in Stroboscope. However, every resources has to 

be defined clearly in SimEvents. Queues are subsystems which contain subsets of blocks to create 

the entities and reserve them in the queues. Figure 3-5 illustrates how to define the soil queue 

subsystem in the simulation model. After modeling these queues, the main activities (i.e., load, 

haul, dump, and return) are created using N-Server blocks. To simulate the durations of each 

activity, Event-Based Random Number Generator block is used to generate random numbers based 

on the distribution function of the activity duration. Figure 3-6 shows the N-Server block for the 

hauling activity and its associated random number generator of the normal distribution for its 

duration. 

 

Figure 3-5: Soil queue subsystem 

 

Figure 3-6: Hauling activity and its duration distribution 

Finally, the stopping criteria which is the specified amount of soil to be moved should be modeled 

to stop the simulation when it reaches to that number which is done as shown in Figure 3-7. Where 
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the amount of soils that should be moved is 100,000 m3. Figure 3-8 demonstrates the complete 

model of the earth-moving operation in SimEvents. 

 

Figure 3-7: Stopping criteria of the earth-moving operation model 

 

Figure 3-8: Complete simulation model of the earth-moving operation in SimEvent 

3.3.4 Comparison of SimEvents and Stroboscope Simulation Models 

As mentioned in the previous section, the earthmoving operation was also modeled in the 

SimEvents to compare the developing procedure of the simulation process in SimEvents and 

Stroboscope and to compare the final results of two models to show the validity of the created 

model in SimEvents.  
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The following difficulties were faced in developing the earthmoving operation in SimEvents.  

(1) Defining resources  

As mention in Section 3.3.3, every resources should be completely defined in SimEvents which 

makes the modeling process complicated and detailed-oriented; however, Stroboscope has 

capability to consider some resources such as soil with no need to specify queues for them. 

(2) Access to the total duration of the construction process 

The simulation model does not automatically show the total duration of the process. This problem 

was solved by using the clock block to display the final duration and linking it to the Discrete 

Event Signal to Workspace block to export the final duration to the MATLAB workspace in order 

to be used in the optimization procedure. This information can be also gathered by running the 

simulation model in the debugging mode. However, the time of the simulation process is kept by 

simulation clock in Stroboscope. As the simulation process commences the simulation clock 

records the time automatically (Martinez, 1996). 

(3) Retrieving information of the activities’ durations 

Retrieving information related to the activities’ durations is not a straightforward procedure in 

SimEvents. The statistics tab of the N-server block has "average wait time" to give the average 

time an entity spends in that particular process (e.g., load, haul, dump, and return). But for more 

detailed information, there is a need to define the Timer blocks (Start Timer and Read Timer) 

before and after each activity to determine how long each entity spends in a region of the model 

and linking them to the Discrete Event Signal to Workspace block which establishes numerical 
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values of the durations in the MATLAB workspace. Then, interpreting of extracted data is required 

based on what is needed in the next steps of the process for linking the simulation model to the 

optimization engine. On the other hand, Stroboscope has predefined command (i.e., REPORT 

command) in order to get various statistics about the simulated process (Martinez, 1996). 

(4) Defining the stopping criteria 

Defining the stopping criteria for the DES model was another challenge in the SimEvents 

environment. In this case, the lack of resources (soil) was considered as the stopping criteria. To 

stop the simulation once the resources are used up, a signal from the pool of resources (number of 

entities) is used to feed an appropriate signal to the STOP block to terminate the simulation.  

For the input entities shown in Table 3-3, the results of the total duration of simulating the 

earthmoving operation using SimEvents and Stroboscope are 141,204 and 141,211 minutes, 

respectively. The results show that the created model in SimEvents is correct. 

Also, other issues and the suggested solutions regarding the development of the simulation models 

using SimEvents as well as applying the parallel computing are discussed in Appendix G. In order 

to identify the most critical parts of a system which have high impact on the system’s performance, 

profiling can be applied to optimize the performance of a system by determining the system 

behavior, calculating the time spent on each portion of the system (such as simulation and 

optimization parts), resolving the bugs of the system and optimizing the configuration of different 

elements of the system (Appendix F). 
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3.4 Real-valued NSGA-  

Time and cost are the most critical issues in the construction processes, which are related to each 

other and the success of each project depends on these two important elements. Therefore, the 

time-cost trade-off analysis is one of the most challenging problems for project managers, since 

they have to find the optimum strategy to complete the projects successfully on time and within 

the budget considering all other constraints.  

As mentioned in Sections 2.8 and 2.9, optimization techniques are one of the popular methods for 

solving the construction time-cost trade-off problems. There are different encoding procedures 

such as binary, permutation, real, tree encoding, etc. used for converting the engineering problem 

into a language which can be used in optimization techniques. Therefore, choosing the encoding 

procedure used in the multi-objective optimization problems is one of the first challenges that the 

designers are faced with (Gaffney et al., 2010). The traditional GAs use a binary encoding; 

however, real encoding is used in many recent engineering applications due to the fact that 

considerable effort is required to convert a complex engineering problem into a binary 

representation (Gaffney et al., 2010; Michalewicz, 1996). Since real-valued GAs work directly 

with the real values of the variables, there is no problem with genotype-phenotype mapping which 

is required in the binary encoding. The former represents the binary string and the latter is the 

actual value of the problem variables (Deb & Kumar, 1995). Therefore, the fact that there is no 

need of applying any modifications on the variables vector makes this type of GAs more efficient 

for real functions optimization (Iba & Noman, 2012). 
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Real-valued GAs were proposed by Wright (1991) by using the real-valued representation for 

chromosomes in the GAs instead of the bit strings to take advantage of the numerical function 

optimization in comparison with the binary encoding (Köksoy & Yalcinoz, 2008). Therefore, 

unlike standard GAs which use binary strings, real numbers are used as genes in the real-valued 

GAs; thus, the solution of the optimization problem is represented as a real 

vector {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛}. There are two basic approaches in order to deal with this type of GAs. 

In first approach, real numbers are mapped to the binary strings of fixed length, and then, standard 

binary-string GAs are used to solve the problem. In the second approach, which is used in this 

study according to the previous paragraphs, the GA’s standard operators (i.e., crossover and 

mutation) should be modified to be used in real-valued GAs (Iba & Noman, 2012).  

In this study, by specifying the upper and lower ranges of the design variables, the GA may choose 

any number within these ranges. For example, for the number of trailers with the range of one to 

20, any number between 1 and 20 (e.g., 2.56) could be selected by GA which is not applicable in 

reality. On the other words, the search space is continuous which makes the optimization procedure 

more time consuming. In order to enhance the performance of the MOGA from time and logic 

points of view, only integer numbers within the specified bound range, which are represented in 

the queues, should be chosen by the algorithm since they are the required resources for performing 

the bridge construction method. Therefore, real-valued GA is used in this research to apply this 

constraint. The number of queues within the simulation model that are going to be optimized 

specifies the length of the chromosomes, and the value of each gene represents the number of 

required resources. Figure 3-9 illustrates the structure of the chromosomes in the GA used in this 

study. 
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Queues 

 

Q1 Q2 Q3 Q4 ………………………………............ Qn 

3 5 1 10 12 8 21 9 6 15 11 

 

Resources required 

Figure 3-9: Chromosome structure of the real-valued GA 

Since crossover is the fundamental operator for creating new children in real-valued GAs, various 

crossover operators are developed for this kind of GAs, including the blend crossover (BLX-α) 

(Eshelman & Schaffer, 1993), the arithmetic crossover (Michaelewicz, 1994),  the simulated 

binary crossover (SBX) (Deb & Agrawal, 1995), the unimodal normal distribution crossover 

(UNDX) (Ono & Kobayashi, 1997), the simplex crossover (SPX) (Tsutsui et al.,1999), the parent 

centric crossover (PCX) (Deb et al., 2002), etc. (Iba & Noman, 2012).  

Arithmetic crossover is selected in this research because of its simplicity to perform. This 

crossover operator linearly combines two parents’ chromosomes to produce two new children. 

If 𝜆1, and 𝜆2 are random numbers generated during the crossover operation, two new children are 

created according to Eq. 3.8 and Eq. 3.9: 

𝐶ℎ𝑖𝑙𝑑1 =  𝜆1𝑃𝑎𝑟𝑒𝑛𝑡1 + 𝜆2𝑃𝑎𝑟𝑒𝑛𝑡2 
(3.8) 

𝐶ℎ𝑖𝑙𝑑2 =  𝜆1𝑃𝑎𝑟𝑒𝑛𝑡2 + 𝜆2𝑃𝑎𝑟𝑒𝑛𝑡1 
(3.9) 

Where 𝜆1 + 𝜆2 = 1 and 𝜆1, 𝜆2 > 0. These restrictions result in a convex combination, on the other 

hand, affine combination would arise if there are no restrictions on 𝜆′𝑠 (Venkataraman, 2009). In 

this method, two real-valued individuals are taken from the population and the arithmetic crossover 

is carried out to create new candidates (Michalewicz, 1996).   
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As mentioned before, the design variables in this study are the number of different resources used 

in the bridge construction method. Table 3-4 shows the list of these variables for the precast full-

span concrete box girder bridge construction method, along with their minimum and maximum 

values.  

Table 3-4: List of decision variables in multi-objective optimization problem (Mawlana & 

Hammad, 2013b) 

No. Decision Variables Minimum Maximum Increment 

1 Number of trailers (NT) 1 20 1 

2 Precast yard distance (PYD) 10 100 10 

3 Number of cage mold (NCM) 1 20 1 

4 Number of inner molds (NIM) 1 20 1 

5 Number of outer molds (NOM) 1 20 1 

6 Number of preparation crews (NPPCr) 1 20 1 

7 Number of pre-stressing crews (NPRCr) 1 20 1 

8 Number of steel crews (NSCr) 1 20 1 

9 Number of casting crews (NCC) 1 20 1 

10 Number of storage capacity (NSC) 1 50 5 

11 Number of storage time (hr) (NST) 1 84 1 

Also, the overtime policy and the type of cure method that are used in the project are selected by 

the optimization algorithm. In this study, 15 overtime policies (Table 3-1) and two cure methods 

are considered. The two cure methods have durations of 600 and 1200 minutes. 

In Table 3-5, the first and second parents (solutions) represent two combinations of resources. 

Considering 𝜆1 and 𝜆2 as 0.6 and 0.4, respectively, the results of producing new children with 

different resource combinations as illustrated in Table 3-5.  

Applying a normal distribution of changes to genes (Gaussian noise) is one of the most 

straightforward ways of operating the real-valued GA’s mutation. In Gaussian mutation, a random 

number generated from a Gaussian distribution (which is centered on zero with a predefined 



 

79 

 

standard deviation) is added to each gene (real number). The new mutated gene is then replaced in 

the chromosome (Hinterding, 1995). The uniform distribution (UD) is another mutation method 

used in real-valued GAs (Iba & Noman, 2012). 

Table 3-5: Arithmetic crossover operator for real-valued GAs 

Decision Variables Parent 1 Parent 2  Child 1 Child 2 

Number of trailers (NT) 2 4 

 

3 3 

Precast yard distance (PYD) 20 60 36 44 

Number of cage mold (NCM) 6 15 10 11 

Number of inner molds (NIM) 6 8 7 7 

Number of outer molds (NOM) 5 15 9 11 

Number of preparation crews (NPPCr) 1 1 1 1 

Number of pre-stressing crews (NPRCr) 1 1 1 1 

Number of steel crews (NSCr) 5 8 6 7 

Number of casting crews (NCC) 2 2 2 2 

Number of storage capacity (NSC) 25 40 31 34 

Number of storage time (hr) (NST) 15 13 14 14 

3.5 Parallel Computing Approach 

Large number of resources required in complex and large scale construction projects, such as 

bridge construction processes results in a very large search space. Therefore, due to the huge 

number of calculations resulting from this large search space, multiple objective functions, large 

number of replications performed in the stochastic simulation model, and the lack of the GA ability 

in fast convergence to the optimum results in complex and large scale construction projects, there 

is a need for parallel computing in order to reduce the computational time. According to the 

Section 2.10, the master-slave (or global) parallelization and coarse-grained parallel GAs are two 

main parallel paradigms usually used when solving an optimization problem in order to improve 

the performance of the solver. In this research, the former is used as a parallel computing technique 

to decrease the computation time and to efficiently use the full capacity of the computer as shown 

in Figure 3-10.  
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There are basically three important terms in parallel computing that should be defined and 

distinguished carefully. These terms are node, CPU, and core. A node is an object within a 

network, such as several nodes available within a cluster system. CPU is an execution part of a 

computer that performs software programs. Cluster systems may have many CPUs in each node. 

An individual processor of a computer that actually performs programs called core. Usually, each 

CPU has one core in desktop computers; however, in a cluster each CPU may contains many cores 

which is called as a multiprocessor system (Tennessee, 2014). The last two terms are 

interchangeable; however, in this research the usage of these terms are based on the above 

mentioned definitions.  

The proposed parallel platform is implemented on two different machines: the first one is a 

Server/Intel Xeon CPU E5540 @ 2.53 GHz, 48 GB Random Access Memory (RAM), running 

Windows 2010 Dell computer with 12 cores and the second one is a cluster of McGill University 

(Figure 3-11) with properties shown in Table 3-6. There are several number of nodes available in 

this cluster that each node usually has two CPUs and each CPU contains either six or eight cores. 

As mentioned in Section 2.9.1, in the global parallel GA, one of the cores works as manager 

processor to create the initial population of the GA; and then, this population is divided into 

subpopulations which are distributed among the remaining workers (cores). 
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Figure 3-10: Global parallel computing paradigm 

 

Figure 3-11: McGill cluster (Guillimin) environment (McGill-HPC, 2014) 

The variables (members) of each subpopulation are sent from the manager core to the slaves. Each 

slave core then runs the simulation model and calculates the objective functions of the MOGA 

(e.g., the total cost and duration of the process). Thus, the evaluation of the subpopulations is the 

only parallelized operation in this parallel paradigm due to the fact that there is no dependency of 

the fitness evaluation of each individual on the rest of the population (Cantú-Paz, 1998). The 

communications between the workers are necessary only when the cores receive a fraction of the 
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population and after calculating the fitness values of individuals (Cantú-Paz, 1998). After 

gathering the fitness values of the individuals based on the simulation model, the manager worker 

accomplishes the remaining parts of the MOGA (e.g., crossover and mutation operations) and 

finally select the Pareto set of each generation. 

Table 3-6: Specifications of cluster nodes (McGill-HPC, 2014) 

Phase 
Node 

Type 
Count Processors 

Total 

cores 

Memory 

(GB/core) 

Total 

memory 

(GB) 

Phase 1 

SW 600 
Dual Intel Westmere EP Xeon X5650 

(6-core, 2.66 GHz, 12MB Cache, 95W) 

7200 3 21,600 

HB 400 4800 2 9,600 

LM 188 2256 6 13,536 

Phase 2 

SW2 216 
Dual Intel Sandy Bridge EP E5-2670 

(8-core, 2.6 GHz, 20MB Cache, 115W) 

3456 4 13,824 

LM2 146 2304 8 18,432 

XL

M2 

6 96 16 1,536 

1 Quad Intel Sandy Bridge EP E5-4620 

(8-core, 2.2 GHz, 16MB Cache, 95W) 

32 12 384 

1 32 32 1024 

Total or 

Average 
- 1556 - 20,176 3.96 79,936 

3.6 Simulation and Optimization Engines Interface  

In the case of working with more than one node (multiple nodes), the whole system works with 

one master core in one node (the host node, N1) and all other cores in the host node (e.g., S1, 2 to 

S1, n where n is the maximum number of cores available for the host node) plus all existing cores 

in other nodes (e.g., N2, N3, …, Nm where m is the maximum number of nodes available by the 

cluster) are slaves of that master core (M1, 1) as demonstrated in Figure 3-12. In this case the master 

core starts with MOGA and generates the first set of population in the first generation. 
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Figure 3-12: Schematic communication between multiple nodes 

Then, this population will be divided into subpopulations based on the number of available slave 

cores. The variables of the members of each subpopulation are sent from the master core to the 

slaves and each slave core runs the simulation model to calculate the objective functions of the 

MOGA (e.g., the total cost and duration of the process). The output results of the simulations (i.e., 

the fitness values of the members of the subpopulations) are sent back to the master core in order 

to perform crossover and mutation operations and finally select the Pareto set of the first 

generation. Therefore, both interactions between cores (represented by bidirectional arrows in the 

above figure) are through MATLAB variables. In the second generation, the master core generates 

a new set of population and the whole procedure is repeated again until the maximum number of 

generations is reached.  

3.7 Sensitivity Analyses 

3.7.1 Effect of GA Parameters 

Translating a problem to the GA, defining the fitness function(s) for the problem, and setting the 

GA parameters are the three main components in the design procedure of the GAs (Wu et al., 
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2012). The focus of this part of the research is on the third component. Population size, number of 

generations, the operators’ parameters (i.e., crossover probability, mutation probability, etc.), 

stopping criteria, etc. are some instances of the GA parameters.  

The main goal of applying sensitivity analysis is to identify the most and less influential input 

parameters on the GA performance for the specific simulation-based optimization problem used 

in this research. In order to achieve this goal, the effect of three main parameters of NSGA- are 

investigated by varying one parameter each time while fixing the others. Population size, number 

of generations, and crossover probability are the three main parameters for checking the sensitivity 

of the final outputs (i.e., quality of the objective functions) against the variations in their values. 

The GA is then tuned based on the best obtained parameters which maximize the GA’s 

performance (Sugihara, 1997). 

The number of individuals created randomly for exploring the whole search space as much as 

possible in each generation is called the population size (Sivanandam & Deepa, 2008). The GA 

ability to find the global optimum results instead of local ones mainly depends on the population 

size of the GA (Iba & Noman, 2012). However, the complexity of each problem determines the 

population size of the GA, the larger population size results in more diversity of points in the 

search space which leads to better and more optimized results. On the other hand, when the size 

of population increases, it takes more time and memory for the GA to converge. Practically, the 

population size of around 100 is common for different purposes which can be changed based on 

the required balance between the time and memory of the computer and the quality of the final 

solutions (Sivanandam & Deepa, 2008; Kamil et al., 2013).  
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The number of generations is another important factor when using the GA. The number of 

generations can vary for each problem; however, the range of 50 to 500 generations is typically 

used for the GA optimization problems (Mitchell, 1998).  

According to Section 3.4, the crossover probability (𝑃𝑐) in each generation specifies the percentage 

of the total population which goes through the crossover operation to produce new children from 

the parents of the previous generation. There are different ranges suggested for this parameter by 

researchers. For example, Roeva (2008) used the range of [0.5, 1] with an interval of 0.1 for her 

experiments. Several researches demonstrated that the best crossover probability suggested values 

are between 0.7 and 1 (mostly around either 0.7 or 0.8) (Sugihara, 1997; Kamil et al., 2013; Roeva 

et al., 2013).  

3.7.2 Effect of Number of Cores 

The performance of the proposed parallel platform is compared with respect to the computation 

time. The time which is needed to reach to the final near optimum results using the proposed 

framework is calculated for different numbers of cores. For this purpose, all tests took place on the 

above mentioned server machine with Windows 2010 Professional operating system and the 

McGill University cluster (Guillimin) within the MATLAB R2014a environment. The calculation 

is done for both the deterministic and probabilistic simulation-based optimization models by 

assigning deterministic and random distributions to the activities’ durations, respectively. 

3.8 Comparison of Different Pareto Fronts 

As mentioned in Section 2.8, MOGAs generate a set of optimum solutions instead of one optimal 

answer as in the case of single objective optimization methods. This causes decision makers to 
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face with some troubles finding the best optimum set of solutions when there are more than one 

Pareto front for a problem, since it is difficult to compare the Pareto fronts that are not definitely 

dominated by one of them; especially when they intersect with each other (Figure 3-13). In order 

to alleviate this limitation, many indicators have been introduced which enable easy comparison 

of Pareto fronts from the point of view of the quality of the optimum solutions, by converting a set 

of optimum solutions to a single value (Bradstreet, 2011; Zitzler et al., 2003). 

The hypervolume indicator (also known as Lebesgue measure (Laumanns et al., 2000) or S-metric 

(Fleischer, 2003; Purshouse, 2003; Zitzler, 1999) is one of the most popular indicators for multi-

objective evolutionary algorithms. The hypervolume indicates the dominated space (i.e., area or 

volume for two objectives and three objectives optimization problems, respectively) between the 

optimum sets and a reference point. The larger the hypervolume, the better the set of optimum 

solutions, since it indicates that either the Pareto front is more toward the origin or it has more 

diversity in optimum solutions in comparison with the other Pareto fronts (Bradstreet, 2011). Thus, 

the hypervolume indicator factors in both the distance of the Pareto fronts from the best set of 

optimum solutions and the diversity of the optimal solutions (Zitzler et al., 2003).  

This indicator is measured relative to a selected reference point. There are different ways to choose 

the proper reference point. One of the most common methods is to select the worst existing solution 

among all optimal solutions (Naujoks et al., 2005; Bradstreet, 2011). Therefore, the maximum 

values of each objective function (e.g., maximum cost and maximum total duration of the project 

in this study) form the coordinates of the reference point in a minimization problem. For the multi-

objective optimization problems with two objective functions, the hypervolume is defined as the 
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area bounded by the selected reference point and the Pareto front’s points. Figure 3-13 shows this 

dominated area.  

 

Figure 3-13: Comparison of two intersecting Pareto fronts using Hypervolume Indicator (Adopted 

from Zitzler et al., 2003)  

The hypervolume indicator quantifies the performance of a set of optimum solutions in different 

ways.  It is used to compare the Pareto fronts after finishing the optimization procedure or it can 

be used as part of the selection function within the optimization procedure to guide the search and 

improve the quality of optimum solutions (Auger et al., 2009; Naujoks et al., 2005). 

3.9 Summary and Conclusions 

The needs, motivations and benefits of using the SimEvents tool to simulate the precast box girder 

bridge construction processes were investigated in this chapter. Although simulating construction 

processes using special purpose simulation tools is much easier to build and understand than using 

SimEvents, the combination of those tools with optimization tools is difficult and an integration 
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platform is needed. The benefits reached by combining the simulation models with the 

optimization technique in the same MATLAB environment were discussed, and the simulation-

based optimization framework was proposed.  

The following conclusions can be stated: (1) The integration of SimEvents and NSGA- in 

MATLAB made it possible to export the simulation results of the simulation-based MOGA for 

precast box girder bridge construction processes to a shared workspace and linking them with the 

optimization module without the need for developing an interface or integration programming; (2) 

integrating the simulation-based optimization in a single environment, that supports parallel 

computing and runs on a cluster, results in reducing the computation time in comparison with the 

conventional integration solutions; and (3) The factors that affect the performance of the 

simulation-based MOGA were identified along with the hypervolume method for comparing the 

Pareto fronts as will be discussed in Chapter 4.  
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CHAPTER 4  IMPLEMENTATION AND CASE STUDY 

4.1 Introduction 

The implementation of the proposed HPC parallel simulation-based optimization framework is 

investigated in this chapter to highlight the strengths of the proposed method. Also, a hypothetical 

case study is considered to demonstrate the feasibility of the developed models, and to analyze the 

performance of the simulation model outputs in the probabilistic and deterministic modes. Finally, 

HPC is applied to investigate the time saving achieved in comparison with the regular computation 

methods.  

4.2 Simulation Models Using SimEvents 

In this research, the precast full-span concrete box girder construction method with launching 

gantry which is developed before in Stroboscope in (Mawlana & Hammad, 2013b) will be used to 

validate the developed MATLAB SimEvents simulation model. In addition, the precast segmental 

concrete box girder construction method with launching gantry will be modeled in the simulation 

tool.  

4.2.1 Precast Full Span Concrete Box Girder Construction Method 

4.2.1.1 SimEvents Simulation Model 

The concrete bridge consists of 500 spans with identical length of 25 m. The simulation process 

starts by using the resources needed for commencing the first task which is the erection of the 

reinforcement and stressing ducts of the bottom slab and the webs of the full-span, and then; the 
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inner mold is installed followed by placing the reinforcement and stressing ducts of the top slab 

by steel crews.  

After finishing the reinforcement work, the rebar cage is put into an outer mold and the casting is 

done by the casting crews. When the concrete cured and reached an acceptable strength, the inner 

mold is removed. Next, the first pre-stressing procedure is performed by the pre-stressing crews 

to make the full-span ready for transportation to the storage area where the full-span is completely 

cured and stored (the second stage of pre-stressing process). After that, the precast full-span girder 

is transported to the site by means of a trailer for erection. The trailer hauls to the position where 

the onsite crane unloads the precast span from the trailer and loads it to a trolley. The trailer, then, 

returns to the storage area to load another span. The girder is simultaneously delivered along the 

completed part of the bridge by the trolley to its launching location where launching gantry 

repositions to the location of new span.  

Afterwards, the full-span is lifted from the trolley by means of the gantry's lifting frames, and the 

trolley returns to be loaded again. The girder is moved forward to reach to its right position to be 

placed between two piers. Then, the permanent bearings are installed to undertake the load of the 

span which is transferred from the temporary bearings to the permanent bearings. In the next step, 

the launcher repositions to lift the next full-span (Mawlana & Hammad, 2013b). Figure 4-1 

illustrates the developed SimEvents simulation model of bridge construction using precast full-

span launching method. 
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4.2.1.2 Stroboscope Simulation Model 

The Stroboscope simulation model of the bridge construction using precast full span launching 

method is developed in (Mawlana & Hammad, 2013b) and is shown in Figure 4-2. 

4.2.2 Validation of Full Span Simulation Model (Deterministic Mode) 

In order to validate the deterministic SimEvents simulation model of the precast full-span concrete 

box girder construction method with launching gantry, the durations of different activities of the 

simulation model are considered deterministic (fixed numbers) since the deterministic model is 

easier to build to approximate the reality (Appendix A).  

Table 4-1 illustrates the fixed durations of the deterministic simulation model’s activities. For 

different combinations of resources, simulation models are run with SimEvents and Stroboscope, 

and in the next step the results of the two models are compared as shown in Table 4-2. As obvious 

from this table, there is no difference between the results of two models for all considered 

combinations of the resources.   

4.2.3 Validation of Full Span Simulation Model (Probabilistic Mode) 

In the next step, the probabilistic simulation model was built by assigning random distributions to 

the activities’ durations to consider uncertainty associated with the construction processes. The 

random distributions of activities durations are presented in Table 4-3. Thus, every time the model 

is run, a different set of outputs is obtained due to distinct seed numbers generated for each run of 

the simulation model.   
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Figure 4-1: Simulation model of bridge construction using precast full-span launching method 
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Figure 4-2: Simulation Model of Bridge Construction Using Full Span Launching Method 

(Mawlana & Hammad, 2013b) 

Table 4-1: Activities durations for deterministic simulation model  

Activity Duration  (minutes) Activity Duration  (minutes) 

BottomSlab_Web 1673 * Trailer_Loading 60 ** 

Inner_Mold 300 * Trailer Haul F (Distance, Speed) 

TopSlab 1979 * Trolley_Loading 60 ** 

LiftToMold 45 Trailer_Return F (Distance, Speed) 

Cast_Span 1544* Trolley_Travel F (Distance, Speed) 

Span_Curing (600 or 1200) * Reposition 240 ** 

RemoveInnerMol 255 * Erection_Span 240 **  

Posttension_1st 240 * Trolley_Return F (Distance, Speed) 

LiftToStorage 60 ** Prepare_Bearing 240 ** 

Posttension_2nd 240 * Load_Transfer 60 ** 

*  Adapted from (Marzouk, El-Dein, & El-Said, 2007)   

** Adapted from (VSL International Ltd, 2013) 
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Table 4-2: Comparison of the total duration and cost of the deterministic simulation models with 

SimEvents and Stroboscope 

Decision Variables First Set Second Set Third Set 

Number of trailers (NT) 1 2 4 

Precast yard distance (km) (PYD) 10 10 60 

Number of cage mold (NCM) 1 2 1 

Number of inner molds (NIM) 1 2 1 

Number of outer molds (NOM) 1 2 2 

Number of preparation crews (NPPCr) 1 4 6 

Number of pre-stressing crews (NPRCr) 1 4 6 

Number of steel crews (NSCr) 1 4 6 

Number of casting crews (NCC) 1 4 6 

Number of storage capacity (NSC) 1 10 50 

Number of storage time (hr) (NST) 1 10 50 

Overtime Policy (OP) 1 2 4 

Duration of cure method (DCM) 1 2 2 

Objective Functions    

Duration (days) (SimEvents) 1751.67 487.31 627.92 

Duration (days) (Stroboscope) 1751.67 487.31 627.92 

Cost (M$) (SimEvents) 1462.86 1568.44 2650.31 

Cost (M$) (Stroboscope) 1462.86 1568.44 2650.31 

Also, in order to assess the risk associated with the construction processes, replications were 

performed. The concept of replications is based on running the simulation model for a large 

number of times (for example 1000 times); and therefore, each replication will have different 

performance outcomes (in this case, total duration and cost of the project) (Nelson et al., 2013).  

For different combinations of resources, simulation models are run with SimEvents (Appendix B) 

and Stroboscope, and in the next step the results of the two models are compared as shown in 

Table 4-4. As obvious from this table, there are either very small or no differences between the 

results of two models for all three combinations of the resources.  Selection of different seed 

numbers by two simulation tools for each run of the simulation models in the probabilistic mode 

results in small differences in some set of resources combinations. 
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Table 4-3: Activities durations for stochastic simulation model (Mawlana & Hammad, 2013b) 

Task Duration  (minutes) Task Duration  (minutes) 

BottomSlab_Web Normal [1673, 165.84] * Trailer_Loading Triangular[45, 60, 75] ** 

Inner_Mold Uniform[120, 480] * Trailer Haul F (Distance, Speed) 

TopSlab Normal[1979, 281.69] * Trolley_Loading Triangular[45, 60, 75] ** 

LiftToMold Triangular[30, 45, 60] Trailer_Return F (Distance, Speed) 

Cast_Span Normal[1544, 75.24] * Trolley_Travel F (Distance, Speed) 

Span_Curing (1200 or 600) * Reposition Triangular[180, 240, 300]  

RemoveInnerMol Uniform [90,240] * Erection_Span Triangular[180, 240, 300] **  

Posttension_1st Uniform[120,360] * Trolley_Return F (Distance, Speed) 

LiftToStorage Triangular[45, 60, 75] ** Prepare_Bearing Triangular[180, 240, 300] ** 

Posttension_2nd Uniform[120,360] * Load_Transfer Triangular[45,60, 75] ** 

*  Adapted from (Marzouk et al., 2007)   

** Adapted from (VSL International Ltd, 2013)  

4.2.4 Simulation of Precast Segmental Concrete Box Girder Construction Method using 

SimEvents 

This bridge construction method is also modeled from scratch using SimEvents to show the ability 

of developing different simulation models within this simulation tool.  

Like the previous construction method, the simulation process starts by using the resources needed 

for commencing the first task which is erection of the rebar cage. After finishing the reinforcement 

work, the rebar cage is put into a mold to do the casting by the casting crews. When the concrete 

cured and reached an acceptable strength, the match cast is transferred to the temporary storage 

area. At the same time, the fresh segment repositions to the location of the match cast to be cast 

and cured. After that, the segments in the storage area are transported to the main site by means of 

trailers for erection. The trailer hauls to the position where the winch trolley of the launching gantry 

will lift the precast segment from the trailer. The trailer, then, returns to the storage area to load 

another segment. Segments are rotated and transferred one by one along the two piers in order to 
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place them in their right position. After reaching to the adequate number of segments to form a 

full span, pre-stressing crews fix the segments by using temporary fixing materials. When a full 

span is made from connected segments, post tensioning is applied by pre-stressing crews. The 

temporary fixing bars are removed simultaneously. Then, the load of the span is transferred from 

the launching girder to the piers. In the next step, the launcher repositions to lift the next set of 

segments, and the process repeats again. The developed simulation model of bridge construction 

using precast segmental launching method is shown in Figure 4-3. 

4.3 Integration of MATLAB MOGA Optimization Tool and SimEvents Simulation 

Model 

The MOGA optimization initializes by generating the first set of population using the default 

defined function in MATLAB using a uniform random number generator. The variables’ upper 

and lower bounds are defined as a matrix with two rows and the number of columns equals to the 

number of variables. If the defined matrix has one row and two columns, then all the variables 

have the same range. The default values for the upper and lower bounds are zero and one, 

respectively. 

This means that the maximum and minimum values for the all variables are one and zero, 

respectively. As shown in Table 3-4, the bounding matrix in this study is defined as follow: 

Bounding Matrix = [ 
1 10 1 1 1 1 1 1 1 1 1 1 1 

] 
20 100 20 20 20 20 20 20 20 50 84 15 2 

The main code of applying NSGA- within the integrated proposed framework as well as all other 

required functions within the optimization algorithm are shown in Appendices C and D, 

respectively. 
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Figure 4-3: Simulation model of bridge construction using precast segmental launching method 
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Table 4-4: Comparison of the total duration and cost of the probabilistic simulation models with SimEvents and Stroboscope 

Decision Variables First Set Second Set Third Set 

Number of trailers (NT) 9 7 8 

Precast yard distance (km) (PYD) 28 30 34 

Number of cage mold (NCM) 11 8 10 

Number of inner molds (NIM) 12 10 11 

Number of outer molds (NOM) 9 9 8 

Number of preparation crews (NPPCr) 3 2 3 

Number of pre-stressing crews (NPRCr) 10 2 3 

Number of steel crews (NSCr) 11 5 7 

Number of casting crews (NCC) 7 4 5 

Number of storage capacity (NSC) 31 27 23 

Number of storage time (hr) (NST) 85 47 44 

Overtime Policy (OP) 6 1 6 

Duration of cure method (DCM) 2 1 2 

Objective Functions  Differences  Differences  Differences 

Duration (days) (SimEvents) 482 
0% 

1261 
0.32% 

484 
0% 

Duration (days) (Stroboscope) 482 1257 484 

Cost (M$) (SimEvents) 17810 
0.067% 

2200 
0% 

11883 
0.03% 

Cost (M$) (Stroboscope) 17798 2200 11887 
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According to Section 3.6, the simulation-based optimization framework works with one master 

core in one node (the host node) and all other cores in the host node and other nodes are slaves of 

that master core. After dividing the population into subpopulations based on the number of 

available slave cores, there is a need to transfer the variables of each subpopulation from the master 

core to the slaves. In MATLAB environment, this transition is performed using “set_param” 

command (Appendices A and B). This command sets the selected values of the simulation model 

variables (resource combinations) by the GA within the simulation model. Each slave core then 

runs the simulation model and calculates the objective functions of the MOGA (i.e., the total cost 

and duration of the process).  

The output results of the simulations (the fitness values of the members of the subpopulations) are 

sent to the master core in order to perform crossover and mutation operations. The non-dominated 

rank and distance measure of the individuals are used to produce the next generation of population 

to finally reach to the set of optimal trade-off solutions known as the Pareto front. The relative 

fitness of each individual determines the non-dominated rank of that individual. When solution p 

has better value in at least one objective function in comparison with solution q, it has lower rank 

than q and it dominates solution q. The distance measure of a solution is used when two solutionss 

have equal ranks; thus, neither one dominates the other (Bradstreet, 2011; Zitzler et al., 2003).  

As mentioned in Section 3.5, global parallel GA is used in this research to decrease the 

computation time and to efficiently use the full capacity of the computer due to the huge number 

of calculations resulting from the large search space, multiple objective functions, and large 

number of replications performed in the stochastic simulation model. Regarding running 

SimEvents simulation model in the parallel mode, the SIM command is used to run the simulation 
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model, and enclose this command within a PARFOR loop to perform the replications. A PARFOR 

loop is useful in situations where there are many loop iterations of a simple calculation, such as a 

Monte-Carlo simulation, DES or doing replications. PARFOR divides the group of loop iterations 

into subgroups, so that each worker (core) executes a portion of the total number of iterations. 

PARFOR loops are also useful when there are loop iterations that take a long time to execute, 

because the workers can execute iterations simultaneously (Appendices A and B). After having 

done the number of replications required, the mean values of the objective functions are calculated 

as final solutions. 

4.4 Validation of the Proposed Optimization Model using Full Span Construction 

Method 

The proposed integrated simulation-based optimization model is validated by comparing the 

optimal solutions obtained from NSGA- optimization algoritm with those obtained from fast 

messy GA (fmGA) which is another type of GAs (Mawlana & Hammad, 2013b).  

Like the proposed MOGA, fmGA works based on the main principles of the simple GA with some 

modifications to alliviate the shortcomings of the messy GA and the simple GA. The fmGA 

consists of two loops called the inner and outer loops. Each outer loop, which is also called an era, 

perfoms an inner loop. The optimization starts with the random generation of the initial population 

within the inner loop. Then, the optimal solutions are evalutaed based on their fitness values and 

some selection and filtering processes (i.e., cut and splice, mutation) are applied on these solutions 

to increase the probability of finding the better solutions in the next generation. Finally, the 

optimization procedure stops when the termination critera are reached (Goldberg et al. 1993). 
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Figure 4-4 compares the Pareto solutions attained by the proposed multi-objective NSGA- and 

by the fmGA (Mawlana & Hammad, 2013b). In order to compare under the same main parameters, 

the number of generations and the size of the population are set to 2000 and 100, respectively, for 

both algorithms. In some cases, the two optimization algorithms produce almost close optimum 

solutions in terms of the project cost and duration as shown in Figure 4-4. However, the fmGA 

overall generates more costly and more time consuming optimum solutions in comparison with 

NSGA-. For example, there are 5% and less than 1% differences between the best optimum 

solutions obtained by the fmGA and NSGA- from cost and time points of view, respectively. 

Also, there are almost 11% and 1% decrement in terms of the average project cost and duration in 

the solutions generated by NSGA- in comparison with those generated by fmGA, respectively. 

The hypervolume indicator is also used to compare the two Pareto sets by mesuring the dominated 

area of each Pareto set according to a selected reference point (Zitzler & Thiele, 1999). This 

comparison results in 19.41% and 18.72% of the hypervolume indicator for the fronts generated 

by NSGA- and fmGA, respectively. The larger hypervolume indicator of NSGA- indicates the 

better performance of this optimization algorithm in comparison with the fmGA from quality of 

solutions point of view. In addition, the total time required to complete the run of the proposed 

framework using NSGA- and fmGA was 5.33 and 11.2 hours, respectively. These results 

demonstrate the better performance of NSGA- in comparison with the fmGA from computation 

time point of view. However, it is important to note that two mentioned algorithms were run on 

two different machines with different properties (i.e., different number and type of cores). 

Integrated simulation model with NSGA- algorithm was run on one node of a cluster system with 

12 cores and Dual Intel Westmere EP Xeon X5650 property; however, 4-core machine with Intel 
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Core (TM) i7-2600 was used to run the fmGA. These differences affect the required computation 

time.  

4.5 Sensitivity Analyses on the Server Machine 

As stated in Section 3.7, the main goal of applying sensitivity analysis is to identify the most and 

less influential input parameters on the GA performance. Population size, number of generations, 

and crossover probability are the three main parameters for checking the sensitivity of the final 

outputs (i.e., quality of the objective functions) against the variations in their values. The outcome 

of this analysis is expected to provide a better understanding of how changes in the various 

parameters of GA affect the total cost and duration of the construction project.   

 

Figure 4-4: Comparison of Pareto solutions obtained from NSGA- and fmGA (results of fmGA 

are adapted from (Mawlana & Hammad, 2013b)) 
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In order to perform the sensitivity analysis, uniform random number generator, arithmetic 

crossover, and Gaussian mutation are considered as the creation, crossover, and mutation 

functions, respectively. In the first phase of performing sensitivity analysis (phase I), the 

configuration ranges considered for the number of generations and size of the population of 

optimization algorithm are given in Table 4-5.  

Also, according to the random nature of the used MOGA algorithm five runs of NSGA- are 

performed for each case of the sensitivity analysis to ensure the consistency of the results. The 

final results are the average values of solutions obtained from those five runs. Considering these 

ranges, phase I results in 80 combinations. 

Table 4-5: List of NSGA-𝚰𝚰 Parameters (Phase I) 

NSGA-𝚰𝚰 Parameters Range 

Number of Generations 500 1000 2000 4000 

Size of Population 50 100 200 400 

After determining the best number of generations and the best size of population based on the 

results from the phase I of the sensitivity analysis (considering both the quality of the optimal 

solutions and the time required to reach to those solutions), the second phase of sensitivity analysis 

(phase II) is conducted. Table 4-6 shows the ranges considered for the remaining parameter of 

NSGA-ΙΙ (e.g., crossover probability).  

Table 4-6: List of NSGA-𝚰𝚰 Parameters (Phase II) 

NSGA-𝚰𝚰 Parameters Minimum Maximum Increment 

Crossover Probability 0.5 1 0.1 
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The crossover and mutation probabilities are depended on each other in NSGA-ΙΙ which means 

the summation of these two probabilities is always equal to one. For example, if the crossover 

probability is selected as 0.7, the mutation probability is automatically set as 0.3. Therefore, 

finding the best crossover probability results in determination of the best mutation probability as 

well. 

4.5.1 Effect of GA Parameters 

4.5.1.1 Effect of Population Size  

The MOGA used by MATLAB considers ‘15*numberOfVariables’ as a default value for the 

population size which may not be very accurate for problems with large number of variables 

(MathWorks, 2013a). Note that there are 13 decision variables defined in the proposed framework, 

the default value for the population size is 195. This number can be changed and specified within 

either the MOGA script (command line) or the Optimization app in Global Optimization Toolbox 

of MATALB. In this study, the number of generations are fixed to 500, 1000, 2000 and 4000 for 

each set of population size of 50, 100, 200 and 400. 

As shown in Figure 4-5, for the number of generations of 500, almost the same optimal solutions 

are produced by population size of 50 and 100. However, by increasing the population size to 

either 200 or 400 the quality of solutions is improved; hence, the best optimum solutions are 

obtained for higher size of population. According to Section 3.8, the hypervolume of the Pareto 

fronts is calculated to show the dominated area bounded between the Pareto front points and the 

reference point (Table 4-7). In order to calculate the hypervolume for these four Pareto fronts, the 

reference point is selected based on the maximum value of both objective functions in all fronts. 
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This results in the reference point with the coordinates of 1248 (days) and 4289 (M$). These 

coordinates belong to the Pareto front with the population size of 50 which has the highest total 

duration and cost of the project among the remaining Pareto fronts. All the hypervolumes are 

calculated based on the area dominated between this reference point and the Pareto front’s points 

and are shown in percentage (Appendix E). 

 

Figure 4-5: Non-Dominated Pareto solutions for different population sizes with 500 generations 
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generated by 400 population are very similar to those obtained from population size of 200. 

Therefore, considering the extra computational burden imposed to the system by doubling the size 

of population, 200 seems to be the promising population size for the fixed 500 generations. The 

larger hypervolume indicates that either the Pareto front is closer to the origin (better convergence) 

or has more diversity of the optimum solutions (wider Pareto front). 

 

Figure 4-6: Reference point for average Pareto solutions for different population sizes with 500 

generations 
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population with the hypervolume of 15.89%. The same results are achieved for the 2000 

generations with the highest hypervolume for population size of 200 (20.92%) in comparison with 

other sizes of population.  

Table 4-7: Hypervolume percentage of the Pareto fronts produced by the fixed number of 

generations (Normalized values in the lower rows) 

Number of Generations 
Size of Population 

50 100 200 400 

500 
13.87 14.12 16.11 15.87 

86.10 87.67 100 98.51 

1000 
15.36 14.73 15.89 15.88 

96.66 92.70 100 99.92 

2000 
19.72 19.00 20.92 20.76 

94.27 90.85 100 99.28 

4000 
18.47 20.09 19.51 19.72 

91.92 100 97.08 98.17 

According to Table 4-7 and Figure 4-9, the quality of optimum solutions improve by almost 8% 

from population size of 50 to 100 for 4000 generations. However, increasing the size of population 

to 200 and 400 does not enhance the optimum solutions since the Pareto front of the population 

size of 100 has the highest hypervolume among other population sizes. Thus, the 100 population 

size is selected as the best size of population for the number of generations to 4000. 

4.5.1.2 Effect of Number of Generations  

There are three different stopping criteria in MATLAB NSGA- and the occurrence of any of 

them results in stopping the GA algorithm. These criteria are the maximum number of generations 

which has a default value of ‘100*numberOfVariables’, the average change in the spread of the 

Pareto front with a default value of 100 (convergence criterion), and the maximum time limit in 

seconds which is defined as infinity. When the value of the convergence criterion is less than the 



 

108 

 

specified tolerance, it means there is no improvement in the optimum solutions and the 

optimization will stop since the Pareto fronts are converged (MathWorks, 2014e). 

 

Figure 4-7: Non-Dominated Pareto solutions for different population sizes with 1000 generations 

Considering 13 variables defined in the proposed framework, the default value for the number of 

generations is 2600. Therefore, in order to investigate the effect of this parameter on the values of 

the objective functions, this number is set to 500, 1000, 2000, and 4000. The sensitivity analysis 

is performed four times by fixing the population size to 50, 100, 200 and 400.  

Figure 4-10 shows the Pareto fronts obtained for the fixed population size of 50 and different 

number of generations. The dominated areas between these Pareto fronts and the selected reference 

point are calculated and the normalized values are shown in Table 4-8. 
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Figure 4-8: Average Pareto solutions for different population sizes with 2000 generations 

 
Figure 4-9: Average Pareto solutions for different population sizes with 4000 generations 
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According to Figure 4-10 and Table 4-8, there is almost 6% improvement in the quality of optimal 

solutions by increasing the number of generations from 500 to 2000 for population size of 50; 

however, more increase to 4000 generations make the solutions worse in most of the cases. 

Therefore, 2000 generations is the best number of generations for the population size of 50 to 

create optimal solutions with the hypervolume of 18.98% (the highest hypervolume among other 

options). 

As shown in Figure 4-11 and Table 4-8, for the fixed population size of 100, the optimum solutions 

improve by increasing the number of generations to 4000 generations with more diversity of 

solutions (the highest hypervolume equal to 20.72%).  

 

Figure 4-10: Non-Dominated Pareto solutions for different number of generations with population 

size of 50 

1400

1900

2400

2900

3400

3900

4400

850 900 950 1000 1050 1100 1150 1200 1250

C
O

S
T

 (
M

$
)

DURATION (DAYS)

NDP-Gen500

NDP-Gen1000

NDP-Gen2000

NDP-Gen4000



 

111 

 

Table 4-8: Hypervolume percentage of the Pareto fronts produced by the fixed size of population 

(Normalized values in the lower rows) 

Size of Population  
Number of Generations 

500 1000 2000 4000 

50 
17.93 18.95 18.98 18.80 

94.46 99.85 100 99.06 

100 
18.75 19.20 19.10 20.72 

90.53 92.70 92.18 100 

200 
19.73 18.57 19.69 19.14 

100 94.14 99.78 97.02 

400 
14.59 13.65 14.36 14.12 

100 93.51 98.42 96.80 

 

Figure 4-11: Non-dominated Pareto solutions for different number of generations with population 

size of 100 
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points calculated in Table 4-8 the best answers are found for 500 generations. Therefore, there is 

no need to increase the number of generations and impose more computation time and cost to the 

system in these cases. 

Table 4-9 shows the computation time needed to run the simulation-based optimization model in 

deterministic mode for five times as well as the average computation time for all considered 

number of generations and population sizes. These results are also illustrated in Figure 4-15 and 

Figure 4-16 for fixed number of generations and fixed population sizes, respectively.  

 

 Figure 4-12: Non-dominated Pareto solutions for different number of generations with 

population size of 200 

According to these two figures, the required computation time is almost doubled by either making 

the number of generations or the size of population double in all cases. 
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4.6 Sensitivity Analyses on the Cluster 

The same sensitivity analysis is performed on the McGill cluster (Guillimin) to investigate the 

effect of changing in the GA parameters as well as the number of cores used to run the integrated 

simulation-based optimization model on performance of the proposed framework.  

 

Figure 4-13: Non-dominated Pareto solutions for different number of generations with population 

size of 400 

4.6.1 Effect of GA Parameters 
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4.6.1.1 Effect of Population Size  

The hypervolume of the Pareto fronts by fixing the number of generations and varying the 

population size is shown in Table 4-10. Also, Figure 4-14 shows the Pareto fronts obtained for the 

fixed 500 generations and different sizes of population. 

Table 4-9: Computation time (min) for deterministic mode on the server machine with 12 cores 

Size of 

Population 

Number of 

Generations  

Run No. 
Average 

1 2 3 4 5 

50 

500 63.55 58.24 63.89 58.73 64.10  61.10 

1000 119.91 118.67 118.75 118.07 117.94 118.67 

2000 237.75  238.11  237.06 237.22   237.08 237.41 

4000 474.18 472.82 473.38 474.61 471.78 473.35 

100 

500 110.40 109.30 110.10 109.31 110.15 109.85 

1000 219.65 219.37 220.91 221.15 221.12 220.44 

2000 443.92 441.42 446.12 441.66 440.56 442.74 

4000 885.65 886.41 879.99 885.69 886.96 884.94 

200 

500 218.10 220.68 219.12 220.11 221.09 219.82 

1000 435.65 439.83 435.91 440.50 440.43 438.46 

2000 884.85 875.38 878.75 879.11 878.69 879.36 

4000 1741.84 1755.78 1759.11 1756.63 1749.21 1752.51 

400 

500 440.37 434.62 438.51 440.02 435.90 437.88 

1000 883.12 879.36 878.24 880.15 870.85 878.34 

2000 1726.64 1729.73 1714.87 1718.26 1728.06 1723.51 

4000 3452.94 3497.58 3451.13 3443.78 3463.69 3461.82 

The population size of 400 gives the best optimum solutions which are not dominated by other sets 

of optimum solutions obtained from other sizes of population based on the results shown in 

Figure 4-14 and Table 4-10. The same behavior is observed for the 1000 and 2000 generations 

(Figure 4-17 and Figure 4-18). Figure 4-19 illustrates the four Pareto fronts generated by 4000 

generations and different number of population sizes. All the population sizes produce very similar 

optimum solutions; however, the population size of 200 is the best based on the hypervolume of 

the Pareto fronts calculated in Table 4-10. 
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According to the small difference between the optimum solutions generated by population sizes 

of 200 and 400 for 4000 generations (0.62%) and the results obtained and interpreted for other 

number of generations, it is concluded that the population size of 400 perform well for all number 

of generations. 

Table 4-10: Hypervolume percentage of the Pareto fronts produced by fixed number of generations 

(Normalized values in the lower rows) 

Number of Generations 
Size of Population 

50 100 200 400 

500 
12.07 10.82 12.77 12.92 

93.42 83.73 98.84 100 

1000 
11.09 12.67 13.03 13.42 

82.64 94.43 97.07 100 

2000 
13.80 13.72 13.09 14.77 

93.43 92.86 88.57 100 

4000 
13.49 13.27 13.76 13.68 

97.99 96.42 100 99.38 

 
Figure 4-14: Non-Dominated Pareto solutions with 500 generations 
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Figure 4-15: Comparison of deterministic computation time for fixed number of generations 

(Server) 

 
Figure 4-16: Comparison of deterministic computation time for fixed population sizes (Server) 
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4.6.1.2 Effect of Number of Generations  

Like what was discussed in previous sections, the effect of changing the number of generations to 

500, 1000, 2000, and 4000 while fixing the size of population is investigated in this section. 

Figure 4-20, Figure 4-21, Figure 4-22, and Figure 4-23 demonstrate the Pareto fronts obtained for 

different number of generations and the fixed population size of 50, 100, 200, and 400, 

respectively. Also, the dominated areas between these Pareto fronts and the selected reference 

points for each set of four fronts are calculated in Table 4-11. Based on the obtained results, 2000 

generations produce the best optimum solutions for population sizes of 50, 100, and 400. Whereas, 

the combination of 500 generations and population size of 200 is the best combination for fixed 

200 population size. 

 
Figure 4-17: Non-Dominated Pareto solutions for different population sizes with 1000 generations 
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The computation time for five deterministic runs of proposed integrated framework along with the 

average computation time of those five runs are illustrated in Table 4-12. These results are also 

illustrated in Figure 4-25 and Figure 4-26 for fixed number of generations and fixed population 

sizes, respectively. According to these two figures, the required computation time is almost 

doubled by either making the number of generations or the size of population double in all cases. 

 

Figure 4-18: Non-Dominated Pareto solutions for different population sizes with 2000 generations 
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Table 4-11: Hypervolume percentage of the Pareto fronts produced by fixed size of population 

(Normalized values in the lower rows) 

Number of Generations 
Size of Population 

500 1000 2000 4000 

50 
14.16 12.52 15.18 14.09 

93.28 82.49 100 92.82 

100 
13.50 15.33 15.82 14.5 

85.37 96.95 100 91.67 

200 
11.57 11.09 10.94 10.53 

100 95.83 94.51 90.97 

400 
14.77 14.66 15.07 13.84 

97.97 97.26 100 91.81 

 

 

Figure 4-19: Non-Dominated Pareto solutions for different population sizes with 4000 generations 
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4.7 Overall comparison of solutions obtained on server and cluster 

In order to further investigation on the effect of GA parameters on the values of the objective 

functions, the most effective number of generations and size of population are selected based on 

the sensitivity analysis performed so far.  

To do so, one reference point is considered for all 32 cases of sensitivity analysis based on the 

worst condition from both total cost and duration points of view (e.g., the maximum values of the 

total cost and total duration of the project among all 32 Pareto fronts). Then, the hypervolume 

percentages of all those Pareto fronts are calculated. 

 

Figure 4-20: Non-Dominated Pareto solutions for different number of generations, with population 

size of 50 
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Table 4-13 and Table 4-14 show the results obtained by the server machine and the cluster, 

respectively. In these cases, the normalized values of the hypervolume percentages are calculated 

by dividing each hypervolume by the maximum hypervolume percentage of the whole table since 

they are all calculated based on the same reference point. 

Table 4-12: Computation time (min) for deterministic runs on one node of the cluster with 12 cores 

Size of 

Population 

Number of 

Generations  

Run No. 
Average 

1 2 3 4 5 

50 

500 43.94 42.25 42.88 43.90 42.43 43.08 

1000 84.80 87.05 84.71 84.66 84.62 85.17 

2000 164.15 173.60 163.66 163.96 164.03 165.88 

4000 326.03 327.07 328.16 329.33 323.26 326.77 

100 

500 77.65 82.13 82.07 82.28 83.29 81.48 

1000 163.48 164.17 163.21 165.31 165.49 164.33 

2000 318.56 319.21 360.45 318.09 282.06 319.67 

4000 634.71 634.39 635.03 634.09 636.96 635.04 

200 

500 158.74 160.51 158.61 159.44 158.54 159.17 

1000 311.84 311.29 311.32 316.39 310.64 312.30 

2000 622.26 620.69 616.70 622.24 616.08 619.59 

4000 1230.41 1232.25 1244.96 1262.71 1244.12 1242.89 

400 

500 309.39 311.30 314.46 311.61 309.39 311.23 

1000 627.72 622.50 626.36 624.09 623.17 624.77 

2000 1245.42 1243.19 1247.68 1353.75  1248.40 1267.69 

4000 2510.93 2513.77 2522.82 2517.04 2500.89 2513.09 

As shown in these tables, the simulation-based multi-objective optimization model is more 

sensitive to the size of population since the hypervolume changes less when the number of 

generations vary in comparison with the changes made by varying the size of population. As a 

result, the number of generations is fixed to 500 generations. Also, considering the fact that the 

hypervolume percentage of 200 and 400 population sizes are close to each other and the significant 

amount of the computation time and cost imposed to the system by doubling the size of population, 
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the population size of 200 is chosen to continue the sensitivity analysis by varying the crossover 

probability of the MOGA. However, if the computation time and cost can be ignored the 

population size of 400 is a proper selection as the MOGA’s population size. 

 

Figure 4-21: Non-Dominated Pareto solutions for different number of generations, with population 

size of 100 
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Table 4-13: Hypervolume percentage of the all Pareto fronts generated by server machine 

considering one reference point (Normalized values in the lower rows) 

Number of Generations 
Size of Population 

50 100 200 400 

500 
18.80 18.96 21.21 21.29 

88.30 89.02 99.63 100 

1000 
19.73 19.31 20.37 20.54 

92.64 90.68 95.64 96.64 

2000 
19.90 19.28 21.02 20.93 

93.46 90.52 98.73 98.28 

4000 
19.67 20.89 20.60 20.79 

92.35 98.09 96.73 97.65 

 

 

Figure 4-22: Non-Dominated Pareto solutions for different number of generations, with population 

size of 200 
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Table 4-14: Hypervolume percentage of the all Pareto fronts generated by cluster considering one 

reference point (Normalized values in the lower rows) 

Number of Generations 
Size of Population 

50 100 200 400 

500 
16.93 15.68 18.19 18.02 

91.51 84.73 98.34 97.40 

1000 
15.65 17.41 17.75 18.07 

84.57 94.10 95.94 97.69 

2000 
17.88 17.81 17.19 18.50 

96.63 96.28 92.94 100 

4000 
16.93 16.45 17.20 17.24 

91.52 88.94 92.98 93.19 

 

Figure 4-23: Non-Dominated Pareto solutions for different number of generations, with population 

size of 400 
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4.8 Performance Comparison of the Server and Cluster 

The performances of the server machine and the cluster are compared from quality of the solutions 

as well as the speed points of view. As shown in Table 4-9 and Table 4-12, the average run time 

is calculated for performing the simulation-based optimization model of the precast full span 

concrete bridge construction technique in deterministic mode. Figure 4-27 and Figure 4-28 

illustrate the comparison between the average run times obtained from the server and the cluster 

while both systems use 12 cores for fixed population sizes and fixed number of generations, 

respectively. 

According to Table 4-16, the computation time required for running the proposed integrated 

framework has on average decreased by 28.30% for both cases of fixing the number of generations 

while varying the population sizes and vice versa.  From the quality point of view, the best 

optimum sets of solutions obtained from performing different runs on the server machine and on 

the cluster are compared. These best sets of optimum solutions are selected based on the results 

achieved by the comparison of the Pareto fronts and the value of the hypervolume calculated for 

each Pareto front in Sections 4.5 and 4.6.  

According to discussion presented in Section 4.7, the most promising optimum solutions from both 

the quality of generated solutions and the computational effort points of view are obtained from 

500 generations and 200 population size. Figure 4-24 shows the comparison between the Pareto 

fronts created based on the suggested combination of population size and number of generations 

by the server machine and the cluster. The hypervolume percentages are 14.51% and 14.82% for 
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the Pareto fronts generated by the server and the cluster, respectively. Based on these values and 

Figure 4-24, both machines produce very close optimum solutions in most of the cases; however, 

the cluster shows the better performance overall. Obtaining different set of optimum solutions by 

two different machines but with the same settings for solving one problem is because of the random 

nature of the optimization problem. Each time that the MOGA is run it starts from different point 

in search space which leads to producing different optimum solutions at the end of the optimization 

procedure.  

 

Figure 4-24: Final performance comparison between the server and the cluster from quality of 

solutions point of view 
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Figure 4-25: Comparison of deterministic computation time for fixed population sizes (Cluster) 

 

Figure 4-26: Comparison of deterministic computation time for fixed number of generations (Cluster) 
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4.9 Effect of Crossover Probability (𝑷𝒄)   

According to Section 3.7.1, there are different ranges suggested for crossover probability (𝑃𝑐) by 

researchers. Several researches demonstrated that the best crossover probability suggested values 

is between 0.7 and 1 (mostly around either 0.7 or 0.8) (Sugihara, 1997; Kamil etal., 2013; Roeva 

et al., 2013). Therefore, the value of crossover probability is incremented at 0.1 within the range 

of 0.5 to 1 in this study. Also, based on the discussion presented in Section 4.6.1.2, the number of 

generations and population size are fixed to 500 and 200, respectively. 

Considering the fixed crossover probability equal to 0.5 leads to generation of half of the 

population in each generation by applying the crossover function and creation of the remaining 

using mutation function. The Pareto fronts generated by setting the above-mentioned fixed values 

as crossover probability and the hypervolume percentage of those fronts are illustrated in 

Figure 4-29 and Table 4-15, respectively.  

Table 4-15: Hypervolume percentage for fixed crossover probability (500 generations and 

population size of 200) 

 Crossover Probability (Pc) 

  0.5 0.6 0.7 0.8 0.9 1 

Hypervolume 

Percentage 
12.21 12.53 13.62 13.05 13.35 9.90 

As obvious from the results, the best crossover probability is 0.7 which is compatible with the 

outcome of the previous researches.  
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4.10 Effect of Number of Cores 

In accordance with Section 3.7.2, the computation time which is needed to reach to the final 

optimum results is calculated for different numbers of cores in order to investigate the ability of 

parallel platform to improve the performance of the whole proposed framework. The performance 

of the problem is measured using the number of cores set from 1 to 12. In order to omit the effect 

of the uncertainty of the stochastic distribution of activities durations, all the durations are assumed 

to be deterministic as given in Table 4-1. Table 4-17 and Figure 4-30 illustrate the computation 

time needed to complete the simulation-based optimization based on 1000 generations and 

population size of 100. The speedup achieved by increasing the number of cores is also illustrated 

in Table 4-17. The speedup is calculated as S(1, n) = T1/Tn, where 𝑛, 𝑇1, and 𝑇𝑛 are the number of 

the cores, computation time obtained by using one core, and parallel computation time obtained 

by using 𝑛 cores, respectively (Yang et al., 2012). As shown in Table 4-17, using two and three 

CPUs results in superliner speedup which means using these numbers of cores reduces the 

computation time less than 1/2, and 1/3, respectively.  

By increasing the number of cores more than three, the near linear speedup is achieved. For 

instance, using 12 cores decreases the execution time of the proposed method to almost 1/8 of that 

needed when using a single core. Also, there is less improvement in the computation time when 

the number of cores exceed seven. These results show that the proposed method better uses the 

computer capacity to reach to the optimal solutions by saving time. 
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Table 4-16: Improvement in the speed of running the integrated framework by the cluster while 

fixing the population size 

Population 

Size 

No. of 

Generations 
Difference Percentage (%) 

50 

500 29.49 

1000 28.23 

2000 30.13 

4000 30.97 

100 

500 25.83 

1000 25.45 

2000 27.80 

4000 28.24 

200 

500 27.59 

1000 28.77 

2000 29.54 

4000 29.08 

400 

500 28.92 

1000 28.87 

2000 26.45 

4000 27.41 
 

The parallel performance of the probabilistic simulation-based optimization procedure is also 

investigated by assigning random distributions to the activities’ durations (Table 4-3). In this case, 

the number of cores is also set from 1 to 12. For 100 generations, the size of population of 100 and 

100 replications, the results are shown in Figure 4-31. The results indicate that there is a significant 

improvement in the computation time by increasing the number of cores.
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Figure 4-27: Time comparison between the performance of the Server machine and the cluster for the fixed population sizes 
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Figure 4-28: Time comparison between the performance of the Server machine and the cluster for the fixed number of generations 
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Figure 4-29: Set of optimum solutions for different values as crossover probability 

According to the number of replications that should be applied for the probabilistic mode, the 

values of the computation time are much bigger than the deterministic mode; therefore, these 

values are shown in hours instead of minutes in Table 4-18. 

According to Section 3.6, the cluster has the ability to perform the proposed framework on multiple 

nodes to take advantage of parallel execution of the model in more than one node in order to save 

the computation time as much as possible. There are two types of nodes available in the McGill 

University cluster with 12 cores and 16 cores. The core’s specifications are shown in Table 3-6. In 

that table, phases 1 and 2 indicate the specification of nodes with 12 and 16 cores, respectively. 
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Table 4-17: Parallel computation time for deterministic mode (Server) 

 
Number of Cores 

1 2 3 4 5 6 7 8 9 10 11 12 

Time (min) 1830 900 645 475 420 370 320 290 265 240 224 220 

Speedup 1 2.03 2.84 3.85 4.36 4.95 5.72 6.31 6.91 7.63 8.17 8.32 

 

Figure 4-30: Saving in Computation time by increasing the number of cores in deterministic mode 

(Server) 

Table 4-18: Parallel computation time for probabilistic mode (Server) 

 
Number of Cores 

1 2 3 4 5 6 7 8 9 10 11 12 

Time (hrs.) 1015 398 245 151 121 102 87 77 69 61.02 58 50 

Speedup 1 2.55 4.14 6.73 8.41 9.96 11.65 13.23 14.74 16.64 17.51 20.3 
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Each core needs a unique license to run a model in MATLAB environment and based on the 

availability of 64 licenses for the McGill cluster, the proposed model is run on four nodes with 16 

cores in each node and also five nodes of 12 cores in each node which results in 64 and 60 as the 

total number of cores, respectively.  

As shown in Figure 4-32 and Table 4-19, the computation time required to complete the 

simulation-based optimization model decreases on average by 31% by adding more nodes; 

however, the rate of saving time also decreases by using more nodes. That is because of the extra 

time needed for communication between different nodes which is added to the computation time 

of the problem.  

 

Figure 4-31: Saving in computation time by increasing the number of cores (Server) 
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Figure 4-32: Saving in computation time by increasing the number of nodes for 500 generations and 

200 population size in deterministic mode (Cluster) 

Table 4-19: Parallel computation time using multiple nodes (Cluster) 

No. of Nodes 
Time (min) 

Decrease Percentage 
12 cores / Node 16 cores / Node 

1 159 103 35.22 

2 76 52 31.58 

3 51 37 27.45 

4 42 30 28.57 

5 34 --- --- 

4.11 Summary and Conclusions 

This chapter investigated the procedure of developing different simulation models using 

SimEvents along with the validation of the developed models by comparing the obtained results 

of the simulation models with those obtained by Stroboscope in both deterministic and 

probabilistic modes. It also discussed the integration of MATLAB optimization engine with the 
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developed SimEvents simulation model within a parallel environment. The proposed framework 

is then validated by comparing the generated optimum solution with those obtained using another 

type of GAs (fmGA). It discussed how changes in the various GA parameters affect the outcome 

of the proposed system applying the sensitivity analysis on those parameters. Moreover, the 

sensitivity analysis was performed by varying the number of cores in order to investigate the ability 

of the parallel platform to improve the performance of the whole proposed framework. The 

proposed parallel platform is implemented on two different systems: a server machine and the 

cluster of McGill University. 

The results of the comparison between the NSGA- and fmGA showed that the NSGA- resulted 

in 4% better Pareto front compared with the results of fmGA. The outcomes of performing 

sensitivity analysis on GA parameters such as the number of generations, size of population, and 

crossover probability are used to tune the NSGA- based on the population size of 200, 500 

generations, and crossover probability of 0.7. This GA configuration results in the most promising 

optimal solutions considering the quality of solutions and computational efforts.  

The parallel execution of the proposed framework on the server machine by using 12 cores results 

in 8.32 and 20.3 times speedup compared with a single core for the deterministic and probabilistic 

modes, respectively. Furthermore, running the parallel system on multiple nodes available at the 

cluster improved the computation time by almost 31% using four nodes with 16 cores per node in 

comparison with the same number of nodes and 12 cores per node. Moreover, the overall 

comparison between the server machine and the cluster showed that both machines produce very 
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close optimum solutions in most of the cases; however, the cluster showed better performance 

from the points of views of the quality of optimum solutions and computation time.  
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CHAPTER 5 SUMMARY, CONCLUSIONS AND FUTURE WORK 

5.1 Summary of research 

The research proposed the usage of NSGA- as the optimization engine integrated with SimEvents 

DES to model different bridge construction processes. The parallel computing platform is then 

applied to reduce the computation time necessary to deal with multiple objective functions and the 

large search space.  

Furthermore, it developed in detail the simulation modeling procedure using relatively new 

simulation tool in the construction industry. It also elaborated on the needs, motivations and 

benefits of performing the proposed framework within a parallel environment. Moreover, this 

research proposed a comprehensive approach for investigating the effect of different GA 

parameters on the performance of the proposed framework by performing sensitivity analysis. The 

variation in the values of population size, number of generations, and crossover probability were 

taken into account to identify the best configuration of GA parameters. The possible combinations 

of GA parameters within the defined ranges and their impact on the system’s performance were 

investigated. Furthermore, the sensitivity analysis is also performed by varying the number of 

cores and nodes using two different machines including a server machine and the cluster of McGill 

University.  

The main advantages of the proposed framework are that it helps to find the best resource 

combination among a large number of possible options by comparing sets of Pareto fronts, it 
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improves the computation time for both deterministic and stochastic simulation models using HPC, 

and it suggests the most promising configuration of GA parameters in order to reach reliable and 

optimum solutions. 

5.2 Research contributions and conclusions 

The conclusions of this research are as follows: (1) DES and multi-objective NSGA- are 

integrated within a parallel environment to find the optimum solutions (i.e., the best resource 

combinations) for a bridge construction method based on the objective functions’ values obtained 

from the simulation. The optimal solutions obtained from the NSGA- optimization algoritm are 

compared with those obtained from fmGA to validate the applicability of the proposed model. The 

results showed that the NSGA- resulted in a Pareto front 4% better than that obtained from 

fmGA; (2) 8.32 and 20.3 times speedup were achieved using master-salve parallel paradigm by 

the server machine with 12 cores in deterministic and probabilistic modes, respectively; (3) 

Furthermore, the NSGA- algorithm was tuned based on the best parameters which maximize its 

performance by performing sensitivity analysis. The hypervolume indicator was used to compare 

different Pareto fronts from the quality of optimum solutions point of view. The comparison of 32 

sets of optimum solutions generate separately by both the server machine and the cluster results in 

identification of the best settings of GA parameters as 500 generations, population size of 200 and 

crossover probability of 0.7. In addition, performing the proposed framework on multiple nodes 

using the cluster resulted in 31% saving on average in the computation time; (4) The overall 
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comparison between the performance of the server and the cluster showed 28.30% improvement 

on average in computation time required by the cluster in comparison with the server. 

5.3 Limitations and future work 

Developing the simulation models in SimEvents as a relatively new simulation tool for 

construction purposes has many difficulties and limitations since it is a graphical based simulation 

tool which makes it difficult to either define common functions and concepts for construction 

simulation models, and also to trace the simulation model. In addition, performing the proposed 

framework on multiple nodes of the cluster has several limitations from the availability of the 

nodes, license issues, and priority of submitted jobs by other users, which results in waiting in a 

queue for long time in some cases. 

The future research includes investigating the usage of different types of nodes on a cluster. Also, 

according to the fact that by increasing the number of nodes the communication between the nodes 

will increase as well, new solutions should be found to reduce the required communication 

between nodes in order to improve the performance of the system from the computation time point 

of view and to take full advantage of the capacity of multiple nodes for performing parallel jobs. 

The hypervolume indicator can be used within the selection function as a selection criterion to 

improve the performance of the optimization algorithm. Moreover, the sensitivity analysis of other 

parameters of the GA, such as parameters within the creation and selection functions, is another 
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future work. In addition, the computational power of the proposed framework can be further 

improved by testing other parallel computing approaches. 

Finally, since the SimEvents is a relatively new emerging simulation tool for construction 

purposes, improvements are expected in this tool to make it faster for simulating large-scale and 

complex construction projects.  
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Appendix A – MATLAB code of deterministic simulation (DES) 

% Functions to be minimized 

function y = ObjectivFunctions_Det(x) 

%% Initial Setting 

 
%   OP = Overtime policy 
%   Rep= Number of replications 
 

OP=[1     1     1       8       5 
    1   1.039   1.111   9       5 
    1   1.096   1.200   10      5 
    1   1.231   1.273   11      5 
    1   1.311   1.333   12      5 
    1   1.039   1.167   8       6 
    1   1.081   1.259   9       6 
    1   1.143   1.333   10      6 
    1   1.269   1.394   11      6 
    1   1.356   1.444   12      6 
    1   1.127   1.286   8       7 
    1   1.194   1.365   9       7 
    1   1.270   1.429   10      7 
    1   1.379   1.481   11      7 
    1   1.455   1.524   12      7]; 
 

Rep=1; 
TruckDriverHrCost=50; 
YardCraneDriverHrCost=100; 
OnsiteCraneDriverHrCost=100; 
TrolleyDriverHrCost=100; 
GantryDriverHrCost=200; 
OtherDailyCost=500; 
YardCraneHrCost=50; 
DelTruckHrCost=50; 
GantryInitCost=9000; 
GantryHrCost=500; 
TrolleyInitCost=900; 
TrolleyHrCost=150; 
OnsiteCraneInitCost=900; 
OnsiteCraneHrCost=150; 
CageInitCost=500; 
CageHrCost=10; 
InnerMouldInitCost=1000; 
InnerMouldHrCost=10; 
OuterMouldInitCost=1000; 
OuterMouldHrCost=10; 
PrepCrewInitCost=200; 
PrepCrewHrCost=200; 
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PrestressCrewInitCost=200; 
PrestressCrewHrCost=200; 
SteelCrewInitCost=200; 
SteelCrewHrCost=200; 
CastCrewInitCost=200; 
CastCrewHrCost=200; 
StorageHourlyCost=10; 
NPrecastSpans=4; 
NGantry=1; 
NOnsiteCrane=1; 
NYardCrane=1; 
NYardCrane1=1; 
NOnsiteTrolley=1;  
CureMethodDuration=[600 1200]; 
CureMethodCost=[200 0]; 
NTrailer=x(1); 
PrecastYardDistance=x(2); 
NRebarCageMold=x(3); 
NInnerMold=x(4); 
NOuterMold=x(5); 
NPreperationCrew=x(6); 
NStressingCrew=x(7); 
NSteelCrew=x(8); 
NCastingCrew=x(9); 
CureMethodD=x(10); 
F=x(11); 
NStorageCapacity=x(12); 
StorageTime=x(13); 

 
%   Parallel execution of simulation model  

parfor i = 1:Rep; 
% Input variables from MOGA to Discrete Event Simulation (DES) 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Traile

r Queue/Time-Based Function-Call Generator2','NumberOfEventsPerPeriod', 

num2str(NTrailer)); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Rebar-

Mold Queue/Time-Based Function-Call Generator1','NumberOfEventsPerPeriod', 

num2str(NRebarCageMold)); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/InnerM

old Queue/Time-Based Function-Call Generator','NumberOfEventsPerPeriod', 

num2str(NInnerMold)); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Outer_

Mold Queue/Time-Based Function-Call Generator','NumberOfEventsPerPeriod', 

num2str(NOuterMold)); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Prep_C

rew Queue/Time-Based Function-Call Generator2','NumberOfEventsPerPeriod', 

num2str(NPreperationCrew)); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Stress

ing_Crew Queue/Time-Based Function-Call Generator2','NumberOfEventsPerPeriod', 

num2str(NStressingCrew)); 
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set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Steel_

Crew Queue/Time-Based Function-Call Generator2','NumberOfEventsPerPeriod', 

num2str(NSteelCrew)); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Cast_C

rew Queue/Time-Based Function-Call Generator2','NumberOfEventsPerPeriod', 

num2str(NCastingCrew)); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Storag

e-Cap Queue/Time-Based Function-Call Generator','NumberOfEventsPerPeriod', 

num2str(NStorageCapacity*5)); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Bottom

Slab-Web/BottomSlab_Web','ServiceTime', num2str(1673*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Inner_

Mold/Inner_Mold','ServiceTime', num2str(300*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/TopSla

b/TopSlab','ServiceTime', num2str(1979*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/LiftTo

Mold/LiftToMold','ServiceTime', num2str(45*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Cast_S

pan/Cast_Span','ServiceTime', num2str(1544*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Span_C

uring/Span_Curing','ServiceTime', num2str(CureMethodDuration(CureMethodD))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Remove

InnerMol/RemoveInnerMol','ServiceTime', num2str(255*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Postte

nsion_1st/Posttension_1st','ServiceTime', num2str(240*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/LiftTo

Storage/LiftToStorage','ServiceTime', num2str(60*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Postte

nsion_2nd/Posttension_2nd','ServiceTime', num2str(240*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Storag

e_Time/Storage_Time','ServiceTime', num2str(StorageTime*60)); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Traile

r_Loading/Trailer_Loading','ServiceTime', num2str(60*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Traile

r_Haul/Trailer_Haul','ServiceTime', num2str(PrecastYardDistance*10*0.67)); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Trolle

y_Loading/Trolley_Loading','ServiceTime', num2str(60*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Trolle

y_Travel and Trailer_Return/Trailer_Return','ServiceTime', 

num2str(PrecastYardDistance*10*0.67)); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Reposi

tion/Reposition','ServiceTime', num2str(240*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Pickup

_Span/Pickup_Span','ServiceTime', num2str(60*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Trolle

y_Return and Erect_Span/Erect_Span','ServiceTime', num2str(240*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Prepar

e_Bearing/Prepare_Bearing','ServiceTime', num2str(240*OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Deterministic_BMDet/Load_T

ransfer/Load_Transfer','ServiceTime', num2str(60*OP(F,2))); 
%    Run DES 
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simOut{i} =  

sim('CastingOperation_withoptimization_final_Deterministic_BMDet','SaveOutput

','on','OutputSaveName','tout','OutputSaveName','BottomSlab_Web','OutputSaveN

ame','BottomSlab_Web1'...   

,'OutputSaveName','Inner_Mold','OutputSaveName','TopSlab','OutputSaveName','L

iftToMold','OutputSaveName','Cast_Span','OutputSaveName','Span_Curing'...  

,'OutputSaveName','RemoveInnerMol','OutputSaveName','Posttension_1st','Output

SaveName','LiftToStorage','OutputSaveName','Posttension_2nd','OutputSaveName'

,'Storage_Time'...    

,'OutputSaveName','Trailer_Loading','OutputSaveName','Trailer_Haul','OutputSa

veName','Trolley_Loading','OutputSaveName','Trailer_Return','OutputSaveName',

'Trolley_Travel'...   

,'OutputSaveName','Reposition','OutputSaveName','Pickup_Span','OutputSaveName

','Trolley_Return','OutputSaveName','Erect_Span'...   

,'OutputSaveName','Prepare_Bearing','OutputSaveName','Load_Transfer'); 

end  
%   Get outputs from DES to MOGA 
output = cell(Rep,23); 

  
for i=1:Rep 
    output{i,1}=simOut{i}.get('tout'); 
    output{i,2}= simOut{i}.get('BottomSlab_Web1'); 
    output{i,3}= simOut{i}.get('BottomSlab_Web'); 
    output{i,4}= simOut{i}.get('Inner_Mold'); 
    output{i,5}= simOut{i}.get('TopSlab'); 
    output{i,6}= simOut{i}.get('LiftToMold'); 
    output{i,7}= simOut{i}.get('Cast_Span'); 
    output{i,8}= simOut{i}.get('Span_Curing'); 
    output{i,9}= simOut{i}.get('RemoveInnerMol'); 
    output{i,10}= simOut{i}.get('Posttension_1st');  
    output{i,11}= simOut{i}.get('LiftToStorage'); 
    output{i,12}= simOut{i}.get('Posttension_2nd'); 
    output{i,13}= simOut{i}.get('Storage_Time'); 
    output{i,14}= simOut{i}.get('Trailer_Loading'); 
    output{i,15}= simOut{i}.get('Trailer_Haul'); 
    output{i,16}= simOut{i}.get('Trolley_Loading'); 
    output{i,17}= simOut{i}.get('Trailer_Return'); 
    output{i,18}= simOut{i}.get('Trolley_Travel'); 
    output{i,19}= simOut{i}.get('Reposition'); 
    output{i,20}= simOut{i}.get('Pickup_Span'); 
    output{i,21}= simOut{i}.get('Trolley_Return'); 
    output{i,22}= simOut{i}.get('Erect_Span'); 
    output{i,23}= simOut{i}.get('Prepare_Bearing');     
% First objective function (total duration of the process) calculations     
Nt=(cell2mat(output(i,1))); 

  
TWorkingDays=round(Nt/(60*OP(F,4))+0.49); 
TProjectDuration=TWorkingDays+ floor(TWorkingDays/OP(F,5))*(7-OP(F,5)); 

  
% Second objective function (total cost of the process) calculations  
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TSetupCost= 

2*(NCastingCrew*CastCrewInitCost*OP(F,1)+NRebarCageMold*CageInitCost+NInnerMo

ld*InnerMouldInitCost+NOuterMold*OuterMouldInitCost...   

+NPreperationCrew*PrepCrewInitCost*OP(F,1)+NStressingCrew*PrestressCrewInitCo

st*OP(F,1)+NSteelCrew*SteelCrewInitCost*OP(F,1)+NGantry*GantryInitCost+NOnsit

eTrolley*TrolleyInitCost+NOnsiteCrane*OnsiteCraneInitCost); 

  
TIndirectCost=TProjectDuration*OtherDailyCost; 
TCuringCost=CureMethodCost(CureMethodD)*NPrecastSpans; 

  
TDirectCost=(NCastingCrew*CastCrewHrCost*OP(F,1)*OP(F,3)*(output{i,7}.time(50

1)+((output{i,7}.time(2))-(output{i,6}.time(2)))-

(output{i,7}.time(2)))+(NRebarCageMold*CageHrCost*(output{i,6}.time(501)-

output{i,2}.time(2))))+(NInnerMold*InnerMouldHrCost*(output{i,9}.time(501)-

(output{i,4}.time(2)-(output{i,4}.time(2)-output{i,3}.time(2)))))... 
    +(NOuterMold*OuterMouldHrCost*(output{i,11}.time(501)-

(output{i,6}.time(2)-(output{i,6}.time(2)-output{i,5}.time(2)))))...  

+(NPreperationCrew*PrepCrewHrCost*OP(F,1)*OP(F,3)*(output{i,9}.time(501)-

(output{i,4}.time(2)-(output{i,4}.time(2)-output{i,3}.time(2)))))...   

+(NStressingCrew*PrestressCrewHrCost*OP(F,1)*OP(F,3)*(output{i,12}.time(501)-

(output{i,10}.time(2)-(output{i,10}.time(2)-output{i,9}.time(2)))))... 
   +(NSteelCrew*SteelCrewHrCost*OP(F,1)*OP(F,3)*(output{i,5}.time(501)-

output{i,2}.time(2)))... 
    +(NTrailer*DelTruckHrCost*(output{i,17}.time(501)-(output{i,14}.time(2)-

(output{i,14}.time(2)-output{i,13}.time(2)))))...    

+(NYardCrane*YardCraneHrCost*(output{i,14}.time(501)+((output{i,14}.time(2))-

(output{i,13}.time(2)))-(output{i,14}.time(2))))... 
    +(NYardCrane1*YardCraneHrCost*(output{i,11}.time(501)-

(output{i,6}.time(2)-(output{i,6}.time(2)-output{i,5}.time(2)))))... 
    +(NGantry*GantryHrCost*(output{i,22}.time(501)-(output{i,19}.time(2)-

(output{i,19}.time(2)-output{i,18}.time(2)))))... 
    +(NOnsiteTrolley*TrolleyHrCost*(output{i,21}.time(501)-

(output{i,16}.time(2)-(output{i,16}.time(2)-output{i,15}.time(2)))))...   

+(NOnsiteCrane*OnsiteCraneHrCost*(output{i,16}.time(501)+((output{i,16}.time(

2))-(output{i,15}.time(2)))-(output{i,16}.time(2))))... 
  +(NTrailer*TruckDriverHrCost*OP(F,1)*OP(F,3)*(output{i,17}.time(501)-

(output{i,14}.time(2)-(output{i,14}.time(2)-output{i,13}.time(2)))))...   

+(NYardCrane*YardCraneDriverHrCost*OP(F,1)*OP(F,3)*(output{i,14}.time(501)+((

output{i,14}.time(2))-(output{i,13}.time(2)))-(output{i,14}.time(2))))...   

+(NYardCrane1*YardCraneDriverHrCost*OP(F,1)*OP(F,3)*(output{i,11}.time(501)-

(output{i,6}.time(2)-(output{i,6}.time(2)-output{i,5}.time(2)))))...    

+(NGantry*GantryDriverHrCost*OP(F,1)*OP(F,3)*(output{i,22}.time(501)-

(output{i,19}.time(2)-(output{i,19}.time(2)-output{i,18}.time(2)))))...    

+(NOnsiteTrolley*TrolleyDriverHrCost*OP(F,1)*OP(F,3)*(output{i,21}.time(501)-

(output{i,16}.time(2)-(output{i,16}.time(2)-output{i,15}.time(2)))))...   

+(NOnsiteCrane*OnsiteCraneDriverHrCost*OP(F,1)*OP(F,3)*(output{i,16}.time(501

)+((output{i,16}.time(2))-(output{i,15}.time(2)))-(output{i,16}.time(2))))...    

+(NStorageCapacity*5*(StorageHourlyCost/(PrecastYardDistance*10))*(output{i,1

3}.time(501)+((output{i,13}.time(2))-(output{i,12}.time(2)))-

(output{i,13}.time(2)))); 
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TotalCost=round(((TSetupCost+TCuringCost+TDirectCost+TIndirectCost)/1000000)+

0.49); 
end 

  
% Mean values of objective functions 
y(1)=mean(TProjectDuration); 
y(2)=mean(TotalCost); 

 

Appendix B – MATLAB code of probabilistic simulation (DES) 

% Functions to be minimized 

function y = ObjectivFunctions_Prob(x) 

%% Initial Setting 

 
%   OP = Overtime policy 
%   Rep= Number of replications 
 

OP=[1     1     1       8       5 
    1   1.039   1.111   9       5 
    1   1.096   1.200   10      5 
    1   1.231   1.273   11      5 
    1   1.311   1.333   12      5 
    1   1.039   1.167   8       6 
    1   1.081   1.259   9       6 
    1   1.143   1.333   10      6 
    1   1.269   1.394   11      6 
    1   1.356   1.444   12      6 
    1   1.127   1.286   8       7 
    1   1.194   1.365   9       7 
    1   1.270   1.429   10      7 
    1   1.379   1.481   11      7 
    1   1.455   1.524   12      7]; 
 

Rep=100; 
TruckDriverHrCost=50; 
YardCraneDriverHrCost=100; 
OnsiteCraneDriverHrCost=100; 
TrolleyDriverHrCost=100; 
GantryDriverHrCost=200; 
OtherDailyCost=500; 
YardCraneHrCost=50; 
DelTruckHrCost=50; 
GantryInitCost=9000; 
GantryHrCost=500; 
TrolleyInitCost=900; 
TrolleyHrCost=150; 
OnsiteCraneInitCost=900; 
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OnsiteCraneHrCost=150; 
CageInitCost=500; 
CageHrCost=10; 
InnerMouldInitCost=1000; 
InnerMouldHrCost=10; 
OuterMouldInitCost=1000; 
OuterMouldHrCost=10; 
PrepCrewInitCost=200; 
PrepCrewHrCost=200; 
PrestressCrewInitCost=200; 
PrestressCrewHrCost=200; 
SteelCrewInitCost=200; 
SteelCrewHrCost=200; 
CastCrewInitCost=200; 
CastCrewHrCost=200; 
StorageHourlyCost=10; 
NPrecastSpans=4; 
NGantry=1; 
NOnsiteCrane=1; 
NYardCrane=1; 
NYardCrane1=1; 
NOnsiteTrolley=1;  
CureMethodDuration=[600 1200]; 
CureMethodCost=[200 0]; 
NTrailer=x(1); 
PrecastYardDistance=x(2); 
NRebarCageMold=x(3); 
NInnerMold=x(4); 
NOuterMold=x(5); 
NPreperationCrew=x(6); 
NStressingCrew=x(7); 
NSteelCrew=x(8); 
NCastingCrew=x(9); 
CureMethodD=x(10); 
F=x(11); 
NStorageCapacity=x(12); 
StorageTime=x(13); 

 
%   Parallel execution of simulation model  

parfor i = 1:Rep; 
         seed = mod(floor((i/Rep) * now * 8640000),2^31-1);  

se_randomizeseeds('CastingOperation_withoptimization_final_Probabilistic_BMPr

ob','GlobalSeed',seed); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Trail

er Queue/Time-Based Function-Call Generator2','NumberOfEventsPerPeriod', 

num2str(NTrailer)); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Trail

er_Haul/Subsystem/Atomic Subsystem/Bias','Bias', 

num2str((0.67)*10*PrecastYardDistance)); 
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set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Troll

ey_Travel and Trailer_Return/Subsystem1/Atomic Subsystem/Bias','Bias', 

num2str((0.67)*10*PrecastYardDistance)); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Rebar

-Mold Queue/Time-Based Function-Call Generator1','NumberOfEventsPerPeriod', 

num2str(NRebarCageMold)); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Inner

Mold Queue/Time-Based Function-Call Generator','NumberOfEventsPerPeriod', 

num2str(NInnerMold)); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Outer

_Mold Queue/Time-Based Function-Call Generator','NumberOfEventsPerPeriod', 

num2str(NOuterMold)); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Prep_

Crew Queue/Time-Based Function-Call Generator2','NumberOfEventsPerPeriod', 

num2str(NPreperationCrew)); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Stres

sing_Crew Queue/Time-Based Function-Call 

Generator2','NumberOfEventsPerPeriod', num2str(NStressingCrew)); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Steel

_Crew Queue/Time-Based Function-Call Generator2','NumberOfEventsPerPeriod', 

num2str(NSteelCrew)); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Cast_

Crew Queue/Time-Based Function-Call Generator2','NumberOfEventsPerPeriod', 

num2str(NCastingCrew)); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Stora

ge-Cap Queue/Time-Based Function-Call Generator','NumberOfEventsPerPeriod', 

num2str(5*NStorageCapacity)); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Stora

ge_Time/Storage_Time','ServiceTime', num2str(StorageTime)); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Span_

Curing/Span_Curing','ServiceTime', num2str(CureMethodDuration(CureMethodD)));  
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Botto

mSlab-Web/Gain','Gain', num2str(OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Inner

_Mold/Gain','Gain', num2str(OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/TopSl

ab/Gain','Gain', num2str(OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/LiftT

oMold/Gain','Gain', num2str(OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Cast_

Span/Gain','Gain', num2str(OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Remov

eInnerMol/Gain','Gain', num2str(OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Postt

ension_1st/Gain','Gain', num2str(OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/LiftT

oStorage/Gain','Gain', num2str(OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Postt

ension_2nd/Gain','Gain', num2str(OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Troll

ey_Loading/Gain','Gain', num2str(OP(F,2))); 
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set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Repos

ition/Gain','Gain', num2str(OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Picku

p_Span/Gain','Gain', num2str(OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Troll

ey_Return and Erect_Span/Gain','Gain', num2str(OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Prepa

re_Bearing/Gain','Gain', num2str(OP(F,2))); 
set_param('CastingOperation_withoptimization_final_Probabilistic_BMProb/Load_

Transfer/Gain','Gain', num2str(OP(F,2))); 

  
simOut{i} = 

sim('CastingOperation_withoptimization_final_Probabilistic_BMProb','SaveOutpu

t','on','OutputSaveName','tout','OutputSaveName','BottomSlab_Web','OutputSave

Name','BottomSlab_Web1'... 
    

,'OutputSaveName','Inner_Mold','OutputSaveName','TopSlab','OutputSaveName','L

iftToMold','OutputSaveName','Cast_Span','OutputSaveName','Span_Curing'... 
    

,'OutputSaveName','RemoveInnerMol','OutputSaveName','Posttension_1st','Output

SaveName','LiftToStorage','OutputSaveName','Posttension_2nd','OutputSaveName'

,'Storage_Time'... 
    

,'OutputSaveName','Trailer_Loading','OutputSaveName','Trailer_Haul','OutputSa

veName','Trolley_Loading','OutputSaveName','Trailer_Return','OutputSaveName',

'Trolley_Travel'... 
    

,'OutputSaveName','Reposition','OutputSaveName','Pickup_Span','OutputSaveName

','Trolley_Return','OutputSaveName','Erect_Span'... 
    ,'OutputSaveName','Prepare_Bearing','OutputSaveName','Load_Transfer');  
end 
%   Get outputs from DES to MOGA 
output = cell(Rep,23); 

  
for i=1:Rep 
    output{i,1}=simOut{i}.get('tout'); 
    output{i,2}= simOut{i}.get('BottomSlab_Web1'); 
    output{i,3}= simOut{i}.get('BottomSlab_Web'); 
    output{i,4}= simOut{i}.get('Inner_Mold'); 
    output{i,5}= simOut{i}.get('TopSlab'); 
    output{i,6}= simOut{i}.get('LiftToMold'); 
    output{i,7}= simOut{i}.get('Cast_Span'); 
    output{i,8}= simOut{i}.get('Span_Curing'); 
    output{i,9}= simOut{i}.get('RemoveInnerMol'); 
    output{i,10}= simOut{i}.get('Posttension_1st');  
    output{i,11}= simOut{i}.get('LiftToStorage'); 
    output{i,12}= simOut{i}.get('Posttension_2nd'); 
    output{i,13}= simOut{i}.get('Storage_Time'); 
    output{i,14}= simOut{i}.get('Trailer_Loading'); 
    output{i,15}= simOut{i}.get('Trailer_Haul'); 
    output{i,16}= simOut{i}.get('Trolley_Loading'); 



 

168 

 

 

    output{i,17}= simOut{i}.get('Trailer_Return'); 
    output{i,18}= simOut{i}.get('Trolley_Travel'); 
    output{i,19}= simOut{i}.get('Reposition'); 
    output{i,20}= simOut{i}.get('Pickup_Span'); 
    output{i,21}= simOut{i}.get('Trolley_Return'); 
    output{i,22}= simOut{i}.get('Erect_Span'); 
    output{i,23}= simOut{i}.get('Prepare_Bearing');     
% First objective function (total duration of the process) calculations     
Nt=(cell2mat(output(i,1))); 

  
TWorkingDays=round(Nt/(60*OP(F,4))+0.49); 
TProjectDuration=TWorkingDays+ floor(TWorkingDays/OP(F,5))*(7-OP(F,5)); 

  
% Second objective function (total cost of the process) calculations  
TSetupCost= 

2*(NCastingCrew*CastCrewInitCost*OP(F,1)+NRebarCageMold*CageInitCost+NInnerMo

ld*InnerMouldInitCost+NOuterMold*OuterMouldInitCost...   

+NPreperationCrew*PrepCrewInitCost*OP(F,1)+NStressingCrew*PrestressCrewInitCo

st*OP(F,1)+NSteelCrew*SteelCrewInitCost*OP(F,1)+NGantry*GantryInitCost+NOnsit

eTrolley*TrolleyInitCost+NOnsiteCrane*OnsiteCraneInitCost); 

  
TIndirectCost=TProjectDuration*OtherDailyCost; 
TCuringCost=CureMethodCost(CureMethodD)*NPrecastSpans; 

  
TDirectCost=(NCastingCrew*CastCrewHrCost*OP(F,1)*OP(F,3)*(output{i,7}.time(50

1)+((output{i,7}.time(2))-(output{i,6}.time(2)))-

(output{i,7}.time(2)))+(NRebarCageMold*CageHrCost*(output{i,6}.time(501)-

output{i,2}.time(2))))+(NInnerMold*InnerMouldHrCost*(output{i,9}.time(501)-

(output{i,4}.time(2)-(output{i,4}.time(2)-output{i,3}.time(2)))))... 
    +(NOuterMold*OuterMouldHrCost*(output{i,11}.time(501)-

(output{i,6}.time(2)-(output{i,6}.time(2)-output{i,5}.time(2)))))...  

+(NPreperationCrew*PrepCrewHrCost*OP(F,1)*OP(F,3)*(output{i,9}.time(501)-

(output{i,4}.time(2)-(output{i,4}.time(2)-output{i,3}.time(2)))))...   

+(NStressingCrew*PrestressCrewHrCost*OP(F,1)*OP(F,3)*(output{i,12}.time(501)-

(output{i,10}.time(2)-(output{i,10}.time(2)-output{i,9}.time(2)))))... 
   +(NSteelCrew*SteelCrewHrCost*OP(F,1)*OP(F,3)*(output{i,5}.time(501)-

output{i,2}.time(2)))... 
    +(NTrailer*DelTruckHrCost*(output{i,17}.time(501)-(output{i,14}.time(2)-

(output{i,14}.time(2)-output{i,13}.time(2)))))...    

+(NYardCrane*YardCraneHrCost*(output{i,14}.time(501)+((output{i,14}.time(2))-

(output{i,13}.time(2)))-(output{i,14}.time(2))))... 
    +(NYardCrane1*YardCraneHrCost*(output{i,11}.time(501)-

(output{i,6}.time(2)-(output{i,6}.time(2)-output{i,5}.time(2)))))... 
    +(NGantry*GantryHrCost*(output{i,22}.time(501)-(output{i,19}.time(2)-

(output{i,19}.time(2)-output{i,18}.time(2)))))... 
    +(NOnsiteTrolley*TrolleyHrCost*(output{i,21}.time(501)-

(output{i,16}.time(2)-(output{i,16}.time(2)-output{i,15}.time(2)))))...   

+(NOnsiteCrane*OnsiteCraneHrCost*(output{i,16}.time(501)+((output{i,16}.time(

2))-(output{i,15}.time(2)))-(output{i,16}.time(2))))... 
  +(NTrailer*TruckDriverHrCost*OP(F,1)*OP(F,3)*(output{i,17}.time(501)-

(output{i,14}.time(2)-(output{i,14}.time(2)-output{i,13}.time(2)))))...   
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+(NYardCrane*YardCraneDriverHrCost*OP(F,1)*OP(F,3)*(output{i,14}.time(501)+((

output{i,14}.time(2))-(output{i,13}.time(2)))-(output{i,14}.time(2))))...   

+(NYardCrane1*YardCraneDriverHrCost*OP(F,1)*OP(F,3)*(output{i,11}.time(501)-

(output{i,6}.time(2)-(output{i,6}.time(2)-output{i,5}.time(2)))))...    

+(NGantry*GantryDriverHrCost*OP(F,1)*OP(F,3)*(output{i,22}.time(501)-

(output{i,19}.time(2)-(output{i,19}.time(2)-output{i,18}.time(2)))))...    

+(NOnsiteTrolley*TrolleyDriverHrCost*OP(F,1)*OP(F,3)*(output{i,21}.time(501)-

(output{i,16}.time(2)-(output{i,16}.time(2)-output{i,15}.time(2)))))...   

+(NOnsiteCrane*OnsiteCraneDriverHrCost*OP(F,1)*OP(F,3)*(output{i,16}.time(501

)+((output{i,16}.time(2))-(output{i,15}.time(2)))-(output{i,16}.time(2))))...    

+(NStorageCapacity*5*(StorageHourlyCost/(PrecastYardDistance*10))*(output{i,1

3}.time(501)+((output{i,13}.time(2))-(output{i,12}.time(2)))-

(output{i,13}.time(2)))); 
TotalCost=round(((TSetupCost+TCuringCost+TDirectCost+TIndirectCost)/1000000)+

0.49); 
end 

  
% Mean values of objective functions 
y(1)=mean(TProjectDuration); 
y(2)=mean(TotalCost); 

 

 

Appendix C – MATLAB code of multi-objective optimization (NSGA-) 

% GAMULTIOBJ with integer constraints 
% Specify # of Cores in a script or in the MATLAB Command Window 
% Function handle to the fitness function 
fitnessFunction = @ObjectivFunctions_Det;   
numberOfVariables = 13;   % Number of decision variables 
populationSize = 200;     % Size of population 
stallGenLimit = 20000000; 
generations = 500;        % Number of generations 
% Bound Constraints 
lb=[1 1 1 1 1 1 1 1 1 1 1 1 1];                     % Lower bound 
ub=[20 10 20 20 20 20 20 20 20 2 15 10 84];         % Upper bound 

  
Bound = [lb; ub];  
% Run command (Simulation Model) on client and all workers in parallel pool 
pctRunOnAll('load_system(''CastingOperation_withoptimization_final_Determinis

tic_BMDet'')'); 

  
% Seed the random number generator based on the current time  
rng('shuffle') 
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% Specify the multiobjective GA (MOGA) options run on the master core 
options = gaoptimset('PlotFcns',@gaplotpareto,... 
    'PopulationSize',populationSize,... 
    'CreationFcn', @Int_Pop_Det,... 
    'MutationFcn', @Int_Mutation_Det,... 
    'CrossoverFcn',@Int_Crossoverarithmetic_Det,... 
    'StallGenLimit', stallGenLimit,... 
    'Generations', generations,... 
    'PopulationSize',populationSize,... 
    'PopInitRange', Bound,... 
    'TolFun',1e-118,... 
    'Display','iter',... 
'OutputFcns',@outfun_Det,... % Final output file on Hard Disk 
'UseParallel','always',... 
'ParetoFraction',0.35); 

  
% Run MOGA 

tic; 
[x, f, exitflag, population, score] = gamultiobj(fitnessFunction,... 
     numberOfVariables, [], [], [], [], lb, ub, options); 
toc;  

  
stateData = getappdata(0,'stateData'); 
writingfile  

Appendix D – MATLAB codes of different functions used in MOGA 

 

 Creation Function 

% INT_POP Function that creates an initial population satisfying bounds and 

integer constraints 

 

function Population = Int_Pop_Det(GenomeLength, ~, options) 

 
totalPopulation = sum(options.PopulationSize); 

  
% IntCon constraints 
IntCon = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]; 

  
range = options.PopInitRange; 
lower = range(1,:); 
span =  range(2,:) - lower; 

  
Population = repmat(lower,totalPopulation,1 )+  ... 
    repmat(span,totalPopulation,1) .* rand(totalPopulation, GenomeLength); 
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x = rand; 
if x>=0.5 
    Population(:,IntCon) = floor(Population(:, IntCon)); 
else 
    Population(:,IntCon) = ceil(Population(:, IntCon)); 
end 
Population = CheckFeasibleBounds_Det(Population, range); 

 

 Crossover Function 

% Int_Crossoverarithmetic_Det Function that creates crossover kids satisfying 

integer constraints 

 
function xoverKids  = 

Int_Crossoverarithmetic_Det541(parents,options,GenomeLength,... 
    ~,~,thisPopulation) 

  
%IntCon constraints 
IntCon = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]; 

  
% How many children to produce? 
nKids = length(parents)/2; 
% Allocate space for the kids 
xoverKids = zeros(nKids,GenomeLength); 
% To move through the parents twice as fast as the kids are 
% being produced, a separate index for the parents is needed 
index = 1; 
% for each kid... 
for i=1:nKids 
    % get parents 
    r1 = parents(index); 
    index = index + 1; 
    r2 = parents(index); 
    index = index + 1; 
    % Children are arithmetic mean of two parents 
    % ROUND will guarantee that they are integer. 
    alpha = rand; 
    xoverKids(i,:) = alpha*thisPopulation(r1,:) + ... 
        (1-alpha)*thisPopulation(r2,:); 
end 

  
Crossover.alpha = alpha; 
Crossover.nKids = nKids; 

  
CrossoverData = getappdata(0,'CrossoverData'); 
%In the above code, the first input argument 0 is the handle to the root 
MATLAB application. 

  
% If this is the first run, stateData will be empty, so set it 
if(isempty(CrossoverData)) 
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   CrossoverData = Crossover; 

     
% If this is not the first run, stateData already has previous information, 

append the current state data to this information  
else 
    CrossoverData = [CrossoverData;Crossover]; 
end 
% Save the new stateData as application data 
setappdata(0,'CrossoverData',CrossoverData); 

  

  
x = rand; 
if x>=0.5 
    xoverKids(:, IntCon) = floor(xoverKids(:, IntCon)); 
else 
    xoverKids(:, IntCon) = ceil(xoverKids(:, IntCon)); 
end 
range = options.PopInitRange; 
xoverKids = CheckFeasibleBounds_Det (xoverKids, range); 

 

 Mutation Function 

% Int_Mutation_Det Function that creates mutation kids satisfying integer 

constraints 
function mutationChildren = Int_Mutation_Det(parents, options, GenomeLength, 

... 
    ~, state, ~, ~) 

  
% Function that creates the mutated children using the Gaussian 
% distribution. It does not satisfy linear constraints! 

  
%IntCon constraints 
IntCon = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]; 

  
shrink = 0.01;  
scale = 1; 
scale = scale - shrink * scale * state.Generation/options.Generations; 
range = options.PopInitRange; 
lower = range(1,:); 
upper = range(2,:); 
scale = scale * (upper - lower); 
mutationPop =  length(parents); 

  
mutationChildren =  repmat(lower,mutationPop,1) +  ... 
    repmat(scale, mutationPop,1) .* rand(mutationPop, GenomeLength); 

  
x = rand; 
if x>=0.5 
    mutationChildren(:, IntCon) = floor(mutationChildren(:,IntCon)); 
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else 
    mutationChildren(:, IntCon) = ceil(mutationChildren(:,IntCon)); 
end 

  
mutationChildren = CheckFeasibleBounds_Det(mutationChildren, range); 

 

 Output Function 

% Outfun_Det Function that creates outputs 
function [state, options,optchanged] = outfun_Det(options,state,~) 

  
% Get previous state data which is stored as appdata 
stateData = getappdata(0,'stateData'); 
%In the above code, the first input argument 0 is the handle to the root 
MATLAB application. 

  
% If this is the first run, stateData will be empty, so set it 
if(isempty(stateData)) 
    stateData = state; 

     
% If this is not the first run, stateData already has previous 

information,append the current state data to this information  
else 
    stateData = [stateData;state]; 
end 
% Save the new stateData as application data 
setappdata(0,'stateData',stateData); 

  
% Changing the optchanged flag to true since the options structure was 
% changed. 
optchanged = true; 

 

 Feasibility Function 

% CHECKBOUNDS adds a subtracts 1 to the variables that are not inside the 
bounds to make them fall inside the bounds 
 function x = CheckFeasibleBounds_Det(x, range) 
 [~, m] = size(range); 

  
for k = 1:m 
x(x(:, k)<range(1, k), k)=x(x(:, k)<range(1, k), k)+1; 
x(x(:, k)>range(2, k), k)=x(x(:, k)>range(2, k), k)-1; 
end 

Appendix E – MATLAB codes for calculating the Hypervolume indicator (Adapted 

from (Kruisselbrink, 2011)) 

function hv = hypervolume_ approximation (P, r, samples) 
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% Computes the hypervolume (or Lebesgue measure) of the N x l 
% matrix P of l vectors of N objective function values by means 
% of a Monte-Carlo approximation method. 
% Input: 
% - P: An N x l matrix where each of the l columns represents a vector of N 

objective function values 
% - r: Reference point (the boundary point containing the maximum of P for 
each objective). 
% - samples: The number of samples used for the Monte-Carlo approximation 

(default: 100000). 

 
% Output: 
% - hv: The hypervolume (or Lebesgue measure) of P. 
% 
if nargin < 2 
    r = (max(P,[],2)); 
end 
if nargin < 3 
    samples = 10000; 
end 

 
[N, l] = size(P); 
%   samples = 100000; 
lb = min(P')'; 
P_samples = repmat(lb,1,samples) + rand(N,samples) .* repmat((r - 

lb),1,samples); 
is_dominated_count = 0; 
for i = 1:samples 
    for j = 1:l 
        if (dominates(P(:,j), P_samples(:,i))) 
            is_dominated_count = is_dominated_count + 1; 
            break; 
        end 
    end 
end 
    hv = prod(r - lb) * (is_dominated_count / samples); 

  
end 

Appendix F – Profiling MATLAB codes  

The time or memory complexity of a program can be measured dynamically through applying 

profiling. Profiling helps to optimize the program by understanding the program behavior and 

determining which part of the program needs to be modified to improve its performance. The 
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output of profiling is a profile including a statistical summary of the events happened which shows 

where the program spends more time. The program is almost fully optimized when profiling calls 

a few built-in functions most of the time (Mathworks, 2014a).  

A graphical user interface (GUI) called the Profiler is provided by MATLAB to apply the profile 

function. Also, profiling parallel code is used to profile parallel jobs (Mathworks, 2014a). 

All the profiling reports should be saved in order to compare the program performance based on 

the first saved report. This report includes statistics regarding the program performance mainly 

from execution time point of view which are classified in five columns. Function Name, Calls, 

Total Time, Self Time, and Total Time Plot. List of all the functions called by the profiler and the 

number of their calls are presented under the Function Name and Calls columns, respectively. The 

total time spent in a function considering the time spent in all child functions is shown in Total 

Time column, also the total time excluding the time spent in all child functions is illustrated as Self 

Time column. Finally, the comparison between the total and self time is graphically shown in the 

last column of the report. Figure F-1 shows an example of a summary report.  
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Figure F-1: Summary report generated by MATLAB profile function 

There is also a Profile Detail report for each function called during the profiling which contains 

six sections. These sections are illustrated in Figure F-2. There are parent and child functions 

sections that show information related to these functions with their detailed reports (Figure F-2(a) 

and (b)). In order to highlight the parts of a code which used the highest percentage of the execution 

time, the busy lines section should be selected (Figure F-2(c)). The performance issues and the 

potential troubleshooting suggestions are found under Code Analyzer results section (Figure F-

2(d)). The Coverage results section provides information about the number of the executed lines 

during the profiling procedure (Figure F-2(e)). For a MATLAB code, the execution time of each 

line of a code, how many time the line is called, and the source code for the function are gathered 

in Function listing part of the Profile Detail report (Figure F-2(f)).  
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Running the profile function instead of using the GUI (Profiler) provides more information 

regarding the program performance.  

 
(a) Parent functions section 

 
(b) Child functions section 
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(c) Busy lines section 

 
(d) Code analyzer results section 

 
(e) File coverage section 
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(f) Function listing section 

Figure F-2: Different sections of the Profile Detail report 

One extension of the profile function is parallel profiler (mpiprofile) which is useful for parallel 

jobs. This profiler determines the amount of time that each worker spends in order to perform its 

task, and the time needed for communication between workers. Unfortunately, this type of profiler 

does not support parfor-loops which is the parallel part used in this research.  

Appendix G – Problem Faced Using SimEvents Simulation Tool and Parallel 

Computing  

There were two main issues in performing parallel computing pertinent to memory leakage and 

speed problem.  

G.1 Memory leakage 

Once the model was run on the server machine, an error regarding the memory of the computer 

appeared in MATLAB after some generations causing the failure of the program. One limitation 
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of using this machine was the relatively small size of its available RAM (48 GB). In this model, 

the simOut data was appended into a cell array to save output data of the simulation for the 

specified number of iterations where each iteration increases its size by about 380KB. For 

example, over 1000 iterations that sums to 380MB which can be a sizeable amount of memory 

topped with the memory of MATLAB for the 6 GB machine. To solve this problem, virtual 

memory of the computer was increased to a very large number (like 100 GB) to use its capability 

of saving more data.   

Memory leakage can be produced due to use of Time-Based Function-Call Generator blocks in 

the simulation model. Each block is configured to generate a certain number of function-calls only 

at the beginning of the simulation. This block is usually connected to an Event-Based Entity 

Generator which senses the function-call and generates that many entities when the simulation 

starts. Such a scheme is usually used to preload a queue at the start of simulation. 

In order to prevent memory leakage during the program progress, this pattern can be replaced with 

an Event-Based Sequence block connected to a Time-Based Entity Generator block which is 

configured to read inter-generation times from signal port. In this case, if n entities should be 

generated at the start of the simulation (e.g., number of crews = 1 to n), then the intergeneration 

time sequence should be entered as below: 
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When intergeneration time is inf, the generation will stop. 

G.2 Speed Problem 

One main difference between Simulink and other platforms is that Simulink checks if any updates 

are made to the model before every iteration which takes some time. If updates are made, it rebuilds 

the model for efficiency. As this may accumulate some overhead, it is not good in the long run, 

since any changes made between iterations will be taken into consideration by Simulink. 

Thus, the run time of the proposed simulation model was significantly long which shows that some 

modifications are needed to fix this problem and increase the simulation speed to maximum. These 

modifications are listed below: 

1. Eliminate Timed to Event and Event to Timed Signal Gateway blocks  

This model is purely a discrete event model with no continuous dynamics. Hence the use of these 

gateway blocks should be avoided. If an event-based signal is converted to a time-based signal 

using such a block then this causes extra time hits during the simulation because Simulink assumes 

that the value of the signal could be continuously changing and tries to simulate these changes. 

However, the signal will never change between events because its source is an event, and as such, 

blocks connected to this signal need only be run when an event occurs, not at each time step of the 

simulation. The motivation for inserting this gateway block in the first place was because after 

running the model an error appeared asking for converting the signal from event-based to time-

based in order to use the Stop Simulation block. But instead of inserting the gateway, the Stop 
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Simulation block can be placed inside of an Atomic Subsystem and then SimEvents will run the 

Atomic Subsystem only when an event occurs.  

2. Eliminate some Discrete Event To Workspace blocks  

All Discrete Event to Workspace blocks commented out except the ones that are needed to observe 

the simulation output because every additional logging block introduces some overhead. Also, any 

logging blocks that were inserted for debugging can be kept commented out during the test. 

3. Eliminate all Attribute Function blocks  

All of the Attribute Function blocks in the model are removed and replaced with equivalent 

Simulink and SimEvents blocks. The Attribute Function block uses another MATLAB Function 

block in which a MATLAB code has been written to compute attribute values. During compilation, 

this block generates a MEX (MATLAB executable) file (Dynamic Link Library (DLL)) and during 

simulation if calls that DLL at each time step. This greatly increases compilation time. Depending 

on what the MATLAB code does, this could increase simulation time also. 

In this case, the MATLAB code was only doing some basic arithmetic operations. So the cost of 

calling a DLL is comparable to the cost of running the MATLAB code and this slows down the 

simulation. If there is a more complicated MATLAB function then perhaps it would have been 

worth the cost of calling a DLL at each time step. Replacing such blocks with equivalent Simulink 

interpretations will reduce model run-time greatly. 
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4. Turning off all debugging-related options 

Also, all debugging-related options were turned off from the Simulation Target pane of the model's 

Configuration Parameters dialog to save more time. Using these changes, the maximum possible 

efficiency can be obtained in Simulink.  

5. Defining integer decision variables 

In addition, the variables of the multi-objective optimization problem are defined to be only 

integers by creating custom creation, mutation and crossover functions that generate only integer 

outputs for the required variables.    

The general idea here is to take an approach based on a continuous parameter space strategy and 

make it discrete, based on well-placed calls to the rounding functions, FLOOR and CEIL. 

G.3 Problem with C-compiler: 

After running the proposed model on 4-core desktop machine, the model was run on the server 

machine with properties as: Server/Intel Xeon CPU E5540 @ 2.53 GHz, 48 GB Random Access 

Memory (RAM), and running Windows 2010 Dell computer with 12 cores. 

The first problem in this case was an error about the non-existence of the C-compiler of the 

Simulink Toolbox which means that the server machine on which MATLAB is running, either 

does not have a supported C-compiler installed on it, or MATLAB has not been set-up to use the 

relevant compiler. In order to set MATLAB up to use a supported compiler, the “mex-setup” 
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command was run at the command line which showed that there was not any supported C-compiler 

installed on the server machine. Therefore, “Microsoft Visual C++ 2010 Professional” compiler 

(Table G-1) was installed to resolve the issue. 

http://msdn.microsoft.com/en-us/vstudio/bb984878.aspx
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Table G-1: Simulink Product Family – Release 2012b (Support, n.d.) 

  

Simulink Simulink Stateflow 
Simulink 

Coder 

Embedded 

Coder 
xPC Target 

Simulink 

Code 

Inspector 

Compiler For S-

Function 

compilation 

For Model Referencing, 

Accelerator mode, Rapid 

Accelerator mode, and 

MATLAB Function 

blocks 

For all 

features 

For all 

features 

When 

targeting the 

host OS 

For all 

features 

For all 

features 

Microsoft Windows SDK 7.1  
x x x x x x x 

Microsoft Visual C++ 2010 Professional  
x x x x x x x 

Microsoft Visual C++ 2008 Professional 

SP1 and Windows SDK 6.1 
x x x x x x x 

Intel C++ Composer XE 2011 x      x 

Intel Visual Fortran Composer XE 2011  x     x  

 

 

 

 

http://www.microsoft.com/downloads/details.aspx?FamilyID=6b6c21d2-2006-4afa-9702-529fa782d63b&displaylang=en
http://msdn.microsoft.com/en-us/vstudio/bb984878.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyId=FBEE1648-7106-44A7-9649-6D9F6D58056E&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=FBEE1648-7106-44A7-9649-6D9F6D58056E&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=F26B1AA4-741A-433A-9BE5-FA919850BDBF&displaylang=en

